@@ -135,30 +135,21 @@ async def main():
135
135
UserPromptPart(
136
136
content='What is the capital of France?',
137
137
timestamp=datetime.datetime(...),
138
- part_kind='user-prompt',
139
138
)
140
- ],
141
- instructions=None,
142
- kind='request',
139
+ ]
143
140
)
144
141
),
145
142
CallToolsNode(
146
143
model_response=ModelResponse(
147
- parts=[TextPart(content='Paris', part_kind='text' )],
144
+ parts=[TextPart(content='Paris')],
148
145
usage=Usage(
149
- requests=1,
150
- request_tokens=56,
151
- response_tokens=1,
152
- total_tokens=57,
153
- details=None,
146
+ requests=1, request_tokens=56, response_tokens=1, total_tokens=57
154
147
),
155
148
model_name='gpt-4o',
156
149
timestamp=datetime.datetime(...),
157
- kind='response',
158
- vendor_id=None,
159
150
)
160
151
),
161
- End(data=FinalResult(output='Paris', tool_name=None, tool_call_id=None )),
152
+ End(data=FinalResult(output='Paris')),
162
153
]
163
154
"""
164
155
print (agent_run.result.output)
@@ -207,30 +198,24 @@ async def main():
207
198
UserPromptPart(
208
199
content='What is the capital of France?',
209
200
timestamp=datetime.datetime(...),
210
- part_kind='user-prompt',
211
201
)
212
- ],
213
- instructions=None,
214
- kind='request',
202
+ ]
215
203
)
216
204
),
217
205
CallToolsNode(
218
206
model_response=ModelResponse(
219
- parts=[TextPart(content='Paris', part_kind='text' )],
207
+ parts=[TextPart(content='Paris')],
220
208
usage=Usage(
221
209
requests=1,
222
210
request_tokens=56,
223
211
response_tokens=1,
224
212
total_tokens=57,
225
- details=None,
226
213
),
227
214
model_name='gpt-4o',
228
215
timestamp=datetime.datetime(...),
229
- kind='response',
230
- vendor_id=None,
231
216
)
232
217
),
233
- End(data=FinalResult(output='Paris', tool_name=None, tool_call_id=None )),
218
+ End(data=FinalResult(output='Paris')),
234
219
]
235
220
"""
236
221
```
@@ -370,7 +355,7 @@ if __name__ == '__main__':
370
355
[
371
356
'=== UserPromptNode: What will the weather be like in Paris on Tuesday? ===',
372
357
'=== ModelRequestNode: streaming partial request tokens ===',
373
- "[Request] Starting part 0: ToolCallPart(tool_name='weather_forecast', args=None, tool_call_id='0001', part_kind='tool-call ')",
358
+ "[Request] Starting part 0: ToolCallPart(tool_name='weather_forecast', tool_call_id='0001')",
374
359
'[Request] Part 0 args_delta={"location":"Pa',
375
360
'[Request] Part 0 args_delta=ris","forecast_',
376
361
'[Request] Part 0 args_delta=date":"2030-01-',
@@ -379,7 +364,7 @@ if __name__ == '__main__':
379
364
'[Tools] The LLM calls tool=\' weather_forecast\' with args={"location":"Paris","forecast_date":"2030-01-01"} (tool_call_id=\' 0001\' )',
380
365
"[Tools] Tool call '0001' returned => The forecast in Paris on 2030-01-01 is 24°C and sunny.",
381
366
'=== ModelRequestNode: streaming partial request tokens ===',
382
- "[Request] Starting part 0: TextPart(content='It will be ', part_kind='text' )",
367
+ "[Request] Starting part 0: TextPart(content='It will be ')",
383
368
'[Result] The model produced a final output (tool_name=None)',
384
369
"[Request] Part 0 text delta: 'warm and sunny '",
385
370
"[Request] Part 0 text delta: 'in Paris on '",
@@ -417,9 +402,7 @@ result_sync = agent.run_sync(
417
402
print (result_sync.output)
418
403
# > Rome
419
404
print (result_sync.usage())
420
- """
421
- Usage(requests=1, request_tokens=62, response_tokens=1, total_tokens=63, details=None)
422
- """
405
+ # > Usage(requests=1, request_tokens=62, response_tokens=1, total_tokens=63)
423
406
424
407
try :
425
408
result_sync = agent.run_sync(
@@ -831,32 +814,22 @@ with capture_run_messages() as messages: # (2)!
831
814
UserPromptPart(
832
815
content='Please get me the volume of a box with size 6.',
833
816
timestamp=datetime.datetime(...),
834
- part_kind='user-prompt',
835
817
)
836
- ],
837
- instructions=None,
838
- kind='request',
818
+ ]
839
819
),
840
820
ModelResponse(
841
821
parts=[
842
822
ToolCallPart(
843
823
tool_name='calc_volume',
844
824
args={'size': 6},
845
825
tool_call_id='pyd_ai_tool_call_id',
846
- part_kind='tool-call',
847
826
)
848
827
],
849
828
usage=Usage(
850
- requests=1,
851
- request_tokens=62,
852
- response_tokens=4,
853
- total_tokens=66,
854
- details=None,
829
+ requests=1, request_tokens=62, response_tokens=4, total_tokens=66
855
830
),
856
831
model_name='gpt-4o',
857
832
timestamp=datetime.datetime(...),
858
- kind='response',
859
- vendor_id=None,
860
833
),
861
834
ModelRequest(
862
835
parts=[
@@ -865,32 +838,22 @@ with capture_run_messages() as messages: # (2)!
865
838
tool_name='calc_volume',
866
839
tool_call_id='pyd_ai_tool_call_id',
867
840
timestamp=datetime.datetime(...),
868
- part_kind='retry-prompt',
869
841
)
870
- ],
871
- instructions=None,
872
- kind='request',
842
+ ]
873
843
),
874
844
ModelResponse(
875
845
parts=[
876
846
ToolCallPart(
877
847
tool_name='calc_volume',
878
848
args={'size': 6},
879
849
tool_call_id='pyd_ai_tool_call_id',
880
- part_kind='tool-call',
881
850
)
882
851
],
883
852
usage=Usage(
884
- requests=1,
885
- request_tokens=72,
886
- response_tokens=8,
887
- total_tokens=80,
888
- details=None,
853
+ requests=1, request_tokens=72, response_tokens=8, total_tokens=80
889
854
),
890
855
model_name='gpt-4o',
891
856
timestamp=datetime.datetime(...),
892
- kind='response',
893
- vendor_id=None,
894
857
),
895
858
]
896
859
"""
0 commit comments