|
| 1 | +""" |
| 2 | +___________________________________________________________________________________________________________________________________________________ |
| 3 | +| | |
| 4 | +| To use this script, please check the README.md file in the directory. A quick start to get the project running is described here. | |
| 5 | +| | |
| 6 | +| 1. Create a Groq account and get your API key at https://console.groq.com/login. | |
| 7 | +| | |
| 8 | +| 2. Either: | |
| 9 | +| - Add your API key directly to line 38: API_KEY = "your_groq_api_key_here", or | |
| 10 | +| - Create a .env file in the same directory, and add GROQ_API_KEY=your_groq_api_key_here. | |
| 11 | +| | |
| 12 | +| 3. Place all your PDFs in a folder named ''Source'' in the same directory as this script. | |
| 13 | +| | |
| 14 | +| 4. Run the script: | |
| 15 | +| python quiz_generator.py | |
| 16 | +| | |
| 17 | +| The generated MCQ quiz will be saved in a file called 'generated_mcq_quiz.txt'. | |
| 18 | +|_________________________________________________________________________________________________________________________________________________| |
| 19 | +""" |
| 20 | + |
| 21 | + |
| 22 | +# Change this if you want to set the number of MCQ's |
| 23 | +num_questions = 5 |
| 24 | + |
| 25 | + |
| 26 | + |
| 27 | +import os |
| 28 | +from PyPDF2 import PdfReader |
| 29 | +from langchain_groq import ChatGroq |
| 30 | +from langchain.chains import RetrievalQA |
| 31 | +from dotenv import load_dotenv, find_dotenv |
| 32 | +from langchain_community.vectorstores import FAISS |
| 33 | +from langchain_huggingface import HuggingFaceEmbeddings |
| 34 | +from langchain.text_splitter import CharacterTextSplitter |
| 35 | + |
| 36 | + |
| 37 | +load_dotenv(find_dotenv()) |
| 38 | +API_KEY = os.environ["GROQ_API_KEY"] |
| 39 | + |
| 40 | + |
| 41 | +def extract_text_from_pdfs(): |
| 42 | + print(f"Extracting text from PDF files in the folder: '{'Source'}'...") |
| 43 | + all_text = [] |
| 44 | + for file_name in os.listdir('Source'): |
| 45 | + if file_name.endswith(".pdf"): |
| 46 | + file_path = os.path.join('Source', file_name) |
| 47 | + print(f"Processing file: {file_name}") |
| 48 | + reader = PdfReader(file_path) |
| 49 | + for page in reader.pages: |
| 50 | + all_text.append(page.extract_text()) |
| 51 | + print("Text extraction completed.") |
| 52 | + return " ".join(all_text) |
| 53 | + |
| 54 | + |
| 55 | + |
| 56 | +def generate_unique_mcq(text, num_questions=5): |
| 57 | + print(f"Splitting text into chunks and creating embeddings for LLM processing...") |
| 58 | + text_splitter = CharacterTextSplitter( |
| 59 | + chunk_size=1000, |
| 60 | + chunk_overlap=0 |
| 61 | + ) |
| 62 | + docs = text_splitter.create_documents([text]) |
| 63 | + |
| 64 | + embeddings = HuggingFaceEmbeddings() |
| 65 | + store = FAISS.from_documents(docs, embeddings) |
| 66 | + |
| 67 | + print(f"Connecting to LLM to generate {num_questions} unique MCQs...") |
| 68 | + llm = ChatGroq( |
| 69 | + temperature=0.2, |
| 70 | + model="llama-3.1-70b-versatile", |
| 71 | + api_key=API_KEY |
| 72 | + ) |
| 73 | + |
| 74 | + retrieval_chain = RetrievalQA.from_chain_type( |
| 75 | + llm=llm, |
| 76 | + chain_type="stuff", |
| 77 | + retriever=store.as_retriever() |
| 78 | + ) |
| 79 | + |
| 80 | + quiz = [] |
| 81 | + query = f"Generate {num_questions} unique multiple choice questions from the following text: {text} " \ |
| 82 | + f"Provide 4 answer options and also the correct answer in plaintext." |
| 83 | + |
| 84 | + response = retrieval_chain.invoke(query) |
| 85 | + question_and_options = response['result'] |
| 86 | + quiz.append(question_and_options) |
| 87 | + |
| 88 | + print("MCQ generation completed.") |
| 89 | + return quiz |
| 90 | + |
| 91 | + |
| 92 | + |
| 93 | +def save_mcq_to_file(quiz, file_name="generated_mcq_quiz.txt"): |
| 94 | + output_folder = "Generated_Quizes" |
| 95 | + |
| 96 | + if not os.path.exists(output_folder): |
| 97 | + os.makedirs(output_folder) |
| 98 | + print(f"Folder '{output_folder}' created.") |
| 99 | + |
| 100 | + file_path = os.path.join(output_folder, file_name) |
| 101 | + |
| 102 | + print(f"Saving the generated MCQs to file: '{file_path}'...") |
| 103 | + with open(file_path, "w") as f: |
| 104 | + for i, question in enumerate(quiz, 1): |
| 105 | + f.write(f"Question {i}:\n{question}\n\n") |
| 106 | + |
| 107 | + print(f"MCQ Quiz saved to {file_path}") |
| 108 | + |
| 109 | + |
| 110 | + |
| 111 | +if __name__ == "__main__": |
| 112 | + if not os.path.exists('Source'): |
| 113 | + print(f"Folder '{'Source'}' not found.") |
| 114 | + else: |
| 115 | + print(f"Folder '{'Source'}' found. Starting process...") |
| 116 | + text = extract_text_from_pdfs() |
| 117 | + print("Text extracted from PDFs.") |
| 118 | + |
| 119 | + mcq_quiz = generate_unique_mcq(text, num_questions=num_questions) |
| 120 | + save_mcq_to_file(mcq_quiz) |
| 121 | + print("Process completed successfully.") |
0 commit comments