|
| 1 | +"""Adapted from https://github.com/jopo666/HistoEncoder. |
| 2 | +
|
| 3 | +Copyright 2023 Joona Pohjonen |
| 4 | +
|
| 5 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +you may not use this file except in compliance with the License. |
| 7 | +You may obtain a copy of the License at |
| 8 | +
|
| 9 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +
|
| 11 | +Unless required by applicable law or agreed to in writing, software |
| 12 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +See the License for the specific language governing permissions and |
| 15 | +limitations under the License. |
| 16 | +""" |
| 17 | + |
| 18 | +from pathlib import Path |
| 19 | +from typing import List, Optional, Tuple, Union |
| 20 | + |
| 21 | +import timm |
| 22 | +import torch |
| 23 | +import torch.nn as nn |
| 24 | + |
| 25 | +from cellseg_models_pytorch.encoders._base import BaseTrEncoder |
| 26 | + |
| 27 | +__all__ = ["HistoEncoder", "build_histo_encoder"] |
| 28 | + |
| 29 | +# histo_encoder model name to timm model name mapping |
| 30 | +NAME_TO_MODEL = { |
| 31 | + "histo_encoder_prostate_s": "xcit_small_12_p16_224", |
| 32 | + "histo_encoder_prostate_m": "xcit_medium_24_p16_224", |
| 33 | +} |
| 34 | + |
| 35 | +# name to pre-trained weights mapping |
| 36 | +MODEL_URLS = { |
| 37 | + "histo_encoder_prostate_s": "https://dl.dropboxusercontent.com/s/tbff9wslc8p7ie3/prostate_small.pth?dl=0", # noqa |
| 38 | + "histo_encoder_prostate_m": "https://dl.dropboxusercontent.com/s/k1fr09x5auki8sp/prostate_medium.pth?dl=0", # noqa |
| 39 | +} |
| 40 | + |
| 41 | + |
| 42 | +class HistoEncoder(BaseTrEncoder): |
| 43 | + def __init__( |
| 44 | + self, |
| 45 | + backbone: nn.Module, |
| 46 | + checkpoint_path: Optional[Union[Path, str]] = None, |
| 47 | + out_indices: Optional[Tuple[int, ...]] = None, |
| 48 | + num_blocks: int = 1, |
| 49 | + embed_dim: int = 384, |
| 50 | + patch_size: int = 16, |
| 51 | + avg_pool: bool = False, |
| 52 | + **kwargs, |
| 53 | + ) -> None: |
| 54 | + """Create HistoEncoder backbone. |
| 55 | +
|
| 56 | + HistoEncoder: https://github.com/jopo666/HistoEncoder |
| 57 | +
|
| 58 | + Parameters |
| 59 | + ---------- |
| 60 | + checkpoint_path : Optional[Union[Path, str]], optional |
| 61 | + Path to the weights of the backbone. If None and pretrained is False the |
| 62 | + backbone is initialized randomly. Defaults to None. |
| 63 | + num_blocks : int, optional |
| 64 | + Number of attention blocks to include in the extracted features. |
| 65 | + When `num_blocks>1`, the outputs of the last `num_blocks` attention |
| 66 | + blocks are concatenated to make up the features. Defaults to 1. |
| 67 | + avg_pool : bool, optional |
| 68 | + Whether to average pool the outputs of the last attention block. |
| 69 | + Defaults to False. |
| 70 | + """ |
| 71 | + super().__init__( |
| 72 | + name="Histo-encoder", |
| 73 | + checkpoint_path=checkpoint_path, |
| 74 | + out_indices=out_indices, |
| 75 | + ) |
| 76 | + |
| 77 | + self.backbone = backbone |
| 78 | + self.avg_pool = avg_pool |
| 79 | + self.num_blocks = num_blocks |
| 80 | + self.embed_dim = embed_dim |
| 81 | + self.patch_size = patch_size |
| 82 | + |
| 83 | + if checkpoint_path is not None: |
| 84 | + self.load_checkpoint() |
| 85 | + |
| 86 | + @property |
| 87 | + def n_blocks(self): |
| 88 | + """Get the number of attention blocks in the backbone.""" |
| 89 | + return len(self.backbone.blocks) |
| 90 | + |
| 91 | + def forward_features( |
| 92 | + self, x: torch.Tensor |
| 93 | + ) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]: |
| 94 | + """Forward pass of the backbone and return all the features. |
| 95 | +
|
| 96 | + Parameters |
| 97 | + ---------- |
| 98 | + x : torch.Tensor |
| 99 | + Input tensor (input image). Shape: (B, C, H, W) |
| 100 | +
|
| 101 | + Returns |
| 102 | + ------- |
| 103 | + Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]: |
| 104 | + torch.Tensor: Output of last layers (all tokens, without classification) |
| 105 | + torch.Tensor: Classification output |
| 106 | + torch.Tensor: All the intermediate features from the attention blocks |
| 107 | + """ |
| 108 | + B = x.shape[0] |
| 109 | + x, (Hp, Wp) = self.backbone.patch_embed(x) |
| 110 | + |
| 111 | + if self.backbone.pos_embed is not None: |
| 112 | + pos_encoding = ( |
| 113 | + self.backbone.pos_embed(B, Hp, Wp) |
| 114 | + .reshape(B, -1, x.shape[1]) |
| 115 | + .permute(0, 2, 1) |
| 116 | + ) |
| 117 | + x = x + pos_encoding |
| 118 | + |
| 119 | + x = self.backbone.pos_drop(x) |
| 120 | + |
| 121 | + # Collect intermediate outputs. |
| 122 | + intermediate_outputs = [] |
| 123 | + res_outputs = [] |
| 124 | + for i, blk in enumerate(self.backbone.blocks): |
| 125 | + x = blk(x, Hp, Wp) |
| 126 | + intermediate_outputs.append(x) |
| 127 | + if i in self.out_indices: |
| 128 | + res_outputs.append( |
| 129 | + x.reshape(B, Hp, Wp, self.embed_dim).permute(0, 3, 1, 2) |
| 130 | + ) |
| 131 | + |
| 132 | + # collect intermediate outputs and add cls token block |
| 133 | + cls_tokens = self.backbone.cls_token.expand(B, -1, -1) |
| 134 | + x = torch.cat((cls_tokens, x), dim=1) |
| 135 | + for j, blk in enumerate(self.backbone.cls_attn_blocks, i + 1): |
| 136 | + x = blk(x) |
| 137 | + intermediate_outputs.append(x) |
| 138 | + if j in self.out_indices: |
| 139 | + res_outputs.append( |
| 140 | + x[:, 1:, :].reshape(B, Wp, Hp, self.embed_dim).permute(0, 3, 1, 2) |
| 141 | + ) |
| 142 | + |
| 143 | + norm_outputs = [ |
| 144 | + self.backbone.norm(x) for x in intermediate_outputs[-self.num_blocks :] |
| 145 | + ] |
| 146 | + output = torch.cat([x[:, 0] for x in norm_outputs], axis=-1) |
| 147 | + |
| 148 | + if self.avg_pool: |
| 149 | + output = torch.cat( |
| 150 | + [output, torch.mean(norm_outputs[-1][:, 1:], dim=1)], axis=-1 |
| 151 | + ) |
| 152 | + |
| 153 | + return torch.mean(norm_outputs[-1][:, 1:], dim=1), output, res_outputs |
| 154 | + |
| 155 | + def forward(self, x: torch.Tensor) -> torch.Tensor: |
| 156 | + """Forward pass of the histo-encoder backbone.""" |
| 157 | + logits, cls_token, features = self.forward_features(x) |
| 158 | + |
| 159 | + return features |
| 160 | + |
| 161 | + |
| 162 | +def build_histo_encoder( |
| 163 | + name: str, pretrained: bool = True, checkpoint_path: str = None, **kwargs |
| 164 | +) -> HistoEncoder: |
| 165 | + """Build HistoEncoder backbone. |
| 166 | +
|
| 167 | + Parameters |
| 168 | + ---------- |
| 169 | + name : str |
| 170 | + Name of the encoder. Must be one of "histo_encoder_prostate_s". |
| 171 | + "histo_encoder_prostate_m". |
| 172 | + pretrained : bool, optional |
| 173 | + If True, load pretrained weights, by default True. |
| 174 | + checkpoint_path : str, optional |
| 175 | + Path to the weights of the backbone. If None and pretrained is False the |
| 176 | + backbone is initialized randomly. Defaults to None. |
| 177 | +
|
| 178 | + Returns |
| 179 | + ------- |
| 180 | + nn.Module |
| 181 | + The initialized Histo-encoder. |
| 182 | + """ |
| 183 | + if name not in ("histo_encoder_prostate_s", "histo_encoder_prostate_m"): |
| 184 | + raise ValueError( |
| 185 | + f"Unknown encoder name: {name}, " |
| 186 | + "allowed values are 'histo_encoder_prostate_s', 'histo_encoder_prostate_m'" |
| 187 | + ) |
| 188 | + |
| 189 | + if checkpoint_path is None and pretrained: |
| 190 | + checkpoint_path = MODEL_URLS[name] |
| 191 | + |
| 192 | + # init XCit backbone |
| 193 | + backbone = timm.create_model(NAME_TO_MODEL[name], num_classes=0, **kwargs) |
| 194 | + |
| 195 | + if name == "histo_encoder_prostate_s": |
| 196 | + histo_encoder = HistoEncoder( |
| 197 | + backbone=backbone, |
| 198 | + out_indices=(2, 5, 10, 13), |
| 199 | + checkpoint_path=checkpoint_path, |
| 200 | + embed_dim=384, |
| 201 | + patch_size=16, |
| 202 | + ) |
| 203 | + elif name == "histo_encoder_prostate_m": |
| 204 | + histo_encoder = HistoEncoder( |
| 205 | + backbone=backbone, |
| 206 | + out_indices=(4, 11, 20, 25), |
| 207 | + checkpoint_path=checkpoint_path, |
| 208 | + embed_dim=512, |
| 209 | + patch_size=16, |
| 210 | + ) |
| 211 | + |
| 212 | + return histo_encoder |
0 commit comments