|
| 1 | +function [OMNISol,bilevelMILPProblem] = OMNI(model, selectedRxnList, options, constrOpt, measOpt, prevSolutions, verbFlag) |
| 2 | +% |
| 3 | +%% ***********************NOT WORKING************************************** |
| 4 | +% |
| 5 | + |
| 6 | +%function [OMNISol,bilevelMILPProblem] = OMNI(model,selectedRxnList,options,constrOpt,prevSolutions,verbFlag,solutionFileNameTmp) |
| 7 | + |
| 8 | +%OMNI Run OMNI in the most general form |
| 9 | +% |
| 10 | +% OMNI(model,selectedRxnList,options,constrOpt,prevSolutions,verbFlag,solutionFileName) |
| 11 | +% |
| 12 | +%INPUTS |
| 13 | +% model Structure containing all necessary variables to |
| 14 | +% describe a stoichiometric model |
| 15 | +% rxns Rxns in the model |
| 16 | +% mets Metabolites in the model |
| 17 | +% S Stoichiometric matrix (sparse) |
| 18 | +% b RHS of Sv = b (usually zeros) |
| 19 | +% c Objective coefficients |
| 20 | +% lb Lower bounds for fluxes |
| 21 | +% ub Upper bounds for fluxes |
| 22 | +% rev Reversibility of fluxes |
| 23 | +% selectedRxnList List of reactions that can be knocked-out in OMNI |
| 24 | +% options OMNI options |
| 25 | +% numDel # of bottlenecks |
| 26 | +% numDelSense Direction of # of bottleneck constraint (G/E/L) |
| 27 | +% vMax Max flux |
| 28 | +% solveOMNI Solve problem within Matlab |
| 29 | +% createGams Create GAMS input file |
| 30 | +% gamsFile GAMS input file name |
| 31 | +% constrOpt Explicitly constrained reaction options |
| 32 | +% rxnList Reaction list |
| 33 | +% values Values for constrained reactions |
| 34 | +% sense Constraint senses for constrained reactions |
| 35 | +% (G/E/L) |
| 36 | +% measOpt Measured flux options |
| 37 | +% rxnSel Names of measured reactions |
| 38 | +% values Flux values of measured reactions |
| 39 | +% weights Weights for measured fluxes |
| 40 | +% |
| 41 | +%OPTIONAL INPUTS |
| 42 | +% prevSolutions Previous solutions |
| 43 | +% verbFlag Verbose flag |
| 44 | +% solutionFileName File name for storing temporary solutions |
| 45 | +% |
| 46 | +%OUTPUTS |
| 47 | +% OMNISol OMNI solution structure |
| 48 | +% bilevelMILPProblem bi-level MILP problem structure used |
| 49 | +% |
| 50 | +% Markus Herrgard 3/28/05 |
| 51 | + |
| 52 | +% Set these for MILP callbacks |
| 53 | +global MILPproblemType; |
| 54 | +global selectedRxnIndIrrev; |
| 55 | +%global rxnList; |
| 56 | +global irrev2rev; |
| 57 | +%global solutionFileName; |
| 58 | +%global biomassRxnID; |
| 59 | +%global OMNIKOrxnList; |
| 60 | +%global OMNIObjective; |
| 61 | +%global OMNIGrowth; |
| 62 | +%global solID; |
| 63 | + |
| 64 | +if (nargin < 5) |
| 65 | + prevSolutions = []; |
| 66 | +end |
| 67 | +if (nargin < 6) |
| 68 | + verbFlag = false; |
| 69 | +end |
| 70 | +% if (nargin < 7) |
| 71 | +% solutionFileName = 'OMNISolutions.mat'; |
| 72 | +% else |
| 73 | +% solutionFileName = solutionFileNameTmp; |
| 74 | +% end |
| 75 | + |
| 76 | +% Convert to irreversible rxns |
| 77 | +[modelIrrev,matchRev,rev2irrev,irrev2rev] = convertToIrreversible(model); |
| 78 | + |
| 79 | +% Create the index of the previous KO's suggested by OMNI to avoid obtaining the same |
| 80 | +% solution again |
| 81 | +selPrevSolIrrev = []; |
| 82 | +for i = 1:size(prevSolutions,2) |
| 83 | + prevSolRxnList = model.rxns(prevSolutions(:,i)==1); |
| 84 | + selPrevSol = ismember(model.rxns,prevSolRxnList); |
| 85 | + selPrevSolIrrev(:,i) = selPrevSol(irrev2rev); |
| 86 | +end |
| 87 | + |
| 88 | +[nMets,nRxns] = size(modelIrrev.S); |
| 89 | + |
| 90 | +% Create matchings for reversible reactions in the set selected for KOs |
| 91 | +% This is to ensure that both directions of the reaction are knocked out |
| 92 | +selSelectedRxn = ismember(model.rxns,selectedRxnList); |
| 93 | +selSelectedRxnIrrev = selSelectedRxn(irrev2rev); |
| 94 | +selectedRxnIndIrrev = find(selSelectedRxnIrrev); |
| 95 | +cnt = 0; |
| 96 | +%prevRxnID = -10; |
| 97 | +nSelected = length(selectedRxnIndIrrev); |
| 98 | +selRxnCnt = 1; |
| 99 | +while selRxnCnt <= nSelected |
| 100 | + rxnID = selectedRxnIndIrrev(selRxnCnt); |
| 101 | + if (matchRev(rxnID)>0) |
| 102 | + cnt = cnt + 1; |
| 103 | + selectedRxnMatch(cnt,1) = selRxnCnt; |
| 104 | + selectedRxnMatch(cnt,2) = selRxnCnt+1; |
| 105 | + selRxnCnt = selRxnCnt + 1; |
| 106 | + end |
| 107 | + selRxnCnt = selRxnCnt + 1; |
| 108 | +end |
| 109 | + |
| 110 | +% Set inner constraints for the LP |
| 111 | +constrOptIrrev = setConstraintsIrrevModel(constrOpt,model,modelIrrev,rev2irrev); |
| 112 | +% constrOptIrrev = model; |
| 113 | +% constrOptIrrev = []; |
| 114 | + |
| 115 | +% Set objectives for linear and integer parts |
| 116 | +cLinear = zeros(nRxns,1); |
| 117 | +cInteger = zeros(sum(selSelectedRxnIrrev),1); |
| 118 | + |
| 119 | +% Set the correct objective coefficient (not necessary for OMNI) |
| 120 | +% targetRxnID = find(ismember(model.rxns,options.targetRxn)); |
| 121 | +% targetRxnIDirrev = rev2irrev{targetRxnID}(1); |
| 122 | +% cLinear(targetRxnIDirrev) = 1; |
| 123 | + |
| 124 | +% Set measured reaction in objective |
| 125 | +sel_meas_rxn = measOpt.rxnSel'; |
| 126 | +b_meas_rxn = measOpt.values'; |
| 127 | +wt_meas_rxn = measOpt.weights'; |
| 128 | +n_m = length(sel_meas_rxn); |
| 129 | + |
| 130 | +% Create selection vector in the decoupled representation |
| 131 | +% This is to ensure that the objective function for measured reversible |
| 132 | +% reactions is constructed correctly |
| 133 | +sel_m = zeros(nRxns,1); |
| 134 | +ord_ir = []; |
| 135 | +b_meas_tmp = []; |
| 136 | +wt_meas_tmp = []; |
| 137 | +for i = 1:n_m |
| 138 | + rxn_name = sel_meas_rxn{i}; |
| 139 | + rxn_id = find(strcmp(model.rxns,rxn_name)); |
| 140 | + if (~isempty(rxn_id)) % Protect against measured fluxes that are not part of the model |
| 141 | + b_meas_tmp = [b_meas_tmp;b_meas_rxn(i)]; |
| 142 | + wt_meas_tmp = [wt_meas_tmp;wt_meas_rxn(i)]; |
| 143 | + % Reversible rxns |
| 144 | + if (model.rev(rxn_id)) |
| 145 | + rxn_id_ir = rev2irrev{rxn_id}(1); |
| 146 | + sel_m(rxn_id_ir) = 1; |
| 147 | + sel_m(rxn_id_ir+1) = -1; |
| 148 | + else |
| 149 | + % Irrev rxns |
| 150 | + rxn_id_ir = rev2irrev{rxn_id}; |
| 151 | + sel_m(rxn_id_ir) = 1; |
| 152 | + end |
| 153 | + % Figure out ordering in decoupled representation |
| 154 | + ord_ir = [ord_ir rxn_id_ir]; |
| 155 | + end |
| 156 | +end |
| 157 | +% Get ordering indices |
| 158 | +[tmp,ord_ind] = sort(ord_ir); |
| 159 | +% Reorder or create weights |
| 160 | +if (sum(wt_meas_rxn) == 0) |
| 161 | + measOpts.weights = ones(n_m,1); |
| 162 | +else |
| 163 | + measOpts.weights = wt_meas_tmp(ord_ind); |
| 164 | +end |
| 165 | +% Reorder measured flux values |
| 166 | +measOpts.values = b_meas_tmp(ord_ind); |
| 167 | + |
| 168 | +measOpts.rxnSel = sel_m; |
| 169 | + |
| 170 | +% Create the constraint matrices for the bilevel MILP |
| 171 | +bilevelMILPProblem = createBilevelMILPproblem(modelIrrev,cLinear,cInteger,selSelectedRxnIrrev,... |
| 172 | + selectedRxnMatch,constrOptIrrev,measOpts,options,selPrevSolIrrev); |
| 173 | + |
| 174 | +% Initial guess (random) |
| 175 | +%bilevelMILPProblem.x0 = round(rand(length(bilevelMILPProblem.c),1)); |
| 176 | +if isfield(options,'initSolution') |
| 177 | + if (length(options.initSolution) > options.numDel | ~all(ismember(options.initSolution,selectedRxnList))) |
| 178 | + warning('Initial solution not valid - starting from a random initial solution') |
| 179 | + bilevelMILPProblem.x0 = []; |
| 180 | + else |
| 181 | + % Set initial integer solution |
| 182 | + selInitRxn = ismember(model.rxns,options.initSolution); |
| 183 | + selInitRxnIrrev = selInitRxn(irrev2rev); |
| 184 | + initRxnIndIrrev = find(selInitRxnIrrev); |
| 185 | + initIntegerSol = ~ismember(selectedRxnIndIrrev,initRxnIndIrrev); |
| 186 | + selInteger = bilevelMILPProblem.vartype == 'B'; |
| 187 | + [nConstr,nVar] = size(bilevelMILPProblem.A); |
| 188 | + bilevelMILPProblem.x0 = nan(nVar,1); |
| 189 | + bilevelMILPProblem.x0(selInteger) = initIntegerSol; |
| 190 | + |
| 191 | +% LPproblem.b = bilevelMILPProblem.b - bilevelMILPProblem.A(:,selInteger)*initIntegerSol; |
| 192 | +% LPproblem.A = bilevelMILPProblem.A(:,bilevelMILPProblem.vartype == 'C'); |
| 193 | +% LPproblem.c = bilevelMILPProblem.c(bilevelMILPProblem.vartype == 'C'); |
| 194 | +% LPproblem.lb = bilevelMILPProblem.lb(bilevelMILPProblem.vartype == 'C'); |
| 195 | +% LPproblem.ub = bilevelMILPProblem.ub(bilevelMILPProblem.vartype == 'C'); |
| 196 | +% LPproblem.osense = -1; |
| 197 | +% LPproblem.csense = bilevelMILPProblem.csense; |
| 198 | +% LPsol = solveCobraLP(LPproblem); |
| 199 | +% |
| 200 | +% bilevelMILPProblem.x0(~selInteger) = LPsol.full; |
| 201 | + end |
| 202 | +else |
| 203 | + bilevelMILPProblem.x0 = []; |
| 204 | +end |
| 205 | + |
| 206 | +% Minimize |
| 207 | +bilevelMILPProblem.osense = 1; |
| 208 | + |
| 209 | +if (verbFlag) |
| 210 | + [nConstr,nVar] = size(bilevelMILPProblem.A); |
| 211 | + nInt = length(bilevelMILPProblem.intSolInd); |
| 212 | + fprintf('MILP problem with %d constraints %d integer variables and %d continuous variables\n',... |
| 213 | + nConstr,nInt,nVar); |
| 214 | +end |
| 215 | + |
| 216 | +bilevelMILPProblem.model = modelIrrev; |
| 217 | + |
| 218 | +% Set these for CPLEX callbacks |
| 219 | +MILPproblemType = 'OMNI'; |
| 220 | +% rxnList = model.rxns; |
| 221 | +% biomassRxnID = find(modelIrrev.c==1); |
| 222 | +% solID = 0; |
| 223 | +% OMNIObjective = []; |
| 224 | +% OMNIGrowth = []; |
| 225 | +% OMNIKOrxnList = {}; |
| 226 | + |
| 227 | +% Solve problem |
| 228 | +if (options.solveOMNI) |
| 229 | + OMNISol = solveCobraMILP(bilevelMILPProblem,'printLevel',0); |
| 230 | + if OMNISol.stat~=0 |
| 231 | + if (~isempty(OMNISol.cont)) |
| 232 | + OMNISol.fluxes = convertIrrevFluxDistribution(OMNISol.cont(1:length(matchRev)),matchRev); |
| 233 | + end |
| 234 | + if (~isempty(OMNISol.int)) |
| 235 | + % Figure out the KO reactions |
| 236 | + OMNIRxnInd = selectedRxnIndIrrev(OMNISol.int < 1e-4); |
| 237 | + OMNISol.kos = model.rxns(unique(irrev2rev(OMNIRxnInd))); |
| 238 | + |
| 239 | +% %sanity check |
| 240 | +% modelTemp = changeRxnBounds(model,OMNISol.kos,0,'b'); |
| 241 | +% solTemp = optimizeCbModel(modelTemp); |
| 242 | +% if abs(solTemp.f - OMNISol.obj) > 1e-4 |
| 243 | +% [OMNISol,bilevelMILPProblem] = OMNI(model, selectedRxnList, options, constrOpt, measOpt, prevSolutions, verbFlag); |
| 244 | +% previous_solutions(:,end+1) = zeros(length(model.rxns),1); |
| 245 | +% end |
| 246 | + end |
| 247 | + else |
| 248 | + OMNISol.fluxes=[]; |
| 249 | + OMNISol.kos={}; |
| 250 | + end |
| 251 | +else |
| 252 | + OMNISol.rxnList = {}; |
| 253 | + OMNISol.fluxes = []; |
| 254 | +end |
| 255 | + |
| 256 | + |
| 257 | + |
0 commit comments