Skip to content

Commit 5e004a0

Browse files
committed
Docstring fixes
1 parent a5a45bc commit 5e004a0

File tree

1 file changed

+16
-12
lines changed

1 file changed

+16
-12
lines changed

pysteps/utils/dimension.py

Lines changed: 16 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
''' Functions to manipualte array dimensions.'''
1+
''' Functions to manipulate array dimensions.'''
22

33
import numpy as np
44

@@ -9,23 +9,26 @@ def aggregate_fields_time(R, metadata, time_window_min, method="mean"):
99
Parameters
1010
----------
1111
R : array-like
12-
Array of shape (t,m,n) or (i,t,m,n) containing the input fields.
12+
Array of shape (t,m,n) or (l,t,m,n) containing a time series of (ensemble)
13+
input fields.
1314
They must be evenly spaced in time.
1415
metadata : dict
15-
The metadata dictionary contains all data-related information.
16+
The metadata dictionary contains all data-related information. It requires
17+
the key "timestamps".
1618
time_window_min : float or None
1719
The length in minutes of the time window that is used to aggregate the fields.
18-
The total length of R must be a multiple of time_window_min.
20+
The time spanned by the t dimension of R must be a multiple of time_window_min.
1921
If set to None, it returns a copy of the original R and metadata.
2022
method : string
2123
Optional argument that specifies the operation to use to aggregate the values within the time
22-
window.
24+
window. Default to mean operator.
2325
2426
Returns
2527
-------
2628
outputarray : array-like
27-
The new array of aggregated precipitation fields of shape (k,m,n), where
28-
k = int(t*delta/time_window_min)
29+
The new array of aggregated fields of shape (k,m,n) or (l,k,m,n), where
30+
k = t*delta/time_window_min and delta is the time interval between two
31+
successive timestamps.
2932
metadata : dict
3033
The metadata with updated attributes.
3134
@@ -71,7 +74,7 @@ def aggregate_fields_time(R, metadata, time_window_min, method="mean"):
7174

7275
return R, metadata
7376

74-
def aggregate_fields(R, window_size, axis=0, method="sum"):
77+
def aggregate_fields(R, window_size, axis=0, method="mean"):
7578
"""Aggregate fields.
7679
It attemps to aggregate the given R axis in an integer number of sections of
7780
length = window_size. If such a aggregation is not possible, an error is raised.
@@ -85,19 +88,20 @@ def aggregate_fields(R, window_size, axis=0, method="sum"):
8588
axis : int
8689
The axis where to perform the aggregation.
8790
method : string
88-
Optional argument that specifies the operation to use to aggregate the values within the time
89-
window.
91+
Optional argument that specifies the operation to use to aggregate the values within the
92+
window. Default to mean operator.
9093
9194
Returns
9295
-------
9396
outputarray : array-like
94-
The new aggregated array of shape (k,m,n), where k = t/time_window
97+
The new aggregated array with shape[axis] = k, where k = R.shape[axis]/window_size
9598
9699
"""
97100

98101
N = R.shape[axis]
99102
if N % window_size:
100-
raise ValueError('window_size does not equally split R')
103+
raise ValueError('window_size %i does not equally split R.shape[axis] %i' % (window_size, N))
104+
101105
R = R.copy().swapaxes(axis, 0)
102106
shape = list(R.shape)
103107
R_ = R.reshape((N, -1))

0 commit comments

Comments
 (0)