|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +import torch.nn.functional as F |
| 4 | + |
| 5 | +from .attention_ops import compute_mha |
| 6 | +from .base_attention import BaseSelfAttention |
| 7 | + |
| 8 | +__all__ = ["LinformerAttention"] |
| 9 | + |
| 10 | + |
| 11 | +class LinformerAttention(BaseSelfAttention): |
| 12 | + def __init__( |
| 13 | + self, |
| 14 | + seq_len: int, |
| 15 | + head_dim: int, |
| 16 | + num_heads: int, |
| 17 | + k: int = None, |
| 18 | + how: str = "basic", |
| 19 | + slice_size: int = None, |
| 20 | + **kwargs |
| 21 | + ) -> None: |
| 22 | + """Linformer attention mechanism. |
| 23 | +
|
| 24 | + Linformer: Self-Attention with Linear Complexity |
| 25 | + - https://arxiv.org/abs/2006.04768v2 |
| 26 | +
|
| 27 | + Adapted from xformers library |
| 28 | +
|
| 29 | + NOTE: Weirdly, even when computing linformer attention with xformers |
| 30 | + `memory_efficient_attention`, linformer needs more memory for long sequences |
| 31 | + (due to the linear layers) than computing exact `memory_efficient_attention`. |
| 32 | +
|
| 33 | + Parameters |
| 34 | + ---------- |
| 35 | + seq_len : int |
| 36 | + The length of the sequence. (For per-pixel patches H*W). |
| 37 | + head_dim : int |
| 38 | + Out dim per attention head. |
| 39 | + num_heads : int |
| 40 | + Number of heads. |
| 41 | + k : int, optional |
| 42 | + Divisor for key and value matrices to get low-rank attention matrix. |
| 43 | + how : str, default="basic" |
| 44 | + How to compute the self-attention matrix. |
| 45 | + One of ("basic", "flash", "slice", "memeff", "slice_memeff"). |
| 46 | + "basic": the normal O(N^2) self attention. |
| 47 | + "flash": the flash attention (by xformers library), |
| 48 | + "slice": batch sliced attention operation to save mem. |
| 49 | + "memeff": xformers.memory_efficient_attention. |
| 50 | + "slice_memeff": Conmbine slicing and memory_efficient_attention. |
| 51 | + slice_size, int, optional |
| 52 | + The size of the slice. Used only if `how in ('slice', 'slice_memeff)`. |
| 53 | + """ |
| 54 | + super().__init__( |
| 55 | + head_dim=head_dim, |
| 56 | + num_heads=num_heads, |
| 57 | + how=how, |
| 58 | + slice_size=slice_size, |
| 59 | + ) |
| 60 | + |
| 61 | + if k is None: |
| 62 | + k = seq_len // 4 |
| 63 | + |
| 64 | + self.k = k |
| 65 | + self.E = nn.Linear(seq_len, k, bias=False) |
| 66 | + self.F = nn.Linear(seq_len, k, bias=False) |
| 67 | + self.seq_len = seq_len |
| 68 | + |
| 69 | + def forward( |
| 70 | + self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs |
| 71 | + ) -> torch.Tensor: |
| 72 | + """Forward pass of the linformer attention mechanism.""" |
| 73 | + padding = 0 |
| 74 | + if query.shape[1] < self.seq_len: |
| 75 | + padding = self.seq_len - query.shape[1] |
| 76 | + pad_dims = (0, 0, 0, padding) |
| 77 | + query = F.pad(query, pad_dims) |
| 78 | + key = F.pad(key, pad_dims) |
| 79 | + value = F.pad(value, pad_dims) |
| 80 | + |
| 81 | + key_proj = self.E(key.transpose(-1, -2)).transpose(-1, -2).contiguous() |
| 82 | + value_proj = self.F(value.transpose(-1, -2)).transpose(-1, -2).contiguous() |
| 83 | + |
| 84 | + out = compute_mha( |
| 85 | + query, |
| 86 | + key_proj, |
| 87 | + value_proj, |
| 88 | + self.how, |
| 89 | + slice_size=self.slice_size, # used only for slice-att |
| 90 | + num_heads=self.num_heads, # used only for slice-att |
| 91 | + proj_channels=self.proj_channels, # used only for slice-att |
| 92 | + ) |
| 93 | + |
| 94 | + return out[:, :-padding, :] if padding > 0 else out |
0 commit comments