diff --git a/modules/README.md b/modules/README.md index 3f8dc5e42a3..b333043277b 100644 --- a/modules/README.md +++ b/modules/README.md @@ -10,6 +10,8 @@ $ cmake -D OPENCV_EXTRA_MODULES_PATH=/modules -D BUILD_opencv_ +#include "opencv2/highgui.hpp" +#include +#include +#include + +using namespace std; +using namespace cv; +using namespace cv::alphamat; + +const char* keys = + "{img || input image name}" + "{tri || input trimap image name}" + "{out || output image name}" + "{help h || print help message}" +; + +int main(int argc, char* argv[]) +{ + CommandLineParser parser(argc, argv, keys); + parser.about("This sample demonstrates Information Flow Alpha Matting"); + + if (parser.has("help")) + { + parser.printMessage(); + return 0; + } + + string img_path = parser.get("img"); + string trimap_path = parser.get("tri"); + string result_path = parser.get("out"); + + if (!parser.check() + || img_path.empty() || trimap_path.empty()) + { + parser.printMessage(); + parser.printErrors(); + return 1; + } + + Mat image, tmap; + + image = imread(img_path, IMREAD_COLOR); // Read the input image file + if (image.empty()) + { + printf("Cannot read image file: '%s'\n", img_path.c_str()); + return 1; + } + + tmap = imread(trimap_path, IMREAD_GRAYSCALE); + if (tmap.empty()) + { + printf("Cannot read trimap file: '%s'\n", trimap_path.c_str()); + return 1; + } + + Mat result; + infoFlow(image, tmap, result); + + if (result_path.empty()) + { + namedWindow("result alpha matte", WINDOW_NORMAL); + imshow("result alpha matte", result); + waitKey(0); + } + else + { + imwrite(result_path, result); + printf("Result saved: '%s'\n", result_path.c_str()); + } + + return 0; +} diff --git a/modules/alphamat/samples/input_images/plant.jpg b/modules/alphamat/samples/input_images/plant.jpg new file mode 100644 index 00000000000..c6f30953397 Binary files /dev/null and b/modules/alphamat/samples/input_images/plant.jpg differ diff --git a/modules/alphamat/samples/output_mattes/plant_result.jpg b/modules/alphamat/samples/output_mattes/plant_result.jpg new file mode 100644 index 00000000000..4ec7e29c6b0 Binary files /dev/null and b/modules/alphamat/samples/output_mattes/plant_result.jpg differ diff --git a/modules/alphamat/samples/trimaps/plant.png b/modules/alphamat/samples/trimaps/plant.png new file mode 100755 index 00000000000..6c646b9192d Binary files /dev/null and b/modules/alphamat/samples/trimaps/plant.png differ diff --git a/modules/alphamat/src/3rdparty/KDTreeVectorOfVectorsAdaptor.h b/modules/alphamat/src/3rdparty/KDTreeVectorOfVectorsAdaptor.h new file mode 100644 index 00000000000..893aae70ce6 --- /dev/null +++ b/modules/alphamat/src/3rdparty/KDTreeVectorOfVectorsAdaptor.h @@ -0,0 +1,117 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2011-16 Jose Luis Blanco (joseluisblancoc@gmail.com). + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#pragma once + +#include "nanoflann.hpp" + +#include + +// ===== This example shows how to use nanoflann with these types of containers: ======= +//typedef std::vector > my_vector_of_vectors_t; +//typedef std::vector my_vector_of_vectors_t; // This requires #include +// ===================================================================================== + + +/** A simple vector-of-vectors adaptor for nanoflann, without duplicating the storage. + * The i'th vector represents a point in the state space. + * + * \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality for the points in the data set, allowing more compiler optimizations. + * \tparam num_t The type of the point coordinates (typically, double or float). + * \tparam Distance The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. + * \tparam IndexType The type for indices in the KD-tree index (typically, size_t of int) + */ +template +struct KDTreeVectorOfVectorsAdaptor +{ + typedef KDTreeVectorOfVectorsAdaptor self_t; + typedef typename Distance::template traits::distance_t metric_t; + typedef nanoflann::KDTreeSingleIndexAdaptor< metric_t, self_t, DIM, IndexType> index_t; + + index_t* index; //! The kd-tree index for the user to call its methods as usual with any other FLANN index. + + /// Constructor: takes a const ref to the vector of vectors object with the data points + KDTreeVectorOfVectorsAdaptor(const size_t /* dimensionality */, const VectorOfVectorsType &mat, const int leaf_max_size = 10) : m_data(mat) + { + assert(mat.size() != 0 && mat[0].size() != 0); + const size_t dims = mat[0].size(); + if (DIM>0 && static_cast(dims) != DIM) + throw std::runtime_error("Data set dimensionality does not match the 'DIM' template argument"); + index = new index_t( static_cast(dims), *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size ) ); + index->buildIndex(); + } + + ~KDTreeVectorOfVectorsAdaptor() { + delete index; + } + + const VectorOfVectorsType &m_data; + + /** Query for the \a num_closest closest points to a given point (entered as query_point[0:dim-1]). + * Note that this is a short-cut method for index->findNeighbors(). + * The user can also call index->... methods as desired. + * \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface. + */ + //inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq, const int nChecks_IGNORED = 10) const + inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq) const + { + nanoflann::KNNResultSet resultSet(num_closest); + resultSet.init(out_indices, out_distances_sq); + index->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); + } + + /** @name Interface expected by KDTreeSingleIndexAdaptor + * @{ */ + + const self_t & derived() const { + return *this; + } + self_t & derived() { + return *this; + } + + // Must return the number of data points + inline size_t kdtree_get_point_count() const { + return m_data.size(); + } + + // Returns the dim'th component of the idx'th point in the class: + inline num_t kdtree_get_pt(const size_t idx, const size_t dim) const { + return m_data[idx][dim]; + } + + // Optional bounding-box computation: return false to default to a standard bbox computation loop. + // Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again. + // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds) + template + bool kdtree_get_bbox(BBOX & /*bb*/) const { + return false; + } + + /** @} */ +}; // end of KDTreeVectorOfVectorsAdaptor diff --git a/modules/alphamat/src/3rdparty/nanoflann.hpp b/modules/alphamat/src/3rdparty/nanoflann.hpp new file mode 100644 index 00000000000..a8e4667dda6 --- /dev/null +++ b/modules/alphamat/src/3rdparty/nanoflann.hpp @@ -0,0 +1,2040 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * Copyright 2011-2016 Jose Luis Blanco (joseluisblancoc@gmail.com). + * All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +/** \mainpage nanoflann C++ API documentation + * nanoflann is a C++ header-only library for building KD-Trees, mostly + * optimized for 2D or 3D point clouds. + * + * nanoflann does not require compiling or installing, just an + * #include in your code. + * + * See: + * - C++ API organized by modules + * - Online README + * - Doxygen + * documentation + */ + +#ifndef NANOFLANN_HPP_ +#define NANOFLANN_HPP_ + +#include +#include +#include +#include // for abs() +#include // for fwrite() +#include // for abs() +#include +#include // std::reference_wrapper +#include +#include + +/** Library version: 0xMmP (M=Major,m=minor,P=patch) */ +#define NANOFLANN_VERSION 0x132 + +// Avoid conflicting declaration of min/max macros in windows headers +#if !defined(NOMINMAX) && \ + (defined(_WIN32) || defined(_WIN32_) || defined(WIN32) || defined(_WIN64)) +#define NOMINMAX +#ifdef max +#undef max +#undef min +#endif +#endif + +namespace nanoflann { +/** @addtogroup nanoflann_grp nanoflann C++ library for ANN + * @{ */ + +/** the PI constant (required to avoid MSVC missing symbols) */ +template T pi_const() { + return static_cast(3.14159265358979323846); +} + +/** + * Traits if object is resizable and assignable (typically has a resize | assign + * method) + */ +template struct has_resize : std::false_type {}; + +template +struct has_resize().resize(1), 0)> + : std::true_type {}; + +template struct has_assign : std::false_type {}; + +template +struct has_assign().assign(1, 0), 0)> + : std::true_type {}; + +/** + * Free function to resize a resizable object + */ +template +inline typename std::enable_if::value, void>::type +resize(Container &c, const size_t nElements) { + c.resize(nElements); +} + +/** + * Free function that has no effects on non resizable containers (e.g. + * std::array) It raises an exception if the expected size does not match + */ +template +inline typename std::enable_if::value, void>::type +resize(Container &c, const size_t nElements) { + if (nElements != c.size()) + throw std::logic_error("Try to change the size of a std::array."); +} + +/** + * Free function to assign to a container + */ +template +inline typename std::enable_if::value, void>::type +assign(Container &c, const size_t nElements, const T &value) { + c.assign(nElements, value); +} + +/** + * Free function to assign to a std::array + */ +template +inline typename std::enable_if::value, void>::type +assign(Container &c, const size_t nElements, const T &value) { + for (size_t i = 0; i < nElements; i++) + c[i] = value; +} + +/** @addtogroup result_sets_grp Result set classes + * @{ */ +template +class KNNResultSet { +public: + typedef _DistanceType DistanceType; + typedef _IndexType IndexType; + typedef _CountType CountType; + +private: + IndexType *indices; + DistanceType *dists; + CountType capacity; + CountType count; + +public: + inline KNNResultSet(CountType capacity_) + : indices(0), dists(0), capacity(capacity_), count(0) {} + + inline void init(IndexType *indices_, DistanceType *dists_) { + indices = indices_; + dists = dists_; + count = 0; + if (capacity) + dists[capacity - 1] = (std::numeric_limits::max)(); + } + + inline CountType size() const { return count; } + + inline bool full() const { return count == capacity; } + + /** + * Called during search to add an element matching the criteria. + * @return true if the search should be continued, false if the results are + * sufficient + */ + inline bool addPoint(DistanceType dist, IndexType index) { + CountType i; + for (i = count; i > 0; --i) { +#ifdef NANOFLANN_FIRST_MATCH // If defined and two points have the same + // distance, the one with the lowest-index will be + // returned first. + if ((dists[i - 1] > dist) || + ((dist == dists[i - 1]) && (indices[i - 1] > index))) { +#else + if (dists[i - 1] > dist) { +#endif + if (i < capacity) { + dists[i] = dists[i - 1]; + indices[i] = indices[i - 1]; + } + } else + break; + } + if (i < capacity) { + dists[i] = dist; + indices[i] = index; + } + if (count < capacity) + count++; + + // tell caller that the search shall continue + return true; + } + + inline DistanceType worstDist() const { return dists[capacity - 1]; } +}; + +/** operator "<" for std::sort() */ +struct IndexDist_Sorter { + /** PairType will be typically: std::pair */ + template + inline bool operator()(const PairType &p1, const PairType &p2) const { + return p1.second < p2.second; + } +}; + +/** + * A result-set class used when performing a radius based search. + */ +template +class RadiusResultSet { +public: + typedef _DistanceType DistanceType; + typedef _IndexType IndexType; + +public: + const DistanceType radius; + + std::vector> &m_indices_dists; + + inline RadiusResultSet( + DistanceType radius_, + std::vector> &indices_dists) + : radius(radius_), m_indices_dists(indices_dists) { + init(); + } + + inline void init() { clear(); } + inline void clear() { m_indices_dists.clear(); } + + inline size_t size() const { return m_indices_dists.size(); } + + inline bool full() const { return true; } + + /** + * Called during search to add an element matching the criteria. + * @return true if the search should be continued, false if the results are + * sufficient + */ + inline bool addPoint(DistanceType dist, IndexType index) { + if (dist < radius) + m_indices_dists.push_back(std::make_pair(index, dist)); + return true; + } + + inline DistanceType worstDist() const { return radius; } + + /** + * Find the worst result (furtherest neighbor) without copying or sorting + * Pre-conditions: size() > 0 + */ + std::pair worst_item() const { + if (m_indices_dists.empty()) + throw std::runtime_error("Cannot invoke RadiusResultSet::worst_item() on " + "an empty list of results."); + typedef + typename std::vector>::const_iterator + DistIt; + DistIt it = std::max_element(m_indices_dists.begin(), m_indices_dists.end(), + IndexDist_Sorter()); + return *it; + } +}; + +/** @} */ + +/** @addtogroup loadsave_grp Load/save auxiliary functions + * @{ */ +template +void save_value(FILE *stream, const T &value, size_t count = 1) { + fwrite(&value, sizeof(value), count, stream); +} + +template +void save_value(FILE *stream, const std::vector &value) { + size_t size = value.size(); + fwrite(&size, sizeof(size_t), 1, stream); + fwrite(&value[0], sizeof(T), size, stream); +} + +template +void load_value(FILE *stream, T &value, size_t count = 1) { + size_t read_cnt = fread(&value, sizeof(value), count, stream); + if (read_cnt != count) { + throw std::runtime_error("Cannot read from file"); + } +} + +template void load_value(FILE *stream, std::vector &value) { + size_t size; + size_t read_cnt = fread(&size, sizeof(size_t), 1, stream); + if (read_cnt != 1) { + throw std::runtime_error("Cannot read from file"); + } + value.resize(size); + read_cnt = fread(&value[0], sizeof(T), size, stream); + if (read_cnt != size) { + throw std::runtime_error("Cannot read from file"); + } +} +/** @} */ + +/** @addtogroup metric_grp Metric (distance) classes + * @{ */ + +struct Metric {}; + +/** Manhattan distance functor (generic version, optimized for + * high-dimensionality data sets). Corresponding distance traits: + * nanoflann::metric_L1 \tparam T Type of the elements (e.g. double, float, + * uint8_t) \tparam _DistanceType Type of distance variables (must be signed) + * (e.g. float, double, int64_t) + */ +template +struct L1_Adaptor { + typedef T ElementType; + typedef _DistanceType DistanceType; + + const DataSource &data_source; + + L1_Adaptor(const DataSource &_data_source) : data_source(_data_source) {} + + inline DistanceType evalMetric(const T *a, const size_t b_idx, size_t size, + DistanceType worst_dist = -1) const { + DistanceType result = DistanceType(); + const T *last = a + size; + const T *lastgroup = last - 3; + size_t d = 0; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + const DistanceType diff0 = + std::abs(a[0] - data_source.kdtree_get_pt(b_idx, d++)); + const DistanceType diff1 = + std::abs(a[1] - data_source.kdtree_get_pt(b_idx, d++)); + const DistanceType diff2 = + std::abs(a[2] - data_source.kdtree_get_pt(b_idx, d++)); + const DistanceType diff3 = + std::abs(a[3] - data_source.kdtree_get_pt(b_idx, d++)); + result += diff0 + diff1 + diff2 + diff3; + a += 4; + if ((worst_dist > 0) && (result > worst_dist)) { + return result; + } + } + /* Process last 0-3 components. Not needed for standard vector lengths. */ + while (a < last) { + result += std::abs(*a++ - data_source.kdtree_get_pt(b_idx, d++)); + } + return result; + } + + template + inline DistanceType accum_dist(const U a, const V b, const size_t) const { + return std::abs(a - b); + } +}; + +/** Squared Euclidean distance functor (generic version, optimized for + * high-dimensionality data sets). Corresponding distance traits: + * nanoflann::metric_L2 \tparam T Type of the elements (e.g. double, float, + * uint8_t) \tparam _DistanceType Type of distance variables (must be signed) + * (e.g. float, double, int64_t) + */ +template +struct L2_Adaptor { + typedef T ElementType; + typedef _DistanceType DistanceType; + + const DataSource &data_source; + + L2_Adaptor(const DataSource &_data_source) : data_source(_data_source) {} + + inline DistanceType evalMetric(const T *a, const size_t b_idx, size_t size, + DistanceType worst_dist = -1) const { + DistanceType result = DistanceType(); + const T *last = a + size; + const T *lastgroup = last - 3; + size_t d = 0; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + const DistanceType diff0 = a[0] - data_source.kdtree_get_pt(b_idx, d++); + const DistanceType diff1 = a[1] - data_source.kdtree_get_pt(b_idx, d++); + const DistanceType diff2 = a[2] - data_source.kdtree_get_pt(b_idx, d++); + const DistanceType diff3 = a[3] - data_source.kdtree_get_pt(b_idx, d++); + result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; + a += 4; + if ((worst_dist > 0) && (result > worst_dist)) { + return result; + } + } + /* Process last 0-3 components. Not needed for standard vector lengths. */ + while (a < last) { + const DistanceType diff0 = *a++ - data_source.kdtree_get_pt(b_idx, d++); + result += diff0 * diff0; + } + return result; + } + + template + inline DistanceType accum_dist(const U a, const V b, const size_t) const { + return (a - b) * (a - b); + } +}; + +/** Squared Euclidean (L2) distance functor (suitable for low-dimensionality + * datasets, like 2D or 3D point clouds) Corresponding distance traits: + * nanoflann::metric_L2_Simple \tparam T Type of the elements (e.g. double, + * float, uint8_t) \tparam _DistanceType Type of distance variables (must be + * signed) (e.g. float, double, int64_t) + */ +template +struct L2_Simple_Adaptor { + typedef T ElementType; + typedef _DistanceType DistanceType; + + const DataSource &data_source; + + L2_Simple_Adaptor(const DataSource &_data_source) + : data_source(_data_source) {} + + inline DistanceType evalMetric(const T *a, const size_t b_idx, + size_t size) const { + DistanceType result = DistanceType(); + for (size_t i = 0; i < size; ++i) { + const DistanceType diff = a[i] - data_source.kdtree_get_pt(b_idx, i); + result += diff * diff; + } + return result; + } + + template + inline DistanceType accum_dist(const U a, const V b, const size_t) const { + return (a - b) * (a - b); + } +}; + +/** SO2 distance functor + * Corresponding distance traits: nanoflann::metric_SO2 + * \tparam T Type of the elements (e.g. double, float) + * \tparam _DistanceType Type of distance variables (must be signed) (e.g. + * float, double) orientation is constrained to be in [-pi, pi] + */ +template +struct SO2_Adaptor { + typedef T ElementType; + typedef _DistanceType DistanceType; + + const DataSource &data_source; + + SO2_Adaptor(const DataSource &_data_source) : data_source(_data_source) {} + + inline DistanceType evalMetric(const T *a, const size_t b_idx, + size_t size) const { + return accum_dist(a[size - 1], data_source.kdtree_get_pt(b_idx, size - 1), + size - 1); + } + + /** Note: this assumes that input angles are already in the range [-pi,pi] */ + template + inline DistanceType accum_dist(const U a, const V b, const size_t) const { + DistanceType result = DistanceType(); + DistanceType PI = pi_const(); + result = b - a; + if (result > PI) + result -= 2 * PI; + else if (result < -PI) + result += 2 * PI; + return result; + } +}; + +/** SO3 distance functor (Uses L2_Simple) + * Corresponding distance traits: nanoflann::metric_SO3 + * \tparam T Type of the elements (e.g. double, float) + * \tparam _DistanceType Type of distance variables (must be signed) (e.g. + * float, double) + */ +template +struct SO3_Adaptor { + typedef T ElementType; + typedef _DistanceType DistanceType; + + L2_Simple_Adaptor distance_L2_Simple; + + SO3_Adaptor(const DataSource &_data_source) + : distance_L2_Simple(_data_source) {} + + inline DistanceType evalMetric(const T *a, const size_t b_idx, + size_t size) const { + return distance_L2_Simple.evalMetric(a, b_idx, size); + } + + template + inline DistanceType accum_dist(const U a, const V b, const size_t idx) const { + return distance_L2_Simple.accum_dist(a, b, idx); + } +}; + +/** Metaprogramming helper traits class for the L1 (Manhattan) metric */ +struct metric_L1 : public Metric { + template struct traits { + typedef L1_Adaptor distance_t; + }; +}; +/** Metaprogramming helper traits class for the L2 (Euclidean) metric */ +struct metric_L2 : public Metric { + template struct traits { + typedef L2_Adaptor distance_t; + }; +}; +/** Metaprogramming helper traits class for the L2_simple (Euclidean) metric */ +struct metric_L2_Simple : public Metric { + template struct traits { + typedef L2_Simple_Adaptor distance_t; + }; +}; +/** Metaprogramming helper traits class for the SO3_InnerProdQuat metric */ +struct metric_SO2 : public Metric { + template struct traits { + typedef SO2_Adaptor distance_t; + }; +}; +/** Metaprogramming helper traits class for the SO3_InnerProdQuat metric */ +struct metric_SO3 : public Metric { + template struct traits { + typedef SO3_Adaptor distance_t; + }; +}; + +/** @} */ + +/** @addtogroup param_grp Parameter structs + * @{ */ + +/** Parameters (see README.md) */ +struct KDTreeSingleIndexAdaptorParams { + KDTreeSingleIndexAdaptorParams(size_t _leaf_max_size = 10) + : leaf_max_size(_leaf_max_size) {} + + size_t leaf_max_size; +}; + +/** Search options for KDTreeSingleIndexAdaptor::findNeighbors() */ +struct SearchParams { + /** Note: The first argument (checks_IGNORED_) is ignored, but kept for + * compatibility with the FLANN interface */ + SearchParams(int checks_IGNORED_ = 32, float eps_ = 0, bool sorted_ = true) + : checks(checks_IGNORED_), eps(eps_), sorted(sorted_) {} + + int checks; //!< Ignored parameter (Kept for compatibility with the FLANN + //!< interface). + float eps; //!< search for eps-approximate neighbours (default: 0) + bool sorted; //!< only for radius search, require neighbours sorted by + //!< distance (default: true) +}; +/** @} */ + +/** @addtogroup memalloc_grp Memory allocation + * @{ */ + +/** + * Allocates (using C's malloc) a generic type T. + * + * Params: + * count = number of instances to allocate. + * Returns: pointer (of type T*) to memory buffer + */ +template inline T *allocate(size_t count = 1) { + T *mem = static_cast(::malloc(sizeof(T) * count)); + return mem; +} + +/** + * Pooled storage allocator + * + * The following routines allow for the efficient allocation of storage in + * small chunks from a specified pool. Rather than allowing each structure + * to be freed individually, an entire pool of storage is freed at once. + * This method has two advantages over just using malloc() and free(). First, + * it is far more efficient for allocating small objects, as there is + * no overhead for remembering all the information needed to free each + * object or consolidating fragmented memory. Second, the decision about + * how long to keep an object is made at the time of allocation, and there + * is no need to track down all the objects to free them. + * + */ + +const size_t WORDSIZE = 16; +const size_t BLOCKSIZE = 8192; + +class PooledAllocator { + /* We maintain memory alignment to word boundaries by requiring that all + allocations be in multiples of the machine wordsize. */ + /* Size of machine word in bytes. Must be power of 2. */ + /* Minimum number of bytes requested at a time from the system. Must be + * multiple of WORDSIZE. */ + + size_t remaining; /* Number of bytes left in current block of storage. */ + void *base; /* Pointer to base of current block of storage. */ + void *loc; /* Current location in block to next allocate memory. */ + + void internal_init() { + remaining = 0; + base = NULL; + usedMemory = 0; + wastedMemory = 0; + } + +public: + size_t usedMemory; + size_t wastedMemory; + + /** + Default constructor. Initializes a new pool. + */ + PooledAllocator() { internal_init(); } + + /** + * Destructor. Frees all the memory allocated in this pool. + */ + ~PooledAllocator() { free_all(); } + + /** Frees all allocated memory chunks */ + void free_all() { + while (base != NULL) { + void *prev = + *(static_cast(base)); /* Get pointer to prev block. */ + ::free(base); + base = prev; + } + internal_init(); + } + + /** + * Returns a pointer to a piece of new memory of the given size in bytes + * allocated from the pool. + */ + void *malloc(const size_t req_size) { + /* Round size up to a multiple of wordsize. The following expression + only works for WORDSIZE that is a power of 2, by masking last bits of + incremented size to zero. + */ + const size_t size = (req_size + (WORDSIZE - 1)) & ~(WORDSIZE - 1); + + /* Check whether a new block must be allocated. Note that the first word + of a block is reserved for a pointer to the previous block. + */ + if (size > remaining) { + + wastedMemory += remaining; + + /* Allocate new storage. */ + const size_t blocksize = + (size + sizeof(void *) + (WORDSIZE - 1) > BLOCKSIZE) + ? size + sizeof(void *) + (WORDSIZE - 1) + : BLOCKSIZE; + + // use the standard C malloc to allocate memory + void *m = ::malloc(blocksize); + if (!m) { + fprintf(stderr, "Failed to allocate memory.\n"); + return NULL; + } + + /* Fill first word of new block with pointer to previous block. */ + static_cast(m)[0] = base; + base = m; + + size_t shift = 0; + // int size_t = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & + // (WORDSIZE-1))) & (WORDSIZE-1); + + remaining = blocksize - sizeof(void *) - shift; + loc = (static_cast(m) + sizeof(void *) + shift); + } + void *rloc = loc; + loc = static_cast(loc) + size; + remaining -= size; + + usedMemory += size; + + return rloc; + } + + /** + * Allocates (using this pool) a generic type T. + * + * Params: + * count = number of instances to allocate. + * Returns: pointer (of type T*) to memory buffer + */ + template T *allocate(const size_t count = 1) { + T *mem = static_cast(this->malloc(sizeof(T) * count)); + return mem; + } +}; +/** @} */ + +/** @addtogroup nanoflann_metaprog_grp Auxiliary metaprogramming stuff + * @{ */ + +/** Used to declare fixed-size arrays when DIM>0, dynamically-allocated vectors + * when DIM=-1. Fixed size version for a generic DIM: + */ +template struct array_or_vector_selector { + typedef std::array container_t; +}; +/** Dynamic size version */ +template struct array_or_vector_selector<-1, T> { + typedef std::vector container_t; +}; + +/** @} */ + +/** kd-tree base-class + * + * Contains the member functions common to the classes KDTreeSingleIndexAdaptor + * and KDTreeSingleIndexDynamicAdaptor_. + * + * \tparam Derived The name of the class which inherits this class. + * \tparam DatasetAdaptor The user-provided adaptor (see comments above). + * \tparam Distance The distance metric to use, these are all classes derived + * from nanoflann::Metric \tparam DIM Dimensionality of data points (e.g. 3 for + * 3D points) \tparam IndexType Will be typically size_t or int + */ + +template +class KDTreeBaseClass { + +public: + /** Frees the previously-built index. Automatically called within + * buildIndex(). */ + void freeIndex(Derived &obj) { + obj.pool.free_all(); + obj.root_node = NULL; + obj.m_size_at_index_build = 0; + } + + typedef typename Distance::ElementType ElementType; + typedef typename Distance::DistanceType DistanceType; + + /*--------------------- Internal Data Structures --------------------------*/ + struct Node { + /** Union used because a node can be either a LEAF node or a non-leaf node, + * so both data fields are never used simultaneously */ + union { + struct leaf { + IndexType left, right; //!< Indices of points in leaf node + } lr; + struct nonleaf { + int divfeat; //!< Dimension used for subdivision. + DistanceType divlow, divhigh; //!< The values used for subdivision. + } sub; + } node_type; + Node *child1, *child2; //!< Child nodes (both=NULL mean its a leaf node) + }; + + typedef Node *NodePtr; + + struct Interval { + ElementType low, high; + }; + + /** + * Array of indices to vectors in the dataset. + */ + std::vector vind; + + NodePtr root_node; + + size_t m_leaf_max_size; + + size_t m_size; //!< Number of current points in the dataset + size_t m_size_at_index_build; //!< Number of points in the dataset when the + //!< index was built + int dim; //!< Dimensionality of each data point + + /** Define "BoundingBox" as a fixed-size or variable-size container depending + * on "DIM" */ + typedef + typename array_or_vector_selector::container_t BoundingBox; + + /** Define "distance_vector_t" as a fixed-size or variable-size container + * depending on "DIM" */ + typedef typename array_or_vector_selector::container_t + distance_vector_t; + + /** The KD-tree used to find neighbours */ + + BoundingBox root_bbox; + + /** + * Pooled memory allocator. + * + * Using a pooled memory allocator is more efficient + * than allocating memory directly when there is a large + * number small of memory allocations. + */ + PooledAllocator pool; + + /** Returns number of points in dataset */ + size_t size(const Derived &obj) const { return obj.m_size; } + + /** Returns the length of each point in the dataset */ + size_t veclen(const Derived &obj) { + return static_cast(DIM > 0 ? DIM : obj.dim); + } + + /// Helper accessor to the dataset points: + inline ElementType dataset_get(const Derived &obj, size_t idx, + int component) const { + return obj.dataset.kdtree_get_pt(idx, component); + } + + /** + * Computes the inde memory usage + * Returns: memory used by the index + */ + size_t usedMemory(Derived &obj) { + return obj.pool.usedMemory + obj.pool.wastedMemory + + obj.dataset.kdtree_get_point_count() * + sizeof(IndexType); // pool memory and vind array memory + } + + void computeMinMax(const Derived &obj, IndexType *ind, IndexType count, + int element, ElementType &min_elem, + ElementType &max_elem) { + min_elem = dataset_get(obj, ind[0], element); + max_elem = dataset_get(obj, ind[0], element); + for (IndexType i = 1; i < count; ++i) { + ElementType val = dataset_get(obj, ind[i], element); + if (val < min_elem) + min_elem = val; + if (val > max_elem) + max_elem = val; + } + } + + /** + * Create a tree node that subdivides the list of vecs from vind[first] + * to vind[last]. The routine is called recursively on each sublist. + * + * @param left index of the first vector + * @param right index of the last vector + */ + NodePtr divideTree(Derived &obj, const IndexType left, const IndexType right, + BoundingBox &bbox) { + NodePtr node = obj.pool.template allocate(); // allocate memory + + /* If too few exemplars remain, then make this a leaf node. */ + if ((right - left) <= static_cast(obj.m_leaf_max_size)) { + node->child1 = node->child2 = NULL; /* Mark as leaf node. */ + node->node_type.lr.left = left; + node->node_type.lr.right = right; + + // compute bounding-box of leaf points + for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) { + bbox[i].low = dataset_get(obj, obj.vind[left], i); + bbox[i].high = dataset_get(obj, obj.vind[left], i); + } + for (IndexType k = left + 1; k < right; ++k) { + for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) { + if (bbox[i].low > dataset_get(obj, obj.vind[k], i)) + bbox[i].low = dataset_get(obj, obj.vind[k], i); + if (bbox[i].high < dataset_get(obj, obj.vind[k], i)) + bbox[i].high = dataset_get(obj, obj.vind[k], i); + } + } + } else { + IndexType idx; + int cutfeat; + DistanceType cutval; + middleSplit_(obj, &obj.vind[0] + left, right - left, idx, cutfeat, cutval, + bbox); + + node->node_type.sub.divfeat = cutfeat; + + BoundingBox left_bbox(bbox); + left_bbox[cutfeat].high = cutval; + node->child1 = divideTree(obj, left, left + idx, left_bbox); + + BoundingBox right_bbox(bbox); + right_bbox[cutfeat].low = cutval; + node->child2 = divideTree(obj, left + idx, right, right_bbox); + + node->node_type.sub.divlow = left_bbox[cutfeat].high; + node->node_type.sub.divhigh = right_bbox[cutfeat].low; + + for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) { + bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low); + bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high); + } + } + + return node; + } + + void middleSplit_(Derived &obj, IndexType *ind, IndexType count, + IndexType &index, int &cutfeat, DistanceType &cutval, + const BoundingBox &bbox) { + const DistanceType EPS = static_cast(0.00001); + ElementType max_span = bbox[0].high - bbox[0].low; + for (int i = 1; i < (DIM > 0 ? DIM : obj.dim); ++i) { + ElementType span = bbox[i].high - bbox[i].low; + if (span > max_span) { + max_span = span; + } + } + ElementType max_spread = -1; + cutfeat = 0; + for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) { + ElementType span = bbox[i].high - bbox[i].low; + if (span > (1 - EPS) * max_span) { + ElementType min_elem, max_elem; + computeMinMax(obj, ind, count, i, min_elem, max_elem); + ElementType spread = max_elem - min_elem; + ; + if (spread > max_spread) { + cutfeat = i; + max_spread = spread; + } + } + } + // split in the middle + DistanceType split_val = (bbox[cutfeat].low + bbox[cutfeat].high) / 2; + ElementType min_elem, max_elem; + computeMinMax(obj, ind, count, cutfeat, min_elem, max_elem); + + if (split_val < min_elem) + cutval = min_elem; + else if (split_val > max_elem) + cutval = max_elem; + else + cutval = split_val; + + IndexType lim1, lim2; + planeSplit(obj, ind, count, cutfeat, cutval, lim1, lim2); + + if (lim1 > count / 2) + index = lim1; + else if (lim2 < count / 2) + index = lim2; + else + index = count / 2; + } + + /** + * Subdivide the list of points by a plane perpendicular on axe corresponding + * to the 'cutfeat' dimension at 'cutval' position. + * + * On return: + * dataset[ind[0..lim1-1]][cutfeat]cutval + */ + void planeSplit(Derived &obj, IndexType *ind, const IndexType count, + int cutfeat, DistanceType &cutval, IndexType &lim1, + IndexType &lim2) { + /* Move vector indices for left subtree to front of list. */ + IndexType left = 0; + IndexType right = count - 1; + for (;;) { + while (left <= right && dataset_get(obj, ind[left], cutfeat) < cutval) + ++left; + while (right && left <= right && + dataset_get(obj, ind[right], cutfeat) >= cutval) + --right; + if (left > right || !right) + break; // "!right" was added to support unsigned Index types + std::swap(ind[left], ind[right]); + ++left; + --right; + } + /* If either list is empty, it means that all remaining features + * are identical. Split in the middle to maintain a balanced tree. + */ + lim1 = left; + right = count - 1; + for (;;) { + while (left <= right && dataset_get(obj, ind[left], cutfeat) <= cutval) + ++left; + while (right && left <= right && + dataset_get(obj, ind[right], cutfeat) > cutval) + --right; + if (left > right || !right) + break; // "!right" was added to support unsigned Index types + std::swap(ind[left], ind[right]); + ++left; + --right; + } + lim2 = left; + } + + DistanceType computeInitialDistances(const Derived &obj, + const ElementType *vec, + distance_vector_t &dists) const { + assert(vec); + DistanceType distsq = DistanceType(); + + for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) { + if (vec[i] < obj.root_bbox[i].low) { + dists[i] = obj.distance.accum_dist(vec[i], obj.root_bbox[i].low, i); + distsq += dists[i]; + } + if (vec[i] > obj.root_bbox[i].high) { + dists[i] = obj.distance.accum_dist(vec[i], obj.root_bbox[i].high, i); + distsq += dists[i]; + } + } + return distsq; + } + + void save_tree(Derived &obj, FILE *stream, NodePtr tree) { + save_value(stream, *tree); + if (tree->child1 != NULL) { + save_tree(obj, stream, tree->child1); + } + if (tree->child2 != NULL) { + save_tree(obj, stream, tree->child2); + } + } + + void load_tree(Derived &obj, FILE *stream, NodePtr &tree) { + tree = obj.pool.template allocate(); + load_value(stream, *tree); + if (tree->child1 != NULL) { + load_tree(obj, stream, tree->child1); + } + if (tree->child2 != NULL) { + load_tree(obj, stream, tree->child2); + } + } + + /** Stores the index in a binary file. + * IMPORTANT NOTE: The set of data points is NOT stored in the file, so when + * loading the index object it must be constructed associated to the same + * source of data points used while building it. See the example: + * examples/saveload_example.cpp \sa loadIndex */ + void saveIndex_(Derived &obj, FILE *stream) { + save_value(stream, obj.m_size); + save_value(stream, obj.dim); + save_value(stream, obj.root_bbox); + save_value(stream, obj.m_leaf_max_size); + save_value(stream, obj.vind); + save_tree(obj, stream, obj.root_node); + } + + /** Loads a previous index from a binary file. + * IMPORTANT NOTE: The set of data points is NOT stored in the file, so the + * index object must be constructed associated to the same source of data + * points used while building the index. See the example: + * examples/saveload_example.cpp \sa loadIndex */ + void loadIndex_(Derived &obj, FILE *stream) { + load_value(stream, obj.m_size); + load_value(stream, obj.dim); + load_value(stream, obj.root_bbox); + load_value(stream, obj.m_leaf_max_size); + load_value(stream, obj.vind); + load_tree(obj, stream, obj.root_node); + } +}; + +/** @addtogroup kdtrees_grp KD-tree classes and adaptors + * @{ */ + +/** kd-tree static index + * + * Contains the k-d trees and other information for indexing a set of points + * for nearest-neighbor matching. + * + * The class "DatasetAdaptor" must provide the following interface (can be + * non-virtual, inlined methods): + * + * \code + * // Must return the number of data poins + * inline size_t kdtree_get_point_count() const { ... } + * + * + * // Must return the dim'th component of the idx'th point in the class: + * inline T kdtree_get_pt(const size_t idx, const size_t dim) const { ... } + * + * // Optional bounding-box computation: return false to default to a standard + * bbox computation loop. + * // Return true if the BBOX was already computed by the class and returned + * in "bb" so it can be avoided to redo it again. + * // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 + * for point clouds) template bool kdtree_get_bbox(BBOX &bb) const + * { + * bb[0].low = ...; bb[0].high = ...; // 0th dimension limits + * bb[1].low = ...; bb[1].high = ...; // 1st dimension limits + * ... + * return true; + * } + * + * \endcode + * + * \tparam DatasetAdaptor The user-provided adaptor (see comments above). + * \tparam Distance The distance metric to use: nanoflann::metric_L1, + * nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. \tparam DIM + * Dimensionality of data points (e.g. 3 for 3D points) \tparam IndexType Will + * be typically size_t or int + */ +template +class KDTreeSingleIndexAdaptor + : public KDTreeBaseClass< + KDTreeSingleIndexAdaptor, + Distance, DatasetAdaptor, DIM, IndexType> { +public: + /** Deleted copy constructor*/ + KDTreeSingleIndexAdaptor( + const KDTreeSingleIndexAdaptor + &) = delete; + + /** + * The dataset used by this index + */ + const DatasetAdaptor &dataset; //!< The source of our data + + const KDTreeSingleIndexAdaptorParams index_params; + + Distance distance; + + typedef typename nanoflann::KDTreeBaseClass< + nanoflann::KDTreeSingleIndexAdaptor, + Distance, DatasetAdaptor, DIM, IndexType> + BaseClassRef; + + typedef typename BaseClassRef::ElementType ElementType; + typedef typename BaseClassRef::DistanceType DistanceType; + + typedef typename BaseClassRef::Node Node; + typedef Node *NodePtr; + + typedef typename BaseClassRef::Interval Interval; + /** Define "BoundingBox" as a fixed-size or variable-size container depending + * on "DIM" */ + typedef typename BaseClassRef::BoundingBox BoundingBox; + + /** Define "distance_vector_t" as a fixed-size or variable-size container + * depending on "DIM" */ + typedef typename BaseClassRef::distance_vector_t distance_vector_t; + + /** + * KDTree constructor + * + * Refer to docs in README.md or online in + * https://github.com/jlblancoc/nanoflann + * + * The KD-Tree point dimension (the length of each point in the datase, e.g. 3 + * for 3D points) is determined by means of: + * - The \a DIM template parameter if >0 (highest priority) + * - Otherwise, the \a dimensionality parameter of this constructor. + * + * @param inputData Dataset with the input features + * @param params Basically, the maximum leaf node size + */ + KDTreeSingleIndexAdaptor(const int dimensionality, + const DatasetAdaptor &inputData, + const KDTreeSingleIndexAdaptorParams ¶ms = + KDTreeSingleIndexAdaptorParams()) + : dataset(inputData), index_params(params), distance(inputData) { + BaseClassRef::root_node = NULL; + BaseClassRef::m_size = dataset.kdtree_get_point_count(); + BaseClassRef::m_size_at_index_build = BaseClassRef::m_size; + BaseClassRef::dim = dimensionality; + if (DIM > 0) + BaseClassRef::dim = DIM; + BaseClassRef::m_leaf_max_size = params.leaf_max_size; + + // Create a permutable array of indices to the input vectors. + init_vind(); + } + + /** + * Builds the index + */ + void buildIndex() { + BaseClassRef::m_size = dataset.kdtree_get_point_count(); + BaseClassRef::m_size_at_index_build = BaseClassRef::m_size; + init_vind(); + this->freeIndex(*this); + BaseClassRef::m_size_at_index_build = BaseClassRef::m_size; + if (BaseClassRef::m_size == 0) + return; + computeBoundingBox(BaseClassRef::root_bbox); + BaseClassRef::root_node = + this->divideTree(*this, 0, BaseClassRef::m_size, + BaseClassRef::root_bbox); // construct the tree + } + + /** \name Query methods + * @{ */ + + /** + * Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored + * inside the result object. + * + * Params: + * result = the result object in which the indices of the + * nearest-neighbors are stored vec = the vector for which to search the + * nearest neighbors + * + * \tparam RESULTSET Should be any ResultSet + * \return True if the requested neighbors could be found. + * \sa knnSearch, radiusSearch + */ + template + bool findNeighbors(RESULTSET &result, const ElementType *vec, + const SearchParams &searchParams) const { + assert(vec); + if (this->size(*this) == 0) + return false; + if (!BaseClassRef::root_node) + throw std::runtime_error( + "[nanoflann] findNeighbors() called before building the index."); + float epsError = 1 + searchParams.eps; + + distance_vector_t + dists; // fixed or variable-sized container (depending on DIM) + auto zero = static_cast(0); + assign(dists, (DIM > 0 ? DIM : BaseClassRef::dim), + zero); // Fill it with zeros. + DistanceType distsq = this->computeInitialDistances(*this, vec, dists); + searchLevel(result, vec, BaseClassRef::root_node, distsq, dists, + epsError); // "count_leaf" parameter removed since was neither + // used nor returned to the user. + return result.full(); + } + + /** + * Find the "num_closest" nearest neighbors to the \a query_point[0:dim-1]. + * Their indices are stored inside the result object. \sa radiusSearch, + * findNeighbors \note nChecks_IGNORED is ignored but kept for compatibility + * with the original FLANN interface. \return Number `N` of valid points in + * the result set. Only the first `N` entries in `out_indices` and + * `out_distances_sq` will be valid. Return may be less than `num_closest` + * only if the number of elements in the tree is less than `num_closest`. + */ + size_t knnSearch(const ElementType *query_point, const size_t num_closest, + IndexType *out_indices, DistanceType *out_distances_sq, + const int /* nChecks_IGNORED */ = 10) const { + nanoflann::KNNResultSet resultSet(num_closest); + resultSet.init(out_indices, out_distances_sq); + this->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); + return resultSet.size(); + } + + /** + * Find all the neighbors to \a query_point[0:dim-1] within a maximum radius. + * The output is given as a vector of pairs, of which the first element is a + * point index and the second the corresponding distance. Previous contents of + * \a IndicesDists are cleared. + * + * If searchParams.sorted==true, the output list is sorted by ascending + * distances. + * + * For a better performance, it is advisable to do a .reserve() on the vector + * if you have any wild guess about the number of expected matches. + * + * \sa knnSearch, findNeighbors, radiusSearchCustomCallback + * \return The number of points within the given radius (i.e. indices.size() + * or dists.size() ) + */ + size_t + radiusSearch(const ElementType *query_point, const DistanceType &radius, + std::vector> &IndicesDists, + const SearchParams &searchParams) const { + RadiusResultSet resultSet(radius, IndicesDists); + const size_t nFound = + radiusSearchCustomCallback(query_point, resultSet, searchParams); + if (searchParams.sorted) + std::sort(IndicesDists.begin(), IndicesDists.end(), IndexDist_Sorter()); + return nFound; + } + + /** + * Just like radiusSearch() but with a custom callback class for each point + * found in the radius of the query. See the source of RadiusResultSet<> as a + * start point for your own classes. \sa radiusSearch + */ + template + size_t radiusSearchCustomCallback( + const ElementType *query_point, SEARCH_CALLBACK &resultSet, + const SearchParams &searchParams = SearchParams()) const { + this->findNeighbors(resultSet, query_point, searchParams); + return resultSet.size(); + } + + /** @} */ + +public: + /** Make sure the auxiliary list \a vind has the same size than the current + * dataset, and re-generate if size has changed. */ + void init_vind() { + // Create a permutable array of indices to the input vectors. + BaseClassRef::m_size = dataset.kdtree_get_point_count(); + if (BaseClassRef::vind.size() != BaseClassRef::m_size) + BaseClassRef::vind.resize(BaseClassRef::m_size); + for (size_t i = 0; i < BaseClassRef::m_size; i++) + BaseClassRef::vind[i] = i; + } + + void computeBoundingBox(BoundingBox &bbox) { + resize(bbox, (DIM > 0 ? DIM : BaseClassRef::dim)); + if (dataset.kdtree_get_bbox(bbox)) { + // Done! It was implemented in derived class + } else { + const size_t N = dataset.kdtree_get_point_count(); + if (!N) + throw std::runtime_error("[nanoflann] computeBoundingBox() called but " + "no data points found."); + for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) { + bbox[i].low = bbox[i].high = this->dataset_get(*this, 0, i); + } + for (size_t k = 1; k < N; ++k) { + for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) { + if (this->dataset_get(*this, k, i) < bbox[i].low) + bbox[i].low = this->dataset_get(*this, k, i); + if (this->dataset_get(*this, k, i) > bbox[i].high) + bbox[i].high = this->dataset_get(*this, k, i); + } + } + } + } + + /** + * Performs an exact search in the tree starting from a node. + * \tparam RESULTSET Should be any ResultSet + * \return true if the search should be continued, false if the results are + * sufficient + */ + template + bool searchLevel(RESULTSET &result_set, const ElementType *vec, + const NodePtr node, DistanceType mindistsq, + distance_vector_t &dists, const float epsError) const { + /* If this is a leaf node, then do check and return. */ + if ((node->child1 == NULL) && (node->child2 == NULL)) { + // count_leaf += (node->lr.right-node->lr.left); // Removed since was + // neither used nor returned to the user. + DistanceType worst_dist = result_set.worstDist(); + for (IndexType i = node->node_type.lr.left; i < node->node_type.lr.right; + ++i) { + const IndexType index = BaseClassRef::vind[i]; // reorder... : i; + DistanceType dist = distance.evalMetric( + vec, index, (DIM > 0 ? DIM : BaseClassRef::dim)); + if (dist < worst_dist) { + if (!result_set.addPoint(dist, BaseClassRef::vind[i])) { + // the resultset doesn't want to receive any more points, we're done + // searching! + return false; + } + } + } + return true; + } + + /* Which child branch should be taken first? */ + int idx = node->node_type.sub.divfeat; + ElementType val = vec[idx]; + DistanceType diff1 = val - node->node_type.sub.divlow; + DistanceType diff2 = val - node->node_type.sub.divhigh; + + NodePtr bestChild; + NodePtr otherChild; + DistanceType cut_dist; + if ((diff1 + diff2) < 0) { + bestChild = node->child1; + otherChild = node->child2; + cut_dist = distance.accum_dist(val, node->node_type.sub.divhigh, idx); + } else { + bestChild = node->child2; + otherChild = node->child1; + cut_dist = distance.accum_dist(val, node->node_type.sub.divlow, idx); + } + + /* Call recursively to search next level down. */ + if (!searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError)) { + // the resultset doesn't want to receive any more points, we're done + // searching! + return false; + } + + DistanceType dst = dists[idx]; + mindistsq = mindistsq + cut_dist - dst; + dists[idx] = cut_dist; + if (mindistsq * epsError <= result_set.worstDist()) { + if (!searchLevel(result_set, vec, otherChild, mindistsq, dists, + epsError)) { + // the resultset doesn't want to receive any more points, we're done + // searching! + return false; + } + } + dists[idx] = dst; + return true; + } + +public: + /** Stores the index in a binary file. + * IMPORTANT NOTE: The set of data points is NOT stored in the file, so when + * loading the index object it must be constructed associated to the same + * source of data points used while building it. See the example: + * examples/saveload_example.cpp \sa loadIndex */ + void saveIndex(FILE *stream) { this->saveIndex_(*this, stream); } + + /** Loads a previous index from a binary file. + * IMPORTANT NOTE: The set of data points is NOT stored in the file, so the + * index object must be constructed associated to the same source of data + * points used while building the index. See the example: + * examples/saveload_example.cpp \sa loadIndex */ + void loadIndex(FILE *stream) { this->loadIndex_(*this, stream); } + +}; // class KDTree + +/** kd-tree dynamic index + * + * Contains the k-d trees and other information for indexing a set of points + * for nearest-neighbor matching. + * + * The class "DatasetAdaptor" must provide the following interface (can be + * non-virtual, inlined methods): + * + * \code + * // Must return the number of data poins + * inline size_t kdtree_get_point_count() const { ... } + * + * // Must return the dim'th component of the idx'th point in the class: + * inline T kdtree_get_pt(const size_t idx, const size_t dim) const { ... } + * + * // Optional bounding-box computation: return false to default to a standard + * bbox computation loop. + * // Return true if the BBOX was already computed by the class and returned + * in "bb" so it can be avoided to redo it again. + * // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 + * for point clouds) template bool kdtree_get_bbox(BBOX &bb) const + * { + * bb[0].low = ...; bb[0].high = ...; // 0th dimension limits + * bb[1].low = ...; bb[1].high = ...; // 1st dimension limits + * ... + * return true; + * } + * + * \endcode + * + * \tparam DatasetAdaptor The user-provided adaptor (see comments above). + * \tparam Distance The distance metric to use: nanoflann::metric_L1, + * nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. \tparam DIM + * Dimensionality of data points (e.g. 3 for 3D points) \tparam IndexType Will + * be typically size_t or int + */ +template +class KDTreeSingleIndexDynamicAdaptor_ + : public KDTreeBaseClass, + Distance, DatasetAdaptor, DIM, IndexType> { +public: + /** + * The dataset used by this index + */ + const DatasetAdaptor &dataset; //!< The source of our data + + KDTreeSingleIndexAdaptorParams index_params; + + std::vector &treeIndex; + + Distance distance; + + typedef typename nanoflann::KDTreeBaseClass< + nanoflann::KDTreeSingleIndexDynamicAdaptor_, + Distance, DatasetAdaptor, DIM, IndexType> + BaseClassRef; + + typedef typename BaseClassRef::ElementType ElementType; + typedef typename BaseClassRef::DistanceType DistanceType; + + typedef typename BaseClassRef::Node Node; + typedef Node *NodePtr; + + typedef typename BaseClassRef::Interval Interval; + /** Define "BoundingBox" as a fixed-size or variable-size container depending + * on "DIM" */ + typedef typename BaseClassRef::BoundingBox BoundingBox; + + /** Define "distance_vector_t" as a fixed-size or variable-size container + * depending on "DIM" */ + typedef typename BaseClassRef::distance_vector_t distance_vector_t; + + /** + * KDTree constructor + * + * Refer to docs in README.md or online in + * https://github.com/jlblancoc/nanoflann + * + * The KD-Tree point dimension (the length of each point in the datase, e.g. 3 + * for 3D points) is determined by means of: + * - The \a DIM template parameter if >0 (highest priority) + * - Otherwise, the \a dimensionality parameter of this constructor. + * + * @param inputData Dataset with the input features + * @param params Basically, the maximum leaf node size + */ + KDTreeSingleIndexDynamicAdaptor_( + const int dimensionality, const DatasetAdaptor &inputData, + std::vector &treeIndex_, + const KDTreeSingleIndexAdaptorParams ¶ms = + KDTreeSingleIndexAdaptorParams()) + : dataset(inputData), index_params(params), treeIndex(treeIndex_), + distance(inputData) { + BaseClassRef::root_node = NULL; + BaseClassRef::m_size = 0; + BaseClassRef::m_size_at_index_build = 0; + BaseClassRef::dim = dimensionality; + if (DIM > 0) + BaseClassRef::dim = DIM; + BaseClassRef::m_leaf_max_size = params.leaf_max_size; + } + + /** Assignment operator definiton */ + KDTreeSingleIndexDynamicAdaptor_ + operator=(const KDTreeSingleIndexDynamicAdaptor_ &rhs) { + KDTreeSingleIndexDynamicAdaptor_ tmp(rhs); + std::swap(BaseClassRef::vind, tmp.BaseClassRef::vind); + std::swap(BaseClassRef::m_leaf_max_size, tmp.BaseClassRef::m_leaf_max_size); + std::swap(index_params, tmp.index_params); + std::swap(treeIndex, tmp.treeIndex); + std::swap(BaseClassRef::m_size, tmp.BaseClassRef::m_size); + std::swap(BaseClassRef::m_size_at_index_build, + tmp.BaseClassRef::m_size_at_index_build); + std::swap(BaseClassRef::root_node, tmp.BaseClassRef::root_node); + std::swap(BaseClassRef::root_bbox, tmp.BaseClassRef::root_bbox); + std::swap(BaseClassRef::pool, tmp.BaseClassRef::pool); + return *this; + } + + /** + * Builds the index + */ + void buildIndex() { + BaseClassRef::m_size = BaseClassRef::vind.size(); + this->freeIndex(*this); + BaseClassRef::m_size_at_index_build = BaseClassRef::m_size; + if (BaseClassRef::m_size == 0) + return; + computeBoundingBox(BaseClassRef::root_bbox); + BaseClassRef::root_node = + this->divideTree(*this, 0, BaseClassRef::m_size, + BaseClassRef::root_bbox); // construct the tree + } + + /** \name Query methods + * @{ */ + + /** + * Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored + * inside the result object. + * + * Params: + * result = the result object in which the indices of the + * nearest-neighbors are stored vec = the vector for which to search the + * nearest neighbors + * + * \tparam RESULTSET Should be any ResultSet + * \return True if the requested neighbors could be found. + * \sa knnSearch, radiusSearch + */ + template + bool findNeighbors(RESULTSET &result, const ElementType *vec, + const SearchParams &searchParams) const { + assert(vec); + if (this->size(*this) == 0) + return false; + if (!BaseClassRef::root_node) + return false; + float epsError = 1 + searchParams.eps; + + // fixed or variable-sized container (depending on DIM) + distance_vector_t dists; + // Fill it with zeros. + assign(dists, (DIM > 0 ? DIM : BaseClassRef::dim), + static_cast(0)); + DistanceType distsq = this->computeInitialDistances(*this, vec, dists); + searchLevel(result, vec, BaseClassRef::root_node, distsq, dists, + epsError); // "count_leaf" parameter removed since was neither + // used nor returned to the user. + return result.full(); + } + + /** + * Find the "num_closest" nearest neighbors to the \a query_point[0:dim-1]. + * Their indices are stored inside the result object. \sa radiusSearch, + * findNeighbors \note nChecks_IGNORED is ignored but kept for compatibility + * with the original FLANN interface. \return Number `N` of valid points in + * the result set. Only the first `N` entries in `out_indices` and + * `out_distances_sq` will be valid. Return may be less than `num_closest` + * only if the number of elements in the tree is less than `num_closest`. + */ + size_t knnSearch(const ElementType *query_point, const size_t num_closest, + IndexType *out_indices, DistanceType *out_distances_sq, + const int /* nChecks_IGNORED */ = 10) const { + nanoflann::KNNResultSet resultSet(num_closest); + resultSet.init(out_indices, out_distances_sq); + this->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); + return resultSet.size(); + } + + /** + * Find all the neighbors to \a query_point[0:dim-1] within a maximum radius. + * The output is given as a vector of pairs, of which the first element is a + * point index and the second the corresponding distance. Previous contents of + * \a IndicesDists are cleared. + * + * If searchParams.sorted==true, the output list is sorted by ascending + * distances. + * + * For a better performance, it is advisable to do a .reserve() on the vector + * if you have any wild guess about the number of expected matches. + * + * \sa knnSearch, findNeighbors, radiusSearchCustomCallback + * \return The number of points within the given radius (i.e. indices.size() + * or dists.size() ) + */ + size_t + radiusSearch(const ElementType *query_point, const DistanceType &radius, + std::vector> &IndicesDists, + const SearchParams &searchParams) const { + RadiusResultSet resultSet(radius, IndicesDists); + const size_t nFound = + radiusSearchCustomCallback(query_point, resultSet, searchParams); + if (searchParams.sorted) + std::sort(IndicesDists.begin(), IndicesDists.end(), IndexDist_Sorter()); + return nFound; + } + + /** + * Just like radiusSearch() but with a custom callback class for each point + * found in the radius of the query. See the source of RadiusResultSet<> as a + * start point for your own classes. \sa radiusSearch + */ + template + size_t radiusSearchCustomCallback( + const ElementType *query_point, SEARCH_CALLBACK &resultSet, + const SearchParams &searchParams = SearchParams()) const { + this->findNeighbors(resultSet, query_point, searchParams); + return resultSet.size(); + } + + /** @} */ + +public: + void computeBoundingBox(BoundingBox &bbox) { + resize(bbox, (DIM > 0 ? DIM : BaseClassRef::dim)); + + if (dataset.kdtree_get_bbox(bbox)) { + // Done! It was implemented in derived class + } else { + const size_t N = BaseClassRef::m_size; + if (!N) + throw std::runtime_error("[nanoflann] computeBoundingBox() called but " + "no data points found."); + for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) { + bbox[i].low = bbox[i].high = + this->dataset_get(*this, BaseClassRef::vind[0], i); + } + for (size_t k = 1; k < N; ++k) { + for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) { + if (this->dataset_get(*this, BaseClassRef::vind[k], i) < bbox[i].low) + bbox[i].low = this->dataset_get(*this, BaseClassRef::vind[k], i); + if (this->dataset_get(*this, BaseClassRef::vind[k], i) > bbox[i].high) + bbox[i].high = this->dataset_get(*this, BaseClassRef::vind[k], i); + } + } + } + } + + /** + * Performs an exact search in the tree starting from a node. + * \tparam RESULTSET Should be any ResultSet + */ + template + void searchLevel(RESULTSET &result_set, const ElementType *vec, + const NodePtr node, DistanceType mindistsq, + distance_vector_t &dists, const float epsError) const { + /* If this is a leaf node, then do check and return. */ + if ((node->child1 == NULL) && (node->child2 == NULL)) { + // count_leaf += (node->lr.right-node->lr.left); // Removed since was + // neither used nor returned to the user. + DistanceType worst_dist = result_set.worstDist(); + for (IndexType i = node->node_type.lr.left; i < node->node_type.lr.right; + ++i) { + const IndexType index = BaseClassRef::vind[i]; // reorder... : i; + if (treeIndex[index] == -1) + continue; + DistanceType dist = distance.evalMetric( + vec, index, (DIM > 0 ? DIM : BaseClassRef::dim)); + if (dist < worst_dist) { + if (!result_set.addPoint( + static_cast(dist), + static_cast( + BaseClassRef::vind[i]))) { + // the resultset doesn't want to receive any more points, we're done + // searching! + return; // false; + } + } + } + return; + } + + /* Which child branch should be taken first? */ + int idx = node->node_type.sub.divfeat; + ElementType val = vec[idx]; + DistanceType diff1 = val - node->node_type.sub.divlow; + DistanceType diff2 = val - node->node_type.sub.divhigh; + + NodePtr bestChild; + NodePtr otherChild; + DistanceType cut_dist; + if ((diff1 + diff2) < 0) { + bestChild = node->child1; + otherChild = node->child2; + cut_dist = distance.accum_dist(val, node->node_type.sub.divhigh, idx); + } else { + bestChild = node->child2; + otherChild = node->child1; + cut_dist = distance.accum_dist(val, node->node_type.sub.divlow, idx); + } + + /* Call recursively to search next level down. */ + searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError); + + DistanceType dst = dists[idx]; + mindistsq = mindistsq + cut_dist - dst; + dists[idx] = cut_dist; + if (mindistsq * epsError <= result_set.worstDist()) { + searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError); + } + dists[idx] = dst; + } + +public: + /** Stores the index in a binary file. + * IMPORTANT NOTE: The set of data points is NOT stored in the file, so when + * loading the index object it must be constructed associated to the same + * source of data points used while building it. See the example: + * examples/saveload_example.cpp \sa loadIndex */ + void saveIndex(FILE *stream) { this->saveIndex_(*this, stream); } + + /** Loads a previous index from a binary file. + * IMPORTANT NOTE: The set of data points is NOT stored in the file, so the + * index object must be constructed associated to the same source of data + * points used while building the index. See the example: + * examples/saveload_example.cpp \sa loadIndex */ + void loadIndex(FILE *stream) { this->loadIndex_(*this, stream); } +}; + +/** kd-tree dynaimic index + * + * class to create multiple static index and merge their results to behave as + * single dynamic index as proposed in Logarithmic Approach. + * + * Example of usage: + * examples/dynamic_pointcloud_example.cpp + * + * \tparam DatasetAdaptor The user-provided adaptor (see comments above). + * \tparam Distance The distance metric to use: nanoflann::metric_L1, + * nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. \tparam DIM + * Dimensionality of data points (e.g. 3 for 3D points) \tparam IndexType Will + * be typically size_t or int + */ +template +class KDTreeSingleIndexDynamicAdaptor { +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::DistanceType DistanceType; + +protected: + size_t m_leaf_max_size; + size_t treeCount; + size_t pointCount; + + /** + * The dataset used by this index + */ + const DatasetAdaptor &dataset; //!< The source of our data + + std::vector treeIndex; //!< treeIndex[idx] is the index of tree in which + //!< point at idx is stored. treeIndex[idx]=-1 + //!< means that point has been removed. + + KDTreeSingleIndexAdaptorParams index_params; + + int dim; //!< Dimensionality of each data point + + typedef KDTreeSingleIndexDynamicAdaptor_ + index_container_t; + std::vector index; + +public: + /** Get a const ref to the internal list of indices; the number of indices is + * adapted dynamically as the dataset grows in size. */ + const std::vector &getAllIndices() const { return index; } + +private: + /** finds position of least significant unset bit */ + int First0Bit(IndexType num) { + int pos = 0; + while (num & 1) { + num = num >> 1; + pos++; + } + return pos; + } + + /** Creates multiple empty trees to handle dynamic support */ + void init() { + typedef KDTreeSingleIndexDynamicAdaptor_ + my_kd_tree_t; + std::vector index_( + treeCount, my_kd_tree_t(dim /*dim*/, dataset, treeIndex, index_params)); + index = index_; + } + +public: + Distance distance; + + /** + * KDTree constructor + * + * Refer to docs in README.md or online in + * https://github.com/jlblancoc/nanoflann + * + * The KD-Tree point dimension (the length of each point in the datase, e.g. 3 + * for 3D points) is determined by means of: + * - The \a DIM template parameter if >0 (highest priority) + * - Otherwise, the \a dimensionality parameter of this constructor. + * + * @param inputData Dataset with the input features + * @param params Basically, the maximum leaf node size + */ + KDTreeSingleIndexDynamicAdaptor(const int dimensionality, + const DatasetAdaptor &inputData, + const KDTreeSingleIndexAdaptorParams ¶ms = + KDTreeSingleIndexAdaptorParams(), + const size_t maximumPointCount = 1000000000U) + : dataset(inputData), index_params(params), distance(inputData) { + treeCount = static_cast(std::log2(maximumPointCount)); + pointCount = 0U; + dim = dimensionality; + treeIndex.clear(); + if (DIM > 0) + dim = DIM; + m_leaf_max_size = params.leaf_max_size; + init(); + const size_t num_initial_points = dataset.kdtree_get_point_count(); + if (num_initial_points > 0) { + addPoints(0, num_initial_points - 1); + } + } + + /** Deleted copy constructor*/ + KDTreeSingleIndexDynamicAdaptor( + const KDTreeSingleIndexDynamicAdaptor &) = delete; + + /** Add points to the set, Inserts all points from [start, end] */ + void addPoints(IndexType start, IndexType end) { + size_t count = end - start + 1; + treeIndex.resize(treeIndex.size() + count); + for (IndexType idx = start; idx <= end; idx++) { + int pos = First0Bit(pointCount); + index[pos].vind.clear(); + treeIndex[pointCount] = pos; + for (int i = 0; i < pos; i++) { + for (int j = 0; j < static_cast(index[i].vind.size()); j++) { + index[pos].vind.push_back(index[i].vind[j]); + if (treeIndex[index[i].vind[j]] != -1) + treeIndex[index[i].vind[j]] = pos; + } + index[i].vind.clear(); + index[i].freeIndex(index[i]); + } + index[pos].vind.push_back(idx); + index[pos].buildIndex(); + pointCount++; + } + } + + /** Remove a point from the set (Lazy Deletion) */ + void removePoint(size_t idx) { + if (idx >= pointCount) + return; + treeIndex[idx] = -1; + } + + /** + * Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored + * inside the result object. + * + * Params: + * result = the result object in which the indices of the + * nearest-neighbors are stored vec = the vector for which to search the + * nearest neighbors + * + * \tparam RESULTSET Should be any ResultSet + * \return True if the requested neighbors could be found. + * \sa knnSearch, radiusSearch + */ + template + bool findNeighbors(RESULTSET &result, const ElementType *vec, + const SearchParams &searchParams) const { + for (size_t i = 0; i < treeCount; i++) { + index[i].findNeighbors(result, &vec[0], searchParams); + } + return result.full(); + } +}; + +/** An L2-metric KD-tree adaptor for working with data directly stored in an + * Eigen Matrix, without duplicating the data storage. Each row in the matrix + * represents a point in the state space. + * + * Example of usage: + * \code + * Eigen::Matrix mat; + * // Fill out "mat"... + * + * typedef KDTreeEigenMatrixAdaptor< Eigen::Matrix > + * my_kd_tree_t; const int max_leaf = 10; my_kd_tree_t mat_index(mat, max_leaf + * ); mat_index.index->buildIndex(); mat_index.index->... \endcode + * + * \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality + * for the points in the data set, allowing more compiler optimizations. \tparam + * Distance The distance metric to use: nanoflann::metric_L1, + * nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. + */ +template +struct KDTreeEigenMatrixAdaptor { + typedef KDTreeEigenMatrixAdaptor self_t; + typedef typename MatrixType::Scalar num_t; + typedef typename MatrixType::Index IndexType; + typedef + typename Distance::template traits::distance_t metric_t; + typedef KDTreeSingleIndexAdaptor + index_t; + + index_t *index; //! The kd-tree index for the user to call its methods as + //! usual with any other FLANN index. + + /// Constructor: takes a const ref to the matrix object with the data points + KDTreeEigenMatrixAdaptor(const size_t dimensionality, + const std::reference_wrapper &mat, + const int leaf_max_size = 10) + : m_data_matrix(mat) { + const auto dims = mat.get().cols(); + if (size_t(dims) != dimensionality) + throw std::runtime_error( + "Error: 'dimensionality' must match column count in data matrix"); + if (DIM > 0 && int(dims) != DIM) + throw std::runtime_error( + "Data set dimensionality does not match the 'DIM' template argument"); + index = + new index_t(static_cast(dims), *this /* adaptor */, + nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size)); + index->buildIndex(); + } + +public: + /** Deleted copy constructor */ + KDTreeEigenMatrixAdaptor(const self_t &) = delete; + + ~KDTreeEigenMatrixAdaptor() { delete index; } + + const std::reference_wrapper m_data_matrix; + + /** Query for the \a num_closest closest points to a given point (entered as + * query_point[0:dim-1]). Note that this is a short-cut method for + * index->findNeighbors(). The user can also call index->... methods as + * desired. \note nChecks_IGNORED is ignored but kept for compatibility with + * the original FLANN interface. + */ + inline void query(const num_t *query_point, const size_t num_closest, + IndexType *out_indices, num_t *out_distances_sq, + const int /* nChecks_IGNORED */ = 10) const { + nanoflann::KNNResultSet resultSet(num_closest); + resultSet.init(out_indices, out_distances_sq); + index->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); + } + + /** @name Interface expected by KDTreeSingleIndexAdaptor + * @{ */ + + const self_t &derived() const { return *this; } + self_t &derived() { return *this; } + + // Must return the number of data points + inline size_t kdtree_get_point_count() const { + return m_data_matrix.get().rows(); + } + + // Returns the dim'th component of the idx'th point in the class: + inline num_t kdtree_get_pt(const IndexType idx, size_t dim) const { + return m_data_matrix.get().coeff(idx, IndexType(dim)); + } + + // Optional bounding-box computation: return false to default to a standard + // bbox computation loop. + // Return true if the BBOX was already computed by the class and returned in + // "bb" so it can be avoided to redo it again. Look at bb.size() to find out + // the expected dimensionality (e.g. 2 or 3 for point clouds) + template bool kdtree_get_bbox(BBOX & /*bb*/) const { + return false; + } + + /** @} */ + +}; // end of KDTreeEigenMatrixAdaptor + /** @} */ + +/** @} */ // end of grouping +} // namespace nanoflann + +#endif /* NANOFLANN_HPP_ */ diff --git a/modules/alphamat/src/cm.cpp b/modules/alphamat/src/cm.cpp new file mode 100644 index 00000000000..19dcb961e4a --- /dev/null +++ b/modules/alphamat/src/cm.cpp @@ -0,0 +1,171 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +#include "precomp.hpp" +#include "intraU.hpp" +#include "cm.hpp" + +namespace cv { namespace alphamat { + +static +void generateFVectorCM(my_vector_of_vectors_t& samples, Mat& img) +{ + int nRows = img.rows; + int nCols = img.cols; + + samples.resize(nRows * nCols); + + int i, j; + + for (i = 0; i < nRows; ++i) + { + for (j = 0; j < nCols; ++j) + { + samples[i * nCols + j].resize(ALPHAMAT_DIM); + samples[i * nCols + j][0] = img.at(i, j)[0] / 255.0; + samples[i * nCols + j][1] = img.at(i, j)[1] / 255.0; + samples[i * nCols + j][2] = img.at(i, j)[2] / 255.0; + samples[i * nCols + j][3] = double(i) / nRows; + samples[i * nCols + j][4] = double(j) / nCols; + } + } +} + +static +void kdtree_CM(Mat& img, my_vector_of_vectors_t& indm, my_vector_of_vectors_t& samples, std::unordered_set& unk) +{ + // Generate feature vectors for intra U: + generateFVectorCM(samples, img); + + // Query point: same as samples from which KD tree is generated + + // construct a kd-tree index: + // Dimensionality set at run-time (default: L2) + // ------------------------------------------------------------ + typedef KDTreeVectorOfVectorsAdaptor my_kd_tree_t; + my_kd_tree_t mat_index(ALPHAMAT_DIM /*dim*/, samples, 10 /* max leaf */); + mat_index.index->buildIndex(); + + // do a knn search with cm = 20 + const size_t num_results = 20 + 1; + + int N = unk.size(); + + std::vector ret_indexes(num_results); + std::vector out_dists_sqr(num_results); + nanoflann::KNNResultSet resultSet(num_results); + + indm.resize(N); + int i = 0; + for (std::unordered_set::iterator it = unk.begin(); it != unk.end(); it++) + { + resultSet.init(&ret_indexes[0], &out_dists_sqr[0]); + mat_index.index->findNeighbors(resultSet, &samples[*it][0], nanoflann::SearchParams(10)); + + indm[i].resize(num_results - 1); + for (std::size_t j = 1; j < num_results; j++) + { + indm[i][j - 1] = ret_indexes[j]; + } + i++; + } +} + +static +void lle(my_vector_of_vectors_t& indm, my_vector_of_vectors_t& samples, float eps, std::unordered_set& unk, + SparseMatrix& Wcm, SparseMatrix& Dcm, Mat& img) +{ + CV_LOG_INFO(NULL, "ALPHAMAT: In cm's lle function"); + int k = indm[0].size(); //number of neighbours that we are considering + int n = indm.size(); //number of unknown pixels + + typedef Triplet T; + std::vector triplets, td; + + my_vector_of_vectors_t wcm; + wcm.resize(n); + + Mat C(20, 20, DataType::type), rhs(20, 1, DataType::type), Z(3, 20, DataType::type), weights(20, 1, DataType::type), pt(3, 1, DataType::type); + Mat ptDotN(20, 1, DataType::type), imd(20, 1, DataType::type); + Mat Cones(20, 1, DataType::type), Cinv(20, 1, DataType::type); + float alpha, beta, lagrangeMult; + Cones += 1; + + C = 0; + rhs = 1; + + int i, ind = 0; + for (std::unordered_set::iterator it = unk.begin(); it != unk.end(); it++) + { + // filling values in Z + i = *it; + + int index_nbr; + for (int j = 0; j < k; j++) + { + index_nbr = indm[ind][j]; + for (int p = 0; p < ALPHAMAT_DIM - 2; p++) + { + Z.at(p, j) = samples[index_nbr][p]; + } + } + pt.at(0, 0) = samples[i][0]; + pt.at(1, 0) = samples[i][1]; + pt.at(2, 0) = samples[i][2]; + + C = Z.t() * Z; + for (int p = 0; p < k; p++) + { + C.at(p, p) += eps; + } + + ptDotN = Z.t() * pt; + solve(C, ptDotN, imd); + alpha = 1 - cv::sum(imd)[0]; + solve(C, Cones, Cinv); + beta = cv::sum(Cinv)[0]; //% sum of elements of inv(corr) + lagrangeMult = alpha / beta; + solve(C, ptDotN + lagrangeMult * Cones, weights); + + float sum = cv::sum(weights)[0]; + weights = weights / sum; + + int cMaj_i = findColMajorInd(i, img.rows, img.cols); + + for (int j = 0; j < k; j++) + { + int cMaj_ind_j = findColMajorInd(indm[ind][j], img.rows, img.cols); + triplets.push_back(T(cMaj_i, cMaj_ind_j, weights.at(j, 0))); + td.push_back(T(cMaj_i, cMaj_i, weights.at(j, 0))); + } + ind++; + } + + Wcm.setFromTriplets(triplets.begin(), triplets.end()); + Dcm.setFromTriplets(td.begin(), td.end()); +} + +void cm(Mat& image, Mat& tmap, SparseMatrix& Wcm, SparseMatrix& Dcm) +{ + my_vector_of_vectors_t samples, indm, Euu; + + int i, j; + std::unordered_set unk; + for (i = 0; i < tmap.rows; i++) + { + for (j = 0; j < tmap.cols; j++) + { + uchar pix = tmap.at(i, j); + if (pix == 128) + unk.insert(i * tmap.cols + j); + } + } + + kdtree_CM(image, indm, samples, unk); + float eps = 0.00001; + lle(indm, samples, eps, unk, Wcm, Dcm, image); + CV_LOG_INFO(NULL, "ALPHAMAT: cm DONE"); +} + +}} // namespace cv::alphamat diff --git a/modules/alphamat/src/cm.hpp b/modules/alphamat/src/cm.hpp new file mode 100644 index 00000000000..2e6baf431e3 --- /dev/null +++ b/modules/alphamat/src/cm.hpp @@ -0,0 +1,17 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +#ifndef __OPENCV_ALPHAMAT_CM_H__ +#define __OPENCV_ALPHAMAT_CM_H__ + +namespace cv { namespace alphamat { + +using namespace Eigen; +using namespace nanoflann; + +void cm(Mat& image, Mat& tmap, SparseMatrix& Wcm, SparseMatrix& Dcm); + +}} + +#endif diff --git a/modules/alphamat/src/infoflow.cpp b/modules/alphamat/src/infoflow.cpp new file mode 100644 index 00000000000..e85ed8db5d1 --- /dev/null +++ b/modules/alphamat/src/infoflow.cpp @@ -0,0 +1,130 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +#include "precomp.hpp" + +#include + +using namespace Eigen; + +namespace cv { namespace alphamat { + +static +void solve(SparseMatrix Wcm, SparseMatrix Wuu, SparseMatrix Wl, SparseMatrix Dcm, + SparseMatrix Duu, SparseMatrix Dl, SparseMatrix T, + Mat& wf, Mat& alpha) +{ + float suu = 0.01, sl = 0.1, lamd = 100; + + SparseMatrix Lifm = ((Dcm - Wcm).transpose()) * (Dcm - Wcm) + sl * (Dl - Wl) + suu * (Duu - Wuu); + + SparseMatrix A; + int n = wf.rows; + VectorXd b(n), x(n); + + Eigen::VectorXd wf_; + cv2eigen(wf, wf_); + + A = Lifm + lamd * T; + b = (lamd * T) * (wf_); + + ConjugateGradient, Lower | Upper> cg; + + cg.setMaxIterations(500); + cg.compute(A); + x = cg.solve(b); + CV_LOG_INFO(NULL, "ALPHAMAT: #iterations: " << cg.iterations()); + CV_LOG_INFO(NULL, "ALPHAMAT: estimated error: " << cg.error()); + + int nRows = alpha.rows; + int nCols = alpha.cols; + float pix_alpha; + for (int j = 0; j < nCols; ++j) + { + for (int i = 0; i < nRows; ++i) + { + pix_alpha = x(i + j * nRows); + if (pix_alpha < 0) + pix_alpha = 0; + if (pix_alpha > 1) + pix_alpha = 1; + alpha.at(i, j) = uchar(pix_alpha * 255); + } + } +} + +void infoFlow(InputArray image_ia, InputArray tmap_ia, OutputArray result) +{ + Mat image = image_ia.getMat(); + Mat tmap = tmap_ia.getMat(); + + int64 begin = cv::getTickCount(); + + int nRows = image.rows; + int nCols = image.cols; + int N = nRows * nCols; + + SparseMatrix T(N, N); + typedef Triplet Tr; + std::vector triplets; + + //Pre-process trimap + for (int i = 0; i < nRows; ++i) + { + for (int j = 0; j < nCols; ++j) + { + uchar& pix = tmap.at(i, j); + if (pix <= 0.2f * 255) + pix = 0; + else if (pix >= 0.8f * 255) + pix = 255; + else + pix = 128; + } + } + + Mat wf = Mat::zeros(nRows * nCols, 1, CV_8U); + + // Column Major Interpretation for working with SparseMatrix + for (int i = 0; i < nRows; ++i) + { + for (int j = 0; j < nCols; ++j) + { + uchar pix = tmap.at(i, j); + + // collection of known pixels samples + triplets.push_back(Tr(i + j * nRows, i + j * nRows, (pix != 128) ? 1 : 0)); + + // foreground pixel + wf.at(i + j * nRows, 0) = (pix > 200) ? 1 : 0; + } + } + + SparseMatrix Wl(N, N), Dl(N, N); + local_info(image, tmap, Wl, Dl); + + SparseMatrix Wcm(N, N), Dcm(N, N); + cm(image, tmap, Wcm, Dcm); + + Mat new_tmap = tmap.clone(); + + SparseMatrix Wuu(N, N), Duu(N, N); + Mat image_t = image.t(); + Mat tmap_t = tmap.t(); + UU(image, tmap, Wuu, Duu); + + double elapsed_secs = ((double)(getTickCount() - begin)) / getTickFrequency(); + + T.setFromTriplets(triplets.begin(), triplets.end()); + + Mat alpha = Mat::zeros(nRows, nCols, CV_8UC1); + solve(Wcm, Wuu, Wl, Dcm, Duu, Dl, T, wf, alpha); + + alpha.copyTo(result); + + elapsed_secs = ((double)(getTickCount() - begin)) / getTickFrequency(); + CV_LOG_INFO(NULL, "ALPHAMAT: total time: " << elapsed_secs); +} + +}} // namespace cv::alphamat diff --git a/modules/alphamat/src/intraU.cpp b/modules/alphamat/src/intraU.cpp new file mode 100644 index 00000000000..167458fcfc1 --- /dev/null +++ b/modules/alphamat/src/intraU.cpp @@ -0,0 +1,152 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +#include "precomp.hpp" +#include "intraU.hpp" + +namespace cv { namespace alphamat { + +int findColMajorInd(int rowMajorInd, int nRows, int nCols) +{ + int iInd = rowMajorInd / nCols; + int jInd = rowMajorInd % nCols; + return (jInd * nRows + iInd); +} + +static +void generateFVectorIntraU(my_vector_of_vectors_t& samples, Mat& img, Mat& tmap, std::vector& orig_ind) +{ + int nRows = img.rows; + int nCols = img.cols; + int unk_count = 0; + int i, j; + for (i = 0; i < nRows; ++i) + { + for (j = 0; j < nCols; ++j) + { + uchar pix = tmap.at(i, j); + if (pix == 128) + unk_count++; + } + } + samples.resize(unk_count); + orig_ind.resize(unk_count); + + int c1 = 0; + for (i = 0; i < nRows; ++i) + { + for (j = 0; j < nCols; ++j) + { + uchar pix = tmap.at(i, j); + if (pix == 128) // collection of unknown pixels samples + { + samples[c1].resize(ALPHAMAT_DIM); + samples[c1][0] = img.at(i, j)[0] / 255.0; + samples[c1][1] = img.at(i, j)[1] / 255.0; + samples[c1][2] = img.at(i, j)[2] / 255.0; + samples[c1][3] = (double(i + 1) / nRows) / 20; + samples[c1][4] = (double(j + 1) / nCols) / 20; + orig_ind[c1] = i * nCols + j; + c1++; + } + } + } + + CV_LOG_INFO(NULL, "ALPHAMAT: Total number of unknown pixels : " << c1); +} + +static +void kdtree_intraU(Mat& img, Mat& tmap, my_vector_of_vectors_t& indm, my_vector_of_vectors_t& samples, std::vector& orig_ind) +{ + // Generate feature vectors for intra U: + generateFVectorIntraU(samples, img, tmap, orig_ind); + + typedef KDTreeVectorOfVectorsAdaptor my_kd_tree_t; + my_kd_tree_t mat_index(ALPHAMAT_DIM /*dim*/, samples, 10 /* max leaf */); + mat_index.index->buildIndex(); + // do a knn search with ku = 5 + const size_t num_results = 5 + 1; + + int N = samples.size(); // no. of unknown samples + + std::vector ret_indexes(num_results); + std::vector out_dists_sqr(num_results); + nanoflann::KNNResultSet resultSet(num_results); + + indm.resize(N); + for (int i = 0; i < N; i++) + { + resultSet.init(&ret_indexes[0], &out_dists_sqr[0]); + mat_index.index->findNeighbors(resultSet, &samples[i][0], nanoflann::SearchParams(10)); + + indm[i].resize(num_results - 1); + for (std::size_t j = 1; j < num_results; j++) + { + indm[i][j - 1] = ret_indexes[j]; + } + } +} + +static +double l1norm(std::vector& x, std::vector& y) +{ + double sum = 0; + for (int i = 0; i < ALPHAMAT_DIM; i++) + sum += abs(x[i] - y[i]); + return sum / ALPHAMAT_DIM; +} + +static +void intraU(Mat& img, my_vector_of_vectors_t& indm, my_vector_of_vectors_t& samples, + std::vector& orig_ind, SparseMatrix& Wuu, SparseMatrix& Duu) +{ + // input: indm, samples + int n = indm.size(); // num of unknown samples + CV_LOG_INFO(NULL, "ALPHAMAT: num of unknown samples, n : " << n); + + int i, j, nbr_ind; + for (i = 0; i < n; i++) + { + samples[i][3] *= 1 / 100; + samples[i][4] *= 1 / 100; + } + + my_vector_of_vectors_t weights; + typedef Triplet T; + std::vector triplets, td; + + double weight; + for (i = 0; i < n; i++) + { + int num_nbr = indm[i].size(); + int cMaj_i = findColMajorInd(orig_ind[i], img.rows, img.cols); + for (j = 0; j < num_nbr; j++) + { + nbr_ind = indm[i][j]; + int cMaj_nbr_j = findColMajorInd(orig_ind[nbr_ind], img.rows, img.cols); + weight = max(1 - l1norm(samples[i], samples[j]), 0.0); + + triplets.push_back(T(cMaj_i, cMaj_nbr_j, weight / 2)); + td.push_back(T(cMaj_i, cMaj_i, weight / 2)); + + triplets.push_back(T(cMaj_nbr_j, cMaj_i, weight / 2)); + td.push_back(T(cMaj_nbr_j, cMaj_nbr_j, weight / 2)); + } + } + + Wuu.setFromTriplets(triplets.begin(), triplets.end()); + Duu.setFromTriplets(td.begin(), td.end()); +} + +void UU(Mat& image, Mat& tmap, SparseMatrix& Wuu, SparseMatrix& Duu) +{ + my_vector_of_vectors_t samples, indm; + std::vector orig_ind; + + kdtree_intraU(image, tmap, indm, samples, orig_ind); + intraU(image, indm, samples, orig_ind, Wuu, Duu); + CV_LOG_INFO(NULL, "ALPHAMAT: Intra U Done"); +} + +}} // namespace cv::alphamat diff --git a/modules/alphamat/src/intraU.hpp b/modules/alphamat/src/intraU.hpp new file mode 100644 index 00000000000..fdd7dcf639f --- /dev/null +++ b/modules/alphamat/src/intraU.hpp @@ -0,0 +1,23 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +#ifndef __OPENCV_ALPHAMAT_INTRAU_H__ +#define __OPENCV_ALPHAMAT_INTRAU_H__ + +namespace cv { namespace alphamat { + +const int ALPHAMAT_DIM = 5; // dimension of feature vectors + +using namespace Eigen; +using namespace nanoflann; + +typedef std::vector> my_vector_of_vectors_t; + +int findColMajorInd(int rowMajorInd, int nRows, int nCols); + +void UU(Mat& image, Mat& tmap, SparseMatrix& Wuu, SparseMatrix& Duu); + +}} // namespace + +#endif diff --git a/modules/alphamat/src/local_info.cpp b/modules/alphamat/src/local_info.cpp new file mode 100644 index 00000000000..5460e864351 --- /dev/null +++ b/modules/alphamat/src/local_info.cpp @@ -0,0 +1,153 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +// #ifndef local_info +// #define local_info + +#include "precomp.hpp" +#include "local_info.hpp" + +namespace cv { namespace alphamat { + +void local_info(Mat& img, Mat& tmap, SparseMatrix& Wl, SparseMatrix& Dl) +{ + float eps = 0.000001; + int win_size = 1; + + int nRows = img.rows; + int nCols = img.cols; + int N = img.rows * img.cols; + Mat unk_img = Mat::zeros(cv::Size(nCols, nRows), CV_32FC1); + + for (int i = 0; i < nRows; ++i) + { + for (int j = 0; j < nCols; ++j) + { + uchar pix = tmap.at(i, j); + if (pix == 128) // collection of unknown pixels samples + { + unk_img.at(i, j) = 255; + } + } + } + + Mat element = getStructuringElement(MORPH_RECT, Size(2 * win_size + 1, 2 * win_size + 1)); + /// Apply the dilation operation + Mat dilation_dst = unk_img.clone(); + //dilate(unk_img, dilation_dst, element); + + int num_win = (win_size * 2 + 1) * (win_size * 2 + 1); // number of pixels in window + typedef Triplet T; + std::vector triplets, td, tl; + int neighInd[9]; + int i, j; + for (j = win_size; j < nCols - win_size; j++) + { + for (i = win_size; i < nRows - win_size; i++) + { + uchar pix = tmap.at(i, j); + //std::cout << i+j*nRows << " --> " << pix << std::endl; + if (pix != 128) + continue; + // extract the window out of image + Mat win = img.rowRange(i - win_size, i + win_size + 1); + win = win.colRange(j - win_size, j + win_size + 1); + Mat win_ravel = Mat::zeros(9, 3, CV_64F); // doubt ?? + double sum1 = 0; + double sum2 = 0; + double sum3 = 0; + + int c = 0; + for (int q = -1; q <= 1; q++) + { + for (int p = -1; p <= 1; p++) + { + neighInd[c] = (j + q) * nRows + (i + p); // column major + c++; + } + } + + c = 0; + //parsing column major way in the window + for (int q = 0; q < win_size * 2 + 1; q++) + { + for (int p = 0; p < win_size * 2 + 1; p++) + { + win_ravel.at(c, 0) = win.at(p, q)[0] / 255.0; + win_ravel.at(c, 1) = win.at(p, q)[1] / 255.0; + win_ravel.at(c, 2) = win.at(p, q)[2] / 255.0; + sum1 += win.at(p, q)[0] / 255.0; + sum2 += win.at(p, q)[1] / 255.0; + sum3 += win.at(p, q)[2] / 255.0; + c++; + } + } + win = win_ravel; + Mat win_mean = Mat::zeros(1, 3, CV_64F); + win_mean.at(0, 0) = sum1 / num_win; + win_mean.at(0, 1) = sum2 / num_win; + win_mean.at(0, 2) = sum3 / num_win; + + // calculate the covariance matrix + Mat covariance = (win.t() * win / num_win) - (win_mean.t() * win_mean); + + Mat I = Mat::eye(img.channels(), img.channels(), CV_64F); + Mat I1 = (covariance + (eps / num_win) * I); + Mat I1_inv = I1.inv(); + + Mat X = win - repeat(win_mean, num_win, 1); + Mat vals = (1 + X * I1_inv * X.t()) / num_win; + + for (int q = 0; q < num_win; q++) + { + for (int p = 0; p < num_win; p++) + { + triplets.push_back(T(neighInd[p], neighInd[q], vals.at(p, q))); + } + } + } + } + + std::vector tsp; + SparseMatrix W(N, N), Wsp(N, N); + W.setFromTriplets(triplets.begin(), triplets.end()); + + SparseMatrix Wt = W.transpose(); + SparseMatrix Ws = Wt + W; + W = Ws; + + for (int k = 0; k < W.outerSize(); ++k) + { + double sumCol = 0; + for (SparseMatrix::InnerIterator it(W, k); it; ++it) + { + sumCol += it.value(); + } + if (sumCol < 0.05) + sumCol = 1; + tsp.push_back(T(k, k, 1 / sumCol)); + } + Wsp.setFromTriplets(tsp.begin(), tsp.end()); + + Wl = Wsp * W; // For normalization + //Wl = W; // No normalization + + SparseMatrix Wlt = Wl.transpose(); + + for (int k = 0; k < Wlt.outerSize(); ++k) + { + double sumarr = 0; + for (SparseMatrix::InnerIterator it(Wlt, k); it; ++it) + sumarr += it.value(); + td.push_back(T(k, k, sumarr)); + } + + Dl.setFromTriplets(td.begin(), td.end()); + + CV_LOG_INFO(NULL, "ALPHAMAT: local_info DONE"); +} + +}} // namespace cv::alphamat + +// #endif diff --git a/modules/alphamat/src/local_info.hpp b/modules/alphamat/src/local_info.hpp new file mode 100644 index 00000000000..178add2e579 --- /dev/null +++ b/modules/alphamat/src/local_info.hpp @@ -0,0 +1,17 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +#ifndef __OPENCV_ALPHAMAT_LOCAL_INFO_H__ +#define __OPENCV_ALPHAMAT_LOCAL_INFO_H__ + + +namespace cv { namespace alphamat { + +using namespace Eigen; + +void local_info(Mat& img, Mat& tmap, SparseMatrix& Wl, SparseMatrix& Dl); + +}} // namespace + +#endif diff --git a/modules/alphamat/src/precomp.hpp b/modules/alphamat/src/precomp.hpp new file mode 100644 index 00000000000..e043d813ded --- /dev/null +++ b/modules/alphamat/src/precomp.hpp @@ -0,0 +1,31 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +#ifndef __OPENCV_PRECOMP_H__ +#define __OPENCV_PRECOMP_H__ + +#include +#include +#include + +#include +#include +#include + +#include + +#include "3rdparty/nanoflann.hpp" +#include "3rdparty/KDTreeVectorOfVectorsAdaptor.h" + +#ifdef HAVE_EIGEN +#include +#include +#include +#endif + +#include "intraU.hpp" +#include "cm.hpp" +#include "local_info.hpp" + +#endif diff --git a/modules/alphamat/tutorials/alphamat_tutorial.markdown b/modules/alphamat/tutorials/alphamat_tutorial.markdown new file mode 100644 index 00000000000..03cd329f5f2 --- /dev/null +++ b/modules/alphamat/tutorials/alphamat_tutorial.markdown @@ -0,0 +1,53 @@ +Information Flow Alpha Matting {#tutorial_alphamat} +============================ + +This project was part of Google Summer of Code 2019. + +*Student:* Muskaan Kularia + +*Mentor:* Sunita Nayak + +Alphamatting is the problem of extracting the foreground from an image. The extracted foreground can be used for further operations like changing the background in an image. + +Given an input image and its corresponding trimap, we try to extract the foreground from the background. Following is an example: + +Input Image: ![](samples/input_images/plant.jpg) +Input Trimap: ![](samples/trimaps/plant.png) +Output alpha Matte: ![](samples/output_mattes/plant_result.jpg) + +This project is implementation of @cite aksoy2017designing . It required implementation of parts of other papers [2,3,4]. + +# Building + +This module uses the Eigen package. + +Build the sample code of the alphamat module using the following two cmake commands run inside the build folder: +``` +cmake -DOPENCV_EXTRA_MODULES_PATH= -DBUILD_EXAMPLES=ON .. + +cmake --build . --config Release --target example_alphamat_information_flow_matting +``` +Please refer to OpenCV building tutorials for further details, if needed. + +# Testing + +The built target can be tested as follows: +``` +example_alphamat_information_flow_matting -img= -tri= -out= +``` +# Source Code of the sample + +@includelineno alphamat/samples/information_flow_matting.cpp + + +# References + +[1] Yagiz Aksoy, Tunc Ozan Aydin, Marc Pollefeys, "[Designing Effective Inter-Pixel Information Flow for Natural Image Matting](http://people.inf.ethz.ch/aksoyy/ifm/)", CVPR, 2017. + +[2] Roweis, Sam T., and Lawrence K. Saul. "[Nonlinear dimensionality reduction by locally linear embedding](https://science.sciencemag.org/content/290/5500/2323)" Science 290.5500 (2000): 2323-2326. + +[3] Anat Levin, Dani Lischinski, Yair Weiss, "[A Closed Form Solution to Natural Image Matting](https://www.researchgate.net/publication/5764820_A_Closed-Form_Solution_to_Natural_Image_Matting)", IEEE TPAMI, 2008. + +[4] Qifeng Chen, Dingzeyu Li, Chi-Keung Tang, "[KNN Matting](http://dingzeyu.li/files/knn-matting-tpami.pdf)", IEEE TPAMI, 2013. + +[5] Yagiz Aksoy, "[Affinity Based Matting Toolbox](https://github.com/yaksoy/AffinityBasedMattingToolbox)".