Replies: 2 comments 4 replies
-
|
Everything seems to be right, and the loss keeps decreasing over time but way too slowly. A general advice would be to try a larger learning rate. |
Beta Was this translation helpful? Give feedback.
3 replies
-
Beta Was this translation helpful? Give feedback.
1 reply
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment

Uh oh!
There was an error while loading. Please reload this page.
-
Hello, Community Developers.
I'm having some issues training my own text detection model. I would be very grateful if you could bring some advice.
The following is my process:
First, I changed the dataset to the form of the sample in the official document
{'metainfo': {'dataset_type': 'BenetechMakingGraphsAccessible', 'task_name': 'textdet', 'category': [{'id': 0, 'name': 'text'}]}, 'data_list': [{'img_path': '/home/.../**.jpg', 'height': 523, 'width': 320, 'instances': [{'bbox': [45, 5, 411, 34], 'bbox_label': 0, 'polygon': [45, 5, 411, 5, 411, 31, 60, 34], 'text': 'Rural population long-run future projection in Wallis and Futuna', 'ignore': False}, ...], ...], }Then I modified the following configuration:
Modify my data address very name
In this configuration, I set epoch to 120
Finally, I ran the following command
The training result I got
2023/04/03 12:39:41 - mmengine - INFO - ------------------------------------------------------------ System environment: sys.platform: linux Python: 3.7.10 (default, Feb 26 2021, 18:47:35) [GCC 7.3.0] CUDA available: True numpy_random_seed: 443960725 GPU 0,1,2,3,4,5: NVIDIA GeForce RTX 3080 CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 11.1, V11.1.105 GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 PyTorch: 1.9.0 PyTorch compiling details: PyTorch built with: - GCC 7.3 - C++ Version: 201402 - Intel(R) oneAPI Math Kernel Library Version 2021.2-Product Build 20210312 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v2.1.2 (Git Hash 98be7e8afa711dc9b66c8ff3504129cb82013cdb) - OpenMP 201511 (a.k.a. OpenMP 4.5) - NNPACK is enabled - CPU capability usage: AVX2 - CUDA Runtime 11.1 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37 - CuDNN 8.0.5 - Magma 2.5.2 - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.9.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, TorchVision: 0.10.0 OpenCV: 4.7.0 MMEngine: 0.7.0 Runtime environment: cudnn_benchmark: False mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0} dist_cfg: {'backend': 'nccl'} seed: None Distributed launcher: pytorch Distributed training: True GPU number: 6 ------------------------------------------------------------ 2023/04/03 12:39:41 - mmengine - INFO - Config: model = dict( type='DBNet', backbone=dict( type='CLIPResNet', init_cfg=dict( type='Pretrained', checkpoint= 'https://download.openmmlab.com/mmocr/backbone/resnet50-oclip-7ba0c533.pth' )), neck=dict( type='FPNC', in_channels=[256, 512, 1024, 2048], lateral_channels=256, asf_cfg=dict(attention_type='ScaleChannelSpatial')), det_head=dict( type='DBHead', in_channels=256, module_loss=dict(type='DBModuleLoss'), postprocessor=dict( type='DBPostprocessor', text_repr_type='quad', epsilon_ratio=0.002)), data_preprocessor=dict( type='TextDetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32)) train_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_bbox=True, with_polygon=True, with_label=True), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=0.12549019607843137, saturation=0.5), dict( type='ImgAugWrapper', args=[['Fliplr', 0.5], { 'cls': 'Affine', 'rotate': [-10, 10] }, ['Resize', [0.5, 3.0]]]), dict(type='RandomCrop', min_side_ratio=0.1), dict(type='Resize', scale=(640, 640), keep_ratio=True), dict(type='Pad', size=(640, 640)), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape')) ] test_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict(type='Resize', scale=(4068, 1024), keep_ratio=True), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances')) ] default_scope = 'mmocr' env_cfg = dict( cudnn_benchmark=False, mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), dist_cfg=dict(backend='nccl')) randomness = dict(seed=None) default_hooks = dict( timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook', interval=1), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict(type='CheckpointHook', interval=2), sampler_seed=dict(type='DistSamplerSeedHook'), sync_buffer=dict(type='SyncBuffersHook'), visualization=dict( type='VisualizationHook', interval=1, enable=False, show=False, draw_gt=False, draw_pred=False)) log_level = 'INFO' log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True) load_from = None resume = False val_evaluator = dict(type='HmeanIOUMetric') test_evaluator = dict(type='HmeanIOUMetric') vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='TextDetLocalVisualizer', name='visualizer', vis_backends=[dict(type='LocalVisBackend')]) icdar2015_textdet_data_root = '/home/mydata/input/' icdar2015_textdet_train = dict( type='OCRDataset', data_root='/home/mydata/input/', ann_file='ocr_train.json', filter_cfg=dict(filter_empty_gt=True, min_size=16), pipeline=None) icdar2015_textdet_test = dict( type='OCRDataset', data_root='/home/mydata/input/', ann_file='ocr_test.json', test_mode=True, pipeline=None) optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.002, momentum=0.9, weight_decay=0.0001)) train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=120, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') param_scheduler = [ dict(type='LinearLR', end=200, start_factor=0.001), dict(type='PolyLR', power=0.9, eta_min=1e-07, begin=200, end=1200) ] train_list = [ dict( type='OCRDataset', data_root='/home/mydata/input/', ann_file='ocr_train.json', filter_cfg=dict(filter_empty_gt=True, min_size=16), pipeline=None) ] test_list = [ dict( type='OCRDataset', data_root='/home/mydata/input/', ann_file='ocr_test.json', test_mode=True, pipeline=None) ] train_dataloader = dict( batch_size=4, num_workers=16, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='ConcatDataset', datasets=[ dict( type='OCRDataset', data_root='/home/mydata/input/', ann_file='ocr_train.json', filter_cfg=dict(filter_empty_gt=True, min_size=16), pipeline=None) ], pipeline=[ dict( type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_bbox=True, with_polygon=True, with_label=True), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=0.12549019607843137, saturation=0.5), dict( type='ImgAugWrapper', args=[['Fliplr', 0.5], { 'cls': 'Affine', 'rotate': [-10, 10] }, ['Resize', [0.5, 3.0]]]), dict(type='RandomCrop', min_side_ratio=0.1), dict(type='Resize', scale=(640, 640), keep_ratio=True), dict(type='Pad', size=(640, 640)), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape')) ])) val_dataloader = dict( batch_size=4, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='ConcatDataset', datasets=[ dict( type='OCRDataset', data_root='/home/mydata/input/', ann_file='ocr_test.json', test_mode=True, pipeline=None) ], pipeline=[ dict( type='LoadImageFromFile', color_type='color_ignore_orientation'), dict(type='Resize', scale=(4068, 1024), keep_ratio=True), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances')) ])) test_dataloader = dict( batch_size=4, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='ConcatDataset', datasets=[ dict( type='OCRDataset', data_root='/home/mydata/input/', ann_file='ocr_test.json', test_mode=True, pipeline=None) ], pipeline=[ dict( type='LoadImageFromFile', color_type='color_ignore_orientation'), dict(type='Resize', scale=(4068, 1024), keep_ratio=True), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances')) ])) auto_scale_lr = dict(base_batch_size=4) launcher = 'pytorch' work_dir = './work_dirs/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015' 2023/04/03 12:39:43 - mmengine - INFO - Hooks will be executed in the following order: before_run: (VERY_HIGH ) RuntimeInfoHook (BELOW_NORMAL) LoggerHook -------------------- before_train: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (VERY_LOW ) CheckpointHook -------------------- before_train_epoch: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (NORMAL ) DistSamplerSeedHook -------------------- before_train_iter: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook -------------------- after_train_iter: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- after_train_epoch: (NORMAL ) IterTimerHook (NORMAL ) SyncBuffersHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- before_val_epoch: (NORMAL ) IterTimerHook -------------------- before_val_iter: (NORMAL ) IterTimerHook -------------------- after_val_iter: (NORMAL ) IterTimerHook (NORMAL ) VisualizationHook (BELOW_NORMAL) LoggerHook -------------------- after_val_epoch: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- before_test_epoch: (NORMAL ) IterTimerHook -------------------- before_test_iter: (NORMAL ) IterTimerHook -------------------- after_test_iter: (NORMAL ) IterTimerHook (NORMAL ) VisualizationHook (BELOW_NORMAL) LoggerHook -------------------- after_test_epoch: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook -------------------- after_run: (BELOW_NORMAL) LoggerHook -------------------- 2023/04/03 12:39:43 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io 2023/04/03 12:39:43 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future. 2023/04/03 12:39:54 - mmengine - INFO - load model from: https://download.openmmlab.com/mmocr/backbone/resnet50-oclip-7ba0c533.pth 2023/04/03 12:39:54 - mmengine - INFO - Loads checkpoint by http backend from path: https://download.openmmlab.com/mmocr/backbone/resnet50-oclip-7ba0c533.pth Name of parameter - Initialization information .... The value is the same before and after calling `init_weights` of DBNet 2023/04/03 12:39:56 - mmengine - INFO - Checkpoints will be saved to /mmocr/work_dirs/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015. 2023/04/03 12:40:00 - mmengine - INFO - Epoch(train) [1][ 1/2146] lr: 2.0000e-06 eta: 11 days, 21:32:08 time: 3.9917 data_time: 2.1671 memory: 4524 loss: 17.5933 loss_prob: 13.7704 loss_thr: 2.8410 loss_db: 0.9819 2023/04/03 12:40:00 - mmengine - INFO - Epoch(train) [1][ 2/2146] lr: 2.0000e-06 eta: 6 days, 14:32:17 time: 2.2163 data_time: 1.1019 memory: 4729 loss: 17.3339 loss_prob: 13.4220 loss_thr: 2.9319 loss_db: 0.9800 2023/04/03 12:40:01 - mmengine - INFO - Epoch(train) [1][ 3/2146] lr: 2.0000e-06 eta: 4 days, 19:42:40 time: 1.6176 data_time: 0.7355 memory: 4729 loss: 16.4382 loss_prob: 12.5648 loss_thr: 2.9031 loss_db: 0.9703 2023/04/03 12:40:01 - mmengine - INFO - Epoch(train) [1][ 4/2146] lr: 2.0000e-06 eta: 3 days, 21:24:28 time: 1.3058 data_time: 0.5555 memory: 4729 loss: 16.3932 loss_prob: 12.5339 loss_thr: 2.8904 loss_db: 0.9688 2023/04/03 12:40:02 - mmengine - INFO - Epoch(train) [1][ 5/2146] lr: 2.0000e-06 eta: 3 days, 9:00:22 time: 1.1324 data_time: 0.4641 memory: 4729 loss: 16.7636 loss_prob: 12.8642 loss_thr: 2.9285 loss_db: 0.9709 2023/04/03 12:40:02 - mmengine - INFO - Epoch(train) [1][ 6/2146] lr: 2.0000e-06 eta: 3 days, 0:18:45 time: 1.0109 data_time: 0.3872 memory: 4729 loss: 16.8796 loss_prob: 12.9825 loss_thr: 2.9252 loss_db: 0.9719 2023/04/03 12:40:02 - mmengine - INFO - Epoch(train) [1][ 7/2146] lr: 2.0000e-06 eta: 2 days, 18:47:17 time: 0.9337 data_time: 0.3323 memory: 4729 loss: 16.9751 loss_prob: 13.0699 loss_thr: 2.9334 loss_db: 0.9718 2023/04/03 12:40:03 - mmengine - INFO - Epoch(train) [1][ 8/2146] lr: 2.0000e-06 eta: 2 days, 13:50:06 time: 0.8645 data_time: 0.2911 memory: 4729 loss: 16.9655 loss_prob: 13.0505 loss_thr: 2.9429 loss_db: 0.9721 2023/04/03 12:40:03 - mmengine - INFO - Epoch(train) [1][ 9/2146] lr: 2.0000e-06 eta: 2 days, 10:02:16 time: 0.8114 data_time: 0.2591 memory: 4729 loss: 17.0130 loss_prob: 13.0781 loss_thr: 2.9625 loss_db: 0.9724 2023/04/03 12:40:04 - mmengine - INFO - Epoch(train) [1][ 10/2146] lr: 2.0000e-06 eta: 2 days, 7:17:47 time: 0.7730 data_time: 0.2334 memory: 4729 loss: 17.2032 loss_prob: 13.2335 loss_thr: 2.9959 loss_db: 0.9738 2023/04/03 12:40:04 - mmengine - INFO - Epoch(train) [1][ 11/2146] lr: 2.0000e-06 eta: 2 days, 5:00:43 time: 0.4161 data_time: 0.0170 memory: 4729 loss: 17.2217 loss_prob: 13.2229 loss_thr: 3.0248 loss_db: 0.9740 2023/04/03 12:40:04 - mmengine - INFO - Epoch(train) [1][ 12/2146] lr: 2.0000e-06 eta: 2 days, 2:47:12 time: 0.4087 data_time: 0.0136 memory: 4729 loss: 17.2021 loss_prob: 13.2003 loss_thr: 3.0279 loss_db: 0.9739 2023/04/03 12:40:05 - mmengine - INFO - Epoch(train) [1][ 13/2146] lr: 2.0000e-06 eta: 2 days, 1:12:29 time: 0.4090 data_time: 0.0136 memory: 4729 loss: 17.3482 loss_prob: 13.3327 loss_thr: 3.0398 loss_db: 0.9757 2023/04/03 12:40:05 - mmengine - INFO - Epoch(train) [1][ 14/2146] lr: 2.0000e-06 eta: 1 day, 23:34:30 time: 0.4088 data_time: 0.0124 memory: 4729 loss: 17.2537 loss_prob: 13.2340 loss_thr: 3.0445 loss_db: 0.9752 2023/04/03 12:40:06 - mmengine - INFO - Epoch(train) [1][ 15/2146] lr: 2.0000e-06 eta: 1 day, 22:14:03 time: 0.4033 data_time: 0.0028 memory: 4729 loss: 17.0010 loss_prob: 13.0152 loss_thr: 3.0114 loss_db: 0.9743 2023/04/03 12:40:06 - mmengine - INFO - Epoch(train) [1][ 16/2146] lr: 2.0000e-06 eta: 1 day, 21:15:37 time: 0.4059 data_time: 0.0064 memory: 4729 loss: 16.7903 loss_prob: 12.8051 loss_thr: 3.0123 loss_db: 0.9729 2023/04/03 12:40:06 - mmengine - INFO - Epoch(train) [1][ 17/2146] lr: 2.0000e-06 eta: 1 day, 20:37:03 time: 0.4068 data_time: 0.0064 memory: 4729 loss: 16.4949 loss_prob: 12.5287 loss_thr: 2.9957 loss_db: 0.9704 2023/04/03 12:40:07 - mmengine - INFO - Epoch(train) [1][ 18/2146] lr: 2.0000e-06 eta: 1 day, 19:50:29 time: 0.4117 data_time: 0.0101 memory: 4729 loss: 16.4251 loss_prob: 12.4622 loss_thr: 2.9924 loss_db: 0.9706 2023/04/03 12:40:07 - mmengine - INFO - Epoch(train) [1][ 19/2146] lr: 2.0000e-06 eta: 1 day, 19:19:25 time: 0.4206 data_time: 0.0101 memory: 4729 loss: 16.1116 loss_prob: 12.2047 loss_thr: 2.9379 loss_db: 0.9690 2023/04/03 12:40:08 - mmengine - INFO - Epoch(train) [1][ 20/2146] lr: 2.0000e-06 eta: 1 day, 18:34:51 time: 0.4176 data_time: 0.0112 memory: 4729 loss: 15.8800 loss_prob: 12.0030 loss_thr: 2.9089 loss_db: 0.9681 2023/04/03 12:40:08 - mmengine - INFO - Epoch(train) [1][ 21/2146] lr: 2.0000e-06 eta: 1 day, 18:02:13 time: 0.4190 data_time: 0.0211 memory: 4729 loss: 15.5596 loss_prob: 11.7250 loss_thr: 2.8684 loss_db: 0.9662 2023/04/03 12:40:09 - mmengine - INFO - Epoch(train) [1][ 22/2146] lr: 2.0000e-06 eta: 1 day, 17:26:42 time: 0.4227 data_time: 0.0211 memory: 4729 loss: 15.4810 loss_prob: 11.6443 loss_thr: 2.8705 loss_db: 0.9662 2023/04/03 12:40:09 - mmengine - INFO - Epoch(train) [1][ 23/2146] lr: 2.0000e-06 eta: 1 day, 17:01:04 time: 0.4246 data_time: 0.0211 memory: 4729 loss: 15.4489 loss_prob: 11.6112 loss_thr: 2.8707 loss_db: 0.9670 2023/04/03 12:40:09 - mmengine - INFO - Epoch(train) [1][ 24/2146] lr: 2.0000e-06 eta: 1 day, 16:27:45 time: 0.4265 data_time: 0.0211 memory: 4729 loss: 15.4141 loss_prob: 11.5909 loss_thr: 2.8550 loss_db: 0.9683 2023/04/03 12:40:10 - mmengine - INFO - Epoch(train) [1][ 25/2146] lr: 2.0000e-06 eta: 1 day, 15:59:53 time: 0.4285 data_time: 0.0211 memory: 4729 loss: 15.3092 loss_prob: 11.4734 loss_thr: 2.8674 loss_db: 0.9684 2023/04/03 12:40:10 - mmengine - INFO - Epoch(train) [1][ 26/2146] lr: 2.0000e-06 eta: 1 day, 15:38:22 time: 0.4285 data_time: 0.0175 memory: 4729 loss: 15.2319 loss_prob: 11.4158 loss_thr: 2.8467 loss_db: 0.9694 2023/04/03 12:40:11 - mmengine - INFO - Epoch(train) [1][ 27/2146] lr: 2.0000e-06 eta: 1 day, 15:14:28 time: 0.4209 data_time: 0.0175 memory: 4729 loss: 15.2968 loss_prob: 11.4776 loss_thr: 2.8462 loss_db: 0.9730 2023/04/03 12:40:11 - mmengine - INFO - Epoch(train) [1][ 28/2146] lr: 2.0000e-06 eta: 1 day, 14:50:42 time: 0.4174 data_time: 0.0138 memory: 4729 loss: 15.1300 loss_prob: 11.3416 loss_thr: 2.8156 loss_db: 0.9728 2023/04/03 12:40:11 - mmengine - INFO - Epoch(train) [1][ 29/2146] lr: 2.0000e-06 eta: 1 day, 14:27:54 time: 0.4088 data_time: 0.0138 memory: 4729 loss: 15.0930 loss_prob: 11.3071 loss_thr: 2.8124 loss_db: 0.9735 2023/04/03 12:40:12 - mmengine - INFO - Epoch(train) [1][ 30/2146] lr: 2.0000e-06 eta: 1 day, 14:09:02 time: 0.4096 data_time: 0.0128 memory: 4729 loss: 14.9176 loss_prob: 11.1351 loss_thr: 2.8091 loss_db: 0.9734 2023/04/03 12:40:12 - mmengine - INFO - Epoch(train) [1][ 31/2146] lr: 2.0000e-06 eta: 1 day, 13:52:44 time: 0.4076 data_time: 0.0028 memory: 4729 loss: 14.8606 loss_prob: 11.0955 loss_thr: 2.7906 loss_db: 0.9746 2023/04/03 12:40:13 - mmengine - INFO - Epoch(train) [1][ 32/2146] lr: 2.0000e-06 eta: 1 day, 13:41:27 time: 0.4115 data_time: 0.0061 memory: 4729 loss: 14.6614 loss_prob: 10.9282 loss_thr: 2.7597 loss_db: 0.9735 2023/04/03 12:40:13 - mmengine - INFO - Epoch(train) [1][ 33/2146] lr: 2.0000e-06 eta: 1 day, 13:29:28 time: 0.4108 data_time: 0.0061 memory: 4729 loss: 14.4315 loss_prob: 10.7155 loss_thr: 2.7444 loss_db: 0.9716 2023/04/03 12:40:14 - mmengine - INFO - Epoch(train) [1][ 34/2146] lr: 2.0000e-06 eta: 1 day, 13:23:06 time: 0.4195 data_time: 0.0092 memory: 4729 loss: 14.0829 loss_prob: 10.4022 loss_thr: 2.7145 loss_db: 0.9662 2023/04/03 12:40:14 - mmengine - INFO - Epoch(train) [1][ 35/2146] lr: 2.0000e-06 eta: 1 day, 13:11:39 time: 0.4221 data_time: 0.0092 memory: 4729 loss: 14.0465 loss_prob: 10.3682 loss_thr: 2.7116 loss_db: 0.9667 2023/04/03 12:40:14 - mmengine - INFO - Epoch(train) [1][ 36/2146] lr: 2.0000e-06 eta: 1 day, 12:54:07 time: 0.4165 data_time: 0.0101 memory: 4729 loss: 13.9724 loss_prob: 10.2957 loss_thr: 2.7099 loss_db: 0.9668 2023/04/03 12:40:15 - mmengine - INFO - Epoch(train) [1][ 37/2146] lr: 2.0000e-06 eta: 1 day, 12:46:41 time: 0.4213 data_time: 0.0189 memory: 4729 loss: 13.8134 loss_prob: 10.1524 loss_thr: 2.6946 loss_db: 0.9664 2023/04/03 12:40:15 - mmengine - INFO - Epoch(train) [1][ 38/2146] lr: 2.0000e-06 eta: 1 day, 12:36:29 time: 0.4243 data_time: 0.0188 memory: 4729 loss: 13.7975 loss_prob: 10.1175 loss_thr: 2.7131 loss_db: 0.9670 2023/04/03 12:40:16 - mmengine - INFO - Epoch(train) [1][ 39/2146] lr: 2.0000e-06 eta: 1 day, 12:27:43 time: 0.4286 data_time: 0.0188 memory: 4729 loss: 13.6821 loss_prob: 10.0080 loss_thr: 2.7076 loss_db: 0.9665 2023/04/03 12:40:16 - mmengine - INFO - Epoch(train) [1][ 40/2146] lr: 2.0000e-06 eta: 1 day, 12:20:35 time: 0.4324 data_time: 0.0189 memory: 4729 loss: 13.5460 loss_prob: 9.8949 loss_thr: 2.6852 loss_db: 0.9660 2023/04/03 12:40:17 - mmengine - INFO - Epoch(train) [1][ 41/2146] lr: 2.0000e-06 eta: 1 day, 12:07:59 time: 0.4296 data_time: 0.0189 memory: 4729 loss: 13.4187 loss_prob: 9.7584 loss_thr: 2.6958 loss_db: 0.9645 2023/04/03 12:40:17 - mmengine - INFO - Epoch(train) [1][ 42/2146] lr: 2.0000e-06 eta: 1 day, 11:56:19 time: 0.4242 data_time: 0.0156 memory: 4729 loss: 13.2822 loss_prob: 9.6402 loss_thr: 2.6779 loss_db: 0.9642 2023/04/03 12:40:17 - mmengine - INFO - Epoch(train) [1][ 43/2146] lr: 2.0000e-06 eta: 1 day, 11:45:44 time: 0.4203 data_time: 0.0157 memory: 4729 loss: 13.2092 loss_prob: 9.5797 loss_thr: 2.6648 loss_db: 0.9646 2023/04/03 12:40:18 - mmengine - INFO - Epoch(train) [1][ 44/2146] lr: 2.0000e-06 eta: 1 day, 11:36:35 time: 0.4136 data_time: 0.0126 memory: 4729 loss: 13.3232 loss_prob: 9.6949 loss_thr: 2.6588 loss_db: 0.9696 2023/04/03 12:40:18 - mmengine - INFO - Epoch(train) [1][ 45/2146] lr: 2.0000e-06 eta: 1 day, 11:28:35 time: 0.4120 data_time: 0.0127 memory: 4729 loss: 13.1664 loss_prob: 9.5651 loss_thr: 2.6333 loss_db: 0.9680 2023/04/03 12:40:19 - mmengine - INFO - Epoch(train) [1][ 46/2146] lr: 2.0000e-06 eta: 1 day, 11:23:56 time: 0.4194 data_time: 0.0117 memory: 4729 loss: 12.9890 loss_prob: 9.4148 loss_thr: 2.6083 loss_db: 0.9658 2023/04/03 12:40:19 - mmengine - INFO - Epoch(train) [1][ 47/2146] lr: 2.0000e-06 eta: 1 day, 11:19:57 time: 0.4193 data_time: 0.0030 memory: 4729 loss: 12.9129 loss_prob: 9.3325 loss_thr: 2.6157 loss_db: 0.9647 2023/04/03 12:40:20 - mmengine - INFO - Epoch(train) [1][ 48/2146] lr: 2.0000e-06 eta: 1 day, 11:15:23 time: 0.4212 data_time: 0.0069 memory: 4729 loss: 12.8005 loss_prob: 9.2502 loss_thr: 2.5854 loss_db: 0.9649 2023/04/03 12:40:20 - mmengine - INFO - Epoch(train) [1][ 49/2146] lr: 2.0000e-06 eta: 1 day, 11:07:15 time: 0.4180 data_time: 0.0070 memory: 4729 loss: 12.9727 loss_prob: 9.3810 loss_thr: 2.6244 loss_db: 0.9672 2023/04/03 12:40:20 - mmengine - INFO - Epoch(train) [1][ 50/2146] lr: 2.0000e-06 eta: 1 day, 11:01:37 time: 0.4162 data_time: 0.0103 memory: 4729 loss: 12.8787 loss_prob: 9.2965 loss_thr: 2.6164 loss_db: 0.9658 2023/04/03 12:40:21 - mmengine - INFO - Epoch(train) [1][ 51/2146] lr: 2.0000e-06 eta: 1 day, 11:00:43 time: 0.4254 data_time: 0.0104 memory: 4729 loss: 12.8984 loss_prob: 9.3177 loss_thr: 2.6130 loss_db: 0.9678 2023/04/03 12:40:21 - mmengine - INFO - Epoch(train) [1][ 52/2146] lr: 2.0000e-06 eta: 1 day, 10:52:33 time: 0.4253 data_time: 0.0113 memory: 4729 loss: 12.9383 loss_prob: 9.3330 loss_thr: 2.6362 loss_db: 0.9690 2023/04/03 12:40:22 - mmengine - INFO - Epoch(train) [1][ 53/2146] lr: 2.0000e-06 eta: 1 day, 10:48:16 time: 0.4292 data_time: 0.0200 memory: 4729 loss: 12.8859 loss_prob: 9.3131 loss_thr: 2.6031 loss_db: 0.9698 2023/04/03 12:40:22 - mmengine - INFO - Epoch(train) [1][ 54/2146] lr: 2.0000e-06 eta: 1 day, 10:40:57 time: 0.4280 data_time: 0.0199 memory: 4729 loss: 12.8684 loss_prob: 9.2851 loss_thr: 2.6124 loss_db: 0.9708 2023/04/03 12:40:22 - mmengine - INFO - Epoch(train) [1][ 55/2146] lr: 2.0000e-06 eta: 1 day, 10:33:16 time: 0.4252 data_time: 0.0199 memory: 4729 loss: 12.7432 loss_prob: 9.1805 loss_thr: 2.5938 loss_db: 0.9689 2023/04/03 12:40:23 - mmengine - INFO - Epoch(train) [1][ 56/2146] lr: 2.0000e-06 eta: 1 day, 10:31:06 time: 0.4261 data_time: 0.0199 memory: 4729 loss: 12.7754 loss_prob: 9.2021 loss_thr: 2.6025 loss_db: 0.9708 2023/04/03 12:40:23 - mmengine - INFO - Epoch(train) [1][ 57/2146] lr: 2.0000e-06 eta: 1 day, 10:24:11 time: 0.4200 data_time: 0.0198 memory: 4729 loss: 12.6641 loss_prob: 9.1277 loss_thr: 2.5653 loss_db: 0.9711 2023/04/03 12:40:24 - mmengine - INFO - Epoch(train) [1][ 58/2146] lr: 2.0000e-06 eta: 1 day, 10:15:21 time: 0.4119 data_time: 0.0159 memory: 4729 loss: 12.6623 loss_prob: 9.0972 loss_thr: 2.5939 loss_db: 0.9712 2023/04/03 12:40:24 - mmengine - INFO - Epoch(train) [1][ 59/2146] lr: 2.0000e-06 eta: 1 day, 10:09:20 time: 0.4115 data_time: 0.0158 memory: 4729 loss: 12.4441 loss_prob: 8.9363 loss_thr: 2.5378 loss_db: 0.9699 2023/04/03 12:40:24 - mmengine - INFO - Epoch(train) [1][ 60/2146] lr: 2.0000e-06 eta: 1 day, 10:04:18 time: 0.4097 data_time: 0.0124 memory: 4729 loss: 12.2178 loss_prob: 8.7688 loss_thr: 2.4842 loss_db: 0.9647 2023/04/03 12:40:25 - mmengine - INFO - Epoch(train) [1][ 61/2146] lr: 2.0000e-06 eta: 1 day, 10:00:40 time: 0.4043 data_time: 0.0123 memory: 4729 loss: 12.1250 loss_prob: 8.6989 loss_thr: 2.4620 loss_db: 0.9640 2023/04/03 12:40:25 - mmengine - INFO - Epoch(train) [1][ 62/2146] lr: 2.0000e-06 eta: 1 day, 9:56:36 time: 0.4069 data_time: 0.0113 memory: 4729 loss: 11.9947 loss_prob: 8.5927 loss_thr: 2.4392 loss_db: 0.9628 2023/04/03 12:40:26 - mmengine - INFO - Epoch(train) [1][ 63/2146] lr: 2.0000e-06 eta: 1 day, 9:49:33 time: 0.4006 data_time: 0.0025 memory: 4729 loss: 11.9564 loss_prob: 8.5315 loss_thr: 2.4628 loss_db: 0.9621 2023/04/03 12:40:26 - mmengine - INFO - Epoch(train) [1][ 64/2146] lr: 2.0000e-06 eta: 1 day, 9:46:49 time: 0.4043 data_time: 0.0055 memory: 4729 loss: 11.8296 loss_prob: 8.4270 loss_thr: 2.4445 loss_db: 0.9581 2023/04/03 12:40:27 - mmengine - INFO - Epoch(train) [1][ 65/2146] lr: 2.0000e-06 eta: 1 day, 9:43:10 time: 0.4074 data_time: 0.0055 memory: 4729 loss: 11.7791 loss_prob: 8.3991 loss_thr: 2.4231 loss_db: 0.9569 2023/04/03 12:40:27 - mmengine - INFO - Epoch(train) [1][ 66/2146] lr: 2.0000e-06 eta: 1 day, 9:39:06 time: 0.4028 data_time: 0.0089 memory: 4729 loss: 11.6379 loss_prob: 8.3104 loss_thr: 2.3714 loss_db: 0.9562 2023/04/03 12:40:27 - mmengine - INFO - Epoch(train) [1][ 67/2146] lr: 2.0000e-06 eta: 1 day, 9:36:01 time: 0.4060 data_time: 0.0088 memory: 4729 loss: 11.5585 loss_prob: 8.2572 loss_thr: 2.3486 loss_db: 0.9527 2023/04/03 12:40:28 - mmengine - INFO - Epoch(train) [1][ 68/2146] lr: 2.0000e-06 eta: 1 day, 9:31:32 time: 0.4097 data_time: 0.0098 memory: 4729 loss: 11.3556 loss_prob: 8.1077 loss_thr: 2.2979 loss_db: 0.9499 2023/04/03 12:40:28 - mmengine - INFO - Epoch(train) [1][ 69/2146] lr: 2.0000e-06 eta: 1 day, 9:30:49 time: 0.4158 data_time: 0.0184 memory: 4729 loss: 11.2567 loss_prob: 8.0119 loss_thr: 2.2958 loss_db: 0.9489 2023/04/03 12:40:29 - mmengine - INFO - Epoch(train) [1][ 70/2146] lr: 2.0000e-06 eta: 1 day, 9:27:18 time: 0.4162 data_time: 0.0184 memory: 4729 loss: 11.3519 loss_prob: 8.1033 loss_thr: 2.2933 loss_db: 0.9553 2023/04/03 12:40:29 - mmengine - INFO - Epoch(train) [1][ 71/2146] lr: 2.0000e-06 eta: 1 day, 9:24:33 time: 0.4159 data_time: 0.0183 memory: 4729 loss: 11.2773 loss_prob: 8.0407 loss_thr: 2.2814 loss_db: 0.9552 2023/04/03 12:40:29 - mmengine - INFO - Epoch(train) [1][ 72/2146] lr: 2.0000e-06 eta: 1 day, 9:21:26 time: 0.4158 data_time: 0.0185 memory: 4729 loss: 11.1929 loss_prob: 8.0003 loss_thr: 2.2385 loss_db: 0.9540 2023/04/03 12:40:30 - mmengine - INFO - Epoch(train) [1][ 73/2146] lr: 2.0000e-06 eta: 1 day, 9:17:41 time: 0.4189 data_time: 0.0186 memory: 4729 loss: 11.1063 loss_prob: 7.9512 loss_thr: 2.2014 loss_db: 0.9536 2023/04/03 12:40:30 - mmengine - INFO - Epoch(train) [1][ 74/2146] lr: 2.0000e-06 eta: 1 day, 9:13:02 time: 0.4142 data_time: 0.0155 memory: 4729 loss: 11.1547 loss_prob: 8.0131 loss_thr: 2.1848 loss_db: 0.9568 2023/04/03 12:40:31 - mmengine - INFO - Epoch(train) [1][ 75/2146] lr: 2.0000e-06 eta: 1 day, 9:10:37 time: 0.4148 data_time: 0.0155 memory: 4729 loss: 11.1381 loss_prob: 7.9965 loss_thr: 2.1822 loss_db: 0.9595 2023/04/03 12:40:31 - mmengine - INFO - Epoch(train) [1][ 76/2146] lr: 2.0000e-06 eta: 1 day, 9:08:01 time: 0.4156 data_time: 0.0122 memory: 4729 loss: 11.1209 loss_prob: 7.9685 loss_thr: 2.1923 loss_db: 0.9601 2023/04/03 12:40:31 - mmengine - INFO - Epoch(train) [1][ 77/2146] lr: 2.0000e-06 eta: 1 day, 9:04:51 time: 0.4141 data_time: 0.0122 memory: 4729 loss: 11.0592 loss_prob: 7.9276 loss_thr: 2.1688 loss_db: 0.9627 2023/04/03 12:40:32 - mmengine - INFO - Epoch(train) [1][ 78/2146] lr: 2.0000e-06 eta: 1 day, 9:02:50 time: 0.4167 data_time: 0.0113 memory: 4729 loss: 11.0494 loss_prob: 7.9486 loss_thr: 2.1376 loss_db: 0.9633 2023/04/03 12:40:32 - mmengine - INFO - Epoch(train) [1][ 79/2146] lr: 2.0000e-06 eta: 1 day, 9:00:14 time: 0.4125 data_time: 0.0028 memory: 4729 loss: 10.9998 loss_prob: 7.8973 loss_thr: 2.1390 loss_db: 0.9635 2023/04/03 12:40:33 - mmengine - INFO - Epoch(train) [1][ 80/2146] lr: 2.0000e-06 eta: 1 day, 9:00:31 time: 0.4180 data_time: 0.0059 memory: 4729 loss: 11.0148 loss_prob: 7.8958 loss_thr: 2.1544 loss_db: 0.9646 2023/04/03 12:40:33 - mmengine - INFO - Epoch(train) [1][ 81/2146] lr: 2.0000e-06 eta: 1 day, 8:56:30 time: 0.4144 data_time: 0.0059 memory: 4729 loss: 10.9803 loss_prob: 7.8710 loss_thr: 2.1453 loss_db: 0.9640 2023/04/03 12:40:34 - mmengine - INFO - Epoch(train) [1][ 82/2146] lr: 2.0000e-06 eta: 1 day, 8:54:06 time: 0.4143 data_time: 0.0087 memory: 4729 loss: 10.9563 loss_prob: 7.8802 loss_thr: 2.1103 loss_db: 0.9658 2023/04/03 12:40:34 - mmengine - INFO - Epoch(train) [1][ 83/2146] lr: 2.0000e-06 eta: 1 day, 8:53:12 time: 0.4184 data_time: 0.0086 memory: 4729 loss: 10.9564 loss_prob: 7.8956 loss_thr: 2.0945 loss_db: 0.9663 2023/04/03 12:40:34 - mmengine - INFO - Epoch(train) [1][ 84/2146] lr: 2.0000e-06 eta: 1 day, 8:51:02 time: 0.4215 data_time: 0.0097 memory: 4729 loss: 10.9008 loss_prob: 7.8309 loss_thr: 2.1034 loss_db: 0.9665 2023/04/03 12:40:35 - mmengine - INFO - Epoch(train) [1][ 85/2146] lr: 2.0000e-06 eta: 1 day, 8:49:16 time: 0.4218 data_time: 0.0188 memory: 4729 loss: 10.9355 loss_prob: 7.8729 loss_thr: 2.0936 loss_db: 0.9689 2023/04/03 12:40:35 - mmengine - INFO - Epoch(train) [1][ 86/2146] lr: 2.0000e-06 eta: 1 day, 8:46:08 time: 0.4196 data_time: 0.0189 memory: 4729 loss: 10.9433 loss_prob: 7.8846 loss_thr: 2.0896 loss_db: 0.9690 2023/04/03 12:40:36 - mmengine - INFO - Epoch(train) [1][ 87/2146] lr: 2.0000e-06 eta: 1 day, 8:46:10 time: 0.4248 data_time: 0.0190 memory: 4729 loss: 10.9661 loss_prob: 7.8864 loss_thr: 2.1098 loss_db: 0.9699 2023/04/03 12:40:36 - mmengine - INFO - Epoch(train) [1][ 88/2146] lr: 2.0000e-06 eta: 1 day, 8:42:54 time: 0.4214 data_time: 0.0189 memory: 4729 loss: 10.9301 loss_prob: 7.8477 loss_thr: 2.1111 loss_db: 0.9714 2023/04/03 12:40:37 - mmengine - INFO - Epoch(train) [1][ 89/2146] lr: 2.0000e-06 eta: 1 day, 8:39:10 time: 0.4180 data_time: 0.0190 memory: 4729 loss: 10.9093 loss_prob: 7.8581 loss_thr: 2.0784 loss_db: 0.9728 2023/04/03 12:40:37 - mmengine - INFO - Epoch(train) [1][ 90/2146] lr: 2.0000e-06 eta: 1 day, 8:35:38 time: 0.4096 data_time: 0.0160 memory: 4729 loss: 10.8432 loss_prob: 7.8419 loss_thr: 2.0309 loss_db: 0.9704 2023/04/03 12:40:37 - mmengine - INFO - Epoch(train) [1][ 91/2146] lr: 2.0000e-06 eta: 1 day, 8:33:05 time: 0.4112 data_time: 0.0160 memory: 4729 loss: 10.7790 loss_prob: 7.8067 loss_thr: 2.0023 loss_db: 0.9700 2023/04/03 12:40:38 - mmengine - INFO - Epoch(train) [1][ 92/2146] lr: 2.0000e-06 eta: 1 day, 8:32:03 time: 0.4130 data_time: 0.0131 memory: 4729 loss: 10.7232 loss_prob: 7.7358 loss_thr: 2.0183 loss_db: 0.9691 2023/04/03 12:40:38 - mmengine - INFO - Epoch(train) [1][ 93/2146] lr: 2.0000e-06 eta: 1 day, 8:28:42 time: 0.4069 data_time: 0.0132 memory: 4729 loss: 10.6728 loss_prob: 7.6975 loss_thr: 2.0050 loss_db: 0.9703 2023/04/03 12:40:39 - mmengine - INFO - Epoch(train) [1][ 94/2146] lr: 2.0000e-06 eta: 1 day, 8:27:29 time: 0.4080 data_time: 0.0123 memory: 4729 loss: 10.5795 loss_prob: 7.6398 loss_thr: 1.9703 loss_db: 0.9695 2023/04/03 12:40:39 - mmengine - INFO - Epoch(train) [1][ 95/2146] lr: 2.0000e-06 eta: 1 day, 8:25:54 time: 0.4074 data_time: 0.0032 memory: 4729 loss: 10.5540 loss_prob: 7.6395 loss_thr: 1.9465 loss_db: 0.9680 2023/04/03 12:40:39 - mmengine - INFO - Epoch(train) [1][ 96/2146] lr: 2.0000e-06 eta: 1 day, 8:26:36 time: 0.4147 data_time: 0.0063 memory: 4729 loss: 10.4830 loss_prob: 7.5942 loss_thr: 1.9205 loss_db: 0.9683 2023/04/03 12:40:40 - mmengine - INFO - Epoch(train) [1][ 97/2146] lr: 2.0000e-06 eta: 1 day, 8:23:56 time: 0.4082 data_time: 0.0063 memory: 4729 loss: 10.4198 loss_prob: 7.5419 loss_thr: 1.9110 loss_db: 0.9669 2023/04/03 12:40:40 - mmengine - INFO - Epoch(train) [1][ 98/2146] lr: 2.0000e-06 eta: 1 day, 8:24:11 time: 0.4149 data_time: 0.0094 memory: 4729 loss: 10.3274 loss_prob: 7.4778 loss_thr: 1.8859 loss_db: 0.9637 2023/04/03 12:40:41 - mmengine - INFO - Epoch(train) [1][ 99/2146] lr: 2.0000e-06 eta: 1 day, 8:23:05 time: 0.4197 data_time: 0.0094 memory: 4729 loss: 10.2970 loss_prob: 7.4469 loss_thr: 1.8870 loss_db: 0.9631 2023/04/03 12:40:41 - mmengine - INFO - Epoch(train) [1][ 100/2146] lr: 2.0000e-06 eta: 1 day, 8:20:46 time: 0.4213 data_time: 0.0106 memory: 4729 loss: 10.1804 loss_prob: 7.3332 loss_thr: 1.8839 loss_db: 0.9633 2023/04/03 12:40:42 - mmengine - INFO - Epoch(train) [1][ 101/2146] lr: 2.0000e-06 eta: 1 day, 8:20:59 time: 0.4269 data_time: 0.0193 memory: 4729 loss: 10.2295 loss_prob: 7.3564 loss_thr: 1.9093 loss_db: 0.9638 2023/04/03 12:40:42 - mmengine - INFO - Epoch(train) [1][ 102/2146] lr: 2.0000e-06 eta: 1 day, 8:19:57 time: 0.4264 data_time: 0.0194 memory: 4729 loss: 10.2731 loss_prob: 7.3994 loss_thr: 1.9082 loss_db: 0.9655 2023/04/03 12:40:42 - mmengine - INFO - Epoch(train) [1][ 103/2146] lr: 2.0000e-06 eta: 1 day, 8:19:04 time: 0.4313 data_time: 0.0193 memory: 4729 loss: 10.2373 loss_prob: 7.3787 loss_thr: 1.8930 loss_db: 0.9657 2023/04/03 12:40:43 - mmengine - INFO - Epoch(train) [1][ 104/2146] lr: 2.0000e-06 eta: 1 day, 8:17:52 time: 0.4308 data_time: 0.0192 memory: 4729 loss: 10.2699 loss_prob: 7.3944 loss_thr: 1.9083 loss_db: 0.9671 2023/04/03 12:40:43 - mmengine - INFO - Epoch(train) [1][ 105/2146] lr: 2.0000e-06 eta: 1 day, 8:15:03 time: 0.4272 data_time: 0.0193 memory: 4729 loss: 10.1564 loss_prob: 7.2926 loss_thr: 1.8974 loss_db: 0.9663 2023/04/03 12:40:44 - mmengine - INFO - Epoch(train) [1][ 106/2146] lr: 2.0000e-06 eta: 1 day, 8:11:59 time: 0.4178 data_time: 0.0162 memory: 4729 loss: 10.1113 loss_prob: 7.2528 loss_thr: 1.8934 loss_db: 0.9651 2023/04/03 12:40:44 - mmengine - INFO - Epoch(train) [1][ 107/2146] lr: 2.0000e-06 eta: 1 day, 8:09:40 time: 0.4177 data_time: 0.0163 memory: 4729 loss: 10.1137 loss_prob: 7.2795 loss_thr: 1.8670 loss_db: 0.9672 2023/04/03 12:40:44 - mmengine - INFO - Epoch(train) [1][ 108/2146] lr: 2.0000e-06 eta: 1 day, 8:09:22 time: 0.4160 data_time: 0.0131 memory: 4729 loss: 10.1562 loss_prob: 7.2960 loss_thr: 1.8900 loss_db: 0.9702 2023/04/03 12:40:45 - mmengine - INFO - Epoch(train) [1][ 109/2146] lr: 2.0000e-06 eta: 1 day, 8:08:25 time: 0.4158 data_time: 0.0131 memory: 4729 loss: 10.1491 loss_prob: 7.2953 loss_thr: 1.8825 loss_db: 0.9713 2023/04/03 12:40:45 - mmengine - INFO - Epoch(train) [1][ 110/2146] lr: 2.0000e-06 eta: 1 day, 8:06:57 time: 0.4171 data_time: 0.0120 memory: 4729 loss: 10.1426 loss_prob: 7.2886 loss_thr: 1.8824 loss_db: 0.9716 2023/04/03 12:40:46 - mmengine - INFO - Epoch(train) [1][ 111/2146] lr: 2.0000e-06 eta: 1 day, 8:06:16 time: 0.4145 data_time: 0.0032 memory: 4729 loss: 10.0196 loss_prob: 7.1944 loss_thr: 1.8541 loss_db: 0.9712 2023/04/03 12:40:46 - mmengine - INFO - Epoch(train) [1][ 112/2146] lr: 2.0000e-06 eta: 1 day, 8:05:03 time: 0.4135 data_time: 0.0064 memory: 4729 loss: 9.8994 loss_prob: 7.1003 loss_thr: 1.8299 loss_db: 0.9692 2023/04/03 12:40:47 - mmengine - INFO - Epoch(train) [1][ 113/2146] lr: 2.0000e-06 eta: 1 day, 8:03:43 time: 0.4117 data_time: 0.0064 memory: 4729 loss: 9.8417 loss_prob: 7.0491 loss_thr: 1.8278 loss_db: 0.9649 2023/04/03 12:40:47 - mmengine - INFO - Epoch(train) [1][ 114/2146] lr: 2.0000e-06 eta: 1 day, 8:03:58 time: 0.4150 data_time: 0.0098 memory: 4729 loss: 9.7635 loss_prob: 6.9991 loss_thr: 1.8012 loss_db: 0.9632 2023/04/03 12:40:47 - mmengine - INFO - Epoch(train) [1][ 115/2146] lr: 2.0000e-06 eta: 1 day, 8:04:47 time: 0.4237 data_time: 0.0097 memory: 4729 loss: 9.7603 loss_prob: 6.9842 loss_thr: 1.8111 loss_db: 0.9649 2023/04/03 12:40:48 - mmengine - INFO - Epoch(train) [1][ 116/2146] lr: 2.0000e-06 eta: 1 day, 8:03:47 time: 0.4283 data_time: 0.0108 memory: 4729 loss: 9.7419 loss_prob: 6.9702 loss_thr: 1.8059 loss_db: 0.9658 2023/04/03 12:40:48 - mmengine - INFO - Epoch(train) [1][ 117/2146] lr: 2.0000e-06 eta: 1 day, 8:04:12 time: 0.4351 data_time: 0.0203 memory: 4729 loss: 9.6580 loss_prob: 6.8948 loss_thr: 1.7998 loss_db: 0.9634 2023/04/03 12:40:49 - mmengine - INFO - Epoch(train) [1][ 118/2146] lr: 2.0000e-06 eta: 1 day, 8:02:41 time: 0.4316 data_time: 0.0205 memory: 4729 loss: 9.5742 loss_prob: 6.8412 loss_thr: 1.7708 loss_db: 0.9622 2023/04/03 12:40:49 - mmengine - INFO - Epoch(train) [1][ 119/2146] lr: 2.0000e-06 eta: 1 day, 8:00:46 time: 0.4285 data_time: 0.0207 memory: 4729 loss: 9.5284 loss_prob: 6.8022 loss_thr: 1.7642 loss_db: 0.9621 2023/04/03 12:40:50 - mmengine - INFO - Epoch(train) [1][ 120/2146] lr: 2.0000e-06 eta: 1 day, 8:00:34 time: 0.4315 data_time: 0.0206 memory: 4729 loss: 9.5000 loss_prob: 6.7777 loss_thr: 1.7604 loss_db: 0.9619 2023/04/03 12:40:50 - mmengine - INFO - Epoch(train) [1][ 121/2146] lr: 2.0000e-06 eta: 1 day, 8:00:42 time: 0.4335 data_time: 0.0206 memory: 4729 loss: 9.4826 loss_prob: 6.7794 loss_thr: 1.7405 loss_db: 0.9626 2023/04/03 12:40:50 - mmengine - INFO - Epoch(train) [1][ 122/2146] lr: 2.0000e-06 eta: 1 day, 7:59:44 time: 0.4338 data_time: 0.0174 memory: 4729 loss: 9.4809 loss_prob: 6.7689 loss_thr: 1.7487 loss_db: 0.9634 2023/04/03 12:40:51 - mmengine - INFO - Epoch(train) [1][ 123/2146] lr: 2.0000e-06 eta: 1 day, 7:58:29 time: 0.4336 data_time: 0.0174 memory: 4729 loss: 9.4759 loss_prob: 6.7664 loss_thr: 1.7433 loss_db: 0.9662 2023/04/03 12:40:51 - mmengine - INFO - Epoch(train) [1][ 124/2146] lr: 2.0000e-06 eta: 1 day, 7:59:01 time: 0.4344 data_time: 0.0141 memory: 4729 loss: 9.4177 loss_prob: 6.7158 loss_thr: 1.7353 loss_db: 0.9666 2023/04/03 12:40:52 - mmengine - INFO - Epoch(train) [1][ 125/2146] lr: 2.0000e-06 eta: 1 day, 7:57:02 time: 0.4263 data_time: 0.0141 memory: 4729 loss: 9.3776 loss_prob: 6.6948 loss_thr: 1.7181 loss_db: 0.9647 2023/04/03 12:40:52 - mmengine - INFO - Epoch(train) [1][ 126/2146] lr: 2.0000e-06 eta: 1 day, 7:54:57 time: 0.4227 data_time: 0.0129 memory: 4729 loss: 9.4035 loss_prob: 6.7016 loss_thr: 1.7361 loss_db: 0.9659 2023/04/03 12:40:53 - mmengine - INFO - Epoch(train) [1][ 127/2146] lr: 2.0000e-06 eta: 1 day, 7:53:22 time: 0.4167 data_time: 0.0034 memory: 4729 loss: 9.4632 loss_prob: 6.7387 loss_thr: 1.7557 loss_db: 0.9687 2023/04/03 12:40:53 - mmengine - INFO - Epoch(train) [1][ 128/2146] lr: 2.0000e-06 eta: 1 day, 7:53:15 time: 0.4202 data_time: 0.0062 memory: 4729 loss: 9.4293 loss_prob: 6.7043 loss_thr: 1.7567 loss_db: 0.9683 2023/04/03 12:40:53 - mmengine - INFO - Epoch(train) [1][ 129/2146] lr: 2.0000e-06 eta: 1 day, 7:51:32 time: 0.4202 data_time: 0.0060 memory: 4729 loss: 9.3665 loss_prob: 6.6585 loss_thr: 1.7415 loss_db: 0.9664 2023/04/03 12:40:54 - mmengine - INFO - Epoch(train) [1][ 130/2146] lr: 2.0000e-06 eta: 1 day, 7:51:44 time: 0.4211 data_time: 0.0094 memory: 4729 loss: 9.4149 loss_prob: 6.6903 loss_thr: 1.7557 loss_db: 0.9688 2023/04/03 12:40:54 - mmengine - INFO - Epoch(train) [1][ 131/2146] lr: 2.0000e-06 eta: 1 day, 7:51:25 time: 0.4196 data_time: 0.0094 memory: 4729 loss: 9.4259 loss_prob: 6.6916 loss_thr: 1.7645 loss_db: 0.9699 2023/04/03 12:40:55 - mmengine - INFO - Epoch(train) [1][ 132/2146] lr: 2.0000e-06 eta: 1 day, 7:49:30 time: 0.4162 data_time: 0.0104 memory: 4729 loss: 9.4076 loss_prob: 6.6850 loss_thr: 1.7520 loss_db: 0.9706 2023/04/03 12:40:55 - mmengine - INFO - Epoch(train) [1][ 133/2146] lr: 2.0000e-06 eta: 1 day, 7:48:45 time: 0.4173 data_time: 0.0193 memory: 4729 loss: 9.4262 loss_prob: 6.6918 loss_thr: 1.7619 loss_db: 0.9725 2023/04/03 12:40:55 - mmengine - INFO - Epoch(train) [1][ 134/2146] lr: 2.0000e-06 eta: 1 day, 7:46:43 time: 0.4092 data_time: 0.0192 memory: 4729 loss: 9.4225 loss_prob: 6.6883 loss_thr: 1.7619 loss_db: 0.9723 2023/04/03 12:40:56 - mmengine - INFO - Epoch(train) [1][ 135/2146] lr: 2.0000e-06 eta: 1 day, 7:44:53 time: 0.4089 data_time: 0.0193 memory: 4729 loss: 9.4250 loss_prob: 6.6858 loss_thr: 1.7646 loss_db: 0.9745 2023/04/03 12:40:56 - mmengine - INFO - Epoch(train) [1][ 136/2146] lr: 2.0000e-06 eta: 1 day, 7:43:58 time: 0.4118 data_time: 0.0194 memory: 4729 loss: 9.3692 loss_prob: 6.6500 loss_thr: 1.7452 loss_db: 0.9741 2023/04/03 12:40:57 - mmengine - INFO - Epoch(train) [1][ 137/2146] lr: 2.0000e-06 eta: 1 day, 7:42:00 time: 0.4100 data_time: 0.0194 memory: 4729 loss: 9.3628 loss_prob: 6.6459 loss_thr: 1.7436 loss_db: 0.9734 2023/04/03 12:40:57 - mmengine - INFO - Epoch(train) [1][ 138/2146] lr: 2.0000e-06 eta: 1 day, 7:39:51 time: 0.4031 data_time: 0.0163 memory: 4729 loss: 9.3663 loss_prob: 6.6669 loss_thr: 1.7259 loss_db: 0.9736 2023/04/03 12:40:57 - mmengine - INFO - Epoch(train) [1][ 139/2146] lr: 2.0000e-06 eta: 1 day, 7:38:07 time: 0.4023 data_time: 0.0163 memory: 4729 loss: 9.3507 loss_prob: 6.6666 loss_thr: 1.7125 loss_db: 0.9716 2023/04/03 12:40:58 - mmengine - INFO - Epoch(train) [1][ 140/2146] lr: 2.0000e-06 eta: 1 day, 7:39:08 time: 0.4048 data_time: 0.0130 memory: 4729 loss: 9.2661 loss_prob: 6.6038 loss_thr: 1.6946 loss_db: 0.9676 2023/04/03 12:40:58 - mmengine - INFO - Epoch(train) [1][ 141/2146] lr: 2.0000e-06 eta: 1 day, 7:37:24 time: 0.3997 data_time: 0.0130 memory: 4729 loss: 9.2862 loss_prob: 6.6207 loss_thr: 1.6981 loss_db: 0.9674 2023/04/03 12:40:59 - mmengine - INFO - Epoch(train) [1][ 142/2146] lr: 2.0000e-06 eta: 1 day, 7:36:48 time: 0.4033 data_time: 0.0121 memory: 4729 loss: 9.3188 loss_prob: 6.6611 loss_thr: 1.6891 loss_db: 0.9686 2023/04/03 12:40:59 - mmengine - INFO - Epoch(train) [1][ 143/2146] lr: 2.0000e-06 eta: 1 day, 7:37:52 time: 0.4089 data_time: 0.0031 memory: 4729 loss: 9.2572 loss_prob: 6.6089 loss_thr: 1.6805 loss_db: 0.9679 2023/04/03 12:41:00 - mmengine - INFO - Epoch(train) [1][ 144/2146] lr: 2.0000e-06 eta: 1 day, 7:38:16 time: 0.4163 data_time: 0.0063 memory: 4729 loss: 9.2416 loss_prob: 6.6038 loss_thr: 1.6699 loss_db: 0.9679 2023/04/03 12:41:00 - mmengine - INFO - Epoch(train) [1][ 145/2146] lr: 2.0000e-06 eta: 1 day, 7:37:20 time: 0.4187 data_time: 0.0063 memory: 4729 loss: 9.1938 loss_prob: 6.5624 loss_thr: 1.6649 loss_db: 0.9665 2023/04/03 12:41:00 - mmengine - INFO - Epoch(train) [1][ 146/2146] lr: 2.0000e-06 eta: 1 day, 7:36:58 time: 0.4203 data_time: 0.0090 memory: 4729 loss: 9.1709 loss_prob: 6.5440 loss_thr: 1.6605 loss_db: 0.9664 2023/04/03 12:41:01 - mmengine - INFO - Epoch(train) [1][ 147/2146] lr: 2.0000e-06 eta: 1 day, 7:37:09 time: 0.4270 data_time: 0.0090 memory: 4729 loss: 9.1146 loss_prob: 6.5122 loss_thr: 1.6356 loss_db: 0.9669 2023/04/03 12:41:01 - mmengine - INFO - Epoch(train) [1][ 148/2146] lr: 2.0000e-06 eta: 1 day, 7:36:15 time: 0.4307 data_time: 0.0103 memory: 4729 loss: 9.0995 loss_prob: 6.4870 loss_thr: 1.6447 loss_db: 0.9679 2023/04/03 12:41:02 - mmengine - INFO - Epoch(train) [1][ 149/2146] lr: 2.0000e-06 eta: 1 day, 7:37:09 time: 0.4394 data_time: 0.0200 memory: 4729 loss: 9.1005 loss_prob: 6.4714 loss_thr: 1.6586 loss_db: 0.9706 2023/04/03 12:41:02 - mmengine - INFO - Epoch(train) [1][ 150/2146] lr: 2.0000e-06 eta: 1 day, 7:35:58 time: 0.4319 data_time: 0.0201 memory: 4729 loss: 9.1144 loss_prob: 6.4851 loss_thr: 1.6555 loss_db: 0.9737 2023/04/03 12:41:03 - mmengine - INFO - Epoch(train) [1][ 151/2146] lr: 2.0000e-06 eta: 1 day, 7:34:56 time: 0.4339 data_time: 0.0200 memory: 4729 loss: 9.0403 loss_prob: 6.4323 loss_thr: 1.6362 loss_db: 0.9717 2023/04/03 12:41:03 - mmengine - INFO - Epoch(train) [1][ 152/2146] lr: 2.0000e-06 eta: 1 day, 7:34:14 time: 0.4333 data_time: 0.0199 memory: 4729 loss: 8.9559 loss_prob: 6.3408 loss_thr: 1.6461 loss_db: 0.9690 2023/04/03 12:41:03 - mmengine - INFO - Epoch(train) [1][ 153/2146] lr: 2.0000e-06 eta: 1 day, 7:33:02 time: 0.4254 data_time: 0.0199 memory: 4729 loss: 8.9449 loss_prob: 6.3393 loss_thr: 1.6385 loss_db: 0.9670 2023/04/03 12:41:04 - mmengine - INFO - Epoch(train) [1][ 154/2146] lr: 2.0000e-06 eta: 1 day, 7:31:07 time: 0.4172 data_time: 0.0167 memory: 4729 loss: 8.9735 loss_prob: 6.3574 loss_thr: 1.6484 loss_db: 0.9677 2023/04/03 12:41:04 - mmengine - INFO - Epoch(train) [1][ 155/2146] lr: 2.0000e-06 eta: 1 day, 7:28:39 time: 0.4113 data_time: 0.0166 memory: 4729 loss: 8.9884 loss_prob: 6.3638 loss_thr: 1.6559 loss_db: 0.9687 2023/04/03 12:41:05 - mmengine - INFO - Epoch(train) [1][ 156/2146] lr: 2.0000e-06 eta: 1 day, 7:28:04 time: 0.4101 data_time: 0.0138 memory: 4729 loss: 8.9511 loss_prob: 6.3352 loss_thr: 1.6487 loss_db: 0.9672 2023/04/03 12:41:05 - mmengine - INFO - Epoch(train) [1][ 157/2146] lr: 2.0000e-06 eta: 1 day, 7:26:08 time: 0.4022 data_time: 0.0139 memory: 4729 loss: 8.9695 loss_prob: 6.3537 loss_thr: 1.6480 loss_db: 0.9678 2023/04/03 12:41:05 - mmengine - INFO - Epoch(train) [1][ 158/2146] lr: 2.0000e-06 eta: 1 day, 7:24:53 time: 0.4005 data_time: 0.0126 memory: 4729 loss: 8.9181 loss_prob: 6.3210 loss_thr: 1.6324 loss_db: 0.9647 2023/04/03 12:41:06 - mmengine - INFO - Epoch(train) [1][ 159/2146] lr: 2.0000e-06 eta: 1 day, 7:25:04 time: 0.3978 data_time: 0.0029 memory: 4729 loss: 8.8569 loss_prob: 6.2827 loss_thr: 1.6111 loss_db: 0.9631 2023/04/03 12:41:06 - mmengine - INFO - Epoch(train) [1][ 160/2146] lr: 2.0000e-06 eta: 1 day, 7:24:36 time: 0.3999 data_time: 0.0062 memory: 4729 loss: 8.8093 loss_prob: 6.2442 loss_thr: 1.6040 loss_db: 0.9612 2023/04/03 12:41:07 - mmengine - INFO - Epoch(train) [1][ 161/2146] lr: 2.0000e-06 eta: 1 day, 7:24:05 time: 0.4013 data_time: 0.0062 memory: 4729 loss: 8.7648 loss_prob: 6.2092 loss_thr: 1.5942 loss_db: 0.9614 2023/04/03 12:41:07 - mmengine - INFO - Epoch(train) [1][ 162/2146] lr: 2.0000e-06 eta: 1 day, 7:22:58 time: 0.3993 data_time: 0.0096 memory: 4729 loss: 8.7570 loss_prob: 6.2151 loss_thr: 1.5791 loss_db: 0.9627 2023/04/03 12:41:07 - mmengine - INFO - Epoch(train) [1][ 163/2146] lr: 2.0000e-06 eta: 1 day, 7:22:46 time: 0.4026 data_time: 0.0095 memory: 4729 loss: 8.7302 loss_prob: 6.1945 loss_thr: 1.5707 loss_db: 0.9650 2023/04/03 12:41:08 - mmengine - INFO - Epoch(train) [1][ 164/2146] lr: 2.0000e-06 eta: 1 day, 7:23:09 time: 0.4107 data_time: 0.0109 memory: 4729 loss: 8.7112 loss_prob: 6.1786 loss_thr: 1.5661 loss_db: 0.9665 2023/04/03 12:41:08 - mmengine - INFO - Epoch(train) [1][ 165/2146] lr: 2.0000e-06 eta: 1 day, 7:22:57 time: 0.4186 data_time: 0.0206 memory: 4729 loss: 8.7201 loss_prob: 6.1832 loss_thr: 1.5706 loss_db: 0.9662 2023/04/03 12:41:09 - mmengine - INFO - Epoch(train) [1][ 166/2146] lr: 2.0000e-06 eta: 1 day, 7:21:48 time: 0.4162 data_time: 0.0205 memory: 4729 loss: 8.7041 loss_prob: 6.1803 loss_thr: 1.5592 loss_db: 0.9646 2023/04/03 12:41:09 - mmengine - INFO - Epoch(train) [1][ 167/2146] lr: 2.0000e-06 eta: 1 day, 7:21:23 time: 0.4215 data_time: 0.0205 memory: 4729 loss: 8.6293 loss_prob: 6.1121 loss_thr: 1.5547 loss_db: 0.9625 2023/04/03 12:41:10 - mmengine - INFO - Epoch(train) [1][ 168/2146] lr: 2.0000e-06 eta: 1 day, 7:21:48 time: 0.4276 data_time: 0.0206 memory: 4729 loss: 8.6508 loss_prob: 6.1242 loss_thr: 1.5605 loss_db: 0.9661 2023/04/03 12:41:10 - mmengine - INFO - Epoch(train) [1][ 169/2146] lr: 2.0000e-06 eta: 1 day, 7:20:59 time: 0.4236 data_time: 0.0206 memory: 4729 loss: 8.6461 loss_prob: 6.1175 loss_thr: 1.5623 loss_db: 0.9663 2023/04/03 12:41:10 - mmengine - INFO - Epoch(train) [1][ 170/2146] lr: 2.0000e-06 eta: 1 day, 7:20:09 time: 0.4220 data_time: 0.0172 memory: 4729 loss: 8.6377 loss_prob: 6.1142 loss_thr: 1.5576 loss_db: 0.9659 2023/04/03 12:41:11 - mmengine - INFO - Epoch(train) [1][ 171/2146] lr: 2.0000e-06 eta: 1 day, 7:18:51 time: 0.4187 data_time: 0.0172 memory: 4729 loss: 8.6535 loss_prob: 6.1173 loss_thr: 1.5693 loss_db: 0.9670 2023/04/03 12:41:11 - mmengine - INFO - Epoch(train) [1][ 172/2146] lr: 2.0000e-06 eta: 1 day, 7:18:01 time: 0.4195 data_time: 0.0138 memory: 4729 loss: 8.6183 loss_prob: 6.0906 loss_thr: 1.5640 loss_db: 0.9638 2023/04/03 12:41:12 - mmengine - INFO - Epoch(train) [1][ 173/2146] lr: 2.0000e-06 eta: 1 day, 7:17:05 time: 0.4163 data_time: 0.0138 memory: 4729 loss: 8.5988 loss_prob: 6.0791 loss_thr: 1.5567 loss_db: 0.9631 2023/04/03 12:41:12 - mmengine - INFO - Epoch(train) [1][ 174/2146] lr: 2.0000e-06 eta: 1 day, 7:17:13 time: 0.4152 data_time: 0.0125 memory: 4729 loss: 8.5560 loss_prob: 6.0533 loss_thr: 1.5400 loss_db: 0.9628 2023/04/03 12:41:12 - mmengine - INFO - Epoch(train) [1][ 175/2146] lr: 2.0000e-06 eta: 1 day, 7:16:27 time: 0.4128 data_time: 0.0028 memory: 4729 loss: 8.5022 loss_prob: 6.0315 loss_thr: 1.5068 loss_db: 0.9639 2023/04/03 12:41:13 - mmengine - INFO - Epoch(train) [1][ 176/2146] lr: 2.0000e-06 eta: 1 day, 7:16:58 time: 0.4192 data_time: 0.0065 memory: 4729 loss: 8.6022 loss_prob: 6.1161 loss_thr: 1.5184 loss_db: 0.9677 2023/04/03 12:41:13 - mmengine - INFO - Epoch(train) [1][ 177/2146] lr: 2.0000e-06 eta: 1 day, 7:15:50 time: 0.4160 data_time: 0.0065 memory: 4729 loss: 8.5943 loss_prob: 6.1160 loss_thr: 1.5116 loss_db: 0.9668 2023/04/03 12:41:14 - mmengine - INFO - Epoch(train) [1][ 178/2146] lr: 2.0000e-06 eta: 1 day, 7:15:57 time: 0.4148 data_time: 0.0099 memory: 4729 loss: 8.6682 loss_prob: 6.1755 loss_thr: 1.5253 loss_db: 0.9674 2023/04/03 12:41:14 - mmengine - INFO - Epoch(train) [1][ 179/2146] lr: 2.0000e-06 eta: 1 day, 7:14:40 time: 0.4125 data_time: 0.0099 memory: 4729 loss: 8.6627 loss_prob: 6.1783 loss_thr: 1.5159 loss_db: 0.9685 2023/04/03 12:41:14 - mmengine - INFO - Epoch(train) [1][ 180/2146] lr: 2.0000e-06 eta: 1 day, 7:13:06 time: 0.4091 data_time: 0.0110 memory: 4729 loss: 8.6732 loss_prob: 6.1890 loss_thr: 1.5153 loss_db: 0.9689 2023/04/03 12:41:15 - mmengine - INFO - Epoch(train) [1][ 181/2146] lr: 2.0000e-06 eta: 1 day, 7:13:36 time: 0.4161 data_time: 0.0201 memory: 4729 loss: 8.6802 loss_prob: 6.1989 loss_thr: 1.5117 loss_db: 0.9696 2023/04/03 12:41:15 - mmengine - INFO - Epoch(train) [1][ 182/2146] lr: 2.0000e-06 eta: 1 day, 7:12:47 time: 0.4159 data_time: 0.0201 memory: 4729 loss: 8.7047 loss_prob: 6.2095 loss_thr: 1.5223 loss_db: 0.9729 2023/04/03 12:41:16 - mmengine - INFO - Epoch(train) [1][ 183/2146] lr: 2.0000e-06 eta: 1 day, 7:12:55 time: 0.4202 data_time: 0.0202 memory: 4729 loss: 8.6953 loss_prob: 6.2105 loss_thr: 1.5139 loss_db: 0.9709 2023/04/03 12:4 ... ... 2023/04/03 13:18:42 - mmengine - INFO - Epoch(val) [1][379/379] eta: 0:00:00 time: 3.6606 data_time: 0.0070 memory: 3077 2023/04/03 13:19:05 - mmengine - INFO - Evaluating hmean-iou... 2023/04/03 13:19:06 - mmengine - INFO - prediction score threshold: 0.30, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/03 13:19:06 - mmengine - INFO - prediction score threshold: 0.40, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/03 13:19:06 - mmengine - INFO - prediction score threshold: 0.50, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/03 13:19:06 - mmengine - INFO - prediction score threshold: 0.60, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/03 13:19:06 - mmengine - INFO - prediction score threshold: 0.70, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/03 13:19:06 - mmengine - INFO - prediction score threshold: 0.80, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/03 13:19:06 - mmengine - INFO - prediction score threshold: 0.90, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/03 13:19:06 - mmengine - INFO - Epoch(val) [1][379/379] icdar/precision: 0.0000 icdar/recall: 0.0000 icdar/hmean: 0.0000data_time: 0.0070 time: 3.6606 2023/04/03 13:19:07 - mmengine - INFO - Epoch(train) [2][ 1/2146] lr: 1.2040e-05 eta: 1 day, 5:20:09 time: 0.4551 data_time: 0.0813 memory: 4713 loss: 5.4965 loss_prob: 3.3455 loss_thr: 1.1780 loss_db: 0.9730 2023/04/03 13:19:07 - mmengine - INFO - Epoch(train) [2][ 2/2146] lr: 1.2040e-05 eta: 1 day, 5:20:09 time: 0.4568 data_time: 0.0834 memory: 4714 loss: 5.4838 loss_prob: 3.3388 loss_thr: 1.1753 loss_db: 0.9698 2023/04/03 13:19:08 - mmengine - INFO - Epoch(train) [2][ 3/2146] lr: 1.2040e-05 eta: 1 day, 5:20:07 time: 0.4579 data_time: 0.0834 memory: 4714 loss: 5.4796 loss_prob: 3.3375 loss_thr: 1.1724 loss_db: 0.9698 2023/04/03 13:19:08 - mmengine - INFO - Epoch(train) [2][ 4/2146] lr: 1.2040e-05 eta: 1 day, 5:20:01 time: 0.4574 data_time: 0.0834 memory: 4714 loss: 5.5357 loss_prob: 3.3867 loss_thr: 1.1779 loss_db: 0.9711 2023/04/03 13:19:09 - mmengine - INFO - Epoch(train) [2][ 5/2146] lr: 1.2040e-05 eta: 1 day, 5:20:07 time: 0.4657 data_time: 0.0858 memory: 4714 loss: 5.5565 loss_prob: 3.4017 loss_thr: 1.1798 ... ... 2023/04/04 00:41:52 - mmengine - INFO - Epoch(val) [42][376/379] eta: 0:00:00 time: 0.2575 data_time: 0.0168 memory: 3969 2023/04/04 00:41:53 - mmengine - INFO - Epoch(val) [42][377/379] eta: 0:00:00 time: 0.2586 data_time: 0.0180 memory: 3969 2023/04/04 00:41:53 - mmengine - INFO - Epoch(val) [42][378/379] eta: 0:00:00 time: 0.2558 data_time: 0.0153 memory: 3969 2023/04/04 00:41:53 - mmengine - INFO - Epoch(val) [42][379/379] eta: 0:00:00 time: 0.2424 data_time: 0.0071 memory: 3077 2023/04/04 00:41:53 - mmengine - INFO - Evaluating hmean-iou... 2023/04/04 00:41:54 - mmengine - INFO - prediction score threshold: 0.30, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/04 00:41:54 - mmengine - INFO - prediction score threshold: 0.40, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/04 00:41:54 - mmengine - INFO - prediction score threshold: 0.50, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/04 00:41:54 - mmengine - INFO - prediction score threshold: 0.60, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/04 00:41:54 - mmengine - INFO - prediction score threshold: 0.70, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/04 00:41:54 - mmengine - INFO - prediction score threshold: 0.80, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/04 00:41:54 - mmengine - INFO - prediction score threshold: 0.90, recall: 0.0000, precision: 0.0000, hmean: 0.0000 2023/04/04 00:41:54 - mmengine - INFO - Epoch(val) [42][379/379] icdar/precision: 0.0000 icdar/recall: 0.0000 icdar/hmean: 0.0000data_time: 0.0071 time: 0.2424 2023/04/04 00:41:55 - mmengine - INFO - Epoch(train) [43][ 1/2146] lr: 4.2369e-04 eta: 19:21:58 time: 0.4715 data_time: 0.0841 memory: 4714 loss: 4.8211 loss_prob: 2.8363 loss_thr: 1.1119 loss_db: 0.8729 2023/04/04 00:41:56 - mmengine - INFO - Epoch(train) [43][ 2/2146] lr: 4.2369e-04 eta: 19:21:58 time: 0.4790 data_time: 0.0841 memory: 4714 loss: 4.8279 loss_prob: 2.8348 loss_thr: 1.1182 loss_db: 0.8748 2023/04/04 00:41:56 - mmengine - INFO - Epoch(train) [43][ 3/2146] lr: 4.2369e-04 eta: 19:21:57 time: 0.4796 data_time: 0.0839 memory: 4714 loss: 4.8142 loss_prob: 2.8237 loss_thr: 1.1149 loss_db: 0.8755 2023/04/04 00:41:57 - mmengine - INFO - Epoch(train) [43][ 4/2146] lr: 4.2369e-04 eta: 19:21:57 time: 0.4845 data_time: 0.0839 memory: 4714 loss: 4.8804 loss_prob: 2.8405 loss_thr: 1.1279 loss_db: 0.9120 2023/04/04 00:41:57 - mmengine - INFO - Epoch(train) [43][ 5/2146] lr: 4.2369e-04 eta: 19:21:57 time: 0.4907 data_time: 0.0839 memory: 4714 loss: 4.9374 loss_prob: 2.8516 loss_thr: 1.1418 loss_db: 0.9440Why my recall, precision and hmean are always 0, my training data and test data are in the same format.
Beta Was this translation helpful? Give feedback.
All reactions