|
| 1 | +import math |
| 2 | + |
| 3 | +import solara |
| 4 | +from matplotlib.figure import Figure |
| 5 | +from matplotlib.ticker import MaxNLocator |
| 6 | +from mesa.experimental import JupyterViz, make_text |
| 7 | +from virus_on_network.model import State, VirusOnNetwork, number_infected |
| 8 | + |
| 9 | + |
| 10 | +def agent_portrayal(graph): |
| 11 | + def get_agent(node): |
| 12 | + return graph.nodes[node]["agent"][0] |
| 13 | + |
| 14 | + edge_width = [] |
| 15 | + edge_color = [] |
| 16 | + for u, v in graph.edges(): |
| 17 | + agent1 = get_agent(u) |
| 18 | + agent2 = get_agent(v) |
| 19 | + w = 2 |
| 20 | + ec = "#e8e8e8" |
| 21 | + if State.RESISTANT in (agent1.state, agent2.state): |
| 22 | + w = 3 |
| 23 | + ec = "black" |
| 24 | + edge_width.append(w) |
| 25 | + edge_color.append(ec) |
| 26 | + node_color_dict = { |
| 27 | + State.INFECTED: "tab:red", |
| 28 | + State.SUSCEPTIBLE: "tab:green", |
| 29 | + State.RESISTANT: "tab:gray", |
| 30 | + } |
| 31 | + node_color = [node_color_dict[get_agent(node).state] for node in graph.nodes()] |
| 32 | + return { |
| 33 | + "width": edge_width, |
| 34 | + "edge_color": edge_color, |
| 35 | + "node_color": node_color, |
| 36 | + } |
| 37 | + |
| 38 | + |
| 39 | +def get_resistant_susceptible_ratio(model): |
| 40 | + ratio = model.resistant_susceptible_ratio() |
| 41 | + ratio_text = r"$\infty$" if ratio is math.inf else f"{ratio:.2f}" |
| 42 | + infected_text = str(number_infected(model)) |
| 43 | + |
| 44 | + return "Resistant/Susceptible Ratio: {}<br>Infected Remaining: {}".format( |
| 45 | + ratio_text, infected_text |
| 46 | + ) |
| 47 | + |
| 48 | + |
| 49 | +def make_plot(model): |
| 50 | + # This is for the case when we want to plot multiple measures in 1 figure. |
| 51 | + # We could incorporate this into core Mesa. |
| 52 | + fig = Figure() |
| 53 | + ax = fig.subplots() |
| 54 | + measures = ["Infected", "Susceptible", "Resistant"] |
| 55 | + colors = ["tab:red", "tab:green", "tab:gray"] |
| 56 | + for i, m in enumerate(measures): |
| 57 | + color = colors[i] |
| 58 | + df = model.datacollector.get_model_vars_dataframe() |
| 59 | + ax.plot(df.loc[:, m], label=m, color=color) |
| 60 | + fig.legend() |
| 61 | + # Set integer x axis |
| 62 | + ax.xaxis.set_major_locator(MaxNLocator(integer=True)) |
| 63 | + solara.FigureMatplotlib(fig) |
| 64 | + |
| 65 | + |
| 66 | +model_params = { |
| 67 | + "num_nodes": { |
| 68 | + "type": "SliderInt", |
| 69 | + "value": 10, |
| 70 | + "label": "Number of agents", |
| 71 | + "min": 10, |
| 72 | + "max": 100, |
| 73 | + "step": 1, |
| 74 | + }, |
| 75 | + "avg_node_degree": { |
| 76 | + "type": "SliderInt", |
| 77 | + "value": 3, |
| 78 | + "label": "Avg Node Degree", |
| 79 | + "min": 3, |
| 80 | + "max": 8, |
| 81 | + "step": 1, |
| 82 | + }, |
| 83 | + "initial_outbreak_size": { |
| 84 | + "type": "SliderInt", |
| 85 | + "value": 1, |
| 86 | + "label": "Initial Outbreak Size", |
| 87 | + "min": 1, |
| 88 | + "max": 10, |
| 89 | + "step": 1, |
| 90 | + }, |
| 91 | + "virus_spread_chance": { |
| 92 | + "type": "SliderFloat", |
| 93 | + "value": 0.4, |
| 94 | + "label": "Virus Spread Chance", |
| 95 | + "min": 0.0, |
| 96 | + "max": 1.0, |
| 97 | + "step": 0.1, |
| 98 | + }, |
| 99 | + "virus_check_frequency": { |
| 100 | + "type": "SliderFloat", |
| 101 | + "value": 0.4, |
| 102 | + "label": "Virus Check Frequency", |
| 103 | + "min": 0.0, |
| 104 | + "max": 1.0, |
| 105 | + "step": 0.1, |
| 106 | + }, |
| 107 | + "recovery_chance": { |
| 108 | + "type": "SliderFloat", |
| 109 | + "value": 0.3, |
| 110 | + "label": "Recovery Chance", |
| 111 | + "min": 0.0, |
| 112 | + "max": 1.0, |
| 113 | + "step": 0.1, |
| 114 | + }, |
| 115 | + "gain_resistance_chance": { |
| 116 | + "type": "SliderFloat", |
| 117 | + "value": 0.5, |
| 118 | + "label": "Gain Resistance Chance", |
| 119 | + "min": 0.0, |
| 120 | + "max": 1.0, |
| 121 | + "step": 0.1, |
| 122 | + }, |
| 123 | +} |
| 124 | + |
| 125 | +page = JupyterViz( |
| 126 | + VirusOnNetwork, |
| 127 | + model_params, |
| 128 | + measures=[ |
| 129 | + make_plot, |
| 130 | + make_text(get_resistant_susceptible_ratio), |
| 131 | + ], |
| 132 | + name="Virus Model", |
| 133 | + agent_portrayal=agent_portrayal, |
| 134 | +) |
| 135 | +page # noqa |
0 commit comments