@@ -22,8 +22,8 @@ An easy implementation of Faster R-CNN in PyTorch.
22
22
23
23
* PASCAL VOC 2007
24
24
25
- * Train: 2007 trainval (5011 samples )
26
- * Eval: 2007 test (4952 samples )
25
+ * Train: 2007 trainval (5011 images )
26
+ * Eval: 2007 test (4952 images )
27
27
28
28
<table >
29
29
<tr>
@@ -168,6 +168,52 @@ An easy implementation of Faster R-CNN in PyTorch.
168
168
<td>0.1</td>
169
169
<td>70000</td>
170
170
</tr>
171
+ <tr>
172
+ <td>Ours</td>
173
+ <td>ResNet-18</td>
174
+ <td>GTX 1080 Ti</td>
175
+ <td>~ 19.4</td>
176
+ <td>~ 38.7</td>
177
+ <td>0.6783</td>
178
+ <td>600</td>
179
+ <td>1000</td>
180
+ <td>[(1, 2), (1, 1), (2, 1)]</td>
181
+ <td>[128, 256, 512]</td>
182
+ <td>align</td>
183
+ <td>12000</td>
184
+ <td>2000</td>
185
+ <td>6000</td>
186
+ <td>300</td>
187
+ <td>0.001</td>
188
+ <td>0.9</td>
189
+ <td>0.0005</td>
190
+ <td>50000</td>
191
+ <td>0.1</td>
192
+ <td>70000</td>
193
+ </tr>
194
+ <tr>
195
+ <td>Ours</td>
196
+ <td>ResNet-50</td>
197
+ <td>GTX 1080 Ti</td>
198
+ <td>~ 8.7</td>
199
+ <td>~ 22.4</td>
200
+ <td>0.7402</td>
201
+ <td>600</td>
202
+ <td>1000</td>
203
+ <td>[(1, 2), (1, 1), (2, 1)]</td>
204
+ <td>[128, 256, 512]</td>
205
+ <td>align</td>
206
+ <td>12000</td>
207
+ <td>2000</td>
208
+ <td>6000</td>
209
+ <td>300</td>
210
+ <td>0.001</td>
211
+ <td>0.9</td>
212
+ <td>0.0005</td>
213
+ <td>50000</td>
214
+ <td>0.1</td>
215
+ <td>70000</td>
216
+ </tr>
171
217
<tr>
172
218
<td>ruotianluo/pytorch-faster-rcnn</td>
173
219
<td>ResNet-101</td>
@@ -222,7 +268,7 @@ An easy implementation of Faster R-CNN in PyTorch.
222
268
</td>
223
269
<td>ResNet-101</td>
224
270
<td>GTX 1080 Ti</td>
225
- <td>~ 6.3 </td>
271
+ <td>5 ~ 6</td>
226
272
<td>~ 11.8</td>
227
273
<td>0.7538</td>
228
274
<td>600</td>
@@ -247,8 +293,8 @@ An easy implementation of Faster R-CNN in PyTorch.
247
293
248
294
* MS COCO 2017
249
295
250
- * Train: 2017 Train = 2015 Train + 2015 Val - 2015 Val Sample 5k (117266 samples )
251
- * Eval: 2017 Val = 2015 Val Sample 5k (formerly known as ` minival ` ) (4952 samples )
296
+ * Train: 2017 Train = 2015 Train + 2015 Val - 2015 Val Sample 5k (117266 images )
297
+ * Eval: 2017 Val = 2015 Val Sample 5k (formerly known as ` minival ` ) (4952 images )
252
298
253
299
<table >
254
300
<tr>
@@ -331,21 +377,21 @@ An easy implementation of Faster R-CNN in PyTorch.
331
377
<td>~ 5.1</td>
332
378
<td>~ 8.9</td>
333
379
<td>0.287</td>
334
- <td>800</td>
335
- <td>1333</td>
380
+ <td><b> 800</b> </td>
381
+ <td><b> 1333</b> </td>
336
382
<td>[(1, 2), (1, 1), (2, 1)]</td>
337
- <td>[64, 128, 256, 512]</td>
383
+ <td><b> [64, 128, 256, 512]</b> </td>
338
384
<td>align</td>
339
385
<td>12000</td>
340
386
<td>2000</td>
341
387
<td>6000</td>
342
- <td>1000</td>
388
+ <td><b> 1000</b> </td>
343
389
<td>0.001</td>
344
390
<td>0.9</td>
345
- <td>0.0001</td>
346
- <td>900000</td>
391
+ <td><b> 0.0001</b> </td>
392
+ <td><b> 900000</b> </td>
347
393
<td>0.1</td>
348
- <td>1200000</td>
394
+ <td><b> 1200000</b> </td>
349
395
</tr>
350
396
<tr>
351
397
<td>ruotianluo/pytorch-faster-rcnn</td>
@@ -404,21 +450,21 @@ An easy implementation of Faster R-CNN in PyTorch.
404
450
<td>~ 4.7</td>
405
451
<td>~ 7.8</td>
406
452
<td>0.352</td>
407
- <td>800</td>
408
- <td>1333</td>
453
+ <td><b> 800</b> </td>
454
+ <td><b> 1333</b> </td>
409
455
<td>[(1, 2), (1, 1), (2, 1)]</td>
410
- <td>[64, 128, 256, 512]</td>
456
+ <td><b> [64, 128, 256, 512]</b> </td>
411
457
<td>align</td>
412
458
<td>12000</td>
413
459
<td>2000</td>
414
460
<td>6000</td>
415
- <td>1000</td>
461
+ <td><b> 1000</b> </td>
416
462
<td>0.001</td>
417
463
<td>0.9</td>
418
- <td>0.0001</td>
419
- <td>900000</td>
464
+ <td><b> 0.0001</b> </td>
465
+ <td><b> 900000</b> </td>
420
466
<td>0.1</td>
421
- <td>1200000</td>
467
+ <td><b> 1200000</b> </td>
422
468
</tr>
423
469
<tr>
424
470
<td>
@@ -431,26 +477,128 @@ An easy implementation of Faster R-CNN in PyTorch.
431
477
<td>~ 4.5</td>
432
478
<td>~ 7.5</td>
433
479
<td>0.358</td>
434
- <td>800</td>
435
- <td>1333</td>
480
+ <td><b> 800</b> </td>
481
+ <td><b> 1333</b> </td>
436
482
<td>[(1, 2), (1, 1), (2, 1)]</td>
437
- <td>[32, 64, 128, 256, 512]</td>
483
+ <td><b> [32, 64, 128, 256, 512]</b> </td>
438
484
<td>align</td>
439
485
<td>12000</td>
440
486
<td>2000</td>
441
487
<td>6000</td>
442
- <td>1000</td>
488
+ <td><b> 1000</b> </td>
443
489
<td>0.001</td>
444
490
<td>0.9</td>
445
- <td>0.0001</td>
446
- <td>900000</td>
491
+ <td><b> 0.0001</b> </td>
492
+ <td><b> 900000</b> </td>
447
493
<td>0.1</td>
448
- <td>1200000</td>
494
+ <td><b> 1200000</b> </td>
449
495
</tr>
450
496
</table >
451
497
452
498
> Scroll to right for more configurations
453
-
499
+
500
+ * PASCAL VOC 2007 Cat Dog
501
+
502
+ * Train: 2007 trainval drops categories other than cat and dog (750 images)
503
+ * Eval: 2007 test drops categories other than cat and dog (728 images)
504
+
505
+ <table >
506
+ <tr>
507
+ <th>Implementation</th>
508
+ <th>Backbone</th>
509
+ <th>GPU</th>
510
+ <th>Training Speed (FPS)</th>
511
+ <th>Inference Speed (FPS)</th>
512
+ <th>mAP</th>
513
+ <th>image_min_side</th>
514
+ <th>image_max_side</th>
515
+ <th>anchor_ratios</th>
516
+ <th>anchor_sizes</th>
517
+ <th>pooling_mode</th>
518
+ <th>train_pre_rpn_nms_top_n</th>
519
+ <th>train_post_rpn_nms_top_n</th>
520
+ <th>eval_pre_rpn_nms_top_n</th>
521
+ <th>eval_post_rpn_nms_top_n</th>
522
+ <th>learning_rate</th>
523
+ <th>momentum</th>
524
+ <th>weight_decay</th>
525
+ <th>step_lr_size</th>
526
+ <th>step_lr_gamma</th>
527
+ <th>num_steps_to_finish</th>
528
+ </tr>
529
+ <tr>
530
+ <td>Ours</td>
531
+ <td>ResNet-18</td>
532
+ <td>GTX 1080 Ti</td>
533
+ <td>~ 19.4</td>
534
+ <td>~ 56.2</td>
535
+ <td>0.3776</td>
536
+ <td>600</td>
537
+ <td>1000</td>
538
+ <td>[(1, 2), (1, 1), (2, 1)]</td>
539
+ <td>[128, 256, 512]</td>
540
+ <td>align</td>
541
+ <td>12000</td>
542
+ <td>2000</td>
543
+ <td>6000</td>
544
+ <td>300</td>
545
+ <td>0.001</td>
546
+ <td>0.9</td>
547
+ <td>0.0005</td>
548
+ <td><b>700</b></td>
549
+ <td>0.1</td>
550
+ <td><b>1000</b></td>
551
+ </tr>
552
+ <tr>
553
+ <td>Ours</td>
554
+ <td>ResNet-18</td>
555
+ <td>GTX 1080 Ti</td>
556
+ <td>~ 19.4</td>
557
+ <td>~ 56.2</td>
558
+ <td>0.6175</td>
559
+ <td>600</td>
560
+ <td>1000</td>
561
+ <td>[(1, 2), (1, 1), (2, 1)]</td>
562
+ <td>[128, 256, 512]</td>
563
+ <td>align</td>
564
+ <td>12000</td>
565
+ <td>2000</td>
566
+ <td>6000</td>
567
+ <td>300</td>
568
+ <td>0.001</td>
569
+ <td>0.9</td>
570
+ <td>0.0005</td>
571
+ <td><b>2000</b></td>
572
+ <td>0.1</td>
573
+ <td><b>3000</b></td>
574
+ </tr>
575
+ <tr>
576
+ <td>Ours</td>
577
+ <td>ResNet-18</td>
578
+ <td>GTX 1080 Ti</td>
579
+ <td>~ 19.4</td>
580
+ <td>~ 56.2</td>
581
+ <td>0.7639</td>
582
+ <td>600</td>
583
+ <td>1000</td>
584
+ <td>[(1, 2), (1, 1), (2, 1)]</td>
585
+ <td>[128, 256, 512]</td>
586
+ <td>align</td>
587
+ <td>12000</td>
588
+ <td>2000</td>
589
+ <td>6000</td>
590
+ <td>300</td>
591
+ <td>0.001</td>
592
+ <td>0.9</td>
593
+ <td>0.0005</td>
594
+ <td><b>7000</b></td>
595
+ <td>0.1</td>
596
+ <td><b>10000</b></td>
597
+ </tr>
598
+ </table >
599
+
600
+ > Scroll to right for more configurations
601
+
454
602
455
603
## Requirements
456
604
0 commit comments