You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: modules/text/README.md
+3-3Lines changed: 3 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -12,7 +12,7 @@ Here are instructions on how to install Tesseract on your machine (Linux or Mac;
12
12
Tesseract installation instruction (Linux, Mac)
13
13
-----------------------------------------------
14
14
15
-
0. Linux users may try to install tesseract-3.03-rc1 (or later) and leptonica-1.70 (or later) with the corresponding developement packages using their package manager. Mac users may try brew. The instructions below are for those who wants to build tesseract from source.
15
+
0. Linux users may try to install tesseract-3.03-rc1 (or later) and leptonica-1.70 (or later) with the corresponding development packages using their package manager. Mac users may try brew. The instructions below are for those who wants to build tesseract from source.
16
16
17
17
1. download leptonica 1.70 tarball (helper image processing library, used by tesseract. Later versions might work too):
static Ptr<OCRHMMDecoder> create(const Ptr<OCRHMMDecoder::ClassifierCallback> classifier,// The character classifier with built in feature extractor
292
-
const std::string& vocabulary, // The language vocabulary (chars when ascii english text)
292
+
const std::string& vocabulary, // The language vocabulary (chars when ASCII English text)
293
293
// size() must be equal to the number of classes
294
294
InputArray transition_probabilities_table, // Table with transition probabilities between character pairs
295
-
// cols == rows == vocabulari.size()
295
+
// cols == rows == vocabulary.size()
296
296
InputArray emission_probabilities_table, // Table with observation emission probabilities
297
-
// cols == rows == vocabulari.size()
297
+
// cols == rows == vocabulary.size()
298
298
decoder_mode mode = OCR_DECODER_VITERBI); // HMM Decoding algorithm (only Viterbi for the moment)
299
299
300
300
CV_WRAP static Ptr<OCRHMMDecoder> create(const Ptr<OCRHMMDecoder::ClassifierCallback> classifier,// The character classifier with built in feature extractor
301
-
const String& vocabulary, // The language vocabulary (chars when ascii english text)
301
+
const String& vocabulary, // The language vocabulary (chars when ASCII English text)
302
302
// size() must be equal to the number of classes
303
303
InputArray transition_probabilities_table, // Table with transition probabilities between character pairs
304
-
// cols == rows == vocabulari.size()
304
+
// cols == rows == vocabulary.size()
305
305
InputArray emission_probabilities_table, // Table with observation emission probabilities
306
-
// cols == rows == vocabulari.size()
306
+
// cols == rows == vocabulary.size()
307
307
int mode = OCR_DECODER_VITERBI); // HMM Decoding algorithm (only Viterbi for the moment)
308
308
309
309
/** @brief Creates an instance of the OCRHMMDecoder class. Loads and initializes HMMDecoder from the specified path
@@ -312,12 +312,12 @@ class CV_EXPORTS_W OCRHMMDecoder : public BaseOCR
const String& vocabulary, // The language vocabulary (chars when ascii english text)
315
+
const String& vocabulary, // The language vocabulary (chars when ASCII English text)
316
316
// size() must be equal to the number of classes
317
317
InputArray transition_probabilities_table, // Table with transition probabilities between character pairs
318
-
// cols == rows == vocabulari.size()
318
+
// cols == rows == vocabulary.size()
319
319
InputArray emission_probabilities_table, // Table with observation emission probabilities
320
-
// cols == rows == vocabulari.size()
320
+
// cols == rows == vocabulary.size()
321
321
int mode = OCR_DECODER_VITERBI, // HMM Decoding algorithm (only Viterbi for the moment)
322
322
323
323
int classifier = OCR_KNN_CLASSIFIER); // The character classifier type
@@ -371,7 +371,7 @@ CV_EXPORTS_W Ptr<OCRHMMDecoder::ClassifierCallback> loadOCRHMMClassifier(const S
371
371
372
372
/** @brief Utility function to create a tailored language model transitions table from a given list of words (lexicon).
373
373
*
374
-
* @param vocabulary The language vocabulary (chars when ascii english text).
374
+
* @param vocabulary The language vocabulary (chars when ASCII English text).
375
375
*
376
376
* @param lexicon The list of words that are expected to be found in a particular image.
377
377
*
@@ -466,7 +466,7 @@ class CV_EXPORTS_W OCRBeamSearchDecoder : public BaseOCR
466
466
467
467
@param classifier The character classifier with built in feature extractor.
468
468
469
-
@param vocabulary The language vocabulary (chars when ascii english text). vocabulary.size()
469
+
@param vocabulary The language vocabulary (chars when ASCII English text). vocabulary.size()
470
470
must be equal to the number of classes of the classifier.
471
471
472
472
@param transition_probabilities_table Table with transition probabilities between character
@@ -481,22 +481,22 @@ class CV_EXPORTS_W OCRBeamSearchDecoder : public BaseOCR
481
481
@param beam_size Size of the beam in Beam Search algorithm.
482
482
*/
483
483
static Ptr<OCRBeamSearchDecoder> create(const Ptr<OCRBeamSearchDecoder::ClassifierCallback> classifier,// The character classifier with built in feature extractor
484
-
const std::string& vocabulary, // The language vocabulary (chars when ascii english text)
484
+
const std::string& vocabulary, // The language vocabulary (chars when ASCII English text)
485
485
// size() must be equal to the number of classes
486
486
InputArray transition_probabilities_table, // Table with transition probabilities between character pairs
487
-
// cols == rows == vocabulari.size()
487
+
// cols == rows == vocabulary.size()
488
488
InputArray emission_probabilities_table, // Table with observation emission probabilities
489
-
// cols == rows == vocabulari.size()
489
+
// cols == rows == vocabulary.size()
490
490
decoder_mode mode = OCR_DECODER_VITERBI, // HMM Decoding algorithm (only Viterbi for the moment)
491
491
int beam_size = 500); // Size of the beam in Beam Search algorithm
492
492
493
493
CV_WRAP static Ptr<OCRBeamSearchDecoder> create(const Ptr<OCRBeamSearchDecoder::ClassifierCallback> classifier, // The character classifier with built in feature extractor
494
-
const String& vocabulary, // The language vocabulary (chars when ascii english text)
494
+
const String& vocabulary, // The language vocabulary (chars when ASCII English text)
495
495
// size() must be equal to the number of classes
496
496
InputArray transition_probabilities_table, // Table with transition probabilities between character pairs
497
-
// cols == rows == vocabulari.size()
497
+
// cols == rows == vocabulary.size()
498
498
InputArray emission_probabilities_table, // Table with observation emission probabilities
499
-
// cols == rows == vocabulari.size()
499
+
// cols == rows == vocabulary.size()
500
500
int mode = OCR_DECODER_VITERBI, // HMM Decoding algorithm (only Viterbi for the moment)
501
501
int beam_size = 500); // Size of the beam in Beam Search algorithm
502
502
@@ -506,12 +506,12 @@ class CV_EXPORTS_W OCRBeamSearchDecoder : public BaseOCR
506
506
507
507
*/
508
508
CV_WRAP static Ptr<OCRBeamSearchDecoder> create(const String& filename, // The character classifier file
509
-
const String& vocabulary, // The language vocabulary (chars when ascii english text)
509
+
const String& vocabulary, // The language vocabulary (chars when ASCII English text)
510
510
// size() must be equal to the number of classes
511
511
InputArray transition_probabilities_table, // Table with transition probabilities between character pairs
512
-
// cols == rows == vocabulari.size()
512
+
// cols == rows == vocabulary.size()
513
513
InputArray emission_probabilities_table, // Table with observation emission probabilities
514
-
// cols == rows == vocabulari.size()
514
+
// cols == rows == vocabulary.size()
515
515
int mode = OCR_DECODER_VITERBI, // HMM Decoding algorithm (only Viterbi for the moment)
0 commit comments