Releases: piskvorky/gensim
Releases · piskvorky/gensim
0.13.0rc1 Tutorials reworked, Word Movers Distance
Changes
0.12.5, 2016
- Tutorials migrated from website to ipynb (@j9chan, #721), (@jesford, #733, #725, 716)
- New doc2vec intro tutorial (@seanlaw, #730)
- Gensim Quick Start Tutorial (@andrewjlm, #727)
- Add export_phrases(sentences) to model Phrases (hanabi1224 #588)
- SparseMatrixSimilarity returns a sparse matrix if
maintain_sparsityis True (@davechallis, #590) - added functionality for Topics of Words in document - i.e, dynamic topics. (@bhargavvader, #704)
- also included tutorial which explains new functionalities, and document word-topic coloring.
- Made normalization an explicit transformation. Added 'l1' norm support (@sQuareindia, #649)
- added term-topics API for most probable topic for word in vocab. (@bhargavvader, #706)
- build_vocab takes progress_per parameter for smaller output (@zer0n, #624)
- Control whether to use lowercase for computing word2vec accuracy. (@alantian, #607)
- Easy import of GloVe vectors using Gensim (Manas Ranjan Kar, #625)
- Allow easy port of GloVe vectors into Gensim
- Standalone script with command line arguments, compatible with Python>=2.6
- Usage: python -m gensim.scripts.glove2word2vec -i glove_vectors.txt -o output_word2vec_compatible.txt
- Add
similar_by_word()andsimilar_by_vector()to word2vec (@isohyt, #381) - Convenience method for similarity of two out of training sentences to doc2vec (@ellolo, #707)
- Dynamic Topic Modelling Tutorial updated with Dynamic Influence Model (@bhargavvader, #689)
- Added function to filter 'n' most frequent words from the dictionary (@abhinavchawla, #718)
- Raise warnings if vocab is single character elements and if alpha is increased in word2vec/doc2vec (@dsquareindia, #705)
- Tests for wikidump (@jonmcoe, #723)
- Mallet wrapper sparse format support (@RishabGoel, #664)
- Doc2vec pre-processing script translated from bash to Python (@andrewjlm, #720)
0.12.4, 29/01/2016
- Word2vec in line with original word2vec.c (Andrey Kutuzov, #538)
- Same default values. See diff akutuzov@6456cbc
- Standalone script with command line arguments matching those of original C tool.
Usage ./word2vec_standalone.py -train data.txt -output trained_vec.txt -size 200 -window 2 -sample 1e-4 - load_word2vec_format() performance (@svenkreiss, #555)
- Remove
init_sims()call for performance improvements when normalized vectors are not needed. - Remove
norm_onlyparameter (API change). Callinit_sims(replace=True)after theload_word2vec_format()call for the oldnorm_only=Truebehavior.
- Remove
- Better internal handling of job batching in word2vec (#535)
- up to 300% speed up when training on very short documents (~tweets)
- Word2vec allows non-strict unicode error handling (ignore or replace) (Gordon Mohr, #466)
- Doc2Vec
model.docvecs[key]now raises KeyError for unknown keys (Gordon Mohr, #520) - Fix
DocvecsArray.index_to_doctagsomost_similar()returns string doctags (Gordon Mohr, #560) - On-demand loading of the
patternlibrary in utils.lemmatize (Jan Zikes, #461)utils.HAS_PATTERNflag moved toutils.has_pattern()
- Threadsafe Word2Vec/Doc2Vec finish-check to avoid hang/unending Word2Vec/Doc2Vec training (Gordon Mohr, #571)
- Tuned
TestWord2VecModel.test_cbow_hs()against random failures (Gordon Mohr, #531) - Prevent ZeroDivisionError when
default_timer()indicate no elapsed time (Gordon Mohr, #518) - Forwards compatibility for NumPy > 1.10 (Matti Lyra, #494, #513)
- LdaModel and LdaMulticore produce a large number of DeprecationWarnings from
.inference() because the term ids in each chunk returned from utils.grouper
are floats. This behaviour has been changed so that the term IDs are now ints. - utils.grouper returns a python list instead of a numpy array in .update() when
LdaModel is called in non distributed mode - in distributed mode .update() will still call utils.grouper with as_numpy=True
to save memory - LdaModel.update and LdaMulticore.update have a new keyword parameter
chunks_as_numpy=True/False (defaults to False) that allows controlling
this behaviour
- LdaModel and LdaMulticore produce a large number of DeprecationWarnings from
0.12.3
0.12.3rc1, 05/11/2015
- Make show_topics return value consistent across models (Christopher Corley, #448)
- All models with the
show_topicsmethod should return a list of
(topic_number, topic)tuples, wheretopicis a list of
(word, probability)tuples. - This is a breaking change that affects users of the
LsiModel,LdaModel,
andLdaMulticorethat may be reliant on the old tuple layout of
(probability, word).
- All models with the
- Mixed integer & string document-tags (keys to doc-vectors) will work (Gordon Mohr, #491)
- DocvecsArray's
index2doctaglist is renamed/reinterpreted asoffset2doctag offset2doctagentries map todoctag_syn0indexes after last plain-int doctag (if any)- (If using only string doctags,
offset2doctagmay be interpreted same asindex2doctag.)
- DocvecsArray's
- New Tutorials on Dynamic Topic Modelling and Classification via Word2Vec (@Arttii #471, @mataddy #500)
- Auto-learning for the eta parameter on the LdaModel (Christopher Corley, #479)
- Python 3.5 support
- Speed improvements to keyword and summarisation methods (@erbas #441)
- OSX wheels (#504)
- Win build (#492)
0.12.3rc1
0.12.3rc1, 05/11/2015
- Make show_topics return value consistent across models (Christopher Corley, #448)
- All models with the
show_topicsmethod should return a list of
(topic_number, topic)tuples, wheretopicis a list of
(word, probability)tuples. - This is a breaking change that affects users of the
LsiModel,LdaModel,
andLdaMulticorethat may be reliant on the old tuple layout of
(probability, word).
- All models with the
- Mixed integer & string document-tags (keys to doc-vectors) will work (Gordon Mohr, #491)
- DocvecsArray's
index2doctaglist is renamed/reinterpreted asoffset2doctag offset2doctagentries map todoctag_syn0indexes after last plain-int doctag (if any)- (If using only string doctags,
offset2doctagmay be interpreted same asindex2doctag.)
- DocvecsArray's
- New Tutorials on Dynamic Topic Modelling and Classification via Word2Vec (@Arttii #471, @mataddy #500)
- Auto-learning for the eta parameter on the LdaModel (Christopher Corley, #479)
- Python 3.5 support
- Speed improvements to keyword and summarisation methods (@erbas #441)
- OSX wheels (#504)
- Win build (#492)