Skip to content

Commit b458553

Browse files
committed
ODSC-38627: fixed based on comments
1 parent 82b5038 commit b458553

File tree

1 file changed

+4
-8
lines changed

1 file changed

+4
-8
lines changed

docs/source/user_guide/model_registration/frameworks/huggingfacemodel.rst

Lines changed: 4 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -103,7 +103,6 @@ Deploy and Generate Endpoint
103103
... deployment_predict_log_id="ocid1.log.oc1.xxx.xxxxx",
104104
... )
105105
>>> print(f"Endpoint: {huggingface_pipeline_model.model_deployment.url}")
106-
https://modeldeployment.{region}.oci.customer-oci.com/ocid1.datasciencemodeldeployment.oc1.xxx.xxxxx
107106
108107
Run Prediction against Endpoint
109108
===============================
@@ -115,9 +114,7 @@ Run Prediction against Endpoint
115114
>>> import requests
116115
>>> import cloudpickle
117116
>>> image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
118-
119117
>>> image = PIL.Image.open(requests.get(image_url, stream=True).raw)
120-
>>> image_bytes = cloudpickle.dumps(image)
121118
122119
>>> # Generate prediction by invoking the deployed endpoint
123120
>>> preds = huggingface_pipeline_model.predict(image)["prediction"]
@@ -171,10 +168,10 @@ Model deployment endpoints can be invoked with the oci sdk. This example invokes
171168
>>> headers = {"Content-Type": "application/octet-stream"}
172169
>>> endpoint = huggingface_pipeline_model.model_deployment.url + "/predict"
173170
174-
## download the image
175-
image_url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png"
176-
image = PIL.Image.open(requests.get(image_link, stream=True).raw)
177-
image_bytes = cloudpickle.dumps(image)
171+
>>> ## download the image
172+
>>> image_url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png"
173+
>>> image = PIL.Image.open(requests.get(image_link, stream=True).raw)
174+
>>> image_bytes = cloudpickle.dumps(image)
178175
179176
>>> preds = requests.post(endpoint, data=image_bytes, auth=default_signer()['signer'], headers=headers).json()
180177
>>> print([{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds['prediction']])
@@ -200,7 +197,6 @@ Example
200197
## download the image
201198
image_url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png"
202199
image = PIL.Image.open(requests.get(image_link, stream=True).raw)
203-
image_bytes = cloudpickle.dumps(image)
204200
205201
## download the pretrained model
206202
classifier = pipeline(model="openai/clip-vit-large-patch14")

0 commit comments

Comments
 (0)