Skip to content

Commit e37847f

Browse files
committed
Bibliography fixes/additions
1 parent fc013b8 commit e37847f

File tree

6 files changed

+54
-32
lines changed

6 files changed

+54
-32
lines changed

doc/source/references.bib

Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -96,6 +96,28 @@ @ARTICLE{RL2008
9696
DOI = "10.1175/2007MWR2123.1"
9797
}
9898

99+
@ARTICLE{Seed2003,
100+
AUTHOR = "A. W. Seed",
101+
TITLE = "A Dynamic and Spatial Scaling Approach to Advection Forecasting",
102+
JOURNAL = "Journal of Applied Meteorology",
103+
VOLUME = 42,
104+
NUMBER = 3,
105+
PAGES = "381-388",
106+
YEAR = 2003,
107+
DOI = "10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2"
108+
}
109+
110+
@ARTICLE{SPN2013,
111+
AUTHOR = "A. W. Seed and C. E. Pierce and K. Norman",
112+
TITLE = "Formulation and evaluation of a scale decomposition-based stochastic precipitation nowcast scheme",
113+
JOURNAL = "Water Resources Research",
114+
VOLUME = 49,
115+
NUMBER = 10,
116+
PAGES = "6624--6641",
117+
YEAR = 2013,
118+
DOI = "10.1002/wrcr.20536"
119+
}
120+
99121
@ARTICLE{ZR2009,
100122
AUTHOR = "P. Zacharov and D. Rezacova",
101123
TITLE = "Using the fractions skill score to assess the relationship between an ensemble {QPF} spread and skill",

pysteps/noise/interface.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -25,13 +25,13 @@ def get_method(name):
2525
2626
Methods for velocity fields:
2727
28-
+-------------------+-------------------------------------------------------+
29-
| Name | Description |
30-
+===================+=======================================================+
31-
| bps | The method of Bowler et al. (2006), where |
32-
| | time-dependent velocity perturbations are sampled |
33-
| | from the exponential distribution |
34-
+-------------------+-------------------------------------------------------+
28+
+-------------------+-----------------------------------------------------+
29+
| Name | Description |
30+
+===================+=====================================================+
31+
| bps | The method described in :cite:`BPS2006`, where |
32+
| | time-dependent velocity perturbations are sampled |
33+
| | from the exponential distribution |
34+
+-------------------+-----------------------------------------------------+
3535
3636
"""
3737
if name.lower() == "parametric":

pysteps/noise/motion.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -105,8 +105,7 @@ def initialize_bps(V, pixelsperkm, timestep, p_pert_par=(10.88,0.23,-7.68),
105105

106106
def generate_bps(perturbator, t):
107107
"""Generate a motion perturbation field by using the method described in
108-
Bowler et al. 2006: STEPS: A probabilistic precipitation forecasting scheme
109-
which merges an extrapolation nowcast with downscaled NWP.
108+
:cite:`BPS2006`.
110109
111110
Parameters
112111
----------

pysteps/noise/utils.py

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -24,11 +24,13 @@
2424

2525
def compute_noise_stddev_adjs(R, R_thr_1, R_thr_2, F, decomp_method, num_iter,
2626
conditional=True, num_workers=None):
27-
"""Simulate the effect of applying a precipitation mask to a Gaussian noise
27+
"""Apply a scale-dependent adjustment factor to the noise fields used in STEPS.
28+
29+
Simulates the effect of applying a precipitation mask to a Gaussian noise
2830
field obtained by the nonparametric filter method. The idea is to decompose
29-
the masked noise field into a cascade and compare the standard deviations of
30-
each level into those of the observed precipitation intensity field. This
31-
gives correction factors for the standard deviations (Bowler et al. 2006).
31+
the masked noise field into a cascade and compare the standard deviations
32+
of each level into those of the observed precipitation intensity field.
33+
This gives correction factors for the standard deviations :cite:`BPS2006`.
3234
The calculations are done for n realizations of the noise field, and the
3335
correction factors are calculated from the average values of the standard
3436
deviations.

pysteps/nowcasts/interface.py

Lines changed: 17 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -6,10 +6,9 @@
66
77
where R (m,n) is the input precipitation field to be extrapolated and V (2,m,n) is
88
an array containing the x- and y-components of the m*n advection field. num_timesteps
9-
is an integer specifying the number of time steps to forecast.
10-
Non-keyworded arguments specific to each method can be included
11-
The interface accepts additional ptional keyword arguments that are specific to a given
12-
forecast method.
9+
is an integer specifying the number of time steps to forecast. Non-keyword
10+
arguments specific to each method can be included. The interface accepts optional
11+
keyword arguments that are specific to a given forecast method.
1312
1413
The output of each method is a three-dimensional array of shape (num_timesteps,m,n)
1514
containing a time series of nowcast precipitation fields.
@@ -22,20 +21,20 @@ def get_method(name):
2221
2322
Methods for precipitation nowcasting:
2423
25-
+-------------------+-------------------------------------------------------+
26-
| Name | Description |
27-
+===================+=======================================================+
28-
| eulerian | this approach simply keeps the last observation |
29-
| | frozen (Eulerian persistence) |
30-
+-------------------+-------------------------------------------------------+
31-
| lagrangian or | this approach extrapolate the last observation |
32-
| extrapolation | following the motion field (Lagrangian persistence) |
33-
+-------------------+-------------------------------------------------------+
34-
| | implementation of the STEPS stochastic nowcasting |
35-
| steps | method as described in Seed (2003), Bowler et al |
36-
| | (2006) and Seed et al (2013) |
37-
+-------------------+-------------------------------------------------------+
38-
24+
+-------------------+-----------------------------------------------------+
25+
| Name | Description |
26+
+===================+=====================================================+
27+
| eulerian | this approach simply keeps the last observation |
28+
| | frozen (Eulerian persistence) |
29+
+-------------------+-----------------------------------------------------+
30+
| lagrangian or | this approach extrapolates the last observation |
31+
| extrapolation | following the motion field (Lagrangian persistence) |
32+
+-------------------+-----------------------------------------------------+
33+
| steps | implementation of the STEPS stochastic nowcasting |
34+
| | method as described in :cite:`Seed2003`, |
35+
| | :cite:`BPS2006` and :cite:`SPN2013` |
36+
+-------------------+-----------------------------------------------------+
37+
3938
"""
4039
if name.lower() in ["eulerian"]:
4140
def eulerian(R, V, num_timesteps, *args, **kwargs):

pysteps/nowcasts/steps.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -128,7 +128,7 @@ def forecast(R, V, n_timesteps, n_ens_members, n_cascade_levels,
128128
129129
References
130130
----------
131-
:cite:`BPS2006`
131+
:cite:`Seed2003`, :cite:`BPS2006`, :cite:`SPN2013`
132132
133133
"""
134134
_check_inputs(R, V, ar_order)

0 commit comments

Comments
 (0)