@@ -336,18 +336,16 @@ def _fallback_build_model(self):
336
336
date_column = self .spec .datetime_column .name
337
337
dataset = self .datasets
338
338
339
- full_data_dict = dataset .full_data_dict
340
-
341
339
anomaly_output = AnomalyOutput (date_column = date_column )
342
340
343
341
# map the output as per anomaly dataset class, 1: outlier, 0: inlier
344
- outlier_map = {1 : 0 , - 1 : 1 }
342
+ self . outlier_map = {1 : 0 , - 1 : 1 }
345
343
346
344
# Iterate over the full_data_dict items
347
- for target , df in full_data_dict .items ():
345
+ for target , df in self . datasets . full_data_dict .items ():
348
346
est = linear_model .SGDOneClassSVM (random_state = 42 )
349
347
est .fit (df [target ].values .reshape (- 1 , 1 ))
350
- y_pred = np .vectorize (outlier_map .get )(est .predict (df [target ].values .reshape (- 1 , 1 )))
348
+ y_pred = np .vectorize (self . outlier_map .get )(est .predict (df [target ].values .reshape (- 1 , 1 )))
351
349
scores = est .score_samples (df [target ].values .reshape (- 1 , 1 ))
352
350
353
351
anomaly = pd .DataFrame ({
@@ -356,7 +354,7 @@ def _fallback_build_model(self):
356
354
}).reset_index (drop = True )
357
355
score = pd .DataFrame ({
358
356
date_column : df [date_column ],
359
- OutputColumns .SCORE_COL : [ item for item in scores ]
357
+ OutputColumns .SCORE_COL : scores
360
358
}).reset_index (drop = True )
361
359
anomaly_output .add_output (target , anomaly , score )
362
360
0 commit comments