|
| 1 | +""" Functions common to both site_assessment methods. """ |
| 2 | + |
| 3 | +using LinearAlgebra |
| 4 | + |
| 5 | +include("geom_ops.jl") |
| 6 | + |
| 7 | +# Additional functions for reef-edge alignment processing. |
| 8 | +""" |
| 9 | + meters_to_degrees(x, lat) |
| 10 | +
|
| 11 | +Convert meters to degrees at target latitude. |
| 12 | +""" |
| 13 | +function meters_to_degrees(x, lat) |
| 14 | + return x / (111.1 * 1000 * cosd(lat)) |
| 15 | +end |
| 16 | + |
| 17 | +""" |
| 18 | + degrees_to_meters(x, lat) |
| 19 | +
|
| 20 | +Convert degrees to meters at target latitude. |
| 21 | +""" |
| 22 | +function degrees_to_meters(x, lat) |
| 23 | + return x * (111.1 * 1000 * cosd(lat)) |
| 24 | +end |
| 25 | + |
| 26 | +""" |
| 27 | + from_zero(v::Vector{Tuple{Float64,Float64}})::Vector{Tuple{Float64, Float64}} |
| 28 | +
|
| 29 | +Translates Vector of points `v` to begin from (0, 0), retaining direction and length. |
| 30 | +
|
| 31 | +# Argument |
| 32 | +- `v` : Vector of point coordinates (`Tuple{Float64, Float64}`). |
| 33 | +""" |
| 34 | +function from_zero(v::Vector{Tuple{Float64,Float64}})::Vector{Tuple{Float64,Float64}} |
| 35 | + max_coord = maximum(v) |
| 36 | + if first(v) == max_coord |
| 37 | + v = reverse(v) |
| 38 | + end |
| 39 | + |
| 40 | + new_coords = [ |
| 41 | + Vector{Union{Missing,Float64}}(missing, size(max_coord, 1)), |
| 42 | + Vector{Union{Missing,Float64}}(missing, size(max_coord, 1)) |
| 43 | + ] |
| 44 | + for (j, coords) in enumerate(new_coords) |
| 45 | + for val in eachindex(coords) |
| 46 | + coords[val] = max_coord[val] - v[j][val] |
| 47 | + end |
| 48 | + end |
| 49 | + |
| 50 | + return Tuple.(new_coords) |
| 51 | +end |
| 52 | + |
| 53 | +""" |
| 54 | + line_angle(a::T, b::T)::Float64 where {T <: Vector{Tuple{Float64,Float64}}} |
| 55 | +
|
| 56 | +Calculate the angle between two lines. |
| 57 | +
|
| 58 | +# Arguments |
| 59 | +- `a` : Line between point coordinates. |
| 60 | +- `b` : Line between point coordinates. |
| 61 | +
|
| 62 | +# Returns |
| 63 | +Angle between the two lines. |
| 64 | +
|
| 65 | +# Examples |
| 66 | +```julia |
| 67 | +line_angle([(0.0,5.0), (0.0,0.0)], from_zero(edge_line)) |
| 68 | +line_angle([(0.0,5.0), (0.0,0.0)], [(1.0, 4.0), (7.0, 8.0)]) |
| 69 | +``` |
| 70 | +""" |
| 71 | +function line_angle(a::T, b::T)::Float64 where {T<:Vector{Tuple{Float64,Float64}}} |
| 72 | + return acosd(clamp(a ⋅ b / (norm(a) * norm(b)), -1, 1)) |
| 73 | +end |
| 74 | + |
| 75 | +""" |
| 76 | + filter_far_polygons(gdf::DataFrame, pixel::GIWrap.Point, lat::Float64)::BitVector |
| 77 | +
|
| 78 | +Filter out reefs that are > 10km from the target pixel (currently hardcoded threshold). |
| 79 | +""" |
| 80 | +function filter_far_polygons(gdf::DataFrame, pixel::GeometryBasics.Point, lat::Float64)::BitVector |
| 81 | + return (GO.distance.(GO.centroid.(gdf[:, first(GI.geometrycolumns(gdf))]), [pixel]) .< meters_to_degrees(10000, lat)) |
| 82 | +end |
| 83 | + |
| 84 | +""" |
| 85 | + initial_search_box( |
| 86 | + (lon::Float64, lat::Float64), |
| 87 | + x_dist::Union{Int64, Float64}, |
| 88 | + y_dist::Union{Int64, Float64}, |
| 89 | + target_crs::GeoFormatTypes.CoordinateReferenceSystemFormat, |
| 90 | + res::Float64 |
| 91 | + )::GI.Wrappers.Polygon |
| 92 | +
|
| 93 | +Create an initial search box that is centered around the point `(lon, lat)` in `target_crs`, |
| 94 | +and is buffered by `res` distance. |
| 95 | +
|
| 96 | +# Arguments |
| 97 | +- `(lon, lat)` : Longitude and latitude coordinates of the center target pixel. |
| 98 | +- `x_dist` : x (longitude) dimension length of initial search box. |
| 99 | +- `y_dist` : y (latitude) dimension length of initial search box. |
| 100 | +- `target_crs` : Target CRS of box to match input data types. |
| 101 | +- `res` : Buffer distance (resolution of input raster search data). |
| 102 | +
|
| 103 | +# Returns |
| 104 | +- Initial search box geometry. |
| 105 | +""" |
| 106 | +function initial_search_box( |
| 107 | + (lon, lat), |
| 108 | + x_dist::Union{Int64,Float64}, |
| 109 | + y_dist::Union{Int64,Float64}, |
| 110 | + target_crs::GeoFormatTypes.CoordinateReferenceSystemFormat, |
| 111 | + res::Float64 |
| 112 | +)::GI.Wrappers.Polygon |
| 113 | + lon_dist = meters_to_degrees(x_dist, lat) |
| 114 | + xs = (lon - lon_dist / 2, lon + lon_dist / 2) |
| 115 | + lat_dist = meters_to_degrees(y_dist, lat) |
| 116 | + ys = (lat - lat_dist / 2, lat + lat_dist / 2) |
| 117 | + |
| 118 | + search_plot = create_poly(create_bbox(xs, ys), target_crs) |
| 119 | + geom_buff = GO.buffer(search_plot, res) |
| 120 | + |
| 121 | + return geom_buff |
| 122 | +end |
| 123 | + |
| 124 | +""" |
| 125 | + identify_closest_edge( |
| 126 | + pixel::GeometryBasics.Point{2, Float64}, |
| 127 | + reef_lines::Vector{GeometryBasics.Line{2, Float64}} |
| 128 | + )::Vector{Tuple{Float64, Float64}} |
| 129 | +
|
| 130 | +Find the nearest line in `reef_lines` to a point `pixel`. |
| 131 | +
|
| 132 | +# Arguments |
| 133 | +- `pixel` : Target point geometry. |
| 134 | +- `reef_lines` : Vector containing lines for comparison. |
| 135 | +""" |
| 136 | +function identify_closest_edge( |
| 137 | + pixel::GeometryBasics.Point{2,Float64}, |
| 138 | + reef_lines::Vector{GeometryBasics.Line{2,Float64}} |
| 139 | +)::Vector{Tuple{Float64,Float64}} |
| 140 | + nearest_edge = reef_lines[argmin(GO.distance.([pixel], reef_lines))] |
| 141 | + |
| 142 | + return [tuple(x...) for x in nearest_edge] |
| 143 | +end |
| 144 | + |
| 145 | +""" |
| 146 | + initial_search_rotation( |
| 147 | + pixel::GeometryBasics.Point{2, Float64}, |
| 148 | + geom_buff::GI.Wrappers.Polygon, |
| 149 | + gdf::DataFrame, |
| 150 | + reef_outlines::Vector{Vector{GeometryBasics.Line{2, Float64}}} |
| 151 | + )::Float64 |
| 152 | +
|
| 153 | +Identifies the closest edge to the target `pixel`/'`geom_buff` and returns the initial rotation |
| 154 | +angle required to match the edge line. |
| 155 | +
|
| 156 | +# Arguments |
| 157 | +- `pixel` : Target point at the center of the search polygon. |
| 158 | +- `geom_buff` : Initial search box with zero rotation. |
| 159 | +- `gdf` : GeoDataFrame containing a geometry column used for pixel masking. |
| 160 | +- `reef_outlines` : Line segments for the outlines of each reef in `gdf`. |
| 161 | +""" |
| 162 | +function initial_search_rotation( |
| 163 | + pixel::GeometryBasics.Point{2,Float64}, |
| 164 | + geom_buff::GI.Wrappers.Polygon, |
| 165 | + gdf::DataFrame, |
| 166 | + reef_outlines::Vector{Vector{GeometryBasics.Line{2,Float64}}} |
| 167 | +)::Float64 |
| 168 | + distance_indices = filter_far_polygons(gdf, pixel, pixel[2]) |
| 169 | + reef_lines = reef_outlines[distance_indices] |
| 170 | + reef_lines = reef_lines[ |
| 171 | + GO.within.([pixel], gdf[distance_indices, first(GI.geometrycolumns(gdf))]) |
| 172 | + ] |
| 173 | + reef_lines = vcat(reef_lines...) |
| 174 | + |
| 175 | + # If a pixel is outside of a polygon, use the closest polygon instead. |
| 176 | + if isempty(reef_lines) |
| 177 | + reef_distances = GO.distance.( |
| 178 | + [pixel], |
| 179 | + gdf[distance_indices, first(GI.geometrycolumns(gdf))] |
| 180 | + ) |
| 181 | + reef_lines = reef_outlines[distance_indices] |
| 182 | + reef_lines = reef_lines[argmin(reef_distances)] |
| 183 | + reef_lines = vcat(reef_lines...) |
| 184 | + end |
| 185 | + |
| 186 | + edge_line = identify_closest_edge(pixel, reef_lines) |
| 187 | + |
| 188 | + # Calculate the angle between the two lines |
| 189 | + edge_bearing = line_angle([(0.0, 5.0), (0.0, 0.0)], from_zero(edge_line)) |
| 190 | + rot_angle = line_angle(from_zero(find_horizontal(geom_buff)), from_zero(edge_line)) |
| 191 | + if edge_bearing > 90 |
| 192 | + rot_angle = -rot_angle |
| 193 | + end |
| 194 | + |
| 195 | + return rot_angle |
| 196 | +end |
| 197 | + |
| 198 | +""" |
| 199 | + filter_intersecting_sites(res_df::DataFrame)::DataFrame |
| 200 | +
|
| 201 | +Filter out sites where the qc_flag indicates a suitabiltiy < `surr_threshold` in searching. |
| 202 | +Identify and keep the highest scoring site polygon where site polygons are overlapping. |
| 203 | +
|
| 204 | +# Arguments |
| 205 | +- `res_df` : Results DataFrame containing potential site polygons (output from |
| 206 | +`identify_potential_sites()` or `identify_potential_sites_edges()`). |
| 207 | +""" |
| 208 | +function filter_intersecting_sites(res_df::DataFrame)::DataFrame |
| 209 | + res_df.row_ID = 1:size(res_df, 1) |
| 210 | + ignore_list = [] |
| 211 | + |
| 212 | + for (row) in eachrow(res_df) |
| 213 | + if row.row_ID ∈ ignore_list |
| 214 | + continue |
| 215 | + end |
| 216 | + |
| 217 | + if row.qc_flag == 1 |
| 218 | + push!(ignore_list, row.row_ID) |
| 219 | + continue |
| 220 | + end |
| 221 | + |
| 222 | + if any(GO.intersects.([row.poly], res_df[:, :poly])) |
| 223 | + intersecting_polys = res_df[(GO.intersects.([row.poly], res_df[:, :poly])), :] |
| 224 | + if maximum(intersecting_polys.score) <= row.score |
| 225 | + for x_row in eachrow(intersecting_polys[intersecting_polys.row_ID .!= row.row_ID, :]) |
| 226 | + push!(ignore_list, x_row.row_ID) |
| 227 | + end |
| 228 | + else |
| 229 | + push!(ignore_list, row.row_ID) |
| 230 | + end |
| 231 | + end |
| 232 | + end |
| 233 | + |
| 234 | + return res_df[res_df.row_ID .∉ [unique(ignore_list)], :] |
| 235 | +end |
0 commit comments