Help required YOLOX training #9714
Unanswered
saadyousuf45
asked this question in
General
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
Config:
optimizer = dict(
type='SGD',
lr=0.01,
momentum=0.9,
weight_decay=0.0005,
nesterov=True,
paramwise_cfg=dict(norm_decay_mult=0.0, bias_decay_mult=0.0))
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='YOLOX',
warmup='exp',
by_epoch=False,
warmup_by_epoch=True,
warmup_ratio=1,
warmup_iters=5,
num_last_epochs=15,
min_lr_ratio=0.05)
runner = dict(type='EpochBasedRunner', max_epochs=300)
checkpoint_config = dict(interval=10)
log_config = dict(
interval=50,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
custom_hooks = [
dict(type='YOLOXModeSwitchHook', num_last_epochs=15, priority=48),
dict(type='SyncNormHook', num_last_epochs=15, interval=10, priority=48),
dict(
type='ExpMomentumEMAHook',
resume_from=None,
momentum=0.0001,
priority=49)
]
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = '/content/drive/MyDrive/Colab Notebooks/Rad_files/Pre-trained Model Checkpoint/yolox_x_8x8_300e_coco.py'
resume_from = None
workflow = [('train', 1)]
opencv_num_threads = 0
mp_start_method = 'fork'
auto_scale_lr = dict(enable=False, base_batch_size=64)
img_scale = (640, 640)
model = dict(
type='YOLOX',
input_size=(640, 640),
random_size_range=(15, 25),
random_size_interval=10,
backbone=dict(type='CSPDarknet', deepen_factor=1.33, widen_factor=1.25),
neck=dict(
type='YOLOXPAFPN',
in_channels=[320, 640, 1280],
out_channels=320,
num_csp_blocks=4),
bbox_head=dict(
type='YOLOXHead', num_classes=162, in_channels=320, feat_channels=320),
train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
data_root = 'data/'
dataset_type = 'NewDataset'
train_pipeline = [
dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0),
dict(
type='RandomAffine', scaling_ratio_range=(0.1, 2),
border=(-320, -320)),
dict(
type='MixUp',
img_scale=(640, 640),
ratio_range=(0.8, 1.6),
pad_val=114.0),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Resize', img_scale=(640, 640), keep_ratio=True),
dict(
type='Pad',
pad_to_square=True,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
train_dataset = dict(
type='MultiImageMixDataset',
dataset=dict(
type='CocoDataset',
ann_file='data/coco/annotations/instances_train2017.json',
img_prefix='data/coco/train2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True)
],
filter_empty_gt=False),
pipeline=[
dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0),
dict(
type='RandomAffine',
scaling_ratio_range=(0.1, 2),
border=(-320, -320)),
dict(
type='MixUp',
img_scale=(640, 640),
ratio_range=(0.8, 1.6),
pad_val=114.0),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Resize', img_scale=(640, 640), keep_ratio=True),
dict(
type='Pad',
pad_to_square=True,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(
type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
])
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(640, 640),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Pad',
pad_to_square=True,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
persistent_workers=True,
train=dict(
type='RepeatDataset',
dataset=dict(
type='NewDataset',
ann_file='/content/mmdetection/data/train.txt',
img_prefix=
'/content/drive/MyDrive/Colab Notebooks/Rad_files/Final_testing_images/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True)
],
filter_empty_gt=False,
data_root='data/'),
pipeline=[
dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0),
dict(
type='RandomAffine',
scaling_ratio_range=(0.1, 2),
border=(-320, -320)),
dict(
type='MixUp',
img_scale=(640, 640),
ratio_range=(0.8, 1.6),
pad_val=114.0),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Resize', img_scale=(640, 640), keep_ratio=True),
dict(
type='Pad',
pad_to_square=True,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(
type='FilterAnnotations',
min_gt_bbox_wh=(1, 1),
keep_empty=False),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]),
val=dict(
type='NewDataset',
ann_file='test.txt',
img_prefix=
'/content/drive/MyDrive/Colab Notebooks/Rad_files/Final_testing_images/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(640, 640),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Pad',
pad_to_square=True,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
],
data_root='data/'),
test=dict(
type='NewDataset',
ann_file='train.txt',
img_prefix=
'/content/drive/MyDrive/Colab Notebooks/Rad_files/Final_testing_images/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(640, 640),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Pad',
pad_to_square=True,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
],
data_root='data/'))
max_epochs = 300
num_last_epochs = 15
interval = 10
evaluation = dict(
save_best='auto', interval=10, dynamic_intervals=[(285, 1)], metric='mAP')
work_dir = '/content/drive/MyDrive/Colab Notebooks/Final thesis implementation/testing for HPC/'
seed = 0
gpu_ids = range(0, 1)
The error i get:
:80: DeprecationWarning:
np.long
is a deprecated alias fornp.compat.long
. To silence this warning, usenp.compat.long
by itself. In the likely event your code does not need to work on Python 2 you can use the builtinint
for whichnp.compat.long
is itself an alias. Doing this will not modify any behaviour and is safe. When replacingnp.long
, you may wish to use e.g.np.int64
ornp.int32
to specify the precision. If you wish to review your current use, check the release note link for additional information.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
labels = np.array(gt_labels, dtype = np.long),
:82: DeprecationWarning:
np.long
is a deprecated alias fornp.compat.long
. To silence this warning, usenp.compat.long
by itself. In the likely event your code does not need to work on Python 2 you can use the builtinint
for whichnp.compat.long
is itself an alias. Doing this will not modify any behaviour and is safe. When replacingnp.long
, you may wish to use e.g.np.int64
ornp.int32
to specify the precision. If you wish to review your current use, check the release note link for additional information.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
labels_ignore = np.array(gt_labels_ignore, dtype = np.long))
KeyError Traceback (most recent call last)
in
5
6
----> 7 datasets = [build_dataset(cfg.data.train)]
8
9 model = build_detector(
1 frames
/usr/local/lib/python3.8/dist-packages/mmcv/utils/config.py in missing(self, name)
36
37 def missing(self, name):
---> 38 raise KeyError(name)
39
40 def getattr(self, name):
KeyError: 'times'
Beta Was this translation helpful? Give feedback.
All reactions