|
| 1 | +#!/bin/env python |
| 2 | +""" |
| 3 | +Ensemble verification |
| 4 | +===================== |
| 5 | +
|
| 6 | +This tutorial shows how to compute and plot an extrapolation nowcast using |
| 7 | +Finnish radar data. |
| 8 | +
|
| 9 | +""" |
| 10 | + |
| 11 | +from pylab import * |
| 12 | +from datetime import datetime |
| 13 | +from pprint import pprint |
| 14 | +from pysteps import io, nowcasts, rcparams, verification |
| 15 | +from pysteps.motion.lucaskanade import dense_lucaskanade |
| 16 | +from pysteps.postprocessing import ensemblestats |
| 17 | +from pysteps.utils import conversion, dimension, transformation |
| 18 | +from pysteps.visualization import plot_precip_field |
| 19 | + |
| 20 | +# Set nowcast parameters |
| 21 | +n_ens_members = 20 |
| 22 | +n_leadtimes = 6 |
| 23 | +seed = 24 |
| 24 | + |
| 25 | +############################################################################### |
| 26 | +# Read precipitation field |
| 27 | +# ------------------------ |
| 28 | +# |
| 29 | +# First thing, the sequence of Swiss radar composites is imported, converted and |
| 30 | +# transformed into units of dBR. |
| 31 | + |
| 32 | +date = datetime.strptime("201607112100", "%Y%m%d%H%M") |
| 33 | +data_source = "mch" |
| 34 | + |
| 35 | +# Load data source config |
| 36 | +root_path = rcparams.data_sources[data_source]["root_path"] |
| 37 | +path_fmt = rcparams.data_sources[data_source]["path_fmt"] |
| 38 | +fn_pattern = rcparams.data_sources[data_source]["fn_pattern"] |
| 39 | +fn_ext = rcparams.data_sources[data_source]["fn_ext"] |
| 40 | +importer_name = rcparams.data_sources[data_source]["importer"] |
| 41 | +importer_kwargs = rcparams.data_sources[data_source]["importer_kwargs"] |
| 42 | +timestep = rcparams.data_sources[data_source]["timestep"] |
| 43 | + |
| 44 | +# Find the radar files in the archive |
| 45 | +fns = io.find_by_date( |
| 46 | + date, root_path, path_fmt, fn_pattern, fn_ext, timestep, num_prev_files=2 |
| 47 | +) |
| 48 | + |
| 49 | +# Read the data from the archive |
| 50 | +importer = io.get_method(importer_name, "importer") |
| 51 | +R, _, metadata = io.read_timeseries(fns, importer, **importer_kwargs) |
| 52 | + |
| 53 | +# Convert to rain rate |
| 54 | +R, metadata = conversion.to_rainrate(R, metadata) |
| 55 | + |
| 56 | +# Upscale data to 2 km to limit memory usage |
| 57 | +R, metadata = dimension.aggregate_fields_space(R, metadata, 2000) |
| 58 | + |
| 59 | +# Plot the rainfall field |
| 60 | +plot_precip_field(R[-1, :, :], geodata=metadata) |
| 61 | + |
| 62 | +# Log-transform the data to unit of dBR, set the threshold to 0.1 mm/h, |
| 63 | +# set the fill value to -15 dBR |
| 64 | +R, metadata = transformation.dB_transform(R, metadata, threshold=0.1, zerovalue=-15.0) |
| 65 | + |
| 66 | +# Set missing values with the fill value |
| 67 | +R[~np.isfinite(R)] = -15.0 |
| 68 | + |
| 69 | +# Nicely print the metadata |
| 70 | +pprint(metadata) |
| 71 | + |
| 72 | +############################################################################### |
| 73 | +# Forecast |
| 74 | +# -------- |
| 75 | +# |
| 76 | +# We use the STEPS approach to produce a ensemble nowcast of precipitation fields. |
| 77 | + |
| 78 | +# Estimate the motion field |
| 79 | +V = dense_lucaskanade(R) |
| 80 | + |
| 81 | +# The STEPES nowcast |
| 82 | +nowcast_method = nowcasts.get_method("steps") |
| 83 | +R_f = nowcast_method( |
| 84 | + R[-3:, :, :], |
| 85 | + V, |
| 86 | + n_leadtimes, |
| 87 | + n_ens_members, |
| 88 | + n_cascade_levels=6, |
| 89 | + R_thr=-10.0, |
| 90 | + kmperpixel=2.0, |
| 91 | + timestep=timestep, |
| 92 | + decomp_method="fft", |
| 93 | + bandpass_filter_method="gaussian", |
| 94 | + noise_method="nonparametric", |
| 95 | + vel_pert_method="bps", |
| 96 | + mask_method="incremental", |
| 97 | + seed=seed, |
| 98 | +) |
| 99 | + |
| 100 | +# Back-transform to rain rates |
| 101 | +R_f = transformation.dB_transform(R_f, threshold=-10.0, inverse=True)[0] |
| 102 | + |
| 103 | +# Plot some of the realizations |
| 104 | +fig = figure() |
| 105 | +for i in range(4): |
| 106 | + ax = fig.add_subplot(221 + i) |
| 107 | + ax.set_title("Member %02d" % i) |
| 108 | + plot_precip_field(R_f[i, -1, :, :], geodata=metadata, colorbar=False, axis="off") |
| 109 | +tight_layout() |
| 110 | + |
| 111 | +############################################################################### |
| 112 | +# Verification |
| 113 | +# ------------ |
| 114 | +# |
| 115 | +# Pysteps includes a number of verification metrics to help users to analyze |
| 116 | +# the general characteristics of the nowcasts in terms of consistency and |
| 117 | +# quality (or goodness). |
| 118 | +# Here, we will verify our probabilistic forecasts using the ROC curve, |
| 119 | +# reliability diagrams, and rank histograms, as implemented in the verification |
| 120 | +# module of pysteps. |
| 121 | + |
| 122 | +# Find the files containing the verifying observations |
| 123 | +fns = io.archive.find_by_date( |
| 124 | + date, |
| 125 | + root_path, |
| 126 | + path_fmt, |
| 127 | + fn_pattern, |
| 128 | + fn_ext, |
| 129 | + timestep, |
| 130 | + 0, |
| 131 | + num_next_files=n_leadtimes, |
| 132 | +) |
| 133 | + |
| 134 | +# Read the observations |
| 135 | +R_o, _, metadata_o = io.read_timeseries(fns, importer, **importer_kwargs) |
| 136 | + |
| 137 | +# Convert to mm/h |
| 138 | +R_o, metadata_o = conversion.to_rainrate(R_o, metadata_o) |
| 139 | + |
| 140 | +# Upscale data to 2 km |
| 141 | +R_o, metadata_o = dimension.aggregate_fields_space(R_o, metadata_o, 2000) |
| 142 | + |
| 143 | +# Compute the verification for the last lead time |
| 144 | + |
| 145 | +# compute the exceedance probability of 0.1 mm/h from the ensemble |
| 146 | +P_f = ensemblestats.excprob(R_f[:, -1, :, :], 0.1, ignore_nan=True) |
| 147 | + |
| 148 | +# compute and plot the ROC curve |
| 149 | +roc = verification.ROC_curve_init(0.1, n_prob_thrs=10) |
| 150 | +verification.ROC_curve_accum(roc, P_f, R_o[-1, :, :]) |
| 151 | +fig = figure() |
| 152 | +verification.plot_ROC(roc, ax=fig.gca(), opt_prob_thr=True) |
| 153 | +title("ROC curve (+ %i min)" % (n_leadtimes * timestep)) |
| 154 | + |
| 155 | +# compute and plot the reliability diagram |
| 156 | +reldiag = verification.reldiag_init(0.1) |
| 157 | +verification.reldiag_accum(reldiag, P_f, R_o[-1, :, :]) |
| 158 | +fig = figure() |
| 159 | +verification.plot_reldiag(reldiag, ax=fig.gca()) |
| 160 | +title("Reliability diagram (+ %i min)" % (n_leadtimes * timestep)) |
| 161 | + |
| 162 | +# compute and plot the rank histogram |
| 163 | +rankhist = verification.rankhist_init(R_f.shape[0], 0.1) |
| 164 | +verification.rankhist_accum(rankhist, R_f[:, -1, :, :], R_o[-1, :, :]) |
| 165 | +fig = figure() |
| 166 | +verification.plot_rankhist(rankhist, ax=fig.gca()) |
| 167 | +title("Rank histogram (+ %i min)" % (n_leadtimes * timestep)) |
| 168 | + |
| 169 | +# sphinx_gallery_thumbnail_number = 5 |
0 commit comments