-
Notifications
You must be signed in to change notification settings - Fork 55
Open
Labels
Milestone
Description
As discussed with @dicook , these helpers could be used to identify which rows and variables need imputation/dropping/exploring.
Perhaps something like this, with an example workflow
library(tidyverse)
# which row ID has > X% missing
# which variables have > x% missing
which_prop_miss_row <- function(data, prop){
naniar::prop_miss_row(data) > prop
}
prop_miss_cols <- function(data){
colMeans(is.na(data))
}
which_prop_miss_var <- function(data, prop){
prop_miss_cols(data) > prop
}
which_prop_miss_row(airquality, 0.1)
#> [1] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
#> [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [25] TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
#> [37] TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE
#> [49] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [61] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
#> [73] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
#> [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
#> [97] TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE
#> [109] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
#> [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [145] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
which_prop_miss_var(airquality, 0.1)
#> Ozone Solar.R Wind Temp Month Day
#> TRUE FALSE FALSE FALSE FALSE FALSE
nrow(airquality)
#> [1] 153
airquality %>%
filter(
which_prop_miss_row(., 0.1)
) %>%
nrow()
#> [1] 42
vars_over_10_pct <- which(which_prop_miss_var(airquality, 0.1))
vars_under_10_pct <- which(!which_prop_miss_var(airquality, 0.1))
airquality %>%
select(
all_of(vars_over_10_pct)
) %>%
as_tibble()
#> # A tibble: 153 × 1
#> Ozone
#> <int>
#> 1 41
#> 2 36
#> 3 12
#> 4 18
#> 5 NA
#> 6 28
#> 7 23
#> 8 19
#> 9 8
#> 10 NA
#> # … with 143 more rows
airquality %>%
select(
all_of(vars_under_10_pct)
) %>%
as_tibble()
#> # A tibble: 153 × 5
#> Solar.R Wind Temp Month Day
#> <int> <dbl> <int> <int> <int>
#> 1 190 7.4 67 5 1
#> 2 118 8 72 5 2
#> 3 149 12.6 74 5 3
#> 4 313 11.5 62 5 4
#> 5 NA 14.3 56 5 5
#> 6 NA 14.9 66 5 6
#> 7 299 8.6 65 5 7
#> 8 99 13.8 59 5 8
#> 9 19 20.1 61 5 9
#> 10 194 8.6 69 5 10
#> # … with 143 more rows
Created on 2023-04-06 with reprex v2.0.2
Session info
sessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.2.3 (2023-03-15)
#> os macOS Ventura 13.2
#> system aarch64, darwin20
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz Australia/Hobart
#> date 2023-04-06
#> pandoc 2.19.2 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.2.0)
#> backports 1.4.1 2021-12-13 [1] CRAN (R 4.2.0)
#> broom 1.0.3 2023-01-25 [1] CRAN (R 4.2.0)
#> cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.2.0)
#> cli 3.6.0 2023-01-09 [1] CRAN (R 4.2.0)
#> colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.2.0)
#> crayon 1.5.2 2022-09-29 [1] CRAN (R 4.2.0)
#> DBI 1.1.3 2022-06-18 [1] CRAN (R 4.2.0)
#> dbplyr 2.3.0 2023-01-16 [1] CRAN (R 4.2.0)
#> digest 0.6.31 2022-12-11 [1] CRAN (R 4.2.0)
#> dplyr * 1.1.0 2023-01-29 [1] CRAN (R 4.2.1)
#> ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.2.0)
#> evaluate 0.20 2023-01-17 [1] CRAN (R 4.2.0)
#> fansi 1.0.4 2023-01-22 [1] CRAN (R 4.2.0)
#> fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.0)
#> forcats * 1.0.0 2023-01-29 [1] CRAN (R 4.2.0)
#> fs 1.6.1 2023-02-06 [1] CRAN (R 4.2.0)
#> gargle 1.3.0 2023-01-30 [1] CRAN (R 4.2.0)
#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.0)
#> ggplot2 * 3.4.1 2023-02-10 [1] CRAN (R 4.2.0)
#> glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.0)
#> googledrive 2.0.0 2021-07-08 [1] CRAN (R 4.2.0)
#> googlesheets4 1.0.1 2022-08-13 [1] CRAN (R 4.2.0)
#> gtable 0.3.1 2022-09-01 [1] CRAN (R 4.2.0)
#> haven 2.5.1 2022-08-22 [1] CRAN (R 4.2.0)
#> hms 1.1.2 2022-08-19 [1] CRAN (R 4.2.0)
#> htmltools 0.5.4 2022-12-07 [1] CRAN (R 4.2.0)
#> httr 1.4.4 2022-08-17 [1] CRAN (R 4.2.0)
#> jsonlite 1.8.4 2022-12-06 [1] CRAN (R 4.2.0)
#> knitr 1.42 2023-01-25 [1] CRAN (R 4.2.0)
#> lifecycle 1.0.3 2022-10-07 [1] CRAN (R 4.2.0)
#> lubridate 1.9.1 2023-01-24 [1] CRAN (R 4.2.0)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.0)
#> modelr 0.1.10 2022-11-11 [1] CRAN (R 4.2.0)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.0)
#> naniar 1.0.0 2023-02-02 [1] CRAN (R 4.2.0)
#> pillar 1.8.1 2022-08-19 [1] CRAN (R 4.2.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.0)
#> purrr * 1.0.1 2023-01-10 [1] CRAN (R 4.2.0)
#> R.cache 0.16.0 2022-07-21 [1] CRAN (R 4.2.0)
#> R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.2.0)
#> R.oo 1.25.0 2022-06-12 [1] CRAN (R 4.2.0)
#> R.utils 2.12.2 2022-11-11 [1] CRAN (R 4.2.0)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.0)
#> readr * 2.1.3 2022-10-01 [1] CRAN (R 4.2.0)
#> readxl 1.4.1 2022-08-17 [1] CRAN (R 4.2.0)
#> reprex 2.0.2 2022-08-17 [1] CRAN (R 4.2.0)
#> rlang 1.0.6 2022-09-24 [1] CRAN (R 4.2.0)
#> rmarkdown 2.20 2023-01-19 [1] CRAN (R 4.2.0)
#> rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.0)
#> rvest 1.0.3 2022-08-19 [1] CRAN (R 4.2.0)
#> scales 1.2.1 2022-08-20 [1] CRAN (R 4.2.0)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.0)
#> stringi 1.7.12 2023-01-11 [1] CRAN (R 4.2.0)
#> stringr * 1.5.0 2022-12-02 [1] CRAN (R 4.2.0)
#> styler 1.9.0 2023-01-15 [1] CRAN (R 4.2.0)
#> tibble * 3.1.8 2022-07-22 [1] CRAN (R 4.2.0)
#> tidyr * 1.3.0 2023-01-24 [1] CRAN (R 4.2.0)
#> tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.2.0)
#> tidyverse * 1.3.2 2022-07-18 [1] CRAN (R 4.2.0)
#> timechange 0.2.0 2023-01-11 [1] CRAN (R 4.2.0)
#> tzdb 0.3.0 2022-03-28 [1] CRAN (R 4.2.0)
#> utf8 1.2.3 2023-01-31 [1] CRAN (R 4.2.0)
#> vctrs 0.5.2 2023-01-23 [1] CRAN (R 4.2.0)
#> visdat 0.6.0 2023-02-02 [1] local
#> withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.0)
#> xfun 0.37 2023-01-31 [1] CRAN (R 4.2.0)
#> xml2 1.3.3 2021-11-30 [1] CRAN (R 4.2.0)
#> yaml 2.3.7 2023-01-23 [1] CRAN (R 4.2.0)
#>
#> [1] /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library
#>
#> ──────────────────────────────────────────────────────────────────────────────
There could also be equivalent which_n_miss_row/var
functions