|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +# pyre-strict |
| 8 | + |
| 9 | +import unittest |
| 10 | + |
| 11 | +import fbgemm_gpu |
| 12 | + |
| 13 | +import torch |
| 14 | +from fbgemm_gpu.split_embedding_configs import SparseType |
| 15 | +from fbgemm_gpu.utils.loader import load_torch_module |
| 16 | + |
| 17 | +# pyre-fixme[16]: Module `fbgemm_gpu` has no attribute `open_source`. |
| 18 | +open_source: bool = getattr(fbgemm_gpu, "open_source", False) |
| 19 | + |
| 20 | +if not open_source: |
| 21 | + load_torch_module( |
| 22 | + "//deeplearning/fbgemm/fbgemm_gpu:dram_kv_embedding_inference", |
| 23 | + ) |
| 24 | + |
| 25 | + |
| 26 | +@unittest.skipIf(open_source, "Not supported in open source yet") |
| 27 | +class DramKvInferenceTest(unittest.TestCase): |
| 28 | + def test_serialize(self) -> None: |
| 29 | + num_shards = 32 |
| 30 | + uniform_init_lower: float = -0.01 |
| 31 | + uniform_init_upper: float = 0.01 |
| 32 | + evict_trigger_mode: int = 1 |
| 33 | + |
| 34 | + kv_embedding_cache = torch.classes.fbgemm.DramKVEmbeddingInferenceWrapper( |
| 35 | + num_shards, uniform_init_lower, uniform_init_upper, evict_trigger_mode |
| 36 | + ) |
| 37 | + serialized_result = kv_embedding_cache.serialize() |
| 38 | + |
| 39 | + self.assertEqual(serialized_result[0][0], num_shards) |
| 40 | + self.assertEqual(serialized_result[0][1], evict_trigger_mode) |
| 41 | + |
| 42 | + self.assertEqual(serialized_result[1][0], uniform_init_lower) |
| 43 | + self.assertEqual(serialized_result[1][1], uniform_init_upper) |
| 44 | + |
| 45 | + def test_serialize_deserialize(self) -> None: |
| 46 | + num_shards = 32 |
| 47 | + uniform_init_lower: float = -0.01 |
| 48 | + uniform_init_upper: float = 0.01 |
| 49 | + evict_trigger_mode: int = 1 |
| 50 | + |
| 51 | + kv_embedding_cache = torch.classes.fbgemm.DramKVEmbeddingInferenceWrapper( |
| 52 | + num_shards, uniform_init_lower, uniform_init_upper, evict_trigger_mode |
| 53 | + ) |
| 54 | + serialized_result = kv_embedding_cache.serialize() |
| 55 | + |
| 56 | + kv_embedding_cache_2 = torch.classes.fbgemm.DramKVEmbeddingInferenceWrapper( |
| 57 | + 0, 0.0, 0.0, 0 |
| 58 | + ) |
| 59 | + kv_embedding_cache_2.deserialize(serialized_result) |
| 60 | + |
| 61 | + self.assertEqual(str(serialized_result), str(kv_embedding_cache_2.serialize())) |
| 62 | + |
| 63 | + def test_set_get_embeddings(self) -> None: |
| 64 | + num_shards = 32 |
| 65 | + uniform_init_lower: float = 0.0 |
| 66 | + uniform_init_upper: float = 0.0 |
| 67 | + evict_trigger_mode: int = 0 |
| 68 | + |
| 69 | + kv_embedding_cache = torch.classes.fbgemm.DramKVEmbeddingInferenceWrapper( |
| 70 | + num_shards, uniform_init_lower, uniform_init_upper, evict_trigger_mode |
| 71 | + ) |
| 72 | + kv_embedding_cache.init( |
| 73 | + [(20, 4, SparseType.INT8.as_int())], |
| 74 | + 8, |
| 75 | + 4, |
| 76 | + ) |
| 77 | + |
| 78 | + kv_embedding_cache.set_embeddings( |
| 79 | + torch.tensor([0, 1, 2, 3], dtype=torch.int64), |
| 80 | + torch.tensor( |
| 81 | + [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], |
| 82 | + dtype=torch.uint8, |
| 83 | + ), |
| 84 | + ) |
| 85 | + |
| 86 | + embs = kv_embedding_cache.get_embeddings( |
| 87 | + torch.tensor([1, 4, 3, 0, 5, 2], dtype=torch.int64), |
| 88 | + ) |
| 89 | + assert torch.equal( |
| 90 | + embs[:, :4], |
| 91 | + torch.tensor( |
| 92 | + [ |
| 93 | + [5, 6, 7, 8], |
| 94 | + [0, 0, 0, 0], |
| 95 | + [13, 14, 15, 16], |
| 96 | + [1, 2, 3, 4], |
| 97 | + [0, 0, 0, 0], |
| 98 | + [9, 10, 11, 12], |
| 99 | + ], |
| 100 | + dtype=torch.uint8, |
| 101 | + ), |
| 102 | + ) |
0 commit comments