Skip to content

Commit c4a7acd

Browse files
timgates42mpenkov
andauthored
docs: Fix a few typos (#3366)
* docs: Fix a few typos There are small typos in: - docs/src/auto_examples/howtos/run_doc2vec_imdb.py - docs/src/auto_examples/howtos/run_doc2vec_imdb.rst - docs/src/gallery/howtos/run_doc2vec_imdb.py - gensim/test/test_corpora.py Fixes: - Should read `output` rather than `ouput`. - Should read `count` rather than `counnt`. Signed-off-by: Tim Gates <tim.gates@iress.com> * make -C docs/src html rebuilt docs that were updated by this PR with Sphinx 5.1.1 * updated documentation --------- Signed-off-by: Tim Gates <tim.gates@iress.com> Co-authored-by: Michael Penkov <m@penkov.dev>
1 parent 431bd4a commit c4a7acd

File tree

9 files changed

+3265
-2994
lines changed

9 files changed

+3265
-2994
lines changed

docs/src/auto_examples/howtos/run_doc2vec_imdb.ipynb

Lines changed: 13 additions & 13 deletions
Large diffs are not rendered by default.

docs/src/auto_examples/howtos/run_doc2vec_imdb.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -229,7 +229,7 @@ def extract_documents():
229229
#
230230
# Given a document, our ``Doc2Vec`` models output a vector representation of the document.
231231
# How useful is a particular model?
232-
# In case of sentiment analysis, we want the ouput vector to reflect the sentiment in the input document.
232+
# In case of sentiment analysis, we want the output vector to reflect the sentiment in the input document.
233233
# So, in vector space, positive documents should be distant from negative documents.
234234
#
235235
# We train a logistic regression from the training set:
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
507b6c07ce76db341761559a96daa17d
1+
ba0868fcd69185ffc435fc591667b67a

docs/src/auto_examples/howtos/run_doc2vec_imdb.rst

Lines changed: 3236 additions & 2965 deletions
Large diffs are not rendered by default.

docs/src/auto_examples/howtos/sg_execution_times.rst

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -5,14 +5,14 @@
55

66
Computation times
77
=================
8-
**00:00.171** total execution time for **auto_examples_howtos** files:
8+
**56:58.813** total execution time for **auto_examples_howtos** files:
99

10-
+----------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_auto_examples_howtos_run_doc.py` (``run_doc.py``) | 00:00.171 | 6.1 MB |
12-
+----------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_auto_examples_howtos_run_compare_lda.py` (``run_compare_lda.py``) | 00:00.000 | 0.0 MB |
14-
+----------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_auto_examples_howtos_run_doc2vec_imdb.py` (``run_doc2vec_imdb.py``) | 00:00.000 | 0.0 MB |
16-
+----------------------------------------------------------------------------------------+-----------+--------+
17-
| :ref:`sphx_glr_auto_examples_howtos_run_downloader_api.py` (``run_downloader_api.py``) | 00:00.000 | 0.0 MB |
18-
+----------------------------------------------------------------------------------------+-----------+--------+
10+
+----------------------------------------------------------------------------------------+-----------+-----------+
11+
| :ref:`sphx_glr_auto_examples_howtos_run_doc2vec_imdb.py` (``run_doc2vec_imdb.py``) | 56:58.813 | 3772.5 MB |
12+
+----------------------------------------------------------------------------------------+-----------+-----------+
13+
| :ref:`sphx_glr_auto_examples_howtos_run_compare_lda.py` (``run_compare_lda.py``) | 00:00.000 | 0.0 MB |
14+
+----------------------------------------------------------------------------------------+-----------+-----------+
15+
| :ref:`sphx_glr_auto_examples_howtos_run_doc.py` (``run_doc.py``) | 00:00.000 | 0.0 MB |
16+
+----------------------------------------------------------------------------------------+-----------+-----------+
17+
| :ref:`sphx_glr_auto_examples_howtos_run_downloader_api.py` (``run_downloader_api.py``) | 00:00.000 | 0.0 MB |
18+
+----------------------------------------------------------------------------------------+-----------+-----------+

docs/src/auto_examples/index.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -348,7 +348,7 @@ Blog posts, tutorial videos, hackathons and other useful Gensim resources, from
348348
- *Use FastText or Word2Vec?* Comparison of embedding quality and performance. `Jupyter Notebook <https://github.com/RaRe-Technologies/gensim/blob/ba1ce894a5192fc493a865c535202695bb3c0424/docs/notebooks/Word2Vec_FastText_Comparison.ipynb>`__
349349
- Multiword phrases extracted from *How I Met Your Mother*. `Blog post by Mark Needham <http://www.markhneedham.com/blog/2015/02/12/pythongensim-creating-bigrams-over-how-i-met-your-mother-transcripts/>`__
350350
- *Using Gensim LDA for hierarchical document clustering*. `Jupyter notebook by Brandon Rose <http://brandonrose.org/clustering#Latent-Dirichlet-Allocation>`__
351-
- *Evolution of Voldemort topic through the 7 Harry Potter books*. `Blog post <http://rare-technologies.com/understanding-and-coding-dynamic-topic-models/>`__
351+
- *Evolution of Voldemort topic through the 7 Harry Potter books*. `Blog post <https://rare-technologies.com/understanding-and-coding-dynamic-topic-models/>`__
352352
- *Movie plots by genre*: Document classification using various techniques: TF-IDF, word2vec averaging, Deep IR, Word Movers Distance and doc2vec. `Github repo <https://github.com/RaRe-Technologies/movie-plots-by-genre>`__
353353
- *Word2vec: Faster than Google? Optimization lessons in Python*, talk by Radim Řehůřek at PyData Berlin 2014. `Youtube video <https://www.youtube.com/watch?v=vU4TlwZzTfU>`__
354354
- *Word2vec & friends*, talk by Radim Řehůřek at MLMU.cz 7.1.2015. `Youtube video <https://www.youtube.com/watch?v=wTp3P2UnTfQ>`__

docs/src/auto_examples/other/index.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ Blog posts, tutorial videos, hackathons and other useful Gensim resources, from
1010
- *Use FastText or Word2Vec?* Comparison of embedding quality and performance. `Jupyter Notebook <https://github.com/RaRe-Technologies/gensim/blob/ba1ce894a5192fc493a865c535202695bb3c0424/docs/notebooks/Word2Vec_FastText_Comparison.ipynb>`__
1111
- Multiword phrases extracted from *How I Met Your Mother*. `Blog post by Mark Needham <http://www.markhneedham.com/blog/2015/02/12/pythongensim-creating-bigrams-over-how-i-met-your-mother-transcripts/>`__
1212
- *Using Gensim LDA for hierarchical document clustering*. `Jupyter notebook by Brandon Rose <http://brandonrose.org/clustering#Latent-Dirichlet-Allocation>`__
13-
- *Evolution of Voldemort topic through the 7 Harry Potter books*. `Blog post <http://rare-technologies.com/understanding-and-coding-dynamic-topic-models/>`__
13+
- *Evolution of Voldemort topic through the 7 Harry Potter books*. `Blog post <https://rare-technologies.com/understanding-and-coding-dynamic-topic-models/>`__
1414
- *Movie plots by genre*: Document classification using various techniques: TF-IDF, word2vec averaging, Deep IR, Word Movers Distance and doc2vec. `Github repo <https://github.com/RaRe-Technologies/movie-plots-by-genre>`__
1515
- *Word2vec: Faster than Google? Optimization lessons in Python*, talk by Radim Řehůřek at PyData Berlin 2014. `Youtube video <https://www.youtube.com/watch?v=vU4TlwZzTfU>`__
1616
- *Word2vec & friends*, talk by Radim Řehůřek at MLMU.cz 7.1.2015. `Youtube video <https://www.youtube.com/watch?v=wTp3P2UnTfQ>`__

docs/src/gallery/howtos/run_doc2vec_imdb.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -229,7 +229,7 @@ def extract_documents():
229229
#
230230
# Given a document, our ``Doc2Vec`` models output a vector representation of the document.
231231
# How useful is a particular model?
232-
# In case of sentiment analysis, we want the ouput vector to reflect the sentiment in the input document.
232+
# In case of sentiment analysis, we want the output vector to reflect the sentiment in the input document.
233233
# So, in vector space, positive documents should be distant from negative documents.
234234
#
235235
# We train a logistic regression from the training set:

gensim/test/test_corpora.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -418,7 +418,7 @@ def test_save_format_for_dtm(self):
418418
self.corpus_class.save_corpus(test_file, corpus)
419419
with open(test_file) as f:
420420
for line in f:
421-
# unique_word_count index1:count1 index2:count2 ... indexn:counnt
421+
# unique_word_count index1:count1 index2:count2 ... indexn:count
422422
tokens = line.split()
423423
words_len = int(tokens[0])
424424
if words_len > 0:

0 commit comments

Comments
 (0)