Closed
Description
for given IR
module {
func.func @torch_jit(%arg0: !torch.vtensor<[1,3,224,224],f32>, %arg2: !torch.vtensor<[?,64,?,?],f32> , %arg3: !torch.vtensor<[?,?,?,?,?,?],f32> , %arg4: !torch.vtensor<[1],si64> ) -> !torch.vtensor<[?,?,?,?],f32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 21 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "1.12.1"} {
%0 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<64x64x3x3xf32>} : () -> !torch.vtensor<[64,64,3,3],f32>
%1 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<64xf32>} : () -> !torch.vtensor<[64],f32>
%2 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<64xf32>} : () -> !torch.vtensor<[64],f32>
%3 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<64xf32>} : () -> !torch.vtensor<[64],f32>
%4 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<64xf32>} : () -> !torch.vtensor<[64],f32>
%5 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<64xf32>} : () -> !torch.vtensor<[64],f32>
%6 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<16x256x1x1xf32>} : () -> !torch.vtensor<[16,256,1,1],f32>
%7 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<16xf32>} : () -> !torch.vtensor<[16],f32>
%8 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<256x16x1x1xf32>} : () -> !torch.vtensor<[256,16,1,1],f32>
%9 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<256xf32>} : () -> !torch.vtensor<[256],f32>
%10 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<64x256x1x1xf32>} : () -> !torch.vtensor<[64,256,1,1],f32>
%11 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<64xf32>} : () -> !torch.vtensor<[64],f32>
%12 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<64xf32>} : () -> !torch.vtensor<[64],f32>
%13 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<64xf32>} : () -> !torch.vtensor<[64],f32>
%14 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<192xf32>} : () -> !torch.vtensor<[192],f32>
%322 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<64x3x3x3xf32>} : () -> !torch.vtensor<[64,3,3,3],f32>
%323 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<64xf32>} : () -> !torch.vtensor<[64],f32>
%324 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<256x64x1x1xf32>} : () -> !torch.vtensor<[256,64,1,1],f32>
%325 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<256xf32>} : () -> !torch.vtensor<[256],f32>
%326 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<256x1x3x3xf32>} : () -> !torch.vtensor<[256,1,3,3],f32>
%327 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<256xf32>} : () -> !torch.vtensor<[256],f32>
%368 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%369 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<4xsi64>} : () -> !torch.vtensor<[4],si64>
%370 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%371 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%372 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%373 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<0.0> : tensor<64x192xf32>} : () -> !torch.vtensor<[64,192],f32>
%374 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<_onnx__Concat_6281> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%375 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<_onnx__Concat_6282> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%376 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<_onnx__Concat_6283> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%788 = torch.operator "onnx.Identity"(%372) : (!torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%789 = torch.operator "onnx.Identity"(%371) : (!torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%790 = torch.operator "onnx.Identity"(%371) : (!torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%791 = torch.operator "onnx.Identity"(%371) : (!torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%792 = torch.operator "onnx.ConstantOfShape"(%368) {torch.onnx.value = dense_resource<_> : tensor<1xsi64>} : (!torch.vtensor<[1],si64>) -> !torch.vtensor<[4],si64>
%793 = torch.operator "onnx.Concat"(%369, %792) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[4],si64>, !torch.vtensor<[4],si64>) -> !torch.vtensor<[8],si64>
%794 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__1> : tensor<2xsi64>} : () -> !torch.vtensor<[2],si64>
%795 = torch.operator "onnx.Reshape"(%793, %794) : (!torch.vtensor<[8],si64>, !torch.vtensor<[2],si64>) -> !torch.vtensor<[4,2],si64>
%796 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__2> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%797 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__3> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%798 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__4> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%799 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__5> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%800 = torch.operator "onnx.Slice"(%795, %797, %798, %796, %799) : (!torch.vtensor<[4,2],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[4,2],si64>
%801 = torch.operator "onnx.Transpose"(%800) {torch.onnx.perm = [1 : si64, 0 : si64]} : (!torch.vtensor<[4,2],si64>) -> !torch.vtensor<[2,4],si64>
%802 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__6> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%803 = torch.operator "onnx.Reshape"(%801, %802) : (!torch.vtensor<[2,4],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[8],si64>
%804 = torch.operator "onnx.Cast"(%803) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[8],si64>) -> !torch.vtensor<[8],si64>
%805 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__7> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%806 = torch.operator "onnx.Pad"(%arg0, %804, %805) {torch.onnx.mode = "constant"} : (!torch.vtensor<[1,3,224,224],f32>, !torch.vtensor<[8],si64>, !torch.vtensor<[],f32>) -> !torch.vtensor<[?,?,?,?],f32>
%807 = torch.operator "onnx.Conv"(%806, %322, %323) {torch.onnx.dilations = [1 : si64, 1 : si64], torch.onnx.group = 1 : si64, torch.onnx.kernel_shape = [3 : si64, 3 : si64], torch.onnx.pads = [0 : si64, 0 : si64, 0 : si64, 0 : si64], torch.onnx.strides = [2 : si64, 2 : si64]} : (!torch.vtensor<[?,?,?,?],f32>, !torch.vtensor<[64,3,3,3],f32>, !torch.vtensor<[64],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%808 = torch.operator "onnx.Mul"(%807, %807) : (!torch.vtensor<[?,64,?,?],f32>, !torch.vtensor<[?,64,?,?],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%809 = torch.operator "onnx.Mul"(%807, %808) : (!torch.vtensor<[?,64,?,?],f32>, !torch.vtensor<[?,64,?,?],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%810 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__8> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%811 = torch.operator "onnx.Mul"(%810, %809) : (!torch.vtensor<[],f32>, !torch.vtensor<[?,64,?,?],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%812 = torch.operator "onnx.Add"(%807, %811) : (!torch.vtensor<[?,64,?,?],f32>, !torch.vtensor<[?,64,?,?],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%813 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__9> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%814 = torch.operator "onnx.Mul"(%813, %812) : (!torch.vtensor<[],f32>, !torch.vtensor<[?,64,?,?],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%815 = torch.operator "onnx.Tanh"(%814) : (!torch.vtensor<[?,64,?,?],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%816 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__10> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%817 = torch.operator "onnx.Add"(%816, %815) : (!torch.vtensor<[],f32>, !torch.vtensor<[?,64,?,?],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%818 = torch.operator "onnx.Mul"(%807, %817) : (!torch.vtensor<[?,64,?,?],f32>, !torch.vtensor<[?,64,?,?],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%819 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__11> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%820 = torch.operator "onnx.Mul"(%819, %818) : (!torch.vtensor<[],f32>, !torch.vtensor<[?,64,?,?],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%821 = torch.operator "onnx.Conv"(%820, %0, %1) {torch.onnx.dilations = [1 : si64, 1 : si64], torch.onnx.group = 1 : si64, torch.onnx.kernel_shape = [3 : si64, 3 : si64], torch.onnx.pads = [1 : si64, 1 : si64, 1 : si64, 1 : si64], torch.onnx.strides = [1 : si64, 1 : si64]} : (!torch.vtensor<[?,64,?,?],f32>, !torch.vtensor<[64,64,3,3],f32>, !torch.vtensor<[64],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%822 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__12> : tensor<8xsi64>} : () -> !torch.vtensor<[8],si64>
%823 = torch.operator "onnx.Pad"(%821, %822) {torch.onnx.mode = "constant"} : (!torch.vtensor<[?,64,?,?],f32>, !torch.vtensor<[8],si64>) -> !torch.vtensor<[?,64,?,?],f32>
%824 = torch.operator "onnx.AveragePool"(%823) {torch.onnx.ceil_mode = 0 : si64, torch.onnx.kernel_shape = [2 : si64, 2 : si64], torch.onnx.pads = [0 : si64, 0 : si64, 0 : si64, 0 : si64], torch.onnx.strides = [2 : si64, 2 : si64]} : (!torch.vtensor<[?,64,?,?],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%825 = torch.operator "onnx.BatchNormalization"(%821, %2, %3, %4, %5) {torch.onnx.epsilon = 1.000000e-03 : f32, torch.onnx.momentum = 0.899999976 : f32} : (!torch.vtensor<[?,64,?,?],f32>, !torch.vtensor<[64],f32>, !torch.vtensor<[64],f32>, !torch.vtensor<[64],f32>, !torch.vtensor<[64],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%826 = torch.operator "onnx.Conv"(%825, %324, %325) {torch.onnx.dilations = [1 : si64, 1 : si64], torch.onnx.group = 1 : si64, torch.onnx.kernel_shape = [1 : si64, 1 : si64], torch.onnx.pads = [0 : si64, 0 : si64, 0 : si64, 0 : si64], torch.onnx.strides = [1 : si64, 1 : si64]} : (!torch.vtensor<[?,64,?,?],f32>, !torch.vtensor<[256,64,1,1],f32>, !torch.vtensor<[256],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%827 = torch.operator "onnx.Mul"(%826, %826) : (!torch.vtensor<[?,256,?,?],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%828 = torch.operator "onnx.Mul"(%826, %827) : (!torch.vtensor<[?,256,?,?],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%829 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__13> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%830 = torch.operator "onnx.Mul"(%829, %828) : (!torch.vtensor<[],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%831 = torch.operator "onnx.Add"(%826, %830) : (!torch.vtensor<[?,256,?,?],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%832 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__14> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%833 = torch.operator "onnx.Mul"(%832, %831) : (!torch.vtensor<[],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%834 = torch.operator "onnx.Tanh"(%833) : (!torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%835 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__15> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%836 = torch.operator "onnx.Add"(%835, %834) : (!torch.vtensor<[],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%837 = torch.operator "onnx.Mul"(%826, %836) : (!torch.vtensor<[?,256,?,?],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%838 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__16> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%839 = torch.operator "onnx.Mul"(%838, %837) : (!torch.vtensor<[],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%840 = torch.operator "onnx.Shape"(%839) : (!torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[4],si64>
%841 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__17> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%842 = torch.operator "onnx.Gather"(%840, %841) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[4],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%843 = torch.operator "onnx.Shape"(%839) : (!torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[4],si64>
%844 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__18> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%845 = torch.operator "onnx.Gather"(%843, %844) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[4],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%846 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__19> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%847 = torch.operator "onnx.Sub"(%846, %842) : (!torch.vtensor<[],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%848 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__20> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%849 = torch.operator "onnx.Sub"(%848, %845) : (!torch.vtensor<[],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%850 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__21> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%851 = torch.operator "onnx.Div"(%849, %850) : (!torch.vtensor<[],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%852 = torch.operator "onnx.Cast"(%851) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%853 = torch.operator "onnx.Cast"(%852) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%854 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__22> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%855 = torch.operator "onnx.Div"(%849, %854) : (!torch.vtensor<[],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%856 = torch.operator "onnx.Cast"(%855) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%857 = torch.operator "onnx.Cast"(%856) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%858 = torch.operator "onnx.Sub"(%849, %857) : (!torch.vtensor<[],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%859 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__23> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%860 = torch.operator "onnx.Div"(%847, %859) : (!torch.vtensor<[],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%861 = torch.operator "onnx.Cast"(%860) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%862 = torch.operator "onnx.Cast"(%861) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%863 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__24> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%864 = torch.operator "onnx.Div"(%847, %863) : (!torch.vtensor<[],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%865 = torch.operator "onnx.Cast"(%864) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%866 = torch.operator "onnx.Cast"(%865) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%867 = torch.operator "onnx.Sub"(%847, %866) : (!torch.vtensor<[],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%868 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__25> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%869 = torch.operator "onnx.Unsqueeze"(%853, %868) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%870 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__26> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%871 = torch.operator "onnx.Unsqueeze"(%858, %870) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%872 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__27> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%873 = torch.operator "onnx.Unsqueeze"(%862, %872) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%874 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__28> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%875 = torch.operator "onnx.Unsqueeze"(%867, %874) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%876 = torch.operator "onnx.Concat"(%869, %871, %873, %875) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[4],si64>
%877 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__29> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%878 = torch.operator "onnx.Unsqueeze"(%853, %877) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%879 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__30> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%880 = torch.operator "onnx.Unsqueeze"(%858, %879) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%881 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__31> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%882 = torch.operator "onnx.Unsqueeze"(%862, %881) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%883 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__32> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%884 = torch.operator "onnx.Unsqueeze"(%867, %883) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%885 = torch.operator "onnx.Concat"(%878, %880, %882, %884) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[4],si64>
%886 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__33> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%888 = torch.operator "onnx.Gather"(%arg4, %886) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%889 = torch.operator "onnx.Sub"(%370, %888) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%890 = torch.operator "onnx.Cast"(%885) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[4],si64>) -> !torch.vtensor<[4],si64>
%891 = torch.operator "onnx.ConstantOfShape"(%889) {torch.onnx.value = dense_resource<__34> : tensor<1xsi64>} : (!torch.vtensor<[1],si64>) -> !torch.vtensor<[4],si64>
%892 = torch.operator "onnx.Concat"(%890, %891) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[4],si64>, !torch.vtensor<[4],si64>) -> !torch.vtensor<[8],si64>
%893 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__35> : tensor<2xsi64>} : () -> !torch.vtensor<[2],si64>
%894 = torch.operator "onnx.Reshape"(%892, %893) : (!torch.vtensor<[8],si64>, !torch.vtensor<[2],si64>) -> !torch.vtensor<[4,2],si64>
%895 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__36> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%896 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__37> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%897 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__38> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%898 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__39> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%899 = torch.operator "onnx.Slice"(%894, %896, %897, %895, %898) : (!torch.vtensor<[4,2],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[4,2],si64>
%900 = torch.operator "onnx.Transpose"(%899) {torch.onnx.perm = [1 : si64, 0 : si64]} : (!torch.vtensor<[4,2],si64>) -> !torch.vtensor<[2,4],si64>
%901 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__40> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%902 = torch.operator "onnx.Reshape"(%900, %901) : (!torch.vtensor<[2,4],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[8],si64>
%903 = torch.operator "onnx.Cast"(%902) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[8],si64>) -> !torch.vtensor<[8],si64>
%904 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__41> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%905 = torch.operator "onnx.Pad"(%839, %903, %904) {torch.onnx.mode = "constant"} : (!torch.vtensor<[?,256,?,?],f32>, !torch.vtensor<[8],si64>, !torch.vtensor<[],f32>) -> !torch.vtensor<[?,?,?,?],f32>
%906 = torch.operator "onnx.Conv"(%905, %326, %327) {torch.onnx.dilations = [1 : si64, 1 : si64], torch.onnx.group = 256 : si64, torch.onnx.kernel_shape = [3 : si64, 3 : si64], torch.onnx.pads = [0 : si64, 0 : si64, 0 : si64, 0 : si64], torch.onnx.strides = [2 : si64, 2 : si64]} : (!torch.vtensor<[?,?,?,?],f32>, !torch.vtensor<[256,1,3,3],f32>, !torch.vtensor<[256],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%907 = torch.operator "onnx.Mul"(%906, %906) : (!torch.vtensor<[?,256,?,?],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%908 = torch.operator "onnx.Mul"(%906, %907) : (!torch.vtensor<[?,256,?,?],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%909 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__42> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%910 = torch.operator "onnx.Mul"(%909, %908) : (!torch.vtensor<[],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%911 = torch.operator "onnx.Add"(%906, %910) : (!torch.vtensor<[?,256,?,?],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%912 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__43> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%913 = torch.operator "onnx.Mul"(%912, %911) : (!torch.vtensor<[],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%914 = torch.operator "onnx.Tanh"(%913) : (!torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%915 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__44> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%916 = torch.operator "onnx.Add"(%915, %914) : (!torch.vtensor<[],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%917 = torch.operator "onnx.Mul"(%906, %916) : (!torch.vtensor<[?,256,?,?],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%918 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__45> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%919 = torch.operator "onnx.Mul"(%918, %917) : (!torch.vtensor<[],f32>, !torch.vtensor<[?,256,?,?],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%920 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<[2, 3]> : tensor<2xsi64>} : () -> !torch.vtensor<[2],si64>
%921 = torch.operator "onnx.ReduceMean"(%919, %920) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[?,256,?,?],f32>, !torch.vtensor<[2],si64>) -> !torch.vtensor<[?,256,1,1],f32>
%922 = torch.operator "onnx.Conv"(%921, %6, %7) {torch.onnx.dilations = [1 : si64, 1 : si64], torch.onnx.group = 1 : si64, torch.onnx.kernel_shape = [1 : si64, 1 : si64], torch.onnx.pads = [0 : si64, 0 : si64, 0 : si64, 0 : si64], torch.onnx.strides = [1 : si64, 1 : si64]} : (!torch.vtensor<[?,256,1,1],f32>, !torch.vtensor<[16,256,1,1],f32>, !torch.vtensor<[16],f32>) -> !torch.vtensor<[?,16,1,1],f32>
%923 = torch.operator "onnx.Sigmoid"(%922) : (!torch.vtensor<[?,16,1,1],f32>) -> !torch.vtensor<[?,16,1,1],f32>
%924 = torch.operator "onnx.Mul"(%922, %923) : (!torch.vtensor<[?,16,1,1],f32>, !torch.vtensor<[?,16,1,1],f32>) -> !torch.vtensor<[?,16,1,1],f32>
%925 = torch.operator "onnx.Conv"(%924, %8, %9) {torch.onnx.dilations = [1 : si64, 1 : si64], torch.onnx.group = 1 : si64, torch.onnx.kernel_shape = [1 : si64, 1 : si64], torch.onnx.pads = [0 : si64, 0 : si64, 0 : si64, 0 : si64], torch.onnx.strides = [1 : si64, 1 : si64]} : (!torch.vtensor<[?,16,1,1],f32>, !torch.vtensor<[256,16,1,1],f32>, !torch.vtensor<[256],f32>) -> !torch.vtensor<[?,256,1,1],f32>
%926 = torch.operator "onnx.Sigmoid"(%925) : (!torch.vtensor<[?,256,1,1],f32>) -> !torch.vtensor<[?,256,1,1],f32>
%927 = torch.operator "onnx.Mul"(%919, %926) : (!torch.vtensor<[?,256,?,?],f32>, !torch.vtensor<[?,256,1,1],f32>) -> !torch.vtensor<[?,256,?,?],f32>
%928 = torch.operator "onnx.Conv"(%927, %10, %11) {torch.onnx.dilations = [1 : si64, 1 : si64], torch.onnx.group = 1 : si64, torch.onnx.kernel_shape = [1 : si64, 1 : si64], torch.onnx.pads = [0 : si64, 0 : si64, 0 : si64, 0 : si64], torch.onnx.strides = [1 : si64, 1 : si64]} : (!torch.vtensor<[?,256,?,?],f32>, !torch.vtensor<[64,256,1,1],f32>, !torch.vtensor<[64],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%929 = torch.operator "onnx.Add"(%928, %824) : (!torch.vtensor<[?,64,?,?],f32>, !torch.vtensor<[?,64,?,?],f32>) -> !torch.vtensor<[?,64,?,?],f32>
%930 = torch.operator "onnx.Transpose"(%929) {torch.onnx.perm = [0 : si64, 2 : si64, 3 : si64, 1 : si64]} : (!torch.vtensor<[?,64,?,?],f32>) -> !torch.vtensor<[?,?,?,64],f32>
%931 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<-1> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%932 = torch.operator "onnx.ReduceMean"(%930, %931) : (!torch.vtensor<[?,?,?,64],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[?,?,?,1],f32>
%933 = torch.operator "onnx.Sub"(%930, %932) : (!torch.vtensor<[?,?,?,64],f32>, !torch.vtensor<[?,?,?,1],f32>) -> !torch.vtensor<[?,?,?,64],f32>
%934 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__46> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%935 = torch.operator "onnx.Pow"(%933, %934) : (!torch.vtensor<[?,?,?,64],f32>, !torch.vtensor<[],f32>) -> !torch.vtensor<[?,?,?,64],f32>
%936 = torch.operator "onnx.Constant"() {torch.onnx.value = dense<-1> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%937 = torch.operator "onnx.ReduceMean"(%935, %936) : (!torch.vtensor<[?,?,?,64],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[?,?,?,1],f32>
%938 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__47> : tensor<f32>} : () -> !torch.vtensor<[],f32>
%939 = torch.operator "onnx.Add"(%937, %938) : (!torch.vtensor<[?,?,?,1],f32>, !torch.vtensor<[],f32>) -> !torch.vtensor<[?,?,?,1],f32>
%940 = torch.operator "onnx.Sqrt"(%939) : (!torch.vtensor<[?,?,?,1],f32>) -> !torch.vtensor<[?,?,?,1],f32>
%941 = torch.operator "onnx.Div"(%933, %940) : (!torch.vtensor<[?,?,?,64],f32>, !torch.vtensor<[?,?,?,1],f32>) -> !torch.vtensor<[?,?,?,64],f32>
%942 = torch.operator "onnx.Mul"(%941, %12) : (!torch.vtensor<[?,?,?,64],f32>, !torch.vtensor<[64],f32>) -> !torch.vtensor<[?,?,?,64],f32>
%943 = torch.operator "onnx.Add"(%942, %13) : (!torch.vtensor<[?,?,?,64],f32>, !torch.vtensor<[64],f32>) -> !torch.vtensor<[?,?,?,64],f32>
%944 = torch.operator "onnx.Shape"(%943) : (!torch.vtensor<[?,?,?,64],f32>) -> !torch.vtensor<[4],si64>
%945 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__48> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%946 = torch.operator "onnx.Gather"(%944, %945) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[4],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%947 = torch.operator "onnx.Shape"(%943) : (!torch.vtensor<[?,?,?,64],f32>) -> !torch.vtensor<[4],si64>
%948 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__49> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%949 = torch.operator "onnx.Gather"(%947, %948) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[4],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%950 = torch.operator "onnx.Shape"(%943) : (!torch.vtensor<[?,?,?,64],f32>) -> !torch.vtensor<[4],si64>
%951 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__50> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%952 = torch.operator "onnx.Gather"(%950, %951) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[4],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%953 = torch.operator "onnx.Shape"(%943) : (!torch.vtensor<[?,?,?,64],f32>) -> !torch.vtensor<[4],si64>
%954 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__51> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%955 = torch.operator "onnx.Gather"(%953, %954) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[4],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%956 = torch.operator "onnx.Shape"(%943) : (!torch.vtensor<[?,?,?,64],f32>) -> !torch.vtensor<[4],si64>
%957 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__52> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%958 = torch.operator "onnx.Gather"(%956, %957) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[4],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%959 = torch.operator "onnx.Shape"(%943) : (!torch.vtensor<[?,?,?,64],f32>) -> !torch.vtensor<[4],si64>
%960 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__53> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%961 = torch.operator "onnx.Gather"(%959, %960) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[4],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%962 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__54> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%963 = torch.operator "onnx.Div"(%955, %962) : (!torch.vtensor<[],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%964 = torch.operator "onnx.Cast"(%963) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%965 = torch.operator "onnx.Cast"(%964) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%966 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__55> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%967 = torch.operator "onnx.Div"(%958, %966) : (!torch.vtensor<[],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%968 = torch.operator "onnx.Cast"(%967) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%969 = torch.operator "onnx.Cast"(%968) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%970 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__56> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%971 = torch.operator "onnx.Unsqueeze"(%952, %970) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%972 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__57> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%973 = torch.operator "onnx.Unsqueeze"(%965, %972) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%974 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__58> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%975 = torch.operator "onnx.Unsqueeze"(%969, %974) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%976 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__59> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%977 = torch.operator "onnx.Unsqueeze"(%961, %976) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%978 = torch.operator "onnx.Concat"(%971, %973, %371, %975, %791, %977) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[6],si64>
%979 = torch.operator "onnx.Reshape"(%943, %978) : (!torch.vtensor<[?,?,?,64],f32>, !torch.vtensor<[6],si64>) -> !torch.vtensor<[?,?,?,?,?,?],f32>
%980 = torch.operator "onnx.Transpose"(%979) {torch.onnx.perm = [0 : si64, 1 : si64, 3 : si64, 2 : si64, 4 : si64, 5 : si64]} : (!torch.vtensor<[?,?,?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?,?,?],f32>
%981 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__60> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%982 = torch.operator "onnx.Unsqueeze"(%961, %981) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%983 = torch.operator "onnx.Concat"(%372, %790, %789, %982) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[4],si64>
%984 = torch.operator "onnx.Reshape"(%980, %983) : (!torch.vtensor<[?,?,?,?,?,?],f32>, !torch.vtensor<[4],si64>) -> !torch.vtensor<[?,?,?,?],f32>
%985 = torch.operator "onnx.Shape"(%984) : (!torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[4],si64>
%986 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__61> : tensor<si64>} : () -> !torch.vtensor<[],si64>
%987 = torch.operator "onnx.Gather"(%985, %986) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[4],si64>, !torch.vtensor<[],si64>) -> !torch.vtensor<[],si64>
%997 = torch.operator "onnx.MatMul"(%984, %373) : (!torch.vtensor<[?,?,?,?],f32>, !torch.vtensor<[64,192],f32>) -> !torch.vtensor<[?,?,?,192],f32>
%998 = torch.operator "onnx.Add"(%14, %997) : (!torch.vtensor<[192],f32>, !torch.vtensor<[?,?,?,192],f32>) -> !torch.vtensor<[?,?,?,192],f32>
%999 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__65> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%1000 = torch.operator "onnx.Unsqueeze"(%987, %999) : (!torch.vtensor<[],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[1],si64>
%1001 = torch.operator "onnx.Concat"(%1000, %788, %374, %375, %376) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[5],si64>
%1002 = torch.operator "onnx.Reshape"(%998, %1001) : (!torch.vtensor<[?,?,?,192],f32>, !torch.vtensor<[5],si64>) -> !torch.vtensor<[?,?,?,?,?],f32>
%1003 = torch.operator "onnx.Transpose"(%1002) {torch.onnx.perm = [0 : si64, 3 : si64, 2 : si64, 1 : si64, 4 : si64]} : (!torch.vtensor<[?,?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?,?],f32>
%1004 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__66> : tensor<3xsi64>} : () -> !torch.vtensor<[3],si64>
%1005:3 = torch.operator "onnx.Split"(%1003, %1004) {torch.onnx.axis = 2 : si64} : (!torch.vtensor<[?,?,?,?,?],f32>, !torch.vtensor<[3],si64>) -> (!torch.vtensor<[?,?,?,?,?],f32>, !torch.vtensor<[?,?,?,?,?],f32>, !torch.vtensor<[?,?,?,?,?],f32>)
%1006 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__67> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64>
%1007 = torch.operator "onnx.Squeeze"(%1005#0, %1006) : (!torch.vtensor<[?,?,?,?,?],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[?,?,?,?],f32>
return %1007 : !torch.vtensor<[?,?,?,?],f32>
}
}
{-#
dialect_resources: {
builtin: {
_onnx__Concat_6281: "0x080000000300000000000000",
_onnx__Concat_6282: "0x080000000200000000000000",
_onnx__Concat_6283: "0x080000002000000000000000",
_: "0x080000000000000000000000",
__1: "0x08000000FFFFFFFFFFFFFFFF0200000000000000",
__2: "0x080000000000000000000000",
__3: "0x08000000FFFFFFFFFFFFFFFF",
__4: "0x080000000100000000000080",
__5: "0x08000000FFFFFFFFFFFFFFFF",
__6: "0x08000000FFFFFFFFFFFFFFFF",
__7: "0x0800000000000000",
__8: "0x080000001327373D",
__9: "0x080000002A424C3F",
__10: "0x080000000000803F",
__11: "0x080000000000003F",
__12: "0x0800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
__13: "0x080000001327373D",
__14: "0x080000002A424C3F",
__15: "0x080000000000803F",
__16: "0x080000000000003F",
__17: "0x080000000200000000000000",
__18: "0x080000000300000000000000",
__19: "0x080000007100000000000000",
__20: "0x080000007100000000000000",
__21: "0x080000000200000000000000",
__22: "0x080000000200000000000000",
__23: "0x080000000200000000000000",
__24: "0x080000000200000000000000",
__25: "0x080000000000000000000000",
__26: "0x080000000000000000000000",
__27: "0x080000000000000000000000",
__28: "0x080000000000000000000000",
__29: "0x080000000000000000000000",
__30: "0x080000000000000000000000",
__31: "0x080000000000000000000000",
__32: "0x080000000000000000000000",
__33: "0x080000000000000000000000",
__34: "0x080000000000000000000000",
__35: "0x08000000FFFFFFFFFFFFFFFF0200000000000000",
__36: "0x080000000000000000000000",
__37: "0x08000000FFFFFFFFFFFFFFFF",
__38: "0x080000000100000000000080",
__39: "0x08000000FFFFFFFFFFFFFFFF",
__40: "0x08000000FFFFFFFFFFFFFFFF",
__41: "0x0800000000000000",
__42: "0x080000001327373D",
__43: "0x080000002A424C3F",
__44: "0x080000000000803F",
__45: "0x080000000000003F",
__46: "0x0800000000000040",
__47: "0x08000000ACC52737",
__48: "0x080000000100000000000000",
__49: "0x080000000200000000000000",
__50: "0x080000000000000000000000",
__51: "0x080000000100000000000000",
__52: "0x080000000200000000000000",
__53: "0x080000000300000000000000",
__54: "0x080000000700000000000000",
__55: "0x080000000700000000000000",
__56: "0x080000000000000000000000",
__57: "0x080000000000000000000000",
__58: "0x080000000000000000000000",
__59: "0x080000000000000000000000",
__60: "0x080000000000000000000000",
__61: "0x080000000000000000000000",
__62: "0x080000000000000000000000",
__63: "0x080000000100000000000000",
__64: "0x080000000200000000000000",
__65: "0x080000000000000000000000",
__66: "0x08000000010000000000000001000000000000000100000000000000",
__67: "0x080000000200000000000000"
}
}
#-}
command : iree-compile --iree-hal-target-backends=llvm-cpu model.torch_onnx.mlir
Metadata
Metadata
Assignees
Labels
No labels