Skip to content

Commit b79f0a1

Browse files
committed
ODSC-36246: fix based on the comments
1 parent 57e9197 commit b79f0a1

File tree

4 files changed

+11
-11
lines changed

4 files changed

+11
-11
lines changed

docs/source/user_guide/model_registration/model_deploy.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ Here is an example of deploying LightGBM model:
2323
}
2424
lightgbm_estimator = lgb.train(param, train)
2525
26-
# Instantite ads.model.LightGBMModel using the trained LGBM Model
26+
# Instantiate ads.model.LightGBMModel using the trained LGBM Model
2727
lightgbm_model = LightGBMModel(estimator=lightgbm_estimator, artifact_dir=tempfile.mkdtemp())
2828
2929
# Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_schema.json

docs/source/user_guide/model_registration/model_metadata.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -82,7 +82,7 @@ You can populate the ``use_case_type`` by passing it in the ``.prepare()`` metho
8282
sklearn_estimator = LogisticRegression()
8383
sklearn_estimator.fit(X_train, y_train)
8484
85-
# Instantite ads.model.SklearnModel using the sklearn LogisticRegression model
85+
# Instantiate ads.model.SklearnModel using the sklearn LogisticRegression model
8686
sklearn_model = SklearnModel(estimator=sklearn_estimator, artifact_dir=tempfile.mkdtemp())
8787
8888
# Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_schema.json

docs/source/user_guide/model_registration/model_schema.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -134,7 +134,7 @@ Eg.
134134
sklearn_estimator = LogisticRegression()
135135
sklearn_estimator.fit(X_train, y_train)
136136
137-
# Instantite ads.model.SklearnModel using the sklearn LogisticRegression model
137+
# Instantiate ads.model.SklearnModel using the sklearn LogisticRegression model
138138
sklearn_model = SklearnModel(estimator=sklearn_estimator, artifact_dir=tempfile.mkdtemp())
139139
140140
# Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_schema.json

docs/source/user_guide/model_registration/quick_start.rst

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ Sklearn
2828
sklearn_estimator = LogisticRegression()
2929
sklearn_estimator.fit(X_train, y_train)
3030
31-
# Instantite ads.model.framework.sklearn_model.SklearnModel using the sklearn LogisticRegression model
31+
# Instantiate ads.model.framework.sklearn_model.SklearnModel using the sklearn LogisticRegression model
3232
sklearn_model = SklearnModel(
3333
estimator=sklearn_estimator, artifact_dir=tempfile.mkdtemp()
3434
)
@@ -75,7 +75,7 @@ Create a model, prepare it, verify that it works, save it to the model catalog,
7575
xgboost_estimator = xgb.XGBClassifier()
7676
xgboost_estimator.fit(X_train, y_train)
7777
78-
# Instantite ads.model.framework.xgboost_model.XGBoostModel using the trained XGBoost Model
78+
# Instantiate ads.model.framework.xgboost_model.XGBoostModel using the trained XGBoost Model
7979
xgboost_model = XGBoostModel(estimator=xgboost_estimator, artifact_dir=tempfile.mkdtemp())
8080
8181
# Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_schema.json
@@ -121,7 +121,7 @@ Create a model, prepare it, verify that it works, save it to the model catalog,
121121
}
122122
lightgbm_estimator = lgb.train(param, train)
123123
124-
# Instantite ads.model.lightgbm_model.XGBoostModel using the trained LGBM Model
124+
# Instantiate ads.model.lightgbm_model.XGBoostModel using the trained LGBM Model
125125
lightgbm_model = LightGBMModel(estimator=lightgbm_estimator, artifact_dir=tempfile.mkdtemp())
126126
127127
# Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_schema.json
@@ -162,7 +162,7 @@ Create a model, prepare it, verify that it works, save it to the model catalog,
162162
# create random test data
163163
test_data = torch.randn(1, 3, 224, 224)
164164
165-
# Instantite ads.model.framework.pytorch_model.PyTorchModel using the pre-trained PyTorch Model
165+
# Instantiate ads.model.framework.pytorch_model.PyTorchModel using the pre-trained PyTorch Model
166166
artifact_dir=tempfile.mkdtemp()
167167
torch_model = PyTorchModel(torch_estimator, artifact_dir=artifact_dir)
168168
@@ -228,7 +228,7 @@ Create a model, prepare it, verify that it works, save it to the model catalog,
228228
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
229229
model = pipeline.fit(training)
230230
231-
# Instantite ads.model.framework.spark_model.SparkPipelineModel using the pre-trained Spark Pipeline Model
231+
# Instantiate ads.model.framework.spark_model.SparkPipelineModel using the pre-trained Spark Pipeline Model
232232
spark_model = SparkPipelineModel(estimator=model, artifact_dir=tempfile.mkdtemp())
233233
spark_model.prepare(inference_conda_env="pyspark32_p38_cpu_v2",
234234
X_sample = training,
@@ -273,7 +273,7 @@ Create a model, prepare it, verify that it works, save it to the model catalog,
273273
tf_estimator.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
274274
tf_estimator.fit(x_train, y_train, epochs=1)
275275
276-
# Instantite ads.model.framework.tensorflow_model.TensorFlowModel using the pre-trained TensorFlow Model
276+
# Instantiate ads.model.framework.tensorflow_model.TensorFlowModel using the pre-trained TensorFlow Model
277277
tf_model = TensorFlowModel(tf_estimator, artifact_dir=tempfile.mkdtemp())
278278
279279
# Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_schema.json
@@ -320,7 +320,7 @@ Other Frameworks
320320
# Get predictions
321321
preds = catboost_estimator.predict(X_test)
322322
323-
# Instantite ads.model.generic_model.GenericModel using the trained Custom Model using the trained CatBoost Classifier model
323+
# Instantiate ads.model.generic_model.GenericModel using the trained Custom Model using the trained CatBoost Classifier model
324324
catboost_model = GenericModel(estimator=catboost_estimator, artifact_dir=tempfile.mkdtemp())
325325
326326
# Autogenerate score.py, pickled model, runtime.yaml, input_schema.json and output_schema.json
@@ -351,7 +351,7 @@ With Model Version Set
351351
return x ** 2
352352
model = Toy()
353353
354-
# Instantite ads.model.generic_model.GenericModel using the trained Custom Model
354+
# Instantiate ads.model.generic_model.GenericModel using the trained Custom Model
355355
generic_model = GenericModel(estimator=model, artifact_dir=tempfile.mkdtemp())
356356
generic_model.summary_status()
357357

0 commit comments

Comments
 (0)