Skip to content

Commit 29c848c

Browse files
committed
Make cholesky submodule public, update documents
1 parent 062a345 commit 29c848c

File tree

1 file changed

+15
-15
lines changed

1 file changed

+15
-15
lines changed

lax/src/lib.rs

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -52,8 +52,8 @@
5252
//! According to the property input metrix, several types of triangular decomposition are used:
5353
//!
5454
//! - [solve] module provides methods for LU-decomposition for general matrix.
55-
//! - [solveh] module provides methods for Bunch-Kaufman diagonal pivoting method for symmetric/hermite indefinite matrix.
56-
//! - [Cholesky_] triat provides methods for Cholesky decomposition for symmetric/hermite positive dinite matrix.
55+
//! - [solveh] module provides methods for Bunch-Kaufman diagonal pivoting method for symmetric/Hermitian indefinite matrix.
56+
//! - [cholesky] module provides methods for Cholesky decomposition for symmetric/Hermitian positive dinite matrix.
5757
//!
5858
//! Eigenvalue Problem
5959
//! -------------------
@@ -62,8 +62,8 @@
6262
//! there are several types of eigenvalue problem API
6363
//!
6464
//! - [eig] module for eigenvalue problem for general matrix.
65-
//! - [eigh] module for eigenvalue problem for symmetric/hermite matrix.
66-
//! - [eigh_generalized] module for generalized eigenvalue problem for symmetric/hermite matrix.
65+
//! - [eigh] module for eigenvalue problem for symmetric/Hermitian matrix.
66+
//! - [eigh_generalized] module for generalized eigenvalue problem for symmetric/Hermitian matrix.
6767
//!
6868
//! Singular Value Decomposition
6969
//! -----------------------------
@@ -88,6 +88,7 @@ pub mod error;
8888
pub mod flags;
8989
pub mod layout;
9090

91+
pub mod cholesky;
9192
pub mod eig;
9293
pub mod eigh;
9394
pub mod eigh_generalized;
@@ -99,7 +100,6 @@ pub mod svd;
99100
pub mod svddc;
100101

101102
mod alloc;
102-
mod cholesky;
103103
mod opnorm;
104104
mod rcond;
105105
mod triangular;
@@ -130,15 +130,15 @@ pub trait Lapack: OperatorNorm_ + Triangular_ + Tridiagonal_ + Rcond_ {
130130
a: &mut [Self],
131131
) -> Result<(Vec<Self::Complex>, Vec<Self::Complex>)>;
132132

133-
/// Compute right eigenvalue and eigenvectors for a symmetric or hermite matrix
133+
/// Compute right eigenvalue and eigenvectors for a symmetric or Hermitian matrix
134134
fn eigh(
135135
calc_eigenvec: bool,
136136
layout: MatrixLayout,
137137
uplo: UPLO,
138138
a: &mut [Self],
139139
) -> Result<Vec<Self::Real>>;
140140

141-
/// Compute right eigenvalue and eigenvectors for a symmetric or hermite matrix
141+
/// Compute right eigenvalue and eigenvectors for a symmetric or Hermitian matrix
142142
fn eigh_generalized(
143143
calc_eigenvec: bool,
144144
layout: MatrixLayout,
@@ -217,7 +217,6 @@ pub trait Lapack: OperatorNorm_ + Triangular_ + Tridiagonal_ + Rcond_ {
217217

218218
/// Factorize symmetric/Hermitian matrix using Bunch-Kaufman diagonal pivoting method
219219
///
220-
///
221220
/// For a given symmetric matrix $A$,
222221
/// this method factorizes $A = U^T D U$ or $A = L D L^T$ where
223222
///
@@ -233,13 +232,13 @@ pub trait Lapack: OperatorNorm_ + Triangular_ + Tridiagonal_ + Rcond_ {
233232
///
234233
fn bk(l: MatrixLayout, uplo: UPLO, a: &mut [Self]) -> Result<Pivot>;
235234

236-
/// Compute inverse matrix $A^{-1}$ of symmetric/Hermitian matrix using factroized result
235+
/// Compute inverse matrix $A^{-1}$ using the result of [Lapack::bk]
237236
fn invh(l: MatrixLayout, uplo: UPLO, a: &mut [Self], ipiv: &Pivot) -> Result<()>;
238237

239-
/// Solve symmetric/Hermitian linear equation $Ax = b$ using factroized result
238+
/// Solve symmetric/Hermitian linear equation $Ax = b$ using the result of [Lapack::bk]
240239
fn solveh(l: MatrixLayout, uplo: UPLO, a: &[Self], ipiv: &Pivot, b: &mut [Self]) -> Result<()>;
241240

242-
/// Solve symmetric/hermite positive-definite linear equations using Cholesky decomposition
241+
/// Solve symmetric/Hermitian positive-definite linear equations using Cholesky decomposition
243242
///
244243
/// For a given positive definite matrix $A$,
245244
/// Cholesky decomposition is described as $A = U^T U$ or $A = LL^T$ where
@@ -250,14 +249,15 @@ pub trait Lapack: OperatorNorm_ + Triangular_ + Tridiagonal_ + Rcond_ {
250249
/// This is designed as two step computation according to LAPACK API
251250
///
252251
/// 1. Factorize input matrix $A$ into $L$ or $U$
253-
/// 2. Solve linear equation $Ax = b$ or compute inverse matrix $A^{-1}$
254-
/// using $U$ or $L$.
252+
/// 2. Solve linear equation $Ax = b$ by [Lapack::solve_cholesky]
253+
/// or compute inverse matrix $A^{-1}$ by [Lapack::inv_cholesky]
254+
///
255255
fn cholesky(l: MatrixLayout, uplo: UPLO, a: &mut [Self]) -> Result<()>;
256256

257-
/// Compute inverse matrix $A^{-1}$ using $U$ or $L$
257+
/// Compute inverse matrix $A^{-1}$ using $U$ or $L$ calculated by [Lapack::cholesky]
258258
fn inv_cholesky(l: MatrixLayout, uplo: UPLO, a: &mut [Self]) -> Result<()>;
259259

260-
/// Solve linear equation $Ax = b$ using $U$ or $L$
260+
/// Solve linear equation $Ax = b$ using $U$ or $L$ calculated by [Lapack::cholesky]
261261
fn solve_cholesky(l: MatrixLayout, uplo: UPLO, a: &[Self], b: &mut [Self]) -> Result<()>;
262262
}
263263

0 commit comments

Comments
 (0)