|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +# pyre-strict |
| 8 | + |
| 9 | +import gc |
| 10 | +import logging |
| 11 | +import time |
| 12 | +from typing import Callable, Dict, Type |
| 13 | + |
| 14 | +import click |
| 15 | +import numpy as np |
| 16 | +import psutil |
| 17 | +from fbgemm_gpu.split_embedding_configs import SparseType |
| 18 | +from fbgemm_gpu.split_table_batched_embeddings_ops_common import EmbeddingLocation |
| 19 | +from fbgemm_gpu.split_table_batched_embeddings_ops_inference import ( |
| 20 | + IntNBitTableBatchedEmbeddingBagsCodegen, |
| 21 | +) |
| 22 | +from fbgemm_gpu.tbe.bench import benchmark_requests |
| 23 | +from fbgemm_gpu.tbe.cache import KVEmbeddingInference |
| 24 | +from fbgemm_gpu.tbe.utils import generate_requests, round_up, TBERequest |
| 25 | + |
| 26 | +OptionCommandType = Callable[..., Callable[..., None]] |
| 27 | + |
| 28 | +iters: OptionCommandType = click.option( |
| 29 | + "--iters", |
| 30 | + default=200, |
| 31 | + type=int, |
| 32 | + help="Number of iterations to benchmark", |
| 33 | +) |
| 34 | +num_embeddings: OptionCommandType = click.option( |
| 35 | + "--num-embeddings", |
| 36 | + default=int(1e8), |
| 37 | + type=int, |
| 38 | + help="Number of embedding to benchmark", |
| 39 | +) |
| 40 | +dim: OptionCommandType = click.option( |
| 41 | + "--dim", default=256, type=int, help="Dimension of embedding to benchmark" |
| 42 | +) |
| 43 | +num_tables: OptionCommandType = click.option( |
| 44 | + "--num-tables", default=4, type=int, help="Number of tables to benchmark" |
| 45 | +) |
| 46 | +output_dtype: OptionCommandType = click.option( |
| 47 | + "--output-dtype", type=SparseType, default=SparseType.FP16 |
| 48 | +) |
| 49 | +weights_precision: OptionCommandType = click.option( |
| 50 | + "--weights-precision", type=SparseType, default=SparseType.INT8 |
| 51 | +) |
| 52 | +batch_size: OptionCommandType = click.option("--batch-size", default=128) |
| 53 | +bag_size: OptionCommandType = click.option("--bag-size", default=1) |
| 54 | +mixed_dim: OptionCommandType = click.option("--mixed-dim", is_flag=True, default=False) |
| 55 | +tbe_class: OptionCommandType = click.option( |
| 56 | + "--tbe-class", type=str, default="KVEmbeddingInference" |
| 57 | +) |
| 58 | + |
| 59 | + |
| 60 | +TBE_CLASS_MAP: Dict[str, Type[IntNBitTableBatchedEmbeddingBagsCodegen]] = { |
| 61 | + "KVEmbeddingInference": KVEmbeddingInference, |
| 62 | + "IntNBitTableBatchedEmbeddingBagsCodegen": IntNBitTableBatchedEmbeddingBagsCodegen, |
| 63 | +} |
| 64 | + |
| 65 | + |
| 66 | +@click.group() |
| 67 | +def cli() -> None: |
| 68 | + pass |
| 69 | + |
| 70 | + |
| 71 | +@cli.command() |
| 72 | +@iters |
| 73 | +@num_embeddings |
| 74 | +@dim |
| 75 | +@num_tables |
| 76 | +@output_dtype |
| 77 | +@weights_precision |
| 78 | +@batch_size |
| 79 | +@bag_size |
| 80 | +@mixed_dim |
| 81 | +@tbe_class |
| 82 | +def forward_benchmark( |
| 83 | + iters: int, |
| 84 | + num_embeddings: int, |
| 85 | + dim: int, |
| 86 | + num_tables: int, |
| 87 | + output_dtype: SparseType, |
| 88 | + weights_precision: SparseType, |
| 89 | + batch_size: int, |
| 90 | + bag_size: int, |
| 91 | + mixed_dim: bool, |
| 92 | + tbe_class: str, |
| 93 | +) -> None: |
| 94 | + logging.info( |
| 95 | + f"Running forward benchmark with {iters} iterations, {num_embeddings} embeddings, {dim} dim, {num_tables} tables, {output_dtype} output dtype, {weights_precision} weights precision, {batch_size} batch" |
| 96 | + ) |
| 97 | + |
| 98 | + stats = [] |
| 99 | + |
| 100 | + if mixed_dim: |
| 101 | + dimentions = [ |
| 102 | + round_up(np.random.randint(low=int(0.5 * dim), high=int(1.5 * dim)), 4) |
| 103 | + for _ in range(num_tables) |
| 104 | + ] |
| 105 | + else: |
| 106 | + dimentions = [dim] * num_tables |
| 107 | + |
| 108 | + process = psutil.Process() |
| 109 | + |
| 110 | + clazz = TBE_CLASS_MAP[tbe_class] |
| 111 | + |
| 112 | + time.sleep(5) |
| 113 | + mem_util_before = process.memory_info().rss / (1024 * 1024) |
| 114 | + logging.info(f"Memory util before emb init: {mem_util_before} MB") |
| 115 | + tbe = clazz( |
| 116 | + [ |
| 117 | + ( |
| 118 | + "", |
| 119 | + num_embeddings, |
| 120 | + d, |
| 121 | + weights_precision, |
| 122 | + EmbeddingLocation.HOST, |
| 123 | + ) |
| 124 | + for d in dimentions |
| 125 | + ], |
| 126 | + output_dtype=output_dtype, |
| 127 | + device="cpu", |
| 128 | + ) |
| 129 | + tbe.fill_random_weights() |
| 130 | + |
| 131 | + gc.collect() |
| 132 | + time.sleep(5) |
| 133 | + mem_util_after = process.memory_info().rss / (1024 * 1024) |
| 134 | + logging.info(f"Memory util after emb fill: {mem_util_after} MB") |
| 135 | + logging.info(f"Memory util diff: {mem_util_after - mem_util_before} MB") |
| 136 | + |
| 137 | + for batch_size in [10240, 20480, 40960]: |
| 138 | + requests = generate_requests( |
| 139 | + iters, |
| 140 | + batch_size, |
| 141 | + num_tables, |
| 142 | + bag_size, |
| 143 | + num_embeddings, |
| 144 | + use_cpu=True, |
| 145 | + ) |
| 146 | + |
| 147 | + requests_cpu = [ |
| 148 | + TBERequest( |
| 149 | + req.indices.int().cpu(), |
| 150 | + req.offsets.int().cpu(), |
| 151 | + req.per_sample_weights, |
| 152 | + ) |
| 153 | + for req in requests |
| 154 | + ] |
| 155 | + |
| 156 | + logging.info(f"Running forward benchmark with {len(requests_cpu)} requests") |
| 157 | + time_per_iter = benchmark_requests( |
| 158 | + requests_cpu, |
| 159 | + lambda indices, offsets, per_sample_weights: tbe.forward( |
| 160 | + indices.int().cpu(), |
| 161 | + offsets.int().cpu(), |
| 162 | + per_sample_weights, |
| 163 | + ), |
| 164 | + num_warmups=10, |
| 165 | + ) |
| 166 | + logging.info(f"{clazz} CPU Time: {time_per_iter * 1.0e6:.0f}us") |
| 167 | + stats.append( |
| 168 | + [ |
| 169 | + clazz, |
| 170 | + num_tables, |
| 171 | + batch_size, |
| 172 | + f"{time_per_iter * 1.0e6:.0f}us", |
| 173 | + f"{mem_util_after - mem_util_before} MB", |
| 174 | + ] |
| 175 | + ) |
| 176 | + for stat in stats: |
| 177 | + logging.info(stat) |
| 178 | + |
| 179 | + |
| 180 | +if __name__ == "__main__": |
| 181 | + cli() |
0 commit comments