|
| 1 | +import time |
| 2 | + |
| 3 | +from delta import configure_spark_with_delta_pip |
| 4 | +from great_expectations.core import ExpectationSuite, ExpectationConfiguration |
| 5 | +from pyspark.sql import SparkSession |
| 6 | +from pyspark.sql.types import StructType |
| 7 | + |
| 8 | +from ads.feature_store.common.enums import TransformationMode, ExpectationType |
| 9 | +from ads.feature_store.statistics_config import StatisticsConfig |
| 10 | +from tests.integration.feature_store.test_base import FeatureStoreTestCase |
| 11 | + |
| 12 | + |
| 13 | +def get_streaming_df(): |
| 14 | + spark_builder = ( |
| 15 | + SparkSession.builder.appName("FeatureStore") |
| 16 | + .config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension") |
| 17 | + .config( |
| 18 | + "spark.sql.catalog.spark_catalog", |
| 19 | + "org.apache.spark.sql.delta.catalog.DeltaCatalog", |
| 20 | + ) |
| 21 | + .enableHiveSupport() |
| 22 | + ) |
| 23 | + |
| 24 | + spark = configure_spark_with_delta_pip( |
| 25 | + spark_builder |
| 26 | + ).getOrCreate() |
| 27 | + |
| 28 | + # Define the schema for the streaming data frame |
| 29 | + credit_score_schema = StructType() \ |
| 30 | + .add("user_id", "string") \ |
| 31 | + .add("date", "string") \ |
| 32 | + .add("credit_score", "string") |
| 33 | + |
| 34 | + credit_score_streaming_df = spark.readStream \ |
| 35 | + .option("sep", ",") \ |
| 36 | + .option("header", "true")\ |
| 37 | + .schema(credit_score_schema) \ |
| 38 | + .csv("test_data/") |
| 39 | + |
| 40 | + return credit_score_streaming_df |
| 41 | + |
| 42 | + |
| 43 | +def credit_score_transformation(credit_score): |
| 44 | + import pyspark.sql.functions as F |
| 45 | + |
| 46 | + # Create a new Spark DataFrame that contains the transformed credit score. |
| 47 | + transformed_credit_score = credit_score.select( |
| 48 | + "user_id", |
| 49 | + "date", |
| 50 | + F.when(F.col("credit_score").cast("int") > 500, 1).otherwise(0).alias("credit_score") |
| 51 | + ) |
| 52 | + |
| 53 | + # Return the new Spark DataFrame. |
| 54 | + return transformed_credit_score |
| 55 | + |
| 56 | + |
| 57 | +class TestFeatureGroupWithStreamingDataFrame(FeatureStoreTestCase): |
| 58 | + """Contains integration tests for Feature Group Kwargs supported transformation.""" |
| 59 | + |
| 60 | + def create_transformation_resource_stream(self, feature_store) -> "Transformation": |
| 61 | + transformation = feature_store.create_transformation( |
| 62 | + source_code_func=credit_score_transformation, |
| 63 | + display_name="credit_score_transformation", |
| 64 | + transformation_mode=TransformationMode.SPARK, |
| 65 | + ) |
| 66 | + return transformation |
| 67 | + |
| 68 | + |
| 69 | + def test_feature_group_materialization_with_streaming_data_frame(self): |
| 70 | + fs = self.define_feature_store_resource().create() |
| 71 | + assert fs.oci_fs.id |
| 72 | + |
| 73 | + entity = self.create_entity_resource(fs) |
| 74 | + assert entity.oci_fs_entity.id |
| 75 | + |
| 76 | + transformation = self.create_transformation_resource_stream(fs) |
| 77 | + streaming_df = get_streaming_df() |
| 78 | + |
| 79 | + stats_config = StatisticsConfig().with_is_enabled(False) |
| 80 | + fg = entity.create_feature_group( |
| 81 | + primary_keys=["User_id"], |
| 82 | + schema_details_dataframe=streaming_df, |
| 83 | + statistics_config=stats_config, |
| 84 | + name=self.get_name("streaming_fg_1"), |
| 85 | + transformation_id=transformation.id |
| 86 | + ) |
| 87 | + assert fg.oci_feature_group.id |
| 88 | + |
| 89 | + query = fg.materialise_stream(input_dataframe=streaming_df, |
| 90 | + checkpoint_dir=f"test_data/checkpoint/{fg.name}") |
| 91 | + |
| 92 | + assert query |
| 93 | + time.sleep(10) |
| 94 | + query.stop() |
| 95 | + |
| 96 | + assert fg.select().read().count() == 10 |
| 97 | + |
| 98 | + self.clean_up_feature_group(fg) |
| 99 | + self.clean_up_transformation(transformation) |
| 100 | + self.clean_up_entity(entity) |
| 101 | + self.clean_up_feature_store(fs) |
| 102 | + |
| 103 | + def test_feature_group_materialization_with_streaming_data_frame_and_expectation(self): |
| 104 | + fs = self.define_feature_store_resource().create() |
| 105 | + assert fs.oci_fs.id |
| 106 | + |
| 107 | + entity = self.create_entity_resource(fs) |
| 108 | + assert entity.oci_fs_entity.id |
| 109 | + |
| 110 | + transformation = self.create_transformation_resource_stream(fs) |
| 111 | + streaming_df = get_streaming_df() |
| 112 | + |
| 113 | + stats_config = StatisticsConfig().with_is_enabled(False) |
| 114 | + # Initialize Expectation Suite |
| 115 | + expectation_suite_trans = ExpectationSuite(expectation_suite_name="feature_definition") |
| 116 | + expectation_suite_trans.add_expectation( |
| 117 | + ExpectationConfiguration( |
| 118 | + expectation_type="EXPECT_COLUMN_VALUES_TO_BE_NULL", kwargs={"column": "date"} |
| 119 | + ) |
| 120 | + ) |
| 121 | + expectation_suite_trans.add_expectation( |
| 122 | + ExpectationConfiguration( |
| 123 | + expectation_type="EXPECT_COLUMN_VALUES_TO_NOT_BE_NULL", |
| 124 | + kwargs={"column": "date"}, |
| 125 | + ) |
| 126 | + ) |
| 127 | + |
| 128 | + fg = entity.create_feature_group( |
| 129 | + primary_keys=["User_id"], |
| 130 | + schema_details_dataframe=streaming_df, |
| 131 | + statistics_config=stats_config, |
| 132 | + expectation_suite=expectation_suite_trans, |
| 133 | + expectation_type=ExpectationType.LENIENT, |
| 134 | + name=self.get_name("streaming_fg_2"), |
| 135 | + transformation_id=transformation.id |
| 136 | + ) |
| 137 | + assert fg.oci_feature_group.id |
| 138 | + |
| 139 | + query = fg.materialise_stream(input_dataframe=streaming_df, |
| 140 | + checkpoint_dir=f"test_data/checkpoint/{fg.name}") |
| 141 | + |
| 142 | + assert query |
| 143 | + time.sleep(10) |
| 144 | + query.stop() |
| 145 | + |
| 146 | + assert fg.select().read().count() == 10 |
| 147 | + assert fg.get_validation_output().to_pandas() is None |
| 148 | + |
| 149 | + self.clean_up_feature_group(fg) |
| 150 | + self.clean_up_transformation(transformation) |
| 151 | + self.clean_up_entity(entity) |
| 152 | + self.clean_up_feature_store(fs) |
| 153 | + |
| 154 | + def test_feature_group_materialization_with_streaming_data_frame_and_stats(self): |
| 155 | + fs = self.define_feature_store_resource().create() |
| 156 | + assert fs.oci_fs.id |
| 157 | + |
| 158 | + entity = self.create_entity_resource(fs) |
| 159 | + assert entity.oci_fs_entity.id |
| 160 | + |
| 161 | + transformation = self.create_transformation_resource_stream(fs) |
| 162 | + streaming_df = get_streaming_df() |
| 163 | + |
| 164 | + fg = entity.create_feature_group( |
| 165 | + primary_keys=["User_id"], |
| 166 | + schema_details_dataframe=streaming_df, |
| 167 | + name=self.get_name("streaming_fg_3"), |
| 168 | + transformation_id=transformation.id |
| 169 | + ) |
| 170 | + assert fg.oci_feature_group.id |
| 171 | + |
| 172 | + query = fg.materialise_stream(input_dataframe=streaming_df, |
| 173 | + checkpoint_dir=f"test_data/checkpoint/{fg.name}") |
| 174 | + |
| 175 | + assert query |
| 176 | + time.sleep(10) |
| 177 | + query.stop() |
| 178 | + |
| 179 | + assert fg.select().read().count() == 10 |
| 180 | + assert fg.get_statistics().to_pandas() is None |
| 181 | + |
| 182 | + self.clean_up_feature_group(fg) |
| 183 | + self.clean_up_transformation(transformation) |
| 184 | + self.clean_up_entity(entity) |
| 185 | + self.clean_up_feature_store(fs) |
0 commit comments