File tree Expand file tree Collapse file tree 3 files changed +7
-5
lines changed Expand file tree Collapse file tree 3 files changed +7
-5
lines changed Original file line number Diff line number Diff line change @@ -14,7 +14,9 @@ def __registered_operators():
14
14
return [
15
15
f
16
16
for f in os .listdir (target_dir )
17
- if os .path .isdir (os .path .join (target_dir , f )) and not f .startswith ("__" )
17
+ if os .path .isdir (os .path .join (target_dir , f ))
18
+ and not f .startswith ("__" )
19
+ and f != "common"
18
20
]
19
21
20
22
Original file line number Diff line number Diff line change 1
1
type: anomaly
2
2
version: v1
3
- conda_type: published
3
+ conda_type: service
4
4
name: Anomaly Detection Operator
5
5
gpu: no
6
6
keywords:
7
7
- Anomaly Detection
8
8
backends:
9
- - job, local
9
+ - job
10
10
description: |
11
11
Anomaly Detection is the identification of rare items, events, or observations in data that
12
12
differ significantly from the expectation. This can be used for several scenarios like asset
Original file line number Diff line number Diff line change @@ -104,7 +104,7 @@ def test_artificial_big(model):
104
104
assert os .path .exists (f"{ output_dirname } /report.html" ), "Report not generated."
105
105
106
106
107
- @pytest .mark .parametrize ("model" , MODELS + ["auto" ])
107
+ @pytest .mark .parametrize ("model" , MODELS ) # + ["auto"]
108
108
def test_artificial_small (model ):
109
109
# artificial data
110
110
d1 = np .random .multivariate_normal (
@@ -131,7 +131,7 @@ def test_artificial_small(model):
131
131
yaml_i ["spec" ]["output_directory" ]["url" ] = output_dirname
132
132
yaml_i ["spec" ]["contamination" ] = 0.3
133
133
134
- # run(yaml_i, backend="operator.local", debug=False)
134
+ # run(yaml_i, debug=False)
135
135
136
136
with open (anomaly_yaml_filename , "w" ) as f :
137
137
f .write (yaml .dump (yaml_i ))
You can’t perform that action at this time.
0 commit comments