-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathWAFR_iLQR_examples.cu
354 lines (334 loc) · 14.6 KB
/
WAFR_iLQR_examples.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/***
nvcc -std=c++11 -o iLQR.exe WAFR_iLQR_examples.cu utils/cudaUtils.cu utils/threadUtils.cpp -gencode arch=compute_61,code=sm_61 -rdc=true -O3
***/
#define EE_COST 0
#define TOL_COST 0.0
#include "DDPHelpers.cuh"
#include <random>
#include <vector>
#include <algorithm>
#include <iostream>
#define TEST_ITERS 100
#define ROLLOUT_FLAG 0
#define RANDOM_MEAN 0.0
#if PLANT == 1 // pend
#define RANDOM_STDEV 0.001
#define GOAL_T 3.1416
#define GOAL_O 0.0
#elif PLANT == 2 // cart
#define RANDOM_STDEV 0.001
#define GOAL_X 0.0
#define GOAL_T 3.1416
#define GOAL_O 0.0
#elif PLANT == 3 // quad
#define RANDOM_STDEV 0.001
#define GOAL_X 7.0
#define GOAL_Y 10.0
#define GOAL_Z 0.5
#define GOAL_O 0.0
#elif PLANT == 4 // arm
#define RANDOM_STDEV 0.001
#define PI 3.14159
#define GOAL_1 0
#define GOAL_2 0
#define GOAL_3 0
#define GOAL_4 -0.25*PI
#define GOAL_5 0
#define GOAL_6 0.25*PI
#define GOAL_7 0.5*PI
#define GOAL_O 0.0
#endif
char errMsg[] = "Error: Unkown code - usage is [C]PU or [G]PU with [CS] for serial line search\n";
char tot[] = " TOT"; char init[] = "INIT"; char fp[] = " FP"; char fs[] = " FS"; char bp[] = " BP"; char nis[] = " NIS";
double tTime[TEST_ITERS]; double fsimTime[TEST_ITERS*MAX_ITER]; double fsweepTime[TEST_ITERS*MAX_ITER]; double bpTime[TEST_ITERS*MAX_ITER];
double nisTime[TEST_ITERS*MAX_ITER]; double initTime[TEST_ITERS]; algType Jout[TEST_ITERS*(MAX_ITER+1)]; int alphaOut[TEST_ITERS*(MAX_ITER+1)];
std::default_random_engine randEng(time(0)); //seed
std::normal_distribution<double> randDist(RANDOM_MEAN, RANDOM_STDEV); //mean followed by stdiv
template <typename T>
__host__ __forceinline__
void loadXU(T *x, T *u, T *xGoal, int ld_x, int ld_u){
for (int k=0; k<NUM_TIME_STEPS; k++){
T *xk = x + k*ld_x;
#if PLANT == 1 // pend
xk[0] = 0.0; xk[1] = (T)randDist(randEng);
#elif PLANT == 2 // cart
xk[0] = 0.0; xk[1] = 0.0;
xk[2] = (T)randDist(randEng); xk[3] = (T)randDist(randEng);
#elif PLANT == 3 // quad
for (int k2=0; k2<STATE_SIZE; k2++){if (k2 == 2){xk[k2] = 0.5;} else if(k2 >= NUM_POS){xk[k2] = (T)randDist(randEng);} else{xk[k2] = 0.0;}}
#elif PLANT == 4 // arm
xk[0] = (T)-0.5*PI; xk[1] = (T)0.25*PI; xk[2] = (T)0.167*PI;
xk[3] = (T)-0.167*PI; xk[4] = (T)0.125*PI; xk[5] = (T)0.167*PI; xk[6] = (T)0.5*PI;
xk[7] = (T)randDist(randEng); xk[8] = (T)randDist(randEng); xk[9] = (T)randDist(randEng);
xk[10] = (T)randDist(randEng); xk[11] = (T)randDist(randEng); xk[12] = (T)randDist(randEng); xk[13] = (T)randDist(randEng);
#endif
}
for (int k=0; k<NUM_TIME_STEPS; k++){
T *uk = u + k*ld_u;
#if PLANT == 1 || PLANT == 2 // pend and cart
uk[0] = 0.01;
#elif PLANT == 3 // quad
for (int k2=0; k2<CONTROL_SIZE; k2++){uk[k2] = 1.22625;}
#elif PLANT == 4 // arm
uk[0] = 0.0; uk[1] = -102.9832; uk[2] = 11.1968;
uk[3] = 47.0724; uk[4] = 2.5993; uk[5] = -7.0290; uk[6] = -0.0907;
#endif
}
#if EE_COST
#if PLANT == 4 // arm
const T temp[] = {GOAL_X,GOAL_Y,GOAL_Z,GOAL_r,GOAL_p,GOAL_y};
for (int i=0; i < 6; i++){xGoal[i] = temp[i];}
#else
#error "PLANT DOES NOT HAVE END EFFECTOR -- RUN WITH EE_COST = 0"
#endif
#else
#if PLANT == 1 // pend
const T temp[] = {GOAL_T,GOAL_O};
#elif PLANT == 2 // cart
const T temp[] = {GOAL_X,GOAL_T,GOAL_O,GOAL_O};
#elif PLANT == 3 // quad
const T temp[] = {GOAL_X,GOAL_Y,GOAL_Z,GOAL_O,GOAL_O,GOAL_O,GOAL_O,GOAL_O,GOAL_O,GOAL_O,GOAL_O,GOAL_O};
#elif PLANT == 4 // arm
const T temp[] = {GOAL_1,GOAL_2,GOAL_3,GOAL_4,GOAL_5,GOAL_6,GOAL_7,GOAL_O,GOAL_O,GOAL_O,GOAL_O,GOAL_O,GOAL_O,GOAL_O};
#endif
for (int i=0; i < STATE_SIZE; i++){xGoal[i] = temp[i];}
#endif
}
__host__
void computeStats(double *_median, double *_avg, double *_stdev, double *_min, double *_max, int size, std::vector<double> v){
// sort gives us the median, max and min
std::sort(v.begin(),v.end());
*_median = size % 2 ? v[size / 2] : (v[size / 2 - 1] + v[size / 2]) / 2.0;
*_max = v.back();
*_min = v.front();
// sum gives use the average
double sum = std::accumulate(v.begin(), v.end(), 0.0);
*_avg = sum / (double)size;
// and then the std dev
*_stdev = 0.0;
for(std::vector<double>::iterator it = v.begin(); it != v.end(); ++it){
*_stdev += pow(*it-*_avg,2.0);
}
*_stdev /= (double) size;
*_stdev = pow(*_stdev,0.5);
}
__host__
void printTimingStats(double *arr, int iters, char *type, int vals_per_test = MAX_ITER){
double _median, _avg, _stdev, _min, _max; std::vector<double> v;
// get all the vals into a vector
for (int test=0; test<TEST_ITERS; test++){for (int i=0; i<iters; i++){v.push_back(arr[test*vals_per_test + i]);}}
computeStats(&_median, &_avg, &_stdev, &_min, &_max, TEST_ITERS*iters, v);
// report results
printf("%s: Median[%f] Average[%f] StdDev[%f] max[%f] min[%f]\n",type,_median,_avg,_stdev,_max,_min);
}
__host__
void printPerIterTiming(double *initTime, double *fsimTime, double *fsweepTime, double *bpTime, double *nisTime){
// the total time to each cost point is:
// t[i+1] = fsim[i] + fsweep[i] + bp[i] + nis[i-1] + t[i]
// t[1] = init + fsim[0] + fsweep[0] + bp[0]
// t[0] = 0
double _median, _avg, _stdev, _min, _max;
double TIMES[MAX_ITER+1]; TIMES[0] = 0.0;
for (int iter = 0; iter < MAX_ITER; iter++){
// collect the vector for this time step
std::vector<double> v;
for (int test=0; test<TEST_ITERS; test++){
int ind = test*MAX_ITER + iter;
double val = fsimTime[ind] + fsweepTime[ind] + bpTime[ind] + (iter > 0 ? nisTime[ind-1] : initTime[test]);
v.push_back(val);
}
// compute the stats
computeStats(&_median, &_avg, &_stdev, &_min, &_max, TEST_ITERS, v);
// printf("Full Timing Per Iter[%d]: Median[%f] Average[%f] StdDev[%f] max[%f] min[%f]\n",iter+1,_median,_avg,_stdev,_max,_min);
TIMES[iter+1] = _median + TIMES[iter];
}
printf("Median Time Trace:\n");
for (int iter = 0; iter <= MAX_ITER; iter++){printf("%f ",TIMES[iter]);} printf("\n");
}
template <typename T>
__host__ __forceinline__
void printJAlphaStats(T *Jout, int *alphaOut){
double _median, _avg, _stdev, _min, _max, _median2, _avg2, _stdev2, _min2, _max2;
std::vector<double> MEDIANS;
for (int iter = 0; iter <= MAX_ITER; iter++){
std::vector<double> v; std::vector<double> v2;
for (int i=0; i<TEST_ITERS; i++){v.push_back((double)Jout[i*(MAX_ITER+1) + iter]); v2.push_back((double)alphaOut[i*(MAX_ITER+1) + iter]);}
computeStats(&_median, &_avg, &_stdev, &_min, &_max, TEST_ITERS, v);
computeStats(&_median2, &_avg2, &_stdev2, &_min2, &_max2, TEST_ITERS, v2);
MEDIANS.push_back(_median);
printf("Iter %d: Median[%f] Average[%f] StdDev[%f] max[%f] min[%f] alpha[%.1f,%.1f,%.1f,%.0f,%.0f]\n",iter,_median,_avg,_stdev,_max,_min,_median2,_avg2,_stdev2,_max2,_min2);
}
printf("Median J Trace:\n");
for(std::vector<double>::iterator it = MEDIANS.begin(); it != MEDIANS.end(); ++it){printf("%f ",*it);}printf("\n");
}
__host__ __forceinline__
bool tryParse(std::string& input, int& output) {
try{output = std::stoi(input);}
catch (std::invalid_argument) {return false;}
return true;
}
__host__ __forceinline__
int getNumIters(int maxInt, int minInt){
std::string input; std::string exitCode ("q"); int x;
printf("Which iter would you like to stop timing on (q to exit)?\n");
while(1){
getline(std::cin, input);
while (!tryParse(input, x)){
if (input.compare(input.size()-1,1,exitCode) == 0){return -1;}
std::cout << "Bad entry. Enter a NUMBER\n"; getline(std::cin, input);
}
if (x >= minInt && x <= maxInt){break;}
else{std::cout << "Entry must be in range[" << minInt << "," << maxInt << "]\n";}
}
return x;
}
__host__
void printAllTimingStats(double *tTime, double *initTime, double *fsimTime, double *fsweepTime, double *bpTime, double *nisTime){
printPerIterTiming(initTime,fsimTime,fsweepTime,bpTime,nisTime);
while(1){
// ask for which iter to stop timing stats on
int timingIters = getNumIters(MAX_ITER,1);
if (timingIters == -1){break;}
// print those stats
printTimingStats(tTime,TEST_ITERS,tot,1);
printTimingStats(initTime,TEST_ITERS,init,1);
printTimingStats(fsimTime,timingIters,fp);
printTimingStats(fsweepTime,timingIters,fs);
printTimingStats(bpTime,timingIters,bp);
printTimingStats(nisTime,timingIters,nis);
}
}
template <typename T>
__host__
void testCPU(int serialAlphas){
// CPU VARS
// first integer constants for the leading dimmensions of allocaitons
int ld_x, ld_u, ld_P, ld_p, ld_AB, ld_H, ld_g, ld_KT, ld_du, ld_d, ld_A;
// algorithm hyper parameters
T *alpha;
// then variables defined by blocks for backward pass
T *P, *p, *Pp, *pp, *AB, *H, *g, *KT, *du;
// variables for forward pass
T *x, *u, *xp, *xp2, *up, *JT;
// variables for forward sweep
T *d, *dp, *ApBK, *Bdu;
// for checking inversion errors
int *err;
// for expected cost reduction
T *dJexp;
// goal point
T *xGoal;
// Inertias and Tbodybase
T *I, *Tbody;
// parallel alphas
T **xs, **us, **ds, **JTs;
// Allocate space and initialize the variables
if(serialAlphas){
allocateMemory_CPU<T>(&x, &xp, &xp2, &u, &up, &xGoal, &P, &Pp, &p, &pp, &AB, &H, &g, &KT, &du, &d, &dp, &ApBK, &Bdu,
&JT, &dJexp, &alpha, &err, &ld_x, &ld_u, &ld_P, &ld_p, &ld_AB, &ld_H, &ld_g, &ld_KT, &ld_du, &ld_d, &ld_A,
&I, &Tbody);
}
else{
allocateMemory_CPU2<T>(&xs, &xp, &xp2, &us, &up, &xGoal, &P, &Pp, &p, &pp, &AB, &H, &g, &KT, &du, &ds, &dp, &ApBK, &Bdu,
&JTs, &dJexp, &alpha, &err, &ld_x, &ld_u, &ld_P, &ld_p, &ld_AB, &ld_H, &ld_g, &ld_KT, &ld_du, &ld_d, &ld_A,
&I, &Tbody);
}
T *x0 = (T *)malloc(ld_x*NUM_TIME_STEPS*sizeof(T));
T *u0 = (T *)malloc(ld_u*NUM_TIME_STEPS*sizeof(T));
for (int i=0; i < TEST_ITERS; i++){
printf("<<<TESTING CPU %d/%d>>>\n",i+1,TEST_ITERS);
loadXU<T>(x0,u0,xGoal,ld_x,ld_u);
if(serialAlphas){
runiLQR_CPU<T>(x0, u0, nullptr, nullptr, nullptr, nullptr, xGoal, &Jout[i*(MAX_ITER+1)], &alphaOut[i*(MAX_ITER+1)], ROLLOUT_FLAG, 1, 1,
&tTime[i], &fsimTime[i*MAX_ITER], &fsweepTime[i*MAX_ITER], &bpTime[i*MAX_ITER], &nisTime[i*MAX_ITER], &initTime[i],
x, xp, xp2, u, up, P, p, Pp, pp, AB, H, g, KT, du, d, dp, ApBK, Bdu, alpha, JT, dJexp, err,
ld_x, ld_u, ld_P, ld_p, ld_AB, ld_H, ld_g, ld_KT, ld_du, ld_d, ld_A, I, Tbody);
}
else{
runiLQR_CPU2<T>(x0, u0, nullptr, nullptr, nullptr, nullptr, xGoal, &Jout[i*(MAX_ITER+1)], &alphaOut[i*(MAX_ITER+1)], ROLLOUT_FLAG, 1, 1,
&tTime[i], &fsimTime[i*MAX_ITER], &fsweepTime[i*MAX_ITER], &bpTime[i*MAX_ITER], &nisTime[i*MAX_ITER], &initTime[i],
xs, xp, xp2, us, up, P, p, Pp, pp, AB, H, g, KT, du, ds, dp, ApBK, Bdu, alpha, JTs, dJexp, err,
ld_x, ld_u, ld_P, ld_p, ld_AB, ld_H, ld_g, ld_KT, ld_du, ld_d, ld_A, I, Tbody);
}
}
// print final state
printf("Final state:\n"); for (int i = 0; i < STATE_SIZE; i++){printf("%15.5f ",x0[(NUM_TIME_STEPS-2)*ld_x + i]);} printf("\n");
//printf("Final utraj:\n"); for (int i = 0; i < NUM_TIME_STEPS-1; i++){printMat<T,1,DIM_u_r>(&u0[i*ld_u],1);}
// print all requested statistics
printJAlphaStats(Jout,alphaOut);
printAllTimingStats(tTime,initTime,fsimTime,fsweepTime,bpTime,nisTime);
// free those vars
if(serialAlphas){freeMemory_CPU<T>(x, xp, xp2, u, up, P, Pp, p, pp, AB, H, g, KT, du, d, dp, Bdu, ApBK, dJexp, err, alpha, JT, xGoal, I, Tbody);}
else{freeMemory_CPU2<T>(xs, xp, xp2, us, up, P, Pp, p, pp, AB, H, g, KT, du, ds, dp, Bdu, ApBK, dJexp, err, alpha, JTs, xGoal, I, Tbody);}
free(x0);
free(u0);
}
template <typename T>
__host__
void testGPU(){
// GPU VARS
// first integer constants for the leading dimmensions of allocaitons
int ld_x, ld_u, ld_P, ld_p, ld_AB, ld_H, ld_g, ld_KT, ld_du, ld_d, ld_A;
// then vars for stream handles
cudaStream_t *streams;
// algorithm hyper parameters
T *alpha, *d_alpha;
int *alphaIndex;
// then variables defined by blocks for backward pass
T *d_P, *d_p, *d_Pp, *d_pp, *d_AB, *d_H, *d_g, *d_KT, *d_du;
// variables for forward pass
T **d_x, **d_u, **h_d_x, **h_d_u, *d_xp, *d_xp2, *d_up, *d_JT, *J;
// variables for forward sweep
T **d_d, **h_d_d, *d_dp, *d_dT, *d, *d_ApBK, *d_Bdu, *d_dM;
// for checking inversion errors
int *err, *d_err;
// for expected cost reduction
T *dJexp, *d_dJexp;
// goal point
T *xGoal, *d_xGoal;
// Inertias and Tbodybase
T *d_I, *d_Tbody;
// Allocate space and initialize the variables
allocateMemory_GPU<T>(&d_x, &h_d_x, &d_xp, &d_xp2, &d_u, &h_d_u, &d_up, &d_xGoal, &xGoal,
&d_P, &d_Pp, &d_p, &d_pp, &d_AB, &d_H, &d_g, &d_KT, &d_du,
&d_d, &h_d_d, &d_dp, &d_dT, &d_dM, &d, &d_ApBK, &d_Bdu,
&d_JT, &J, &d_dJexp, &dJexp, &alpha, &d_alpha, &alphaIndex, &d_err, &err,
&ld_x, &ld_u, &ld_P, &ld_p, &ld_AB, &ld_H, &ld_g, &ld_KT, &ld_du, &ld_d, &ld_A,
&streams, &d_I, &d_Tbody);
T *x0 = (T *)malloc(ld_x*NUM_TIME_STEPS*sizeof(T));
T *u0 = (T *)malloc(ld_u*NUM_TIME_STEPS*sizeof(T));
for (int i=0; i<TEST_ITERS; i++){
printf("<<<TESTING GPU %d/%d>>>\n",i+1,TEST_ITERS);
loadXU<T>(x0,u0,xGoal,ld_x,ld_u);
runiLQR_GPU<T>(x0, u0, nullptr, nullptr, nullptr, nullptr, xGoal, &Jout[i*(MAX_ITER+1)], &alphaOut[i*(MAX_ITER+1)], ROLLOUT_FLAG, 1, 1,
&tTime[i], &fsimTime[i*MAX_ITER], &fsweepTime[i*MAX_ITER], &bpTime[i*MAX_ITER], &nisTime[i*MAX_ITER], &initTime[i], streams,
d_x, h_d_x, d_xp, d_xp2, d_u, h_d_u, d_up, d_P, d_p, d_Pp, d_pp, d_AB, d_H, d_g, d_KT, d_du,
d_d, h_d_d, d_dp, d_dT, d, d_ApBK, d_Bdu, d_dM, alpha, d_alpha, alphaIndex, d_JT, J, dJexp, d_dJexp, d_xGoal,
err, d_err, ld_x, ld_u, ld_P, ld_p, ld_AB, ld_H, ld_g, ld_KT, ld_du, ld_d, ld_A, d_I, d_Tbody);
}
// print final state
printf("Final state:\n"); for (int i = 0; i < STATE_SIZE; i++){printf("%15.5f ",x0[(NUM_TIME_STEPS-2)*ld_x + i]);} printf("\n");
// printf("Final xtraj:\n"); for (int i = 0; i < NUM_TIME_STEPS; i++){printMat<T,1,DIM_x_r>(&x0[i*ld_x],1);}
// print all requested statistics
printJAlphaStats(Jout,alphaOut);
printAllTimingStats(tTime,initTime,fsimTime,fsweepTime,bpTime,nisTime);
// free those vars
freeMemory_GPU<T>(d_x, h_d_x, d_xp, d_xp2, d_u, h_d_u, d_up, xGoal, d_xGoal, d_P, d_Pp, d_p, d_pp, d_AB, d_H, d_g, d_KT, d_du,
d_d, h_d_d, d_dp, d_dM, d_dT, d, d_ApBK, d_Bdu, d_JT, J, d_dJexp, dJexp, alpha, d_alpha, alphaIndex, d_err, err,
streams, d_I, d_Tbody);
free(x0);
free(u0);
}
int main(int argc, char *argv[])
{
srand(time(NULL));
// test based on command line args
char hardware = '?'; // require user input
if (argc > 1){
hardware = argv[1][0];
}
if (hardware == 'G'){testGPU<algType>();}
else if (hardware == 'C'){int flag = (int)(argv[1][1] == 'S'); testCPU<algType>(flag);}
else{printf("%s",errMsg);}
return 0;
}