|
| 1 | +This file is automatically generated by assertExpectedJournal calls in test_tuple.py. |
| 2 | +Update expected outputs by running tests with the EXPECTTEST_ACCEPT=1 environment variable set. |
| 3 | + |
| 4 | +--- assertExpectedJournal(TestMisc.test_tuple_literal_subscript) |
| 5 | +from __future__ import annotations |
| 6 | + |
| 7 | +import torch |
| 8 | +import triton |
| 9 | +import triton.language as tl |
| 10 | +from helion.runtime import default_launcher as _default_launcher |
| 11 | + |
| 12 | +@triton.jit |
| 13 | +def _tuple_literal_index_kernel_kernel(out, inp_tuple_item_0, inp_tuple_item_1, out_size_0, out_size_1, inp_tuple_item_0_stride_0, inp_tuple_item_0_stride_1, inp_tuple_item_1_stride_0, inp_tuple_item_1_stride_1, out_stride_0, out_stride_1, inp_tuple_item_2, _BLOCK_SIZE_0: tl.constexpr, _BLOCK_SIZE_1: tl.constexpr): |
| 14 | + num_blocks_0 = tl.cdiv(out_size_0, _BLOCK_SIZE_0) |
| 15 | + pid_0 = tl.program_id(0) % num_blocks_0 |
| 16 | + pid_1 = tl.program_id(0) // num_blocks_0 |
| 17 | + offset_0 = pid_0 * _BLOCK_SIZE_0 |
| 18 | + indices_0 = (offset_0 + tl.arange(0, _BLOCK_SIZE_0)).to(tl.int32) |
| 19 | + mask_0 = indices_0 < out_size_0 |
| 20 | + offset_1 = pid_1 * _BLOCK_SIZE_1 |
| 21 | + indices_1 = (offset_1 + tl.arange(0, _BLOCK_SIZE_1)).to(tl.int32) |
| 22 | + mask_1 = indices_1 < out_size_1 |
| 23 | + load = tl.load(inp_tuple_item_0 + (indices_0[:, None] * inp_tuple_item_0_stride_0 + indices_1[None, :] * inp_tuple_item_0_stride_1), mask_0[:, None] & mask_1[None, :], other=0) |
| 24 | + load_1 = tl.load(inp_tuple_item_1 + (indices_0[:, None] * inp_tuple_item_1_stride_0 + indices_1[None, :] * inp_tuple_item_1_stride_1), mask_0[:, None] & mask_1[None, :], other=0) |
| 25 | + v_0 = load_1.to(tl.float32) |
| 26 | + v_1 = load + v_0 |
| 27 | + v_2 = inp_tuple_item_2.to(tl.float32) |
| 28 | + v_3 = v_1 * v_2 |
| 29 | + tl.store(out + (indices_0[:, None] * out_stride_0 + indices_1[None, :] * out_stride_1), v_3, mask_0[:, None] & mask_1[None, :]) |
| 30 | + |
| 31 | +def tuple_literal_index_kernel(inp_tuple, *, _launcher=_default_launcher): |
| 32 | + out = torch.empty_like(inp_tuple[0]) |
| 33 | + _BLOCK_SIZE_0 = 8 |
| 34 | + _BLOCK_SIZE_1 = 8 |
| 35 | + _launcher(_tuple_literal_index_kernel_kernel, (triton.cdiv(out.size(0), _BLOCK_SIZE_0) * triton.cdiv(out.size(1), _BLOCK_SIZE_1),), out, inp_tuple[0], inp_tuple[1], out.size(0), out.size(1), inp_tuple[0].stride(0), inp_tuple[0].stride(1), inp_tuple[1].stride(0), inp_tuple[1].stride(1), out.stride(0), out.stride(1), inp_tuple[2], _BLOCK_SIZE_0, _BLOCK_SIZE_1, num_warps=4, num_stages=3) |
| 36 | + return outfrom __future__ import annotations |
| 37 | + |
| 38 | +import torch |
| 39 | +import triton |
| 40 | +import triton.language as tl |
| 41 | +from helion.runtime import default_launcher as _default_launcher |
| 42 | + |
| 43 | +@triton.jit |
| 44 | +def _tuple_literal_index_kernel_kernel(out, inp_tuple_item_0, inp_tuple_item_1, inp_tuple_item_0_size_0, inp_tuple_item_0_size_1, inp_tuple_item_1_size_0, inp_tuple_item_1_size_1, out_size_0, out_size_1, inp_tuple_item_0_stride_0, inp_tuple_item_0_stride_1, inp_tuple_item_1_stride_0, inp_tuple_item_1_stride_1, out_stride_0, out_stride_1, inp_tuple_item_2, _BLOCK_SIZE_0: tl.constexpr, _BLOCK_SIZE_1: tl.constexpr): |
| 45 | + num_blocks_0 = tl.cdiv(out_size_0, _BLOCK_SIZE_0) |
| 46 | + pid_0 = tl.program_id(0) % num_blocks_0 |
| 47 | + pid_1 = tl.program_id(0) // num_blocks_0 |
| 48 | + offset_0 = pid_0 * _BLOCK_SIZE_0 |
| 49 | + offset_1 = pid_1 * _BLOCK_SIZE_1 |
| 50 | + load = tl.load(tl.make_block_ptr(inp_tuple_item_0, [inp_tuple_item_0_size_0, inp_tuple_item_0_size_1], [inp_tuple_item_0_stride_0, inp_tuple_item_0_stride_1], [offset_0, offset_1], [_BLOCK_SIZE_0, _BLOCK_SIZE_1], [1, 0]), boundary_check=[0, 1], padding_option='zero') |
| 51 | + load_1 = tl.load(tl.make_block_ptr(inp_tuple_item_1, [inp_tuple_item_1_size_0, inp_tuple_item_1_size_1], [inp_tuple_item_1_stride_0, inp_tuple_item_1_stride_1], [offset_0, offset_1], [_BLOCK_SIZE_0, _BLOCK_SIZE_1], [1, 0]), boundary_check=[0, 1], padding_option='zero') |
| 52 | + v_0 = load_1.to(tl.float32) |
| 53 | + v_1 = load + v_0 |
| 54 | + v_2 = inp_tuple_item_2.to(tl.float32) |
| 55 | + v_3 = v_1 * v_2 |
| 56 | + tl.store(tl.make_block_ptr(out, [out_size_0, out_size_1], [out_stride_0, out_stride_1], [offset_0, offset_1], [_BLOCK_SIZE_0, _BLOCK_SIZE_1], [1, 0]), v_3, boundary_check=[0, 1]) |
| 57 | + |
| 58 | +def tuple_literal_index_kernel(inp_tuple, *, _launcher=_default_launcher): |
| 59 | + out = torch.empty_like(inp_tuple[0]) |
| 60 | + _BLOCK_SIZE_0 = 8 |
| 61 | + _BLOCK_SIZE_1 = 8 |
| 62 | + _launcher(_tuple_literal_index_kernel_kernel, (triton.cdiv(out.size(0), _BLOCK_SIZE_0) * triton.cdiv(out.size(1), _BLOCK_SIZE_1),), out, inp_tuple[0], inp_tuple[1], inp_tuple[0].size(0), inp_tuple[0].size(1), inp_tuple[1].size(0), inp_tuple[1].size(1), out.size(0), out.size(1), inp_tuple[0].stride(0), inp_tuple[0].stride(1), inp_tuple[1].stride(0), inp_tuple[1].stride(1), out.stride(0), out.stride(1), inp_tuple[2], _BLOCK_SIZE_0, _BLOCK_SIZE_1, num_warps=4, num_stages=3) |
| 63 | + return out |
| 64 | + |
| 65 | +--- assertExpectedJournal(TestMisc.test_tuple_literal_subscript_w_descriptor) |
| 66 | +from __future__ import annotations |
| 67 | + |
| 68 | +import torch |
| 69 | +import helion |
| 70 | +import triton |
| 71 | +import triton.language as tl |
| 72 | +from helion.runtime import default_launcher as _default_launcher |
| 73 | + |
| 74 | +helion.runtime.set_triton_allocator() |
| 75 | + |
| 76 | +@triton.jit |
| 77 | +def _tuple_literal_index_kernel_kernel(out, inp_tuple_item_0, inp_tuple_item_1, inp_tuple_item_1_size_0, inp_tuple_item_1_size_1, out_size_0, out_size_1, inp_tuple_item_0_stride_0, inp_tuple_item_0_stride_1, inp_tuple_item_1_stride_0, inp_tuple_item_1_stride_1, out_stride_0, out_stride_1, inp_tuple_item_2, _BLOCK_SIZE_0: tl.constexpr, _BLOCK_SIZE_1: tl.constexpr): |
| 78 | + inp_tuple_item_1_desc = tl.make_tensor_descriptor(inp_tuple_item_1, [inp_tuple_item_1_size_0, inp_tuple_item_1_size_1], [inp_tuple_item_1_stride_0, inp_tuple_item_1_stride_1], [_BLOCK_SIZE_0, _BLOCK_SIZE_1]) |
| 79 | + num_blocks_0 = tl.cdiv(out_size_0, _BLOCK_SIZE_0) |
| 80 | + pid_0 = tl.program_id(0) % num_blocks_0 |
| 81 | + pid_1 = tl.program_id(0) // num_blocks_0 |
| 82 | + offset_0 = pid_0 * _BLOCK_SIZE_0 |
| 83 | + indices_0 = (offset_0 + tl.arange(0, _BLOCK_SIZE_0)).to(tl.int32) |
| 84 | + mask_0 = indices_0 < out_size_0 |
| 85 | + offset_1 = pid_1 * _BLOCK_SIZE_1 |
| 86 | + indices_1 = (offset_1 + tl.arange(0, _BLOCK_SIZE_1)).to(tl.int32) |
| 87 | + mask_1 = indices_1 < out_size_1 |
| 88 | + load = tl.load(inp_tuple_item_0 + (indices_0[:, None] * inp_tuple_item_0_stride_0 + indices_1[None, :] * inp_tuple_item_0_stride_1), mask_0[:, None] & mask_1[None, :], other=0) |
| 89 | + load_1 = inp_tuple_item_1_desc.load([offset_0, offset_1]) |
| 90 | + v_0 = load_1.to(tl.float32) |
| 91 | + v_1 = load + v_0 |
| 92 | + v_2 = inp_tuple_item_2.to(tl.float32) |
| 93 | + v_3 = v_1 * v_2 |
| 94 | + tl.store(out + (indices_0[:, None] * out_stride_0 + indices_1[None, :] * out_stride_1), v_3, mask_0[:, None] & mask_1[None, :]) |
| 95 | + |
| 96 | +def tuple_literal_index_kernel(inp_tuple, *, _launcher=_default_launcher): |
| 97 | + out = torch.empty_like(inp_tuple[0]) |
| 98 | + _BLOCK_SIZE_0 = 8 |
| 99 | + _BLOCK_SIZE_1 = 8 |
| 100 | + _launcher(_tuple_literal_index_kernel_kernel, (triton.cdiv(out.size(0), _BLOCK_SIZE_0) * triton.cdiv(out.size(1), _BLOCK_SIZE_1),), out, inp_tuple[0], inp_tuple[1], inp_tuple[1].size(0), inp_tuple[1].size(1), out.size(0), out.size(1), inp_tuple[0].stride(0), inp_tuple[0].stride(1), inp_tuple[1].stride(0), inp_tuple[1].stride(1), out.stride(0), out.stride(1), inp_tuple[2], _BLOCK_SIZE_0, _BLOCK_SIZE_1, num_warps=4, num_stages=3) |
| 101 | + return out |
| 102 | + |
| 103 | +--- assertExpectedJournal(TestMisc.test_tuple_unpack) |
| 104 | +from __future__ import annotations |
| 105 | + |
| 106 | +import torch |
| 107 | +import triton |
| 108 | +import triton.language as tl |
| 109 | +from helion.runtime import default_launcher as _default_launcher |
| 110 | + |
| 111 | +@triton.jit |
| 112 | +def _tuple_unpack_kernel_kernel(a, b, out, a_size_0, a_stride_0, b_stride_0, out_stride_0, x, _BLOCK_SIZE_0: tl.constexpr): |
| 113 | + pid_0 = tl.program_id(0) |
| 114 | + offset_0 = pid_0 * _BLOCK_SIZE_0 |
| 115 | + indices_0 = (offset_0 + tl.arange(0, _BLOCK_SIZE_0)).to(tl.int32) |
| 116 | + mask_0 = indices_0 < a_size_0 |
| 117 | + load = tl.load(a + indices_0 * a_stride_0, mask_0, other=0) |
| 118 | + load_1 = tl.load(b + indices_0 * b_stride_0, mask_0, other=0) |
| 119 | + v_0 = load_1.to(tl.float32) |
| 120 | + v_1 = load + v_0 |
| 121 | + v_2 = x.to(tl.float32) |
| 122 | + v_3 = v_1 + v_2 |
| 123 | + tl.store(out + indices_0 * out_stride_0, v_3, mask_0) |
| 124 | + |
| 125 | +def tuple_unpack_kernel(inp_tuple, *, _launcher=_default_launcher): |
| 126 | + a, b, x = inp_tuple |
| 127 | + out = torch.empty_like(a) |
| 128 | + _BLOCK_SIZE_0 = 4 |
| 129 | + _launcher(_tuple_unpack_kernel_kernel, (triton.cdiv(a.size(0), _BLOCK_SIZE_0),), a, b, out, a.size(0), a.stride(0), b.stride(0), out.stride(0), x, _BLOCK_SIZE_0, num_warps=4, num_stages=3) |
| 130 | + return out |
0 commit comments