Skip to content

Commit 210cc49

Browse files
committed
feat: Fix UHEI/BrainScaleS-2
Changes: * we use BrainScaleS-2 with an hyphen * there are 3 top-level APIs to use it * the number of synapses per ASIC was wrong at some places *
1 parent cf8483e commit 210cc49

File tree

1 file changed

+17
-13
lines changed
  • content/neuromorphic-computing/hardware/brainscales-2-universitat-heidelberg

1 file changed

+17
-13
lines changed
Lines changed: 17 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,49 +1,49 @@
11
---
22
active_product: true
3-
description: "Learn about Universität Heidelberg's neuromorphic hardware: BrainScaleS 2"
3+
description: "Learn about Heidelberg University's neuromorphic hardware: BrainScaleS-2"
44
type: neuromorphic-hardware
55
image: brainscales-2.jpg
66
organization:
77
group_name: null
88
org_logo: heidelberg.jpg
9-
org_name: Universität Heidelberg
9+
org_name: Heidelberg University
1010
org_website: null
1111
product_page_link: https://wiki.ebrains.eu/bin/view/Collabs/neuromorphic/BrainScaleS/
1212
social_media_links:
1313
linkedin: https://www.linkedin.com/company/ebrains-eu/
1414
twitter: https://twitter.com/ebrains_eu
15-
wikipedia: https://wiki.ebrains.eu/bin/view/Collabs/neuromorphic/BrainScaleS/
15+
wikipedia: null
1616
product:
1717
announced_date: 2020-03-26
1818
applications: Edge processing, robotics
1919
chip_type: Mixed-signal
2020
neurons: 512
21-
synapses: 130000
22-
weight_bits: null
21+
synapses: 131072
22+
weight_bits: 6 bits (+ 6 bit mask for structural plasticity)
2323
activation_bits: null
2424
on_chip_learning: true
2525
power: ~1 W
2626
release_year: 2022
2727
release_date: 2022-02-24
28-
software: hxtorch
28+
software: hxtorch, jaxsnn, PyNN.brainscales2, BrainScaleS-2 OS
2929
status:
3030
announced: true
3131
released: true
3232
retired: false
33-
product_name: BrainScaleS 2
33+
product_name: BrainScaleS-2
3434
summary: The BrainScaleS-2 is an accelerated spiking neuromorphic system-on-chip integrating
35-
512 adaptive integrate-and-fire neurons, 212k plastic synapses, embedded processors,
35+
512 adaptive integrate-and-fire neurons, 131k plastic synapses, embedded processors,
3636
and event routing. It enables fast emulation of complex neural dynamics and exploration
3737
of synaptic plasticity rules. The architecture supports training of deep spiking
3838
and non-spiking neural networks using hybrid techniques like surrogate gradients.
39-
title: BrainScaleS 2 - Universität Heidelberg
39+
title: BrainScaleS-2 — Heidelberg University
4040
type: neuromorphic-hardware
4141
---
4242

4343
The BrainScaleS-2 accelerated neuromorphic system is an integrated circuit architecture for emulating biologically-inspired spiking neural networks. It was developed by researchers at the Heidelberg University and collaborators. Key features of the BrainScaleS-2 system include:
4444

4545
## System Architecture
46-
- Single-chip ASIC integrating a custom analog core with 512 neuron circuits, 212k plastic synapses, analog parameter storage, embedded processors for digital control and plasticity, and an event routing network
46+
- Single-chip ASIC integrating a custom analog core with 512 neuron circuits, 131k plastic synapses, analog parameter storage, embedded processors for digital control and plasticity, and an event routing network
4747
- Processor cores run a software stack with a C++ compiler and support hybrid spiking and non-spiking neural network execution
4848
- Capable as a unit of scale for larger multi-chip or wafer-scale systems
4949

@@ -57,9 +57,9 @@ The BrainScaleS-2 accelerated neuromorphic system is an integrated circuit archi
5757
- Massively parallel readout of analog observables enables gradient-based and surrogate gradient optimization approaches
5858

5959
## Applications and Experiments
60-
- Accelerated (1,000-fold compared to biological real time) emulation of complex spiking neuron dynamics, multi-compartment models, and path integration circuits
60+
- Accelerated (1,000-fold compared to biological real time) emulation of complex spiking neural network dynamics, including configurable multi-compartmental cell morphologies
6161
- Exploration of synaptic plasticity models and critical network dynamics at biological timescales
62-
- Training of deep spiking neural networks using surrogate gradient techniques
62+
- Training of deep spiking neural networks using surrogate and exact gradient techniques
6363
- Non-spiking neural network execution leveraging synaptic crossbar for analog matrix multiplication
6464

6565
The accelerated operation and flexible architecture facilitate applications in computational neuroscience research and novel machine learning approaches. The system design serves as a scalable basis for future large-scale neuromorphic computing platforms.
@@ -68,4 +68,8 @@ The accelerated operation and flexible architecture facilitate applications in c
6868

6969
| Date | Title | Authors | Venue/Source |
7070
|------|-------|----------|------------- |
71-
| January 2022 | [The BrainScaleS-2 accelerated neuromorphic system with hybrid plasticity](https://arxiv.org/abs/2201.11063) | Christian Pehle, Sebastian Billaudelle, Benjamin Cramer, Jakob Kaiser, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, Aron Leibfried, Eric Müller, Johannes Schemmel | arXiv |
71+
| April 2024 | [jaxsnn: Event-driven gradient estimation for analog neuromorphic hardware](https://doi.org/10.1109/NICE61972.2024.10548709) | Eric Müller, Moritz Althaus, Elias Arnold, Philipp Spilger, Christian Pehle, Johannes Schemmel | 2024 Neuro-Inspired Computational Elements Conference (NICE) |
72+
| April 2023 | [hxtorch.snn: Machine-learning-inspired Spiking Neural Network Modeling on BrainScaleS-2](https://doi.org/10.1145/3584954.3584993) | Philipp Spilger, Elias Arnold, Luca Blessing, Christian Mauch, Christian Pehle, Eric Müller, Johannes Schemmel | 2023 Neuro-Inspired Computational Elements Conference (NICE) |
73+
| May 2022 | [A Scalable Approach to Modeling on Accelerated Neuromorphic Hardware](https://doi.org/10.3389/fnins.2022.884128) | Eric Müller, Elias Arnold, Oliver Breitwieser, Milena Czierlinski, Arne Emmel, Jakob Kaiser, Christian Mauch, Sebastian Schmitt, Philipp Spilger, Raphael Stock, Yannik Stradmann, Johannes Weis, Andreas Baumbach, Sebastian Billaudelle, Benjamin Cramer, Falk Ebert, Julian Göltz, Joscha Ilmberger, Vitali Karasenko, Mitja Kleider, Aron Leibfried, Christian Pehle, Johannes Schemmel | Frontiers in Neuroscience (Neuromorphic Engineering) |
74+
| February 2022 | [The BrainScaleS-2 accelerated neuromorphic system with hybrid plasticity](https://doi.org/10.3389/fnins.2022.795876) | Christian Pehle, Sebastian Billaudelle, Benjamin Cramer, Jakob Kaiser, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, Aron Leibfried, Eric Müller, Johannes Schemmel | Frontiers in Neuroscience (Neuromorphic Engineering) |
75+
| January 2021 | [hxtorch: PyTorch for BrainScaleS-2 — Perceptrons on Analog Neuromorphic Hardware](https://doi.org/10.1007/978-3-030-66770-2_14) | Philipp Spilger, Eric Müller, Arne Emmel, Aron Leibfried, Christian Mauch, Christian Pehle, Johannes Weis, Oliver Breitwieser, Sebastian Billaudelle, Sebastian Schmitt, Timo C. Wunderlich, Yannik Stradmann, Johannes Schemmel | 2020 International Workshop on IoT, Edge, and Mobile for Embedded Machine Learning (ITEM) |

0 commit comments

Comments
 (0)