diff --git a/examples/ensemble/plot_oblique_axis_aligned_forests_cc18.py b/examples/ensemble/plot_oblique_axis_aligned_forests_cc18.py new file mode 100644 index 0000000000000..49fc312482af7 --- /dev/null +++ b/examples/ensemble/plot_oblique_axis_aligned_forests_cc18.py @@ -0,0 +1,160 @@ +""" +=============================================================================== +Plot oblique forest and axis-aligned random forest predictions on cc18 datasets +=============================================================================== + +A performance comparison between oblique forest and standard axis- +aligned random forest using three datasets from OpenML benchmarking suites. + +Two of these datasets, namely [WDBC](https://www.openml.org/search?type=data&sort=runs&id=1510) +and [Phishing Website](https://www.openml.org/search?type=data&sort=runs&id=4534) datasets +consist of 31 features where the former dataset is entirely numeric +and the latter dataset is entirely norminal. The third dataset, dubbed +[cnae-9](https://www.openml.org/search?type=data&status=active&id=1468), is a +numeric dataset that has notably large feature space of 857 features. As you +will notice, of these three datasets, the oblique forest outperforms axis-aligned +random forest on cnae-9 utilizing sparse random projection machanism. All datasets +are subsampled due to computational constraints. +""" + +import numpy as np +import pandas as pd +from datetime import datetime +import openml +import seaborn as sns +import matplotlib.pyplot as plt +from sklearn.ensemble import RandomForestClassifier, ObliqueRandomForestClassifier +from sklearn.model_selection import train_test_split, RepeatedKFold, cross_validate + +random_state = 123456 +t0 = datetime.now() +data_ids = [11, 40499] # openml dataset id +df = pd.DataFrame() + + +def load_cc18(data_id): + dat = openml.datasets.get_dataset(data_id, download_data=False) + d_name = dat.name + d = dat.get_data()[0] + + # Subsampling large datasets + n = int(d.shape[0] * 0.1) + d = d.sample(n, random_state=random_state) + X, y = d.iloc[:, :-1], d.iloc[:, -1] + + return X, y, d_name + + +def get_scores(X, y, d_name="UNK", n_cv=5, n_repeats=2, random_state=1, kwargs=None): + clfs = [ + RandomForestClassifier(**kwargs[0], random_state=random_state), + ObliqueRandomForestClassifier(**kwargs[1], random_state=random_state), + ] + + tmp = [] + + for i, clf in enumerate(clfs): + cv = RepeatedKFold( + n_splits=n_cv, n_repeats=n_repeats, random_state=random_state + ) + test_score = cross_validate(estimator=clf, X=X, y=y, cv=cv, scoring="accuracy") + + tmp.append( + [ + d_name, + ["RF", "OF"][i], + test_score["test_score"], + test_score["test_score"].mean(), + ] + ) + print( + f'{d_name} mean test score for {["RF", "OF"][i]}:' + f' {test_score["test_score"].mean()}' + ) + + df = pd.DataFrame(tmp, columns=["dataset", "model", "score", "mean"]) + df = df.explode("score") + df["score"] = df["score"].astype(float) + df.reset_index(inplace=True, drop=True) + + return df + + +def load_best_params(data_ids): + # folder_path = "/home/jshinm/Desktop/workstation/sklearn-jms/notebook/hidden/output/" + folder_path = None + params = [] + + if not folder_path: + # pre-tuned hyper-parameters + params += [ + [ + {"max_depth": 5, "max_features": "sqrt", "n_estimators": 100}, + {"max_depth": 5, "max_features": None, "n_estimators": 100}, + ], + [ + {"max_depth": 10, "max_features": "log2", "n_estimators": 200}, + {"max_depth": 10, "max_features": 80, "n_estimators": 200}, + ], + ] + else: + for data_id in data_ids: + file_path = f"OFvsRF_grid_search_cv_results_openml_{data_id}.csv" + df = pd.read_csv(folder_path + file_path).sort_values( + "mean_test_score", ascending=False + ) + tmp = [] + for clf in ["RF", "OF"]: + tmp.append(eval(df.query(f'clf=="{clf}"')["params"].iloc[0])) + params.append(tmp) + + return params + + +params = load_best_params(data_ids=data_ids) + +for i, data_id in enumerate(data_ids): + X, y, d_name = load_cc18(data_id=data_id) + print(f"Loading [{d_name}] dataset..") + tmp = get_scores( + X=X, y=y, d_name=d_name, random_state=random_state, kwargs=params[i] + ) + df = pd.concat([df, tmp]) + +t_d = (datetime.now() - t0).seconds +print(f"It took {t_d} seconds to run the script") + +# Draw a comparison plot +d_names = df.dataset.unique() +N = d_names.shape[0] + +fig, ax = plt.subplots(1, N, figsize=(6 * N, 6)) + +for i, name in enumerate(d_names): + if N == 1: + axs = ax + else: + axs = ax[i] + dff = df.query(f'dataset == "{name}"') + + sns.stripplot(data=dff, x="model", y="score", ax=axs, dodge=True) + sns.boxplot(data=dff, x="model", y="score", ax=axs, color="white") + axs.set_title(f"{name} (#{data_ids[i]})") + + rf = dff.query('model=="RF"')["mean"].iloc[0] + rff = f"RF (Mean Test Score: {round(rf,3)})" + + of = dff.query('model=="OF"')["mean"].iloc[0] + off = f"OF (Mean Test Score: {round(of,3)})" + + axs.legend([rff, off], loc=4) + + if i != 0: + axs.set_ylabel("") + else: + axs.set_ylabel("Accuracy") + + axs.set_xlabel("") + +plt.savefig(f"plot_cc18_{t_d}s.jpg") +plt.show() diff --git a/examples/ensemble/plot_oblique_axis_aligned_forests_sparse_parity.py b/examples/ensemble/plot_oblique_axis_aligned_forests_sparse_parity.py new file mode 100644 index 0000000000000..038b0d355c9d5 --- /dev/null +++ b/examples/ensemble/plot_oblique_axis_aligned_forests_sparse_parity.py @@ -0,0 +1,100 @@ +""" +========================================================================================== +Plot oblique forest and axis-aligned random forest predictions on sparse parity simulation +========================================================================================== + +A performance comparison between oblique forest and standard axis- +aligned random forest using sparse parity simulation dataset. + +Sparse parity is a variation of the noisy parity problem, +which itself is a multivariate generalization of the noisy XOR problem. +This is a binary classification task in high dimensions. The simulation +will generate uniformly distributed `n_samples` number of sample points +in the range of -1 and +1 with `p` number of features. `p*` is a +parameter used to limit features that carry information about the class. +The informative binary label is then defined as 1 if there are odd number +of the sum of data `X` across first `p*` features that are greater than 0, +otherwise the label is defined as 0. The simulation is further detailed +in this [publication](https://epubs.siam.org/doi/epdf/10.1137/1.9781611974973.56). +""" + +import numpy as np +import pandas as pd +from datetime import datetime +import seaborn as sns +import matplotlib.pyplot as plt +from sklearn.ensemble import RandomForestClassifier, ObliqueRandomForestClassifier +from sklearn.model_selection import train_test_split, RepeatedKFold, cross_validate + +random_state = 123456 +t0 = datetime.now() + + +def sparse_parity(n_samples, p=20, p_star=3, random_seed=None, **kwarg): + if random_seed: + np.random.seed(random_seed) + + X = np.random.uniform(-1, 1, (n_samples, p)) + y = np.zeros(n_samples) + + for i in range(0, n_samples): + y[i] = sum(X[i, :p_star] > 0) % 2 + + return X, y + + +def get_scores(X, y, n_cv=5, n_repeats=1, random_state=1, kwargs=None): + clfs = [ + RandomForestClassifier(**kwargs[0], random_state=random_state), + ObliqueRandomForestClassifier(**kwargs[1], random_state=random_state), + ] + + tmp = [] + + for i, clf in enumerate(clfs): + cv = RepeatedKFold( + n_splits=n_cv, n_repeats=n_repeats, random_state=random_state + ) + test_score = cross_validate(estimator=clf, X=X, y=y, cv=cv, scoring="accuracy") + + tmp.append( + [["RF", "OF"][i], test_score["test_score"], test_score["test_score"].mean()] + ) + + df = pd.DataFrame(tmp, columns=["model", "score", "mean"]) + df = df.explode("score") + df["score"] = df["score"].astype(float) + df.reset_index(inplace=True, drop=True) + + return df + + +# Grid searched hyper-parameters +params = [ + {"max_features": None, "n_estimators": 100, "max_depth": None}, + {"max_features": 40, "n_estimators": 100, "max_depth": 20}, +] + +X, y = sparse_parity(n_samples=10000, random_seed=random_state) + +df = get_scores(X=X, y=y, n_cv=3, n_repeats=1, random_state=random_state, kwargs=params) +t_d = (datetime.now() - t0).seconds +print(f"It took {t_d} seconds to run the script") + +# Draw a comparison plot +fig, ax = plt.subplots(1, 1, figsize=(6, 6)) + +sns.stripplot(data=df, x="model", y="score", ax=ax, dodge=True) +sns.boxplot(data=df, x="model", y="score", ax=ax, color="white") +ax.set_title("Sparse Parity") + +rf = df.query('model=="RF"')["mean"].iloc[0] +rff = f"RF (Mean Test Score: {round(rf,3)})" + +of = df.query('model=="OF"')["mean"].iloc[0] +off = f"OF (Mean Test Score: {round(of,3)})" + +ax.legend([rff, off], loc=4) + +plt.savefig(f"plot_sim_{t_d}s.jpg") +plt.show() diff --git a/examples/tree/plot_iris_dtc.py b/examples/tree/plot_iris_dtc.py index 14f6506b5810f..8464d7389d426 100644 --- a/examples/tree/plot_iris_dtc.py +++ b/examples/tree/plot_iris_dtc.py @@ -3,8 +3,8 @@ Plot the decision surface of decision trees trained on the iris dataset ======================================================================= -Plot the decision surface of a decision tree trained on pairs -of features of the iris dataset. +Plot the decision surface of a decision tree and oblique decision tree +trained on pairs of features of the iris dataset. See :ref:`decision tree ` for more information on the estimator. @@ -27,7 +27,7 @@ import matplotlib.pyplot as plt from sklearn.datasets import load_iris -from sklearn.tree import DecisionTreeClassifier +from sklearn.tree import DecisionTreeClassifier, ObliqueDecisionTreeClassifier from sklearn.inspection import DecisionBoundaryDisplay @@ -35,53 +35,65 @@ n_classes = 3 plot_colors = "ryb" plot_step = 0.02 - - -for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]): - # We only take the two corresponding features - X = iris.data[:, pair] - y = iris.target - - # Train - clf = DecisionTreeClassifier().fit(X, y) - - # Plot the decision boundary - ax = plt.subplot(2, 3, pairidx + 1) - plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5) - DecisionBoundaryDisplay.from_estimator( - clf, - X, - cmap=plt.cm.RdYlBu, - response_method="predict", - ax=ax, - xlabel=iris.feature_names[pair[0]], - ylabel=iris.feature_names[pair[1]], - ) - - # Plot the training points - for i, color in zip(range(n_classes), plot_colors): - idx = np.where(y == i) - plt.scatter( - X[idx, 0], - X[idx, 1], - c=color, - label=iris.target_names[i], +clf_labels = ['Random', 'Oblique'] +random_state = 123456 + +clfs = [ + DecisionTreeClassifier(random_state=random_state), + ObliqueDecisionTreeClassifier(random_state=random_state) +] + +for clf, clf_lab in zip(clfs, clf_labels): + + for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]): + # We only take the two corresponding features + X = iris.data[:, pair] + y = iris.target + + # Train + clf.fit(X, y) + + # Plot the decision boundary + ax = plt.subplot(2, 3, pairidx + 1) + plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5) + DecisionBoundaryDisplay.from_estimator( + clf, + X, cmap=plt.cm.RdYlBu, - edgecolor="black", - s=15, + response_method="predict", + ax=ax, + xlabel=iris.feature_names[pair[0]], + ylabel=iris.feature_names[pair[1]], ) -plt.suptitle("Decision surface of decision trees trained on pairs of features") -plt.legend(loc="lower right", borderpad=0, handletextpad=0) -_ = plt.axis("tight") + # Plot the training points + for i, color in zip(range(n_classes), plot_colors): + idx = np.where(y == i) + plt.scatter( + X[idx, 0], + X[idx, 1], + c=color, + label=iris.target_names[i], + cmap=plt.cm.RdYlBu, + edgecolor="black", + s=15, + ) + + plt.suptitle(f"Decision surface of {clf_lab} decision trees trained on pairs of features") + plt.legend(loc="lower right", borderpad=0, handletextpad=0) + _ = plt.axis("tight") + plt.show() # %% # Display the structure of a single decision tree trained on all the features # together. from sklearn.tree import plot_tree -plt.figure() -clf = DecisionTreeClassifier().fit(iris.data, iris.target) -plot_tree(clf, filled=True) -plt.title("Decision tree trained on all the iris features") -plt.show() +for clf, clf_lab in zip(clfs, clf_labels): + plt.figure() + clf.fit(iris.data, iris.target) + plot_tree(clf, filled=True) + plt.title(f"{clf_lab} decision tree trained on all the iris features") + plt.show() + +# %% diff --git a/notebook/iris_benchmark_OF_vs_RF.ipynb b/notebook/iris_benchmark_OF_vs_RF.ipynb new file mode 100644 index 0000000000000..9cebf5a84173a --- /dev/null +++ b/notebook/iris_benchmark_OF_vs_RF.ipynb @@ -0,0 +1,376 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Comparing axis-aligned decision tree versus oblique decision tree on iris dataset\n", + "\n", + "Traditional random forest model builds decision trees by recursively splitting the training data along the coordinate axes of the feature space. The oblique decision forest, on the other hand, relaxes this restriction by allowing splits along directions oblique to the coordinate axes. Our proposed new method called Sparse Projection Oblique Randomer Forests (SPORF) utilizes this method over sparse random projections where sparsity is specified on the entire random matrix `A`. \n", + "\n", + "In this tutorial, we will use the scikit-learn iris example to illustrate characteristics of the oblique decision tree compared to the axis-aligned decision tree. For each pair of iris features, the decision tree learns decision boundaries made of combinations of simple thresholding rules inferred from the training samples. We also show the tree structure of a model built on all of the features. Lastly, we compare overall mean accuracy of the all combinatorial pairs of iris features between axis-aligned and oblqiue decision trees. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First load the copy of the Iris dataset shipped with scikit-learn:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'1.1.dev0'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import sklearn\n", + "from sklearn.datasets import load_iris\n", + "\n", + "iris = load_iris()\n", + "\n", + "# Adam Li's oblique tree branch\n", + "sklearn.__version__" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The same parameters are used for both the axis-aligned and oblique decision tree experiments. The chosen parameter also reproduces identical decision boundaries demonstrated in scikit-learn [iris tutorial](https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html#sphx-glr-auto-examples-tree-plot-iris-dtc-py)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "kwarg = {\n", + "'max_features': 2,\n", + "'random_state': 123456}\n", + "\n", + "# plot parameters\n", + "n_classes = 3\n", + "plot_colors = \"ryb\"\n", + "plot_step = 0.02" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display the decision functions of trees trained on all pairs of features. Notice here that trees learn via the typical axis-aligned procedure along coordinate axes directions.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAEPCAYAAAAkkE+fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACCe0lEQVR4nO2dd3iUVdbAf2fSCS10kd5FOlgQlVV3FV13dVcRO1Ys2EFc7F1pls8GCAgoSrW7Kq4FUbAivdfQBEJJSEibzPn+uO8kM2FSSaYk9/c888y8/c573/eee+459xxRVSwWi8VisZQeV6gLYLFYLBZLpGGFp8VisVgsZcQKT4vFYrFYyogVnhaLxWKxlBErPC0Wi8ViKSNWeFosFovFUkZCKjxF5HMRGVyK/dJFpE0wylReRKSjiCwVkcMicleoywMgIv8Ske3O/etZgee9SkTmV9T5fM77nYjcVJnXKEUZWomIikh0KfefKiJPH+M1S/VfRWS8iDxyLNeqDpS2XSnHecv0bISKYLWXJbUvItJPRDY42y+u7PIEGylpnqeIbAUaA24gD1gNTAcmqqqnsgsYKYjIZCBNVe8NdVm8iMgm4D5V/SjUZSkNIvId8I6qTgphGVoBW4AYVXWXYv+pwA5VfbiSi1ZpiMjjQDtVvToMyqJAe1XdGOqyFKasz0ZVp6T2RUS+Bj5W1Zcr4FpbgZtU9X/Heq6KorSa5z9UtRbQEngeeACYXGmliiB8eqEtgVWhLEsAwrFMlghDDGFh4gl3rS/cEZGoCjxdSe1L2LQ/lfLcqGqxH2Ar8NdC604GPEAXZzkOGAskA3uA8UCCz/4XAUuBNGATMMBZ/x2mNwHQDlgApAIpwCyf4xXTMwaog9F89wHbgIcBl7PtOuAHpywHMb3E84v5bw8AO4HDwDrgHGf9VOBpn/3+gtEufO/JA8ByIBv4BqOVZwHpQAfg78Afzn/eDjxe6NqnA4uAQ87260pzLwudw+X8/23AXue+1HHOke7ctwxgUxHHv+xcOw34HTjDZ9t/gXE+yzOBKb732fktwIvO9dOAFd7nIsD1koBPnbo76Pxu5rPd93nIv4azfK5TR6nA686z4rdvUfXu3JPJwG6nvp8GopxtUc5xKcBmYKhz36KL+A89gSXOMzPLuS++z8qFmGf9kFO/3Xy2NQfed/7/fuDVstxPjn4ubwY2AgeAj4Gmhd6ZW4ENTllewxlpKvR/BgA5QK7zzCzzqYtngB+BTMz72Qn4yrneOuAyn/MU+dwCDZy6PuQcuxDnnS1Ulu8peGbTgUE47x7mffsTeJtyPEdBejZOcK59CCM0/umzbapTB59hnp2fgbZFnKeVc50hwC6nbMMLtb+LnevsBl4FYotoL6cCb2De5wzgr8AFmBHEw85/Hl5EOcrdvmDaeQ/m2Ul3jinuXrfFtKP7nfs9A6jrbHu70LlGUKhNLiyrgMeBucA7mPfophKuX6T8KVJ+lLhDAOHprE8GbnN+v4h5eesBtYBPgOd8KjoV+JtTGccDnQI85O8BDzn7xAOnF/EwTAc+cq7TClgP3OjzouRiGpUo4DbMwxeo0eiIERxNfR7YtkU0Un4V5dyTpZjGMKHwf/E5pqvzf7phGpSLnW0tMQ/uFUAMUB/oUdK9DPAfbsA0nm2AmpiG+e1A962I4692rh0NDMM0TvHOtiaYF+Zs4CpM41ErQGN/Hkbw1sU0/CcAxxVxvfrAJUAN57/NAT4srtHzaXzTgH87Zb3bqWfffYusd+ADYAKQCDQCfgFucbbdCqx16rIe8C1FNJBALKYhudept0ud6z7tbO/p3LNTnHIMxjwrcc7yMqd+E/F5xkt7P/F5Lp16SQF6Oed/Bfi+UN1/6pynBUbQDCiiXh7HDJdTqC6SgROde14H875c7yz3dK7fuRRtwHMYYRrjfM4gwDsZ6JnFvEduYJTzPxMo+3MUjGcjBvMuPoh5Ts7GvOMdfepuP6Y9jMYIh5lF3INWznXec8rV1ak/r2DoDZzqnKcVsAa4p4j2ciqm/e1HQdu6G6ejjOmI9Kqk9mUrPrKjhHvdDiMj4oCGmI7US8Wc6y+ULDxzgYud/51QwvWLlD9F/r8SdyhaeP7kXEwwvY+2Ptv6Aluc3xOAF4s493cUPOTTgYn49CALVxLm4c/BeWGdbbcA3/m8KBt9ttVwjm0S4JztMA3dXzE2DN9tUylZeN5Q1H8p4r++5L0PwEjggwD7FHsvA+z/NXC7z3JH54GJLs3DHeB8B4HuPsuXYBrMFPw7M9dR0NifjenAnEoAbaKE6/UADhbxPPhe41pgcaH7tL3QvgHrHWOvz8Z/JOQK4Fvn9zfArT7bzqXoBvJMCnXGMNqlV6C9ATxV6Jh1QH+nHvcVcd5S3U/8hedkYLTPtppO3bfyqXvfOpsN/KeIenicwMLzSZ/lQcDCQvtMAB6j5DbgSUyHt8RnsfAzi3n3cnA6deV8joLxbJyB6Xy6fNa9hzPi5NTdJJ9tFwBri/g/rZzrdPJZNxqYXMT+9+DTnnC08JxeaP9kTLtZu4S6OKb2BX9hVuy9DnDsxcAfgc7l81yUJDx9O5Ml1XWR8qeoz7HYMY7HDME0xDyQv4vIIRE5BHzhrAfTa9tUivONwLyEv4jIKhG5IcA+DTA9vG0+67Y5ZfHyp/eHqh5xftYsfCI1Dgn3YG7yXhGZKSJNS1FOL9uL2ygip4jItyKyT0RSMb3YBs7mou5JSfeyME05+l5EYx6UEhGR4SKyRkRSnWvV8SkjGO0hClinqj8EOoeqfoMZNnoNcx8nikhtEWnheNmli0i6c70aIjJBRLaJSBqmd1m3FHaYpvjcbzVP+45C+xRV7y0xz8xun3s6AdPzPOrc+N/PQOXY6Vw/0P4tgWHe6zjXau4c1xzYpiU4mhR1P4soyzaf49Ixmk3AdwE4QoD3oAR870tL4JRC/+0qjBAq6bkdg9Fg5ovIZhH5TxnLsU9Vs7wL5XiOgvVsbFd/J8oi2yZKVx+Fr90UQEQ6iMinIvKn8/+fxf+9Le48YDrFFwDbRGSBiPQt4rhjal8KUey9FpHGThu80/lP71D8fyoNhZ/f4uq6NPLHj3IJTxE5CfNQ/IDRSjKBE1W1rvOpo6reB2M7Zjy7WFT1T1W9WVWbYnpFr4tIu0K7pWB6Pi191rXAjF+XGVV9V1VPd86nmKEhML3oGj67Ngl0eAmnfxczjNVcVetghq3E2VbUPSnpXhZmF0ffCzdmiLhYROQMzANzGZCkqnUxwzvis9szmCGh40TkiqLOpar/p6q9gc4Ye+/9qpqsqjW9H2fXYZje6ymqWhujyVHomoHYDTTzKbv4LpfAdkyPs4HPPa2tqif6nLu5z/4tSijH8c71A+2/HXjG5zp1VbWGqr7nbGtRGseFQPczwG5+dS8iiZjhzPK8C0U9y77rtwMLCv23mqp6GyU8t6p6WFWHqWob4J/AfSJyzjGUr7zPUWEq8tnYBTQv5FhV7rbJofC1dzm/38AMJ7d3/v+DFP/f/e6fqv6qqhdhBMeHmFGJQJS7fQlASff6WaecXZ3/dDX+/6nwM+DXRjsdp8JKRuHnt8jrl1L++FEm4eloFBdinCTeUdUVTk/rTeBFEfH2Io4XkfOcwyYD14vIOSLicrZ1CnDugSLibRAPOn/cbyqMquZhKvoZEaklIi2B+zC9lDIhZl7m2SISh3H0yfS53lLgAhGpJyJNMBpqWakFHFDVLBE5GbjSZ9sM4K8icpmIRItIfRHpUYp7WZj3gHtFpLWI1MQ8gLNK0m58yufGGUoUkUeBfA1HRM7E2LeuxdjuXhGR4wufREROcrTsGMwDnUWheit0zUzgkIjUwwz5lYbPgK4icrEjfIYSuENzFKq6G5gPjHOeX5eItBWR/s4us4G7RKSZiCQBxWlFizH37C4RiRGRf2NsWF7eBG517oeISKKI/F1EamHsK7uB55318SLSr/AFynA/38O8Vz2cZ/hZ4GdV3Vqa+1KIPUArKd6j9lOgg4hc4/z3GKesJ5T03IrIhSLSzul0pGKc64p6RvZgbGzFUd7nyI8KfjZ+xmiTI5x78xfgH5i2srw84mjZJ2LexVnO+loYH4B0py29rbQnFJFYMfOK66hqrnOeouriWNoXP0pxr2thnIFSnXamcIex8HOxHoh33q8YjGNTXHmvXxr5U5jSCs9PROQwRno/BLyAqUwvD2CGZX4So3L/D9MzRFV/cfZ9EfPiLMC/N+PlJOBnMUN8HwN3q+rmAPvdiWlUNmM033eBKaX8H77EYabdpGCGUxphbJFgvLuWYcbQ51Pw0JaF24Ennfv2KD69O1VNxgybDMMMfS8Fujubi7yXAZjilPV7jBdhFub+lIYvMUNr6zHDMVk4wxxihgmnA3eo6k5VXYjpBL1VSOsCI3DfxDxw2zBDh2OKuOZLGMN9CsZm/kVpCqqqKcBAjN1nP0Yj+w3TkywN12KcOFY75ZwLHOdsexNzL5ZhvGjfL6YcORinpesw9TbId39V/Q3jmPKqc52Nzr7ejt8/MLb2ZMyw86AAlynV/VQz3+0RYB5GKLcFLi/uJhTDHOd7v4gsCbSDqh7G2Pwux2gkf1LgxAPFP7ftneV0TAfkdVX9toiyPA5MEzO0dlkR+7xEOZ6jIqjIZ+MfwPlOuV4HrlXVtcdQtgWYe/o1MFZVvYE0hmM644edMpa1fboG2OrU062Y4fdAHEv7Eoji7vUTGOe3VExnufC9fg542HkuhqtqKqaNnYTR7jM42pRTluuXVv7kU2KQBIsl3HA0pB3AVcU0whZLRCI2GENEEBYTny2WkhCR80SkrjNE6bXx/BTiYlkslmqKFZ6WSKEvxkM5BTM8drGqZoa2SBaLpbpih20tFovFYikjVvO0WCwWi6WMWOFpsVgsFksZscLTYrFYLJYyYoWnxWKxWCxlxApPi8VisVjKiE0sW4i6UVHaJDom1MUoFztrliWufQEdmyvrtpc1LGjFkX5gS4qqFhX8HhHpg8la0RQTlm0l8JWqHqzIcsTE19L4xCKLEXbUqBPPkdSskncMY0qq+2ARaXVfFQiXui8vVngWokl0DJObtAp1McrFyDMeL9dxC17Opf/doeswLJxxRcBsFSJyPSYc2BZMjst1OLn2gAdEZCXwiBPu8JiJT2xIz/OfrYhTBYUe57dn6ecbQl2MY6Koug82kVb3VYFwqfvyEjHCM1jahyWsqAH0KyoYgoj0wMRNrRDhaQlPnKDs3vd+a6G0XxZLSAh74Rls7cMSPqjqayVsXxqkoliCjIjUwWTPuQITzHsf5r1vLCI/UXxweYul0gl74YnVPqo9ItIa04Fqhc8zq6r/DFWZLJXOXExmnzNU9ZDvBhHpDVwjIm1UdXIoCmexhL3wtNqHBZOwdzLwCSXk2LNUDVT1b8Vs+x0zCmWxhIywF55erPZRrclS1f8LdSEsoUFEunH0e19kbk2LJRhEjPDEah/VmZdF5DFMYvL8BNiqGjBxs6XqICJTgG7AKgree6WYxNQWSzCIJOFptY/qS1fgGuBs/BvQs0NWompGTuYh1iycTMbBzSQmteGEM24kNqFuMC59qqp2DsaFLJayEEkRhl4WkcdEpK+I9PJ+Ql0oS1AYCLRR1f6qepbzsYIziKxZOJm0lDPJc68gLeVM1iwMmp/OYhGxwtMSdkSS5mm1j+rLSqAusDfE5ai2HD6wAbQO0BO0q1kODtMxAvRPzJC9AKqq3YJVAIslEJEkPL3aR06oC2IJOnWBtSLyK/42T+ssVsl4h2s1D4zpcTowFs0Lmrl5MqbTvALr62AJIyJJeFrto/ryWKgLUF3xDtfCamA4JtDPcGBCsIqwT1U/DtbFLJbSEknCsy5W+6iuJAO7VTULQEQSgMahLVL1IOPgZtCPgDnAWIzgfAKIY9GsocFwHvpDRN7FeNn7vvfW29YSUiJJeFrto/oyBzjNZznPWXdSaIpTfUhMakNayjjQqcDlwHhMlLzryXMPIy1lHGsWTqb7ucMqqwgJGKF5rs86O1XFEnIiSXha7aP6Eu1r61bVHBGJDWWBqiKBpqOccMaNzrqp+et++/gh8tzDgKagw8g4OLXSyqSq11fayS2WYyCShGe11j4O5LkZlbKLtTnZdIqN44EGTakXFUnVd0zsE5F/em1fInIRkFLSQSJSF5gEdMFoKzeo6uLKLGgkk2/f1I/8NMrCWmWBNjoMZByJSW0qrUwiMg242xvf1smwMk5Vb6i0i0YgRc3DLc383BDO4Y1oImme51HaBybbQrVgVMouTsnOZLl6OCU7k1Epu0JdpGByK/CgiCSLSDLwADCkFMe9DHyhqp2A7sCaSixjRJOTeYi0fRtB3wauAf2VtH2rWTZ/HDmZh8jJPMSy+eNYNGsoHo+bmvW+Jiq6K7UbfM8JZ9xYmUXr5hsY3klB2LMyLxiJFDUPtzTzc0M4hzeiiSTVpVzaR1VhbU42szG+jsOAbjnZJRxRdVDVTcCpIlLTWU4v6RgnpdWZwHXOMTlAlZ7mdCwaxKoF44FGwEHMrJCrgJn5GiiQr5WmHxhH7Qbfc9qgYnM2VBQuEUny5u0VkXpEVrtVIZRUt+kHNvrNw00/sNGsP7jJcfgyQ+zpB9866twFTmGVPwxflYgkzbO82keVoFNsHOOAXcA4Z7mqIyJXi0j+M6qq6b6CU0TaisjpRRzeGpMD8i0R+UNEJolIYiUXOaSUpEH4ao+FNcr0/VuAfwBLMX2M+yloTDc7Dewwv3VBYhwmSMJTIvIUsAgYHayLhwsl1a1IPGYe7h9AN2cZhDiMl/QuYKyz7E9iUhsQp3Wp5GH4qkTE9ODKo31EOr52zrYxsSyMjWdabk6+zbMaUB8zVcGbgsqbELkd0B8z8vCfIo6NBnoBd6rqzyLysrPvI747icgQnE5YXI0GlfEfgoa/BnEtafumsGjWUBLqNAeE9P1bMYr4R0drlKzGCM6eQE2MfBrh15gGy87pi6pOF5HfKIgk9m9VXR2Ui4cRRWmHXo00z50GLAeigOHkuSeSk3kIj+cIMBszLzeePHcGC2fcDmQRFV2H7ufeG9ApzP/aySyb/yJ57jSiomvT/dx7SUxqEcR/H56EveZ5jNpHRONr5zw9J4tYET5q3p5RjVtUC2chVX0ZIwDfAxoC5zjLO4FrVPUSVS0qTtwOYIeq/uwsz3WOLXyNiaraR1X7xMTXqvD/EEz8NAgGAdeR515B+v5DpO/fiZnxsQKIAh1G2r7Vjp3zWiCJAs3l78B0P5vmCWfcSO0G3wfLzom3kwygqqtV9VXnszrQPlWdorTDgiAWGzD1dxXwAtCMNQsn43LVAC5ztg8GTsd0oE4jz30Fy+a/SGxCXbqfO4zTBr1G93OHHTXUbwTnFcCG/GMskaF5Hov2ETEE8qatznZOL6qaB3zlfMpy3J8isl1EOqrqOozgrXIai68tLC6xEehbwBsYX7oJwDwgFbgBMxQ7FtPAdgP6YkJGD8IIVm8EocdwRc85yqZZiXM5A/GRiCwFPgJ+V9UMABFpA5yFkQhvYjpFVZ6itEM/jZThmGZxCXAiaft+x+hHvpGhemJCLJrvPHfJkaKMVltwjtIcUx0Ie83zGLUPAEQkyrF7fVrpBS4ngbxpq6Ods4K5E5ghIsuBHsCzoS1OxeNrCzuS6sFoF4uBJpghvBpALvk2TIZjzIbLgRlmvewA3MAYvJpNzaS2wf8zPqjqOcDXwC3AKhFJE5H9wDuYPzdYVauF4ASK1A79RxvGAC0wkUxPAuoBzcivV8ZiOksF31HRtUtxdX+7KQHsptWRSNA8y619+HA3ZppCaZ6UkBBIy3yraWtGpeyim482Ws3ne5YJVV0K9Al1OSoTo3lMAm7CjFSvAO4DLnS+X8AoaC/4LMc4+3YF6lGzXjtO7H+ro9lMD2j3CgWq+l/gv6EuRzjjq5HmufOABRR0kt7GaJn/xoxCxAFZwG+YkYYlxCY2LDLMondUAzIpsJsmIa684P3BMCbsNc9jRUSaYYw4k0JdluIIpGXWi4pmVOMWfnbOaj7f01IIY/saBHSmwO71B0ZQNnW+PZjQsD2c7wTgfIyD0PmAlGj3iiREpLmIfCsiq0VklYjcHeoyVRa+9RYVnQBMw19DvB24HtjofNfHDOFvAgaTmSpFevAW2FP7kW83lUHUqt8hWH8vrKkOKstLwAigSG8QX4/LxiHS4h5o0DRfy2wZHcPO7CzOTV5HXXHxXOPmtI01rufV0Q4qInHAJUArfJ5ZVX0yVGUKF04440Z+/mA4qFdYDsfEn30M2ILRMmKBPRRMc3VTMIx7P5mp04Ne7krGDQxT1SUiUgv4XUS+iiQvXa/Wl35wE0IcqlnUrNeu2Lm7JnLpckw8kDjgAHAY4yDkmw3Ha7+8HzN0H3h+Z4E99QAwABiPy1WTPHfjYCUFCGuqtOYpIhcCe1X19+L28/W4rBsVFaTS+eOrZf7pzuVKlA3AIPUwcs/2/P2qqR30I+AiTKOY4fOpVhz6cxULZ9zKwhm3sHDGjYy/aQDLv7iHmNgahexe0Zi46V0wPlLXYMyEGzHOQh6Mz00j4GxnKkvVQVV3q+oS5/dhjMnm+NCWqmx4tT6PeyV57ivw5PUuMfpPzXrtQLpjhOdlmPq+wfnt1UaTKLBfjsHYRQPP7yywp96Tfz5PXj0yDv7VRiMigjTPcmof/YB/isgFGA/d2iLyjqpeXZllLQtLMjN4fN8OMjGDaY83bMYh9fhnTlRPvq1zTU4WW8TFW6p0josP6nxPX89O79zBzNTkYPRAm6nqgMo6ebjjve9p+zZghKCxZ+ZmjSbP9RZ162aQptNx50zAOAjFYmxbIzBP0QjgXQq0jTeBC5zfY4Dvgv2XyoSIRGGSQPi+98mlPLYVxrX05wDbwnaO79FetN1BIW3fKhbNuveouZY5mYfIc2eBjseEcZ5OQX1PxBXdBSEOj+cILtd7KFOpUaclEE9matf8d9j/HW9BzXpfk75/g8/5DuAfQGNqMG9LWBExwhOjfaRipquUaqxSVUcCIwFE5C/A8HASnACP79vBYMzrMdZZrisuxjoCdCxQV1z5ts7ZwDiUn+MSGNU4uBOVfQOHp+8/G2Mvuz8YaakWiUhXVV1RWRcIR/KFZsoa0GYYr9kDFNgzR+DxzODAgSbAdowj0LXO9rPJD3TAGIzGsQuR0ahG4TtseyR1WrD/WqkRkTsxY9B7MCozGOnQrRTH1sTM1blHVdMKb1fVicBEgFr122hFlbki8Au+n2+/7IaZXjKWZfNf5LRBBfMtjcD7K6Zez8bUuZmaFBVd22/f4lg2f9xRYRhrN+zsU5Z6Beeu5tGIIkl4VkntI5MCC8RgYDJwBMU7W68G8HiDpjyRsivktk7/3nDl90BFZAWmoYwGrheRzZiOkwCqqiU2oJGMb2fFeMlOxTReXs/ZMRg7pmCmp/SjQLDOwoT2fReoQ3z8n7hc7WjRwsXatYpXsIqMpnZiNAtezg3yvzO4ZpS4y91AR1XdX5bzikgMRnDOiMTE2V4v2vSDbyHEkedOxbQQNwG/kefO5of3bkFcCXjchzGviffd9Na9iSpUnEctmE7aqgUTSD+wAdTnPM573eefz+R79JoRp+/ITA0fr+xQEUnC85i0D1X9jjAcn/LOoBqO8Zm8HhihylgKTP+z0vYbW2d2JsMIna3TvzcclB7ohZVx0kjBv7NyH/AWJibIm8DrGDPe95gpCSMx05+92uZUQKlV0424DlGzZjpHjkBGBnTqBCkpkzhwYCIdOrjYti2DPXtTadyoTvD/ZMlsx4w4lRoREUw/dI2qvlCaY9q2qsX7k84oR/Eqk3/k/2rT+BQOpw3CvBKTgDGoZwXq6YZpKXZQUPdvY4b3mwNdyUz9HFhR5AjRmoWTSd//F+Az/LRW5732evRa/Al74Rnp2kegeZkAT+/byeqcLDyYfqI3ZofXSuUbC6SoOZ8VTUmZG3znlAWjB6qq2wBE5G1VvcZ3m4g4ubMqjhp14ulxfvuKPGWxPHpJk2K3/2NrD377+QXcbqNlulyKy+XmjTfSuOuuBDIzvXP6GmKmoVyKCbjzJtCM6GgPqVtf5uyLn6BBkxQGDYJZs2DzZnjjjQxuvhm6dTMCdfDQV/hizsOV+4fLgIjc5/zcDHwnIp/hY64pQSj2wzwbK5woRQAPOvNGA7Jp62H+fdPCYyt0Cfi+X6f1ac3sKdeVusPy46e30+3MpykYWbgf/2hB8ykYaeiDmZd5rrO9wKO2yKwqflrrWcBEajfoXK01y5IIe+FJhGsffrZKn3mZp+Vk8QGmj/c58CuFLRVmCnvhOZ+VSVHJkL2EsAd6ou+C40DSu6IvciQ1i6WfFxusqkKpP6D4mRMfvPkvLrthKktXTqFHlzbMnvIkg4e+wtf/S6dlSxfr1o1GdQRG48gB1mPs0LNJTNxJXl4GDdrfzJHMbN5+Gxo0gEGD4OabYeZMcLth2zZ49FEY+Z9S+d8EE+/UsmTnE0tB/t5i7ZOq+gOmcx1W+L5fi38bx2U3TGXBp6Wbgtqlc3Pq1qlJapq3zgtHC3obM451FQWOYF0xz0aBvTvQEH3d+W1I2+dted4GGlG7YS2rbZZA2AvPYGsfFU1R8zKfBE4F9mPcPFpj3IHfwgzK1BQhU5U14iIrJ4sH9iRXejShcMvrJyIjgQeBBBHxOnwIRlJMDFnBjgFf7aP/pqO1jz17Uxk89BWWLE+mywnH44pSYmOPsHHrKk7sN5yunY/nz52t2bUzGZdrMnl5E0lKclG/vrJ16yI8np8YMyaDRYvg55+hUaNs9u2DOXNg4EAjNPPyhEU/xvHXc7K56mpl3lwXvbqFV5YMVX0CQEQGquoc320iMjA0pTo2fN8vt3sYS1cerQUWx/ef3MOZ/3iJQ6kTMa1GDsKvIG5EfsPjycOMVk+kRkIiIjlk5/xCq1Z57Npl7N1797iPOm+7kwaydP4LeNwTgFhqJB1vNc5SEEnzPIOifVQ0geZldoqN43LMINsGzEysmsCNmFl5Q4C2sfF0iUvgcvWwQjUo0YTCLa+fqj6nqrWAMapa2/nUUtX6jid1xOEbi3bxb/257IapftsHD32Feo028tzzWWzatomff99My1bZ9O6TRavW2RzXbCuxMVEkJkbxr3+lU7duJhMnZvDmm0d4771MYmMzePBB+OILuPde2LQJataETz+Fq68263/87GmWfDOGI2ntue3WeA7sbce01+4MzQ0pmUD1HJF17/t+RUePo0eXsr1fXTo358CmcRzXRLn00jTmzMnikkvTaNLYw1/7N+byQUeYM+cwlw/K4vRTkzic/Apnn3EcfXpnMW1aJj26Z9KnR8ujzrvx1zl48q4CNoLcSHR0jWob+KAshL3mGenax5CkRozcs53x6iERcOVkkaZm1Ml3Lud4jJXibaATsCI7k1xnnVdr7RmjnLbkofxz+2opJ3Zqyh9fjOJI6rZSRyQpTEl5/ULIHBEpnE4sFdimqkd3pcOYkrSPJcuTeWO8h7FjoW9foy3OnQsbNsCWLTBypIfbbk3mcHoWgwbB9u3w9tuwYwesWwdxcTB2rBGSjz4KLhd07gxPPmm0z8WLYfhj0/hizsNhZeMsjIicj5mMeryI/J/PptqYYBkRh+/71dexefpSeNRBVVm1dhe9urXI79wMHvoK+w9ksXJlIv/9r4cWLVzsP5DBtz+sRzWRmbM8JCa6yM1dT8MON9OhbWOWr47lgw+zqJcUy7vjL2HAwKdZsjw5/7zhNuIUKYS95hnp2sfEg3u5XD14LWlXqrIRY7w5G2+MF6iDieHRHZNz7XrgNApigbwQ7aJ3F/+hNa+W8sb4LFav20v6/r/4RyTZ14+V3xaklco4mMyiWfeycMaNLJp1LxkH/e1cYRzf9HXgJ0xn6U3n9xxgnYicG8qClZWStI9e3Vowb66Ldevgb38zgvCzz4xgPHIEbroJwENMjHH+uekmWLAAWreGqVPhvPNg0iS4/HKIiQGPx/xu0MAI4sOHjYCOAHZh5nRnOd/ez8fAeSEsV7nxfb8WfHo3jRvVYc/eVAYMfJpGHYfQ6+z7SXLe5wZNNrE5eTNvjM+iXqONDB76Sv777nYnsm7dTRw5spi1a48nJyeB3NzauN1XABs5cuQm8vISeX5UNqvXJ9Pv9CzeeQdO65fFhVc9x5qN63nu+Sxq1VtPr7PvJ6FOi7AacYoUwl54ikgvR+uY4/3t+wl1+UpibU42wzDaYwYF2qbgH5q7g7NtBWYG5QiMj9xyTIa+1X3aMWWK/9DakuXJXHKphwYNID0jD/+0UyuAEY4nnSGCk9ruAno6IRR7Y1xLNwN/w3hEFEm4paPzTSrdt8+Co7SPaa/dyYG97cjLE558Elq2NNpkvXqQkAC1a8ORzByaNYOvvoI77oDsbH8BuW6d0TI7djSfmTMhJcWsq1WLsLNvBkJVl6nqVKCdqk7z+byvqgdDXb6KwrcDnHY4i0ud93nQINPRadAALrnUw5Llyfnvu8fjcZyGRmKms3iDvm8BmqI6grw8D5MmGacw77Ph7VD17VvQwUo7nEV8fHpQE51XFcJ+2BZjKgTjT9MHWIaRPd0wUa/7hqhcASk8NaV5dAz9c7P5E3Ozz8TM3PbNsHg/Rhp4/ea2U+B12w1YXyuezz4tGGLzDu9k52Qza5Z50WomRpGZWdhX18Q5XTjjFmokNQ+Q1HY8C2fcSOysKOo2bkyL7jez8dc5RU5VCSEdVHWVd0FVV4tIJ1XdbKb0FUtYpaPz9VgOFJigcaM6fDHnYRb8sIYBg55j4EBjrzznHCMY58wxyxkZEB1t5rTHxQkzZyqXX2600dxcMzz76KPw2afCjz/E8fnn2URFQa9urcPZvpmPzxQ1AtVxuE9RKy3eYfoGDQo6OgMGwCOPQE4OnHsuxMaC251FTIwReomJLo4cGY3qbxj3Qm8Ixs6YfuZoXC4Xa9aYc86dC5deWtChGjjQeFzPnWuW167bQe+LnwrlbYhIwl7zVNWzVPUsYDfQy0f76IlJiB1WFE4Ztsedw9+BdcDNmPTEZ2J85XzDM2djsvwuBhJj4pgpQntgbq14PvvsEb9reHurL7yg/PwzDB4sdO7YiFN6fwu09znTfzGT6G/myMFcjCu7NzHuC5hJ1H3xeG6A7D9Z8fXYfGeWMAv6vEpE3hCR/s7ndWC1E++4yNA4kZKOznfobsDAp9mzN5Urb32Rhg1Ng5eXZxo8r2aZlwennAJZWdClC5x5prJlC1x3Hfz4QzyLP3+GE9p1YOR/4jmS1p4/vh1DevI0UrdM49uPHg/XYAiFuRCjVn3hfK5yPp9ThXJ8eofpU1KgRXNh0Y/x3HOP6RhdeCHUrQvnnw/vvGOE6o8/Qkx0LtHRUzCtxmhgFy7XaKKjFZerHQ0aTKJx4wzy8uC444y9/JprYNEiM8w/c6bpYG3YYK5Zq36rUN6CiEVUwyqkY5GIyCpVLexxe9S6Y6VTXLxObtKq3MdftH0Dy9VDU4yIao/xqPUud8R4OwjGprkCoyMuAnrFJeRPR/F1DCpMo45DjF2kgRmOu+3WePauM75TK1dvd9zZD2PminuvsBQTDDAaI0T7AM9hFPd6xMamkJPjwgwBmdJGRXfltEGvFb58hbNwxhW/q2qRSatFJAGTmPB0Z9WPGDtoFlBDVdOLOG4u5k/WwsQ1PmrOcKHg4L1P/tcrx/JXyoRX8xww8GnqNdrIJZd6mDfXxYG97ViwaD2vvmo0jZUrTcN5+eWm4duwwWgmV18NNWrAxIkEfBYiAVeDa0uq+z9UtWehdUtUtUJNNn16tNZfvw5+hjtfJyGvA0/LHncSFQXTp5s6fuedgvq9+mqolxTPl7Mfod8Fj5GeEUd8vId27VzcdVcGI0aY5+Hmm42NvFMn87yImE98XBxdOzfzc0ZKTbo3JCNMJb334U4kDNt6WS4ikzBqFZhe6PIQlicghcPoxVMwBDsGE1CtGSaYVg9M/I8xQJZPoPeuA44r9hqmt2oa2zlzo2nZuQcA/e+OAdrQ9cL/44d3b8eMbE2H/GB/MZjkFP/ARCoZixHh3cjJmUJMXCy5OU74vTByHFDVTMztHBdgc1GCMz8dnZMUoKhzhzw4uO/Q3SWXGm/auFjhiy+U4cONI9CXX5rh2kaNzHDsnDlGO2ndmvyh+3Ccr1kBiIj0U9UfnYXTiIARs9LiHab3JT5eqFNHmTPHDNl663fWLLPc7/QszrvsKWrWjKZuUka+V/asWeZ58Nq2E+Lj6XxCDo88UtApC+RhbdoNS1mJJOF5PXAbxoYFZjzyjdAV52gO5LnJ8HiYjClYXRFyVfkdM/3Ea6hdjJmg+gdGgGYDryQ1yj/P3iM5DHTcyTu0bczmbXs4cDCL+HghOiqWtq0b8u3CRGbOcgOxiGsVMY3vJi8vk5i4WnQ9ZzjiUjSvIJC0uUo2Rnh6nVa7YcK55QHjyc31gL4FjCcqqjbtTroX8EnMe2AjIvEo2dRMahs0m6iI9AMeB1rin5aqOOle5nR0HZtrSAKk+3aGvALwx1/W88sv8PXXpiH0eKB2rTggm/vvN+sSa8SxdQvs3iV8+43Su3vLiLBnlpEbgSkiUgfzCh3ETI2OaAJpnN7h9ChXDI8+msOkSWZofsEC+OQT4ywGRpB+8kkWNRPjePIpMzpx003GOcjjgQ0bhF7dWvPKczcy/LFp3HZrst90F0vFEDE9OFXNUtUXVfVfzudFNanTw4ZRKbvIzM3mJszg5yBVaomLk4C1GHvnSZhh3D6YluBaTAjniQf35p/nlh9X5Xvgbd+9jX6nZ9GlC5x7rjJhYjZbkg+S674Bb7Jb9ZxMXt51QD/cOVey4uuxJjEul2GcCJZi2huvz9VaZ3kvRnCOBWqC52RM1vkN5OVdycZfTWCX/MS8eb3NNBj3ymDbRCdjjLSnY26h91MkqjpSVZupaivgcuCbcElHV9jGOfaJwRzY284vYIGq8MIL8MEH8MILxs6ZnpGNOzeeKFccJ7TrwLIFY0nZ8CY7V05k3/o3+WLOw5Fizyw1qvq7qnozPHdT1R7eRNeRjK+XrXcqipf4eBdffgnDh0OTJnDmmWbotn9/aN/eaJj1kuLp3b0lX//PxfDhcP4AF/1O7kDG9un5tu0unZvzxZyH2btuYpV8NkJN2GueIjJbVS/z9b7zJZy87tbmZOPCP3TzNCf3ZrecbLIKJbluj5nvORs4xyfF2LJ96Yx3XNYPHza2LjO/D4YMgdRUD4FDyPdEdTq52RNx71+P8aXxLc0ECrxtTZJcMxEmFngfuIL8pLc6jLSUCeRkHvKZRN3Tb3sQJ1OnqurnwbpYZVPQcHqYN3djftACX07u1YaZMzfl2zkbNICXXoJ5c3OKHH6rSojI1ar6jk+AeO96oMTA8GHJnr2p/HvwGFasSSY3t8CW6R2q95KZ6cnXNmvWhM8/N0P20dHG0WfjRqF9m/r8tnQbcXGxfPVVlR11CGsiQfP0DtN6ve8Kf8KGTrFxJGFUJK8XbQLCqMYt+Kh5e5LE5edh2wzjBjoV/xRj3RvWzPfAq1nTNJ6xsdCmjXEGqFfPhdfL7ugA0aOB5qhnDUbTHOuzX6zPcS8Azajd8ETOOLUdyGcUTG9xtmsz1iyc7DOxv2vB+YJrE/1WRMaISN/yzPFV1e8COQuFgj17U1n403rWb/AwZAis3+Dht6XbjtrvvYn3sOjHeK67ztg7H3/cf85fNSDR+a5VxCfiGDz0FVavT2bAADjxRKNBpqQcbatOSHDRv78RrmedZeZmvvOO8br1jkDt3b+TCROz6d8/h97dW1rNMgSEvfBU1d3Oz78Csaq6zfcTyrIV5oEGTfkTmIKxcf4OZPp4Mz/XuDmzxEV7YBrwJ8b7dlFsvF+KsQn9TiwYxtsPH32UyL59CXz+eSI33ABHjigmhHw74uMnExf3IzAZEfNtfGi6AR6MeG4HTCYhIZXoaO/ym0TFpNDupIHMnnIdtRt8jyvqd6f0PTAW2Uak7VuNx+OmZr2vEdevGFHfnqiod2l3UtDic5+CGW9+lgLHobHBunhFMnjoK34doTZtzDzNwjRuVIcl34yh38kdEBG+/DJwQ1tVUVVvlr5RqvpE4U9IC1dOlixPJivL2Cwfesikhrv6ao6KLZyTowwaVJAFBwp+b9kSOICCJfiE/bCtDy2ACSLSCiOXvgcWqurSUBbKl3pR0XSNS+AUH29bT1x8/vZJ5zxP20LHFOWg8oX3nG2HkZl1JTCCI0dGEx//FllZ12OGbcdQq+YkXn8ji6uuiiI39xZgJUZwDqfAy7YbIpOZPh3uuy+DU06BQYMyHQ+8yTRu9HD+xP1l88c5aZOWYeTVTNIPjKN2g++pVb+Ds20YeXnj2PjrnKCkLXLm+VYJvA2db+P47TeBnXy9nphe55Jq6vixUkT2AAudzw+qWqbk2OFCr24t+HnJ+nzv2TZtYPeu+KOG4Ht3b5nvQDZrlnEUSkkp8KadNcs4jFWnzlQ4EvaapxdVfUxVz8ZkV1mIMdr9HtpSHc0DDZoaG6e4+NmZt1kaAk2UB8jNzXVCcZmwW5mZOaiuxNgfV7Avxc3VV0NOjjdk1wr8Q86bZdVcrr4a9u+X/IY7UK/VGz7O+AQ759FhZBzc7Ng+h/mtCwYi0lhEJovI585yZxGJyBhivbq1oHZtM53A2yD27n50pgtfvEK0Ojp+qGo7jDF+BSbgxTKfBNcRxbTX7qRzhxZ88YXROH9YaOZrBtrPO/KU8mdb2rRow623xPHjD/Fs3RKXvy4CMuJUaSJG8xSRhzHTD2pixhSHY4RoWFHepNWFnUgGD32FL+Y8TExMDCImAa75jsNolt75m7/xzjtZ3Habi5SU0RTYJb2ap3c5lv6nNQc4alqEL97wcUYDPXrOZ6B1QWAqZpzaGzliPSblfdiEQCot0167k8tvfpHPP9/CJ58odWrHk5u7jQEDn/abrmAxOFGi+gFnYDxuVwE/hLRQ5aRxozr8+PnTpdqvqjuEVQUiRngC/8YE5/kMWAAsVtXs4g+JHAJNlN+zN5XsnH107DiJbdsm4nK5yMjwUDiZmcsFSUmQkjIRU6WrMMJVgSPAWkRySE0y8zaXLX6Zjz/dSq36rWjVJ3Am+0DpyXKz0pzg8v7zQINAA1Wd7aSnQ1XdIpIXrItXJI0b1eHbjx4HCkcWKugwWfxIBn4FnlXVWyvrIulrdrOo1zOVdfqw5rkQXff0kncJayJp2LYXxmnoF0w2jRUiEpE90ED4xrj0aoSDh75CgwbQrVsG06dnMmBABv5RccciEsNDDyWycaN3dumNmARny4HBQD+iowdx+imdiU2oS2xCXTqc8Ri9L36LDmc8VmSQg0DpyTb+Ooe8vCspPA80CGSISH0KAoWfisnnGdH4ZsWxjh9F4p0fdaWILBaR6ZE6ZG+pWkSM5ikiXTBDN/0xnizbCcNh29LgjdiTcXAzfdc2Jz7+MCvX7CQ2Npb585U+PcycrS6nD+f5USaCyI03Qnp6IpCDyzUFj2c8CQkxqCeNtWsTKJj3eR3GY7YdEEdCQh59uh9i9pTruPjhguuWJ2tKCJPm3ofJ49hWjEtxQ+DSYF28sggUWcjij6ouE5FNwCbM+381pg2IuCF7ODrrkjeWtSXyiBjNE3geM7/r/4ATnGwrj4a4TOXCG7Enz72Cn38/i9Xr9jJ+gpmz1adHwZyt2FjJjzQSG5uIx3MTsAnV6+jUycVF/0znzNM6ULvhiQXJbLkME8lwIyKDiYuNz0+863vd8kQI8k3kHEybpxNRpj8mEO8twImqGnZxjcuKr2OIdfwIjIj8hvFe+xcmtdyZqlq8h1UYUzjr0qiUXaEukqWcREyXJ1wmuVcE6Qc3FWhw3E96xoQiI41s3nx0VCHVEaxdO5EWx5kG9+KHo/Ptk3nuTL/9DqUWZNg4Vs0xkB20MhGRfxexqYOIoKrvV2oBKhnrGFIqzlfVfaEuREWxNieb2Zg3fxjQPjuTB/YkWw00ArG1FUS8czrrfRpNatpoZ2rJaBITXQHnbHk0lzZtYORIfLxpRxAdPY6+fTrzxRzj7BObEJM/33LFp3fln1tkNHVq18w/X2JSm2PylvVN5BwkiosgpZiYgpYqTFUSnOCfdWksJiFgd0cDLY+XviV0WOFZSQSybXhxudJo124SmzZNRMTFkSMZ3HpL3FHxKbOyNF/zbNYsg/37JyFR0+nbpw2zp1wX8LofTLuJcwe+Sm7uRKKjo/lg2h3529YtGMxlN0xl6cq36NHFnKNxo+BnESktqnp9qMtgsVQkQ5IaMXLPdl5XDzUosJutys5kSWYGj+/bQSaQADzesBmtYuOsjTRMsbVQSXhtG7OBcU7P0jvu3KdHS9ZsXM+llxbk4Uvb3zJgXr82bZSRI80+W7Zk0vOiSfkabEHi63SiYxOpW78m//x4GxddpPn5HZ97eR79TzfnbdyoDgs+DTw1xVK9pytYKgZvp3lNThbxCJmqtIuNQ4BNuTnEoCSqkoDJqHQ/RgNdAjy+bweDKZih/fi+HbSNjSctJwsXkJKdyVP7dvJik4g1+VYpwt5hSEQ+EZGPi/qEunxFsTYnGycWD8OcZS/TXruT/fuFgQMLQrQFmqbgkhgWLDDRSBYsAHeef1/nzH+8RGralcBG3DlXoTn7iIrSYiMIVRdEpLmIfCsiq0VklYjYXkMEISL/Lu4T6vIVhbfTvEKVQeqhF0paThan5WSxXD0MUiUao7XcT8Fs7SwgE/8Z3JnAhpwsLsQkFbzQWbaEB5GgeUZkAHBf28Y4/LOmNG5Uh9NPaV/iNIWTe7XKn0Q/Z240Cxb72ygPpaZTMEVlBEeOTKRbNxP6beDAah/30g0MU9UlIlIL+F1EvlLV1aEumKVURJS923fINR44gJlpvQgzM/s6zFt6PWbSai4m/YIHMys7xll3FvAMcLtzXgUucI69D3gDrINRmBD2mqeqLijuU9yxodQ+SopxW5ppCr77bNrV56hoQHXr1ETEm2JsNDVquLjpJli8GAYPloif/nAs2oeq7vYmTVbVw5hpDscHo9yBOJDn5oE9yVy0fQMP7EnmQJ474DqLQVWvL+ZzQ6jLVxjvkOtGTPDMAc63SVcPgyiYSDYYWIeZsNoDo8F4U9ufD9zkbPMeezkFaQx7g53iEiZETNdFRNpjIkl1xnTuAFDV4lxGQ6Z9lDfGrS++Uxk+PjSAcY997bf9+0/ucWyeE4mOTURiGzLyP3km88aXVSJOaoVoH04mnp7AzwG2DQGGADSuxJ58IBs4cNQ663F5NCLyd0xCCN/3/snQlcifA3nuo4Zcx+Ofdn4S0B7z0PoO1/YstG4EJkV94XO1x3jmzgHygG45VSYyacQSMcITExj8MeBFzOjG9ZSgOTu5QHc7vw+LiFf7CPnQXVGB4MtCl87NObBpHP3vjslfV1SKs0ikIrxtRaQmMA+4R1XTAlxjIqa9olNcfODcYBVA4fl93XKyUdRvXdecLDblZDFyz3YOqYe64uK5xs1Jioquth6XIjIeqIF55ydhIkv9UorjBgAvA1HAJFV9vrLKOCplFzXxT8cQi9EU73e+j8dk2U3EpKG/j4K0DTt89h2N8bT1PVeSuGgdG0f37EzyONoMZAkNkfQGJqjq1yIiThLsx0Xkd6BUUYbCQfvwJVAgeEvRlEf7EJEYjOCcEaqACl7vy0z10AOjZdQA3OohDyMRDgL1gBiFkXu2M0g9puFUDyP3bKd1bFx11lBPU9VuIrJcVZ8QkXHA58UdICJRwGuYGNg7gF9F5OPKGnHydoyuAyZg7JfX1mnAtNQUJmAa2SggG5PVYiRmSNftrKuL8bbt4SxnYzSFCXBUB6pbgKlvltAQScIzW0RcwAYRuQPYiUlPViLhon34YuOalp7yaB8iIpj4p2tU9YVKL2QADuS5uXXXFgaqh3hMgzkY06Jfh2kwe2M0jseA2Si5qswE3sbk3zqoHrJyso7SUKsRmc73ERFpCuwHjivhmJOBjaq6GUBEZgIXUUkjTp1i4/gsO5OfMFrhz3EJDKpTn0F16gPGweeU7EyWAdMwD/BYYJa46OJ0jIb5HFtUx6gadZgigrB3GPLhbkwDehemzbkG0xYVSzhoH4GwcU3LxGmqei1wUFWfwJh/OpRwTD/MM3K2iCx1PhdUZiELOwCN3LOddPXwLiZr+6+YNEyZGMH5OybDcxSwBW9EYuNccgJGZRIAVZ7Am0cH4s3a6sKnIlIXM7K5BNgKvFfCMcdjEkd42UEAZzERGSIiv4nIb4fyyp/hriTnQO/23zHCsz1GcD7XuHmJx1rCl4jRPFX1VwBH+7zL8aAslnDQPorCxjUtE2XWPlT1BwiulCnsFDQZ4y3ptXt9jvGyPAvT+5uJEYZXAb9hpjB4HUw6YewI92HsYHOBDzE2skwNyuBIuDDayds7T0Q+xQzbV4jqXVEjTiU5B5a03WqUkUnEaJ4i0kdEVmCmT60QkWUi0ruEw4KufVgqhfJoH0FnZXYmszCaxVQghwIvyvsxc/+aYmycvh6XiylwMPFOSYjCTIzvCawE0oA/MEO5nePyzb7VgcXeH6qaraqpvuuKYCfQ3Ge5mbPOYqkwIkZ4YpJU3q6qrVS1FTAUY1cvElX9QVVFVbupag/n899gFNZSoYxW1UOqOg9oiVHMng5xmY4iCjOPbwPGnlCPgrTlo53lXUASBYJyLMbBxIMRuB2cbw/GRvqH8x0DdBVhprhYnZ1V5eeFikgTp3OcICI9RaSX8/kLxnxTHL8C7UWktYjEYqZKhm00MktkEknCM09V85NfO8NyVbf1sPhSHu0jqASa65eNGSZph5mfd8j5vQtj7+zpbM/GeOGKCDHAd0BcoXMhwgmx8VyuHlai1WGi/HmYvkUzzOyOcc7nXuDB4g5UVTdwB/AlJjjGbFVdVamltVQ7IsbmCSwQkQmY4TrF+FV8JyK9ID9hsqUKISJNMI4eCSLSkwIbZm1K1j6CSqC5ft0xNsrfMA5A7YCVcQmsys7kZIzN8wWMIP24RUfAeGZOz86km8+5xgEnxMYHnCtaVVHVacA0EbnEGXEo6/H/Bewok6XSiCTh2d35fqzQem+QjrODWxxLEDgPM6vDq314SaME7SPYBJrrl4tx81yAsS/MERfjGzTlqX07+TQni+mYodz2sQU2zAcaNGVUyi5WZ2exRoRpKCfExuevLypechXmRxGZDDRV1fNFpDPQV1Unh7pglupNxAhPVT0r1GWwBJdj1T6CSaC5fmtzsvlGPflh197BeF4+0vB4RqXsIiUnmwaFJrwX55npFaDVbKL8W87nIWd5PTAL40VvsYSMiBGeItIYeBbbA62OhL32EUiwFaUpljfucUXES45AGqjqbBEZCcaeKSLln5RpsVQQkeQwNBXjAODtbq8H7glVYSxB5S3CvO69gu2j5u0Z1bgF9aKi7QT4iiFDROpjTDOIyKlAamiLZLFEkOaJ7YFWZyKy7quppljR3IeZZtJWRH4EGmLCM1osISWShKftgVZfbN1XU5x0gv2Bjhhv63WqWnVSB1kilkgSnrYHWn2xdV9NEZF44HZMWGAFForIeFWtVtHxLeFHxAhP2wOtvti6r9ZMBw4DrzjLV2KSzgwMWYksFiJIeIrIQOALVV0lIg8DvUTkaRscoepTXu0jmAmRLZVGF1Xt7LP8rYiEPJm9xRJJ3raPqOphETkdOAczz+uNEJfJEhymYxJhvwK86vx+u7gDfBIinw90Bq5wprhYIosljo0bABE5BRO0yWIJKRGjeQJe78q/A2+q6mciEnbBwS2VQnm0j6AmRLZUGr2BRSKS7Cy3ANY5GZZUVbuFrmiW6oxohOQGdHL57QT+BvTC5Hj8RVW7F3tg2a+zD9hWhkMaACkVWYZyEOllaKmqDYvaKCLvAK+q6k/O8inAUCdBdlHHXAoMUNWbnOVrgFNU9Y5C+w3BpM4EY1NdV4ZyR/p9D4cylFT3LYs7WFXL8q4WiX3vQ1KGYus+3IkkzfMyYAAwVlUPichxmLSIFUpZK1NEflPVPhVdDlsGPypN+/BNiFxWqsF9D3kZKko4luI69r2P0DKEiogRnqp6BHjfZ3k3sDt0JbIEkQHlOMYmRLZYLJVGxAhPS/WlnNpHfkJkjNC8HDPNwWKxWI4ZKzyPnXIN+VUwtgyFcEL4eRMiRwFTKiEhcjj8Z1uG0BAO/9mWIYREjMOQxWKxWCzhQiTN87RYLBaLJSywwtNisVgsljJihecxICJRIvKHMwc1FNevKyJzRWStiKwRkb4hKse9IrJKRFaKyHtOOL0qja37/HLYug/+9W3dhwFWeB4bdwNrQnj9lzHxfjsB3UNRFhE5HrgL6KOqXTDOOZcHuxwhwNa9rftQYes+DLDCs5yISDNMqMBJIbp+HeBMTIxfVDVHVQ+FoiwYr+0EEYkGagC7QlSOoGDr3g9b98G9vq37MMEKz/LzEjAC8ITo+q2BfcBbzhDSJBFJDHYhVHUnMBZIxgStSFXV+cEuR5B5CVv3tu5Dg637MMEKz3IgIhcCe1X19xAWIxoT4/cNVe0JZAD/CXYhRCQJE3C9NdAUSBSRq4NdjmBh674AW/chwdZ9mGCFZ/noB/xTRLYCM4GzneDlwWQHsENVf3aW52JeqmDzV2CLqu5zElS/D5wWgnIEC1v3Bdi6t3VfXer+KKzwLAeqOlJVm6lqK4yR/BtVDWqvS1X/BLaLSEdn1TmEJt1WMnCqiNQQEXHKEUpnikrF1r0ftu5t3VeLug+EDc8X2dwJzBCRWGAzcH2wC6CqP4vIXGAJ4Ab+oBqH7Aoitu6rL7buwwAbns9isVgsljJih20tFovFYikjVnhaLBaLxVJGrPC0WCwWi6WMWOFpsVgsFksZscLTYrFYLJYyYoVnCBGRvwTKzFDU+gq43sUi0tln+TsR6VOK446riPKISEMR+eJYzxPp2Hqvvti6rzpY4Vm9uBjoXNJOAbgPePNYL66q+4DdItLvWM9lKRMXY+u9unIxtu4rBSs8i0FEEkXkMxFZ5uSsG+Ss7y0iC0TkdxH5UkSOc9Z/JyIvi8hSZ/+TnfUni8hiJ5DzIp/oIKUtwxQR+cU5/iJn/XUi8r6IfCEiG0RktM8xN4rIeueYN0XkVRE5DfgnMMYpX1tn94HOfutF5IwiinEJ8IVz7igRGev8v+UicqezfquIPOec+zcR6eXcm00icqvPuT4Erirt/w8Ftt7zqVb1Drbufah2dV9mVNV+ivhgHqA3fZbrADHAIqChs24QMMX5/Z13f0zaoJXO79pAtPP7r8A85/dfgE8DXDd/PfAscLXzuy6wHkgErsNEF6kDxAPbgOaYIM1bgXpOWRcCrzrHTwUu9bnOd8A45/cFwP8ClKU18LvP8m2YeJre/1PP+d4K3Ob8fhFYDtQCGgJ7fI4/HlgR6rq19W7r3da9rftj+djwfMWzAhgnIqMwD/ZCEekCdAG+EhEwSWB3+xzzHoCqfi8itUWkLuaBmiYi7QHFPOCl5VxMMOrhznI80ML5/bWqpgKIyGqgJdAAWKCqB5z1c4AOxZz/fef7d6BVgO3HYVIgefkrMF5V3c7/POCz7WPnewVQU1UPA4dFJFtE6qrJO7gX87KHM7beq2e9g617qL51Xyas8CwGVV0vIr0wPbSnReRr4ANglar2LeqwAMtPAd+q6r9EpBWm91daBLhEVdf5rRQ5Bcj2WZVH+erTe46ijs/EvLxlOZenUNk8PueOd84Ztth6B6phvYOte4dqWfdlxdo8i0FEmgJHVPUdYAwm9c86oKGI9HX2iRGRE30O89pITsckiE3FDLPsdLZfV8ZifAncKU6XV0R6lrD/r0B/EUkSk+H9Ep9thzE94rKwHv/e6VfALc65EZF6ZTxfB2BlGY8JKrbegWpY72Dr3qFa1n1ZscKzeLoCv4jIUuAx4GlVzQEuBUaJyDJgKf557LJE5A9gPHCjs2408Jyzvqw9xacwQz7LRWSVs1wkajK8Pwv8AvyIsUukOptnAvc7TghtA5/hqPNlAJtEpJ2zahImHdFy5/9fWba/w1nAZ2U8JtjYeq+e9Q627qtz3ZcJm1WlAhGR74DhqvpbiMtRU1XTnZ7iBxjnhg+O4Xz/Anqr6sMVULbvgYtU9eCxnitcsPVeqnNVuXoHW/elPFeVrHureVZNHnd6ziuBLRhX8XLjvIRbj7VQItIQeKGqvURhhK336out+yBjNU+LxWKxWMqI1TwtFovFYikjVnhaLBaLxVJGrPC0WCwWi6WMWOFpsVgsFksZscLTYrFYLJYyYoWnxWKxWCxlxApPi8VisVjKiA0MX4iY+Foan9gw1MWoVqQf2JKiqiG/6bbug4+t++pLuNR9eYkY4SkifYAzMKltMjGRNL6q6MgV8YkN6Xn+sxV5SksJLJxxxbZQlwFs3YcCW/fVl3Cp+/IS9sO2InK9iCwBRgIJmAwHe4HTgf+JyDQRaVHcOSwWi8ViqUgiQfOsAfRT1YD54ESkB9AeE/XfUkURkSQKRh22qqonxEWyBAlb95ZwJOyFp6q+VsL2pUEqiiXIiEgdYChwBRCLyW4fDzQWkZ+A11X12xAW0VJJ2Lq3hDthLzy9iEhr4E5Mktb8cqvqP0NVJkulMxeYDpyhqod8N4hIb+AaEWmjqpNDUThLpWLr3hLWRIzwxKTYmQx8Athhm2qAqv6tmG2/A78HsTiWIGLr3hLuRJLwzFLV/wt1ISyhQUS6cfSow/shK5AlaNi6t4QjkSQ8XxaRx4D5QLZ3paouCV2RLMFARKYA3YBVFIw6KGAb0CqOrXtLuBJJwrMrcA1wNv4v0dkhK1ElkJN5iDULJ5NxcDOJSW044YwbiU2oG+pihZpTVbVzqAthCQm27i1hSdjP8/RhINBGVfur6lnOp0oJToA1CyeTlnImee4VpKWcyZqF1h8CWCwitgGtnti6t4QlkaR5rgTqYgIkVFkyDm4G/QhoCjqM9ANTWDZ/XIVqohGo3U7HNKJ/YobsBVBV7RbaYlmCgK17S1gSScKzLrBWRH7F3+ZZpaaqJCa1IS1lHOgwkHGIxJOWciboR6SljGPVggm4XNHHJPi82q33nGsWTqb7ucMq5w9VDJMxQ/YrsJ7W1Q1b95awJJKE52OhLkAwOOGMGx2tcCqJSW1IP5htBGm+JjoBuOWYBF9h7Tbj4NRK+CcVyj5V/TjUhbCEBFv3lrAkkoRnMrBbVbMARCQBaBzaIlU8sQl1/YThsvnj/DRRNAYoEKblEXwJdZqTvv9s4ABQj4Q6zSuo9JXGHyLyLmaOr++og/W4rPrYureEJZHkMDQH/2GbPGddleaEM26kdoPvcUV3ISrqXSAH42C8DGQciUltynFWAc4HljrfUmHlrSQSMA3nucA/nM+FIS2RJVjYureEJZGkeUarao53QVVzRCQ2lAUKBl5N1GigZ2K0zjHAX6jdoB0nnHFjmc+ZmZoM3I+JtX0/manTK7TMFY2qXh/qMlhCg617S7gSScJzn4j802v/EJGLgJSSDhKRusAkoAtmXugNqrq4MgtakXg9Y9P2rQbqYIZaV2A00LKdw+tklFCnBekHCoaCy6e9Bg8RmQbc7Y1x6mTZGKeqN4S0YGFExsFkls1/kTx3GlHRtel+7r0kJrWIRM9qP2zdB4/Cz0q7kway/ud3Sd+/DSSXmvXac2L/WyLq+alMImnY9lbgQRFJFpFk4AFgSCmOexn4QlU7Ad2BNZVYxgon3zOWDZhAKwOc7w3580BzMg+xbP44fpx1O4tm3cuPM29j2fxx5GQe8juHd+4oKLUbfE9UdFdqN/i+XNprkOnmGxzcSYDeM3TFCT+M4LwC2ECe+wqWzX8RqBLzhm3dB4nCz8qy+S+Svj8LuBF0Pen7/xKJz0+lETGap6puAk4VkZrOcnpJxzhpjc4ErnOOyaEsKlsY4OcZy3BgvPPteN8efItVC8Y7D3k0RjttR1rKyfmeuIW9azNTp3LaoGIzvYUbLhFJchpORKQeEfTslpeitMZA6/PcaeQ/Fwwnzz2eZfPHkX5gY6R5VhemWtZ9ZVHUM5VxMNkZ3Sp4VvLc4zGuJffhNfFkHAxvE08wCXvNU0SuFpH8cqpquq/gFJG2InJ6EYe3xuQBfEtE/hCRSSKSGOAaQ0TkNxH5LTfrcIX/h9Lg1R4XzRrqpzUmJrUxXrbscr7jgdFmmdFAjBlW4UKMA9CFwCqnodwc8BzhPkwbgHGYifJPichTwCLMn6/SFKU1BlofFV0bGIt5LsYCp5GWciYi8bbuLfkU9UyZkYrmwAuYZ2iM80zV81sXgc9PpREJPbj6GHd1bxoib1LcdkB/jN3zP0UcGw30Au5U1Z9F5GVn30d8d1LVicBEgFr122hl/ImSKCpwQeF5n2n7coAvgHeBenjcmRgn5PuAKIwAzQJ6EFerCXD03NEIGKb1Q1Wni8hvFMQx/reqrg5lmSqDwlpBYa3x8P5JLJp1L3nuVGA3MB20E2n71mMGVKYAb2BemRxQ8GgmtRt8b+veAuA8U/FAF9Bs0va5+HHWPXjcaUB74A+MdSsXj0dxRXvwuCcCr+OKrk27k+476pyRblcvL2GvearqyxgB+B7QEDjHWd4JXKOql6jqhiIO3wHsUNWfneW5zrFhhxlaHQZEgS4jbd9qls0fx5HUnWQc3EGeO4u0fZswwyjfYJyGmgFuIBbjgXsVxh66EbiKIwd3sGz+OAC6nzuM0wa9Rvdzh0XMg+0dogdQ1dWq+qrzWR1on0insFZQWGtUT5Rj19wIXIZp5PYB1wObgBuAOGfbUqAbLkmwdW/JRyQe88zcgPGjaIon/5nqg5m2Vh+4DvWsweO+EjNkuxFP3lVs/PXo2YFVwK5eLsJeeAKoap6qfqWqj6vqLap6j6pOUNXkEo77E9guIh2dVecAYdlrLRha9QpA4xC04uvX8h1BjOk2HjMs5ysoL8FMeV1Egd3rfiAu0h/mj0RknIic6TvcLiJtRORGEfkS40FVJSjoQBlN06OZztze9s53Fr52TdOBOgCM8FmX47ePFsQVAIo2D4Qh1arug4V5Hg5QYMc8SMG0teGYNmQ7Bc/U/c7+Tf1MQVDwLKXtW+333PruU5WJCOF5jNwJzBCR5UAP4NnQFicw3mAIsBhfh6CjG8wc4C38BeUTwGGMfcJr93oB6BPRD7OqngN8DdwCrBKRNBHZD7wDNAEGq+rcUJaxIilsm3ZJAnl5VwIbnO84/O2aXYEkzKiDd12c3zlqJrX1u0akaAnVre6DhXkefO2YhZ+f0zC2T++6Mc7+R9vMC2YC9CX/uYxMu3q5iASb5zGhqksx4xFhjX8wBN9wfF5Nc7jzHYsZppuFebDvd76jENdh1DMV45FbE2+60wgIv1ckqvpf4L9lPU5EmmMycjTG3IiJjgkgbDkqrvGBLL8ePbyG6TiNxzwH2UhUTTRvKjABIzjdREW9i/IWNZPaHmXjjKS4xtWp7oPFCWfc6HjnT8bYx6OAqZjnpx7GnyIPM0nhbSCXGknNyT7c1c9mnpN5iLSUNc6zFIUZCWtP7QadI86uXl6qvPCMNLwNaPrBtxDiyMvLBZ1KfuNIJkaQTgE+B2ZgHvpcXK5YEuu3Ic+dRcbBv1IgWL8LxV8JNW5gmKouEZFawO8i8lU4O5sUjmu8aNa9+Hec4jEdp+WYIfvhqGcctRt+D+A4nA0jL28ctRt8HzBhQOGsPVVUS4i4ug8WsQl16TmgwL/SDLuejmkrxgL3YJ6tOEy7AtHRCfQuNLVtzcLJoM0wGux9QFdqN0wN9+xMFUrECE8RicMY91rhU25VfTJUZaoMjgrH5zRy3sbwh/fuQD09MMO36RjnoXpAB2cobhxG0EZO+L3KQFV3Y1xSUdXDIrIGOJ4wtHkX5a3o8RzBCMqemCHaLGfZGyArCnQYaSkTQBXfOXpFaZTtThroBFQYT1RUbdqddG+l/79gE0l1HyxyMg+xasEE0vdvwDgFRWH6GDGYAGxes1B75wgPZth2IRkHz84/h/c5zXN7gDcxgvMNIIZ2Jz0YzL8UciLJ5vkRcBGmxjN8PlWSw/vXgy4DuoNOJW3fSkcTASMsazqffsBZmOiDzvCexkT63L4KRURaYSTQzyXsGhJWLRhP2r7D5LmjSNt3mOVfjWPhjNtRTy5GWOZhHMfj8DqTme+rgDGOBlA6u9PGX+f42VEDeU9WJcK97oPFmoWTSd9/EmaygQvjfLgeGIzxzvbaPPtiXEMaACdjBGMsi2YN5bePn8i3l5vjb3eO3QBcX+WfpcJEjOYJNFPViPauK24+VOHYpOpRTAM5HfNQLyfP3Q2TG/hCTI/vBUzv73zgM7wvgCsqhpr1InduXyBEJApjw/IddSjW29o5riYwD7hHVdMCbB+CE+YxrkaDCitvWTBBLm7EW6eZhydhphJ4h2uXYzTPCfg7j7XDTH3+DuNDU7LdKZJsnl6qct0HC+M0WAfoDaylwJt2BEbzbI/RQnOA33BFxQJ7EFllOls6DOhMfjpE7sc8j9U3+lAkaZ6LRKRrqAtxLBTn6bh0/gt+sUnN0ErhaQnDgVwKHtj7MIr4COBPTAd7OZAbkXP7ikJE7gT2AF9hegmfAZ+W4rgYTOM5o6j8j6o6UVX7qGqfmPhaFVjqslC4Tv2nm5i6vx/zup4FNHK+o3FFxwL/xgjX7dRIal1snUdatKmqX/eVy6E/V/HDu7eT587EDPdfh7Gddwb+CjyG6aR7BWcs4ooGcVOjbkvy3IcLnNboQ350MxlHVHSdiHqWKpqw1zxFZAXGYy4auF5ENmPy+wmgqtotlOUrC8X1+j2FYpMaj0pfZ5GuGOefGMwDPML57u58NwW+BcZwUo8UFrycG6R/dey4ZpS4y91AR1XdX9pziohg1PQ1qvpC+UtX+biia+Jx+3pOx3J03Y/F2Kku8NlvNh73QIzj2FJgNDkZxd/MCIw2VaXrvrJZ+c1rqF6HeZbOxgyzXobppI3GeNQKviMd6nkH9Swnff/ZGFOx1ymoDSbOzFSiohLofu69bPx1TiQ9SxVK2AtPqlDi26I8HRe8nItrRgz+DWY0RovsiMkH7MHYvfIw7uQzMA/9YaKjl5OYqOTktKNGDRcr12YwYODTTHvtTho3qhP0/1kJbAdSy3hMP+AaYIWILHXWPehMfwgrVLMw2mVhx6D2mHl43kAHufg6gpmIkiMwoRrNEJw7Z2IJHadE4K5C60LX0SpFx6lK131l4GseMs+Wt1M+CzOP0zvKMQInKin+HfcJzu8DGIV/JMYO6sYkpcoDupKY1KJaedcWJuyHbVV1m6puA572/vZdF+rylQVvIITCqcD63x1DvSb1iI6eDLQjOnoyUTExIN0xgnMpJoTvNxgh+g0mxNZSRISLLsqgbdsj/Pe/mYwfn0FMDNRrtJHBQ18Jyf+sKETkPhG5D9gMfCciI73rnPVFoqo/qKqoajdV7eF8wrLxdEkCZujsD+e7hlP3fTFawjJnvVcj9Tp3JGG0hyRgFyKjqVunakSsqy51Xxn4moeMU6H3mZmGeVa8y2Oo3fBEM/zq91wlOr/rYeaATsLY0xsBedVyiDYQkaB5ejnRd8FxIuhd0Rfp2Fwrbchzz143g4emsWT5EXp1SWPa024ue8Zsa9XrNlZ8PRbcuSTWTOTDqdfx6PPzWfhTNv7DtP7DtjVquLj8crjuOkhJgTlzoE0bWL/Bw6pV6yNdA/UaopKdT6zzATOUXyUw2oHPlBSXm5o13yM97SBRUUuIjZlCTo6LPE86Zn6vN0hCFr26fc3GLftJO9yO6OhoPJ4sju8yhJwcpXf3lrbuqyHpBzf5pDGcibGJFzwz3mfI5Yrih3kjOZhwCmf1vQqPezymfRGgPa7oWsTX+orsw9NJqNMCiCcztWu1HKINRNgLTxEZCTwIJIiI12NOMNbtiUUeGIYMHvoK9Rpt5I3xHma8s4FeZ99P6mGoVb8VGRnx5OZcAwwj9dAY/nbpq5x9xnHEx6fh8UwiJ2ci9eu7SE/PoHXrSSQnT6RFCxe7dmUwcyZER8O110KDBpCUBB06wMiRMG+u0UC/mPNwqP9+mVHVJwBEZKCq+vnBi8jA0JSq4qlZrx1pKd1Bp4OMIyZmORecv4+Bl7qZNzeHPfv74G58Lz/NvQt3zpWojkBkNHVqv8tv34wAYMDAp6nXaCPrN3ho0yaXQYNs3VdXoqKi0bzRznPyMTVquDn/gmzmfwV1amXTt282AwfCrFkw/LFpzPjvYPoNegnAb365J28c0dHfHxUgwWIIe+Gpqs8Bz4nIc6o6MtTlORaWLE/mjfEeGjSA5O3Kaf2yuPxymDV7PfPmJoB+hteeFRMzgXqNNuJyQefOGaxcCS1bwqpVkJGRwcsvw5dfQnIy/PwztGgBjz8Ozzxj9nnkESNIL7nUw223lujVH+6MxES+L2ndMdG4aW2GPXFORZ4yn23rVvPQFVeQnnaImrXr8sx779GyY2ez7crjnG1vEBNbk6ioNAZe6sblgqXLEli7dgVRUbeQl5eDd4qB6ggOpU6k6YlDaN2iEUuWJ/POOzBkiOk02bovG5U54lTZ7NmbyuChr7BkeTK9urUgLvoAbVtPYtu2ibhcLnJzM1i/DnKyMtl+qAY7d0Yzd24ubdu6SNm/w+9ckTiVKVSEvfD0YY6IFE4nlgpsU1V3KApUVnp1a8G8uRu55FIP69YVNHKDLvPw4QcuYBxu9zBcrtG0auVi/QYPeXmwbx/ExkLr1uaYmTPh7rshJgY8HnjxRTNs6/FAh/Yudu+KZd7cHC651MO8uS56dWsR6r9eLkTkfIx76fEi8n8+m2pjvBcqlLpRqfyz7hcVfVoA6l05jIzDVwIjyDg8mseuHMiBTSZd3ICxT3Ph+Xu45FIPs2ZnM/+rOObMjWb5sjjWrbsJGIHHMxqX6y1UR+drnh07uujSJYOvvkrmxBONJtG6tfk2mqet++qA74jWvLkbUTx06ZJBjRrGhDNokGkz1q5NBI7H4/kHcB8bNowmJu5d/n3TwvxzVZPwjRVC2DsM+fA68BNmqPZN5/ccYJ2InFvcgSISJSJ/iEiJ88Mqk2mv3cmBve247dZ4ateKZ+5cFykpppHrd0pD+vZZQFRUB+rXm0x0dAZt2sCrr5rIa7m5sGULuFxw+eVm3V//CgkJMHeui9q14rnt1ngO7G3Hl7Mfyb/Ogb3tmPbanaH828fCLkwUgCzn2/v5GDgvhOUqM4dS01H11RrT87ctWZ7MJZd6cLlg5YoE0g7B++/XYO3aPL9jPJ5catSYBLSjRo1J3H9/BoMGQVYWPPQQbN4MK1fCjz/Ec+stcbbuqzB79qYyYODTNOo4hB9+3sAll5oRrZNO9pCbC+vWwdq18L//wdixMGAA5OR4MCnICrxt8/JMP8SbXiz94Caiot7FFXWin1Oj5WgiSfPcBdyoqqsARKQz8CRmHOt9YH4xx96N8bGuXdmFLC2tWzRmwXd7+PDDLOolxfLu+EE89/I8atXMJTsnl/Xr4dFHzYN/2mnk2yieeQbatYOoKCNEP/0UDu5tx5Jv/B1DItHOVRhVXQYsE5EZqhqZY2oOdevUJDVttI+9ssAr1jsisXRZQr6mmec+WtOMinJx/vlGYM6aBa+9ZjQL7whEmzawe1c8O1dGlCtAQCK57nPzoth5sDlZ7vhKc23ak5LKQ4+/TGIiHDgAcXGQmAgnngh33PEVJ53Ui6ZN65OYCBkZkJ0Nn3/ujWm7FTMNJRVxzSU2oTY5mWnozS9jmsg0xJVFbMKxN5eqsHtfFjO+2E16Zt4xny+ciCTh2cErOMFklxeRTqq62cyJDoyINAP+DjyD6XKFDN/hlVmztrF9N7zzDsybm8MVt7zI6Wdk0aataQQ3bzYN5Lp1MHy4M7w7CK6+2gzjtm5tPGujo6uGoAyET4AMAtVxJAXI+P6TezjzHy9xKHUiNRNrEBOTTsLx11IvKZ5Xnx/CHf+ZyO4/PfjaNFUnEh09Cbd7IiIuRDJYsADOP7/gWQBwu42ts3VryM6uGo6okVz3Ow82p1bd42lZr3bAspcHd24eW5L3ciQzmxoJcdSt46LJccqff0L9+kZIiUDDhvDdd9/Rs2d3TjihAfHxZtRq61Zo2hR27HDh9bd0RSeRULMB4oom/WAyaGeMR24OyGpqJh37kL+qUr/+Ya4CJnywo8T9I4lIEp6rROQNjO81wCBgtZNtpbie6UuYFqnI+Fu+MS5bNKtfIYUNhK/D0KBBZkjF69jxwYdZDBpU4PDhchktMyfH2Csuv9wI06goSEuD1FQ4dAi6n9iy0sobBngDZAx1vt92vq8mwqYrdOncPN/GeXyXIfQ7PdvRILO4/q5XuOB8cTTPAk2zRg1/TXPzZtOx+s9/oH9/Ywdv08Z0pl54wQz/N6hTZZ6HiK37LHd8hQpOgFVrt3Lvffexb99ecnLyuOmmmzj++Ga8+OKLZGVl0qhRXZ555jEWLVrGunVrePTRR3j66Ti+/noK33yznGeffRmPJ48TTujKk8+9TmxcHONGP8G3X39BVFQ0p5x8Mnfd9STff/8rU6Y8hdudRVL9Rox5cQINGjQqd7lFhNj4WhzXML7C7kW4EEk2z+uAjZiEc/dgJk9fhxGcZwU6QEQuBPaq6u/Fndg3xmXD+pUX49IMzxk756xZUKsWbNwI991nhKKvw4fHY4ZnO3Uyts6rrzZetd1PbMEpvToQGxPPCe06MG/q8Eorb6jxCYbxN1UdoaornM8DQLF27nDmwEHTUfJ2orKzlUsu9TBkSAZRUcam2bHjJKKjM/z227LFfKelwYIFxtaZ8mdb2rRoUxXs235EdN1rYG3Zy549e/n7WRfSpF4r/n7WhezZs7fEU/7v6+9o3rwBixe/y08/zeLUU09j9OgxjBo1iu+/f5trr/0Hr776OmeffQ49e57Am28+xYwZ77Jtm3D//U/wzDPP8uEH76MSw3vvvsXBgwf43/zP+OSLRXz034UMvedBoqIP06NnA6a//Q4ffLqACy78N5MnHnugFRGhAvsRYUPEaJ6qmgmMcz6FSQ+wDkyYrn+KyAWYaMi1ReQdVb26kopZLNNeu5PBQ1/htluT6XLC8bRpodxzz2bq1TPDr199ZWwTmzbBJ59Ao0bG7vnFF2b49oR2HSJ50vuxICLST1V/dBZOI7I6fn7US4pn1qysfI0yLk6YN1f4+hsPF1+cka9h1qhR4Dnr27GqXdtonj/+EM83Hz4W6r9T2VSpuge44fIb6PzTb0xyu3nhp9+44fIb+Ozb4n0Zu3bpzEsvvcRDD71Cv9NOJzqmNps2bWbo0KG4XAAe6tVrQFSUGcI9fNgM4W7cuI02bY6ne/eW5LldXPzvK3j3nclcdc1NxMXF8/B/7qL/2efyl7POIzY2lu27D/DIXXewb+8ecnNzaNasyoxkVDgRIzxFpB/wONAS/9RERfpSO/NCRzrH/wUYHirBCdC4UZ2j7JN1Wg+mb19l4EBjw/z0UzilVwdG3n0JV976InfckUW9pHg+nXEvz708j65n3E+vbi2qmxC9EZgiInUwBpuDmEjWEcmXsx/hvMue4pNPsoiLEzx5UXz6mZvcXDM0O3SocQZauRK2bzcdqZgYM4S/fTs8/7wRoN9+E9ajlxVFlap7gN+XrWSS221y6Ljd9Fy2Ejjartm6RSOiY6IAOLv/ybw/bw5f/e8bxo6bQO/evWnTpg1ffz2F7dsLzu3xQGamsXMedxysWWNsoUlJkJycnb9fdHQ0s9//isWLvmf+Fx/z7vRJTJ3xEU8/8R+uu+E2zv7r+fzy0w+8+n+jg3lrIopI6sFNxoT3Px04yecTtvi6kw8Y+DR79h4d3zovz3jSNmhgvk37AANvfJGuJ7Rg6x+vsHPlRJ57eZ7jbJRVJeLWlgVV/V1Vu2NSyHjjlS4JdbnKS5fOzdm5ciL9T+vABecLHTq6GTDAOI+1aVPgRVunjtEwTzwRLvy7i/r14jnnbBe1axv7Zu/uVV8rqGp1D9C7exdeiI5mF/BCdDS9u3cBYEvyXqKjs2jRQomOzmJLcsFw7t59e+l6YisefOB2brrxelatWsmhQwf57rvlxMdDjRpusrI2UasW1KxZg9jYI6SlQZs2Ldm2bRdL/9hOjYQ4Pv5wNied3I+MjHQOH06j/1l/4z8PP8PatcYXM/1wGo0bHwfAh+/PPKrslgIiRvMEUlX18/IerKrfYbIGB43Ck5cDhUo7uVcbZs3alD80V7tWXMBjfJ2NqkjkmBIRkatV9Z3CgcC99qRwTjdVOOrL2CcGM/yxaSxZnsyJnZoiIiz+dRO1axsbZn7ADMeLdt06o2nOny9EuWJoUKcVX84257jt1uT80YeqSiTXfUlMmTmFGy6/gZ7LVtK7exemzJwCwJHMbFq0MKMMdZMgeVs2y1dtxe1WFi9ezMsv/x8ul4vo6CgefPA/REdH8dxz40hPTycvz80VV1zB1VedwCWX/Iu7736OhIQEZr73No888hh33PkgLhd0PKEXl195HYdSD3LHLVeTnZ2NqvKfB58CYOhdI7jnzhuoXbsup/Y9gx07qn47U14iSXh+KyJjMHM688cfwrkXWpzA8zauy1ftwL1c+PhjpX69eLKzPfkTnn2P8Y1OFMmRY8pIovMdcZmKC3eczrvsKfr3z+GN8R7uu28zp5xiNM1Zs4zzj69t88QTC6YrdWgvHNjbKr/TVVWnJQUgYuu+JBo3bhTQxlkjIY5DB7OomwSHDoKi1Kpphlzr1u3L2Wf3xe028zmTkuDgQZg61czpjY42cz3z3C7uvH0wd94+OP+83bq0YciNlwGwLtl0Pho1asLsD/53VBnO+dsFnPO3Cyrjb1c5Ikl4nuJ89/FZp5gMr2FJcQLP27hOmOjJn4bQoX0OCxbEMm+u66hjfJ2NqrrW4UVVJzg/R6lJPRIxFO44ffBhFpdcarTLw4fx86L96itT/1dfbQTnQw8Z25WZtlQ9RhkKE8l1X15at2jEluS9JCcbm6fHk0VSktFEk5Jg2zazn++6Q4cgPt7YN1X97ZqWyiVibJ6qelaAT9gKTvAPx1d4GoE3JJvvNIRLLvWQna0Bj/E6G+1dN5Ev5jxcnZyFAFaKyI8i8ryI/N1xHglrfKclzZvrol5SfP5yrVpGw/ROWWrrBMaIixM6tHfh8RR411ajUYaiiLi6Ly/RMVG0b3sc3bu0on3b44iOFg4eNM4/Bw8azTIqCr91LpcRnqpmuUZCXKj/RrUhYjRPEWkMPAs0VdXznfB8fVV1coiLViSBvGu9+Gqls2ZBs2ZmvmdWdg4AKxaOqW4CskhUtZ2ItADOwESLek1EDqlqj9CWrGgKjxT42itP7NSUlD+FW4bswJ2XQ1aWsntXPB9NNx7Vt96yjdhYITtbaVCnZbUYZSiKSKz7iqJ9m6Zs2LyLQ4cUESMgo6KE3JwYkpNzSYiPJT5eSU3NITUVEmvE0aZl+QMaWMpGxAhPTErzt4CHnOX1wCyMF27E4W1cvQ1leno25w1QBg3SiM7DWBk4IRb7YRrQ7sAq4IeQFqoEAnWcSlOf/U+3de5LJNZ9RZGQEEu3E1uFuhiWIogk4dlAVWc7ybFRVbeIRGyk4cKNa6OOQxg0KKtaedOWgWTgV+BZVb21si6SvmY3i3o9U1mnt5SPiKv7xEmvkeHZXSHnqmiahei6WVmpPLfwcb91p4emKBVGxNg8gQwRqU9BsOhTMfk8qwSFbWTV3M5VmJ7AdOBKEVksItNFxOZKKoYDeW4e2JPMRds38MCeZA7kRWwKzIipe+8935uXy47cHNxaLYJYVFsiSXjeh8nl11ZEfsS8UFXGGFScc1F1x0lPNQ0zbP8N0B94NKSFCnNGpezilOxMlquHU7IzGZWyK9RFKheRVPfee94USFQPf7rDN5Pa06+9yrc/LS7zcQt//ZVL7xha8o7VgIgZtlXVJSLSH+iICcOzLtLy/BVHcc5F1R0R+Q2IAxYBC4EznaDhFocDeW5GpexibU42nWLjWJOTxWxMyuNhQLecyJzCEEl1vzYnm9mY4bDGwEr14FYlOkRR0VUVVcXlOlpHenjoHUEpg9vtJjo6YsRMmQj7fyUi/y5iUwcRQVXfD2qBLKHgfFXdF+pChDNerWc2MC47ky3iYhzKMEwmhU6xETuFIWLqvlNsHGOyM7kR2IPJjPmnO5dmMbHHdN5HX3qRZk2aMOTyKwB49o3XSaxRA1Xlg/lfkp2Twz/OPoeHbh/Ktp07ufi2Wzmpa1f+WL2aea+9zjNvvMYfq1YjAtdc/C/uuOZabnnkIc4/sz8X/+1cfl+5khGjn+dIZiZxMbF88uYkYqKjuefpp/hj9Sqio6J5bvj9nHnyyX7lOpCayu2PPcLWHTtIiE/glUcfpUuHjjz7xuts2b6dLTt30LzJcbw1qmrGxw174Qn8o5htiok4ZKnCRErjGUq8Ws8BjAv6AfUY93QROsfGMySpEQ/sSWZ1dhYJIhxBcamSCSSJi+caN6dtbOCci4W12gcaNKVeVHCajnCue9/7clxUNNvdOawABgB5GOF5RD3syM2hSXRMvga6d38KQx4ZxtLV6+jRuSMTnxpHo/oNirzOJecN4IExo/KF5/vzv+Te62/gp6V/8N2M91BVLrvrTn74/TeaNzmOTcnbmPD005zcrTt/rF7F7r17+eX9DwA4lJbmd+6c3FyuGzGcqaPH0rtLF9LS00mIi+P1GTMQEX6e9wHrtmzm4ltv4Y+P/aMiPfv6a3TvdAIzX/o/Fvz8M0MefohFs+cCsHbzJuZPnU5CfNXL4+kl7IWnql4fzOtZj0tLJNIpNo5x2ZnMAi4DhgNjgVkIoxq34IE9yZySnUk80E01f/tyoJt6GLlnO7Obtw947sJa7aiUXYxqbB3afO9LD3cO1wP3A1sxvfqaQFtgj2P/9GqgQx4ZRsNmyxh/Tx7z5i5jyCPD+PD1aUVep/sJJ7DvwAF2791LysGD1K1dm1UbNvDN4sX0GzQQgIwjR9i0LZnmTY6jxXFNOblbdwBaNWvG1h07GP7cs5x35pmc0/c0v3Nv2LqFxg0b0ruLCU5fu2ZNABb/sYRbr7gSgI6t29D8uKZs3LbV79jFf/zBOy+YEMP9TzmFA4cOkZZuskNe8JezqrTghAgQnseCiDTHOBY1xjzPE1X15dCWylLdKa8mV9xxDzRoyqiUXRzIzmQ4EIURjAfVw2XbN3BEPcymwHW1KUbAdneWJ6inyOt6tdpIt59WNCuzM9kITAJygZ8x9702kINpdGKd79U+93fp6nWMvyfPmZaWx61D1pV4rX/97Vw+/Oor9uxP4ZJzB5C8exfDbriRGwZe5rfftp07qZGQkL+cVLsOi+bM4+tFPzJ5zmze//JL3njyqWP96yXiW4aqSiR525YHNzBMVTsDpwJDnchElghARP5d3CfU5Ssv5fWELe64elHRjGrcggSMRnkV0A3YCAxSDy6M7bOrs32X8+1xvutK0U1Bp9g4xjnHBMt+Ggl1HwXUBW7G3OeTMfc9DdOw7sEI0T1AvM/97dG5I/PmRjnT0qLo0bljide65LwBzP3ycz786iv+de65/PW0frz94YekHzkCwK49e9i3f/9Rx6UcPIjH4+Giv/6NR4feybK1a/y2t2/Vmj379vH7SpNT9HBGBm63m9N69WLWfz8DYMPWrez4czftW7X2O/a0Xr2Y/ZnZZ+Gvv1K/blK+5lodqNKap6ruBnY7vw+LyBrgeGB1SAtmKS1V0t5dVk3Oq3EucYYIvce1y87kvOR1RGPSDMVhGuspzrKvhvkGJhRXDvA7MB6oB2QA74lwXHQMF23fQKfYOIYkNWLiwb35Gq53uZuPxhsEwrLuvXWxKjuTLEwEh5mY+xsPHAEOO79TgH0YIXu8j8fpxKfGMeSRYdw6pMDmWRIntGtHekYGTRs1oknDhjRp2JB1WzZzzjVXAZBYowaTnn2eqEKetbv37uW2Rx/B42i+j991t9/22JgYpo4ey/DnnyMrO4v4uHg+mfgmNw+6nHuefopTLvkX0VHRjH/yaeJi/R2fRt52O7c/9ginXvpvEuITmPD006W/kVUA0TCfyFtSL7O03rYi0gr4HuiiqmlF7dcpLl4nN2lVliKGHSUNC4bSASQQpyev+11V+5S8Z+USrLr32h+9nrA/xyUUa0P07j8VGEyBPXM2prG+Dsd2WWibr+3zLeB6n2Xv/tOAE+IS/MozU1xcrp5Sl+9YiLS699bFMuA3jIZ5Hf739cnPP6d2gwbkAidiNM8McR2z120ks3HPHjJu8p8fGi51X14iQfM85h6oiNQE5gH3BBKcIjIEGALQOIRCpKIoycEjEh1AROTvmLYo3wtBVZ8s4ZgBwMuYzv8kVX2+UgtZSrz2ydJqcl5N9Q1M49wTM/yaDWRhGu7Ctsx3nH3bA0nOvsN9tnv3nyqSf/4oYBnGTjqM8LFxhlPde+9VT4wWLxx9X2tj7EVKYJunpWoQ9pLiWL1tRSQGIzhnFKWlqupEYCKYHuixXC+UeDXKPwoN73XN8U+HWHgCffvsTB7YkxxyDbQoRGQ8UAM4C+OfcSnwSwnHRAGvAX8DdgC/isjHqhryIXuvfbK0eD1p4zDa4nSMlgOwxPnttWV6NaBuzmctRgNdXmh7V4xW2dmZnjLO0aa6Oef17hvqOaLhVvfeuZxdMfc+mqPvaxpGgOYS2OZpqRqEX0tZDGXtgYqIYEw9a1T1hcovYeXjFZDe+XpZKO1i4lCMUDwe6ILJEJ6CGVbKUvUTjjFqth/A2L1qQ74DSphqoKepajcRWa6qT4jIOODzEo45GdioqpsBRGQmcBERaO/2aqqZTqdoAkajycJIFa+N8zfgTYyq5V32apxRGGeWdkACxlEoKy4hX+v1drqm++zbHujps0+ICKu6f6BBU67duQkXRrv02pjHY2zOWRTYPMW5YLy4aBIdc6yXtoQZESM8y9MDxaQyugZYISJLnXUPqup/K6uclY13yFWAfarkAodyssgD1gEvYDQTMD3f64ERwJjsTB74M5k9eblkAnWArzB53qZSMDxXlD00xHbSTOf7iIg0BfYDx5VwzPHAdp/lHcAplVC2SserqV62fQOXqcfPrjmI4m2SD+xJZpxjz+yOEZiB9vXOBS3NvkEmrOq+XlQ0J/rYiM8CLsDM7/TaPGtiOiBFBZ2wVA0iaSzhNFW9Fjioqk8AfYEOxR2gqj+oqqhqN1Xt4XwiUnB6MzYscYbXljjrv8JokfsxDd5MIB2jUcZgBGdTzMu9My+XazFu9f8ARjrrcygYnvMK56/VQ0p2Jlfu3MQDe5J5at/OUAYa/1RE6gJjMH99K/BeRZxYRIaIyG8i8tuhvPDOcPdc4+bMEhftMY4+6RjBWZxm+ECDpvwcl0A3cVXovkEk7Ore9z4lxsQxU4T2GKesRRgnruOrsXNQdSFiNE/K1wMNW8qqyXmF2mqMXWU6pjUZhhF+g4GVFHhcvoARpGMwAnIMZqjufowwvQ/o4ewXjfGwfC6pEfft2c5s4CbgQme/cdmZTAE+JGROJKNVNRuYJyKfYkbFsko4ZifQ3Ge5mbPOj0iyd7eNjS8yClBRlMW+WlZbbJAIu7ov6T4lRsVYG2c1IJJquNJ6oKGgrBPl1+ZkMwxjw/IKwPsxUU2WYDTMFRR4/t2Hye7wOUZIfo4Zqn0BM9l9jHOuTzEC93InRFueehiDsZfdR4GwdEPQJ8r7kJ87SVWzVTXVd10R/Aq0F5HWIhILXI5JaWeJLGzdB2D33r1cPey+Mh93ydDbjopvW5jypiurbkSS5lmeHmjYUtaJ8l6Py2iMALzP+fb2fl7A3+NytLPtG+cauzBC8hPgdQom1DcDZmACWU9WDwswdrRsCrRWr1fmzyJBnSgvIk0w9qsEEemJ8cEA4+NUo7hjVdUtIncAX2JMUFNUdVVlltdScdi6L57jGjXinXFH+0CWlAJs3mtvlHjuYKUri3QiSXguBnqB6YEC2SKyxLsu0vAKw9KmjPJ6XGp2Jp9ihm3rUeB1+SnGu3Y5xvMvATPPzCtMx2AciFKAUQ2b0SshkQf2JNM9O5M8jLDtg7GbfgN0Qfg1Lj5fWD4cmmks52HmoDfD9A+8pAEPlnSwY9+OSBu3xda9l6JSks346CN+ef8D3vnoQz7++msyjhwhz5PH+6+9wa2PPszqjRtp37IVf+7bx7gHH6LXiSdy4vnnseDdmWQcOcK/h95G3569+HnpUpo2asTMl/+PhPj4EtOVHTh0iJsfepAjmcaSNnbkg5zao0cI71BoCPthWxFpIiK9cXqgItLL+fyFEnqg4UxZnTO8dpZohGaYbngzIA+hvTNVxYWZEN8pJo6PW3Tk1SYtmSUu2mG0yw8wrdGstP1HlWGOs593WLZzXDyjGrfgo+btGdW4RUjmf6rqNFU9C7hOVc/y+Vxk87hWbapy3e/dn8J51w/luNPO4rzrh7J3f0qx+19y3gDen/9l/vL787+kT9eufvssW7Oat8e9wBdTpvLm7FnUrVWb3z74iEeG3sEfawLP0NmUnMyQQZfz6wcfUqd2LT7631d+273pykaP+A+L58zj44lvkhAXR8N69fh4wkR+mDWbqaPHMGLUc+W8E5FNJGiex9QDDVfK65zROS6e7s58vHFAVlx8vla6Pyebhj5Dql4Hk4u2b2CpemgKdKJgiNi3DF4HpiDHLy0tP4rIZKCpqp7vBPfvq6qTQ10wS6VT5er+muGP8cuyk3Dnvccvy17gmuGP8eVbrxW5f6CUZM0aN/Hb56xT+1KvTh3ApBO7/cqrAejcvj1d2geelNDq+OPp1qkTAD1O6EzyLn+/i6LSlWVkZjL8uWdZvm4tUVFRbNy2rRx3IfIJe+GpqtOAaSJyiarOC3V5Qk2g0G4lCeLSDBGHqaell7ecz0PO8npMzueIbUAtpabK1f3ydatx570HNMWddx/L13Uv8ZjCKckKk1iOFGCxPtNpoqKiyMounQf9a++8TcP69Vk8Zx4ej4cGJ0dseNpjIuyHbX34UUQmi8jnACLSWURuDHWhgo1XyJVlODVM5++VhQaqOhsz2wZVdWN8nCxVnypX9906diY6yvi9R0e9QLeOJWdJLJySrDhO7dEzf5h37aZNrNq4oVzlLCpdWVr6YZo0aIjL5eK9Tz8hL8znR1cWkSQ838J4z3lb/vXAPSErTQRRHoEbZmSISH2MDxQicipmJo6l6lPl6v7tsU9wcvdfqZnYnZO7/8rbY58o8ZjCKcmK4+bLBpFy8CB9/nURT776Cie0bVuuPJu+6cr6DryEf94yhKycHG667HLe/eQj+g68hPVbtpRL660KhH1KMi8i8quqniQif6hqT2fdUlXtUZHXqQopySKNklITiUgv4BVM2N6VQEPgUlVdXpHlsHUffKpi3dd48xXaNW6CCa0dfPLy8sh1u4mPi2Pz9u38c8jNLPn4E2JjQhNfV1XZuOdPjtx8p996m5IseFS5HqildKjqEhHpD3TEOBqvU9XcEBfLEgQise4927ZzqH596kbHhESAHsnK4u833UCu242q8sJDD4VUcB5y5+LZtr3knSOMSBKe92GihLQVkR9xeqChLZIlGIhIPHA7cDqm87RQRMarasQGybCUjkis+6xXxrP3zltJadkcCVGYvikv/Z/f8sY9e0JSDlUPnm3byXplfEiuX5lEjPAsbw80XBMiW8rEdEymp1ec5SuBt4GBISuRJVhEXt2nppH19OhQl8JSyUSM8CxPDzScEyJbykQXVfV1SfxWRGwdVg9s3VvCkkjytp2OSYT9CvCq8/vtEo7JT4qrqjmYRCMXVWopLZXBEsfGDYCInIKJXW+p+ti6t4QlEaN5Ur4eaJVJiFzN6Q0sEpFkZ7kFsE5EVgCqqt1CVzRLJWPr3hKWRJLwXCIip6rqT1CxPVARGQIMcRbTT09et64izutDA0xM9kggFGVtWcL2o0OqVALrcrJTTk9eV9GxxmzdF0+41H1lvPfhSrg8kyXVfVgTScKzPD3QMifFrQxE5LdImc8UjmVV1aAEz1TV4mefl4NwvJ9FEY5lDVbdYxwQw+q/VxbhWM+RSCQJz/L0QPOT4mKE5uUYbz2LxWKxWMpNxAjP8vRAq0NSXIvFYrEEn4gRnuUlTJLiVtqQcCUQSWWNBCLpfkZSWSua6vTfq9N/rTQiJratxWKxWCzhQiTN87RYLBaLJSywwrMSEZHmIvKtiKwWkVUicneoy1QcIhIlIn+IyKehLkukY+s+MhCRASKyTkQ2ish/Ql2eykREtorIChFZKiI20MQxUuVtniHGDQxz4vLWAn4Xka/CODzg3cAaoHaoC1IFsHUf5lTT8J1nqWo4zPGMeKzmWYmo6m5VXeL8PoxpnI4PbakCIyLNgL8Dk0JdlqqArfuIwIbvtJQbKzyDhIi0AnoCP4e4KEXxEjAC8IS4HFUOW/dhS6DwnWHZwakgFJgvIr87UdUsx4AVnkFARGoC84B7VDUt1OUpjIhcCOxV1d9DXZaqhq17Sxhxuqr2As4HhorImaEuUCRjhWclIyIxmMZzhqq+H+ryFEE/4J8ishUzdHW2iLwT2iJFPrbuw55She+sKqjqTud7L/ABZtjaUk7sPM9KREQEmAYcUNV7QlycUiEifwGGq+qFIS5KRGPrPvwRkWhgPXAORmj+ClxZFaOQiUgi4FLVw87vr4AnVfWLEBctYrGaZ+XSD7gG05tf6nwuCHWhLEHB1n2Yo6puwBu+cw0wuyoKTofGwA8isgz4BfjMCs5jw2qeFovFYrGUEat5WiwWi8VSRqzwtFgsFouljFjhabFYLBZLGbHC02KxWCyWMmKFp8VisVgsZcQKzzBARP5SnmwWItJUROYWse07Eenj/H7QZ30rEVlZyvPfIyLXlrVcAc5zh4jccKznqYrYuq8aiMh1ItK0FPtNFZFLS7u+Aspl67+SsMIzglHVXapamhfuwZJ38ceZQH4D8G6ZC3Y0U4A7K+A8Fgdb92HHdUCJwjME2PqvJKzwLAUikigin4nIMhFZKSKDnPW9RWSBE2j5SxE5zln/nYi87EyMXykiJzvrTxaRxU7exEUi0rGE634mIt2c33+IyKPO7ydF5GbfnqSIJIjITBFZIyIfAAnO+ueBBKcsM5xTR4nIm2LyTM4XkYQAlz8bWOJMJEdE2onI/5x7sERE2jpa0wIR+UhENovI8yJylYj8IiZvYFsAVT0CbPXeh0jC1n31q3vn3q4VkRnOPZ0rIjWcbUfVuxiNsQ8ww7nXCSLyqIj86jwDE0VEynD94p6tUc49Xi8iZzjra4jIbDG5Yz8QkZ9FpI+t/0pGVe2nhA9wCfCmz3IdIAZYBDR01g0Cpji/v/PuD5wJrHR+1waind9/BeY5v/8CfBrguv8BhjrX+xX40ln/LdARaOVz7vt8rt8Nk0+yj7Oc7nPOVs62Hs7ybODqANd+ArjTZ/ln4F/O73ighlPuQ8BxQBwmxNkTzj53Ay/5HP8QJr9lyOvT1r2t+xLqvBUmA0k/Z3kKMLwU9d7H5xz1fH6/DfzD+T0VuDTANacCl5biGuOc3xcA/3N+DwcmOL+72PoPzscmwy4dK4BxIjIK09AtFJEumAf1K6dTGQXs9jnmPQBV/V5EaotIXaAWME1E2mNezpgSrrsQuAvYAnwG/M3pAbdW1XViUl15ORP4P+eay0VkeTHn3aKqS53fv2NeqsIchwlZhphkzser6gfO+bOc9QC/qupuZ3kTMN85fgVwls/59gKdSvi/4Yit++pZ99tV9Ufn9zuYuviC4uvdl7NEZARG0NQDVgGflOK6HUu4hjfBgG/dnQ68DKCqK239BwcrPEuBqq4XkV6Y3t7TIvI1JivBKlXtW9RhAZafAr5V1X85jd93JVz6V8xw0GZMIOcGwM2Yh/5YyPb5nYczzFeITEwvsyzn8vgse/B/vuKdc0YUtu5Lfa6qVveB6lAovt4BEJF44HWM9rddRB6ndPeTUlzDe4/zKF/7beu/grA2z1IgxovuiKq+A4wBegHrgIYi0tfZJ0ZETvQ5zGsbOx1IVdVUzBCcN+XRdSVdV012++3AQGAxRhsZDnwfYPfvgSuda3bBDN95yRWTHqssrAHaOeU4DOwQkYud88d5bUBloANQKk+/cMLWfbWt+xbe+sXc2x8ovt4PY0YXoEDwpIjJ51oWL9qSnq1A/Ahc5uzfGejqs83WfyVhhWfp6Ar8IiJLgceAp53G7VJglJhMBUuB03yOyRKRP4DxwI3OutHAc8760vYaF2KSFWc6v5s534V5A6gpImuAJ/HXUCYCy32cBkrD55jhQC/XAHc5Q0KLgCZlOBeYLCNflfGYcMDWffWs+3WYhNFrgCTgjRLqfSow3nlOsoE3MQLjS8woQqkoxbMViNcxAnc18DRmiDjV2Wbrv5KwWVUqARH5DpMX8bdQl+VYEOO5OUJVNxzjeXoC96nqNRVTsvDF1v1R54m4uneG1T9V1S6hLktpEJEoIEZVsxwv1/8BHR1BXN5zVtv6Ly3W5mkpjv9gnAeO6QXC2OseOfbiWIKIrfvIoQbwrTM8K8DtxyI4HWz9l4DVPC0Wi8ViKSPW5mmxWCwWSxmxwtNisVgsljJihafFYrFYLGXECk+LxWKxWMqIFZ4Wi8VisZQRKzwtFovFYikj/w8jKetE5xWi3gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.metrics import accuracy_score\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "\n", + "acc_rf = []\n", + "\n", + "for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]):\n", + " # We only take the two corresponding features\n", + " X = iris.data[:, pair]\n", + " y = iris.target\n", + "\n", + " # Train\n", + " clf = DecisionTreeClassifier(**kwarg).fit(X, y)\n", + "\n", + " # Plot the decision boundary\n", + " plt.subplot(2, 3, pairidx + 1)\n", + "\n", + " x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n", + " y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n", + " xx, yy = np.meshgrid(\n", + " np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)\n", + " )\n", + " plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)\n", + "\n", + " Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n", + " Z = Z.reshape(xx.shape)\n", + " cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu)\n", + "\n", + " plt.xlabel(iris.feature_names[pair[0]])\n", + " plt.ylabel(iris.feature_names[pair[1]])\n", + "\n", + " acc_rf.append(accuracy_score(y_true=y, y_pred=clf.predict(X)))\n", + "\n", + " # Plot the training points\n", + " for i, color in zip(range(n_classes), plot_colors):\n", + " idx = np.where(y == i)\n", + " plt.scatter(\n", + " X[idx, 0],\n", + " X[idx, 1],\n", + " c=color,\n", + " label=iris.target_names[i],\n", + " cmap=plt.cm.RdYlBu,\n", + " edgecolor=\"black\",\n", + " s=15,\n", + " )\n", + "\n", + "plt.suptitle(\"Decision surface of axis-aligned decision trees trained on pairs of features\")\n", + "plt.legend(loc=\"lower right\", borderpad=0, handletextpad=0)\n", + "_ = plt.axis(\"tight\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display the structure of a single axis-aligned decision tree trained on all the features\n", + "together.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWEAAAD3CAYAAADMt+U9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABpgUlEQVR4nO29d3xcx3Xo/x1sb8CiLRpBAARAUACLJFKiSFESRUlUcVFsKZZtObZjO82ftPfyfslzynP80l4cv8ROcexnx1YcWZZsqtCW1UVKosRexAqSAEF0YLEou1hsL/P74y4XAAUQALHgguR8Px98sHfv7Nxz5849d+45M+cIKSUKhUKhyA452RZAoVAormeUElYoFIosopSwQqFQZBGlhBUKhSKLKCWsUCgUWUQpYYVCocgiC6qEhRB/KoT4/gLU2y6EuHchjzELGTYLIbrnUP4tIcSX5nnMWZ2rEOJlIcTn5nOsawUhxB1CiDMLVPcTQoi/Xoi65yBDtRBCCiH0qe059bNM9MsJdZ0UQmy+xP7LuleFEA1CiPeFEH4hxO/PR8bFiH62BYUQbwFrgFIpZWQ2v5FS/u1lyjVrrsQxFguzPVcp5YMLcXwhxBNAt5Tyzxei/imO95dAnZTyM5dbh5RyF9CQMaGuYjLRnpdCStk0w/7LvVf/GNgppbzxMn+fJqXHnpRSXvGB23TMaiQshKgG7gAk8NGFFEhx9XJhNHYFjyeEEMqkdhUwz75RBZzMlCzzYUH6uJRyxj/gfwHvAf8IvDjheyPwPvB7qW1dqtz/Sm3/JdpTB8AMPAkMAV7gAFAyzfFqgR2psoPAjwHnhP3twL0XHyO1/VmgI/Xbv5ii7E+BHwF+tAu7bsJvy4FnAQ9wHvj9CfsswBPACHAK+P/QRoXTtdl9wGnAB/wr8DbwpQn7vwA0p+p7FaiasK8JeB0YBtzAn86lPYG3LhwL7UH756k2GUide15qXzXag/VzQGeqrf9smvP5TSAGRIEx4BcTrsWfAMeACNrb1W3A7pRcR4HNE+rJA/4D6AN6gL8GdFMc74HUsWKp4x2dcG5/g9bPQkAd8OuptvQDbcBvTahn88TrlJL3f6Tk9QHPAOYJ+z+M1qe9qXNYPWHfTcDh1HGeAZ4G/nqa9spIu6fKfwg4AowCXcBfTth3oS79xdd+Du35V6n29AOvAUUTfjfttZziGO1Mvte2ofXRUeBLXIY+QNMDCSCckns5YAK+kWo7N/AdwJIqnw+8iHYPj6Q+L0nt+5uL6vrXi9tvivvn86m2+aeUrH89w/GLUsf0ot2/u4CcS+rXWSrhVuDLwNrURSyZsG9l6mRvAP4M2Evqprqo0X8L+AVgRVPWa4HcaY5Xh6bETEAx8A7wzZmUMNCYatxNaA+Ib6TknVg2DDyUkuHvgL0TbppDaA8cI7AM7Ya+P7X//6QatACoBE4wjRJOXQg/8ChgAP4bEJ9wYR9OtekNaErrz4HdqX0ONAX1R2gd1QGsn0t7XtSJvpA61jLADjwH/NdFN/D30B4ya9AU6Q3TnNcTXKR0Utfi/VSbWIAKtM76UKpN70ttF6fKPw98F7ABLmA/E5TmRXWnz/eiG6QT7UGlT7Xvh9Ae3AK4CwgCN19CCe9He+AWoCnv356gZAeA9ak2/VyqvCnVJzpS19KQuraxi9tjwnEy2e6bgVWp9lyNduP/ylyU8AzteQ5NuVlS2/8nte+S13IWSjgG/ErqtxYuXx9MOic0hfjz1PVzpOr5u9S+QuCRVL0O4GfAC5eoa1L7TaOE48DvofU3ywzH/zs0pWxI/d0BiHkpYTSFFiP1dEQb3f23i8r8EXAGTRnXT3XR0TrlpJHFbP9SF/LILJTw/wJ+MqGcFe3pP7HsGxP2NwKh1Of1QOdFx/0K8MPU5zbggQn7fpPplfBnSSn31LYAuidc2JeBL07Yn4OmOKqAT0081+luoku150Wd6E3gyxP2NaSup35CB1wyYf9+4JPTHP8JplbCX5iw/SeklM2E715FU2glaMrGMmHfp9DsfXNRGv97hv7yAvAHqc+b+aAS/syE7a8D30l9/nfgry6q6wyaYr8T6GXCDZVq/+mUcMbafYq6vwn8U+rzhbrmo4T/fML2l4FXZrqW09TfzuR77Z3L6b8z9GcBBIDaCfs3AOen+e2NwMhUdU3VflMc7/NM0AszHR/438B2NNv7rPTbbOxpnwNek1IOprafSn03kf9EUyAvSSlbpqnnv9Au4NNCiF4hxNeFEIaU93os9XcSQAhRIoR4WgjRI4QYRXttKZqFrOVor2sASCmDaE/uifRP+BwEzCk7TxVQLoTwXvgD/hRNcXygbrRR0WzlkBf9tgr41oTjDKNd3Aq0EeW5S58mME17TiPLRFk70BRByYTvLm4T+yyOP5GLz+1XL2rHTUBZap8B6Juw77toI+LLPR5CiAeFEHuFEMOpOh/i0v1luvOtAv7oItkr0dqwHOhJXcsLzNQHMtLuQoj1QoidQgiPEMIH/Dazux9my6XaY7prORu6LrFvtv33YorRBleHJsj0Sup7hBBWIcR3hRAdKd3xDuAUQuhmKfNM53HJ4wP/gPYG9JoQok0I8T9nqvySSlgIYQE+AdwlhOgXQvSjvY6tEUKsmVD022h2kPuFEJumqktKGZNSfk1K2QhsRLO9fVZKuUtKaU/9XfCu/i3a02mVlDIX+AyakpqJPmDJRfIXzuJ3oDX0eSmlc8KfQ0r50IS6KyeUXzqDHOmyQghx0W+70F7BJx7LIqXcndq3bCZhp2vPKYr2ot1ME+WOo73SzhU5i++70EZPE8/NJqX8P6l9EbS3qgv7cuX0XvUZjyeEMKHZ8b+BZiZzAi8xu/5yMV3A31wku1VK+RO0a1qRupYXuFQfyGS7P4X2+lsppcxDe929nPObrj2n41LXcl7Hm0P/vZhBNF9A0wSZ8qSUFx4cf4T21rE+pTvuTH1/ob0ulimQ+m+d8F3pJc7jkseXUvqllH8kpVyGNonhvwsh7rnUCc00Ev4VNEN2I9qw/kY0O+YuUg0mhPg1NHvO54HfB/5TCPGBJ7oQ4m4hxKrUE2kU7dUsOc1xHWi2XZ8QogLNCTYbtgEfEUJsFEIY0V5/ZttZ9wN+IcSfCCEsQgidEGKlEOKW1P6fAl8RQuQLIZag2Yim45dAkxDi46lR9u8z+cJ+J1VXE4AQIk8I8aupfS8CZUKIPxRCmIQQDiHE+osPMIf2/Anw34QQNanr8rfAM1LK+CzbZSJuZn5APIl2De5PtaFZaHOql0gp+9AcP/9XCJErhMgRQtQKIe66xPGqZ5gBYUSz2XqAuBDiQWDr3E4rzfeA306NPIUQwiaE+JAQwgHsQVOiv596g/s4cOsl6spkuzuAYSllWAhxK/Dpy6gDZteeE5n2Wl7m8dPMUR+kkVIm0a7TPwkhXKm6KoQQ96eKONCUpFcIUQB89aIqJvVhKaUHzUH8mdQ5fgHNv3BZxxdCfFgIUZd6WPvQ9Oclz2umi/E5NJtop5Sy/8IfmlfxcSHEUjT71GellGNSyqeAg2iG64spRVOSo2jOkLfRXkmm4mvAzamT+CWaU2NGpJQn0ZTj02gjlzE0R8uM85qllAm0p/GNaDMjBoHvo3nzL8jUkdr32iVkJ2W6+VU0Z94QUI/mYb2w/3ng79FexUbRnHwPpvb50RwgH0F7TWwB7p7iMLNtzx+kvn8nJXuYSz9ALsV/AI2p17AXpiogpexCczz+KZpi7EJ7iF7oa59FU5yn0HwI25j+9fZnqf9DQojD0xzPj/aQ+2mqvk+jjRrnjJTyIPAbaP17BO218vOpfVHg46ntYeAxLt0vM9nuXwb+txDCj+b3+Oll1jNje05kFtdyPsxFH1zMn6Bdm72p++cNxueCfxPNeTaINknglYt++y3gUSHEiBDin1Pf/QbaeQ2hOXx3z+P49antMbQH97ellDsvVZmYbOK6tkiNQLxozsLzWRZHoVAoPsA1N9FdCPGRlHHehmYnPI7mtVUoFIpFxzWnhNFen3pTf/Vo036u3eG+QqG4qrmmzREKhUKx2LkWR8IKhUJx1aCUsEKhUGQRpYQVCoUiiyglrFAoFFlEKWGFQqHIIlc0CLcie1gslv5wOFwyc8nsYDab3aFQ6OI1+wrFNY+aonadIIRY1NOlhRBIKS8nKI1CcVWjzBEKhUKRRZQSVgDwk5/8hJ/97Gf87Gc/49ChQzz55JN8//vfp6enh6effnpS2WTyg0GhvvGNb3Do0KH09l/+5V/S39/PV77yFdrb2xdafIXiqkUpYQUAd955J3v27KG4uJiKigqMRiMOh4OKiop0mV/84hf8/Oc/p6enh127dvHKK6/Q1aXFu66oqMDj8QDgdrux2WwAlJeXMzg4+MEDKhQKQClhRYpXX32VBx98kM7OTgCi0Sijo6OTyjQ0aNH6kskk8XiceDx+Ib0LxcXFtLS0cPr0aVpbW5FScu7cOaqqqjh79uyVPRmF4ipCOeauE2brmDt9+jT9/f2sX78ei8VCT08Pe/fu5ZFHHvlA2SeffJJwOMyXvvQl2tvbeeONN3jooYfYtm0bW7ZsYXh4mFdffZW/+Zu/mY18yjGnuC5RU9QUaX784x9z6NAhPvrRj7J9+3aCwSC1tbXEYjEAdu3aRSAQoKmpicrKSoxGIwaDlhbsgikjFosxOjpKPB5nw4YNdHd3Z/OUFIpFjzJHKKbloYceoq+vL719sQnigsni9OnTrF69mkAgQEtLC3l5eZw5c4YdO3awZcuWbImvUFwVKHPEdcJszBGnT5/m5z//OX/8x398haQaR5kjFNcrSglfJ6jFGgrF4kSZIxSz4uK5wtPh9/v5n//zfwLwV3/1VzQ3N/Pyyy/zne985wOzLRQKhXLMXff8y7/8Cxs3buS9997D4XAQi8UIBAKUlJRQWlrK7t27cblc5Obm8sILL3D8+HFWr17NyMgIn//85/F6vezduxeArVu34nA4uPHGGwFtjrDH48Hv93PPPffQ2trKzTffnMWzVSgWH2okfJ3T2NjI/v37MZlMdHZ2kpuby4YNG9i4cSMDAwNMNGFEo1FuuukmbrzxRs6cOZN20l1w2AHEYjGOHDlCe3t7eu6ww+HgzTffpLa2NlunqVAsWpRN+Drhcm3CTz/9NJ/85CcXQKLJKJuw4npFKeFrGCGEEdgEPAT80WK+1kIIgN8EXpZSqsnFiusGZY64xhBClAshviiEeBYYAP4O8E9X/q233qK/v39WdX/729+mubmZb37zmwwMDKSD/Fygvb19TvumCA50N3BUCPG+EOJvhRCbhBDKb6G4plEd/CpHCKEDbgU+hDbirQZeA7YDvyOlHEiV+0uAZ555BgCbzca+ffu45557eOutt9i8eTOHDx/m3XffZcOGDXzkIx/h5MmTdHV1UVZWxpo1aygoKKCgoID8/HwGBwcnrZgDsFgsc9o3MTgQgJTy0ymluz51Lv8KVAohXgNeAl6RUnoWoBkViqyhRsJXIUKIQiHEp4UQPwbcwHcAHfAHgEtK+Ukp5Y8uKOCJ5ObmkkgkCAQC+P3aALmsrIxXXnkF0ALxlJZqCS4SiQTxeHxS6Eq9Xk9+fj4tLS3pFXNvvPEG8Xh8zvumQkoZl1K+J6X8MynljcBqYAfwcaBVCLFXCPEXQoi1QgjVfxVXPcomfBUgNIPpjWijw4eAlcBbwC/RbKhds6hj3os1Xn75ZTZv3ozFYplXPRfo6emhu7ub9evXz8oxJ4QwAXcw3g55wMtoo+TXpZS+jAimUFxBlBJepAghHMB9jCucMTRl80vgHSllZC71XYs55oQQdcCDaKaY24GDjLdR86JeIqhQpFBKeJGQGu02MG7bvRXYjaZUXpJStmRRvEWPEMIGbEFruw8BSTRl/BKwU0oZzKJ4CsW0KCWcRYQQFmAz44rDwPhIboeUcix70l29pB5oTYy/RawFdjH+QGvLongKxSSUEr7CCCGqGVcOdwLvM654T6hX6MwjhHCimXY+hGa+GGa8zd+VUkazJ53iekcp4QVGCGFAs1deMDMUM+5Mek1KOZJF8a47UjMqbmb8eqwA3mTcydmbRfEU1yFKCS8AQohSxh1G9wItjNsnD0opP5iuWJEVhBAu4AE0hbwVaGd8lLxfSpnInnSK6wGlhDNAasHELYybGWqB19Fu5pellO4siqeYJamFIhsYt9GXA6+iKeRXpZRDWRRPcY2SVSVsMer7w7HEopg2ZTbo3KFofNZTpIQQBWgjpw+hjaT6STl+gN1SytiCCKq4YgghKhl/o9kMnGD8Gr8/W/v9YpweeDlTAhULQ1aVsBBCuv/1sawdfyIlv/vMJRcLpDzuqxkfJa1GWzBxYbTbcSXkVGSH1EKROxm3JdsZN1u8IaWcNj6HEEL6hxaXVcNRqFNR6xYJKnbEFKTMC58AXgTuYdzMEEG76f4KeFtKGc6akIorSmpxzOupvz8UQtSj9YnfBn4khNiP1jeWAy9KKV/MmrCKq4pFqYSfO9iBPkcLC1BVZGMkEKV7JMDyklxycgTraorSZZNJSU7O5Af6S0e7CUUTPHJLFVJK/uSZQzx881L6fSHuX1WO3WxgOlLe8/1oCycksBdtxPMNoEVNIVMApBbPfAv4lhDCjrZQ5KPAp4HfEkJ8Tkr5o5nq+dmzP0Gv127D6qplnDnbTDgSZus9D7J77y4e/fh4LOdkMklOzuRwGT955r9YUlHJHZs203quhVdff4kPP/QwL760nU888imKi10ZO2fFwrAoA6BsqCvm4PlBCu0mypwWbq0tQp+TQ6nTmi7zwqFOXjnWgzcY5a3mfnac6mNoTFvJe8uyIox67dT2tHpYuSQfp81IjhD4wzOaak1oD6ch4EtSyvuklP8kpTyrFLBiKqSUY1LKnwP/Dfh74E/QHtwzcvuGO9l3YC9FhcWUl1VgNBpx2B2Ul49HmHvplV/wy5d/Tm9fD+/t2cXrb75Cd48WLuRsy5l09pO62npKXCVYzBaceU6GhgYzfKaKhWBRKuGdzf3c01hGz0gAgH/45Qkq8q2TytSVOABISkk8mSSekOnO+PUXT1BZYONMnw9/OEbnUIBciwEhoHMocMljSylDUso1UsoqKeUzC3B6imsUKaVfSvk1KeXXpZSz0oBv7HyVrfc8QFd3J6ClkBr1T44wV1/XAGgj4UQqldSFvl67rI6W1jOcPn0Kt7ufo8feJxwJ43Tm09qmVrpfDSxqx1xL/yhJKWkoywPgZPcINpOB6mJ7xmWZyTGnUFwus3HMnTl7GplMsmJFIwC9vT309HZzy7r1CyKTcswtHhalTfgC9aW59HtDhKJxLEY9TUvyafdMHU5h2/52wvEEn9lYS9dwgH3nPNxQlkfHUAAhBE6rgZ2n+vnTj66+wmehUMxMw/IV9PX1EgqFsFgslJdXEI5M7fd9+qdPEo6E+fyvfYld775FX38vD97/Edo72ti3fzfFRS7MFgv33/fQFT4LxeWwaJXwtgPtHOsc4f5VFQyMhgnF4lQX2XH7wlQX29nb6iEYjdNQlkdFvhWDPge9TrOuVBbYONHtpcBuIhRL0DMSZF1NGb0joSyflULxQZ752Y85cvQwH3rgI7gH+gmGgiyrrqXf3ceymlre27OLYDDADSuaWFJROSlrSX5+Ae6Bfvz+Ubq6O3E68zl9tpkb19yc5bNSzJZFaROeinubynD7xkcGF9uBY/Ek/nCMlv5RTnaPcLh9iHhSMjwWRScE755xc0eD8hQrFj/33/sQ/e6+9PbFduALduMzZ0/jdOYjhKCt/RyDQx7a2s5RX7ectrZzJBKLa26yYmoWrU24pX+UV4/38Lv33XBFZFE2YcVCMZNN+MzZ07z0yi/4b7///10xmZRNePGwaM0R9aW51JfmTrv/+YOdfGzd0hnr6RwK8PKxbj6+roqT3V66RwJ8ZmNtJkVVKOZFw/IVNCxfMe3+bc89PWm+8HR0dXfyzq6dlJdV0N3ThUTy2ce/kElRFQvAolPC33/rLLcsK2J/2yB2k55YQhKMxil2mHHlmjlwfpAiuxmH2cBLR7s53evjhgonvmCUT95Wgy8Y5VC7Fmdl84pSzAYdTouR4bEIt9YW0X9Y2YUVi4Pv/L9/Zf2tG9i7bzd2u51YPEYwGMRV7KLEVcq+/XsoKi4m15HLL375AqeaT9DUuAqvd4TPfPrzeH1eDhzcC8A9d2+lIL9QswmfaSYnJ4d4Ip7lM1TMhkVnE15elseRjmFM+hx6RoI4zAbW1RRyy7IiBv0RbQ1bilgiycol+axc4qTV7SeeSCKBeEIST2gF9TmCPKuRNs/YlPONFYpssaLhBg4d3o/JZKS7p4tcRy63rruN9bduxDM4gJzQ2WOxKKtX3cjqVTfS0no2bSOOp+zFoGXCjkYjrFq1BovVgtFgzNapKebAorUJT8dszRBzRdmEFQvF5Qbwma0Z4nJQNuHFw6IbCc/EQihghWIxslAKWLG4WJRK+L2zAwyMzs52+8N3WghF4zy99zwHzw/yjy+f5Gz/+LLPzqEAT+4+N6m+n+1v5+D5Qfaf83DwvFpfr1g4UiFQp2TXu2/hdvfPqp7v/ce/c/pMM//2nW/h8Qykv5dS8od/9GUA/vbvvzapvt7eHv7+G3/NS6/8gv/3/W8TCAT4jx9+53JPRbFALArH3AuHtHXzVqOewx1D3LG8hPfOerh9eTHHukbYd26QdTWF3L+qgtN9PnpHgpTkmmlako/TaiJHCGIJLWNQSZ6FobEwoM2s0AIBmYnGxzMKra8tZmA0RKnTOmtlr1DMhVRy0U8Dv3Hhu2ef10KRWK02Dh7az+Y7t7Drvbe44/bNvH/sMHv2vsett9zGQw98hObTJ+nu6aK0pIxVK9eQn59PQX5BOjDPheho7+1+h9Wrb2RgwI3Vapskw/vHDlO7rI6qpdWca2ulu6eLvDznRBn/C/gesEsFp8oei2Ik7DAbSCS1WRBjqShnJXlmdpzSnuqFdhOuXDMAiaTmdEtO6DLnBvwIAf3eEIV2E20DY+w4pU12b6pwEozEOTfg550zWpahM30+zvRNDpKiUMwXobFJCPGfaLnqNgN/fGG/w5FLIpEgGAwwNqbFgC8tKeP1N18BoKiomBKXluwikUgQj8dJJscHDzq9Ph2Y58JvRv2jdHS0c7blNFJKOrs6eOvtNwEYGRnm5KkTGI0mDHoD1VU1F4t8BPgu0CyE+B9CiOKMN4piRq46x9zFvHmyj431xViMcx/UTwwIpBxzistFCFEEfBb4EqBDG13+SEo5kNo/78war73xMnfcvhmLxXLZdQQCAfbse5d7t9yfdsylzCW3o43YHwZeS8n/pkpIe2VQOeZSzDXHnOL6JhX8/2405fUA8AumebW/WnLMpUwoj6OdUy7wH8ATUsqeKy/h9cOizrYshFgLvALcKqU8fxm/F8ALwFngb6SU3owKqLjuEEKUAZ8HvggE0RTvk1LKkWzKlUlS981aNGX8CWAX2nm+LKVUK0AyzKJVwqmUMYeB/yWlfHoe9ZQB7wNmIF+9YinmSirn4P1oSmkz8CyaUtp/rTu0UvfhY2jnvgT4IfAfUsr2bMp1LbGYlfAPASmlnNfidyFEKXAIKAdukFKezoR8imsfIcRS4Aupv37g+8BPLpVZ+VpGCLEKTRk/DhxEexD9XEoZzapgVzmLTgkLIeqAfwVqgLVSyqmjuM+tTgOal/qbUspL5zdSXNek+sqH0ZTNeuAnwPeklEezKtgiQghhAR5Ba6MVwH8C35dSns2qYFcpi1EJ/3e0zMYnpJQqDYbiipB6+H8Rzd7bijbK2yalDGZTrsWOEGI52qyQzwHNaO32rJRy6rQgig+wKOYJX0QCeBEthbhCsWAIIUxCiE8JIXYAuwEjsEVKeYeU8kdKAc9MKgv5HwOVaG+wnwW6hRDfEkKszK50VweLbiQ8X/QWY38iHMvadCCd2eCOh6LX7VQ3o8XUHwtHF9V0LIPZ6I6GIqUAqQUJ76B5/D8GHEUbvb0gpYxkT8prByFENdpbxReATsADHJFSfvVCGZPB0h+NL65pe0a92R2Jha74vXvNKWEhhPy0+9tZO/5TJV++rhd9CCHkv/hey7YYk/i9vK3payKEaAeWok19/D0p5blsynYtI4TQA48C/wwUo7X3v6b2yV9+3ZtF6T7Ih/7YmZV7d87LzMyGnP5IXGb9CWbSC3c4lrxuR5yKy+YTQAnQrRTwwiKljAshngPCgADeyLJIi5I5K+FIXJb0fG3DQsgyJyq+umdOD4L25w6Qo9cBYK8qIhYIM3beQ259KSInh6J14+vqZTKJyJlsLj/+jy9R95nbsbjy6HvrFFFfiKUfvZlLBMlSTMHBbTvR6bTrUFhdSiQQZrCth5LlSxG6HGpuGc8pmEwmybnoOrzy9SfZ+LmHyC0poK+5nT1PvsqH/+xzGK3mWR1fSrk/c2ejmInU9LUX5vKbt45sQ6fTVFNpQTXhyBi9Q21UupaTI3SsqLolXXaqPvKTN77O/es/R4GjhI7+Zl4/8CRr6u4iEPZx6w0PYDU75n1emWQxOuYWBNeGejwH2zAV2rGU5WmK2B/GUupMl+l44SDdrxwj6g3S99YpenecJDykzZBzra9Ll/M296Iz6pEJte5jrtRtXMX5A6ewF+XhLC+iqLqUkD9IXllhusyhZ9/i+Et7CHnHaH7zIKfeOMDYkA+A2g2r0uXKbqimvLFm1gpYcXWwctlGTnfsJ89WSGFeGaWF1QTDfgpzy9Jl3nn/OfaefImxkJfDZ3dw8Mwb+AJaWrOmmvFBYlXpDVSVNVLkLEeIHIKRxTfFe8GUcP9olFBsPGhJ+/DUM1aePerhqUNadLMWT5BtRz0c7Mp8Q/XtPEX5PU0EeoYB8J8bQG81TSqTW6cNrmVSkownkfEkpGzmvjN9+E734TvTR25tCeFBP5FhNeV4rjS/eZDGe29huFuLiTvQ2oPpIiVaUl8JaKOcZCJJMp5Ip3vvO91BX3MHfac7CPkCWPImh29UXP0cPvsm6xruw+PtBqDHcw6zcfJ1rnBpgyIpkyQScZKJePpe7XSfprP/NJ3u0wRCPuzmPOwWJwKBe7jjyp7MLJizY04IIS9ljnjumIdjvQG2NuTjGYsRiiWpKjAx4I/x8Koi9nWMEowmWO6yUpFn4ucnBpHAwyuL+PmJQT66sojtJwZ5eGXRJeWo+OqeKY3oMznmfC39kJTkNWhP1ZGT3ehtJhzVmYnipxxzs3PM9Z/tRCYlZSuqAOg+fg6TzULxsvKMyzTRMadYHMzGMdc1cBYpkywt0TJRt/Uex2KyU1b4gZCcGeGqcczNlS31Tva0j8fujScl8STphJ2xhCQcS9LqCdHgsrLtqIeq/IV5vQz2e7EtKUBv0RIg+ts95Dct+UC589v2kQjHqfvM7QS6hhjYdw7nDeVEvUFCA6OE+kYoub2BgjUq1dLlYnHYsDjt6e3pFPCBZ94gFo6x8XMP0rLrKL7+IVY+cBuHnn0Lo9WEyWbB2zvIbY9vVWaJa4xK13KGfH1EYiFMBgvLylfRNzR1HK8dh58hFotw//rPAvDj1/6OB2/7dZ7Z8X/5nV/5B46fe5feoTbuv/WzV/IUZkXGlfDqMjv9o1E21uSlv3t41fio9vYJ3wM8smbyCLTBlflsyOe37Wf4WCdL7l9NaGCURCiKvbqIkHsUR3UxA3tbiQcj5DWUYasoIMegTzvxbJWFGE50YyqwE+zRAmVZSp2Ehxafbelq4MBP36Tr/RZWPbiBUfcw0VCEoppyRvuHKF5WTuvu40SDYcpWVJG/xIXOYCBHr3VTa76DUfcwYX8QS64NKSXJeAL/wMgHHKmKq5udh39Ka8/7rG98kBH/AJFYkLKCGob9bsoKazhxfjfhaJCqkhUUO5dg0BnR5xgAGPEPaOYLIWisvg2A0sJqWnsW58rzjPfcumILX95U8YHvtx+ffS63Z44McKjLzz+91U2LJ/OLlsrvbSLkHh+dy3giZf/VtpOxODF/GF9LPyMnuxk83I6MJ4gFIoT6vZgLHfjbBqapXTEXmrbeymj/UHo7GU+kbMDadiIWI+wP0n+2E6vTDkIw1NFPaDRAMh5H6HLILSkgGlSrZK9l1q3YyrDfnd6+YAe+YE6NJaIEI366Bs7SN9SGRDLk66O97ySd7jNT2pUXC/O2Cf9gbx/rljo40OnHbtIRS0iC0QTFdgPFdiMHu/wU2Qw4TDpM+hya3UEaS614Q3Eeu8mFLxTncLc2qryr1kksKdn2vocVJVbODgSpKbRwW3XuB+SYi03Y19JPz6vHaPzdrXM618tB2YQvbRPuP9vJiZf2cu8ffuKKyaRswouPmWzCXQNn2XfqZR7d/AdXTKZs2YTnPRKud1k50j2GUZdDjzeCw6RjbaWDdZUOhgIxJur4aCLJyjIbTaU22gZDxBMSCcST2h9A21BIyxfnj1JoM3B+aP6JOPPqS2elgNufPzir+qKjITp/fpi2n+6dr2jXHaXLl15SAR/atnPWde398WucP9DMydf3c3AOv1Msfipdyy+pgN9+/9lZ1eMe7uCFXd/GO+bh2bf/hZbu9zMkYeaYt034jmV53LEsb8p9lflmth8fnGQTvsBX7tO84k6Lnvsa8tPf31Bi44aSzL42nPn+TopvqcWz/xx6uxkZSxAPRjAX52J25TJ4oA1zkQO9w0zXS+/jPd1L/g0VRH1Bln1yA1FfkMFDmkOgbPMNGHMt5Bj1LLlzRUblvJZ5+7svUHNrI237TmK2W0nE4kSCYXJd+Thc+ZzffwpHkROzw8rRF9+j79R5ypuWEfSOcdvjWwl6x2g/2AzAii1rScTiJGJakofCpaWc23Mim6enyBA/f++73FC1nub2vVhMduKJOOFogHyHi3yHi+aO/eTZirGaHew58SLt/aeoLmtiLOTlvnWPMxbycrpTG0zdXL8Fo8GC3eJkNDBEYW4ZvsDszaJXigX3ZkylgK80ecvLGDrSTo5JT7BnGL3DTNG6ZRTdsozwoB/J+HA9GUtQsLKS/JVLGG11k4wnQIK8MG84RdQbwOjMvBPxWqW0oYqOQ2fQGw0Mdw9gdlipubWRmlsbGfN4mfjKlIjGWbK6jiWrahlo6SIRT0DKCZeMa3PPPa09CCHw9Q4yeL4XY2rGi+LqZqlrBWe7DmHQm/B4u7GaHdxQdSs3VN2Kd2yQiebTeCJGbflqastX0eNpJZGIIyUkL8wbBnQ5euwWJz2D58izF9E7uPhWqmdknvDu8z7qiiy4HDPfCE/s7+exm4r5+Ykh6oosvHPOx4ebCqgv1hRaiyfI0d4A1QVm1lVqywtfOjXEgD/GR1cV8vqZER67yXXZ84Snov35g1R/bN2cfjMdyiZ8eQF8Dm3bydpH714AiZRNeDFyuQF83n7/We668ZHMC8RVNk94+wltSG816DjS7WfTsjz2tI+yoTqX430B9nf6WVtpZ2tDAWcGgvT6IrgcRppKbeRb9OQIQTyhKf9Sh4GhQJz61Ey1ZneQR9cUs/3EYFoJx5OSZUVmBGDWZ37wnikFrLh8FkoBK64tFkoBZ5PL0mgOk45kUhKMJRiLaq+HLoeBna1eAAqtelx2bVScSC3OmDjgnsr5trNFm4O7IrVgozzXlP5OlyM4Nxgiz7zga0sUCoXiinJZWm1L/bgjbeLy4g3V2v97lo/vbyy10Vg67mhzmHVUF5indb4td1lZftGCjQ81asFdhoMxXA7D5YiM+72z5NaXYHFN7UScyNkfvs2SB9bQ+8YJrEsKKL+7EeAD0dOklBz8059yy989RvO/v8ENv3PvZcl2PdCy6yglyyvJLSmYsew73/s5y++8keY3D7LuV+/GUaz1p84jZ2l97xgNm2+m92QbRTXl1NyqXZv9T79BcW0FQa+fkc4B1j56N4e27WTTFz+8oOelyCzHzu1iiWs5BY6ZgyS+uPv73Nb0EAdPv06xcwlrG+4B4FzPUVq7j3Jj/V283/I2tzTen67vwso5p70Yj7ebe9d9mh2HnuGhDfPKJzwv5qyETXrhnmsYyYXApBfuS+3veEHzkOqtJgYPt1N6RwPu91ooub2e4WNdePado2hdDUvuX433dC/B3hEsJXnkNy3B6LQR6B6i/J4mPPvHDfne5l4c1cXIRBKh1yGEoPjWWoBJ0dgUWiQ0AJPNTPvB0zTcdRMtu45Sf8cauo62cm7PCWpuvYFVD26gr7mdkR4PuSUFLFlViy3fgTXfgdVpZ2xoNK2El960nPaDp9EZ9XjaeimpH182XrthJaMDI0T8IZZvvonB870quM9VwDvvPweA2WjlTNdB1tTdxfFz77KqdhPnuo9yqn0vK6puYX3jg3T0N+Px9VDgKGFZ+Soc1nwGRrpY13Avp9r3peusrVhDt6eV5o4D5NoLicfHk0FfWDnXULmW3sFzeLw92CwzD8wWkjmbI8KxZKmUUmT7b6aA7gaHBZmQxIMR4mPaaipLSS59O04BYC60Y3Fpi0BkQpv5IJPjNhPHshJ63zyJIddC746TAOnoacNHO9MhLr2nevCd7ZtrM17zmHOtyGSSSCBMZEyb651bWsipN7SHo70oj1yXNipOR0qb0P46vQ6r04HnXA+n3jgAwN4nX0Wn1xEeDVDetIzAyChn3joCaNHV+pvbMTksnH3rCEU1mQ8EpMg8VrODpEwQjgYJRbR7qsBRwqEzWvz3XFsh+alRbFImUqvkxmcpVRTXcfDMG1gtuRxM/aZvqJ1zvceoKWsiEg3SM3iO91veBsYjshn0JnQ6A6UFVVfydKdEpTeagt43T+LaWJ8O9DMbun55hMoP3aRmR2QgvdHJ1/dTv2kNRotp5sLTEAmEaNtzkhvuXadmRyxCMpHe6ODp11lVuwmTwXLZdYSjAU6e38vahnuyNjvimlPCKtFndlnsiT4ViwOV6HOcay70VDwUndJcAtSiZX29eT5mEOB3gPcB81T7r1cFLITIEUI4Y+Ho60ALcFs2zVVoffu3gcFYOPq3Kfmuuf5+tRKJhS5p1gS+AjQDfz3PflALDDKL+z4bChiuQSU8FUIIA/AU8HdSyiPzrO67wHng7+Yt2DWCEKICLbX5McAH3CSl3HfpXy0sUuO7wAbgk8BeYJdQSQGvFn4NaEBLEnrZSCnbgD8AfiKEWJSe2mvOHHExQogHgU8DRcCH5ESr/uXXWYA2Gn4e+KaUcupI09cJQohdwO3Aa1LKB7Itz8UIIfKBE0A58AdSyn/OskiKGRBCfAfYKaV8JkP1/SfgAH4qpXw6E3VmiutBCb8ObAb+Ukr5Nxms9xfAg8BXpJT/kKl6r0aEEI8ASeA9KeWiDLQshFgO3AO8LaU8lW15FFcWIcQXgX8DzkopV2dbnolcD0r4KHAO+C0ppSeD9TYBPwEOSCm/mKl6FQpF5hFC5AH/CGyRUi5MkrrL5JpXwtcq2Z4FMpGrcUaIUWfpjyWz55035Jjd0UR2HEHzQWcx9icXQb/LMRvciausz02HUsJXKUII+TueH2ZbDAD+vfjXr7p5uEII+a2P92ft+H/wXOlV12agtdvH+7+VbTF4rvQPrsr2m4pFEREnx2zol5F41p6uwqR3J8OxKZ+qhhxzf1xGsiabXpjcsWT4mnjiKxQLSbbv1YnM5b5dFEpYRuIlG3q+lrXj76n46rQXLi4jJV/b0HMlxZnEV/dUzLlTtTy3lxydli06t7qY2FgY3/kBnPVlCF0Opetq02VlMvmBTMWn/utt9BYjyx/dwGj7AGd+tpuGT9xObtXkzNjXIoe6nidHaG1XZKui33+WYvsykjJBjtBRXbA2XTYpk+RcNPX4VP+bhGKjrK38GN3e43SNHGNDzeNX9ByuNF3PH0LotHawVRURD0QItHtw1JUgdDkUrK1Ol52qvzX/46vUfGYDZlcuUkre/5OfseThmwi7fZRuXYnBbp6VHNm+Vycyl/v2upgnfL1RtqGB/oOtmIsc2Erzya0uJjoWwlY2Ht2u9fl9nH/lCBFvkK6dJ+h88zihIS3hqtFhISd1U+VWu3AsKbouFDBAbdFttA8fwm4qJM9SxrLC9QDkmccHNYe7X+B476uEol5Ou9+iuX8HYxEtY3SBtZJIPADAEucqTPpFOTU1oxTdVsvwoXZMhXYsZXnYqgqJ+cOYS8cD43S/cJjeV48T9YZwv3Wa/h3NRFLxV4rWL0uXG9xzDueqJRjzrZCTQ9x/7WfRvmqUcLR/lEQolt4Otw9PWc7z7FHcTx0CINjiwbPtKP6DXQsq22i0n1hiPCHpcLh9ynJHPc9yyP2UJmewhaOebXT5Z5dcdC507TjO0ntWM9atKQbvOTcG6+Q4DM66MkAbmSTjCZKJRDroc9QfIhlPMHymRxu56K6abjJvTrt3ckPJFkaC2oiqf/QMfaNnJpVx2esAkCRJyDgJGYdUiqzBQDsGnZn+0TMMBjro9h0nKRNX9ByuNO6dpynZcgPBHi3+91jbAPqL+pu9zqV9SEpkPIFMpQ0DGD3Tz+iZPkbP9BMfCxPoHMLgsCCAQOfQgsi8mO7ZRWGOuBSe544RONZL/tYGYp4xkqEYpqoCYgN+zNUFjO7rIBGMYl3uwlSRhzDo0Om118lgs5viR9cwuP0EjnWVGZftmOc5egPHaMjfyljMQywZosBUhT82QIG5mo7RfUQTQVzW5eSZKtAJAzqd1uTuYDNrih/lxOB2Kh2Zzexxw+N3AjDS0kfYO8aSOxvhzkYGT3RiKdSylRStWkrRKi0UZNV9ayb9vvHX7pq03fCJjRmVbzFzW/WnAXD7WwhGR2gquw+AHu9J7EYtrvUS50qWOFcC0FQ6OYb0yrLJWb0/uvIvFlrkrFP96dsA8Le4iY4Ecd3RAHeA92QPxkI7AM6VS3CuXAJA6b1Nk35f+4U70p9zG0op26q1rbVy5tjTc2Ux3rOLXglfjHNLPaN72tPbMp6EeJILj1UZS5AMxwi1erA2uPBsO4q5Kn/qyjJMvXML7aN70ttJGSdJPJ1GNCFjxJJhPKFWXNYGjnq2kW9emFB6gf4RHEsK05HgfOcHKFq59APlzv5sN/FwjMZfu4ug20fX2ycpWllJeCRAcMBH2W3LOf3ULtb90UcXRM7FiC/UT751CUadFp1rcKydCmfTB8od6NxGPBFhQ83j+EJu9nY8xd31v83+jmfIM5cSS4QZiw5xZ+31MY3cUV9CqN9HIhRFZzHibKpgrH3q7Mad2w6QiMSpeXwDIbePjqf2Uv/bd9PxzH7MpXkkwjGiQ2PUfvHOBZV5Mdyzi14J21eXEe0fJW/j+PzqoodXpT/n3T553nXxI5NHddYG14LJVmZfzWi0n5q88ZHiqqKH059r8m6fVH5N8eT8WC5rQ8ZlOrttD56j7VQ/cBPBAR/xYIS8aheBAR95NS5695wlHoxQsKIce0UhOQY9xtSbg7Ukj0QkhtDlEAtotrjBYx3kLVsUDucF52Dns3R5j7GybCv+sIdoIkiRrZrR8ABF9mrODe4lGg9SmttAvrUCfY4BXY52C+VZSii21WDIMZNnLqPffxaHqYhQbDTLZ3Vl6Hz2IN5jXZRtXUnY4ycRjGKrLiI8MIq9uojBveeIB6PkNpRircgnx6AnJ9XvLCV52GqKyTEbMJfl4T/bj6nIQWw0NMNR585ivGcXvbHPUldMxZc3TblvcPvxWdWRGIvQ98N909qRL5diSx2bKr487f7jg9tnVU8kMcbrHX+bKbEmUXXvGgIDvvS2TGj23wvTw5OxONGxMCMtfYz1DGHOtxHxBokFIgT6RgiPjDF8qntBZFvsNJbey2h4fBV2MmX/lalxUjwZIxwbw+1vIRQbpdt3nLHIICApy23AoDNj0ttIzj9cyVVH6b2NhAfGH0AynkzZgbW2S8bixMbC+FvcxEZD+I53ExkcAwm5DWXozAb0NhMymdm2m+6encu92jz0Mm2+XbSM7OTt7vnPmV6UI+G+H+zFsW4p/gOd6OwmZCxBIhjFUGzHWGzHf7ALQ5ENncPE8CvNBJvdWBtLiXtDuB67ibgvhP+wpjicd9USPD1AjlGndYIMsLfvByx1rKPTfwCTzk5CxogmgtgNxdiNxXT5D2IzFGHSOWgefgV3sJlSayOhuJebXI8Rivvo9h8GoNZ5FyadnVLbB193L4fiNdUE+kaouH1F+rv6j61Pf67YdMOk8st/dbK9115RmBE5rkYq81fjC/dRXzw+Grq58lfSn+uLJw8Gbln66KTtC/bfVeWLLobRgpO/upJwn4/i2+vT31X+ys3pz8Wb6ieVX/roLZO2V/6FZu4qf2AVmWQh7lVdjhEpJWW2lRmRcVGOhK31LsaOdJNj1BHp8aJzmHCsrcSxrpLYUGBS6uZkNIFtZRm2plJCbYPjXte0rRjMywpAQqgtMyNhl7We7rEj6HKMeCM9mHQOKh1rqXSsIxAbSo+UABLJKGW2lZTamhgMtaU96Uk025NWJkZf4AQj4fnP4sivL+Om33to3vVcj5Q46rln+e9mW4yrEkd9Cct/955si/EBMn2vBmPDgCQhY5wffe8D5ovLYVGOhPPuWEbeHcum3GeuzGdw+/FJduELVH1F82TrnRby7xu33RgKbJR8JnPezGV5d7As744p9+WbKzk+uH2SnekC91V9BQCL3klD/n3jO0QOW6v+LGPyzUTL8/smjY6nIzoWovvtUxgdFswFdvoPtLLy17dcAQkXN4e7Xpg0Qp6O4WA3rZ73yLOU0eBaWAfT1UDXC4cnjY6nIzYW5sw3X2Pln3+Ucz/YhTHfSuXH1s74u6nI9L1qNRSwPD+zWdUXpRKeiakU8GJiqot6JTj+vTcovbWOvn0tGO1mkvEEsWAES3EuVlce7v2tWIpzMTgsnH/pMEPN3RQ2LiHiDbLiU5uI+IK4D2rZpSvvbsJot6Az6kFKxnqGMTmv7YUH75z7PjUFt9A2dCBly40TiQdxmIvJNbk4P3wAh6kIs97Bsd6X6fM1U57XSDDmZX3VJwlGfXQMa3PUG0o2YzPmYzE46R89e00r4XPff4eCW2oYOtCm2XHjSeLBCOZiByZXLsMHzmMqcqB3mOl9+Ri+5j7yGsuJeYNUfXI9UV+Q4UMdAJRsbsBgN5OXms6WCEaJG3QLJnu27tWJLEpzhOLyyG8ox324DZ1Jj79Hm/Besq6O0lvqCQ36mRiqKRGNa3OFVy7F29pHMuU0SaYcdwDhYc1REgtFCQ2OMtrmzs6JXSFKHA10jBxBn2NkJNSDWe+gpnAdNQXrNIebnPzqWuFcSYWziQH/ORJJ7dV1fPEG6ISeeDIy5fS2awlHQwkjRzrIMeoJ9Yygd5gpXFdDwboaIoNjE5uNZDSBc2UFzqYK/OcGUv2O8QUcQDKWwHe8m0DnEDqrEaG/ttXUooiiJoSQF8eO8O0+j6WuCKPLMePv+5/YT/79K/DuOIupwolzs7aiyft2K3FfmMKPNCGEQMYTuJ88hMFlJxmOk7epBqPLwZ6Kr04bkUkIIS9ej37et5siSx0O48zT3/b3P8GK/Ps5692B01RBnXMzAC0jO/BGullV9DHMeu0c3+r+J9a6Hue8711q8jbhMLr46p6KKWW7nChqszVDzJXrJYrabM0Qs+F6iqI2WzPEXJgqitpU9yos3P3aMrKDcGKUAnM1xwdfYGPZb9Hh38+qooenvW+nYtGYIwa3nwBAZzXgP9JN3qZljO5pJ3dDNYHjffj3d2JfW0nB1gaCZwaI9PowuhzYmkrR51uIdntx3l2P/8C4cyvY7MZcUwiJJOh1xAYDWBtLiPb5MZbOrNwvcCI1fcWgs9LtP8KyvE20j+6hOncDfYHjdPr3U2lfS0PBVgaCZ/BFenEYXZTamrDo8/FGu6l33k2X/0C6zkhijGV5mxgOt1Nu18wrVQ5NQTqMCxM0bSEU8PVEphTw9UamFfBMXKn71WmqpMO/nwr7jQwEz5BrKgP/3OVdNON8nUObE5gIxkiMRQEwuBx4d7YCoC+0YnRpSyBlIjXzYcIo3lxbiHdnC7pcEyM7WwCw1BYRGxxj7FgfseEAhiIbwVNuhGFup23SOUjKJLFEkGhCCzriMLho9e4EwKovxJ56yiZlIrXiZly2QnMtLd6dmHS5tIzsTNVpp833LlZDPu5AMwADobN4QpPjFMyVnvdOE3T7Zi4InPjBDkbO9nL0O68R9IzP6fQcbefov7/KWO8wJ364g553m9P7unae4NR/vU3fvhb6U/bja4kWz3uT5gZfil3nfog31Mfu80/S7N6Z/r7be5w953+c3k7KBDtbvsux3pfZ0fLvGZc523jea5k0J/hSnPvhLkJ9Xs4/uRv3zvF+5T3ezfkf7yHQOcT5H++ZVJ/7rdOc//Eehva3MXyofcZjXKn7dTjSjiHHjCfYQrFl+azOfyoWzUg4f8v4PMKihyfMv9tQre2/Z/wkbY2l2BrHR4s6h5kci5GSxyfPgJg4Q+ICpZ+/FQDfrjZyzIZZyVafPz4jYOUEQ341GwBYnj8+NafU1kiprTG9bdY5MOZYWFcyOZzhxDpJxTpZX/p5ANp8uzDkzC58X+vzWlJjvc3EwKE2Ku5spGf3aSo2rsBzrJ2+fS2U3lJH9f03Mny6h7GeYawleRStXIop34bJacPktBIe9mMtzgW0ucbuQ23Yywsw2s2UbRhvx9L19QT6vdjK8gkOzE7ZL2YOd78AgFFnpWP4CMtdm2j17KaueCNd3mO0De6npnAdK8u20jd6Gm+wl1xzCRXOJmzGfEaC3TSWbKFteH+6ziXOVQz4Jz+gwrFRookQTnPZlTy9BaH7BW3erM5qZPhIB65Ny/HsbqV4Yx3eY10M7m+jcF0NZVtXMnq6j2CvF3NJLs6mCoz5NoLdI5RsaWR4f1u6TueqJfjPDaSjsSWj8fS+wluXEf75EcyleUQ8Mw81r9T9OmmGEzAa6SPfNPcYNYtCCQuT3n2pmL5X4vjT7dMLk/tyYvpmCr0wXdIbZnBYiPgCxAMRomPaUmObK4/OHcexFDmwFDmwujTlKhNJbbVccvypn6PXYXLa8LW5GeseZuk9qzj91C5y9DladLXUG0f3O6dYcmcjB77+AkvvWdyzU+aCWe8gGPMRTQSJxLVRU67ZRbN7B3ZTEXZTIQ6TFsYzKZOpFXPjq7iK7cs41vsy+ZZymvt3cEPplnT0tGJ7jRaDQm/FbiokZ/G8eM4LvcNMzBfUZi6MRQAwu3Jx72jGVGTHVGjHVKyZ+2QytVJuQp+zLyum9+VjWMrz6d/RTOmWGwh0DOI73s3SX70F36kexto8jJ334LqjgeZ/eJmSe26YUpZJcmX5Xp3ITPftRBaFY04xdzKR3qjjjWNU3L4iHeRnLgye6MRgM5NX47puHHMXc6r/TeqKN6YD/cyGoz2/ZE3Fh64rx9xE+t88RfHGOnSX0ee8J3vQ20zYq4uuqfRGSglfpahEn/NDJfq8PFSiz8xzbbwfXYfEQ9FSKaWY6g+wAieBL0xXZjZ/wP8HHAG+eqlyV5sCBogmQlO2H1AHDAI3zqPdcoDngG9NV+ZqVMAAiUv3u18B2oH8ebRdLtACbAMapit3rShgUEr4WuX/AseBJ+ZZzzmgAfi9+Qp0NSCEMAI/Af5KSnn0cuuR2uvlbwAfF0JcF4E8hBBLgP8HfFpK6b3ceqSUfsANPAJ8PDPSLW6UEr6GEEIsF0L8EfAg8Nty/ramnwP/A1iYHDOLCCHEZuAfgQHgX+Zbn5RyGPgM8B9CiC8IIUwz/eZqRQjxSeC/gH+WUu6ZqfwseAzYAdgzUNeiR9mEryGEEP8K/CbwD1LKKxcR6BpACHEUqAc+JaWcXXDZmesUwLvAWuBeKeW7mah3MSGE0AFhtNHrJille3YluvpQI+Friy1AP9oIVjE36oEDwOFMVZh6E/kR2n12f6bqXWRUADrgl2iKWDFH1Ej4GkIIYQDil2OG0JkN/clIPPteb5PenQjHrrjTRQhhkFLGZi55WXXrgUQGzEOLkvm2XbZn+mR7do9SwgpAm//5QN/Xsy0Gr5T98TUz/1MxO4QQ8suDT2Tt+N8u+nxW+5wyRygUCkUWWRTLlq8nzIac/khcZu3Vy6QX7nAsOatXr97nj4xnxF1aQCIQIdg+hK3OhdAJnGvHU3/LZBKRM/mZ3vqPb1D5mfWYXA78p/sZfOsMuSsriAz4cW29Ab19dvExAAw55v64jGTVXKIXJncsGZ6y7XLMhn6ZRXOOMOndyWnMOItZtqloeXZvOoZwbpWL8MgYY91D5C8vR+gEpevq0mWn6ncHv7GdZR+9hYLl5fTtPYvvvJuy2xo49eTbNH1uM7lLizN0ZplBKeErTCQuS3q+tiFrx6/46p5Z34wFty3j/HfewXV/I+ayPJKxBKPHezCV5RId0AKp9G1/H53ZgPOWakaP9SCTkrw1SzAW2si/rSZdl2VpAfGxCIZ8K9HBMeL+yJyUcFxGSqaKFXsluVRcAhmJl1wcE/tKcqnYK4tZtqko29jA0X97heoHbsRe5iR/eRnn+kewlTnTQaNant+H3mykbH09A0fbIZmk+MYaLIUOrKVOwoN+WA6Bfi/1j26g/dX3sZU6CQ+NLTolrMwRi5D+0Sih2Hhm6Pbh8JTlnj3q4alDmkO6xRNk21EPB7suI6DpNAy+dZbiLQ2Eu70ABNs86KyT1/zbalOBspMSmUggE+NpzcfOuBk708/YGTfB84MY820YnFYQEOrMTNLVixmN9hNLhNLbw+H2Kcsd9TzLIfdTAHiCLRz1bKPLf3BBZLpAtH+URGjcfxVun7oNPM8exf2UliYp2OLBs+0o/oPzTwJ7tcjWteM4S+9dhb9Hk+HA3z//gSzg+XXawPpCgKDkhNC2lsJcvG39DJ/pwVqSR8u2PTiXleBYUoT33PzihSwEaiS8iHjumIdjvQG2NuTjGYsRiiWpKjAx4I9RXWBmX8cowWiC5S4rFXkmDDqBXqeZC5rdQR5dU8z2E4Osq5x9wPpLseRTWlrysZYBYiNBCu+op/COekZP9mIs1ObR564sJ3dlOQDFF0W6qvr1jZO2c5u0cpaKGzMi30SOeZ6jN3CMhvytjMU8xJIhCkxV+GMDFJir6RjdRzQRxGVdTp6pAp0woNNp3d8dbGZN8aOcGNxOpSNzCWEv4HnuGIFjveRvbSDmGSMZimGqKiA24MdcXcDovg4SwSjW5S5MFXkIgw5dygwUbHZT/OgaBrefwLFu7mESr0bZbnhcy8c30tJL2Btg49c+CWhBoyyFWkTAolVVFK3SzGFV962Z9PuaB2+atF2eCsVa2Jj59ssEaiS8iNlS72TAPz46iScl8SRciD8dS0jGwglaPSEaXFa2HfVQnpv5hVn2ehf6PHN6pHRBmU5F77bDdP1Yi3Ecdo9y7p/eJBGK4X75BO6XT9D99AG6f3Jg2t9ninrnFvyx8eDsSRlPBe/WSMgY4cQYnlArLmsDRz3byDVNf16ZxLmlntjA+BuLjKeSFKSkk7EEibEwoVYP1gYXnm1HMZXnXney5deXU9BQQaBvhHgoStHKpeTVuPCdnzro/pmf7ubUf70NQNDt5cxP32PoVBdtLx2i7aVDCyJjJlAj4UXE6jI7/aNRNtbkpb97eFVR+vPtE74HeGTNZNtWg8uacZl6nz2M71gPrvsbiQ74SYRiWKsKiAz4sVYXMrz3PIlgFHtDCZYKJ8KoQ5/KXGIuycVaU4jOYsBW7yLS5yPc59Nu7AxTZl/NaLSfmrzx0ffETLo1ebdPKr+m+JFJ2y7rBxMAZAr76jKi/aPkbRy3kU/MGJ53e82k8sWPTB7ZWRtmzo12Lcp29me78RztoPqBGwkO+IiHouRWuwi6veTVuOjdc4Z4MEL+igocFYXojHpyUpmZrSVOEpE4QpdDfn05gb6RBZNzvqiR8CKirtjClzdVZFuMS1J8zwoiE0dKF9mBZTRB3B/RTBijIUZP9BLqHqHje+9icuWisxjJMWY+hXmxpY5NFV/OeL2ZwFJXTMWXN2VbjClZzLJdTNW9qwm6veltGU+mbMHadiIaJ+YPMdLSi79nCFO+jYgvyLHvvoa1JG/qShcBaiR8lbD9+OCkUfF0dI2EeeX0CB9bVUSRfXbpmy5F7uolhPtHKdxYm/6u7FduTH8uvL1uUvnyRycndWz4cy2IWNPfawGx7A1XfqbU8cHtk0bF0xGIDXFq6Jfkm5ems+xeCQa3H580+pyOxFiE7n9+h6o/vW/GsplitrLFhgIM/fIU5qX56Wzn86X4xmoCfV4qNo37Guo/flv6c8Udk30QDZ+Y7INwpJx5ZbfWs5hRSjjL/GBvH+uWOjjQ6cdu0hFLSILRBMV2A8V2Iwe7/BTZDDhMOl5pHqbZHaSx1Io3FOexm1z4QnEOd2sj07tqnZgNOeRZdAwHYxlRwvZ6F/b6hXvlnA97+37AUsc6Ov0HMOnsJGSMaCKI3VCM3VhMl/8gNkMRJp2D5uFXcAebKbU2Eop7ucn1GKG4j26/Fiqi1nkXghzGYh7yTJl5G+n7wV4c65biP9CJzm7S7KnBKIZiO8ZiO/6DXRiKbOgcJoZfaSbY7MbaWErcG8L12E3EfSH8h7sBcN5Vi85uwtaUmdW1mZaNHEHMM4apInMjzvz6cvLrr4ydPpsoc0SWqXdZOdI9hlGXQ483gsOkY22lg3WVDoYCsYkJpYkmkqwss9FUaqNtMEQ8oeWITftOAF2OwGnWc36aaW0LQd8L78+qXHQogPulEwy+00Lnf+6h9/kj8zquy1pP99gRdDlGvJEeTDoHlY61VDrWEYgNTcqgm0hGKbOtpNTWxGCojYSMA5IkmsMOIJoM4jQtISkT0xxxbljrXYwd6SbHqCPS40XnMOFYW4ljXSWxocCkbOHJaALbyjJsTaWE2ga1vGwXXdxkLEHgRB/hrvnbNzMuWzCKaYlTy4R+BWh5bu+sykX9Ifb8758CcOpHb3H2Z7sXUqzLQsWOuMIIIeRcFmvM1gwxWyq+umfKdfJTxY7o+I/3cK6rYuRAO/oJoyVjsQOTy4H3QAfGIht6h5kckx5/cz+OxjJivhBLHltHzBfCe6gTgKLN9YicHEYOtKOzGIkOjjGy/zz1fzw5uNh0sSOEEHKuizVma4aYLV/dUzFtjAEhhJzrgojZvurPhj0VX70qZYPJsSOOfe91Sm+pp39/Cwa7mWQsQTwYwVKci9WVR/+BVixFuRgdZnRmA8OnuilsrCTiC7DiU3cQ8QVwH9QyXVfevRKRk0PLc3up//httL6wHykl9R9bP+n4KnaE4pJkUgHPFftyF773u8gx6gn3eNE7zDjXVeG8pYro4BgTH+DJWILcVeXkNpUTaPWQjGvOurTjDgj3++jffhR9rhlyxILbhzOpgBeCTCm5hSBbshU0VDBwuA2dUc9Y9xBGh5mSW2opvbWO0ODoB0bo2nzhpYy09pOMJ5ASkhccdkAiFmfweCejnR6io0GSscy85WQSZRNeBOw+76OuyILLMXMG2if293N7TS5vtfomOd92tIzQ7Y3wsVVFOMzaZf3xQTcWYw6VThM5QrB2jos4LizOmAprZQF9L7w/yUl3gYY/exCAHKcV132N6e/NpXnc8NeaYrQuLZiTLNNx3rebIksdDuPMduv9/U+wIv9+znp34DRVpJ1vLSM78Ea6WVX0Mcx6rY329T+BVe9EyiQ1eZtmVf/F+Hafx1JXhNE1c7v3P7Gf/PtX4N1xFlOFM+3cCpzoY+xYLyWfXguAjCdwP3kIg8tOMhwnb1PNrOpfKPmGXz1NtM9H8WM3obMYp5RvLiy5s5EldzZOuS93aXF6VHsxG/7iVwEwO21U339j+ntdTg4bvvoJABo/u3lOslwplBLOAttPDAJgNeg40u1n07I89rSPsqE6l+N9AfZ3+llbaWdrQwFnBoL0+iK4HEaaSm3kW/Q4LfoPON/GIgk2LcujfTjMqnJtNZvDrEMCpQ4jA2OZD5U7lQJeaE4MakkvDDor3f4jLMvbRPvoHqpzN9AXOE6nfz+V9rU0FGxlIHgGX6QXh9FFqa0Jiz4fb7SbeufddPnHF4xEEmMsy9vEcLidcrs2AowlgkSEnkLzslnLNrj9BAA6qwH/kW7yNi1jdE87uRuqCRzvw7+/E/vaSgq2NhA8M0Ck14fR5cDWVIo+30K024vz7nr8B8aXAdtWlhE6N5jejg0GsDaWEO3zYyydm/JdCPlkPEnUE0BLIjI/+WbDVAr4akeZI7KAw6QjmZQEYwnGotrrkcthYGerF4BCqx6XXRsVJ1Kr5Caa7ic633a2aE4au0nHu20+8q0Gmt0BAPzhBPHE5dv8h3afmzQn+FJ0PrGbcJ+Prif34dl5Jv2972g357/zDuFeL53/uYeh91rT+wbfOkvXj/cxsr8d76GOWR3HpHOQlEliiSDRxBgADoOLVu9OAKz6QuypUWtSJlKr5MbboNBcS4t3JyZdLi0jO1N12mnzvYvVkI870AxoSl4n5ja7ROcwIZNJEsEYibGoVo/LgXends76QitGl/aAlImUU2vChTXXFuLd2YIu18TIzhYAwh3D6dFwbDiAochG8JQbYZj7rbsQ8gmdwOiyEzzrmbd8E+l5t3nSnOBLceIHbzLWN8KpH71F547j6e/Pv3SY4//xBrFgBIB4KJpePff+v708L/kyiRoJZ4Et9fnpzw+vHLf5bqjW/t+zfHx/Y6mNxlJbetth1mEx5LB1xeTX+Yl1grZ0+fF1ms31ZH+AQtvMCqVv+/sA6KxGfIe7KLijjuHd5yjYWMvo8W5G9rXjXFeFa2sj/jP9hHt8mEoc5DaVY3BaCXWPULylgZED7ek689YswXekE3O5E73NRMFt4yPL/FurCf9idFJUtpmoz9+S/rxygs23Gs3ZuTz/nvR3pbZGSm0TzCE6B8YcC+tKHp+2zlTTsb708wC0+XZhyJldtLf8LeOmm6KHV47vSF3Y/HuWp7+yNZZiaxyfbqZzmMmxGCl5fHLsCnNVAVV/tnXSd6WfvxUA3642csyzf1AshHwFD0yeq3u58rU8ry11N1hNuA+fY8kdjfS8d5qK21fgOdZB374WStfVUv3ATQyf7mGsZwhriZOilUsxOW34uwZZeu9q+va1pOtMJhKEBkYROdooXW8xplfP2cryp5QjGyglfIUx6YV7LuEkF+L40+3T283EfCESwSjxMW30YHI58Ow8g6nIhrHQhumC/TChOd1Ijo+UbMuKcb98AnO5E8+OMxRvaaD76QMIXQ7JeIJkIomUkuFdLRTeUU/LN16jeMuKWcmtFyb3pUJJXgn0wjRt2wmT3j3XkI2ZRJj0V6VsFzA6LES8AWLBCLExbXqltcRJ547jWIpysRQ6sLi0OcjJhOZ4kxP6nrO2lPO/PIS9ooDON4+x9J7VCF0O1hInw6d7cVQWorcYOfbd11j1G/dqTr5FgpqipgDmn97I8+ZpCjbWorPMfYHI6Mle9DYT1upCld7oOmS+6Y063jhGxe0r0Ftmdmxf4NyLB6n9sDaqz/YUNaWEFYBK9KnIHtd7ok/lmFMAkAjHSqWUYqo/oBIYADZMV2amP8AOnAG+DqyZrpxSwNcf8VB0yr4H/DnwFqCfR797DGgFcqcrk00FDEoJK2ZACKEDngS+JaWc3VrRKZBSBoAdwH8Hvpgh8RTXKEKIDcDvA78m5eWvI5dS/hR4B/iXTMmWaZQSVkyLEGIF8BdAEvj7DFT5r8Ap4MYM1KW4BhFC6IQQtwFPAb8ppezOQLW/D9wmhPiSEKJqxtJXGGUTVkyLEOIMUA7cN59RsEIxW4QQm4HngQNSyq2XLj2neh8Dfgi8LaV8MFP1ZgI1ElZcijo0W/DiTUuguNb4GJAHHJ+p4BzpAgLA7TMVvNKokbBiWlKjkneklJcVn/B693or5o4QogwokFKeXIC6DcB6KeW7ma57PiglrFgwhBDyvw/+OGvH/8eix9WcY8WiR5kjFAqFIouoZctXKTlmQ79cBIsrQFuWmpzF/N7Tz+4mR68l+cyrchEa8ePvHqJgeTlCl0P5uvHYBjKZRORMHiN4TnTQu7+FNV+4l9aXDjLWN0zuUhcRX4Da+2/G6LBk+MwUU5Htvnep/mbIMffHZSTry9tjyfCszWBKCV+lyEi8ZK7ZEhaK2cYlqNi4gkP/9hK1D9yMvSyfguXlnO3fi72sgMCAF4Azz+9BbzZSvn457qPnkUlJ6Y3LsBQ6GO0ewuTUghklE0kCA6NU3LaCqD9EZCyklPAVItt971L9LS4jJXPNwJJp5hrjRJkjrgOi/aMkQuPxhMPtw1OW8zx7FPdThwAItnjwbDuK/2DXlGUvh44dx6i5dw3+niEAdv/9szgqJmcOya8rA0AmpRakJZ5ASkkiGic0NIr3fD9DZ7rJ0eVgL3FiyrUgBIx2eDImp2L+LJY+Nx2j0X5iiVB6ezjcPmW5o55nOeR+SpM12MJRzza6/AczKosaCV/DeJ47RuBYL/lbG4h5xkiGYpiqCogN+DFXFzC6r4NEMIp1uQtTRR7CoEOXMhcEm90UP7qGwe0ncKyrzIg8Kx/fDMBwSy9h7xh3fe3TmpwnOrAW5gLgWlWNa1U1AMvuu3HK3wMUNixJf86tLM6IfIr5s9j63MUc8zxHb+AYDflbGYt5iCVDFJiq8McGKDBX0zG6j2giiMu6nDxTBTphQKfT1KQ72Mya4kc5MbidSse6GY40e5QSvo5wbqlndE97elums+VqM2RkLEEyHCPU6sHa4MKz7SjmqszHXS2oL2esb4RYKIrBYqR4ZRXe81NHOzz103dJRGKs+rW7Cbi9dLx9nOKVVYSHxwgM+EjG4zjKC6ncNHVKHEV2WSx9bjrqnVtoH92T3k7KeCoRgEZCxoglw3hCrbisDRz1bCPfnNlFd0oJX8PYV5cR7R8lb+N4nq+JCRzzbp+c/6v4kTWTtq0Nc8+rNhPNP3sP99Hz1D5wM4EBH/FQhLzqEgJuL86aErr3nCYWjFC0YgmOikJ0Rj06gzZSspU4SUTi5OhyiAW0mLPDLX3YyzKTr04xfxZjn5tImX01o9F+avI2pr+bmBC2Jm/yWo41xY9M2nZZGzIuk1LC1zCWumIq6hb3q3rNvTfS9V5zejsZT6TtwACJaJx4OMpwSy8Gqwlzvp2wN0A0EGGsb5j8ZSWMtPax9I6mbJ2CYgKLvc8VW+oorqjLthiTUEr4OmRw+/FZpTSPDQcY3deJzmYk0jVCjsVI8cdXz+vYJTfWMNY3PMl8sOLjG9KfL1amjZ/YNGnbUVE4r+Mrssus+95QgKFfnsK8ND+d2XmhOT64fdKoeDoCsWE6R/dh1Nmodd457+MqJXwN0feDvTjWLcV/oBOd3YSMJUgEoxiK7RiL7fgPdmEosqFzmBh+pZlgsxtrYylxbwjXYzcR94XwH9aCVjnvqsVQYMNYZCPHYiDuDUEGFlcW1JdTUF8+/4oUi4pM9z1yBDHPGKaKvHnLtrfvByx1rKPTfwCTzk5CxogmgtgNxdiNxXT5D2IzFGHSOWgefgV3sJlSayOhuJebXI8Rivvo9h8GoNZ5FzZDATZjEYaczEyJVFPUriGs9S7GjnSTY9QR6fGic5hwrK3Esa6S2FBgUubcZDSBbWUZtqZSQm2DyHhCU7Jpx4k2zWjwFyfQ5ZpJ+MNamSvA6ef2zFwIGO0e5OTT79Dx9okFlkgxE5nue8lgFNMSp5b1eZ64rPV0jx1Bl2PEG+nBpHNQ6VhLpWMdgdjQpGzciWSUMttKSm1NDIbaSMg4IEmiOexAm952YvAXmHW585YNVOyIqxYhhJzrhPnZvgrOlT0VX50yRsPFsSOOfO9Vym9ZTs/+MxjtFpKxBLFgBGtxLjaXk94DZ7EW5WF0WNCbDQye6qKosZKIL0DTp+4i7AvQd1BLz1599yrioSid75zE1+Xh5t984ANyqdgRC0O2+950/e2CbHNdrDFbM8Rs+eqeijn1OzUSvo5YCAU8FwobKug/fA690YC/exCjw0LZLXWU37qc4ODoJHNHIhrHtaoK16oqhlv7SKZGSzLluAMQep1WbuWii9OtuIhs971LkUkFfDkom/A1hm/3eSx1RRgvpKa/BP1P7Cf//hV4d5zFVOFMO0DGjvUyuqedvDtrCZ7sx1xdkJ48P/TSKWIDfgo/uoqR18/geuymWcu29M6VLL1z5ZT78pYWc/q5PZOcdBe44y8+CYDZaWPZ/Tenv9ebclj+8PpZH1+xcGSi3w2/eppon4/ix25CZzEi4wncTx7C4LKTDMfJ21Qzq/qn4rxvN0WWOhzGmafA7e9/ghX593PWuwOnqYI652YAWkZ24I10s6roY5j1mhzNw6+kVt5JavI2zar+i1FK+CpncLtmD9VZDfiPdJO3aRmje9rJ3VBN4Hgf/v2d2NdWUrC1geCZASK9PowuB7amUvT5FqLdXpx31+M/ML5U1L66nLHD3YRaPB9YwSTjSczLikBAjjmz3WcqBaxYnCxEv5PxJFFPACG0N/nYYABrYwnRPj/G0rkp3xOD2wEw6Kx0+4+wLG8T7aN7qM7dQF/gOJ3+/VTa19JQsJWB4Bl8kV4cRheltiYs+ny80W7qnXfT5T+QrjOSGGNZ3iaGw+2U27WRfaVjHR2je7HqL3+uujJHXOXoHCZkMkkiGCMxFgXA4HLg3anZTvWFVowuO4Dm5IgnJzlJzLWFeHe2oMs1MbKzBYCBZ44g9DlY6orwbDuKqTw3vU/ocgidG0SfZ74sebvePUXA7Z1V2fd/8Dr+vmGO/WgH7TuOpb8fPN3N23/xJLFgBIBYKErrSwdpfekgB//tl5cll2JuLES/EzqB0WUneNZDbDiAochG8JQbYZi7mjLpHCRlklgiSDQxBoDD4KLVuxMAq74Qe2rUmpSJ1Cq5cfkKzbW0eHdi0uXSMrIzVaedNt+7WA35uAPa3PadXf+A0zS/JdbKMXeVcjnOkYsZ2dFC7oZqdBbDnH8bGw4SPDNA3obqSzrmPvS93wXAYDXRd/gcS+9oIjDgo/L2G3Afa6d33xnK1tVT+8DNDJ7uxt8zhL3ESfHKKk4/t4fcJYU4lhTSu+8sDR8bHymf/MnbNH3qrvT2cEsvY33DBAf96RG1cswtDPPte5fT73y72rCtKUefa864Y+5iWkZ2UJ27AYNu9lPQ2ny7KLetwazPnbNjTpkjrlKESe+ebQjJhUaY9FMHfgCMDgthb4BYMEJ0TFtqbCtx0r7jKJaiPCyFudhc2lxQmUhFTUuODwzya8to+eUBHBWFnH/zKDX3rCEyGsSUZ8P9/nlyK4vQW4wc/u4r3PQbWwkO+hf4bBXZ7nuX6m96YXLPNZRkptEL07TyTYUaCSsWjPmmNzr/xvssub0Rg8U469+0vHiA+g/fAqiRsOLqQClhxYKhEn0qFDOjHHOKBSMeipZKKcXFf2hpxweAJVPtn80f8KvAOeARQDdVGaWAFVcDSgkrrihCCCfwY+A3pZTz8aC8AIyk6rph/pIpFNlBKWHFFUMI4QC+C7wkpdw+z+oSwKuACbhvvrIpFNlC2YQVVwQhRBHQDHiB1VLK0KV/Met6CwGflDKeifoUiiuNGgkrrhSbgSK0EWzGnvxSyiGlgBVXM0oJK64UB4E/ARqllOFsC6NQLBaUOUJxVWAyWvqjsXBWJ+EbDWZ3JBpSMy4UGUUpYcVVgRBCvvX90azKsPlLuWrxhyLjqGXLijQ5ZkO/jMSzuhw1GY6pkabiukIpYUUaGYmXzDco0HyYazyCN/f9DJ1O68JlRdV09J2mwlVLMpkkJyeHptpb02UvfDeRXUdeJBINcu/6T3Dg5JuMBX04HUUM+frZuOZBrObLi12rUMwF5ZhTzIlo/yiJUCy9HW4fnrKc59mjuJ86BECwxYNn21H8B7umLHu5rF5+OyfP7SfPXkRRfjmr6jcCUJRfli6zY/+zvPf+S/iDIxw4+Sb7TryO1z8EwMra9eh1WlyKtu5TGPQmcm0FCJFDIKQCASmuDEoJK2aF57ljtP/lK4Tahhh57TQDTx/Gt6edsaPaorfRfR2M7Gwh0uMDQBh06GwmAILNboofXZPelykOnHyT9SvvY2BYU+7tvc20956eVKaytB4AKSWJRJxEQkvcCPCD7X9DadFS2ntPU1lah9fvwWbNRSDoG+zIqKwKxXQoc4TisnBuqWd0T3t6W6Yz5WoKTsYSJMMxQq0erA0uPNuOYq7Kz6gMD236NQA6+s7iD4ywYbWW7LO16zhORxEA9UtXU790NQC3rb5/0u//6Ne+mf5cXb4i/bm0cGlG5VQoLoVSwopZYV9dRrR/lLyNNenvJiZvzLu9ZlL54kfWTNq2Nsw999ZssVkcOKzO9LbFZKPCtewD5V7b8zTRWIQP3/k5AH64/W/56OYv0tl3luFRN6vrN/Lyu//FZz/yJwsmq0JxMUoJK2aFpa6YirribIsxidf3PsPZjvfZuOYhhkfdRKIhyotrGPL1U+FaxrGzuwlFA9SU34CrYAkGvRG9TsvmMOwbwGKyARCKaOlvWjqOUlFSm7XzUVyfKJuwIiMMbj8+q3KJsQh9P9w3rUNvPqxftZUhX//4sZKaDfjCXPhYPEow7Kej7yw9A21IKekdOE8oEmBwpI/RwDDnu09lXC6F4lKokbDikvT9YC+OdUvxH+hEZzchYwkSwSiGYjvGYjv+g10YimzoHCaGX2km2OzG2lhK3BvC9dhNxH0h/Ie7AXDeVUvw9AA5Rh0ynpi3bMurbmJwpI+bVtyR/u6eWx9Nf75pxZ2Tym/d8MlJ26vqb5u3DArFfFEjYcUlsda7GDvSTY5RR6THi85hwrG2Ese6SmJDgUkZdJPRBLaVZdiaSgm1DWqKVqI57OJJAMzLCkBCqG3+I+GqsuV86sE/nLHcm/u3zaq+YNjPrsO/4FDzW/MTTKGYA2okrLgkeXcsI++ODzq5AMyV+QxuPz7JQXeBqq9oIX71Tgv59zWkvzcU2Cj5zLqMyPbcm9+hqXY9J1r3YjU7iCdihCMB8vNcFOSWcOLcPvIdxVgtDnYdeZHz3SdZtmQl/qCXB29/HH/Qy6m2AwDc0ngPVrMDg96IWsqvuJKokbBiXkylgK8UVeUrOH3+EAaDCfdwF1aLg8baW2mqXc+I3zNplB6PR6lbupq6pavo6m8hnojDpLnD4BsbQiKJx6PZOiXFdYgK4KNII4SQFy9b9u0+j6WuCKNr5iW8/U/sJ//+FXh3nMVU4cS5uQ4A79utxH1hCj/ShBACGU/gfvIQBpedZDhO3qYajC4Heyq+Om2AnMsJ4PPm/m2TbMTzRQXwUSwEyhyhmMTg9hMA6KwG/Ee6ydu0jNE97eRuqCZwvA///k7saysp2NpA8MwAkV4fRpcDW1Mp+nwL0W4vzrvr8R8YX6IcbHZjrimERBL0OmKDAayNJUT7/BhLFy4+QyYVsEKxUChzhGISOocJmUySCMZIjGmv5QaXA+/OVgD0hVaMLjsAMpFyuE14mzLXFuLd2YIu18TIzhYALLVFxAbHGDvWR2w4gKHIRvCUG2GYf/c7cnoXQz73rMq+sPN7eEZ6efGdJ9h/4o309y2dR3nxnf9Mb0eiIXYdeZFdR17kmVf/Zd4yKhSXQo2EFZPI31Kf/lz08MrxHRuqtf33LE9/ZWssxdY4HnlS5zCTYzFS8vhkx9tEx9wFSj+vRTjz7Wojx2yYtXw79j8LgNlkpfn8QW5esZn3z+zixoY7aOl4n+Ote2ladisbb3yQ8z3NDIx0U5hXSl3lKhy2fNxDXdy68j5OtO5N11m/dA2d/S3pbZPRQlVZA56RnknBgBSKhUApYUUaYdK75xpOMtPHn6mMzeLAH/QSjgQJhrWVboV5pew/8Qb5jiKc9kIK8rQl0slkIrVYI5n+/ZKSOt498guKCyrYd+J11q+8j17PeVo7j7HEVUtJ4VLMRgvbXv82H7/nt/D6BxfobBUKDeWYU1wVZCKzxr7jr3Fjwx2YjJZZ/+adQz/nzrUfBZRjTrEwKCWsuCpQOeYU1yrKMae4KohEQ6VSSjHVH/Al4Dhgna7Mpf7QzHLvAH92qXJKASsWAjUSVlzVCCFWALuAu6SUlx19RwhRCRwEHpZS7p2pvEKRKdRIWHHVIoQwAT8B/mI+ChhAStkF/DbwlBAiLxPyKRSzQSlhxVWJEOJDaCaEDuC7mahTSvk88AawQwjx65moU6GYCaWEFVcrnwFuARIysza1CHAT8PkM1qlQTIuaJ6y4WjkFfA346wzX+/tAC1AzU0GFIhMox5xCoVBkEWWOUCgUiiyizBGKBcOQY+6Py0jWFljohckdS4annNubYzb0y0g8q0u0k+GYmnesUOYIxcIhhJBf29CTteN/dU/FJeMTXxw7+UpyqdjJiusLZY5QZJXRaD+xRCi9PRxun7LcUc+zHHI/BYAn2MJRzza6/AcXVLZo/yiJUCy9PV2GaM+zR3E/dQiAYIsHz7aj+A92TVlWobgYZY5QZIVjnufoDRyjIX8rYzEPsWSIAlMV/tgABeZqOkb3EU0EcVmXk2eqQCcM6HRad3UHm1lT/CgnBrdT6chMvrqJeJ47RuBYL/lbG4h5xkiGYpiqCogN+DFXFzC6r4NEMIp1uQtTRR7CoEOn1wFaAPviR9cwuP0EjnWVGZdNce2hRsKKRUG9cwv+2EB6OynjJIlzwViWkDHCiTE8oVZc1gaOeraRayq/IrI5t9QTG/Cnt2U6e7QmnYwlSIyFCbV6sDa48Gw7iqk894rIprj6USNhRVYos69mNNpPTd7G9Herih5Of67Ju31S+TXFj0zadlk/GCg+U9hXlxHtHyVv4/hU4YkJTfNunzyFuPiRNZO2rQ2uBZNNce2hlLAiKxRb6iiuqMu2GFNiqSumoq4422IorhOUOUKx6Dg+uH1W5QKxYZqHXuac950Flmgyg9uPz6pcYixCx9++vsDSKK521EhYccXY2/cDljrW0ek/gElnJyFjRBNB7IZi7MZiuvwHsRmKMOkcNA+/gjvYTKm1kVDcy02uxwjFfXT7DwNQ67wLm6EAm7EIQ87sM2Vcir4f7MWxbin+A53o7CbN1huMYii2Yyy24z/YhaHIhs5hYviVZoLNbqyNpcS9IVyP3UTcF8J/uBsA51216OwmbE1qKrDi0qiRsOKK4bLW0z12BF2OEW+kB5POQaVjLZWOdQRiQ0jG56wnklHKbCsptTUxGGojIeOAJInmsANtetuJwV9g1mXGCWatdzF2pJsco45Ijxedw4RjbSWOdZXEhgKTskonowlsK8uwNZUSahtExhOany7ttINkLEHgRB/hrpGMyKe4NlGLNRQLxlwXaxwf3D7JOTdfMr1YY3D78UkOuvmgFmsoLqBGwopFQyYV8EKQKQWsUExEKWHFFeW8bzf+6MDMBYH9/U8wGunjoPvHtHrfSn/fMrKDA/0/Ihwfn7vbPPwKxzzPc8zz3Kzrnwrf7vNEJ8wJvhT9T+wn0jeK+8cH8b7Vmv4+cKIvvYIOQMYT9D+xn6GXTuF57tis61dcHyjHnGJBOZGa6WDQWen2H2FZ3ibaR/dQnbuBvsBxOv37qbSvpaFgKwPBM/givTiMLkptTVj0+Xij3dQ776bLfyBdZyQxxrK8TQyH2ym3a6PTSsc6Okb3YtUXzEm+we0nANBZDfiPdJO3aRmje9rJ3VBN4Hgf/v2d2NdWUrC1geCZASK9PowuB7amUvT5FqLdXpx31+M/ML5M2bayjNC5wfR2bDCAtbGEaJ8fY6njsttScW2iRsKKBcWkc5CUSWKJINHEGAAOg4tW704ArPpC7EZtcUNSJlKr5Mb9FIXmWlq8OzHpcmkZ2Zmq006b712shnzcgWYAdnb9A07T3JcJ6xwmZDJJIhgjMRYFwOBy4N2pjWz1hVaMLjsAMpFyuk3wo5hrC/HubEGXa2JkZwsA4Y5hAif6GDvWS2w4gKHIRvCUG2FQt5vigyjHnGLBmG8UtZaRHVTnbsCgm/0UtDbfLsptazDrcxc8itrIjhZyN1Sjsxhm/RvfrjZsa8o5cMPfKcecAlBKWLGAqHjC06PiCSsuoJSwQqFQZBFlpFIoFIosopSwQqFQZBGlhBUKhSKLKCWsUCgUWUQpYYVCocgiSgkrFApFFlFKWKFQKLKIUsIKhUKRRZQSVigUiiyilLBCoVBkEaWEFQqFIov8//cAQzmcEZjwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.tree import plot_tree\n", + "\n", + "plt.figure()\n", + "clf = DecisionTreeClassifier(**kwarg).fit(iris.data, iris.target)\n", + "plot_tree(clf, filled=True)\n", + "plt.title(\"Axis-aligned decision tree trained on all the iris features\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following experiment demonstrates oblique decision tree algorithm performed on the same iris dataset using the same parameters used for axis-aligned random forest. The decision boundary shows noticeable oblique patterns considerably different from that of axis-aligned decision trees. The oblqiue nature of split gives more degrees of freedom granting flexibility via inducing an appropriate amount of sparsity in the random projections.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAAEPCAYAAAAnJ0G3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACK5UlEQVR4nO2dd3xUVfbAvyc9BEKAANI7KNJFERSx7LrY3RWEtWFb1HWtYEF3V6ysIio/dUUEBBWlWlERVwUREFGkIx1BQDqEhPQ5vz/ue8lMSJkkM29mkvf9fOYzM6/e9+5979xzz7nniKri4uLi4uISqUSFugAuLi4uLi6VwRVkLi4uLi4RjSvIXFxcXFwiGleQubi4uLhENK4gc3FxcXGJaFxB5uLi4uIS0YRUkInI5yIyxI/t0kWktRNlqigi0kFEVojIMRG5O9TlARCRP4vITuv+dS/nvvNF5NYS1rUUERWRGOu/X/UYbERksog8VcljXCsi8/zYbpyI/Ksy56oOBKttFG2D4YpT766ynnUROUtENlnrrwx2eZxGyppHJiLbgYZAHpAPrAPeAsarqifYBYwURGQikKaq94W6LDYisgW4X1U/qsC+84F3VHVCMetaAtuAWFXNq2w5A4WITAZ+U9V/hrosFUVERgJtVfW6MCiLAu1UdXOoy1KUcG2DoaKsZ11EvgI+VtWxATjXduBWVf1fZY8VKPzVyC5T1VpAC+A/wEPAxKCVKoLw6hG2ANaGsizFEI5lcqkEYggLk0C4a0PhjohEB/BwZT3rYfMuCEq7UdVSP8B24A9Flp0BeIBO1v944HlgB7AXGAckem1/BbACSAO2AP2t5fMxkh2gLbAAOAocAKZ77a+YXipAbYxGuB/4FfgnEGWtuxH4zirLYUyP7aJSru0hYBdwDNgAXGAtnww85bXduZievvc9eQhYBWQDX2O01SwgHWgPXAL8bF3zTmBkkXOfDSwGjljrb/TnXhY5RpR1/b8C+6z7Uts6Rrp13zKALSXs3wdYZt3zZUAfr3XzgVHAD9Y1fATUtda1tI4dU0w9RlvlPwBsBe4ssu12vNoTMBKj+dn/z/S6LyuBc0upv+7Acqv+pgPTitTbpZh2d8Q6Zhevdc2A9zHt6CDwincbsn4L8KJ1b9OA1RS2+aJt5G/AZuAQ8DHQuEj7vR3YZJXlVazRkCLX0x/IAXKt+lvpdX+fBhYBmZhn5WTgS+t8G4CrvY5TYhsCUoE5VjkOAQuxnp8iZfmWwvaTDgzCeg4wbf934G2gjnW8/Zhnbg7QtEg7utX73lLC84lpuxOBPZjn8ikg2p92VUz5T7HOfQTzAr/ca91kqw4+xbSdpUCbEo7T0jrPUGC3VbbhRd6FS6zz7AFeAeJKeHdNBl4DPrPu6x+AizGjXMesax5eQjkq/Kxj3rkeTNtJt/Yp7V63wbzTDlr3eyqQYq17u8ixHqTI+7Hoc455xmcB72Ceo1vLOH+JsqDEd0GZGxQjyKzlO4A7rN8vYh7eukAt4BNglFdFHwX+aFVGE+DkYhr5e8Cj1jYJwNklNIa3MC/VWphGthG4xetBycW8VKKBOzCNr7iXRgeMAGns1WDblPCS8qko656swLwME4tei9c+na3r6YJ5oVxprWuBabh/BWKBekC3su5lMddwM+bl2RqoiXkxv13cfStm37qYl8n1QIxVlsNAPa/r2QV0ApKA2VgCh9IF2e3AL9a9qQt8g5+CDNM2DmIe7ihMmzkI1C+m/HGYh/o+6x4OsOr+KWt9d8wD38tqC0Osc8db/1da9zoJr/aGryD7E/ATkIIRaqcAjYq2EeB8zAPXwzr+y8C3RephjnWc5piXfv8S6qXgfhQRBjuAU626qo1puzdZ/7tb5+/ox/M4CiPYYq1PX4p5PoprP5g2nQc8a11nIqbtXgXUsM41E/iwSNm9BVmJzyfwAfC6VScNMJ2o2/xpV0XKHYt5Lh7BtJPzMc9bB6+6O4h5N8VgXtTTyhBk71nl6mzVn/2SPg3T+Yqxtl0P3FuKIDsKnEXhe24P0NdaXwfoEehnvYTnrrR73Rbz7MUD9TGdmpdKOda5lC3IcoErretOLOP8JcqCEq+vzA1KFmTfWycTTE+gjde63sA26/frwIslHHs+hY38LWA8Xr25opWEafw5WA+ste42YL7Xg7LZa10Na9+TijlmW8yL7g+YcXbvdZMpW5DdXNK1lHCtL9n3ARgBfFDMNqXey2K2/wr4u9f/DlaDsYVGaYLseuCHIsuWUKgZzgf+47Wuo3XvoyldkH0N3O6134X4L8gewuvhtJZ9AQwppvznUKSTgtG6bOHyGvBkkX02AP2se7qf4l+CN1IoyM7HdJTOpIjWgq8gmwg857WuplUPLb3qwbtjNgN4uIR6KbgfRdrWE17/BwELi2zzOvBYWW0IeALTESzxpVf0uSvyHOQACaXs0w04XNxzQSnPJ8YOn43vSM5fgW/8aVdFytAXozFGeS17D2tUxKq7CV7rLgZ+KeF6WlrnOdlr2XPAxBK2vxevZ5sTBdlbRbbfgXmHJZdRFxV+1os+d2Xd62L2vRL4ubhjebWLsgSZd8eurLouURaU9KnMWHsTzNBEfUyD/ElEjojIEWCutRxMD2qLH8d7EPMQ/iAia0Xk5mK2ScX0tn71WvarVRab3+0fqnrc+lmz6IHUGLDvxdzkfSIyTUQa+1FOm52lrRSRXiLyjYjsF5GjmB5lqrW6pHtS1r0sSmNOvBcxmIZSFkX3tff3vpc7i6yLpfAaSjtu0f38pQUw0L526/rPBhqVcJ5darX8Ys7VAhhW5FjNrP2aAb9qGU4Cqvo1ZqjoVUwbGS8iySWU5Vev/dIxPf5i2yVwnGLaZBl439MWQK8i13YtRiCU1YZGY3r280Rkq4g8XM5y7FfVLPuPiNQQkddF5FcRScP03lNKsf+U9Hy2wLSvPV7lfh3TW4fytavGwE71dUYr8T2Bf/VR9NyNAUSkvYjMEZHfret/htKfkaLvjaswgvRXEVkgIr1L2K8yz3pRSr3XItLQeh/usq7pHcp+7suiaPstra79kQU+VEiQicjpmEbxHWZIIxM4VVVTrE9tVbUbxk7MmGupqOrvqvo3VW2M6aH8V0TaFtnsAKYX0sJrWXPMEFi5UdV3VfVs63iKGTIB06Ot4bXpScXtXsbh38UM7zRT1dqY4Ryx1pV0T8q6l0XZzYn3Ig8zjFkWRfe19/e+l82KrMu1ylgae4rZz5vS7u1OjEaW4vVJUtX/lHCeJiIiXsu8z7UTeLrIsWqo6nvWuub+GJ1V9f9U9TSMRtoeeKCYzXzupYgkYYbcKtIuS2pX3st3AguKXFtNVb2DMtqQqh5T1WGq2hq4HLhfRC6oRPmGYbSDXqqajNGUobCt+8tOTC891avcyap6qrW+rHblzW6gWRGnmAq/JyyKnnu39fs1zJBnO+v6H6H0a/e5f6q6TFWvwLzEP8Ro68VRmWe9KGXd62escna2ruk6fK+paBvweaatTkzRznfR9lvi+f2UBT6US5CJSLKIXIoxqr+jqqutXs8bwIsiYkv0JiLyJ2u3icBNInKBiERZ604u5tgDRaSp9fewdeE+7v2qmo+p6KdFpJaItADux/QYyoWYeV/ni0g8xkkj0+t8K4CLRaSuiJyE0dzKSy3gkKpmicgZwDVe66YCfxCRq0UkRkTqiUg3P+5lUd4D7hORViJSE9MAp5elaVh8BrQXkWusMgzCvKzneG1znYh0FJEamCGpWVYdlMYM4G4RaSoidYCiPf4VwGARiRWRnhjbls07wGUi8icRiRaRBBE516tdeLME8yDfbR3rLxibh80bwO2WZiwikiQil4hILcx4/B7gP9byBBE5q+gJROR0a/9YzMOaRZE2afEepo13s9rTM8BSVd1exr0qjr1ASyndM3EOpu6ut6491irrKWW1IRG5VETaWh2AoxgnpZKm0ezF2GRKoxbm2TkiInUxw5vlRlX3APOAMdZ7JkpE2ohIP2uTstqVN0sxWtaD1r05F7gM896qKP+ytM9TMbbJ6dbyWhgHhnTrvXaHvwcUkTgx8xZrq2qudZyS6qIyz7oPftzrWhhHjqMi0oQTO29F28VGIMF6vmIxTinxFT2/P7KgKP4Ksk9E5BhGkj4KvICpTJuHMMMV31uq6P8wvTRU9Qdr2xcxD84CTtQEAE4HlopIOkaTuUdVtxaz3V2Yl8pWjEb4LjDJz+vwJh4zleAAZpihAcZ2BcYzZyVmnHcehY22PPwdeMK6b//Gq6elqjswwwnDMMOzK4Cu1uoS72UxTLLK+i3GAywLc3/KRFUPYrz6hmGGwR4ELlVVb43rbcy4/u8Yo6s/E73fwNi1VmI8Ct8vsv5fGG30MPA4pv7sMu3EeLg+grFh7cQ8RCe0U1XNAf6CsbscwtiN3vda/yPGqeAV61ybrW3tDtFlGDvpDown3qBiriXZup7DmKGcg5ihuaJl+Z91XbMxArINMLiY4/nDTOv7oIgsL24DVT2GsRENxvTUf6fQAQNKb0PtrP/pmM7Af1X1mxLKMhKYImb45+oStnkJY7w/gLGbzy37EkvkBoxzxjrMPZ9F4bByWe2qAKttXAZcZJXrv8ANqvpLJcq2AHNPvwKeV1V70vxwTCf1mFXG8r4rrge2W/V0O2aIuDgq/KyXQGn3+nGM49JRjGdn0Xs9Cvin1S6Gq+pRzPtuAkbrzcA8UxU9v7+yoIAyJ0S7uFQGcSeuukQwbvuNDMJiYqWLi4uLi0tFcQWZi4uLi0tE4w4turi4uLhENK5G5uLi4uIS0biCzMXFxcUlonEFmYuLi4tLROMKMhcXFxeXiMYVZC4uLi4uEU2VTYyXEh2tJ8XEhroYYcmumuWJjewf6Ye2HVDVkoIbY4Wj6osJfpoJrAG+VNXDgSxHbEItTUgqsRguQaCsuncKt+6dJ1zqvsoKspNiYpl4UstQFyPsGNF3ZEGI6UCycOpfi41GLiI3YULpbMPk9tqAlWMIeEhE1gD/ssJ2VZqEpPp0v+iZQBzKxU9KqnunceveecKl7h0VZE71yl2KZ0TfkaE4bQ3gLFXNLG6liHTDxP8LiCBzCU+sQL/2c7+9SIoVF5dK4Yggc7pX7nIiIRJiqOqrZaxf4VBRXBxGRGoDd2KSJsZhAkEnAA1F5HtKD1js4uI3Tmlkbq88hIRKiHkjIq0wnZmWeLU7Vb08VGVyCTqzMNl++6rqEe8VInIacL2ItFbViaEonEvVwRFB5vbKQ0c4CDGLDzG56T6hjNxCLlUDVf1jKet+wozOuLhUGqdtZG6v3EEOfL0QHvsq1MWwyVLV/wt1IVxCg4h04cTnvsScYi4u5cFpr8UPcXvljjEmfIQYwFgReQyTqDTbXqiqxSaPdKk6iMgkoAuwlsLnXiklOaaLS3lwWpC5vXKHCKMhRZvOmGy45+P7Mjs/ZCWqhuRkHmH9wolkHN5KUp3WnNL3FuISU4J92jNVtWOwT+JSfXE6ssdYEXlMRHqLSA/743AZqjxhKMQABgKtVbWfqp5nfVwh5jDrF04k7cA55OetJu3AOaxf6IifxRIRcQWZS9BwWiNze+VBJkyFGJg5gynAvhCXo1pz7NAm0NpAd9DO5n/weQsjzH7HDCsLoKraxYmTu1R9nBZkdq88x+HzVgumPzMVPnfkxVQRUoBfRGQZvjYy19HHAewhRc0HY656C3gezXfERDkR04FdjWsbdwkCTgsyt1ceJPosf5QR94StEAN4LNQFqM7YQ4qwDhiOCbIxHHjdidPvV9WPnTiRS/XEaUGWgtsrDzgj+o6Ee0JdijLZAexR1SwAEUkEGoa2SNWHjMNbQT8CZgLPY4TY40A8i6ffGWzHj59F5F2Mt7L3c+96LboEBKcFmdsrDzAdNnwFty4MdTH8YSbQx+t/vrXs9NAUp3qRVKc1aQfGgE4GBgPjMNGibiI/bxhpB8awfuFEul44LBinT8QIsAu9lrnu9y4Bw2lB5vbKA0jn/o24NDKEGECMt21UVXNEJC6UBaqqFOdif0rfW6xlkwuW/fjxo+TnDQMagw4j4/DkoJRHVW8KyoFdXCycFmTVuld+KD+PZw/s5pecbE6Oi+eh1MbUja54FVyacVsASxd09ovI5batRESuAA74s6OIpAATgE6YnvzNqrokWAWNdArsYfqRj6ZVVNsq1NKGgYwhqU7roJRHRKYA99jxFq1I+GNU9eagnDBCKW2OX1nz/0I0PzBscHoe2Qm9ckxU7GrBswd20ys7k1XqoVd2Js8e2F3hY4Wxm31J3A48IiI7RGQH8BAw1M99xwJzVfVkoCuwPkhljGhyMo+wct4Y0vavA10JHAJdSdr+daycN4aczCMF2yyeficeTx41635FdExnklO/5ZS+twSraF28gwZbaZu6B+tkkUppc/zKmv8XovmBYYPTGlmFe+VVgV9yspmB8RcbBnTJyS5jj+KJQCGGqm4BzhSRmtb/dH/2s1KBnAPcaO2XA1TZ6RuV6VmvXTCO9INZQBLwG/AnYBDwVoFmBhRoa+mHxpCc+i19BpUa07tEhj1+Aann9+XssjeNEpE6dt5BEalLEN49bVrWCvQhA0pZdZt+aLPPHL/0Q5sL1x3eYjnrmGHg9MNv+hy70JknuMPE4YrTGllleuURz8lx8YwBdgNjrP/l5cDXEWMTA0BErhORgnamquneQkxE2ohIae/CVpg8Vm+KyM8iMkFEkoJY5JDiT8/aW6vy1rTSD24DLgVWWN+HKXC112FkHN5qvfCG+SyrCKMWjiT1/L7+bj4GMyH6SRF5ElgMPFehE5dC1poNgT5kQCmrbkUSMHP8fga6WP+tdcRjvE13A89b/wtJqtMaxHq7BHGYOFxxVCOraK88kvG2i7WJjWNhXAJTcnMKbGTloXP/RlwaXoGA/aEexv3aTtthJ1dsC/TDaOQPl7J/DNADuEtVl4rIWGv7f9kbiMhQrA5RfI3UYFyDYxTtWacfmsTKeWPIOLyVxNrNACH94HaMgvqRj6YFeRgh1h0TRCfWvNyK2MAqYxd7f0JfNnS4oFz7qOpbIvIjhRF8/qKq68p1ED8ZtXBk2I5YlKY15WQeIT8vC3gH+AUYRX7e66ycN4ZT+t6Cx3McmIGZ95dAfl4GC6feRlR0PN3+NLxYZ54Tz7+DlfNeJD8vjeiYZLpeeB9JdZo7celBxxGNLAC98ojF2y52dk4WcSJ81KwdzzZsXi5HjxF9R0aacwcAqjoWI4jeA+oDF1j/dwHXq+pVqlraTO7fgN9Udan1f5a1v/c5xqtqT1XtGZsQ3sNLZVG0Zy2SUNCLTz94hPSDuzCe7KuBaNBhpB1Ybw1DpeDTo4+OIzn1Wx8b2Cl9bzlhmb+MWjiyXELM7rACqOo6VX3F+qwrbptAMWrhyEAfMiCUpjWZzsiNmI5IR8yQcO8CzS0qqgZwNbAJGAKcDfwNT35dVs57kbjEFLpeOIw+g16l64XDih2ONkLsr8Am8vP+ysp5Lwb1ep3EKY2ssr3yiKA4r8RA2MX6LH80EiY8l4iq5gNfWp/y7vu7iOwUkQ6qugEjCIPSmw8V3raT+KQGoG8Cr4HGkZ+XDUwHbgKOWN8PYIaZrgW6gTZF5CiQjnfUDpHJxc4LK+9csQVjc1nc4+mKXNpHIrIC+Aj4SVUzAESkNXAe5s38BqZzElDCUTMrTWsyQ7yWtsb9wGvAQVBI278Wo3N4R2Tpjgkz9hb5eRl+nT8/L83nGPl5jkR1cQRHNLIA9MoBEJFoy04yJ6gFriDFeSUGwi7W757YQBc10rgLmCoiq4BuwDOhLU5g8badHD/qwfS4lwAnYfqaNYGzMD4uD1D4MluMkenTUbKJjqmBMT2ZHn/NOm0qXbZRC0dWVIihqhcAXwG3AWtFJE1EDmLGz04ChqhqwIWYTbhpZqVpTT7aGqOBZsBKjIZdF2hqLTc2MjN0/AJQl+iYZD9L4Gtng/K/i8IVx2xklemVe3EPxvXa35pzlOK0rzcbt+LZA7vp4qWllWc+Wbj1KkOBqq4Aeoa6HMGi0HYSjRmsmArMBi7BmAJfwCgusdbv+63vWOBH4Gpq1G7Oqf1ut3r8nUu0k/hLoISAqn4GfBaQg1WAcNTMisNbW8vPywcWUNhheRujff0FYyOLwwwvLwOEdmfeVGBHLW2OGWRSaGerg0TlO3iFwcVpr8UKIyJNMU/2hFCXpSSK077qRsfwbMPmPnYxf+eTRcID6FJ5Cnvj12K0sRWYl9YmCoea8oBTMOEKu1nfqda2FwHil52kLIY9fkHYaDIi0kxEvhGRdSKyVkQqNMA+/5r5AS5Z4PGuu+iYRGAKvprT3zHDypsxyuztmD79TWz6fppfc8yMVm/Z2WQQteq1d+z6go3T88gqw0vAg0CJ1nxv77WGlYiYUVEeSm1coH21iIllV3YWF+7YQIpEMaphM9rEGXdaf+xmVU2IiUg8cBXQEq92p6pPhKpM4YLdG0/bvw7T826MaeodMcNLV2P6nPuBg5ghxhxMqEKzbebRtytdjlELR8L5Iyt9nACSBwxT1eUiUgv4SUS+LK/H45I75vP+hn/xlxCEc8vJPMLaBa+TfmgTaCw167Xg1H63l9rJMBH8VmHm/scDh4BjGGeQxtZ/e4j5AfLzxmPeJMXPISvU+A8B/YFxREXVJD+voRMBox0hIjQyEbkU2KeqP5W2nbf3Wkp0tEOlK8Rb+/o9L5drUDYBg9TDiL07C7Yry27WYUP5XewXjM2tVNkd4CPgCszLKcPrU6048vtaFk79Owun3sTCqXew8N1bWPbhg8TFHaFmvfZedpLnMEON5wIXAxuAyzC98c2Yl9pgoAFwvuWaX3HCRQvzRlX3qOpy6/cxjArSpCLHKu+UgUCxfuFE0g+eC7oRuIX0g1llRt2oWbctSFeMILsaU983W793Y2xmtr1stLGRlTKHrFDjv7fgeJ78umQc/kOViQTiqNpSiV75WcDlInIxxtsxWUTeUdXrglXW8rA8M4OR+38jExPme2T9phxRj2/WJ/UU2MbW52SxTaJ4U5WO8Qk+88kqEgi4vELM20vOnpuUeXRHsHtmTVW1fzAOHAnY9zxt/ybMS2kV0AV0OB59jiN73yQ5NY+o6Kl48mw7SF1gL4W97weBd71+T8Y4e4wG5leoXE4JMBGJxgQI937ud5Rj/5YYV72lRZb7PQoTCnuZrzfi9cAk0vbvYPH0+06Yx2W3ERPhYwuQRaGG/gAwnqiYTqAxePLfBHmDmnXb0b7XfWxeNtPHG9L3GW9OzbpfkX5wk9fxvLS6KhAJxGmNrEK9clUdoapNVbUlphv6dbgIMYCR+39jCKbfNMT6nyJRPv5BKRJVYBtbrcpg9dAxPuGE+WTlnStWEU3M20su/WAW6QfPdaJntlhEOgfr4OFMTuYRfvz4cUuI5WK6NqspdIV+kLy8fA79vhdPXibG/rEGuBKjlRX2vqEOhRpbT+yX3PGjv5arTO9P6OukELsLI5G/BD61Pn57HltzzWYD96pqmve68o7COK15Gu3Irr9BYL0pipvHZT+Xnvy1GI27Lt5ehtExyZw16L+cNfj/6HvtOPpeM4Hu/R8iqU7zE2yjPs/4ofOJiooluX5HL43fS6urApFAnDYkVcleeSa+MzxeA5pGx/B6Xg4TMb2FJ1Ib8/iB3aXaxso7X6yiw4k+EQaC3DMTkdWYiPUxwE0ishXjciWAqmqXgJ4wDFm/cCL5eYMwWtR5mBdIZwoTXD4H1MC858/COHfYTh7/BT7HeDLWJiHhd6Ki2qIaS2amPdT0HNHlsAmbic2Bujq/uAfooKoHy7ujiMRihNjUQCXidFIzO6XvLZaN7A1QD+ZZiwZWkZ93lIVTb0Oi44BcND+XQu1tOCZn3BTs3HFxSfVLtGkVaHOHtyDEW3PGfKOI9Lz86QLPSDMSM5/Mo29V2sM1HHBakC0Wkc6qurqiB1DV+VR0HCVI2LMzhlPoY3R+Xg6fY5yk5wDT0w4a21h2JsM40TbWZ/mj5TqntxA7mGRH/vFvSNInfUdBz+yBYPXMLg30ASMN3+GlGZgYyDkY1/mJmCxGVwEjMNMrn8MIvdFADMn1a5FxeD/xCcdISU7n+HGoUSMTkffIyZlKfHwUubkZJO5+jCmv3kXDBrWLLcexRyaxeu6eYF9ucewEjpZ3JxERzA1ar6ovBLJATgmzJeOTMB0SSGn1IGnHnqdgWJm3gBfQ/DmYeWK/UfAs8jwm41UXa/vOZB79HFhdbBJU79Q9Zt8ZFLyVrOfa9oysijgiyCK9V17cvC+gwN6Vg4m9YGZn+E5bvR/TXA+UMKcMyi/Ehj1+ATC34L+3N5Y/0dO956wEu2emqr8CiMjbqnq99zoReRtjOIhY3p9QduDcy7Z3Y9n3L5Cffz/wJrWSaxETc5jM4zlkZW3GtJTdGLf6qzDeiO8COURFKV0vHMaCsbmcf+XjpJ60l0GDYPp02Lo1gxEj4MYboVMnqNtgM0PufJm5M/95QhkqOqm5MojI/dbPrcB8EfkU89wD4IdwOgvTPlZbEUIAHrHmplWaigizymQn+O7Tuzj7kpdJO3aUQluV/YY4DMzDaOzjgd4YLTyfwigeU/Er+n3B3LNVQDuSUztGvMZVFk5pZBHdK7dtWzOAMV7zvuxlozGDP8us3zMkitHq4QHsufeQ6jWnzJvyCrFuF7Xj8pRCIVY06kdJSRW9CVHP7FTvP5bx/zSnCxEM6mV8Xer6D974M1ffPJkVaybRrVNrZkx6mCF3vszPq3eTk/McHs+DGC0sG/gaM0fsTaKi3qRmzXyitj9K7VbbyMlR3nkHUlNh0CD4299g2jSoUQMefRQ8Hg933O7rPxEKAeaFPVVmh/WJozD/oJa1s6p+h+nsBo3518zn3HfP9Xt7f56vkujUsRlHtj1H3TbDOHLU1rrtN0RTzDBiD4xm1hkjxOwoHs9h20dFThxK9h1leR7oCtKV5NSjVVYL88apEFW/Wj3zp+zf3sucKENl+CUn256lwTDrv73sECbF9Q7MrJ83gHT1MF2E9phxkSMI63OyeGjvDg7l5xUct7xCDGBs/8IpNMWFrgpUmo5AISIjROQY0MUKUZRm/d+HGW+LOLzTqFz2hxvYu8931GzvvqP0H/gUDToMpf/Ap9h/II3omCPke46wYu1yBv/tRZ5/fAjNm9bGzO9vS716ExgzJo3U1F1Ab5KSJnDBBWl4PJls3bGViy5STj3VaGIHDpjv/Hxh8aIEzuojeDwwe1YUPboUdpRCLMRQ1cdV9XFgnf3ba1lYJEddcsd8a4TDPwLxfH37yb3UTHobE2r2DWA3sfE/EZ/4Hibs2C7gTeLiO1Gj5kwSaqwgJmYSbdv+Ro0abenQYQIx0T4+L7Q9fSDR0e8C7YDJSNSyYCdLDSuc9lqMyF55cfO+7GX98Z3pUQPzhP5VlW7xiZwan8i1KKtVfaJ4VESIedvFSoq/GG55iVR1lKrWAkararL1qaWq9VR1REgLV0G8PcJ+XNqdq2+e7LN+yJ0vU7fBZkb9J4v1mzdyxoWPsuXXLYwdq1x0kbJ1x1aGPzaF3b8f5C9/ySAlJZNx4zLo0QNeey2DxMRMIIMlS8zxjh6FzZvN54sv4LrrYNF3CSz69CmWfz2a42ntuOP2BA7ta8uUV+9icY+nQy7EilBcPYdN3Zcjr1pAnq9OHZtRq9ZxBgzIZObMNAYMOEZqnSz6nZnM4EHZzJyZzuBBxzi3T33Stz/D8R0vcn7fRvQ8LYspUzLp3CWL5NRWPsfcvGwm+fnXYKJ23ESteu0rHN0lEnHKRjYCeARIFBG7KyEYc9J4J8pQGYbWacCIvTsZpx6SgKicLNJUWc+JHovjMNMYTwZWZ2eSC6V6Ku7dd5Qhd77M8lU76NGlORmJt7Bx6XsnRAIwRmNDaUGE/clLFCJmikiPIsuOAr+qal5xO4Qr3vaIvLz7WbFmks/65at28No4D88/D717w8CBMHMmTJgAw4fDvHlmm2PpWQwaBDt3mvV//CM88QSoQocO0KgRfPONOWbr1jBihG0bg/btchj+2BTmzvynj00snASYiFyEmc3dRET+z2tVMmYKTtgwauFIvwIR7Nt7MrdcO4w1q7rRqUtnJk59gwYN63ut388/br2NVSvWcVrnxqxZN4Thj00peL6nvHoXAAcPZbFmTRKffeahefMoDh7K4LulG8nKSmLadA81akSRm7uRJp2GkpOjtG/TkFXr4vjgwyzqpMSSK1n89OFN1KrXkpY976n2GaIdEWSqOgoYJSKjIrEXPv7wPgarh2EYc/w1qgUeihMw2QIPYUa6a2AE2W+YyGhrKPRotLU5b23M7r2/Ns7D7Fmb+ebD58nNvhYz1eYF0g9+Qu7mVzHj6dDzhj2lJscLY8+k/2IMAKswnZjOmNtTW0TuUNV5oSxcefC2R8TEvEC3Tr698h5dmjN71mY2bPAwfDhERcGqVUZgXXcdxMZCm5b12LR1N9OnK7feagTYnDlw0UUweDDMmgWbNkFcHOTmGpuYbRsbOhRGjPC1h4WTAPNiNyZt0+XWt80x4L6QlKgUNnS4oMyRkno1YfFHN3otWc3ebYWd0dhYOKdfDuNeM8/zn65+kn79cgqe7yF3vgxAXl4SGzbciupN/PLL1cBOcnJiMeM7j5OZ+RwiEzitZwa7d8OqdTvo39+0jWnTspg7dzsnd4BGjX5h/hd/Jyo6lfz8iidMjXScSqzZw+qNz7R/e3+cKENl8LaRZeCrgYEZXlyBCd3aHjPV9RBG9EzFvLnbAkvjE5n1s2+G9+WrdnDVAA+pqXDVAA+52en4+jweZvkqMw5/z9yOkZwcbzfQ3Zq8ehqmT7AV+CN+pL0PpxQ+3skpe/b6mRmTbvRZP+XVuzi0ry35+cL06fD007BrF9StC4mJUKcOrN+4i8RE5Ztv4B//gKNHhfi4OAYPNgJrwADYsMFoZh06GKcO2zbWqlWhPezYI5PCVYihqitVdTLQVlWneH3eV9XDoS5fcVTkXhZ2RrNIO5bFAK/n+dDhLJ/ne/mqHSxftQOPx4Pqg5gR1sswxombgG1AY1QfxOPxsHs3tGtnOj922xg82Pxv1w727IHYWOVPFx4gNu7tCiVMrQo45bU4xvpOwIQjWInplXfBTKbp7VA5/Mbb5T5GlX6YtIZxmGHDM4A2mPGRBykMItMRc4E7KZwR0gVYL1Es3OWbyG7vvqPExpqXlOmFRxEbX5PcbG+PpjpANrEN78GDB83PwTc53jgWTr2DmLhoYmPSSarTjKysmk6EnCov7VV1rf1HVdeJyMmqutVMFyqTsEnh4631vj+h7wleiw0b1GbuzH+y4Lv1XHHDf8jOVqKjfYcZ58wx2lZ+PsTHg8ejqOYyfbrRuqZNg5gYuPVW+HSOsHhRPPO/UeLihOxspV5UHe7ak8/qLSGZF+YXXtNuKK6Ow3XazeIeT5fLhm0PJaemFnY6+vcvHCa+4QajleflQWxsFie3a0rascPk5j6H6o+YcR3vQNFmkrtIFOvWmSHl7dtNu7HbT4cOprNjT70YcoPy9dfHOG3AmyUXtArjlNfieap6HrAH6OHVK++OcdEJO7xTraSgXIqRvjdhhFgnjO2rFlIQRMZWK5YASbHxTBOhHTBdopi74MkTzjHkzpfp1SubbdtMg/x2QRydLxgOMgWj272BccH9lvz8G9H8npgki97Br/oAt5CXU48WzWMg+3enQk6Vl7Ui8pqI9LM+/wXWWfE3Sw1REgkpfIp6Ku7dd5Rrbn+RCy803ob5+eYllJpqvvPzoVcvyMyEtm3Ni++FF5SlS2HIEOHg3jZ069SaEQ8ncDytHcu/Hs3+jW+wa814Pq7Vksf21S4xh10YcSlG3Zhrfa61Pp8Twhxl/lAezcwMJUdx4AA0b2Y8Se+9F844wwiZuDgzZPzOO6aeN27ZxWld6yEyETPlwkqGynMkJioxMW2Ji5tAp04ZpKYawXjrrbBkiRmaXrLE/Pfu7EyfEUWtei2Dci8iAae9Fjt4R/VQ1TWYJEthh/dwonfShOHAD5gUtwqkoazCSOQ1mDfytCZteLlRS2Y1a8+85h34bf9kOnU8MTr58lU7uPY6ZcwYmDzZ2ELOuuYCelw0gpTaNTC+MC2BCzEDlCsxpqZJmMHKVZjBy/uB39i2LY+MjHx8Q06F1v3eixsx4yf3Wp+t1rJczCzQ0ngJ0131FLdSRIaKyI8i8mNu1rGAFLa8eA8v2ROTDx02zhyPPgpJSYXDg9OmmR71oEGml75tm/ndti288ALUSIzn6w8f45uPRrJvw3jmzvxnQbSOcB1GLA6vKTZ/VNUHVXW19XkI06jDmmOPTCp7IwqHku+4vbDTkZtr6nXtWsjK8rVxZmcr23fuY8X8EdSqeZyYGDMF4+STJ/DOO2m8914mNWpk8Ntv8NhjxlP1gQfMcTweyMtN4OGH4n06O2kH2tKyZ4XStVUJnO7SrRKRCRg5AKZ3tsrhMviFdzipOhQOE47GCLSmFAaPsYPNjAGy4hN9esqlDVH06NKcmbO2MnBAHjNnxdCiYzcuOLM5Y/s3AsYQ2/Ae8vPtoz8P/AI8inn/r6Fw0uQLQDOys38nNTWfzMyghpyqEKqaiblFY4pZnV7Sft4pfETk3BKOPR7L+7VWvdZlTrQNJPawovfw0lUDjCNGfJwwbZoyeLAZVpw71wwpNmgA//63GSKKiTE2L3tIsehcMJtIEmDFICJylqousv70IQJSSK2eu4c+z5S9nT2U7E1CgtDaaoobNxbW7/TpRkM76+ws/nT1k9SsGcOf+mewdatpBx6PaRe1akH9+kaI1aljOjizZ0VxaF/bYiO3gAlVF4qca+GAqDr33ItIAnAHJtgcwLfAa2oyyQWUk+MTdOJJLcu9n20bW5OdSTQmkUI0ZihxM2YgoAuwHGPYewmjXiwG6ngl0DyUn8cr7aML3G5H3HMVg/72AukZ2Xg8cFrXFiT3upMvXn0ST34eJm09QA61U+qw8ON/0O280VYk7GiMzF+M6Xt0xeSnyrXWnQGMAnoTHZtAfq4HyCEqJpluF95f4NXonSZCJAElm5p12gTEjrZw6l9/UtWeJa0XkbOAkUALfFN5lCppRWQUJkxRHlYKH+D9krIf9OzWSpd95Xyuzv4Dn6Jug81cNcBT8MJZ9MNG6taFY8fMi+ngQUhJgejowmXZWfHk5UF8vJCTo5zWtYVPvMRIEGBn79hQVt2fhhlGqI2xjR8GbrZzjQWKij7zZVFSZ7To1BnveqvX9lbGv5FDVBRccw0kJ0NamvnOyoJJk8wwYc2keMa9nk1UFDz+uHHwiYsTEhPiyMuDLqc2RVVZ+8vuE85RHPfM7ciKzzcF/B6URFnPvVM4KsicpKKN+qG9O+iVnclKjMAaTmEIqq8xAu1GCgME2xqZnc91aXwizzZszhNt1OfF9tnnSu3aWmDwnzYNPv64Frm5N1Po2GGCh4p0IibuXRKTW1jhcLxL8xzG3PC1VbLPgG+s0ryJSfl0KWa4cTTJ9b8rcExYOW/MiceTMSSnfltpl30/BNkvGJfrnzBqJADliYhuaWTDVbXEkGdOCjLvF1mnU5qc8MJp0/NupkxRUlPNkOJ1luiNjxdiY+JOEFpFiQQhBmULMhsRqQ2gquUOIOwPwRJkULwwK67zYmtLTToN5ayzzdDy/fcbe9ngwYXzAFu3NpPaO5/SvMRjVJTS5pkGmmolyERkhqpe7e3F5E0wvJcq2qiv2LmJVeqhO/AzheFc2wMJEsVx9eAd5rUtxt3CDu/ZRaLYN+dvNLxhCq+Ny/J5icXHGzvItm1mGGH58kTwOVo3TIf1Z+vIAhIHml3Mdvus3+2sksdClAc8CZjJAI0L1ifXN0FDf/z4UfLzVkORq4uO6UyfQa+W+15544cgW6qqvSpzjnATZKW9yAAryO+WAi/E77+Hl14yv48dal/iCyuEUeorREmCTESuU9V3vIIH+xDoiPbBFGRghJndeflh+XYys3IKYl8eOAB33J7Avg0mvkPdNrcSG5dDWhrUrGmcevLzzVBybq4ZemzXujHbfj1QojZeGZwSZuEiyJwap7atkLYXU9FP2GCHnrKzRdm+gbUlio+ataNOkYSZiRjdJp/CCc/S6ywfT6bZs6KIjQUR0xMbP958R0VHU+ixZAcPtQOENgM2gQ7BOP3bZ/VOrvg80Bvkdhp36EJyvQ7WMV7wWW97LxaG1/G6OufsaN+IyGgR6V3ROYSqOr80IeYUtofi/EUb2bjJw9ChsHGThx9X+Ca3fG/8vaQdbM+QIcLcuTByZOE8oOWrik+OvLjH0xElxMrADkdTq4RPRLG4x9MFTj2xcTk0aGDsWbYDj7dtMzExin79jKfieeeZeV+212KnTnDhhcq+g7t4fXw2/frlcFrXFj5OPZWlorkKIxWn3O/tJ/MPQFwxgYPDhodSG7M0PpHFGPf6bphhw0xLcx3VsBnTJYp2mFjVuRj3+s4iPhOevT2ZDu1rCxpDWloS77+fyODBSXz2WQ3LNvYmIm0ReQORXcAijDlhH9ABk44hi0JPxUlER/8GtLXcdxeRkvw2c9/ozyl9b6FmvQRMqGLbq/El0JWk7V+Hx5NHzbpfIVHLgMlAO6Kj36Xt6QODfVsBemGm2D1DodPH806cONDYL7PatX07JvHxvnOlbCeALT/+H8m1Epg717z0ZhXj0BGG8RErjaraEyefLRo02AocHHEsW2I08LQ047Dz668mC8Hnn1MQfgogJ0d9PBWhsBNje6keO4bPROlAU52EmdOeQ82B10Vkq4jMFJG7RKSbw2UoFTvVSo/4RAZhBum6Ah3jEwBoE5fAjGbtmNe8Ax8378DnzTswo1k7Pm7WnoW7Xi/oUdkvMdt9OiamDqq34vFsJj//Vo4fbwpsAW6mXr1oZsxI46qr0omJiQYaAbdgHDqGAGcDNyMSy8yZafz5z8dpdJIy6Op0Zs7Mon//gwx/bApxiSl07/8wfa99jeT6p4J0xbiidAE2FaQ8r1WvPchNwCby869h87KZQb+v9lzCIp/zy94z/LCjsRQNHZWTU/wwfcMGtVn+9WiOHWrPHbcncNgK7guEdWSOALJGRBaJyH9E5BLbVhaJdEiIZ9Y047TxxRcmduYf/gC1kxN8tKnTurYoGJGZPt1s7x2ZZfp04+xjj9gU56kaCKqLMAuJs4eIJAJ/w3gvNFHV6ECfo7Lj5cUl0yxtAqr3+HlxXky1mt9NxvG1GLvUSszUqVjMMN8i4uOzLM+mRLKza+Jr57JtWm1JSckkP1+Ii41j3OvZPuPzp/QvnNVveyim7V8HbMLbHgZYtjJHbWQNMdpYY1W9SEQ6Ar1VNaAztp2wkdm2sY2bPLRuXeg2X15DfVURYP44e4hIc6AvJlnmxcARVe0WyHIE20YG5r3wTMZufsnLwRPlITtbqVsngS9m/MtnrmhxjkBr1u8qiMxSXm/EyhIsm1m42MgcnUcmIv/ENOSamDfzcCAsJz4UlwSzJGyPpqIBgL2z9cbGxlKYwv5qjKZlpzT/kXfeyWL6dPj88yiys+tg7Fz3U5hY73miouL4U/8cDu9tA8DsWYWOBj26NCfTq0x2GCXjqXhiMNHilgWZyRi3Stv9ayMmsXbYhB7xlymv3sWQO19m+7Zf+W0nfPFFDvn5yhk98tm776hfL6SqIsT8wYrMchZGkHUF1gLfhbRQFaRudAzPJ5v3QmlzRIubWxZKhj1+AWMeKzu6f6Ti9NDiX4B6wP8w+dw/8rKfRSSd+zcq+F00APDyVTsKHAOOZ+6nXbsJREW1xURi9I4VYuabrFmTREaGB/gdE42pA8YStwiYgceTxfzF7Tha574TbHDe4/PeeAe4tYOJeifhc9BGlqqqM7Cic1ipW/JL3yU8sV9SBza9QbdOLbjkYmHKFOWkJtsKopuXRFW0hfnBDswY9+eq2ltVL7EyYkQ0kVSPl6fMpdtF7creMEJxVJCpag+Mw8cPmKjnq0UkIntmACP6juTSjNv4+Eh/gBM8FXt0aV6gpXXqBF27ZjB9eiYxMbF4+0SKxPLooyatQ2GKzpMotJGdBTKI5Pqdad/3MeISU7j66VQ63PLuCSGMimJrZn0GvVqQaM87CZ9TNjIgQ0TqURhE9kxMPrKIprjOS3FUE1tYSXTHhKe5RkSWiMhbIlIlwrNHUp16Z5evajg9tNgJM7zQj8Ig8WE5tFgWdb6dxsrT/0bG4a3sXduZF5N2WmPgccybp/TsZuaEdDp7OONe9xAVZdyvr746CdUcRCahOo7ExFjy8tP45ZdECuPo30ihl2I8ROWTXO8op/S9pcD2lXF4KyvnteaH929hztTLTojAXhohSsJ3P/Ax0EZEFgH1gQFOnDiY2LnHvId4ixJJL7tgoKorRWQLxrupL3Ad5h0QccPKNj429Ca3Mevn54rtTAai7iuSTb4kFozNdXTCtFM4PbT4H8z8kf8DTrE81/7tcBkqTef+jeh9+t8K0t1vXNGddRv2Me51MyekZ7fCOSFxcSYnlccDe/YkoXor5nm+kZNPjuKKy9Ope9LJlpehlUKdqzFx9jcjMoTY2IQCbWr9wokF57Xnh/3l1oXlapyBSNdeXqxwRP0w88dvA05V1bCMs1keShvirabDiCcgIj9ikkL8GZOK5xxVbRHaUlUO7+wYvbIzGdD9wVAXyW+qoiejoxpZOExmDQSXZtxG+uG/F2o1PEB6xus+AWNtMjM9bN1qsvoePerB1rpUH+SXX8bTvFFh1Or1CyfiyXqb9GPpPtvlZo8vOF4gtKlT+t5iaXWTC3KWBQsR+UsJq9qLCKr6ftBO7gDFGfUjLTKHA1ykqvtDXYhA8ktONjMwT/8woEN2JnO6Ps6lKx8Lccn8o6ppZmEfgTrc6LP8URaMzSU5KQaRwjxCSUlRxc4J8WhuwaTZunWjKIzkMZq+Z3Zk7sx/EpeYUmDLSts2hpTaNQuOLfIcKbVrMuzxC4DAaFPF2c2CSHGRXOxPlejYeFPFInMEhKomxMBE8BlNYUyeJhgtLZI08KqkmYV9Zr5QUnQumR21AyAqKo0OHSbw66/jEYkiIyODIUOEM3q04r3xhcNLWVlaoJE1bZrBwYMTgAkk1W3HjEnFa0IfTLmVCwe+Qm7ueGJiYvhgyj/olzKXry7qSE6mc9pUIFDVm0JdBqeIpJeYS+UYWqcB//j9VyZh0jJ0BdZmZ7I8M4MrGgzhuEepESU8Vq8JLePiyzUn1Unen9C3SqR+CY+7GabY4+AzgBfysrj55pf5dI4ZRurZrQV1G2ymRg3vSbHCoX3RPkZfOy/RiBFmNv+2bZl0v2IqAA0b5LJm3U6+n/USudnppNSuyYKBt3LN7S9y+eVZDB5swhmNGjubfmf/k7H919Hv85RKR6p3CSyuAKta2B3Y9TlZJCBkqtI2Lh4BtuTmcHJcPBkeDwnANRgjwGhMtsCR+39jCFZ2DI8ycv9vtIlLIC0niyjgQHYmT+7fxYsnhYeJsF7G1wx7vH/EzzFzZGhRRD4RkY9L+jhRhorgnSX6/nzlpzWFti/byL92bWGYouLcr6MklgULTPT7BQsgL9+373DOZS+Rl3MNsJmjaddw4cBXSDtmhFhqKgwocsyqNBzgDyLSTES+EZF1IrJWRMImDa7rzFE6IvKX0j6hLl9J2B3Y1aoMUg89UNJysuiTk1Xg3LEtN5scCv2MH8BERM3ECDF7hmgmsCkni0sxsXoutf6HE5enzA11ESqNUxpZRAaH9c4S/UJMFKd1KrR92Ub+/gOfKtX9+oweLX1SfXyzxNemdeRoEceO3PF07gyzZsGAASdG1YaqZ6gtgzxgmKouF5FawE8i8qWqhnRSjCvA/KK0zBaKCYoQVizPzGB1diYbMYInF/gRE0zuRgqdO/6LyTPRHpObog4mAVMs0NH6bLSOqZiYXI0xc1Bew+Q9DKchxkh/pzgV/X5BaZ+y9g9Vr3zmxAGsP7M93WsmsK5nWyZNOjF6RlkRNoqutz0UbYo6dsTGxtC8mbBpE9x4IyxelFBs1I5I0cwq2ytX1T12JmFVPYZx324S7HIXx959R+nb5Dbq17+Rh/bu4FB+Hofy83ho7w6u2LmpYJmLQVVvKuVzc6jLVxwj9//GzRghtgs4DROi4CZgEIXJkRIwk2Q2YsIXxFjLbgbWYXK2p1IY3mAwhUmYTgN6ZWfy7IHdTl2WX0TKO6U4nJ4Q3Q4YhemwJNjLy0p3T4h65Sf1/yOf9v9jpY5R1D27aK/n20/u5ZzLXuLI0fHUTq7JB1P+waixs9nx6w7OOqP0YKIR0osKWK9cRFpiokQsLbJ8KDAUoHnTeuUvoZ8M6P5ggc10jNeLqOgyf2N0VidE5BLgVHyfe2cyoPqBbRfLpDB43CGv3w9iZm+3w2hf2V7r7seELfEeVnwQeJfCIcZx1r69gZlYSXhzsh26Ov+JkHfKCTit174JPAa8iAn/fhN+aIVWPMY91u9jImL3yoMmyPydTV9aoGB/6NSxGYe2jPFZ1u9s//cP94YXKK9FEakJzAbuVdW0IucYD4wHE/0+EOfzxh5GLDp3qEtONor6LOuck8WWnCxG7N3JEfWQIlGMatiMOtExYeu5FmxEZBxQA/PMT8BEdPnBz337A2OBaGCCqv4nGGW07WLbMRrXcMzQoR3mezTmhZOO0cRWea2zU+Lme+072lpma3B1JIpWcfF0zc70ScIbjoT7O6U4nJ5HlqiqX2HSx/yqqiOBS8pzgJJ65da6oSLyo4j8eCS/4vFoyxMSxt9Ye8HEnmMW7li5qB4UkX/bHz/3i8UIsalOT6C2hdih/Dyi1UNHTGiafpiXU64q5wENgPOBWIURe3cySD1sAgaphxF7d54QCSLchpWCTB9VvQE4bCXU7I0xL5WKiEQDrwIXYUZx/mql/wk4tmPXXExC3baY0N1TsNPZmqHGQxhBNRUjidsCbwBHMA10lbVsIqbn3Q6TeHdUw2YFSXu7SBRL4xN5KLVxMC4lIETaMKPTXcJsEYkCNonIPzBto6a/O5fWKwffnvnJ8QkV6pmXN66ZP7H2gs3l1hyzFZ9vcvzc/lLRXrmICOa9sF5VXwhqIb3wFmDPHtjN2uxMGmDGSa/H9Mp/9+TREGPIfwDTQ5+AEqPKG5i8NacCh9VDVk7WCZpbNcLOMHRcRBoDBzHZY8viDGCzqm4FEJFpwBUEYSTG27FrELA0PtFniPihvTvolZ3JSgq1rjOBXy1Nq1d2Ju0x88myiuzrTSQNO0fSHDOnNbJ7MC+zuzE2z+sx4d3LxIleee/Xzi33Pv6mUwk2ERDZukK9ckweq+uB80VkhfW5OFiF1KWLmNP18QIHjlt2bWFDdibZwD7MMMDZwGEgB/NGngrcihknj8YY9zd4fQuAKo/j7SwgwbqEcGSOiKRgRtyWA9uB9/zYrwkmsLjNbxRx9AnUKExZ2pK9/ieMlhapmlZ5MHPMImO0x+lYi8sALK3sbssLrUyc6pVLr7PKvU84JdAL87HtCvXKVfU7cOatb2th3hPhz8NX45qLEU7PY15oN1jrXsBoaXkUGvzvx6iem6x9ZwEfYtKkZoYgM3sIeU5Vs4HZIjIH4/AREJU0EKMwUHYi3bLWR5KmVR4uT5nLGML2nVKAoxqZiPQUkdWYoeTVIrJSRE7zY9eg98oDmSohlITx2HZFe+VBp+jE5jXZmUzD9Lq9U6A+iLGR2J5oWfh6ru0CUijMNPccZty8O7AGSMOkRe8KdIwvcN6rDiyxf6hqtqoe9V5WCruAZl7/m1rLXBwkjN8pBTg9tDgJ+LuqtlTVlsCdGE/GUlHV71RVVLWLqnazPp8FqlBVRYjZhGnDe05Vj6jqbKAFcDLwVIjLVOzE5miMdrUJaA4FwWGfw9cTLQHv9KhmeCMTeBsjBCdjPJl+BrpgJst2FmGaRLEuO6vKzzsTkZOsjmqiiHQXkR7W51yMiaEslgHtRKSViMRhpmOFbSSgqkyYvlMKcFqQ5atqgfXQGjYK6ZNc1YSYTRg2vIr2yoNCceGl7MnN3nOJplPouTYDk9K6HaZHloEZWuhufecAiJAHLMZEfHiMQg0OEU6JS2CweliDVgfvxT9hZHxTzOjrGOtzH/BIWTurah7wD+ALzET4Gaq6NmildSmVMHynFOC0IFsgIq+LyLki0k9E/gvMt3tqDpelygoxm/cn9A11EQLRKw84JYWXsm1jdSnUwt7GpLKOBZIxNrLbgU7xiSQC3TAaVzcgHvikWXtOjU/kLYwWZmtsY4BT4hJ84ncOw7h9V1VUdYqqngfcaCXRtT9X+OuwpaqfqWp7VW2jqm5csBATrsLMaUHWFeOp9hgwEjgF06Edg8PxGKu6EIOw8TqqVK88kJQV5Le4uURvYDStbzGTmc6FAs+0dnEJzMEIsTlAuzhj97K92JYjTJcoOosU7HNyXDx2HvBwnhQbYBaJyEQR+RxARDqKSHjnH3IpkXAUZk57LZ7n5PlKojoIMZtQex2p6hRgiohcZdnHnC/D0kUsuWN+mdt5zyUajBFYv+Rks0g9BRHO35aoAg+1f9VvwrMHdnMgJ5tUK1oHlO7h9lBqY549sJsuXhE+qgFvWh/7wduIGbWdGLISuVSKcJtj5rTXYsNQ98wqMlcs0gmTHlRIeuWLezztlxCD4ucSlaZB2QLro2bteLZhc79CTlVknypAqqrOADxQYPuq+KQvl5BTL+Nrul3ULtTFKMDpocXJGMOt3Q3dCNzr1Mn7LH+0QnPFqgJhIMzexMG6r0iusOKETFWd7OowGSJSDxMkGhE5E+M34xLBhFMQBqe7g6mqOkNERoDpmYmIIz2zzv39iYhTtQnxhGlH6j59/Z6A5gorayKsi1/cj3GbbyMiizD+MwNCWySXqoTTGlnIema1ngnL9EeOE0LNzO2VV1OsfHL9gD7AbcCpqroqtKVyqUo4rZGFpGdWnZw7/CFEmpnbK6+miEgC8HdMmEoFForIOFWtVpGTXYKH016Ly0WkH9ABEz9vg6oGVUVwhVjxOO11FIq6dwkb3gKOAS9b/6/BTNEbGLISuVQpnPZaHIjJSbYWuBKYHsyJ0K4QKxmnvY6sXvndwJPA48Cd1jJ/9u0vIhtEZLOIPBzMcroEhU6qeouqfmN9/obJcOPiEhCctpH9y8rwfDZwAWYeyWvBOFHNU1znjrJw2OvoLczL62XgFev322Xt5GRyRZegsdyyiQIgIr2AH0NYHpcqhuOxFq3vS4A3VPVTTEg6lxDhoPNHRXvlBckVVTUHsJMrukQOpwGLRWS7iGzHxNg8XURWi4jr9OFSaUQdzItk5SLaBfwR6IEJFv6DqnYNwrn2A7/6uXkqcCDQZSgn4VAGqHg5Wqhq/ZJWisg7wCuq+r31vxdwp5Vss0REZADQX1Vvtf5fD/RS1X94bTMUGGr97YBJGeYv4XDfw6EMELy6b1Hazqrq73NaKuV85iE87ns4lAGCVPdO4bTX4tVAf+B5VT0iIo0wkX8CTnluroj8qKo9g1GOSCpDkMth98p3WP+bAxus/HSqql0qemDv5IrlJRzueziUIZjlCJSg8uM85XqhhsN9D4cyhFM5KorTXovHgfe9/u8B9jhZBpeQ0b+C+7nJFV1cXEqlWgR6cwk9leiVFyRXxAiwwRj3bRcXFxfAFWQ2FRqWCjDhUAYIn3IABaGs7OSK0cCkACdXDIfrDYcyQPiUwynC4XrDoQwQPuWoEI46e7i4uLi4uAQap93vXVxcXFxcAooryFxcXFxcIppqL8hEJFpEfrbmuIWqDCkiMktEfhGR9SLSOwRluE9E1orIGhF5z9/wUZGMW/cFZXDrPjRlcOs+QFR7QQbcA6wPcRnGAnNV9WSgq9PlEZEmmDiIPVW1E8apYrCTZQgRbt27dR9K3LoPENVakIlIU0y4rAkhLENt4BxM3ElUNUdVj4SgKDFAoojEADWA3SEog2O4de+DW/fOl8Gt+wBSrQUZ8BLwIOAJYRlaAfuBN62hjgkikuRkAVR1F/A8sAMzQf2oqs5zsgwh4CXcunfrPnS4dR9Aqq0gE5FLgX2q+lOIixKDiTv5mqp2BzIAR1OViEgdTCDeVkBjIElErnOyDE7i1n0hbt2HDLfuA0i1FWTAWcDlVjTuacD5VmBbp/kN+E1Vl1r/Z2EauJP8AdimqvutZJfvY9LSV1Xcui/ErXu37iO+7qutIFPVEaraVFVbYgycX6uq470RVf0d2CkiHaxFFwCOJgrDDC2cKSI1RESsMoTaEB403Lr3wa17t+4jvu7dEFXhwV3AVBGJA7YCNzl5clVdKiKzgOVAHvAzER6yJoJw67764tZ9gHBDVLm4uLi4RDTVdmjRxcXFxaVq4AoyFxcXF5eIxhVkLi4uLi4RjSvIXFxcXFwiGleQubi4uLhENK4gqyQicm5xEbRLWh6A810pIh29/s8XkZ5+7NcoEOURkfoiMreyx6kKuHVffXHrPrxwBVnkcSXQsayNiuF+4I3KnlxV9wN7ROSsyh7LpdxciVv31ZUrceu+RKq8IBORJBH5VERWWjl3BlnLTxORBSLyk4h8ISKNrOXzRWSsiKywtj/DWn6GiCyxAnwu9pqR728ZJonID9b+V1jLbxSR90VkrohsEpHnvPa5RUQ2Wvu8ISKviEgf4HJgtFW+NtbmA63tNopI3xKKcRUw1zp2tIg8b13fKhG5y1q+XURGWcf+UUR6WPdmi4jc7nWsD4Fr/b3+UOHWfQFu3bt1X7XrXlWr9AdTkW94/a8NxAKLgfrWskHAJOv3fHt7TJqFNdbvZCDG+v0HYLb1+1xgTjHnLVgOPANcZ/1OATYCScCNmBn9tYEE4FegGSaA53agrlXWhcAr1v6TgQFe55kPjLF+Xwz8r5iytAJ+8vp/Bya2m309da3v7cAd1u8XgVVALaA+sNdr/ybA6lDXrVv3bt27de/WvapWixBVq4ExIvIspoEtFJFOQCfgSxEBk1Buj9c+7wGo6rcikiwiKZiKnSIi7QDFNDR/uRATqHS49T8BaG79/kpVjwKIyDqgBZAKLFDVQ9bymUD7Uo7/vvX9E9CymPWNMCkjbP4AjFPVPOs6D3mt+9j6Xg3UVNVjwDERyRaRFDU5k/ZhHrpwx617t+7dui+kytZ9lRdkqrpRRHpgei1PichXwAfAWlUtKbV40bhdCjwJfKOqfxaRlpgekb8IcJWqbvBZKNILyPZalE/F6sQ+Rkn7Z2IeovIcy1OkbB6vYydYxwxr3LoH3Lp36758x4rIuq8ONrLGwHFVfQcYjUmVsAGoLyK9rW1iReRUr93s8fSzMcnmjmKGAXZZ628sZzG+AO4SqxsoIt3L2H4Z0E9E6ojJ3HqV17pjmF5iediIb4/tS+A269iISN1yHq89sKac+ziOW/eAW/du3RdSZeu+ygsyoDPwg4isAB4DnlLVHGAA8KyIrARW4JuHJ0tEfgbGAbdYy54DRlnLy9t7ehIzJLFKRNZa/0tETebWZ4AfgEWYMeyj1uppwAOW8bhN8Uc44XgZwBYRaWstmoBJ4bDKuv5rync5nAd8Ws59QoFb927dr8Ct+ypf9270+yKIyHxguKr+GOJy1FTVdKv39AHGKP1BJY73Z+A0Vf1nAMr2LXCFqh6u7LHCCbfu/TqWW/fBLYdb9xWgOmhkkcpIqze5BtiGcX2tMNbDsL2yhRKR+sAL4diYqxBu3Vdf3LqvAK5G5uLi4uIS0bgamYuLi4tLROMKMhcXFxeXiMYVZC4uLi4uEY0ryFxcXFxcIhpXkLm4uLi4RDSuIHNxcXFxiWhcQebi4uLiEtFU2aDBsQm1NCGpfqiLUW1IP7TtgKqG/Ia79e484VL3KdHRelJMeYLTVw121QxdQPpwqXtHBZmY1Nx9MakAMjGz178MxmzxhKT6dL/omUAf1qUEFk7966+hLgO49e403S5qx8vX9QyLuj8pJpaJJ7UMdTEcZUTfkTQI4fnD5bl3ZGhRRG4SkeXACCARE4V6H3A28D8RmSIizUs7houLS3jx/oS+DHokPBMGVwdG9B0Z6iKEDU5pZDWAs1S12Fw2ItINaIeJzOxSRRGROhRq49tV1RPiIrlUgg0dLvB7W7fuXYKJI4JMVV8tY/0KJ8rh4jwiUhu4E/grEIfJWJsANBSR74H/quo3ISyiSwUYtXBkmdu4dR88XG3MF6dtZK2AuzDJ3grOraqXO1kOF0eZBbwF9LXSpRcgIqcB14tIa1WdGIrCuZSPYY9fQOr5ff3d3K37INC5fyPICHUpwgunvRY/BCYCn2BSaLtUcVT1j6Ws+wn4ycHiuFSCBWNzWdzDbyHm1n2QuDTjtlAXIexwWpBlqer/OXxOlzBBRLpwojb+fsgK5OI3c5JeZ3GPPRXe3637wOAOKRaP04JsrIg8BswDsu2Fqrrc4XK4OIyITAK6AGsp1MYVcF9mYc6ohSNZXYn93bp3CTZOC7LOwPXA+fg26PMdLkdQyck8wvqFE8k4vJWkOq05pe8txCWmhLpYoeZMVe0Y6kK4lA9/nDr8wK37AOBqYyXjdIiqgUBrVe2nqudZnyolxADWL5xI2oFzyM9bTdqBc1i/0LVlA0tExH2ZRQjdLmoXKCEGbt27BBmnNbI1QApmMnSVJePwVtCPgMagw8g4PDkoWlqEaX5vYV5ov2OGlQVQVe0S2mK5FOX9CX3LNUfMD9y6rySuNlY6TguyFOAXEVmGr42sSrnfJ9VpTdqBMaDDQMaQVKd1gZaGfkTagTGsXfA6UVExlRJCRY+5fuFEul44LDgXVXkmYoaVV+N6rIYt86+Zz5IOIwN9WLfuK4ErxMrGaUH2mMPnCwmn9L3F0pQmFwipHz9+1EdLSz/0OnBbpYRQcZpfGLNfVT8OdSFcSmfJHfODcVi37l2CitOCbAewR1WzAEQkEWjocBmCTlxiyglCqaiWhsYCw6iMEEqs3Yz0g+cDh4C6JNZuFoDSB42fReRdzBxCb23c9VwLA7pd1C6YcRPduq8grjbmH047e8zEd2gh31pW5Tml7y0kp35LVEwnoqPfBXIwzporC4Yfy48AFwErrG8JWHmDQCLmJXYhcJn1uTSkJXIBzETnIAf/deu+ArhCzH+c1shiVDXH/qOqOSIS53AZQoKtpa2cN8bYtRgGjAbOJTm1Laf0vaXcx8w8ugN4ABOL9QEyj74V0DIHElW9KdRlcDmRyk509ge37l2CjdOCbL+IXG6Pl4vIFcABf3YUkRRgAtAJM/fsZlVdEqyCBhrbwzBt/zqgNmY4cDVGMyvfMWwHkcTazUk/5OtUEq6IyBTgHjvmnhUNfYyq3hzSgoURGYd3sHLei+TnpREdk0zXC+8jqY7JbhQMD9XKTnT2F7fuy09ltDHvtpJYuzkeTw7HD+8GyaVm3Xac2u+2cPZurhBODy3eDjwiIjtEZAfwEDDUz33HAnNV9WSgK7A+SGUMCgUehmzCBDnob31vIu3AOaxd8Dor541h0fS/s3j6fSyadgcr540hJ/PICcew56eBkpz6LdExnUlO/bZCWp2DdPEOHGslU+0euuKEH0aI/RXYRH7eX1k578WCdYGemxjAOWL+4NZ9Oej92rmV2t+7raQfPJfjh/cDt4BuJP3guVVyXqujGpmqbgHOFJGa1v90f/az0kGcA9xo7ZdDeVSZMMDHw5DhwDjr2/JiPDgOaIapktpAW9IOnOHjzVjUSzHz6GT6DCo1Q044ESUidexs4CJSF+dHBEJCSdpU0eX5eWkUtAmGk583jpXzxnBK31sC5qEaZKeOkqi2dV8Rzn333FLXl9SeCjX6o4D9rnkAGA/cX/A/43D4miAqilMZoq8TkYJzqWq6txATkTYicnYph2iFyWX0poj8LCITRCSpmPMMFZEfReTH3KxjAb0Gf8jJPMLKeWNYPP3OE7SppDqtjbciu63vBOA585/ngFiM/XuF9b3WemFtLfEY4TyUWAxjMJNinxSRJ4HFmAuv8pSkTZ2oYccDz2PaxPNAn4LtA1H3IczoXG3rvrz4o42V1J4KNfo+FLaj0UAS8ELB/wh7b/iFU72iehgXXDt1g51gry3QD2Mne7iU/WOAHsBdqrpURMZa2//LeyNVHY/pflCrXmsN9EWURWkTlIvOLUvbnwPMBd4F6mIUzPuBaIwwywK6EV/rpILjFzc/LVJQ1bdE5EcK42r+RVXXhbJMwaC43nJRberYwQksnn6f1XPeA0wGTcQkT54EvIZ5ZHJAIf3QZk6/YlSl6j5IE539orrUfSAoSxsD0x7Q2kBX0DjS9h9i4dTbMe+QVcBLwL2Y12sCxmF0AvAqUTG1aXv6/cUeN8IiBfngiEamqmMxgug9oD5wgfV/F3C9ql6lqptKOcRvwG+qutT6P8vaP6wwL6xhQDToStL2ryvQzHKz0sg4/Bv5eVmk7d+CmXnwNcbhoylGI3sOuBZjO9sMXMvxw78VHMP2fOwz6FW6XjgsIhqZPYwMoKrrVPUV67OuuG0ineJ6y0W1KfVEWz3nzcDVGO/0q4EtwM0YzexqTIemCyIJla77IE10LpXqVveVpcOGr/zaTiQB847oCgwCzsK0m83W8nut70SMNWaTtf4sPPnXsnlZ8TOeIjlGrGPOHqqar6pfqupIVb1NVe9V1ddVdYcf+/4O7BSRDtaiC4Cw69EVvrBsYbSpoEF4G/JN40rAqP/2tt9iNLTFFNpJHgDiI65RFeEjERkjIud4DweLSGsRuUVEvsB4vlQJCjszjQuGhtuePtCaO9jO+s7C2xYGh4v8z/H5r4VziAsobRjbmwAH/y0v1aruK0Of5Y9SL+Nrv7Y17WE4phPs/W23n8XAFMy8Uu/lq08wV3i3o7QD609ou5GC016LleEuYKqIrAK6Ac+EtjgnYk96hiV4O3JkHN56giHfvKzepFBwdcVoaLEUjm+/APSMuEbljapeAHwF3AasFZE0ETkIvAOcBAxR1VmhLGMgKc6WtXnZTPLzrwE2Wd9FbWF1ivyP9zlGzTptTjiPP71nByY6l0p1q/tAsGBsbpnb1KzTxmofnTHtxf4utK3CEAo7y7sLtytiX/VuR2hTjE0t8mzwEeM5pKorgJ6hLkdp+E569p3fZYYVn8cIreeBOOAmYDqm8TxgfXuAyRivxprY6drCPPxUqajqZ8BnFdlXRJphoqc3xNyM8dZQdVhSnB1z2ceP+NjI4FVMJ2Ycph1kYWxj4zBCLI/o6HdR3qRmnTbF2sPK8mJ0YqKzP1Snuq8ofZY/Wq7t7TaWfmgzyBo8eceAHzHtpy5mZKcuxtb6FkY7y0eioVbdowXtKSfziKWF2R6O04FziY55K+Js8BEjyCIJ75eZmZCoeDzHMQLqdUyPPBMj1CYBnwNTMY0Pkuu3IT8vi4zDf6BQwM13/DrChDxgmKouF5FawE8i8mW4OgsUF2dTCjQwuxOTgOnErMIMKw8HGUN09LtGY9Nh5OePITn12xIDSReXYcHGqYnODhBRdR8oFozNpd89sSWuL9rGVs4bQ9r+szHviucptJHVAwYDcwCoVbeWz37rF060tLAXMI5mk0mu3zacM2iUiKOCTETigauAlt7nVtUnnCxHsPFuaAUhqawXjv1y+u69f6CebpghxnTMsGJdoIPliv06kRJ+Kpio6h6Max+qekxE1gNNCDMbaWkeX6YTswozB7gzRgNbhRmCBuMcNIz8vNfwN5B029MHWnbXcURHJ9P29PsAxyc6B5VIqfvKUJI21u2idqz43Nf/LSfzCGsXvE76wU0Y72YPUTFJlkZW21o2HGhn7ZGNEVDjgYVkHD6/4DiFUYa6YnzwXgNiaXv6IwG+QmdwWiP7CDiKccE/0YJdBTl2cKOXq6yHtP3HWTz9PmttXeu7Jsbz6CSgmzX8NMmKkh/+4aecQkRaYqTB0jI2dZy1C8aRfjALiCZt/zFWfTmGzGMHMUIrFtiOGR37DaORd8EM+3g7/NSlQHMro84L7W5Ge/t9yxxmZFbdfLXhXPcVpbQhxbH919Hvc1+tbP3CiaQfPB2oBSwHYvDkDQYexLcd9ba+sZYb78b8/GxWzhuDx5NH+qHzMa/j0ZhwecuA0WxeNtPVyPygqapGvJdS2TPrC2PlqScK35fWKvLzumByDV6K6TG9ALwBXIyR8c8TFR1LzbrfRuScsZIQkWiMvcNbGy/Ta9XatyYwG7hXVdOKrBuKFeosvkZqwMpbHtIP/grcgl2fmccmYFyeh2OmVXyOcacfjdG2vR1/2lpHmYsZFmpHcmrHUuu8qI3syMb20KxpEK4sMDhR9w2jq7alxDh81QZOA6YBHTFCzLsd/QjkEhWzBtUsomQt+XmZwE2gD5jhaF4H/ZRCz+ipRHrUD6e9FheLSGeHzxlwSvIYWzHvBZ9YeSvmvQAFrrJeLrAMB3IpDBtzP8Yc8ABGkK0CciNmztj8a+aXuY2I3AXsBb4EPrU+c/w5vojEYl5kU4vLYaWq41W1p6r2jE2oVY6SB5Ki9entQv8gxsXefnFEAecBDazvaEydnwvspEadVmXWubd3ZDSjaRtXIziXFQCcqvuU6OgAljq4lNfB48jva8nPy8d4Od8I3IqZi3oesBLTGU7EtLtY4pNqk5TSCpP6MZcCM4UOA42mMKrQaMxIQOR5KnrjVIiq1Zbb/NnAchHZICKrvJZHFMXNFQLwFHGxN/+Lulp3xjQeewK0HaKqq7W+N9CZGiktnbykCrFgbC6jFo70d7LtPUAHVT1VVTtbny5l7SQiglFf16vqC5UrcfCIiqlJgesyozHeiHa9P0fBy4LnMYLrYoyGdjGQDFyHmVVyETkZe8s8nz3Vo4a059T4qTyVmhzgKwooVbrunWDN169iHIT6YCbLdwQ2YPIQnoPxgh2AmRR9M5lH95N+8Fw8+adhYrgWhqgyMSnWAB2JinmPmvUSIiXweIk4pYs7nkSvQzP1a05GRei3pRVLfhxDXt4wYmLG0LtnKxaMzSVqqj0HzPZOi0WiPKhnFdAB02PyYOwk+ZihpKmYiYvHEFlLXFwONWt+z/HMDDYufJyWPe8JO21swdhcFvd4msXli62yE2MfLS9nAdcDq0VkhbXsEcutO2wwPd/VnOjQ0R3TS+7ktc6rh1wQ1HW4tf4t8nLGl3m+M/5yOmN+fCmshxO9qNJ1X1780cb27jvKynlTCswXpn09gOkEtaVQ+38QE34qF3gM36DkD2Da1DxgBKajlI0JvtAV2I3Qme79S4sOGBk4FaLqV1X9FXjK/u29zIkyBJIZk26kd88F1KrZid49FzBj0o0A9D49hZiYiUBbYmImUvekutSq1x6kK0aIrcCElfwaI9C+xoSdXIGIMHBgGt26ZTFuXAbxcdC310a2/xg+02ZsDWxxj6f93kdE7heR+4GtwHwRGWEvs5aXiqp+p6qiql1UtZv1CbsXWZQkYmyhP1vfNax6/xljGurptc5bW/OeEN0ZkeeIjS89atOohSNDOtHZX6pL3ZcHf4cUr755cjEBpUdjOsBN8Nb+k+ufQnRMbXzbVIK1TWfMPLIJINcTHVMD5C0ifSixKE7byE71/mMZgE9zuAwBITHxGPHxmSQmFkbZf33MbdRMigegZlI882f8jQ0LhtC31wJMT6hotPvC/zVqRDFwIGzYADNnQuvWsHWLhyN7f2HjwsdLDEHkBBURYF7Usj47MDaSOK9lVSbOnukx2xrYKojKIzbubaAtMXEHSKrzP6KiT8XMJUzHzB9sa30fIDp6MrCImJhJJMYdYfNXN7Hu8xtJ3P0YMx49wIKxuSwYm8ucpNdDcn0VpFrUfTD4ebWv+aJw0nxbTIha8zsqagLfzf4zP399FzVrvovdphJq1SEq5j3MFI/JSHRHa+rPfZGUw9BvHBlaFJERwCNAoojYXkeCGXMpexwlzBhy58vUbbCZUf/x8MQTG2nT8x5qpbYnIyOB9LTrgWEcOTqabuf+h/pNm9Cy5z0kJt5Bfv4EcnLGU69eFOnpGbRqNYEdO8bTvHkUu3dnMG0a5OTAkiVQpw60bw8jRsD0GRtZuHQs7fs+5uh1VnAI0QdVfRxARAaqqk+0UhEZWLkShg8167Yl7UBX0LdAxhAbu4orLj/IoKs9TJ+RzcKl9elx8WsAfD/rbvJyrkH1QUSeo3byuxzaMob+A5+iboPNbNzkoXXrXAYNgtmzNjPkzpeZO/OfFe1IhIzqUvf+Uh4Hj5iYGESeK2gjsbHRTJ2axv2WHtu7NwwcCNOnw/DHpjB35j/pfsVLBfuvnDeGrPQrATN9p1bdwsn1keheXxai6ly2ExEZpaojnDhXz26tdNlXwZln3aDDUF4bl8Xzz0OLFlaDmhHF7FmJqG7EjFPvJjGxLZdcmk3agbYs/H4jp5wCa9ZAp06wdi00aAD//jd88QV89hnUqwcpKRAba9a/8w6kpsKBA3DH7Qmc0v/NoFxPUWwBVh7O3rHhJ1UtMYSYiCxX1R5lLasswax3gDXrdnLOZS9x5Gg6KbVr8u0n99KpYzOf5bVTUhCO8sYbx0lNhc2b4bbbauLx5BMbG0Nubi4m0r1pJ9CW5OQssrKUqVNh6FAYP9637j9MahG0a6os4VL3J8cn6MSTWgbykAHDX7vYkDtfZvmqHaSnZ9GyVRI7dnho0iSKXbsyiIsDETh8uAZRUTFALm3aRHHgoLJx10b+cuvCgmMtnn6niZ9otbHomM5BScK7cOpfS617p3B6aHGmiPQo8mkjIhE1AaRHl+bMnhXFhg1GiKWmwqCrPURHRxETY1yio6Keo23bKP50oYclP25CRNi/H+LioFUrI6TOOAPuuQe+/BI8HnjhBdi5E9q3i6JunQRmz4riwAGYPSuKHl2aFwwvBYtKDiEWi4hcJCIvA01E5P+8PpMxcw4iinMue4mjadcAmzmadg3nXPYSYHrF/fsfZObMTP74x714UKbPMPU3YkQSHs8twGby8m4mKioOETOsLPIcJ58cxYUXKvHxpofdqpX5tuu+bb6E8IorTlWr+2Bjj/S8Ni6L6Bjo1CmDKVMyycrK4KKL4I03IDo6CWiKx/M3PJ7NbNp0K+kZST5CDCI+CW+5cVqQ/Rf4HjOc+Ib1eyawQUQuLGtnEYm2MkT7NQclWEx59S4O7WtLfr74vHDO6lWf3j0XEB3dnnp1J3L33Rk88QRceKEydqyiCrm5sG0bREXB4MGgCn/4AyQmmpdXfr5waF9bvpjxLw7ta8sdtydwaF9bprx6V8H5Ay3QgiHAvNiNmRyXZX3bn4+BPwXjhMHkyNF0VM0kVNUHOXLUJDpfvmoHVw3wEBUFa1YnknYEPni/JtdeCwcOeLAnrqo+iMeTS40aE4C21KgxgQceyGDQIDOsvHWr0doXfZfA7bfGsP2LeB5Jahy6C64cVaruK0pJ2tjefUfpP/ApGnQYSv+BT/HTyl+5aoCHtDTznti6FW69FQ4ehK++guefh/R0D2ZOYqHXYn6+6RN4p2TxePKoWferKmcLKwmnNaHdwC2quhZARDoCT2Ce8vcxfqKlcQ+wHjPxJuTERMcyb14un3yi1K0Tx7vjBjFq7Gxq1cwlOyeXf/zDbDd4sGmEffoUjms//TS0bQvR0Wb9nDmQdrA9G5feRcMGtQGYO/OfpZ7fFmalBRgta//K2sDKQlVXAitFZKqqBk+ddIiU2jU5mvacl33L+CwYLX0zK1YmsmHDrcCDeDzP0a7dBLZuhdzcwn2io6O46CIjvKZPh1dfNc49cXHme8/uBHatGR9xNrGiRHTd104m4a7biWrRDJGK9/djE6P5ZU9Ssev2HjjKoyPHkpQEGRmQnS3ExyvJyfCPf3zJWWf1ICWlHjExFGxz/LhgXPC3Y0JLHUWiZhGXmExOZhr6t7GY12MaEpVFXGLlX5WqsGd/FlPn7iE9M7/SxwsGTguy9rYQA5M1VkROVtWtZu5jyYhIU+AS4GlMdyRk2EMA49/wMH266Tm1b5fDX297kbP7ZtG6jXkhDRoE990H06YZb8Thw61hyEFw3XWwf78ZRpo5E2JiyhZcJVFegeaEALMRkdWYIIMUV8f+TIwNJ7795F7LFjaeqKhojmem06TTUF75z1D+8fB49vzuq3398st4EhMziYmZwPHj4xGJQiSDBQvgoosK2wJAdrZpS9nZGvFCDCK77hPuup0GPbqREhNbbNn9JaljI5//ebn5bNuxj+OZ2SQnp9CsmbF77dwJNWsaoVGzJsyfP5/u3bvSokUqrVoZu7k9mhMXF0V2tvGVi4qpQ2LNVCQqhvTDO0A7YpxDc0DWUbNO80rdBwBVpV69Y1wLvP7Bb5U+XjBwWpCtFZHXMIHCwOTpXmdFxS+rx/YS5g1RYgwi77hrzZvWq3RhS2L5qh28Ns5TIJSGDoURIzx88GGW138jtB57DO691zTWadOM9jV9utHE0tLg6FE4cgS6nlp5Y35ZAs1JAeaFPRn+Tuv7bev7OqyXXCTRqWMzDm0ZQ5NOQznr7HRLq8riprtf5uKLxNLICrWvDh2iSE+HXr0yCup+61bT0Xn4YejXr1ATA2MfjdsaSfluSyVi6z6qRbOAC7GMjAwuveI69u79HcjnjjtuoUGDZowe/SKZmZnUq5fC668/xtdfr2T9+vX8+9//IjY2nvffn8TGjat49NGx5OXl07VrRx7790hikloy5rnH+earuURHx9DrjDO4++4n+PbbZUya9CR5eVnUqdeA0S++Tmpqgwpfh4gQl1CLRvUTKnyMYOP0E3MjJobKvdZnq7UsFxM0rFhE5FJgn6r+VNrBveOu1a8XvJh7trPHgQPmxdS0Kdx/vxFORY31c+dChw4wZYrpTV13HSxdCl1PbU6vHu2Ji03glLbtmT15eMDKV9SGFmQbWKl4TXz/o6o+qKqrrc9DQJl20XDl0GHTabE7M9nZylUDPAwdmkF0tLF/degwgaefziA93XRg7G23bTPfaWmwYAFkZRmb2Ja1Euk2MR8iue6N5lyyENt38ABX3TSENn3O5KqbhrDv4IEyjzn3i6+pW7ceixa9yw8/TOeSS/owatRonn32Wd55521uvPEyRo36L9dccwEdO57CG288yXvvvUtamnDHHY/z9NPP8N5708jJUb6Y+ympSQf537xP+WTuYj76bCF33vsI0THH6NY9lbfefocP5izg4kv/wsTxLwfgfgiVkOlBx1GNTFUzgTHWpyjppex6FnC5iFyMmbKeLCLvqOp1QShmmUx59S6G3Pkyt9/2K3FxQlpaFnXrmeHBL780Q0RbtsBnnwkxMXDOOYrHYwTchg1wStv2THm10BYWLOZfM58ld8x3WgMrCRGRs1R1kfWnD853pAJG3ToJTJ+eVWDnio8XZs8Svvraw5VXZhRoXR4P1Krlq43bHZ3kZKORLfougZlxLUwAkKpJlap7gDuGD6PzypW8mZ/PCytXcsfwYcx+c0rB+qLaGEDnTqfww9JHGTHiZS6//GyysmqxZctW7rzzTkRA1UPjxqkcPmycwY4dg/r1YePGX2nevAn9+rXg8GH4y5+v4KOPPuTuu4YSH5/APx++m37nX8i55/2JuLg4du45xL/u/gf79+0lNzeHpk3Dd+pGoHA6seZZwEigBb7pHEr1DbXmno2wjnEuMDxUQgygYYPaPvas2q2G0Lu3MnCgsXfNmQO9ehhhtf9AGn+6+km+/DKLunUSmDP1PkaNnU3nvg/Qo0vzoAg0XbrI30C+TnILMElEamMmwx/G5DmJSL6Y8S/+dPWTfPJJFvHxgic/mjmf5hV4m915p3HiuO46M7H9iy8Kp1nk5BibyH/+Y4TZ/+Zkm0D4VZcqVfcAKzZs4M38fJPrID+f7hs2FKyLa5LEpi17OJ6ZTY3EeFo1b0BMbDTt27flpx++5q133+ff/x5Hz549OeWU1owfP4mmTU2bAGNuyM+H9HRo1MjMKY2JMXayOnUgK9uMtsTExLDix3lMmbaQeXM/5t23JjB56kc89fjD3HjzHZz/h4v44fvveOX/ngvBHXIWp21kE4H7MC644en+UgzeExWLEz75+YXzyQYOhDlzjA5uC6vlX48u2N6O3vDaOI9P1IZAEKYCDABrWLir9TJDVSsSRDZs6NSxGbvWjPeKxpFX4ODj7Ym4c6cZWj5yxMwTnD0rigUL4ujXL4fkZA+zpsHJCeFrewgEVa3uAbp16MALK1dyf34+L0RH061Dh4J12w9kEBOTRfPmcORwFtt27KNdm0bs3r2HunXrMPy+oSTXSuadqe+yb99h1q9fRXJyF6Kj89i9+1d69WpD7do1yM09zrE0aNOmJdu372bDhp3UrdOML+bO5Zy+fUhPT+f48UxuvunP9OjZiz+ea4Ze0o+l0bCh0Qg/fH9aseWvajgtyI6q6ueVOYCqzgfmB6Q0flI4UbF44XNGj9ZMn76l4CWWXCu+xO29HUWuGuDhjtv9yi1YKuEswETkOlV9p2iQWNv+EO7pOYp2Yp5/fAjDH5vCjyt+JT5eOHQ4i+RkY++yHXxsT8QNG4z29d3CBFq3aMgdt++lR5fmfDHDHGPo9ZvpkFB1bGJFifS6L43Xnh/DHcOH0X3DBrp16MBrzxtrSVLHRhxfs53mzY0GlVIHtm3LYvnKbSxd+j0vvTQWESEmJoZHHnmYmJhonn12DOnp6eTn5/HXv/6Vhg3bcMkll/H446NITEzkuwWfMeqZp7juuodRj4feZ/bk9ttu5NChw1z5l+vJysomK0d5+JEnAbjz7ge5966bSU5O4czeffntt8q/Y8IdpwXZNyIyGjNnLNteqKrLHS5HuShJ+NgvuVVrfyNvlfDxx0q9uglkZ3u4akDxwsqeb3TVAE9BxI6KEs4CzAt7Ek2oMl5WiqKdmD9d/ST9+uXQspXHRwNbsMB82/9PPdUK/GxNzTi0L559G0xYUV26iH9vEWjQLsRXF3Qiuu5Lo0G9VB+bmDc1EuM5cjiLlDpw+LARaE2bQkrKmZx99pnExEB8vBkmPHwYJk8uDDfbtKlZdtmlF3P/PYWTmG+47s/ccN2ffc7TqNFJLF3yZcH/DTtMB+GCP17MBX+8OJCXG/Y4Lch6Wd/esbkUON/hcpSLkoSP/ZJ7fbzvfLIFC+KYPSuqWGFlO4rccXvhMGV5iRABBoCq2uHan1UTIj6iKNqJ+eDDLK4a4DvFYtAgY//autVoYqeeCo8+auxh9tQMuzMTSXVXWSK97suL7eDRqnkDtu3Yx44d2Xg8SrNmhfattDRjijjppMJlR46Y6Tne2+3YkV36yVx8cNRzSFXPK+YT1kIMCkNSFQ0XZYcl8narvmqAh+xsLTG8lO0osm/DeObO/Ge5HD106SIW93g6Ul+Ea0RkkYj8R0Quse0l4Y73VIvZswpjYHpPsZg+HdpYk+Dj44X27aLweAo9FL07MxFad5UlIuu+PHh7KcbERtOuTSO6dmpJdLQUhJw6fNhM0YmPN79zc+HIYYiJMd7N3tvVSIwvdxk6NA/rqXlBxWmvxYbAM0BjVb3IClHVW1UnOlmO8lLUS9HGW1Pznk+WlZ0DwOqFowPikVgVevGq2lZEmgN9MRFaXhWRI6raLbQlK52iGrRt39q+7Vf27Ba++p+HfE8uWVnKnt0JfPSW8Uq1p2ZkZyuptVsw5dW7qkS0jooQqXUfCNq1bsymrbs5ckSJjjZDf5mZSnY2HEsTatSIp13reuzcdYCjR7M5ehSSasTTukXF3Fg7NNeCIcbqhNNDi5OBNwE7iuZGYDrGmzHiKDqfLD09mz/1VwYN0oB4JFYFAWZjhRg7C/My6wqsBb4LaaH8oLhOTFl12u9s3/WLezzNlv6vBLxskUKk1r2/FDdnzCYxMY4up7Ys8xjt21ZNhx+ncFqQparqDCvRJqqaJyIR44ZflKIvuQYdhjJoUFalPRKrkgDzYgewDHhGVW8PdWGcorpqYUWosnWfWLtiAbuDSXXUypyeXZ8hIvUoDCR6JhDxc0psitpTyuuRGOE2sLLoDrwFXCMiS0TkLRGp0rklKivEDuXn8dDeHVyxcxMP7d3BofyITeEVMXVv3/N9+bn8lptDXhmJh6OapDpUsvJxUuMq5yhaKk4LsvsxuYjaiMgiTOMuv9temFKSU0hZVHEBBhSk9JiCGVr+GugH/DukhQoigdDEnj2wm17ZmaxSD72yM3n2wO4AlMx5Iqnu7XveGEhSD7/nlRzLvLQhRaf498hR/O+rBScsrx2TVup+P3z/Hbff+tdgFctxnI61uFxE+gEdMKFqNkRcnqJSKMkppCSq6BBisYjIj0A8sBhYCJxjBZStclRUiB3Kz+PZA7v5JSebk+PiWZ+TxQxM+sRhQJecyHTJjqS6/yUnmxmYYaKGwBr1kKdKTAgj5qoqqkpU1Il6xxMjR5S4XyCHGPPywns0wBFBJiJ/KWFVexFBVd93ohzhQnUSYF5cpKr7Q12IYFLZerW1gRnAmOxMtkkUY1CGYaJsnxxXfpfsMCFi6v7kuHhGZ2dyC7AXk9nr97xcmsbG+WxXEW3s4UeeoFnTJtz5dzOqOvKJZ6lZMwlVZebMj8jOzuHKKy/m8cceZvv2HfS/ZCC9Tj+Nn35eyacfT2Pk48/y4/IVCMJNN17DfffewU03/4NLLrmQAVddzrJly7n3/kfJyDhOfHwc/5v3PtnZcTz+r+GsWb2CmJgYHnrkSXr17utTriNHDvPPh+5i585fSUhM5ImnX6TDyafyythn2bFjG7/t+JVGjZsy/MGShWaocUoju6yUdYqJ9FHlqaYCDIBIeZFVlGOPTGL13D2VOoatDRzCuPIeUo9x8xWhY1wCD6U2LtDa1mVnkSjCcZQoVTKBOhLFqIbNaBN3YuzGotreQ6mNqRvtzOMf7nVv35vV2ZkosBrojwkG2wz4VT1szskiQaI4KSaW2qc2Zu/efQy56WaW/7yGHt07MeXNSTRsWLrL/KCBV3LfsEcLBNnMWR/x4PC7WbR4KUuXfImqcsWfr+XbhYtp3qwpmzZtZfLEVznzzJ789NMKdu3ew+oVxtnzyBFf14KcnBwGX/s3pk19g9NP70Fa2jESExP5cs7riAgff/4dW7ds5NYhA/j8qx989n3lpf9wyqldeOX1d/h+8bc8PPzvfDDHDFdu2bSRqTM+JSEhkT27tgbgbgcHR2xkqnpTKZ+IjoLtD9XBBlbdqawQA6MNjMG8RK8GtgBDgESEZxs2p250TIHW1gNlkHpYq8oQoA8wSD2M2Luz2GNXFXtbMLDvTS1MmP71mJha0Rh3y1SgI742syE33Uzdej/y2mvp1K33I0NuKvs11r17F/btP8Du3XtYuXINdVJSWL1mHV/+bz49ep7Haaefzy8bNrNpkxEYLVo048wzTRCk1q1bsnXbr9x1z8PM/eIrkpN9nTk2bNhMo5MacvrpJnBwcnItYmJiWLRoKbfddoM5Rpv2NG7SjO3btvjsu/ynpVx+5dUAnNnnHI4cPkT6MWNjO/8P/UlISCzvLXWciMgJJCLNROQbEVknImtF5J5Ql8kfXAFWddm77yiXXPoUJ7UcSt8mt5XLo7Akb8SHUhuzND6RQ8BwzIt0FXBYPVy9cxNbcrL4JSebYRitYTjGfjYcWGl9H1FPsee097Ptbb9EqL0tGKzJzmQqcAwYD/wVEyQyD/BgbGVx1neWGC/G5T+v4aqr8sxUm6vyWP7zGr/ONeCqy5k1+xOmz/yQqwdeiary8IP38PNP8/n5p/ls+mUZt9xsMlQlJdUo2K9OnRRW/DSfc/udxevjJ3Pr0Hv9vr5oPe73tkVJTKxR9kZhQEQIMkybGqaqHYEzgTutqCBhiSvAChGRv5T2CXX5KsrNN79Mx2Wb+Dk9q9waTknaUd3oGJ5t2JxE4HngWqALJqW6rW3ZWltna5vd1rfH+k6R4h9pe7/dOGdvi5S6jwZSgL8Bm4AewAGM3SUKYyvLsb6TrNBRPbp3YvbsGDPVZnYMPbp38utcgwb+mekzPmD2+x8zcMDl/OnC83lz8rukp5u8wrt27WHfvhNHYg8cOIjHo1z1l8t48vFH+PnnVT7rO3Roy57f97JsmYm/fuzYMfLy8jj7rDOZ+u5sOjRXtm3bzO7dv9GqVVuffU/reSaffDQLMN6MderWo2atZL+uJ1xwekJ0hVDVPcAe6/cxEVkPNAHWhbRgRajONrBSqJL20R+WbmaCark8Cm1bzHLLocPet012Jpfs2EA2xrUvB5iESQ/xFoVa1zj1cCg7kzXWNj8B44C6QAbGv92jHh7au4OhdRow/vC+ApuY/b+Ll43MAcKy7r3thc1jYjmOGUJ8D3gN81Lsj7nHMRihth+IiRLaNq0HwJQ3JzHkppu5445CG5k/nHrqyRw7lk6Txo1o1OgkGjU6ifXrN9Ln7IsAqFkzibenvEZ0dLTPfrt27eHmW+/C4zEa4TNP+3pHx8XFMW3qG9x97wgyM7NITEzgyy9m8/c7bubvdz5Al2598UTFMuq5V4iL9+3E3HnPQ/zzobu44uK+JCQmMmr0q+W4m+GBaBkT/gJykjJ6X+XxWhSRlsC3QCdVLXGyRM9urXTZV0/4XcbKEAwB5o9xPpQG/KKcvWPDT6ras+wtg4sT9b64x9M8tHcHvbIzCzwKl8Yn8mzD0ifA2/tMxti+hmO0qEmYdMmrMBqYvXwGxlZm/5+M0Ra8t7H3edM6hl2eaRLFYPWUq3wVJVzq/uT4BJ14Ussyt/Ouu/MwmlYUpk4eAF4A+n/+OSelppKLsZE1BPYKZNVIoG270M8fqyiVccffs2srj72+2WfZwql/DYu6jyivRRGpCcwG7i1OiInIUGAoQHOr5xRMgqmBFXXFfvbA7hNeRP5sE06IyCXAqUCBW52qlil1RKQ/MBYzCjRBVf8TtEKWgT1H7KHUxjx7YHe5NBzbK/E1jADqjhkizMEIJjv8ha2BvWNt1w44DcgFlhTZxt5nHEaIRWPsZYctIRYuc9DCqe7temgMHMbcf8EIscaYqA1rMPYMxctGprAuM7Jti1U1fJUjgkxVb6rsMUQkFiPEppakwanqeIy9lp7dWgVN1QymALO1rJ+LDD91zjkxnVPRCbPtsjN5aO+OkGpmJSEi44AamE7wBGAA8EOpO5n9ooFXgT8CvwHLRORjVXV8WNl7orNtzyoPJ8fFMyY7k3iMFvUWRqv6yfq27V62ttXF+oC58FswL1jvbTpjNK46EsUY9bDSax97u1DPQQu3urfnij0A1MEIrBhgNF4ambUsF6Ox2RpZUgXSq7gEH8ffdhXpmYnJjT4RWB/K9OiBFGBF5wNloiQiHFEPzYBOmGyjBzDDHlmqJwipWDXbHMLYSZKhwHkgDDWzPqraRURWqerjIjIG+NyP/c4ANqvqVgARmQZcgcP20UCEnLK1uEyrk/I6pqefQaFN7EfgDYz6Yf/PxrSBB63l1wJtgUSMk0dWfCKjLBvYz9mZvOW1XTuge3yiUzaxkgirun8otTE37NrCVEyIoQPAcUwdvA7EYiRnDhAXE8XxuFjWZeWQlBhPy5YVS68STlRFrczpfGQV6plhUkBcD6wWkRXWskdU9bNglLMowdDA7GFBAfarkgvUQmmNSaP9lrVdLnAT5iU2OjuTp/bv4rraqYzc/xuZQG3gS4z9ZDJGM+uUncVDe3ecYDsLsU0t0/o+LiKNgYOAP8aGJoD35KjfKMw07giBimBva3FX79zE1erxsYUNonQ71kN7dzDGsut0xQivE4aaGzb3a7sQEFZ1Xzc6hlPjE31snJOBGyjUyKKtz6mdWlT2dGHJSY1r8fvuY6EuRsBw2v2+j6reABxW1ceB3kD7snZS1e9UVVS1i6p2sz5BF2LBcKO35xAtz85kJbDcWj7N+v7J+p2O0bJiMUKsMeYhW5OTxT/3/8YNGLfsy4AR1roczEOZKEKv7Ey+Ug8HsjO5ZtcWHtq7gyf37wrlpNg5IpKCGcFZDmzHOIpVGhEZKiI/isiP+w8G9uEMRhqWUQ2bMV2iaIfxNEzHCLHStCZ7jlkXiSp1W3+3cxhH6v5Ivv8ZoYrep5H1m/KeCG0xGrEHaNehSSCKGJaUFVQ40nB6aLGiPTNH8VcDq4iGY2ti6zD2jbcwT/f1GA+11RR6pb2AEWr22P1zGIF2FF/DdDdr2xiMt1qmFZ/vVuBSa5sx2ZlMAj4kZA4Az6lqNjBbROZghpZPNPydyC5MpCCbptayAoJhGw1EyKmSaBOXwIxm7cq1j782uYrY7hzAkbo/OT7B77ov7j7NblbYp06KjiUxMa7oblWKqjTE6LRGFrSeWSAorwZWkbA/doSFbAqF0QMY76kH8I3YcD9GaH2OEVafAycBPTGCazfmRmYDczAC8Gr14FFlNMa+cj+FgisPHJ8U68US+4eqZqvqUe9lpbAMaCcirUQkDhiMSQUUNHTpoqAJsWpKxNS9TXwjZyYE7969h4GDyu8Ld8llg0+It1iUklK8VEWc1sgq2jMLKhW1gXm78fqr4dieazEYYXS/9R1nfXt7rj2H6Wl8bZ1jNybm2wKM9vZfCifQNgWmYgKdvo0RetkUanNjgI5xCSwVcXRSrIichLF1JIpId4ynMxjflDLj31hZxP8BfIExW0xS1bXBKq+b0TlwRFrd2/RZ/ii/ONSPady4ETOnv3nC8ry8PGJiSn49f/rJtBLX2ZSW4sWmqmhlTguyJZg5nVgCLVtEltvLnKayThy2UCpPmg3bc02zM5mDGVqsi9GW5mA8qFZh5gUlYuaxeLtbgzEsJgLP1m9Kj8QkHtq7g67ZmeRjhOEZGE+aTgjL4hMKBNc/Q+OW/yfgRoys9fY4TQMe8ecAlj006DZRV4gFnIipeycoKY3LlLemsXrFd0ye8h4ffDiH9PQM8vPz+WzOdG665S7WrF1Ph/Zt2b37d175v2fp2bM7rdp2Z9n3/yM9PYOLLxvEWX16seT7ZTRp3IgP33+bxMTEMlO8HDx4mBtu/DsZGRlk5Qr/euxZup92RojvUsVwZGhRRE4SkdOwemYi0sP6nIsfPbNAEygnjooY1u2x+RiEppguqv2tmAqpA5wcG8/HzTvwykktfBwDLsc4edwITE876FOODhhhOApLA4tP4NmGzfmoWbuC6OlOo6pTVPU84EZVPc/rc0U45aFzhVjgiZS696bP8kf92m7v3n30O28wteueQr/zBrN3774y9xk08Epmzvqw4P/MWR/R64zTfLZZ/vMqZk5/k/lff8J/x00iJaU2a1ct5omRI/hp+cpij7tp01buvOMW1qxcREpKbWa//4nPejvFy0svPM2K5Qv48ov3SUxMpEGDVObNncVPy77hhbETePqJh/269nDEqTdbpXtmgSDQbvSVMax3jE+gqzXnZwyQFpdAnAgHc7Kp7zXs5+0YcMXOTfxHPScMZdrlsJ1PLnA2np6/LBKRiUBjVb3ICvrcW1UnhrpgrhALOmFb9xXl6sF3s+T7ruTlTWHJ9y9w9eC7WfBN6cN93mlc9u8/SJ2UFJo19fWM/OMF51K3bh0AFi1ayt13DQWgU6dT6NK5+DjprVo1p1u3zgD06NGV7b/6pvIpLsULQEbGce66+yFWrFxDdHQ0Wzb7pneJJJyK7DEFmCIiV6nqbCfO6XP+MAzmWzTE0b/8GPYraygzTD3WbN60PnaXdyMmf2RIX2auEHOEsKz7ovirjQGsWLmSvLwpQGPy8u5nxcpufu1np3H5fe8+rh545QnraySVf4Aq3isIcHR0FJmZ/qUUenHsazRoWJ8Vyxfg8XhIrBm50w2c9lpcJCITReRzABHpKCK3BOtk4ZxOxRY65Rn2C9M5Qv6SqqozMFN0UNU8jG9KSDj2yCRXiDlHWNV9cZRHiAF069qVmBjjOxwT8wLdunb1a7+iaVxKLVOfM5gx8yMA1q3bwOo168tVRpuSUrwcPZpGo0YNiYqK4u13ZpBfjnl44YbTguxNjAeS/QbeCNwbjBOlr98TlgKsMlRE+IURGSJSD2MKRETOxMwuCAmue72jhFXdB4IZ0/6P3meupFatbvQ+cyUzpv2fX/sVTeNSGn+//WYOHDjIqV368K/HnuHUjidTu3b5pwV4p3jp1qMfF/YfQFZWFn+//Wbeems63Xr045cNm0hKSqJD8+BnQwkGjqRxKTiZyDJVPV1EflbV7tayFaraLdDn8jelg0tgKCuVh4j0AF7GhJFcA9QHBqjqqpL2qQhlpXFxtbDAEy51X9Fnvjht7JffT6ZD+1aYMK+hIT8/n9zcXBISEtiyZRt/7H8Vv6z9nri44E7ULs4dX1XZs2sbI8dX7zQuNlWuZ+biH6q6XET6YeK0CrBBVXMdLcPSRU6ezsUiHOq+JHq/dm6xyxNisjh4KI16dZNDJsyOHz/O+X+4ktzcPFSVV19+LuhCDE6cW6aq5GQdY8/+kE/5LRGnBdn9mJn5bURkEVbPzOEyuIQAEUkA/g6cjenILBSRcarqyNMRzJBTLqUT6rovDel1VrHLm9TZya7DcODAQavbHRrenvKGz/9fftnqyHnzoxLYf9B4RavCnv1ZTA3j58dRQVaZnlk4JVd0qRBvAccwQ0wA12CCkAwM9ond4cSQE7K6L43SHDxio/NpmbrducKEIf2eiQ11EfzG6TQuFeqZhVNyRZcK00lVvSfCfCMiQa8/V4iFBSGpe5fKsWBsLv3uiQxh5rTX4luYpJovA69Yv9/2Y7+CBHuqmoMJCn9F0ErpEgyWWzZRAESkFyaucdBwhVjY4Hjdl0V53e1dwhunbWQV7ZmFPLmiS6U5DVgsIjus/82BDSKyGlBV7RLIk7lCLKxwtO7LonP/sMscFbZEilbmtCBbLiJnqur3EPiemYgMBYZaf9PP3rFhQ6CObZGKiesb7oSinGWl0u3vRCF+Wrn9QFTqDb8G4dBu3ZdMWNT9hpxs/5758Rtg/PzgFyi4hEt7DIsU2k4Lsor2zMpMsAe+SfaCgYj8GA5zJsoiHMupqsEQLsWdp34wjhuO97Q4wrGcTtU9xnksrK49WIRjPYcSpwVZRXtmBQn2MAJsMMbzycXFxcWlmuO0+32FemahSrDn4uLi4hL+REywvjBJsBe0YcsAEynljCQi5Z5GSjmDQXW69up0rWXiaKxFFxcXFxeXQOP0PDIXFxcXF5eA4gqyMhCRZiLyjYisE5G1InJPqMtUGiISLSI/i8icUJcl0nHrPnIQkf4iskFENovIw6EuTzARke0islpEVohISCeWhwsRYyMLIXnAMCtOZC3gJxH5MozDY90DrAfKn7jIpShu3UcA1TSE3XmqGg7zyMICVyMrA1Xdo6rLrd/HMC+KsMwJLiJNgUuACaEuS1XArfuIwQ1hV81xBVk5EJGWQHdgaYiLUhIvAQ9ipZR3CRxu3Yc1xYWwC8sOR4BQYJ6I/GRFM6r2uILMT0SkJjAbuFdV00JdnqKIyKXAPlX9KdRlqWq4de8SZpytqj2Ai4A7ReScUBco1LiCzA9EJBbzIpuqqu+HujwlcBZwuYhsxwytnC8i74S2SJGPW/cRgV8h7KoKqrrL+t4HfIAZWq3WuPPIykBMnvMpwCFVvTfExfELETkXGK6ql4a4KBGNW/eRgYjEABuBCzACbBlwTVWM/iMiSUCUqh6zfn8JPKGqc0NctJDiamRlcxZwPaaXu8L6XBzqQrk4glv3EYCq5gF2CLv1wIyqKMQsGgLfichK4Afg0+ouxMDVyFxcXFxcIhxXI3NxcXFxiWhcQebi4uLiEtG4gszFxcXFJaJxBZmLi4uLS0TjCjIXFxcXl4jGFWQBQkTOrUjUcRFpLCKzSlg3X0R6Wr8f8VreUkTW+Hn8e0XkhvKWq5jj/ENEbq7scaoibt1XHUTkRhFp7Md2k0VkgL/LA1Autw2UgivIQoyq7lZVfxr+I2Vv4os1UfRm4N1yF+xEJgF3BeA4LhZu3YclNwJlCrIQ4LaBUqg2gkxEkkTkUxFZKSJrRGSQtfw0EVlgBeD8QkQaWcvni8hYaxLsGhE5w1p+hogssfI+LRaRDmWc91MR6WL9/llE/m39fkJE/ubduxKRRBGZJiLrReQDINFa/h8g0SrLVOvQ0SLyhpg8WfNEJLGY058PLLcmjCIibUXkf9Y9WC4ibSxtYoGIfCQiW0XkPyJyrYj8ICbnURsAVT0ObLfvQyTh1n31rHvr/v4iIlOt+zpLRGpY606oezGaVE9gqnW/E0Xk3yKyzGoH40VEynH+0trXs9Z93igifa3lNURkhpj8dx+IyFIR6em2AT9Q1WrxAa4C3vD6XxuIBRYD9a1lg4BJ1u/59vbAOcAa63cyEGP9/gMw2/p9LjCnmPM+DNxpnW8Z8IW1/BugA9DS69j3e52/CyYfVk/rf7rXMVta67pZ/2cA1xVz7seBu7z+LwX+bP1OAGpY5T4CNALiMSF+Hre2uQd4yWv/RzH5uUJen27du3XvR723xESKP8v6PwkY7kfd9/Q6Rl2v328Dl1m/JwMDijnnZGCAH+cYY/2+GPif9Xs48Lr1u5PbBvz/VKfEmquBMSLyLOals1BEOmEazJdWRysa2OO1z3sAqvqtiCSLSApQC5giIu0wD0lsGeddCNwNbAM+Bf5o9QpbqeoGMelBbM4B/s865yoRWVXKcbep6grr90+Yxl2URpiQPYhJDNlEVT+wjp9lLQdYpqp7rP9bgHnW/quB87yOtw84uYzrDUfcuq++db9TVRdZv9/B1MdcSq97b84TkQcxL/26wFrgEz/O26GMc9gBqL3r72xgLICqrnHbgP9UG0GmqhtFpAemB/SUiHyFiRy9VlV7l7RbMf+fBL5R1T9bL6L5ZZx6GWa4YismwGcq8DdM46sM2V6/87GGooqQiel5ledYHq//HnzbSIJ1zIjCrXu/j1Xl6p7i61Eove4BEJEE4L8YrWiniIzEv3uKH+ew73M+FXsPu23Ai+pkI2sMHFfVd4DRQA9gA1BfRHpb28SKyKleu9m2lLOBo6p6FDNMZKeIuLGs86rJWLsTGAgswfTShwPfFrP5t8A11jk7YYaYbHLFpBQpD+uBtlY5jgG/iciV1vHjbXtBOWgP+OUtFU64dV996x5obtcx5v5+R+l1fwyjeUOhEDggJiddebwRy2pfxbEIuNraviPQ2Wud2wZKodoIMkyj+EFEVgCPAU9ZL5oBwLNiokmvAPp47ZMlIj8D44BbrGXPAaOs5f72pBZiEh9mWr+bWt9FeQ2oKSLrgSfw7bmPB1Z5GXv94XPMkJXN9cDd1pDFYuCkchwLTDT4L8u5Tzjg1n31rfsNmOST64E6wGtl1P1kYJzVVrKBNzAv7y8wGrZf+NG+iuO/GOG3DngKM4x51FrntoFScKPfl4CIzMfkdfox1GWpDGI84B5U1U2VPE534H5VvT4wJQtf3Lo/4TgRWffW8O8cVe0U6rL4g4hEA7GqmmV5C/4P6GAJxYoes1q0gWpjI6vGPIwx+laqIWPsO/+qfHFcHMSt+8iiBvCNNYQowN8rI8QsqkUbcDUyFxcXF5eIpjrZyFxcXFxcqiCuIHNxcXFxiWhcQebi4uLiEtG4gszFxcXFJaJxBZmLi4uLS0TjCjIXFxcXl4jm/wGK4aYekyHrxAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.tree import ObliqueDecisionTreeClassifier\n", + "\n", + "acc_of = []\n", + "\n", + "for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]):\n", + " # We only take the two corresponding features\n", + " X = iris.data[:, pair]\n", + " y = iris.target\n", + "\n", + " # Train\n", + " clf = ObliqueDecisionTreeClassifier(**kwarg).fit(X, y)\n", + "\n", + " # Plot the decision boundary\n", + " plt.subplot(2, 3, pairidx + 1)\n", + "\n", + " x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n", + " y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n", + " xx, yy = np.meshgrid(\n", + " np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)\n", + " )\n", + " plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)\n", + "\n", + " Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n", + " Z = Z.reshape(xx.shape)\n", + " \n", + " cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu)\n", + "\n", + " plt.xlabel(iris.feature_names[pair[0]])\n", + " plt.ylabel(iris.feature_names[pair[1]])\n", + "\n", + " acc_of.append(accuracy_score(y_true=y, y_pred=clf.predict(X)))\n", + "\n", + " # Plot the training points\n", + " for i, color in zip(range(n_classes), plot_colors):\n", + " idx = np.where(y == i)\n", + " plt.scatter(\n", + " X[idx, 0],\n", + " X[idx, 1],\n", + " c=color,\n", + " label=iris.target_names[i],\n", + " cmap=plt.cm.RdYlBu,\n", + " edgecolor=\"black\",\n", + " s=15,\n", + " )\n", + "\n", + "plt.suptitle(\"Decision surface of oblique decision trees trained on pairs of features\")\n", + "plt.legend(loc=\"lower right\", borderpad=0, handletextpad=0)\n", + "_ = plt.axis(\"tight\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display the structure of a single oblique decision tree trained on all the features together.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAD3CAYAAAC+eIeLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABeyElEQVR4nO2dd3yURfrAv5PdJLvpvZEAgVAFRAGRSFMRPfQsYEHsnCh2vPMUFRR+Umx3RrHjIXbw7Cc2UANCkCYoNRhISEIa6W13s2V+f7ybJSEhjXTm+/nkwzJ93nn32ZlnnnlGSClRKBQKRfvg1tENUCgUitMJJXQVCoWiHVFCV6FQKNoRJXQVCoWiHVFCV6FQKNoRJXQVCoWiHekQoSuEWCCEeL+B+DQhxCTn58eEEG+1X+tO2qZbhRAbT7GMnkKIciGErpF0NwghfjiVuroTQoi9QoiJbVDuRCFEZmuX24J2JAohbnd+btZ71hrvZY2yGvyuNfX9rSefEEK8LYQoEkJsPfWWdm3aROg6X4TdQohKIUSOEOI1IURAS8qSUi6RUt7eyk3sEKSU6VJKHymlvZF0H0gpJ7d2/e0tZIQQvYUQUgihP5VypJRnSCkTW6lZXZbWep4no7HvWlPf33oYC1wEREspzzmVNrbmj0xH0epCVwjxD+AZ4J+AP3Au0AtYK4TwaO36FK1LW32hO0t9ipZxiuPUC0iTUla0VntaSmd431pV6Aoh/ICFwH1Syu+klFYpZRpwLdAbuLFGcoMQYrUQokwI8ZsQ4syTlFlLFSGEuEkIcUQIUSCEePwEVcRKIcSiGmlrzeyEEFFCiE+FEMeEEKlCiPsb6EuwEOIrIUSpc0nU94T4gUKItUKIQiFEshDi2hpxRiHEv5ztLBFCbHSG1ZqpOH+1DzufQaoQ4oYa4RtrlBcvhNjmLGubECK+RlyiEOIpIcQmZzk/CCFC6umPN/AtEOVcIpY7n8cCIcQnQoj3hRClwK1CCH8hxH+EENlCiKNCiEU1l5RCiJlCiP3O5eL3QoheJ3mMG5z/FjvrG+Ps2yYhxAtCiAJggRCirxDiJ+eY5gshPqi5MjphjBcIIT4WQrzr7O9eIcTIpoyxcwxWOtu9Dxh1svFvrefuTBsohPja2aYi5+fohupu6vOsUcfzzrJThRB/qRHe4Fie0E7Xd63Gu/o3IUQ68FNT398Tyvwb8BYwxtnmhc7wy4QQu4QQxUKIJCHEsBp55gohDjnL3SeEuMoZPgh4vUZZxc5wl3qmRrtqfn+kEOIeIcSfwJ9NqP8R57MqE9p3+8KmDU8TkVK22h9wCWAD9PXEvQN85Py8ALACVwPuwENAKuDujE8DJtVI+77z82CgHBgPeAL/dtZXnXYlsKhGnROBTOdnN2AH8ATgAfQBDgMXn6Qvq4CPAW9gCHAU2OiM8wYygNsAPXAWkA8Mdsa/AiQCPQAdEO9sb29AOvN4A6XAAGeeSOAM5+dba9QVBBQBNznzXe/8f7AzPhE4BPQHjM7/P32SPrmeR42w6rG40vmMjMDnwBvONoYBW4E7nemvAFKAQc72zAOSTlKfq781wm51jtl9zvxGIA5t+ekJhKIJl4QaedKo/T6YgSnOZ7sU+LUpYww8DfzifKYxwJ4Tn0eNOlvzuQcD0wAvwBf4L/BFjfhE4PYTx74Zz9MKzHI+j7uALEA44086lvWUv4Dj37Xqut515jXSxPe3nnJr9Qnt+5IHjHa2+RbnGHs6468BopzjeR1QAUSe7PnUfH4nqU8Ca51jamyofmAA2nc7qsZz6NuacrK11QshQL6U0lZPXLYzvpodUspPpJRWNOFpQFNFNMTVwNdSyg1SSgswH3A0sW2jgFAp5f9JKauklIeB5cD0ExM6ZwLTgCeklBVSyj1oPxrVXIa2XHpbSmmTUu4EPgWuEUK4ATOBB6SUR6WUdillkrO9J+IAhgghjFLKbCnl3nrSXAr8KaV8z1nXR8AB4K810rwtpTwopTSh/VAMb+IzqWazlPILKaUD8EMTaHOcfc8DXuD4c5oNLJVS7neO8xJgeAOz3frIklIuc/bHJKVMkVKulVJapJTH0N6HCQ3k3yil/EZqusX3gOpVUmNjfC2wWEpZKKXMAF5qoI5We+5SygIp5adSykopZRmwuJH+NZcjUsrlzufxDpoADBdChNPwWDaFBc68pnrimvL+1scdwBtSyi3O78c7gAXn919K+V8pZZaU0iGlXI02Oz0lXTDaO1vo7EdD9dvRhO9gIYS7lDJNSnnoFOuuRWsL3XwgRNSvN4l0xleTUf3B+WXPRPt1a4ioE/JVAAVNbFsvtKV1cfUf8BgQXk/aULRf84waYUdOKGv0CWXdAESg/bAY0GZBJ8XZ9uvQhFi2EGKNEGJgPUmjTqi7ui09avw/p8bnSsCnobrroWY/e6GtPrJr9O0NtFlSdfyLNeIKAXFCe5pTH0KIcCHEKueSrhR4n9o/0CdyYn8NzneusTGu9f5Q97nWpNWeuxDCSwjxhtDUTaVoM/mAky3zW4CrHVLKSudHHxofy6aQUV9gM97f+ugF/OOEcYrB+f0XQtxcY+lfjLbSbOh9aG4/Tlq/lDIFmIM2689zvpeNyaVm0dpCdzPaL8bUmoFCCB/gL8CPNYJjasS7AdFoy6KGyD4hnxfa0q2aCrQlXDURNT5nAKlSyoAaf75Syin11HMMbQkcUyOs5wllrT+hLB8p5V1oPyxmTtAB14eU8nsp5UVoP0gH0GZlJ5KF9pLUpCeauqO5nMylXM3wDLQxDKnRNz8p5Rk14u88oe9GKWVSC+sDbbYsgaFSSj803b9oUo9q09gY13p/qD2mJ9Kaz/0faMvW0c7+jXeGN7ePzXUJ2NhYnlKdTXx/T9auxSeMk5eU8iPnimk5cC+aKicATQ1U/azqa09D3/v6+nHS+p39+lBKORZt/CWaYUCr0apCV0pZgraRtkwIcYkQwl0I0Rtt6ZWJthSsZoQQYqpzhjIH7eX4tZEqPgEuE0KMFZolxP+d0IddwBQhRJAQIsJZbjVbgTKnktwohNAJIYYIIepspjiXaZ+hbfJ4CSEGo+l9qvka6C+0TT13598oIcQg56x9BfBvoW3q6IS2geRZsw7n7O4KoW1wWdB01fWpSr5x1jVDCKEXQlyHptv+upFnVR+5QLAQwv9kCaSU2cAPwL+EEH5CCDehbXRVL4dfBx4VQpzh7Ie/EOKakxR3zNmnPo20yxet/yVCiB5oli8tobEx/tjZ9kChbWTd10BZrfncfQET2gZYEPBkC8qApj9PoElj2WKa8f7Wx3JgthBitNDwFkJcKoTwRdMVS7S+IoS4DW2mW00uEC1qW0LtAqY6v6txwN9aWr8QYoAQ4gLn99WMNm5N7VeTaHWTMSnls2hLuufRFO1b0H5ZLjxBr/kl2vKkerNiqtT0uw2VvRe4B/gQbdZShCbMq3kP+B1NKf4DsLpGXjuaLnY42qZdPtqu6skE0L1oS7QctA26t2uUVQZMRtONZTnTPIOmCwJtY3A3sA1t+f0MdZ+1G/B3Z/5CNB3fXfX0ucDZ7n+gqVIeBi6TUuafmLYxpJQHgI+Aw85l1cmWTTejbUTtQ3vGn6DNZpBSfu7szyrnUnkP2iqmvvoq0fSXm5z1nUxnvxA4GygB1qD94DWbJozxQjQVQSra+/Fe3VJcZbXacwcS0DZw8tEmFt+1oIzmPM+anHQsT5Emvb/1IaXcjrbx97KzTSlom19IKfcB/0JbNecCQ4FNNbL/BOwFcoQQ1WPxAlDlTP8O8EFL60f7Dj+NNlY5aKqYR5vSr6ZSvcPZZRFCpKHtXK7r6LYoFApFYyjfCwqFQtGOKKGrUCgU7UiXVy8oFApFV0LNdBUKhaIdUUJXoVAo2hEldBUKhaIdUUJXoVAo2hEldBUKhaIdUUJXoVAo2pEO96KuUBiNxhyz2Vyft7cuj8FgyDWZTPU5YFGcpig7XUWHI4SQ3fU9FEIgpWyJxzRFN0WpFxQKhaIdUUJXoVAo2hGl01V0GVatWsXAgQNZs2YN9913H7fddhvvv/8+r7/+OhUVFVx88cUYDAY++OADnn766Tr5bTYben39r/yKFSsoLCxk0KBBXHrppQC88cYb/Pnnn1x66aUkJSXh7e3N2LFjGTlyZL1lKBRNQc10FV2G6dOn88orr9C/f3/8/Pw466yzMBqNVFZWMm/ePNauXcvQoUPx8Tl+a05hYSHLly/n6aef5siRIyQmJpKQkEBCQgI//PCDK112djYPPfQQv//+uyvszjvv5I477uDw4cMEBwdTVVWF3W5v1z4ruh9qpqvoMlRWVqLT6SgsLGxynieffJI+ffpw11134e/vT0ZGvVd+1UtJSQnvvvsuCxYscM2QFyxYwOjRo5vddoWiGiV0FV2Gl19+maeeeor33nuPrKzj1+l5e3uzePFiJk+eXCfPsmXLyM/PZ9WqVUycONH1dyKRkZE8//zznHnmmfz666+EhYXxz3/+kxEjRrBt2zays7PZvXs3cXFxbdlFxWmAMhlTdDgtNRl77LHHmD9/Pkaj0RW2e/dutm/fzm233daaTWwxymRMcSJK6Co6nFOx001OTkan09Waga5Zs8a1GXYyNm3aRGJiIn5+ftx3n3Y/5YEDB/j000+Ji4vjiiuu4JlnnsHb25sHH3yQZcuWsWvXLm666SYuvPDC5vRNCV1FLZR6QdHlePvttzGZTOzcuZMbbrgBvV7PM888w5gxYwDIyspyCd2UlBS+/lq7wNfPz4+ZM2cCkJiYyOOPP86SJUtc5a5evZqAgADc3NxYu3YtZrOZoKAghBDMmTOHefPm1auaUCiag7JeUHQ50tPTufvuuwkJCXGFRUdHM3PmzFq63uZSUFDANddcw65du7BarQwdOpSIiAj++OMPzGYz7u7u6HS61uiC4jRGzXQVXY7o6GheffVVcnNzXWEnE4ZxcXHMmTOnTvjEiRNZunQpfn5+lJWVkZiYyIwZM3jttdcwGAxccMEFPPnkk3h4ePCXv/yFr776ir/+9a9t1SXFaYTS6So6nObqdPft28fatWvx9PRk9uzZbdiyU0fpdBUnooSuosNRDm8UpxNKp6votixatKjFeT/77DNuv/12ABYvXkxCQgLbt28nJSWF+fPns3jx4tZqpuI0Q+l0FZ2ehIQEDAYDV155JV9++SV79uxh4cKFzJ07l9jYWMrLyyktLeWRRx5h/vz5XHDBBa7juiaTiSeeeAKDwcCsWbNYtmwZZ599Ntdffz2gWTHs2rULgMGDB7sOWEydOpV9+/YBEBwcTGlpKXa7na+++orHH3+ct956i9LSUvz8/Nr/gSi6NGqmq+j0DBw4kMLCQux2OxaLBW9vb/bs2UNUVBRz587F3d2dGTNmkJycTEhICDfddBOHDh0CtMMSVquViIgIUlNTiYyMbNYxYoDZs2fz8MMP8+2337rChFAaA0XLUDNdRaentLQUm81GSkoK2dnZ2O12HA4Her0eIYTrXyklBQUFvPLKK/Tq1YucnByGDBni8pvQp08fdu/e7RLIwEmPBScmJrJ582bWr19PQUGB6wjwueeey5IlSzAYDGqWq2gRaiNN0eG05kbaokWLmDdvXquU1RqojTTFiSihq+hwlPWC4nRC6XQVnZ6VK1eSmZnZ4vzTpk3DZDJxww03kJCQQGVlJStWrOD5559nzZo1tdKmpaVxyy238O677wKwcOFC5s2bx5EjR+q06amnnuKnn36iqKiIuXPn8thjj+FwOFi6dCkbN25scXsV3Rul01V0GqpVA4sWLWLcuHFs3bqVmJiYWvE33ngjGzdupLy83OUb4eabbwbg/fffJz8/H4DJkyczePBgAJez85CQECoqKgDNaXm174WaznH0ej3+/v5UVlZSUFBAeHg4N954IytWrOD+++93pfPz88PNzQ2LxcLPP//MrbfeSkpKCnv27HH5gFAo6kPNdBWdhsGDB/P1118TFxdHaWkpwcHB7Ny5s1aaalOwpKQkAgICKC4ubnL5L774IpdddlmtGyNAu8bHZrMB2hHjl156CYvFUie/2Wx2fZ46dSqPP/44W7ZsaXL9CgWoma6iEzFlyhTi4+P55ZdfeP311wkPD6eqqsoVX1hYyOeff05ERATx8fEUFRUxZMgQV/yNN9540rJtNhvPPfccWVlZPPzwwxQWFrqclq9Zs4b+/fszaNAg/vzzTz799FNyc3MJCgoiLy+PZ555hr/97W+88MILPProowD8+OOPbN68maCgIM4//3yeffZZ3NzcmDJlChs2bGi7h6To8qiNNEWH09YbafU5O6/JsWPHCA0NbbScpqZbvnw5Y8eOZdCgQWojTVEHJXQVHY6yXlCcTij1gqLDMRgMuUKI8I5uR1tgMBhyG0+lOJ1QM11Fl0VoZ3HfByxSypltUP4S4BzgYimluntd0Soo6wVFV+Yu4AzgnjYq/wm078jCNipfcRqiZrqKLocQIhYIA/4HxEspU9qwrnBgB3CnlHJNY+kVisZQQlfRpRBC6IFioAB4QEr5RTvUORb4FBgtpUxr6/oU3RulXlB0Nc4APAEHMLY9KpRSbgSeAT4RQhjao05F90UJXUVXIx6wAEuAx9qx3heANCBBCDFcCOHZjnUruhFKvaBQNBEhhD+wDSgFnpZSftLBTVJ0QdRMV6FoOmcAIcBwYHLHNkXRVVEzXUW9GI3GHLPZ3K0OLBgMhlyTyRRxKmUIIeKA5YBNSnlR67RMcTqhhK6iXrrj0Vx1JFfRGVDqBYVCoWhHlO8FxWmNwd0tx2KTXVqN4qkXuWar45TUJor2Q6kXFPXSVPXCqlWrGDhwIGvWrOG+++7jtttu4/333+f111+noqKCiy++GIPBwAcffMDTTz9dJ7/NZnPd1nsiFouFq6++mtdee43o6GjsdjvLli1j165d3HTTTXzyyScMGDCA6dOnExHRuMypT70ghJBHF3btmx56PLlZqU26EEq9oDglpk+fziuvvEL//v3x8/NzXY1TWVnJvHnzWLt2LUOHDsXHx8eVp7CwkOXLl/P0009z5MgREhMTSUhIICEhodatDu+8806tq3R0Oh1z5swhOjqaiRMnEhwcTHl5OW5u6jVWdB3U26o4JSorK9HpdBQWFjY5z5NPPkl5eTl33XUXffv2rTeN2WzmwIEDbNiwgU2bNtUKd3d3R6fTsWjRIu677z4+/PDDU+5HS0jJN5FaYKoVtu5gUaP5tqWX8uL6TFb8mt1gmKJ7onS6ilPi5Zdf5qmnnuK9994jKyvLFe7t7c3ixYuZPLmuOeuyZcvIz89n1apVTJw40fVXE4PBwL///W9WrlzJeeedxwcffMANN9zAV199xV//+ldAu/MsIyODGTNmtGkfa7J6Zx4mq4O92RVcNSwEvZvg1Y1ZjIjxBSCnrIpJ/QMBSC0wse5gMQC+njqmnx0GQFJqKQ9MiOalDcdvOK4vTNE9UUJXcUo8/PDDAPz9738HtJmvyWRizpw5rjS7d++mR48etfKFhIRw5513Nlr+rbfeCsANN9wAwLXXXuuKe+CBB06l6S3iaLGFv58fw9K1x69kj/TzYPrZYSSsVwJT0ThK6CpalSVLlrg+Jycno9PpGDp0KEOHDgVgzZo1tfS09bFp0yYSExPx8/PjvvvuA2Dx4sV4e3szduxYRo4c2XYdaIRIPw9Wbs3hWIXVFebmVv8eVmywkVlj6t7LFh/rx7INR/H11FFusZOUVlIrTNG9UUJX0aq8/fbbmEwmdu7cyQ033IBer+eZZ55hzBjNQiArK8sldFNSUvj6668B8PPzY+ZM7fKHxMREHn/88VoCPDg4mNLSUtcV7B3FiBhfNhwqYXgPH+Jj/QE4p5cfAHMmRDepjFE9/RjV08/1/8kDglzhiu6P2khTtCrp6encfffdhISEuMKio6OZOXNmLZ1vc5k9ezYPP/ww3377bWs0s8X0D/Pi9jGR3DxKmcUqWoaa6SpalejoaF599VVyc4/fx6jT1b9kjouLq6X7rWbixIksXboUPz8/ysrKSExMxGq1snv3buLi4tqq6a1GwvrMJs96T2Tu/w7TN8TIFUOC+S2znLRCM8He7lwzvPGr3xVdA3U4QlEvLfW9sG/fPtauXYunpyezZ89ug5a1nOYejli+ORtPveCSgUF8f6CI5LxK/nF+NEvXpRMTYKCiyk65xc7dY6N47qcMzuvjj90hyS6t4s74SJ7/KQNPvRs3jAhnxZZshkb5cOVQbQWQlFrC3pxKAPqHGpkQFwDAMz+m46l348YR4XywI9dl0XD/+JMLcXU4omuhZrqKVmXw4MEMHjy4o5vRKsSFGNidXYFdSqrsDrw83EjOMxHu68G946L4d2ImVw4L4VCBmSAvPVefGcqzP6bjoXfjQG4lVockxseD9GIzYb4eFFfaGq3zkQt7Umq2sXrnsXbooaIjUDpdRbuxaNGiFuf97LPPuP322wHNumHx4sUsW7YMm83G3LlzmTt3LqWlpa3VVADKLHbsDklaoZm8sirsDolDSnRuAiGE9i8gpaTIZGPllhyiA7QLJQaGeaF3WjX0DDTgoROkFZldZcfH+jNrTCSzxkS6ZrkAb23OJmF9Juf28mVAmBevb8oiyl9dUtGdUDNdRbNJSEjAYDBw5ZVX8uWXX7Jnzx4WLlzI3LlziY2Npby8nNLSUh555BHmz5/PBRdc4LI6MJlMPPHEExgMBmbNmsWyZcs4++yzuf766wHNcmHXrl2ANmuuPlwxdepU9u3b50pTbd3wxx9/MHHiRKKjo0lMTOTyyy9vtX5ePuT4ZuCY3v6uz9VWCzX1tr9llnPr6Nqba09c3Nv1+bbRkU2q8/Yxx9MNjWpWcxVdBDXTVTSbgQMHUlhYiN1ux2Kx4O3tzZ49e4iKimLu3Lm4u7szY8YMkpOTCQkJ4aabbuLQoUOAdlDCarUSERFBamoqkZGRzTpC3Flp6caZ4vRDzXQVzaa0tBSbzUZKSgrZ2dnY7XYcDgd6vR4hhOtfKSUFBQW88sor9OrVi5ycHIYMGeLyKtanTx92797tEshAvUeCQZvdbt68mfXr19eybhg2bBjz5s1DCMGjjz7aXo9AoWgxynpBUS+tdXPEokWLmDdvXiu06NRpiWvH1TvzGNfHv8V61VmrknlpWhz//PIwZ/bw4cYRYXy5p4Bik424UKPLTwOAzS559qd0AO4b1wNfw/E50bb0UpJSS/H11HH9iDDu/yyF5dcNAJT1QldDzXQVbUpnEbiNUW1bm7A+k9G9fNmVWV5L0Casz2TasBC2ppdRUWXHYpMEGPUu+9lPfz9GodM6YUJff/qHeQFwRqQ3RncdQV56Kqs0vXZuWZXLFKym0N2fW8GY3n5E+nmyOa2UyQODXHE1HeIY3XWcEeHd5s9E0TYona6iRaxcuZLMzJY7eJk2bRomk4kXXniBRYsWsW3btlrxiYmJPPjgg3zxxRcNWigsXryYhIQEtm/fTkpKCvPnz2fx4sUA3HnnnU1uY/9QI2uTi4gNMlBmsRPo5c6e7IpaaezOif/2jDL8DDpKzY2bgFXzf1NimTQgkPWHSmqF2+wSm73+FYXZ6mhy+Yqug5rpKhqkWj2waNEixo0bx9atW4mJiakVf+ONN7Jx40bKy8sxm80EBQVx8803A/D++++Tn58PwOTJk102vCc6O1+yZAmjRo1ylWswGPDy8sJkMjVooVDTJ8NXX33F448/zltvvUVpaanL30NTuKBfIFf8Zw+fzzyDd7flEurjTlUNYVhssvHd/kJCfdwZGeNLicnGwHAvV/y0M09+Ysxml7y2KYvcsiruGhtFscnG65uyGBzhzY9/FtEn2EC/UC8GhXvz7E/pCODecT1Yvjmb+8Zr3tmUQ5zugxK6igYZPHgwX3/9NXFxcZSWlhIcHMzOnTsZNGiQK021OVhSUhIXXHABxcXFLaqrqqoKvV6Pm5sb5557Lueeey4LFixgwIABtdKZzWYMBgOA69TbggUL8PPTHMYI0Xz1psHdje9nD9PKPE+z1aopSBdc0rvZZQKYrA6sDodLeAIuv7oABRVWgr3dAdDrBI9d1MsVN2PE8XQ1neSYrHY1C+7CKKGraJApU6YQHx/PL7/8wuuvv054eDhVVVWu+MLCQj7//HMiIiKIj4+nqKiIIUOGuOJvvPHGBsuv6ex8xYoVTJ8+nYCAALZv387atWsB6lgovPDCCy5Lhc8++8zlk+Hcc89lyZIlGAwGlwBuDE+9yO3x5OY2vZjy5V+Otkm5y5zleupFbiNJFZ0IZb2gqJfWsl44GY899hjz58/HaDzub/bYsWOEhjbu2KWp6RYvXszs2bMJDg4G6rdeUCjaGyV0FfXS1kK3I1BCV9EZUOoFRS2EEGOARQaDwS6E6Fa7Np6ennYhxG3Ae1LKppseKBStiDIZUwAghBguhPgaWA18ZDabjVJK0Z3+LBbL+cCtwB4hxLVCCPX+K9odpV44zRFCDAQWAuOBpcAbUkpLx7aq7RCaacNFwGLAHZgHrOl2uhRFp0UJ3dMUIURv4EngMuBfwDIpZUWDmboRTuF7BfAUUA48LqX8qWNbpTgdUMur0wwhRJQQ4hVgB5AB9JNSPn06CVwAqfEFMBxYBrwhhPjRqdNWKNoMJXRPE4QQIUKI54A9gAkYKKV8QkpZ3LEt61iklHYp5YfAYOAjYLUQ4mshxPCObZmiu6LUC90YIcQswBMIBe5F2yRbLKVsG2v9boAQwgDcCcwFNgDfAGOBO5TeV9EaKKHbTRFCxANrATPwP2ChlDK1Y1vVdRBCeAP3Af9E23BbJKV8tmNbpegOKPVC92UFYAR8gXVK4DYPp457LWAFdMDDHdsiRXdBzXQVCoWiHVEn0pzoDO45DoutTR2ftDVunvpcu9ka0XhKxanirjPm2BzmLv2+6N0MuVa7Sb0v7Yya6ToRQshxWS2/Irwz8EvUPOVboJ0QQsiEq3I6uhmnxJzPI9T70gEona5CoVC0I0roNpG8L/6gfE826S8mYiszs+/2D7GbrBx9cxPpCT9TtiuTiv05pC7+vt780mY/adkOi429N7+HJUu7ykXaHaQu+p7DC7/FdKSQ1EXfc3R5EpWH8tukb4rW5bfML8gs3sMPyQmYrWWs2PI3quwmfk37kC93LwAgtWA7Pxx4od78Dnnyd6VmGdVpE1Pe5IMd93Mw7xc+3vUwiSlvUmrOa80uKVoRJXSbSNiVw8he+SvGPiHofQ34DIlEZ3THbrLSc875FG1IwXtQBDpvD1cea1El2R9sI2PZesyZxRQnHebo8iSOLk+iKPFPV7rc/+4kaNLx2xGsxSY8wn0JvmQQBd/tRx/ohd1UhaJrcHb0lWw8/DZhPn0wuPsS7T8ED52Rc3vPwOjuD0Bs8MhaeYpN2fxyeAXrDi6jsqqYPdnfk5jyJokpb5JWuMOVrmYZAG5Cx8S4OwgwRhEXGo+3RxBVtooW3Z6haB+U0G0i9soq0LlhK65scp4jz/+Eo6KKyFtGY+wdXG8ah9mKKeUYJb+mUbpNu37bI9gbNy93ynZk4OauI+aeccTcO55jX/7RKn1RtC1VtkrchI6KquIm5/ly9wI8dEbG970dH8/635WTYbWb0Qk9bkLHpYPnMq7v39iR8XkzW61oL5T1QhPJensLvR6eRN4nu7DkHL+RVuflQfqLiQROiKuTJ27xZVgLKjj25R/4j4klIL4PAfF9aqVxM7jTZ8EUclf/ht+onuR9touwqcORNgcOi42w684md/VvmNIK8BvVq04dis7HL4dXMGXww2xL/4QS0/HNtj3Z35NWuJ3M4t1EBwytleeWc96g2JTFr2kfMLzH5QyJvLjesmuWkVN2kJEx09iT/T1nRE4GYH3KcopNRzk7ZmrbdVBxSijrBSfNtV5IW/oDMXPOR2d0d4VV7M+h7PejREwf0RZNbBRlvdB+NMd64eu9S5g88EE8dMevJkot2E6JOYvhPS5vIGfboqwXOgalXmghYdecRVWNGS+A5WhJowK3ZOsR0l9M5Oh/Np80rHRHBgcf/AyArJVbOPTEGsyZRa3cA0V7cdkZj1FUeZRj5ccPBcYGj8S9hhA+GYcLtvJDcgIbDr3lCsso/oNXN14DQEFFOl/vXcJnf8zDIe1UWAp5acMVrd8JRauh1AvNIGfVDhxmGxV7sgideiZC50bmKxvwHdETgKrcUteGmCm1gMJ1yQDofDyJuF4TxiWbU+n5wETSX0p0lVszzFZmxpRyDEOvQAD8RsRQsjkVoe9WN+ecFmw58hFWu5nM4j2MiJmKTuj58eDL9A7S3oVScy5nRFwEwLHyVPbmaLcfG/Q+nNt7BgAp+UlMHjCHtckvusqNCRhGXEg8ABnFuxje43L25azlaMleUgu2MiBsQnt2U9FM1Ey3GViOlhB162j0Qd6uMI9IfyKuH0FVbmkDOZtOya9pWAsrKd2RgeVoMT5Do4i5ZzzmdDXT7WoUVR5lbJ/b8PYMcoUFGCM5t/cMSs2tc2v6wLAL+PPYRgorM7HYyik153GkcAepBdtbpXxF66Nmus3AM9KPrJVbsB4rd4UJXf0qMWNsMD1mxdcJ9x8TS8ay9eh9DNjKLZQkpdYKC75oIFwEDosVfaAX6S8mYskuJXr2eW3WL0XbEGCMYuPhtykzH3OFuZ3krs9Qn1gmxt1RJzwuJJ61yS9h0PtgtpaTkp9EuG8/0gq3sz3jUwaHT0JKO2E+fYgLiScuJJ4fDrxQxyRN0XlQG2lOmrKRVnEwj+INKbh56Im8+Zx2alnTURtp7UdTNtJySpNJztuAXufBebG3tFPLmo7aSOsY1Ey3GXj3D8O7f1hHN0PRRYjwG0CE34DGEypOK5ROtw1JT/i5xXlrHg1Wx4BPD052LLgp1Dz++9Wep0hMeZO8skOt2DpFa6Fmuk3g6PIk3Dz12rHc7/dTcSCPXg9dQNqSHzD0DMReUYWtzELMPeM48uw6/Mf2AbumtrGbrBx57kfcDHoiZowka8Wv+AyNJOyqMwEoTjpMxV5tmerVL5TAif2A2keD1THgrkViypu46zwZGvkXdmd/R07pAS4Z9E++3ruYIK+eVNkqMNvKuLD/vXyz7xn6hY51+Vuospv4dt+zuOsMjOl9AxsO/YfogGGMiLkKgD+PbeJoyV4AInz7MzB8IkCt47/eHoFY7aYO6buicdRMtwkY40KwFlci7RKHxY7Oy53K5Fw8wn2Jvnc8Qu9G2FXDqDyUjz7Im/Crz8J0pBCAygO5SJsdj1AfzBlFeIT7Yitu+Atx4tFgdQy4axHuG0dlVTEOacfmqMJD50VO6QH8DOFM6n8fbm56zo6eSl7ZIbw9ghjV8xoKKo4AkF2yH7u04WsIpaAyHT9DOJXWxi1Xah7/vbD/vVzY/z5+O/pFG/dU0RLUTLcJ2MssSJsDU1oBVXllSLtEOiRC74YQAqF3AyFASmxFlWS9/SuGHgFUHSvDa0AYQqf9thl7BlK5PxezUyADTToarI4Bdy3M1jLs0kZ+RSql5lwc0o5DOtAJPUII178SSUVVEb8cXkGgVzRl5jwi/Qaic1o4BHv1IrtkP/nlR1xl9ws9j36hdS1Zah7/3XJkFfkVacQGjWq3PiuajrJecNJaTszTE36m55zzW6FFzUdZL7QfreXE/IcDLzB54IOt0KLmo6wXOgalXmhlOkrgKromHSVwFR2HEroKhULRjiih20RyV//mutmhJdR308SJFK5L5vD/fQfUdnpTk/xv9nLwH5qv1IZuqlB0LFuOrKLYlNXi/NW3TSSmvMEPB14gvWhnrXir3cx3+5/npz9frZPXZrewfPNNFJuy2HLkI37+83U2pb5DuSWfD3bc3+I2KVoHtZF2AtU62fSEn/Eb3ZvynZl4RPnXig+bNpzSrUewV1ThsNjQBxgJv+YsAPI+3YW1UHN0HjAhznWY4sSbJtJfSsR3eLSrXHNmMQ6rHb2fZx2nNzUJmXIGlQe1q1i0myr2t9mzUDROtU72hwMv0CdkNOmFOwnw6lErfkTMNFILtmKxV2C1W/DyCOCcntcCsD39E8qrtI3VgWETXIcpqm+bqLKbmDzwQdYmv0jPwLNc5SbnbcDqsODlFoBDOnATx+dPW9M/ZnDEJADyy9O49IxHWfHrTM6LvYVQ79g2fyaKhlEz3RPw6h9GwdoDGHoHYy+zoA/0omJPdq000u4AoHR7Ono/A7YSc4vqclTZkA6trJLNqVgyiyndkUHJptRaTm8cZuupdUrRZoT79mdv9g+E+MRitpbj5RFIZvHuWmmk1MY4tWAbRnc/TNaWOUeyOapwOMuyO6xE+Q3CzxBGVsk+rHbtHbTazeSWpXAo/1cOF2xlUMSFrD/0FkYP/4aKVrQjSuieQNAF/Tny3I8ETx6I6XA+bh46HNbjFwXaik0UfKvNLv1G9sRWYsKrX6grPmzacHrMiqfHrPh6jwy7bpoYH0fuqt+wl1kACL/mLHrMisdvRAzBlwwi+q6x+I2IwSPKn6PLk1z5i5MOU7ojg+LNqXXKVrQ/gyMu5Nv9z3FGxEUcKz+E3s0Du+P4j2RFVTF/ZH8DQGzwKEzWEiJ8+7niR/a8molxdzAx7o56jwx76Lz4ITmBAWHj2XLkI8zWMgD6hY7lSNFvHCncSYh3b9anLAfAXWfgqmELGRA2gT7B5yClA7ujijOjLmvLx6BoBspkzElrmYydjPpumqgqqMAj2LuBXNotwvaKKvT+dR1en3hThTIZaz9ay2TsZNR320S5JR8fz5A6ae0OGxZbBV6NzGbLLflsTvuQiwZoel1lMtYxKKHrRGdwz3FYbOEd3Y5Twc1Tn2s3WyM6uh2nA+46Y47NYe7S74vezZBrtZvU+9LOKKHbQoQQgcB24DEp5epWLvtZYBhwqZTS3lh6RfsjhBgAvAXogL9JKTv9jqYQYhLwJrAReFBKWdDBTTotUTrdFiCEcAPeAb5ubYHr5DHACMxrg7IVp4AQQi+EmAtsAj4GxnUFgQsgpVwHDAUKgD1CiGuFEEq90M6omW4LcH7pLgcmSinbxP2XECISbSY9U0qpjHE7AUKI4cB/0ITWHVLKtA5t0CkghBiDNlM/CNwjpWy5UbGiWaiZbjMQQtwqhHgQeAC4tq0ELoCUMhuYAbwjhOjZVvUoGkcIYRBCLAZ+AJYBF3dlgQsgpdwMnA3sBnYJIf6mZr3tg5rpNgMhxAY0Xet7wAOy2gCzbet8GJgKjG9LIa+ojRDCA3gJbaz/A+wB7pVStp3JQgchhBiG1sdS4AngIinlgg5tVDdGzXSbx7loutYKoL1+rZ4DcoB/tVN9Co2HgEuA/wKPSymv7o4CF0BK+QcwBvgW+BK4XwhxYce2qvuiZrrNQAjxPPCslDKvnesNQNPvrgZKpZTPtGf9pxtCCANQCdjQfmD7SikLG87V9XHqeX8G3IEiKWVdo2DFKaOEbhfAqWt7E7geSJFSDu/YFnVvnM/7IiAZyJJSnjbnsIUQRiAGCJNSbuzo9nRHlNDtIggh7gKWAP6ATqqBUyi6JJ1e6BqNxhyzueud/DEYDLkmU+ue9nEue2+TUr7WmuW2JQajIcditnS58fM0eOaaTebT9rSWu86QY3N0vXGrid7NM9dq73xj2OmFrhCiS07qhBDqXDva+O2v6nomoIM8ok7r8RNCyEXjut641WTeL51zDJX1gkKhULQjyol5B+FmcM+RXdzBjvDU5zqUgx2Foll0eaG7atUqBg4cyJo1a7jvvvu47bbbeP/993n99depqKjg4osvxmAw8MEHH/D000/XyW+z2dDr638Mzz//PO7u7kRERHDdddcBMH/+fLy9vRkzZgwTJkxocbulxRY+5ujCFufvDGzu8WSLfzTWrP6CPgPiWP/tj9x4z0weu/1Bnn1nGavefA9TRSVjJ0/E09OT/330Gf9Y8nid/A2N2zcff8mRlFSqLFU8sPBhAFa++Kar3E1r12P09mLEeecwZMSZLe3Cac0feV8Q6hVHcuGPnBs1k88OPsg1A5axNec9quyV9AuciN7Nk9/zPuPi2LrjZ5c2dKJh8VNpLeSDfTOZdeYXrrD1GcvQCXdGRtyAQe/byr1qH7q80J0+fTqzZs1i8uTJ+Pn5cdZZZ2E0GqmsrGTevHksWbKExx57DB8fH1eewsJCPv30UwoKCrjmmmvIyMhg165dAAwePJjJkycDYLVayc3NZdSoUa68FouF0tJSYmJi2rWf3Y1Lr7uS+bMf4rxJE/Dx82XQ8CEYjEbMlSbuemwObzz9EnfOvR+v/x33N1xcWMQPn39DSUEhF0/7KzmZWez/fS8AcYP6cd5FEwGYcu0VfPn+J5xx9jBX3prlBgQHUl5aht2uHLi1lGFhV/L5nw/RL2ACBr0vkT5DcNcZsdpNnN9zDonpLzGx5/3s1x0fv0prEXvzv6HSVsiQkL9SYskip0Ibv1CvfvQLnFirjt/zPicu8PjEJqdiP0XmdEKNcbgJXXt0s03o8jrdyspKdDodhYVNt11/8sknKS8v56677qJv374nTefv78+zzz7LunXrXGG9e/dm/vz5fPvtt6fU7lPBlJKPKbW2V76idQcbzVe6LZ3MF9eTveLXBsPaA5Nz3EqKipuc5+X/e57K8gqm33kLPfv2bjBtyr5k4gb3rzdu+h03c/tD9/DLdz81o8WKmlTZK3FDR6WtuMl5fjryPFWOCkZH3kKwsfdJ0yUdXU5qya+UWfPIKP2N9NLtADiklQDPGHr5jyalaP0p9qDj6PIz3ZdffpmnnnqK9957j6ys47ut3t7eLF682DVrrcmyZcvIz89n1apVTJw40fV3IllZWTz77LMMGzaM//3vf0ycOJEDBw7w0ksvcemll7Zlt+qQt3onDpOVir3ZhFw1DKF3I+vVjfiO0GbcVTllBE7ShIwptYBipxDW+XoSNv1sAEqTUol+YAKZL21wlVtfWHvwwatvc/+Ch/nqg0/Iyzp+utbo7cXrS1/kvIvqqm7mJSymKL+Abz7+knPGj+GcCfGcMyG+Trq87FzCojTNx89f/8A5E+JrlfvD59/w55799OyrLmlsKVuy3mZSr4fZlfcJpZbj4+eh8yIx/cVaM9RqLotbTIW1gD+OfUms/xj6BMTTJ6Du+MX3mAVArP+5/JyeQE+/kezK+4xhoVewM/cT9uV/wzmRN7dd59qYLi90H35Y09n9/e9/B7SZr8lkYs6cOa40u3fvpkePHrXyhYSEcOeddzZY9qJFda/veemll06xxS3DcrSYmL+fz5Gla11hHpF+hE0/m8yErverf/tD9wBw6xxtDMyVJswmE7fcP8uV5uDu/YT3qL1PFxgSzHWzbmqw7LDIcG6693YAzr9M+9GtWe7QkcOZfNWUU+/Eacy4GG38zovWxs/qMGG1m1wCEzR1gJ9H7fHzdg/mnMiGx68m5/ecA8DwsKkAXNr3/06l2Z2CLi90T2TJkiUkJyej0+mIi4sDYOjQoaSnpzead9OmTSQmJuLn58d9990HwOLFi/H29mbs2LGMHDmyTdveEB6RfuSs3Ir1WIUrTLjVrx0yxgZjnDWmTrhffCxHl21A5+uJvdxCSVJarbCO5MqbriH3aA694o7PPrMyjjL1lukN5vstaStb12/Gx8+HG+/5myv89aUvEtUzmt79+/DL9z9jMZn5++LHSPvzMM8+vJBXP3+nzfpyunGsMoUR4dNxr3GfW3LhOgYETSLCe9BJ8x0p2UpqyWY8dT6M6fG3esMySnewLed9pvZ/gS1ZK8k3HSa+xx0EGqLbvF9tRbcRum+//TYmk4mdO3dyww03oNfreeaZZxgzRhM+WVlZLpVASkoKX3/9NQB+fn7MnDkTgMTERB5//HGWLFniKjc4OJjS0tIO33TxHRFDyYZD+AzvgX+8Jpj8zukFQPScpllR+I3qid+o4655gyYPcIV3BJ+9swqzycz+XXv46/VT0el1vPX8Kww/V7toMy8rl4lTJgFwJCWVxG803bqPnw/Tbr0egK3rNzP70Qd44+njK5BNaxM54+xhFOUXsm3DZm669288+8j/UZCXT9KPGxg66qx27mn3Y0fOKmwOM1kVezgzdCpuQseGzFfo6auNXWlVLgOCtLErMKWSXKiNnafOhxER2tillmxmYs8HSEw/PnY1w8y2Mo6ZUgg0aO95jN8IUks2N2r10Nnp8htp1aSnp3P33XcTEnLcMVJ0dDQzZ86spettLrNnz+bhhx/u0I0zAK/+YUTePoaIm0c1nriLkJ1+lBmzbyUwOMgVFtEjkmm3Xk9eVm6Ly92z4w92bt7Gb5u38dfrp/LZylWUFZdy6MCfFBcUsWvLDv7cm9waXThtKbEcZXTUrXjrj4+dv0ckIyKup7Sq5WNXk7SSX6m0FpJRuoNiy1GifIYyPuYeisyNr1o7M137J6MG0dHRvPrqq+TmHh9wna5+s5K4uLhaOt9qJk6cyNKlS/Hz86OsrIzExESsViu7d+92qSo6M5kJ65s86z0Rh8XGwTtWE7v0MsxphZTvOoo+0Ej49SNauZXHCY+O5MPXV1KQd8wV5naSMesVF1tLL1vNORPG8OYzy/Dx86GirJyt65O4c+79HE3LYMemrVitNhwOB/GTxmubb+PH8NqSBPqdMaDN+nU64OcZyZaslZRbj4+dOIkZV7Axtpaut5pY/zGsz1iGQe+DxVZOaklSrbCBwRcBF2F1WPDSB5KY/iKllmzOi57dVt1qF7qN74V9+/axdu1aPD09mT274welMd8LQgh5ssMR2cs3Izz1BF0ykKLvD1CZnEf0P84nfek6DDEB2CuqsJdbiLp7LBnP/YT/eX2QdgdV2aVE3hlPxvM/4eapJ/yGEWSv2ILP0ChCrhwKQElSKpV7td1mY/9QAiZoPya5729HOiSBk/rjHuxN+rM/4tUv1GX5UB+bezzZ6Nn2hnwvpOw7SNKPG/Dw9GD6HZ1rN1r5XmjY90JexUFSijegd/PotJYEyvdCGzN48GAeeOCBJgnc+qwSmsobb7zBQw89xM8//9ziMhrDEBeCrdiEtEscVXbcvDwwJefhEe5L1L3jEO46Qq4chvlQAfogL0KvPhPzEc1OufJALtLqwCPMB3N6MR5hvtiKKxusz2G2YkrJp3TLEcq2ZeDmqaf3/IuxV7Tt7UBxg/tz8323N1vgvrYkocV1rnzxTd58Zhlrv+hYdVFXJ8y7P/E9bm+WwP05PaHF9dkcFt7bezMlliyOlGxlQ8bLHCzsmnbWXVq9kJCQgMFg4Morr+TLL79kz549LFy4kLlz5xIbG0t5eTmlpaU88sgjzJ8/nwsuuMC1IWYymXjiiScwGAzMmjWLZcuWcfbZZ3P99ZqSPzExsd5TanfeeScHDx7kl19+4fzzz2+TftnLLEi7A3NaIVV5ZUi7A+mQCJ0bQgiEzg0ESCmxFZnIWbkFz+gArHnleA0MQ+i131JDz0AqD+RiTityle0fH+vaiKvGzeBO7wWXkLd6J76jYjj2+R+YD+XjEenXJv2r5p2XluNp8OTCyy/hp/99z597D3DvEw/x78eXEN27J5XlFZSXlXH7Q/fw0oJnGT1xLA6HNn5mk4llC5/Dw9PANX+bwQevrmDw8KFcOv0qALauT6r3tFpxfiH3PvkQ/7zpHi668i9t2r/uStLR5ejdPBkUfAn7C74nr+IAF/R6iB/SlhBo6EmVvQKLrYxxMfew7siz9PEfi0QbN6vdxI9HnkPvZmBkxAx+zVpBpM9QzgzTxu1wcVK9p9R25v7XtTG3r+Bb/D17AJ1uEtskurTQHThwIL/99ht2ux2LxYK3tzd79uwhKiqKuXPnsnDhQmbMmEFycjIhISHcdNNNzJ8/H09PT3bv3o3VaqV3796kpqYSGRnZpFNtJSUlvPvuuyxYsKDN+hVy+RDXZ/8xvY9/dgrLmnrb8t8yibh1dK38vZ+42PU58rbacQ0Rdp22qx961bBGUrYOfQbEsW/nbhx2O1UWC0YvL/7cm0xYZDizHr6XV576F5dOv4rUg4cIDAniihuv5sUnn8XD04ODew5gtdqI6hVKZloGoRHhFDfhdNvwMSP54NW3iewZ1fYd7KaEGOPIKt+NlHbsDgvuOi9yK5Px9QhnfPS9/JT+L4aFXUV+5SG89UGcFX4169KeRefmQW7lAezSRoBHKEXmDHw9wjE1cqrN6jBzzJRCeVUeRr0/JZYsLo6dx49HnqN/UNtMfNqSLi10S0tLsdlspKSkkJ2djd1ux+FwoNfrEUK4/pVSUlBQwCuvvEKvXr3IyclhyJAhLocpffr0Yffu3Rw6dMhV9slOqc2cOZMRI0awbds2lzlaR9LSjbPOQHlpGTabjSOH0jiWnYfDYUc6HOic46arMX7FBUV88NrbRPXqQX7OMfqdMQC9Xtu4iYntyZ979pNx+Iir7JOdVpNSYq2q4qKr2vdEYXfCYi/DIW0UmNIoq8pDSjtSOnAT2ni5CT0CgURSaSvi16y3CTD0oKzqGGFeA1x+EwKNPcmt3E+h+fi41XdKzd3NwJQ+C/gtdzU9/UbhJtzZmPka3u5d8wq3brOR1hiLFi1i3rx5rdCipnEqG2mgHfv1H9cHzyj/FtWfPGsVcS9NI/e9bTgqrQRMjMNneO1TeUXrDlKyOZWYhy4g74PtmNMK6fnoJHTexw9KFH63H3NaIe7B3gRc0I8jT/1AXIK2FDzVjbTm8NqSBO56bM4pl9NU1EZa6zgx/zk9wXWqrL3prBtpXXqm2xzaU+A2h2ozr8yE9fiO7kX5rsxagjYzYT0h04ZRtjUde0UV0mJDH2Ak9JrhABz79HdshdpGmf+Evnj1DwPA+4xIdEZ3HCarVv5LG2oJXcvRYqTNjt7XgM7ojtfgCEq3psMJp9wqk/Ncvhncg70x9A6iI2hPgatoPTpK4HZmuo31QlfF2D+UorXJGGKDsJdZcA/0omJPdu1Edm2mX7Y9A52fAVupuUV1OapsSIcDgNKkNCwZxZTtyMBWasY/PpbQq8/EVlCBw3zaXH6rULQ7XV7orly5kszMzBbnnzZtGiaTiRdeeIFFixaxbdu2WvGFhYXceuutbNxY9zbqzz77jNtv1xyr7N69m7lz5za7/sAL+pHx/M8EXjQA8+F8hLsOWXX8yLGt2EThd/sB8B0Zg63EhLFfqCs+dNqZRM4aQ+SsMa5Zbk10Xh5kvriegPF9yVu1E3uZRct3zXAiZ43Bd0QM9nILR5dtoGjdQXS+nmQv3+zK7zUgjKzXN7VYzdEYn7+7mpzMli9j77/2dswmEytffJPXliSwe/uuWvFb1yex9KEnWfdlXROxooJCbjz/SgDWrPqcrz74tMXtON34LXc1JZaWj9uH+27Hajex6eib/JyeQGbZrlrxldYiPk2eQ1rJljp5a5qPfZ+6iKSjy8mvPEROxX6+T13c4ja1F11GvVCtk120aBHjxo1j69attRyJL1q0iBtvvJGNGzdSXl6O2WwmKCiIm2/W7Ajff/998vPzAZg8eTKDBw8GqNfpeU2n5UFBQdx66631tmnq1Kns27cP0Jzq1HSU3lTcDO4M+16zLY6afR6gCdJqei+4pNllAjhMVuwmK5E1HN94xgSg9zfWSle9EdfjvvGusLAZx0+hBV1y3GGJtaACoWuZiqxaJ/vakgRGjB3N7m07iYiOqhV/+Yxp7Ni0lcqKCixmC/6BAVx50zUAfPXBpxQVaNYl502a4PKVW5/z86Ejh7vK9TB4YjQasZjqrg7WrPqc+Ela/4efO5Idm7a2qG/dmWqd7M/pCfT2G01m+U78PaJqxQ8Pm8aR0q1U2SuwOSwY9QGcFa6N2668T6m0auMWFzCBMG9t3Opzeh7tO9xVrpd7IGeFX1tvm2qaj3npA6mymwCI8B5Uy2l6Z6XLzHQHDx7M119/TVxcHKWlpQQHB7Nz585aaaptcJOSkggICKC4uLhFdVVVVeFwLsNPxGxu2dK+ven56CR0RvdaYe7BTXshT5bOPdi7lnBuDn0H9efnNWvp2bc3FaVlBAQHsn/Xnlppqsdv5+bt+AX4UVZS0qK6ao7f8NEjmPPUXFIPapYpFuf4ZaVnciw7j9+3/sbOX7e3qJ7TgTCv/hwoWEuwoTcWexle+kCyK2qPm0Nq45Zeuh2D3g+zrWXjZnNU4ZD1f++sDrPr32OmFNJKfiW9dBvjYu5hfMy9/HHsyxbV2RF0mZnulClTiI+P55dffuH1118nPDycqqrjJ6YKCwv5/PPPiYiIID4+nqKiIoYMOW7veuONNzZYfk2n5ytWrGD69OkEBARgNpv55JNP0Ol0jBo1ioSEBJcaITExkc2bN7N+/fpm35cmPPW5p3LHWGdAeOqb7Nlkwl8u4Prxl/P+z1+w+s13CQ4LxWo9rjsuKSpm3ZffEhIexlljRlJSVFLLP8LlN0xrsPyaTso/W7mKKddegV+AP3t2/E7SOs1Be2lxCd98/CXT77iZqJ7RPLjoUV5bksBZ547kaFpGc7t/WtA/6ALe3HU5s878gq3Z7+LjEYrdcXzcTLZi9hd8i49HGD39RmKylRDudXzchoc1PG41nZ7/lruKoaFXYNT7Y3WY2Zv/NW5CR7TvcJKOLmdCzH11zMd+y11NgSmNXn5dxxHUaWMydjIee+wx5s+fj9F4fNl97NgxQkND66S12WyUl5cTEBBQJ2737t1s376d2267rbrdndJcpb1pLZOxk/HCvKXc9fgcDDXGr/BYAUGhwXXSVpRXoNfr8DQY6sT9+NV3+Ab4c854TR2jTMZax2TsZPyQtpTzY+bU8sFbUVWAt0fdcbNLG1X2Coz6hvcVcir2c7Tsd0ZEaD6YO6vJWKcXukajMcdsNne5GaHBYMg1mUyn/fXkBqMhx2K2dLnx8zR45ppN5tN2/Nx1hhybo+uNW030bp65VnvnG8NOL3SbihBCAO8DVcDM1poeO8t9G00Vc1ObTrtPY4QQvYAtwDVSyl9asdxoYBswQ0rZdl6KTnOEEA8CNwBjpZSttvEhhLgPmAnESylNrVVuR9KdhO7dwJ3AGCllw261ml+2F7AZeF1K+Vprlq0AIYQn8AvwsZTy+TYofxLwLjBKSnm0tcs/3RFCnAd8BoyWUqa1ctkC+BCokFLe3ppldxTdQugKIc4Bvkb7NUxpozr6AZuAS6WU2xpLr2g6QohXgEhgWlutJIQQ84BLgPOllOr0RyshhAgDdgCzpZRr2qgOH7TVyrNSyrfboo72pMsLXSFEMNqgPyil/LyN65oK/BsYIaUsaMu6TheEEDOAhcBIKWXLbI2aVo8b8D/gAPA78KGU0tZW9Z0OCO2qiB+AzVLKNj1nL4QYDKwHLpJS7mrLutqaLi10nV+kNcAeKeU/26nO54HBwGVSnsSoUNEkhBBnAInAJCnl7+1Q3wBgLZp9+hQp5R9tXWd3RgixGBgNXCylbPObW4UQ1wNPof1AF7d1fW1FlzkccRLmAV7Ao+1Y56OAD/B4O9bZ7RBC+AKfAg+1h8B1MgTwB6IA5cH8FBBC/BW4CW2Dsl2uypZSfgR8C6x06nq7JF1ypiuEuBlwAM+g/eplN5KlteuPBLYDDwM6KeW77Vl/V0YIYQTuAc4BiqWUd7Rz/aHAa2hL4n+1Z93dASHERCAMWAZcKaXc3GCG1q/fA9gAfAFIKeUz7Vl/a9BVhe5BIBh4SkqZ0EFtmAPMB/KllOpq2SYihBiLZtpXCVwlpVR3oXchhBDvA+PQZpx3d4SKTQgxBXgH8AWCpZQV7d2GU6HLqRecy9J+aGqF3h3YlN7ONvR3tknRNK4EegGBaMt8RdfiL2jj1gvw6KA2RAOezr+JHdSGFtPlhC4gge+BM6SUczqsEVrdZzjb0vWWCx1HCvAc0LstDit4Gg05QgjZlf48jYac1n4ObUgimgXBX1rzEERzkFK+iTbpWQU0frFhJ6NLqhcUipMhhJBfVOzo6GY0iyu9R3RKHwGKtqErznQVCoWiy9Js145uBvccabF1OUcYwlOf6zBbG3V+4e5myLHJrufoQy88c62Oxp17dPf+dVe66rjVpLEx7O6ypZpmC11psYU3dIttZ6Wpvmtt0hK+cEzXO57/5OYeqn8n4Zf/fk+P/r3Z8f1GLp19HS/NXsiD/3mK79/6FHOlibMmjcHd04MNq7/l5qfur5PfbrOh0zf8VUn86Bsy9h9i9OXn03+k5sd50dVzOGvSGC6dfR3/vu1x4kacwcUzr8LTy9hgWfXRVcetJo2NYXeXLdUo9YKi2zPumov59s2PiYrriZefD33OHICn0YDFZObaR25n109b6D2kHwYfL1eessISfnj7Mz59/m3y0rPZvWE7X738IV+9/CE719U1TR0weigFWcdw9zi+oe8b5I/VbEFKiV9wAJbKbuEkS3GKtIvQNaXkY0qt7aqgaN3BRvOVbksn88X1ZK/4tcGwjibflEKBKbVW2MGidY3mSy/dxvrMF/k1e0WDYR1NV++fpdKEm05HeVFpk/N8tPgNzOUmLpl1NZF9Yk6a7quXP+Ton0eI7BPDzKcfJOPAYVfcA28uJDKuJ6l/HOT25//JyEvGsfPH9n9vu/r4NURXlC1tdl1P3uqdOExWKvZmE3LVMITejaxXN+I7QnuBq3LKCJykXVJnSi2g2PmgdL6ehE0/G4DSpFSiH5hA5ksbXOXWF9YR7MxbjdVhIrtiL8NCrsJN6NmY9SoxvtqljmVVOfQP1C7PKzClcrBYe8k9db6cHaZ5tk8tTWJC9ANsyHzJVW59YR1Bd+rfmtc/Zsb8u0j8aA2F2cdc4Z5eRv777H8YfuG5dfLc8a+HKc0vYuMnPzBk3AiGjh/J0PEj66S7/N4ZAHz2r5UU5RZw3tRJrF/1DcMvHMO6d76gICuPm/7vPj55bgWFOflc9eDNbdfRGnSn8TuRri5b2kzoWo4WE/P38zmydK0rzCPSj7DpZ5OZsL6tqm03ii1HOT/m76w9stQV5ucRydlh01mfmdBxDWslulP/pv79FgCuuF+7J89SacZiMrsEJkDanj8Jjqx9hb1fSCAX/63hO75cdfzjVtfngedqtzlPe+g2V9jV/5zZora3lO40fifS1WVLmwldj0g/clZuxXrs+Ak94Va/NsMYG4yxxlXh1fjFx3J02QZ0vp7Yyy2UJKXVCutI/Dwi2Zqzkgrr8ZmTm6i/f8HGWMYYZ9UJj/WLZ8PRZXjqfLHYy0krSaoV1pF05/7dtPBejh5Mw02nI7KvNjvqPaQf+ZmNn1HYv3kXe37ZgdHXm8vumu4K/++z/yE0JpLhF57Ld299QmBECOOunszHz/wHq8XC9fPuwieg/frcncevq8uWZh+OEELIpuwwVh7Mo2TDIYSHnoibO/6mzs09nmySAboQQjZllziv8iCHSjagFx6MimifJWNDPLm5h+ofDR+O+PHdr7CYzaT+nsz46/6CTq/j5w++ZsA5wwAozDnGtY9olxNkH8pg27farUFevt5MuuUKQBOu1zz8N/773Aqucc5ed67bjHRISguKKS8uxWapwjvQj95D+lGQlYe53ISnl4ExV1xQb7uacjiiqeNWTWcbP2h8DLu7bKmmzWa6Xv3D8Oof1njCLkqYV3/CvPp3dDPajO7Yv2OZOUx/7A7ee2KZKyy4RziTbrmCj595q8Xlpuzcj9VsoTS/iMi+PRl47pkc+PV3wnv34MCvv1OUk8/AMcNboQdNpzuOXzVdXbZ0CpOxU9HDFHyzj0MPfdmKrWl9TkWHtq/gG7489FDrNaYN6Cr9C+4Rxjdvfkxx3vHj+m66+r8CkX1juPzeGVx+7wzXLBdgyLgRfPLcCrx8vTGVVbD1mw1c88+ZXHjzFQw8dzij/zqRzV/+RGlBsWYyZrFi8PHirHo26zqaUxk3m8PCBwduocSSxQ9HFrM5ezn5pkOt17hWojPKllad6WYv34zw1BN0yUCKvj9AZXIe0f84n/Sl6zDEBGCvqMJebiHq7rFkPPcT/uf1Qdo1z3B2k5WM53/CzVNP+A0jyF6xBZ+hUYRcORSAkqRUKvdqOjdj/1ACJsQBEDxlMKaDx+pvUCuzOXs5euHJwKBLOFD0PXmVyZwf/Q/WpS8lwBBDlb0Ci72csVF381PGc/TxPw+H07+z1W7ip4zn0bt5MiL8BrZkryDKZyhDQ64EILUkiZzKvQCEGvsTFzABgMHBUzhmatwERvWvcQaeM4xdP/1Kv5FnuCwRBsefBeBSKzTGoDHDGVRj1nrOlPEAhPeKIryX5jTttqUPuuKrN/Hako4Yt13H/kv/gAsB8NIHYrW3rQ1yd5ItrTrTNcSFYCs2Ie0SR5UdNy8PTMl5eIT7EnXvOIS7jpArh2E+VIA+yIvQq8/EfESbdVQeyEVaHXiE+WBOL8YjzBdbcate6nvKhBjiMNmKkdKO3VGFh5sXeaZkfD3CGRd1LzrhzrCQKykwH8JLH8SZoVdTaD4CQG7lARzSio9HGMXmdHw9wqi0FXdsh06gu/cvZlAf/nrPDC65/eqObkqr0t7jZnWYyTelcKR0Cxll2xjb427G9riXPflftVkfu5NsadWZrr3MgrQ7MKcVUpVXhrQ7kA6J0LkhhEDo3ECAlBJbkYmclVvwjA7AmleO18AwhF77DTD0DKTyQC7mtCJX2f7xsfjHx9apsyQplbIdGZRsTsN/TO/W7E4dLPYyHNJOoTmNsqo8HNKOlA7chA4hBG5CBwiklJhsRWzJWUmAZzTl1jzCvAbiJrTHHWjoSW7lAYrMaa6yY/3jifWPr1NnakkSGWU7SCvZTG//uruwqn9ty8fPvNXkWfCJfJHwLjp3PYHhIYy9enIrt+w47T1u7m4GLum9gJ15q4nxHcXOvNUUmtPo6dt2m1rdSba0mfVCY2QmrCd6zoRTLqeptLb1QmOsz0xgQvScUy6nqbS29UJjdOb+1We98NXLH+Jh8GD0ZRPZumY9R/Yd4vrH7+TdJ5YR3isKc4WJyrIKpv79Fj78v9cYOmEUDrudgqw8rrj/Rj566nXcDR5Mvu0q1ry2mj7DBzL+2ksA2L1hO6l/aCqSmIGxnDVJ+/H45LkVlBeVcu7l57tsd+ujLawXTkZ7j1tNWst6oTE6q2yppsM20trzoXQEHfVitxddrX/R/XtTVlSKw+HAaqnC4GUgfd8hgiJDmfbQbejc9Yy/9hKOHjyCX3AA58+4lJzUTACO7E3BZrURGB5CbloWgREhTTpS7OXvwy2LH+D3n7e0dfeaTFcbt5bQ2WVLqwvdvNU7sWSVtDh/8qxV2E1Wst5MIjNhPeW7av+6W4sqSZnzOaVbj9Ste9VvZL2+iaJ1BzGnF3H48TUtbsfJ2Jm3mhJLVovzr0qehdVuIinrTdZnJnC0fFeteJOtmLVHlrAufSmOE66fOlyykdXJmhF7kTmdNYdb/0Li7tq/yrJyHDYb2YcyKMrJx2F34HA40Om1JXj1v0hJWWEJ37zxMWE9IwHoNbgvOr0OgPDYHug93Mk5nOkqe+j4kS5Lh+pZLkBRdj6f//sdeg3p12r9OBkdOW5SSr469DBHSreyPvNFNmcv52j5760+ht1FtrRYp1s9hc9MWI/v6F6U78rEM8q/VnzItGGUbU3HXlGFtNjQBxgJvWY4AMc+/R1boabM9p/Q12V3531GJDqjOw6TVSv/pQ34DO/hKtc90IvQa4fX26aq3DLX2enASf3xCPVpafdcy7D1mQn08h1NZvku/D2jasUPC5lGetlWquwV2KQFoz6A4aHXAPD7sU+ptGmK/L7+E1w2k5HeZ+CuM2J1mJgQPYcNmS/Rw+d4f1JLkhgedi2F5lTyKg8Q4T3YFdfHfywZZdsBTf/m4xGq+tdExk47rlMdMm6E63O1FUNNvW3ytt1MufPaWvlrWiRcOvu6JtV5w5N3t6itDdEZx21PwZf08R8LaJYMFns5UtpbPIbdXba0eKZr7B9K0dpkDLFB2MssuAd6UbHnhJvQ7Zq+uGx7Bjo/A7bSll2p5KiyIR31XzrqMFtbVGZjhBr7k1y0liBDLBZ7GV7ugWRX7KmVRqKZ3WSUbceg88Nsa7oXq5rYHFV1Zg/VWB1tcw1Vd+/fqdDSjbP2oDOOW07FPo6UbiG9bBujIm5mbI+7+bO45dffdXfZ0mKhG3hBPzKe/5nAiwZgPpyPcNchq+yueFuxicLv9gPgOzIGW4kJY7/jv3qh084kctYYImeNqfd0ic7Lg8wX1xMwvi95q3ZiL7MA2oMoWLOPgq/34rDYyH7ruBs2j3Bfsl7fhPfgU79goF/gBfyc8TwDAi8i33wYnXDHLqtc8SZbMfsLvwMgxnckJlsJocbjy8gzQ6cxJnIWYyJn1XsyyEPnxfrMF+kbMJ6deauw2MsAbbd4V95/ySjbQZjXQDZnL3flySrfTUbZDpILf1D9ayE/vvcV+UdzW5z/6Rn/xGIy89WyD/j4mbf4c8feWvG7N2znPw//i1//V1foJH70De89sYyD2/dwYMsfLToF1xnH7aJejzE4+FJ6+o5iX8E3/Jzxb4IMvZvdt2q6u2xpsXrBzeDOsO9nAxA1+zxA62w1vRdc0qJyHSYrdpOVyBpOKjxjAtD7G1319ll8KQDSZif8puPu9qrdtgGY04vQ+bXccYW7m4HZw74H4LworZ9nhh73OHVJ7wUtKtfqMGG1mxgTedzBSIBnDEa9tnwy6gO4qNejrrgRYcc9YUX5DOXGQe8Bms7TU+fXojZA9+9ftanXx8+8xeD4s/hz+15CosNrxU+YPoX9SbswV1RSZa7CN9CP82+4DNAEZGlBMQBnXXguMYP6ANRxgP7f51bQb8QZrnI9DJ54ehmoMlnqtGnA6KHs+vFX3D08iB3Wnz8Stza7X51x3IBaZmWDg6cALR/D7i5bOsUx4Jr0fHQSOqN7rTD3YO960wq9zvXATsTQM5DImZ3v6OWkno/irqvdZm/34JOmP1lcoKEn50a2r7vAptBZ+hczsA/bvt1AZJ8YKssq8A3y5/DvybXSOOza7OnAr3/g7e9DRUlZi+qyVllxOJeoA84Zyo0L7uHon9pmTJX5uPCtz9F5Z6G1xq0mne0d7SyypdkzXeGpz23unUCdAeGpb9KaUi88c0/lPq6OQi88Vf9qMOLi85h7wW0sWfsfvnvrEwLCgrFVHdfRlReWsuWrnwkID2HgucOoKC6j5+C+rviJ109psPyaDtB/fPdLxl59MT4BvqT8to9dztshyovL2PjJ964TcDUdnTeXrjpuNWlsDLu7bHGlb+7hCIWiM9OQa8fW4L0nX+baubfjaTS4wkqOFeEfGlgnram8Ep1eh4eh7lL0wJY/KDiay3lTL2rS4QhF90EJXUW3oq2FblughO7phRK6im6Fp9GQU2W2dKklqofBM9diMp/6triiS6CEruK0QwihA9YAv0spH2mD8p8FhgKXSnkSQ1fFaUuns15QKNqBeYABaP1z1BqPAV7OehSKWqiZruK0QghxCfAfYISUsvGbKFteTySwHbhNStl2pz0UXQ4ldBWnDUKInsBW4Fop5YZ2qG8CsBo4R0qZ3tb1KboGSr2gOC0QQngC/wX+1R4CF0BKuR74F/CxEMKjPepUdH7UTFfRrXEKu5HADKAHMFW240svhBDAZ0Am8BGwXcoazhIUpx1K6Cq6NUKIKcDTaBtbo6WUBR3QhhBgC1ABPCKl/La926DoPCj1gqK7czFwBhACDO+gNpwJBDnbcXEHtUHRSVBCV9HdiQR+Bs6SUv7YEQ1w1nu2sx1RjSRXdHOUekGhUCjaETXTVSgUinakxU7MFYrGcHcz5Nhk1/KDUI1eeOZaHQ37Q3AzuOdIi63L9U946nMdZqvy9dBBKPWCos0QQsiFY442nrAT8uTmHo16/hJCyDFHF7ZXk1qNzT2eVF7NOhClXlAoFIp2RKkXFJ2OfFMKAh3BxlhX2MGidfQPbPjGhfTSbaSWJuGp83VdE1NfWEdjSskHncAYe/zKm6J1BwmcVPeiyJqUbkunNCkVna+n67qY+sIUnRsldBWdgp15q7E6TGRX7GVYyFW4CT0bs14lxncEAGVVOS6hW2BK5WDxOgA8db6cHTYdgNTSJCZEP8CGzJdc5dYX1hHkrd6Jw2SlYm82IVcNQ+jdyHp1I74jYgCoyilzCV1TagHF6w4CoPP1dF2KWJqUSvQDE8h86fgp5vrCFJ0bpV5QdAqKLUc5J+JWvPRBrjA/j0jODptOWVWbOQNrNyxHi4m49Rz0QV6uMI9IP8Kmn01VTssuxFR0TdRMV9Ep8POIZGvOSiqsx1xhbqL+OUGwMZYxxll1wmP94tlwdBmeOl8s9nLSSpJqhXUkHpF+5KzcivVYhStMuNXfP2NsMMYa14RX4xcfy9FlG9D5emIvt1CSlFYrTNE1UNYLijajOdYLeZUHOVSyAb3wYFTEzW3cssZpbeuFyoN5lGw4hPDQE3HzqFZpY0tR1gsdi5rpKjoFYV79CfNqeCOpK+PVPwyv/mEd3QxFJ0DpdBVdjvWZCS3Oe6DwB9ZnJnCg8PvWa1ArkpmwvsV5D8/9H9nLN1OVp3TEnRk101V0GJuzl6MXngwMuoQDRd+TV5nM+dH/YF36UgIMMVTZK7DYyxkbdTc/ZTxHH//zcEg7AFa7iZ8ynkfv5smI8BvYkr2CKJ+hDA25EoDUkiRyKvcCEGrsT1zABABifEfwZ/GP9PAZ3qZ9y16+GeGpJ+iSgRR9f4DK5Dyi/3E+6UvXYYgJwF5Rhb3cQtTdY8l47if8z+uDtGt3WNpNVjKe/wk3Tz3hN4wge8UWfIZGEXLlUABKklKp3KttLhr7hxIwIQ4AfaAX9ooqhJvSHHRm1ExX0WGEGOIw2YqR0o7dUYWHmxd5pmR8PcIZF3UvOuHOsJArKTAfwksfxJmhV1NoPgJAbuUBHNKKj0cYxeZ0fD3CqLQVN1qnt3swl8YuocCc1qZ9M8SFYCs2Ie0SR5UdNy8PTMl5eIT7EnXvOIS7jpArh2E+VIA+yIvQq8/EfKQQgMoDuUirA48wH8zpxXiE+WIrrmy0zp6PXEjEzNHkf767TfumODXUTFfRYVjsZTiknUJzGmVVeTikHSkduAkdQgjchA4QSCkx2YrYkrOSAM9oyq15hHkNxE1or2+goSe5lQcoqiFIY/3jifWPr1Pntpx3Kak6Sg/v4W3aN3uZBWl3YE4rpCqvDGl3IB0SoXNDCIHQuYEAKSW2IhM5K7fgGR2ANa8cr4FhCL02HzL0DKTyQC7mtCJX2f7xsfjHx9apM/utzViySgm5amib9k1xaijrBUWb0Zq+F9ZnJjAhek6rlNUU2tP3QmbCeqLnTDjlcpqKsl7oWJR6QdElaE+B2960p8BVdDxK6CoUCkU7ooSuokPZmbeaEktWi/OvSp6F1W4iKetN1mcmcLR8V614k62YtUeWsC59KQ7pqBWXWpLExqOvsiP3I4rM6aw5/HiL21Efeat3YskqaXH+5FmrsJusZL2ZRGbCesp31VbVlCSlkvbktxR+t79O3pp5KvbncmTJ2ha3Q9G6qI00RbtQrZNdn5lAL9/RZJbvwt8zqlb8sJBppJdtpcpegU1aMOoDGB56DQC/H/uUSpu2u9/Xf4LrIEWk9xm464xYHSYmRM9hQ+ZLtczBUkuSGB52LYXmVPIqDxDhPdgVF+M7goNFP+LlHkSgoSc+HqEt6lu1TjYzYT2+o3tRvisTzyj/WvEh04ZRtjUde0UV0mJDH2Ak9Bqtncc+/R1boWad4D+hr+sQhfcZkeiM7jhMVq38lzbgM7yHq1w3Tz1uRnccZludNtXME33/eIq+92hR3xStj5rpKtqFUGN/kovWEmSIxWIvw8s9kOyKPbXSSDQb3Iyy7Rh0fphtpS2qy+aoqjOrrcbqMLs+6908ubj3fKrsFfWmbSrG/qEUrU3GEBuEvcyCe6AXFXuyayeyaxvWZdsz0PkZsJWa6ympcRxVNqRD65vviBh6zp2E6VC+Fme2trwTinZDCV1Fu9Av8AJ+znieAYEXkW8+jE64Y5dVrniTrZj9hd8BEOM7EpOthFBjP1f8maHTGBM5izGRs+o9Luyh82J95ov0DRjPzrxVWOzaqaxY/3h25f2XjLIdhHkNZHP2cleeP4597jxgYTilvgVe0I+M538m8KIBmA/nI9x1yCq7K95WbHKpAHxHxmArMWHsd3xWHTrtTCJnjSFy1ph6jwrrvDzIfHE9AeP7krdqJ/YyCwDlvx/l6DLNpaOtxETex7vqzaPoXCiTMUWb0R7X9axLX8qEHnNw1xldYRXWArzdg+tNf7K4InM6yUXrXI7OO8N1PelL19FjzgR0RndXmLWgAvdg7zpp7RUWhM4NN4N7nbiK/blU/JFF2HVnAcpkrKNRQlfRZqiLKTsn6mLKjkUJXYVCoWhHlE5XoVAo2hEldBUKhaIdUUJXoVAo2hEldBUKhaIdUUJXoVAo2hEldBUKhaIdUUJXoVAo2hEldBUKhaIdUUJXoVAo2hEldBUKhaIdUUJXoVAo2hEldBUKhaIdUUJXoVAo2pH/By2A9jJS49VyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "clf = ObliqueDecisionTreeClassifier(**kwarg).fit(iris.data, iris.target)\n", + "plot_tree(clf, filled=True)\n", + "plt.title(\"Oblique decision tree trained on all the iris features\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Despite axis-favorable nature of iris dataset, the oblique decision tree performs comparable to the axis-aligned decision tree. Also notice that the oblique decision tree is shallower than the axis-aligned decision tree under this axis-favorable setting" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The overall accuracy for axis-aligned decision tree is 0.9755555555555556 \n", + "The overall accuracy for oblique decision tree is 0.9733333333333333\n" + ] + } + ], + "source": [ + "print(f'The overall accuracy for axis-aligned decision tree is {np.mean(acc_rf)} \\\n", + " \\nThe overall accuracy for oblique decision tree is {np.mean(acc_of)}')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "interpreter": { + "hash": "2bd05440f2f19378251b791590979117d335abd7aa9af7ac035ffb03047de808" + }, + "kernelspec": { + "display_name": "Python 3.8.10 ('venv': venv)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/notebook/mnist_benchmark_OF_vs_RF.ipynb b/notebook/mnist_benchmark_OF_vs_RF.ipynb new file mode 100644 index 0000000000000..ce10d81c81e79 --- /dev/null +++ b/notebook/mnist_benchmark_OF_vs_RF.ipynb @@ -0,0 +1,3505 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Comparing axis-aligned decision tree versus oblique decision tree on sklearn digits dataset\n", + "Here we extend our analysis beyound our previous `Iris` and `simulation` datasets to measure performance of oblique forest against random forset on sklearn digits dataset. We assessed performance of each algorithm using one verus rest ROC-AUC score followed by multi-class confusion matrix. As seen from previous notebooks, OF outperforms RF in this real-world setting as well." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Environment\n", + "- Python 3.8.13\n", + "- [Sklearn-Adam's dev branch](https://github.com/neurodata/scikit-learn/tree/obliquepr)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.8.13\n" + ] + } + ], + "source": [ + "!python --version" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import packages" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'1.2.dev0'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import sklearn\n", + "from sklearn.datasets import load_digits\n", + "from sklearn.metrics import accuracy_score\n", + "from sklearn.model_selection import RepeatedKFold, cross_validate\n", + "from sklearn.model_selection import cross_val_score, train_test_split\n", + "from sklearn.ensemble import RandomForestClassifier, ObliqueRandomForestClassifier\n", + "\n", + "import os\n", + "import time\n", + "import pickle\n", + "import itertools\n", + "from tqdm import tqdm\n", + "from datetime import datetime\n", + "from collections import Counter\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "random_state = 123456\n", + "np.random.seed(random_state)\n", + "CLABEL = ['RF', 'OF']\n", + "\n", + "sklearn.__version__" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'2022-06-29'" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "today = str(datetime.now().date())\n", + "today" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Load `digits` dataset from sklearn dataset module\n", + "The sklearn digits dataset consists of 8x8 arrays of grayscale values of hand-written digits. More information is available in this [document](https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['data', 'target', 'frame', 'feature_names', 'target_names', 'images', 'DESCR'])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = load_digits()\n", + "data.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "((1797, 64), (1797,))" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.data.shape, data.target.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "X = data.data\n", + "y = data.target" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, '0')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAEICAYAAACHyrIWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAALmklEQVR4nO3dX4hc9RnG8edpYql/EkxbK5KExhUbsILGhIANCI1piVW0FzUkRaHSstKiKC1o7F3vvBJ7UYQQtVJTQxMNiLXaBBUrtNZsjK1xo6SLkk20UYwmWmhIfHuxE1jj2j0zc/7Nu98PBHdnB3/vZP16Zs/OnJ8jQgDy+ELTAwAoF1EDyRA1kAxRA8kQNZAMUQPJEDWQDFHPYLa/bHub7Y9tv2X7h03PhP7NbnoANOo3ko5JOlfSpZL+aPuViNjT6FToi3lF2cxk+0xJhyVdHBFvdG77naQDEbG+0eHQF55+z1zfkHTiZNAdr0j6ZkPzoCREPXOdJenDU277UNKcBmZBiYh65vpI0txTbpsr6WgDs6BERD1zvSFptu0LJ912iSROkg04TpTNYLY3SwpJP9HE2e8nJX2Ls9+DjSP1zPYzSadLOiTpEUk/JejBx5EaSIYjNZAMUQPJEDWQDFEDyVTyhg7bKc++zZs3r9b15s+fX9taR44cqW2tAwcO1LbWiRMnalurbhHhqW7nXVpdWLVqVa3r3X333bWttWPHjtrWWr++vveLHD58uLa12oKn30AyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kQ9RAMoWitr3a9uu299nm8rFAi00bte1Zmrjo+1WSLpK0zvZFVQ8GoDdFjtTLJe2LiLGIOCZps6Trqh0LQK+KRD1f0v5Jn493bvsU28O2d9reWdZwALpX5F1aU7296zNvrYyIDZI2SHnfegkMgiJH6nFJCyd9vkDSwWrGAdCvIlG/JOlC2+fb/qKktZIer3YsAL2a9ul3RBy3fYukpyXNkvQA14YG2qvQlU8i4klN7N4AoOV4RRmQDFEDyRA1kAxRA8kQNZAMUQPJEDWQDDt0dKHOHTMkaWhoqLa16txS6P33369trTVr1tS2liRt2bKl1vWmwpEaSIaogWSIGkiGqIFkiBpIhqiBZIgaSIaogWSIGkiGqIFkiuzQ8YDtQ7ZfrWMgAP0pcqT+raTVFc8BoCTTRh0Rz0uq7xX4APpS2ru0bA9LGi7r3wegN6VFzbY7QDtw9htIhqiBZIr8SusRSX+VtNj2uO0fVz8WgF4V2UtrXR2DACgHT7+BZIgaSIaogWSIGkiGqIFkiBpIhqiBZAZ+252lS5fWtlad2+BI0gUXXFDbWmNjY7WttX379trWqvO/D4ltdwBUgKiBZIgaSIaogWSIGkiGqIFkiBpIhqiBZIgaSIaogWSKXKNsoe1nbY/a3mP7tjoGA9CbIq/9Pi7pFxGxy/YcSSO2t0fEaxXPBqAHRbbdeTsidnU+PippVNL8qgcD0Juu3qVle5GkJZJenOJrbLsDtEDhqG2fJelRSbdHxJFTv862O0A7FDr7bfs0TQS9KSIeq3YkAP0ocvbbku6XNBoR91Q/EoB+FDlSr5B0o6SVtnd3/nyv4rkA9KjItjsvSHINswAoAa8oA5IhaiAZogaSIWogGaIGkiFqIBmiBpIhaiCZgd9La968ebWtNTIyUttaUr37W9Wp7r/HmYYjNZAMUQPJEDWQDFEDyRA1kAxRA8kQNZAMUQPJEDWQTJELD37J9t9tv9LZdudXdQwGoDdFXib6X0krI+KjzqWCX7D9p4j4W8WzAehBkQsPhqSPOp+e1vnDxfqBlip6Mf9ZtndLOiRpe0RMue2O7Z22d5Y8I4AuFIo6Ik5ExKWSFkhabvviKe6zISKWRcSykmcE0IWuzn5HxAeSnpO0uophAPSvyNnvc2yf3fn4dEmrJO2teC4APSpy9vs8SQ/ZnqWJ/wn8ISKeqHYsAL0qcvb7H5rYkxrAAOAVZUAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kw7Y7XdixY0dta2VW5/fs8OHDta3VFhypgWSIGkiGqIFkiBpIhqiBZIgaSIaogWSIGkiGqIFkiBpIpnDUnQv6v2ybiw4CLdbNkfo2SaNVDQKgHEW33Vkg6WpJG6sdB0C/ih6p75V0h6RPPu8O7KUFtEORHTqukXQoIkb+3/3YSwtohyJH6hWSrrX9pqTNklbafrjSqQD0bNqoI+KuiFgQEYskrZX0TETcUPlkAHrC76mBZLq6nFFEPKeJrWwBtBRHaiAZogaSIWogGaIGkiFqIBmiBpIhaiCZgd92p85tVZYuXVrbWnWrcyucOv8et2zZUttabcGRGkiGqIFkiBpIhqiBZIgaSIaogWSIGkiGqIFkiBpIhqiBZAq9TLRzJdGjkk5IOs5lgIH26ua139+OiPcqmwRAKXj6DSRTNOqQ9GfbI7aHp7oD2+4A7VD06feKiDho+2uSttveGxHPT75DRGyQtEGSbEfJcwIoqNCROiIOdv55SNI2ScurHApA74pskHem7TknP5b0XUmvVj0YgN4Uefp9rqRttk/e//cR8VSlUwHo2bRRR8SYpEtqmAVACfiVFpAMUQPJEDWQDFEDyRA1kAxRA8kQNZCMI8p/mXadr/0eGhqqaynt3Fnve1Vuvvnm2ta6/vrra1urzu/ZsmV53/ofEZ7qdo7UQDJEDSRD1EAyRA0kQ9RAMkQNJEPUQDJEDSRD1EAyRA0kUyhq22fb3mp7r+1R25dXPRiA3hS97vevJT0VET+w/UVJZ1Q4E4A+TBu17bmSrpD0I0mKiGOSjlU7FoBeFXn6PSTpXUkP2n7Z9sbO9b8/hW13gHYoEvVsSZdJui8ilkj6WNL6U+8UERsiYhnb3ALNKhL1uKTxiHix8/lWTUQOoIWmjToi3pG03/bizk1XSnqt0qkA9Kzo2e9bJW3qnPkek3RTdSMB6EehqCNityR+VgYGAK8oA5IhaiAZogaSIWogGaIGkiFqIBmiBpIhaiCZgd9Lq07Dw8O1rnfnnXfWttbIyEhta61Zs6a2tTJjLy1ghiBqIBmiBpIhaiAZogaSIWogGaIGkiFqIBmiBpKZNmrbi23vnvTniO3ba5gNQA+mvUZZRLwu6VJJsj1L0gFJ26odC0Cvun36faWkf0XEW1UMA6B/RS8RfNJaSY9M9QXbw5LqfccDgM8ofKTuXPP7Wklbpvo62+4A7dDN0++rJO2KiH9XNQyA/nUT9Tp9zlNvAO1RKGrbZ0j6jqTHqh0HQL+KbrvzH0lfqXgWACXgFWVAMkQNJEPUQDJEDSRD1EAyRA0kQ9RAMkQNJFPVtjvvSur27ZlflfRe6cO0Q9bHxuNqztcj4pypvlBJ1L2wvTPrO7yyPjYeVzvx9BtIhqiBZNoU9YamB6hQ1sfG42qh1vxMDaAcbTpSAygBUQPJtCJq26ttv257n+31Tc9TBtsLbT9re9T2Htu3NT1TmWzPsv2y7SeanqVMts+2vdX23s737vKmZ+pW4z9TdzYIeEMTl0sal/SSpHUR8Vqjg/XJ9nmSzouIXbbnSBqR9P1Bf1wn2f65pGWS5kbENU3PUxbbD0n6S0Rs7FxB94yI+KDhsbrShiP1ckn7ImIsIo5J2izpuoZn6ltEvB0RuzofH5U0Kml+s1OVw/YCSVdL2tj0LGWyPVfSFZLul6SIODZoQUvtiHq+pP2TPh9Xkv/4T7K9SNISSS82PEpZ7pV0h6RPGp6jbEOS3pX0YOdHi422z2x6qG61IWpPcVua37PZPkvSo5Juj4gjTc/TL9vXSDoUESNNz1KB2ZIuk3RfRCyR9LGkgTvH04aoxyUtnPT5AkkHG5qlVLZP00TQmyIiy+WVV0i61vabmvhRaaXth5sdqTTjksYj4uQzqq2aiHygtCHqlyRdaPv8zomJtZIeb3imvtm2Jn42G42Ie5qepywRcVdELIiIRZr4Xj0TETc0PFYpIuIdSfttL+7cdKWkgTux2e0GeaWLiOO2b5H0tKRZkh6IiD0Nj1WGFZJulPRP27s7t/0yIp5sbiQUcKukTZ0DzJikmxqep2uN/0oLQLna8PQbQImIGkiGqIFkiBpIhqiBZIgaSIaogWT+B9Czw5rEYVJnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(X[0,:].reshape(8,8), cmap='gray')\n", + "plt.title(y[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### train-test-split digits dataset\n", + "For this cross-validation accuracy measure, we are only using 1/10 of the digits data to limit the size of training data" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(Counter({0: 178,\n", + " 1: 182,\n", + " 2: 177,\n", + " 3: 183,\n", + " 4: 181,\n", + " 5: 182,\n", + " 6: 181,\n", + " 7: 179,\n", + " 8: 174,\n", + " 9: 180}),\n", + " Counter({8: 16,\n", + " 7: 16,\n", + " 1: 15,\n", + " 9: 15,\n", + " 2: 12,\n", + " 0: 27,\n", + " 6: 17,\n", + " 3: 22,\n", + " 5: 24,\n", + " 4: 15}))" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "XX, _, yy, _ = train_test_split(X, y, test_size=0.9, random_state=random_state)\n", + "Counter(y), Counter(yy)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.8428104575163398" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clf = RandomForestClassifier(max_features=None, random_state=random_state)\n", + "cross_val_score(clf, X=XX, y=yy, cv=10, scoring='accuracy').mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9316993464052287" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clf = ObliqueRandomForestClassifier(max_features=None, random_state=random_state)\n", + "cross_val_score(clf, X=XX, y=yy, cv=10, scoring='accuracy').mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Accuracy measure w.r.t. `max_features`\n", + "In addition to the mean accuracy over 10 CVs, we assessed the difference (OF-RF) over 10 CVs using different values for `max_features`" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "def run_experiment(X, y, cv=10):\n", + " max_features = ['sqrt', X.shape[1]]\n", + "\n", + " output = []\n", + "\n", + " for mf in max_features:\n", + " tmp = [f'{mf}']\n", + "\n", + " clfs = [\n", + " RandomForestClassifier(max_features=mf, random_state=random_state),\n", + " ObliqueRandomForestClassifier(max_features=mf, random_state=random_state)\n", + " ]\n", + "\n", + " for clf in clfs:\n", + " cv_score = cross_val_score(clf, X=X, y=y, cv=cv, scoring='accuracy')\n", + " tmp.append(cv_score)\n", + " \n", + " output.append(tmp)\n", + "\n", + " df_out = pd.DataFrame(output, columns=['max_features', 'RF', 'OF']).explode(['RF','OF'])\n", + " df_out['delta'] = df_out.apply(lambda x: x.OF-x.RF, axis=1)\n", + "\n", + " # print('Run Complete')\n", + "\n", + " return df_out" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEbCAYAAAD9I3KtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqp0lEQVR4nO3deZhU5Zn38e+PbhZF1m5UBAmoqEHj2m7EGMFlxEgwmjFGk4xGx5jRxGTemNeJmYwzmUkyWd5MFqNDDO7GmbiCIS4JJhpxoXHFHRVlU6FZRGTphvv945yGoqnurmpOdXXRv8911dV1nvOcU3ctXXc9yzlHEYGZmdm26lHuAMzMbPvghGJmZplwQjEzs0w4oZiZWSacUMzMLBNOKGZmlgknFOuWJF0hKSSNLHcspSLp2PQ5ntNWWQf2+2dJ8zIIscMkjUyfxxXljMO25ITSjeV8uXyj3LFYZZN0jqSvlTuOQkkamP6oOLbcsWxPqssdgJl1qoeAHYDGbdjHiYBalJ0DjAT+axv225kGAv+S3v9z+cLYvjihmHUjEbERWLuN+1ifUTi2nXGXlxVE0jGSHpC0UtIaSU9KOq9FneZxiVE5ZUPTsg2SBueUfzgt/2Ybj9lc5/+1sv63ktZLGpJTdoCkOyU1SFor6QVJ35RUVcBzvE5S3nMRpXFcl7O8qQ9f0hmSnk5fl7mSzk3rjJB0m6RlklZJuklSvzz7HirpKklvpc9nkaTJknZuL+acfUyS9FT6nOdL+jegZ556ecdQJNVImpK+bu9LmiHp4HzjJS3L0vsfBz6U7rv5dmy6fj9Jv5O0UNI6SW9LelDSJwp8bkdLeiR9fd+R9Etgpzz1eki6XNJD6WOsT1/TqyTV5L4GwBvp4r/kxJv7nP5B0v1pzOslLU7fv5GFxNxduYVi7ZI0EbgTeBv4CbAKOBO4RtIeEXF5WnUGSTfCeOA3adlxwEaSHy/jgNvT8vE52+QVES9KmgWcJenSiNiQE1N/YBLwh4hYkpbVAX8h6c65Mo13IvCfwIHA2R19DdpwCnAh8CtgGXAeMEXSeuB7JM/vW8BhwBdJWgfn5zyPEcCjQC+S1+w1YC/gy8A4SXURsbKtACR9iuR1nQf8G9AEnJvG1i5JvYA/AgcB1wFPAAekZcsK2MXXgO8DtcDXc8pfTL/Im9/jq4E303p1wBHA79uJ7Yg0jlUk7+MKks/eDXmq9wIuJXkt7gZWk7zu5wFHSzo0bV29mMb5U5LP9R3p9u/n7OsbwGPAz0leg/1J3rfxkj4SEQ1txd1tRYRv3fQGHAsE8I026lSRfAmsAHbLKe8FPAJsAEbnlK0Gbs6pNwWYDbwA/Cqn/HZgOdCjnRgvSmM8uUX5eWn5aTllj5B8mR6QUybgf9O6x+WUX5GWjcwpuy75l8gbRwDX5SyPTMtWAx/KKR9CkjQ2Av/YYh93AOuBnXLK7gbeBYa3qFuXPpcr2nl9qoC3gKVAbU75gPR9C+CcPO95btk/pGWXt9h3c/m8FuV/LqQsLf9kuo8zOvgZnZm+Znu3+Ow9ke73ipxyATvk2cd5LWPIef/yvr5A3zxlx6XbfDPr/8Xt5eYuL2vPocAIYEpELGoujOSX3o9IWh6TcsoeIWmJNBsH/Cm9HQcgSSRdJH+JpE+/Lb8l+UL5QovyL5D8crwn3efOwFhgakQ8mxNnkLQUAD5V0DMuzl0R8WbO4y0BXiZJKFe2qPswSTfUyDTmASStiKnAWkm1zTeS1sZckgHwthwK7A5cGxFLc+JYSdIiKMREkh8GP2tR/mugzdZRAZq3n5C2KguWvqdHAXdHxCvN5enn7Kct60diTbptlZKZXLVsbiEdUehjR8TqdD89JA1I9/NM+nwK3k9344Ri7WkeD3k+z7o56d89cspmAEPT8Y89SL48Z6S3vSUNI+l+yu0KaVVELCPpFpmUfgGT9mN/DPhtbB4gbivOF0i+4PfIs25bvZ6nbDmwOCLW5SmH5LkD7EPyP3gesCTPbR9gl3Yev/k5vZRn3QvtbNtsFLAoInK7fIiIRjaPNXRIRPyFpHvqHGBpOhbyr5LGFLB50c8tHc96HFhD8novYfN7NKjQuCWNl/RnkhboCja/JwOK2U934zEUa0/L6aHtaU4S44F1JOMZD5N0U2wkaaXUtqjbnutJWhd/C1wDfD6NK7cfvdg482ltQL6t/5MNRZbD5lib/95E8hzzWdPGfnL3kS/2Ql+TLF67VkXE30n6EXAycDTwf4DLJX0tIn5ZQFwFPTdJpwH/Q9Iddgkwn6T7sQq4lwJ/QEs6DLifpIV4GUlSXZPGcWuh++mOnFCsPa+lf/fLs675V2bur/TZJN0Cx5EklMfT7oPVkp5KyweTjBvka03kM53k1+EX2JxQXoqIJ3LqNMeQL859Sb4E8rUmci0DkDQ4bRk1K0XLBpIvrAB6RcQfO7iP5vfnw3nW5SvL5w3geEk75bZSJPUkab2sKGAfbV6pLyLmkLRofyhpIPA48ANJV6bdkvkU+9w+T5JAxkXEB82FkvYtMt6zSJLQhIjY1EKT1Be3TtrkTGvteZJk0PdcSbs2F6ZfNpeS/GPe3VweyUysh0jGSMaxZStkBklCOQZ4sI0vki2kXS+/JZmpcxYwmha/6CPiXZIB3ImS9s+JU8A/pYt3tvNQzf30x7co/z+FxFmsSGYKTQdOk3Rky/VKDNl6yy3MBhaQvD/NLb/mWXAXFhjKNJIv0EtalP89SRdPId4HBqWv9yaSBkva4nsmIlaQJLEdgT6t7TB9Tx8j6e7cO2efvdhyNlmzDSSfxx45dQV8u5V4Iflxk28/sHUr6Fv4O7NNbqEYwHGS8v1jL42IqyVdTPJlPEvSZJIpnJ8BjgS+FxGvtthuBslAb/P93PJL85QX4nrgq8BVJF1nN+WpcwnJtOGHJTVPGz4F+Bvgloj4UzuP8VuSAfzJ6a/aBmACm7voSuHLwF+BhyTdADxF8qW1B8lkhxtIZqTlFREbJH2dZCbbE5J+TTI77Itp/CMKiOEa4EvAv0vai83Ths8gaUUV8j3xGMlr/UtJM0m+lGeQ/Nr/uqQ70301kvzY+Bvgf5sH0dvwjyQzyB5J39MVJNOG88V0G3A6MCN9LXsCp5Ikri1ERIOkucCZkl4D3gFWR8Q0ks/614Hp6ed9PXACyWuytOW+LEe5p5n5Vr4bm6eQtnZ7Kafux4EHgPdIuhWeAs5vZb8fSbf/gKQ7p7m8L8k/ZwB7dSDe59JtH2ijzoHAXSTdV+tIjjn4JlDVot4VtJg2nJYfQTJTbS3Jl8dkktN0tDZt+Io8MfyZ/FNoz0m3ObZFeS3JjLlX0sddkT7XnwFjCnxtTgOeTp/zfOC7JF+C7U4bTsuHkEybXkYyED2D5LiUeuCF9p5f+t7+huSLubmlcGy6j+tJksnq9PPzDEmrr3eBz+0YktbnWpKu0itJjgvZ6vUnaVW9kNZdnL5/g1u+f2ndw9P3ejUtpkeTJKLZ6bqlJGMnI0hm3/253P+7XfWm9MUzM9uCkrMLLCUZBzup3PFY1+f+QDND0g55ii8kaZ090LnRWKVyC8XMkHQTyQD5TJJus6NIxj9eAw6JiFVlDM8qhBOKmSHpCySnudmb5MSL75DMQPvniHinnLFZ5XBCMTOzTHTracO1tbUxcuTIcodhZlZRZs+evTQitjpGqlsnlJEjR1JfX1/uMMzMKoqkN/OVe5aXmZllwgnFzMwy4YRiZmaZcEIxM7NMOKGY2XZt6dKlXHvttTQ0+DLwpeaEYmaVIwIaXoPGVk5S/MEyeG/RFkUzZsygsbGRGTOKPcG1FatbTxs2swqy7HW45TOw9BXoPQA++XPY79TN6+//Njx2FWxsgn1Ohk9fy9KV77NixQoAli9fTkNDAzU1NXl3b9vOLRQzqwwPfCdJJgDrVsK0S6BxbbI8/wmY+YskmQC8PB2eunGrVolbKaXlhGJmlWFpi+u4rV0Bq5ek617ZqjpLX93UOmm2fPnykoRmCScUM6sMe7e4JMsuH4GBuyf39xgH1S0uOrrPSQwcOHCLokGDfEn4UvIYiplVhnGXQ48qeOV+GLIPHP8vm9cNGAZn3wYP/xjWr4bDzoc9xzN+wFLuuOOOTdXGjx9fhsC7DycUM6sM1b3guO8kt3xGfSy55aitrWXgwIGsWLGCQYMGeUC+xNzlZWbbtfHjx9OzZ0+3TjqBWyhmtl2rra3l3HPPLXcY3YJbKGZmlgknFDMzy4QTipmZZcIJxczMMuGEYmZmmXBCMTOzTDihmJlZJpxQzMwsE10qoUg6SdLLkuZKuizP+rMlPZveZko6MGfdPEnPSXpaUn3nRm5mZl3mSHlJVcCVwAnAAmCWpKkR8UJOtTeAj0fEckkTgMnAETnrx0XE0k4L2szMNulKLZTDgbkR8XpErAduBSblVoiImRHRfEGDx4DhnRyjmZm1oisllGHA/JzlBWlZa84D/pCzHMD9kmZLuqC1jSRdIKleUv2SJUu2KWAzM9usy3R5AcpTFnkrSuNIEsrROcUfjYhFknYGHpD0UkQ8tNUOIyaTdJVRV1eXd/9mZla8rtRCWQDsnrM8HFjUspKkA4BrgEkR0dBcHhGL0r/vAneSdKGZmVkn6UoJZRYwWtIoSb2AM4GpuRUkjQDuAD4fEa/klPeV1K/5PnAiMKfTIjczs67T5RURTZIuBu4DqoApEfG8pAvT9VcD3wFqgF9JAmiKiDpgF+DOtKwauCUi7i3D0zAz67YU0X2HEerq6qK+3oesmJkVQ9Ls9Mf8FrpSl5eZmVUwJxQzM8uEE4qZmWXCCcXMzDLhhGJmZplwQjEzs0w4oZiZWSacUMzMLBNOKGZmlgknFDMzy4QTipmZZcIJxczMMuGEYmZmmXBCMTOzTDihmJlZJpxQzMwsE04oZmaWCScUMzPLhBOKmZllwgnFzMwy0aUSiqSTJL0saa6ky/KsP1vSs+ltpqQDC93WzMxKq8skFElVwJXABGAM8FlJY1pUewP4eEQcAHwXmFzEtmZmVkJdJqEAhwNzI+L1iFgP3ApMyq0QETMjYnm6+BgwvNBtzcystLpSQhkGzM9ZXpCWteY84A/FbivpAkn1kuqXLFmyDeGamVmurpRQlKcs8laUxpEklP9b7LYRMTki6iKibsiQIR0K1MzMtlZd7gByLAB2z1keDixqWUnSAcA1wISIaChmWzMzK52iWyiS+qaD4FmbBYyWNEpSL+BMYGqLxx4B3AF8PiJeKWZbMzMrrXZbKJJ6kHxBnw0cBqwDektaAkwHJkfEq9saSEQ0SboYuA+oAqZExPOSLkzXXw18B6gBfiUJoCntvsq77bbGZGZmhVNE3qGGzRWkvwB/BO4G5kTExrR8MDAOOAu4MyJuKnGsmaurq4v6+vpyh2FmVlEkzY6IupblhYyhHB8RjS0LI2IZcDtwu6SeGcRoZmYVrJAxlKHtVciXcMzMrHspJKHc1XxH0u2lC8XMzCpZIQkl9xiPPUoViJmZVbZCEkq0ct/MzGyTQgblD5T0HklLZYf0PulyRET/kkVnZmYVo92EEhGlOIjRzMy2Mx0+l5ekKklnZxmMmZlVrnYTiqT+kv5J0i8lnajEV4DXgTNKH6KZmVWCQsZQbgSWA48C5wOXAr2ASRHxdOlCMzOzSlJIQtkjIj4CIOkaYCkwIiJWlTQyMzOrKIWMoWw6Cj4iNgBvOJmYmVlLxUwbhi2nDnvasJmZbeJpw2ZmlomudAlgMzOrYE4oZmaWCScUMzPLRIcSiqRdsw7EzMwqW0dbKNMzjcLMzCpeRxOK2q9iZmbdSUcTyq8zjcLMzCpehxJKRPwq60AAJJ0k6WVJcyVdlmf9vpIelbRO0jdarJsn6TlJT0uqL0V8ZmbWukKOlO8UkqqAK4ETgAXALElTI+KFnGrLgK8Cp7aym3ERsbSkgZqZWV5dadrw4cDciHg9ItYDtwKTcitExLsRMYuc84uZmVnXUMj1UEZ0RiDAMGB+zvKCtKxQAdwvabakC1qrJOkCSfWS6pcsWdLBUM3MrKVCWih3Nd+RdHvpQsk7cyyK2P6jEXEIMAG4SNIx+SpFxOSIqIuIuiFDhnQkTjMzy6OQhJL7Rb9HqQIhaZHsnrM8HFhU6MYRsSj9+y5wJ0kXmpmZdZJCEkq0cj9rs4DRkkZJ6gWcCUwtZENJfSX1a74PnAjMKVmkZma2lWKuh5J7LRTI+HooEdEk6WLgPqAKmBIRz0u6MF1/dXrKl3qgP7BR0teAMUAtcKek5ud0S0Tcm0VcZmZWmC51PZSImE6L07pExNU5998m6Qpr6T3gwNJGZ2ZmbSn4OBRJfYC9SLq9XouItSWLyszMKk4h04arJf2QZND8BuAmYL6kH0rqWeoAzcysMhQyKP8jYDAwKiIOiYiDgT2BgcCPSxibmZlVkEISyinA30fEquaCiHgP+DJwcqkCMzOzylLQtOGI2Gq6cERsoLTTiM3MrIIUklBekPSFloWSPge8lH1IZmZWiQqZ5XURcIekLwKzSVolhwE7AJ8qYWxmZlZBCkkoiyLiCEnjgf1IDmj8Q0T8qbmCJOXrFjMzs+6jkITyYHpSyLsjYkZzYXp6lKOBvwMeBK4rSYRmZlYRCkkoJwFfBH4raRSwAuhDcnqU+4GfRsTTpQrQzMwqQyGnXlkL/Ar4VXogYy2wJiJWlDg2qzBvr1zL2sYNjKztW+5QzKwMiroEcEQ0AotLFItVsMvvfI5bnniLCPjY6Fomf76OHXp12mngzKwL6DLXlLeOmTlzJg0NDWWNYe5KuHnO5hnoD7+6lH++bjofH9r5sdTU1DB27NjOf2Az61LXlLcKtTTPaUKXrsl3AU4z2565hVLhOvvX+LMLVrBs9XqO2rOG3tVJl9bh763ldz/4I+s3JklEgi9PPIoj9qjp1Nism9m4Ed78K6gKPjQ2+eA1roE3HoZ+u8BQX9GisxVz+vqLgZsjYnkJ47Eu7JJbn+Lup5OrMg8ftAO3XTiWXQf0YZf+fbh4v+D+BdB/cC2fP/JDTiZWWutXw3WfgEVPJcsjxsLEn8ONk+C9hUnZwZ+HSb8sX4zdUDEtlF2BWZKeBKYA9/lgxu7jmfkrNiUTgAXL13DtI2/wTyd/GIBR/eFLY4KJE48sV4iWoyuMrQGsXLmSpqamzPe796qZjG14anPBWzNZ+JuzGbZ24eayp27krnd2Y0Wv3TJ//I6qrq5mwIABZY2hlOOMBY+hRMS3gdHAb4BzgFclfU/SniWJzLqUZavXb1XWkKfMuoaGhoYukVBKpc+G9wssW90Z4VSMUn8uip02HJLeBt4GmoBBwG2SHoiIb5YiQOsajtqzhmEDd2DhijUA9BCcdsiwMkdlbampqWHixInlDqM0Gj4GV82ApuTzSO/+1Jz8HbjzQjadBH3wHpx0wb9ClYeKm02bNq2k+y9mDOWrJKdZWQpcA1waEY2SegCvAk4o27E+Pau47ctHMeWvb7BsdSOnHzqMsXvWljss665q9oTz7of63ySD8odfADvvCzvtDM/8TzIof+Q/OJl0smJe7VrgtIh4M7cwIjZKOiXbsKwrGjpgBy7/xJhyh2GWGHoATPzZlmV7jk9uVhbFHIfyIWBl84KkQZKmAETEi1kEI+kkSS9Lmivpsjzr95X0qKR1kr5RzLZmZlZaxSSUA3LP35VOHz44q0AkVQFXAhOAMcBnJbX8ObwM+CotrmVf4LZmZlZCxSSUHpIGNS9IGky2B0YeDsyNiNcjYj1wKzApt0JEvBsRs4DGYrc1M7PSKiYh/ASYKem2dPlvgf/IMJZhwPyc5QXAEVlvK+kC4AKAESNGFB+lmZnlVcxxKDcApwPvAO+SDNDfmGEs+U7+VOiBkwVvGxGTI6IuIuqGDBlScHBmZta2Yk8OuRh4AngGqJV0TIaxLAB2z1keDixqpW6W25qZWQaKOQ7lfOASki/rp4EjgUeBrObozQJGp1eFXAicCZzVCduamVkGihlDuQQ4DHgsIsZJ2hf416wCiYim9ASU95FcXnhKRDwv6cJ0/dWSdgXqgf7ARklfA8ZExHv5ts0qNjMza18xCWVtRKyVhKTeEfGSpH2yDCYipgPTW5RdnXP/bZIWUkHbmplZ5ykmoSyQNBC4C3hA0nI8TmFmZqmCEookAV9ND2y8QtKDwADg3hLGZmZmFaSghJKeZfgu4NB0+S+lDMrMzCpPMdOGH5N0WMkiMTOzilbMGMo44EuS3gRWkxxMGBFxQEkiMzOzilJMQplQsijMzKziFZxQWl4HxczMLFcxR8p/J195RPxbduGYmVmlKqbLa3XO/T7AKUAmF9YyM7PKV0yX109ylyX9GJiaeURmZlaRij3bcK4dgT2yCsTMzCpbMWMoz7H5GiNVwBDgu6UIyszMKk8xYyin5NxvAt6JiKaM4zEzswpVTJfXvwErI+LNiFgI9JM0pURxmZlZhSkmoRyQnhwSgIhYDhyceURmZlaRikkoPSQNal6QNJjiuszMzGw7VkxC+AkwU9JtJIPzZwD/UZKozMys4hRzHMoNkupJriEv4LSIeKFkkVlZRASPvtbA8g8aOXafIfTtXc07761l5mtL2XuXfuy324BNdRs3bOShV5awMaBpI1R3cBL67DeXs2D5BxwzegiD+vbK6JmYFWHhbHj7OdiwAZpWw8CRMPoE6LlDuSOrKEV1WaUJxElkO3b+9fX86aV3Adi5X2++dfK+fPP251jftBGArx+/N5ccP5q1jRv49NUzmbPwPQCG7ii+/pFodb+t+fZdz3HTY28B0K93Nb+94Ej2Hzagna3MMnT/t2HmL7YuHzgCzv8T7LRz58dUoRRR2JeApOuBS5oH5tPxlJ9ExBdLF15p1dXVRX19fYe3v/3221m1alWGEZXXWx9UM+WtQVuU9avewKqmqk3L1Qou3auBF9/vxV2L+29R96TaFRxZ21jw461o7MF/vTaYpMGbGNNvLWcMq/zXtF+/fpx++ulle/ybbrqJpqYmampqyhZDJejVuJITnv0KPdiYd/1Lu53Oq0M/1clRlU5DQwPV1dV87nOf26b9SJodEXUty7vULC9JJ0l6WdJcSZflWS9JP0/XPyvpkJx18yQ9J+nptGuu5NasWUNjY+FfoF3duo1bfxyaNmrL5Uhu61qUA6yL4vq81m8UucmktRgqTWNjI2vWrCl3GFaAqo3rWk0mANUb/D4Wo5gurx6SBqWJJPNZXpKqgCuBE4AFwCxJU1uM00wARqe3I4Cr0r/NxkXE0qxias+AAQMYMGAAEydO7KyHLKn1TRt55Kd/YV7DBwBU9xCfO3pPfv3QG5vqTNh/KBd97hTeXbWWR3/6ECs+SBJqv97VfPf8SQwftGNRj/nEVTOpf3P5puVLP3UkJ+0/NINnUz7Tpk0rdwgMGJB0G24vn82S+mAavP7g1uVVvdnrtH9mr13GdH5MJVLqz2ZHZ3kB/C3ZzvI6HJgbEa8DSLoVmMSWYzaTgBsi6ad7TNJASUMjYnGGcXRbvap7cNuXx3LTY2+yfPV6TjtkOAfuPpDDPjSYB19ewj677MSZh48AYOd+fZh60dHc/MSbbNwYfPbwEUUnE4Brzz2MWx5/i/nLP2DC/kP56F61WT8ts7adeTPUXwtvPgLrV8PGDVC7Nxx2HmxHyaQzbMssrwuAzwA3ZhTLMGB+zvICtmx9tFZnGLCYZCrz/ZIC+O+ImJzvQSRdQBI7I0aMyCby7UjtTr352vF7b1F24n67cuJ+u25Vd0TNjvzThA9v0+P169OTL318z23ah9k26dUXxl6c3GybFNtl1QsYQXIMyhvA7RnGsnWn/OaTURZS56MRsUjSzsADkl6KiIe2qpwkmsmQDMpvS8BmZrZZuwlF0t7AmcBngQbgf0hmh43LOJYFwO45y8OBRYXWiYjmv+9KupOkC22rhGJmZqVRyJSal4DjgIkRcXRE/ALYUIJYZgGjJY2S1IskibW8gNdU4AvpbK8jSU5WuVhSX0n9ACT1BU4E5pQgRjMza0UhXV6nk3y5PyjpXuBW8nc9bZOIaJJ0MXAfyfVWpkTE85IuTNdfDUwHTgbmAh8A56ab7wLcKQmS53RLRNybdYxmZta6dhNKRNxJ8mXdFzgV+Dqwi6SrgDsj4v6sgomI6SRJI7fs6pz7AVyUZ7vXgQOzisPMzIpX8FFkEbE6Im6OiFNIxi6eBrY6+NDMzLqnDh2WHBHLIuK/I2J81gGZmVllqvzzXJiZWZfghGJmZpnocEKR9FFJV2YZjJmZVa6ijpSXdBBwFsmR8u8A+5Jn1pWZmXU/xRwpfxbwPvA74NiImCfpjTY3NjOzbqOQFspLJEexfzoiWh597nNhmZkZUNgYyunAPJITLt4oaaKknqUNy8zMKk27CSUi7oyIzwB7AfcCXwIWSLoW6N/mxmZm1m109Ej5DwOPAc+VLDIzM6so23qkfNansDczswrlAxvNzCwTTihmZpYJJxQzM8tEsdeUN7MK0dDQwLRp08odRtmtXLkSgAEDBpQ5kvJraGigpqamZPt3QjHbDpXyS6PSNDU1lTuELqOmpsYJxcyKM3bs2HKH0GU0t9ImTpxY5ki2fx5DMTOzTDihmJlZJpxQzMwsE10qoUg6SdLLkuZKuizPekn6ebr+WUmHFLqtFWZt4wbufnohdzy5gNXr8g9mvrj4PW54dB7PLVjZ4cd5f10Tt89ewNRnFrG2cUOH92PdzNqV8NTNMOcOaFrXer0IeO1BmPUbdli3tPPi6+a6zKC8pCrgSuAEYAEwS9LUiHghp9oEYHR6OwK4CjiiwG2tHR+sb+LUKx/hlXfeB2D3wa8w7eKjGbhjr011bn3iLS67Y/Mp3L5zyhi+ePSooh6n4f11fPKXj7BwxRoA9t21H3dd9FH69KzK4FnYdmvV2zB5HKxalCwPPQjOewCqe21d956vwezrABinnjw++puAB+VLrcskFOBwYG5EvA4g6VZgEpCbFCYBN0REAI9JGihpKDCygG1LYnua6//YO/DKO5sbrfOXreG7N97HsbttrvOfswRo0/KP732eIcvnFDXX/48LYOGKzY/z0tur+P6N06kbsu3PoSso9Vz/buvJGzYnE4DFT8Or98GHWySK9xbD7Os3LVZFI3u+fQ/wzU4JszvrSl1ew4D5OcsL0rJC6hSyLQCSLpBUL6l+yZIl2xRwqed0d7amjVuXrW9R1tjikmpNG5PehaampoLn+zfluSxbY57HrlTb2+eiy2hau3VZY56yDetpee2/qo3rSxOTbaErtVCUp6zlV09rdQrZNimMmAxMBqirq9umK05ub3P9j169ngf/6yHeXZX0TQ/csSffOutjDB2ww6Y683Z8lZ888Mqm5fOO2YtPnrRvUXP9D17+AQ//7GHeW5skoF379+H/nn0MA3bwddusDQedDY9PhvWrkuWBI2CfCVvXG/Qh2HsCvPIHAALxxs4nUtuJoXZXXSmhLAB2z1keDiwqsE6vAra1dgzq24t7vnI0v5u9gKYNwafrhm+RTAC+ctxo9h3anyfeaODgEYOYsP+uRT/O8EE78vuvfozbn1xAz6oenFG3u5OJta9mT7jwIXjmVui5Ixz8Oei9U/66Z1wPz/wWGl7jkYaBLN9p786NtZvqSgllFjBa0ihgIXAmcFaLOlOBi9MxkiOAlRGxWNKSAra1Auzcvw8XjdurzTonjNmFE8bssk2Ps/vgHfna8f4ntyIN3gPGfav9etW94dBzAFi+nYxxVoIuk1AioknSxcB9QBUwJSKel3Rhuv5qYDpwMjAX+AA4t61ty/A0zMy6rS6TUAAiYjpJ0sgtuzrnfgAXFbqtmZl1nq40y8vMzCqYE4qZmWXCCcXMzDLhhGJmZplwQjEzs0w4oZiZWSacUMzMLBNOKGZmlgknFDMzy4QTipmZZcIJxczMMuGEYmZmmXBCMTOzTDihmJlZJpxQzMwsE04oZmaWCScUMzPLhBOKmZllwgnFzMwy4YRiZmaZ6BIJRdJgSQ9IejX9O6iVeidJelnSXEmX5ZRfIWmhpKfT28mdF72ZmUEXSSjAZcCfImI08Kd0eQuSqoArgQnAGOCzksbkVPlpRByU3qZ3RtBmZrZZV0kok4Dr0/vXA6fmqXM4MDciXo+I9cCt6XZmZtYFdJWEsktELAZI/+6cp84wYH7O8oK0rNnFkp6VNKW1LjMzMyudTksokv4oaU6eW6GtDOUpi/TvVcCewEHAYuAnbcRxgaR6SfVLliwp5ilYBt5b28gtj7/FDY/OY9nq9eUOx7qTpvXw3G3wyM9h2Rvljma7VN1ZDxQRx7e2TtI7koZGxGJJQ4F381RbAOyeszwcWJTu+52cff0auKeNOCYDkwHq6uqitXqWvffXNfHJX/yVeQ0fAPDLGXO556tHs3O/PmWOzLqFW86A1x9M7j/4PTj39zDs0PLGtJ3ptITSjqnA3wE/SP/enafOLGC0pFHAQuBM4CyA5mSU1vsUMKfkEXcRM2fOpKGhodxhbIph2rRprdZ57B2Y17C5UfzuqnX8x00PcPzw7OKoqalh7Nix2e3QtklX+Hw2NDQweN18WPzg5sKmNSy4/ds8NeofOjWW7f3z2VUSyg+A/5V0HvAW8LcAknYDromIkyOiSdLFwH1AFTAlIp5Pt/+hpINIusDmAV/q5Pi7verq9j9K+ZqDbiJaqVVXV1PdVFXuMLoFRXTff+m6urqor68vdxjdxqq1jZz884eZv2wNALU79Wb6V49m5/7u8rJOcP1EeOOh5H5Vbzjn97D7YeWNqUJJmh0RdS3Lu0oLxbqBfn16cs/FH+PuZxayvmkjkw4axpB+vcsdlnUXZ98Gc+6AVYvgw5Ogdq9yR7TdcUKxTjVgx5584aiR5Q7DuqPq3nDQZ8sdxXatqxyHYmZmFc4JxczMMuGEYmZmmXBCMTOzTDihmJlZJpxQzMwsE936wEZJS4A3yx3HdqQWWFruIMzy8GczWx+KiCEtC7t1QrFsSarPd/SsWbn5s9k53OVlZmaZcEIxM7NMOKFYliaXOwCzVviz2Qk8hmJmZplwC8XMzDLhhGJmZplwQrGSknSQpJPLHYd1H5IGSrpN0kuSXpR0VM66b0gKSbXljHF75YRiJSOpGjgIcEKxzvQz4N6I2Bc4EHgRQNLuwAkklxm3EvCgvLVLUl/gf4HhQBXwXWAl8F8kRx8/CewREadIugLYDRiZrjsa2AFYCHw/Iv6nk8O3bkRSf+AZks9jtFh3G8ln926gLiJ85HzGfMVGK8RJwKKI+ASApAHAHGA8MBdomSQOBY6OiDWSziH55724E+O17msPYAlwraQDgdnAJcBxwMKIeEZSOePbrrnLywrxHHC8pP+U9DFgFPBGRLya/gq8qUX9qRGxptOjNEt+JB8CXBURBwOrgSuAy4HvlDGubsEJxdoVEa+QtDqeA74PfBJoq690dWfEZZbHAmBBRDyeLt9GkmBGAc9ImkfSdfukpF3LE+L2ywnF2iVpN+CDiLgJ+DEwFhglac+0ymfb2HwV0K/EIZoBEBFvA/Ml7ZMWHQc8GRE7R8TIiBhJknQOSetahjyGYoX4CPAjSRuBRuDLJKcD/72kpcBfgf1b2fZB4DJJT+NBeescXwFultQLeB04t8zxdBue5WXbTNKxwDci4pQyh2JmZeQuLzMzy4RbKGZmlgm3UMzMLBNOKGZmlgknFDMzy4QTipmZZcIJxaxMJPWW9EdJT0v6TAe2P1XSmFLEZtYRPrDRrHwOBnpGxEEd3P5U4B7ghUI3kFQdEU0dfDyzNrmFYtaCpJHpxZmukTRH0s2Sjpf0iKRXJR2e3mZKeir9u0+67T9KmpLe/0i6/Y55HmNnkpNqHpS2UPaUdKikv0iaLek+SUPTun8vaZakZyTdLmlHSWNJzqn2o5zt/yypLt2mNj1vFZLOkfQ7SdOA+yX1lTQl3edTkial9faT9ES6v2cljS79q23blYjwzTffcm4k13JpIjnlTA+SU6BPAQRMAu4C+gPVaf3jgdvT+z2Ah4BPAfXAR9t4nGOBe9L7PYGZwJB0+TPAlPR+Tc42/w58Jb1/HfDpnHV/JrlUACSnxpmX3j+H5PxVg9Pl7wGfS+8PBF4B+gK/AM5Oy3sBO5T7vfCtsm7u8jLL742IeA5A0vPAnyIiJD1HknAGANenv+KDJCEQERvTa8A8C/x3RDxS4OPtQ3I+tAfS63VUAYvTdftL+neSL/+dgPs68HweiIhl6f0TgU9K+ka63AcYATwKXC5pOHBHRLzagcexbswJxSy/dTn3N+YsbyT5v/ku8GBEfErSSJLWQbPRwPskV64slIDnI+KoPOuuA06N5OJQ55C0bPJpYnM3dp8W63IvKSDg9Ih4uUWdFyU9DnwCuE/S+RExo/CnYN2dx1DMOmYAyWWNIelSAjZdzfJnwDFAjaRPF7i/l4Ehko5K99NT0n7pun7AYkk9gbNztml5aYB5JNetAWjrce8DvqK0KSTp4PTvHsDrEfFzYCpwQIGxmwFOKGYd9UPg+5IeIemeavZT4FeRXJTsPOAH6QB8myJiPUkS+E9JzwBPk1x3BuCfgceBB4CXcja7Fbg0HVjfk+RaNV+WNJNkDKU13yXpontW0px0GZJxmznppQb2BW5oL26zXD45pJmZZcItFDMzy4QH5c1KTNK5wCUtih+JiIvKEY9ZqbjLy8zMMuEuLzMzy4QTipmZZcIJxczMMuGEYmZmmfj/TYQWehl3c7gAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df_out = run_experiment(X=XX, y=yy)\n", + "\n", + "fig, ax = plt.subplots()\n", + "sns.stripplot(data=df_out, x='max_features', y='delta', ax=ax)\n", + "sns.boxplot(data=df_out, x='max_features', y='delta', ax=ax, color='white')\n", + "ax.set_ylabel(r'$\\Delta$ Accuracy (OF - RF)')\n", + "ax.set_title('Low volume digits data', fontsize=18);" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAGICAYAAAByXjcVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABFHklEQVR4nO3deZhcVZn48e/b3dmBBJqwCMQECTsiEHEMKDDsakDUUdAZhUH54Yg6OuPo6OiozAyMjuMGioxiXFBcEaIIgoosYUsgLGENASEEJGkgLIGETr+/P+7tUKl0J5V0V1Uv38/z1JO6555z71ud6lNvnzr33MhMJEmSJNVHS7MDkCRJkoYyE25JkiSpjky4JUmSpDoy4ZYkSZLqyIRbkiRJqiMTbkmSJKmOTLg1JEXEwRGREXFis2ORpMFuQ/vUiJgZEVlV9tnyGJPrEaM0kJlwa4NVdLyVj2cj4uaI+EhEtDU7xoGuh59f5eMTzY5vfSLiH/1jRhq8ImKziPh02W8/ExHLI+LOiPhiRGzd7PgGioi4ch199aXNjm99IuLNEfHZZschMDFSX/wYuAQIYBvg3cD/ArsBpzQxrsFiHvClHspvaXAcG+MfgQeBmU2NQtIGi4idgcuAlwO/BL4DvAj8FfBh4KSImJGZ1/Xzqf8DOBNY0c/HrbcVwHt7KF/c6EA2wpuB9wCfbW4YMuFWX9ycmT/s3oiIbwB3A++NiE9l5pLmhTYoPFL58+tvETECaM3MF+p1DkmDS0SMBWYB2wEzMvM3FbvPLfvxK4CLImKvzPxLf507MzuBzv46XgN11rmvDmBcZj5br3Oo+ZxSon6Tmc8B11OMeL+iuzwiWiLiUxFxVUQ8FhErI+KhiPhmRLRXHiMiJpdf1X02It4UETdFxAsR8Wj5VedafyRGxLERcUtZ7+GI+DwwoqcYI2LLiDi7rLey/PfsHuI4sYzj0Ij4TET8OSKej4gbIuKvyjoHRcQ1EfFcGd+n+/5TXCveyRHxg4j4S0SsiIj7I+K/yg/NynrdcyP3iIj/jYhFwAsUI1ZExKiI+GREzC9/Tk9FxKyI2KfqOFFOF7mt/Jr56Yi4JyK+UybwlPMyXw4cVPX16uT+fv2S+t3JwM7Al6uSbQAycw7wSWAi8LGeDhARH4yIe8u+5N6I+GAtJ45e5nCX/dalZV/6RET8MCK2KuvOrKjX6zzy6GHOeFk+texDHy37/AfLz5JxtcRcq4gYFxFnlH30ivKz7vsR8fKqeqtfQ0R8ICLupOir/7mizjvKz5buqT43RMTbejjnGyPiTxGxtPx8eigifhnFNxhExJUUo9vV0xhP7M/Xrto4wq3+1p1oP1FRNpKi4/4FcBHwHPBqio7/wIjYLzNXVh3nDcA/AOcA5wHHUnRITwL/1V0pIo4rj/sg8HmK0ZOTgDdVBxYR44HZwE7lMW8G9gHeD/x1ROyfmc9UNTsTaAW+Wr6OfwIui4j3UHwNey5wPvB24PMR8cAGjISMiIgtq8q6MvOJMt6XAzcC44FvAvcCBwP/ChwQEYeWI0aVzgeep5iqksCjZaJ8KTAd+AFwVnnM9wHXRsTryw9ZgH+j+DnOovjZrwKmAMcAoyi+dv474MvAUuA/K87tNxrSwNeduP3fOurMBL4CvJWKRLD0QYophN8CngFOAL4WEVtk5uc2NJiImAJcTdG/nAU8DMyg6LP6JCL2A/4APFXG+wiwN/Ahij70oMx8scZjVffVAE9m5qooBoIuAw4Afk7R/06l+Gw5IiKmZeaiqrb/CLRT/D88RvG6iYj/AD5F8fo/DXQBxwE/i4jTMvPsst5BwMXA7cAZ5Wt8GXAYxWfcvRT9cwvwOop+u9vsWl6z+llm+vCxQQ+KpC+BzwBbUoyE7AWcXZbfWFU/gDE9HOfksv7bK8oml2XPAZOrjnEH8GhFWSvwEEXit2VF+Xjgz+VxTqwo/8+y7B+q4vhAWX56RdmJZdnNwMiK8mPK8k7g1RXlI4FHgetq/BlmL4/HKuqcX5a9oartF8vykyvKPluWXQm0VdX/SLnvyKryzcqf35UVZTcDd9YQ/4OV7Xz48DE4HkAH8HQN9W4v+41Nyu3ufv8ZYPuKeiMpBgZerCqfWaQYaxyzu5+aXFH2o7LskIqyAC4sy2dWlHfHcGIP8fZ0vlsppjluWlV+XG/H6eG4V66jv961rPO+cvsLVW3fWJb/oIfX8ASwVVX9fct9/9VDHL8Cnu5+LRTXS2X1MWr5ufhozsMpJeqLz1GMaj4O3EYxIv1LiqR0tSw8DxARrRExoRwt+ENZ5TU9HPtXmflg5TGAPwLbRMQmZfF+wA7AdzNzaUXdZRSjs9WOK+M9t6r8WxRJ+3E9tPlmrjn6fnX57/WZeVPFOVdSfOhM7eEYvbkBOLzq8TdQTMOh+DnekpmXVLU7g5dGPap9Jdce9f5big+duVFMqdmy/PmPBC6n+JZhTFl3GbBdRBy4Aa9D0uCxGcXv+fp01xlfVX5+VozWln3flym+MZ+xIYGU/dwMYE5m/rHimAl8YUOO1cOx9wJeSZHQj6rq+66hGNQ5osbDvcDaffXhFAMWUPTFXRR982pZTNmZBxxbvtZK38/Mx6vK3kWRRH+vMt4y5ouBTYHXlnW7/3/eGq4MNij4n6S+OBf4GcV86b2AjwPbU3ROa4iIt1NMx9iHtedXb97DsRf2UNZR/tsOPAvsWG7f3UPdO3som0LRsa+RkGZmZ0TcQzG6sM44MvPJiAB4oIe6T5ax1WppZl7Ry76JwCbA/OodmflERDzKS6+/0r09lO0GjGHdUz62pPhK85MUIylXR8RiitGd3wA/z7Wn/UgafJ6mSLrXp7tOdXJ+Vw91u/vbnvqkddmKop+rtQ/fELuV/36ufPSk1uUPV62jr4bis2VxZj7Zw775wKso+tjKBLu3vjro+efRrTvmsyimWn4D+O+IuIZiGsqP0wULBiQTbvXFfRWd0G/LX/hrKEaXj++uFBFvAX5CMQL8YYrE7gWKKSGX0vPFu6vWcd6o+netC2Uq9vVVb3GsK77+sLHxL+/lWLcDH11HuyUAmXldRLwCOBI4pHy8E/i3iDgwy/nlkgatO4DXR8ROmbmgpwpRXJS9C/Bgrr1yRn/2t+vqw3uyrnrV+Uz3sb9E7/PBe0qQN8bGvP7e+uoEjqb3z5j5AJnZERGvppiffTjweopvGj4XEW/I/l/SUX1kwq1+k5mzI+IHwLsj4muZ2X1hxt9RJNiHZObqTiYidu3jKe8v/92th309lS0EdomItspR7vLruJ3peVS9WR6nmCu5R/WOiNgc2Jbiq8pa3EcxYv6HzOxaX+XyA/YX5YOI+AeK+fknU8wfh9o/ICUNLL+kSM7eC/R2k613U0w5+2UP+3bvoay7v93QPvRxim8re+qvezpP9x/8W/Swr3p0/b7y3/WNTveH+4GjImJCZj5VtW93im8Vlq7Vam33AUcBD2VmT98krCEzV1F8C3klQES8EphLcfH7G7ur1XBeNYBzuNXfTqf4y/zzFWWrKH7pV7/fopiX8W99PNdcYBHFTRpWX0EeEZsBp/ZQ/1cUiWf1DQzeV5Zf2Md4+k2ZGM8C9omIo6p2f4LiZ1lrvN+nWFWgxxHuqLirXC9X4t9c/lv5IfcsPX/oSRrYvg0sAD7SQ99CROxLMRd5CS/9gV3pXRGxfUX9kRQXZq8Cfr0hgZQJ46+BaRFxSMUxA/iXHpo8QHHB+mFVMU+nXAK1wi0Uo/mnRsRaU10ioi0i+qsP+xVFn7zGHzARcTTFNMqLaxnsoFhFCuC/IqK1emdEbFXxvKe++m6KVaqq+2r68bVqIznCrX6VmQsi4gKKTvl1mXk1xTJJbwX+EBHfp5jD/WZgbO9HqulcqyLiI8BPgRsj4v8oOuO/p5jvPamqyRcoLko8u/xQuYWiMzwZuIc+XqRTB5+k+KrwV1HcjGIBxcjUO4CrgO/VeJyvlsf5YkT8NcXFqk9T/HwOpfz2oax7V0RcT3FB52KKkfRTgJXABRXHvB44OSJOp5jT2QXMymItdkkDVGY+FxHHUEyz+E1E/IJihLQT2J/iG8lngTdn5mM9HOJe4IaIOIfiW7h3UizzenpmPrwRIf0bxRSKX0fE1ykGUWZQDIJUx/5sFOtyvzciflzGPZViKdjbKJb8666bEfF3FP3dbRFxHsV0jLEUy+a9hWKJ1ZkbEXO1mRTrXX88ijXGryrP8Q/AXyj68vXKzJsi4t8p5pzPi4if8VI/vB/Fcrkjy+r/V/7h8zuKVbnGUHw2bEoxyNLteuA04BsR8RuK1WRuyMyerkNSPTV7mRQfg+/BS8sa/XMv+3ejGO34Y0XZ+ygugnmBYvm8cyn+Cq9e9mlyWfbZHo77WaqWlCrL30IxvWIFxfzw0ykSzLWWfaLoxL9B0am/WP57NhXLCpb1TizbH9xDHGvEXFE+kxqXXyqP8esa6k2hGPV4nCLpXUixDvnYWn42FfvbKNaevYni6vznKL6+PB84oqLeJyg+LB6v+Hn+DNi36nhbUUw5eYIi2e713D58+Bh4D4rVRz5T9p3PUoyM3g38D7BND/W7+/0Ty77kvrKPuA/4cA/11+oP19GH70WROD5X9innl33MWn0txUWW/0cxqLKc4rqh6b31vxQ36TqHYinTlWW7uRSj+DvU8HO6Eni2hnrjymMuLM/zeNl3v7y3n+M6jvVGinW9n6joh38LvL+izlsoVi5ZVNZZAvwJeGvVsVrK/9NFvPRtc6/n9lG/R5T/IZIkSQNGFHeO/F5mntjsWKS+cg63JEmSVEcm3JIkSVIdmXBLkiRJdeQcbkmSJKmOHOGWJEmS6mjIr8O95ZZb5uTJk5sdhiRtsLlz5y7NzLXWIx7K7LMlDVbr6rOHfMI9efJk5syZ0+wwJGmDRcSfmx1Do9lnSxqs1tVnO6VEkiRJqiMTbkmSJKmOTLglSZKkOjLhliRJkurIhFuSJEmqIxNuSZIkqY5MuCVJkqQ6MuGWJEmS6siEW5IkSaqjhibcEXFeRDweEXf0sj8i4msRsSAibouIfSv2HRUR95T7PtG4qCVp+LLflqS+a/QI90zgqHXsPxqYWj5OAb4JEBGtwNnl/t2BEyJi97pGOsSc86f7OeDMP3Dol65k1q2Le613/5Jnede3r2ff0y/nwxfcwrLnX2xglBo27r0MvnkAfGlX+MN/QmazI1LvZmK/PSDc8tCTHPeNa5n2H5fzb7+6nRdeXAXA3D8/wbFnF+X/ftEdrOzsWqPdNfct5Y1fu5pX/+cVnHHJXazq8vdtWHj8Lpj5JvjCjnDhqfDC07W1e+Yx+PE74b+nwPlvh2WL1t/mvivgmwcWffrvPw9dXetvM8y0NfJkmXlVRExeR5Vjge9nZgLXR8SEiNgWmAwsyMyFABFxQVn3zjqHPCRcNv8xzvzt3au3P3zBLezxss3YceIma9X9wPk3c/djzwBw0bzFtLW08KW3792wWDUMPPMX+MnfwaoVxfZVX4AJk2Dfv2tuXOqR/fbAsKJzFe/7/hyWPrsSgB9e/xBbjB3JPxyyE+/93hyeXF4Mjnzvuj+zxbhRfPiwqQAse/5FTvnBHJavLJLzb121kG3Gj+akA6Y054WoMTLhJ38LHQuK7Vt/DG2jYcZX1t/2otNgweXF8/sug1+9H94zq/f6zy2Fn7wLOl8otq/+EozfAaad1KeXMNQ0NOGuwXbAwxXbi8qynspf08C4Gmb27Nl0dHT06zF/vjCAWL3dlXDur/7IAdusWW9xx9Pc/diENcr+MP9hZs16qF/j6Ul7ezvTp0+v+3mGu3q8v2q1bNkyAHbpupdXdyfbpUXX/JhbHplQt3P7/qqrYd1vN+p36uFnYemza34p/avr72blgzfz5PLN1ij/9Y33sOPzxSDLXU/C8pVrtrvw2vls+USPM4Rq5u9U42zMe2z0yg4O7062S8/e8Vv+yKHrbfuG+6+ktWI7H7iaX8/qPeHe+qm57N+dbJceufYCbn50yw2KudpQe48NtIsmo4eyXEd5zweJOCUi5kTEnCVLlvRbcIPVpE3W/lFNWntwmxH5IhNGrFqjbIdx9YpKw01nZyednZ0sG/tysupX+qmxjrYNYn3ut+2z12+rMTC6dc0f37ajVjKhdSUjW9Ys36Gif99uHLRG9X6nlAx1K0ZM4PkRm69RVms/+9S4NestGzt5nfWXjZ1MV1U6ub42w9FAG+FeBOxQsb09sBgY2Ut5jzLzXOBcgGnTpg2qnqUef829sSuJWfO54MaHGdXWwocOncr7Xr/jWvVmzZrF34+ECx8dxwNLn+PVkzfnq8fvw8smjOn3mNQczRwtmFWOkBw2YwZMaYUrPgcrnoa93s6eM77Mnm0jmxab+qTP/bZ9dm0m7PwXPn3RHTz29AscsstWHDn+Mca2jebrfzWNz1x0B48/s4JDd92a/33H3mw2esTqdmN3XMR//uYunlz+IkfvuQ3/8zd7M3pE6zrOpIFko99jr9yymB7y5AMw+XVs/9Zvs/2m26y/3V/tAr84GR67jafH7MCE9/yIGVuv5/KLHdvg8s/A80/BXm9j92O+xu5tozYu7iFqoCXcFwOnlXP9XgMsy8xHI2IJMDUipgCPAMcD72xinINKS0vw+WP35N/euDstAW2tvX+xMWUz+OO7Dub5lasYM9IOWXWy34mwz99BVyfYKQ929tsNctjuW3PobluxorOL0SNaV/8Re+Qe23D4bluzclVXj4n0cftsz7F7b9frfg1Rkw+ED90CLz4PI8fW3m7iznDq1Vxy0c9Z1TJq/ck2wD5/C3ufAKtehBGjNz7mIayhCXdE/Bg4GNgyIhYB/w6MAMjMc4BLgDcAC4DlwEnlvs6IOA24DGgFzsvM+Y2MfSgY2Vb7DCKTbdVdS2vx0IBmvz2wRESPSXNLSzB6Hb9P69uvISpiw5LtCqtaNnAwxD59nRq9SskJ69mfwAd62XcJRccuSWoQ+21J6ruBdtGkJEmSNKSYcEuSJEl1ZMItSZIk1ZEJtyRJklRHJtySJElSHZlwS5IkSXVkwi1JkiTVkQm3JEmSVEcD7dbukiRtsNmzZ9PR0dHsMBqq+/V23+J9uGhvb2f69OkNPafvr+GjXu8vE25J0qDX0dFBR0cH7e3tzQ6lYdraht9HeLOSXt9fw0M931/D76cpSRqS2tvbmTFjRrPDUB01c7TV99fQV8/3l3O4JUmSpDoy4ZYkSZLqyIRbkiRJqiMTbkmSJKmOTLglSZKkOjLhliRJkurIhFuSJEmqIxNuSZIkqY5MuCVJkqQ6MuGWJEmS6siEW5IkSaojE25JkiSpjky4JUmSpDoy4ZYkSZLqyIRbkiRJqiMTbkmSJKmOTLglSZKkOjLhliRJkurIhFuSJEmqIxNuSZIkqY5MuCVJkqQ6MuGWJEmS6qjhCXdEHBUR90TEgoj4RA/7N4+ICyPitoi4MSL2rNj3YETcHhHzImJOYyOXJEmSNlxbI08WEa3A2cDhwCLgpoi4ODPvrKj2SWBeZh4XEbuW9Q+t2H9IZi5tWNCSJElSHzR6hHt/YEFmLszMlcAFwLFVdXYHfg+QmXcDkyNi68aGKUmSJPWPRifc2wEPV2wvKssq3Qq8BSAi9gdeDmxf7kvgdxExNyJOqXOskiRJUp81dEoJED2UZdX2mcBXI2IecDtwC9BZ7jsgMxdHxFbA5RFxd2ZetdZJimT8FIBJkyb1V+ySJEnSBmv0CPciYIeK7e2BxZUVMvPpzDwpM18FvBuYCDxQ7ltc/vs4cCHFFJW1ZOa5mTktM6dNnDix31/EYPT8ylVcv7CDJc+sYFVXMvfPT/Dg0ud6rNvx7Aquu7+D51Z09rhfw9iqTnjoenjigfXXffF5ePAaeOax9ddd8Qw8cDU819H3GCVJGmAaPcJ9EzA1IqYAjwDHA++srBARE4Dl5Rzv9wJXZebTETEOaMnMZ8rnRwCfb2j0g9S8h5/ixO/eyFPLX6StBTYfO4olz64A4KQDJvPvM/ZYXfemx+GfzvgDK1d1sdnoNr5z4qt59eQtmhW6BpJli2Dmm+DJB4CAAz4Eh/fyK/jorfCDt8DypdDSBkf/N9DLpRgPXgs/PgFWLIPWUfDmb8Beb6vXq5AkqeEamnBnZmdEnAZcBrQC52Xm/Ig4tdx/DrAb8P2IWAXcCZxcNt8auDAiuuP+UWZeWq9YZ8+eTUfH0Bht+/odwVPLi9k8nV2sTrYBvnvtg2y7fCHbjoXHl3bws4XtrFzVBcDTL3TyL+fP5qOvrJ71M7S0t7czffr0hp5zML6/9nzoe0x5sntkO8lrv8Yflk1i+ai1E+nX3PcFtlpeLibU1Unnbz/Fsu0/T2fLKGbNmrVG3QPv+gybr1hWbKxawQsXfZTLHxgBMTRuE9CM95ckaWBp9Ag3mXkJcElV2TkVz68DpvbQbiGwd90DLHV0dNDR0UF7e3ujTlk3T61Y//5txwItbbywKtbaN5Q1K+kdjO+vMSufWGM7SEavfLLHhHt0Vd22rhcY0/Iiz7eNW/u4L65Zd1Tn07RkJ10xsh+ibq7B9kdVTyLiKOCrFIMk387MM6v2bw6cB7wCeAH4+8y8o9z3IPAMsArozMxpDQxdkgaMhifcg0l7ezszZsxodhh9dv+Ye/nKFff1uG+bzUbzoRMOZvSIVgCu+95NXHHX46v3v+O1OzHj6F0bEmczVI+2NtKge3/d8SL8/KSXtidM4oB3/CO0jli77oR74fcV001efgBvPfG0no878nq47qzVm7HrG3njsW/tn5ibrJnvr/7gvRMkqX+YcA8DH/rrqYwfM4Kr7l3CLttsxtStN+HSOx5jy01G8f6DXrE62Qb4yvH78M0rFzB/8dMcuNOWnHTAlCZGrgFlz7cU/97+M9h0GzjwIz0n2wAHfhRGbQb3/Q4m7lrU7c1hn4NNtoYHroKXvQoO+Mf+jlwbb/W9EwAiovveCZUJ9+7AGVDcOyEiJkfE1pn5l4ZHK0kDlAn3MNDSEpx0wJQ1kue37rt9j3U3GdXGx44cuiPa6qM93/JS4r0uEbD/+4rH+rS2FRdgHvChvsen/tbTvRNeU1Wn+94J11TdO+EvvHTvhAS+lZnn1j9kSRp4TLglSb3x3gmS1A+GxjIAkqR68N4JktQPTLglSb1Zfe+EiBhJce+EiysrRMSEch9U3TshIjYt63TfO+GOBsYuSQOGU0okST0aTPdOGMp+e/ujfPmKe3ls2Qsk0NoSdHUlU7Ycx7++YTeuuW8pP5+7iC3GjeTjR+/KQTv7LYEqdK2C338ObvtpcYH6EafDlNevu83c78G1XymeH/Bh2O/El/Zd/WX403/DqhWw9R4wenN4/E7Y6VA4+gswZkKdXsjgZsItSerVYLl3wlD1UMdyTvvxLazqWvsGZLcuWsaJ593IC53Fzcoee/oF/t8P5jD7E4eyxbjBv469+skN34Jrv1o8f+ZR+PE74aPzYfT4nus/fCPMqriIfdaHYeJuMOk10HE//P6zL+177PaXnt/2E2gZAW8+u99fwlBgwi1JGvSWLVtGZ2fnoF/7vNr1f4FVXb3P/uxOtldvv9jFOT+/jL22qHdkzdHR0UFbW+NTl2XLlvH8888zc+bMhp+7r/76L+ezxqXIK5/hsu+eyaNjdumx/l5P/Y79qspu/uVXuG3CkbzyyUvZdx3nevb2S/j5UzP7FnATvfjii4wZM6Yux3YOtyRJA9SkTda9vyXWHPluIdlu7Ru6qo/GjBnDiBG93HdggOsYteYywKto5cmR266j/g5rl40syhaN3X2tZYoqLR3V85LDg8WIESPqlnA7wi1JGvTGjy++Hh9Ud2+tUet2C/nKFfexfGUnSTFStiphy01G8ak37sof717Cb25/lM1Gt/GJo3flHa8euksrNusbjLe+dRDf/Xbl38Cv3g93zYIxW9B65H9x/N7vWHebK8ay6triDsCtB3yAww/77Ev7LnocbvkhkDBuIowYC0/9GXZ4DZPfdh4njh/cSXe9mHBLkjSAvfd1O/Ke6ZNXz+NubQk6VyUj21pobQmO22d7vvC2V9LWErS1+sW1qowcB2//PqxcDm2joKV1/W0O+3d++9wrAXjTYcetue/Ys+CNX4IVz8K4dsiElc/BqPV8HTPMmXBLkjTAjWhtYURr5faa+0dXF0jVRo7doOrZso4UsW1U8YDizsIm2+vln8KSJElSHZlwS5IkSXVkwi1JkiTVkQm3JEmSVEcm3JIkSVIdmXBLkiRJdWTCLUmSJNWRCbckSZJURybckiRJUh15p8leLFu2jM7OTmbNmtXsUFRHHR0dtLX5ayBJkurHEW5JkiSpjhza68X48eMBmDFjRpMjUT35DYYkSao3R7glSZKkOjLhliRJkurIhFuSJEmqIxNuSZIkqY5MuCVJkqQ6MuGWJEmS6siEW5IkSaojE25JkiSpjhqecEfEURFxT0QsiIhP9LB/84i4MCJui4gbI2LPWttKkiRJA01DE+6IaAXOBo4GdgdOiIjdq6p9EpiXma8E3g18dQPaSpIkSQNKo0e49wcWZObCzFwJXAAcW1Vnd+D3AJl5NzA5Irausa0kSZI0oDQ64d4OeLhie1FZVulW4C0AEbE/8HJg+xrbSpIkSQNKoxPu6KEsq7bPBDaPiHnAB4FbgM4a2xYniTglIuZExJwlS5b0IVxJkiSpb9oafL5FwA4V29sDiysrZObTwEkAERHAA+Vj7PraVhzjXOBcgGnTpvWYlEuSJEmN0OgR7puAqRExJSJGAscDF1dWiIgJ5T6A9wJXlUn4ettKkiRJA01DR7gzszMiTgMuA1qB8zJzfkScWu4/B9gN+H5ErALuBE5eV9tGxi9JkiRtqEZPKSEzLwEuqSo7p+L5dcDUWttKkiRJA5l3mpQkSZLqqOEj3Gqc+/7yDD+/eRHjRrZxwv6TmLjpqD4fs3NVF7+4eRF3Ln6aA6dO5PDdt+6HSDUkddwPt/wQWtpgvxNhvKt4SpKGJxPuIerevzzDMWddwwsvdgHwk5se5vKPvp6xI/v2X/6vv7ydn81dBMD3rvszn3nT7vz9gVP6HK+GmCf/DOceAiuWFdtzvwv/cAOMa29uXJIkNYFTSoaon89dtDrZBnjkqef5/V2P9+mYz63o5Je3PLJG2Q+v/3Ofjqkh6vafvpRsAzy3BO66qHnxSJLURCbcQ9SYEa1rlY0btXbZhmhtCUa1rfmWGdvHY2qIGrlJbWWSJA0DJtxD1LteM4mXjR+9envayzfn9VMn9umYo0e08oFDdlq93dYSfPjQnft0TA1Rex8PW7zipe1tXgm7zWhePJIkNZFzuIeorTYbzeUfPYgr7voLm4xq46CdJ9LW2ve/rz5wyE68fupE7nr0aV77inZ22GJsP0SrIWfM5vD+a+HeS4uLJqceCW0j199OkqQhyIR7CBs3qo1jX9X/K0Pstf149tp+fL8fV0PMiDGwx3HNjkKSpKYz4ZYk9SoijgK+SnGH329n5plV+zcHzgNeAbwA/H1m3lFL2/7W0dHBrFmz6nmKAWXZsuLC5PHjh88ASEdHB+3trnakwcc53JKkHkVEK3A2cDSwO3BCROxeVe2TwLzMfCXwbooEu9a2/aa9vX3YJWKdnZ10dnY2O4yGGo7/zxoaHOGWJPVmf2BBZi4EiIgLgGOBOyvq7A6cAZCZd0fE5IjYGtixhrb9Zvr06fU47IDWPZo/Y4YXJEsDnSPckqTebAc8XLG9qCyrdCvwFoCI2B94ObB9jW0p250SEXMiYs6SJUv6KXRJGjhMuCVJvYkeyrJq+0xg84iYB3wQuAXorLFtUZh5bmZOy8xpEyf2bflSSRqInFIiSerNImCHiu3tgcWVFTLzaeAkgIgI4IHyMXZ9bSVpuHCEW5LUm5uAqRExJSJGAscDF1dWiIgJ5T6A9wJXlUn4ettK0nDhCLckqUeZ2RkRpwGXUSztd15mzo+IU8v95wC7Ad+PiFUUF0SevK62zXgdktRsJtySpF5l5iXAJVVl51Q8vw6YWmtbSRqOnFIiSZIk1ZEJtyRJklRHJtySJElSHTmHW5KkIeKieY/w9T8s4MVVXZw0fTInHjCl2SFpILj2a3DTt2HkODj4X2H3Y5od0bBjwi1J0hBwz2PP8I8/mUeWtxf67Kw72XHiJrx+Z28mNKzdNQsu//RL2z87ET44F7bwj7FGMuGWJGkIuO7+pauT7W7X3r/UhHuQmz17Nh0dHRvdfs+HvscaqXWuYt5FZ/Pwlgets133OWfNmrXR5+6L9vZ2pk+f3pRz14MJtyRJQ8Ce241fu+xla5dpeFk2dnJNZdXa2kwR+5M/TUmShoBpk7fgnw7fmW/+6X46VyXvfM0k3rjXts0OS33U51HeVUfDb1bCvB9B22g46F846IDT+ic41cyEW5KkIeKDh07l/x30CroyGT2itdnhaCBobYNjvgZH/ze0tEHriGZHNCyZcEtNsGzZMjo7O5s2N06N0dHR4deyariRba74qx6MGNPsCIa1mn4rI2KLegciSZIkDUW1Dr08GhEXAd8FLsvMrjrGJA1548cXFzLNmDGjyZGonvwGQ5IEtd9p8lRgK+DXwMMR8V8RsUv9wpIkSZKGhpoS7sz8bmYeDEwFvgOcANwZEddGxMkRsUkdY5QkSZIGrQ26siIzF2bmZzJzCnA4sAo4F3gsImZGxL71CFKSJEkarDb4UuaIGBsRJwKfAQ4E7gS+DOwG3BQRH+vXCCVJkqRBrOaEOyJeHxHfBR4DvgrcA/xVZu6VmZ/OzNcA/wp8Yj3HOSoi7omIBRGxVt2IGB8RsyLi1oiYHxEnVex7MCJuj4h5ETGn1tglSZKkZqlplZKIuB+YDMwGPgT8NDOX91D198CZ6zhOK3A2xXSURRQj4hdn5p0V1T4A3JmZMyJiInBPRJyfmSvL/Ydk5tJa4pYkSZKardZlAX8BfDsz711Xpcycy7pHzfcHFmTmQoCIuAA4lmJayurDAJtGRACbAE8AnTXGKUmSJA0ota5S8i/rS7ZrtB3wcMX2orKs0lkU88EXA7cDH65Y9zuB30XE3Ig4pR/ikSRJkuqq1jtN/mdEfKuXfedExOk1ni96KMuq7SOBecDLgFcBZ0XEZuW+AzJzX+Bo4AMR8fpeYjolIuZExJwlS5bUGJokSZLU/2qdUnICxaokPbka+Dzw6RqOswjYoWJ7e4qR7EonAWdmZgILIuIBYFfgxsxcDJCZj0fEhRRTVK6qPklmnkuxXCHTpk2rTuhr1tHRMazuFLds2TLgpbsgDgcdHR20t7c3OwxJkjSE1bpKycuAR3rZt7jcX4ubgKkRMSUiRgLHAxdX1XkIOBQgIrYGdgEWRsS4iNi0LB8HHAHcUeN5N1h7e/uwS8Q6Ozvp7Bxe0+WH4/+zJElqrFpHuB8D9gX+2MO+fYGa5m1kZmdEnAZcBrQC52Xm/Ig4tdx/DnA6MDMibqeYgvLxzFwaETsCFxbXUtIG/CgzL60x/g02ffr0eh16wOoezZ8xY0aTI5EkSRo6ak24fwp8JiLuzszfdBdGxBsoppKcW+sJM/MS4JKqsnMqni+mGL2ubrcQ2LvW80iSJEkDQa0J92coLmCcFREdwKPAtsAWwO+obf62JEmSNOzUlHBn5gvAERFxJHAI0A50AL/PzMvrGJ8kSZI0qNU6wg1AZl5GMf9akiRJUg02KOGOiDZgEjC6el/V7dklSZIkUWPCHREjgK8B7wFG9VKttb+CkiRJkoaKWtfh/gzwJuBkiqX6TqO4Qc3vgQcB15GTJEmSelBrwv124LMUywNCcdfH72fmEcA1wLF1iE1N8MfF8Pov/JEjv3wVl9z+aLPD0UCWCVeeCV/eE751ECz4fbMjkiRpQKo14d4BuDczVwEvAJtX7DsfeGt/B6bGu+MJ+OUDLTz0xHLu+cszfPDHt/DA0ueaHZYGqlt+AFeeAcsehkfnwQXvgueWNjsqSZIGnFoT7keBCeXzB4DXV+x7RX8GpOa556lYY3tVV3Ld/R1NikYD3sI/rbnd+Tw8fENzYpEkaQCrNeG+Enhd+fz/gE9GxI8i4rvAl4CL6hCbGmz7TXKtsj1etlkTItGgsO0r19yOFth6z+bEIknSAFbrsoCfArYEyMyvREQAbwPGAF8HPl+f8NRIr54IDzyd3Li0hZGtLXzgr3di7x0mNDssDVT7/z949FaYfyGM2gwO+3fY/OXNjkqSpAFnvQl3uSTgKyimkgCQmV8GvlzHuNQELQHH75R857QjaYlgZFutX4BoWBoxGt52HhzzdWgdBa0btKy/JEnDRi0Z1SrgD8BudY5FA8ToEa0m26rdyHEm25IkrcN6s6rM7ALuA7aufziSJEnS0FLrMOangM9ExF71DEaSJEkaamr9HvjfgHZgXkQ8AvwFWGNJi8zcv59jkyRJkga9WhPuO8qHJGkYiYijgK8CrcC3M/PMqv3jgR8Ckyg+U/4nM79b7nsQeIbiWqDOzJzWwNAlacCoKeHOzJPqHYgkaWCJiFbgbOBwYBFwU0RcnJl3VlT7AHBnZs6IiInAPRFxfmauLPcfkpneglTSsOZSFJKk3uwPLMjMhWUCfQFwbFWdBDYt78+wCfAE0NnYMCVpYKtphDsifrq+Opn59r6HI0kaQLYDHq7YXgS8pqrOWcDFwGJgU+Ad5epWUCTjv4uIBL6VmefWOV5JGpBqncM9sYeyLYBdgA7gnn6LSJI0UEQPZVm1fSQwD/hripukXR4RV2fm08ABmbk4IrYqy+/OzKvWOknEKcApAJMmTerP+CVpQKh1DvchPZVHxA7AhXjXSUkaihYBO1Rsb08xkl3pJODMzExgQUQ8AOwK3JiZiwEy8/GIuJBiispaCXc58n0uwLRp06oTekka9Po0hzszHwbOAL7QP+FIkgaQm4CpETElIkYCx1NMH6n0EHAoQERsTfHN58KIGBcRm5bl44AjcLUrScNUf9yPeRXFqIckaQjJzM6IOA24jGJZwPMyc35EnFruPwc4HZgZEbdTTEH5eGYujYgdgQuLaylpA36UmZc25YVIUpPVetHk7j0UjwR2o+hsb+rPoCRJA0NmXgJcUlV2TsXzxRSj19XtFgJ71z1ASRoENuTGNz3NqwuKZPu9/RaRJEmSNITUmnD3dNHkC8CizHykH+ORJEmShpRaVyn5U70DkSRJkoaimlYpiYjjI+Jjvez7WER40xtJkiSpB7UuC/ivFFNIevJcuV+SJElSlVoT7p3off3Uu4Cp/ROOJEmSNLTUmnAvp/e1tncAVvRPOJIkSdLQUmvCfQXw6YjYqrIwIiYCnwJ+19+BSZIkSUNBrQn3x4FNgPsj4mcR8bWI+BlwPzAG+JdaTxgRR0XEPRGxICI+0cP+8RExKyJujYj5EXFSrW0lSZKkgaamhDszH6K4Y9hZFFNIji7//Tqwb2Y+XMtxIqIVOLtsvztwQg93sfwAcGdm7g0cDHwpIkbW2FaSpEHn1oef4m/Omc1rz/g9p//6TlZ2djU7JEn9qNYb35CZS+j7aiT7AwvKW/4SERcAxwJ3Vp4K2DQigmJU/QmgE3hNDW0lSRpUVnSu4uTv3cTSZ1cC8J1rHmD8mBF86FDXI5CGipoS7ojYG9guMy/pYd8bKO44eVsNh9oOqBwNX0SRSFc6C7gYWAxsCrwjM7siopa2kiQ1zOzZs+no6OjTMf78DCx9ds0vnC++4R6mLL97ne26zztr1qw+nX9jtLe3M3369IafVxqsap3D/WV6T25fXe6vRfRQllXbRwLzgJcBrwLOiojNamxbnCTilIiYExFzlixZUmNokiQ13lZjYGTLmh9n249bf7u2tjba2mr+olpSE9X6m7ovcGYv+64DPlzjcRZRzP3utj3FSHalk4AzMzOBBRHxALBrjW0ByMxzgXMBpk2b1mNSLklSX/XXKO8mOz3KZy6az9JnV3DQzhP56vH7MH7siH45tqTmqzXhbgV6+3t7HDCyxuPcBEyNiCnAI8DxwDur6jwEHApcHRFbA7sAC4GnamgrSdKg84a9tuXIPbbh+RdXsckoR62loabWKSU3Aaf0su8UYE4tB8nMTuA04DKKO1T+NDPnR8SpEXFqWe10YHpE3A78Hvh4Zi7trW2N8UuSNKC1toTJtjRE1fqb/Vngioi4Afge8BiwLfBuinnWh9V6wvLCy0uqys6peL4YOKLWtpIkSdJAVlPCnZlXRcQRwBkUa28H0AXcQDH944a6RShJkiQNYhuyDveVwGsjYiywOfAk8FrgPcBFQHs9ApQkSZIGs42ZLLYXcALwdmBrihvTXNCfQUmSJElDRa03vtmTIsk+HpgMrKRYmeSfgLPKCxolSZIkVel1lZKI2DEiPlmuFnIr8M8Uq4O8G5hKMY/7ZpNtSZIkqXfrGuFeQHEnxxuA/wf8IjOfBIiI8Q2ITZIkSRr01rUO958pRrH3BA6mWBvbBUIlSZKkDdBrwp2ZU4ADKNbdPhSYBfwlIv6v3PaW6ZIkSdJ6rPNOk5l5XWZ+ENgOOJJi+b+3Aj8vq7wvIqbVN0RJkiRp8Krp1u6Z2ZWZl2fm3wPbAG8BfgYcB9wQEXfVMUZJkiRp0Kop4a6UmSsz81eZeTzFOtzvprjAUgPE40+/wNw/P8mLq7qaHYq08V58AR66Hp7raHYkkiT1SZ8ugszM54Dzy4cGgO9c8wBnXHIXnV3JtuNH84OTX8NOW23S7LCkDbP4Fvjh22D5UmgdCW/6CuzzrmZHJUnSRnHVkQFm9uzZdHRs3Ije8k4448agMwOAR5e9wMe+dyV/v2tt17d2n3fWrFkbdf6+aG9vZ/r06Q0/rwaoy/+9SLYBVq2Ey/4V9nobtI1qblySJG0EE+4h5JmVrE62uz25svb2bW2+HTRAPP3ImtsvLIMVz5hwS5IGJTOsAaavo7y/fOxq7nz06dXb7z5oD2YcOKWvYUmNtcdb4KovvLQ95fUwbsvmxSNJUh+YcA8xM096NWf9cQEPLH2OI/fYhne9ZlKzQ5I23MGfgNHjYcEVsPUe8Lp/anZEkiRtNBPuIWarzUbz+WP3bHYYUt+0tML004qHJEmD3AYvCyhJkiSpdibckiRJUh2ZcEuSJEl1ZMItSZIk1ZEJtyRJklRHJtySJElSHZlwS5IkSXVkwi1JkiTVkQm3JKlXEXFURNwTEQsi4hM97B8fEbMi4taImB8RJ9XaVpKGCxNuSVKPIqIVOBs4GtgdOCEidq+q9gHgzszcGzgY+FJEjKyxrSQNCybckqTe7A8syMyFmbkSuAA4tqpOAptGRACbAE8AnTW2laRhwYRbktSb7YCHK7YXlWWVzgJ2AxYDtwMfzsyuGtsCEBGnRMSciJizZMmS/opdkgYME25JUm+ih7Ks2j4SmAe8DHgVcFZEbFZj26Iw89zMnJaZ0yZOnLjx0UrSAGXCLUnqzSJgh4rt7SlGsiudBPwyCwuAB4Bda2wrScOCCbckqTc3AVMjYkpEjASOBy6uqvMQcChARGwN7AIsrLGtJA0Lbc0OQJI0MGVmZ0ScBlwGtALnZeb8iDi13H8OcDowMyJup5hG8vHMXArQU9tmvA5JaraGJ9wRcRTwVYoO+NuZeWbV/o8B7yo32yguxpmYmU9ExIPAM8AqoDMzpzUscEkahjLzEuCSqrJzKp4vBo6ota0kDUcNTbgr1mU9nGJ+300RcXFm3tldJzO/CHyxrD8D+EhmPlFxmEO6R08kSZKkga7Rc7g3dF3WE4AfNyQySZIkqQ4anXBvyLqsY4GjgF9UFCfwu4iYGxGn1C1KSZIkqZ80eg53zeuyAjOAa6umkxyQmYsjYivg8oi4OzOvWuskRTJ+CsCkSZP6GrMkSZK00Ro9wr0h67IeT9V0kvLiHDLzceBCiikqa/EmCpIkSRooGp1w17Qua0SMBw4CLqooGxcRm3Y/p7gq/o6GRC1JkiRtpIZOKalxTVeA44DfZeZzFc23Bi6MCCji/lFmXtq46CVJkqQN1/B1uNe3pmu5PROYWVW2ENi7zuFJkiRJ/cpbu0uSJEl1ZMItSZIk1ZEJtyRJklRHJtySJElSHZlwS5IkSXXU8FVKJBU6OjqYNWtWs8NomGXLlgEwfvz4JkfSOB0dHbS3tzc7DElSk5lwS00wHJOwzs7OZofQcO3t7cPy/1qStCYTbqkJpk+f3uwQGq57NH/GjBlNjkSSpMZyDrckSZJURybckiRJUh2ZcEuSJEl1ZMItSZIk1ZEJtyRJklRHJtySJElSHZlwS5IkSXXkOtySBpbH74LbfgKjJ8C+74axWzQ7IkmS+sSEW9LA8eit8O3DYdWKYnve+XDqtdA2srlxSZLUB04pkTRwzP3eS8k2wNJ7YeGVTQtHkqT+YMItaeAYMaa2MkksX76ciy++mOXLlzc7FEnrYcItaeDY/30wdsuXtie/DiYf2Lx4pCa4aN4jnDzzJj514e088tTzvdabO3cujz32GDfffHMDo5O0MZzDLWng2HwyfHAO3PPb4qLJqUdARLOjkhrmonmP8OEL5q3evvq+pfzhnw6irXXN8bHly5dz7733AnDPPfew7777Mnbs2EaGKmkDOMItaWAZszm86p2w6xug1TEBDS8Xz1u8xvZDTyxn3sNPrVVv7ty5ZCYAmekotzTAmXBLkjRAbDth9BrbEbD1ZqPXqrdgwQK6uroA6Orq4r777mtIfJI2jgm3JEkDxPsP3olJWxRTQyLgHw5+BTtssfZUkZ122omWluIjvKWlhalTpzY0Tkkbxu9rJUkaILabMIY//NNBzHv4KbbebHSPyTbAfvvtt3oOd0Sw7777NjJMSRvIEW5JkgaQttYWpk3eotdkG2Ds2LHsvPPOAOyyyy5eMCkNcI5wS5I0CO233348+eSTjm5Lg4AJtyRJg9DYsWM55phjmh2GpBo4pUSSJEmqIxNuSf3jzovg24fDd46Au3/T7GgkSRownFIiqe8W3wI/fQ9Q3IiDn/wtnHoNbL1HU8OSJGkgcIRbUt/ddzmrk22A7CrLJEmSCbekvtty57XLJu7S+DgkSRqAGp5wR8RREXFPRCyIiE/0sP9jETGvfNwREasiYota2kpqkt2OgX3+FqIFohX2OwmmHtnsqNQP+thnPxgRt5f75jQ+ekkaGBo6hzsiWoGzgcOBRcBNEXFxZt7ZXSczvwh8saw/A/hIZj5RS1tJTdLSAseeDYd9DggY197siNQP+tJnVxzmkMxc2sCwJWnAafQI9/7AgsxcmJkrgQuAY9dR/wTgxxvZVlKjjdvSZHto6UufLUkqNTrh3g54uGJ7UVm2logYCxwF/GJD20qS+kVf+mworqT9XUTMjYhT6halJA1wjV4WMHooyx7KAGYA11Z8NVlz27JjPwVg0qRJGxqjJKnQlz4b4IDMXBwRWwGXR8TdmXnVWiexz5Y0xDV6hHsRsEPF9vbA4l7qHs+aX03W3DYzz83MaZk5beLEiX0IV5KGtb702WTm4vLfx4ELKaaorMU+W9JQ1+iE+yZgakRMiYiRFB30xdWVImI8cBBw0Ya2lST1m43usyNiXERs2v0cOAK4oyFRS9IA09ApJZnZGRGnAZcBrcB5mTk/Ik4t959TVj0O+F1mPre+to2MX5KGk7702cDWwIURAcVnzY8y89LGRS9JA0fDb+2emZcAl1SVnVO1PROYWUtbSVL9bGyfnZkLgb3rHJ4kDQreaVKSJEmqIxNuSZIkqY5MuCVJkqQ6MuGWJEmS6siEW5IkSaojE25JkiSpjky4JUmSpDoy4ZYkSZLqyIRbkiRJqiMTbkmSJKmOTLglSZKkOjLhliRJkurIhFuSJEmqIxNuSZIkqY5MuCVJkqQ6MuGWJEmS6siEW5IkSaojE25JkiSpjky4JUmSpDoy4ZYkSZLqyIRbUv+669dwzuvg69PghnObHY0kSU3X1uwAJA0hHffDT98NuarY/u3HYPOXw85HNjcuSZKayIRbGkZmz55NR0dH3Y4/ackf2bs72S4tvOI7zL9n5erzzpo1q27n7017ezvTp09v+HklSQITbkn96Omxk9YuG1OUtbXZ3UiShic/AaVhpCGjvH96Ea75X1i1EvY+nle96Uxe1WpXI0kavvwUlNS/DvoYTD8Nujph1KbNjkaSpKYz4ZbU/0aMaXYEkiQNGC4LKEmSJNWRCbckSZJURybckiRJUh2ZcEuSJEl1ZMItSZIk1ZEJtyRJklRHDU+4I+KoiLgnIhZExCd6qXNwRMyLiPkR8aeK8gcj4vZy35zGRS1JkiRtnIauwx0RrcDZwOHAIuCmiLg4M++sqDMB+AZwVGY+FBFbVR3mkMxc2qiYJUmSpL5o9Aj3/sCCzFyYmSuBC4Bjq+q8E/hlZj4EkJmPNzjGYWv58uVcfPHFLF++vNmhSJKkJjIn6F+NTri3Ax6u2F5UllXaGdg8Iq6MiLkR8e6KfQn8riw/pc6xDjtz587lscce4+abb96gdjc/9CQ/uO5BFjz+bJ0ikyRJjbTOnGDFM3DrBXD7z+HF5xsf3CDU6Fu7Rw9lWbXdBuwHHAqMAa6LiOsz817ggMxcXE4zuTwi7s7Mq9Y6SZGMnwIwadKkfn0BQ9Xy5cu59957AbjnnnvYd999GTt27Hrbff339/Gly4t2LQFfP2Ff3vjKbesaqyRJqp915gTLn4BzD4an/lxsb7UHvPcKGLn+nGE4a/QI9yJgh4rt7YHFPdS5NDOfK+dqXwXsDZCZi8t/HwcupJiispbMPDczp2XmtIkTJ/bzSxia5s6dS2bxt09m1jTKvaJzFd+48v7V210JX//DfXWLUZIk1d86c4J5P3op2QZ4fD7cNavBEQ4+jU64bwKmRsSUiBgJHA9cXFXnIuB1EdEWEWOB1wB3RcS4iNgUICLGAUcAdzQw9iFtwYIFdHV1AdDV1cV9960/ce7qgs6yTbcXXlxVl/gkSVJjrDMn6Hxh7QadTitZn4Ym3JnZCZwGXAbcBfw0M+dHxKkRcWpZ5y7gUuA24Ebg25l5B7A1cE1E3FqW/yYzL21k/EPZTjvtREtL8XZoaWlh6tSp620zZmQrb5+2wxplJ06fXI/wJElSg6wzJ3jlO2D0hJe2N90Wdq9e/0LVGj2Hm8y8BLikquycqu0vAl+sKltIObVE/W+//fZbPV8rIth3331ranf6sXvy6slbMH/xMg7YaUsO3qV6FUdJg1lEHAV8FWilGAA5s2r/x4B3lZttwG7AxMx8Yn1tJQ1M68wJJuwAp15dTC1paYN9/g7GbN6kSAePhifcGpjGjh3LzjvvzF133cUuu+xS0wWTAC0twZv32Y4371O92Iykwa6WeydUDpBExAzgI2Wyvd62kgam9eYEEybBwT3eu1C98NbuWm2//fZjm222qXl0W9KQV8u9EyqdAPx4I9tKGkDMCfqXCbdWGzt2LMccc0zNo9uShrxa7p0AQHmR+1HALza0raSBx5ygf5lwS5J6U8u9E7rNAK7NzCc2tG1EnBIRcyJizpIlSzYiTEka2Ey4JUm9qeXeCd2O56XpJBvU1nsnSBrqTLglSb2p5d4JRMR44CCK+yhsUFtJGg5cpUSS1KPM7IyI7nsntALndd87odzfvaTrccDvMvO59bVt7CuQpIHBhFuS1Ksa750wE5hZS1tJGo6cUiJJkiTVkQm3JEmSVEcm3JIkSVIdmXBLkiRJdRSZvd3DYGiIiCXAn5sdxyCyJbC02UFoyPL9tWFenpnDamFq++wN5u+U6sn314bptc8e8gm3NkxEzMnMac2OQ0OT7y+pf/k7pXry/dV/nFIiSZIk1ZEJtyRJklRHJtyqdm6zA9CQ5vtL6l/+TqmefH/1E+dwS5IkSXXkCLckSZJURybcWq+IeFVEvKHZcWhwiYgJEfHziLg7Iu6KiNdW7PvniMiI2LKZMUpDlf22NpR9dn2ZcGudIqINeBVgx60N9VXg0szcFdgbuAsgInYADgceamJs0pBlv62NZJ9dR87hHiYiYhzwU2B7oBU4HVgGfIViUfubgR0z800R8VngZcDkct+BwBjgEeCMzPxJg8PXIBMRmwG3UrynsmrfzynefxcB0zLTmypIPbDfVqPYZ9dfW7MDUMMcBSzOzDcCRMR44A7gr4EFQHVnvB9wYGY+HxEnUvySndbAeDW47QgsAb4bEXsDc4EPA4cCj2TmrRHRzPikwcB+W41in11nTikZPm4HDouI/46I1wFTgAcy877yr9kfVtW/ODOfb3iUGiragH2Bb2bmPsBzwGeBTwGfaWJc0mBiv61Gsc+uMxPuYSIz76UY/bgdOAM4BljXfKLnGhGXhqxFwKLMvKHc/jlFZz4FuDUiHqT4mvzmiNimOSFKA5v9thrIPrvOTLiHiYh4GbA8M38I/A8wHZgSEa8oq5ywjubPAJvWOUQNIZn5GPBwROxSFh0K3JyZW2Xm5MycTNHB71vWlVTFfluNYp9df87hHj72Ar4YEV3Ai8D7gS2B30TEUuAaYM9e2v4R+EREzMOLb1S7DwLnR8RIYCFwUpPjkQYb+201kn12HblKiQCIiIOBf87MNzU5FElSDey3pcHDKSWSJElSHTnCLUmSJNWRI9ySJElSHZlwS5IkSXVkwi1JkiTVkQm3JEmSVEcm3NJ6RMSoiLgiIuZFxDs2ov2bI2L3esQmSVqTfbYGIm98I63fPsCIzHzVRrZ/M/Br4M5aG0REW2Z2buT5JGk4s8/WgOMItwatiJgcEXdHxLcj4o6IOD8iDouIayPivojYv3zMjohbyn93Kdt+NCLOK5/vVbYf28M5tgJ+CLyqHC15RUTsFxF/ioi5EXFZRGxb1n1fRNwUEbdGxC8iYmxETAeOobhbXHf7KyNiWtlmy4h4sHx+YkT8LCJmAb+LiHERcV55zFsi4tiy3h4RcWN5vNsiYmr9f9qS1Df22fbZw1pm+vAxKB/AZKCT4vbHLcBc4DwggGOBXwGbAW1l/cOAX5TPW4CrgOOAOcAB6zjPwcCvy+cjgNnAxHL7HcB55fP2ijb/AXywfD4TeFvFviuBaeXzLYEHy+cnAouALcrt/wL+tnw+AbgXGAd8HXhXWT4SGNPs/wsfPnz4WN/DPts+ezg/nFKiwe6BzLwdICLmA7/PzIyI2yk69/HA98oRhaTofMnMrog4EbgN+FZmXlvj+XYB9gQujwiAVuDRct+eEfEfFB3tJsBlG/F6Ls/MJ8rnRwDHRMQ/l9ujgUnAdcCnImJ74JeZed9GnEeSmsE+2z57WDLh1mC3ouJ5V8V2F8X7+3Tgj5l5XERMphip6DYVeBZ42QacL4D5mfnaHvbNBN6cmbeWHwwH93KMTl6azjW6at9zVed6a2beU1Xnroi4AXgjcFlEvDcz/1D7S5CkprHPts8elpzDraFuPPBI+fzE7sKIGA98FXg90B4Rb6vxePcAEyPiteVxRkTEHuW+TYFHI2IE8K6KNs+U+7o9COxXPl/XeS8DPhjlsExE7FP+uyOwMDO/BlwMvLLG2CVpoLPP1pBkwq2h7gvAGRFxLcVXid2+DHwjM+8FTgbOLC+2WafMXEnR4f53RNwKzAOml7s/DdwAXA7cXdHsAuBj5UU0rwD+B3h/RMymmA/Ym9Mpvk69LSLuKLehmIN4R0TMA3YFvr++uCVpkLDP1pAUWUzilyRJklQHjnBLkiRJdeRFk1IpIk4CPlxVfG1mfqAZ8UiSemefrcHEKSWSJElSHTmlRJIkSaojE25JkiSpjky4JUmSpDoy4ZYkSZLqyIRbkiRJqqP/D4+6rYGh9Y2dAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,2, figsize=(12,6))\n", + "\n", + "for i, j in enumerate(['RF', 'OF']):\n", + " sns.stripplot(data=df_out, x='max_features', y=j, ax=ax[i])\n", + " sns.boxplot(data=df_out, x='max_features', y=j, ax=ax[i], color='white')\n", + "\n", + "ax[0].set_ylabel(r'Accuracy', fontsize=15)\n", + "ax[1].set_ylabel('', fontsize=15)\n", + "ax[0].set_title('Random Forest', fontsize=18);\n", + "ax[1].set_title('Oblique Forest', fontsize=18);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### OvR multi-class ROC curves for the sklearn digits dataset\n", + "One versus rest ROC-AUC assessment for multi-class setting. The code to compute and draw ROC-AUC curves are mostly adapted from sklearn [documentation](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "def compute_ROC_AUC(y_test_10, y_score):\n", + " # Compute ROC curve and ROC area for each class\n", + " fpr = dict()\n", + " tpr = dict()\n", + " roc_auc = dict()\n", + " for i in range(n_classes):\n", + " fpr[i], tpr[i], _ = roc_curve(y_test_10[:, i], y_score[:, i])\n", + " roc_auc[i] = auc(fpr[i], tpr[i])\n", + "\n", + " # Compute micro-average ROC curve and ROC area\n", + " fpr[\"micro\"], tpr[\"micro\"], _ = roc_curve(y_test_10.ravel(), y_score.ravel())\n", + " roc_auc[\"micro\"] = auc(fpr[\"micro\"], tpr[\"micro\"])\n", + "\n", + " # First aggregate all false positive rates\n", + " all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))\n", + "\n", + " # Then interpolate all ROC curves at this points\n", + " mean_tpr = np.zeros_like(all_fpr)\n", + " for i in range(n_classes):\n", + " mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])\n", + "\n", + " # Finally average it and compute AUC\n", + " mean_tpr /= n_classes\n", + "\n", + " fpr[\"macro\"] = all_fpr\n", + " tpr[\"macro\"] = mean_tpr\n", + " roc_auc[\"macro\"] = auc(fpr[\"macro\"], tpr[\"macro\"])\n", + "\n", + " return roc_auc, fpr, tpr" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "def draw_ROC(name, roc_auc, tpr, fpr):\n", + " lw = 2 #line width\n", + " tab10 = plt.get_cmap('tab10', 10) #color iterable\n", + "\n", + " # Plot all ROC curves\n", + " plt.figure(figsize=(10,7))\n", + " plt.plot(\n", + " fpr[\"micro\"],\n", + " tpr[\"micro\"],\n", + " label=\"micro-average ROC curve (area = {0:0.2f})\".format(roc_auc[\"micro\"]),\n", + " color=\"deeppink\",\n", + " linestyle=\":\",\n", + " linewidth=4,\n", + " )\n", + "\n", + " plt.plot(\n", + " fpr[\"macro\"],\n", + " tpr[\"macro\"],\n", + " label=\"macro-average ROC curve (area = {0:0.2f})\".format(roc_auc[\"macro\"]),\n", + " color=\"navy\",\n", + " linestyle=\":\",\n", + " linewidth=4,\n", + " )\n", + "\n", + " colors = tab10(np.linspace(0, 1, 10))\n", + " for i, color in zip(range(n_classes), colors):\n", + " plt.plot(\n", + " fpr[i],\n", + " tpr[i],\n", + " color=color,\n", + " lw=lw,\n", + " label=\"ROC curve of class {0} (area = {1:0.2f})\".format(i, roc_auc[i]),\n", + " alpha=0.4\n", + " )\n", + "\n", + " plt.plot([0, 1], [0, 1], \"k--\", lw=lw)\n", + " plt.xlim([0.0, 1.0])\n", + " plt.ylim([0.0, 1.05])\n", + " plt.xlabel(\"False Positive Rate\", fontsize=15)\n", + " plt.ylabel(\"True Positive Rate\", fontsize=15)\n", + " plt.title(f\"Multiclass ROC curve for {name}\", fontsize=15)\n", + " plt.legend(loc=\"lower right\")\n", + " plt.show()\n", + " # return plt.figure" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are 10 classes\n" + ] + } + ], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.98, random_state=random_state)\n", + "n_classes = len(set(y_test))\n", + "print(f'There are {n_classes} classes')\n", + "# Counter(y_train), Counter(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "clfs = [\n", + " RandomForestClassifier(max_features=None, random_state=random_state),\n", + " ObliqueRandomForestClassifier(max_features=None, random_state=random_state)\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'bootstrap': True,\n", + " 'ccp_alpha': 0.0,\n", + " 'class_weight': None,\n", + " 'criterion': 'gini',\n", + " 'max_depth': None,\n", + " 'max_features': None,\n", + " 'max_leaf_nodes': None,\n", + " 'max_samples': None,\n", + " 'min_impurity_decrease': 0.0,\n", + " 'min_samples_leaf': 1,\n", + " 'min_samples_split': 2,\n", + " 'min_weight_fraction_leaf': 0.0,\n", + " 'n_estimators': 100,\n", + " 'n_jobs': None,\n", + " 'oob_score': False,\n", + " 'random_state': 123456,\n", + " 'verbose': 0,\n", + " 'warm_start': False}" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Random Forest Parameters\n", + "clfs[0].get_params()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'bootstrap': True,\n", + " 'ccp_alpha': 0.0,\n", + " 'class_weight': None,\n", + " 'criterion': 'gini',\n", + " 'feature_combinations': 1.5,\n", + " 'max_depth': None,\n", + " 'max_features': None,\n", + " 'max_leaf_nodes': None,\n", + " 'max_samples': None,\n", + " 'min_impurity_decrease': 0.0,\n", + " 'min_samples_leaf': 1,\n", + " 'min_samples_split': 2,\n", + " 'min_weight_fraction_leaf': 0.0,\n", + " 'n_estimators': 100,\n", + " 'n_jobs': None,\n", + " 'oob_score': False,\n", + " 'random_state': 123456,\n", + " 'verbose': 0,\n", + " 'warm_start': False}" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Oblique Forest Parameters\n", + "clfs[1].get_params()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHACAYAAAAbVuQQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5wcdf3/n5+Z7eVur5f03klCEjrYsSBibwiIUSygX0Xxa0P9qXwVQcUuCpavYkHQrwXECoIoBEhCSe+Xy/W2fWenfH5/zN7e3t1ecpfs1czz8djH7s58duazbeY17yqklDg4ODg4ODg4OEx9lMmegIODg4ODg4ODw+hwhJuDg4ODg4ODwzTBEW4ODg4ODg4ODtMER7g5ODg4ODg4OEwTHOHm4ODg4ODg4DBNcISbg4ODg4ODg8M0wRFuDg6TjBDis0IIKYTYN8L6/bn1nx3jdufnXvfKgmUfFUI8v8hYKYS4boxz7hrLfMYDIcTbc3Pvv3UJIR4UQlw0wvi5Qog7hRDHhBCaEOKwEOLrQojqEcYvyo0/KoTICiE6hRD3CCHOGd93NnkIIVYIIR4RQiRzn+n8cdjHqL+3IeMKbxeUel4ODtMB12RPwMHBAYAMsEAIsVFK+WT/QiHEJmBebn0p+CjwLeChIcvPBQ6VaB+TwQuBNFAPfAL4sxDiDCllXgwLIVZhv+8O4JPY73d57vErhRAXSilbCsafD9wP7AM+DRwAaoDXAo8KISqllNEJeG8TzS1ABHgVkARax3FfJ/zecnwFuGfIsh3jOC8HhymLI9wcHKYGSWAr8GbgyYLlbwb+AWwYz51LKR8bz+1PAE9IKRMAQogtQDPwBuB/cssE8DOgFzhXShnLve6fQog/As8A3wFenRvvB34FPAG8QkqZLdjXvUKIOwB9vN/UUIQQfillepx3sxz4vZTy76eykdxn7pVSHu+i47jfWwGHZ8Bv1MGhJDiuUgeHqcMvgTfmTnj9J7435pYPQgjxkBDiniHLnp9zIa0utnEhxGGgCvhMgbvp+bl1w1ylQojXCCG2CCHSQohuIcT9Qoh5I2w7KIT4lhBijxAiJYQ4JIT4thCibMi4zUKIHbltdgkh/pmzhPWv/3jONZwRQrQLIR4QQtSf6IMrJGc16wTmFCy+CFgHfKFAtPWPPwZ8A3hVgVvwDcAs4ENDRFv/ax6UUqZGmoMQQs29l705l2yzEOLHBesPCyFuHfKafvdhKPe8//t8qRDi90KIBPCt3Gd2d5F93iqEaCr4/fiEEF/OuXk1IcTTQohXHGfO84UQElgEfCi374cK1l8nhNiX29Z+IcSHhrz+s7nv9AIhxBPYVuI3jLS/oYzwvTk4OAzBEW4ODlOH3wB1QH/szoXYrrnflmj7rwGiwJ3YrtFzsa18wxBCXJGbzwFs8Xg1sDc3n2IEABXb7fhy4EZsN9ivC7Z5EfA9bMvXy4F3AP8GynPrr8R2l30VeCnwXmA/EBzLm8wJn0oGu377Y6d+N8LL/g8QDHz2zwNapJTPjmXfBdwO/D/gbuCVwIcZ4/so4E7gaWzX5Z3YQv6VQoj89nJi7Q3A3XKgj+E9wNuxrVeXYlsPfy+EWDfCflqxfxNtwM9zj9+X2/67gG8Cv89t69fAV4QQHxuyjQDwE+AO4GXAltG+yRG+t34UIYSr4KaOdrsODjMNx1Xq4DBFkFL2CSEewHaPPpK7fyC3vBTb3yaEMIDm47mdhBAK8CXgt1LKtxSs+v1xtt2JLbT6t+HCPgH/SwgxV0rZBJwFPCOl/OII2zwL+IuU8jsFy34zircGoOb2WQfcjC1CflSwfhbQd5yYtCMF4/rvm0a570EIIZYDm4H/klJ+o2DVr05me8CvpZQ3Fmx/H7aIupQBa+w5wNz+50KIFwGXAM+XUv4zN+YvQoil2OJ6mCVMSqkBjwkhNKC1/zeS+z18FvixlPLDBdsqBz4uhLitwB3qB66XUo4kkIdyou+tn6/nbv08yoDIdnA4rXAsbg4OU4tfAq8XQniB11PETToBLAMaKX4CHREhxBVCiG05l54O/Cu3amnufjuwXgjxNSHERUIIz5BNbAdeIYT4f0KIs8ZoVenL7bMZeB3w+pyYHC1ylMtGwwty9z8+ydcP5b7CJ7n39Q/gTQWL3wQcKEhseTG25ezRQksV8Hdg4xj3Pxv79/DrIct/BZQBawqnB/xpDNvuY3Tf2y3ApoLb5jHsw8FhRuEINweHqcXvgRBwE7Zr7Q+TMIeq3P2oswmFEK8B/hf4D7Y15xxs1yyAD0BK+Tdsl+tF2NmdXUKI7xS4/H6I7Sp9I/A40C6E+PwoBdxF2Ba7twE9wC8LXYnAMSAyNOaugPkF4/rv545iv8WoApJDY+lOgfYiy34JvFwIUZaziL2BwRa9auxMTX3I7bOMPYasYYR59D+vLFjWWywm8Dic6Hvrp0lK+WTBbc8Y9uHgMKNwhJuDwxRCSpkE/gh8CPhD7nkxMsBQi1VlsYEnQXfuvuG4owbzBuBxKeX7pJR/klI+jp3BOQgp5U+klBuwXWM3YMdg3ZhbZ0kpvyalXIEtmm7FFnLvGsX+t0kpn5BS3oXtYl4AFCZbPJy7f9UIr38VtrXokdzzh4BZhYkTY6AbCB5HJMLYvr9ilr/fYsfkXYbtMmxksHDrwRafm4rcxlqDrl/A1w5ZXlewr+PN9Xic6HtzcHAYgiPcHBymHt/FtrR97zhjmrHLNhTyklFsO0vOAnYc9mCf9K8axfb68QPakGWXjzRYStkppbwdWyitLLL+qJTyS9jJCcPWHw8p5SPY9dc+mHM5gy3ctgM3CiHCheOFEA3AfwG/k1L2x7rdg/0ZfE0I4R66j1zGZ2CEKfwjd3/lcabZDKwYsmw03x8AUspe4C/YLtI3AbuklM8UDPk7tsUtMcRS9WRhncBR0gy0MDwu7o1ADDjZBI5BjPC9OTg4DMFJTnBwmGJIKR9ieIHcofwW2CyE+Bp2DNQLsDMxT8Ru4JJcEkQC2COljA/ZvyWE+ChwlxDiLuAX2JaUFwK/GOHE/1fg20KIT2K7OV8BvKhwgBDi/2FblR4CuoD12NmbH8utvx3bevMYdvbrC4AlwH+P4n0N5SbsAPa3AXdKKWUuU/ZB4D9CiC8DhxkowBsFri34DNJCiDdhx2s9KoT4NnAQ2wX5amxRWkURpJR7hBDfx866rMUWjRHs+K0354b9FvimEOIT2NmerwXGat37FbZ7OYpdVLmQvwJ/Bv4qhLgZu1htGXZJFJ+U8uOj3Unu9/BZ4HYhRHdu28/DTkb5xAnqtI2VQd9bCbfr4DBzkFI6N+fm3Cbxhh131HWCMV3AZ4cs+zhwFIhjl9jod/etzq2fn3v+yoLXbMAWRsncuufnlkvguiHbfy3wFLZbrxtbIM4rNmfsUiC3YncliAH3AmcX7h+7LMbfsWt1ZbAtex8DRG7927FP2j1ACrso7uYTfC5vz+0jVGTdP4Bd/dvPLZuLLQhasK2PR7CzFatH2P5ibHHUjB0j1oktul5wgnmp2G7eg7n9NAM/Kljvxi570obtUv46cE3hewGeX/h9FtlHOPc5SWBZkfVe7JIk+3NzaAMeAC45wdwPA7cWWX5dwbYOYte4G9Pv+GS+t2K/Tefm3E7nW/8fw8HBwcHBwcHBYYrjxLg5ODg4ODg4OEwTHOHm4ODg4ODg4DBNcISbg4ODg4ODg8M0wRFuDg4ODg4ODg7ThBlRDqS6ulrOnz9/sqfh4ODg4ODg4HBCnnrqqS4pZc3JvHZGCLf58+fz5JNjrSnp4ODg4ODg4DDxCCGOnHhUcRxXqYODg4ODg4PDNMERbg4ODg4ODg4O0wRHuDk4ODg4ODg4TBMc4ebg4ODg4ODgME1whJuDg4ODg4ODwzTBEW4ODg4ODg4ODtMER7g5ODg4ODg4OEwTHOHm4ODg4ODg4DBNcISbg4ODg4ODg8M0wRFuDg4ODg4ODg7TBEe4OTg4ODg4ODhMExzh5uDg4ODg4OAwTXCEm4ODg4ODg4PDNGFChZsQ4odCiA4hxHMjrBdCiG8IIfYLIZ4RQpw5kfNzcHBwcHBwcJjKuCZ4fz8GvgX87wjrXw4syd3OBr6bu3dwcHBwcHCYCUgJpgQBqCPYjzpTYMmBW2MIhBg+ricNxxJI08IyLMxyH2J+GW63Onzsllaa9naT0UxMw8JYXc3SjQ14vUOkUHea7l/vZsv+bgzDwgy4qXzZQi66aN7wbf7tCH/65XPs7khgmhJjUYTL3ruBFStqhg1NXf8PbnjwAKYlT/wZHYcJFW5SyoeFEPOPM+Qy4H+llBJ4TAgREUI0SClbJ2aGE0tGNznQmSCRMSZ7Kg4zDUuiZE2EZtn3hjXql0opMU0Dw9QxDB3DNDBNncJDjWkapK0kmpHCZPTbdhgHLBMhLRRMsCyQJiJ3Q1oI6Xw/x0NKaQsJ+xnI3J0k/2DgsX1H/79B9i+TA4vzj0c+Ocvc60T/fvq/IgnCKthFsdvQdbkHov/1hfsunGsOS4JlWvYQKRGKwOUqLp7SaR3LHHirgZALZah4MiVGSieZMextCnD53ITC7uEb7NNIJHUy/W/DLSgr9+H1DhdZVkuCzvxnD8KjUFcbHL7NlE6iVyNa8HmHwh7Ky73Dx3alacsYmP3PH4PtfwwOef8SDBOtK0m3tGytmJI036PQ8qAv9wHnlgsL4hpRv446T+ISEq+QPPmrv/KsTwUklhBkFQVdVdHCWapfraKrKjwzfHqjZaItbidiFnC04Hlzbtkw4SaEuAa4BmDu3LkTMrlSkdAMdrfGONiZxDhF5e1wGiMlqiFx6RaqYeHKWrh0+6aYxz9pmJaRu+kFjw1Mad8PxbQMDKlhyCyGzGJK52Kj1AhpIfKKQSJyZ3TR/1ha9jkjv8xi6El5WlAoPpCDlzFknRy6bAgFx08xSNQUCKv8MvLixh5fbN+CYdch/eNznz5SDFo+6LXD3kf/qwrEzhi+sqEfkRCDtjRonGXabzKnnVBHsGRZpsQqEDmKAqZSRNybEksO7E0A2bS0f6ND9y8VXF7PoGVaqlCN5r4AD6hulYAAgWVvVGjohj1G9I8VEllrERES0f9aIbHUdH5bIjcOjyRQZuEXA/tRFBBqwb77tx2S1GMN2oaiioFtFbw3tUbiL3xDgkGi1QJ0xU22XMUQbizFTVbxkFVcdKkedMVFVnFjiAFRGleiPPi/v2XxxjVFv5vRMtWE20i/yeELpfw+8H2AjRs3TrmjV18qS3NvetAfBCCWNjjam8ofTxojPmZF/EUtwFMNQ9eJRXuRlnMFP6FYFmQtRNYC3X6MbtrPi13VuwC3QHoUcKtYboGBgWHo6LptQetHzd3sv54bcNvCThjoaGRkhozMYAnTPnABHtwo+Ai6gwTdYdxKkSvbicAywbTsz8c0EUPvzYLnljWmE+ZJIfutXdYgyxfY8xSYCKvfCmaCZRRYxMzjb1tQ/OgIgIoUuTOVoiKFCkJB9j9W7BO4zFtppH16z1kzZM4iN2B4kvknst96hC34pVVooRr4QGVubKGlSsrB6wf9VouKq9x9XoxJsOSgXQ28hwFjly2k+j8cMWB/yu9ODN5NXoDlhI3sV0MD9/ZdTnIJUbCdgXWDBZn9WiFEbt3IB3TDNEkldUzLwjQlLo9CZcRv/7lEbrfC/hyOHO2jL5bJvRXJ/IWVVFX5cmMH9m3s6eXx7mTeCKe4FM4/f27Be8rRnqRpXy+HCo4Bs+cGWbzEhVA1BkSWBQd72Z3UyOaEjhCSpQsr8frUATGFhKxB8kgfTZZhC0sh8QdcNM4tK1DTObrTtPWkSRRYgWvrQ5SX+YZ9TvJgL/uNgv+FUFiysHL4BxrX6G1P0W0NjC2P+KkdZJ3LfajH4hxJ6WQL9j9vXgRPgavUAnRNoa81w2HpQlfc6MKDCPiobKgkiwtNcaELl/3biWXpiemk8hcagkiFn5Dfg4LAK8FtGTz34CP8+Wf3ktEydB9sGf4+xsBUE27NwJyC57OBU3uHE4hlSZp70+xtj9MR10YcpwiYXx1kRUOYSMAz4ripRDQa5VBLE4rhWFrGC2lYSL3/ZiKzlr3sOG5O4VIQ7v6bOvDYJewrWiwU+v/otkwTQuB2u/F6vXg8HlS3SlqmiVtxYmaMPr0PU9gHQVvKefGqXqr91flbxBtBEWPLbZKmiTQMpG6AoduPDQOp60jdQBo6DFtWsFzX86+Xhj46IaaSi6EZ5VwtEyw9d2/kbkMfD12fWy5PIL6wBYwlbbuIlGDlhJF9U7FyYksKF1IoWMIWZfYyFUsIJIq9DAVLKDmNJZGWxDIlUlpIaSKlYW9fWoME2CkjB3SXlAOiaGCZLY6kHBCMhevzCsW2GwIKouCxzCkXIQRCGRBCtihSCh7nliuKvVwoKIotVIVQ7OWKfa/kTDD5x4oLoQiE4sotA+FSUQQoqoJQFYQqUPsfKwLVlduWS0G47H0pLpEf/6M7t3H0SIzu3jTdCZ3v/uBV1DeEUdwqiku1x3Vn+MeH/86b7xnIz3v+8+fw4INXDf+c//ufvP2X/+En2oDF5s47X8al71g/bKgx57u8trkj/1wIMH/9vgLRmeO3e/net/+P//V1UV2Toro6RfU5KusvO2P4/r+3nd8daaGl4EL9BZevYPasssHjejMc/Pu/+El64Be2YEGES99xQf9sECL3Hd1/iB/8ZTcPaab9+7cE73nvWWx60SL7dyDU3PeqYL77r3zqQCdSCkzLXvbII++wv0f6fwsq4t8t/OJX/+Yrh3uxpEBB8NbL1/Kma19o/4aESv//X7v1Sb7zhx0czEqE14WoC/HpN76YcGM5aQvSJmSkBVGNznv2cP+BLhQhUDwK9WfU8tqLVgx8xgh8iiDwbBf/eeAAB1sTeEyJty7IKy9YwzlnNhJQFJoPHeSaa67hwQcfBGD1rE289Zz38Il7Nw//zEfJVBNuvweuE0L8EjspITrV4ts0w+RYb3pYcGFGtzjQmSCVtQ/eLlUwvyqIf0iApEsVzKsKEPBMtY++OKZp0tbWRmur/TWEw2HC4fCkzEVKiTQk5MSM1I8vaqY60pKQNbG0fpFmYMZiyExm8ECBLcRcA/e4c89FzqID9qWilrsVvlwI3KqKx+XC43IhhUUs1UlU66NDi5LIJrAK/ENewO8KUO4tJ+Ipp9xbTsAdgF6AGBBjyAzt92NaQ8RXgdgydCxDkswYxJJpMpp+6h+gUMClIBT7hIzLhVBzj1UFVPs5AoTMgp4BIzMgumSB+JK2dW40atAWIipSKkjptkWY6L+pWGALLRRbwPSLLMhZxRQQLvL+nAKr2Hhin8RsESKEiqKInGDqN/UMCCpQQObElCh4LHNCSwhbuAsxsF2hDAiq3GPRPwYxIKbs2eR2lVufE2jkxBnCFkSKKhCqkhM+wr53Kfa6/seKQKjCvlfse0UdeDzoftByyGYtenpTzJ5dPvwDi2f53Z3b+OoPt9HVk6YzmeXKzeu59daLh4+97Df87L6dPGcOiPeYdLGoLjJ4XIdG7d+ODlrU2Zks/oWFPQSH6K5kMlt0qCvsxQP0r5USNM3E53MhpUTXu9G0drTQMzS+eA8v0zU8QuD1uaiIBPH6GvC4KxHClRM6AhFNs3iXSpkpUaRAPX8utTUvoLq6PP8bAAURspBzq3nRgR4UnxtXwEv98xfT2Li6YFyOqyWXrmtlfUscl0tBVRVWraqhpqZs6FtC/vpCfr67Kz9OVQXl5ZFh43jpCja/5IW81bRISYukaZEwTJ7RLNKWRdq0SJkWGUtiXb2JN129adDLNaAlO/g84qvws+o9Z7JRUfCrCgFVwd//OHfvV3IXEPWVvOIlS4dNyzRNvv712/jUpz5FOp2murqab37zm7zpTW9CCMEnxDQRbkKIXwDPB6qFEM3AZ7Av6pFSfg+4H3gFsB9IAVdP5PyOR0c8w/6OBEd7UpjH0QplfhdL68LMrwriGSHgczpgmiZdXV20tbWh6zpCCBoaGmhoaBh+FXeKSCmHW5qy5sCyrImVW2efV4tkC01XpIWZ6sPo6cOK94FiIVQLoUrov1ek7RWRgJ67pUe/C83MkMgm6NITJPQEGWOwsvMAfneAkDtEyB0k5AnhVjz2P5A0kB6qBY+LZUHWEGQNQTKlE09lSKTTZLQMpjRtk7OSO7Er9kmagnshFHvMoOdK7uRuP0Yp4owyLNDSYOpgZnM33RZmo6Z/Lv2iKvdYUXOiQh1YrioD63OWghNvfuB9C6HmRFROfIrBj+m3IOXHD1iShj0utDKJfgtT4biciCoR/SKoUBANfayoOWtUETGVf1xsG/33YzzOSCmJRjU6O5N0dqaYM6eMOXOGCzJrSytLLvs5HX0ZEhnbvafrNw6PCXvgED03PsLDiQFh1daWKL7zkIcaRQzyeHd2poaPC3uoHvK+urqKjAMIuVmmqlzgchEUguDiCAsWVIw49hfhEB4hCCAI3HkR2ewBkqlONK0NaeUulCIJNqyv4xwieJVqfHMW4bnigpxYG8InZvHRT0gIeSDgtv+TxfDA7K9cyoeKrx2MIli/oZH1G048VAgxKDNTsyy6swYJ08yLs4Rp5W4m5nGSQfrxKsMFWCAnwgoF2rAEjJPAMAzuuOMO0uk0l19+ObfddhvV1dWnvF2Y+KzSt5xgvQSunaDpnJCsYVvRDnQmiKUHDv715V7CvsEZM4qAxoif+jJfyYXNeCB1CytjYGUMjIxOIpXI2xq0rEZHd2c+Fsrv8zO7rpEQIfTWEa4OR4sljyPIToxwKQiPgvCoKDn34HHCSaYkUkrM7m70tjbM7nZAR6gSVyW46+tx1dcXWCbGTkJP0J3upjfTS6/WR9bsl11BIIgqVMq95VR4K4j4IkS8EVzK2A8FpinJZiw0zSKbschoFslkhlQijqYl0bQ40jIh4IGgF1VR8Pu9hCsrCFZETv49GjroSdBTkE3Z93oKjKHWCI99EwLcfvAEwR0A1Q2Ka8itf9mJf0z97rn8TfS749TBQirnlsuLMUWZcscGWx+eQFiptlWrUFRNFNmsyZ49XXR2pujsTGJZkre8pUhg94Ferv+vB7jtvr35Rbfe+hI+/OHzhg1V3n4/ve1JErkTvZTQ3Z0eEhMF1PipGfIbHVFkhT1UDxHGRS1pITc1isL7fT6qFUGNS6XuO68ovs3GEB84cxYfCHls8XTpInjlcMsOgPWNi3i51UnG34vm6cEM7yYeH5iPqtpWNd/qOrwb6lBGE5daXySDcxwxLEk8J8riRk6cmSYJw77XTyDMPEIh5FIIqSqhnAgLDLGWqeP8/8tms2iaRjgcxuv18qMf/Yiuri4uueSSku5nevjrJhjNMNnTFmdPWxw9l53n9ygsrA6xqDZEaGjNlymKNCVWxkBmDKyMOehxv4sxqaVo6j5G1hjuugp4/NSVV1PmCkO3JNsdH7e55gWZW0XJ3Yuh9+6c1WWaYnR1kW1qItvUhNRskSFc4KqqxDNvHu45c1B8w4N0T7hdy6Ar3UVrspW2ZBsJKwEh7Bvldnyar5oqfxXV/moqfBVjik8zdQstbaCldLSUQSZp3+uajp5JoiVjZJJRsqkYlqmDELjcCr5yL76gn7LqKsrrqqmor8EfDo9evGgJyEQh0wfpvoHHRjH7nxsUP/jKwR8BX2TgsSc8Ia5Ih9Hz2GPNeUHW1ZXiyivXsnLlkLpXmknb97Zxxgfvyy9qbAwXF273HaTqwaEuyBFEVrWfaiHoLRACXV2p4cKtOjDMOjbiNsMerokEeIUrRHXIQ83mM1j6iiXDx3lVvDc/j2+EPRDOCbILZhXf5huX27ciSGmSzXaR0drQtDb0OT2D1iuKD4+3Dp+3Hq+3DpdrcsJbCjGlHGIps0VZ0jSJmxbaCZLeVCHyoizssu+DqkIo99gzyf/xLVu2sHnzZjZu3MiPfvQjAM4+e3zK0E4PBTLOZHSTeK6WWms0PUiw1ZV5WVoXZlbEPyFXmlbWxErbAmusSAukZmCl7VsymRyU2VWIUAUpS6Mt2QVBhZC3HI/HTpRQhEJFWYTy0PC4g1NFCHFcQZZNG6RiBZYTPZdJyfRMijATCfSWFvSWFqzUwEFfDZXhamzA3TgLMxCwHZJRC6IjnBiGkDbSdKY76Ux10pPpwSgoz+FRfVT7qqn0V1LhrSDkDtkrcm7WWKxYhNoAlikHCTUjF7cpLYtsOo6WiqIlo2QzcVRV4vKouD0q/pAHf7iC8tpqQpWVhCoq8QZGuGq3LDDSubiz3L2eGhBnmajt5iyG6hkuznwR26I2xSxaMwkpJfF4lkDAXbTu19693XzlK/+mpydDT0+aZcuq+M53ilgaHmri1vffz73PtecXrVtXP1y4Caj+/H8GLerstI9pw8R/TYAaMUrrWE2AGkVhn2WhAtUVvuKxY3UBVq2q5e9KNdX1IWqWVFL12QuGjwP48vN48S3PL75u0HsSsLlIIsAJkFJiGH1ktHa0TCvZbBeysCSPUPB6avB66/B663G7KyfcumtJSarAddlvKesXa6kTCDMFMUiIhXKPg6pCWFXxjVSod5JJpVJ8+tOf5mtf+xqWZZHJZIjFYpSVlf782c9pLdxSWYNdrTH2dySGxa3Vl3tZPauc2vDYLSCjQeoWVlrHSg0ILStlII8XQDdKsoZOU/cxUtk0uBUUdy6I262geFSESwHV/lO7/H7q6+tpbGy042ImAVO3iLal6OtIkY4XD76dTshsFqOnF6OnG1kg1oQ7gFpZiVpVhRoI2MkEzUWyCYptU0oSeoKoFiOa7SNjFIovQcBlJxGUecoJuoOINNALUXSidlbBmLEsk2wqRjYdwzITmHoS1S1weRTKqlVUVwhvMEgoUkkgUkEoHMLjZkCMJY5CX3ogKUBPD9ybo/ieXb4RBFrgpN6PwwDxuEZzc4yenjS9vRnq60Ns3NhYdOwll/ycLVuO0dubxjQlzz77Xlavrh08qD1J361b+P4PtuYXRaMjXCD8+TA1+/sGLSrqVvSoBCp8BLpz4ZaArlvEYhrl5UOOyzUBahRBEKhRFKrLvcydWyThAGBTA/dYFr7aIJHZYcQbl8OyImUmagKEH72cFxbfymDGQSSZZopMxraoaVo7ljX483S5I3mLmsdTi3IS4Q5jQUpJ2pIkcm7M+BBxljQtjpe7LHLCLKjm3JkFbs2gy445m2qhBCfiwQcf5J3vfCcHDx5EURRuuOEGPvvZzxIIjO8xakYLt4xuFi1wa5qSfR1xDnQOCLbKoBshBH63yvKG8JgFm9RNzGh25J+tadnuypQt1kbKhhQuBcXvQvG5xt5JVgji2SRNnR2YtSoBbyVe38ixDIqiUFdXRyQSGeOOTh1pSeI9GaIdaeI9mbxlUCiCUIUXZYpeXY2IlBhdXejNzZh90YE/VljFVVONu64eNRIZ0wE+a2r0ZHrpSXfTq/XaVrVc2JZHqFT4KqjyV1Hpq8SjnnotNdMw0JJRtGQfuhbHzNpCLRBW7Fpj2Sxel0Uw4CUUgKBfwa1EQW+HtjS0nLgcRh4hwOUHt2/wva9sQKi5x+eiaaYipeT225+ipyedE2RpfvCDVxX1FPzyl89xzTV/zD+/+up1/PCHlw3f6Pefpu+p1kHWq56eIpkxmknFPXsHLertHUG41QSGxYMdzzp27hE3WSmpVhRqLluMWay49PwyXvO6FSRqg1DjhyWVcNni4tv82Nk0FF8zqVhWFk3rRMu2oWXaMIzYoPWK6s8JNVusqap/hC2dPJmcxSxp5tyZhu3GTJomScPCPEEwsl8ZIsqGxJyVIuh/KmBZFu9973v5/ve/D8CaNWv44Q9/yMaNGydk/zNWuB3qSvKfA90nHDe3MsDqWWUnXU9NWhK9PYWe65U2WoQqUPxuW6QFXPl7Uay/2iiwLIuWlhbaom3ggUh5BfPnz8ftLtJ2ZBJJxbJEO1JEu9KY+sDnFYx4idQGKKv2TTvRpre0kH7uOczePjtRokrgbmy049YaGuySFKNASklPpoe2ZBttyTZ6tJ58rJoCVHnCNAQbaAg2UO2vHnMdtaEY2SzJvl6SfT0ke3tJJ2L5JBGX0HERxy8NglIj6MoSLPPicqnQXwxk6PlbcdlJAC7fcEE29N7lPe3dmlJKkkmd3t406bTB0qVVRcf9+Mfb+cUvnqO31xZkH/3o+VxzzfC0PCEEN9zwVxKJAWvmV77yUiKRIQK4KUbF422DFo0osh4+SmWPNmRsEeFW7adyyPdZVOAB1PjZ4HLxVq+HGqFQs66Wi168sPjY1y/jby+ZBzUBqPbDxfOhsohgWVyB+NEIQf5TFCktstnuvEUtm+2iMEtLCDdeb01OqDXgdp+66y1rWXlBljQHHve7N40TJAB4lZwLM28pUwkXxJqNd/D/VEFRFCzLwuPxcOONN/LRj340H2o0EcxY4bazxb5a8XuKq/zqkJdVjScv2ACMPo1sUwwrl3Gqhj2IIj3XIJe95esXaW6UEcaNBmtIrEA2m+Xw4cMkEgmEEDQ2NlJfXz+uZmfTsMgkR1mLS9qCra8jRbYgO9cbcBOp81NeE8B9Cp/HZKG3t5N59lmMbjswWPH78K1YgWfePMQo/8RZM0t7sp22VButyVY0c+AkqQqV2kAt9YF6GkINBN2nluVlGjrx7m4Svd2k+nrJJApKG+hpyCYIuAxbpLkNghFfrkSCC4Qb/JUQrLFdlcXEmDpjDyej5umn2zh8uI/e3gy9vWkuu2w5CxcOL+Fw5Egfixd/EyNneZ8zp4ympuIFFQ4e7OUvfzmQf37sWKzoOLa0UuF1DRJuvb3p4cLtaIzKXw+2jo0oshpDVBRY7PxulXS6SLxpwE0k5OE7WpBKRVAhBJX3vqb4NtfV8uqPncera/xQHYClFbBqhDIJ10+MBWOi0PVYTqi1oWkdSFl4DBV4PNW5OLUGPJ6qMZdwMSyZD/YvlgiQPUHfWnd/AkDOUjY45kzFPY2Tw06Vzs5O2tvbWb16NQC33HILH/zgB1m1atWEz2VGHmnbYxmiaR2fW+GytbNKnlRgZQyyR2IYffZJVvG58MwrwxUZv9Y/UkpisRhdXV309fUVTTrweDwsWLBgXArkaimddFwnFdNIxXS01MkVUHW5FcprA0RqA/hCU8saOFqMzk7Szz2H0dEJgPB68K1YiXfRQoTrxH+pqBalNdlKa6KV7kz3oLiQgCuQt6rVBGpOqkxHIXomQ6yrg2hnO4menoEy9tkkQk8QcBsE1SxBHwSrvLk4Rw8oAVukhWohVGffq9Pz+xoNpmmNWDts9+4uvvOdJ/JibMWKam65pUgRVuAzn3mI3/1uT/753LnlRYVbebkvL9rgOBavlE6lMfi/PuLYjz1MZZ82qNlzT096eO2vhhC1imCpqlAhFCr9LtaeN7v4NutD3BIMcnMwSIUQ+K7fBG9eXXSo+unzeK9HHbCOnVFTdBxrauzbaYBpZvIWNU1rxzQHx/K5XOGcRa0er7cWRTn+BZ/Vn5mZjy/LZWXmLGjpUWRmBgssZuFc8H+/WPM62dfDkFLyi1/8gg984ANUVVWxfft2/H4/kUhkUsKMYIYKt33ttiVhcW2opKJNmhbZYwmMtpSd2aQquGeFcNcFxq1MRTabpbu7m66uLjRtwBozNJGgvLycuXPnlsQ1Ki1JKp4lFbNv6Xh2kFsTbLeMN+gatVvT7bEFWyjinbYlPYyeHjLPPYfearuZhNuNb8VyvIsXI47zuRuWQUeqI1+uI2UMxPMoKNT4a6gP1lMfrKfcO0JA9RhIJ+LEOtqJdbSR7useKEirJwm4TMIenVDQhT/gtQu8knNv5kVaHQSqZkQJDcuSIx4D3vCGX7NjRwednSl6etIcPPgB5s2LDBvX0ZHkm9/ckn8+onACKioGu/FGGlsW9iDEQP/MRCKLrpu4h4ZK3H+Qim9uHbRoZOtYkLd5vbxUWrYge/tqZs8u4l5rCLHa5WJPRU7QqQK+MEII/sXzqasP2DW9aoMwO1R8HJxUtuRMw7IMstnOvFjT9cGJQYrizVvU7DIdxa3oGdOiRdNzCQADbs3UCRIAlMIEgAJLWcilEFRVAtMsDGWyOXr0KO9973u57z67JM26deuIxWL4/aWPLxwLM064pbMmR3tTCGELt1IhDYvM7h7MnHvQXRPAMyd00jFpo6G1tZWWlpa8dc3j8VBTU0NVVdW4+NO1lE5vLrtzqFBzeVQCYQ/+Mg+BMg++kHtCC3FOJmZfH+nndqAfOwaAcLnwLl2Kb9nSEV2ipmXSlmqjKdZEW7JtULkOn+rLC7X6QD3usVqyLDNXdDYNegqpJUn2dBDtaCfW1YWeTuTFmlAUwiE/ZeUBymoDuFxewAve8IBIC9XaGZszgPvu28v3vvcUR49GOXo0xjXXnMkXv/jiomP37etm166u/PPOzlRR4VZRMdjVWDTGa4SxI4ksZdNPiSBII6lQBJVLKkkmdSKRIceThhAvcru5ryxMpRBUnlFD7bdGLtj6kUDBCWVNA9QVOQb6XXDdeqjwQWMIGo5znFxdbd8cimK3k+rNuz/tMh0DSTpCqHg8NfmEAre74rghLAnDZFcyw75UZsROAEF1eA2zwgSA6ZaZORWxLIsf/OAH3HDDDcTjccrLy/nqV7/K1VdfPSU+3xkn3I70JJESZlf4S9YPVJqSzN5ezKSO4lPxLoqghsY3ELG9vZ1jx44hhKCiooLq6mrKyspK/qOxTItYV4betuSg+mkev4tQxJsXah7fjPupnBAzFiOzYwfZJtv5JFwq3sWL8S5fjuId7ha3pEVHqoOj8aMcSxxDtwbcyZW+yrwLNOKNHP971DMQb8kJs/SASMsm86U0TNMiHk8Ri6aIx9OYBT0SXS7VFmplFYQqK1G8uY4B3rKcVa3Wrnk2TTBNi+985wmamqIcORKltTXBww+/vehn2Nqa4I9/HIjfOnp0hHgwoKZm8GfQ0VG8K8horWj8eg9r793PJV4PFUDFmlrOPHOE/MUKH62VFXj738NPXwdDY9EAGoLMVlVm9ye4RI3i4wA21EN3BhqDtiA7f4TCrgCfOX/kdQ7HxTASOdenLdYsa3BpG7e7Eq/PFmpeT03xdlJD6Moa7EqkOZLJ5i1q9R43VR4X4SExZzMlM3Mq86Y3vYl77rkHgFe/+tV8+9vfprGxeLmcyWDGnY2bum031Pyq0pyYpCXJ7OvFjGdRPCq+5ZUo49w5obu7m6NHbbEwb968kvU3G0oyqnFsTy+6Zp/0hSKI1PqJ1AUJlE1chsxUw0wkbcF25LCd5KUIvIsW41uxHGWIiVxKSXemm6PxozTHm8mYAyf1iDfC3PBc5oTn2E3aT7hjHdqfg7bnivbX1HWDWDRFLJ4mnjLtLE7VA/4Q3lCYstp6yuoaCVTWIzwB2/05hd2dHR1J9uzpoqkpSlNTlPPPn8tFF80bNk5RBJ/4xD8GBd13dhapdI8d5F/I8YXb4O9kJEtaTZWfr3z8QiqTOhUpg+q3F6ncDyDgqpTkqv4Y0zWNMFK2ZGMI7zOdA89bRmgl1xCC+eUDYmz2ceJX37TcvjmUFMvS0LQONK2djNaKaQzuV6qqwbxFzeutRx1DaZ7mTJadiTTtWfsiT0GwwO9lZchPhXvGnZ6nDa95zWt4+OGH+da3vsXrX//6KWFlK2RG/TKSmkFXIotLETSOdFU6BqQl0Q70YUY1hEuZENHW19fH4cOHAZg9e/a4iDYpJV1HE3QcsU9qvqCbysYgZTX+4Y2WZzgym8VMJrGSKaxkErOvj2zTEbCkLdgWLsC3YgVKcLBI6M30cjR+lKPxo4Ni1sLuMHPK5jAnPIcyzyjT9y0LOndD69N2gVqAcAP4I6SzEItniEUTpFMaqPUQcUGFIBCpoKy6hrKaWnzB0oUFlAopJX19mWEWq36+/e0tfO5zD+eff+xj5xcVbkII5s0rZ8eOAaFz9Gi0qHAbWnS1tXXkNm2f/ezz+djHLqC6OkB1dQCPp4hlxLDwnvFjru8rKInx5RcV3+BQl2PrCA3J+8cG3DArZAuy8Ajucr8Lnrhi5O04lBy7TEdXgfuzh0FlOhQ3Xk8dXl89Pm/9mNtJWVJyKK2xI5EhatgXaC4hWBrwsTzkIzjK8kEOpeOZZ55h27ZtXHXVVQC85S1v4ZJLLqG8/NRjjseDGSXcjvbaJ9DGiB/XKQgQaUqMrhR6WworYyDUnGjzj+/HlUgkOHjwIFJK6uvrqa+vL/k+dM2keU8vqah9IqqeHaZ2XnjaJgycCKnrWMmkLcpy91YyhZVKYiWSSL1IdqwAz/z5+FatRA0NnIxj2VherMWzA4Ig4AowJ2yLtQrf8AzCkScnoecgtGwDzd6eDNSQDC8mlpbEjnaQTfdbgVwIv4dwRRVltXWEq2twe8Yvi/lkSSSyXHfd/eze3cWePd0oiqC7+6NFxw4VWU1NI1vH5s4dKtxibNgw3HWxYEEFd9/9eubOLWfOnHLq6kawvEvJ0qAHDsfgb0dheSW8ooh1zKXYwqpQuO3sgvOLZGE2Fgi3iNfuQzkSN10AN1902teymyroel/eopbVOoe1k/Lk2kn58u2kxn5+yVoW+1IauxLpfPanX1FYEfKzJOCd9F6bpyOapnHTTTfxxS9+EUVR2LRpEytXrkQIMWVFG8ww4daWa7Eye4Qr/BNhZU2MjhR6eyrf2UDxqngXR1CD41sKwbIsjhw5gmVZVFdXM3v2COn5p0CsO03Lvj5M3cLlUZm1tIJQxdQ7+Y8FKSUylcJMJLEScax4fJBAk9njt1YSLhUlGBx0czc0oOb6zKX0FEfjR2mKN9Gn9eVf51W9ebFW5asauyk9egyOPQmpHrvUS0Yl6m4k3qlgthzOD1PdbspqaimrriVcVY0yiVfjum6yd283O3d2snJlDatW1Q4bEwi4+dWvdpAp6LXb1ZWiunq4q3hoIkBTU3TEfb/1rWs477w5zJ1bzty55axdW1d0nM/n4g1vGEVdpZ/ugA8/NPD81UuKCzewa4ztLCjm/Vx3ceE2JwyPXQ71ITjR8WIck5ocToxpptG0tlyT9nYsc7Cb3OUuzwm1BjyeGhTl5I//SdNkdyLD3lQmX+A24nKxMuRjgd/rxKxNEo899hibN29m586dAFx77bXMmTNnkmc1OmaUcIumbetJxUkU1TVjWTJ7e5C5dipq0I27IYha4ZsQa1RXVxfpdBqv18vcuXNLum3LkrQfitHTYrtuQhU+Zi2N4CrmGpqCDIizBFY8jpVIYMYTWMkEVuL4HSuEqgwWZoEASihk3weDKL7iLvXudDc7unfQnhpohO1W3MwKzWJOeA61gdqT61yQ7ILmJyHear83d4DDvT7iuhs0EzDxBAKU19RRVlNLoPwEiQwTxOc//09uuukRtFw85Gc+87yiwk1RBEuXVvHMMwOf2+7dXVxwwfDf9MKFFWza1JgXY2vWDN9eP2972yhLTXSlYUfXwO1/LoLyIhcny4d0KXiuc/iYflZXw98O2wJuVTWsHaEGmUuBRWOwuDpMGJalk812ktFa0bR2DH3wRYKi+vMWNTtO7dTLPfTqBjsSaY6ks1g5V2udx82qkJ9ZvtM3hniySSaTfOpTn+LrX/86UkqWLl3KHXfcwYUXXjjZUxs1M0a4GaZFUjNRBITHmAFpRjUye3uRlkQt9+KZFUINT9wfS9d1juVKTcyePbukzd61lE7z7l4ySR0hBLXzy6iaFRw3MWDGYmQPHkSeoBDkCZESK5XGSsQxEwk75mwEFJ8XJRxGCYZQQkHUUCgv1ITPN6b3GtWiPNf1HC3JFgBcwkV9sJ65ZXOpD9SjKicpdjNROLYVeg/bz1UPsn4NRzsN4kYHqsdNzbwFkxKvpusmO3Z0snt3F28eobhqZaU/L9oAdu4cWegsX16dF26BgHvEbM2FCyvYsuVdpzDzIrz2t7CrZ+D5W1cWz65cOUS4HYxCSrfjzobyrjPgvesct+Y0QkoLXe+xLWqZNrJ6NxR0DRDChddbW1CmI1KyfbdqWXYkMrRqtrVfIJjv87Ii5Ke6RJUOHE6ea6+9lp/85CeoqsoNN9zAZz7zGXwjXMBPVWbMryiWc82EfWOrL2b0ZdD29SEtaddmW1D6khvHo7u7m+bmZkzTpKysjIqKU7til1KSSeok+7IkoxrJPg1pSTw+F7OXV+AfR0GabT5G6vHHkUaRljiniOL32ZayUAg1HB54HAodt/jtaElkE+zo3kFTvAmwBduSiiUsrViKRz2FzyybspMOuvbYMW2KCrUroX4NLQcO0tfRgqKqLFi/kUDZxMZUmKbFhRf+iK1bW/Oi7OUvX0x5+fCD2NB4suMJt+uvP4d3vnM9y5dXM2tW2anX+0sb8EynbRXb0QV1Qfjvs4uPXVU9WLjt6Cou3EIe25Lmdw1Y0ka6OHDcmtMCw4jnhZqWbUdahfGrAo+nKt+lwOOpPqk4tZGwpORIOsvOZJoePdcCUQiWBHysCPoIuZzf0FTh05/+NPv27eOb3/wmZ5555mRP56SYOcIt5yYt9x//JC6lzCcImX0a2n67fZS7LoBn3sSKtmPHjtHaarvMhBAn5V+XUqKlDJJ9GsmoRiqaxTQGW7vKa/w0LI6gusYn+FVKSWbnTjLP7QDAPXsWrppTb2mjBAJ561kpxFkx0kaaXd27OBQ9hIWFgsKiyCKWVy7H5zqFqzAja5f2aN9hl/YQAqqXQuM68ARpP7if7qNHQAjmrV0/LqKt35LmcimsXj3cDamqCrGYNsiStnVrKy94wYJhY9eurUNVBTU1QdasqWX9+pETZ84+u8TxmU93wKW/GXi+tOL4wu2egj6cO7qKjwP4x5scK9o0xjS1gnZSbcPaSamuEL5chwK7nVTp43l1S7I/lWFXMkMyV0vRpygsC/pYGvDhO82y9Kciv/vd77j77rv52c9+hhCChQsX8uijj072tE6JGSPc0rr9p/EfJ27LSulk9vZiFZyoANwNQbxzR1m6YYxomkZvb++w5el0mu7uboQQ1NTUUFFRMeo2GpZpkejViHdniPdmhnU5cHtVguVeghEvgfLxLZ4rdZ3kli3ozbar13/GGnwrVozb/kpF1syyu2c3B/oOYEjDdmeUzWdl1cpTa+aeTUHHTujcY7eZAojMhVlngt+2pnY3N9F+cD8Ac1evJVxZ2pIv//jHIT72sb/xzDPtaJrJW9+6hrvuem3RsRs2NA7K1nzqqeLCze9309b2kaJJBidNxrCF1bYO2NYO150JK6qGjxvagHx/n22FK5blva7W7oO5qsp+3TkjFMAFR7RNM6Q00bKdtkVNa0fXewatVxRPQd/POlyu8Qs5SJkWe5IZ9iYz+cbtYVVlZcjPooAX1fltTTrt7e184AMf4O677wbgda97Ha99bfHj4HRjxgi3VNYWY4ERhJvUzbxoE0KAAITA3RDEM2t8/uCaprFr1y6MEVyH/ep/NO5RPWuS6MkQ687k3Z/9uDwqwYiXYLmHYMQ7YV0OzESC5L8exYxGEW43wXPOxj2FqksXQ7d09vXuY2/v3nxng1mhWayqWnVqfULTvXbh3J6DA7E04XqYtcHuVJCjr72NY7vtLKZZy1cRqTu5ki+9vWnCYS+uIlZUt1vhiSda8s+feqpl2Jh+Nm5s4H//92kaG8Ns2NDAggWREceWVLQBvPev8McDBZOpLy7cwh6YX2aX7gDbpbm7G9YXySy9YLZtSXOY9gy0k2rP1VPrHNROCqHgzbeTqj9hO6lSENUNdiYzHExp+YSDGreblSEfc3yeKZFIdLojpeRnP/sZH/zgB+np6SEYDPKlL32JV7/61ZM9tZIxY4Rbpt/iViQexcqaaDnRpobc+JZXIdQSt46yLGKx2CCR1t7ejmEYeL3eouKsvLyccPj4xRv1rMmxPb0kC+tIAf6wh3CVj3ClD984lyopOq/2dpL//g8ym0UtCxM8//x8CY2piGmZHIweZFfPLjTT/izrAnWsrl5Npa/y5Dcca7VdotFm+7kQUDEf6lZDaLC7ON7dRdNzT9v7XrSEqtljc43fe+9O/vznA/z730fZsaOTJ598V9FaZuvXNwxqYL53bzexmEZZ2XBX0eWXn8Eb3rCK+voSXrxICU1x24rWloT3rCs+bl3tYOG2tR2uHqErwUsXQEdqIB5tiZO9ORMxjGS+8K2mtWNZg497bndFvkOBXaZjYk5hHZrOjkSaZm2gvNAcn4dVIT81nok//joUp6mpife85z386U9/AuDiiy/m9ttvZ/78+ZM7sRIzY4Rbv8VtqKvUTGTJ7OtDZk0Un4pvaUXJRZthGBw8eJBYbHgBUb/fz7Jly3C5xv5RaymdI891o2smQhEEI17KqnyEKn24J7GUR2bPXtJPbwcJ7sYGgmefPWKz9cnGkhZHYkfY2b0z3+Gg0lfJmuo11AZGLj9x/I1a0HfYtrClcvW9FBdULYa6VeAbLmBT0T4OP7MVpKRqzjzqFiwa827vuutZfvvb3fnn//730aLCLRTysHx5Nbt2deUtaX19maLCrbLy1MseDCKehU3/a/fMBHArthjzFvm9njnEYra9Y+TtfmH6pOo7jB7LyubaSdlizTAGd7pQ1cCQdlITl/0npaQp15Kqqz/hAMHCgN2SqsxJOJhy3HXXXfzpT3+ioqKCr33ta1x55ZUz0go6Y4Rbf4ybL2dxyzbH0dtSdlkKCWrYg29JBcJd2mBRTdPYv38/6XQal8s1qNqyqqrU1dWdlGhLxbI07ezG1C38YQ9zV1XimuTsNmmapJ58imyuJZdv5Qp8q1dPyT+GlJLmRDM7unfkuxyUe8pZXb2axtBJunNNA7r22jFsuU4HuHxQuwJqloO7+Eklk0xwaPtTSNMiUt9I49Lh/SQzGYPf/34PyWSWq69eX3Q7558/Z5Bwe/TRo7z//cWD9H/+89dRXx8qrSUNIJG1kwUqfLCySGxe2AN+N5ATbrpldxoo5tZcWwNzw7CuDtbXDhdyDjMOu51UN1qunlo2282gdlLCXVCmox63e+Kt+IYlOZC2OxzEcwkHHmEnHCwL+vA7CQdTikwmky/n8ZGPfISenh4+/OEPj0vnoanCjBFumSExbnpHKl+Y1V2byxgdh0K6hw4dIp1O4/P5WLJkCV7vqWcuxXsyHN3Vg7QkoUofc5ZXoEzywcJKpUj++98Y3T0Il0rgrLPwTNEq023JNp7reo5ezU4KCblDrKpaxZzwnJMTmdkUdO6yEw6MnOvGG7bdoVWLQR35b5TNpDm09QlMXSdcXcOclYOFbmdnkk996h/86lc7iEY16uqCXHHF2qKxa+edN/B5CwGxmDZsTD/r1pX4oHX/QfjiY7Cnxz7Pvn013PL8EXZeC80FlpOt7cWFW5kXnrqqtPN0mHLoerTA/dmJlEPLdNjtpLy+Bjwn2U6qFGRMiz2pDHuSGbRcHcqQqrIi5GOx34drhrYFnK4YhsGtt97Kt7/9bbZu3UpNTQ1ut5tbbrllsqc27swI4SalfZXkUgVuVUHqFlK3EKogsL4WMU6ixzAMEokEQgiWL19+XMtaNmPQ2RTHyB6/MK2UMh/PFqkN0LgkMul9RI2uLpL//jdWOoMSCBC84Hxcp1hvrtSk9BSd6U4ORQ/RmbazJH2qj5VVK1lQvuDEXQ6MrG1F02K5WxwyuXt9oIk8oVpbsEXmnjAr0chmObTtSXRNIxCpYN6adYghxZVDIQ+//OWOvAhrb0/y178e4OUvXzJse2ee2cBnPvM8zjtvDuecM7uo6/OUMC0Y6b/iVmB3QRbftvbi48C2nv2jCdbV2IJt3Um6pB2mJYaRJJvtzMepmWZq0HqXqwyvrx6vpx6vtwZFmdwwi7hhsjOR5kBaw8wFhla5XawK+Znj8zgtqaYg27dvZ/PmzWzduhWA3/zmN7z73e+e5FlNHDNCuFm5P1t/YoLRa7tplKB73EQb2K0zAAKBwIiiTUpJT0uS9sOxQZmgJ6J6dpi6BZMb7G/29ZE9dozMzp1gSVy1NQTPOw+lBFbFUyWRTdCZ7qQr3UVnqpOkMVDDyaN4WF65nEWRRbgKg5cNLSfIogUiLSfQjMzIOxMKlM+2BVt4dO480zA49PRTaMkkvlCIeWesL9pn1O9384Y3rOTOO7fll/3kJ08XFW5er4vPfvb5o9r/qOlOw9+PwF+PwD+b4D9vg6oicW9DLWY7u+1yHsUymN+1Fq5dP7IIdJgRWJaObkQx9D50vQ/diKLrvUMK34Ki+Ox2Uj67ppqqljg7+STpzOrsSmRoymSROXftLK+HlSE/9V4n4WAqkslk+PznP8/NN9+MaZrMmzeP22+/nZe+9KWTPbUJZYYIN/s+L9w67Cs8d834HCAs06KzKUFLayu9PSmI+Dm6u6fo2GzaIJOwD2RlNX4itSeek9uj4gtN/IHDSqfR29ow2jsw2tuwMgOuOO+SJfjXrR1mMZooYtkYXakuOtOddKY7SRuDm0K7FTfV/mpqA7UsKFuAW819fsku6DsCfU2Q7ht5B4oK3jLbBeotsxMM+h97gmOq+WVZJkee3Uait5e9++P8/pEoyfRv+L//e3PR8VdeuZY779xGTU2Ayy9fw1VXrRv1vk6ZN/weni3ogvCPJnjDsuHjqv12E/WjcTujc32tnYhQTLgVq6/mMG2RUmIYcQwjJ9D0KLrRh2kkio5XFA9udyVeXwM+bx0u19Totwv2ezmm6exMpGnP2sdlBcECv5dVIT8Rt/Pbnaps2bKFq666it27dyOE4P3vfz//8z//Qyg0sS0CpwIz4leat7h5VMxEFjOpI1wKamXpM5CklDTv7iXek6G7q4+MlsX0KMQ60yO+xuVRaVhcTlkxS8YkIg0Do6MDvb0do70dMzo4K1bx+3DV1eOZM3tC67NJKYllY3SmOvNWtYw52CLmVb1U+6qpCdRQ7a8m4s2dHCwLEm22UOtrgmxBNXXFVSDIynP3YXuZO1CSgqxSSo4+9yxtR1q58bOP8OgOP5qhIgQcOxZj1qzhVtQLLpjLAw9czgtfuAD3eCSgWBJGcre/eN5g4faXw8WFG8Bdr4RZITs2zWFGYpoZdKMPQ4/mRFofhhEdXD+tH6HgdpXjcpfjdkVwu8txuytK0qC91JhSciitsSORJmbY78UtBEsDPpaFfASLWMMdphbZbJbdu3ezfPly7rjjDs4///zJntKkMSOEW3+9Ko9LweiwBZSrxn/KsWFSSrqaE+iZgYOWrpkkejMoqsBfKfDKAAuXNOAZoRyGEHYZj/FqNzUWpJSYvb0YbW3obe0Y3V2D+jMKl4qrpgZXXT3u+jrU8tK3YRqKYRkk9SRpI523qnVluvK11vrxqT6q/dXU+GuoCdRQ5iloT2bqdvP2via7npo5UGsJT9COR4vMhVA9jLPF8NienUQ72iiLBEi756IZtiVWSvjZz57hv//7gmGvURTBS1+6uMQTidvuz78csjsNPP624sL04vnwtScHnj/dYU+22NhixXEdpiVSmuh6FMMYEGi63odlFQ8ZUNUgbnc5LncEt6sctzuCy1U2aYkEoyVrWexNZtidzJDOJRwEFIUVIT+LA148k+RBcBgdO3fuZOXKlQBccMEF/P73v+clL3nJtGsKX2pmhHDrTydXpcTotoVbKdykqViWjsOxYcuFENQsDJBsVvF4/NTMipzyvsYTo7cXbdcu9PYOZDY7aJ1aWYG7vh5XbR2u6ipEia88dVMnZaRI6kmSejL/OK2nSRrJYQKtH7/Lb4s0fw3VgWrKPEMsVXoa+o7aYi3eAlaBRcAfyYm1eRAsbTupQqSUdHamqK21W2S1HdhHT/NRhKIwf+2ZvPmKMP958oH8+AcfPFxUuJUc3YTzfw7JglijZzphbZEkgfW1cMEs2NQAL5lnl+SYIm4th9JgGImcSOsrsKLFKSzD0Y8Q7iECrQK3u2xc+nyOJ0nDZFcyw75UBiN3ZR9x2QkH8/1OwsFUp7+kx49//GP+9re/8aIXvQiASy+9dJJnNjWYEcJNAt6UQWBvFBnxo5Z5UEoQZ9NvafOHPYNi0wLlHto67d6cZVO4WwDYZTwSD/0zL9iUYBB3fR2uOvumlKBwrmZqdKW7SGQTpI30IIGmDwlUHoqCQsAdIOgOEnAFqPJXUeOvIeQZIW4h3QfHnrIFWyGhupxYmwO+8bUUxuMad931LN/73pMkEln27n0/Pc1H6Dh0AITdfzRUUcmb37yaz372IV796uVcddVaLrxwXmknMpIL1K3C8+bYJTz6+duR4sJNVeC3ryntvBwmBcvK5uPPbFdnL7oRHZYsYCNwucpsy1ne1RlBVYNTJh7tZOjRDXYm0hxODyQc1HvcrAr5afRNzSLhDoO59957ufbaa2lvb8fr9XLw4MG8cHOwmRHCDQnlXRmUMtt86q47hSbhBei5ZvSBcg+VjQPbzGQy+QbxU7nIn7Qsko89hsxmcdfX4d+wAbUEgZy6pdOV6qI91U5HqoNoNjriWJdw4Xf7CbqCtjhzBwi6gvYydxCf6hvdiSKbgpZt0L0v58pToGzWgFhzT0xcTSZjsGDB1+nuHohpvP83jzM30gfA7BWrKa+1MzBra4O0t3+kdHFrUtpuz78etmPRvCr86lXFx75k/mDhdryuBA7TCiktDCOey+Tsy2V1RjHNZNHxiuLD7R6IQXO5ynG5yiasXdRE0JLJsjOZoTXXkkrkEg5WBP1UeWbO+5zJtLW1cd1113HvvfcCtmv0jjvuYNmyEWJuT2Nmxi/asFBMiXAr+FdXo5aod6eeK+o7tL1Ua2srUkqqq6untK89s2MnRmcXit9H4JxzTrqMh2mZ9GR66Eh10J5qpzfTi8VAPTpVqFT5qij3luN3+QcEmjuIVz1FF4uRhfZnoX0nWIbtxqtZBg3rwDPxZQV8Phcve9li7rrrWQDK/Rr3/+rvvOfdG6hfvJTKxtmDxpc02eBIDM67a+C5S7EzO8NFLAkvngdn5dyfF8934tOmKaaZHlRqw9Cj6EYU5PB6kEKouFzlA65OdwS3KzKhbaImEktKjqSz7Eik6c31iFZzCQcrgj6CTkuqacMjjzzCZZddRm9vL6FQiJtvvpn3vOc9KE4MYlFmhnAzc7Eas0IlE20wYHFzF/RZzGQy9PT0THlrm97ebtdfE4xZtEkp6dP68kKtO92NIY38eoGg0ldJXaCO2kAtVb4qVKXEB0nLtDsVtD49UGOtYh40nmnHsI0jfX0ZHnnkCJdeWvxK793v3sBddz1LyKuzrCEOMkDV3PnUzl84rvNifjksisCBPvu5YcFDTXBpkcSG+iDc97rxnY9DybAsYyBRoCCrc2iT9X7sZIFI/uZyRXC5QlM+WaAU6JZkfyrDrmSGZK4llV9RWB70sSTow+uc7Kcdq1evxuv18rKXvYzbb7+duXPnTvaUpjQzQrj1h9gqJW683h/j5vYNbDcajSKlpLKycspa26xMhtRjjwHgW7kKd+3xK9f3Z3Z2pW33Z2eqk6w1OImhzFOWF2o1/pqBOmmlRkroOWi7Rfv7gYbqYPZGu2vBOPLjH2/nnnt28pe/HEDXLQ4d+i/mz48MG3fBBXN5+cWzOW9FmgvO38CiVYuZVaT/6JiREv59zP5BXzC7+JiL58N3tw8839ZRXLg5TEmklJimnSzQH4Nm5JMFhiMUdz7+zI5Hi+B2lU16t4HJIGVa7E6m2ZvMoOcSDspcKiuDfhYGvKjTODbvdMOyLH7yk5/wlre8BZ/PR0VFBVu2bGH27NnTOsZyopgRwi2fVVrC79vQTbIZ28o01OIGEAyWJo6u1EgpST3+OFZGw1Vbg2/VSgzLIGWkSOl2wkBKT5HQE/llQ2ukAQRcAWoDtdQF6qgJ1OB3TUAMWawFmp+EVLf93B+BWRvsOLYJ4Oc/f5a//nUgLuyee3bykY+cN2ycnklz66cWYmgaZTW1zF6+6tR2nMjCL3bBj5+Dvb1wRg387Y3FsztftgB2ddsC7iXzbSucw5TEsrQBgZbP6owiC6zXeYSCyxUeLNJc5bhcU/M4M5H06QY7ExkOpTWs3LG+1uNmZcjPbK/bOdFPM3bt2sU73/lO/v3vf3Pw4EE+//nPAzBniva+norMDOGWM7mV8oqruzmJtCTBiBdXQZxSOm0HpU8la5slLVuI6SkSO54ls/85NNUiOitM8uAfiwqzQvozOyPeSN6qNmJWZ8knb9o12Lr2QbzVXuYOQON6u4F7Cd0eum6yZ083q1cXt9xdeunSQcLt7rt3DBNuelbj4LYnMTSNYEUFc1eXoJtEdwY++ciA6fiZTtuSdmaR9lrnzbJvDlMGO1kglhdo/a7OoT06+1FUf0GpjcKaaE5MViHtms6ORJpj2oD1f67Py8qQjxqP05JquqHrOrfccgv/7//9P7LZLPX19WzYsGGypzUtmRHCLe8qLVEzdmlJelrtdi6ecpPDhw/n16VS9sHY75/46uCGZZDIJohlY4NuiWwCicTVGye8ZQ9ISGxYgk4CzOElN/of9z/3u/wTf9Wa7LYzRLsPDBTMVT1QvwZqV4Jamp+mYVj85je7+N3v9nD//fvQdZOuro/iK9Kq6dJLl/GBD9h115YsqeTiixdhWTL/uzINncPbniKbSuELh5m/9syi/UfHzLwyeNE8u2RHPz96trhwc5hUTDM1qGCtbkQxjNgIyQIuO1Eg31XAjkVTTzVhZwYjpaQpYyccdOu5hAMEiwJeVob8hJ2Eg2nJ1q1b2bx5M9u3bwdg8+bN3HLLLVRUVEzuxKYpM0K49aOWSLilEzqWKVE90NrZjJSDC1W63e4ROyWUAt3SiWfjxLSYfd8v0PTivQEBQpaHil1deH1VeJctJbhm/eQKs2IYmh2/1rUXUgW9XQNVUL0UKheCq7Sfq6IIPvjBB2htHfjsHnzwUNEm7vPnR/jOd17B+efPZc2a2kGfmWWZHH56G+l4DI/fz4L1G1FdY7jqPxSF3d3w8hESGK5ebQs3lwIvXwBvXjH6bTuUHMvSB3cVGKGBej+qK2Rb0HJdBeyaaKGp8b+bBhiWZH86w+5Ehngu4cCrKCwL+lgW8OFTnYSD6cr27ds566yzME2TBQsW8P3vf58Xv/jFkz2tac2MEm6lIh23LUBZkkgpCYVCVFUNlFMYr6a2Ukp29exiV/euQeU2+hEIQp4QZZ4yyj3lhFxBwlkVf9rAOHgYwz8f1+xKQhe8cNKawQ9DStsF2rXXLprb3+HA5YXKRVC9BAKV47Z7RRG86lXLuP32p/LLfve7PUWFG8B737tp2DIpJU3PPUOytweX18uC9Ztwe0ZhNTEtu97aj56DB5vssh3PXg3FMp9fNA8+ex68binUn35NkyeLk2ugXjGoP6fLFZlRNdEmkoxpsTuZYW8qg5ZrSRVWVVaE/Czye3GV6GLcYfJYu3YtL3/5y1myZAmf//znp2x8+HTCOdoUIRXLIqUkmY3i9gsaGhooH+e+nWkjzZbWLXSk7UKp5Z5yyrxllHnKCLlDhA0XgZSFjMcx26KYfc2Y8RhYkv4INuF2Ezjn3MkTbVLamaDpXshEIdMH8XbIFpwEy2ZB9WK7HVUJSojousnvf7+HXbu6+NSnLio65rLLBoRbdXWAsjE0Sde1DC17dhPraEdxuViwfiPewCjrxxkSPvwgdOaK9caz8Ju9cEWRZAZVgWvPHPW8HMaOaWroRu9JNlDvt6JNvQbq05G4YbIzkeZASsPMBbtUu12sDPmZ6/M4lsppTDwe55Of/CTve9/7WL58OUII/u///g+1xO0UT2cc4VaEVCxLKpNAhCy83sC4t7VqS7axpW0LmqnhU31sqt9EdUpFO3QIK9aCGY0iDZNioc5KMIhaXo5aXoZn3jzU0ARczVgWaLEBcZbus+8z0cE9Q/vxhGyxVrUEvKWxJmUyBjfd9DA/+MFW2tuTqKrgHe9YT2NjeNjYF7xgAR/96Hm88pVLOe+8OaijcLuYhkHnkUN0Nh1CmhZCVViwbgP+0PDtj4hXhbeuhK8PWPv44bPwtpVOP9BxxrJ0MpkWdL3nJBqoV+ByhU+LmmgTTWdWZ2ciQ1NmoD7dbK+HlSE/dV4n4WC686c//Yl3v/vdHD16lGeffZYHH3wQwBFtJWZmCbdTNKtbliQVzZJOpemJd1BdGaC2tnbcrv4safFc13Ps6d0DQF2gjk31m1Dbeoj/5xG7F2UOxe9DLS9HKStDLY+glpehlpUh3ON8sLMs24KW7IRkhx2blileuR0ATxB8EbuUhy8C/gq70XuJP0OPR+Xuu3fS3m63+TFNyQ9/uK2o1c3nc3HzzS8Z1XalZdHT0kz7wf0Yuf6uZTW11C9eii84RHRaEra227FpN2yyrWZDuXIVfOMpO4PmzDp4+2r7saPbSo6UFprWRip1mEzm2LCyG4MaqOe6Crjd5adlTbSJREpJs6azM5GmI2vHCCoIFga8rAz6KHfPrNPQ6Uh3dzcf+tCH+OlPfwrAhg0b+PrXvz7Js5q5zIx/TE7fKKcYwNr0XDd93XFauppw+exYturq6hJMcDiJbILH2x6nJ9ODQLC6ejXLKpahNzeTfOwxsCTehQtwz5tnC7aTbFc1ZvSMLdASnTmx1mm3mhqKJ1QgznL3vvKSJxeMhKIIrr12E//1Xw/kl/3gB1v5xCcuPOns4mhHG63795LNZQ4HyiM0LFlGMFIk8+kL/4Ff7Ya2XH/I582BcxuHj5tbBl+4EM5uKN7k3eGU0bRO0ukjpNNNgzoNeDzVeH0NuF0VuVg0J3ZwIjGl5GBKY2cyTczIFTMXgqVBH8uDfgJOwsG0R0rJPffcw3XXXUdHRwc+n4/Pfe5zfOhDH8LlmhnyYioyIz7Z/qxPl+vkDwSJ3gzJqEZnXyuKS1LbWM2SJUvGxcR7NH6Up9qfQrd0Aq4AZzecTbW/mmxTky3aJPiWL8O/dm3J910UPWO3looeHehWUIg3DMEau3NBoNoWauPVOSGHZUkefbSJe+/dxZe//BI8RbpiXHXVWj7xib+jKILLL1/DNddsOCnRluzrpWXfbtLRKACeQICGxUsprz1OS7Nj8QHRBnD/geLCDeCaCfoeTyN0PUo6fYRU6vCg5uouVxmBwHz8/rm4XGNwazuUDM2y2JvMsDuZIZNLOAiqKiuCPhYHfLidhIMZQ2trK1deeSWZTIbnPe95/OAHP2DJkuKJXw6lY0YIt36UUxBunU1xND2DOyypripnzRkrSi7aDMvg6c6nORi1i7zOCs5iY/1GPKqH7OHDJLdssUXbypX416wu6b6LIiV07oZjWwdqqSku27UZrIVQjS3Y3BMbkP2lL/2L7373SZqabCH14hcv5JWvXDpsXHm5j/vvv5z16+sJh8dukcwkE7Tt30us004IcXk81C1cTGXjbERch38cgRfOK/7iVyyEe/YOPL/vIHzuAid2bRwxzRSp1BHS6SPoem9+uaoG8Pvn4vfPw+MZvwxlh+OTMEx2JTPsS2UwcxfTFS4Xq0J+5vk9KM5/Y0bQbygRQtDY2MhXvvIVVFXlXe96l9MUfoKYGcIt5yo9WYtbNm2QimVJpKMEaz1UVVWVXLRFtSiPtz5ONBtFFSpra9ayKLIIAO3gIVJPPAGAb/Uq/KtOsYXSaEh0QNN/Buqplc2yuxUEqkrareBkOHy4Ly/aAO6669miwg3gootGEFbHQdcytB/cT09LM0gQqkLtvIVUz5mH+vM9cN8f4V/NYErY8Q6oLiJcXzgPfKr9Wb14HrxyoR3zVsq+aw5YlkY63UwqfZis1pFfLhQ3ft9cAoF5eDzjF4fqcGK6swa7kmkOp7PI3MG4wethVchHg9eJH5xJHDx4kGuuuYa3vvWtvOMd7wDgfe973yTP6vRjZgi3HKrrJGObutJYloUhUgjhK3lcW0uihcdbH8eQBmF3mHMaziHiiwCgHThA6kk769B/xhp8K8a58KqetvuBdu+3n3tCMOcsqBi7ADoVmpqizJ1bvMTK5ZevGVJ3bTfxuHZSVrVChmaKIqBy9hzqFizC7c21MPvRc7Cja+BFDxyys0CHEnTD718LK6qgSBcGh5PHsgw0rYVU6ggZrSWfCCOEitfXSMA/H5+vwWkRNckcy2TZmUjTVpBwMN9vdziodBIOZhSmafLNb36TT37yk6RSKY4cOcKVV17pxLFNEjPiU5eAFAL1JC1Fsc40qUwcT1AlGAwSGG2drlGQNtJsaduCIQ3ml81nXe063IodH5bZu5f0tu0A+NetxbdsWcn2OwzLst2iLdtst6hQ7PZS9WeUrL3UiThwoIdf/3ond9+9g23b2ti37/0sXjzctXX++XOZM6eMrq4Ul122nLe+dXXRFlWjRVoW3ceO0n5wP6Zun2RGzBR95cLBwu2+A8WFG8B6pyVVqZBSomXbSacOk840D+pQ4PXW4/fPw++f7WSATjKGJTmU1tidzNBn2ElLLiFYGvCxPOgj6LSkmnHs3LmTzZs389hjjwHw5je/ma9//euOaJtEZsgnL5EKJ1VlW0sbZJI6iUyMskp3ya1t2zu2o1s69YF6NtUPVOXP7NlDevvTAPjXr8O3tLgrsCTE2223aDoXF1Q+x7ay+ca3Pt1Q3vnOP/DQQ4fzz3/96x18/OMXDhunKILf/e7NLF5cecpWtr72Ntr27yGbtovgBmIKDU0+gh8codjtKxbCzVvsx4sisM7JBB1PstluO8kg3YRlpvPL3e7KfJKBU/R28unVDfYmMxxKa+i5GCe/orA86GNp0IfHiW2acei6zpe+9CW+8IUvkM1maWxs5Lvf/S6vetWrJntqpz0zQ7jl6mKdTEZhoieDbmSRahZV9ZS06e2xxDGaE824hIsNdRvyyzO7dpF+5lkAAhvOxLt4ccn2OQg9A81b7EbuYGeHzjkLInPHZ39Ab2+aioriJ9o3vGHlEOG2s6hwA1i/vuGU5qGlkjTteMbOFJUST7NGwwNJyv+RE68vXw3LigSyr6iCmy60y3ssrXCSDcYBw4iTSh0mnT6CYQxkMauuEAH/PPz++bjdE3tR4TAcw5IcyWjsS2p06gMW0Bq3myVBL/P9XlTn/zFjkVJy9913k81mueaaa/jyl7887h2EHEbHzBBucNIZS8moRlbX8ARchMPhkpl/dVNna/tWAFZXrybgDmBGo2gHD6Lt3QdAYNNGvAtHaDp+qvQehiP/ASNjt5aqWz1ubtGWlji//OVz3H33Dnbt6qK9/SNFXZuvfe0KrrvufqS09VBZmZdUSicQKG1pESklTc8+TToeszNFFyyi8pbHENsGMhH51lb4ZpFGx0I45TvGAdNMk043kUofRs/25Jcrig9/YC4B/zw8nvGpmegwNqK6wd6UxoFUJm9dcwvBQr+XJUEfFU782owllUqRzWaJRCJ4PB5+/OMfE4vFeMELXjDZU3MoYMb8A09GuEkpSfZlMU0Db5kLdwm7EDzd+TRaJkFt0kVjtI9o2x+xUgNNqwJnbcK7YEHJ9pdHz8DRx6DnkP083ADzzhs3t6ium6xZ8116egbcXH/+834uu2z5sLH19SE++MFzWLy4kte+dgX149RMvaelmXQ8htvrZem5F6C63PB+Hd4xUKyXe/fCJ86BBqco63hhWVkymWOkUofRtHb607+FcOPzzyLgn4/XW+e0lpoCmFLSlM6yN5XJdzcAu3/okqCP+T6n4ftM55///CfvfOc7OeeccwZ1QHCYeswg4Tb212SSOpZpgctCdSklEW5SSlp3PEHX03+hojfJkorlZF22iBJeD+76BjwLFuCuG4fYqUFWNhfM3gg1y8fV3ed2q7z+9Sv4/ve35pfdfffOosIN4Ktffem4zYWohuGFtv12fbWGJctt0QZ27NrCcjgYhU318P4zoW4C+rqeZkhpkcm0kk73t53K9a4VCj5vI37/PHy+WSjKjDn0TGtihsm+ZIYDaQ0tVyzXJQQL/F6WBHxUeZzvaaYTi8X47//+b773ve8B4PV6icfjhMNOAeupyoz5V56MxU3P2CcVNZeodqrCTeo6scf+w4Fn/obL1GgINxKun42rvh53YyNqJDI+9abG2cpmmhbPPNM+YtzZ1VevHyTcurtTSCknrrZWSwJu3w4/2UH7pxZgzrcIVlQSqS+Yr6rAFy+CgBvOGaHDgcNJIaUkm+0klT5CJt2EZWXz6zyeGgKB+fh8c1DVCWrb5nBcLClpymTZm8zQXmBdq3S7WBLwscDvdbobnCbcd999vOc976G5uRm3280nP/lJPv7xj+PxONnbU5mZI9xO4UBjGAYeOKUfq5lIkPzXv2g6tpOMYqCuXcPSTa/H1V8fbLwYRytbe3uCn/70Gb773SdpaYnT1PRBamqGW6nOPnsWr3/9Ss49dzZveMNK5syZwADWu3bCDQ+BbpF2Zen+7Rb40EYalxWphzdSFwSHk0LX+3JJBk2D2065I7kkg3m4XI5Vc6oQN0z2pTLsTw1Y19QC61q1Y107bbAsi6uuuoqf/exnAJx11lnceeedrF49AR17HE6ZGfNPFadQsd4wdTyoJ21x09vaSP7nMZLJXlpFlMQ5K3ne8pePr2ibgFi2yy77JY8/fiz//Hvfe5Ibb3zesHFCCH796zeUbL9jYlM96PZJ6FikD5o1qnr8+EOOmX88MIxkrnzHEQy9L79cVYP4A/MI+OfhdkcmbX4Og7Gk5Ggmy76URqs2YAmNuFwsDfpY4Pc4pTxOQxRFIRQK4ff7uemmm/jABz4wLn25HcaHmSPcTqFPqWEYcJLCLbNnD+mnn8ayLA7448TWL2dxzQqq/FUnPZ8T0n0Ajm4Z91i2K69cO0i4fetbT3DDDeefUjHck8a0bHfnUJZWwssW0PvP50h5NNSgj3rVqb1WSkxTI51pIp06QjbbmV+uKB58/rkE/PPxeKqdtlNTiKRh5jND0/3WNQTz/B6WBn3UeEqbye0w9Tl27Bjt7e2ceaZdw/Lmm2/mIx/5CIsWLZrkmTmMlZkj3NxjF26mYSGlxLLsWLexlAKRhkHqyafIHjlCVItyoE7SM7+eoDvE6upxMjdrCbuQbrTZfl7WCHPPPWkrWzqt8+tf7+SKK84oetJ961vX8OEP/4VMxsDjUXnlK5eQSGQnTrhpJtx/wG5DtbIKvjTc2gdgvvcMWo9thRcupeHyF6MucFyip4plGWQyx+wkA62toO2UC5+vEX++7ZRjrZkqWFJyTNPZm8zQUmBdK3OpLA34WBjw4nWsa6cdUkruuOMOPvKRj1BTU8MzzzxDIBCgrKyMsjKnXuJ0ZOYIt5OwuGkpA9MycHlsa5syyoOalcmQeOQRkp2tNKdaOLa0Ar2+kjJPGWfVn4Wr1BlzUkLHLjj2FFgGuLwwexNULzmpzSWTWW6//Sm+/OVHaW9PMmtWmBe9aHg9uUjEx4c/fC4VFT6uuGIttbUTGK+0swte9zvoypUZea4LPnUuhIbHIXbUpDA+vhF/JELF/PErLjzTkdJC09pySQbNSGnk1gi83vpcksFsFMWx1kwlkqbJ/pTG/mSGVIF1ba7fw9KAj1qv832druzfv59rrrmGBx98EIDnPe95pFKpkrZ1dJh4TmvhlknqmKaByzu2UiCxx/9Dc9NztFq9xNcvQomUs7ZqJYsji1FO1gKhxSF6rMgKabtGkzkXVcV8mHM2eE7+j/fWt/6G3/9+T/75t7/9RFHhBvCFL7zwpPdzSiyugEIjYDwLv90HV6waNCyTTNDZdBiEYNaylY677iTIZrvySQaWpeWXezxVuR6h81DVcU6ycRgTMmdd25fMcEzTkbkaeWFVZWnQx0K/F1+x0AKH0wLTNLntttu48cYbSafT1NTU8M1vfpM3vvGNzjFyBjBjhNvJ5CZoKQPD1HEH1FFnlB7evYUjz/6NrCqJnr+KebVLWVO9Bp/rFE9s+/8+0Eu0GO4AzD0HKk7dDXjttZsGCbff/W4PR49GJzYb1LDsZu7NcbikSIyFR4W3roSvPzWw7JnOYcNa9u4CKalsnE2gzGnHMlp0PUY6fZhU+gimkcgvd7nC+APzCfjn4XI5CR5TjZRpsT+XGZo07RAPBcE8n93VoN6xrjkAr3nNa/jDH/4AwOWXX85tt91W8j7cDpPHjBFuYy0HEu1MYWRNDKnjcSv4fCcWXkd6DrL34d+jWAaeNWt4wZKXlSYJIdZiizaXz7aoDcXth9qV4CpNbZ2XvGQhZ589i8cfP0Yw6OZ979uE3z9BB/x4Ft72R9jeASkDAi44sACKWUyvXAU/eQ5evwzePry3aLSjnUR3N4rLRd3ik3Mbn06YZopU2k4y0PWCtlOqn4B/Ln7/fDyeIv1bHSYVKSWtms6+lMbRTHaQdW1xwMuigA+/Y11zKOCKK65g27Zt3H777bziFa+Y7Ok4lJiZI9wYvXDTsyat+6MABCpVDDihcJNScuDxv6BkdBpnL2f5hW8ddUzcCWnfad/XroDGdSXZ5LPPtpPJGGzaNGvYOiEEn/vcC3joocNcf/25VFeXON7BsCBtQLiI0Ay5YV+fLdrAvt/ZDWfUDB87twx2vMO2vg3BMk1a9u0GoH7hYtwep7hrMSwrSzrdTDrd33bKRihu/L45+APz8HrqHPfJFCRtWhzIWdfiOeuaQDDX52VJwEuD1+18bw4AbNmyhe3bt3PNNdcA8PrXv55LLrnEiWWboUy4cBNCvAz4OqACd0gpvzRkfTnwM2Bubn63Sil/dOINj34Osc40pmERjHhJKmCkwe/3H/c1zc27sPYfwuPysPj5ryqdaMvEIHrUbgRfU7xN1FjQNIMvfOFhvvSlR1m9upannrqmqDXy4osXcfHFJU4D39YOX94C/z5mx6J94cLhY4Swa6/df3Bg2ROtxYUbFBVtAJ1HDqGn0/hCIapmOwkJhUhpksm0kEofQcu0DGs7FQjMx+ttcNpOTVHacpmhRzNZrJx1LaiqLMlZ1wKOdc0hRyqV4sYbb+S2225DURTOO+88Vq9ejRDCEW0zmAk9cgshVODbwEuAZuAJIcTvpZQ7C4ZdC+yUUl4qhKgB9ggh7pJSZots8qTI5lpdBSNeujsywPEtblJKjvzrTyChftVZeCpLWKOtY5d9X7kQ3KcWJ9fZmeR5z/sxu3Z1AbB9exs/+9kzXHnl2lOd5Ym57Un44uNg2ScanmwbeeyGOlu41QRsETdnbCnp2UyajsO28GtcthLhlDjItZ3qsJMMMkeR1kArI6+3LpdkMBtFcSyTU5GMaXEwrbE3mRlkXZvj87Ak4KPRsa45DOHBBx/kne98JwcPHkRRFK6//nqnJttpwkRfcp8F7JdSHgQQQvwSuAwoFG4SCAv7KBUCegBj6IZOBV2zN2ehI6XE6/Uet2p0y44tZDo7UP0BFpz94tJNxMhC9z77ce3KU95cdXWAuXPL88IN4BOf+DtvfOOq8a+9tjAyINrATiTIGFBsv29eAZctgbnhkyoa3LJ3N9KyKK+rJ1Rxesdk6XqUVOogqfQRLDOdX+52V+SSDOaiqs6V91SlXdPZl8pwJD1gXQsoCouDPhYHvASdavYOQ4hGo9xwww384Ac/AGDNmjX88Ic/ZOPGjZM8M4eJYqKF2yzgaMHzZuDsIWO+BfweaAHCwJukzFX/LEAIcQ1wDcDcxrFdZRiavTlT2laJ41nbrEyG5sf+AUD9Oc/D7Tu+S3VMdO8HU4dwPQROXYAIIbj99leyatV3SCZ16utDfPObL8frnYCD/6sWwyUL4b6cC7Tca2eMLq4YPrb25IVEvKeLWEc7QlVoXHLqruXpimUZxOPPkkjsgdwJX1WDBALz8fvn4XY7GbZTFc2yOJjS2JvKEDPM/PJZXg9Lgj5med0ojnXNYQTe//7389Of/hSPx8ONN97IRz/6Uacp/GnGRAu3YkcjOeT5S4HtwAuBRcBfhRCPSCljg14k5feB7wMsW7hq6DaOS7/Fzci5k44X39a25WHiqT5kbSWLV54/lt0cHymhoyApYQwcOtRLJOKjomL4vOfNi3DzzS9m69ZWbr314qJjxo0vPQ8Ox+DjZ8PF80vegktaFi17bNdy3YLFuEeRCTwT0bR2evu25Mp4CAKBRQSCC/F6nHT/qUxn1o5dO5LOYuYOe35FYXHAx5KAl6DLsa45nJjPf/7ztLW1cdttt7Fy5al7ahymHxMt3JqBOQXPZ2Nb1gq5GviSlFIC+4UQh4DlwJZSTMCyJEauKblu2sVGRxJuensHLbueBEXQcO4LcKslLJkRbbaL7npCUD664PqjR6PcdNMj3HnnNj760fO46aYXFR137bVnlW6ehXSl7fIcH9oIxcqv1AfhwTeVXLDld3/0CFoyicfvp3ru6dfWyrKyRGNPk0ruB8DljlAROQuPZxz74jqcElnLjl3bl9ToMwYiPhq8HpYGvMz2eRzrmsOISCn5+c9/zr333ss999yDoijMmzePv/zlL5M9NYdJZKKF2xPAEiHEAuAY8GbgrUPGNAEvAh4RQtQBy4CDlAgjm+tL6lHJZEZOTJCmSfdjD9OnRckuncuS2SUO8O9PSqhdDqMIrv/b3w5yySU/J5ub/9e//jgf/OA51NRMQBsqKeE3e+ETj0BPBqr9cNUI/VjH6SSkaxnaD9qCpXHZChTl9LJOZDIt9PU9gWmmQCiEQysJh1c5vUKnKJ1ZnX1JjcMZDVPa1jWforAo4GVJwEfYsa45nICjR4/y3ve+l/vuuw+A//u//+O1r33tJM/KYSowocJNSmkIIa4D/oxdDuSHUsodQoj35NZ/D/g88GMhxLPYrtX/llJ2jbjRMWIatrVNUcVxhVtm925a2g9ghnw0rj0Xr1rCbLx0L8SOgeKC6qWjesm5584mEvHR0ZEEIJnU+fKXH+WWWy4u3bxG4qtPwpceH3j+2UfhxfNg1sRV1m/bvxfLNAlX11BWXTth+51sTFMjGn2KdPoIYLehikTOwu2OTO7EHIahW5JDaY19qQw9+oB1rc7jZlnQxxzHuuYwCizL4vvf/z4f/ehHicfjlJeX89WvfpXXvOY1kz01hynChBdyklLeD9w/ZNn3Ch63AOOmRizDvvo1pV2BvFhGqZSS6M5n6M30kNm0nKXVJQ6C77ALx1K1yG4YPwqCQQ8f+9j5XH+9bSJfuLCCM89sKO28RuKNy+AbWyGVKzGR0OE72+GmInXaxoFkXy+9rS0gBI1LxxYPOJ1JpY4QjT6FZWkI4SJctoZQcJlTFmKK0Z012JfKcCitYeSsa15FYZHfbkNV5ljXHEbJvn37eNe73sU///lPAC677DK+853v0NjYOMkzc5hKnHYVOE3TtrgZlg5q8fg2KxrlSPcBTL+HWQvWEHCXsJyCkbWzSaFoUkIqpRMIFI+le897NvLrX+/kHe9Yz1VXrcXtLuEJIaXD0fiwtlKAXWftxnPh4w+DV4WPbIJr15du38dBSplPSKidtwDvaVBU0jTT9PU9SSbTDNh12CKRTU7v0CmEUWBd6x5iXVsS8DHX70F1BLbDGPntb3/LP//5T2pra/nWt77F61//eudCzWEYM0a4jfan3W9x000N1OJu0sOHnyaejSNm1bGmZk0JZwn0HgLLgHAD+AdKZRiGxS23PMo3vrGFp566hsbG4Sdpv9/Nv/+9uXRzMS14uBnu2WOX8agPwn8uLx6n9o41cLAPrl4DS4qU+Bgneo41k47HcPt81C6Y+cUlk8kDRGPbkJaOEG7Ky9cRCCxyDt5ThF7dYF8yw8G0hp6zrrmFyGeGlrtnzCHVYYJIJBKEQiEArr/+ehKJBP/1X/9FVZWTdORQnBlzlFFH2WS+3+Kmm1kUhlvcMkaGAwefQgGWLNxY2tg2gK5cwd3qgaboTU1R3vjGX/P448cAuOaaP/CHP7xl/E/WsSxc/kfIZdlyoA+e7oB1dcPHKgL+56Lxnc8Q0ok4rfv3ANCwZDnKDC5Gahhx+vqeRNPsjhM+XyORyCaneO4UwLAkRzJ2ZminPtCRosbtZknQyzyfF9cojz8ODv1omsYXvvAFvv/97/P0009TX1+Py+Xic5/73GRPzWGKM2OE22iPm/kYN9NAAbzewcJse+d2ZG8fZZ4ws+eNkDl5sqR7IdkJqhsiA+UsPvGJv+dFG8B99+3jJz95mre/fV1p9z+UCp+dZPCnQwPLfr23uHCbYLRUkkPbnsQyDMpqaonU1U/2lMYFKSXJ5F5isWeQ0kBRvJSXn0kgMH+yp3baE9UN9qY0DqQyg6xrC3OxaxWOdc3hJPnPf/7D5s2b2bXLDgP505/+xNVXXz3Js3KYLsyYI486yn6Veq6chhQWIHC7B+LJWhOtNHcfpDKlM69uOWokUtpJduVi2yoWgDrw0X/3u5ewZ083Tz5pl7SrqvJTXl5CS5+UI5fpeP2yAeFWH4SaCSzYOwLZTJqDW5/A0DSCFZXMXTMBvVYnAV2P0df3ONmsnTTt98+lvHwDqnp6FhaeCphS0pTOsjeVoSM7YF2rdrtYEvQx37GuOZwCiUSCT33qU3zjG99ASsmSJUu48847ufDCiUn0cpgZzBjhNtpjqaHlWswIC1BxueyPQLd0tnZsxRVN0hhsIFDdUNrm5ZYFPQfsxwVuUoBw2Muf/nQ5F130IxYtquSOOy6lri506vtM6nDHM3DfAbjvdVAsmeHi+XDlKrhsMZw/C9TJrQumaxkOPrUFPZMhUB5h/tozZ1zNNiktEoldxOLPgbRQVD+R8k34/bMme2qnLTHDZF8yw4G0hmbZoQMuIVjgt+uuVXlmzKHSYZL417/+xRVXXMHhw4dRVZUbbriBT3/608ft3OPgUIwZczQabX0kXTOxLAtUUBQlXwpkR9cOUkaK2qRCbbAWV3WJA0NjzaCnwVcOoeF1yKqrAzz88NVUVPhQSyGe7nwGvvIEdOYaj/9yN1yxavg4nwu+8oJT318JMLJZDm59kmw6jT9cxoL1G1BdM+YnCkA220Nf3xZ0vReAQGAR5eXrUBSn1+BkkLUstsZS7Etl8ssq3S6WBHws8HtxO9Y1hxKhqipHjhxh3bp13HnnnZx55pmTPSWHacqMOSuONjlBz5rEkr24qpR8fFtLooV9ffsQCJZRhyCFWlli4da1j/aOJNHQAkYquVtdXcJA9J3dA6INbBH3xuV2OY8piGnoHNr2JFoygTcYZMH6jaiuErYYm2QsyyCe2EEivguQqGqQSMVZ+LwzM3ZvOnA0k+XxvgRpy0JBsDDX1aDasa45lIinnnqKDRs2AHDuuefy5z//mec///mDQnQcHMbKjOmXMxrdZpkW6VSa3ngXqioIVYd4uPlhHm15FICl5Yvxxe3+paW0uMlsiod+9y8+9/mHedXVW+jqSpVs2yNy/UbwFHy9sSzsLFkDipJimSaHtm8lHY/h8ftZeOYmXJ6ZY4HStE46Ox8gEd8JSEKhZdTWvsIRbZNE2rR4uCfOQz0x0pZFtdvFJTXlnBsJOaLNoSS0t7fzxje+kY0bN/LnP/85v/wlL3mJI9ocTpkZc5QaTXKCrpkk03FQJO2ynUNROyjfrbhZXrmchdSQNPaihIIoReq7nQxSSq5/+3dJ7nmGpmiYPQfTvOlN9/DnP78Nl2scdfOssN1P9K5d8O618L51EJl6Qe+WZXL4ma2k+npxe70sPHMTbu/Um+fJYFk6sdjTJJN2CRiXq4yKirPxeKoneWanLwdSGZ6MpshKC1UI1ocDLA/6nDp5DiVBSslPf/pTPvjBD9Lb20swGKSjo2Oyp+Uww5gxwm00vbZTMbvNVYIYWTNOSIRYFFnEisoVeFQP2r7cCbaqdCdWYWhcuCzFA3tgd5fdleAf/zjEL37xLFdccQrZkpaEX+wCCbxtZfExH9kE12+ym8JPQaRl0fTs0yS6u3F5PCw4cxMe/8yoW5bJtOaawidzTeFX5JrCT01X9UwnYZg8Fk3SqmUBaPB6OKc8SMhpR+VQIo4cOcK73/3uvIXt4osv5vbbb2f+/PmTOzGHGceMEW7qKHonJPpsN2hGTaIAZzeczazQQCaf0d0NlNBNmk3Bvj/z6lfMYvsznTRtLSMU8vCNb7yMt73tjJPf7tMd8JGHYHsHhD3w0vlQU0TwVE5NwQb2lenRnc8S6+xAdbtZcOYmfMESZNJOMpalEY1uI5XKWXPdlVRUnIXbPXHdJhwGkFKyO5lhWzyFKSUeobCxPMCiwMyw6jpMDR588EFe9apXkUgkqKio4Gtf+xpXXnmlY8l1GBdmjHA7kW6TUpLs1TAtk4yaIkSA2sDg7M5+4aaWotWIloB9f4ZMDCVQweabP86W5N/5zncuYeHCUziJN8fhknuhv6xJPAs3PQa3vfDU5zyBHNu1g762VhRVZcG6DfhD078PZzp9lL6+J7GsDEKohMNrCIWWIUZjDnYoOX26wX/6EnTleonO83nZVB7EP8klbxxmHuvXr6esrIyXvvSlfOtb36K+3olfdRg/TpsjWCahYxoWGdIIt6TCV4FbGQgStTIZrEQS4XKhlpePeft9fRl++1u7CjZaHPY+AJkYBCph6cuZt7iBBx5426mJNoDZYXjXEGvdb/dC5wQkPJSIlr276GlpRqgK89dtIFAemewpnRKmmaa751/09PwLy8rg8dRQW/tywuEVjmibBCwpeTqe4r7OKF26gV9ReH5lGRdVhh3R5lASdF3n29/+Num0nbkfiUTYunUr99xzjyPaHMadGWNxEyc4ICd6bTep5k2AAZW+ykHrja6cta2yYsyFd595pp3XvvZXHDrUx4MPvJqL6nZDNgnBGljyEnCVuN/pJ8+13aT/OgaXLoL/d35xV+kUpO3APrqajoAQzD/jTEIVlSd+0RQmlTpENLoVy8oihJuy8rUEA4sdF8kk0ZnVeawvSZ9hW9mWBHycWRbAU8pi2g6nNdu2bWPz5s1s27aNo0eP8qUvfQmAurrJbxXocHowY4TbieqBJPo0pISE0gdAlX+wO9TstktluKprxrTbX/3qOa6++nek0wYVvjS/+tytrPnMuVTMngeLXwyucShr4VLg+y+Fx1rg0sWl3/440XH4IB2HDoCAeWvWES5hEshEYxhJ+vq25JvCe30NRMo34XIFJ3lmpyeGJdkeT7EraVtAwqrKOZEQ9V6n9IJDachkMnz+85/n5ptvxjRN5s2bxwtfOL1CVBxmBjNHuKkjCzfTtEjHsqTNFBmRwqN4qA4PFg35xISqsVmAysq8ZDIGQXeWVy49hJ4yuOsPXVz31XcN6kc6ZqSEZzph7fAuC4BtYZtGoq27uYm2/XsBmLNyDeW10/Pq1G4Kv49Y7OlcU3hPrin8gsme2mlLq5blsb4kCdNEIFgZ9HFGOOD0FHUoGY8++iibN29mz549CCH4wAc+wE033UQoNP0TqhymH6eFcEtFs/YJV41hagYV3upBfzhpWZg9PfZmqsdmBXr5y5fw6U8/j4d/8lN8LoM156/jnV/86KmJtpgG7/87/OUw/PbVcE7jyW9rCtDTcoxju3cCMGv5KioapmdPTrsp/Bay2U7AaQo/2WiWxZPRJAfTdhhEhcvFuZGQ01fUoaRs3bqVCy+8ECkly5Yt48477+T888+f7Gk5nMbMnCPccYRbf3xbn+hEWpLqUDWegsr8Zm8v0rRQy8IoJ1Gx/9MfXsn3m/2sWbuQ86/5L/CeQkzbzi64+k9wMGo/3/wA/P1NUD89XXC9bS0073oWgIYly6iaPWeSZzR27Kbwu4nHn0NKM9cUfgN+//R7LzOFI2mNLdEkGctCRXBG2M/KkH/UPYsdHEbL+vXrec1rXsPy5cu58cYb8ZWoOLuDw8kyY4Tb8ZITEr0ZsqZOVOlGQaGhomHQ+lMtA6Ice5J3v2cDov4M8J6i6bwpPiDaADpScMND8NNLTm27k0B3c1Pe0la3cDE186afO1HXe+nt3YKu2xbZQGAB5eXrUZQSJ5w4jIqUabElmuBoxi6kW+txc055kHL3jDmUOUwyPT093HDDDVx//fWsWrUKIQT33HOPk3DkMGWYOUe74/ynsmmDWDaK5dcJe8KUhcsGrTe7+hMTTiJYvvcIJNoRLh/Urxn764fysgXwXxvg60/Zz8+ogZsuPPXtTjAdhw/mY9rqFy+ldv7CSZ7R2JDSJB7fQTyxC6RlN4WPbMLnazjxix3GhX3JDE/FkuhS4hKCM8uCLA14nROqQ8m49957ufbaa2lvb+fAgQM89NBDAM5vzGFKMXOE2wmIalFMYVDuKycYHHA7SsvC6LRjllzHsbhZluRLX/oXV1+9joaGcP9COPak/bhxXekySD9+Nmxrh7ll8MWLwDe9vqbW/XvoPGx3Dpi1fCVVs+dO8ozGhpbtoq/3cQwjBkAwtJSy8BkoipOhOBnEDZP/9CVoz+oAzPJ6OLs8SNBpV+VQIlpbW7nuuuv4zW9+A8AFF1zA7bffPsmzcnAozvRSBCeJJS1buKkmkfIIgcBAzTOjowMro6GGQ8ctvHvrrf/mk5/8Bzff/Cj/8z8v5D3v2Yjavccususrg+plpZuwqsBdr5x2gk1KybE9O+lpPgoC5qw6g4r66ZNYYVk6sfgzJBO2pdDlKiMSOQuvd2wlYhxKg5VrV7U9167KqyhsKguyIOC4qR1Kg5SSn/zkJ3zoQx+ir6+PUCjEzTffzHve8x4Up/afwxRleimDkySeTWAYOgFXgHAgPOgPmT3SBIB77rwRX//vfx/lE5/4OwCxmMZ11/2J/Xva+do7EvaAWRthrH/yA33QmoALZhdfP91Em2VxdOez9LW1IhSFeWvWUVYzQimTKUhGa6Ovd4vdFB5BKLyCsvBqpyn8JNGTa1fVk2tXtcDvZWNZEJ/T+cChhLS0tHDttdeSSqV42ctexu23387cudPLQ+Bw+jG91MFJ0pfpxbJMyj3lgzKCpGGgNzcD4Jk7cobgP/5xCNOU+eeVlX4+9vYyMLogVAcVI4u+ouzqhtf9DpJZ+NWrpn25D8s0OfLsduJdnSiqyvy1ZxKqLEG/1wnAsrK5pvAHAXC7K4hEzsLjmd4dHaYrppQ8E0+zM5HGQhJUVc4uDzLLNw6FrB1OS0zTRAiBoijMmjWL2267DZ/Px9ve9jYnls1hWjDjL1+jWpSuTDeWaVHhq8BbUKpDb21FGgZqRQS1rGzEbXzqUxfx4x9fhtdrW19+eudLqOOIvXL2prFN6OkOuOw3dm/RlAFv+QNsbx/z+5oqmIbBoe1PEe/qRHW7WbjhrGkj2tLpZto77rdFm1AoKzuDmpqLHdE2SXRoOn/s7OO5RAoLybKAj0trIo5ocygZu3bt4qKLLuKOO+7IL3vXu97FFVdc4Yg2h2nDjLe4bevYBkjK3GH8Lv8g4dbvJvXMm3/C7Vx11TpWrKjhn/88zCvWJqDbhMoFEBpj/NOTbZCrKwdAQod79sK66ddJwMhmObT9SdKxGC6vl4XrN+GbBpXETTNDNPoU6XTu+/dUE4mcjds9snh3GD+ylsW2WIq9qQwAZS6Vc8tD1DrtqhxKhK7rfPnLX+Zzn/sc2WyW7u5uNm/ejKo6oRAO048ZLdyOxo7Sme7EpQQpz52U+4Wblc2it7YAx3eTFnLWWbM4a2MDbP+ZvaDxzLFPavMZEM3CFx/LPV8Dn7tg7NuZZHQtw8GtT6IlE7j9fhau34Q3MPUb3Q9uCu+irOwMgsGlztX2JNGcybIlmiRpmigIVob8nBH2ozrfh0OJeOqpp9i8eTNPP/00AJs3b+aWW25xRJvDtGVMwk3YZ7fZwBzgaSllclxmVQJMy2R753YAGkOzSEf7gAHhpjc3gyVx1dag+P2j33CmDywTvGE7m/RkuH4jpHSwJNx4Lkyzk5SWSnFw2xPo6TTeYIiFZ27E7Z3a1cQNI0k0+iSZjC3Wvd56IpFNuFxT30I4E8mYFk/GkhzKtauqctvtqiqcQroOJULTND7zmc9w6623YpomCxYs4Ac/+AEvetGLJntqDg6nxKiPkkKI9wGfAuoBCWwCtgohfgM8LKW8bVxmeJL0ar1kzAxhd5gqbxWHzS6EEPlWV9kjdozaaNykg0jZXRYInGIc1yfPse+nmWhLJ+Ic2vYkhqbhLytjwbqNuE6iTdhEIaUkmdpPLPo0UuoIxU152ZkEg9OrIPBM4lBK44lYEs2yUIVgXTjA8qDPaVflUFIUReGBBx7Asiw++MEP8oUvfGFQDU8Hh+nKqISbEOIG4PPAzcCDwD8KVj8EvAW4rcRzOyV6M70AVPmrMC0dkLjdbhRFwUqlMDo6QRF4Zg9ueG4YFm984695+9vXcemlRVxoYxFuKR0CI8TpTMOTVKK3hyPPbMPUdYIVlcxfeyaqa+paSAwjTm/fFrJaBwA+32wikY2o6hgsrA4lI2mYPB5Nckyz21XVedycGwkRdgrpOpSIWCyGYRhUVlbidrv5yU9+Qjqd5pxzzpnsqTk4lIzRZpVeC3xaSvkZ4JEh6/YAS0s6qxLQL9wqfZXohn2i6HeT9lvb3A2NiCHWoh/+cBu//e1uLrvsl7zoRf/Ltm2tgzfcL9yCJ2iP9VgLbPxf+E/LKb6TyUdaFm3793Jw6xZMXaesuoYF6zZMWdFmt6vaSUfHn8hqHSiKj8rK86mqutARbZOAlJI9yQy/7+zjmJbFLQTnlIe4uLrcEW0OJeP+++9n9erVvO9978svW7t2rSPaHGYcoxVu9cBTI6yzgCkX4NSj2U3BK3wVGIbdKsfr9SKlRDtg1+zyLhzc9LyjI5kvtAvw4IOHue22xwcGSAkpe7v4j1MyIqbBOx+AzjS8+Q+2iJumZJIJ9j/xGB2HD4KE2vkLmXfGepQpGNgrpSSVOkx7+33EYk8jpYk/MJ/a2lfg9ztFNSeDqG7wl+4YW6IJDCmZ4/PwqtoKlgSn3CHDYZrS1dXFFVdcwSWXXMLRo0c5cOAA8Xh8sqfl4DBujNZksh94HvD3IusuAnaWbEYlQLd04tk4CgrlnnJ08zBgCzejtRUrmUQJBnE1DG4Y/tRTLf+fvfMOj6Lc/vhntqR3IKH3kpBKCb0jAQUBBUVEASkKiKhckKJYABsiAoqKXPyhV7zoRUFEkY5IExJIgBAMSAkJIaRnd7Obbe/vj02WhFQwIQHm8zz7ZGfmnXfOzE52zp73PedLbq7JvuzsrOLtt/vdaGDIAqvZlpigLuPB8/YRSMm1vc812Zy3w2Og3t01ET49MYGr584iLFbUTk40DgrF1cu7us0qkby862TnnMBktDnWKrUXnh5hsih8NWEVglitnlMaPRYETgoFnTxdaeIsy1XJVA5CCP73v/8xffp0UlNTcXJyYtGiRbz00kuoauhogIxMZVDRu3s58KkkSUZgY/46X0mSJgIzgclVYNttk2XIAsDT0ROEhN5gS351dHQkLzbW9r5F82Lz1x58sBUnT05l4sQt7N9/mQULetGwYaHMUV3B/LYyom0mC5xJL7rumaC7ymkzGfNIPHMaTVoqAF5169PAPwClqubV1TKZcsjJicFgsClgKJTOeLgH4+JS/POVuTOkG21yVZlmm1xVC2cnOni64ChrP8pUEhaLhccee4xNmzYB0Lt3b/7973/TsmXLarZMRqbqqZDjJoT4tyRJ3sDrwFv5q38FcoE3hRDfVpF9t0WG4cYwaVJCMkZzHk7OTnio1WiuJtuSEpo1K3Hfli192Lt3HBs2nObxxwOLbqxIYoJaCT89AuvPwFuHwNsJXulcGad1R8hJu07imdOYjUYUKhUN/QPxqlvzolYWiwGN5jQ63XlAIEkq3NwDcHP1R6GQf21XB2ar4KQmlzM6AwKBm1JJFy9X6jnW3KxjmbsTpVJJgwYNcHd354MPPmDy5MmyKLzMfYMkhCi/VUFjSXIHugK1gQzgsBAiu4psqzBtmgeKQ38epVYdW6r3keQjXNFcIaxWGNdi0sm6rqVVm1Y0UeVgOBOHQ5PGuN7OhNWzv4I2BVoNAM9SxOELcz0Xrukg5BbVFaoBq8XC1XNnyUi8AoCrtw+NAoNxcKpZk/mtVjM63V9oNHEIYQIkXFxb4OEeJCceVCPX8kwcydKisViQkPB3dSLM3QWVQo56ylQOFy5cIC0tjU6dOgGg1WrJzMykUaOKFVCXkalJSJIUJYToeDv7VrQcyFjgFyFEOrDjpm0+wBAhxNe3Y0BVUJBRaswwotfl4eTogl/dWhiPRgPg2KLFrXcqRKGIWzkZpQX4utheNZzcnGyuxJ4kT6cDSaJey9bUbty0Rg01CiHQ6y+Rk3MSi8U2f9DJqT4eHmGo1Z7VbN39i9FqJSonl/P5clVeKhVdvFyp41DzhtVl7k4sFgsrV67k1Vdfxc/Pj9OnT+Pq6oqbmxtud4HEnoxMZVPRMaX/wxZpSy9hW7P87TXCcTNajGhNWiSrhF6rx2SwUL9WQ9SaVEyGPJSenqjq3EYEzJBtS0xwcCs7MeEuQghB6uWLXPv7HAiBo6sbjYNCcHavWZqdBkMyOTkxmEw2h1yt9sHTMwxHx7tP3/VeIkGfx9FsHXqrFQUSwe7OBLk5y4V0ZSqN2NhYJk6cyJ9/2rL7u3btitFolAvpytzXVNRxK+ubuBaQUwm2VAo5Rpsp7ip3LCYrCpQ4u7ggEs8C4NiyaLQtJycPD48KZLrlViAx4S7CqM8lIfYUuVn5hYobNaFey9Y1qsyHyZRFdvYJ8vKuAaBUuuLhEYyzc82KBt5v6C1WjmXruGywyVXVzper8pLlqmQqCaPRyPvvv8+iRYswmUw0aNCAzz77jIcffri6TZORqXZK/aaVJGkYMKzQqgWSJKXe1MwJ6AkcqwLbbguTxVbOw0HhgNFgy2pzUpoxp6YiqVQ4NGlSpP3Agd+g0eTx+OOBPP54IP7+pQyDFtRvuzkxQWeCUVtgahg81PyuUETIupZM4tlYrGYzKkdHGgYE4VG75szDs1hyyck5RW7uRUAgKdS4u7XF1bW1nHhQzfydayAyOxejsMlVtcuXq5IdaZnKZOjQoWzfvh2AZ599liVLluDpKU+JkJGBsiNuvkBwoeUW2ArxFsaIbc7b4kq267YxWW2Om1qpxqC3OW6qLFvExqFpEyT1jbk3ly9nceSIrYzEG2/s44039pGUNJP69d2Ld6xNsf292XH78Bj8mWx7DWgC7/aGJjVrqLEwOWmpJJyOAcCjji8NA4JqjNao1WpCq41Dq/0LIcwgKXB1bYW7WxBKpVz/qzrRmi0cydaRnC9XVc/RgS6errjJygcyVcCUKVM4d+4c//73v+nbt291myMjU6Mo1XETQqwB1gBIkrQXmCqEOHunDLtd7I6bQk1Org6sEuq0RFAUT0rYuLFo3eCuXRuW7LSZ9KBLBUkB7oV817Pp8Fn0jeWdl6HNKXije2WdTqWSl6uzO22+zVpQt0WrarbIhhBWcnMvkJNzCqvVNsndybkRnh6hqFQlfB4ydwwhBGd1Bk5ocrEIgYOkINzTleYusiMtU3ns27ePkydPMmPGDACGDx/Ogw8+aJcplJGRuUFF67jdNT95zFZblA2jhMVsRaHRonY3oapTG6WXV5G2SUkalEoJi8VWEmXUqJvqthWQbYvK4VEflIWy5U6lFRUNq+8G/wqvnBOpZCxmE5dijmM1m/Go44tf85pRqNJguEp29gnMZtvcRAeHWnh4tMPRseYM3d6vZJlshXTTTLb/qaZOjnT0dMVZKdfLkqkcsrOzmTNnDqtXr0apVNKnTx9CQkIAZKdNRqYUKjxhKL+G2zBsgvLF0iqFEK9Uol23TUHEzZqrxGowoNZkIHm64Zz/ZVCYZcsGMn9+TzZvPsv338cycmTbkjvNSrD99bypXtBjbWw12l7cDVEp8E5PcKsZw46FEUJw5bSt3IejqxuNAkOqfU6S0ZhBTk40eXm2IWilyg1Pj1BZU7QGYBWCU1o9pzV6rAicFQo6e7nRyKnm3dsydy+//PILzz33HElJSajVal599VX8/f2r2ywZmRpPReu4tQAOAi6AK5AK+OTvnwlkAzXKccOswJKVjUoJTgFtUdUuOemgdm0XJk1qz6RJ7Uvu0GqBnHyR+JKK7rbxgV9GwPZL8GDJagzVTcqF8+SkpaJQqWga2h5lNer4mc06cnJi0OsvA6BQOODuHoSra0skSZ4vVd2kGk0cztKRnS9X1crFifYeLjjIVellKonU1FReeuklvv3WJrjTqVMn1q5dS1BQUDVbJiNzd1DRJ/hHQCTwGKADHgJigFHAu/l/awQFWaWSFYTRiNJJUawEyC2hSbbVb3OpBY6lFHtUKmwZpTWQ7OvXuH7xb5CgSXAYji7VUxDYajWi0ZxBp4tHCAtICtxcW+Pu3haFQh4SqW7MVkG0Jpc4nR4Ad6WSrl5u+DnKhXRlKpeZM2fy7bff4uzszOLFi3nxxRdR1qAyRDIyNZ2KOm6dgElAXv6ygxDCAnwrSVJtYAXQrQrsu2UK5rhJeSYQVlQqRxTO/0AKKcsmAVUhiasahl6rISH2JAD1WrbBvVYFFR8qESGs6HTn0GhisVptt4+zcxM8PEJQqeSq5zUBncXCvgwNGSYzEhJt3ZwIcZPlqmQqDyGEfXrGO++8Q05ODsuWLaPF7ajYyMjc51TUcXMCcoQQVkmSMoD6hbadBkIr3bLbxD7HTWuLHKhd/mGF7ex8x82rCexNgK71wanm1xIzm0xcjjmOsFjxqluPOk3u/DCuXp9Adk4MFrMWAAdHXzw9wnBwqFXOnjJ3ijSjmX0ZOeitVtyVSnp6u1PLoebf3zJ3B1arlX//+99s2rSJrVu3olQqadSoET/99FN1myYjc9dS0W/oeKCgcu0JYIokSb8CFmAicLUKbLstChw3kWvTs1SXoGVnMJhxqojzpUsDow7ULnBcD0/8DJ3rwX8Gg2fNHd4TVisJp6Mx6vU4u3vQMODOzh3JM6aRk30CozENAJXKAw+PMJydG9xRO2TK5rI+j4NZWixC4Ougpre3O05yxqhMJXH+/HkmT57Mvn37APj5558ZPnx4tdokI3MvUNFv6Q1AWP77BUBnbDJXGmzz296qdMtukxtZpbZ6YDc7bllZBvz8ljJy5Pds2hRHXp659M4yLtr+ejeFdw6DVcDhq/DwD5CsrQrzK4Xk8/Fo09NRqtU0CW13x2SszGYN6RkHSEvdidGYhkLhhKdXR3x9H5SdthrGSU0u+zM1WISghbMTA2p5yE6bTKVgNpv58MMPCQkJYd++fdSpU4cNGzYwbNiw8neWkZEpl4rWcVtW6P0RSZKCgAexDaHuEUKcriL7bpkbjpttqNTRo2gB159//oucnDx++CGOH36IIzy8PkePTi7ekRCQme+45XhDZCFVr7gMOJkK9WreHK3Ma1dJS7gEkkSTkHY4OP2D+X0VxGLJQ6M9jU53HoQVSVLh5tYGN7cAFAp5cntNwiIEh7O0XNTb5ht28HClrVvV3yMy9wenTp1i4sSJHDtm+7586qmn+Oijj6hdSla/jIzMrXNbk1mEEFeALwAkG6OEEN9VqmW3icliAqsVc67tweTo5V1k+w8/xBVZHjCglGxQbYptmNTBDS4rwU0N2vxSI13rw8CaV/ojNyebxDM2H7p+a3/cvH2q9HhCCHS6eHI0pxD5DrOLS3M8PIJRKqsne1WmdHItVn7PyCHNZEYlSfTwdpdrs8lUKjt27ODYsWM0bNiQzz//nMGDB1e3STIy9xwVreNWB0gTQohC65yxzW97GWgKVLvjZrKasGJFnWvGaLGCUoWj641ogl5vYvv2v4vsM2JEKUV3C4ZJfZpDSAvo2xi2XYDv/oJHa4ZUVAEWs4nUSxdJvXIJYbXiU78htRs1KX/Hf3JMi57MzCPk5dl0YB0d6+LpGYZa7V3OnjLVQYbJzL4MDTqLBVelkr4+7nir5SQEmX9OVlYWXvmqNC+99BImk4lp06bh4VFzNZtlZO5mSv3mliTJBVgOPAU4AhpJkhYLIZZKkvQcsBCoA+wExle9qeVTUMNNkanHbAUHR2dcXG6IPDg4KImJmcL58xmcP59BcrKGdu3qFu/IaoXMS7b3PvmRNRc1jGhje9UQrFYL6YlXuH7xbywm27l7+tWlvn9AlR7XYLhKZuYRrNY8FApHvLw64ex895VLuV+4YjDyR/58tjpqNb193GXZKpl/jE6nY8GCBXz11VecOnWK+vXro1QqmTt3bnWbJiNzT1PWT+7XgXHAl9iK7TYB5kuS1AV4FNgDzBNCHCu9izuL0WK0vcnMw4ojbm5eKAo9oJRKBa1b16J163LKUWiugtkATp7gUrXDjbeDEIKslGSu/X0Ok942l8/Fy5t6LVvj6lV1ES8hLGTnRKPTxgO2KJu3dxeUSnmOVE0lVqvneI4OgGbOjnT1ckNZzXJnMnc/u3fvZvLkyVy8eBGFQsGePXt46qmnqtssGZn7grIct0eBhUKItwtWSJL0O/Ar8KUQYlJVG3erGK02x03KNWEVjji4uKFU3UZkwT5MWvPmsWnS07h2Ph69xibK7ujqRr2WrfGo41ulxzWZssnIPITZlAWSAg/3ENzc/Ktd81SmZCxCcCRLy4X8JIQwdxeC3eV5hzL/jKysLGbPns2///1vAEJCQli7di0dO3asZstkZO4fynLcmgC/37SuYPmrqjHnn1EQcZP0JoQAtbMrCuUtOhbGXMiy6WjiXXMct9ycbK79bSvzAaB2dMSvRSu86zWocudJqztHTvYJhLCgUrnj7d1VLqJbgzFYrPyeqeG60YRSkuju5UYT55pbd1Dm7mD37t08/fTTJCcn4+DgwIIFC5gzZw5qtZw5LiNzJynLcVMDxpvWFSzrqsacf0ZBxA2LwCok1A5Ot+64XT4IFhN4NrINlVYzRn0u1/4+R9a1ZAAUKhW+TZtTu1GTKq/PZrHkkZV1FIMhEbBljHp6tpdLfNRgskxm9mZo0FosuCgU9PHxkJUQZCoFDw8PUlJS6NKlC2vXrqVt21ISu2RkZKqU8r7RX5AkKbnQcoEX9KIkSSmF1gshxJzKNe3WKUhOEBZbGTal2uHWhkqvn4XsRFA5QpNu8MD30NAdBjaFiGZQ+87O5dJrNfx97AhWiwUkidqNmuDbtDkqh6ov4ZCXl0Jm5hEsllwkhRovz3BcXKo2U1Xmn5FkMLI/U4NZCGqpVfTx8cBFTkKQuU2EEBw8eJAePXoAEB4ezr59++jWrZssCi8jU42U5bglAD1KWH8Z6HXTOgFUu+NmtBgRVgFWAAml2sEecdu//zK//nqOwYNb0bVrI1Q3O3SGbEjMz7No3BXO59qK7J5MhV8vgKMS/poErncm2mS1WEg4FY3VYsG9dh0a+Le9I8V0hbCi0ZxGo4kFwMGhNt7eXWVB+BpOnFZPVE4uAkETJ0e6ebnJIvEyt82VK1eYMmUKv/76K1u3brXXY+vZs2c1WyYjI1Oq4yaEaHoH7agUjFYj1jwTkqRAKSlRqhT2+V///e8pPv88ivffP4i3txMffhjBM8+0u7HzlaNgNdvqtvk0g7f3Fu28a/075rQBJP11hjydDkdXV5oEh90R2SqzWUNm5mGMxnRAwt29Le7uQUiSHLWpqViF4Gi2jnP5Em8h7i6EuDnLSSMyt4XVamX16tXMmTMHjUaDl5cXOl2NnBkjI3Pfck9Nfsmz5CGMFhQoUSmV9mibEIJffz1vb5eZaaBu3UIRJCFAYyskS8PwfLkrQ9HOnw6savNv2JecRObVJCSFgsZ3yGnLzb1IVlYUQphQKl3x9u6Ko2OdKj+uzO2TZ7Xye4aGFKMJJRLdvN1oKichyNwm586dY9KkSezfvx+ARx55hFWrVlGvXr1qtkxGRqYwd9xxkyRpELACUAL/FkK8V0KbPtiK/6qxKTb0rkjferMekWdGQoVSobLPb4uPTychIdvezslJRZ8+TW/smKexRdvULuCQXzLhywfh70xYcxIOJsFDpUhjVTJ5uToSz9qGKeu3CcDZzb2cPf4ZVquRrOwo9LmXAHB2boyXV0cUCtkBqMlk5ychaCwWnBQK+vi4U8dBThqRuT127tzJ0KFDMRgM+Pr6smrVKkaMGCFHbmVkaiB31HGTJEkJrAIGAInAMUmStgghzhRq4wV8CgwSQiRIklThAmV6sx6ryYJSUoJCZY+4+fm5sW7dMHbuvMDOnRcIDfXD2bnQQ86QZfvrfFPx2hbe8F5vsAq4A/OFrFYLl09FIyxWvOrWo1aDRlV6PKMxjYzMw1jMWiRJhadne1xdW1TpMWX+Ocl5Rn7P0GASAm+Vir4+7riq5MniMrdP586dqVOnDn379mXZsmXUqiWX+5GRqanc6YhbJ+C8EOICgCRJG4BhwJlCbZ4EfhRCJAAIIa5XpGMhBAazAWG0IKFEobwRcfPycmLcuDDGjQvDahVkZd00DKrPtP119iq58zs0yftq/FkMGg0Ozs408K+6VHshBFptHDmaUyCsqNXeeHt3Q62WtQVrOn/pDBzL1iEQNHJyoLuXO2o5CUHmFsnLy2PlypVMmzYNV1dXPDw8iImJwdtb1hqWkanp3GnHrQFwpdByItD5pjatAbUkSfsAd2CFEOLrmzuSJOlZ4FmAxvVb2Oa3IVALJUIIlCpViTXcFAoJH5+bsjPtjlv1fWllX79GRuIVkCQaB4ehVFXNsJfFkpsvDm+r5uLm5o+HRwi2YKhMTcUqBFE5uZzV2STOAt2caefuIg9lydwyhw8fZuLEicTFxXHt2jU+/PBDANlpk5G5S7hlx02yPSnqAdeFEOZb3b2EdaIEmzoA/QFn4LAkSUeEEPFFdhLiC+ALgDbNA0WexSbt4yCUCCwoFEqUqgo+1PRZtr/V5LgZ9blcOXMagPqt2uDiUTWFf/X6RLKy/sRqNaJQOOHt3Rknp/pVciyZysNotbI/U0tynhEFEl28XGnh4lTdZsncZWi1Wl577TVWrlyJEII2bdrwyCOPVLdZMjIyt0iF6zxIkvSQJEl/AgZsNd5C8td/IUlSRdWFE4HCE7caAldLaPObEEInhEgD9gOh5XVssNgiEWqUCAGSQioiMF8qVquthhtAtgrM1vL3qUSE1crl0zFYzWY86vhSu3HTSj+G1WomKyuSjIw/sFqNODrVw9f3QdlpuwvQmC1sS8smOc+Io0LBgFoestMmc8vs3LmT4OBgVqxYgUKhYN68eURHR9uL68rIyNw9VMhxkyRpLLAFOItteLLwfueAiRU83jGglSRJzSRJcgCeyO+3MD8BPSVJUkmS5IJtKDWuvI4NZtu8NbVVidUKUqGs0rJ3zAJhBUd3WHAEQtbBGwfgTFoFT+mfkXw+Hn12NmonJxq2Da70/k2mLFLTdqDTnQNJgadne2rX6oNSKT/8azopeSZ+Tc0mx2zBU6Xiodqe+DrKmaMyt0ZkZCQRERFcunSJsLAwjh49yjvvvIOTk/wdICNzN1LRodJXgQ+EEPPyM0P/r9C2WGBWRToRQpglSZoObMdWDuRLIUSsJElT8rd/LoSIkyTpN+AkNg2EfwshTpfXd54l33FDicYsISmVOLgoSU7WUKeOa3GlhAIKZ5QeuQypufBptO21exSEVF0ts5y066QlXAJJoklwGKpKFmvWav8iJycmXxzeAx+fbqjV8jyWu4HzuQb+zNJhRdDA0YEe3m44KORCyDK3TseOHXnyyScJCgpi1qxZsii8jMxdTkUdtybAzlK2GYAKpyMKIX4Ffr1p3ec3LX8AfFDRPgHyzAZQgcKsxGKVUKqUZOTk0bzFSiQJ6tRxJTTUjx07ni66Y0FiQqYarufeWO+sggCfWzHhljAZDFyJPQVA3RatcPH0qrS+beLwRzAYbKPQLq4t8fRoh0JxT9VbvicRQnA8J5cz+UkIAa7OdPCQkxBkKk5KSgovvfQSc+fOJTTUNsvkm2++ke8hGZl7hIo+ya8A7YA9JWzrCJwvYf0dxWC1RdwsetuXk6ubmpTrNqkWIeD6dR3p6friOxYkJlyyFF3fwQ/UVZNpWTCvzWIy4V6rNnWaNKu0vg2GZDKz/sRq0aNQOODl1Qln56qtBydTOZisgj8yNSTlJyF08nSllas8nCVTMYQQ/Oc//+Gll14iMzOT5ORk9u3bByA7bTIy9xAVddzWAm9IkpQCbM5fJ0mS1B94BVhYBbbdEgazARzAnB80c/VyJOZ8RpE2RWSuCiiIuA0Jgz6d4WgyHLkKrSs32mYy5pGblUVuThbazAz02dmoHB1pFBhSKV+qQljJyYlBqz0LgIOjL95eXVCpXP9x3zJVj85sYU+GhiyzGQdJQW8fd+rK89lkKsjly5d57rnn2L59OwADBw5k9erV1WyVjIxMVVBRx+19bNmgXwEFoalD2OaprRZCrKwC226JPIsBSYAxxwSAR31vNHFpBAf7EheXhtlsJTj4JhEGi9kmdyUpwNETnBUwuIXt9Q8QVit6rYbc7Cxys7PQZWdh0heN9klKBY2DQlE5OPyjY4FNHD4j4xAmUwYg4eERjJtbW/lX9l1CqtHEvgwNBqsVD5WSfj4euMtKCDIVwGq18tlnnzF37ly0Wi3e3t589NFHjB07Vv7/l5G5R6mQ4yaEEMDzkiR9BPQDagMZwJ6b66tVBwIwWy046pQIoxGlQuBarzZTpzZj6tRw8vLMxMWl4ed3U/SpIDHByRMqaeJ3ysW/uX7pb4SlaFkRSanAxcMLV08vXLy8cPH0rpRkhNzcy2RlHUUIs00c3qcbjg61/3G/MneGC7l5HM7SYkVQz9GBXnISgswtkJycbHfaRo4cyccff0zdunWr2ywZGZkqpEKOmyRJLkKIXCHEeWrAfLbi2Gr4OudYMQmBysURRaFIlqOjirCwEr7MypO6ukXycnNJ+fscAA4uLjYnLf/l5OqGVMkPZJMpm8ysIyCsODs3yReH/+cRPJmqRwjBCU0usVpbJLaNixMdPV1RyFESmXIwm80oFAoUCgUNGjTgk08+wd3dnUcffbS6TZORkbkDVHSoNE2SpJ+BDcCvQoi8KrTplhH5jpuTxowRgdLFqWLDBJUsdZWemACAd736NAoMqZQ+S0MIq91pc3Fpgbd3pyo9nkzlYbYKDmZpSTDkISHR0dMFf1fn8neUue85ceIEEydOZNKkSUybNg2AcePGVbNVMjIyd5KKhoBeAeoCG4HrkiT9R5KkwZIk1ZD6EjbHzUFjQgAKZycUFYluVaLUlcVsJuNqIgC1GjX5x/2Vh1b7FyZjBkqlC56eYVV+PJnKQWexsD09mwRDHmpJop+Pu+y0yZSLwWBg/vz5hIeHc+LECT7//HMsFkv5O8rIyNxzVMhxE0J8IoTojS1B4Q2gBTbFg+uSJK2VJGlAFdpYvn35fxXZuQgEKldXVKoK+JT6TMgwwJIz8N1ZiEu/bcmrzOQkrGYzLl7eVaY1WoDJlINGY6sB5+UVLg+P3iWkGc1sS80mw2TGXankwdqe1HeSPzuZsjlw4ABhYWG8++67WK1WZsyYwaFDh1Aq5QQWGZn7kVuKmAkhrgLLgeWSJDUGHgdeBsbdal+VigCFwYglzwySIw6uLuXvYzKAKRcua2HNOexT9x5oAv99+NYOLwRpVy4DULuKo21CiPxkBAsuLs1kvdG7hMv6PA5marEg8HNQ08vbHaeKaOnK3Lfo9XpeeeUVVq1ahRACf39/1q5dS7du3arbNBkZmWrktpwtSZJaAqPyX/WwFeitRgQqTS5GK0hOjly5oqVz539Tr54bdeu60b17I55++iad+oKM0kSAQvPhAmrd8tE16WkYc3NROznhWce3/B3+ATpdPEZjKgqlM56e7ar0WDKVQ4wml5MaW4HBli5OdJaTEGQqgFqttkfW5syZw2uvvSbri8rIyFTccZMkqSm2CNsoIAxIwTbnbaoQ4mBVGHcrKPKMZJhMqJ3UZGbmcfRokn2bVmss7rgVJCZcvGmeyG1ok6bnR9tqNWxc6ZmjhTGbNeTknATAyzMchcKxyo4l888xWwWHs7Rcyk9C6ODhQoCbPJ9NpnQyMjKwWCzUqVMHlUrF119/jclkIiwsrLpNk5GRqSFUtBzIn9ikrTKAH7GJyu/Lr+9WI5ByjQgUSEolmpyi84bKVEx4MBSae8D5TDifBYG3VgPNoNOiSU9DUirwqd/wNq0vH9sQ6TGEMOPs3ARn5wZVdiyZf06uxcq+jBzSTWZUkkRPb3cayvPZZMrghx9+4Pnnn6dHjx5s3LgRgMDAwGq2SkZGpqZR0YhbHLakhJ1CiBqZyqTIMwLOqB2dSU8vamLJjluW7e/gUBh9+/PECua2efvVrxQVhNLIzf2bvLwUFApHPD07VNlxZP456UYz+zJyyLVacVMq6ePjjre6hiRgy9Q4kpOTmT59Oj/++CMA169fR6vV4uZWwveWjIzMfU9FlRPGV7Ed/wiBQBhMgAtKtQPPTQll6GMBXLumJSVFR48ejYvvVBBxc/K67eNazCYyk21DsrUaV11SgtmsIzs7GgAvr44olfIQaU0lQZ/HgSwtFiHwzU9CcJaTEGRKQAjBunXrmDlzJllZWbi5ubFkyRKee+65ipUzkpGRuS8p1XGTJOkh4IAQIif/fZkIIX6tVMtuEclgAiGhcnSibj13WrYtY8gzTwsWI6gcwaECGailkJGUiLBYcfX2wdnN/bb7KQ9bFqkJJ+dGODuX4ITK1AhOa3I5kZ+E0NzZkS5ebijlJASZErBYLAwZMoTffvsNgAcffJDPP/+cxo3l/28ZGZmyKSvithXoAhzNf18WApvgfLUhzBaQFCjVjiiU5TwsCzJK/0HhXWG1kpavlFCncdPb7qc8dLoL5OVdQ6FwwEseIq2RWIUtCeGC3iYo0s7dhSD32/9BIHPvo1QqCQgI4NixYyxfvpwxY8bIovAyMjIVoizHrRmQXOh9zUUIrAKEpEClVJbvuFWC1NX1yxcx6fU4ODvjXvvWM1ErgsWiJzvnOACenu1RKuWMxJqGEIJDWVou6vNQShI9vNxo7CwPZcsUJy4ujoyMDLp37w7AokWLmDt3Lr6+VVtCSEZG5t6iVMdNCHG58CKQLIQw3dwuX/aq2qvAWpEABUqlCoWigo6b3gmEgFv8pZubk03KBVvB3gb+gVX2Szkr6xjCasLJqT4uLjXbd74fEcKmOXpRn4dKkniglgd1HNTVbZZMDcNkMrFkyRIWLlyIn58fsbGxuLu74+rqiqura3WbJyMjc5dR0VS3i0BXbMOmNxOav74ah0ptETeUCpSKikTcssAqYMgOsByF1t7QyhuW9QV12adhtVq4EnsKhKBWw8a417q18iEVJTf3EgZDEpJCjZdXeJUcQ+b2EUJwOEtnj7T195GdNpniREVFMXHiRGJiYgAYOHAgNaiKkoyMzF1IRVOXyvKEnIC8SrDl9hFgBZAUpKYa2L3nIufPZ2A0llC5RAjbHLd0A+Q4gMYIUSmw+3K5ThvAtfPx5Om0OLi4UK9Vm8o+EwAsFgPZ2VEAeHq0Q6mU50vVJIQQ/Jmt42+9we60+TrKTpvMDfR6PXPnzqVz587ExMTQrFkzdu3axZo1a/Dw8Khu82RkZO5iysoqDcGmkFDAQ5Ik+d/UzAmbmkJ85Zt2KwgsAlQoiDyWzFsrfwZAoZD48MMIXnqpy42mRh1YLZBhBWuh029V/nw3bUY6aQmXQYLGQaEoqkjkOTs7CqvViKNjXVxdW1TJMWRun6PZOs7lGlAi0c/HAz/ZaZO5iSFDhrBnzx4kSeLll19m0aJF8rCojIxMpVDWUOkj2Irugm2O2+ultLsIPFeZRt0qEiCQQKEgNc1gX2+1CurUuSlaZTHa/uok2+CuJX/YoolnmcewmE1cOXMKAL9mLXHxKLv97aLXJ6DXJyBJary8OlXJMWRun2PZOuLznbY+Pu7UlZ02mRKYOXMm165dY+3atXTp0qX8HWRkZGQqSFmO2zvAUmx+UQ7QDzh2UxtjSQkLdxwBFiGhliRSUgxFNjVrdlMkrcBx69UMkgZBSi4kacC9bNWDq3/FYTIYcPbwwLdp88q0/oZpljyysmxDpB6eoahU8i/0mkRUto6zOj0KJHr5uFNflrCSyWfbtm2cPn2a2bNnAzB48GAGDhyISiUrZsjIyFQuZWWVmoACp6yGl/EWCCGhUCho2cqH7oZGXLyYxdWrGpo3L8VxUzqAUgH13WyvMshKuUZm8lUkhYJGgSFVJiRvGyI14ODoi6tLyyo5hsztcTxHx5lCTpusOyoDkJaWxssvv8w333yDQqEgIiKC0NBQANlpk5GRqRLKmuPWFvhbCJGX/75MhBBnKtWyW0EIEBIKpYpnn+vIe2G2umoGgxlHx5vmoVnyfVFl+UNcwmol5eLfXL/0NwD1WrbGybVq9AP1+iT0+stIkgpvr05yMc4aRHROLrFaPRISPbzdaCQ7bfc9Qgj+97//MX36dFJTU3FycmLRokV3RBTeZDKRmJiIwWAov7GMjEy14uTkRMOGDVGrK29aTVk/CU9zQznhNLZ5biUhUQOUE0BCoVIVKQXi5FTC6RWOuJWBUZ9LwumT5GZnAeDbrAW1GlWNHqnVaiQr2zYK7eERgkpVdfJZMrfGSU0up7S5SEj09HajiVxc977n6tWrTJs2jZ9++gmA3r178+9//5uWLe9MlDwxMRF3d3eaNm0q/8CTkanBCCFIT08nMTGRZs0qrxZrWY5bX+BMofc1FyFAgEKlQlmeoHcFHLesa8kkno3FajajdnSkUWAIbj61KtHgomRnn8Bq0ePgUBtX19ZVdhyZW+O0JpcYjc1p6+4lO20yNl555RV++ukn3N3dWbp0KZMmTbqjovAGg0F22mRk7gIkSaJWrVqkpqZWar9lzXH7vaT3NZL8gpaSSl12xTkAi9n2t4ShUqvVQlJcLJnJVwHwqONLw4AgVA5VNzRmMCSTm3sBSVLi5dVZ/jKuIZzR6u2C8V29XGnmIjtt9zNCCPv/5pIlS7BYLHzwwQc0bNiwWuyRvydkZO4OquJ/tUKzZyVJ8gVchRAX85clYDLQFtgthPi50i27DRQVmQxsMYLeDD9chHqOUMsZ6rqCfy0ykhLtSQj1W/tTq2HjKrXXajWRlWUbInV3D0Ktlgtz1gTitHqicnQAdPVyo4WLUzVbJFNdWCwWVq5cyc8//8zOnTtRKpXUr1+f//73v9VtmoyMzH1KReP764CXCy2/BXwKDAI2SZI0vnLNukXyI24KZQUdtwwDLD8BU3bCY1tg8nbAVmAXoH6bgCp32gBycmKwWHSo1T64ud1c21imOvhLZyAy32nr7OlGS9lpu2+JjY2le/fuzJw5k71797Jt27bqNumuYsuWLbz33nvVbUa1s27dOurUqUNYWBj+/v589NFHRbZ/8cUX+Pv74+/vT6dOnThw4IB9m8lkYu7cubRq1YqgoCA6depUI+/Dl156if3791e3GaUSFRVFcHAwLVu2ZMaMGSXKzplMJsaNG0dwcDABAQG8++679m3fffcdISEhBAYG8sorr9jXf/LJJ/zf//3fHTmHwlTUcWsP7AGQJEkBTAXmCyH8gbeBl6rEultCYtuOi8yfv5tp035h6dJDZGeXkHVlMYHOCNZCuRS1nBFCoMuyic+7eVfdfLYC8vJS0OnOgaTA27sztssqU52c0xk4mq0FINzTldaustN2P2I0Glm4cCHt2rXjzz//pEGDBmzZsoUhQ4ZUt2klU+eToq/S+Pp00XYz91SpWUOHDmXu3LkVaiuEwGq1Vqk9ZWE2m6u0/1GjRhEdHc3Bgwd5++23uXLlCgBbt25l9erVHDhwgLNnz/L555/z5JNPcu3aNQAWLFhAcnIyp0+f5vTp0/z8889oNJpKtc1iKUEa8hbIyMjgyJEj9OrVq8L7VPX1vpmpU6fyxRdfcO7cOc6dO8dvv/1WrM3//vc/8vLyOHXqFFFRUaxevZpLly6Rnp7O7Nmz2b17N7GxsaSkpLB7924AJkyYwMqVK+/ouUDFHTdPID3/fQfAB1ifv7wHqPaiY1YhkXBFy6EjiXz2WSSzZ+8suaHFCNlGsBRy3HxdyNPpsJhMqB0dcXSpWm1Qne486em2Xyfubm1Rq72q9Hgy5fN3roEj+U5bRw9X/F2dq9kimerg2LFjdOjQgTfeeAOTycRzzz1HbGwsDz/8cHWbVmO4dOkS/v7+TJo0iaCgIMaMGcOuXbvo3r07rVq14ujRo4At0jR9+nQAUlJSeOSRRwgNDSU0NJRDhw5x6dIlAgICmDZtGu3bt+fKlSvMnj2boKAggoOD+e6770o8/tGjR+nWrRvt2rWjW7du/PXXXwB07tyZ2NhYe7s+ffoQFRWFTqdjwoQJhIeH065dO3s28Lp163jsscd4+OGHiYiIQKvV0r9/f9q3b09wcLC9HcCiRYvw9/dnwIABjB49mqVLlwLw999/M2jQIDp06EDPnj05e/ZsmdeuVq1atGzZkuTkZADef/99PvjgA2rXrg1A+/btGTduHKtWrSI3N5c1a9bw8ccf4+hom2Pr5+fH448/XqzfY8eO0a1bN0JDQ+nUqRMajabI9QebDNu+ffsAcHNz4/XXX6dz58688847Rfrct2+f/X7fsWMHXbt2pX379jz22GNotdpix964cSODBg2yLy9cuJDw8HCCgoJ49tln7dGtPn36MH/+fHr37s2KFSuIioqid+/edOjQgYEDB9qvyZo1awgPDyc0NJQRI0aQm5tb5jUtj+TkZHJycujatSuSJDF27Fg2b95crJ0kSeh0OsxmM3q9HgcHBzw8PLhw4QKtW7emTh1bmbEHHniAH374AQAXFxeaNm1qv+fvFBV13BKxzWcDGAycFUIk5S97AtVcUEhgMAosVitms+1XW5Mmnnh6lhAxseSBnws80w6GtYSOftC2FrqsDABcvX2qzEqLRU9a+j6yso4hhBln5ya4u1d93SeZsrmQm8ehLNsXUnsPVwLcZKftfuXw4cOcPn2aFi1asGfPHj7//HM8PatG3u5u5vz587z44oucPHmSs2fP8u2333LgwAGWLl3KO++8U6z9jBkz6N27NzExMRw/ftxe7+6vv/5i7NixnDhxgsjISKKjo4mJiWHXrl3Mnj3b/jAvjL+/P/v37+fEiRMsXLiQ+fPnA/DEE0/w/fffA7aH9dWrV+nQoQNvv/02/fr149ixY+zdu5fZs2ej09mmQxw+fJivvvqKPXv24OTkxKZNmzh+/Dh79+7lX//6F0IIIiMj+eGHHzhx4gQ//vgjkZGRdlueffZZPv74Y6Kioli6dCnTpk0r87olJCRgMBgICQkBbMPxHTp0KNKmY8eOxMbGcv78eRo3boyHR9lzn41GI6NGjWLFihX2a+fsXPZ3mE6nIygoiD///JN58+Zx5MgR+zX57rvvGDVqFGlpaSxevJhdu3Zx/PhxOnbsyLJly4r1dfDgwSLnMH36dI4dO8bp06fR6/Vs3brVvi0rK4vff/+dGTNm8MILL7Bx40aioqKYMGECr776KgCPPvoox44dIyYmhoCAANauXVvsmHv37iUsLKzYq1u3bsXaJiUlFUkiatiwIUlJScXajRw5EldXV+rVq0fjxo2ZNWsWPj4+tGzZkrNnz3Lp0iXMZjObN2+2R0zB9nn98ccfZV7vyqaipb2/BJZIkvQANsdtXqFtXYC4yjbsVjEYbUV4jflh37CwuiU3zNNCYw8Y2h9UN7JFtaeiAXD1Kl9s/nbQ6xPIyjqG1WpEoXDA07MjLi5VUxdOpuJc0t9w2sLcXQiUnbb7jtTUVPuv6eeffx4hBJMnT8aliiPvdzPNmjUjODgYgMDAQPr3748kSQQHB3Pp0qVi7ffs2cPXX38NgFKpxNPTk8zMTJo0aWLXcj1w4ACjR49GqVTi5+dH7969OXbsGEOHDi3SV3Z2NuPGjePcuXNIkoTJZCuq/vjjjzNgwADeeustvv/+ex577DHAFjXasmWLPUpmMBhISEgAYMCAAfj42H6sCyGYP38++/fvR6FQkJSUREpKCgcOHGDYsGF2Z6ggGqXVajl06JD9OAB5eXklXq/vvvuOvXv38tdff7FmzRqcnEqfhlE4g7ki/PXXX9SrV4/w8HCAch09sH0GI0aMAGwKH4MGDeLnn39m5MiR/PLLLyxZsoTff/+dM2fO0L17d8DmIHbt2rVYX8nJyfb/H7A5VUuWLCE3N5eMjAwCAwPt12zUqFF2m0+fPs2AAQMA23BtvXr1ADh9+jSvvfYaWVlZaLVaBg4cWOyYffv2JTo6ukLXp6T5bCVd36NHj6JUKrl69SqZmZn07NmTBx54gObNm/PZZ58xatQoFAoF3bp148KFC/b9fH19y420VjYVctyEEO9KkpQEhAMvYHPkCvAB/l0Ftt0SHt4ujB/fjvHKWpyOT8Pfv3bxRkYdWM2gciritAH2+W2uXpUbcbNabfqjev1lABwd6+Lt3RmlUn4oVDeX9XkcyNQiEIS4uxDsLn8m9xPZ2dnMmTOH//73v5w+fZpGjRqhVCp58cUXq9u0WyN1evltAMYG2V6VQMHQHYBCobAvKxSKW5q/5Op6Q4+5pAcswKpVq1izZg0Av/76KwsWLKBv375s2rSJS5cu0adPHwAaNGhArVq1OHnyJN999x2rV6+29/vDDz/Qpk2bIv3++eefRY6/fv16UlNTiYqKQq1W07RpUwwGQ6l2Wa1WvLy8KuRAjBo1ik8++YTDhw8zePBgHnzwQerWrUvbtm2JioqiX79+9rbHjx+nbdu2tGzZkoSEBDQaDe7upRdlL83RU6lUReYNFlbacHJyQqm8MV1o1KhRrFq1Ch8fH8LDw3F3d0cIwYABA8rNoHZ2drb3bTAYmDZtGpGRkTRq1Ig333yzyHELrrcQgsDAQA4fPlysv/Hjx7N582ZCQ0NZt26dfXi3MHv37uXll18utt7FxYVDhw4VWdewYUMSExPty4mJidSvX7/Yvt9++y2DBg1CrVbj6+tL9+7diYyMpHnz5jz88MN25/OLL74ocu0MBkO5Ec7KpsIz4oUQXwshXhBCrBWF7mQhxBQhxFdVY17FsUpKvLyceGhIa956qy+jRwcXb2TIsf11KvqLJC83F3NeHkq1Gie3ypO0MhiSSbm+zS5l5enVkdq1+8pOWw0goZDTFuTmQqjstN1X/PLLLwQGBrJ69Wr0en2xL3uZyqV///589tlngC26kpOTU6xNr169+O6777BYLKSmprJ//346derE888/T3R0NNHR0dSvX5/s7GwaNGgA2OapFeaJJ55gyZIlZGdn2yOCAwcO5OOPP7Y7YCdOnCjRxuzsbHx9fVGr1ezdu5fLl20/tnv06MHPP/+MwWBAq9Xyyy+/ALbIVrNmzfjf//4H2JyRmJiYMq9D165defrpp1mxYgVgK+Y8Z84c0tNtU8ijo6NZt24d06ZNw8XFhYkTJzJjxgyMRlvh+OTkZL755psiffr7+3P16lWOHbOVltJoNJjNZpo2bUp0dDRWq5UrV66UOQ+rT58+HD9+nDVr1tijYl26dOHgwYOcP38egNzcXOLj44vtGxAQYG9T4KTVrl0brVbLxo0bSzxemzZtSE1NtTtuJpPJPj9Ro9FQr149TCYT69evL3H/gojbza+S/o/r1auHu7s7R44cQQjB119/zbBhw4q1a9y4MXv27LElKup0HDlyBH9/W7WH69evA5CZmcmnn37KpEmT7PvFx8cTFFQ5P4gqSoUdN0mSVJIkjZIk6WNJktbn/31ckqRqV1IWgJCUSEgoVWWcUl5+No5jUcfNPr+tkoZJrVYzWVmRpKfvsysi+PoOws21VaX0L/PPSDQY+SNTixVBoKsz7Txkp+1+ITU1lTFjxjBkyBCSkpLo3LkzJ06csD+sZKqGFStWsHfvXoKDg+nQoUORJIICHnnkEUJCQggNDaVfv34sWbKEunWLT3l55ZVXmDdvHt27dy+WETly5Eg2bNhQZLL9ggULMJlMhISEEBQUxIIFC0q0ccyYMURGRtKxY0fWr19vf2iHh4czdOhQQkNDefTRR+nYsaN93uP69etZu3YtoaGhBAYGFkloKI05c+bwf//3f2g0GoYOHcqECRPo1q0b/v7+TJ48mW+++cY+bLh48WLq1KlD27ZtCQoKYvjw4UWGJQEcHBz47rvveOGFFwgNDWXAgAEYDAa6d+9uH9KeNWsW7du3L9UmpVLJkCFD2LZtmz17uk6dOqxbt47Ro0cTEhJCly5dShwSHDx4sD0q5uXlxeTJkwkODmb48OH24dubcXBwYOPGjcyZM4fQ0FDCwsLsTteiRYvo3LkzAwYMsH8G/5TPPvuMSZMm0bJlS1q0aMGDDz4I2ErWvP7664BtmoRWqyUoKIjw8HCeeeYZ+1zEF198kbZt29K9e3fmzp1L69Y3FI4OHjzIAw88UCl2VhSptDBwkUa2Arw7gBDgEpAC+AFNgRggQghRuZoOt0CL+o3E7BdfoWXbzvQZ1AGVuhTZ1MRIuHYK6reD+mH21VdiT5KZfJV6rf2p07jpP7Ilz5hGZuZhLGYtSAo83INxc/OXy33UEJIMRvZlaLAiCHB1pqOna/k7ydwT/Pbbbzz99NOkpaXh7OzM22+/zYwZM4oMe9wNxMXFERAQUN1m3FdotVrc3NzIzc2lV69efPHFF2U6QvcbPXr0YOvWrXh5eVW3KXeUEydOsGzZMv7zn/+U2a6k/1lJkqKEEB1v57gVjZYtA2oBnYUQxwodOBz4IX/707djQGUhbPaUHXEzZIPFWiziprXPb7v9iJsQVjSa02g0ZwCBSu2Fj3cX1OqqSXaQuXWS84z8nu+0+ctO232Hn58fmZmZ9OvXjzVr1tC8efPqNknmLuHZZ5/lzJkzGAwGxo0bJzttN/Hhhx+SkJBw3zluaWlpLFq06I4ft6KO20PA9MJOG4AQ4pgkSfOAjyvdsltGQqVWlJ2Nk5cDP52HTTngVxcaeaB/ugUmhR6lWo2z++1JTplMWWRmHsFkyi/g6xaAh0cwknR3/ZK/l7mWZ2JvhgYLgtYuToTLTts9j9VqZdeuXURERADQrl07jhw5QocOHWStT5lb4ttvv61uE2o0nTt3rm4TqoWCrNg7TUXH7xyB0so1a4CqU2GvAEKALtdEWoYenc5YeqM8DWTmQYYEsenw20Vykmx1gjzr+N3yl7kQAo32LNdTt2MyZaJUulK79gN4eobJTlsN4nqeiT0ZOViEoKWLE51kp+2e5/z58/Tv35+BAwcWKbbZsWNH2WmTkZG5q6mo43YEmCNJUpEnXv7ynPzt1YbVKkhM0rBk6SHc3N5l6dISMsSMOrBaIN0C1huBxhxnPQAevr63dEyzWUta+h5ysk+AsOLi0gJf3wdxdKxT/s4yd4xUo4nd+U5bc2dHuni6yg/uexiLxcKHH35ISEgI+/bto06dOigU8vxSGRmZe4eKDpX+C9gLXJEkaQe25ARfYCAgAX2qxLoKUpBfYTLb3tSrV0JJj4KM0owbX+JGpRm9kxlJ6XRL+qQ63d9kZ59ACBMKhRPe3p1xcipeF0amekk1mtiVnoNZCJo5O9LNy0122u5hTp8+zYQJE+xlEZ566imWL19OrVpVrz0sIyMjc6eoaAHeaEmSWgGzsBXhDQGSgc+BZUKItKozseIYzbbU8CZNvIpvzMuvG7TmEXDrCFc05Jz6C1x1uNeqg6ICmWVCCDIzD6HX26puOzk3wsszHKXSsZw9Ze406UYzu/OdtqZOstN2r/Pbb78xdOhQTCYTDRs2ZPXq1Tz00EPVbZaMjIxMpVPuGIIkSbUkSeoAOAoh5goh+gsh2ub/nV8TnDZJknB2VuHl44RKpaBJkxK0Be3Fdz2hjgu09yMn2BkkCc86FRsm1esvodcnICnUeHt3pZZPD9lpq4FkmMzsSs/BJASNnRzp7u2GQnba7ml69OhBw4YNmTp1KrGxsbLTJlMjuXTpEs7OzoSFhdG2bVvGjh1rl+wCm+xXp06d8Pf3x9/fny+++KLI/l9//TVBQUEEBgbStm1bu4xXTWLz5s0sXLiwus0olYyMDAYMGECrVq0YMGAAmZmZJbZbsWKF/VovX77cvn727Nn4+/sTEhLCI488QlZWFgCnTp1i/PjxVX8ClOG4SZLkLknS98B14CiQIEnSEUmSWtwRy24BhUKiUWMv1qwdjsHwKg0blpAdarbNZUNtm6ZnNpnQZqaDBO61y3fcrFYzOTmnAPDy7ICLS9PKMl+mEsnMd9qMwkpDRwd6yk7bPYlOp+Ott95Cq7XpzLq5uRETE8Onn35aIa3GewlJeqvIqzS++CKqSLtnn/35Dlp5a9xcWPdOIoQoIhVV2bRo0YLo6GhOnTpFYmIi33//PQDXrl3jySef5PPPP+fs2bMcOHCA1atX25Uatm3bxvLly9mxYwexsbEcP37cXgi4srgVubLSWLJkCdOmTbujx7wV3nvvPfr378+5c+fo378/7733XrE2p0+fZs2aNRw9epSYmBi2bt3KuXPnAFsm6enTpzl58iStW7fm3XffBSA4OJjExES7Dm5VUlbE7S3gQeB1bMLy04EGFNUprVGoHZUolaWUBDHni/+qbBEyTXoqCJs2qUqtLrdvnS4ei0WHWu2Ns3PTSrRaprLIMpnZmZ5DntVKA0cHevm4y07bPciePXsICQnhzTffZP78+fb1Zek5ylQely5dwt/fn0mTJhEUFMSYMWPYtWsX3bt3p1WrVnZppaNHj9KtWzfatWtHt27d+OuvvwCbUzZr1iyCg4MJCQnh449t1aSaNm3KwoUL6dGjB//73//473//S3BwMEFBQcyZM6dEW7RaLf3796d9+/YEBwfblQvmzJnDp59+am/35ptv8uGHHwLwwQcfEB4eTkhICG+88Yb9nAICApg2bRrt27fnypUrTJ06lY4dOxIYGGhvBza9VH9/f3r06MGMGTPsSgM6nY4JEyYQHh5Ou3btylVRUCqVdOrUiaSkJMCmyTp+/Hh7jbjatWuzZMkSu2Px7rvvsnTpUrvOppOTE5MnTy7Wb0pKCo888gihoaGEhoZy6NAhLl26VESWaenSpbz55puATe5q/vz59O7dm7fffpumTZvaHdfc3FwaNWqEyWTi77//ZtCgQXTo0IGePXuWqKIQHx+Po6MjtWvbtMJ//vlnOnfuTLt27XjggQdISUmxfx7PPvssERERjB07ltTUVEaMGEF4eDjh4eEcPHgQKP0e+if89NNPjBs3DoBx48YVyTovIC4uji5duuDi4oJKpaJ3795s2rQJgIiICFQq2yyzLl26FNFBffjhh9mwYcM/trFchBAlvoDzwIs3resJWADP0varjlfTuo3EqiWrxMWrV0SpnPlZiGNfCqFJEUIIcSnmhIjZuU2kXr5Y+j75mM0GkXT1fyIx8VuhNySX217mzpNlNInvk9PF10mpYmdatjBbrdVtkkwlk5mZKSZNmiTIV7kLDQ0VkZGR1W3WHefMmTNFluHNIq/SWL06ski7yZO33NbxL168KJRKpTh58qSwWCyiffv24plnnhFWq1Vs3rxZDBs2TAghRHZ2tjCZTEIIIXbu3CkeffRRIYQQn376qXj00Uft29LT04UQQjRp0kS8//77QgghkpKSRKNGjcT169eFyWQSffv2FZs2bSpmi8lkEtnZ2UIIIVJTU0WLFi2E1WoVx48fF7169bK3CwgIEJcvXxbbt28XkydPFlarVVgsFjF48GDx+++/i4sXLwpJksThw4ft+xTYZTabRe/evUVMTIzQ6/WiYcOG4sKFC0IIIZ544gkxePBgIYQQ8+bNE//5z3+EELZ7tVWrVkKr1Ra7doGBgUIIIfR6vejTp4+IiYkRQgjxyCOPiM2bNxdpn5WVJby9vYUQQnh7e4usrKxyP5/HH39cfPTRR3bbs7KyihxXCCE++OAD8cYbbwghhOjdu7eYOnWqfdvQoUPFnj17hBBCbNiwQUycOFEIIUS/fv1EfHy8EEKII0eOiL59+xY79pdffilmzpxpX87IyBDW/O/iNWvW2Le98cYbon379iI3N1cIIcTo0aPFH3/8IYQQ4vLly8Lf318IUfo9VJicnBwRGhpa4is2NrZYe09PzyLLXl5exdqcOXNGtGrVSqSlpQmdTie6dOkipk+fXqzdkCFD7J+5EEIcOHBADBkypMT+bgaIFLfp85SVnNAEOHbTuj+xZZE2AU5Wrgv5D5HAwbmM0zHbxG9ROSKsVnLSbaKxHr5+5Xat0ZxCWE04OtXDybG4dp5M9aIxW9iZnoPBaqWug5o+3u4o5UjbPcWWLVuYOnUqV69excHBgddff51XXnkFdQWi5TKVT4EGJkBgYCD9+/dHkiSCg4O5dOkSYBNtHzduHOfOnUOSJPtcrl27djFlyhR71MLHx8feb4Fm7LFjx+jTp49dl3PMmDHs37+f4cOHF7FDCMH8+fPZv38/CoWCpKQkUlJSaNeuHdevX+fq1aukpqbi7e1N48aNWblyJTt27KBdu3aALWJ37tw5GjduTJMmTejSpYu97++//54vvvgCs9lMcnIyZ86cwWq10rx5c5o1awbA6NGj7fPQduzYwZYtW+zzzgwGAwkJCcWkjv7++2/CwsI4d+4cI0eOtOthCiFKHC261aSqPXv28PXXXwO2qJ6np2ep87gKKKzVO2rUKL777jv69u3Lhg0bmDZtGlqtlkOHDvHYY4/Z2+Xl5RXrJzk5uYiWamJiIqNGjSI5ORmj0Wi/bgBDhw7F2dkZsN0TZ86csW/LyclBo9GUeg8Vxt3dnejo6HKuyq0REBDAnDlzGDBgAG5uboSGhtrv1wLefvttVCoVY8aMsa/z9fXl6tWrlWpLSZTluCmBm6+SpdC2GoQEkgKluowb3JwHiRpISsTgoEAkZeLQwAcHJ+cyezabNehy/wYkPD3CKtVqmX+OxmxhR1o2eqsVPwc1fX08UClkp+1e4tixYwwbNgyArl27snbtWlmrsxBCvFF+I+DZZzvw7LMdKuWYjo43krIUCoV9WaFQ2OcsLViwgL59+7Jp0yYuXbpEnz598u0t2UEBcHV1tbcpiT///JPnnnsOgIULF5KRkUFqaipRUVGo1WqaNm2KwWD7kT5y5Eg2btzItWvXeOKJJ+z9zps3z95HAZcuXbIfG+DixYssXbqUY8eO4e3tzfjx4zEYDKXaVdD3Dz/8QJs2bUptAzfmuCUnJ9OnTx+2bNnC0KFDCQwMJDIykqFDh9rbRkVF0bZtW8DmIEdFRdGvX78y+y8JlUpVZN5ewTUqoPC5Dx06lHnz5pGRkWE/nk6nw8vLq1wHydnZmezsbPvyCy+8wMyZMxk6dCj79u2zD8/efEyr1crhw4ftjlzh/Uu6hwqj0Wjo2bNnifZ8++239utXgJ+fH8nJydSrV4/k5GR8S6nhOnHiRCZOnAjA/PnzadiwoX3bV199xdatW9m9e3eRe9lgMBQ7h6qgvKzSdyVJ+r7gBRQM3i4pvF6SpO+q2M5ykZSlfxlgtYLFCMeSYdIeDM9tgY+P4xSdXXL7QmRnR+cX2G2OWu1VqTbL/DN0+ZG2XKsVX9lpu2cJDw9nwoQJrFixgj/++EN22u4SsrOzadCgAQDr1q2zr4+IiODzzz+3O3gZGRnF9u3cuTO///47aWlpWCwW/vvf/9K7d286d+5MdHQ00dHRDB06lOzsbHx9fVGr1ezdu5fLly/b+3jiiSfYsGEDGzduZOTIkQAMHDiQL7/80p7UkpSUxPXr14sdPycnB1dXVzw9PUlJSWHbtm0A+Pv7c+HCBXtU8bvvbjz6Bg4cyMcff2x37k6cOFHm9alXrx7vvfeefXL7888/z7p16+zOUXp6OnPmzOGVV14BYN68ebzyyitcu3YNsEW8Vq5cWazf/v3789lnnwG2+YQ5OTn4+flx/fp10tPTycvLY+vWraXa5ebmRqdOnXjxxRcZMmQISqUSDw8PmjVrxv/+9z/A5qTGxMQU2zcgIIDz58/blwvfA1999VWpx4yIiOCTTz6xLxdcg9LuocIURNxKet3stIHNMS2w5auvvrL/KLyZgvsiISGBH3/8kdGjRwO20kPvv/8+W7ZswcXFpcg+8fHxReYSVhVlOW77sUXW6hR61QZ+xxapK7z+1mQHKhmrVXDlShZvvbWPo0eTijew5MtgGRSAhEFlCyQ6eZQ9mTkvLxWDIRFJUuHhEVzJVsv8E3RmCzvSc9BZLNRWq+jn44FadtruCa5cucKwYcM4fvy4fd3atWuZMWMGygrUW5SpGbzyyivMmzeP7t27F8kSnTRpEo0bNyYkJITQ0NASdUDr1avHu+++S9++fQkNDaV9+/YlPmDHjBlDZGQkHTt2ZP369fj7+9u3BQYGotFoaNCgAfXq1QNsDsKTTz5J165dCQ4OZuTIkWg0xdUcQ0NDadeuHYGBgUyYMIHu3bsDtojSp59+yqBBg+jRowd+fn72zM4FCxZgMpkICQkhKCiIBQsWlHuNhg8fTm5uLn/88Qf16tXjm2++YfLkyfj7+9OtWzcmTJjAww8/DMBDDz3E888/zwMPPEBgYCAdOnQoMSNzxYoV7N27l+DgYDp06EBsbCxqtZrXX3+dzp07M2TIkCLXqSRGjRrFN998U2QIdf369axdu5bQ0FACAwNLTL7o1asXJ06csDuvb775Jo899hg9e/a0JyyUxMqVK4mMjCQkJIS2bdvy+eefA6XfQ/+EuXPnsnPnTlq1asXOnTuZO3cuAFevXi1SRmjEiBG0bduWhx9+mFWrVuHt7Q3A9OnT0Wg0DBgwgLCwMKZMmWLfZ+/evQwePLhS7CwLqazQ791CY99Gov+gsXzzs4W1K0Yzdmxo0Qb6LIjdBF9egP/5cdEnFY2TgcavPILXmC4l9gmQmroDozEdd/cg2XGrQegsFnam5aCxWKilVvFALQ8cZFmjux6r1crq1auZM2cOGo2GPn36sHfv3uo2q8YRFxcnRx2rEa1Wi5ubG0IInn/+eVq1asXLL79c3WbVGF588UUefvhhHnjggeo25Y6Sl5dH7969OXDgQLH5cCX9z0qSFCWE6Hg7x7pnnnZmq80b9/JyKmFj/iTK1r7wcAsMQR5Q3w2n+qVL4eTmXsZoTEehdMbNrexfJzJ3jlyL1e60+ahV9JedtnuC+Ph4+vbty7Rp09BoNDzyyCMlRmJkZKqbNWvWEBYWRmBgINnZ2cXmy93vzJ8/n9zc3Oo2446TkJDAe++9V8xpqwqq/gh3CGt+4NDVtYQsM0u+4zY4AMv0Ppj2SSBJOPYuuZawEBZycmzj9x7uwSgUcuZaTUBvsbIzPRuNxYK3SkV/Hw8cZaftrsZsNrNs2TLeeOMNDAYDfn5+rFq1ihEjRlS3aTIyJfLyyy/LEbYy8PPzK5Jgcb/QqlUrWrVqdUeOdU84bgqFhH+b2ix7oD0BAXWKNyhUfNeUZ8umcXByQirloa/VncNi0aFSe+Li0qzENjJ3FoPFyq70HHLMFjxVtuFRJ6XstN3tpKSksHjxYgwGA+PGjWPZsmVFykPIyMjIyBTlnnDcJEmiXn13ho4KwtelhISDQo6bNX+Co1JVchTNas1DozkNgKdHGJIkOwfVTZ7V5rRlmc14qJQMkJ22u5q8vDxUKhVKpZIGDRqwevVqvL29GTRoUHWbJiMjI1PjuXeefmUNmRVy3CxmW0apopRxaI3mjK3YrmNdnJzqV7aVMreIMd9pyzSbcVcqGVDLE2fZabtrOXz4MO3atSuS+j969GjZaZORkZGpILf0BJRsNJIkqZskSa7l73HnKLO4dIFqgtIRa376tLIEx81s1qDVxQPg6RlWyRbK3Co6i61OW4Yp32mr7YGL7LTdlWi1Wl566SW6d+9OXFwcX3/9dZUKecvIyMjcq1T4KShJ0jQgCbgM/AG0yV//oyRJL1WJdbdAmUOaJr3tr9oZSxmOW07Oyfxiu81Qq72rwkyZCpKcZ+SX1GwyTGbclLbhUVe5htddyc6dOwkODmbFihUoFArmzZvHwYMHUciJJXctSqWSsLAwgoKCePjhh8nKyrJvi42NpV+/frRu3ZpWrVqxaNGiIooD27Zto2PHjgQEBODv78+sWbOq4Qxuj9GjRxMSEsJHH31UofZubm5VYocQghkzZtCyZUtCQkKK1Dy8uV2/fv3IycmpEjsqg0GDBuHl5cWQIUNKbZOXl8eoUaNo2bIlnTt3thdABlsR3YLEgMJFfp944gnOnTtXlaZXGxX65pQkaTawDFgD9MOmV1rAPmBUCbvdWcp6COTlwK7L8NhOLC/uhPVnUJwqWq3baExDr09AkpS4u8s126oLIQSnNbnsTteQZ7VSz9GBB2t74qqSnba7DZ1Ox8SJE4mIiODSpUuEhYVx7Ngx3nnnHZycSijbI3PX4OzsTHR0NKdPn8bHx4dVq1YBoNfrGTp0KHPnziU+Pp6YmBgOHTrEp59+CsDp06eZPn0633zzDXFxcZw+fZrmzZtXqm0lFaWtDK5du8ahQ4c4efJktWeVbtu2jXPnznHu3Dm++OILpk6dWmK7X3/9ldDQUDw8PCrcd2UVuq0os2fP5j//+U+ZbdauXYu3tzfnz5/n5ZdfZs6cOYBNdeOtt97izz//5OjRo7z11lt2XdapU6eyZMmSKre/OqhocsLzwOtCiCWSJN38BP0LaF25Zt06QghMRgtWJ4Hi5gr6Rh2k5sIpLVZXHbjnoGxfVCA3OzsaADc3f1SqGjUKfN9gtFo5mKklMc+mdBHs5kKou/MtiyzL1AycnJw4ffo0jo6OvPnmm/zrX/+SReErmW//TKiSfp/s3LjCbbt27crJkydt9nz7Ld27dyciIgIAFxcXPvnkE/r06cPzzz/PkiVLePXVV+2V+1UqFdOmTSvWp1ar5YUXXiAyMhJJknjjjTcYMWIEbm5udrmqjRs3snXrVtatW8f48ePx8fHhxIkThIWFsWnTJqKjo/Hy8gKgZcuW9ijvlClTSEiwXbfly5fbVREKMBgMTJ06lcjISFQqFcuWLaNv375ERERw/fp1wsLC+Pjjj4voY6akpDBlyhQuXLgAwGeffUa3bt2KnM+wYcPIzMzEZDKxePFihg0bhk6n4/HHHycxMRGLxcKCBQsYNWoUc+fOZcuWLahUKiIiIuzC9QX89NNPjB07FkmS6NKlC1lZWXb9zcKsX7+eZ5991r48fPhwrly5gsFg4MUXX7Rvc3NzY+bMmWzfvp0PP/yQS5cusXLlSoxGI507d+bTTz9FqVQydepUjh07hl6vZ+TIkbz11lsVuUXKpH///uzbt6/MNj/99JNd53TkyJFMnz4dIQTbt29nwIAB9kz0AQMG8NtvvzF69Gh69uzJ+PHjMZvNd6S22p2komdTF4gqZZsVqNafzxaLlS1b45nyUjw7fnyOvn0LlfAw5oLVDBoBVhUWyTavRlnrhnOm1ydiNKaiUDjKxXariUyTmd8zNGgsFtSSRA9vdxo6OVS3WTK3SIGOYt26dVEqlXz99dcA5Qpvy9ydWCwWdu/ebRfjjo2NpUOHokL2LVq0QKvVkpOTw+nTp/nXv/5Vbr+LFi3C09OTU6dOAdijKGURHx/Prl27UCqVWK1WNm3axDPPPMOff/5J06ZN8fPz48knn+Tll1+mR48eJCQkMHDgQOLi4or0UxA9PHXqFGfPniUiIoL4+Hi2bNnCkCFDShRanzFjBr1792bTpk1YLBa7c1mAk5MTmzZtwsPDg7S0NLp06cLQoUP57bffqF+/Pr/88gtg0+bMyMhg06ZNnD17FkmSigxDF5CUlESjRo3syw0bNiQpKamY43bw4EFWr15tX/7yyy/x8fFBr9cTHh7OiBEjqFWrFjqdjqCgIBYuXEhcXBzvv/8+Bw8eRK1WM23aNNavX8/YsWN5++238fHxwWKx0L9/f06ePElISEiRY37wwQesX7++mM29evUqUVu1IhQ+X5VKhaenJ+np6aVeBwCFQkHLli2JiYkpdk/e7VTUcTsP9AZ2l7CtF3Cm0iy6TUT+POdi0Rlj/j9Qtm0o1aqwzbVQ5DtuQljJyYkGwN0jGIVCdhbuNH/nGvgzW4dFCLxVKnr7uOMuD43eVQgh+Prrr3n55Zfp2bMnmzdvRpIk2WGrYm4lMlaZ6PV6wsLCuHTpEh06dGDAgAGA7T4oLUJ+K5HzXbt2sWHDBvtygU5kWTz22GN2LdtRo0axcOFCnnnmGTZs2GDX3Ny1axdnztx4XOXk5KDRaHB3v1FG6sCBA7zwwguATVS+SZMmxMfHlzncuGfPHvuPFKVSadcvLUAIwfz589m/fz8KhYKkpCRSUlIIDg5m1qxZzJkzhyFDhtCzZ0/MZjNOTk5MmjSJwYMHlzj3qySpypKub0ZGRpFzW7lyJZs2bQJsmsDnzp2jVq1aKJVKe9Hr3bt3ExUVRXh4OGD7rH19bXLk33//PV988QVms5nk5GTOnDlTzHGbPXs2s2fPLvVa3Q6lnW9518HX15erV6/ec45bRWcHLwfmSpL0GlBQGthXkqSJwEygYjM1AUmSBkmS9JckSeclSZpbRrtwSZIskiSNrEi/BR+gp6dj0Q15+QLC/+oNOx/D8lpnGB2AspkttKrTncds1qBSeeDqUrKSgkzVYBGCP7O0HMrSYhGCFs5ODKrtKTttdxmXL1/mwQcfZPz48WRmZpKXl3dfSt7cTxTMcbt8+TJGo9EepQoMDCQyMrJI2wsXLuDm5oa7uzuBgYFERZU2eHOD0hzAwusMBkORba6uN0ZRunbtyvnz50lNTWXz5s08+uijgE0P9/Dhw0RHRxMdHU1SUlIRx6bg2JXN+vXrSU1NJSoqiujoaPz8/DAYDLRu3ZqoqCiCg4OZN28eCxcuRKVScfToUUaMGMHmzZtLLJXTsGFDrly5Yl9OTEykfv3i5atUKpU9e3vfvn3s2rWLw4cPExMTQ7t27ezX0MnJye70CiEYN26c/Rr99ddfvPnmm1y8eJGlS5eye/duTp48yeDBg4t9BmCLuIWFhRV7zZgx47avX+HzNZvNZGdn4+PjU+51MBgMODs73/ZxayoVctyEEP8GXgXmALH5q38FVgBvCiEqJCqYPz9uFfAg0BYYLUlS21LavQ9sr0i/hfHxuelDKoi41feFMD8sIT7Qsa59qFSns2WdeHiEyMV27yA6s4UdadnE5xpQINHF041u3m6obp6fKFNjsVqtrFq1iqCgILZv3463tzdfffUV27ZtK/IQlbl38fT0ZOXKlSxduhSTycSYMWM4cOAAu3btAmzRmhkzZvDKK68AtmjMO++8Q3y8reyS1Wpl2bJlxfqNiIgoUuuvYKjUz8+PuLg4+1BoaUiSxCOPPMLMmTMJCAigVq1aJfZb0rBnr1697EN98fHxJCQklBs57t+/P5999hlgGz6+OYszOzsbX19f1Go1e/fu5fLlywBcvXoVFxcXnnrqKWbNmsXx48fRarVkZ2fz0EMPsXz58hJtHDp0KF9//TVCCI4cOYKnp2exYVKwTVEomHeXnZ2Nt7c3Li4unD17liNHjpR6Lhs3buT69euALWp3+fJlcnJycHV1xdPTk5SUFLZt21bi/rNnz7Y7fYVftztMWnC+BRmjGzdupF+/fkiSxMCBA9mxYweZmZlkZmayY8cOBg4caN8vPj6ewMDA2z5uTaXCnooQ4gOgPvAQ8FT+3wb56ytKJ+C8EOKCEMIIbACGldDuBeAH4HpFOlUqFYwcGUhs7DQaNrwpnJ2X77g52NKyC8qBKJRKjMYMzOYcFApHnJwa3MJpyPwTrhqM/JKWTZrJjKtSycDanrRylbMM7yYK5rhMnz4drVbLyJEjiYuLs0+Ylrl/aNeuHaGhoWzYsAFnZ2d++uknFi9eTJs2bQgODiY8PJzp06cDEBISwvLlyxk9ejQBAQEEBQWRnJxcrM/XXnuNzMxMgoKCCA0NZe/evQC89957DBkyhH79+pXoqBRm1KhRfPPNN/ZhUrANFUZGRhISEkLbtm35/PPPi+03bdo0LBYLwcHBjBo1inXr1uHo6FisXWFWrFjB3r17CQ4OpkOHDsTGxhbZPmbMGCIjI+nYsSPr16+3J2ecOnWKTp06ERYWxttvv81rr72GRqNhyJAhhISE0Lt37xJLjzz00EM0b96cli1bMnnyZHvW7s0MHjzYPvF/0KBBmM1mQkJCWLBgAV26dClxn7Zt27J48WIiIiIICQlhwIABJCcnExoaSrt27QgMDGTChAnFkjpul549e/LYY4+xe/duGjZsyPbttnjN66+/zpYtWwCYOHEi6enptGzZkmXLlvHee+8B4OPjw4IFCwgPDyc8PJzXX3/dnqiQkpKCs7NzuffJ3YhUFWHhUg9mG/YcJISYlL/8NNBZCDG9UJsGwLfYyo6sBbYKITaW0NezwLMATfwadlj40TsMGjYQXxffog3P7YLsK9CyP3g1Ju7APkwGA2269URvOotOG4+rW2u8PO+tMfCaiBCCU1o9MRrbMFo9Rwd6eLnJ8lV3KXPmzOHrr79m1apV9qEomaonLi6OgICA6jZD5i4gOTmZsWPHsnPnzuo25Y7z0Ucf4eHhYU+cqU5K+p+VJClKCNHxdvqrUHJCfvHdMhFClOzy39RVSbvetLwcmCOEsJT1y10I8QXwBUCzek1K9z6t+TV9FCosZhMmgwFJoUDt5ERGti0l3MW5aQVMl/kn5OWX+kjKL/UR4u5CiJtc6uNu4sSJE2RlZdG3b18A3nzzTebOnVuhieMyMjJ3nnr16jF58mRycnJuqZbbvYCXlxdPP/10dZtRJVQ0q/STMrYVOE0VcdwSgUaFlhsCV29q0xHYkP9Arw08JEmSWQixuWKm3mxdfjFBSYkhP0XbydUNozEFq9WASuWBg0Ot2+papmKkG83sz9SgtVhwkBT08HajgVzq467BYDCwcOFClixZgp+fH2fOnMHT0xNnZ+d7cuKvjMy9xOOPP17dJlQLzzzzTHWbUGVUyHETQhQby5IkyQsYiC1hYXQFj3cMaCVJUjNs8llPAE/edCx7ETZJktZhGyrdXMH+i2O1QHQK/HUBQ0NXsFpxcnMjN/ciAC4uTW+7a5nyOZ9r4GiWDgsCH7WK3t7uuMlZo3cNBw8eZOLEifz1119IksRjjz12zxWzlJGRkbmbuO1vYCFEFvCdJEmewGqgTwX2MUuSNB1btqgS+FIIEStJ0pT87cVniv5ThBX2XoHf/8DglAdeuajfehiDt61In7M8TFolWITgaLaO87m2dPGWLk508nRFKQ+N3hVoNBrmz5/PqlWrEEIQEBDA2rVr6dq1a3WbJiMjI3NfUxk/nS9iG96sEEKIX7GVEim8rkSHTQgxvoJ9cuFCBjExKQzoelNygtkEKToQEgaVCUxWpCZWhLDg4Ogry1tVAVqzhd8zNWSYzCiR6OTlSksXOWv0bmLIkCHs378flUrF3Llzee2118rNrJORkZGRqXr+keMmSVI94F/YnLdqw2oVREZe5Wp6LAO63iQQn6IDkxWEAoPaBG4OCB8tCDkpoSpIMhg5kKnFKKy4KZX08nanloM8tHa3MW/ePHQ6HWvXriU0NLS6zZGRkZGRyadCdRgkSUqVJOn6Ta8sbMkGPYFZVWlkRVGrSzgdtYB+jTH1aoDFWw2NnbGITCRJibNzo+LtZW4LIQQxmlz2ZORgFFYaODrwUB1P2Wm7S9i4cSOLFi2yLw8aNIijR4/KTptMiSiVSsLCwggKCuLhhx8uoqcZGxtLv379aN26Na1atWLRokVF1Ai2bdtGx44dCQgIwN/fn1mzasTjo0KMHj2akJCQEmurlYSbm1uV2HH27Fm6du2Ko6NjMQH6wggh6NevX7GCwDWJr776ilatWtGqVSt7kd2buXz5Mv379yckJIQ+ffqQmJhoX9+hQwfCwsIIDAwsUpfviSee4Ny5c3fkHO40/ySr1IDNcftNCJFeeSZVMl4OMLgFuc/2gFgvVC62CtxOTg1kXdJKIs9q5UCmlqv5pT5C3V0Ilkt93BUkJyczffp0fvzxRyRJYujQoXZnTaGQ6+vJlEyB5BXAuHHjWLVqFa+++ip6vZ6hQ4fy2WefERERQW5uLiNGjODTTz/l+eef5/Tp00yfPp1ffvkFf39/zGYzX3zxRaXaZjabqySB5tq1axw6dMiuelCd+Pj4sHLlSjZv3lxmu19//ZXQ0NBbKgVisVjs8ldVTUZGBm+99RaRkZFIkkSHDh0YOnRosRJDs2bNYuzYsYwbN449e/Ywb948/vOf/1CvXj0OHTqEo6MjWq2WoKAghg4dSv369Zk6dSpLlixhzZo1d+Rc7iTl3t2SJKmBXcBFIcTNpTtqBJIk0bp1bdp1aVh8Y345EE2GzbdUuesBZ1xcmhVvK3PLpBvN/J6pQWex4KhQ0MPLjfpyqY8ajxCCdevWMXPmTLKysnB3d2fJkiUEBweXv7NMzSHy/6qm344VL6XQtWtXTp48CcC3335L9+7diYiIAMDFxYVPPvmEPn368Pzzz7NkyRJeffVVu3KASqVi2rTiZUK1Wi0vvPCC/YH+xhtvMGLECNzc3NDml3XauHEjW7duZd26dYwfPx4fHx9OnDhBWFgYmzZtIjo6Gi8vLwBatmzJwYMHUSgUTJkyhYQEWw3P5cuXF1MAMBgMTJ06lcjISFQqFcuWLaNv375ERERw/fp1wsLC+Pjjj+nZs6d9n5SUFKZMmWKXl/rss8/o1q1bkfMZNmwYmZmZmEwmFi9ezLBhw9DpdDz++OMkJiZisVhYsGABo0aNYu7cuWzZsgWVSkVERESxqJqvry++vr788ssvZX4269ev59lnn7UvDx8+nCtXrmAwGHjxxRft29zc3Jg5cybbt2/nww8/5NKlS6xcuRKj0Ujnzp359NNPUSqVTJ06lWPHjqHX6xk5ciRvvfVWmccvj+3btzNgwAC72sGAAQP47bffGD26aKGKM2fO2KOcffv2Zfjw4QA4ONx41uTl5dl1WcGmyDB+/Pgqc+Srk4qcjQXYg03iqkY6bgqFRFhYXQYObFl8o7XAccvASjZqF1AoHHF0rHuHrbz3SDQY2Z+pwSIEtfJLfbjKpT5qPBcvXuTZZ5+160k++OCDrF69mkaN5KkDMreGxWJh9+7d9ur0sbGxdOhQVIWmRYsWaLVacnJyOH36NP/617/K7XfRokV4enpy6tQp4IZWaVnEx8eza9culEqlXcv0mWee4c8//6Rp06b4+fnx5JNP8vLLL9OjRw8SEhIYOHAgcXFxRfpZtWoVYJOjOnv2LBEREcTHx7NlyxaGDBlSonbojBkz6N27N5s2bcJisdidywKcnJzYtGkTHh4epKWl0aVLF4YOHcpvv/1G/fr17Q5YdnY2GRkZbNq0ibNnzyJJUpFh6Fvl4MGDrF692r785Zdf4uPjg16vJzw8nBEjRlCrVi10Oh1BQUEsXLiQuLg43n//fQ4ePIharWbatGmsX7+esWPH8vbbb+Pj42OXvDt58iQhISFFjvnBBx/YtV4L06tXr2J6pUlJSUW+dxo2bEhSUlKxfUNDQ/nhhx948cUX2bRpExqNhvT0dGrVqsWVK1cYPHgw58+f54MPPrCLzCsUClq2bElMTEyxe/Jup1zHTQhhlSTpHOB3B+ypXPKdNr3BjCkvD6sqCbVTPVxdW8qC8v+QOK2eqJxcBIJmzo509XKTS33cJSxYsIBdu3ZRq1YtVqxYwZNPPikPa9+t3EJkrDLR6/WEhYVx6dIlOnTowIABAwBbJLe0e+lW7rFdu3axYcMG+3JF1Dkee+wx+xDfqFGjWLhwIc888wwbNmyw65Xu2rWLM2fO2PfJyclBo9Hg7u5uX3fgwAFeeOEFAPz9/WnSpAnx8fFlDjfu2bOHr7/+GrDN//P09CyyXQjB/Pnz2b9/PwqFgqSkJFJSUggODmbWrFnMmTOHIUOG0LNnT8xmM05OTkyaNInBgwczZMiQcs+9NDIyMoqc28qVK9m0aRMAV65c4dy5c9SqVQulUsmIESMA2L17N1FRUYSHhwO2z9rX11at4fvvv+eLL77AbDaTnJzMmTNnijlus2fPZvbs2RWyryTJzZLuk6VLlzJ9+nTWrVtHr169aNCggT2K1qhRI06ePMnVq1cZPnw4I0eOxM/P5q74+vpy9erVe85xq6j38irwuiRJd9c4itlWQ0yjM2IhHbWrFaXCETc3WefvdhFCcCxbR2SODoEgxN2FHt7ustNWw7FYLPb3S5cuZcKECZw5c4YxY8bITpvMLVMwx+3y5csYjUZ7lCowMJDIyMgibS9cuICbmxvu7u4EBgYSFRVVbv+lOYCF1xkMhiLbXF1vlHbq2rUr58+fJzU1lc2bN9u1dK1WK4cPHyY6Opro6GiSkpKKODYFx65s1q9fT2pqKlFRUURHR+Pn54fBYKB169ZERUURHBzMvHnzWLhwISqViqNHjzJixAg2b97MoEGDbvu4KpXKPny4b98+du3axeHDh4mJiaFdu3b2a+jk5GR3eoUQjBs3zn6N/vrrL958800uXrzI0qVL2b17NydPnmTw4MHFPgOwRdzCwsKKvWbMmFGsbcOGDbly5Yp9OTEx0R4xK0z9+vX58ccfOXHiBG+//TZAMee4fv36BAYG8scff9jXGQyGe1LdpVTHTZKkXpIkFaTEvAbUAqIlSUqQJOmYJElHC7/uiLW3iuYaADlGJSYu4eTmjrt7EAqFupoNuzsxWQX7MjSc1elRINHdy51Qd5fqNkumDArm0/Tq1Quz2abbW7duXdauXWv/FS0jc7t4enqycuVKli5dislkYsyYMRw4cMA+DK/X65kxYwavvPIKYIvGvPPOO8THxwM2R2rZsmXF+o2IiOCTT27kxBUMlfr5+REXF2cfCi0NSZJ45JFHmDlzJgEBAdSqVavEfksa9uzVq5d9qC8+Pp6EhATatGlT5nXo378/n332GWD7kXRzFmd2dja+vr6o1Wr27t1rT3C4evUqLi4uPPXUU8yaNYvjx4+j1WrJzs7moYceYvny5SXaWFHatGljn3eXnZ2Nt7c3Li4unD17liNHjpR6Lhs3buT69euALWp3+fJlcnJycHV1xdPTk5SUFLZt21bi/rNnz7Y7fYVfNw+TAgwcOJAdO3aQmZlJZmYmO3bsYODAgcXapaWl2R3Qd999lwkTJgA2R0+v1wO2e+TgwYNFPqv4+HgCAwMrernuGsqKuO0F2ua/Pw1sBb4Gducvx970qnkkXIT3j5KzNRrx59+4/q7B1bWEeXAy5ZJrsbIjPZvEPCMOkoIHannQ3EUuyFqTiYqKomPHjixYsIBDhw6xc+fO6jZJ5h6kXbt2hIaGsmHDBpydnfnpp59YvHgxbdq0ITg4mPDwcKZPnw5ASEgIy5cvZ/To0QQEBBAUFERycnKxPl977TUyMzMJCgoiNDSUvXv3AvDee+8xZMgQ+vXrR7169cq0a9SoUXzzzTf2YVKwDRVGRkYSEhJC27Zti5SPKGDatGlYLBaCg4MZNWoU69atK7f49IoVK9i7dy/BwcF06NCB2Niij8QxY8YQGRlJx44dWb9+vT0549SpU3Tq1ImwsDDefvttXnvtNTQaDUOGDCEkJITevXuXWHrk2rVrNGzYkGXLlrF48WIaNmxYYsmPwYMHs2/fPsBW4sdsNhMSEsKCBQvo0qVLiefStm1bFi9eTEREBCEhIQwYMIDk5GRCQ0Np164dgYGBTJgwoVhSx+3g4+PDggULCA8PJzw8nNdff92eqPD666+zZcsWwBYtbNOmDa1btyYlJYVXX30VgLi4ODp37kxoaCi9e/dm1qxZ9gSrlJQUnJ2dy71P7kak0sLCkiRZgS5CiJoZTStEs3pNxFvLFjNo2EB8XQpFEX5Zi2XpHqJaGRCSgpCrvXH+eXr1GXqXkmkyszfDljnqrlTS18cdT/W9laVzL6HX63nzzTdZunQpVquV5s2bs2bNGvr161fdpslUAnFxcQQEyNM9ZMonOTmZsWPH3pc/2j766CM8PDzsiTPVSUn/s5IkRQkhKqw6VZh7Yoa+1WJl27ZzfPJJIR/TpIfMLDR18hAKCaXWCWeHEsqFyJTJVYOR39Ky0Vks1FGrGVTbU3baajB//PEHoaGhLFmyBICZM2dy8uRJ2WmTkbkPqVevHpMnT67RBXirCi8vL8aNG1fdZlQJ5T2BH5Ikyb8iHQkhvq4Ee24LAWg0eaSn595YaTFh0ejQ+OrB7IL6kg+EyPOxboV4nYGj2bYkhKZOjnTzljNHazqnTp3i3LlzBAYGsnbtWjp37lzdJsnIyFQjjz/+eHWbUC0880z1ZFzfCcpz3F6vYD8C2/y3moOwovE3Ixo2QZnuh7ptG+gly/dUBCEEJ3JyidXZJn0GubkQ5i4rIdRUEhMTadjQFk2eMmUKarWacePGFSlOKSMjIyNzb1DeUGlfwL0Cr4rraVQhjoV1MYWVPCc9oo4LqoZtkdrXhbC7rxTdncZsFezP1BKbnzna1cuNdh4ustNWA0lLS+Opp57C39/fnqWmUCiYPHmy7LTJyMjI3KOUF3HTCyF0d8SSf4BCKRER0YI+AwtF1IQVizCC5ICEHC2qCHqLlX0ZOaSZzKglid4+7tRzlB2AmoYQgu+//54XXniB1NRUnJ2dOX78OE2aNKlu02RkZGRkqph7Ypa5hISXlzN1694opGgx5yKwAiokVEgKWYqpLLLyM0e1FguuSiX9fNzxkpMQahxXr15l2rRp/PTTTwD06dOHNWvW0LKlXOZGRkZG5n7gnsgqLQmL2RYoVGCrvyMp5IhbaVzLM/FbWjZai4XaahUP1vaUnbYayJYtW2jbti0//fQTHh4erF69mt27d8tOm8wdR6lUEhYWRlBQEA8//HARPc3Y2Fj69etH69atadWqFYsWLSqiRrBt2zY6duxIQEAA/v7+zJo1qxrO4PYYPXo0ISEhJdZWKwk3N7fyG90G69evJyQkhJCQELp160ZMTEyJ7YQQ9OvXr0ZnlX711Ve0atWKVq1a8dVXX5XY5vLly/Tv35+QkBD69OlDYmKifVtCQgIREREEBATQtm1bLl26BMATTzzBuXPn7sQp3HmEEHf9q2ndRuKrb78WWYYsUUBuylGReHC6SDryrojZuU3EHz0kZIpzXqcX3ySlia+TUsW+9Bxhslir2ySZUoiJiREqlUoMGTJEXLlypbrNkakmzpw5U90mCFdXV/v7sWPHisWLFwshhMjNzRXNmzcX27dvF0IIodPpxKBBg8Qnn3wihBDi1KlTonnz5iIuLk4IIYTJZBKrVq2qVNtMJlOl9ldAcnKyaNy48S3tU/g6VSYHDx4UGRkZQgghfv31V9GpU6cS223dulW89NJLt9S32Wz+x/ZVlPT0dNGsWTORnp4uMjIyRLNmzeznVZiRI0eKdevWCSGE2L17t3jqqafs23r37i127NghhBBCo9EInU4nhBBi3759YtKkSXfgLMqnpP9ZIFLcps9zT4VVHJQ35mOZzVq4pkNSWsBiQPLwLGPP+5NL+jwOZWkBaOvqTHs5CaFGYbFY+Pnnnxk2bBiSJBESEsKJEycIDAyUPycZAP4X/78q6fex1o9VuG3Xrl05efIkAN9++y3du3cnIiICABcXFz755BP69OnD888/z5IlS3j11VftygEqlYpp06YV61Or1fLCCy8QGRmJJEm88cYbjBgxAjc3N7Ra23fWxo0b2bp1K+vWrWP8+PH4+Phw4sQJwsLC2LRpE9HR0Xh5eQHQsmVLDh48iEKhYMqUKSQkJACwfPnyYgoABoOBqVOnEhkZiUqlYtmyZfTt25eIiAiuX79OWFgYH3/8MT179rTvk5KSwpQpU+zyUp999hndunUrcj7Dhg0jMzPTLkM3bNgwdDodjz/+OImJiVgsFhYsWMCoUaOYO3cuW7ZsQaVSERERwdKlS4vYWLjvLl26FIlAFWb9+vU8++yz9uXhw4dz5coVDAYDL774on2bm5sbM2fOZPv27Xz44YdcunSJlStXYjQa6dy5M59++ilKpZKpU6dy7Ngx9Ho9I0eO5K233irxuBVl+/btDBgwwK6WMGDAAH777TdGjx5dpN2ZM2fsUc6+ffsyfPhw+3qz2cyAAQPs51FAz549GT9+PGaz2S5If69wT52No/KGLInFooPDV1GcNUNCDgqzMxxsB15O1WhhzSHdaLY7be09XAl0u/eEeO9mYmNjmThxIn/++Sfff/89jz1me5AGBQVVs2UyMjewWCzs3r3bXp0+NjaWDh06FGnTokULtFotOTk5nD59mn/961/l9rto0SI8PT05deoUcEOrtCzi4+PZtWsXSqXSrmX6zDPP8Oeff9K0aVP8/Px48sknefnll+nRowcJCQkMHDiQuLi4Iv2sWrUKsNVEPHv2LBEREcTHx7NlyxaGDBlSonbojBkz6N27N5s2bcJisdidywKcnJzYtGkTHh4epKWl0aVLF4YOHcpvv/1G/fr1+eWXXwCbnmhGRgabNm3i7NmzSJJUZBi6JNauXcuDDz5Y4raDBw+yevVq+/KXX36Jj48Per2e8PBwRowYQa1atdDpdAQFBbFw4ULi4uJ4//33OXjwIGq1mmnTprF+/XrGjh3L22+/jY+PDxaLhf79+3Py5ElCQkKKHPODDz6wa70WplevXsX0SpOSkmjUqJF9uWHDhiQlJRXbNzQ0lB9++IEXX3yRTZs2odFoSE9PJz4+Hi8vLx599FEuXrzIAw88wHvvvYdSqUShUNCyZUtiYmKK3ZN3O/eE4yYEZGbkkZNtxCvfMbNossFsRcqznaKkVICnrK0JtuzR3zM1WISghbOT7LTVIIxGI++99x6LFy/GZDLRoEEDPDxqRLUdmRrIrUTGKhO9Xk9YWBiXLl2iQ4cO9oiHEKLUaPCtRIl37drFhg0b7Mve3t7l7vPYY4+hVNqS0EaNGsXChQt55pln2LBhg12vdNeuXZw5c8a+T05ODhqNBnf3G4ltBw4c4IUXXgDA39+fJk2aEB8fX+b/4Z49e/j6a1spU6VSiadn0REeIQTz589n//79KBQKkpKSSElJITg4mFmzZjFnzhyGDBlCz549MZvNODk5MWnSJAYPHsyQIUNKPe7evXtZu3YtBw4cKHF7RkZGkXNbuXIlmzZtAuDKlSucO3eOWrVqoVQqGTFiBAC7d+8mKiqK8PBwwPZZ+/rapCS///57vvjiC8xmM8nJyZw5c6aY4zZ79mxmz55dqs03X5ebKek+Wbp0KdOnT2fdunX06tWLBg0aoFKpMJvN/PHHH5w4cYLGjRvbtWULfkj4+vpy9erVe85xuyeSE6xWwfZtlzhwIMG+zpKRAYCiwHHzdgZ5eAmrEOzP1NglrDp7uVa3STL5HDt2jI4dO/LGG29gMpl47rnniI2NZeDAgdVtmoxMEZydnYmOjuby5csYjUZ7lCowMJDIyMgibS9cuICbmxvu7u4EBgYSFRVVbv+lOYCF1xkMhiLbXF1vfJd17dqV8+fPk5qayubNm3n00UcBsFqtHD58mOjoaKKjo0lKSiri2BQcu7JZv349qampREVFER0djZ+fHwaDgdatWxMVFUVwcDDz5s1j4cKFqFQqjh49yogRI9i8eTODBg0qsc+TJ08yadIkfvrpJ2rVqlViG5VKhdVqBWxC7bt27eLw4cPExMTQrl07+zV0cnKyO71CCMaNG2e/Rn/99RdvvvkmFy9eZOnSpezevZuTJ08yePDgYp8B2CJuYWFhxV4zZswo1rZhw4ZcuXLFvpyYmEj9+vWLtatfvz4//vgjJ06c4O233wbA09OThg0b0q5dO5o3b45KpWL48OEcP37cvp/BYMDZ+d4LTNwTjhuAMIOT040AollpgMYeSLW9Qa1AqiPLXQEczdZx3WjCRaGgl4+7LGFVQ9i6dStdunTh1KlTtGjRgr179/L5558X++UuI1OT8PT0ZOXKlSxduhSTycSYMWM4cOAAu3btAmzRmhkzZvDKK68AtmjMO++8Q3x8PGBzpJYtW1as34iICD755BP7csFQqZ+fH3Fxcfah0NKQJIlHHnmEmTNnEhAQYHdsbu63pGHPXr162Yf64uPjSUhIoE2bNmVeh/79+/PZZ58BtuHjm7M4s7Oz8fX1Ra1Ws3fvXnvB7KtXr+Li4sJTTz3FrFmzOH78OFqtluzsbB566CGWL19eoo0JCQk8+uij/Oc//6F169al2tWmTRv7vLvs7Gy8vb1xcXHh7NmzHDlypNRz2bhxI9evXwdsUbvLly+Tk5ODq6srnp6epKSksG3bthL3nz17tt3pK/y6eZgUYODAgezYsYPMzEwyMzPZsWNHiT9U09LS7A7ou+++y4QJEwAIDw8nMzOT1NRUwBb5bNu2rX2/+Ph4AgMDS70+dyv3juNmUeLoaPvFYLUaEV5KpM4NMP+rK7zbC4dXe5bTw73PXzoD53INKJHo7eOBi/Ke+fjvevr160fLli2ZNWsWJ0+epE+fPtVtkoxMhWjXrh2hoaFs2LABZ2dnfvrpJxYvXkybNm0IDg4mPDyc6dOnAxASEsLy5csZPXo0AQEBBAUFkZycXKzP1157jczMTIKCgggNDWXv3r0AvPfeewwZMoR+/fpRr169Mu0aNWoU33zzjX2YFGxDhZGRkYSEhNC2bVs+//zzYvtNmzYNi8VCcHCwfejN0bHsaTYrVqxg7969BAcH06FDB2JjY4tsHzNmDJGRkXTs2JH169fbkzNOnTpFp06dCAsL4+233+a1115Do9EwZMgQQkJC6N27d4mlRxYuXEh6ejrTpk0jLCyMjh07lmjX4MGD2bdvHwCDBg3CbDYTEhLCggUL6NKlS4n7tG3blsWLFxMREUFISAgDBgwgOTmZ0NBQ2rVrR2BgIBMmTCiW1HE7+Pj4sGDBAsLDwwkPD+f111+3Jyq8/vrrbNmyBbBFC9u0aUPr1q1JSUnh1VdfBWzD0kuXLqV///4EBwcjhGDy5MmALWHE2dm53PvkbkSqirDwnaaJXyPRu98MXnl1HEFBvphMWVw/vxZV1jUMuR3JFp40bBuMT/0G1W1qtXEtz8Tu9BysCHp4udPMRZ7vV51kZ2fzzjvv8Oqrr9rnzhgMBpyc5OQZmbKJi4sjICCgus2QuQtITk5m7Nix7Ny5s7pNueN89NFHeHh42Oe7VScl/c9KkhQlhCjZ4y6HeyI5QaGQGD0qlKAg2wRKiyUXhAUlDrYxeEdPnKqoEOLdgNZsYX+mBiuCQFdn2WmrZrZu3cqUKVNISkpCq9Xa5wfJTpuMjExlUq9ePSZPnkxOTs59l+Tk5eXF008/Xd1mVAn3hON2M2azFoRAgZq8PBM4gZPr/em4mayCvRka8qxW6js60M5DnutXXaSmpvLiiy/y3//+F4DOnTuXWMNKRkZGprJ4/PHHq9uEauGZZ56pbhOqjHtykpPForOJzJskQMLB2QWF8v7TKhVCcChLS5bZjLtSSU9vN7lwazUghODbb78lICCA//73v7i4uPDRRx9x8ODBe3LirIyMjIxM1XFPRtxsQ6VWzHkSSEqc3NzL3+ke5JRWT4IhD7Uk0dfHHQfFPemn13iOHj3KmDFjAFvG1hdffEHz5s2r2SoZGRkZmbuRe9Nx+z0eTv6FOVMNeVacezWHkPL3u5dI0OcRo8kFoIe3O56yaHy1UTAk2r59eyZMmCBHPWVkZGRkbpt7MgRjvpYK1zQY2RI6bgAAbFZJREFU43PgeCqOF4oXCbyXyTSZOVBIzqqhk0M5e8hUJufPn+eBBx7g6NGj9nWrVq1i4sSJstMmIyMjI/OPuOccN6vVjFWvAwFmswJQ4FDn/iliarBY2Zdhk7Nq5uwoy1ndQcxmM0uXLiU4OJjdu3czb9686jZJRqZKUCqVhIWFERQUxMMPP1xETzM2NpZ+/frRunVrWrVqxaJFi4qoEWzbto2OHTsSEBCAv78/s2bNqoYzuD1Gjx5NSEhIibXVSsKtiqoZ/PTTT4SEhNhruJUmeSWEoF+/fsUKAtckvvrqK1q1akWrVq346quvSmxz+fJl+vfvT0hICH369CExMdG+LSEhgYiICAICAmjbti2XLl0C4IknnuDcuXN34hTuPEKIu/7VtG4j8eum7UIIIYzGbJH4zqsieeIj4nTE4yKm4wvC+GOsuF/YlZYtvk5KFVuvZwqTxVrd5tw3xMTEiI4dOwpAAOLpp58WaWlp1W2WzD3ImTNnqtsE4erqan8/duxYsXjxYiGEELm5uaJ58+Zi+3bb97FOpxODBg0Sn3zyiRBCiFOnTonmzZuLuLg4IYQQJpNJrFq1qlJtM5lMldpfAcnJyaJx48a3tE/h61SZaDQaYbXavt9jYmJEmzZtSmy3detW8dJLL91S32az+R/bV1HS09NFs2bNRHp6usjIyBDNmjUTGRkZxdqNHDlSrFu3TgghxO7du8VTTz1l39a7d2+xY8cOIYTtuuh0OiGEEPv27ROTJk26A2dRPiX9zwKR4jZ9nntu4pPFooOnA1H8pcKyNwNS66FqWae6zbojnM81cDXPiIOkoI+POyqFPCxX1eTl5fHOO+/wzjvvYDabadSoEatXr+bBBx+sbtNk7gMyv/u+Svr1HlXxEhJdu3bl5MmTAHz77bd0796diIgIAFxcXPjkk0/o06cPzz//PEuWLOHVV1+1KweoVKoSS+JotVpeeOEFIiMjkSSJN954gxEjRuDm5oZWa5sGsnHjRrZu3cq6desYP348Pj4+nDhxgrCwMDZt2kR0dDReXl4AtGzZkoMHD6JQKJgyZQoJCTZd6+XLlxdTADAYDEydOpXIyEhUKhXLli2jb9++REREcP36dcLCwvj444/p2fOGGk9KSgpTpkyxy0t99tlndOvWrcj5DBs2jMzMTEwmE4sXL2bYsGHodDoef/xxEhMTsVgsLFiwgFGjRjF37ly2bNmCSqUiIiKCpUuXFrGxcCRPp9OVOgVj/fr1PPvss/bl4cOHc+XKFQwGAy+++KJ9m5ubGzNnzmT79u18+OGHXLp0iZUrV2I0GuncuTOffvopSqWSqVOncuzYMfR6PSNHjuStt94q8bgVZfv27QwYMMCuljBgwAB+++03Ro8eXaTdmTNn7FHOvn37Mnz4cPt6s9nMgAEDil2Xnj17Mn78eMxmMyrVveXq3FtnQ35GqQTC3RmaeaLuG4QUfO87brkWK5HZOgA6ebrieh+WP6kOMjIyWLFiBWazmeeff5533323mGi1jMy9isXy/+3de1hU1f748ffiotwUhZQ0M+/IbQZCSjI0JdACU6Mys1RM62RmpVKZl0yxrKzMNMtz6qg/KepYqKfyEoSZZhoYooChXxUVOYhA3ARhhvX7Y3AHMiKagOB6Pc88tWfWXnvtvQE/s9Ze62MkLi5OW50+JSUFX1/fGmV69uxJcXExhYWFHDx4kBkzZly23oULF+Lo6MiBAweAv3KV1iU9PZ3Y2FgsLS21XKbh4eHs2bOHbt264eLiwmOPPcaLL77I3XffzYkTJxg6dChpaWk16rmwIPaBAwc4dOgQwcHBpKens2nTJkJDQ83mDp02bRqDBg0iJiYGo9GoBZcX2NjYEBMTQ9u2bTl79iz9+/fngQceYMuWLXTu3JnvvvsOMGVUycvLIyYmhkOHDiGEqDEMXV1MTAyzZs3izJkz2v4X27VrF5988om2/dlnn+Hk5ERpaSl+fn6EhYXh7OxMSUkJnp6eLFiwgLS0NN566y127dqFtbU1U6ZMISoqinHjxrFo0SKcnJwwGo0EBgaSnJyMTldz5t8777yj5XqtbuDAgbXylWZmZnLrrbdq2126dCEzM7PWvnq9nq+//prnn3+emJgYioqKyM3NJT09nXbt2vHggw9y7Ngx7r33XhYvXoylpSUWFhb06tWL/fv31/qZbO5aYOBmCl44b0pIa21r34StaTx7/iymQkpuad1KZUZoYCUlJbRu3RorKys6derEp59+SseOHWt8A1eUxnAlPWPXUmlpKd7e3hw/fhxfX1+tx0NKecnenyuZmBMbG0t0dLS23b59+8vu8/DDD2NZ9YV19OjRLFiwgPDwcKKjo7V8pbGxsaSmpmr7FBYWUlRUVOPL1s6dO3nuuecA6Nu3L7fddhvp6el1Zh748ccfWbt2LWB6/s/RseZz1VJKXn31VXbs2IGFhQWZmZlkZ2fj5eXFzJkzefnllwkNDSUgIACDwYCNjQ2TJk0iJCSE0NBQs8ccNWoUo0aNYseOHcydO5fY2NhaZfLy8mqc27Jly4iJiQHg5MmTHD58GGdnZywtLQkLCwMgLi6OxMRE/Pz8ANO97tjRlJXoq6++YtWqVRgMBrKyskhNTa0VuEVERBAREXHJa3XxdbmYuZ+TJUuWMHXqVFavXs3AgQO55ZZbsLKywmAw8PPPP/P777/TtWtXLbfshS8SHTt25PTp0y0ucGtxkxPOnz9T9T9VgZtdy5+YcLz0PKfOl2MtBHe2uzEC1aYSFxeHl5cXH3zwgfZeWFiYCtqUG4qtrS1JSUlkZGRQXl6u9VJ5eHiQkJBQo+zRo0dxcHCgTZs2eHh4kJiYeNn6LxUAVn+vrKzmagH29n/97fP39+fIkSPk5OSwYcMGHnzwQQAqKyvZvXs3SUlJJCUlkZmZWauH3Fww8XdFRUWRk5NDYmIiSUlJuLi4UFZWRp8+fUhMTMTLy4tZs2axYMECrKys2Lt3L2FhYWzYsIFhw4bVWffAgQP5v//7P86ePVvrMysrKyorTf8Wbt++ndjYWHbv3s3+/fvx8fHRrqGNjY0W9EopGT9+vHaN/vjjD+bPn8+xY8dYsmQJcXFxJCcnExISUusegKnHzdvbu9Zr2rRptcp26dKFkydPatunTp2ic+fOtcp17tyZb775ht9//51FixYB4OjoSJcuXfDx8aFHjx5YWVkxcuRI9u3bp+1XVlaGrW3Lm6DXogI3o/Ec5eU5iMpKRLkNWFhjZduyUzyVGSvZWzVE6ttWDZE2lD///JNJkyZx7733cuzYMb7++mvtD6Ki3KgcHR1ZtmwZS5YsoaKigrFjx7Jz506t96e0tJRp06bx0ksvAabemDfeeIP09HTAFEi99957teoNDg5m+fLl2vaFoVIXFxfS0tK0odBLEUIwatQopk+fjpubG87OzmbrNTfsOXDgQG2oLz09nRMnTuDq6lrndQgMDGTlypWAafj44lmcBQUFdOzYEWtra+Lj48nIyADg9OnT2NnZ8fjjjzNz5kz27dtHcXExBQUF3H///SxdutRsG48cOaIFmPv27aO8vFw7x+pcXV215+4KCgpo3749dnZ2HDp0iF9//fWS57J+/XrOnDF1guTl5ZGRkUFhYSH29vY4OjqSnZ3N5s2bze4fERGhBX3VXxcPkwIMHTqUbdu2kZ+fT35+Ptu2bWPo0KG1yp09e1b7e/vmm28yceJEAPz8/MjPzycnJwcw9Xy6u7tr+6Wnp7fI7DQtKnArLTVF7q0t22MwSLC0xrp1yx42TCgs4XxlJS6trOltr5KUN4SNGzfi7u7Op59+SqtWrVi0aBE//fQTFioThaLg4+ODXq8nOjoaW1tbNm7cSGRkJK6urnh5eeHn58fUqVMB0Ol0LF26lDFjxuDm5oanpydZWVm16pwzZw75+fl4enqi1+uJj48HYPHixYSGhjJkyBA6depUZ7tGjx7NunXrtGFSMA0VJiQkoNPpcHd35+OPP66135QpUzAajXh5eWlDb60v8+/IBx98QHx8PF5eXvj6+pKSklLj87Fjx5KQkEC/fv2IiorSJmccOHCAO+64A29vbxYtWsScOXMoKioiNDQUnU7HoEGDzC498vXXX+Pp6Ym3tzfPPvssX375pdkeypCQELZv3w7AsGHDMBgM6HQ65s6dS//+/c2ei7u7O5GRkQQHB6PT6QgKCiIrKwu9Xo+Pjw8eHh5MnDix1qSOq+Hk5MTcuXPx8/PDz8+PefPmaRMV5s2bx6ZNmwBTb6Grqyt9+vQhOzub2bNnA6Zh6SVLlhAYGIiXlxdSSiZPngyYJozY2tpe9uekORIN0S3c2Lp36io/Wvkv+nUroTz2d9p315FTcZgCY2tuDXyU9jfX7nptCU6WlbM9rxBLIRjeoR1trFRv27VUXFzMpEmT+PLLLwHT8Munn36Km5tbE7dMuZGlpaWpn0GlXrKyshg3bhw//PBDUzel0b3//vu0bdtWe96tKZn7nRVCJEop+11NfS2my8BSlFN+MB2x9ww2r+6nYnUyJJ7FulXL7HErr6xkT1V2BJ82dipoawB2dnacOnUKe3t7li1bxs8//6z+wVQUpdno1KkTkydPvq4X4G0o7dq1Y/z48U3djAbRcmaVWubC6WJan22DhaWBclkJtra0aoEPJgIkFp6jtLKSDtbW9FVDpNfMyZMnsbCw4JZbbsHCwoI1a9ZgaWlJt27dmrppiqIoV+yRR5pm5nFTCw8Pb+omNJgW0+MmRC78rwTbM44YrMswCIm4uT3WNi0vcDtdVs6Rc2VYIvBvZ6/yX14DlZWVrFy5End3dyZPnqw9+NuzZ08VtCmKoijXjRbS4yaxsChCDOiKjZUn507+CMWW2HS/ucUFNRWVkl+rZpHq2tjiaN1CbmETSk9PZ9KkSfz888+AaamD0tJS7Oxa9oxkRVEUpflpEf/qCwsjAmh9jy8WYQGUbT8J/2eJbeeWN5skqegcJUYjTtZWuKsE8n+LwWDgvffe47XXXqOsrAwXFxdWrFihLUSpKIqiKNebFhG4AQhhgZW1aWXrinOmHilrh5a1+O6Z8xUcKinFAoF/OwcsWlhvYmMyGAzcfffd7NmzB4Dx48fz3nvvaVPRFUVRFOV61DKecRMSgcDSwgakpLLCtJqzZeuWk0XAUCn5pWoWqYeDLU5qiPRvsbKyIjAwkK5du7JlyxZWr16tgjZFqSdLS0u8vb3x9PRk+PDhNfJppqSkMGTIEPr06UPv3r1ZuHBhjWwEmzdvpl+/fri5udG3b19mzpzZBGdwdcaMGYNOpzO7tpo51ZOeN4TffvsNS0tL1q9fb/ZzKSVDhgy5rmeVrlmzht69e9O7d2/WrFljtkxGRgaBgYHodDruueceTp06BUB8fHyN7Aw2NjZs2LABgEcffZTDhw831mk0Lills391v8VFbt8SKUtKjkpZXipPfP2W3P/Z6zI386RsKRILiuXazBy5MTtfGiorm7o5zdKuXbvk1q1bte3S0lJZWFjYhC1SlCuXmpra1E2Q9vb22v+PGzdORkZGSimlPHfunOzRo4f2e1ZSUiKHDRsmly9fLqWU8sCBA7JHjx4yLS1NSillRUWFXLFixTVtW0VFxTWt74KsrCzZtWvXK9qn+nW61gwGgxw8eLC877775H/+8x+zZb799lv5wgsvXHG9jSU3N1d2795d5ubmyry8PNm9e3eZl5dXq9xDDz0kV69eLaWUMi4uTj7++ONm62rfvr0sKSmRUkq5fft2OWnSpIY9gXoy9zsLJMirjHlaUI8bWFjYgKHUlBrD0goLi5axttnZcgOpxWWIqlmklmqI9IoUFxfz/PPPc/fddzN+/HgtfY6NjU2tPIWK0pyk/JzZIK8r4e/vT2amaZ/PP/+cAQMGEBwcDJjWQly+fDmLFy8G4O2332b27Nla5gArKyumTJlSq87i4mLCw8Px8vJCp9Px9ddfAzV7sNavX8+ECRMAmDBhAtOnT2fw4MFERETQrVu3Gr2AvXr1Ijs7m5ycHMLCwrSV+nft2lXr2GVlZdqxfXx8tKwNwcHBnDlzBm9vb20i0wXZ2dmMGjUKvV6PXq/nl19+qXU+gYGB3H777Xh5ebFx40YASkpKCAkJQa/X4+npqS32/corr+Du7o5Op7tkj+SHH35IWFiYlgDenKioKEaMGKFtjxw5El9fXzw8PFi1apX2voODA/PmzePOO+9k9+7drFu3Tsvo8PTTT2M0GgF45pln6NevHx4eHrz22muXPG59bd26laCgIJycnGjfvj1BQUFs2bKlVrnU1FQCAwMBGDx4sHb9qlu/fj333XefNqksICCA2NhYDAbD327n9aZFjLcJgAqJhUVrOH+eykoJFtZYtIBFaSulZPefxUgk7va2dGhl3dRNala2bdvGU089RUZGBpaWlkycOLFFJh1WlKZgNBqJi4vTVqdPSUnB19e3RpmePXtSXFxMYWEhBw8eZMaMGZetd+HChTg6OnLgwAHgr1yldUlPTyc2NhZLS0stl2l4eDh79uyhW7duuLi48Nhjj/Hiiy9y9913c+LECYYOHUpaWlqNelasWAGY0lEdOnSI4OBg0tPT2bRpE6GhoWZzh06bNo1BgwYRExOD0WikuLi4xuc2NjbExMTQtm1bzp49S//+/XnggQfYsmULnTt35rvvvgNM+UTz8vKIiYnh0KFDCCFqBKAXZGZmEhMTw48//shvv/12yWuya9cuPvnkE237s88+w8nJidLSUvz8/AgLC8PZ2ZmSkhI8PT1ZsGABaWlpvPXWW+zatQtra2umTJlCVFQU48aNY9GiRTg5OWE0GgkMDCQ5ORmdTlfjmO+8846W67W6gQMH1spXmpmZya233qptd+nSRfsSUJ1er+frr7/m+eefJyYmhqKiInJzc2vkZ42Ojmb69OnatoWFBb169WL//v21fiabuxYRuIFExGVgOf8/4GpNpWsu9Lql2fe4VVRKEgtL+NNgoI2lJfo2anmK+srPz2f69OmsXr0aMOVT/Oyzz/D29m7SdinKteQRcEuTHLe0tBRvb2+OHz+Or68vQUFBgOnRm0stwXQlSzPFxsYSHR2tbbdv3/6y+zz88MNYWpr+5o8ePZoFCxYQHh5OdHS0lq80NjaW1NRUbZ/CwkKKiopq9Lzv3LmT5557DoC+ffty2223kZ6eTtu2bS957B9//JG1a9cCpuf/HB1rToyTUvLqq6+yY8cOLCwsyMzMJDs7Gy8vL2bOnMnLL79MaGgoAQEBGAwGbGxsmDRpEiEhIYSGhtY63gsvvMBbb72lne+l5OXl1Ti3ZcuWERMTA5gWGz98+DDOzs5YWlpqs+nj4uJITEzEz88PMN3rC716X331FatWrcJgMJCVlUVqamqtwC0iIoKIiIg621X9ulzM3M/JkiVLmDp1KqtXr2bgwIHccsstWFn9Fb5kZWVx4MCBWgnqO3bsyOnTp1Xgdn0y3XyLE+fhzywqO5SChSUWl/mhvl5VSkn6uTIOFJVSVlmJQNC/nQNWFmqItL5CQ0P55ZdfaN26NfPnz2fGjBlYW6veSkW5FmxtbUlKSqKgoIDQ0FBWrFjBtGnT8PDwYMeOHTXKHj16FAcHB9q0aYOHhweJiYno9fo6679UAFj9vbKyshqf2dv/NRnN39+fI0eOkJOTw4YNG5gzZw5gWmh79+7ddfa6mwsm/q6oqChycnJITEzE2tqabt26UVZWRp8+fUhMTOT7779n1qxZBAcHM2/ePPbu3UtcXBzR0dEsX76cH3/8sUZ9CQkJPProowCcPXuW77//HisrK0aOHFmjnJWVFZWVlVhYWLB9+3ZiY2PZvXs3dnZ23HPPPdo1tLGx0YJAKSXjx4/nzTffrFHXsWPHWLJkCb/99hvt27dnwoQJte4BXFmPW5cuXdi+fbu2ferUKe65555a+3bu3JlvvvkGMA07f/311zWC46+++opRo0bV+htfVlbWIkdYWsYzbgBGS4S0AItKKu2tQFhiYdn84tKM0vNsOvMnvxWUUFaV0irYuS03t1ZBx5V4/fXXCQgIYP/+/bzyyisqaFOUBuDo6MiyZctYsmQJFRUVjB07lp07dxIbGwuYemumTZvGSy+9BJh6Y9544w3S09MBUyD13nvv1ao3ODiY5cuXa9sXhkpdXFxIS0vThkIvRQjBqFGjmD59Om5ubtqQ2sX1mhv2HDhwoBZ4pKenc+LECVxdXeu8DoGBgaxcuRIwDR9fPIuzoKCAjh07Ym1tTXx8PBkZGQCcPn0aOzs7Hn/8cWbOnMm+ffsoLi6moKCA+++/n6VLl5pt47Fjxzh+/DjHjx/noYce4qOPPqoVtAG4urpy9OhRrQ3t27fHzs6OQ4cO8euvv17yXNavX8+ZM2cAU69dRkYGhYWF2Nvb4+joSHZ2Nps3bza7f0REBElJSbVeFwdtAEOHDmXbtm3k5+eTn5/Ptm3bavWagSk4raysBODNN99k4sSJNT7/4osvGDNmTK390tPT8fDwMNvO5qzFBG6ioqp3zdKA0dYKLCyxtGo+gdv/zlfwfc6f7MgvoshopK2VJYPat2FYB0c6qqCtTlJK1qxZo32rBrj33nv56aefLvsHV1GUv8fHxwe9Xk90dDS2trZs3LiRyMhIXF1d8fLyws/Pj6lTpwKg0+lYunQpY8aMwc3NDU9PT7KysmrVOWfOHPLz8/H09ESv12sTBBYvXkxoaChDhgyhU6e6F1gfPXo069at04ZJwTRUmJCQgE6nw93dnY8//rjWflOmTMFoNOLl5cXo0aNZvXo1rVu3rvNYH3zwAfHx8Xh5eeHr60tKSkqNz8eOHUtCQgL9+vUjKipKm5xx4MABbRLAokWLmDNnDkVFRYSGhqLT6Rg0aFC9lx4xJyQkROvRGjZsGAaDAZ1Ox9y5c+nfv7/Zfdzd3YmMjCQ4OBidTkdQUBBZWVno9Xp8fHzw8PBg4sSJDBgw4KrbdYGTkxNz587VJovMmzdPW5Zp3rx5bNq0CYDt27fj6upKnz59yM7OZvbs2Vodx48f5+TJkwwaNKhG3dnZ2dja2l7256Q5Eg3RLdzYenbtINf+8zUG9BpLZcouDp76BW7ugdeoJ6/7lFf5FQb2FZ7j9PlyAGwtLNC1saOXXWu1wG49HD9+nKeffppt27YBsH///lrPXChKS5KWloabm1tTN0NpBrKyshg3bhw//PBDUzel0b3//vu0bdtWmzjTlMz9zgohEqWU/a6mvubTJXUZFlY20LM95WVWkGNJK7s213XQVmIwklR0jqOl5wGwEgIPB1vc7W3Vs2z1UFlZyYoVK5g1axYlJSU4OTmxdOlSvLy8mrppiqIo14VOnToxefJkCgsL65xc0RK1a9eOJ554oqmb0SBaTOAmRCsAynNNU4lbtXNpyubUKbnoHAeLSjEisUDQx94GLwdbbCxbzMh1gzp06BCTJk3S1mB65JFHWLZsGS4u1+89VxRFaQqPPPJIUzehSYSHhzd1ExpMywncLKzgXB7lJUVg2YpWjjc1dZPMyjpfzv6icwB0t22Nvo0dbVrAenONadGiRezatYubb76ZlStXmn0oV1EURVFaopYTuAmg6H+UlxvAxpFWttfnmmdJhaagzbuNHV5qXbZ6q6io0GaGvvfee7Rv357XX3+9Xus7KYqiKEpL0WLG5oQQUHS6KnBrd10GbifLyjlbYcDGwgI3+5a3tkxDKC0tZdasWfj7+1NRUQFAhw4dWLZsmQraFEVRlBtOy+lxO5QLJ85QbjgPN7el1XW26J6UUutt83RQExDqY+fOnTz55JOkp6cjhCA+Pl7LgagoiqIoN6KW0eMmJcSmU/DZXsoKDGBtQ2u766vHLaOsnD8NBuwsLOhjb9PUzbmuFRUVMXXqVAICAkhPT8fNzY1du3apoE1RrhOWlpZ4e3vj6enJ8OHDa+TTTElJYciQIfTp04fevXuzcOHCGtkINm/eTL9+/XBzc6Nv376XTKJ+PRozZgw6na7ea6s5ODg0SDu2b9+Oo6Mj3t7eeHt7s2DBArPlpJQMGTKk1oLA15M1a9bQu3dvevfuzZo1a8yWOXHiBIMHD8bHxwedTsf333+vffbyyy/j6emJp6cnX375pfb+o48+yuHDhxu8/U1CStnsXz26OMtfH39SJg99RO7/9D35v6NH5PXEWFkpY/6XJ9dm5sj04tKmbs51bdu2bbJr164SkFZWVnLu3LmyrKysqZulKNeN1NTUpm6CtLe31/5/3LhxMjIyUkop5blz52SPHj3k1q1bpZRSlpSUyGHDhsnly5dLKaU8cOCA7NGjh0xLS5NSSllRUSFXrFhxTdtWUVFxTeu7ICsrS3bt2vWK9ql+na6l+Ph4GRISctly3377rXzhhReuqG6DwXC1zbpiubm5snv37jI3N1fm5eXJ7t27y7y8vFrlJk+eLD/66CMppZQpKSnytttuk1Kazu/ee++VFRUVsri4WPr6+sqCggIppZTbt2+XkyZNarRzqYu531kgQV5lzNPoQ6VCiGHAB4Al8C8p5eKLPh8LvFy1WQw8I6Xcf7l6S23OYYukfS9XXLr3vNbN/luOlp6nyGikjaUlPe3qXoH7Rnf8+HFOnDiBr68vn3766WVzGirKjSw5dkuD1Ku7d1i9y/r7+5OcnAzA559/zoABA7TecTs7O5YvX84999zDs88+y9tvv83s2bO1zAFWVlZMmTKlVp3FxcU899xzJCQkIITgtddeIywsDAcHB4qLiwFYv3493377LatXr2bChAk4OTnx+++/4+3tTUxMDElJSbRr1w6AXr16sWvXLiwsLPjHP/7BiRMnAFi6dGmtDABlZWU888wzJCQkYGVlxXvvvcfgwYMJDg7mzJkzeHt78+GHHxIQEKDtk52dzT/+8Q8tvdTKlSu56667apzPiBEjyM/Pp6KigsjISEaMGEFJSQmPPPIIp06dwmg0MnfuXEaPHs0rr7zCpk2bsLKyIjg4mCVLltT7flQXFRXFU089pW2PHDmSkydPUlZWxvPPP6995uDgwPTp09m6dSvvvvsux48fZ9myZZSXl3PnnXfy0UcfYWlpyTPPPMNvv/1GaWkpDz30EK+//vpVteuCrVu3EhQUpGVLCAoKYsuWLbXSVwkhtF7DgoICOnfuDEBqaiqDBg3CysoKKysr9Ho9W7Zs4ZFHHiEgIIAJEyZgMBhqJKRvCRr1bIQQlsAKIAg4BfwmhNgkpUytVuwYMEhKmS+EuA9YBdx5mZoxdrCGitY49ezdMI2/SkYpSS4qBUDXxk5lQ7iIlJKjR4/Ss6cp2J40aRJ2dnaMHj26xf2yKUpLYzQaiYuL01anT0lJwdfXt0aZnj17UlxcTGFhIQcPHmTGjBmXrXfhwoU4Ojpy4MAB4K9cpXVJT08nNjYWS0tLLZdpeHg4e/bsoVu3bri4uPDYY4/x4osvcvfdd3PixAmGDh1KWlpajXpWrFgBmNJRHTp0iODgYNLT09m0aROhoaFmc4dOmzaNQYMGERMTg9Fo1ILLC2xsbIiJiaFt27acPXuW/v3788ADD7BlyxY6d+7Md999B5iCkry8PGJiYjh06BBCiBrD0NXt3r0bvV5P586dWbJkidmcnLt27eKTTz7Rtj/77DOcnJwoLS3Fz8+PsLAwnJ2dKSkpwdPTkwULFpCWlsZbb73Frl27sLa2ZsqUKURFRTFu3DgWLVqEk5MTRqORwMBAkpOTa2WquZIk85mZmdx6663adpcuXcjMzKy17/z58wkODubDDz+kpKREy4Wr1+t5/fXXmT59OufOnSM+Ph53d3cALCws6NWrF/v376/1M9ncNfa/jHcAR6SURwGEENHACEAL3KSUv1Qr/yvQ5bK1Cqjs6gA9nbCya3NtW/w3HT5XRonRiKOVFd1tWzV1c64rWVlZPPvss2zZsoWDBw/So0cPhBCMHTu2qZumKM3ClfSMXUulpaV4e3tz/PhxfH19CQoKAkxfxC6VseZKMtnExsYSHR2tbddnBvnDDz+MpaVpTczRo0ezYMECwsPDiY6O1vKVxsbGkpr6Vz9BYWEhRUVFtGnz178bO3fu5LnnngOgb9++3HbbbaSnp9eZeeDHH39k7dq1gOn5P0dHxxqfSyl59dVX2bFjBxYWFmRmZpKdnY2XlxczZ87k5ZdfJjQ0lICAAAwGAzY2NkyaNImQkBBCQ0NrHe/2228nIyMDBwcHvv/+e0aOHGn2ea68vLwa57Zs2TJiYmIAOHnyJIcPH8bZ2RlLS0vCwsIAiIuLIzExET8/P8B0rzt27AjAV199xapVqzAYDGRlZZGamlorcIuIiCAiIuKS1+ri63Ixcz8nX3zxBRMmTGDGjBns3r2bJ554goMHDxIcHMxvv/3GXXfdRYcOHfD396/xhb9jx46cPn26xQVujT054RbgZLXtU1XvXcqTwGZzHwghnhJCJAghEiQSaTQAYGV3/aT1MFRKDlb1tunb2F7XKbgak5SSf//737i7uxMTE4OVlVWNP6aKolzfbG1tSUpKIiMjg/Lycq2XysPDg4SEhBpljx49ioODA23atMHDw4PExMTL1n+pALD6e2VlZTU+s7e31/7f39+fI0eOkJOTw4YNG3jwwQcBU6q83bt3k5SURFJSEpmZmTUCmwvHvtaioqLIyckhMTGRpKQkXFxcKCsro0+fPiQmJuLl5cWsWbNYsGABVlZW7N27l7CwMDZs2MCwYbWD87Zt22oTH+6//34qKio4e/ZsrXJWVlZUVlYCpgkNsbGx7N69m/379+Pj46NdQxsbGy3olVIyfvx47Rr98ccfzJ8/n2PHjrFkyRLi4uJITk4mJCSk1j0AU4/bhUkT1V/Tpk2rVbZLly6cPPlXSHDq1CltGLS6Tz/9VMsA4e/vT1lZmXa+s2fPJikpiR9++AEpJb17/zXqVlZWhu11tsLEtdDYgZu5yMXsb4kQYjCmwO1lc59LKVdJKftJKfsJBFRKhIUllq2vn9mkf5wro7SyEidrK26zVc+2ARw7dozg4GAmTpzIn3/+SUhICKmpqWa/VSqKcn1zdHRk2bJlLFmyhIqKCsaOHcvOnTu1oazS0lKmTZvGSy+9BJh6Y9544w3S09MBUyD13nvv1ao3ODiY5cuXa9sXhkpdXFxIS0vThkIvRQjBqFGjmD59Om5ubjg7O5ut19yw58CBA7WhvvT0dE6cOIGrq2ud1yEwMJCVK1cCpuHji2dxFhQU0LFjR6ytrYmPjycjIwOA06dPY2dnx+OPP87MmTPZt28fxcXFFBQUcP/997N06VKzbfzf//6nBZh79+6lsrJSO8fqXF1dtefuCgoKaN++PXZ2dhw6dIhff/31kueyfv16zpw5A5h67TIyMigsLMTe3h5HR0eys7PZvNlsnwoRERFa0Ff9dfEwKcDQoUPZtm0b+fn55Ofns23bNoYOHVqrXNeuXYmLiwNMCdvLysro0KEDRqOR3NxcAJKTk0lOTq6x+kB6errZIeTmrrEDt1PArdW2uwCnLy4khNAB/wJGSClz61t5a5vrZyiyvLJS623zVhkSANPDxJ6ensTGxuLs7ExUVBT//e9/6dLl8qPhiqJcn3x8fNDr9URHR2Nra8vGjRuJjIzE1dUVLy8v/Pz8mDp1KgA6nY6lS5cyZswY3Nzc8PT0JCsrq1adc+bMIT8/H09PT/R6PfHx8QAsXryY0NBQhgwZQqdOneps1+jRo1m3bp02TAqmocKEhAR0Oh3u7u58/PHHtfabMmUKRqMRLy8vRo8ezerVq2nduu4v3h988AHx8fF4eXnh6+tLSkpKjc/Hjh1LQkIC/fr1IyoqSpucceDAAe644w68vb1ZtGgRc+bMoaioiNDQUHQ6HYMGDTK79MiFv6V6vZ5p06YRHR1ttocyJCSE7du3AzBs2DAMBgM6nY65c+fSv39/s+fi7u5OZGQkwcHB6HQ6goKCyMrKQq/X4+Pjg4eHBxMnTqw1qeNqODk5MXfuXPz8/PDz82PevHnaRIV58+axadMmAN59913++c9/otfrGTNmDKtXr0YIQUVFBQEBAbi7u/PUU0+xbt06bag0OzsbW1vby/6cNEeiIbqFL3kwIayAdCAQyAR+Ax6TUqZUK9MV+BEYd9HzbpfUs2sHuTJiFH279KHrqOtjTaDkonPsLzpHx1bWDL3J8fI73ABSU1Px8fHhwQcf5IMPPtCem1AUpf7S0tJwc3Nr6mYozUBWVhbjxo3jhx9+aOqmNLr333+ftm3bahNnmpK531khRKKUst/V1NeokxOklAYhxFRgK6blQD6TUqYIIf5R9fnHwDzAGfio6huE4fInZwo+ba6THrfzlZWkFqvetoqKCv7zn/8wZswYhBC4u7uTkpJCr169mrppiqIoLV6nTp2YPHkyhYWFdU6uaInatWvHE0880dTNaBCNvt6ClPJ74PuL3vu42v9PAiZdWaXA8UJsSs7CfdeilX9PSnEpFVLSqXUrXFpbN3VzmkRCQgJPPvkkycnJCCG0dXlU0KYoitJ4LjzUf6MJDw9v6iY0mJaR8gqgxIhFQdOfTonByKES00wbfZuWN5vlckpLS3nppZe48847SU5OpkePHmZnCSmKoiiKcuVazgqnErBqmmfJpJRkna/gyLnznCwrpxLJrTat6NDqxupt++mnn5g0aRJHjhzBwsKC6dOns3DhQuyus7yxiqIoitJctZDATYIUtLKvPR26IRUbjBw5d56jpecpMRq19zu3boWfo30de7Y8GzZsYNSoUYBpLadPP/2UO++8TMILRVEURVGuSAsJ3AR0d6RVaMOvjmyUkhOl5Rw5V8b/yiu09x2q8pD2tG2NvZVlg7fjejN06FA8PT156KGHmDVrFq1aXR8TRRRFURSlJWn6h8KuBQGWbWyhq1ODHeLPCgN7/yzmP//LY+efRfyvvAJLBN1tWxPk7MjIju3QtbG7YYK2s2fPMnXqVC2Pnq2tLfv27eO1115TQZuitHCWlpZ4e3vj6enJ8OHDa+TTTElJYciQIfTp04fevXuzcOHCGtkINm/eTL9+/XBzc6Nv377MnHl9LOFUH2PGjEGn05ldW82cC9kNGsL27dvx9vbGw8ODQYMGmS0jpWTIkCG1FgS+nqxZs4bevXvTu3dv1qxZY7ZMRkYGgYGB6HQ67rnnHk6dOqV99vLLL+Pp6Ymnpydffvml9v6jjz5qNg1YiyClbPavHrc6yx+XvyBlwWnZEDJLz8t1mWfl2swcuTYzR353Jl8eKi6V543GBjne9ayyslJ+8cUX8qabbpKA/Mc//tHUTVKUG0pqampTN0Ha29tr/z9u3DgZGRkppZTy3LlzskePHnLr1q1SSilLSkrksGHD5PLly6WUUh44cED26NFDpqWlSSmlrKiokCtWrLimbauoqLim9V2QlZUlu3btekX7VL9O11J+fr50c3OTGRkZUkops7OzzZb79ttv5QsvvHBFdRsMhr/dvvrKzc2V3bt3l7m5uTIvL092795d5uXl1Sr30EMPydWrV0sppYyLi5OPP/64lNJ0fvfee6+sqKiQxcXF0tfXVxYUFEgppdy+fbucNGlSo51LXcz9zgIJ8ipjnpbR4wZYWDTMqeSUV7A9v4hKJN1tWxPSoR33d2iHq70NrRromNerzMxMRo4cyZgxYzh79iyDBw9uVt+WFaWlKd6T1SCvK+Hv709mZiYAn3/+OQMGDNDSDtnZ2bF8+XIWL14MwNtvv83s2bO1zAFWVlZMmTKl9nkVFxMeHo6Xlxc6nY6vv/4aqNmDtX79eiZMmADAhAkTmD59OoMHDyYiIoJu3brV6AXs1asX2dnZ5OTkEBYWpq3Uv2vXrlrHLisr047t4+OjZW0IDg7mzJkzeHt78/PPP9fYJzs7m1GjRqHX69Hr9fzyS82144uLiwkMDOT222/Hy8uLjRs3AlBSUkJISAh6vb5Gj9Err7yCu7s7Op3O7N/Yzz//nAcffJCuXbsCXHIx86ioKEaMGKFtjxw5El9fXzw8PFi1apX2voODA/PmzePOO+9k9+7drFu3Tsvo8PTTT2Oseob7mWeeoV+/fnh4ePDaa6+ZPeaV2Lp1K0FBQTg5OdG+fXuCgoLYsmVLrXKpqakEBgYCMHjwYO36paamMmjQIKysrLC3t0ev12v7BwQEEBsbi8Fg+NvtvN60mMjDwvLaD1H+WWHgx9wijFLSw7Y1A9o54GTdQh4LvAJSSv75z3/i7u7Opk2baNu2LatWrSIuLo6ePXs2dfMURWkiRqORuLg4HnjgAcA0TOrrW/NZ4549e1JcXExhYSEHDx6s9bk5CxcuxNHRkQMHDpCcnMyQIUMuu096ejqxsbG8//77jBgxQstlumfPHrp164aLiwvPP/88L774Ir/99htff/01kybVXjJ0xYoVgCkd1RdffMH48eMpKytj06ZN9OzZk6SkJAICAmrsM23aNAYNGsT+/fvZt29frfyYNjY2xMTEsG/fPuLj45kxYwZSSrZs2ULnzp3Zv38/Bw8eZNiwYeTl5RETE0NKSgrJycnMmTPH7Lnm5+dzzz334Ovry9q1a81ek127dtW43p999hmJiYkkJCSwbNkyLc9nSUkJnp6e7NmzB2dnZ7788kt27dpFUlISlpaWWu7WRYsWkZCQQHJyMj/99BPJycm1jnklSeYzMzO59da/smB26dJF+xJQnV6v14L3mJgYioqKyM3NRa/Xs3nzZs6dO8fZs2eJj4/XktZbWFjQq1cv9u/fb/baNGctJgqxtLi2p1JsMBKbW0i5rKRL61b4t3MwmwvuRrBnzx6eeuopAIYPH87KlSu55ZZbmrhViqI43Nk0eRhLS0vx9vbm+PHj+Pr6EhQUBJi+5F3q7+SV/P2MjY0lOjpa227fvv1l93n44YexrPoCP3r0aBYsWEB4eDjR0dFavtLY2FhSU1O1fQoLCykqKqJNmzbaezt37uS5554DoG/fvtx2222kp6fXmXngxx9/1IInS0tLHB1rLk0lpeTVV19lx44dWFhYkJmZSXZ2Nl5eXsycOZOXX36Z0NBQAgICMBgM2NjYMGnSJEJCQggNDa11PIPBQGJiInFxcZSWluLv70///v3p06dPjXJ5eXk1zm3ZsmVaQHvy5EkOHz6Ms7MzlpaWhIWFARAXF0diYiJ+fn6A6V5f6NH76quvWLVqFQaDgaysLFJTU9HpdDWOGRERQURExCWv1cXX5WLmfk6WLFnC1KlTWb16NQMHDuSWW27BysqK4OBgfvvtN+666y46dOiAv7+/lqsUTD2Rp0+frteXheakZfS4SbAuNUJR+TWprtRYSWxuIaWVlXRsZU1A+zZY3GBBW/VfqP79+zN9+nS++OILNm7cqII2RbnB2drakpSUREZGBuXl5VovlYeHBwkJCTXKHj16FAcHB9q0aYOHhweJiYmXrf9SAWD198rKymp8Zm//1xJM/v7+HDlyhJycHDZs2MCDDz4IQGVlJbt37yYpKYmkpCQyMzNrBDYXjn2tRUVFkZOTQ2JiIklJSbi4uFBWVkafPn1ITEzEy8uLWbNmsWDBAqysrNi7dy9hYWFs2LCBYcOG1aqvS5cuDBs2DHt7e2666SYGDhxotmfJysqKyspKwDSZITY2lt27d7N//358fHy0a2hjY6MFvVJKxo8fr12jP/74g/nz53Ps2DGWLFlCXFwcycnJhISE1LoHcGU9bl26dNF6yABOnTpldsH2zp0788033/D777+zaNEiAC04nj17NklJSfzwww9IKendu7e2X1lZGba2LW8h/JYRuCGx2P0/SPzf366pvLKSH/MKKTIaaW9lxWCnNlhZ3FhB28GDB7nrrrvYvXu39t67777Lo48+esP2OiqKUpujoyPLli1jyZIlVFRUMHbsWHbu3ElsbCxg6q2ZNm0aL730EmDqjXnjjTdIT08HTIHUe++9V6ve4OBgli9frm3n5+cD4OLiQlpaGpWVlVrPkTlCCEaNGsX06dNxc3PD2dnZbL1JSUm19h04cKA2NJiens6JEydwdXWt8zoEBgaycuVKwDR8fPEszoKCAjp27Ii1tTXx8fFkZGQAcPr0aezs7Hj88ceZOXMm+/bto7i4mIKCAu6//36WLl1qto0jRozg559/xmAwcO7cOfbs2VMriTmAq6srR48e1drQvn177OzsOHToEL/++uslz2X9+vWcOXMGMPXaZWRkUFhYiL29PY6OjmRnZ7N582az+0dERGhBX/XXsmXLapUdOnQo27ZtIz8/n/z8fLZt28bQoUNrlTt79qwWgL755ptMnDhRu9YXhnuTk5NJTk7Wnq8E0/27eNi6JWghgRsgBVyDmGJnfjF5FQbaWFoS6Nz2hpqAUF5ezuuvv87tt9/Or7/+ek0ePlUUpWXz8fFBr9cTHR2Nra0tGzduJDIyEldXV7y8vPDz82Pq1KkA6HQ6li5dypgxY3Bzc8PT05OsrNqTIebMmUN+fj6enp7o9XptgsDixYsJDQ1lyJAhdOpU9zDx6NGjWbdunTZMCqahwoSEBHQ6He7u7nz88ce19psyZQpGoxEvLy9Gjx7N6tWrad26dZ3H+uCDD4iPj8fLywtfX19SUlJqfD527FgSEhLo168fUVFR2uSMAwcOaJMAFi1axJw5cygqKiI0NBSdTsegQYPMLj3i5ubGsGHD0Ol03HHHHUyaNAlPT89a5UJCQti+fTsAw4YNw2AwoNPpmDt3Lv379zd7Lu7u7kRGRhIcHIxOpyMoKIisrCz0ej0+Pj54eHgwceJEBgwYUOc1qQ8nJyfmzp2rTRaZN28eTk6mZb3mzZvHpk2bAFNvoaurK3369CE7O5vZs2cDUFFRQUBAAO7u7jz11FOsW7dOGyrNzs7G1tb2sj8nzZFoiG7hxtbzVmf51d3D8X38WQjxu+p60kvK2FNQTCthQUgHRxxukDXZAPbu3cuTTz7JwYMHAdPsocWLF9f5XIeiKI0vLS3NbO+KolwsKyuLcePG8cMPPzR1Uxrd+++/T9u2bXnyySebuilmf2eFEIlSyn5XU1/L6U5q0wraXH1u0CKDkYTCEgDubGd/wwRt586dY+bMmfj7+3Pw4EF69erF9u3b+eijj1TQpiiK0ox16tSJyZMnX9cL8DaUdu3aMX78+KZuRoNoGYGbEBDQBbxdrmr3SinZmW9a9qO7bWu62dbdLd6SFBUV8dlnnwHw0ksvkZycfMlVuBVFUZTm5ZFHHrkhv4SHh4fXmGHakrTMs7pCf5SUcbbCgJ2FxQ2RHL6goAA7Ozusra1xcXFhzZo1dOrUiX79rqrXVlEURVGURtIyetz+pvRzpinN/Rztad3CJyP897//xd3dnXfffVd7b/jw4SpoUxRFUZRmoGVHKfWQU15BocGIjYUFt9q03OToOTk5PPbYYzzwwAOcPn2aLVu2aNOrFUVRFEVpHlpG4HZhYmzrNnUWM+fIufMA9LRt3SIX2ZVS8vnnn+Pm5sYXX3yBnZ0d77//PnFxcQ2W31VRFEVRlIbRQv7llkhre2jtcPmi1RgqJcdLqwI3u5Y3IaGwsJDhw4czduxYcnNzCQwM5MCBA7zwwgvaKtmKoihXytLSEm9vbzw9PRk+fHiNhO4pKSkMGTKEPn360Lt3bxYuXFgjG8HmzZvp168fbm5u9O3b12wS9evVmDFj0Ol0ZtdWM8fB4cr+Taqv6tkJPD09sbS0JC8vr1Y5KSVDhgy5rmeVrlmzht69e9O7d2/WrFljtkxGRgaBgYHodDruueceTp06pX320ksv4eHhgZubG9OmTdN+1h599FEOHz7cKOfQ6KSUzf7Vo4uT/C3iNSmP/SmvxP+VlMm1mTny+zP5V7Rfc2E0GuXAgQOlo6Oj/PTTT2VlZWVTN0lRlL8pNTW1qZsg7e3ttf8fN26cjIyMlFJKee7cOdmjRw+5detWKaWUJSUlctiwYXL58uVSSikPHDgge/ToIdPS0qSUUlZUVMgVK1Zc07ZVVFRc0/ouyMrKkl27dr2ifapfp4ayadMmOXjwYLOfffvtt/KFF164ovoMBsO1aFa95Obmyu7du8vc3FyZl5cnu3fvLvPy8mqVe+ihh+Tq1aullFLGxcXJxx9/XEop5a5du+Rdd90lDQaDNBgMsn///jI+Pl5KKeX27dvlpEmTGu1c6mLudxZIkFcZ87SYWaXyUB7klkI3x8sXrnKkalJCTzubhmpWozt8+DCtW7ema9euWFhYsHbtWqytrc3mf1MUpXm7OC/otXIlk5X8/f1JTk4G4PPPP2fAgAFa2iE7OzuWL1/OPffcw7PPPsvbb7/N7NmztcwBVlZWTJkypVadxcXFPPfccyQkJCCE4LXXXiMsLAwHBweKi4sBWL9+Pd9++y2rV69mwoQJODk58fvvv+Pt7U1MTAxJSUm0a9cOgF69erFr1y4sLCz4xz/+wYkTJwBYunRprQwAZWVlPPPMMyQkJGBlZcV7773H4MGDCQ4O5syZM3h7e/Phhx8SEBCg7ZOdnc0//vEPLb3UypUrueuuu2qcz4gRI8jPz6eiooLIyEhGjBhBSUkJjzzyCKdOncJoNDJ37lxGjx7NK6+8wqZNm7RE6kuWLLnk9f/iiy8YM2aM2c+ioqJ46qmntO2RI0dy8uRJysrKeP7557XPHBwcmD59Olu3buXdd9/l+PHjLFu2jPLycu68804++ugjLC0teeaZZ/jtt98oLS3loYce4vXXX79ku+pj69atBAUFadkSgoKC2LJlS63zSU1N1Xo5Bw8ezMiRIwFTarOysjLKy8uRUlJRUYGLi2lZsICAACZMmIDBYGhxy4K0rLO5gpyiRQYj2eUVWApBN9vmPynBYDDw/vvvM2/ePAICAti6dStCCG677bambpqiKC2U0WgkLi5OW50+JSUFX1/fGmV69uxJcXExhYWFHDx4kBkzZly23oULF+Lo6MiBAweAv3KV1iU9PZ3Y2FgsLS21XKbh4eHs2bOHbt264eLiwmOPPcaLL77I3XffzYkTJxg6dChpaWk16lmxYgVgSkd16NAhgoODSU9PZ9OmTYSGhprNHTpt2jQGDRpETEwMRqNRCy4vsLGxISYmhrZt23L27Fn69+/PAw88wJYtW+jcuTPfffcdYFqqKS8vj5iYGA4dOoQQosYw9MXOnTvHli1bauRfrW7Xrl188skn2vZnn32Gk5MTpaWl+Pn5ERYWhrOzMyUlJXh6erJgwQLS0tJ466232LVrF9bW1kyZMoWoqCjGjRvHokWLcHJywmg0EhgYSHJyMjqdrsYx33nnHS3Xa3UDBw6sla80MzOTW2+9Vdvu0qULmZmZtfbV6/V8/fXXPP/888TExFBUVERubi7+/v4MHjyYTp06IaVk6tSpWoYCCwsLevXqxf79+2v9TDZ3LStwu4K5Bf9XNSmhq02rZp+PNDk5mSeffFL79n3zzTdTVlaGra1tE7dMUZSG1FTL+JSWluLt7c3x48fx9fUlKCgIMD16Iy4xyetS75sTGxtLdHS0tt2+ffvL7vPwww9rz+6OHj2aBQsWEB4eTnR0tJavNDY2ltTUVG2fwsJCioqKaNPmr4ltO3fu5LnnngOgb9++3HbbbaSnp9e5iO2PP/7I2rVrAdPzf46ONUd+pJS8+uqr7NixAwsLCzIzM8nOzsbLy4uZM2fy8ssvExoaSkBAAAaDARsbGyZNmkRISAihoaGXPO5///tfBgwYoPVYXSwvL6/GuS1btoyYmBgATp48yeHDh3F2dsbS0pKwsDAA4uLiSExMxM/PlD6ytLSUjh07AvDVV1+xatUqDAYDWVlZpKam1grcIiIiiIiIuGSbL74uFzP3c7JkyRKmTp3K6tWrGThwILfccgtWVlYcOXKEtLQ07Zm3oKAgduzYwcCBAwHo2LEjp0+fbnGBW/OOWKrz7wxd6rc6tJSSo1WTEno142HS8+fPM2/ePHx9fUlISODWW2/l+++/Z+3atSpoUxSlwdja2pKUlERGRgbl5eVaL5WHh0et4dujR4/i4OBAmzZt8PDwIDEx8bL1XyoArP5eWVlZjc/s7f9aPN3f358jR46Qk5PDhg0bePDBBwGorKxk9+7dJCUlkZSURGZmZo3A5sKxr7WoqChycnJITEwkKSkJFxcXysrK6NOnD4mJiXh5eTFr1iwWLFiAlZUVe/fuJSwsjA0bNjBs2LBL1hsdHX3JYVIwDUVfWPZp+/btxMbGsnv3bvbv34+Pj492DW1sbLSgV0rJ+PHjtWv0xx9/MH/+fI4dO8aSJUuIi4sjOTmZkJCQWvcAak6cqP6aNm1arbJdunTh5MmT2vapU6fMPtbTuXNnvvnmG37//XcWLVoEgKOjIzExMfTv3x8HBwccHBy47777+PXXX7X9WmoHRssJ3Po6wU31u0H/K6+gxGjEwdISl1bNs9PRYDDQv39/Fi5ciMFg4NlnnyUlJYX77ruvqZumKMoNwtHRkWXLlrFkyRIqKioYO3YsO3fuJDY2FjD11kybNo2XXnoJMPXGvPHGG6SnpwOmQOq9996rVW9wcHCN4b8LQ6UuLi6kpaVpQ6GXIoRg1KhRTJ8+HTc3N5ydnc3Wa27Yc+DAgdpQX3p6OidOnMDV1bXO6xAYGMjKlSsB0/DxxbM4CwoK6NixI9bW1sTHx5ORkQHA6dOnsbOz4/HHH2fmzJns27eP4uJiCgoKuP/++1m6dKnZNl6o86effmLEiBGXbJerq6v23F1BQQHt27fHzs6OQ4cO1QhwLj6X9evXc+bMGcDUa5eRkUFhYSH29vY4OjqSnZ3N5s2bze4fERGhBX3VXxcPkwIMHTqUbdu2kZ+fT35+Ptu2bWPo0KG1yp09e1YLQN98800mTpwIQNeuXfnpp58wGAxUVFTw008/1Ujmnp6ejoeHxyWvT3PVcgK3K3C0api0u23rK+q+v55YWVkxYsQI+vTpw44dO1i+fHmtb46KoigNzcfHB71eT3R0NLa2tmzcuJHIyEhcXV3x8vLCz8+PqVOnAqDT6Vi6dCljxozBzc0NT09PsrKyatU5Z84c8vPz8fT0RK/XEx8fD8DixYsJDQ1lyJAhdOrUqc52jR49mnXr1mnDpGAaKkxISECn0+Hu7s7HH39ca78pU6ZgNBrx8vJi9OjRrF69mtat614u6oMPPiA+Ph4vLy98fX1JSUmp8fnYsWNJSEigX79+REVFaZMzDhw4wB133IG3tzeLFi1izpw5FBUVERoaik6nY9CgQZdceiQmJobg4OAaPY0XCwkJYfv27QAMGzYMg8GATqdj7ty59O/f3+w+7u7uREZGEhwcjE6nIygoiKysLPR6PT4+Pnh4eDBx4sRakzquhpOTE3PnzsXPzw8/Pz/mzZunDfvOmzePTZs2AabeQldXV/r06UN2djazZ88G4KGHHqJnz554eXmh1+vR6/UMHz4cME0YsbW1vezPSXMkGqJbuLH1vNVZRi97E79RT122rFFK/vO/PCqk5IEO7XC0bj49bnFxcZSVlRESEgJAeXk5RqOxRXYFK4piXlpaWo1eBUW5lKysLMaNG8cPP/zQ1E1pdO+//z5t27bVJs40JXO/s0KIRCnlVT2kesP1uGWWlVMhJe2trJpN0Pbnn3/y5JNPcu+99xIeHk5ubi4ArVq1UkGboiiKYlanTp2YPHnydb0Ab0Np164d48ePb+pmNIjmEblcQ8dLywHo3kwyJWzYsIEpU6aQlZVFq1ateOGFF+qc3aQoiqIoFzzyyCNN3YQmER4e3tRNaDA3VOBWUSk5dd4UuHW7zhPKZ2dn89xzz/Gf//wHgLvuuot//etfaohEURRFUW5gLWeo9N8HYf+ZOoucKivHKCUdrK2xt7p+c3VKKRkxYgT/+c9/sLe3Z9myZfz8888qaFMURVGUG1zLCdzq4VjV2m3d7K7v3jYhBG+99RZDhw7l4MGDPPfcc1g080WCFUVRFEX5+26YodLzlZVkna9AILjN5vp6vq2yspKPP/6YY8eO8c477wAwaNAgBg0a1MQtUxRFURTlenLDdOMcKz1PJRKXVlbYWl4/p/3HH38waNAgnn32WZYsWaLl5lMURbleWVpa4u3tjaenJ8OHD6+RTzMlJYUhQ4bQp08fevfuzcKFC2tkI9i8eTP9+vXDzc2Nvn37MnPmzCY4g6szZswYdDrdJddWu5iDg0ODtKOgoIDhw4ej1+vx8PDg3//+t9lyUkqGDBlyXc8qXbNmDb1796Z3796sWbPGbJkTJ04wePBgfHx80Ol0fP/994BpAWV/f388PDzQ6XR8+eWX2j6PPvoohw8fbpRzaHRSymb/6tHFSe795hNZl2/P5Mu1mTny2LmyOss1loqKCvnmm2/K1q1bS0C6uLjI9evXN3WzFEW5zqWmpjZ1E6S9vb32/+PGjZORkZFSSinPnTsne/ToIbdu3SqllLKkpEQOGzZMLl++XEop5YEDB2SPHj1kWlqalNL0d3DFihXXtG0VFRXXtL4LsrKyZNeuXa9on+rX6VpatGiRfOmll6SUUp45c0a2b99enj9/vla5b7/9Vr7wwgtXVLfBYLgmbayP3Nxc2b17d5mbmyvz8vJk9+7dZV5eXq1ykydPlh999JGUUsqUlBR52223SSml/OOPP2R6erqUUsrMzEx58803y/z8fCmllNu3b5eTJk1qlPO4HHO/s0CCvMqY5/rpempAueUG8ioMtBIW3HodzCZNSkrizjvvZNasWZw/f54JEyaQmpqqJflVFEWpj8zMLxrkdSX8/f3JzMwE4PPPP2fAgAEEBwcDYGdnx/Lly1m8eDEAb7/9NrNnz9YyB1hZWTFlypRadRYXFxMeHo6Xlxc6nY6vv/4aqNmDtX79eiZMmADAhAkTmD59OoMHDyYiIoJu3brV6AXs1asX2dnZ5OTkEBYWpq3Uv2vXrlrHLisr047t4+OjZW0IDg7mzJkzeHt78/PPP9fYJzs7m1GjRmmr9//yyy+1zicwMJDbb78dLy8vNm7cCEBJSQkhISHo9Xo8PT21HqNXXnkFd3d3dDqd2R5JIQRFRUVIKSkuLsbJyQkrq9pPPkVFRdVIiTVy5Eh8fX3x8PBg1apV2vsODg7MmzePO++8k927d7Nu3Toto8PTTz+N0WgE4JlnnqFfv354eHjw2muv1Treldq6dStBQUE4OTnRvn17goKC2LJli9nzvdBrWFBQoOUzvdCrC6Z8ph07diQnJweAgIAAYmNjMRgMf7ud15sb4hm3I+dMiXB72LXG8jpIcbV06VL27dvHbbfdxqpVq7Q/coqiKM2J0WgkLi5OW50+JSUFX1/fGmV69uxJcXExhYWFHDx4kBkzZly23oULF+Lo6Kg9OnIhV2ld0tPTiY2NxdLSUstlGh4ezp49e+jWrRsuLi489thjvPjii9x9992cOHGCoUOHkpaWVqOeFStWAKZ0VIcOHSI4OJj09HQ2bdpEaGio2dyh06ZNY9CgQcTExGA0GikuLq7xuY2NDTExMbRt25azZ8/Sv39/HnjgAbZs2ULnzp357rvvAFNQkpeXR0xMDIcOHUIIUSMAvWDq1Kk88MADdO7cmaKiIr788kuzE9h27drFJ598om1/9tlnODk5UVpaip+fH2FhYTg7O1NSUoKnpycLFiwgLS2Nt956i127dmFtbc2UKVOIiopi3LhxLFq0CCcnJ4xGI4GBgSQnJ6PT6Woc85133tFyvVY3cODAWvlKMzMzufXWW7XtLl26aF8Cqps/fz7BwcF8+OGHlJSUaLlwq9u7dy/l5eX07NkTAAsLC3r16sX+/ftr/Uw2dy0+cDNUSm02aa8mXHS3rKwMGxsbAN59911uvvlm5syZ02DPQCiK0vLdcsuYJjluaWkp3t7eHD9+HF9fX4KCggDTozeXyv98JXmhY2NjiY6O1rbbt29/2X0efvhhLC1NyzyNHj2aBQsWEB4eTnR0tJavNDY2ltTUVG2fwsJCioqKauR53rlzJ8899xwAffv25bbbbiM9Pb3Ohc9//PFH1q5dC5ie/3N0dKzxuZSSV199lR07dmBhYUFmZibZ2dl4eXkxc+ZMXn75ZUJDQwkICMBgMGBjY8OkSZMICQkhNDS01vG2bt2Kt7c3P/74I//3f/9HUFAQAQEBtdqYl5dX49yWLVtGTEwMACdPnuTw4cM4OztjaWmpjfjExcWRmJiIn58fYLrXHTt2BOCrr75i1apVGAwGsrKySE1NrRW4RUREEBERcclrdfF1uZi5n5MvvviCCRMmMGPGDHbv3s0TTzzBwYMHtWA1KyuLJ554gjVr1tQIYDt27Mjp06dbXODW4odKT1SluLrJ2or2TZDiqri4mGnTpnHHHXdQXm5a/NfZ2ZnFixeroE1RlGbJ1taWpKQkMjIyKC8v13qpPDw8SEhIqFH26NGjODg40KZNGzw8PEhMTLxs/ZcKAKu/V1ZWVuOz6snW/f39OXLkCDk5OWzYsIEHH3wQMM3g3717N0lJSSQlJZGZmVkjsLlw7GstKiqKnJwcEhMTSUpKwsXFhbKyMvr06UNiYiJeXl7MmjWLBQsWYGVlxd69ewkLC2PDhg0MGzasVn3//ve/efDBBxFC0KtXL7p3786hQ4dqlbOysqKyshIwJWqPjY1l9+7d7N+/Hx8fH+0a2tjYaEGvlJLx48dr1+iPP/5g/vz5HDt2jCVLlhAXF0dycjIhISG17gGYety8vb1rvaZNm1arbJcuXTh58qS2ferUKW0YtLpPP/1UywDh7+9PWVkZZ8+eBUzBd0hICJGRkfTv37/GfmVlZS0yLWSLCdxE1Q/nxS4Mk/ays2nM5gCwbds2PD09+fDDD0lNTa31XISiKEpz5ujoyLJly1iyZAkVFRWMHTuWnTt3akNZpaWlTJs2jZdeegkw9ca88cYbpKenA6ZA6r333qtVb3BwMMuXL9e2LwyVuri4kJaWpg2FXooQglGjRjF9+nTc3NxwdnY2W6+5Yc+BAwdqQ33p6emcOHECV1fXOq9DYGAgK1euBEzDxxfP4iwoKKBjx45YW1sTHx9PRkYGAKdPn8bOzo7HH3+cmTNnsm/fPoqLiykoKOD+++9n6dKlZtvYtWtX4uLiANPzdX/88Qc9evSoVc7V1ZWjR49qbWjfvj12dnYcOnSIX3/99ZLnsn79es6cMS1on5eXR0ZGBoWFhdjb2+Po6Eh2djabN282u39ERIQW9FV/XTxMCjB06FC2bdtGfn4++fn5bNu2jaFDh9Z5vmlpaZSVldGhQwfKy8sZNWoU48aN4+GHH661X3p6Oh4eHmbb2Zy1mMCt8kglnC2t8V6hwUh2eQWWQnCbbeNNSsjLyyM8PJyhQ4eSkZGBj48PCQkJBAYGNlobFEVRGoOPjw96vZ7o6GhsbW3ZuHEjkZGRuLq64uXlhZ+fH1OnTgVAp9OxdOlSxowZg5ubG56enmRlZdWqc86cOeTn5+Pp6Yler9cmCCxevJjQ0FCGDBlCp06d6mzX6NGjWbdunTZMCqahwoSEBHQ6He7u7nz88ce19psyZQpGoxEvLy9Gjx7N6tWrad267sdsPvjgA+Lj4/Hy8sLX15eUlJQan48dO5aEhAT69etHVFSUNjnjwIED2iSARYsWMWfOHIqKiggNDUWn0zFo0CCzS4/MnTuXX375BS8vLwIDA3nrrbe46aabapULCQlh+/btAAwbNgyDwYBOp2Pu3Lm1eqcucHd3JzIykuDgYHQ6HUFBQWRlZaHX6/Hx8cHDw4OJEycyYMCAOq9JfTg5OTF37lxtssi8efNwcnICYN68eWzatAkwPV70z3/+E71ez5gxY1i9ejVCCL766it27NjB6tWrtZ69C4FudnY2tra2l/05aY5EQ3QLN7aetzrLL9wmc8c700HfUXs/qfAcB4rP0cO2NQPat6mjhmvnv//9L5MnTyY7O5vWrVvz+uuvM2PGDLMzfhRFUa5UWlqaSn+n1EtWVhbjxo3jhx9+aOqmNLr333+ftm3bahNnmpK531khRKKUst/V1Neio4njVZMSejTipITc3Fyys7O5++67+de//nXZLnZFURRFaQidOnVi8uTJFBYW1jm5oiVq164dTzzxRFM3o0G02MAtt9xAkdGIjYUFN7eybrDjSClJTU3VxtHHjx+Po6MjI0aMUPlFFUVRlCZ14aH+G014eHhTN6HBtJzIwusmcPprAsKF3rZutq2vaBr6lTh+/DjDhg2jX79+WmqNCw/FqqBNURRFUZRrreVEF0E94FZTV7CUslrgdu0nJVRWVvLhhx/i6enJtm3bsLOz02buKIqiKIqiNJQWOVSaU27gXGUl9paWdLjGw6RpaWlMmjRJS2nyyCOPsGzZMlxcXK7pcRRFURRFUS7WIgO3Yw3U2/b5558THh5OeXk5N998MytXrmTkyJHX9BiKoiiKoiiX0nKGSqtUSklGmSlDQTfbazub1NfXFwsLC5588klSU1NV0KYoyg3J0tISb29vPD09GT58eI18mikpKQwZMkRLAL5w4cIa2Qg2b95Mv379cHNzo2/fvmaTqF+vxowZg06nM7u2mjkNlR0nPz+fUaNGodPpuOOOOzh48KDZclJKhgwZUmtB4OvJmjVr6N27N71792bNmjWXLPfVV1/h7u6Oh4cHjz32mPb+yy+/jKenJ56ennz55Zfa+48++qj27HmLI6Vs9q8eXZzkns1fS2Nlpfw5r1CuzcyRG7Lz5N917tw5+a9//UtWVlZq7504ceJv16soinK1UlNTm7oJ0t7eXvv/cePGycjISCml6W9mjx495NatW6WUUpaUlMhhw4bJ5cuXSymlPHDggOzRo4dMS0uTUkpZUVEhV6xYcU3bVlFRcU3ruyArK0t27dr1ivapfp2upZkzZ8r58+dLKaVMS0uTQ4YMMVvu22+/lS+88MIV1W0wGP52++orNzdXdu/eXebm5sq8vDzZvXt3mZdX+9/u9PR06e3trX2WnZ0tpTSd37333isrKipkcXGx9PX1lQUFBVJKKbdv3y4nTZrUaOdSF3O/s0CCvMqYp8X0uFUCP+cXc6z0PJZC4O/4977p/Pzzz3h7ezNp0iTWrVunvX/rrbf+zZYqiqJcG//v9NkGeV0Jf39/MjMzAdPjJAMGDCA4OBgAOzs7li9fzuLFiwF4++23mT17tpY5wMrKiilTptSqs7i4mPDwcLy8vNDpdHz99ddAzR6s9evXM2HCBAAmTJjA9OnTGTx4MBEREXTr1q1GL2CvXr3Izs4mJyeHsLAwbaX+Xbt21Tp2WVmZdmwfHx8ta0NwcDBnzpzB29u7VvrC7OxsRo0ahV6vR6/Xa89AVz+fwMBAbr/9dry8vNi4cSMAJSUlhISEoNfra/QYvfLKK7i7u6PT6cz2SKampmqZePr27cvx48fJzs6uVS4qKooRI0Zo2yNHjsTX1xcPDw9WrVqlve/g4MC8efO488472b17N+vWrdMyOjz99NMYjUYAnnnmGfr164eHhwevvfZareNdqa1btxIUFISTkxPt27cnKCiILVu21Cr3z3/+k2effZb27dsDaEnvU1NTGTRoEFZWVtjb26PX67X9AwICiI2NxWAw/O12Xm9azDNuZzYepcAlH+ub7Ql0bnvVkxKKiop45ZVX+OijjwBwc3Ojd+/e17KpiqIoLYLRaCQuLk5bnT4lJQVfX98aZXr27ElxcTGFhYUcPHiQGTNmXLbehQsX4ujoyIEDB4C/cpXWJT09ndjYWCwtLbVcpuHh4ezZs4du3brh4uLCY489xosvvsjdd9/NiRMnGDp0KGlpaTXqWbFiBWBKR3Xo0CGCg4NJT09n06ZNhIaGms0dOm3aNAYNGkRMTAxGo5Hi4uIan9vY2BATE0Pbtm05e/Ys/fv354EHHmDLli107tyZ7777DjDlE83LyyMmJoZDhw4hhKgRgF6g1+v55ptvuPvuu9m7dy8ZGRmcOnWq1iS5Xbt28cknn2jbn332GU5OTpSWluLn50dYWBjOzs6UlJTg6enJggULSEtL46233mLXrl1YW1szZcoUoqKiGDduHIsWLcLJyQmj0UhgYCDJycnodLoax3znnXe0XK/VDRw4sFa+0szMzBqdIV26dNG+BFR3IbftgAEDMBqNzJ8/n2HDhqHX63n99deZPn06586dIz4+Hnd3dwAsLCzo1asX+/fvr/Uz2dy1mMCt6FwllBtxtbe96qBt8+bNPP3005w8eRIrKytmzZrF7NmzL5unTlEUpSk80bl2fsrGUFpaire3N8ePH8fX15egoCDA9OjNpdbNvJL1NGNjY4mOjta2L/S01OXhhx/G0tISMOUpXbBgAeHh4URHR2v5SmNjY0lNTdX2KSwspKioiDZt/kqJuHPnTp577jnA1Jt12223kZ6eXmfmgR9//JG1a9cCpuf/HB0da3wupeTVV19lx44dWFhYkJmZSXZ2Nl5eXsycOZOXX36Z0NBQAgICMBgM2NjYMGnSJEJCQggNDa11vFdeeYXnn38eb29vrWfQXFrFvLy8Gue2bNkyYmJiADh58iSHDx/G2dkZS0tLwsLCAIiLiyMxMRE/Pz/AdK8v9HB99dVXrFq1CoPBQFZWFqmpqbUCt4iICCIiIi55rS6+Lhcz93NiMBg4fPgw27dv59SpUwQEBHDw4EGCg4P57bffuOuuu+jQoQP+/v41rkPHjh05ffp0iwvcWsxQabGNaQZpe2vLq9p//fr13H///Zw8eRJfX18SExNZsGCBCtoURVEuYmtrS1JSEhkZGZSXl2u9VB4eHiQkJNQoe/ToURwcHGjTpg0eHh4kJiZetv5LBYDV3ysrK6vxmb29vfb//v7+HDlyhJycHDZs2MCDDz4ImNbg3L17N0lJSSQlJZGZmVkjsLlw7GstKiqKnJwcEhMTSUpKwsXFhbKyMvr06UNiYiJeXl7MmjWLBQsWYGVlxd69ewkLC2PDhg0MGzasVn1t27bl3//+N0lJSaxdu5acnBy6d+9eq5yVlRWVlZUAbN++ndjYWHbv3s3+/fvx8fHRrqGNjY0W9EopGT9+vHaN/vjjD+bPn8+xY8dYsmQJcXFxJCcnExISUusegKnH7ULC9+qvadOm1SrbpUsXTp48qW2fOnWKzp07my03YsQIrK2t6d69O66urtrEg9mzZ5OUlMQPP/yAlLLGCFlZWRm2trZ13pvmqMUEbkVVgVs7q6sL3IYPH46vry/vvPMOv/76a61vEYqiKEpNjo6OLFu2jCVLllBRUcHYsWPZuXMnsbGxgKm3Ztq0abz00kuAqTfmjTfe0Ia+Kisree+992rVGxwczPLly7XtC0OlLi4upKWlaUOhl3Ihg8306dNxc3PD2dnZbL3mhj0HDhyoDfWlp6dz4sSJy+acDgwMZOXKlYBp+PjiWZwFBQV07NgRa2tr4uPjycjIAOD06dPY2dnx+OOPM3PmTPbt20dxcTEFBQXcf//9LF261Gwb//zzT8rLTasn/Otf/2LgwIFmewRdXV21xeELCgpo3749dnZ2HDp0iF9//fWS57J+/XrOnDkDmHrtMjIyKCwsxN7eHkdHR7Kzs9m8ebPZ/SMiIrSgr/rr4mFSgKFDh7Jt2zby8/PJz89n27ZtDB06tFa5kSNHas8anj17lvT0dHr06IHRaCQ3NxeA5ORkkpOTtecrwXT/LqSjbElaTOB2bmBXREc72tYzcDt9+jQTJ04kLy8PgNatW7Nnzx5mzpxptstZURRFqc3Hxwe9Xk90dDS2trZs3LiRyMhIXF1d8fLyws/Pj6lTpwKg0+lYunQpY8aMwc3NDU9PT7KysmrVOWfOHPLz8/H09ESv12v/aC9evJjQ0FCGDBlCp06d6mzX6NGjWbdunTZMCqahwoSEBHQ6He7u7nz88ce19psyZQpGoxEvLy9Gjx7N6tWrLzvy8sEHHxAfH4+Xlxe+vr6kpKTU+Hzs2LEkJCTQr18/oqKitMkZBw4c0CYBLFq0iDlz5lBUVERoaCg6nY5BgwaZXXokLS0NDw8P+vbty+bNm/nggw/MtiskJITt27cDMGzYMAwGAzqdjrlz59K/f3+z+7i7uxMZGUlwcDA6nY6goCCysrLQ6/X4+Pjg4eHBxIkTGTBgQJ3XpD6cnJyYO3euNllk3rx5ODk5ATBv3jw2bdoEmAI8Z2dn3N3dGTx4MO+88w7Ozs5UVFQQEBCAu7s7Tz31FOvWrdP+/c7OzsbW1vayPyfNkWiIbuHG1uPWm+SET7+gl9ftPNbJuc6yUko+++wzZsyYQUFBAU8//bTZX15FUZTrUVpaGm5ubk3dDKUZyMrKYty4cfzwww9N3ZRG9/7779O2bVtt4kxTMvc7K4RIlFL2u5r6bqiupaNHj/LUU08RFxcHmL6NzJ49u4lbpSiKoijXXqdOnZg8eTKFhYV1Tq5oidq1a8cTTzzR1M1oEC1mqLQuRqORpUuX4uXlRVxcHM7OzkRFRfHf//5XrcumKIqitFiPPPLIDRe0AYSHh7fYx55axFkZLep+ru23337jxRdfBEwpSz744AM6dOjQGE1TFEW55upadkNRlOtHQzyO1iICtwphCtwcq01MqKysxMLC1KHYv39/Zs+ezZ133snw4cObpI2KoijXgo2NDbm5uTg7O6vgTVGuY1JKcnNzsbGxuab1tojAzSgsoOg8XpamhXcTEhKYNGkSH374IQEBAQBERkY2ZRMVRVGuiS5dunDq1ClycnKauimKolyGjY0NXbp0uaZ1tojADcDi19M43ZLDS9+8zrvvvktlZSVvvvmmFrgpiqK0BBcWIVUU5cbU6JMThBDDhBB/CCGOCCFeMfO5EEIsq/o8WQhxe33qbbVnNz6PDOGdd94BYMaMGaxfv/4at15RFEVRFKXpNOo6bkIISyAdCAJOAb8BY6SUqdXK3A88B9wP3Al8IKW8s6567do6yNKiEgA8PT359NNPueOOOxrmJBRFURRFUf6Gv7OOW2P3uN0BHJFSHpVSlgPRwIiLyowA1kqTX4F2Qog6lz4uKynFysKS+c+9TGJiograFEVRFEVpkRr7GbdbgJPVtk9h6lW7XJlbgBp5UYQQTwFPVW2eN8DB+R++xfwP37q2LVYaw03A2aZuhHJV1L1r3tT9a97U/Wu+6k6AW4fGDtzMzV2/eKy2PmWQUq4CVgEIIRKutstRaXrq/jVf6t41b+r+NW/q/jVfQoiEq923sYdKTwHVUxV0AU5fRRlFURRFUZQbTmMHbr8BvYUQ3YUQrYBHgU0XldkEjKuaXdofKJBSZl1ckaIoiqIoyo2mUYdKpZQGIcRUYCtgCXwmpUwRQvyj6vOPge8xzSg9ApwDwutR9aoGarLSONT9a77UvWve1P1r3tT9a76u+t416nIgiqIoiqIoytVr9AV4FUVRFEVRlKujAjdFURRFUZRmolkFbg2VLktpePW4d2Or7lmyEOIXIYS+KdqpmHe5+1etnJ8QwiiEeKgx26fUrT73TwhxjxAiSQiRIoT4qbHbqJhXj7+djkKI/woh9lfdu/o8F640AiHEZ0KIM0KIg5f4/KpilmYTuFWly1oB3Ae4A2OEEO4XFbsP6F31egpY2aiNVMyq5707BgySUuqAhaiHbq8b9bx/F8q9hWnykXKdqM/9E0K0Az4CHpBSegAPN3Y7ldrq+bv3LJAqpdQD9wDvVq3aoDS91cCwOj6/qpil2QRuNFC6LKVRXPbeSSl/kVLmV23+imn9PuX6UJ/fPTDlGP4aONOYjVMuqz737zHgGynlCQAppbqH14f63DsJtBFCCMAByAMMjdtMxRwp5Q5M9+NSripmaU6B26VSYV1pGaXxXel9eRLY3KAtUq7EZe+fEOIWYBTwcSO2S6mf+vz+9QHaCyG2CyEShRDjGq11Sl3qc++WA26YFqo/ADwvpaxsnOYpf9NVxSyNnfLq77hm6bKURlfv+yKEGIwpcLu7QVukXIn63L+lwMtSSqPpi79yHanP/bMCfIFAwBbYLYT4VUqZ3tCNU+pUn3s3FEgChgA9gR+EED9LKQsbuG3K33dVMUtzCtxUuqzmq173RQihA/4F3CelzG2ktimXV5/71w+IrgrabgLuF0IYpJQbGqWFSl3q+7fzrJSyBCgRQuwA9IAK3JpWfe5dOLBYmhZlPSKEOAb0BfY2ThOVv+GqYpbmNFSq0mU1X5e9d0KIrsA3wBPqW/5157L3T0rZXUrZTUrZDVgPTFFB23WjPn87NwIBQggrIYQdcCeQ1sjtVGqrz707gamnFCGEC+AKHG3UVipX66pilmbT49aA6bKUBlbPezcPcAY+quq1MUgp+zVVm5W/1PP+Kdep+tw/KWWaEGILkAxUAv+SUppdwkBpPPX83VsIrBZCHMA09PaylPJskzVa0QghvsA00/cmIcQp4DXAGv5ezKJSXimKoiiKojQTzWmoVFEURVEU5YamAjdFURRFUZRmQgVuiqIoiqIozYQK3BRFURRFUZoJFbgpiqIoiqI0EypwUxQFACHEfCGENPOKref+3arKhzZCW49Xa1+5EOKQEGLutUyuLYSYUFW/Q9V2x6pr1O2icvdUlfO8Vse+TLuq35tSIUSaEOJlIcQVL+8khHhJCHHPtW+loigNpdms46YoSqMoAIaZee969DnwIdAaGIxpjSRHYOY1qv87wB/T+koAHauOsR04Xq3cvqpy/3eNjlsf72Ja6NgWCAUWY1ofKvIK63kJU67L7deycYqiNBwVuCmKUp1BSvlrUzeinrKqtfUnIUQX4B9CiAh5DRaolFLmADn1KFcINPY1O17t3OOFEB7AOK48cFMUpZlRQ6WKolyWEKKTEOIzIcTRquG5dCFE5OWGJoUQDwghEoUQJUKIfCHEHiHEoGqfWwghXhFCHBFCnK+qd/xVNjMRsMeUKxUhxJCq45UJIbKFEB9dGPas+txaCLFECHGi6tinhRAxF86p+lBp1fDogapd4y8MVVaVqzFUKoT4SQjxlZlrceFYomrbRgjxthDiZNXx9wsh7r/Kc99PzZyHCCEWCyEOCCGKhRCnhBBRQoibq31+HFO2kteqDb3eU/XZtbwviqJcQ6rHTVGUGsw8K2XEFAzlAdOBfKAPMB/oADx9iXp6YhrO+wCIAGwAX8CpWrEPgfHAAkxDjkHAZ0KIXCnlt1fY9G5AOZAnhHAHtgA/AGGYgprFQA/+GgqeBYwFXgGOATdjSj9jaaburKqyUcCzVW29lGjgXSGEfVXSdqqCtYeBr6r1Bq4H7sA0/Pp/wCPAJiFEPyll0hWee9eqc6iuI/AGpqTVHYAZwI9CCC8ppREYBcRXteNfVfukVv33Wt4XRVGuJSmleqmXeqkXmAIxaeZ1r5myVsBjQBnQquq9blXlQ6u2HwJy6zheL0x5Mcdf9P5a4LfLtPU4pue8rAA7TM95FQDrqz6PBg4DltX2eaSqff5V298C79ZxjAlV5R2qtj2rtu+5qNw9Ve97Vm13AAzAo9XK+FeV6Ve1HVi1PeiiunYA/7nMuUtgWtW5twHGAOerH8/MPpbALVX7Dqz2/llg/rW6L+qlXurV8C81VKooSnUFgN9Frz3C5AUhRKoQohSowNT71BpTb485BwBHIcQaIUSwEML+os8DMQUIMUIIqwsvIA7wFkKY6/mqbnpVO0qA/2IKep6t+uwOIEaaepYu+BpTQHV31XYSMKFqZqXuwhDm3yVNz8b9CIyu9vZo4P+klAlV2/cC/wN2mTn3fvU4zAeYzr0Q0ySNFVLK6OoFhBD3CSF+EUIUYDrvU1Uf9blM3X/3viiK0oDUUKmiKNUZqgUXGiHEi8ASTMONP2EaLvUDVmAaAq1FSvmHEGIEpqHI74EKIUQM8HxVcHMTpp6gS81a7cRfwYY56zAFMOcxPaxfdNG+2Re1xyiEyOWvodpITAHKFOAtIFMI8Y6U8oM6jllf0cBHQoi2QDGmYdLV1T6/CdPQbIWZfY1m3rvYO8BXmGbRvgC8KISIlVJ+DyCE8AM2ATGY7tkZTL1tv3KJ+3VR2/7OfVEUpQGpwE1RlPp4GNMQ3uwLb1Q9R1YnKeV3wHdCCEcgBFiK6fmpRzE9M2cABmAKoC525jLVZ5sLMqtkYXrGS1PVU+RcdVyklGXAPGCeEKI38A9gqRDiDynllsud22XEACuBEUAG0Bn4strneUAmMPIq6z9x4dyFEDsw9W6+I4TYLKWUmJ5fywFGV20jhLitnnX/3fuiKEoDUoGboij1YYupZ6u6sfXdWUpZAHxeNaPUv+rtHzH17DhKKX+4Jq38yx5glBDi1WrDpQ9i+pu300z7DgshZmIaar0wseFi5VX/vVyPFVLKfCHENkxDpBlAmpQyuVqROEyTBYqllIfqeU6XOlaFEGIuph644Zh62myBigtBWxVz96uc2ufTkPdFUZS/SQVuiqLUxw/ANCHEHkwzIMdieoj9koQQT2MK0rZgmtnYG1PP3VrQhlI/BqKFEG8DCZiCCA+gj5Ry0t9obyTwO7BBCLES6IJpOHSrlHJ3VftiMC0h8jtQimkyhRWmZ+XMOVFVbnzVc2MVdfT4gamH7TNMQ47LL/rsB2Ar8IMQ4i0gBWgLeAM2UspZV3S2puf3DmGavbupqv4XhBBLMT3/dxfwuJn9DgEhQogtmIZ0/2jg+6Ioyt+kAjdFUepjAabZkhcWeP0G08zG/9axTzLwAPAepufKsoB/YhqevOBZIB2YXHWMQkxLUnz6dxorpUwRQtyHaTmMb6rq/QJTpoALfsHUIxaBaU3LVCDsUsGYlLJMCDEZ0/IdP2HKVFDXhIaNmIYcb8L0zFv1uqQQ4kHgVUzPqHXFNESZhGko+YpIKSuFEG8Ca4QQ/lLK74UQLwPPYbq2uzHNvE2/aNcITM8pfodpdu5gTFkUGuS+KIry94maPemKoiiKoijK9UotB6IoiqIoitJMqMBNURRFURSlmVCBm6IoiqIoSjOhAjdFURRFUZRmQgVuiqIoiqIozYQK3BRFURRFUZoJFbgpiqIoiqI0EypwUxRFURRFaSb+PwR+eiPfqJeyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHACAYAAAAbVuQQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3wc1b23nzMz21ddsuTeGxgwYNN7CSUQIJe0NwkkcSAkkFxSyC2ENNIISQgJKZSEFJKbm14uoQQwvRhcqAb3bvWyfXfKef84K2klrWTJVrN8ns9nvTszZ2bOrNY73/1VIaVEo9FoNBqNRjP+McZ6AhqNRqPRaDSawaGFm0aj0Wg0Gs1BghZuGo1Go9FoNAcJWrhpNBqNRqPRHCRo4abRaDQajUZzkKCFm0aj0Wg0Gs1BghZuGs0YIoT4shBCCiE29rN9U377l4d43Fn5/S4qWPd5IcQZRcZKIcR1Q5xz81DmMxIIIT6Un3vno1kIsVIIcVo/42cIIX4mhNgthMgKIbYJIW4XQlT3M35ufvxOIUROCNEkhPijEOKEkb2ysUMIsVgI8ZQQIpl/T2eN4Lkuzv+9YvnzrRJCfFgIIXqN6/w/0vvxyEjNTaMZz1hjPQGNRkMGmC2EWCalfKlzpRBiOTAzv304+DxwB/B4r/UnAluH6RxjwVlAGqgD/ht4SAhxpJSySwwLIQ5HXXcjcCPqehflX18khDhVSrmnYPzJwD+BjcAXgc1ADfBO4BkhRKWUsmMUrm20uRUoB94BJIG9I3ESIcR/AN8C7sufMwdcBNwNHAd8vNcuHcD5RdZpNIccWrhpNGNPElgDvBd4qWD9e4HHgGNH8uRSyudH8vijwItSygSAEGIVsAt4F/CN/DqBEghtwIlSylh+vyeEEP8HvAL8GLg0Pz4E/C/wInChlDJXcK4/CSHuAeyRvqjeCCFCUsr0CJ9mEfB3KeWjB3KQ/HsekFL2+dEhhDgW9be5RUr5nwWbHhFCvAX8WAjxkJTyrwXbnAnwOdVohgXtKtVoxge/A97d6SbKP787v74HQojHhRB/7LXujLz7aEmxgwshtgFVwJcKXE1n5Lf1cZUKIS7Lu67SQogWIcQ/hRAz+zl2RAhxhxDiLSFESgixVQjxIyFEaa9xK4QQr+eP2SyEeCJvCevc/l9513BGCNEghHhQCFG3rzeukLzVrAmYXrD6NGAp8LUC0dY5fjfwA+AdBW7BdwFTgU/3Em2d+6yUUqb6m4MQwsxfy4a8S3aXEOIXBdu3CSG+02ufTrdvNL/c+fc8TwjxdyFEArgj/579vsg5vyOE2FHw+QkKIb6dd/NmhRAvCyEuHGDOs4QQEpgLfDp/7scLtl8nhNiYP9YmIcSne+3/5fzf9BQhxIsoK/G7+jnddUCcvLDuxV0o6+an+purRnOoo4WbRjM++DNQC5ySXz4V5Zr7yzAd/zKUa+lnKNfoiSgrXx+EEB/Mz2czSjx+GNiQn08xwoCJcjteANyEcl/+oeCYpwE/RVm+LgA+AjwLlOW3X4Fyc34POA/lKtsERIZykXnhU0lP129nzNvf+tntr4Cg+70/HdgjpXx1KOcu4E7gK8DvUe6/zzLE6yjgZ8DLKNflz1BC/iIhRNfx8mLtXcDvZXcPwz8CH0KJo4tR1sO/CyGW9nOevajPRD3w2/zrT+SPfxXwQ+Dv+WP9AfiuEOI/ex0jDPwSuAfl1lzVz7lOAx7rLaIBpJQu8A/gJCFED4+QEMLq9RC999doDgW0q1SjGQdIKduFEA+i3KNP5Z8fzK8fjuOvFUI4wK6BXE5CCAMVe/QXKeX7Cjb9fYBjN1EQk5S/4W4FnhZCzJBS7kDFLb0ipfxmP8c8DnhYSvnjgnV/HsSlAZj5c9YCt6BEyL0F26cC7QPEpG0vGNf5vGOQ5+6BEGIRsAL4dynlDwo2/e/+HA/4g5TypoLjb0SJqIvptsaeAMzoXBZCnA28HThDSvlEfszDQogFKHHdxxImpcwCzwshssDezs9I/vPwZeAXUsrPFhyrDPgvIcT3C9yhIeAzUsr+BHInUxng84T6ewRQFuKG/Loq+rqnzwV0goLmkENb3DSa8cPvgMuFEAHgcoq4SUeBhcAUegqffSKE+KAQYm3epWcDT+c3Lcg/rwOOFkLcJoQ4TQjh73WIdcCFQoivCCGOE0KYQzh9e/6cu4B/Ay7Pi8nBIge5bjCcmX/+xX7u35v7Cxfy1/UY8J6C1e8BNhcktpyDspw9U2ihAh4Flg3x/NNQn4c/9Fr/v0ApcETh9IAHhnj8wdIBLO/1eGGEzqXRjGu0cNNoxg9/B6LA11GutX+MwRyq8s+DziYUQlwG/Ap4DmXNOQHlmgUIAkgpH0G5XE9DZXc2CyF+XODy+znKVfpu1A25QQhx8yAF3Gkoi90HgFbgd4WuRGA3UN475q6AWQXjOp9nDOK8xagCksXcgPtJQ5F1vwMuEEKU5i1i76KnRa8alWFr93p8mZ6xf4Nhcj/z6FyuLFjXViwmsAi7UdnS/TETyAItBescKeVLvR7xQZxLo5lwaOGm0YwTpJRJ4P+ATwP/yC8XIwP0tlhVFhu4H3TeLCcPOKon7wJekFJ+Qkr5gJTyBVQGZw+klL+UUh6LcmnegIrBuim/zZNS3ialXIwSTd9BCbmrBnH+tVLKF6WUv0G5mGejAuA7eTL//I5+9n8Hylr0VH75cWBqYeLEEGgBIgOIRBja36+Y5e8vqJi8S1BxeVPoKdxaUeKot4VqOUpUD4VOAT+p1/ragnMNNNdiPAmcIYQo6b0hL0TfDjwrpXSGMlGN5lBBCzeNZnzxE5Sl7acDjNmFKttQyLmDOHaOvAVsAN5C3fSvHMTxOgmhLCSFvL+/wVLKJinlnSihdFiR7TullN9CJSf02T4QUsqnUPXXrs+7nEEJhXXATb3FghBiMvDvwN+klJ2xbn9EvQe3CSF8vc+Rz/gM9zOFx/LPVwwwzV3A4l7rBvP3A0BK2QY8jHKRvgdYL6V8pWDIoyiLW6KIleqlIocciF3AHvrGxb0biAH7k8BxByop5b+KbPsoMB+4fT+Oq9EcEujkBI1mHCGlfJy+BXJ78xdghRDiNlQM1JmoTMx98Sbw9nwSRAJ4q7e7SUrpCSE+D/xGCPEb4H9QlpSzgP/p58b/L+BHQogbUW7OC4GzCwcIIb6Csio9DjQDR6OyN/8zv/1OlPXmeVQ805moG/h/DOK6evN14BmU6/RnUkqZz5RdCTwnhPg2sI3uArwdwLUF70FaCPEeVLzWM0KIHwFbUC7IS1GitIoiSCnfEkLchcq6nIQSjeWouLv35of9BfihEOK/Udme7wSGat37X5R7uQMlhAr5F/AQ8C8hxC3A66h4tKVAUEpZTDAVJf95+DJwpxCiJX/s01HJKP9drE7bII65On/t3xJCTEW5fjsL8F4H/HQQCQ4azaGLlFI/9EM/xuiBijtq3seYZuDLvdb9F7ATVQ/rPrrdfUvy22flly8q2OdYlDBK5redkV8vget6Hf+dwGqUW68FJRBnFpszqhTId1BdCWLAn4DjC8+Puik/iqqxlkFZ9v4TEPntH0KJrVYghSqKu2If78uH8ueIFtn2GLC+8/j5dTNQJTX2oITCdpRlp7qf489DiaNdqBixJpToOnMf8zJRbt4t+fPsAu4t2O5DlT2pR7mUbweuLrwW4IzCv2eRc5Tk3ycJLCyyPYAqSbIpP4d64EHg7fuY+zbgO0XWX1dwrC2oGndD+hwXOebFKCEfz1/LKlQcpDjQY+uHfkzkR+eXpkaj0Wg0Go1mnKNj3DQajUaj0WgOErRw02g0Go1GozlI0MJNo9FoNBqN5iBBCzeNRqPRaDSag4QJUQ6kurpazpo1a6ynodFoNBqNRrNPVq9e3SylrNmffSeEcJs1axYvvTTUupIajUaj0Wg0o48QYvu+RxVHu0o1Go1Go9FoDhK0cNNoNBqNRqM5SNDCTaPRaDQajeYgQQs3jUaj0Wg0moMELdw0Go1Go9FoDhK0cNNoNBqNRqM5SNDCTaPRaDQajeYgQQs3jUaj0Wg0moMELdw0Go1Go9FoDhK0cNNoNBqNRqM5SNDCTaPRaDQajeYgQQs3jUaj0Wg0moMELdw0Go1Go9FoDhJGVbgJIX4uhGgUQrzWz3YhhPiBEGKTEOIVIcQxozk/jUaj0Wg0mvGMNcrn+wVwB/CrfrZfAMzPP44HfpJ/1mg0Go1Go8G2XVIpG8fxsG0Pv9+ksjJUdOyrrzbQ1pbBdT08T7J0aR1V5UFIO5B1IWBC1E8ikeP++zfguhLPk4TDPt45pQxSNjgSPAmnTYOwj6ee2s6qVbu7xp6+qJoTm7LgSnA8mFYCl84H4KabHiOZtLvOf8uRUwhvaD+g6x9V4SalfFIIMWuAIZcAv5JSSuB5IUS5EGKylHLv6MzwwGlOZNnanMTz5FhPZcxxc1kyrY046eRYT6U4nsTwQHggXLpeGy6IUfjzSSnxpIfjOrie2/WQjPDJHQcyGUQuA17RiWG4aQw3AyM9F834QoJEgBSorzChPgESpOzeLhFjOs0eSPL/Zzr/7d7gye71BWuRsntt4b8HK1KC6OdP4klwXa/rEoUAyyrubMtmXTzPQ+aHB4MWptn3wJ4niSdy+QUQpqC0xF/0mMmkTTrjgFTveDTiIxTy5SeeH5Q/RUNjEs/p/ovUVYUwZP4CpQS/BZYgnbZpbcl0nSMUsqg0Dei87wqgIghAU3OKXMbtGrvjLz6C6e5lSvy4pX5yrqS+MYUnDDxDIHwm9ZaJ6wk8IfAMgbs6jOcziKUcEmmn6//B39dZPJot+DJtNGDzIwjDIylSiKiLz/AQpsf32tZgVDpF36vBMtoWt30xFdhZsLwrv66PcBNCXA1cDTBjxoxRmdxASClZvzfOK7vaOZQ1m/Rc3I4WnLZGvET7KJ8cDCkwpeh+9notS4HpqWdBcd0ybNOREhcPT3q4uLjSw5UuHh6u9PCkOyq3CyE9hOOoh+uAV/yqhfQwPAdDOhzsN7JDDfXXEgXLomBDb6Elusb33o9hE2QDyCFJr23Fxg4sp0ZSbPU+an/viBJ/3XsIIYqOlYB0u8WjEGAYxY/qSdnjR79hGPQzFMfp+f/YtIyi5/ckeG73WCEErln8O8BxJcjuo9gZiVP4jhR8rCzM/CTVimzC7d4IkBd8hjQI+XwFJxFkYwXCRYiusdFgoMd8cjkQUuKBElSOgecJHDOIWRPsElQJwyBJXlwJgWcYeJaBKwTO1DJcYeTXC/YIAykErtEpyAxk/k32qnr+9fcIQEqE4alf85ZECA9ZYgI+EB6G4ZEwJEkkQkgwPIQhQShhKStl/k0ySLTF+NOv/sL8ZUcUff8Hy3gTbv197vuulPIu4C6AZcuW9fs/2PUkGxri2O5I3qKhJZFjb4f6Q82vjVIR9u1jj+Enl82SjHfg9XNjHimklOTiMVLtLWQ6WpH5Lx4REQRKygiUlILYz3BKTyI8CS4IV70WLuCi/kM5+e0e6nkoCJCGQJoCDPUaUyDV/7EhIyU4rtP1cF2n60Cdh+z9qTANE9O08FkWlmlhmhaiv5/Og51HJgOJJKTikEyCbef/p5vqYZgQiUA4AiaY6XbMbDvC7vwFayB9QdxABcXeCIm6GUgXPE9ZZqTHhNN6rpTKKiMlHhKJl3+WXdZStWVkL73L0pUXYUiB9ER+vRjUuXt/ovr7hKn1EgQIQyorjui8Qg9PqBuYFPnlzven871C4soDe0dytpe/XiU3/QGz6LhkyiaTtvE8iZQQjQYpjQRACIy8iBIYCAQbN7Tg2FJZkjw44ohafJaJAAxEl7mqsTHJ+vVNXeeoqQlz2GGTes5PGGQNg3UbWmlNOTg+H1II5syvpDTaU3gA5ByXN15t7Fr2+U0On1+l3G/kXXAhC4TBnr1xGusTXWPr6qLU+c38L0wJlgEVyiX46quNuE635ejwqhJ8aRfw1PjaCET9dHSk2bqlvWtcaVmQOUm7e4KmAYdVA7B5cxvxWLcla05NhNK27mWqwzA52ueaLL/JEtOCbIEgm1cFfrPvNVWHqWvPAiihFQ3izSrDE4LX32rF9iSeoQTVnPIQRoFlq/OaEskse3bHu44ZifiZWmBVQwiYUQ7A7j0xkokcoATYlHKLSCqDZSiRRZkPo9yH9Gwadrdi4mAZLn7TY5olMd0chvQwPQ+zMoRhCeIdKRJtSYT6T0l5SYCyVMG1ByyoiYA02bo1Ti4reWXtep549Cmy2SzxLXs4EMabcNsFTC9YngYc0BW+sSfGq7s7DmhSg8VvGZwwp5JpFeFROR+A53m0t7fT1NREKh5HAMW/5oafXCZNOtZBKtaB56gPrQACoTDhsjJCJWUYZpHZeBLpSnAl0vV6vFbbCtbtS4x1XrBJ/mZjgCkQ+QemgcgLMmEa+XX5bQcokPaFEAKfz4ff78fv9xMIBLpedz7MYu/PEJBS4ra34zQ1dT1kNqcUYpkFZWUIvx+rpkY9JtVglpUhEg3QshHatoEHUpbjyEk4pXNworNwrFIc28PJeTi2q55z6tkb4R9B+4MrPTzPVdbNvDWz87noOq/A+ukVjnPVejn+rnFADCW0MPO/kUyp1pkSYQKF24zudepZjVPHgFTSJptzyeUfU6eUYHRaTwpO2VCf4KWX9mC7Ho7tUVcX5ZRTu70flrDUDxNh8qtfvML611vJZSV21uNznz2FpUdOxjIsTGFiGiaWsGioT3HhBf8DrhKnk+tKee7pj3Qdp3O8IQy++pWnuOXW57osRDfffAafuOG0om9PTc2tNDenupbr61dQWxvtMUZKyR/+9ibf+/FfEUETEbI4/ZzZnLx4CamMTSrnkETinTwVgMd/uIrXtnaLl2sXzmXOazEVN+V4cOIUuHAO7W0Z/vDPR7rGlZUFON0rgaZ098n/83iYFOa5f2zg/17c0LX6ohnTWfJya/e4OeXwwaMBeOCJf9HRke3atGzqTMq3NnePPXkxLKtjzyuN/OGJVV2rjyibxHFNBeErPgMuOh2A393xIq/ubOja9Ik5s5izoVvIsnAaXDSfjo4sf/jnv7pWl5YGOGNSGRQe90PHweQIz//fBv5RcE1vnzmDJRtbuseFSuHCYwG44/FHaC8Qit86eRYVbzUhAMuRWEctxjp5Gq++vJc//+NpfJZHwPRYuiTIBa+3YBoOhrAxTBdjxXwMHP7vb7vY1dqE33QwPclFkTLmrtuNaRhYFpjLazFOm0syafGbja1dFtFI2Md7cxZ0CAwZxMCPceFRGDVlvPRSM6uampD4EPg4qmoypzYnMUQAYfgxJlVhvH8pAF/5yl/4/f9+jU2b1gBw4fFncde7/4tpnz2X/WW8Cbe/A9cJIX6HSkroOJD4tpzj8WZ9DIBpFSEqwsV98MOBYcCsqgiRwOi8pdlslsbGRlpaWnDyoskwDCoqKggE+v7qGyrSk8iMg5d2lIjK4+RypDraSba34WWzBIAAIayAn3BZOeGyCnyd55cgbVft73hIx0M6ylpRlE6zVMFbKAyBsATCMhCWoYSYTwkwtS4vzqy8YBthMdYbz5O4thI3ri0RmPhMHz6fH2EKXM/FkcoCF0vkcLwUtmfjSnffBy96QgnxBHTEoSMG7TFweh0r4IfyEigrg7JSiISUwE3H4LUNyPYG3GwOzzVwHQPXKsPzV0KwDFpNVGRC///thADDJzAtgeEXmD6B4RMYBsMmhiUS13NwpYvjOTiei5d/3elydjwH13NwyF//MP1i6fwYmhiYeaFgCVO9NkxMTCzD7N5mmIj9tSgPdk6miiMyTIEwwTAFjuvyxptNZHIu2ayDIeGM02YX3f/hhzfz8MObyWQc0mmHSy5ZyDvesbDo2DMu/0UPQfDYY1dQXRntEk+dAuqRN7Zy35c3gGcgXcH559XwnQ9diiEMTKPnH+Ona2O8+n+5ruVpnzqcE6f0PX+VkyC7q6xrOS3DTI5OLjrPSCDYw62X7cjAyh2QyEHShrIAXDAHgEDQgoCJCJmIoMUbd61m15ttpDyPlOuR/PAS0kfV8GoYgqd0n6+jzMfWe9d1n9Rv4j9lOmHTIJrxcHYmkGkHHI9piyaz7Olu0cOsKiiN0OIY2G90iy+3IsSy2X7Y0m0xQvigNMLqpNdjbPWCWpZtKBhn+aE0AoC5NY5dnwABlmVy+PwckwvHpoDSCCIUZFpGYpkGpilYaFg9jymAkjAIwelTypjU7mD5BKZpcCIWhxWOXZyD0ghpn5+rz5qHZRpYliAS8bPsoR1QOFaaUBqh6qTZnDm1EtMSWJbBtJzHtN9vA8CQEkv4sCpKMJH8/YsnImQMn5HDbzmUPbkFs30PRlDiBly86iTSXc/yw10+cndJzw/EGkdZJK0Q+A0QuwG45tJJgLKaCsOnBNhlx2AYgfzDj2H4KSsL8B+fP61ruXO7EL4+95XzzlOPgXBdl9tvv51bbvkC6XSa6upqfvjDH/Ke97xHHe+zA+8/EKMq3IQQ/wOcAVQLIXYBXyLvPZJS/hT4J3AhsAn1sfvwgZzvzfoYtiupLQ1w2oKaAznUuCGTyVBfX09LS0uXAAqFQtTU1FBZWYll7d+f1Ms4eAkbN5HDS9h4KQcpDcCP9FzS8RjJjg6cZBI/4CeAMMOES8sIl5XjDxVk9GR7HVwdRj1QNyDhMxA+M/+shFefdT4DYY5NqUEpJTk7RyqdJZPJkk5nyWRyZDI5spkc2axDLutg55QIcz23y1qjRIXLsDjQPImRzmKmMhipLEYq28clLH0mbiSIGw7gRYJIf94hG09BLAm5FGRjYKe752RYEChRD9MHbgqySYQFwpLq4VOvsaRa71PrMUfcWDloBOoLpNO6YwkLy+j58Bm+LrHRY73wKQuOUbBN5McbyqozGFzXI5WySaVsqqvDmEU+szt2dPDPf27sGjdzZhkf/OBRRY/37//+AA8/vIVUyiaZzPHrX1/GBRfM7zNu7944x5z/567l2toI9fUXFD3m7zc0cP+9bV3LZy0pYVHloqJj/e21ZHbGupanWLOZWVHeZ9ykcBI3HuxatlMCn1k8RCTQy92ZqU/CM7uUwErYMKMUltX1GZfNOvDJR+Ct1u6xf7oE5lUQ6PyRLEAETNra0my/7iFSAZNU0CR5VDWpZVWkPA/znKmEmrotbquFR62bdxcaQNoGJBG/SdCR+DzwezAlJznpjQ7CGY9IxiWcdbF+UQGGYMe8ScyOuQSDFsGgxenlURbv7D4HbTZEQ2QsH3fddCaWZWBZBuGwj8U/fBkKx3oGREP8x/uO4ooz5uLzqbE1DSmqf725e1xpGKLqu3bL4yuwLKM7Xu6Gx3seMyUhGmLx6XP4wOlzev5Bfv4jFVfmN1VWZTAAPpNvX3dSz3GPbYd17d3j5tao80dDHPOZU3qOrSqD9iwELQiaMLcaokEWLwnBkgLx7Xi4J03GNuLYxHCcDuz4Smyng8nhnpZu72zwzp7S8zzSRQhTWbaMAKaRt3KdMhfDzIsx0VN8dYqxkf6BVYjjONxzzz2k02ne//738/3vf5/q6uphOfZoZ5W+bx/bJXDtcJwr67i8Va/U/xHTyvYxevzTW7AJIaisrGTSpElEo9F9H6AA6Xp4SRs3buefc8h8oKuUHq5t49g2nuGQdpIkE23KZWmCKBdEyispra4hXFY+sIVLiJ4izGcgLFO5KUcZx3OI5+LEc3FSuTTZXI5sxiaX7Xw4ZHM2dsbFzjnYGQcjmcNI5TBse0ANJkwXw1IZQ5bp4cunpBrCwMTCNA1M0W2dMTExjEF8gaTSiFiyM7hJ/W8tNSEcRJaWIMtKoKxEfen2JpeARCMkmsDKQRjlBwtVIsrqMEsrMPx5S5klMCxl3RwvGBg9BFWnyOp8dIo0n6HW78vS6roe27a1k0rZxFM2tu1xyinTi4595JEt/O1vb+ZFlsNFF83n/e8/sujYuXN/wJYt3YJo27Z/Z+bM8j7j1q9v4uMfv79r+dxz5/Qr3PbsSfDmm90ur3g8V3RcuFccbSplFx03UmP7iLGUDX/fBHsSsDehyi18+wxAZSf2GPviXvjvZ7tXXHE4LKsjGLSYOrWEYNAiELAoKQuQ3NRKcksbqaBJKmCQbE2QarVgeQ2X3Ho6RtDEtAxKykM8mSh4r4JCxXcCH/nI0VgSoj6TEr/Fgoe2U74pQTjrEs56RM52CdVVYU2p5qYzFvS80Jk/hcL4pZQNUT/XXntcz3F/3tBzOet2XfuHP3x0z21/36beH19eEPnVezl5cgmTJxdYkioScNWR3WMmd3/X+/29TMwrjoC3z+kWWTNK6Ze9nxjcr6+zZqrHYLh4Xp9VUrrYdocSZ3Ybtt2BbbfjeZkiBwDTiuKzyrGsqBJahh+zQHwJ0SnGxpuzUJHL5chms5SUlBAIBLj33ntpbm7m7W9/+7CeZ3xe/TCwsSGB7UrqygJMKgnue4dxSiKRoKGhgfb29i7BVlVVxeTJkwkG931dUkpkxlWWtLiNG89ix9M4ORvHzuVFWg7HtbGNHA45vIBE+mR3QEsUIhWVVEyeQtmkWkxr9BMv9oXnSZycSzKdoiMZJ5aKE0sliKeTJNMpMtks0hZIR/RNJZUSkXOUZSudxUzl8GVzyl1mSnymssD7LPXabwn1bAp8lpF3m5mYIpAXFGpZDJThMJgYqlAAQgHMsjKsSTVdcWpGf393JwdtW6F5I7hNUAaUhSA0BaoXQOUc8I2P/wud1uJigqulJcUzz+zMC6ckVVUhLrlkTp9xAN/61tM8/PDmLkvWLbecU9Q6FY/nmDfvh13LpaUBOjr+s+gx162r5447XuxanjIl2q9w611WoT+RMxLCqdi4zu+IAzl/XV2UeDxHOOxT+7VkYNXebkF26nRYUs2sWeV84QunEggoi9OMuiiseLD7QKaAb54GpsFXv3omn/vcSV3WqZqnd+P+dSvpQF6MCY9UIk3K9bjvlY+ScpULM+15/PnH66Cs4JpSGchkmbywkn9bWAlAyDAIN2cI3/1G3jLmEW51CFeVETYNwpOrMAvflwd3w/aCeKyYTb/pmxfOUfW5Ij6IDvDdd9YMeOp9alzIB+EBbq8/O7//bYXUReEbxeP2+rCoSj0GwwiYzB0niW234zjt2HZ7/nWcYr96heHDZ5Xj86mH5SvHZ5VhGOPv3jJYVq1axYoVK1i2bBn33nsvAMcfPzJlaCekcPM8yaZGlcVy2OTxb21Lp9O4bs84Jdu2aWxsJB5XVkMhBNXV1dTV1fUr2KQn8TIOuY4kufYUubYkTkcaJ5vDsW3cvFAD8HwS6Zd4fokXkt2fBCHwB4P4Q2H8wRCBSISy2jr8wZ7FDT3XI5t2yKacUcsmlFLi5DzsnEMynSaWSpBIJ0ml06RzGdJOBlcWr48jMAlYAYK+IH5p4rdzWNkMvmwaXzqND5eAJfBH/PjLAgQsk0BlOVZVJUZZmUp6GGWMUAizpgbDXyQ20/OUVS2XVI/43nyiQf76Tb8SatXzIbL/5nnPk6TTNpFI8fjQV19t4Mknt5NI5EgmbZYvn8LFFxePnTrnnF/x6quNXSLr9dc/waJFfef2xhtNXHLJ77qWTz55OpdcUtytt359MytXbutabmwsXjNwpKxTkcj+iaxkcqDz9/xa7u+YPp/JqafOIBi0ukSW58midbfe9ra5/P73lxOJ+AmHfUyfXgo5F+qTSpBlHDhDJRY8/viHeu58w+Pwi4JmNzefAkuqmTmznJtvPqvn2JtXQWsGV0DKb5DcEyNVFSJVEyBX6aPN9VRcWY1J5qza7v3KDOXWL0LINIjEbMIZj3DWJZKBcEUJYcMgYhqETANDCAhkoKJEiauIT2UgBvoRAh9aoixEnWKsbIC44J+8rf9thZQH1WOC43k2ttOBY3cLNNtpR3rFPqcCyyrtEmg+XwWWVYZlRUZ93iNFKpXii1/8Irfddhue55HJZIjFYpSWDmDxPEAmpHDb1ZYmlXMpDVnUlY3f/0iu67Jz506am5v7HWOaJjU1NUyaNAm/34/0PDLxBLn2JLlYSlnP4mmcZA43lRdmvYSUNJVAkyGJVwZW1I8vooSZP5R/BEP4w2F8/kAPkSKlxM64xJrTZFMOmaRNJmmTSx9YAcHB4EmPrJsl7WTIOhnSboaMkyHrZvpm/QkVj2X5DCKhMNFQmGgoQkkgRIkjCWVyGIkOaG9DZPNxICbKhRj2YYRLMSsrsaqq1HNFBcI3hr/+nJwSZqkGaE/mRVpeqGUTYKeK71cyWYm18plg7t9/7y1b2rj88t+zdWs77e0ZAgGTTOYLRcc+8cR2PvnJB7qWP/GJZf0Kt5aWdA9hNTzWqZ7X2J8g8vlUYLabT7RRFdddfL6+GQ19z9//Z71zbDjsIxLxdR2/N3V1Ua6++pgugTV9ev8/KP/7v0/lk588vuuYpaX9i4onn+wnDDjrKutYVQhK/MybV8m8eZXd27d1wNSfdC9PjcK6DxU/1uSeoRhOfYKU46qgftftso4lXY/UWZNJNSbJ+vLicVcrmEVuYGUBxJxywoZB2DIJTy8lHAkRMQ1lITMNwkZelL3nSLj4sG6RVRNWcVS9qQjCHy/p973qwdQS9dD0i5QS103kXZztys3ptOM6iaLjDSOAz1fRbUWzyrCs0nHr1hwOVq5cyUc/+lG2bNmCYRjccMMNfPnLXyYcHtnKEhPyHd3YqKxU8yeNr/+YUkq8pI2XcUlnMmzbtY1ELInrSUKBnhYtgcDyJGEhSTbsYlNqC14qh8w4A1aNlaZEBCyMkB+zJIhVGsQXDeELhvEHg1iBIIbR92blScgkIZPIYudcskmbTNIhm7Lx+rkZ+UMWwbDvwGPWpCRhJ0jYCVJ2ipSTImWnyDgZVRuqMwLdD8IC05KEA35Kw1FK/SHKrCClhp+I5yPggJfJItMpnIZ63Pb2PkJWWBZmZUVepFUpq1qoeLuUAfE8aN8OTvF4jcEfx8lbzgqEmVs8rqkLIcAXAX/+ESxTFrZg/7/yNmxoYd26ejZubGHDhlauvXY5xx03tc+4ysoQa9fWdy1ns26/Iqe3xSmRGBkX4IEeUwjBYYfVdLWyiUT85HLFr+n446dy++3nd4msHoKnF489diU+n7HPGLupU0u5886LBxzTyUCiDlClJvqpfM+NT6lYq+Z8qYl7zodL+sYeUdvL4lGfBNcD08CVkg7HpcN2ibsuqVlhUkeVkwyqoP9c0IPGtr7HBDi+FuI5jNIAofIgkUlRwsFAtxjLPyK1lYSOnzW4LPDDhiegW9M/rpstcHF2YDttOHYMWcyDIQx8VlkPF6fPV4Fpjl8jyXDjeR4f//jHueuuuwA44ogj+PnPf86yZctG5fwTTrg1J7I0xLJYhmB29dibY6Xj4XZkcdqzuB1ZvKxLU2s72xp3ks06WFjUhWsJmD1/VWfibaRjzRSTBMKyEH4L6bcQAT8iFMAIBjCCIaxAsMti5gKuDdmu79gsfVM+943lNwmELYIRH8GIj0DEIhD29Vv9ezB40qM53cyexB52JXaRNtKQfwuE7SByDuGcQ8TzUeIpURZ2LUKuRShrYLQ5yGwLsqAUhotKRe6BQMWIVVViVlVhVeZdnwca49G6FfasgUxs32P3B8MEfzT/yIuzQEn+dRR8YVWDpgApJfFYtl8LzTe+8RS//OXLXcvHHTelqHArLw9SUxOmqSALL5m0KS/vK3Ki0Z4u1ESif8E5WLdiRUWIiy5a0CWcpk3r/wfYVVcdy4UXzu8aO3Vq/8L1lVc+3u+2QhYvrmHx4sFlofcJEB8JNrfBTU/DnqSyos0th39eXnys7XaLNlDjixGykJVBEmmbtqhFe9SifWszbaU+4o7Xs0lUbQCOrlbuxLIAxswyIqbZxzIWMQ3C/28pYdMgZIx+aR7NvpHSw3FiPVyctt2O56aLjjfNCD5fWV6gdVrSSkY1O3M8YhgGnufh9/u56aab+PznP4+/WEjLCDGhhJvrSZ7fogr7za+N4u/vV+kIIqXESzm4HVnc9ixewsbJuV0uxoZ4K422qtNTEi6jrryOYMTfo5J5KtZKOtYEJRCpmKSsZOEgZiSEFQkifNaI1mOw/AaBcLdIs4pYJfYHJ5elsXUnexu30Ni2EyeZwMjkMHM2VY5BmQwQck2Cwk/QChEwQwUlGez8Q9FpdBSmgQgEMUJB9RwMIIJBjGAQo6xs+F2e8XrY9RIk80Upg6VQMuXA/h7CUEKsUJz5BmcBbGxM8utfv8yzz+7i2Wd3smhRNStXXll07Pz5PS1HGza0FB0HsGBBVZdwi0R8pFI25UXidxYsqOLjH19GJOIjGvWzZMmkPmM6+dWvLgOUlSwUsopau0C5Ff/xjwET0LtYtKi6aJzcuGGgJpI/XAPP71FCqzkFPzwHTuorpBEC/rW9eznUjxgDmNIrw3yPGptyPdpth3bHpc126HBc2i+cipvMqbissgBkchBWnQZKTJMKn0WJZRBZGiV87HTl1szHlGnGP66bLsjkbFNxaU6saGKUEFZeoFV0WdN8vjIM48Brgk4UmpqaaGhoYMmSJQDceuutXH/99Rx++OGjPpcJJdzerI8RSzuUhiyOmDp6SQleysaN5XDjOdxYd2kNx/ZItGZI5ly8oEWz6KA9EMdXFmLGjGnMXjCDUC+LRay5ifaXGwiVBJiyYBHVM2aN2nUcCNJ18dJpvGQKmU7hpVJ46TR2Ik5r2x7a2vbSkWzB9ZSFzAdEzQAVwQrKA1VEfBE6G+4Iy+wSX11irFOcBYMYgUD382j9ykm1wu410JFvpesLweSlKltzDBIXOkkmc3zuc90VzGOxbL9uzQULemacbdzY2mdMJ/feewnRqJ/a2uiAltWjjqrjxz8eXKp7Xd3QytaMS6SEjixE/cXdlWsb4EvPdIuxZXXw235cpGsb4OFt3csNxYPze8eYFbo1e5ObEqG9zEdbqY+O6VHaa3207W0lVyyL+bPLCVsG5T6Lcsuk3GdSblmUWSbWOCoNoxkYz3Py5TY6XZydJTeKe1dMK6pi0fIuTp+vDNOMagtpP0gp+Z//+R8+9alPUVVVxbp16wiFQpSXl1NeXj4mc5pQwq01qdw0h08pwxrBX4VezsVtyyixViDUOnEkxNMO8ZyLLAuAIUjTDk6Oukg5c+fNobKyb9xMKtbB9lfXgpTUzJo9bkRblyhLpZDpdP61WvZSSbUu0/0l4XouHbl22jLtxHKx7kQCQxAoraCycjI1ldMpKavBCIUQwVAPS5nYzyLCI0I2AXvXQcsmddM2fVC7BGoPV69HCNt2ef31Jp5/XlnS3v/+IzjvvL6xSrNmlVNXF6U+3wswlbJ55ZUGjj12Sp+xS5ZM4oIL5jF/fiULFlSxdGldv+efP3+QZQUmAilbCS2f0VckdfL+/4OXG1VpDMeD594P8yr6jnM8eK6gS19TcRcUoPo+FtLf2JAFVUF17jxuY4r2qqCynNkObfnn1LJK+PtFUOLvatyN9PAJQUWXQLOosEzKfCaBMfzRoRkaKlkg2eXidPKWNFVyoy+G4Vcuzi43ZxmWVT6hkwWGm507d/Lxj3+c++9XNRiXLl1KLBYjtD8x0cPIhPoLOvkg+qBvZL6MpOth70li1yd79NAUfpNmu53mTDvJjEO8LS9iBISln2hFAGFCWASYO3duUZWeTaXYtm410vUor5tC3dwFfcaMyDU5ToEQS/YUZnnLmczuI1AesKVDh5GhlSRtVhonauEFS/CCVZSV1zK5ejbTquYQ9R8kVhcnC/WvQuMb4LnKnTlpEUw+atBuzAPha197kq9+9cmu5aqqUFHhJoTgpJOm8+c/rweUG3Lbtvaiwm3x4hr++c/3j9ykxxOJHGyPKUF22rTi7sr/fRM+/4QSbqCKwH73zOLHa01DQ0EEZVO6uHDrLcaaBxBuNb0+R0XGSimJux5tPz2H9ohFR6WftohF3Msim/tGwJpBi7KSAOWW2SXUynwmkQPsiasZXTwv15XFadvt+dIbHUhZJC5UGKrkRpeLUz1Mc/R6Zk80PM/j7rvv5oYbbiAej1NWVsb3vvc9PvzhD48Ly+SEEm65fPNr3whY25zmNLmdcbyccvVZFUHM8gBmqR/H8Gh6ZQdtHRkyeatfuDRAtDKAmXenmKbJ7Nmzi4o2O5dl69oXcXI5olVVTD9sSb8fDikluc2bcTs69u9CPK9AmKWRuX2LMgQYoTBGOKQsZKEQRjhM1idokO3scdtoljGk8AElCAQ1oRqmRqcyJTqFsO8g+gKx09CyGepfUeINoGIWTD12wIzNwSKlZPPmNl56aQ9r1uzlm988u2iLpN7C69lnd/V7zBUrjubMM2dx0knTOfLI2j5FYQ8ptnXAtY/AmgZl/QLYerVybfYmZHWLNhhYZPURZP2UY+ktxlrT/ce5vWMeHFaljl0dIlkdpD2ToyMfh9aez+x0kbCg4AeP5yEQlFomFZZFuc+kLC/USsx9Z7hqxg8qWSDRo2itbbfjusXd5oYZ6iPQLKsUIbQwH07e85738Mc//hGASy+9lB/96EdMmdL3x/BYMaGEm90p3IbR/O8mbXLbYrj5bDkz4sM/sxSzpPtGsGPDFhq3xwlaEWZPm8PU+eWUVPUM5DYMo2ibI9dx2LZuNbl0mlBJKTOPOLrfYq/SdUk+/zz2rt3Ddn3CNJQQ6yPMIt3LwWDXzcDxHHYndrO1YytN6abu6xMGdZFapkSnMDU6tU+W7LjFyUGiAWJ7VBHbdEGZg5LJMG3ZARWw7c3ChXf0iC370IeWcthhfTMYly3r+SWxZs1e0mmbUKive/bCC/t2CjhkqQnDugLRBkqQFRNu1b1EVlM/Yqz32KhPtSsqRsQHf75Uja8OQWWwj2jLeh4dtkvbtDDttX7aHZd22yWXTECR+3XENJWLM+/m7BRqphZoBxWumy2IQWvragUlpdtnrBAmVh+BVo55sHyvHuRcdtllPPnkk9xxxx1cfvnl4+7H0MQUbtbQ32Qv64ArVfcBV4IEuymF2xl34jPwT41iVodACFxbnau1Mcab67YhPY/aKXXMW1pHIDS4t1V6HjteXUc6FsMXCjFr6TGY/cR3ebkcyaefxmlqRvh8BA9bjNgf94dh9LCaGYHBfRG0ZlrZ2rGVnfGd2PkK2ZawqI3UMi06jcmRyf02mB5XeK7KCO0Uasmm7l6goJqvR2uh9jAomzakQ+/dG+ell/bg95tF3ZoAc+ZU9BBuL720p6hwmzKlhGOOmczUqSWcdNJ0Tj55er9ZmIcM9Ul4ahc8vgNOmw7vKdJNIeKD5ZPhmYIfN81pmFUkWakmb0XzGUpkVQ3gAv/8cfDZ5WrMQP+/hYBT1efG8VQ9tPZsjnbbpc1x6bAdUl7xQox+YVDhKxBo+YQBv45DO6iQ0u1ZcsNux3Y69lFyo6dAs6zoIV9yYzR55ZVXWLt2LVdeqTLy3/e+9/H2t7+dsrLx2XlpYgk3R92Ah+oqze6IYe9VcWuNO+K4vZINvBI/blkANneoRwHN7fVIz2NSXQ2Lj5uGMYRz71r/GvGWZkyfjzlHL8MXKF7A0EsmSTz5JG4sjhEOET31VMxRyGbJull2xHawtWMrHbnu664MVjK7dDbTS6aPf7EmpcoIje+B2F5lXfMKrCVCQHSSsq6VTFavixQoHohnntnBe97zR3bvVkHCp502s1/htnz5FB56aHPX8osv7uaKK4o3G1+9+uohzWNCc98b8OnHupc7ssWFG8Dp05Vwm1WqymP090NudhlsugpK/fsu59Jf0gLgSUnccfOlNtwuV2fC7VUPLY8pRN6CZuUzOZVQC+syGwcV3W7OjnwLqM7nGEX7cwofPp/K5LR8ZV0JA4YxevW/ND3JZrN8/etf55vf/CaGYbB8+XIOO+wwhBDjVrTBBBJujfEMjifxmWJIqexOSxp7bxIhBBnXwxEgfCbCEEifgVseAJ9ZtF247dgkszFKq0McefyCIYm2+k0baNu7B2EazF56LIFw8WLBTlsbyaeewktnMMvKiJ52KsYIttOQUtKQamBrx1b2JPbg5SumBcwAM0pmMLtsNmWB8fuBBlT3gfadyqIW39sdq9ZJqEKJtNLJEK0Da99fnE5ezBeLH5s6tbRLtIFya7quVzR2bdmyKZSWBli2bArLlk3uV+AdktiuavRd7P/R0l714Z7ZrcYXs0J+4DB498J9tzSyjIF7VBYhmRdonfXQ2m2XmJOPQ+tF7zi0zoSBqI5DO6hQAi3eVXLDcWL5mmjxojXRCvtzKoFWkc/oPEgSsw4Rnn/+eVasWMEbb7wBwLXXXsv06dPHeFaDY8IIt1d3KYvQorrSQX8pemmH7Ba1n39mCS3NGRwJdXPLqOpdyLIXUkq2bt3KpHAJlZWVQ0oPbtm1g8ZtW0DAzCOWEi4rLzrOrq8n+cyzSMfBmlRD9OSTR6xuWdJOsq1jG9ti20g53bE+deE6ZpXNYmp0akEx3HGK50HDa6p8h1cQN+KPKpHWaVXzD074btnSxoMPbuLhhzfz+OPb+N3vLuf88/sKrZkzy6iqCtHSolwhiUSODRtailbff/vbF9DW9h8H1HViQrG5DR7dAU/uVGLsV2/vcjX24LAqFfjfGbqQsGFtIxw3ue/YmgP/YZP1vLx706HD7hZqtuwr0KAgDs3XLdRKdRzaQUVnVwHl5hyMQCvoLGCV5Z9LsawyXXJjHJNMJvnCF77A7bffjpSSBQsWcM8993DqqaeO9dQGzYT4dEkJDbEspgEL6wb+lS3zsWlSSjIb25CexKoKYVSGSGxUIq60d9ByL9LpNNu2bSOZVJa6yZOL3Dz6oaOxgd1vKoU/bfESSquLV5rPbdtG8sUXwZP4Z0wnfNxx+xfTNgCu57InsYetsa00pBq61kesCLPKZjGrdNbBkxGabIHtTyu3KEDZdCifroTafmaDfv3rT/Lzn6/rWl65cmtR4SaEYNmyKaxcuY2lS+tYvnxKv62QDumMz2J8fzX87s3u5Sd2FhduhoAzZsDWdhXfdtp0OKr/Lg2DxfGkyt50nK44tHbbId1PHFrAMLosZyqTUyUK6Di0gwcVgxbvSg6wnRiOnRdoRSynkC9aa5XlLWilh0QD9YnKtddeyy9/+UtM0+SGG27gS1/6EsHgwdVndUJ86rz8r+BowNdvmytpe2Q2tOL2aoJthCwCs8torU8ipSRSFsA3QP/B+vp69uzZ09WnbObMmYO2tjm5HDteV70ia+fMo3JK8eD3zPr1pF95FYDgwgUEjzpqWF0r7Zl2tsW2sT22nZyXz5YVJlOjU5ldNpuaUM3B48pxHWVha3hNKXh/FGaeBGVFWgcVkEzmWLVqN6tX7+Wznz2x6PWee+7cHsLtsce29Xu8X/ziUiorQ6PTu/JgIpFThWtP7ifR44zpPYXbkzuBE4uPveMcJeD2g95xaO15oRZ3+2b0gYpDq7BMyixLJQzkuwrodk8HD91JAh09nrVAO7T54he/yMaNG/nhD3/IMcccM9bT2S8mxKexU7iF+7lpejmXzJuteGkHYYiuL38jYBKYW04qkaNhq2oWXjG5fwtTY2Mju3apelrV1dVMmzYNawhV/uMtTUjXI1JRSe2cvpYbKSXpNWvIblLB66GjlxJcMDyFeG3XZkdcJRq0dXedpyJQwewylWjgNw+yINnYXtj+DGTz8WW1h8OUowfsaCCl5Iwzfskzz+zAzRdsfuc7FzNnTt9iqmefPbvH8s6dHWQyDsFg37/5hGjnNFxICbethpU74KV6VZrjtQ9DbZE4zlN7xZTsTkDGgSLv8WBFW9LNi7N8LbT2fMKAV+RmbSAosUwqOls+5bM5dRzawYPnObhuvJdA68BxEhQXaALLKunh3lRtn0q0QJuA/O1vf+P3v/899913H0II5syZwzPPPDPW0zogJsSntNOrUUy4SdvrEm1GyCK4qBKjYFy8NcPut9qQUlI5JUpZP/ExHR0d7Nyp+lTOmjWL6uqh1/aKtzQDUFrT18UjHYfk8y9g796NMA3CJ5yAf9rQylEUw3ZtXml+he2x7bj5ekF+w8+M0hnMLp1NebD8gM8x6jhZ2PUiNG9Uy6EKmHkyRFVMmeN4tLSkqK3tK6aEEJim6BJtoLJCiwm3mpoIH//4MmbNKufcc+dw1FF1OjZtMAgBD21VRXA7eXoX/NvCvmMnheHDS1S5jtOmq1i2oSQXeZJW26HZdmjKOTTn7H7LbUTzcWhlvp6Faw0t0A4KVE/OWA/3pu104DpJ+hdopV3CrPBZF6yd+DQ0NPCpT32K3//+9wD827/9G+985zvHeFbDw8QQbl0Wt56XIz0Vx+alHYywRWhRFSLfDsuxXeq3xOhoVIH4JZVB6uYUj4VKp9Ns2bIFKSV1dXX7JdqklF3CraSq5/5OayvpNWtwWloRfj/RU07Gqukb2D5UmtPNvLD3ha5kg9pwLbNKVaKBOcSSF+OG1q2w8wXV4UAYqgVV3ZHsqU/y6x89zeOPb+fpp3dw8snTefDBDxQ9xEknTWflym1dy88+u5MPfrB4SY7BNlA/ZHA9eKtVWdJcCR8+ovi406b1FG5P9CPcAL59xqBPH3dcmnOdQs2mze5rSfMJQaXPKujNqdycPi26Dwr6F2iJfvbIC7QC96YSaCVaoB2CSCm57777uP7662ltbSUSifCtb32LSy+9dKynNmxMCOHm5oVbqJfFLbczjhvPIfwmwYWVXaItm7LZ9kozju0hDMGkmaVUTYkUdY3Yts2mTZtwXZfy8nKmTh04dqo/0rEOXNvGFwoRjESRtk1u506ymzbhtrUDYITDRE8/DbP0wForedLjjZY3eLP1TSSSykAlyycvp9R/4C2bxoxcEnY8D+071HK0VsWyhcoBaGpK8p//+WjX8Oee24XnyaIWspNPVu65BQuqOOmk6bztbXNHfPoTgr0JOOk3KqMTVNHaK5cUt5CdPl0lHgDMKYNpQ3cl256kxVZWtKa8WMv0sqYJBOWWRY1fPap9FqWWqd2cBwGeZ/fK4lTlNvpr96R6cpaoGLQC65myoOnYQw3s2LGDa665hgceeACAt73tbdx5553MmjVrbCc2zEwI4SaLxLhJV+LkW9gE55f3cI+27E7g2B6hEj/TFlbg76cSuud5bNmyhWw2SzgcZvbs2ft9Q+i0tkUCQVKrV5Pbth3pqEKwwu/HP2smwcWLMQ4wuyWei7Nq7ypasyq7cnHlYg6rOmz8l/LoDynJ7HqDHc89yuYNDSw+fDKzTj4Hahb2KJp6xBG1VFQEaWtTjbdjsSyvv97IEUfU9jnkmWfOprHxc9TUFK+dd8jSaU2L+GFmEZFfF1FdBjppTsP6Fji8iAV6+WS47Sw4fRpM3/cPBiklMcctcHmq+LTeBWwDhkGNz6Lab1Hj91Hl05a08Y4SaB35TM72LqE2NIHWaUE7SL/HNKPCb37zGx544AEqKiq47bbbuOKKKybkj7gJIdw6MQu+wO3GFNKVmBEfZkGfQulJYs3q5j5lfnm/og2Ueo/H4/h8PubNm4e5n+U4pOPQuv51Mlu3ICJlZMPK+mDVVBOYMwff9OnDUupjS8cWXm58GUc6hK0wx08+nurQ8PXZHDWkVK2o2rZz/28e5v/+vBbXlWzvKOWk957Mly7rWzHfMASnnz6Lv/5VZShOmhRhz554UeEWDFpFEwwOWR7ZDj9dB6vrlTXtuqPhSyf3HScEHFunxnfyxM7iwi1gqkK4/ZDzvAKXpxJquV61sgwEFT6LGp8SadV+ixJLu77GK56Xy4uyTjen6iIwsEArVe5NX1leqJXpdk+aIZHJZLrKeXzuc5+jtbWVz372s9TV1Y3xzEaOCXf3klKS2xnH3qu+LKzanskGbQ0pXMcjEPYRjPSffdjc3ExzczOGYTBv3jz8+1H4VroumddeI7lxIx2b3gQEkboZBObMJjBnzrC1rcq6WVbXr2Z3UvVnnFkyk6MnHT3+21EBmYzDyy/Xc9zyKYhkE7Rvh7ZtyjUKTCqHjrTFC7sns6WtnOTj9Xypn2NdffUxvO1tczjjjFksWlQ9IX9p7TeeBEHx1k7xrBJgnbxY3/9xltWp2LVja2HZZJVQsA+kVLXSmnNKpDXZNjGnbxmOkGF0CbQan0WlzxpSFxTN6OB5uYLaZ93dBFw3VXyHLoFWhuUr1QJNMyw4jsN3vvMdfvSjH7FmzRpqamrw+XzceuutYz21EWfCCbfslg6c5jRCCPyzSvEVZIl6rkfTDlU6omZG/4V6s9lsVwbpjBkziESG7lKTUpJ64QVyO3eRTMQRkTBlc+ZRcd6FiCGUENkX9cl6Xqx/kYybwWf4OHbSsUwvHf9tO2666TEefXQLu97cxLRIG3//5QlUF3rU/FGomMnkM0/lfz5uo1QHrFq1m1TKJhzuK0ovuGD+6Ez+YOGJnfDcHpVIsKYBHn8vzCjitlzW65fpy439t5O67hj4zLIBe3tmXK9Hlmez7eD06jhgIKjqcnmq2LSItqaNKzwvV1D7bN8CTQizVxZnWb7MRkQLNM2wsm7dOlasWMGaNWsA+POf/8zHPvaxMZ7V6DGhhJv0JE5LGgQEF1VglvbsQ9i4PY6TcwmEfZRWF48lcxyHLVu2dCUj7E8GKUDm5ZfJ7dyFsCzkogWE0kkq5y0YNtHmeA6vNb/GxnZVEqMmVMNxdceN/04HUkKigZZ1K5mT2MCS2SrOb+uGPVSftAAqZqlHpBqEYKqUTJ5cQjBoceKJ0znttBldMY2affCdF+H5Pd3LL9UXF27TSqA2DA0pqAgoIdeWVaU6ehPoKa48KWmzXZpsW7k+c07RorYR0+yKTav2K2uabgc1PvC8bB/3pu104LnpouOVQCu0nnXWQYtqK7dmRMlkMtx8883ccsstuK7LzJkzufPOOznvvPPGemqjyoQSbmRckGAErT6iLdmRpWW3SiefMr+86BeM4zhs3LiRZDKJ3+9nxowZ+zeNDRvIvLUBDEH45JPYs0G1uCqpPvASH6A6H7xQ/wKxXAwDg8OrD2dhxcJx86WZSOR45JEtJBI5PvCBI7s3pFphy+OQ6eCcI7M8uMchnvOzpa2Mv6yfx/Jr3tXnWEII3nrrOkpKhtYMfEITy8LqBnhxryrJ8V8nFB+3vK6ncHuxHt5ZpKCzEPDTt8HkCMwpH9CalnI9ZUXLOTTZDi2205XV3YkpBNU+ZUVTQs1HWHccGHNcN9stzrrKbMQGEGhWvsxGt3vT5yvVAk0zJqxatYorr7ySN998EyEEn/zkJ/nGN75BNHroFT+fEMKt67aRUdYbI9z3sjoa1ZdT1dQo4dLi8WpbtmzpEm0LFy7cr7i23K5dpNeuAyCyfDlOOISTy+ELBAhFB+6jui+klGxo28Brza/h4VHiL+H4uuOpCPYtHjsW7NjRwdVX/4OVK7eRy7lMn17K+99/hPqSb9kM258FzwF/lKrDj+fPtxm0pEPMnFmGVdZ/30kt2grY3AYn/qb7Q18egP84vnhJjt4u0A2t/R/3lL7Fnl2ZL26bt6Q12Q7JIta0EtPsyvKs9qkWUbqo7djRQ6AVdBPwvEzR8UJYvcSZsqIpF6f+O2rGB7lcjjfffJNFixZxzz33cPLJRRKoDhEmhHDrvImZWXVTMYpkirqOylgLlRQP2I/FYsRiMUzTZOHChQQCQxcLTnMzqeefV+c5Ygn+WbNo26raV5VUHZi1LWWneKnhpa5m8HPL5nJkzZFY46hFS01NmCef3E4up/4OO3fGePWVeo6s2AGNyupI1TyYcSJHTrf56a8Wc+KJ05g69SCuLzfcpB1Y16hcl3PK+26fVQZRP8RVj1nas7ClHeYVEe/L6+DKw5WAW15X/HgFJB2XprxQa8rZtBYpbmvlrWmdSQTVPougtqaNCa6b6RF71inUPC9bdLwQPny+0nwcmhZomvHPG2+8wWGHqez0U045hb///e+ce+65B11T+OFm/Nz1DwAvf2+x8s8i0DfIuVO4Gf3cZPbu3QtAbW3tfok2NxYj8dTTSNcjMHcOwfyHratbwn7GygHsjO9kTcMacl6OgBlgee1yJkcn7/fx9gcpJW++2cyDD25ixowy/u3f+pZ6CIV8nHPOHP7xjw1q2bJ56x+/4cjzq1SXg+nHwyRVyqOiwuLyy/svF3HI8bdN8OO18EqT6u35mWXFXaCmoTI6H++VBVpMuNWE4TtnFj1dZ6uopnwHguacQ7pIq6gyy8oLNeX2LNfFbUcdKb28QGsveLQNQqD1bpau6xZqDg46S3r84he/4JFHHuHss88G4OKLLx7jmY0PJoRw6wxW95uiaMc6AC/fm9K0+gq3WCxGPB7HsiwmTerfZdcfXiZD4smnkLkcvimTCR1zDACuY5PqaAMB0cqqIR/X9mzWNa5jW2wbAJMjk1lWu4ygNbq/Nlau3MqVV/6VnTtjgGq+Xky4AVx00QL+8Y8NHH+4xXUXZFm2yAR/BOac2dVL9JDF8aDI5w+ArNOzRdRAJTlOmAINSVXkdlkdnLHvLOK443ZleTbZDm123+K2fmH0yPKs9lv4DW1NG01cN4vttHWJs86Ctci+oloYvrwoK++RKKAFmuZg5k9/+hPXXnstDQ0NBAIBtmzZ0iXcNIqJIdwAyxCYhoHTz5hui1tfa0Ghtc0aYtandBwSTz2Fl0xiVlYQOfFERP5ml2htAQnh8gpMa2g11ZpSTbxY/yJJJ4kpTI6qOYq55WPTmmnatNIu0Qbw1FM7SCZzRCJ9YwDf9a7DOOeINLN9mxBIKJkMc04HX2g0pzx+eGx7z5IcL3wA6ooE0y7vZUFd3dC/0PvMMvjs8n5PmfO8fKsop6tVVLZIq6gKq9uSVu2zKPNNiK+DgwJlRYt3iTPbUZa0/hIFLKsEn68ib0GrwOcr1wJNM6Gor6/nuuuu409/+hOgXKP33HMPCxf20+P4EGbCfFNbRQRZIZ0Wt97CzXEc4vE4hmFQM8TG7tLzSD73HG5rG0YkQvTUU3uU+4g3Kzdp6RCySV3P5bWW19jQptyNFYEKjpt83Ij2GZVS8uqrjVRVhYrGm82bV8ns2eVs3doOQC7n8sQT27nwwl5101ybitbnqfBtU8t1R8KUo+FQttp8e5USYZ28WA8Xz+s7blYp1ISgKa1eL5+s4tgqilhX+3FVelLyTFuCbZm+LrTOVlE1+SxP3Spq9FDlNtp7PBynAyn7JnooN2cZPp8SZ0qglWEY47+Ytkazvzz11FNccskltLW1EY1GueWWW7jmmmswDuV7xwBMGOE2UNiNlLLL4mb6en4QkklVoT8cDg/Z2pZeswZ7z16E30/0tFP79BmNtzQBg3eTtmZaWVW/ingujkCwuHIxi6sWj1if0Y6ODHffvYaf/3wt69c384UvnMrNN5/VZ5wQgvPPn8e9967jjDNmcd55cznyyF6tpNLtsPkxyHSA6YNZp6h6bBOZjKPKbcRzxcUYqKSAwQg3IeBXb4fpJVC7f5aUFzqSbMtk862izK4sT90qanSQUuI4cRynvcDV2X9PTtOM9BBoPl+5LrWhOSRZsmQJgUCA888/nzvvvHO/S3EdKkwY4TYQ2ZSD9CS+oInZKzkhkVC13YbaHSG3azfZzVsQpkH01FMwS3taqtKJOHY2i+X3EyoZ2FrmSY/1retZ37IeiaTEX8JxdcdRGawc0pyGyne+8yxf+9pTXcv/8z+v8dWvnln0xvHVr57J9753XvEen23bYNvT4NoQKlfxbKHyEZv3mLMrDp9dqVygaUc1ZL9obvFfD8snw09f7l7e2Nb/cXuX7xgCbyTSbEplMBGcW11KjV9baEaSzq4C3XFo7dh2B1L2DdYQwspncHYKtAp8vjIMY+jlhjSaiYDnefzyl7/kfe97H8FgkIqKClatWsW0adP0D5dBMHGEm5R4SRsA0UucZRJqfSja94uy0+I2lCJ+MpcjvVa12ggeeSRWkYzReLOytpVUDdwzsyPbwYv1L9KWVTf0+eXzWVK9ZFTKfHziE8v59ref7SrfsXlzGy+9tIfly6f2GVtdXaSKvufBnjVQ/6parpwNM09WFreJTGUQnt4FuXzc2PYYbOmAueV9xx43GT68RD0vnwwDtFrbX3aks6yOqc/xyRVRLdqGESklrpvoYUGz7bZ9WNG6XZ2WVY5lleibkUaTZ/369Xz0ox/l2WefZcuWLdx8880ATJ8+/ls1jhcmjHALJly8gIMRMDHLe5bzSOVrXvWu4Sal7BJuQ7G4pV97DS+VxqqqJDC/eH/MrjIg/dRv6yym+3rL67jSJWyFWV63nEnhoWe1DkQu5xKLZYsKr8mTS/jAB47g5z9fh2UZvO1tc/u/wdhpyMYhE4NsTL1OtSjXqBAwbTnUHj6scx8THE8lEazcAYdVFXdrhn0qs/PJXd3rVu4oLtzqIvDtM0ZqtrTkHJ5uV1bjo0rCzAzpYsX7i+c5BW7ObqEmpd1nbGfbp0I3p89XjmHo91+jKYZt29x666185StfIZfLUVdXx7HHHjvW0zoomTDCLZy0IRDANyWK6BV0nYkXt7il02lc18Xv9w+6S4LT0kJ24yYQEDr22KJCx3Ucku39lwFJ2klerH+RprSyys0qncXSmqX4htFStXdvnDvvXM1Pf/oSF1wwn3vvvaTouM997iRmz67gmmuWqSbv2Rg0b+wp0LIx5QYthi8Mc86Aktri2w8mHtgC1z0CsXxx23Nn9h+7duYMJdymRNXrJftfp29/Sbkej7fGcKVkdijAkSXjvE/tOMJxkvlszryr027HceJFxxpmqNvFaSlrmrKi6cBpjWYwrFmzhhUrVrBu3ToAVqxYwa233kpFxfjo+nOwMWGEW8DJ12nr1c5KepJM3oUajPYURs35rM/Bukml55F68SV1rIULsfr50KkyIJJQWRlWL0G4pWMLLze+jCMdgmaQY2uPZUp0yqDOP1jWrt3Lccfdg5NPyPjtb1/lllvOYdKkvlbFxdMlX/i3DtjxJ9WOqj9MPwRLIVAKgRL1HCyFUCWYE+RjNLO0W7QBPLMbsm6fxuoAvHsRvG0WzK8YODNmhHA8ycrWGCnPY5Lfx4nlh16/vsGgrGgdPUpu2HYb0ivyQ0QY+Ybp5d1JA1YFpqmtaBrN/rJu3TqOO+44XNdl9uzZ3HXXXZxzzjljPa2DmglyxwWfp7Ife3dNyKRspJT4Q1aP4rupVIqmpiaEENTVDS4oPPvWW7gdHRiRCMHD+3cLtuzaAUBZTbcVKu2kWd2wmr1JVTNuWnQax9QeQ2AEbgpHHlnLjBllbNmi4uZyOZe7717NjTee1nNguh02PQJOvnyEFVSiLFggzjqFmu8gbzGyMwYPb4N/bYcblsOxRf7mi6uUa7M+H7+UclQj9yJ9PJkUVo8xQErJM+0JWm2HEtPk9IoSTB1Dheumerk5O61ofctyG0agT0anZZVpK5pGM8wcddRRXHDBBcyfP5+bb755yImAmr5MGOFmGgIEfVyX6S43aU9r286dO5FSMmnSJMLhfd+A3USCzBuq32Z42bE96rUVkupoJ9HagmGaVE5VwZaFLat8ho9jJh3DjNKRS3c2TYNrr13OZz/7MAAlJX5k73uXnekWbeXTYdapYE1Qy8KXnoYfr+tePqK6uHATQnUh+Nc2OH26coEeNvSOFyPN2niKHZksPiE4s7LkkOsVKqWbb5zeLdBsu72fFlAiX7S2MBatAtM8RAtCazQjTDwe58Ybb+QTn/gEixYtQgjBX//6V0xTlyQaLiaWcCtCJtGZmNDtsmxtbe1qcTVlyuDclOnVq5GOi3/mDHwDWOga8k3lq6fPxPL5WN+yntdaXgOgNlzLstplhH0HZqnp6Mjwne88yxtvNPOnP7276JgPf3gp9933Ch/60FI+9KGllJYWiDLXgc2Pqvi1cBXMPmPiuDuLcUSvBJF/bYMbTyw+9uunwu1nwzgtTrspleH1RBqB4PTKkgnf7cB1M326C/TXAsow/H26C/h8ZQihbxgazWjwwAMP8LGPfYydO3fy6quvsnLlSgAt2oaZCfOt35/RodPiVhjf1tCgCqJOnTp1UEV3c9u3Y9c3IPx+QkuX9jsuFesg3tyEMA2qZ8zCk15XB4SlNUuZX1E8A3Ww5HIud9yxiq9//SlaW1VrnOef38UJJ/R15VVUhFiz5mN9DyIlbHsKEo3gj8K8cw5u0ba5rdsFes95UFnEknLWDCXEvLzZ8fUW2B2HqUVKc5SOX6tjQ9bmhXblxj2uLMLkwMSpA6ZaQMX6uDo9L1N0fGcLqE4Lmm6irtGMHS0tLXz605/m17/+NQDHHnsst99++xjPauJyEN+xC5Cg/KQ9V7uu15WY0OkqlVKSTivRM5iMFi+XI7V2rTrGUUf26Y5QSGOntW3aTCy/n92J3eS8HGX+sgMWbaCu58c/frFLtAF8/etP8Y9/vG/wB9m9WhXMNf0w72zwH8SZiB+8Hx7c2r382A64vEhfu8oQnDAZPOC8WSqpYMrBFcwfc1web43jIVkcCbEgcvDGHLputk93AdtpL95IXfj6lNywrHKMUahzqNFoBkZKyR//+Eeuu+46GhsbCQaDfPWrX+XTn/70kDsRaQbPhHhnRT6ASwR6Xk68Rf1aD5f6MfImuWw2i+d5+P3+QX2w0uvWIbM5rJoaAnPm9D8uHiPW1KisbTNnAbAjppIUhiueLRTycccdF3LBBb/pWvf887tobU1TWczS1Jumt1SxXGHA3DMhPLKdGUachZU9hdvD24oLN4A/XVq8YftBQNbzeKwlRk56TA34Obb04BDbnS2gbLsN21ElN2y7HddNFR1vWtGCWLTOArYHl8DWaA4l9u7dyxVXXEEmk+H000/n7rvvZn4/tU01w8cEEW5gGQIj1Eu4NSvhVlrTLWo6rW2h0L6Fjt3YSG7rNjAE4WUDFwps3LoFgKqp0/H5A9iu3ZVBOqNk+BIRzj9/HpdffhgPPbSJz3/+ZK6//gSiRTpC9KFjF+x4Tr2eeRKUDm8JkhFhXQM8vxeuWVp8+3mz4PbV3cuP7VAFdIsJtINUtHlS8kRrnLjrUm5ZnFoxPqvwqxZQhRa0Nhw7NnALqK6SG+W6BZRGc5AgOw0lQjBlyhS++93vYpomV111lW4KP0pMCOEG4DMFRrBnAKSdVa2cCgvvtre3AxAcwOUJIF2X9GolCoKLD+vTi7SQTCJBR2M9wjComTkbgN2J3bjSpSZUM+RkhGQyRzrtFG8zBdxxxwUYhqCmZpAxPe07YOuTKr5t8pFQPY5/EXkSfv06/Op1eEUVKOaCOarGWm+OqVXlOxZWKvfnubMOWoHWHy90JGnI2YQMg7MqS/CNcdJE3xZQnVa0gVpA9c7o1I3UNZqDkS1btnD11Vfz//7f/+MjH/kIAJ/4xCfGeFaHHhNCuAkpsQwD4e8p3Lx8MLphqptEQ0MDLS0tGIZBVdXAZR4y69/EjcUxS0sILl404NjGbSq2rXLKNHwBJQh3xPfPTfryy/W8971/Ytq0Uh566AMYRW7UtbWDdB+174S96yCpCg1TOQemjvMWI4aA367vFm2ghNwXimSBmgasuQJ8EzNj6fWCxvGnV5YQsUb3OqV0ydlt2HYbTldD9cG2gOpspD5+kz00Gs3gcF2XH/7wh9x4442kUim2b9/OFVdcoePYxogJ8a4LCZYp+gg3mRduwhCk02l27VK9JWfOnDlg7TanuZnMelWzLXTssYgBUpkzyQTt9XtBCGpmKWtb2knTkGrAwGBatEjx1iJIKfnRj17kc597mGzW5c03m/n2t5/hP//zlEHt34Pegs0XgrojoGbx0I81FnzwcNUvtJPfrof/OK64QJugom1HOsuaMWwcn8nW0962qqglrWcLqM6EAd0CSqOZiLzxxhusWLGC559/HoD3vve93H777Vq0jSET452XYBoGhr/njaPT4iYEJOIJpJRUVFQMaG3zcjmSzz0PniSwYD6+SQM3fW/apmLbKqdMxR9UcXOdSQmTI5Pxm4OL2/E8yZ/+tJ5s3r0L8IUvPMbZZ89m+fKpgzoGHbtgzzpI5q1VnYKteuH4KvnxciP8eQPcdFJx1+Zl8+GLT0MiB+fMhCuWjNu6aiNBYeP4paPcON7zbGKxl0kmNwIqYSDgr8HqtKTpFlAazSGBbdt861vf4mtf+xq5XI4pU6bwk5/8hHe84x1jPbVDnnF0N99/Om/pvdtdyQJXaSaTzzDdR5eE1Asv4KVSWFWVhI46asCx2VSKtvo9IGDSrO6M053xncDQ3KSmaXDffZdx1FE/paVFJVBceeVRHHZYzT72RFnWdjzfU7DVLoGaReNLsP3hLbjrZVjXqJZPnArnz+47LuKDn54Lh1XDtCK11iYwSddlZb5x/JxQgCNGsXF8NttIW9vzysomDEpLlhCNLtaWNI3mEERKye9//3tyuRxXX3013/72tykrKxvraWmYIMINKcEUCLO4xc3Iu0ph4KSEzFtvYe/Zi/D5iJx4ImIfGTKNWzeBhIrJU/CH1A02lovRlm3DZ/iYHJk8pMuYOrWUe++9hA984C/89Kdv533vO2LfOzW9pUSb9FSv0bojxp9g6+TZ3d2iDeCXrxUXbgBv62f9BMbxJI+3xknnG8efMEqN4z3PIRZ/mWRCFYv2+SqoqDgBn698VM6v0WjGB6lUilwuR3l5OX6/n1/84hfEYjHOPPPMsZ6apoBxeHffTwJ9Y50KY9w6LW79lQFxWlpIv/IKAJHjj8PYRyPcTDKRt7YJJs2e17W+0006NToV0xh6/NXFFy9k69Z/33ddNs9Vgq1Z3WyZtBimLht7weZJZQItljV45eFw3xvdy49uV83fp/efsXuoIKXk6fb4qDeOz2abaGt/HtdJgDAoiR5GScnh2sqm0RxiPPHEE3z0ox/lhBNO6NEBQTP+mDDfzqJXDbfu+DaB67rkcjkMwyAQ6Buf4+VyJJ99rjuubeq+Y8oaNitrW+XUaQQK3K+dwm1m6cyi+0kpueeeNaRSfTPzOtmnaMsm4K1/KtFmmDD7NJhxwtiJNk/C83vgv5+Eo34BrzUXH7e0Fo6sUcLurBlw7wWqnIeGtbEUOzO5UWsc73kOHR1raW5+BNdJYPnKqak+l9LSI7Ro02gOIWKxGB//+Mc544wz2LRpE2vXriUej4/1tDQDMGEsbiLY81KKWduCwWDR+lGpF1YNOq4NVE/SzrpttbPmdq1vTjeTdJKErBA1ob6xabbt8vGP38/PfraW//u/DfzpT+/GHOoNOrYHtjwBTgYCJTDnTIgMXNpkxPnkI/D7t7qX/76pb2P3Tm49A6pCxeuyHaJsTGZ4PTl6jeNzuWba2l5QzdoRlJR0WtkmZoauRqMpzv33388111zDrl278Pl83HjjjfzXf/0Xfr8uhj2emTg/rUP91HAzBu6WkHlrA/aePQifj/AJ+45rA2jYsgmAqmnT8RXEzHVa26aXTO8jED1P8pGP/J2f/Uz1Pf3b397i+usf7KpCPSjqX4WNDyvRVjoVFl009qIN4PTpPZf/tknFHRbjmFot2gqoz9qs6hidxvFSunTEXqap6REcJ4ZllVJTcy6lpUdq0abRHEJ4nscHP/hBLrroInbt2sVxxx3HmjVr+NKXvqRF20HAhBFuoldZid413KBvYoIbi5F+5WUAwscdhxndt9su2d5GvLkJYRrUFGSSetJjVyJfJ66kr5t0x44OHnhgY491v/nNq+zePQiTtOvA5pWw66Xu7gfzzwXfKDUa3x6Dm55S5TmKcf5sKCzF0pCC3YnRmdtBTMxxeSLfOP6wEW4cn8u10Nj0EIn4G4AkGl3MpEnn4/ePA+Gv0WhGFcMwiEajhEIhvve97/Hss8+yZMmSsZ6WZpBMGFdpb/aVmCClJPXiiyqubc5s/NMGVyutfrMSXzXTZ+Hzd8fL1SfrybpZSv2llAfL++w3a1Y5zz67gvPPv4+tW9uZObOMBx/8ANOmDcL6tP0ZaNsGpg9mnQoVxePnhp0dMbjtJfjdm6oH6NG18M4FfceVBuCiuSCBd8yDs2dCaMJ+tIaFwsbx0wJ+jhmhxvFSesTjrxHPCzbLKqG84gQC/uoROZ9Goxmf7N69m4aGBo455hgAbrnlFj73uc8xd+7cfeypGW9M2Lur9NSzEIJUEYtbbtMmnOYWjFBwUHFtAPHWZpJtrRiW1dUloZPOFlf9JSUALFhQxXPPreAjH/k7P/jB+cydW7nvk9a/Bq1blGhbeCGEB7HPcPG5x2Hlju7lv28qLtwA7jxvVKY0EShsHF9hWZwyQo3jbbuN1rbncex2AKLRhZSUHIlhTNj/9hqNphcqIe4ePve5z1FTU8Mrr7xCOBymtLSU0gF6cGvGLxP2G7wzxs3zHGzbxjTNroxSL5nsKv0ROuZYxCB9+l3WtpmzMa3uFkS2Z7M3sReAGSUDF92trY1y//3/b3AXEdsLu19Sr2edMrqiDeDTy3oKt0e3K3dpVMdAHAjPt3c3jj9zBBrHS+kRT7xBPP46SA/TilJRfjyBwMBdQDQazcRi06ZNXH311axcuRKA008/nVQqtc9C9JrxzYSJcetNZ9B/OqcCv6PRaJdVI7V6NdJx8U+fNmgXaaypkXRHB6bPR/X0nla13fHdONKhOlhN2DdM/yGyCdjyeHdMW8Ws4TnuUDhxCpyW77U6uwy+fQb4dRD7gfB6Is3mdAZTCM6oLB32xvG23U5T07+Ix14F6RGJzGdSzQVatGk0hxCu6/Ld736XI488kpUrV1JTU8Pvfvc7/va3v1FdrcMkDnYmrMWtM8Ytk0tjBpRwA8ht24a9tx7h9xPK+/oHQ8suZXmaNGsOZq/mur3dpI7j8eCDm7joon7civvCdWDzY93Zo1MGP88hsTMGt6+GZXXw3n4a0N94Iry7Df5tQfG+oppB06NxfHmUav/w/feT0iOReJNYXAk204xQUXE8gUDtsJ1Do9EcHFx22WX84x//AOD9738/3//+97Vgm0BM2DtxZzWKVFbdKEtKVM/L7CZVyiN01JEYA7S/6k0mqbIkS2t6Wi5SdorGVCMGBtNKlHXqa197kosv/h8+9KG/kkz2k4k5EDueg1RLvk7b6cW7EBwIexPwuZVw/H3wy9fh1lVgu8XHHlML71mkRdsBUtg4/uhhbhxv2zGamx8hFnsZpEc4Mo9Jky7Qok2jOUT54Ac/yLRp07j//vu57777tGibYEzYu7HnSlzXwbFtDMPo8unLnBJS1hA+yJ7nYmcyIMAf7FkLblP7JiSSqSVT8Zt+XnxxN1/72pMA/PKXL7N8+d1s2NAy+Ik3vAEtm8CwYO5ZYA3fDb6L5/cowWbnMzh2xFXmqGZE6N04fskwNY6XUhJPvElT04Pkci2YZpiqqjOoKF+OYfj2fQCNRjMhWLVqFXfddVfX8uWXX85bb73FhRdeOIaz0owUoy7chBDnCyHeEkJsEkL8Z5HtZUKIfwghXhZCvC6E+PD+nEdKSc7JIoQqA2LkC+tKx1HnMQcfW5RLqaxUfzDUo0Cv7dls6dgCwPzy+V1Fdl23u/hsW1uG8vJBWvbi9bBrlXo96+SRS0a4bIGyohXy143Fx2oOCLugcXyt38eJw9Q43nHiysrWsRYpXcLhOUyadAHB4ORhOb5Goxn/pFIpPvvZz3LiiSdy7bXX8tprrwGqmoJOQJi4jKpwE6o8+4+AC4DDgPcJIQ7rNexa4A0p5VHAGcB3hRBDTmOUniRnZ8HoVb/NybsEfYO3SGRTyt0aCPcs0LutYxu2Z1MdrKYqVIVhCO6552IWLOguanr33RczadIg+nHmkt3JCLVLoHLOPnc5IL51mko4mFUKPzgbfnfxyJ7vEERKyTMFjeNPqyjBOEC3t5SSROItGhsfJJdrxjBDVFWdTkXF8RiGzvbVaA4VVq5cyRFHHMH3vvc9AD7zmc/ommyHCKOdnHAcsElKuQVACPE74BLgjYIxEigRKgU0CrQCzlBPJD2wnRzCEr2Em2ruLqzBX3qncPMXCDcpJRvblJVqQWV3EsLxx09j7dqPceONjxKP5waXoOC5qjOCnYbSKTD12EHPbUA6A/2KiYWoH/5+meob6tOZoiPBmmFuHO84cdraV5HLNgIQCs+ivOwYDGME3OkajWZc0tHRwQ033MDdd98NwBFHHMHPf/5zli1bNsYz04wWoy3cpgI7C5Z3Acf3GnMH8HdgD1ACvEfKznK63QghrgauBpgxpe+vDCmVxc2wugvvStdVstAQg+pJ2kkulQIgUCAAdyd2k3SSRH1RpkSm9BgfDvu47bbzB9+HdM86SDaBPwqzT1cNVg+UphR88lG4YDZc2U8rk7rhcdtp+rIxmeGNZBoDVfbjQBrHSylJpjYR61iHlA6GEaS8fDmh0LRhnLFGozkY+OQnP8mvf/1r/H4/N910E5///Od1f9FDjNEWbsX8RL3VzXnAOuAsYC7wLyHEU1LKWI+dpLwLuAtg4ZzD+ygkz1MxbmHD12Vxk65ykwpzaJedTSvhVmhx67S2zSuf12/V+0FVw8/EoEHFJTDn9OHpP7pyB1z7iBJvz+yC4yfDIt2TcrTo3Ti+LrD/iQKOk6C9fRXZbAMAodAMysqWYZrayqbRHIrcfPPN1NfX8/3vf5/DDusdaaQ5FBjt5IRdwPSC5Wkoy1ohHwb+LBWbgK1Ar0j6fZPN5PA8F9Myu3+N2Hk36RCtH7leMW4t6RaaM834DB+zymYNdWo92fWi8utWzYPoMBRJbc/AigeVaAPIuPCxhyE9ZG+zZj/osB0eb411NY6ffwCN45PJzTQ2Pkg224BhBKisPJnKypO1aNNoDhGklPzmN7/hne98J56nHE8zZ87k4Ycf1qLtEGa0hduLwHwhxOx8wsF7UW7RQnYAZwMIIWqBhcCWoZ7IzimR5vd3Wzu6LW6Dj+nyXBc7mwUh8OddrhvblbVtkjmdb9z8DJnMfoqi2F5o36FKfwxXXFt5UCUeFBL1Q3w/6slphkTG9VjZGseW8oAaxztOkubmlbS3r0JKm2BoOpMmXUgoNHA7NY1GM3HYuXMnF198MR/4wAf4y1/+wl//+texnpJmnDCqwk1K6QDXAQ8B64HfSylfF0JcI4S4Jj/sZuAkIcSrwKPAf0gpm4d6Ljenfp2YBS2FOkuBMJTEhE43aUiVAknZKXbFd2Fg8JObN/PlLz/BscfexerVvQ2H+8DzYOcL6vXkI8E/jKnb714Ely8AQ8ANy+Fvl8EknRo+knhS8mTbgTeOT6W20tj0ANlsPYbhp6LiJKoqT8E0h8GFrtFoxj2e5/HTn/6Uww8/nPvvv5+ysjJ+9rOfcdlll4311DTjhFFveSWl/Cfwz17rflrweg/wtgM9j5Mv+1FMuA0lo7S3m3Rj+0Ykkq1rPe67dz0Ab7zRxPHH38MDD7yfc88dZDp28wZIt6nuCLX9JA8cCN8+Az50hIpv04w4z7UnuhvHVw29cbzrpmlvX0Umo34ABINTKS9fjmmG9rGnRqOZKGzcuJGrrrqKJ554AoBLLrmEH//4x0yZMmUfe2oOJSZsr1In38LJ8hUYFfdDuGVTnRa3MLZrs6V9C54nufsb23uMW7SomtNOm1nsEEUml4U9a9XracvA2I9yHFLC83tVI/hilPi1aBslXoun2JLOYgrBmZWlRIbgigdlZWvvWI30bITho7zsWMLh2SM0W41GM175y1/+whNPPMGkSZO44447uPzyy/fLcq+Z2Exc4ZYXaT0sbp0xbkOyuOVLgYTDbI1txZEOtZFJPPvoRdxww7/4xS/W4fMZ/OpXlxEIDPK4e9apBvIlk6Fi1qDn0kXGgesfgz9tgLvOg8vmD/0YmmFhezrL2rj6jJxcHqVqCI3jXTdDe/uLZDK7AAgEJ1NRfhymqd3aGs2hQiKRIBpVpZk+85nPkEgk+Pd//3eqqnQlAE1xJq5wy/fhtAqao0s7H+M2hHIg2bRylfpCITa2qbIdCyoWUB0Nc++9l3DllUexdWsbxxwzSOtWug2a1quiuNOPG/Q8umhJwxX/hFV71fInH4FpUViurWujTXPO4Zn9bByfSm2no2M1npdFCB9lZccQiYxwtwyNRjNuyGazfO1rX+Ouu+7i5Zdfpq6uDsuy+OpXvzrWU9OMcyZkk3npSTy3b4wbbqerdPCurE5XaYvsIOWkiPqiTI50i6QzzpjFhz989OAnt/NF5easXrB/vUg3tsHahoIJuvDpleANstivZlhIui6P5xvHzw0FB9043nWztLY+Q1vbs3helkCgjkmTLtCiTaM5hHjuuec4+uij+drXvkZjYyMPPPDAWE9JcxAxIYWb63hIKRGm6GouD0NPTnAdBydfCmRLSsW0LahYsP8xB+07IbYbTD9MOWb/jnHCFLjtrO7leeXw67erDFLNqGB7kpUt3Y3jTygfRC9aIJ3eSWPj/aTTOxDCorx8OdXVZ2JZg9tfo9Ec3CQSCa6//npOPvlk1q9fz/z583nyySf58Ic/PNZT0xxETEhXqet4SCSGYfQQWW48DoAYZHuQXL4USM5yacvG8Bt+ZpYOMgGhN54Hu1ap11OWHliHhPcsgi3t8MJe+MUFqnabZlSQUvJ0W5w2Z/CN4103S0fHatJpJf4DgVrKy4/DsnTLMY3mUOHpp5/mgx/8INu2bcM0TW644Qa++MUv9uilrdEMhgkp3BxbWdwMU3QJNy+bxd6xAwDf1KmDOk6nm3Sv3cRf/rydKy44G8vYz7ds14uqvVWwDGoW798xCvnP48H2wK8bxI8ma2IpdmUH3zg+nd5Ne8eLeG4aISxKS48iEpmvM8U0mkMM0zTZvn07S5cu5Wc/+xnHHLOfXhfNIc/EdJUWCLdOV2l20yak6+GbMhmztHRQx8mlU3RkO3h+/TYeuH8r7zzlUb75zafI5dzBT0ZK2P4cNL4BwoAZJw6uibwnVZ/R/hBCi7ZRZiiN4z0vR1vb87S2PonnpvH7a5g06Xyi0QNwtWs0moOK1atXd70+8cQTeeihh1i1apUWbZoDYkIKNyenhJuZt7hJ1yW3eTMAgQULBn2cTDLBzvhuHn16F5kd5aQTkv/+78f49KcfHNwBpITtz0DTm6pW29yzoHQQ2Z85F679F1z6V/j9m4Oer2bk2JvNDbpxfCazh4bGf5JKbUUIk7KyY6iuPhvLKhmt6Wo0mjGkoaGBd7/73SxbtoyHHnqoa/25556Lz9f/d4dGMxgmpKu0MznBsAwMwyC3YwdeOoNZVoavtnbQx9nTsoM3Nu5m954cmV3KSmeagn//9xP2vbPnwbanoHWL6kU672woHUT160QOPvwAPL5TLf/7Y1AThjN1n8qxosN2eKI1jofk8AEax3tejo6OdaRS6keC319FefkJ+HyDs/BqNJqDGyklv/71r7n++utpa2sjEonQ2Ng41tPSTDAmqMXNVckJeYtbdoNqCj8Ua5snPbY2bWLWzHKuuvwiaqpUIPlHPnI0CxYMojDizheUaDN9MP/cwYk2gDda4NndBRfjweefAHsI7lnNsFHYOH560M/R/TSOz2TraWx8UIk2YVBaupTq6nO1aNNoDhG2b9/OBRdcwJVXXklbWxtve9vbeO211/jgBz841lPTTDAmpMVNJSd4GKbAa2vHbW/HCAbwzxy81Wpzy0YymSSRYIQbP/lOPv0Rh9tvf4EPfWjpvnfOJlQvUiFg/tsgOmnwkz9uMtxxLlydN6/PLoP/fQf4dDzbaONKyRP5xvGVPotTyvs2jvc8m1jsZZJJ9ePA56+kovwEfL6ysZiyRqMZA1auXMk73vEOEokEFRUV3HbbbVxxxRU6nlUzIkxI4aaSE8A0DeydyuXonzsPMcgekrZn8+qONQDMqpmLaZiUlJh84QunDW4CjetBelA5e2iirZPL5kNDEv68AX5zkXKVakad59sTNOYbx59RWYLVq1ZeNttAW9sLuG5SWdlKlhCNLkaICWnI1mg0/XD00UdTWlrKeeedxx133EFdXd1YT0kzgZmQwq3T4iZcG7exEUJBAvPmDnr/13euo2PDNsK+MDOnLhziyXPQ/JZ6XbtkaPsWcs1S+MgROnN0jBiocbznOcTiL5NMbADA56ugouIEfL7yMZqtRqMZTWzb5q677uIjH/kIoVCI8vJy1qxZQ+0QYqg1mv1lggo3FePmtTRhAP6ZMzGCgytS297ezCvPrwTXY9Hco5k8b/BxcYBykbq2aiAfqd7H2DRUD1B8UYu2MaGwcfwpvRrHZ7NNtLU/j+skQBiURA+jpORwbWXTaA4R1q5dy4oVK1i7di07d+7kW9/6FoAWbZpRY8LdbaQncW0Pz3HxWlsQQhAcZFJCOhHn2af+zs4drVTXTuPIY09DDKbmWieep+q1AdQePvDYJ3bCsl/pch/jjOacwzNtqnH8MaURZuQbx3ueQ0fHWpqbH8F1Eli+cmqqz6W09Agt2jSaQ4BMJsONN97I8uXLWbt2LTNnzuSss87a944azTAz4SxuruMBIBMd4Hn4qqswy8v3uV8mkWD9qqd46bW3+PvKHTz8yEwWzmgbXAZpJ21bIZeEUDmUTet/3MNb4SMPqgbxn3wUgha8Y97gz6MZEeJOvnE8qnH84VFlDc3lmmlrex7HiQOCkpJOK5u2iGo0hwLPPPMMK1as4K233kIIwac+9Sm+/vWvE43qtnWa0WfCCTfHzgu3WBtYEJwzZ5/7ZJIJtqxZxab6zTy2ai9v7awg8WYjRx75E+6++2I++MGjBnfy+lfVc+0SlVFajE1tcOUDqswHqA4J1zwMS6phTvngzqMZdpKOy79aYj0ax0vpEou/RiK+HpBYVikVFSfg9w9BzGs0moOaNWvWcOqppyKlZOHChfzsZz/j5JNPHutpaQ5hJpxw81yJzNl4uSwiYOyz4K6Ty7FlzYvEUx08tGYzr7YKUtsqAXBdydFHD6LTAUDHbki3gS8ElQOIxXkV8K3TVG02T6p1XzxJi7YxJOV6/KslRtJ1qfZZnFFZgmO30tb+Ao7dAQii0cV5t6i2smk0hxJHH300l112GYsWLeKmm24iOMh4aY1mpJhwwg3AjcdAglFSgrGPEiDNO7fjZLM0iQ6OevsRbNzdyFOZHACf//xJLFkyyHIeDa+r50mLVXurgbhyCdRF4OqH4eaT4YoDyD7VHBAZ1+ORlhhx16XCsjizMkom8Rrx+BsoK1sJ5RUnEPDvI9FEo9FMCFpbW7nhhhv4zGc+w+GHH44Qgj/+8Y+6Jptm3DAxhVssjkRilpQO+J/Nc11adu0gaSdJTDKYVlrKg796H/e/cys/+clLg6/blmqF2G7V2qpm0eD2OW82rL0CKgfIKtWMKFlPibYOx6HUMjmt1KWj5V84djsA0ehCSkqOxDAm5H8TjUbTiz/96U9ce+21NDQ0sHnzZh5//HEALdo044oJeUfy4jEkYJaWYAyQFdq2dzeubdMkOjBLSphbPpewL8y73nU473rXPrJCC2l4TT1XLwArMPj9tGgbM2xP8lhLjFbbISjjHGvsJt6yC5CYVpSK8hMIBGrGepoajWYU2Lt3L9dddx1//vOfATjllFO48847x3hWGk1xJpxwc+NxZC6HZwpEKIRlFb9EKSVN27eSsBMkKyAoLBZWDLHYLqgs0tatKhmh9rCe22xX9R49aj+6J2hGDMeTPNLczK5EPabdwNHhZkRWAoJIZD6lpUu1lU2jOQSQUvLLX/6ST3/607S3txONRrnlllu45pprBvzRr9GMJRPu7uQ0NeFJiQwHEELg8/mKjos1NZJLp2mwmzHLK5lXPo+gtR9Bp53trSpmQaCke72U8OmV8JcN8KNz4dL5+3dBmmFDSkkqs5eHG7azK9VBULicHElQ4gsTicwlHJ6DaWorqEZzqLBnzx6uvfZaUqkU559/PnfeeSczZgy+p7VGMxZMQOHWjIuLEQrj9/v7jU1o2rGNTTvraZ3iUmX6WFA5xA4JoNpbNeXbW9Ud0XPb156D/80X173qIahPqjZWmlHHddOkUluJJzbxTBzqbR9+Q3JOVSmTS48mEJisY1g0mkME13URQmAYBlOnTuX73/8+wWCQD3zgA/p7QHNQMOGEm9vWiiM9RChEIFA83izV0U5HczP3/vUZXnUl11w+mUvn+Yd+suYN4OagpK5ne6tXmuAHa3qO/dkr8IHDILof59EMGSkl2Ww9ydRmMpndeJ7Hi6kwDW6U0vAk3j55NtVBXTxTozmUWL9+PR/96Ee58sorufrqqwG46qqrxnhWGs3QmFBOfCklXi6LI12EZeH3FxdJTdu38X//epWtySQdHS7/fdU6zjrrV9i2O/iT9Whv1aucx5E18ONzwcq/vdUh+N93aNE2Crhumnj8DRoa/kFLy+Nk0juRnuQ1dybtgSVUly3l7VMXa9Gm0RxC2LbN17/+dZYuXcqzzz7L9773PVx3CN/3Gs04YmJZ3GwbJDgCEKKoxS2XTrHpjc08sfZ1mjyLzM4ypGOyYEElPt8Qiqsmm1RiQqCkeHurdy2EqqBqafWbt+sCuyNIb+saUnWlMM0IkchcXrXraM5IgkJwVmUp1f6J9bHXaDT9s3r1alasWMHLL78MwIoVK7j11lsx91HjU6MZrwzpDiZUAMA0YDrwspQyOSKz2k+8nCqc6xoCAUUtbs07t2OFbQ47fQqvPd5CdlcZNTVhvvnNc4Z2skSDei6d2n97q7NmwktXQEgLhZGgM3YtmdyE63Z+FAXB4DQikbkEApNZHUuxOZPGRIm2SYHiySoajWZikc1m+dKXvsR3vvMdXNdl9uzZ3H333Zx99tljPTWN5oAYtKIQQnwC+AJQB0hgObBGCPFn4Ekp5fdHZIZDQOaFm2NIfFDU4hZraqQhU88pFx/OpZct4rv/sZH3v/8IKodaUy3ZqJ6j+yj1oUXbsLIv61phZujaWIr1yTQGgtMqS6jTok2jOWQwDIMHH3wQz/O4/vrr+drXvkYkEhnraWk0B8ygVIUQ4gbgZuAWYCXwWMHmx4H3Ad8f5rkNGZnLkc0ZuLj4RV+Lm5SS5lgDSTtJZXQWp887mrP/uXz/TpZoUs++KnitWTWJ14wYg7GuFWaEvRpP8VoihUBwSkWUaUEdX6jRTHRisRiO41BZWYnP5+OXv/wl6XSaE044YaynptEMG4M1B10LfFFK+W3Rt8v2W8B+1NIYfrKxNM0xE8/KESkP9Cm+62Sz7I7tBstkUfVifMZ+WmDS7eBkVEP5G1+Cv2yE285ScW2aYWMg61o4ModIeG7RumtvJNKsi6cAOLk8yszQELpZaDSag5J//vOfXHPNNZx00kn87ne/A+Coo44a41lpNMPPYIVbHbC6n20esB+Va4eflj1JHOkRiliUlIf7VL7e0bKVlJMikG9vtd8k8m7SxxPwu2b1+hP/gjea4QsngjmhknVHnaFa1wp5K5lhdUztc2J5lNlhLdo0molMc3Mzn/70p7nvvvsA2Lx5M/F4nJKSkn3sqdEcnAxWuG0CTgceLbLtNOCNYZvRAZBN5nClRyjq69MxQUrJ+nrVU3RW9RysA2lplGiAhA337gEKXKT3b4FPL4NSLRaGyv5a1wrZnMqwqiMBwPKyCPPC4+L3hEajGQGklPzhD3/guuuuo6mpiWAwyM0338z111/fb6tDjWYiMNhP9/eBHwshcsAf8+smCSFWAJ8BxkUFQydj4+Jh+Mw+wm1nbBevvL6FKYbJjKo5B3aiZCNEffCdy+BDz0LWhRI//OYiLdqGyIFY1wrZls7yXLva/9jSCIsiunWVRjNRcV2Xd73rXfzlL38B4PTTT+eee+5h3rx5YzwzjWbkGZRwk1LeI4SoAL4IfCW/+p9ACviylPK3IzS/IeFkHFzpEfBZPYSblJKHXn6O//31y1R0hPlT6SOceWEHn/nMiUM/iZ2GTAwMC846Au4tg48+CHedB/MrhvFqJi7DYV0rZEc6yzNtCSSSo0rCHBbVok2jmciYpsnUqVMpKSnh1ltv5aqrrtJN4TWHDIO2J0spbxVC/BQ4EeUfbAWek1J2jNTkhoqTzuJKiRkK9Mgo3RXfxZrXt+FzDDItAV5+vR5C2/ZPuHXGt0VqwDDg3Fmw+krVHUEzIMNlXStkTybHU20JPCSHR0McWRIe/olrNJoxZ8uWLTQ3N3PccccB8M1vfpPPf/7zTJ8+fYxnptGMLoMtB3IFcL+UsgV4uNe2SuAiKeWvRmB+g8Z1PLxcDk+4mMFAD4vbzsRONmxoQbQqcZV1TM48c9b+nShRpH6bFm390mldS6W2kM7sKmJdm4Np7p/Yqs/aPN4ax0OyKBLimFJdo0mjmWi4rssPfvADbrzxRmpra3nttdeIRCJEo1GiUd26TnPoMViL270oS1tLkW2z89vHVLg5OQ+ZyyHxEL6eyQlpO01lVYhANEJrwiZrG0MTbrYLO2Iwt2LwhXcPcbqsa6nNuE4iv/bArGuFNOVsHmuN4SKZFw6yrFRb2jSaicbrr7/OihUreOGFFwA48cQTyeVyupCu5pBmsMJtoDtsFRAbhrkcEF4yDVKCJcAwegi3lJPi8ksXMmdZmERcsC0xnSOPrB38wW99EX6yFr5yIhyVL/8R0cKtNyNpXSukJefwaEsMV0pmhwKcUBY5IBGo0WjGF7lcjltuuYWbb74Z27aZOnUqP/nJT7j44ovHemoazZjTr3ATQlwCXFKw6iYhRFOvYUHgVODFEZjbkHCTquCq9KsA1U7h5kmPjJtB5mx8po9pM8o58/ijB3/g1fXw/ZdUk6+vPABvb4IrTwBLV+LvZKSta4W02Q6PtsawpWRGMMBJ5VEt2jSaCcY73vEOHnroIQCuvvpqvv3tb1NWVjbGs9JoxgcDWdwmAUcULM9FFeItJIeKefvaMM9ryNiJDK70wGdiFFjcMk4GAJ9jYAgDX3CItb2++YISbQDhOOyMQVhb20bLulZIzHF5pCVG1vOYGvBzakUUQ4s2jWbCcc0117Bx40buuecezjzzzLGejkYzruhXuEkp7wbuBhBCrAQ+LqV8c7QmNlTcbA5bupg+k1Ao1GWFSTnKEud3Vacuf2gIiQS2C3PK4NndYHsQSsJ7F8OUQzeLyXUzpFJbRsW6VkjCcflXcwcZz6PO7+P0yhIt2jSaCcLjjz/OK6+8wqc+9SkALr30Ui644AICAV0XU6PpzWDruI37nzxu1sGWDobPT7DAqpZ20gD4bHWT9weHINx8Jnz7DPjUsfCDl6B9ByysPOQSE8bCulZI0nX5V0uMlOcxye/jzMpSTC3aNJqDno6ODv7jP/6DO++8E9M0OeOMMzjyyCMBtGjTaPph0HXchBAlqJi3BRTpTSql/PwwzmvIuBkbW7r48xa3ThIZZXETGQcMCJXuR5zEtBL4ytHw2jbwhSFw6PTA87wcLS2Pk8t1JhSPvHWtkLTr8a/mGAnXpcpncWZlCZahRZtGc7Bz//3387GPfYzdu3fj8/m48cYbWbRo0VhPS6MZ9wy2jttc4BkgDESAJqAyv38b0AGMrXDLOdjSJeT39bC4ffa/7mdXajPnlFdw1Jx5zFy2n7/iYntUbu0hZG2T0qW19WlyuRYMM0QkMm/ErWuFZFyPR1pixF2XCsvi7KpS/Lo6ukZzUNPU1MT111/Pb3+rGu4cd9xx/OxnP2PJkiVjPDON5uBgsHfB24CXgFqUfLkQCAEfABLAe0ZkdkPAySrhZvitHha3tzbX014fY9Vz9Xzn+2vZuKl9/07QlA/vq5x94JM9CJBS0tb2PNlsA4YRpKb6bEpLloyaaMt5Ho+2xmh3HEotk7OrSglo0abRHPR85jOf4be//S2hUIjvfve7PPvss1q0aTRDYLCu0uOAjwLZ/LJfSukCvxVCVAO3AyeNwPwGjZu18fCw/L6udletrWma2juYUuUhbYO07WfJkv2wmMX2QqZDuUnLZgzzzMcnHbE1pNM7EMJHVdXpWNbouYdtT/JoS4xW26HENDm3qoyQqUWbRnOwIqXsCqv4xje+QSwW43vf+x5z584d45lpNAcfg70bBoGYlNJD9SidUrDtNeCo4Z7YULFzNgD+UKDrC+KVVxowAg4Rw0M6BnXTJxEM7kOrbmqD774IrenudU3r1XPNQtWfdIITj68nmdgAwqCy6hT8/spRO7fjSVa2xmi2HSKmyblVpYS1aNNoDko8z+Ouu+7iwgsvxHVdAKZPn87f/vY3Ldo0mv1ksBa3DcDM/Ou1wDVCiH8CLrAC2DMCcxs8EjzPwRDgC3XHt5122gxu/f6Z7H36dcTOSZTMGETh3TvWwm/egB+shvcfBlctVNmkwoDqBSN4EeODVGorsdg6ACrKTyAY6F26b+RwpeTxtjgNOZuQYXBuVSkRyxy182s0muFj06ZNXHXVVTz++OMA/OMf/+DSSy8d0zlpNBOBwQq33wFLgV8DNwEPodpcefljfGgE5jZopATPsfH5ZI8CuzkvR2nEIDCljGOWHcHhp58+8IHqE/CHfCxbyoG7X4ElbbBAQsVM8E/sfpiZzB7a2lcBUFZ2DOHwzH3sMXx4UvJUW5y92RyBvGgr0aJNoznocByH22+/nZtuuol0Ok1NTQ0//OEPueSSS/a9s0aj2SeDreP2vYLXzwshlgAXoFyoj0kpXxuh+Q0OKXE9F79PYvm7W1GlnTReKoPf9BMuK9t36Yq7XoGc1708KwqLU8quWDOx09RzuRZaW58B6RGNLiYaXThq55ZS8kxbgp2ZHD4hOKeqlDLfoCvVaDSaccKrr77KihUrePFF1QXxAx/4ALfddhvV1dVjPDONZuKwX3dHKeVO4C4AoXiPlPJ/h3VmQ8GTeEj8QRPT7LbSKOGWI2j4CJWU7vs458yErAuPbofN7XBVHbh7IVQOpZNHbPpjjePEaWl5AikdwuHZlJUtHbVzSyl5tj3BtkwWSwjOqSqjUos2jeag5P+zd+ZxUdXdH3/fmUHZEUxJxV2UdUCB3FcCLUkzLTN73NJKMyvTXFIrlxYjU9NMe+ynPlrWo5E+lksoZpIloOKGoaUiiIiC7AOzfH9/DNxEENGAQbrv12tecOd+7/eee5lhzpzzPeezZ88eYmJicHNz47PPPmPgwIGWNklBoc5R2T5ujYBrQghx03M2mNe3vQa0AiznuAFIJjT11Gg0f11SgaEAY0EhVur6WNtXoiqyWzPzY1FP+PMG5B0019HW4Wib0VjAtWtRmEyF1K//IA0aPFSj54/NzufPgkLUkkSwiyMP1FOcNgWF+4kbN27QoEEDAF599VX0ej2TJk3C0bESX5YVFBTumtuW60mSZCtJ0hpJkvKBK0CmJEnTive9AFwAlgPngD7Vb2oFCIGQBJJGU8ZxMxUUUk9dD2s7+7ubs4mAwnRQacClblY/mVURfsJozMOqngsuLj2QpJqr4Dyek8+ZvAJUSPR1caBxfasaO7eCgsLfIy8vj6lTp9K2bVsuXzbXp6nVambOnKk4bQoK1UhF4Y15wGjgCyAec1XpbEmSugBPAPuAWUKImGq3shIIjKCuL6dKV6w4zDXr32mgz6V5s6bUt7O7uwmvnTP/bNgONPUqHnsfYlZFiEavz0StsaehSx9UqppznM7kFRCfk4+ERA9ne5rUr3v3WEGhrrJ3714mTJjA+fPnUalU7Nu3j2effdbSZiko/COoyHF7ApgvhFhU8oQkST8BPwBfCCHGV7dxlUdgkgSS5q9U6erVcVytdwSfxtlsuZqJW4cBdOhwFwtkc1LNP51bVb25FuYvVYQrqFTWPNCwD2p1zQk6n88vJCYrD4DOTna0tFHEpBUU7gdu3LjB9OnT+fe//w2AVqtl7dq1BAYGWtgyBYV/DhXlxVoCP93yXMn2+uox596QBAhKp0pTUrKxrW9uynvtmoSTk3VFU5TGaICCTJAksKt71VCWVEVI0RXxy41cADo52uFudxd/FwUFBYuxd+9evLy8+Pe//029evVYsGABsbGxitOmoFDDVBRxswKKbnmuZDuvesy5d0yYkDQa1Go1BQV6MjN1NLExO275BfVp1KiCHmz7LkJLR2jTwOys5V8DYQJbF1DXrXVXllRFSC/S81NmDiYE3nY2eNvb3PkgBQWFWoGjoyNpaWl06dKFtWvX4uXlZWmTFBT+kdyphO9lSZJSb9ouaYT2iiRJaTc9L4QQM6rWtLtBYBImUJtTpfn5Bv41xptcVSrkFtCkqSvq28kmFRlh4o+QoYNWTuaWIGOLnTy7e9A1rcVYUhUhU29g7/VsjELQ1saaTk53ueZQQUGhRhFCEB0dTY8ePQAICgpi//79dOvWrVTbJQUFhZqlIsctCehRzvMXgV63PCcAyzlut6RKnZ3VLFsVzPadF6hXJDH4kQqW4+1LMjttABeyYMvvMKaVeduuUbWbXlNYUhUhx2Bk7/Vs9ELQ3LoeXRooTpuCQm3m0qVLvPjii/zwww/s2LFD7sfWs2dPC1umoKBwW8dNCNGqBu34m/zVDqTkm2B2UTbCYMRabY9aU0G685szpbcfdwfdFfPv9nXDcbOkKkK+0cTe69kUmEy41rOip7MDqjspWCgoKFgEk8nE6tWrmTFjBjk5OTRo0IC8vFq3MkZB4R9Nneh2KjDncG/WKc0qzEIYjdjY2KCpV4Hj9pQHGEwQeRH0Jni8GejPg8YarJ2q3fbqxpKqCEUms9OWYzTiYqWhj4sDasVpU1ColZw9e5bx48dz4MABAIYMGcLKlStp0qTuqsYoKNyP1LjjJknSAGAZoAb+LYR4v5wxfYClmAskrgkhKlaHLxZ0qGfz12L3LF0WGAU2GhtU6gouc0Br8yOjAHadBw8VnKdOpEktqYpgMAmiMnK4YTDgoFYT7OJIPVXNNfdVUFCoPD/++CODBg1Cp9PRuHFjVq5cydChQ++s76ygoFDj1KjjJkmSGlgJhADJQIwkSduFEKdvGtMA+BQYIIRIkiSpEhUCAiSwsv2rcvRGfgYAdtYOlfvn42IDz3hB0q/m7fs8TWpJVQSTEBzIzOFqkR5blYqQho5Y3644REFBweJ07tyZRo0a0bdvX5YsWULDhg0tbZKCgsJtqOlP04eAc0KIP4UQRcBmYPAtY54BvhVCJAEIIa7eaVIBSKq/mu/qTXrydblISNhZ36XUVW7x6e7jilJLqiKUiManFBZRX6Xi4YaO2GmUCjQFhdpEYWEhH374obx+zdHRkfj4eNavX684bQoKtZyaTpU2Ay7dtJ0MdL5lTHvASpKk/YADsEwIseHWiSRJeh54HqBN45ZI6r8KE0If+ze6B07ia63iyvE/eKB9EI0aVaKSsQ403rW0KkJsdj7ni0Xj+7k44mRVJ5ZRKijUGQ4dOsRzzz1HQkICV65c4aOPPgLA2dnZwpYpKChUhruOuElmmkqSdC+fyOXlLMUt2xogABgI9AfmSpLUvsxBQqwRQgQKIQJVKhWoVajVaoQQxP+eROqlLH4/mcX6DSfR602Vs66k8a6N833beDc7+6jFVBFuFY1/oJ7itCko1BZyc3N59dVX6d69OwkJCXTo0IEhQ4ZY2iwFBYW7pNKOmyRJj0qS9Bugw9zjTVv8/BpJkiqrLpwMNL9p2w24XM6YXUKIPCHENeAA4HfHmTUaVCoVly/noCMPtQSmIjVW9evRpMkt6dKUHPg2EXJvEYa4z9OkOTkJ5Ob+bhFVhN/zdIpovIJCLeXHH3/E19eXZcuWoVKpmDVrFseOHZOb6yooKNw/VMpxkyRpFLAdOIM5PXnzcWeB5yp5vhjAXZKk1pIk1QOeLp73ZrYBPSVJ0kiSZIs5lZpQ0aQCQKNGpVJx5sw11HZFaBCYCjW4NXcuW5ywJRFe2AOea2HMD/DTeUhPhGuJ5v3295/jZklVhAsFhRzOMuuPKqLxCgq1i9jYWEJDQ7lw4QL+/v4cPnyYd999F2trRSdYQeF+pLK5rDeBD4UQs4orQ//vpn2ngGmVmUQIYZAkaTKwG3M7kC+EEKckSXqxeP9nQogESZJ2AccBE+aWISfvNLekNjtu/fq15tMvgkk6fg6bP+xo4Nqu7OAdf5h/qm7A0XPQMR7sih0djTU43F99iyypipCiKyI60+y0dXSwVUTjFRRqGYGBgTzzzDP4+Pgwbdo0rKzuz2UgCgoKZirruLUEfrzNPh3gWNkTCiF+AH645bnPbtn+EPiwsnMCUOy46U16rB2gdVMnvN1a4+blU3rcDR3Ep0GrM2CbY35O2x7sXeGB9uDcCirq+1bLsKQqws2i8V52Nvg42N75IAUFhWolLS2NV199lZkzZ+LnZ15lsnHjRqUnm4JCHaGyHsoloCOwr5x9gcC5KrPoXlGb17hlF2UDYC2skCQJq/q3pO3y9PBUM7h0AjJV4Ngeuj59X6okWFIV4VbR+ABFNF5BwaIIIfjPf/7Dq6++SmZmJqmpqezfvx9AcdoUFOoQlXXc1gJvSZKUBnxX/JwkSVIw8AYwvxpsuwsEqFWoVCpuFN4AzI4bgFX9W1J3zRzgbV+zoLy+MdQLuC+dNkuqIuQqovEKCrWKixcv8sILL7B7924A+vfvz+rVqy1slYKCQnVQWcftA8zVoOsBY/Fzv2Bep7ZaCLG8GmyrNOZ+IhJqtZqsgiwA6pnMPd3KOG4AedfMP1u3hAdrbhF/VWFWRThgEVWEfKOJSEU0XkGhVmAymVi1ahUzZ84kNzcXZ2dnPv74Y0aNGqVE2RQU6iiVctyEEAJ4SZKkj4F+wANABrBPCJFYjfbdFWq1muzCbITRRH3qgSShqVdOW4q8dPPP+7DJ7l+qCBk1ropQZDKxTxGNV1CoNaSmpspO27Bhw/jkk0948D78MqqgoFB5KuW4SZJkK4TIF0KcozasZ7sN+fkGTpxNolCXS70rDhic9GUHmYxmdQQA2/tL2sWSqgglovGZxaLx/RTReAUFi2AwGFCpzEtDmjVrxooVK3BwcOCJJ56wtGkKCgo1QGVTpdckSfofZm3RH4QQhdVo010jipOlO3acZd66SOxVJppedKSDd0v6DgsrPTg/o1gdocF9p45gKVWE8kTjbRTReAWFGufo0aM899xzjB8/nkmTJgEwevRoC1uloKBQk1T20/cN4EFgC3BVkqT/SJI08B5lr6qNYydSAdCYzOm7Vm1uSYXqjWZZKwDb+ytNailVBEU0XkHB8uh0OmbPnk1QUBBHjx7ls88+w2g03vlABQWFOkelHDchxAohRG/MBQpvAW0xKx5clSRprSRJIdVoY6WQkDh6vMRxMz/n3sH1rwFCgP96ePG/sDURDuZA0f3xj8+Sqgg3i8b3dXFQROMVFGqYgwcP4u/vz3vvvYfJZGLKlCn88ssvqNXKFygFhX8id5XvEkJcFkIsFUJ0A1oD7wIDgJ3VYdzdoFKpGDKsHZ27uNG0kT0qScLTp+lfA85nwdV8SE2BX1JgYQKoa//CekuqItwqGt+o3v2VWlZQuJ8pKCjg5ZdfplevXvz+++94eHhw8OBBli1bhr29/Z0nUFBQqJPcU/hEkqR2wPDiRxPMDXotikpSMeJZL5qlXMPmciEP5jvTsvVNxQcxV0BlhHoFICTwbg21fJ2WJVURFNF4BQXLYmVlJUfWZsyYwZw5cxR9UQUFhco7bpIktQKewuys+QNpmNe8TRRCRFeHcXeDSqWiyFRk/l1I1KunRqO5KUKUUwQuBvPvhTYQULv1SC2piqCIxisoWIaMjAyMRiONGjVCo9GwYcMG9Ho9/v7+ljZNQUGhllDZdiC/YZa2ygC+xSwqv7+4v1utQCWp0BvN7T/UxcUJ6pvFlMdrIcwefjDCYSOEtbWEmZXCkqoIqYWKaLyCgiXYunUrL730Ej169GDLli0AeHt7W9gqBQWF2kZlI24JmIsSfhRC1MoV/aUjbubn1JpbLk9VCNpGEOwBLRvXsIWVJzPzV4uoIuiMJg5m5iqi8QoKNUhqaiqTJ0/m22+/BeDq1avk5uYq69gUFBTKpbJVpWOEELtqq9MG5ohbkdHsuKlN5stS3eq4FeWbf9arvQ5JYeFVCguvIKmsaOjSu8ZUEQB+y8pDVyxl1cmx9t4jBYW6gBCC//u//8PLy4tvv/0We3t7Pv30U/bv3684bQoKCrflthE3SZIeBQ4KIbKLf68QIcQPVWrZXXKz4yYZBahuSZUC6PPMP61qryh6Ts4pAOztOqBW11ya8o98HUm6QjSSRLcG9orOoYJCNWI0GgkLC2PXrl0APPLII3z22We0aNHCwpYpKCjUdipKle4AugCHi3+vCIFZcN5irPr0CGfWpeHYopCO+Tb8a2jnsqnSkoiblU3NG1gJCouumaNtkhX29u1r7Lx5BiMxWWanNsjJDnulwa6CQrWiVqvx9PQkJiaGpUuXMnLkSOXLkoKCQqWoyHFrDaTe9Hut5mpaIWdFOvUy8yHbhnEjNKhUtzggJRG3Wpoqzck5CYC9fXtUqpqp5BRCEH0jF70QNLeuRztbpRhBQaE6SEhIICMjg+7duwOwYMECZs6cSePGtXe9rYKCQu3jto6bEOLizZtAqhCijGp7sexV01ufr0kEZu14qZ4JDeBgb/NXmnTHH+aGu62dwCYJmtrWylRpUdE1CnWpSJIVdnY116/tTJ6OtCI91ioVnZ2UdTUKClWNXq9n8eLFzJ8/H1dXV06dOoWDgwN2dnbY2dW+/0UKCgq1m8pWlZ4HumJOm96KX/HzlsuvFVeRSmqBWhI42lv/lSaNSoINp0BlAI+jMNgD+tW+ZrIla9vs7N1Rq2sm2nZDb+Botjl93KWBvSIcr6BQxcTFxfHcc88RHx8PQP/+/alFXZQUFBTuQyrruFW0+MIaKKwCW+4ZSYK5c3txzLER6VfS8Mh0Rl3SfPd8lvmnVXGw0LVmxNnvhqKiDHS6y0iSBns7jxo5p0kIDmbmYkTQztaa5ta1z5lVULhfKSgo4J133iE8PByj0Ujr1q35/PPPCQ4OtrRpCgoK9zkVVZVqMSsklPCoJEm3ehXWmNUUEqvetLvDxdmGVq0ceNDFiMeNxuaImxDwe4Z5gMZccUrThrefxELI0Ta7djUWbYvPKSDTYMBerSbQUUnXKChUJWFhYezbtw9JknjttddYsGCBkhZVUFCoEiqKuA3B3HQXzMnIebcZdx54oSqNujcEBmFAGE2oJNVfa9zWDoBjV+H4UchIhuauljXzFvT6THS6ZCRJjb29Z42cM71Iz6ncAgC6N7DHSqVUsykoVCVTp07lypUrrF27li5duljaHAUFhTpERY7bu0A45jRpNtAPiLllTFF5BQuWwFS80E1tlJAkydx8V5KgS1Pz4zLmh3Xt+tabXSraVv0VnXqTIDozF4HA286GxvVrrsGvgkJdZefOnZw8eZLp06cDMHDgQPr374/m1pZECgoKCn+TiqpK9UCJU1brV60bikUd1MWmlunhpq99qgl6/Q10BZdqNNoWl51HjtFIA40GP0UdQUHhb3Ht2jVee+01Nm7ciEqlIjQ0FD8/PwDFaVNQUKgWKlrj5gX8IYQoLP69QoQQp6vUsrvEKAyAOeIG/FWcUILcfLf2OCsla9tsbdugVld/U+BkXRFn83WokOjhbI9aafipoHBPCCH473//y+TJk0lPT8fa2poFCxbUiCi8Xq8nOTkZnU5X7edSUFD4e1hbW+Pm5obVrUpOf4OKvhKe5C/lhJPITTfKIGFh5QSTEPzxZwZZdnm4FpktKuO4yc13a0eqVK/PpqAgCSQVDg539Iv/NjqjiUM3cgHwd7TF2UqJBigo3AuXL19m0qRJbNu2DYDevXvz73//m3bt2tXI+ZOTk3FwcKBVq1aK2oKCQi1GCMH169dJTk6mdeuq0zGo6NO7L3D6pt9rLSaj4P/WHeGIzRnaoeHfc54sq1NayyJuJSoJdrZtUaur36YSAfnG9azwslPUERQU7pU33niDbdu24eDgQHh4OOPHj0elqrnVJDqdTnHaFBTuAyRJomHDhqSnp1fpvBWtcfupvN9rK5LKBICzg9kpUWfpITcT3BzBCjDozMUKtUCn1GDIkaNtNbG27c/8QllAvrsiIK+gcNcIIeT3zeLFizEajXz44Ye4ublZxB7lPaygcH9QHe/VSn1NlCSpsSRJrW/aliRJel6SpKWSJD1W5VbdCypzJtfZvthx23kRumyC5qsgcA3sTzJH22rBPzzz2jaBrU1rNJrqTd3mGYwczjKnSBUBeQWFu8NoNPLxxx8THByM0WgugGratClfffWVxZw2BQWFfzaVje+vA167afsd4FNgABAhSdKYqjXr7pAkiaZudjz4oD0PNjI7QurL5j5lCOD6DTBRK9KkBkMO+fkXAAkHh+qNtt0sIO9WXxGQV1C4G06dOkX37t2ZOnUqUVFR7Ny509Im3Vds376d999/39JmWJx169bRqFEj/P398fDw4OOPPy61f82aNXh4eODh4cFDDz3EwYMH5X16vZ6ZM2fi7u6Oj48PDz30UK18Hb766qscOHDA0mbclri4OHx9fWnXrh1TpkwpV3auqKiIsWPH4uvri5+fH/v375f3vfnmmzRv3hx7+9J63itWrOD//u//qtv8MlTWcesE7AOQJEkFTARmCyE8gEXAq9ViXSVRqyVGPuPD22/35pGQtubnLuX9NUBTBC7WtaIVSE5OAiCwtW2FRuNQrecqEZCvr1LRpYEiIK+gUBmKioqYP38+HTt25LfffqNZs2Zs376dsLAwS5tWPo1WlH7cjg0nS4+buq9azRo0aBAzZ86s1FghBCaTqVrtqQiDwVCt8w8fPpxjx44RHR3NokWLuHTpEgA7duxg9erVHDx4kDNnzvDZZ5/xzDPPcOXKFQDmzp1LamoqJ0+e5OTJk/zvf/8jJyenSm0riSTfKxkZGfz666/06tWr0sdU9/2+lYkTJ7JmzRrOnj3L2bNn2bVrV5kxn3/+OQAnTpzgxx9/5PXXX5dfk4899hiHD5eVah83bhzLly+vXuPLobKOmxNwvfj3AMAF2FS8vQ+omXKqCjCYTBiz81AJsLa3R+NiD03tzTWvVnqz42Zl2YpSgyGX/ILzmKNt1ds24GYB+a6KgLyCQqWIiYkhICCAt956C71ezwsvvMCpU6d47LHasSKkNnDhwgU8PDwYP348Pj4+jBw5ksjISLp37467u7v8Abdu3TomT54MQFpaGkOGDMHPzw8/Pz9++eUXLly4gKenJ5MmTaJTp05cunSJ6dOn4+Pjg6+vL19//XW55z98+DDdunWjY8eOdOvWjd9//x2Azp07c+rUKXlcnz59iIuLIy8vj3HjxhEUFETHjh3lauB169bx5JNP8thjjxEaGkpubi7BwcF06tQJX19feRzAggUL8PDwICQkhBEjRhAeHg7AH3/8wYABAwgICKBnz56cOXOmwnvXsGFD2rVrR2pqKgAffPABH374IQ888AAAnTp1YvTo0axcuZL8/Hw+//xzPvnkE+rXN0shurq68tRTT5WZNyYmhm7duuHn58dDDz1ETk5OqfsPZhm2kiiSvb098+bNo3Pnzrz77rul5ty/f7/8et+zZw9du3alU6dOPPnkk+Tm5pY595YtWxgwYIC8PX/+fIKCgvDx8eH555+Xo1t9+vRh9uzZ9O7dm2XLlhEXF0fv3r0JCAigf//+8j35/PPPCQoKws/Pj6FDh5Kfn1/hPb0TqampZGdn07VrVyRJYtSoUXz33Xdlxp0+fVrWEm7cuDENGjQgNjYWgC5dutCkSZMyx9ja2tKqVatynbrqpLKf5slASc+KgcAZIURK8bYTYPGGQkYMGDJyUEtqGjzYFFY8DPFj4NJEWNfX7MRZOOKWk5sAwoSNbctqjbaZilOkRgRtbRQBeQWFynLo0CFOnjxJ27Zt2bdvH5999hlOTk6WNqvWce7cOV555RWOHz/OmTNn+PLLLzl48CDh4eG8++67ZcZPmTKF3r17Ex8fz5EjR+R+d7///jujRo3i6NGjxMbGcuzYMeLj44mMjGT69Onyh/nNeHh4cODAAY4ePcr8+fOZPXs2AE8//TTffPMNYP6wvnz5MgEBASxatIh+/foRExNDVFQU06dPJy/PnJE5dOgQ69evZ9++fVhbWxMREcGRI0eIiori9ddfRwhBbGwsW7du5ejRo3z77bfyhznA888/zyeffEJcXBzh4eFMmjSpwvuWlJSETqdDq9UC5nR8QEBAqTGBgYGcOnWKc+fO0aJFCxwdHSucs6ioiOHDh7Ns2TL53tnYVFyEl5eXh4+PD7/99huzZs3i119/le/J119/zfDhw7l27RoLFy4kMjKSI0eOEBgYyJIlS8rMFR0dXeoaJk+eTExMDCdPnqSgoIAdO3bI+27cuMFPP/3ElClTePnll9myZQtxcXGMGzeON998E4AnnniCmJgY4uPj8fT0ZO3atWXOGRUVhb+/f5lHt27dyoxNSUkptR7Vzc2NlJSUMuP8/PzYtm0bBoOB8+fPExcXJ0dGKyIwMJCff/75juOqkso28/oCWCxJ0sOYHbdZN+3rAiRUtWF3i8Gox5CZi9qhEU6NH/xrR301NFJBpsqia9wMhjzy8/8EwMG+eqNt8TkFZOiLBeSdLJ8eVlCozaSnp9OoUSMAXnrpJYQQTJgwAVtb5b1zO1q3bo2vry8A3t7eBAcHI0kSvr6+XLhwocz4ffv2sWHDBgDUajVOTk5kZmbSsmVLWcv14MGDjBgxArVajaurK7179yYmJoZBgwaVmisrK4vRo0dz9uxZJElCrzcL/Dz11FOEhITwzjvv8M033/Dkk08C5qjR9u3b5SiZTqcjKSkJgJCQEFxcXABzunb27NkcOHAAlUpFSkoKaWlpHDx4kMGDB8vOUEk0Kjc3l19++UU+D0BhYWG59+vrr78mKiqK33//nc8//xxr69uvN765grky/P777zRp0oSgoCCAOzp6YP4bDB06FDArfAwYMID//e9/DBs2jO+//57Fixfz008/cfr0abp37w6YHcSuXbuWmSs1NVV+/4DZqVq8eDH5+flkZGTg7e0t37Phw4fLNp88eZKQkBDAnK4tiWidPHmSOXPmcOPGDXJzc+nfv3+Zc/bt25djx45V6v6Ut56tvPs7btw4EhISCAwMpGXLlnTr1q1S6ieNGze+Y6S1qqmU4yaEeE+SpBQgCHgZsyNXggvw72qw7a4oKsgFlcDOqQH1b/2Hqy8uVLBg893ckmibTUusrO78xrpXbhWQr1eD/aUUFO4nsrKymDFjBl999RUnT56kefPmqNVqXnnlFUubdnekT77zGIBRPuZHFVCSugNQqVTytkqluqv1S3Z2f/1PLu8DFmDlypXy+qMffviBuXPn0rdvXyIiIrhw4QJ9+vQBoFmzZjRs2JDjx4/z9ddfs3r1annerVu30qFDh1Lz/vbbb6XOv2nTJtLT04mLi8PKyopWrVqh0+lua5fJZKJBgwaVciCGDx/OihUrOHToEAMHDuSRRx7hwQcfxMvLi7i4OPr16yePPXLkCF5eXrRr146kpCRycnJwcLh9huZ2jp5Goym1bvBmpQ1ra2vU6r86DAwfPpyVK1fi4uJCUFAQDg4OCCEICQnhq6++qvDabGxs5Ll1Oh2TJk0iNjaW5s2b8/bbb5c6b8n9FkLg7e3NoUOHysw3ZswYvvvuO/z8/Fi3bl2pIoESoqKieO2118o8b2tryy+//FLqOTc3N5KTk+Xt5ORkmjZtWuZYjUZTqnCkW7duuLu7V3jtJdd8pwhnVVPpT3UhxAYhxMtCiLXipleyEOJFIcT66jGv8hh0ZmfFweWBsjv1lm2+azTmk5f/B0C1rm0zKALyCgqV4vvvv8fb25vVq1dTUFBQ5p+9QtUSHBzMqlWrAHN0JTs7u8yYXr168fXXX2M0GklPT+fAgQM89NBDvPTSSxw7doxjx47RtGlTsrKyaNasGWBep3YzTz/9NIsXLyYrK0uOCPbv359PPvlEdsCOHj1aro1ZWVk0btwYKysroqKiuHjxIgA9evTgf//7HzqdjtzcXL7//nvAHNlq3bo1//3vfwGzMxIfH1/hfejatSv/+te/WLZsGWBu5jxjxgyuXzcvIT927Bjr1q1j0qRJ2Nra8txzzzFlyhSKiooAc3Rr48aNpeb08PDg8uXLxMTEAJCTk4PBYKBVq1YcO3YMk8nEpUuXKlyH1adPH44cOcLnn38uR8W6dOlCdHQ0586dAyA/P5/ExMQyx3p6espjSpy0Bx54gNzcXLZs2VLu+Tp06EB6errsuOn1enl9Yk5ODk2aNEGv17Np06Zyjy+JuN36KO993KRJExwcHPj1118RQrBhwwYGDx5cZlx+fr6cLv7xxx/RaDR4ed1Z1SgxMREfn6r5QlRZKu24SZKkkSRpuCRJn0iStKn451OSJFlcO8loEhw/mkRc3GXyCspxVoqKK0wt5LjJa9tsWmBlVX3rZRQBeQWFiklPT2fkyJGEhYWRkpJC586dOXr0qPxhpVA9LFu2jKioKHx9fQkICChVRFDCkCFD0Gq1+Pn50a9fPxYvXsyDDz5YZtwbb7zBrFmz6N69e5mKyGHDhrF58+ZSi+3nzp2LXq9Hq9Xi4+PD3Llzy7Vx5MiRxMbGEhgYyKZNm/Dw8AAgKCiIQYMG4efnxxNPPEFgYKC87nHTpk2sXbsWPz8/vL29SxU03I4ZM2bwf//3f+Tk5DBo0CDGjRtHt27d8PDwYMKECWzcuFFOGy5cuJBGjRrh5eWFj48Pjz/+eKm0JEC9evX4+uuvefnll/Hz8yMkJASdTkf37t3llPa0adPo1KnTbW1Sq9WEhYWxc+dOuXq6UaNGrFu3jhEjRqDVaunSpUu5KcGBAwfKUbEGDRowYcIEfH19efzxx+X07a3Uq1ePLVu2MGPGDPz8/PD395edrgULFtC5c2dCQkLkv8HfZdWqVYwfP5527drRtm1bHnnkEcDcsmbevHkAXL16lU6dOuHp6ckHH3zAf/7zH/n4N954Azc3N/Lz83Fzc+Ptt9+W90VHR/Pwww9XiZ2VRbpdGLjUIElqDOwBtMAFIA1wBVoB8UCoEKJqNR3ughaNWoiHew7mYsFVFi9YQEBg+792GvVwdCOoNNDpXzVum9FYQFra/xDCSOPGj2Bl1aBazpOsKyIqIxsVEo82clK0SBUUbmHXrl3861//4tq1a9jY2LBo0SKmTJlSKmV0P5CQkICnZ/Urrij8RW5uLvb29uTn59OrVy/WrFlToSP0T6NHjx7s2LGDBg0aWNqUGuXo0aMsWbKklJNXHuW9ZyVJihNCBN7LeSv76b4EaAh0FkLE3HTiIGBr8f6a94puwkptRACN7RtA76/A5wHwbQTedmADaOrfYYbqITf3DEIYsbZ2qzanTWc08asiIK+gUCGurq5kZmbSr18/Pv/8c9q0aWNpkxTuE55//nlOnz6NTqdj9OjRitN2Cx999BFJSUn/OMft2rVrLFiwoMbPW9lP+EeByTc7bQBCiBhJkmYBn1S5ZfeAzqDC5XIBnL5ufnzzO3jWgyVWoK759V5Go468PHPuvzrXth3OyqNAEZBXUCiFyWQiMjKS0NBQADp27Mivv/5KQECAovWpcFd8+eWXljahVtO5c2dLm2ARSqpia5rKrnGrD9yuXXMOYNFGYSo1tGzZgC4922KbekuDQM/iCk51zUfccvN+RwgD1tbNqFfPpVrO8Wd+IRcVAXkFhVKcO3eO4OBg+vfvX6rZZmBgoPIeUVBQuK+prOP2KzBDkqRS/TSKt2cU77cYKknigUZ29OrVDunaLb2AXYsjbeqa9S2NxkLycs0VONUVbbtZQD7QURGQV1AwGo189NFHaLVa9u/fT6NGjVApLXEUFBTqEJVNlb4ORAGXJEnag7k4oTHQH7OoVJ9qsa6SCMwFFhq1FYS1hRaOkJ5vfmiLgGzQ1Kzjllccbatv3YR69RpWyzl+zcqTBeTdlRSpwj+ckydPMm7cOLktwrPPPsvSpUtp2LB63n8KCgoKlqCyDXiPSZLkDkzD3IRXC6QCnwFLhBDXqs/EymOlrgdtG5gfJaSdgkt/1miq1GQqJFeOtlVPf5ekgkIuFxZhJUmKgLzCP55du3YxaNAg9Ho9bm5urF69mkcffdTSZikoKChUOXfMIUiS1FCSpACgvhBiphAiWAjhVfxzdm1x2gCsyitAMBRLkNRgcUJu7u8Ioad+/QepX6+chsB/E4NJEFcsIO/nYKsIyCv84+nRowdubm5MnDiRU6dOKU6bQq3kwoUL2NjY4O/vj5eXF6NGjZIlu8As+/XQQw/h4eGBh4cHa9asKXX8hg0b8PHxwdvbGy8vL1nGqzbx3XffMX/+fEubcVsyMjIICQnB3d2dkJAQMjMzyx23bNky+V4vXbpUfv7tt9+mWbNmsj7qDz/8AMCJEycYM2ZMDVxBBY6bJEkOkiR9A1wFDgNJkiT9KklS2xqx7K4RaMpLhxqL3xQ11A7EZCoiN696o22n8wrILW6020FJkSr8A8nLy+Odd94hN9e8xtPe3p74+Hg+/fTTSmk11iUk6Z1Sj9uxZk1cqXHPP/+/GrTy7ri1sW5NIoQoJRVV1bRt25Zjx45x4sQJkpOT+eabbwC4cuUKzzzzDJ999hlnzpzh4MGDrF69WlZq2LlzJ0uXLmXPnj2cOnWKI0eOyI2Aq4q7kSu7HYsXL2bSpEk1es674f333yc4OJizZ88SHBzM+++/X2bMyZMn+fzzzzl8+DDx8fHs2LGDs2fPyvtfe+01Wa2h5Euir68vycnJsg5udVJRqOYd4BFgHmZh+clAM0rrlNYOBCDdJuJmLIm41YzjlpObgDDpqV/flfr1G935gLskz2DkZLEWaZCTHSqlQk7hH8a+ffvQarW8/fbbzJ49W36+Ij1HharjwoULeHh4MH78eHx8fBg5ciSRkZF0794dd3d3WVrp8OHDdOvWjY4dO9KtWzd+//13wOyUTZs2DV9fX7RaLZ98Yu4m1apVK+bPn0+PHj3473//y1dffYWvry8+Pj7MmDGjXFtyc3MJDg6mU6dO+Pr6ysoFM2bM4NNPP5XHvf3223z00UcAfPjhhwQFBaHVannrrbfka/L09GTSpEl06tSJS5cuMXHiRAIDA/H29pbHgVkv1cPDgx49ejBlyhRZaSAvL49x48YRFBREx44d76iioFareeihh0hJSQHMmqxjxoyRe8Q98MADLF68WHYs3nvvPcLDw2WdTWtrayZMmFBm3rS0NIYMGYKfnx9+fn788ssvXLhwoZQsU3h4uNz9v0+fPsyePZvevXuzaNEiWrVqJTuu+fn5NG/eHL1ezx9//MGAAQMICAigZ8+e5aooJCYmUr9+fR54wJxp+t///kfnzp3p2LEjDz/8MGlpafLf4/nnnyc0NJRRo0aRnp7O0KFDCQoKIigoiOjoaOD2r6G/w7Zt2xg9ejQAo0ePLlV1XkJCQgJdunTB1tYWjUZD7969iYiIuOPcjz32GJs3b/7bNt4RIUS5D+Ac8Motz/UEjIDT7Y6zxKN5IzcxftgL4qWpS0UZEn8UIuYLITIulN1Xxej1OSIl5WuRnPylKCy8Vi3n+Ol6ttiQki5+up5dLfMrKNRWMjMzxfjx4wXmr2rCz89PxMbGWtqsGuf06dOltuHtUo/bsXp1bKlxEyZsv6fznz9/XqjVanH8+HFhNBpFp06dxNixY4XJZBLfffedGDx4sBBCiKysLKHX64UQQvz444/iiSeeEEII8emnn4onnnhC3nf9+nUhhBAtW7YUH3zwgRBCiJSUFNG8eXNx9epVodfrRd++fUVEREQZW/R6vcjKyhJCCJGeni7atm0rTCaTOHLkiOjVq5c8ztPTU1y8eFHs3r1bTJgwQZhMJmE0GsXAgQPFTz/9JM6fPy8kSRKHDh2Sjymxy2AwiN69e4v4+HhRUFAg3NzcxJ9//imEEOLpp58WAwcOFEIIMWvWLPGf//xHCGF+rbq7u4vc3Nwy987b21sIIURBQYHo06ePiI+PF0IIMWTIEPHdd9+VGn/jxg3h7OwshBDC2dlZ3Lhx445/n6eeekp8/PHHsu03btwodV4hhPjwww/FW2+9JYQQonfv3mLixInyvkGDBol9+/YJIYTYvHmzeO6554QQQvTr108kJiYKIYT49ddfRd++fcuc+4svvhBTp06VtzMyMoTJZBJCCPH555/L+9566y3RqVMnkZ+fL4QQYsSIEeLnn38WQghx8eJF4eHhIYS4/WvoZrKzs4Wfn1+5j1OnTpUZ7+TkVGq7QYMGZcacPn1auLu7i2vXrom8vDzRpUsXMXnyZNn2li1bCl9fXzF27FiRkZEhH3fw4EERFhZW7ny3AsSKe/R5KipOaAnE3PLcb5irSFsCx6vWhfw7CIQAyaCC81ngagu2xdE3o1mctyZSpdnZxxHCiI1Ny2qpJL1SqOeirhC1JBGgaJEq/IPYvn07EydO5PLly9SrV4958+bxxhtvYGVV8421FZA1MAG8vb0JDg5GkiR8fX25cOECYBZtHz16NGfPnkWSJHktV2RkJC+++CIajfnjx8Xlrx6XJZqxMTEx9OnTR9blHDlyJAcOHODxxx8vZYcQgtmzZ3PgwAFUKhUpKSmkpaXRsWNHrl69yuXLl0lPT8fZ2ZkWLVqwfPly9uzZQ8eOHQFzxO7s2bO0aNGCli1b0qVLF3nub775hjVr1mAwGEhNTeX06dOYTCbatGlD69atARgxYoS8Dm3Pnj1s375dXnem0+lISkoqI3X0xx9/4O/vz9mzZxk2bBharVa+lvJ6DN5t38F9+/axYcMGwBzVc3Jyuu06rhJu1uodPnw4X3/9NX379mXz5s1MmjSJ3NxcfvnlF5588kl5XGFhYZl5UlNTS2mpJicnM3z4cFJTUykqKpLvG8CgQYOwsbEBzK+J06dPy/uys7PJycm57WvoZhwcHDh27Ngd7srd4enpyYwZMwgJCcHe3h4/Pz/59Tpx4kTmzp2LJEnMnTuX119/nS++MCciGzduzOXLl6vUlvKoyHFTA7feJeNN+2odqmwTPFSsGeZYD3q6wfSSVGn1tgMpKrpGQcFFJEmNo6Nflc9vEoKYrDwAfOxtsFN6tin8Q4iJiWHw4MEAdO3albVr1ypanTchxFt3HgQ8/3wAzz8fUCXnrF//ry/CKpVK3lapVPKapblz59K3b18iIiK4cOECffr0Kba3fAcFwM7OTh5THr/99hsvvPACAPPnzycjI4P09HTi4uKwsrKiVatW6HTmXp7Dhg1jy5YtXLlyhaefflqed9asWfIcJVy4cEE+N8D58+cJDw8nJiYGZ2dnxowZg06nu61dJXNv3bqVDh063HYM/LXGLTU1lT59+rB9+3YGDRqEt7c3sbGxDBo0SB4bFxeHl5cXYHaQ4+Li6NevX4Xzl4dGoym1bq/kHpVw87UPGjSIWbNmkZGRIZ8vLy+PBg0a3NFBsrGxISsrS95++eWXmTp1KoMGDWL//v2lxNlvPqfJZOLQoUOyI3fz8eW9hm4mJyeHnj17lmvPl19+Kd+/ElxdXUlNTaVJkyakpqbSuHHjco997rnneO655wCYPXs2bm5u8vElTJgwQU6Vg/m+3noN1cGdyhHfkyTpm5IHUJK8XXzz85IkfV3NdlaIBEgqsLr5C0B2ERQZwVAccatmxy0r6ygAdvYd0Gjs7jD67vk9T8cNgwF7tRpv++p/YSgo1BaCgoIYN24cy5Yt4+eff1actvuErKwsmjVrBsC6devk50NDQ/nss89kBy8jI6PMsZ07d+ann37i2rVrGI1GvvrqK3r37k3nzp3lReGDBg0iKyuLxo0bY2VlRVRUFBcvXpTnePrpp9m8eTNbtmxh2LBhAPTv358vvvhCLmpJSUnh6tWrZc6fnZ2NnZ0dTk5OpKWlsXPnTgA8PDz4888/5aji11//9dHXv39/PvnkE9m5O3r0aIX3p0mTJrz//vu89957ALz00kusW7dOdo6uX7/OjBkzeOONNwCYNWsWb7zxBleuXAHMEa/ly5eXmTc4OJhVq1YB5vWE2dnZuLq6cvXqVa5fv05hYSE7duy4rV329vY89NBDvPLKK4SFhaFWq3F0dKR169b897//BcxOanx8fJljPT09OXfunLx982tg/fr1tz1naGgoK1askLdL7sHtXkM3UxJxK+9xq9MGZse0xJb169fLXwpvpeR1kZSUxLfffsuIESMAc1SxhIiIiFJrBxMTE0ttVxcVOW4HMEfWGt30eAD4CXOk7ubny3dZawiVSuKhh5oxyd+t9I7mjjWSKi0oSKKo6BoqVX0c7Kv+Q0VnNBGfY27/EeBoi1opSFCow1y6dInBgwdz5MgR+bm1a9cyZcoU1Gol0ny/8MYbbzBr1iy6d+9eqkp0/PjxtGjRAq1Wi5+fX7k6oE2aNOG9996jb9+++Pn50alTp3I/YEeOHElsbCyBgYFs2rQJDw8PeZ+3tzc5OTk0a9aMJk2aAGYH4ZlnnqFr1674+voybNgwcnLKqjn6+fnRsWNHvL29GTduHN27dwfMEaVPP/2UAQMG0KNHD1xdXeXKzrlz56LX69Fqtfj4+DB37tw73qPHH3+c/Px8fv75Z5o0acLGjRuZMGECHh4edOvWjXHjxvHYY48B8Oijj/LSSy/x8MMP4+3tTUBAQLkVmcuWLSMqKgpfX18CAgI4deoUVlZWzJs3j86dOxMWFlbqPpXH8OHD2bhxY6kU6qZNm1i7di1+fn54e3uXW3zRq1cvjh49Kjuvb7/9Nk8++SQ9e/aUCxbKY/ny5cTGxqLVavHy8uKzzz4Dbv8a+jvMnDmTH3/8EXd3d3788UdmzpwJwOXLl0u1ERo6dCheXl489thjrFy5EmdnZ9mmksKaqKgoPv74Y/mYqKgoBg4cWCV2VoRUUej3fqHVg83Fm9Of52ErP1pvzoELWaA3wcJuEBAPkgQBY6rl3EIYSbv6A0ZDLk4NArG3c6/ycxy6kcu5fB1N6tfj4Yb/rFYHCv8cTCYTq1evZsaMGeTk5NCnTx+ioqIsbVatIyEhQYk6WpDc3Fzs7e0RQvDSSy/h7u7Oa6+9Zmmzag2vvPIKjz32GA8//LClTalRCgsL6d27NwcPHpTXw5VQ3ntWkqQ4IUTgvZyrTnVuVT3hAb+MhKQXIeZf8FhxBM6q+hby5+adxWjIRaNxxM626lvcXSsycC5fhwqJIKUgQaGOkpiYSN++fZk0aRI5OTkMGTKk3EiMgoKl+fzzz/H398fb25usrKwy6+X+6cyePZv8/HxLm1HjJCUl8f7775dx2qqD6j9DDaJWFadRNCpo5QRZ5v441K+e/k5GYyE5OScBcHLqiCRVrR8shCCmWETew84aJ6s69edSUMBgMLBkyRLeeustdDodrq6urFy5kqFDh1raNAWFcnnttdeUCFsFuLq6liqw+Kfg7u6Ou3vVZ9zKo+5E3CRQq29xbAqL1y5Uk+OWk3uyuNnug1hbN63y+f8sKOSa3oCNSoWvg1KQoFD3SEtLY+HCheh0OkaPHs3p06cVp01BQUGhAupQCEegvrWnk+y4Vf26MIMhh7w8c/WMk5N/lc9fZDJxpFiPtKOjLfVUdcfHVvhnU1hYiEajQa1W06xZM1avXo2zszMDBgywtGkKCgoKtZ664Q0IQVpaDsmXb8mrF2abf1ZDxC0r6xgIE7a2bbCycq7y+U/kFKAzmXjASkMbm5qR61JQqG4OHTpEx44dS5X+jxgxQnHaFBQUFCrJXTlukpnmkiR1kySp6puV3SNCwNmzGcQfv156RzVF3AoLr6LTJSNJGhwdtVU6N0CW3sCZPHODxIec7O+6c7aCQm0jNzeXV199le7du5OQkMCGDRuqVchbQUFBoa5SacdNkqRJQApwEfgZ6FD8/LeSJL1aLdbdBUYh4fD17xB+GL5NhCt51bLGTQhBVra5saK9vQdqddWvPYvJzseEoJ2tNQ3r1aFstsI/kh9//BFfX1+WLVuGSqVi1qxZREdHo1LS//ctarUaf39/fHx8eOyxx7hx44a879SpU/Tr14/27dvj7u7OggULSikO7Ny5k8DAQDw9PfHw8GDatGkWuIJ7Y8SIEWi12lK9uyrC3t6+WuwQQjBlyhTatWuHVqst1fPw1nH9+vUjOzu7WuyoCgYMGECDBg1KKRDcSmFhIcOHD6ddu3Z07txZboAM5ia6JYUBNzf5ffrppzl79mx1mm4xKvWfU5Kk6cAS4HOgH2axghL2A8PLOaxGMSHh8MsV+OAwvLAH4i6CyQAaa9BUnWpCQcFF9EUZqNQ22FdDs92kgkJSC4uwkiQ6OijtPxTuX/Ly8njuuecIDQ3lwoUL+Pv7ExMTw7vvvou1tbWlzVP4G9jY2HDs2DFOnjyJi4sLK1euBKCgoIBBgwYxc+ZMEhMTiY+P55dffuHTTz8F4OTJk0yePJmNGzeSkJDAyZMnadOmTZXaVl5T2qrgypUr/PLLLxw/ftziVaU7d+7k7NmznD17ljVr1jBx4sRyx/3www/4+fnh6Fj5rFNVNbqtLNOnT+c///lPhWPWrl2Ls7Mz586d47XXXmPGjBmAWXXjnXfe4bfffuPw4cO88847si7rxIkTWbx4cbXbbwkq+5X3JWCeMIvi/XzLvt+B9lVq1d0iQRMrNW7qmy7Hrbg1SBVG20wmA9nZxwFwdNCiUlVtNMxgEsQVFyT4OdhirVYiEgr3L9bW1pw8eZL69evz3nvvcfjwYVncW6Fq+PK3pGp53A1du3YlJcXceunLL7+ke/fuhIaGAmBra8uKFSt4//33AVi8eDFvvvmm3Llfo9EwadKkMnPm5uYyduxYuUP91q1bgdIRrC1btjBmzBgAxowZw9SpU+nbty/Tp0+nVatWpaKA7dq1Iy0tjfT0dIYOHUpQUBBBQUFER0eXObdOp5PP3bFjR7kJdGhoKFevXsXf35+ffy79MZiWlsaQIUPw8/PDz8+PX375pcz1BAcH06lTJ3x9fWXVgby8PAYOHIifnx8+Pj6yhNbMmTPx8vJCq9WWG5Hctm0bo0aNQpIkunTpwo0bN0pJMZWwadOmUooTjz/+OAEBAXh7e7NmzRr5eXt7e1lZ4dChQ2zcuJGHHnoIf39/XnjhBdmZmzhxIoGBgXh7e/PWW5XTyL0TwcHBODhU/Dm9bds2Ro8eDZg1aPfu3YsQgt27dxMSEoKLiwvOzs6EhISwa9cuAHr27ElkZGS1OfKWpLKex4NA3G32mQCLfn2WJPCWVLRRqcGIOR74gAlSqVLHLS8vEaMxDysrZ2xtW1fZvCWczisg12ikgUZDBzslIqFw/1Gio/jggw+iVqvZsGEDwB2FtxXuT4xGI3v37pXFuE+dOkVAQGkh+7Zt25Kbm0t2djYnT57k9ddfv+O8CxYswMnJiRMnTgDIUZSKSExMJDIyErVajclkIiIigrFjx/Lbb7/RqlUrXF1deeaZZ3jttdfo0aMHSUlJ9O/fn4SEhFLzlEQPT5w4wZkzZwgNDSUxMZHt27cTFhZWrtD6lClT6N27NxERERiNRlkLtQRra2siIiJwdHTk2rVrdOnShUGDBrFr1y6aNm3K999/D5i1OTMyMoiIiODMmTNIklTKAS0hJSWF5s2by9tubm6kpKTI0l4lREdHs3r1ann7iy++wMXFhYKCAoKCghg6dCgNGzYkLy8PHx8f5s+fT0JCAh988AHR0dFYWVkxadIkNm3axKhRo1i0aBEuLi4YjUaCg4M5fvw4Wm3pdd4ffvghmzZtKmNzr169ytVWrQw3X69Go8HJyYnr16/f9j4AqFQq2rVrR3x8fJnX5P1OZR23c0BvYG85+3oBp6vMonvFsxGqvt0hW4BBgLrYy64i1QSjUUdOjvkyHZ38q7xgQGc0cSq3AIAgJztUSkGCwn2EEIINGzbw2muv0bNnT7777jskSVIctmrmmc4tLHLegoIC/P39uXDhAgEBAYSEhADm18Ht/jfezf/MyMhINm/eLG+X6ERWxJNPPilr2Q4fPpz58+czduxYNm/eLGtuRkZGcvr0Xx9X2dnZ5OTklIr4HDx4kJdffhkwi8q3bNmSxMTECtON+/btk7+kqNVqWb+0BCEEs2fP5sCBA6hUKlJSUkhLS8PX15dp06YxY8YMwsLC6NmzJwaDAWtra8aPH8/AgQPLXftVnlRlefc3IyOj1LUtX76ciIgIwKwJfPbsWRo2bIharZb7J+7du5e4uDiCgoIA89+6cWOzHPk333zDmjVrMBgMpKamcvr06TKO2/Tp05k+ffpt79W9cLvrvdN9aNy4MZcvX65zjltlc3FLgZmSJM0BSloDN5Yk6TlgKlC5lZqAJEkDJEn6XZKkc5IkzaxgXJAkSUZJkoZVat6WDZAm+MMbnWF2l5snqqxpFZKdcwIh9FhbN8W6/oNVMufNnM4twCAETerX48H6Vnc+QEGhlnDx4kUeeeQRxowZQ2ZmJoWFhf9IyZt/EiVr3C5evEhRUZEcpfL29iY2NrbU2D///BN7e3scHBzw9vYmLu52yZu/uJ0DePNzOp2u1D47u78aHXTt2pVz586Rnp7Od999xxNPPAGY9XAPHTrEsWPHOHbsGCkpKWXSdNWh371p0ybS09OJi4vj2LFjuLq6otPpaN++PXFxcfj6+jJr1izmz5+PRqPh8OHDDB06lO+++67cVjlubm5cunRJ3k5OTqZp07JN4DUajVy9vX//fiIjIzl06BDx8fF07NhRvofW1tay0yuEYPTo0fI9+v3333n77bc5f/484eHh7N27l+PHjzNw4MAyfwMwR9z8/f3LPKZMmXLP9+/m6zUYDGRlZeHi4nLH+6DT6bCxqXvN6yvluAkh/g28CcwAThU//QOwDHhbCFEpUUFJktTASuARwAsYIUmS123GfQDsrsy8AKhVSFRPlEqvzyI/7w9AwtGx6tfo5BtNnMk3vwH8lYIEhfsEk8nEypUr8fHxYffu3Tg7O7N+/Xp27txZ6kNUoe7i5OTE8uXLCQ8PR6/XM3LkSA4ePEhkZCRgjtZMmTKFN954AzBHY959910SExMB82toyZIlZeYNDQ0t1euvJFXq6upKQkKCnAq9HZIkMWTIEKZOnYqnpycNGzYsd97y0p69evWSU32JiYkkJSXdMXIcHBzMqlWrAHP6+NYqzqysLBo3boyVlRVRUVFcvHgRgMuXL2Nra8uzzz7LtGnTOHLkCLm5uWRlZfHoo4+ydOnScm0cNGgQGzZsQAjBr7/+ipOTU5k0KZiXKPz555+yDc7Oztja2nLmzBl+/fXX217Lli1buHr1KmCO2l28eJHs7Gzs7OxwcnIiLS2NnTt3lnv89OnTZafv5se9pklLrrekYnTLli3069cPSZLo378/e/bsITMzk8zMTPbs2UP//v3l4xITE/H29r7n89ZWKr36XQjxIdAUeBR4tvhns+LnK8tDwDkhxJ9CiCJgMzC4nHEvA1uBq5WdWJJU1dbvzNz+Q2Bn1w4rq6pXYTiZk49RCJpb1+MBpf2Hwn1AyRqXyZMnk5uby7Bhw0hISJAXTCv8c+jYsSN+fn5s3rwZGxsbtm3bxsKFC+nQoQO+vr4EBQUxefJkALRaLUuXLmXEiBF4enri4+NT7qL6OXPmkJmZiY+PD35+fnKBwPvvv09YWBj9+vUr11G5meHDh7Nx40Y5TQrmVGFsbCxarRYvLy8+++yzMsdNmjQJo9GIr68vw4cPZ926ddSvX3ET9GXLlhEVFYWvry8BAQGcOnWq1P6RI0cSGxtLYGAgmzZtkoszTpw4IRcBLFq0iDlz5pCTk0NYWBharZbevXuX23rk0UcfpU2bNrRr144JEybIVbu3MnDgQPbv3w+Y224YDAa0Wi1z586lS5cu5R7j5eXFwoULCQ0NRavVEhISQmpqKn5+fnTs2BFvb2/GjRtH9+7dK7wnlaVnz548+eST7N27Fzc3N3bvNsdr5s2bx/bt2wF47rnnuH79Ou3atWPJkiVysYuLiwtz586Vi03mzZuHi4sLYC4YsbGxuePr5H5Eqo6w8G1PZk57DhBCjC/e/hfQWQgx+aYxzYAvMbcdWQvsEEJsKWeu54HnAVo2bhbwzsezePbpF/8Smr9yApJj4UFfcAu8Z5t1ulSuX9+PJFnh6hqGWl21RQO5BiPbrt7AhCCsUQOcFSF5hfuEGTNmsGHDBlauXCmnohSqn4SEBDw9q74VkULdIzU1lVGjRvHjjz9a2pQa5+OPP8bR0VEunLEk5b1nJUmKE0Lck3NSKS+huPluhQghynf5b5mqvENv2V4KzBBCGCv65i6EWAOsAWj1oJtAXfURN3Oz3WMAODh4VbnTBnA8pwATgtY29RWnTaFWc/ToUW7cuEHfvn0BePvtt5k5c2alFo4rKCjUPE2aNGHChAlkZ2ffVS+3ukCDBg3417/+ZWkzqoXKegorKthX4nhVxnFLBprftO0GXL5lTCCwudgJewB4VJIkgxDiu4omlgCVVLV9z/Lz/8Sgv4FabYe9fdVXx2XpDfxZUIiEhJ+ytk2hlqLT6Zg/fz6LFy/G1dWV06dP4+TkhI2NTZ1c+KugUJd46qmnLG2CRRg7dqylTag2KuW4CSHKeESSJDUA+mMuWBhRyfPFAO6SJLXGLJ/1NPDMLeeSG6RJkrQOc6r0u4oNBOm/iTBjNTjWg5c7wWN/z4kzmfRk55h7CDk6ajHXS1Qtx3MKEMXSVg6aqp9fQeHvEh0dzXPPPcfvv/+OJEk8+eSTaDRKZFhBQUHBUtzzf2AhxA3ga0mSnIDVQJ9KHGOQJGky5mpRNfCFEOKUJEkvFu8vu1L0bsjTmx96E3dRd1EuBQWXMBkLsKrngo1Ny781V3lk6g1c0BWiQkJrr0QtFGoXOTk5zJ49m5UrVyKEwNPTk7Vr19K1a1dLm6agoKDwj6Yqvjqfx5zerBRCiB8wtxK5+blyHTYhxJjKzivdvFLOoR5mQYd7p7DQXOlka9O6WqrkjhVLW7W3s8ZOibYp1DLCwsI4cOAAGo2GmTNnMmfOnDtW1ikoKCgoVD9/y3GTJKkJ8Dpm583C3ORcOdYHCu55JiFM6IodN2vrqi8lTi/Sk1xYhFqS8FGibQq1kFmzZpGXl8fatWvx8/OztDkKCgoKCsVUKp8oSVK6JElXb3ncwFxs0BMoq4Jbk0ggjfCCcxMg5l/Q7+/JwBQVXUeY9Gg0Dmg0Vad1WkJJtM3DzhobRUheoRawZcsWFixYIG8PGDCAw4cPK06bQrmo1Wr8/f3x8fHhscceK6WneerUKfr160f79u1xd3dnwYIFpdQIdu7cSWBgIJ6ennh4eJQrol5bGTFiBFqtttzeauVhb29fLXacOXOGrl27Ur9+fcLDw287TghBv379yjQErk2sX78ed3d33N3d5Sa7t3Lx4kWCg4PRarX06dOH5OTkUvuzs7Np1qyZ3C8Q4Omnn+bs2bPVarulqKzXsAKz4sHNj/eAUUALIUTlFQ6qCwlwqg+tnIpTpfdOSZq0fjVE264U6rlSpMdKkvBWom0KFiY1NZWhQ4fy5JNP8tZbbxEfHy/vU6mULxUK5VMieXXy5ElcXFxkyauCggIGDRrEzJkzSUxMJD4+nl9++UVuEHvy5EkmT57Mxo0bSUhI4OTJk7Rp06ZKbTMYDFU6XwlXrlzhl19+4fjx47z22mvVco7K4uLiwvLly+/o9P7www/4+fndVSsQo9H4d82rNBkZGbzzzjv89ttvHD58mHfeeUdWybiZadOmMWrUKI4fP868efOYNWtWqf1z586ld+/epZ6bOHEiixcvrlb7LcUdU6WSJFkBkcB5IcStrTtqD1W4Dk2nK06T1q96x60k2uZlb0N95YNRwUIIIVi3bh1Tp07lxo0bODg4sHjxYnx9fS1tmsLdEPt/1TNvYOVbKXTt2pXjx48D8OWXX9K9e3dCQ0MBsLW1ZcWKFfTp04eXXnqJxYsX8+abb8rKARqNhkmTyrYJzc3N5eWXXyY2NhZJknjrrbcYOnQo9vb25ObmAuYo8Y4dO1i3bh1jxozBxcWFo0eP4u/vT0REBMeOHaNBgwYAtGvXjujoaFQqFS+++CJJSUkALF26tIwCgE6nY+LEicTGxqLRaFiyZAl9+/YlNDSUq1ev4u/vzyeffELPnj3lY9LS0njxxRdlealVq1bRrVu3UtczePBgMjMz0ev1LFy4kMGDB5OXl8dTTz1FcnIyRqORuXPnMnz4cGbOnMn27dvRaDSEhoaWiao1btyYxo0b8/3331f4t9m0aRPPP/+8vP34449z6dIldDodr7zyirzP3t6eqVOnsnv3bj766CMuXLjA8uXLKSoqonPnznz66aeo1WomTpxITEwMBQUFDBs2jHfeeafC89+J3bt3ExISIqsdhISEsGvXLkaMKN2o4vTp03KUs2/fvjz++OPyvri4ONLS0hgwYEApndyePXsyZswYDAZDnauEr8zVGIF9mCWuaq3jVlUukNFYgF6fgSSpqVevcRXNaiZZV0S6Xk99lQoPu6pv5qugUBnOnz/P888/L+tJPvLII6xevZrmzZvf4UgFhdIYjUb27t0rd6c/deoUAQEBpca0bduW3NxcsrOzOXnyJK+//vod512wYAFOTk6cOGFuyVReFOZWEhMTiYyMRK1Wy1qmY8eO5bfffqNVq1a4urryzDPP8Nprr9GjRw+SkpLo378/CQkJpeYpiR6eOHGCM2fOEBoaSmJiItu3bycsLKxc7dApU6bQu3dvIiIiMBqNsnNZgrW1NRERETg6OnLt2jW6dOnCoEGD2LVrF02bNpUdsKysLDIyMoiIiODMmTNIklQqDX23REdHs3r1ann7iy++wMXFhYKCAoKCghg6dCgNGzYkLy8PHx8f5s+fT0JCAh988AHR0dFYWVkxadIkNm3axKhRo1i0aBEuLi6y5N3x48fRarWlzvnhhx/KWq8306tXrzJ6pSkpKaX+77i5uZGSklLmWD8/P7Zu3corr7xCREQEOTk5XL9+HWdnZ15//XX+85//sHfv3lLHqFQq2rVrR3x8fJnX5P3OHR03IYRJkqSzgGsN2HPPqKSq8agLC68AUK9+Y1SqqvPShRDE55ijbT72NtRTom0KFmLu3LlERkbSsGFDli1bxjPPPKPoi96v3EVkrCopKCjA39+fCxcuEBAQQEhICGD+P3e719LdvMYiIyPZvHmzvF0ZdY4nn3wStdpcoT98+HDmz5/P2LFj2bx5s6xXGhkZyenTp+VjsrOzycnJwcHhr7XMBw8e5OWXXwbAw8ODli1bkpiYWGG6cd++fWzYsAEwr/9zcnIqtV8IwezZszlw4AAqlYqUlBTS0tLw9fVl2rRpzJgxg7CwMHr27InBYMDa2prx48czcOBAwsLC7njttyMjI6PUtS1fvpyIiAgALl26xNmzZ2nYsCFqtZqhQ4cCsHfvXuLi4ggKCgLMf+vGjc1BjG+++YY1a9ZgMBhITU3l9OnTZRy36dOnM3369ErZV57kZnmvk/DwcCZPnsy6devo1asXzZo1Q6PR8Omnn/Loo4/e9ktn48aNuXz58j/PcSvmTeADSZJOCCFOVKdB94qmilQTdDpzULGq06RJuiIy9AZsVCra2yrRNoWaxWg0yh9q4eHh1K9fn/fee0/+h6ygcDeUrHHLysoiLCyMlStXMmXKFLy9vTlw4ECpsX/++Sf29vY4ODjg7e1NXFzcHYtebucA3vycTqcrtc/Ozk7+vWvXrpw7d4709HS+++475syZA4DJZOLQoUMVKn5Uh373pk2bSE9PJy4uDisrK1q1aoVOp6N9+/bExcXxww8/MGvWLEJDQ5k3bx6HDx9m7969bN68mRUrVrBv3757Oq9Go8FkMqFSqdi/fz+RkZEcOnQIW1tb+vTpI99Da2tr+f+DEILRo0fz3nvvlZrr/PnzhIeHExMTg7OzM2PGjCnzN4C7i7i5ubmxf/9+eTs5OZk+ffqUObZp06Z8++23gDntvHXrVpycnDh06BA///wzn376Kbm5uRQVFWFvby+L0Ot0ujqp7nJbb0eSpF6SJJWUxMwBGgLHJElKkiQpRpKkwzc/asTa2yFAdfYGbP0d9tx7ZxIhhBxxs7ZuWkXGmec9Vhxt83WwRaNSohsKNUPJeppevXrJi7YffPBB1q5dqzhtCn8bJycnli9fTnh4OHq9npEjR3Lw4EE5DV9QUMCUKVN44403AHM05t133yUxMREwO1JLliwpM29oaCgrVvyltFiSKnV1dSUhIUFOhd4OSZIYMmQIU6dOxdPTk4YNG5Y7b3lpz169esmOR2JiIklJSXToULHkYXBwMKtWrQLMX5JureLMysqicePGWFlZERUVxcWLFwG4fPkytra2PPvss0ybNo0jR46Qm5tLVlYWjz76KEuXLi3XxsrSoUMHed1dVlYWzs7O2NracubMGX799dfbXsuWLVu4evUqYI7aXbx4kezsbOzs7HByciItLY2dO3eWe/z06dM5duxYmcetThtA//792bNnD5mZmWRmZrJnzx769+9fZty1a9cwmcy9Wd977z3GjRsHmB3ipKQkLly4QHh4OKNGjZKdNjD//by9ve/ijt0fVBSmigK8in8/CewANgB7i7dP3fKwLPtT4MUfYdp+87appDKm8k6SXn8dk6kItca+StuAnC8oIttgxF6txt1WaWKqUDPExcURGBjI3Llz+eWXX/jxxx8tbZJCHaRjx474+fmxefNmbGxs2LZtGwsXLqRDhw74+voSFBQkt2nQarUsXbqUESNG4OnpiY+PD6mpqWXmnDNnDpmZmfj4+ODn50dUVBQA77//PmFhYfTr148mTSrOigwfPpyNGzfKaVIwpwpjY2PRarV4eXnx2Wdle79PmjQJo9GIr68vw4cPZ926dXdsPr1s2TKioqLw9fUlICCAU6dKfySOHDmS2NhYAgMD2bRpk1ycceLECR566CH8/f1ZtGgRc+bMIScnh7CwMLRaLb179y639ciVK1dwc3NjyZIlLFy4EDc3t3JbfgwcOFCOaA0YMACDwYBWq2Xu3Ll06dKl3Gvx8vJi4cKFhIaGotVqCQkJITU1FT8/Pzp27Ii3tzfjxo0rU9RxL7i4uDB37lyCgoIICgpi3rx5cqHCvHnz2L59OwD79++nQ4cOtG/fnrS0NN588807zp2WloaNjc0dXyf3I9LtwsKSJJmALkIIy0bTKkErVzexPOBfDIppBi0dIXYU/LkfMs5Dqx7wgHul5snOPk5Ozins7Nxp0KDSYhAVYhKC7VdvkGM00q2BPW2VNKlCNVNQUMDbb79NeHg4JpOJNm3a8Pnnn9OvXz9Lm6ZQBSQkJODp6WlpMxTuA1JTUxk1atQ/8kvbxx9/jKOjo1w4Y0nKe89KkhQnhLgnR6POrJBXGYsvpV6xfFTBDfNPmzsvai3hL7WEqkuTnssvJMdoxFGjprWNEm1TqF5+/vln/Pz85P5FU6dO5fjx44rTpqDwD6RJkyZMmDChVjfgrS4aNGjA6NGjLW1GtXCn4oRHJUnyqMxEQogNVWDPPaPyaAgt3cHVFkwm0GWZd1g3qNTxRmMh+qIMkFRV1gbEKAQnite2+TvYolIq9xSqmRMnTnD27Fm8vb1Zu3YtnTt3trRJCgoKFuSpp56ytAkWYexYy1Rc1wR3ctzmVXIegXn9m2WQQBPaFgYWL2rMzwBhgvoOoK5c4aysllCv6tqA/JlfSL7JhLNGQwvrv6fmoKBwO5KTk3FzcwPgxRdfxMrKitGjR1OvnvKaU1BQUKhr3ClV2hdwqMSj8noa1YTqZgdNd8P88x7SpFUpc3U231wq7WVvo/TJUqhyrl27xrPPPouHh4dcpaZSqZgwYYLitCkoKCjUUe4UWioQQuTViCV/k3qS1V8bBcVdtm0aVOpYIQSFssxV1axvy9AbuK43YCVJSrRNoUoRQvDNN9/w8ssvk56ejo2NDUeOHKFly5aWNk1BQUFBoZqpM8UJmpuVE+6yMEGvz8BkKkSttsPKqmqCh+fyzNG2Njb1lb5tClXG5cuXGTJkCE8//TTp6en06dOH48ePM2TIEEubpqCgoKBQA9Qdx011U1QrP8P8s5KFCVWdJjWYBH8WFALQTtEkVagitm/fjpeXF9u2bcPR0ZHVq1ezd+9e2rVrZ2nTFP5hqNVq/P398fHx4bHHHiulp3nq1Cn69etH+/btcXd3Z8GCBaXUCHbu3ElgYCCenp54eHgwbdo0C1zBvTFixAi0Wm25vdXKw97e/s6D7oFNmzah1WrRarV069aN+Pj4cscJIejXr1+tripdv3497u7uuLu7s379+nLHXLx4keDgYLRaLX369CE5ORmAqKgo/P395Ye1tTXfffcdAE8//TRnz56tqcuoWYQQ9/2jpWszcTjyZyGEEEKXLUTMF0Ic2SiEySQqw9Wre0Ry8pciP/9SpcbfiT/ydGJDSrr4/mpmlcynoCCEEPHx8UKj0YiwsDBx6VLVvFYV7j9Onz5taROEnZ2d/PuoUaPEwoULhRBC5OfnizZt2ojdu3cLIYTIy8sTAwYMECtWrBBCCHHixAnRpk0bkZCQIIQQQq/Xi5UrV1apbXq9vkrnKyE1NVW0aNHiro65+T5VJdHR0SIjI0MIIcQPP/wgHnrooXLH7dixQ7z66qt3NbfBYPjb9lWW69evi9atW4vr16+LjIwM0bp1a/m6bmbYsGFi3bp1Qggh9u7dK5599tly53J2dhZ5eXlCCCH2798vxo8fX70XUEnKe88CseIefZ6qU1G3JAJYfQw+uw7PNwRnwOFBqERBgMlUSFHRdZBU1K/vWiXmnCsuSminNNtV+BsYjUb+97//MXjwYCRJQqvVcvToUby9vZViFwUA/pv432qZ98n2T1Z6bNeuXTl+/DgAX375Jd27dyc0NBQAW1tbVqxYQZ8+fXjppZdYvHgxb775pqwcoNFomDRpUpk5c3Nzefnll4mNjUWSJN566y2GDh2Kvb09ubm5AGzZsoUdO3awbt06xowZg4uLC0ePHsXf35+IiAiOHTtGgwYNAGjXrh3R0dGoVCpefPFFkpKSAFi6dGkZBQCdTsfEiROJjY1Fo9GwZMkS+vbtS2hoKFevXsXf359PPvmEnj17ysekpaXx4osvyvJSq1atolu3bqWuZ/DgwWRmZsoydIMHDyYvL4+nnnqK5ORkjEYjc+fOZfjw4cycOZPt27ej0WgIDQ0lPDy8lI03z92lSxc5AnUrmzZt4vnnn5e3H3/8cS5duoROp+OVV16R99nb2zN16lR2797NRx99xIULF1i+fDlFRUV07tyZTz/9FLVazcSJE4mJiaGgoIBhw4bxzjvvlHveyrJ7925CQkJktYSQkBB27drFiBEjSo07ffq0HOXs27cvjz/+eJm5tmzZwiOPPIKtrS0APXv2ZMyYMRgMBjSauuHqlFB3ruZSDpy7BE/qzI6bY+WKDHS6K4AobgNidcfxdyJLbyCtSI9akpSGuwr3zKlTp3juuef47bff+Oabb3jySfMHqY+Pj4UtU1D4C6PRyN69e+Xu9KdOnSIgIKDUmLZt25Kbm0t2djYnT57k9ddfv+O8CxYswMnJiRMnTgB/aZVWRGJiIpGRkajValnLdOzYsfz222+0atUKV1dXnnnmGV577TV69OhBUlIS/fv3JyEhodQ8K1euBMw9Ec+cOUNoaCiJiYls376dsLCwcrVDp0yZQu/evYmIiMBoNMrOZQnW1tZERETg6OjItWvX6NKlC4MGDWLXrl00bdqU77//HjDriWZkZBAREcGZM2eQJKlUGro81q5dyyOPPFLuvujoaFavXi1vf/HFF7i4uFBQUEBQUBBDhw6lYcOG5OXl4ePjw/z580lISOCDDz4gOjoaKysrJk2axKZNmxg1ahSLFi3CxcUFo9FIcHAwx48fR6vVljrn3YjMp6Sk0Lx5c3nbzc2NlJSUMsf6+fmxdetWXnnlFSIiIsjJyeH69euyBi3A5s2bmTp1qrytUqlo164d8fHxZV6T9zt1x3ErQcoArM0Rt0og92+rXzXr287lm9e2tbapj5VSlKBwlxQVFfH++++zcOFC9Ho9zZo1w9HR4t12FGopdxMZq0oKCgrw9/fnwoULBAQEEBISApiX3twuGnw3UeLIyEg2b94sbzs737nQ7Mknn0StNivnDB8+nPnz5zN27Fg2b94s65VGRkZy+vRp+Zjs7GxycnJwcPhLm/rgwYO8/PLLAHh4eNCyZUsSExMrfB/u27ePDRvMrUzVajVOTk6l9gshmD17NgcOHEClUpGSkkJaWhq+vr5MmzaNGTNmEBYWRs+ePTEYDFhbWzN+/HgGDhxIWFjYbc8bFRXF2rVrOXjwYLn7MzIySl3b8uXLiYiIAODSpUucPXuWhg0bolarGTp0KAB79+4lLi6OoKAgwPy3btzY3JT+m2++Yc2aNRgMBlJTUzl9+nQZx2369OlMnz79tjbfel9upbzXSXh4OJMnT2bdunX06tWLZs2alYqipaamcuLEiTIC9Y0bN+by5cuK41arUetBbQS1Q6UKE4QQ6EragFRBYYJJCP4oKUpQxOQV7pKYmBiee+45Ocrwwgsv8MEHH5T5EFBQsDQ2NjYcO3aMrKwswsLCWLlyJVOmTMHb25sDBw6UGvvnn39ib2+Pg4MD3t7exMXF4efnV+H8t3MAb35Op9OV2mdnZyf/3rVrV86dO0d6ejrfffcdc+bMAcBkMnHo0CFsbGwqPHdVs2nTJtLT04mLi8PKyopWrVqh0+lo3749cXFx/PDDD8yaNYvQ0FDmzZvH4cOH2bt3L5s3b2bFihXs27evzJzHjx9n/Pjx7Ny5s1Tk6WY0Gg0mkwmVSsX+/fuJjIzk0KFD2Nra0qdPH/keWltby06vEILRo0fz3nvvlZrr/PnzhIeHExMTg7OzM2PGjCnzN4C7i7i5ubmxf/9+eTs5OZk+ffqUObZp06Z8++23gDntvHXr1lL/F7/55huGDBmClVXprJlOp6vwb32/UjeqSiXgBT/Y2Btc7cxOWyW+3en1mZhMOtRqW6ysGvxtMy7piig0mWig0dCo3t9Puyr8c9ixYwddunThxIkTtG3blqioKD777DPFaVOo1Tg5ObF8+XLCw8PR6/WMHDmSgwcPEhkZCZijNVOmTOGNN94AzNGYd999l8TERMDsSC1ZsqTMvKGhoaxYsULeLkmVurq6kpCQIKdCb4ckSQwZMoSpU6fi6ekpOza3zlte2rNXr16y45GYmEhSUhIdOnSo8D4EBwezatUqwJw+vrWKMysri8aNG2NlZUVUVJTcMPvy5cvY2try7LPPMm3aNI4cOUJubi5ZWVk8+uijLF26tFwbk5KSeOKJJ/jPf/5D+/btb2tXhw4d5HV3WVlZODs7Y2try5kzZ/j1119vey1btmzh6tWrgDlqd/HiRbKzs7Gzs8PJyYm0tDR27txZ7vHTp0/n2LFjZR63Om0A/fv3Z8+ePWRmZpKZmcmePXvKRM3A3GzcZDIB8N577zFu3LhS+7/66qsy6+LA/Pfz9va+7f25X6kbjhtAc0fQ2kB9daX7txUWXgGqLk16Nl+JtincG/369aNdu3ZMmzaN48ePl/utU0GhNtKxY0f8/PzYvHkzNjY2bNu2jYULF9KhQwd8fX0JCgpi8uTJAGi1WpYuXcqIESPw9PTEx8eH1NTUMnPOmTOHzMxMfHx88PPzIyoqCoD333+fsLAw+vXrR5MmFf/fHj58OBs3bpTTpGBOFcbGxqLVavHy8uKzzz4rc9ykSZMwGo34+voyfPhw1q1bR/36Ff9PX7ZsGVFRUfj6+hIQEMCpU6dK7R85ciSxsbEEBgayadMmuTjjxIkTPPTQQ/j7+7No0SLmzJlDTk4OYWFhaLVaevfuXW7rkfnz53P9+nUmTZqEv78/gYGB5do1cOBAOaI1YMAADAYDWq2WuXPn0qVLl3KP8fLyYuHChYSGhqLVagkJCSE1NRU/Pz86duyIt7c348aNK1PUcS+4uLgwd+5cgoKCCAoKYt68eXKhwrx589i+fTsA+/fvp0OHDrRv3560tDTefPNNeY4LFy5w6dIlevfuXWrutLQ0bGxs7vg6uR+RqiMsXNO0etBN/HfTZoLaqSH9DDR/CFzv7GWnp0dSVJSOi0sPbGya33F8ReQajERczUSNxNAHnamvqjs+sULVk5WVxbvvvsubb74pr53R6XRYWyuVyAoVk5CQgKenp6XNULgPSE1NZdSoUfz444+WNqXG+fjjj3F0dJQLZyxJee9ZSZLihBDle9x3oG6tcTMU59s1d/7wM5kMFBVdA6QqaQNSUpTQwqae4rQpVMiOHTt48cUXSUlJITc3V65iU5w2BQWFqqRJkyZMmDCB7Ozsf1yRU4MGDfjXv/5laTOqhbrluAmj+afqzpdlMGQBAo1VA1Sqv6clahKCP5TebQp3ID09nVdeeYWvvvoKgM6dO5fbw0pBQUGhqnjqqacsbYJFGDt2rKVNqDbqVmioePFi5Rw38+JRK83f/xZyuVBPvsmEg1rNg/WVogSF0ggh+PLLL/H09OSrr77C1taWjz/+mOjo6Dq5cFZBQUFBofqoOxG3K/mgvgH2gEp9x+F6/Q0ANFZ/v2rvL6UEpShBoSyHDx9m5MiRgLlia82aNbRp08bCVikoKCgo3I/UDcdNACviQLoEy4MqFXHTG7IAsNL8Pcct32giWadHhURbJU2qUA4lKdFOnToxbtw4Ra5KQUFBQeGeqVupUqviD0Tpzpdl0JtTpZq/6bj9ma9DIHCzroeNum7dToV749y5czz88MMcPnxYfm7lypU899xzitOmoKCgoPC3qFueRknA6w4RN5NJj9GYB5IKjcb+nk8nhJCrSZU0qYLBYCA8PBxfX1/27t3LrFmzLG2SgkK1oFar8ff3x8fHh8cee6yUnuapU6fo168f7du3x93dnQULFpRSI9i5cyeBgYF4enri4eHBtGnTLHAF98aIESPQarXl9lYrD3v7e/98qYht27ah1WrlHm63k7wSQtCvX78yDYFrE+vXr8fd3R13d3fWr19f7piLFy8SHByMVqulT58+JCcny/veeOMNvL298fT0ZMqUKfJr7emnn+bs2bM1cg01jhDivn+0bNxMHA5bKsS/Xhci5gshCvNERRQWpovk5C/FlbQfKhx3J1J1RWJDSrrYeiVDmEymvzWXwv1NfHy8CAwMFJgT9+Jf//qXuHbtmqXNUqiDnD592tImCDs7O/n3UaNGiYULFwohhMjPzxdt2rQRu3fvFkIIkZeXJwYMGCBWrFghhBDixIkTok2bNiIhIUEIIYRerxcrV66sUtv0en2VzldCamqqaNGixV0dc/N9qkpycnLkz5z4+HjRoUOHcsft2LFDvPrqq3c1t8Fg+Nv2VZbr16+L1q1bi+vXr4uMjAzRunVrkZGRUWbcsGHDxLp164QQQuzdu1c8++yzQgghoqOjRbdu3YTBYBAGg0F06dJFREVFCSGE2L9/vxg/fnyNXUtFlPeeBWLFPfo8dWONmwS8GgAuD4Cx6I7FCXp91VSUns0zFyW0ta2vpMD+oRQWFvLuu+/y7rvvYjAYaN68OatXr+aRRx6xtGkK/wAyv/6mWuZ1Hl75FhJdu3bl+PHjAHz55Zd0796d0NBQAGxtbVmxYgV9+vThpZdeYvHixbz55puycoBGoym3JU5ubi4vv/wysbGxSJLEW2+9xdChQ7G3tyc3NxeALVu2sGPHDtatW8eYMWNwcXHh6NGj+Pv7ExERwbFjx2jQoAEA7dq1Izo6GpVKxYsvvkhSUhIAS5cuLaMAoNPpmDhxIrGxsWg0GpYsWULfvn0JDQ3l6tWr+Pv788knn9CzZ0/5mLS0NF588UVZXmrVqlV069at1PUMHjyYzMxM9Ho9CxcuZPDgweTl5fHUU0+RnJyM0Whk7ty5DB8+nJkzZ7J9+3Y0Gg2hoaGEh4eXsvHmSF5eXt5tP382bdrE888/L28//vjjXLp0CZ1OxyuvvCLvs7e3Z+rUqezevZuPPvqICxcusHz5coqKiujcuTOffvoparWaiRMnEhMTQ0FBAcOGDeOdd94p97yVZffu3YSEhMhqCSEhIezatauMfNXp06flKGffvn15/PHHAbO0mU6no6ioCCEEer0eV1dzX9aePXsyZswYDAZDKUH6ukDduppK9nEzFBcm/J2K0kKTiSRdEQDtbJQ06T+VjIwMli1bhsFg4KWXXuK9997DwcHB0mYpKNQIRqORvXv3yt3pT506RUBAQKkxbdu2JTc3l+zsbE6ePMnrr79+x3kXLFiAk5MTJ06cAP7SKq2IxMREIiMjUavVspbp2LFj+e2332jVqhWurq4888wzvPbaa/To0YOkpCT69+9PQkJCqXlKGmKfOHGCM2fOEBoaSmJiItu3bycsLKxc7dApU6bQu3dvIiIiMBqNsnNZgrW1NRERETg6OnLt2jW6dOnCoEGD2LVrF02bNuX7778HzIoqGRkZREREcObMGSRJKpWGvpmIiAhmzZrF1atX5eNvJTo6mtWrV8vbX3zxBS4uLhQUFBAUFMTQoUNp2LAheXl5+Pj4MH/+fBISEvjggw+Ijo7GysqKSZMmsWnTJkaNGsWiRYtwcXHBaDQSHBzM8ePH0Wq1pc55NyLzKSkpNG/+l2qRm5sbKSkpZY718/Nj69atvPLKK0RERJCTk8P169fp2rUrffv2pUmTJgghmDx5sqxQoFKpaNeuHfHx8WVek/c7dcdxE4CpxHG7Q8RNrihtcM+nu1hQhAlBk/r1sNPcuf2IQt0hLy+P+vXro9FoaNKkCWvXrqVx48alvoErKNQEdxMZq0oKCgrw9/fnwoULBAQEEBISApiX3twu+nM3WYnIyEg2b94sbzs731l/+sknn0StNv8vHj58OPPnz2fs2LFs3rxZ1iuNjIzk9OnT8jHZ2dnk5OSU+rJ18OBBXn75ZQA8PDxo2bIliYmJFSoP7Nu3jw0bNgDm9X9OTqWDAkIIZs+ezYEDB1CpVKSkpJCWloavry/Tpk1jxowZhIWF0bNnTwwGA9bW1owfP56BAwcSFhZW7jmHDBnCkCFDOHDgAHPnziUyMrLMmIyMjFLXtnz5ciIiIgC4dOkSZ8+epWHDhqjVaoYOHQrA3r17iYuLIygoCDD/rRs3bgzAN998w5o1azAYDKSmpnL69Okyjtv06dOZPn36be/VrfflVsp7nYSHhzN58mTWrVtHr169aNasGRqNhnPnzpGQkCCveQsJCeHAgQP06tULgMaNG3P58uU657jVneKEkhdAZZrvlqRK/0bE7UKBuSihtc3fU11QuL/Yu3cvvr6+LFu2TH5u6NChitOm8I/CxsaGY8eOcfHiRYqKiuQolbe3N7GxsaXG/vnnn9jb2+Pg4IC3tzdxcXF3nP92DuDNz+l0ulL77Ozs5N+7du3KuXPnSE9P57vvvuOJJ54AwGQycejQIY4dO8axY8dISUkpEyEvz5n4u2zatIn09HTi4uI4duwYrq6u6HQ62rdvT1xcHL6+vsyaNYv58+ej0Wg4fPgwQ4cO5bvvvmPAgAEVzt2rVy/++OMPrl27VmafRqPBVNyYfv/+/URGRnLo0CHi4+Pp2LGjfA+tra1lp1cIwejRo+V79Pvvv/P2229z/vx5wsPD2bt3L8ePH2fgwIFl/gZgjrj5+/uXeUyZMqXMWDc3Ny5duiRvJycn07Rp0zLjmjZtyrfffsvRo0dZtGgRAE5OTkRERNClSxfs7e2xt7fnkUce4ddff5WP0+l02NjYVHj/7kfqkONmMP+8Y0VpEUZjHpKkRq22q3Ds7cg3mkgr0qNGorm14rj9E7hx4wbjx4/n4Ycf5vz582zdulX+h6ig8E/FycmJ5cuXEx4ejl6vZ+TIkRw8eFCO/hQUFDBlyhTeeOMNwByNeffdd0lMTATMjtSSJUvKzBsaGsqKFSvk7ZJUqaurKwkJCXIq9HZIksSQIUOYOnUqnp6eNGzYsNx5y0t79urVS071JSYmkpSURIcOHSq8D8HBwaxatQowp49vreLMysqicePGWFlZERUVxcWLFwG4fPkytra2PPvss0ybNo0jR46Qm5tLVlYWjz76KEuXLi3XxnPnzskO5pEjRygqKpKv8WY6dOggr7vLysrC2dkZW1tbzpw5U8rBufVatmzZwtWrVwFz1O7ixYtkZ2djZ2eHk5MTaWlp7Ny5s9zjp0+fLjt9Nz9uTZMC9O/fnz179pCZmUlmZiZ79uyhf//+ZcZdu3ZN/n/73nvvMW7cOABatGjBTz/9hMFgQK/X89NPP5USc09MTKyT6jR1yHGr7Po28xtKrXFAqkS/t/K4WBxta2ptRT1FUL7Os23bNry8vFi7di316tVj0aJF/PTTT6iUv72CAh07dsTPz4/NmzdjY2PDtm3bWLhwIR06dMDX15egoCAmT54MgFarZenSpYwYMQJPT098fHxITU0tM+ecOXPIzMzEx8cHPz8/oqKiAHj//fcJCwujX79+NGnSpEK7hg8fzsaNG+U0KZhThbGxsWi1Wry8vPjss8/KHDdp0iSMRiO+vr4MHz6cdevWUb9+xeuYly1bRlRUFL6+vgQEBHDq1KlS+0eOHElsbCyBgYFs2rRJLs44ceIEDz30EP7+/ixatIg5c+aQk5NDWFgYWq2W3r17l9t6ZOvWrfj4+ODv789LL73E119/XW6EcuDAgezfvx+AAQMGYDAY0Gq1zJ07ly5dupR7LV5eXixcuJDQ0FC0Wi0hISGkpqbi5+dHx44d8fb2Zty4cWWKOu4FFxcX5s6dS1BQEEFBQcybN08uVJg3bx7bt28HzNHCDh060L59e9LS0njzzTcBGDZsGG3btsXX1xc/Pz/8/Px47LHHAHPBiI2NzR1fJ/cjUnWEhWuaVq5uYsvIeQR634DO7cDniduOzcv7gxs3DmNj0xIXl263HVcRO9NvcE1voJezAy2VwoQ6S25uLuPHj+frr78GzOmXtWvXlvpGp6BQ0yQkJCivQYVKkZqayqhRo/jxxx8tbUqN8/HHH+Po6CgXzliS8t6zkiTFCSEC72W+uhMyOHwZzmZUuqL0Xte35RiMXNMbUEsSzeoradK6jK2tLcnJydjZ2bF8+XJ+/vln5QNTQUHhvqFJkyZMmDChVjfgrS4aNGjA6NGjLW1GtVB3qkoloJ76jo6bXl/cCuQepa5K0qQtrOuhUSm92+oaly5dQqVS0axZM1QqFevXr0etVtOqVStLm6agoKBw1zz1lGUqjy3N2LFjLW1CtVF3Im6SCazu7LiVrHG714jb+QJz77ZWSoq0TmEymVi1ahVeXl5MmDBBXvjbtm1bxWlTUFBQUKg11JmIm/Rwc/DKq7CHm7miNL+4ovTuNeRu6A3cMBioJ6loWt/q75irUItITExk/Pjx/Pzzz4C51UFBQQG2trYWtkxBQUFBQaE0dSPiJgH+jaClU4URN31xtE2jcbwniaoLxdG2Fjb1UCkSV/c9BoOBxYsX4+fnx88//4yrqytbtmxh69atitOmoKCgoFArqTMRN0RxT60KIm4GeX3bvWmU/tV0V0mT3u8YDAZ69OjBb7/9BsDo0aNZsmSJXIquoKCgoKBQG6kbETeoVB+3vypKG9z19NeKDOQYjdioVLjWqzv+7j8VjUZDcHAwLVq0YNeuXaxbt05x2hQUKolarcbf3x8fHx8ee+yxUnqap06dol+/frRv3x53d3cWLFhQSo1g586dBAYG4unpiYeHB9OmTbPAFdwbI0aMQKvVlttbrTxuFoOvDmJiYlCr1WzZsqXc/UII+vXrV6urStevX4+7uzvu7u6sX7++3DEXL14kODgYrVZLnz59ZIkrgBkzZuDj44OPj4/cugng6aef5uzZs9Vuv0UQQtz3j5auzUTst18JEfOFEJdixO1IT98nkpO/FPn5ybcdcztib+SKDSnp4vCN3Ls+VqF2EB0dLXbv3i1vFxQUiOzsbAtapKBw95w+fdrSJgg7Ozv591GjRomFCxcKIYTIz88Xbdq0kd9neXl5YsCAAWLFihVCCCFOnDgh2rRpIxISEoQQQuj1erFy5coqtU2v11fpfCWkpqaKFi1a3NUxN9+nqsZgMIi+ffuKRx55RPz3v/8td8yOHTvEq6++etfz1hTXr18XrVu3FtevXxcZGRmidevWIiMjo8y4YcOGiXXr1gkhhNi7d6949tlnhRDm63v44YeFXq8Xubm5IiAgQGRlZQkhhNi/f78YP358jV1LRZT3ngVixT36PHUn4kaJVuntU6WyuLzV3aVKhRBymrSVok1635Gbm8srr7xCjx49GD16tCyfY21tXUanUEHhfuLUzynV8rgbunbtSkqK+Zgvv/yS7t27ExoaCph7Ia5YsYL3338fgMWLF/Pmm2/KygEajYZJkyaVmTM3N5exY8fi6+uLVqtl69atQOkI1pYtWxgzZgwAY8aMYerUqfTt25fp06fTqlWrUlHAdu3akZaWRnp6OkOHDpU79UdHR5c5t06nk8/dsWNHWbUhNDSUq1ev4u/vLxcylZCWlsaQIUPk7v2//PJLmesJDg6mU6dO+Pr6sm3bNgDy8vIYOHAgfn5+pSJGM2fOxMvLC61We9uI5CeffMLQoUNlAfjy2LRpE4MHD5a3H3/8cQICAvD29mbNmjXy8/b29sybN4/OnTtz6NAhNm7cKCs6vPDCCxiN5ozWxIkTCQwMxNvbm7feeuu2560su3fvJiQkBBcXF5ydnQkJCWHXrl1lxp0+fZrg4GAA+vbtK9+/06dP07t3bzQaDXZ2dvj5+cnH9+zZk8jISAwGw9+2s7ZRd3J+8hq38i/JZCrCZCy4p4rSq0UG8k0m7NVqGtVTqknvJ/bs2cPzzz/PxYsXUavVjBs3rk6KDisoWAKj0cjevXvl7vSnTp0iICCg1Ji2bduSm5tLdnY2J0+e5PXXX7/jvAsWLMDJyYkTJ04Af2mVVkRiYiKRkZGo1WpZy3Ts2LH89ttvtGrVCldXV5555hlee+01evToQVJSEv379ychIaHUPCtXrgTMclRnzpwhNDSUxMREtm/fTlhYWLnaoVOmTKF3795ERERgNBrJzc0ttd/a2pqIiAgcHR25du0aXbp0YdCgQezatYumTZvy/fffA2Y90YyMDCIiIjhz5gySJJVyQEtISUkhIiKCffv2ERMTc9t7Eh0dzerVq+XtL774AhcXFwoKCggKCmLo0KE0bNiQvLw8fHx8mD9/PgkJCXzwwQdER0djZWXFpEmT2LRpE6NGjWLRokW4uLhgNBoJDg7m+PHjaLXaUuf88MMPZa3Xm+nVq1cZvdKUlBSaN28ub7u5uclfAm7Gz8+PrVu38sorrxAREUFOTg7Xr1/Hz8+Pd955h6lTp5Kfn09UVBReXl4AqFQq2rVrR3x8fJnX5P1O3XDcBEirj8JgF2hR/iXd3Hj3bitKS6JtLZVo231DZmYmU6dOZd26dYBZT/GLL77A39/fonYpKFQl3j2bWeS8BQUF+Pv7c+HCBQICAggJCQHM2Ynb/X+9m/+7kZGRbN68Wd52dna+4zFPPvkkarU54zJ8+HDmz5/P2LFj2bx5s6xXGhkZyenTp+VjsrOzycnJKRV5P3jwIC+//DIAHh4etGzZksTERBwdb5+p2bdvHxs2bADM6/+cnEr3CRVCMHv2bA4cOIBKpSIlJYW0tDR8fX2ZNm0aM2bMICwsjJ49e2IwGLC2tmb8+PEMHDiQsLCwMud79dVX+eCDD+TrvR0ZGRmlrm358uVEREQA5mbjZ8+epWHDhqjVaoYOHQrA3r17iYuLIygoCDD/rUuiet988w1r1qzBYDCQmprK6dOnyzhu06dPZ/r06RXadfN9uZXyXifh4eFMnjyZdevW0atXL5o1a4ZGoyE0NJSYmBi6detGo0aN6Nq1KxrNXz5A48aNuXz5suK41V4qjrgVFl4BoF69hnc3qxBc1ClNd+83wsLC+OWXX6hfvz5vv/02r7/+OlZWSrRUQaEqsLGx4dixY2RlZREWFsbKlSuZMmUK3t7eHDhwoNTYP//8E3t7exwcHPD29iYuLg4/P78K57+dA3jzczqdrtQ+Ozs7+feuXbty7tw50tPT+e6775gzZw5gbrR96NChCqPu5TkTf5dNmzaRnp5OXFwcVlZWtGrVCp1OR/v27YmLi+OHH35g1qxZhIaGMm/ePA4fPszevXvZvHkzK1asYN++faXmi42N5emnnwbg2rVr/PDDD2g0Gh5//PFS4zQaDSaTCZVKxf79+4mMjOTQoUPY2trSp08f+R5aW1vLTqAQgtGjR/Pee++Vmuv8+fOEh4cTExODs7MzY8aMKfM3gLuLuLm5ubF//355Ozk5mT59+pQ5tmnTpnz77beAOe28detW2Tl+8803ZdH5Z555Bnd3d/k4nU5XJzMsdWeNmyRAJd12jVthYSoA9es3uatpUwv1FJpMOGrUuFjVIT+3jvPOO+/Qs2dP4uPjmTlzpuK0KShUA05OTixfvpzw8HD0ej0jR47k4MGDREZGAuZozZQpU3jjjTcAczTm3XffJTExETA7UkuWLCkzb2hoKCtWrJC3S1Klrq6uJCQkyKnQ2yFJEkOGDGHq1Kl4enrSsGHDcuctL+3Zq1cv2fFITEwkKSmJDh06VHgfgoODWbVqFWBOH99axZmVlUXjxo2xsrIiKiqKixcvAnD58mVsbW159tlnmTZtGkeOHCE3N5esrCweffRRli5dWq6N58+f58KFC1y4cIFhw4bx6aeflnHaADp06MCff/4p2+Ds7IytrS1nzpzh119/ve21bNmyhatXrwLmqN3FixfJzs7Gzs4OJycn0tLS2LlzZ7nHT58+nWPHjpV53Oq0AfTv3589e/aQmZlJZmYme/bsoX///mXGXbt2DZPJHJx57733GDdunHyvr1+/DsDx48c5fvy4vL4SzH8/b2/vcu28n6k7jpvKBJIEqrIf0CZTIUVFGSCpqF//9gs5y0Pp3Vb7EUKwfv16+Vs1wMMPP8xPP/10x3+4CgoKf4+OHTvi5+fH5s2bsbGxYdu2bSxcuJAOHTrg6+tLUFAQkydPBkCr1bJ06VJGjBiBp6cnPj4+pKamlplzzpw5ZGZm4uPjg5+fn1wg8P777xMWFka/fv1o0qTiL+HDhw9n48aNcpoUzKnC2NhYtFotXl5efPbZZ2WOmzRpEkajEV9fX4YPH866deuoX7/i///Lli0jKioKX19fAgICOHXqVKn9I0eOJDY2lsDAQDZt2iQXZ5w4cUIuAli0aBFz5swhJyeHsLAwtFotvXv3rnTrkfIYOHCgHNEaMGAABoMBrVbL3Llz6dKlS7nHeHl5sXDhQkJDQ9FqtYSEhJCamoqfnx8dO3bE29ubcePG0b1793u2qwQXFxfmzp0rF4vMmzdPbss0b948tm/fDsD+/fvp0KED7du3Jy0tTY6w6fV6evbsiZeXF88//zwbN26UU6VpaWnY2Njc8XVyPyJVR1i4pmn1oJv4NnwmnTrYgWcY2Dcqtb+gIImMjGjq13flgQf6VXpeoxD890oGeiEY3NgZR03F6wkUap4LFy7wwgsvsGfPHgDi4+PLrLlQUKhLJCQk4OnpaWkzFO4DEJ/iwAAAUHFJREFUUlNTGTVqFD/++KOlTalxPv74YxwdHeXCGUtS3ntWkqQ4IUTgvcxXdyJuwmiWvrKyLrNLpytJkz54V1Om6IrQC4GLlUZx2moZJpOJTz75BB8fH/bs2YOLiwsbNmzA19fX0qYpKCgo1AqaNGnChAkTanUD3uqiQYMGjB492tJmVAt1Z9GWMBcQoCm7EFFXvL7N2vruQqYl2qRKmrR2cebMGcaPHy/3YHrqqadYvnw5rq6uFrZMQUFBoXbx1FNPWdoEizB27FhLm1Bt1BnHTRKYK0rVpS9Jr7+ByViASm2DldWdS8rl40yC5OJq0pbWShuQ2sSiRYuIjo7mwQcfZNWqVeUuylVQUFBQUKiL1BnHDQCr8qJt5jYg1neZJk3WFWFE0LieFXZKmtTi6PV6uTJ0yZIlODs7884771Sqv5OCgoKCgkJdoe6scQPQlF3fVniP69vOyxJXSprUkhQUFDBr1iy6du2KXq8HoFGjRixfvlxx2hQUFBQU/nHUDcdNABeyIK90w0aTyUBhkbkXzd30bys0mUgt1CMh0UJJk1qMgwcP4u/vz/vvv8+RI0fklgAKCgoKCgr/VOqG44aAo1fhmr7Us0VFV0GYqFevIWp15SNnf+QXYkLwYH0rbNR15BbdR+Tk5DB58mR69uxJYmIinp6eREdHl2qsqKCgYDnUajX+/v74+Pjw2GOPldLTPHXqFP369aN9+/a4u7uzYMGCUmoEO3fuJDAwEE9PTzw8PG4rol4bGTFiBFqtttK91ezt704Xu7Ls378fJycn/P398ff3Z/78+eWOE0LQr1+/Wl1Vun79etzd3XF3d2f9+vXljrl48SLBwcFotVr69OlDcnKyvO+NN97A29sbT09PpkyZIr/Wnn76ac6ePVsj11DjCCHu+0fLxk3FkcEThNi1XdxM5o1YkZz8pcjKiheVxWgyiS2p18WGlHRxqaCw0scpVA179uwRLVq0EIDQaDRi7ty5QqfTWdosBYVaw+nTpy1tgrCzs5N/HzVqlFi4cKEQQoj8/HzRpk0bsXv3biGEEHl5eWLAgAFixYoVQgghTpw4Idq0aSMSEhKEEELo9XqxcuXKKrVNr9dX6XwlpKamihYtWtzVMTffp6okKipKDBw48I7jduzYIV599dW7mttgMNyrWXfN9evXRevWrcX169dFRkaGaN26tcjIyCgzbtiwYWLdunVCCCH27t0rnn32WSGEENHR0aJbt27CYDAIg8EgunTpIqKiooQQQuzfv1+MHz++xq6lIsp7zwKx4h59nhovTpAkaQCwDFAD/xZCvH/L/pHAjOLNXGCiECK+UpOrSqdK5fVt1k0rbd/5gkLyTSacNBqa1VdkkmqaCxcukJSUREBAAGvXrr2jpqGCwj+Z45G7qmVe7cMDKj22a9euHD9+HIAvv/yS7t27y9FxW1tbVqxYQZ8+fXjppZdYvHgxb775pqwcoNFomDRpUpk5c3Nzefnll4mNjUWSJN566y2GDh2Kvb09ubm5AGzZsoUdO3awbt06xowZg4uLC0ePHsXf35+IiAiOHTtGgwYNAGjXrh3R0dGoVCpefPFFkpKSAFi6dGkZBQCdTsfEiROJjY1Fo9GwZMkS+vbtS2hoKFevXsXf359PPvmEnj17ysekpaXx4osvyvJSq1atolu3bqWuZ/DgwWRmZqLX61m4cCGDBw8mLy+Pp556iuTkZIxGI3PnzmX48OHMnDmT7du3y0Lq4eHhlf573MymTZt4/vnn5e3HH3+cS5cuodPpeOWVV+R99vb2TJ06ld27d/PRRx9x4cIFli9fTlFREZ07d+bTTz9FrVYzceJEYmJiKCgoYNiwYbzzzjv3ZFcJu3fvJiQkRFZLCAkJYdeuXYwYMaLUuNOnT8tRzr59+8qdBCRJQqfTUVRUhBACvV4vt4Xq2bMnY8aMwWAwlBKerwvU6NVIkqQGVgIhQDIQI0nSdiHE6ZuGnQd6CyEyJUl6BFgDdL7DzNDSERz/Wo9mMORiMOQgqayoZ+VSaRtP5ZpFc73trcsVOVaoWoQQ/Pnnn7Rt2xaA8ePHY2try/Dhw+vcm01Boa5hNBrZu3ev3J3+1KlTBAQElBrTtm1bcnNzyc7O5uTJk7z++ut3nHfBggU4OTlx4sQJ4C+t0opITEwkMjIStVota5mOHTuW3377jVatWuHq6sozzzzDa6+9Ro8ePUhKSqJ///4kJCSUmmflypWAWY7qzJkzhIaGkpiYyPbt2wkLCytXO3TKlCn07t2biIgIjEaj7FyWYG1tTUREBI6Ojly7do0uXbowaNAgdu3aRdOmTfn+++8Bs55oRkYGERERnDlzBkmSSqWhb+bQoUP4+fnRtGlTwsPDy9XkjI6OZvXq1fL2F198gYuLCwUFBQQFBTF06FAaNmxIXl4ePj4+zJ8/n4SEBD744AOio6OxsrJi0qRJbNq0iVGjRrFo0SJcXFwwGo0EBwdz/PjxMko1dyMyn5KSQvPmzeVtNzc3UlJSyhzr5+fH1q1beeWVV4iIiCAnJ4fr16/TtWvX/2/v3sOqqPYGjn8XYHJRSSlIM+83LntvECjJlJQDcgIzszKPpaJW55h5SiUrL/l6KStLM61eT5l6JKks1Dp5CdRMIxUMUUGpV8NEDiIQNyHYsN4/BiaQjeAFEFqf59lPzsyamTUzQL+91qz1Y8iQIXTs2BEpJVOnTtUzFFhZWdGrVy+OHDlS42eyuWvs/zPeCfwspTwFIISIBEYAeuAmpfy+SvkfgM51HlUA/V3AxUFfpU+627ojQtTvPbWzxSXkms3YW1mpSXcbQXp6Ok8//TTbt2/n2LFj9OjRAyEEY8eObeqqKUqzcCUtY9dTUVERnp6e/PLLL3h7exMYGAhoX8Rq+8J7JV+Eo6OjiYyM1JfrM4L84Ycfxtpam7pp9OjRLFiwgLCwMCIjI/V8pdHR0SQl/dFOkJeXR35+Pm3bttXX7du3j2eeeQaAfv360bVrV1JSUmjXrl2t5961axfr168HtPf/HB0dq22XUvLSSy+xd+9erKysSEtLIyMjA4PBwMyZM5k1axahoaEMGjQIs9mMra0tkydPJiQkhNDQ0Brn69+/P6mpqbRp04avv/6aBx54wOL7XNnZ2dWubcWKFURFRQHw66+/8tNPP+Hk5IS1tTWjRo0CICYmhvj4eHx9fQHtWTs7azm+P/30U1avXo3ZbCY9PZ2kpKQagVt4eDjh4eG13qtL78ulLP2cLF26lKlTp7J27VoGDx7M7bffjo2NDT///DPJycn6O2+BgYHs3buXwYMHA+Ds7My5c+daXODW2G/e3w78WmX5bMW62kwCtlnaIIR4UggRJ4SIw8LD/71Ym7/tSqYBSSooAsC1jR1WqrWtwUgp+eijj3BzcyMqKgobG5tqf0wVRbmx2dnZkZCQQGpqKiUlJXorlbu7O3FxcdXKnjp1ijZt2tC2bVvc3d2Jj4+v8/i1BYBV1xUXF1fb5uDwxxd3Pz8/fv75ZzIzM9m8eTMPPvggoKXKi42NJSEhgYSEBNLS0qoFNpXnvt4iIiLIzMwkPj6ehIQEXFxcKC4upk+fPsTHx2MwGHjxxRdZsGABNjY2HDx4kFGjRrF582aCg2sG5+3atdMHPtx3332UlpZy4cKFGuVsbGwoLy8HtAEN0dHRxMbGcuTIEby8vPR7aGtrqwe9UkrGjx+v36OTJ08yf/58Tp8+zdKlS4mJiSExMZGQkJAazwC0FrfKQRNVP9OmTatRtnPnzvz66x8hwdmzZ+nUqearTZ06deKLL77gxx9/ZPHixQA4OjoSFRXFgAEDaNOmDW3atOGvf/0rP/zwg75fcXExdnY153dt7ho7cLMUDVn8LRFCDEEL3GZZ2i6lXC2l9JFS+nDJL7iU5fz+ewZQ/8Ats6SUjJJSWglBL3vV2tZQTp8+TVBQEBMnTuS3334jJCSEpKQki98qFUW5sTk6OrJixQqWLl1KaWkpY8eOZd++fURHRwNaa820adN4/vnnAa015pVXXiElJQXQAqm33nqrxnGDgoJYuXKlvlzZVeri4kJycrLeFVobIQQjR45k+vTpuLq64uTkZPG4lro9Bw8erHf1paSkcObMGfr27XvZ+xAQEMB7770HaN3Hl47izM3NxdnZmVatWrF7925SU1MBOHfuHPb29jz22GPMnDmTw4cPU1BQQG5uLvfddx/Lly+3WMf//ve/eoB58OBBysvL9Wusqm/fvvp7d7m5ubRv3x57e3tOnDhRLcC59Fo2bdrE+fPaVFrZ2dmkpqaSl5eHg4MDjo6OZGRksG2bxTYVwsPD9aCv6ufSblKAYcOGsXPnTnJycsjJyWHnzp0MGzasRrkLFy7oAeirr77KxIkTAejSpQvffvstZrOZ0tJSvv3222rJ3FNSUix2ITd3jR24nQXuqLLcGTh3aSEhhBH4ABghpcy60pOUlFxAylJsWjliY+NQ9w5AUsW7bX0cbLnJSk0B0hA2bdqEh4cH0dHRODk5ERERwZdffknnznX3hiuKcmPy8vLCZDIRGRmJnZ0dW7ZsYdGiRfTt2xeDwYCvry9Tp04FwGg0snz5csaMGYOrqyseHh6kp6fXOOacOXPIycnBw8MDk8mkz+G4ZMkSQkNDGTp0KB07Xn5uztGjR7Nhwwa9mxS0rsK4uDiMRiNubm68//77NfabMmUKZWVlGAwGRo8ezdq1a2nd+vJf5t9++212796NwWDA29ub48ePV9s+duxY4uLi8PHxISIiQh+ccfToUe688048PT1ZvHgxc+bMIT8/n9DQUIxGI/7+/hanHqn8W2oymZg2bRqRkZEWWyhDQkLYs2cPAMHBwZjNZoxGI3PnzmXAgAEWr8XNzY1FixYRFBSE0WgkMDCQ9PR0TCYTXl5euLu7M3HixBqDOq5Ghw4dmDt3Lr6+vvj6+jJv3jx9oMK8efPYunUroLUW9u3blz59+pCRkcHs2bMBeOihh+jZsycGgwGTyYTJZGL48OGANmDEzs6uzp+T5kg0RLNwrScTwgZIAQKANOAQ8Dcp5fEqZboAu4Bxl7zvVqtut3WWUa/9Ey//u6HbQHJzEygoSKZNm744Ovavc/88cxlbzudghWCkS3vs1dxtDSIpKQkvLy8efPBB3n77bf29CUVR6i85Oblaq4Ki1CY9PZ1x48bxzTffNHVVGt2yZcto166dPnCmKVn6nRVCxEspfa7meI06OEFKaRZCTAV2oE0HskZKeVwI8feK7e8D8wAn4N2KbxDmK724oiJtqLetbf1acirfbeth31oFbddRaWkpn332GWPGjEEIgZubG8ePH6dXr15NXTVFUZQWr2PHjjzxxBPk5eVddnBFS3TzzTfz+OOPN3U1GkSjz7cgpfwa+PqSde9X+fdkYPKVHRTYfQZ6elDSKYuyskKsrO246aZb69z1Ylk5py5qeUndHGrmOlWuTlxcHJMmTSIxMREhhD4vjwraFEVRGs8jjzzS1FVoEmFhYU1dhQbTQpqXJPz2O/xeRlGRNkLFzu6Oeg0/P1lYTBmSO2xvwrGVmjfsWhUVFfH8889z1113kZiYSI8ePSyOElIURVEU5cq1kMDtD5XdpHa2XeosW1ouOVmodZO6t2l5Q4Yb27fffovRaOSNN94AYPr06Rw9ehR/f/8mrpmiKIqitAwtqomphALKymRFN+ktdZb/+WIxpVLifFMrbr1Jpbe6Fps3b2bkyJGANpfThx9+yF131ZHwQlEURVGUK9IyAjch4N7OFN16EbCrVzdpuZT6oATV2nbthg0bhoeHBw899BAvvvgiN910U907KYqiKIpyRVpOV2l7O4puKgTq102qkslfmwsXLjB16lQ9j56dnR2HDx/m5ZdfVkGborRw1tbWeHp64uHhwfDhw6vl0zx+/DhDhw6lT58+9O7dm4ULF1bLRrBt2zZ8fHxwdXWlX79+zJw5swmu4OqMGTMGo9FocW41SyqzGzSEPXv24Onpibu7e62vo0gpGTp0aI0JgW8k69ato3fv3vTu3Zt169ZZLJOamkpAQABGo5F7771XT3EFMGvWLDw8PPDw8OCTTz7R1z/66KMW04C1CFLKZv/p6nK7jFv/P/JsykqZnr5ZlpeXy7psyciR69My5c+FRXWWVf5QXl4uN27cKG+55RYJyL///e9NXSVF+VNJSkpq6ipIBwcH/d/jxo2TixYtklJKefHiRdmjRw+5Y8cOKaWUhYWFMjg4WK5cuVJKKeXRo0dljx49ZHJyspRSytLSUrlq1arrWrfS0tLrerxK6enpskuXLle0T9X7dD3l5ORIV1dXmZqaKqWUMiMjw2K5r776Sj777LNXdGyz2XzN9auvrKws2b17d5mVlSWzs7Nl9+7dZXZ2do1yDz30kFy7dq2UUsqYmBj52GOPSSm16/vLX/4iS0tLZUFBgfT29pa5ublSSin37NkjJ0+e3GjXcjmWfmeBOHmVMU+LaXErty6CVva0bt2xzm5SlUz+6qSlpfHAAw8wZswYLly4wJAhQ5rVt2VFaWkKDqQ3yOdK+Pn5kZaWBsDHH3/MwIEDCQoKAsDe3p6VK1eyZMkSAF5//XVmz56tZw6wsbFhypQpNa+roICwsDAMBgNGo5HPP/8cqN6CtWnTJiZMmADAhAkTmD59OkOGDCE8PJxu3bpVawXs1asXGRkZZGZmMmrUKH2m/v3799c4d3FxsX5uLy8vPWtDUFAQ58+fx9PTk++++67aPhkZGYwcOVKfvf/776vPHV9QUEBAQAD9+/fHYDCwZcsWAAoLCwkJCcFkMlVrMXrhhRdwc3PDaDRa/Bv78ccf8+CDD9Kli9a7VNtk5hEREYwYMUJffuCBB/D29sbd3Z3Vq1fr69u0acO8efO46667iI2NZcOGDXpGh6eeeoqysjIA/vGPf+Dj44O7uzsvv/yyxXNeiR07dhAYGEiHDh1o3749gYGBbN++vUa5pKQkAgICABgyZIh+/5KSkvD398fGxgYHBwdMJpO+/6BBg4iOjsZsNl9zPW80LSJwE0jKrX6HVra0auV42bLlUnIk/yKgksnXl5SSf/3rX7i5ubF161batWvH6tWriYmJoWfPnk1dPUVRmkhZWRkxMTHcf//9gNZN6u3tXa1Mz549KSgoIC8vj2PHjtXYbsnChQtxdHTk6NGjJCYmMnTo0Dr3SUlJITo6mmXLljFixAg9l+mBAwfo1q0bLi4u/POf/+S5557j0KFDfP7550yeXHPK0FWrVgFaOqqNGzcyfvx4iouL2bp1Kz179iQhIYFBgwZV22fatGn4+/tz5MgRDh8+XCM/pq2tLVFRURw+fJjdu3czY8YMpJRs376dTp06ceTIEY4dO0ZwcDDZ2dlERUVx/PhxEhMTmTNnjsVrzcnJ4d5778Xb25v169dbvCf79++vdr/XrFlDfHw8cXFxrFixgqwsLaNkYWEhHh4eHDhwACcnJz755BP2799PQkIC1tbWeu7WxYsXExcXR2JiIt9++y2JiYk1znklSebT0tK4444/smB27txZ/xJQlclk0oP3qKgo8vPzycrKwmQysW3bNi5evMiFCxfYvXu3nrTeysqKXr16ceTIEYv3pjlrGYMTAFnxmppNHYHb0YIiskvNOFhb09teTbhbHwcOHODJJ58EYPjw4bz33nvcfvvtTVwrRVHa3NU0eRiLiorw9PTkl19+wdvbm8DAQED7kldbj0d95tWsFB0dTWRkpL7cvn37Ovd5+OGHsba2BrQ8pQsWLCAsLIzIyEg9X2l0dDRJSUn6Pnl5eeTn59O2bVt93b59+3jmmWcA6NevH127diUlJeWymQd27dqlB0/W1tY4Olb//5CUkpdeeom9e/diZWVFWloaGRkZGAwGZs6cyaxZswgNDWXQoEGYzWZsbW2ZPHkyISEhhIaG1jif2WwmPj6emJgYioqK8PPzY8CAAfTp06dauezs7GrXtmLFCj2g/fXXX/npp59wcnLC2tqaUaNGARATE0N8fDy+vr6A9qwrW/Q+/fRTVq9ejdlsJj09naSkJIxGY7VzhoeHEx4eXuu9uvS+XMrSz8nSpUuZOnUqa9euZfDgwdx+++3Y2NgQFBTEoUOHuPvuu7n11lvx8/PDxuaPsMbZ2Zlz587V68tCc9IiWtwAZPHvUFJGK5vaA7fMklKO5msjSe++uQ2trFRrW22q/kINGDCA6dOns3HjRrZs2aKCNkX5k7OzsyMhIYHU1FRKSkr0Vip3d3fi4uKqlT116hRt2rShbdu2uLu7Ex8fX+fxawsAq64rLi6uts3BwUH/t5+fHz///DOZmZls3ryZBx98EIDy8nJiY2NJSEggISGBtLS0aoFN5bmvt4iICDIzM4mPjychIQEXFxeKi4vp06cP8fHxGAwGXnzxRRYsWICNjQ0HDx5k1KhRbN68meDg4BrH69y5M8HBwTg4OHDLLbcwePBgiy1LNjY2lJeXA9pghujoaGJjYzly5AheXl76PbS1tdWDXikl48eP1+/RyZMnmT9/PqdPn2bp0qXExMSQmJhISEhIjWcAV9bi1rlzZ72FDODs2bMWJ2zv1KkTX3zxBT/++COLFy8G0IPj2bNnk5CQwDfffIOUkt69e+v7FRcXY2fX8maNaBmBm5TIHzOwOl+KtbXlh2Qul+zPKUAicXOw4zY1krRWx44d4+677yY2NlZf9+abb/Loo49e0bdmRVFaNkdHR1asWMHSpUspLS1l7Nix7Nu3j+joaEBrrZk2bRrPP/88oLXGvPLKK6SkpABaIPXWW2/VOG5QUBArV67Ul3NycgBwcXEhOTmZ8vJyveXIEiEEI0eOZPr06bi6uuLk5GTxuAkJCTX2HTx4sN41mJKSwpkzZ+jbt+9l70NAQADvvfceoHUfXzqKMzc3F2dnZ1q1asXu3btJTU0F4Ny5c9jb2/PYY48xc+ZMDh8+TEFBAbm5udx3330sX77cYh1HjBjBd999h9ls5uLFixw4cKBGEnOAvn37curUKb0O7du3x97enhMnTvDDDz/Uei2bNm3i/PnzgNZql5qaSl5eHg4ODjg6OpKRkcG2bdss7h8eHq4HfVU/K1asqFF22LBh7Ny5k5ycHHJycti5cyfDhg2rUe7ChQt6APrqq68yceJE/V5XdvcmJiaSmJiov18J2vO7tNu6JWgZgZuQIK2wsaq9KTu5sIj8sjIcbWzwbGffiJVrPkpKSvif//kf+vfvzw8//HBdXj5VFKVl8/LywmQyERkZiZ2dHVu2bGHRokX07dsXg8GAr68vU6dOBcBoNLJ8+XLGjBmDq6srHh4epKfXHAwxZ84ccnJy8PDwwGQy6QMElixZQmhoKEOHDqVjx8t3E48ePZoNGzbo3aSgdRXGxcVhNBpxc3Pj/fffr7HflClTKCsrw2AwMHr0aNauXUvr1pcfxPb222+ze/duDAYD3t7eHD9+vNr2sWPHEhcXh4+PDxEREfrgjKNHj+qDABYvXsycOXPIz88nNDQUo9GIv7+/xalHXF1dCQ4Oxmg0cueddzJ58mQ8PDxqlAsJCWHPnj0ABAcHYzabMRqNzJ07lwEDBli8Fjc3NxYtWkRQUBBGo5HAwEDS09MxmUx4eXnh7u7OxIkTGThw4GXvSX106NCBuXPn6oNF5s2bR4cOHQCYN28eW7duBbTWwr59+9KnTx8yMjKYPXs2AKWlpQwaNAg3NzeefPJJNmzYoHeVZmRkYGdnV+fPSXMkGqJZuLH16OgiN4wZgtvfJnGzT6DFMruy8kj7vYRB7dvSTY0kreHgwYNMmjSJY8eOAdrooSVLllz2vQ5FURpfcnKyxdYVRblUeno648aN45tvvmnqqjS6ZcuW0a5dOyZNmtTUVbH4OyuEiJdS+lzN8VpGi5uVhLa22NjdXGuRPLM2nNnRxrqRKtU8XLx4kZkzZ+Ln58exY8fo1asXe/bs4d1331VBm6IoSjPWsWNHnnjiiRt6At6GcvPNNzN+/PimrkaDaBGBmxASBt5Bq16WMyaUS0lBmdY/3tZaBW5V5efns2bNGgCef/55EhMTVVJ4RVGUFuKRRx75U34JDwsLqzbCtCVpGVcltO5em1pGlOaby5BI2lhbY6NGkpKbm4u9vT2tWrXCxcWFdevW0bFjR3x8rqrVVlEURVGURtIiWtxAAjZYW1uely23opu0reom5csvv8TNzY0333xTXzd8+HAVtCmKoihKM9BCAje4XONhfkU36Z/5/bbMzEz+9re/cf/993Pu3Dm2b9+uD69WFEVRFKV5aEGBW+2Xkqe3uLWgy60nKSUff/wxrq6ubNy4EXt7e5YtW0ZMTAxWVn+++6EoiqIozVmL+T+3kHUHbn+2Fre8vDyGDx/O2LFjycrKIiAggKNHj/Lss8/qs2QriqJcKWtrazw9PfHw8GD48OHVErofP36coUOH0qdPH3r37s3ChQurZSPYtm0bPj4+uLq60q9fP4tJ1G9UY8aMwWg0WpxbzZI2bdo0SD2qZifw8PDA2tqa7OzsGuWklAwdOvSGHlW6bt06evfuTe/evVm3bp3FMqmpqQQEBGA0Grn33ns5e/asvm3WrFl4eHjg4eHBJ598oq9/9NFH+emnnxq8/k1CStnsPz06d5DfL35OyjO50pJP0rPk+rRMWVBqtri9pSorK5ODBw+Wjo6O8sMPP5Tl5eVNXSVFUa5RUlJSU1dBOjg46P8eN26cXLRokZRSyosXL8oePXrIHTt2SCmlLCwslMHBwXLlypVSSimPHj0qe/ToIZOTk6WUUpaWlspVq1Zd17qVlpZe1+NVSk9Pl126dLmifarep4aydetWOWTIEIvbvvrqK/nss89e0fHM5sb7/2RWVpbs3r27zMrKktnZ2bJ79+4yOzu7RrmHHnpIrl27VkopZUxMjHzssceklNr1/eUvf5GlpaWyoKBAent7y9xcLQ7Ys2ePnDx5cqNdy+VY+p0F4uRVxjwtpsWNn/Mgu2betN/Ly/m9vBxrIbC3bjmXW5uffvqJM2fOAGBlZcX69etJSkpi4sSJKl2VorQwcXFxDfK5En5+fqSlpQHw8ccfM3DgQD3tkL29PStXrmTJkiUAvP7668yePVvPHGBjY8OUKVNqHLOgoICwsDAMBgNGo5HPP/8cqN6CtWnTJiZMmADAhAkTmD59OkOGDCE8PJxu3bpVawXs1asXGRkZZGZmMmrUKH2m/v3799c4d3FxsX5uLy8vPWtDUFAQ58+fx9PTk++++67aPhkZGYwcORKTyYTJZOL777+vcT0BAQH0798fg8HAli1bACgsLCQkJASTyVStxeiFF17Azc0No9FYZ4vkxo0bGTNmjMVtERERjBgxQl9+4IEH8Pb2xt3dndWrV+vr27Rpw7x587jrrruIjY1lw4YNekaHp556irIyrdfqH//4Bz4+Pri7u1+XzDo7duwgMDCQDh060L59ewIDA9m+fXuNcklJSQQEBAAwZMgQ/f4lJSXh7++PjY0NDg4OmEwmff9BgwYRHR2N2Wy+5nreaFpOJFNuOSip7CZtZ23dogMXs9nMG2+8gdFoZPLkyXrXRNeuXS0m7VUURblWZWVlxMTEcP/99wNaN6m3t3e1Mj179qSgoIC8vDyOHTtWY7slCxcuxNHRkaNHj5KYmMjQoUPr3CclJYXo6GiWLVvGiBEj9FymBw4coFu3bri4uPDPf/6T5557jkOHDvH5558zefLkGsdZtWoVoKWj2rhxI+PHj6e4uJitW7fSs2dPEhISGDRoULV9pk2bhr+/P0eOHOHw4cM18mPa2toSFRXF4cOH2b17NzNmzEBKyfbt2+nUqRNHjhzh2LFjBAcHk52dTVRUFMePHycxMZE5c+bUes0XL15k+/btjBo1yuL2/fv3V7vfa9asIT4+nri4OFasWKHn+SwsLMTDw4MDBw7g5OTEJ598wv79+0lISMDa2lrP3bp48WLi4uJITEzk22+/JTExscY5ryTJfFpaGnfccYe+3LlzZ/1LQFUmk0kP3qOiosjPzycrKwuTycS2bdu4ePEiFy5cYPfu3XrSeisrK3r16sWRI0dqvX/NVcuYxw0Q5ZZjUD1wa8HvtyUmJjJp0iT9m/Jtt91GcXExdnZ2TVwzRVEaUlNN41NUVISnpye//PIL3t7eBAZqqQallLV+Qb6SL87R0dFERkbqy+3bt69zn4cfflh/d3f06NEsWLCAsLAwIiMj9Xyl0dHRJCUl6fvk5eWRn59P27Zt9XX79u3jmWeeAaBfv3507dqVlJSUy05iu2vXLtavXw9o7/85OlafU1RKyUsvvcTevXuxsrIiLS2NjIwMDAYDM2fOZNasWYSGhjJo0CDMZjO2trZMnjyZkJAQQkNDaz3vl19+ycCBA/X8npfKzs6udm0rVqzQA9pff/2Vn376CScnJ6ytrfXgLyYmhvj4eHx9fQHtWTs7OwPw6aefsnr1asxmM+np6SQlJWE0GqudMzw8nPDw8FrrfOl9uZSln5OlS5cydepU1q5dy+DBg7n99tuxsbEhKCiIQ4cOcffdd3Prrbfi5+dXbdJdZ2dnzp07V68vC81Jy2lx8+0Et7etsTrPrE150RIDt99//5158+bh7e1NXFwcd9xxB19//TXr169XQZuiKA3Gzs6OhIQEUlNTKSkp0Vup3N3da3S1njp1ijZt2tC2bVvc3d2Jj4+v8/i1BYBV1xUXV381xsHBQf+3n58fP//8M5mZmWzevJkHH3wQgPLycmJjY0lISCAhIYG0tLRqgU3lua+3iIgIMjMziY+PJyEhARcXF4qLi+nTpw/x8fEYDAZefPFFFixYgI2NDQcPHmTUqFFs3ryZ4ODgWo8bGRlZazcpaF3RldM+7dmzh+joaGJjYzly5AheXl76PbS1tdWDXikl48eP1+/RyZMnmT9/PqdPn2bp0qXExMSQmJhISEhIjWcAV9bi1rlzZ72FDODs2bMWe4g6derEF198wY8//sjixYsB9OB49uzZJCQk8M033yClpHfv3vp+LbUBo+UEbn1ugVtqPqD8Fjqi1Gw2M2DAABYuXIjZbObpp5/m+PHj/PWvf23qqimK8ifh6OjIihUrWLp0KaWlpYwdO5Z9+/YRHR0NaK0106ZN4/nnnwe01phXXnmFlJQUQAuk3nrrrRrHDQoKYuXKlfpyTk4OAC4uLiQnJ1NeXq63HFkihGDkyJFMnz4dV1dXnJycLB43ISGhxr6DBw/WuwZTUlI4c+YMffv2vex9CAgI4L333gO07uNLR3Hm5ubi7OxMq1at2L17N6mpqQCcO3cOe3t7HnvsMWbOnMnhw4cpKCggNzeX++67j+XLl1usY+Uxv/3222rvsF2qb9++nDp1Si/fvn177O3tOXHiBD/88EOt17Jp0ybOnz8PaK12qamp5OXl4eDggKOjIxkZGWzbts3i/uHh4XrQV/WzYsWKGmWHDRvGzp07ycnJIScnh507dzJs2LAa5S5cuKAHoK+++ioTJ04EtHtd2d2bmJhIYmKi/n4laM/v0m7rlqDlBG61XEpLzZpgY2PDiBEj6NOnD3v37mXlypU1vjkqiqI0NC8vL0wmE5GRkdjZ2bFlyxYWLVpE3759MRgM+Pr6MnXqVACMRiPLly9nzJgxuLq64uHhQXp6eo1jzpkzh5ycHDw8PDCZTPoAgSVLlhAaGsrQoUPp2LHjZes1evRoNmzYoHeTgtZVGBcXh9FoxM3Njffff7/GflOmTKGsrAyDwcDo0aNZu3YtrVu3vuy53n77bXbv3o3BYMDb25vjx49X2z527Fji4uLw8fEhIiJCH5xx9OhRfRDA4sWLmTNnDvn5+YSGhmI0GvH396916pGoqCiCgoKqtTReKiQkhD179gAQHByM2WzGaDQyd+5cBgwYYHEfNzc3Fi1aRFBQEEajkcDAQNLT0zGZTHh5eeHu7s7EiRMZOHDgZe9JfXTo0IG5c+fqg0XmzZund/vOmzePrVu3AlprYd++fenTpw8ZGRnMnj0bgNLSUgYNGoSbmxtPPvkkGzZs0LtKMzIysLOzq/PnpDkSDdEs3Nh63uEkIz5YzIBhf6+2XkrJxvRsypCMvq0DNzXzCWdjYmIoLi4mJCQEgJKSEsrKylpkU7CiKJYlJyfj6ura1NVQmoH09HTGjRvHN99809RVaXTLli2jXbt2TJo0qamrYvF3VggRL6W8qpdUm3ckU4cccxllSBysrZt10Pbbb78xadIk/vKXvxAWFqY3Dd90000qaFMURVEs6tixI0888cQNPQFvQ7n55psZP358U1ejQbSYUaWW/Pf3UgBcbmq+l7l582amTJlCeno6N910E88+++xlRzcpiqIoSqVHHnmkqavQJMLCwpq6Cg2m+UY09VAZuHVsfVMT1+TKZWRk8Mwzz/DZZ58BcPfdd/PBBx+oLhJFURRF+RNrvv2Hl/roKBw5ry+WS0lGSUWLW+vmFZ9KKRkxYgSfffYZDg4OrFixgu+++04FbYqiKIryJ9dyArdLZJWaMUtJOxtrHJpZQnUhBK+99hrDhg3j2LFjPPPMM1g143f0FEVRFEW5PppXU9QVSK/oJr3tplZNXJO6lZeX8/7773P69GneeOMNAPz9/fH392/imimKoiiKciNpsc04le+33db6xg7cTp48ib+/P08//TRLly7l6NGjTV0lRVGUy7K2tsbT0xMPDw+GDx9eLaH78ePHGTp0KH369KF3794sXLiwWjaCbdu24ePjg6urK/369aszifqNZMyYMRiNxlrnVrtUmzZtGqQeubm5DB8+HJPJhLu7Ox999JHFclJKhg4dekOPKl23bh29e/emd+/erFu3zmKZM2fOMGTIELy8vDAajXz99deANoGyn58f7u7uGI1GPvnkE32fRx99lJ9++qlRrqHRSSmb/adH5w4ydvt7slJpWbmMSLsg16dlyiJzmbwRlZaWyldffVW2bt1aAtLFxUVu2rSpqaulKMoNLikpqamrIB0cHPR/jxs3Ti5atEhKKeXFixdljx495I4dO6SUUhYWFsrg4GC5cuVKKaWUR48elT169JDJyclSSu3v4KpVq65r3UpLS6/r8Sqlp6fLLl26XNE+Ve/T9bR48WL5/PPPSymlPH/+vGzfvr38/fffa5T76quv5LPPPntFxzabzdeljvWRlZUlu3fvLrOysmR2drbs3r27zM7OrlHuiSeekO+++66UUsrjx4/Lrl27SimlPHnypExJSZFSSpmWliZvu+02mZOTI6WUcs+ePXLy5MmNch11sfQ7C8TJq4x5WmSL25niEsqQOLWywdb6xrvEhIQE7rrrLl588UV+//13JkyYQFJSkp7kV1EUpT7S0jY2yOdK+Pn5kZaWBsDHH3/MwIED9bRD9vb2rFy5kiVLlgDw+uuvM3v2bD1zgI2NDVOmTKlxzIKCAsLCwjAYDBiNRj7//HOgegvWpk2bmDBhAgATJkxg+vTpDBkyhPDwcLp161atFbBXr15kZGSQmZnJqFGj9Jn69+/fX+PcxcXF+rm9vLz0rA1BQUGcP38eT09Pvvvuu2r7ZGRkMHLkSEwmEyaTie+//77G9QQEBNC/f38MBgNbtmwBoLCwkJCQEEwmEx4eHnqL0QsvvICbmxtGo9Fii6QQgvz8fKSUFBQU0KFDh2rJ1StFRERUS4n1wAMP4O3tjbu7O6tXr9bXt2nThnnz5nHXXXcRGxvLhg0b9IwOTz31FGVlWgaif/zjH/j4+ODu7s7LL79c43xXaseOHQQGBtKhQwfat29PYGAg27dvt3i9la2Gubm5ej7TylZd0PKZOjs7k5mZCcCgQYOIjo7GbDZfcz1vNC3yHbcThUUA9La3beKaWLZ8+XIOHz5M165dWb16dbXcaoqiKM1FWVkZMTEx+uz0x48fx9vbu1qZnj17UlBQQF5eHseOHWPGjBl1HnfhwoU4Ojrqr45U5iq9nJSUFKKjo7G2ttZzmYaFhXHgwAG6deuGi4sLf/vb33juuee45557OHPmDMOGDSM5ObnacVatWgVo6ahOnDhBUFAQKSkpbN26ldDQUIu5Q6dNm4a/vz9RUVGUlZVRUFBQbbutrS1RUVG0a9eOCxcuMGDAAO6//362b99Op06d+M9//gNoQUl2djZRUVGcOHECIUS1ALTS1KlTuf/+++nUqRP5+fl88sknFgew7d+/n//93//Vl9esWUOHDh0oKirC19eXUaNG4eTkRGFhIR4eHixYsIDk5GRee+019u/fT6tWrZgyZQoRERGMGzeOxYsX06FDB8rKyggICCAxMRGj0VjtnG+88Yae67WqwYMH18hXmpaWxh133KEvd+7cWf8SUNX8+fMJCgrinXfeobCwUM+FW9XBgwcpKSmhZ8+eAFhZWdGrVy+OHDlS42eyuWtxgVtmSSlZpWZaW1nR3e7y+eUaU3FxMba2WiD55ptvcttttzFnzpwGewdCUZSW7/bbxzTJeYuKivD09OSXX37B29ubwMBAQHv1RghhcZ/a1lsSHR1NZGSkvty+ffs693n44YexrphBYPTo0SxYsICwsDAiIyP1fKXR0dEkJSXp++Tl5ZGfn18tz/O+fft45plnAOjXrx9du3YlJSXlshOf79q1i/Xr1wPa+3+Ojo7Vtkspeemll9i7dy9WVlakpaWRkZGBwWBg5syZzJo1i9DQUAYNGoTZbMbW1pbJkycTEhJCaGhojfPt2LEDT09Pdu3axf/93/8RGBjIoEGDatQxOzu72rWtWLGCqKgoAH799Vd++uknnJycsLa21nt8YmJiiI+Px9fXF9CetbOzMwCffvopq1evxmw2k56eTlJSUo3ALTw8nPDw8Frv1aX35VKWfk42btzIhAkTmDFjBrGxsTz++OMcO3ZMD1bT09N5/PHHWbduXbUA1tnZmXPnzrW4wO3G60e8Sr9hw76cfL7/Tfum08u+NTZW9f9D0VAKCgqYNm0ad955JyUlJQA4OTmxZMkSFbQpitIs2dnZkZCQQGpqKiUlJXorlbu7O3FxcdXKnjp1ijZt2tC2bVvc3d2Jj4+v8/i1BYBV1xUXF1fbVjXZup+fHz///DOZmZls3ryZBx98ENBG8MfGxpKQkEBCQgJpaWnVApvKc19vERERZGZmEh8fT0JCAi4uLhQXF9OnTx/i4+MxGAy8+OKLLFiwABsbGw4ePMioUaPYvHkzwcHBNY730Ucf8eCDDyKEoFevXnTv3p0TJ07UKGdjY0N5eTmgJWqPjo4mNjaWI0eO4OXlpd9DW1tbPeiVUjJ+/Hj9Hp08eZL58+dz+vRpli5dSkxMDImJiYSEhNR4BqC1uHl6etb4TJs2rUbZzp078+uvv+rLZ8+e1btBq/rwww/1DBB+fn4UFxdz4cIFQAu+Q0JCWLRoEQMGDKi2X3FxcYtMC9liArdUYc/pot/JM5dhjaCvQ9N3k+7cuRMPDw/eeecdkpKSarwXoSiK0pw5OjqyYsUKli5dSmlpKWPHjmXfvn16V1ZRURHTpk3j+eefB7TWmFdeeYWUlBRAC6TeeuutGscNCgpi5cqV+nJlV6mLiwvJycl6V2hthBCMHDmS6dOn4+rqipOTk8XjWur2HDx4sN7Vl5KSwpkzZ+jbt+9l70NAQADvvfceoHUfXzqKMzc3F2dnZ1q1asXu3btJTU0F4Ny5c9jb2/PYY48xc+ZMDh8+TEFBAbm5udx3330sX77cYh27dOlCTEwMoL1fd/LkSXr06FGjXN++fTl16pReh/bt22Nvb8+JEyf44Ycfar2WTZs2cf68NqF9dnY2qamp5OXl4eDggKOjIxkZGWzbts3i/uHh4XrQV/VzaTcpwLBhw9i5cyc5OTnk5OSwc+dOhg0bdtnrTU5Opri4mFtvvZWSkhJGjhzJuHHjePjhh2vsl5KSgru7u8V6NmtXO6rhRvp0veMWOX/9ern+5DkZ91uBzC5pmFFF9ZWVlSUnTJggAQlILy8v+eOPPzZpnRRFaRlutFGlUkoZGhoq169fL6WUMjExUfr7+8s+ffrInj17yvnz58vy8nK97Jdffin79+8v+/XrJ11dXeXMmTNrHD8/P1+OGzdOuru7S6PRKD///HMppZSfffaZ7NGjh/T395dPP/20HD9+vJRSyvHjx8vPPvus2jEOHTokAbl27Vp9XWZmpnzkkUekwWCQrq6u8qmnnqpx7qKiIjl+/Hjp4eEhPT095a5du6SUUp4+fVq6u7tbvB///e9/5f333y89PDykyWSS33//fbX7lJmZKQcMGCC9vb3lpEmTZL9+/eTp06fl9u3bpcFgkCaTSfr4+MhDhw7Jc+fOSV9fX2kwGKSHh0e1+ldKS0uTgYGB0sPDQ7q7u8t///vfFuu1YMEC+a9//UtKKWVxcbEMDg6WBoNBPvTQQ9Lf31/u3r27Wj0rRUZGSpPJJA0Gg+zfv7+MjY3V73O/fv3kfffdJ0eOHCk/+ugji+e9Eh9++KHs2bOn7Nmzp1yzZo2+fu7cuXLLli1SSm0k6d133y2NRqM0mUz6qOV///vf0sbGRppMJv1T+f/a//73v9LX1/ea63c9XO9RpUI2QLNwY+vYrZP8e9iL9AgOZZhnZ5ybcO62L7/8kieeeIKMjAxat27N//zP/zBjxgyLI34URVGuVHJyskp/p9RLeno648aN45tvvmnqqjS6ZcuW0a5dO33gTFOy9DsrhIiXUvpczfFaRDRRLrQe30GtWjdp0AaQlZVFRkYG99xzDx988EGdTeyKoiiK0hA6duzIE088QV5e3mUHV7REN998M48//nhTV6NBtIjADaBVWRndrBv/cqSUJCUl6f3o48ePx9HRkREjRqj8ooqiKEqTqnyp/88mLCysqavQYFpMZCFc7KFD4w5I+OWXXwgODsbHx0dPrVH5UqwK2hRFURRFud5aTHRh1ac93NE4TcHl5eW88847eHh4sHPnTuzt7fWRO4qiKIqiKA2lxXSVOsiyRjlPcnIykydP1lOaPPLII6xYsQIXF5dGOb+iKIqiKH9eLSZws6fhA7ePP/6YsLAwSkpKuO2223jvvfd44IEHGvy8iqIoiqIo0IK6Sq1p+GlNvL29sbKyYtKkSSQlJamgTVGUPyVra2s8PT3x8PBg+PDh1fJpHj9+nKFDh+oJwBcuXFgtG8G2bdvw8fHB1dWVfv36WUyifqMaM2YMRqORZcuW1at8Q2XHycnJYeTIkRiNRu68806OHTtmsZyUkqFDh9aYEPhGsm7dOnr37k3v3r1Zt26dxTJnzpxhyJAheHl5YTQa+frrrwFtAmU/Pz/c3d0xGo188skn+j6PPvqo/u55i3O1E8DdSB/nbrfLtTssT0B4LS5evCg/+OCDapNHnjlz5rqfR1EUpb5utAl4x40bJxctWiSl1P5m9ujRQ58gtbCwUAYHB8uVK1dKKaU8evSo7NGjh0xOTpZSSllaWipXrVp1XetWWtowE7Cnp6fLLl26XNE+l05se73MnDlTzp8/X0opZXJyshw6dKjFcl999ZV89tlnr+jYZrP5mutXX1lZWbJ79+4yKytLZmdny+7du8vs7Owa5Z544gn57rvvSim1yXi7du0qpZTy5MmTMiUlRUqpTUp82223yZycHCmllHv27JGTJ09ulOuoy/WegLfFtLhdb9999x2enp5MnjyZDRs26OvvuOOOJqyVoijKH/597kKDfK6En58faWlpgPY6ycCBAwkKCgLA3t6elStXsmTJEgBef/11Zs+eTb9+/QAtl+aUKVNqHLOgoICwsDAMBgNGo5HPP/8cqN6CtWnTJiZMmADAhAkTmD59OkOGDCE8PJxu3bpVawXs1asXGRkZZGZmMmrUKHx9ffH19WX//v01zl1cXKyf28vLi927dwNauqzz58/j6elZI31hRkYGI0eOxGQyYTKZ9Hegq15PQEAA/fv3x2AwsGXLFgAKCwsJCQnBZDLh4eGhtxi98MILuLm5YTQaLbZIJiUlERAQAEC/fv345ZdfyMjIqFEuIiKCESNG6MsPPPAA3t7euLu7s3r1an19mzZtmDdvHnfddRexsbFs2LCBO++8E09PT5566inKyrRXkf7xj3/g4+ODu7s7L7/8co3zXakdO3YQGBhIhw4daN++PYGBgWzfvr1GOSGE3mqYm5ur5zOtbNUF6NSpE87OzmRmZgIwaNAgoqOjMZvN11zPG02LeceNfWehWzb06XBNh8nPz+eFF17g3XffBcDV1VX/wVAURVH+UFZWRkxMjD47/fHjx/H29q5WpmfPnhQUFJCXl8exY8eYMWNGncdduHAhjo6OHD16FPgjV+nlpKSkEB0djbW1tZ7LNCwsjAMHDtCtWzdcXFz429/+xnPPPcc999zDmTNnGDZsGMnJydWOs2rVKgCOHj3KiRMnCAoKIiUlha1btxIaGmoxd+i0adPw9/cnKiqKsrIyCgoKqm23tbUlKiqKdu3aceHCBQYMGMD999/P9u3b6dSpE//5z38ALSjJzs4mKiqKEydOIISoFoBWMplMfPHFF9xzzz0cPHiQ1NRUzp49W2OQ3P79+/nf//1ffXnNmjV06NCBoqIifH19GTVqFE5OThQWFuLh4cGCBQtITk7mtddeY//+/bRq1YopU6YQERHBuHHjWLx4MR06dKCsrIyAgAASExMxGo3VzvnGG2/ouV6rGjx4cI18pWlpadUaQzp37qx/Cahq/vz5BAUF8c4771BYWKjnwq3q4MGDlJSU0LNnTwCsrKzo1asXR44cqfEz2dy1nMDtt9+h6Noi623btvHUU0/x66+/YmNjw4svvsjs2bNp3br1daqkoijK9fN4p1ua5LxFRUV4enryyy+/4O3tTWBgIKC9eiOEsLhPbestiY6OJjIyUl9u3759nfs8/PDDWFtbAzB69GgWLFhAWFgYkZGRjB49Wj9uUlKSvk9eXh75+fm0bdtWX7dv3z6eeeYZQGvN6tq1KykpKZfNPLBr1y7Wr18PaO//OTo6VtsupeSll15i7969WFlZkZaWRkZGBgaDgZkzZzJr1ixCQ0MZNGgQZrMZW1tbJk+eTEhICKGhoTXO98ILL/DPf/4TT09PvWXQUlrF7Ozsate2YsUKoqKiAPj111/56aefcHJywtramlGjRgEQExNDfHw8vr6+gPasnZ2dAfj0009ZvXo1ZrOZ9PR0kpKSagRu4eHhhIeH13qvLr0vl7L0c7Jx40YmTJjAjBkziI2N5fHHH+fYsWP6fKnp6ek8/vjjrFu3rtocqs7Ozpw7d04Fbi3Vpk2bePjhhwFtEMKaNWtq/EAqiqIoYGdnR0JCArm5uYSGhrJq1SqmTZuGu7s7e/furVb21KlTtGnThrZt2+Lu7k58fDwmk+myx68tAKy6rri4uNo2BwcH/d9+fn78/PPPZGZmsnnzZubMmQNoc3DGxsZiZ2d32XNfbxEREWRmZhIfH0+rVq3o1q0bxcXF9OnTh/j4eL7++mtefPFFgoKCmDdvHgcPHiQmJobIyEhWrlzJrl27qh2vXbt2fPTRR3p9u3fvTvfu3Wuc18bGhvLycqysrNizZw/R0dHExsZib2/Pvffeq99DW1tbPeiVUjJ+/HheffXVasc6ffo0S5cu5dChQ7Rv354JEybUeAZwZS1unTt3Zs+ePfry2bNnuffee2vs++GHH+pdqH5+fhQXF3PhwgWcnZ3Jy8sjJCSERYsWMWDAgGr7FRcXX/ZZN1ct5h03+5KSa9p/+PDheHt788Ybb/DDDz+ooE1RFKUOjo6OrFixgqVLl1JaWsrYsWPZt2+f3pVVVFTEtGnTeP755wGtNeaVV14hJSUF0AKpt956q8Zxg4KCWLlypb5c2VXq4uJCcnKy3hVam8oMNtOnT8fV1RUnJyeLx7XU7Tl48GA98EhJSeHMmTN15pwOCAjgvffeA7Tu40tHcebm5uLs7EyrVq3YvXs3qampAJw7dw57e3see+wxZs6cyeHDhykoKCA3N5f77ruP5cuXW6zjb7/9RknF//M++OADBg8ebLFFsG/fvvrk8Lm5ubRv3x57e3tOnDjBDz/8UOu1bNq0ifPnzwNaq11qaip5eXk4ODjg6OhIRkYG27Zts7h/eHg4CQkJNT6XBm0Aw4YNY+fOneTk5JCTk8POnTsZNmxYjXJdunQhJiYG0OZSLS4u5tZbb6WkpISRI0cybtw4veGlqpSUFD0dZUvSYgI3h3s7Qq+6m9MrnTt3jokTJ5KdnQ1A69atOXDgADNnzrTY5KwoiqLU5OXlhclkIjIyEjs7O7Zs2cKiRYvo27cvBoMBX19fpk6dCoDRaGT58uWMGTMGV1dXPDw8SE9Pr3HMOXPmkJOTg4eHByaTSR8gsGTJEkJDQxk6dCgdO3a8bL1Gjx7Nhg0b9G5S0LoK4+LiMBqNuLm58f7779fYb8qUKZSVlWEwGBg9ejRr166t83WZt99+m927d2MwGPD29ub48ePVto8dO5a4uDh8fHyIiIjQB2ccPXpUHwSwePFi5syZQ35+PqGhoRiNRvz9/S1OPZKcnIy7uzv9+vVj27ZtvP322xbrFRISordoBQcHYzabMRqNzJ07t0brVCU3NzcWLVpEUFAQRqORwMBA0tPTMZlMeHl54e7uzsSJExk4cOBl70l9dOjQgblz5+qDRebNm0eHDtp76vPmzWPr1q0AvPnmm/zrX//CZDIxZswY1q5dixCCTz/9lL1797J27Vo8PT3x9PTUA92MjAzs7Ozq/DlpjkRDNAs3NpfuneW/359P0LDJdZaVUrJmzRpmzJhBbm4uTz31lMVfXkVRlBtRcnIyrq6uTV0NpRlIT09n3LhxfPPNN01dlUa3bNky2rVrpw+caUqWfmeFEPFSSp+rOd6fqmnp1KlTPPnkk3qTa0hICLNnz27iWimKoijK9dexY0eeeOIJ8vLyLju4oiW6+eabefzxx5u6Gg2ixXSVXk5ZWRnLly/HYDAQExODk5MTERERfPnll2peNkVRFKXFeuSRR/50QRtAWFhYi33tqQVdVXmtWw4dOsRzzz0HaClL3n77bW699dbGqpiiKMp1dblpNxRFuXE0xOtoLSZws5LVByZUDoEGGDBgALNnz+auu+5i+PDhTVE9RVGU68LW1pasrCycnJxU8KYoNzApJVlZWdja2l7X47aYwI0LJVBYCg6tiIuLY/LkybzzzjsMGjQIgEWLFjVxBRVFUa5d586dOXv2rJ7aR1GUG5etrS2dO3e+rsdsOYHbZycp6n2Olz9fxZtvvkl5eTmvvvqqHrgpiqK0BK1atbI42aqiKH8OjT44QQgRLIQ4KYT4WQjxgoXtQgixomJ7ohCif32Oe+RCKsaHh/DGG28AMGPGDDZt2nSda68oiqIoitJ0GnUeNyGENZACBAJngUPAGCllUpUy9wHPAPcBdwFvSynvutxx7du1kUX5hQB4eHjw4YcfcueddzbMRSiKoiiKolyDa5nHrbFb3O4EfpZSnpJSlgCRwIhLyowA1kvND8DNQojLTn1cXFiEjZU185+ZRXx8vAraFEVRFEVpkRr7HbfbgV+rLJ9Fa1Wrq8ztQLW8KEKIJ4EnKxZ/N8Ox+e+8xvx3Xru+NVYawy3AhaauhHJV1LNr3tTza97U82u+Lp8A9zIaO3CzNHb90r7a+pRBSrkaWA0ghIi72iZHpemp59d8qWfXvKnn17yp59d8CSHirnbfxu4qPQtUTVXQGTh3FWUURVEURVH+dBo7cDsE9BZCdBdC3AQ8Cmy9pMxWYFzF6NIBQK6UMv3SAymKoiiKovzZNGpXqZTSLISYCuwArIE1UsrjQoi/V2x/H/gabUTpz8BFIKweh17dQFVWGod6fs2XenbNm3p+zZt6fs3XVT+7Rp0ORFEURVEURbl6jT4Br6IoiqIoinJ1VOCmKIqiKIrSTDSrwK2h0mUpDa8ez25sxTNLFEJ8L4QwNUU9Fcvqen5VyvkKIcqEEA81Zv2Uy6vP8xNC3CuESBBCHBdCfNvYdVQsq8ffTkchxJdCiCMVz64+74UrjUAIsUYIcV4IcayW7VcVszSbwK0iXdYq4K+AGzBGCOF2SbG/Ar0rPk8C7zVqJRWL6vnsTgP+UkojsBD10u0No57Pr7Lca2iDj5QbRH2enxDiZuBd4H4ppTvwcGPXU6mpnr97TwNJUkoTcC/wZsWsDUrTWwsEX2b7VcUszSZwo4HSZSmNos5nJ6X8XkqZU7H4A9r8fcqNoT6/e6DlGP4cON+YlVPqVJ/n9zfgCynlGQAppXqGN4b6PDsJtBVCCKANkA2YG7eaiiVSyr1oz6M2VxWzNKfArbZUWFdaRml8V/pcJgHbGrRGypWo8/kJIW4HRgLvN2K9lPqpz+9fH6C9EGKPECJeCDGu0WqnXE59nt1KwBVtovqjwD+llOWNUz3lGl1VzNLYKa+uxXVLl6U0uno/FyHEELTA7Z4GrZFyJerz/JYDs6SUZdoXf+UGUp/nZwN4AwGAHRArhPhBSpnS0JVTLqs+z24YkAAMBXoC3wghvpNS5jVw3ZRrd1UxS3MK3FS6rOarXs9FCGEEPgD+KqXMaqS6KXWrz/PzASIrgrZbgPuEEGYp5eZGqaFyOfX923lBSlkIFAoh9gImQAVuTas+zy4MWCK1SVl/FkKcBvoBBxuniso1uKqYpTl1lap0Wc1Xnc9OCNEF+AJ4XH3Lv+HU+fyklN2llN2klN2ATcAUFbTdMOrzt3MLMEgIYSOEsAfuApIbuZ5KTfV5dmfQWkoRQrgAfYFTjVpL5WpdVczSbFrcGjBdltLA6vns5gFOwLsVrTZmKaVPU9VZ+UM9n59yg6rP85NSJgshtgOJQDnwgZTS4hQGSuOp5+/eQmCtEOIoWtfbLCnlhSartKITQmxEG+l7ixDiLPAy0AquLWZRKa8URVEURVGaiebUVaooiqIoivKnpgI3RVEURVGUZkIFboqiKIqiKM2ECtwURVEURVGaCRW4KYqiKIqiNBMqcFMUBQAhxHwhhLTwia7n/t0qyoc2Ql1/qVK/EiHECSHE3OuZXFsIMaHi+G0qlp0r7lG3S8rdW1HO43qdu456VX02RUKIZCHELCHEFU/vJIR4Xghx7/WvpaIoDaXZzOOmKEqjyAWCLay7EX0MvAO0BoagzZHkCMy8Tsf/D+CHNr8SgHPFOfYAv1Qpd7ii3P9dp/PWx5toEx3bAaHAErT5oRZd4XGeR8t1ued6Vk5RlIajAjdFUaoySyl/aOpK1FN6lbp+K4ToDPxdCBEur8MElVLKTCCzHuXygMa+Z79UufbdQgh3YBxXHrgpitLMqK5SRVHqJIToKIRYI4Q4VdE9lyKEWFRX16QQ4n4hRLwQolAIkSOEOCCE8K+y3UoI8YIQ4mchxO8Vxx1/ldWMBxzQcqUihBhacb5iIUSGEOLdym7Piu2thBBLhRBnKs59TggRVXlNVbtKK7pHj1bsuruyq7KiXLWuUiHEt0KITy3ci8pziYplWyHE60KIXyvOf0QIcd9VXvsRquc8RAixRAhxVAhRIIQ4K4SIEELcVmX7L2jZSl6u0vV6b8W26/lcFEW5jlSLm6Io1Vh4V6oMLRjKBqYDOUAfYD5wK/BULcfpidad9zYQDtgC3kCHKsXeAcYDC9C6HAOBNUKILCnlV1dY9W5ACZAthHADtgPfAKPQgpolQA/+6Ap+ERgLvACcBm5DSz9jbeHY6RVlI4CnK+pam0jgTSGEQ0XSdiqCtYeBT6u0Bm4C7kTrfv0/4BFgqxDCR0qZcIXX3qXiGqpyBl5BS1p9KzAD2CWEMEgpy4CRwO6KenxQsU9SxX+v53NRFOV6klKqj/qoj/qAFohJC5+/WChrA/wNKAZuqljXraJ8aMXyQ0DWZc7XCy0v5vhL1q8HDtVR11/Q3vOyAezR3vPKBTZVbI8EfgKsq+zzSEX9/CqWvwLevMw5JlSUb1Ox7FGxfO8l5e6tWO9RsXwrYAYerVLGr6KMT8VyQMWy/yXH2gt8Vse1S2BaxbW3BcYAv1c9n4V9rIHbK/YdXGX9BWD+9Xou6qM+6tPwH9VVqihKVbmA7yWfA0LzrBAiSQhRBJSitT61RmvtseQo4CiEWCeECBJCOFyyPQAtQIgSQthUfoAYwFMIYanlq6rpFfUoBL5EC3qerth2JxAltZalSp+jBVT3VCwnABMqRlYaK7swr5XU3o3bBYyusno08H9SyriK5b8A/wX2W7h2n3qc5m20a89DG6SxSkoZWbWAEOKvQojvhRC5aNd9tmJTnzqOfa3PRVGUBqS6ShVFqcpcJbjQCSGeA5aidTd+i9Zd6gusQusCrUFKeVIIMQKtK/JroFQIEQX8syK4uQWtJai2Uasd+SPYsGQDWgDzO9rL+vmX7JtxSX3KhBBZ/NFVuwgtQJkCvAakCSHekFK+fZlz1lck8K4Qoh1QgNZNurbK9lvQumZLLexbZmHdpd4APkUbRfss8JwQIlpK+TWAEMIX2ApEoT2z82itbT9Qy/O6pG7X8lwURWlAKnBTFKU+HkbrwptduaLiPbLLklL+B/iPEMIRCAGWo70/9SjaO3NmYCBaAHWp83UcPsNSkFkhHe0dL11FS5FTxXmRUhYD84B5QojewN+B5UKIk1LK7XVdWx2igPeAEUAq0An4pMr2bCANeOAqj3+m8tqFEHvRWjffEEJsk1JKtPfXMoHRFcsIIbrW89jX+lwURWlAKnBTFKU+7NBatqoaW9+dpZS5wMcVI0r9KlbvQmvZcZRSfnNdavmHA8BIIcRLVbpLH0T7m7fPQv1+EkLMROtqrRzYcKmSiv/W1WKFlDJHCLETrYs0FUiWUiZWKRKDNligQEp5op7XVNu5SoUQc9Fa4IajtbTZAaWVQVsFS8+rhJrX05DPRVGUa6QCN0VR6uMbYJoQ4gDaCMixaC+x10oI8RRakLYdbWRjb7SWu/Wgd6W+D0QKIV4H4tCCCHegj5Ry8jXUdxHwI7BZCPEe0BmtO3SHlDK2on5RaFOI/AgUoQ2msEF7V86SMxXlxle8N1Z6mRY/0FrY1qB1Oa68ZNs3wA7gGyHEa8BxoB3gCdhKKV+8oqvV3t87gTZ6d2vF8Z8VQixHe//vbuAxC/udAEKEENvRunRPNvBzURTlGqnATVGU+liANlqycoLXL9BGNn55mX0SgfuBt9DeK0sH/oXWPVnpaSAFeKLiHHloU1J8eC2VlVIeF0L8FW06jC8qjrsRLVNApe/RWsTC0ea0TAJG1RaMSSmLhRBPoE3f8S1apoLLDWjYgtbleAvaO29VjyWFEA8CL6G9o9YFrYsyAa0r+YpIKcuFEK8C64QQflLKr4UQs4Bn0O5tLNrI25RLdg1He0/xP2ijc4egZVFokOeiKMq1E9Vb0hVFURRFUZQblZoORFEURVEUpZlQgZuiKIqiKEozoQI3RVEURVGUZkIFboqiKIqiKM2ECtwURVEURVGaCRW4KYqiKIqiNBMqcFMURVEURWkmVOCmKIqiKIrSTPw/BAmVm+9PRwgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.multiclass import OneVsRestClassifier\n", + "from sklearn.preprocessing import label_binarize\n", + "from sklearn.metrics import roc_curve, auc\n", + "\n", + "y_test_10 = label_binarize(y_test, classes=range(n_classes))\n", + "confusion_matrix = []\n", + "\n", + "for name, clf in zip(['RF', 'OF'], clfs):\n", + " # clf_ovr = OneVsRestClassifier(estimator=clf)\n", + " # y_score = clf_ovr.fit(X_train, y_train).predict_proba(X_test)\n", + " y_score = clf.fit(X_train, y_train).predict_proba(X_test)\n", + "\n", + " confusion_matrix.append(\n", + " [name, np.argmax(y_test_10, axis=1), np.argmax(y_score, axis=1)]\n", + " )\n", + "\n", + " roc_auc, fpr, tpr = compute_ROC_AUC(y_test_10, y_score)\n", + " fig = draw_ROC(name, roc_auc, tpr, fpr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optimized Model Comparison via Grid Searching\n", + "The following is the optimized result from grid searching best paramters of three features: `max_features`, `n_estimators`, `max_depth`" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# number of grid searching iteration\n", + "n_gridCV = 20" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Grid Searching 20 parameter combinations took 50 seconds for RF algorithm\n", + "Grid Searching 20 parameter combinations took 105 seconds for OF algorithm\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import RandomizedSearchCV\n", + "\n", + "params = {\n", + " 'max_features': ['sqrt', 'log2', None],\n", + " 'n_estimators': [i for i in range(100,300,100)],\n", + " 'max_depth': [5,10,15,20,None]\n", + "}\n", + "\n", + "df_cv = pd.DataFrame()\n", + "feat_cols = list(params.keys())+['mean_test_score','clf','mean_fit_time',\n", + " 'std_fit_time','mean_score_time',\n", + " 'std_score_time','params'\n", + " ]\n", + "clfs = [\n", + " RandomForestClassifier(random_state=random_state),\n", + " ObliqueRandomForestClassifier(random_state=random_state)\n", + "]\n", + "\n", + "XX, _, yy, _ = train_test_split(X, y, test_size=0.90, random_state=random_state)\n", + "\n", + "for clf, clf_lab in zip(clfs, ['RF', 'OF']):\n", + " t_i = time.time()\n", + "\n", + " search = RandomizedSearchCV(estimator=clf, param_distributions=params, n_iter=n_gridCV, random_state=random_state)\n", + " search.fit(X, y)\n", + " print(f'Grid Searching {n_gridCV} parameter combinations took {int(time.time()-t_i)} seconds for {clf_lab} algorithm')\n", + " \n", + " df_tmp = pd.DataFrame(search.cv_results_)\n", + " df_tmp.columns = [i.replace('param_','') for i in df_tmp.columns]\n", + " df_tmp['clf'] = clf_lab\n", + " # df_tmp.fillna('None', inplace=True)\n", + " df_tmp['mean_test_score'] = df_tmp.apply(lambda x: round(x['mean_test_score'], 3), axis=1)\n", + " df_cv = pd.concat([df_cv, df_tmp])" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "rf_best_param = df_cv.query('rank_test_score==1 and clf==\"RF\"')[list(params.keys())].to_dict('records')[0]\n", + "of_best_param = df_cv.query('rank_test_score==1 and clf==\"OF\"')[list(params.keys())].to_dict('records')[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "({'max_features': 'sqrt', 'n_estimators': 200, 'max_depth': 15},\n", + " {'max_features': 'log2', 'n_estimators': 100, 'max_depth': 10})" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rf_best_param, of_best_param" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Robustedness test using batched digits dataset\n", + "Following experiment tests for robustness of each model using batched digits dataset. The test employs the custom batch generator that splits data into given number of batches and each batch size. The corresponding confusion matrices are generated for each model for each batch " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "import random\n", + "\n", + "def batch_generator(size, batch_size, X, y, random_state):\n", + " start = 0\n", + " N = len(X)\n", + "\n", + " max_size = size*(batch_size+1)\n", + " cnt = 0\n", + "\n", + " random.seed(random_state)\n", + " idx = random.sample(range(N),N)\n", + " X, y = X[idx], y[idx]\n", + "\n", + " if max_size > N:\n", + " raise IndexError('Index Out of Range')\n", + "\n", + " for end in range(size,max_size,size):\n", + " outer_idx = [i for i in range(N) if i < start or i > end]\n", + " yield X[start:end], y[start:end], X[outer_idx], y[outer_idx]\n", + " cnt += 1\n", + " print(f'Batch #{cnt}')\n", + " start = end" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch #1\n", + "Batch #2\n", + "Batch #3\n", + "Batch #4\n", + "Batch #5\n", + "Batch #6\n" + ] + } + ], + "source": [ + "output = []\n", + "confusion_matrix_batch = []\n", + "\n", + "for i, (train_mX, train_my, test_mX, test_my) in enumerate(batch_generator(100, 6, X, y, random_state=random_state)):\n", + "\n", + " # print(train_mX.shape, test_mX.shape)\n", + " # print(Counter(train_my))\n", + "\n", + " clfs = [\n", + " RandomForestClassifier(random_state=random_state, **rf_best_param),\n", + " ObliqueRandomForestClassifier(random_state=random_state, **of_best_param)\n", + " ]\n", + "\n", + " for clf, clf_label in zip(clfs, ['Random Forest', 'Oblique Forest']):\n", + " \n", + " y_pred = clf.fit(train_mX,train_my).predict_proba(test_mX)\n", + " y_test_10 = label_binarize(test_my, classes=range(n_classes))\n", + "\n", + " roc_auc, fpr, tpr = compute_ROC_AUC(y_test_10, y_pred)\n", + " output.append([roc_auc, tpr, fpr])\n", + "\n", + " confusion_matrix_batch.append(\n", + " [i, clf_label, np.argmax(y_test_10, axis=1), np.argmax(y_pred, axis=1), roc_auc]\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualization of the batched confusion matrice with the best parameters\n", + "Even with very small data regime, each model was able to perform well on classifying each class. In particular, the oblique forest outperformed across all batches." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACAIAAALCCAYAAABOAuP8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3wVVf7/8de5uekhIYXepCMgAgKCleLXtiq69kX3Z1nLioq9u+pad61rL6tid911FQtNEFbFijQBQXoPLQkJCSHJvfP7Y24ghACB3JlJ7ryfj0cekMm985mZO/O+Z849d8ZYloWIiIiIiIiIiIiIiIiIiIjEhoDXCyAiIiIiIiIiIiIiIiIiIiLRo4EAIiIiIiIiIiIiIiIiIiIiMUQDAURERERERERERERERERERGKIBgKIiIiIiIiIiIiIiIiIiIjEEA0EEBERERERERERERERERERiSEaCCAiIiIiIiIiIiIiIiIiIhJDNBBAREREREREREREREREREQkhtTLgQDGmHuNMVaVnxJjzC/GmMsPYF4Jkfn1PoDnLjfGPLa/z6thPv80xjwZ+f8Zxphf9/C4y4wxi4wxpcaYn40xww6w3ugq2y5sjFltjHnPGHNQHVbjQJbjamOM5WbNGpah+r5U+TPJy+WqZIzpElnGxrV8vDHGzDbG/L8a/tY+sm4rjTGmhr9PNcb8Zw/znW6MGV1tWsAY8ydjzLfGmMLIfjnXGHOzMSatdmu4y/xaGWM+MsZsNcZsMsY8a4xJqcXz2hhjPowswxZjzPvGmKY1PO4yY8xvxpjtxphfjTEXVPt7P2PMZmNMxv4ueyzxY74aY841xvzXGLMuss4X1aGe8nXnMihfd/5d+ap8BfyXscaYdGPMfcaYHyP7UG5kX+xygPWUsTuXQRm78+/KWGWs7/I1Mv1FY8yCyL6Xb4z5yhhz3AHWU77uXAbl686/K1+Vr77M12qPvy6y3jUeC7Wop3zduQzK151/j9l8jWyXq40x8yJ5sdwY80zV7ap83cmPGRvZ/2vKgqQDqKeM3bkMytidf1fG7mfGBvdrDd21BTgx8v9U4FTgJWPMVsuy3t2P+SQA9wDLgVnRXMD9cCjwbOT/fYDZ1R9gjDkPeBG4F/gGuBj4zBjT37KsuQdQc0FkHgGgG/AgMNYY09uyrLIDmF9DVnVfqjqtPuiCvX+OBgpq8fhzgEygpmPg/Mi/bYAjsfejA2KMCQD/wj7ungP+CpRh779XAy2B6/djfkFgQmQe5wKNgSci/16wj+eNw96PK/fnh4FxxpgBlmWFIo87H3gJ+DvwJXAS8KYxptiyrI8ALMuaboyZFVnue2u77DHKV/kKnAUcBHwG/CkKNZWvOylf95Py1Rf8lLFtgcuAV4E7gRTgduAHY0wvy7JWHUBNZexOytj9pIyNeX7KV4DkyGMWYi/zpdj70NGWZX1/ADWVrzspX/eT8jXm+S1fAYh0vv8F2FjHmsrXnZSv+6mh5StwDfAUcD8wFXu7PoR9bjgclK818GPGTgHuqDZt+wHWVMbupIzdT8pYW30eCFBR7eR2sjHmCOB0at456iVjTBzQg53h3Af4toaH3ge8YVnW/ZHn/S/y2NvYyw60F8VVtt+3xpgS4D2g3x7qx7Lq+1KdGWOSLcvaFs151tK1wFuWZZXX8Lfzge+BQyL/P+CABEYCZwLHW5ZVdVTZl8aY57ADeH+cDRwMdLIsaxmAMaYceN8Yc59lWYv28bxulY8xxizEbmScAVSO/LoXeNuyrNsiv080xrTDDsyPqszvdeAxY8wDlmVV7Oc6xBK/5eu5lmWFIyP8ojEQQPm6k/J1/ylfY5+fMnYZ0LHqMWuM+RpYCVyC3b7dX8rYnZSx+08ZG9v8lK9YlrXLt2OMMeOxc/cP2MfM/lK+7qR83X/K19jmq3yt4mHgc+wPGupC+bqT8nX/NbR8/QPwkWVZ90R+n2KMSQSeNMakWpZVHJmufN3JjxmbF8UsUMbupIzdf8pY6umtAfaiCIiv/MUYk2rsyy4sNPZlEpYZY54zxqRXew7A62bn5TIOijw/2Rjzd2PMCmNfKmyZMebh6kWNMdcb+7Ij+ca+XEPj/VjmLtgDLuZHfu8DzKk2/w6Rx31QOc2yrDDwb+xRy9FQOTprR+PWGPM7Y8wXxpgNxr4cxffGmOOrLdu9xr68RZ/I30uMMTONMUdXe1xi5LUoMMbkGfsSMfFUY+zLenwcqVdkjPnUGNOp2mOsyDZ/3NiXuNhkjLkp8rf/Z4xZGqnzmjmAS8rUsExDjTE/GPuSIOuNMc+bKpcEMcYMjizTCcaYT4wxW4mMfDPGtI3sE3mRbTPBGNO12vxvN8YsrjL/8caY5saYwcCnkYcti9RYvpfl7AQcwc5QqPq3HkBP7AD4BDjb2KOMDtT12IGz26VlLMsqtSxr8n7O7yTgp8pwjPgYe+RU9VFsVfUGVlQNUMuy5gDrgd8BGPuyK52B6ss6Eehhdr1U0CdAFnDCfi6/H8RkvsKOPHWS8nUPlK81Ur76U0xmrGVZxdVPGC3LygNWALtdovcAKWP3QBlbI2Ws/8RkvtYk8i2RAuxvg0WD8nUPlK81Ur76T0znqzGmP/a3EW+r6e91pHzdA+VrjRpMvkbEs/s3kAsAE/mppHzdu5jOWIcpY/dAGVsjZSz1fCCAMSYY+Uk39r28jmXXkbspQBz2pUhPAu4GhmJ/gF5paOTfB4BBkZ91xhgDjAH+jH1JiJOxL12RU20xzgGGAZcDtwKnYF+KYV/LvtzY9w2Zj/3ilUV+b4V9yX/LGHNv5OHdIv8uqDabX4EsY0yTyDwPMgd+f+u2kX+r7qDtsQ/QC7FHxXyLfSmK6qNgUoA3sC+rdib2ZVw+Mrve9+IR7G/a3g+MANoBN1adibFHrkzGHvlyGXBRZBn+Z4zJqlbzRiANe8TPu8Cjxpi/R55zLfalZUYA19Vm5avsS5U/JjK9OzAe2BRZt3uwR93UdI+RV7HfaE4DXo0s8zdAV+BK7H0lFZhkjEmOzP+PkWV9Avug/DOwOPK4GcBNkXn/HnvfPGMvqzEMKKbmS+78AagAPsQeEdck8vj9Zoxpg/26jK/l45ebavddqUE3qu3fkUv3LGHn/l+TJOwQrW479n4EkIgdgtUfV3m5oR3ztyyrEJgHHNC9NWOJj/K1VpSvyleUr5WUr1Hg54yNtFs7sbNzQBmrjFXG7qSMrSO/5auxBY0x2caY67E/3Hytyt+Vr8pX5atN+VpHfsrXyPI8C/zdsqw1e5in8lX5qny1Vc1XgH8C5xhjTjbGNDLGVF7ReLRlWVur1FS+VuGnjI043tgfJld+oNyr2jyVscpYZazNnYy1LKve/WBfwsuq4ecf+3heEPtSDhbQNjItLfL7RdUee0Jk+ml7md/yyAsYrDLtKSC3FuvQHXuUxxjgzcj/b4nMr3fkp3nksSMiy9K42jyOi0zvEvm9HfZB8Md91B4NTI9sj3igFzATGLeX5wQij58AvFbDazG0yrTekWknRn7PBrYBt1ab3wJ7F9sx7crI8neoMq019gFwe5VpFjCl2rzWAflAepXpHwA/HOC+dFzk7+8Di4C4Ks85J/KYQZHfB0d+f7LavO8HNgNZVaZlYo/YGRn5/Vngw70s3ymReR9Ui33qZezRRjX9bQkwNvL/BCAPOxyqPmYq8J89PH965eOBgZFlOqGWx+ti4NV9PGYR8FQN078B3t3L867BDsPsKtNaRvaj36pM2ww8Xu25L0TW4w81HB/TarNusfizl2MiJvO12vNqXN7I35Svylflq/K1zj97OS5iPmOrPP/NyH5Tdd9SxipjlbHK2Dr97OWYiOl8Bc6rsq5bqy8bylflq/IVlK91+tnLMRGz+Yp9C6sVQHLk992OBZSvylflK9SQr5HptwChKq/xR0D8Ho4P3+ZrZBvs6biI5Yy9D/se6Edj3/L618ixelCVxyhjlbHKWBcztj5fEWAL0D/ycxQwCvh/xph7qj7IGHOhsS/hsRUoZ+f9IrrsY/5Dse9V8sk+HjfF2vUeC/OBpsaYvV6Oz7Ks+ZZlzSIy4iTy/yzsF2ZW5Ce3+tOq/W6qTrcsa4VlWUHLst7cxzIDHIa9PcqwR9akY4862jlzY1obY94wxqzB3uHKgePZfduVYx9clSq/4dU68u8h2CNaxuxYEftS3GPY1QBghmVZS6s8bjUwDfs1rmpylceEsUd4/WzZI10qLcYeebYvVfelyp8fqizTR5Z9mcVKH2Jvj+rL9Hm1348DvgAKK0dgYV+i52fse9SAfc+ck40x9xljBhj7XjoHqjn2iK5dGGMOBzpghz2WPQLpv8AZpm6XlKm+P9b8IMvqZFnWpQc4P7OPOu8Cpdgj09oa+3JHr0f+VvU1exG4whjze2NMpjHmfOwRgNUfB/Y2bF6L5Y1lfszXvVK+Kl9Rvh6E8jVafJuxxpg/Y5/o/8myrM1V5qmMVcYqY5Wx0eDHfJ2Avb4nYXcAvW/sS29WzlP5qnxVvipfo8E3+WqMycD+BuzN1l7uiax8Vb6ifD2IGvI1kqd/Ae7C/lb7Jdiv86s1zFP5avNNxkYef49lWa9blvW1ZVlvA0Ow973rqjxGGauMVca6mLH1eSBAhWVZ0yM/0yzLehp7ZModJnJ5DWPMGdijkL4DzsYe4VF5yYl97RjZ2KNv9qWg2u9l2C/qHgPSGBMXOWAysEdMTY8cPAOAnyJ/q7rt8yP/Nq42q8rfqy9DbfyKvYMcgT2CpC32JU8qlzGAfR+JI7B3rCGRx49j921XaFW5x3bkAKTK4yp3tg3Vnlf99xbY97yobj32m0dVBdV+L9vDtNoEQNV9qfKn8p46uy1TJCw317BM1Zc9BzgX+w2k6s8Qdt6j5jXsS6acgx3K640x9x9gUCax81J2VZ0fqTvVGNPY2Pf2+Rz7TfHkKo+rwL7EUE3iIn8HqLwsWts9PPZA5LP7/k1kWsGenhT5EOEP2Mf2Cuw3yhJgLLu+Hg9Gpn2IPUrsWexRcrD767ad2u03scxP+eoE5etOyleb8tWmfLX5MmONMacBz2CPnP+oFsu3J8rYnZSxNmWsTRnrw3y1LCs/sr7jLcu6MLJef63FMtZE+bqT8tWmfLUpX/2Vr3cAq4CJVY6PIBAf+f1AjkXl607KV1tM5mtkX34G+9vsD1uW9ZVlWa8DlwIXGmP6Vput8tXmp4zdTWSQwDSg+v5RW8rYnZSxNmWsrdYZG6zNg+qR+djB1BG7IX829iUzrqp8gDHm2FrOazP2weGEydijNSotrPL/IcDT2PciuSgybUHk327YOwFVfs+zLGvjASxDiWVZ0yP//y4yYuavxpgnLMv6AfverX2AkyzLGl/5JBO558d+qhzx1RT7daHK71WtA3rU8Pxm1Z7npnVUW85IeGWz+zJVH9GTh/0mc38N8y2CHaO8ngSeNPY9SUZgn5CuwR6hvj/yqDbCJxIO52BfGmdFDc85H3vUFMBG4KA9zLsFkTc0y7JWGWOWYl9W6J/7uYx7soBq90iJjDbswD62g2VZnxtjWmOP4Cu0LGu1MWYu8FmVx5Rg3zulGfZ9YxZjX46mDPseNVU1xrv9rT6L1Xx1gvK1dpSvNuWrQIxnrDHmCOwR2y9alvVoHZdBGVs7ylibMlZiOl9rMBP7dgEHQvlaO8pXm/JVYjVfu2J/uzGf3eVjX8r6mxr+tjfK19pRvtoacr7mYL9es6o9dWbk347smrGNUb7uSaxm7N7U6lvZNVDG1o4y1qaMrUF9viJATXpG/l0V+TeZ3UeOjKj2e/VRPZUmA1nGmFOit3g7XIE96mg0MD7y/z+x66U77q18sGVfQuQ37MAHduz4Z2OPXIqGx7EvFXFr5PfKINyx/Ywx7bDvPbO/fsG+rMXwKvMKVP094gfgMGNM+yqPa4U9Wmt/G9nR8gP2pUWqjiD6PfYgmX0t02TswJ9Xw0ishdUfbFnWKsuyHsE+Ae0embyn/bMmC7EvwVPVYOxwuxX7zbfqz5vAKcaYRpHHfo29/Xe5zIyxL7nSLPL3Sk8BvzfGDKm+EMaYJGPM0Fosb1XjgP6RfazSaUAi9jGyV5ZlVVj2ZYhWRxpB3bCPr+qPW29Z1lzs7Xol9r1iCqs97CDs4012FZP56hLla82Ur8pX2SlmM9YY0wP7pGU8cK0Dy6SMrZkyVhkrtpjN1+qMMQYYhP3tkWhQvtZM+ap8FVus5utd7H5szAa+ivz/lygsk/K1ZsrXhp+vG7G/wVr9W6mHRf5dXm36QShf9yRWM3Y3kUF5R2JfZj4alLE1U8YqY/dauN79YIdHAfZlEgYCxwDXYwfMx1UedxX26JU7se9j8QSwJDLtlCqPWwp8iX0vjH7Yo60M9gtTCNyEfS+VEcBLVZ63HHis2rJdFJl/Wi3WYxpweeT/twP/3ctjz8e+F0Rlg3Q0sA3oWeUx7bAva/HHfdQdDUyvYfodkRpdsHfMVdgjSH6H/a2ChdidCtOrPOdeYFMN87KAq6v8/g/skLwROBH78mur7V1sx2MSI6/FAuzRPWdih+saIGtP845Mm4p9wlZ9P9lt2fbnMdgBVwZ8in15kcuxRwCPr/KYwZFl6lntuTnASuxL9vwBe3TcOcBzwPmRx7wEPIz9ZjEYuA8IA6dXeU0t7NFUhwOH7GVZj488tkmVaa9Eljexhsf3jTz+wsjvadjhvAS4GHufH4k9QmoaEKjy3ADw78g++Bj2qKkh2PfyWQw8WeWxi4FX9/E6xANzsd/wT8be33OBt6s9bjIwudq0R4HTsY/xO4Bi4N5qjzklsi5DsfflyZH9qlUNy7IeuOFA86mh/+DPfO0OnIV932oL+7KQZwHHVnmM8nX3/UT5qnwF5et+/eCzjMUebb4K+3gdXGW9BwLdqzxOGbv7fqKMVcaCMrbWP/gvX48GPgb+iH0Mnon9LZ0QcHKVxylfd99PlK/KV1C+1voHn+XrHp47ld3zRPm6+36ifFW+Etl+pcDdkfW6DFgLfF91vSKP9XW+VjkuCvBJxgK9sC/lflFkP/5/2DmUB7St8jhl7O77iTJWGQsOZaznYbiXndqq8lMGLAL+BjSq8ri4yIu3ATvoPozsZNUD8nhgTmQDWsBBkenJkeevxh4xtAx4sMrzlnOAAYl934pyoEPk9y+Bq/bxnMsiO9t27OAaVu3vB0VqX7SP+Yym5oBMjxxML0V+7w/8GDkIFkXWbZfnUvuATASex34Ty8e+l8UNVAnIyOM6YHdoFAFbsb9B1nlv845Mm4oDARl5zDDsEVOlkX3p+aqvL3sIyMjfWgKvYx902yP7zNtAjyr7yzTsN7uSyH54abV53Ih9uZMKYPleljMB+1I/lYEXH5nvy3t5zjxgXLXlHR1Z3nLsff8ZIL2G5wawR/h9H3mtSrHf0O4BMqodJ6NrcVy3jrz2WyPr8RyQUsPrPLXatA8ir8v2SP3Lapj3iZFtWxLZJu9RpXFR5XF9sN+gDtrX8sbqDz7M1xrWufJnapXHHITytfo2U74qX0H5ul8/+Cxj2XkMK2NrmLe189hTxipjlbF1/MF/+XoQ8J8qy7EaO3cG1fA45es+lu0AHqN8Vb765gef5esenj+V3fPkIJSv1fcT5avytXL/uxP7A9CSyPZ8GWha7XG+z9cqx4VvMhZohX3P83WRdd0cWZdu1R53EMrY6vuJMlYZW7n/RT1jTeRJItIAGGP+AXSyLOt3Xi9LQ2SMeRjob1nWcV4vi4jUL8rXulG+isjeKGPrRhkrInuifK0b5auI7InytW6UryKyN8rYutnfjNVAAJEGxBjTGvvSNn0sy9I9lvaDMSYVewTVWZZlTfV4cUSknlG+Hjjlq4jsizL2wCljRWRvlK8HTvkqInujfD1wylcR2Rdl7IE7kIwNOLpEIhJVlmWtBi4FWni9LA1QW+CvaoCKSE2Ur3WifBWRvVLG1okyVkT2SPlaJ8pXEdkj5WudKF9FZK+UsXWy3xmrKwKIiIiIiIiIiIiIiIiIiIjEEF0RQEREREREREREREREREREJIYEvV6AqnKy4qy2bdxdpMVzUl2tJyL1TxH5myzLauL1cjgpJyvOOqhNvKs1f5uT4mo93zAu19OFg6QO/JCv2VkB19uvS+akuVpPROofP+QrqA0rIt7wQ8ZmZQWs1q3jXK25/JdGrtbzDR/0EZiA+99ltMJh12v6gR/yVe3XGGJcDlhdvV3qYG/5Wq8GArRtE2TaeHdvCXFaq/6u1vMNP4Sk2+sIejNwyCTrPyu8XganHdQmnh8ntHG15gkte7tazy9M0N23bquiwtV6Elv8kK9t2wT5clxTV2ue03qQq/V8ww/tV4kZfshX8KgN26qPq/WUBdLg+OD90g8Z27p1HJ+MzXG15mVtj3K1nl/4oY8gkOz+h5zhkhLXa/qBH/JVfbCxw8QnuFrPKi9ztR6gz7hiyN7yVbcGEBERERERERERERERERERiSEaCCAiIiIiIiIiIiIiIiIiIhJDNBBAREREREREREREREREREQkhmgggIiIiIiIiIiIiIiIiIiISAzRQAAREREREREREREREREREZEYooEAIiIiIiIiIiIiIiIiIiIiMUQDAURERERERERERERERERERGKIBgKIiIiIiIiIiIiIiIiIiIjEkKDXC7Av/7jhIKZPakxGTjnPfjlvx/TPXmvK5683JRCEfsMKuPiu1QAsm5/M87ceRMnWOAIBi8c/n09CkhW15ek3uJAr719LXMBi3HtZfPBss6jNu77U9GIdb3h8JYcfV0jBpiBXDOvmeD1wfz39sI5+qhkrHr++DT9MSqdxTgUvT1m4Y/qYV3P45PUcAkGLw4cV8qe711FRDk/e1JbFvyQTqjAcd3Ye512zIWrL4pd9x+2aOS3KuPnJZWQ2qcCyYOy7OYx5LfbeR/xQ0w/rGEuev7EjMyZlkpFTzuOTZ++YPu615owf3Zy4oEXfoflccNfKHX/btCaB64f05uwbVnHaleuiujzaX6PPi7Yd6LWMlZrK17rZnzYswNL5STx9axuKiwIEAvDM2N+i1k+g87zYqOeXmurvkX0ZfVNn5kzOpFF2OfdNmrlj+uTXWzDljRYE4ix6Dc3nrDuXszU/yItXdmP57EYccfZ6/nD/0qgvjx+OEfUROGP01BmUFAcIhwyhkGHUGb0cr6n9VfamPrVfwR/7j9v14hPDPPbBAuITwsQFLb4em8XbT7ZytCb4oy9E+2vdOHpFAGPMicaYhcaYxcaY2w5kHsPO2cS97/y2y7Q50xrxw4TGPD1pHs9NmcsZV+YCEKqAJ67twFWPLOe5KXN58N8LiIuPXjgGAhYjH1rDXSPac9ngrgwZXkDbzqVRm399qOnFOgJM/CCLO0d0cLxOJS/W0w/r6Jea9UE08hXg+HPzePCdXU/WZ01L49sJGbwweSGvTF3IWX/eCMBXnzamfLvhpS8X8uz4hYx9K4fcVQl1W5EIv+w7XtQMhwyvPNCGy4f14Lrh3Tj1jxtp23mbY/X8sl398P7s13yF6GTs4LM3cMfbv+4ybe60dKZPzOSxL2bzxJezOfXKtbv8ffS9B9FnSMEBL/eeaH91htttO9BrGSs1la/utmFDFfD3a9pxzSOreGXqQh79z+Ko9hPoPK/h1/NLTfX3xLZo5esRZ69n1Jvzdpm24NsMZk/M5p4JM/nr5Jkcf8UawP7AY/iNKznrzmV1W/g98MMxoj4CZ912QQ+uPu1QVwYBaH+NbdHI2PrUfvXD/uPFOpZvN9x6fleuOqknV53Ug37HbqFbn62O1vRDX4j21yjMP2pzqsYYEwc8B5wEdAfON8Z039/59By4lbTGFbtMG/dmU84cmUt8oh1+jXPsv8/8XwYHHbyN9j3sxkt6Voi4uLqsxa669ilh7fIEclcmUlEeYOqYxgw6YUv0CtSDml6sI8DcH9IoKojii7UPXqynH9bRLzW9Fq18BThkYDGNMkO7TPvszWzOvXo9CdUy1hgoLQkQqoCy0gDBhDApaaHd5nkg/LLveFEzb0M8i+emALCtOI5Vi5PIbl7uWD2/bFc/vD/7MV8hehnbfWDRbm3YiW81Y/jItTvasBk5O//+4/hMmrXdTusuJXVY+pppf3WG22070GsZKzWVr+62YX/+XyPaH7yNjj3sjpRo9xPoPK/h1/NLTfX3xK5o5muXwwtJrdaGnfpWc068atWONmx6jn0+mZgSpvOAQuKTwnVY+j3zwzGiPoLYof01dkUrY+tT+9UP+483+6uhtMR+oYJBi2C8hRW98Rs18kNfiPbXunPyigADgMWWZS21LKsMeB8YHo0Zr12axPwf07jplIO5/cyuLJqVCsCapUkYLO75QxeuO6E7Hz7fPBrldshuXs7GtTu//bppXTw5LZxrKHlR04t19IIf1tMP+6tXNesBx/IVYM2SJOb+kMa1v+vMTb/vxMJZyQAcfUoBSSlhzu/dkwv6d+esKzeSnhmdgQB+2Xe83l+btd5Oxx4lLJyZ6lgNv2xXP7w/e72/esixjF23NJkFPzTijlN6cs+ZPVgcacOWlgQY83wrzr5hVTTK7Eb7a+zQaxkbNf2yv9bAkzbs6qVJGAN3nN+Bkcd34YPnmkarpCd0jKhmQ6nnFb+sZzWO5uv6Zcks+jGDh047lEfPPoRls9OiNeu98sMx4vX+Gqt9BACWBQ+O/pWnP57DSeeud7ye9teY5ljGetV+9cP+49X+GghYPDd2Lu/PmMWMr9NZOMvZ90w/HJfaX+vOyYEArYCqvZmrI9N2YYy53Bgz3RgzfdPm2n2gFArB1i1BHv30Vy6+azV/u7IjlmVf2mj+T4248dml/O3jBXw/LpPZXzeKztpgfxu2OqdH9Lhd04t19IIf1tMP+6tXNeuB/c7XjbXMV6jM2Dj+8dki/nT3Wh684iAsCxbOTCUQZ/HuzLm8+cOvfPhiE9atiM6tAfyy73i5vyalhLjrpaW8dF8bSrY6N2rTL9vVD+/PPs1XqEXG7tp+rf03oMIhw9YtQR78dC4X3rWCJ//cBcuCDx5vw+8uW0dSqjPfptL+Gjv0WsZGTb/srzXwpA0bqoC5P6Zy67MrePzjRXw7PoOZX7vzIZYTdIyoZkOp5xW/rGc1+52vm/P2ow1bYSjZEuT2MbM5685lvHRVN1e2qR+OEfUROOfGc3tyzfBe3H3JwZxyQS49+xc6Wk/7a0zbrz6ChtB+9cP+49X+Gg4bRp7ckwsGHkrX3sW0c+Cqj1X54bjU/lp3Tg4EqGHR2W3RLct62bKsfpZl9cvJrl2jI7tFOYNOyscY6NKnmEDAojAvSHaLMnoOLCI9q4LE5DCHDS1gydzojWjctC6eJi3Ldvye06KczbnxUZt/fajpxTp6wQ/r6Yf91aua9cB+52uTWuYr2NvwyJO3YAx061NCIABb8uKY8lFj+g0pIhhvX6qqe/9ifpudUpf12MEv+45X+2tc0OLul5Yy5aMspo3PdLSWX7arH96ffZqvUIuM3bX9WvvmdFbzMg4/KQ9joFOfrQQCUJQXZPHMNN55sC0jB/Zh7Kst+OiZ1ox/PXpXttL+Gjv0WsZGTb/srzXwpA3bpEU5vQYVk5EdIinFov/QQhb/klyX9fCUjhHVbCj1vOKX9axmv/M1O6v2bdjMFmX0PWkzxkD73lsJGIutecG6LG+t+OEYUR+Bc/I22F9c2ZIXz7dfZNG1l7P36db+GtP2q4+gIbRf/bD/eL2/FhcGmfNdI/oNdvYS9l6vpxu0v9adkwMBVgNtqvzeGlgbjRkPPCGfOdPsb/qvWZJIRVmA9KwK+h67heW/JrN9m30P63nfN6JN523RKAnAwlkptGpfRrM22wnGhxk8vIDvJ2ZEbf71oaYX6+gFP6ynH/ZXr2rWA47lK8ARJ25h1jf2KNPVSxIpLzNkZIVo0qqcWd+kYVn2ZawXzEilTafSqNT0y77jzf5qcf2jy1m5OIn//rOZw7X8s1398P7s03wFBzO2/4l5zJ1mb8O1S5OoKDM0yqrgr/+dx3Pfz+S572dy8qXrOOOa1Zx4cW40SgLaX2OJXsvYqOmX/bUGnrRhDxtcxLL5SZSWGEIVMOe7NNp22R6tsq7TMaKaDaWeV/yyntU4mq+9j9/Mgm/tbZi7NImK8gBpWRXRmv0e+eEYUR+BMxKTQySnhnb8v+9RBSxf5OwgQO2vMc2xjPWq/eqH/ceLdczIKic13X5/TEgM0+eoQlYtjq3s8YL217pzcvjmT0BnY0x7YA1wHvCH/Z3Jo1d1YO53jSjMC3LxYYdy/k1rOO68TTx9Y3uuHtqDYLzFqKeWYgykNQ4x/PL13HByd4yxOGzoFvofF70RN+GQ4bk7W/HQu0sJxMHE97NY8VtS1OZfH2p6sY4Atz23nF6DtpKRVcHb0+fx1mPNmfB+tmP1vFhPP6yjX2rWA1HJV4CH/9yOOd+lsSUvyIjDunPhjbmccF4eT9zQhsuHdCU+3uLmf6zEGDjt4k08fn1bLh/SFSzD8edupkP36AwE8Mu+40XNHv2LOe7MPJb9msxz4+YDMPrvrfhpijONF79sVz+8P/s0XyFKGfvUyM7M/y6dorwgV/bryzk3rmbouRt4/saO3DjsUILxYUY+tbjGy39Fm/ZXZ7jdtgO9lrFSU/nqbhu2UeMQv79iI9ec3AVjYMDQQg4/LnqXB9Z5XsOv55ea6u+JaVHL15ev7spv32WwNT/IzQP6c9oNKznq3PWMvrkz9xzXh2CCxcVP/LajDXvbEf3YVhRHqDzAzAnZXP/2XFp2ic6XsvxwjKiPwBmZOeXc/fxCwL76wdRPcvj5K2evfKD9NaZFJWPrU/vVD/uPF+uY1bScG59YRlzAwgTgq88y+fHLxo7W9ENfiPbXujOWgzc2MMacDDwFxAGvWZb14N4e3/fQRGva+BaOLU9NTmvV39V6vuFGr3ZVXtz4xO11hNi7wUs9Mcn6z8+WZfXzejn2x/7ma79Dk6wfJ7TZ20Oi7oSWvV2t5xcm6PwlGKuyKpz/pofEroaYr7B/Gdvn0ATry3FN3Vo0AM5pPcjVer7hh/arxAw/5Ct41IZt1cfVesoCaXB88H7ZEDN2f/O1V69465OxOW4s2g6XtT3K1Xp+4Yc+gkBKdG5LuT/CJc7e19uvGmK+wv5lrPpgY4eJT3C1nlVetu8HRZs+44oZe8tXR1sKlmWNBcY6WUNExI+UryIizlHGiog4Q/kqIuIM5auIiHOUsSLSkAW8XgARERERERERERERERERERGJHg0EEBERERERERERERERERERiSEaCCAiIiIiIiIiIiIiIiIiIhJDNBBAREREREREREREREREREQkhmgggIiIiIiIiIiIiIiIiIiISAzRQAAREREREREREREREREREZEYooEAIiIiIiIiIiIiIiIiIiIiMUQDAURERERERERERERERERERGKIBgKIiIiIiIiIiIiIiIiIiIjEkKDXC1DV4jmpnNaqv6s1l7zb29V6XUatcbUeQLhgi+s1A+lprtYL5eW7Wg/AxMW5XtMLJb/r62q9tCkLXK0HgPuHiOt+m5PCCS17u1rz0eXfu1rv5oMGulrPK1ZFhdeLINFijKvl4nJyXK0HwAb3S7ptyZw0zmk9yNWaty+Z42q9hzv2crUeQCAlxfWa4W3bXK0XaNTI1XoAhEKul3R7uwKYYLzrNV1X5vUCuMOLNuxJ89w9txzXo7Gr9cCbjLXK3N1pvcjYUL77/RJecL1NGXC3zQxArvsl3bb8l0Zc1vYoV2seN7fI1XpTft/b1XoA4WWrXK/pNhP04OOEcNj9ml5wuY8Ay3K3nk940X59ccU3rta7sp277x8AgaQk12uGS0tdrymxIS4z0/2ieXv+k64IICIiIiIiIiIiIiIiIiIiEkM0EEBERERERERERERERERERCSGaCCAiIiIiIiIiIiIiIiIiIhIDNFAABERERERERERERERERERkRiigQAiIiIiIiIiIiIiIiIiIiIxRAMBREREREREREREREREREREYogGAoiIiIiIiIiIiIiIiIiIiMQQDQQQERERERERERERERERERGJIUGvF6Au+g0u5Mr71xIXsBj3XhYfPNssKvNt8tJKUmcWEkoPsurv3QAIbK2g2dPLCW4so6JJAuuvPYhwmr35Go9ZT/rUzVgBw6Y/tmLboel1qn/dffMYcMwmCvISuOrMQQCkpZdz+99/oWnLbWxYm8zDNx/C1qL4uq3oHsQnhnnsgwXEJ4SJC1p8PTaLt59s5UitSsNHrOKEM9dhjMX4D1sy5u02jta74fGVHH5cIQWbglwxrJujtSrltCjj5ieXkdmkAsuCse/mMOa16Oyz9aFewIR5+faP2VSQwm3Pn8jgvku5+Hc/0655AVf87XQWrmziSN1W7Uu47YkFO35v0aaUt55ux5g3nd1n/cCpjP3g5g7M/zKTtOxybpo4B4CJT7bmh/ebkppVDsBJt6zi4CEFAKz9NYUP72jP9q1xmABcO+YX4pOsqCyLU+vo95p+WEcvarrx3uV1G8QvnNp3Pr+1NYu/TCclu4LLxv8GwNf/aMasf2WRklUBwLE35tJpSBEl+XF8NLId635J5pAz8znh3rVRWYZKXhyTo6fOoKQ4QDhkCIUMo87o5Wg9L9qTAKmNKrjugUW061KCZcGTd3Rmway6nX/sjR+2q9vnP16cb/mFU9kz565kNv4vnoQsi6PHFAHw29NJbJgSDwYSssP0erCEpKYW4XKY+5cUtvwahxWCVqeV0fGy7VFZjkqxnrFun8tWOv2Pdr+EZcHyRWk8eWdXysviHK0Zi+10L9qT190zjwHHbLRrnn0EAEcdt54RVy6hTftirr9wAIvmZ0Stnl85tf/MuyuJTV/FkZBlMejjEgCWPJPAxi+DEICELIseD5aSGMnYX+9LonBeAGOgy23byRoQqlP96275mQGDcikoSOSqi48DoH3HAq6+YRbJyRWsz03h7w/0Z1tJ9M+BvGgTuF3Tq0wHCAQsnh4zl03rE7j3T10drxeLfQTVedEG8QOntuubN3Xmly8zaZRdzl++mAnAp0+25Zv3mtEo2+6DHX7zCg4Zms8PHzXhi5d3ZsGaX1O54/NZtOlRHJVlAW/2n1jPAS9q+iV73K7p5LmIY1cEMMa8ZozZYIyZ68T8AwGLkQ+t4a4R7blscFeGDC+gbefSqMy76Jgs1t7aYZdpjT/ZwLaejVj1ZHe29WxE4083ABC/upS07/JZ+fdurLu1A01eXw3hun1ANWlMS+7+c59dpp1zyXJm/ZjFZacdyawfszj70uV1qrE35dsNt57flatO6slVJ/Wg37Fb6NZnq2P12nXayglnruP6PxzGyLP6M+DYzbRsW+JYPYCJH2Rx54gO+35gFIVDhlceaMPlw3pw3fBunPrHjbTtvC1m6p01dC4rchvv+H3Z2kzuevn/mL24hWM1AdYsS+GaM/pyzRl9GXVmH0q3BfhuUrajNeuDhpyx/c7ayJ/e+HW36Udfuo4bxv3CDeN+2TEIIFQB713fkTMfXMZNX8zhyvfnExcfnUEATq6jn2v6YR29qunGe5fXbZD6oCHn6yFn5nPu68t2mz7g4o1c+tkiLv1sEZ2G2B9gBRPDHHNDLkNvXxeV2lV5cXxUuu2CHlx92qGOf1gN3rQnAa68cynTv87k8pMOY+TwPqxakuJ4zVjfrm6f/7hdr75oyPna+vQy+r20aydo+0tKOeqjIo76bxFNjy1n8QtJAOROiCdcDkd/XMSRHxSx6oNEStZEr+vFDxnr9rksQHbT7Zw2Yg2jzjmMq04fQFzA4tiTNzhaM1bb6V60Jyd92pK7R/bdZdqKJak8cOOhzJ2RGdVa9VVDztiWp5fT58Vdj/F2F5cx8KMSBn5YQs6xFSx9IQGANf+xP4wf9FEJfV/ZxqLHErHCdas/aXw77r7liF2mjbp5Bq+/3IOrLjmOb79uyVnn/Va3InvgRZvA7ZpeZHql4RfnsnJJsiu1YrWPoCov2yBeasj5Oujs9Vzzxrzdpg+7dC13jZvFXeNmccjQfAAOP2PjjmkXP/kb2a23R3UQgFf7T6zngLInNmo6fS7i5K0BRgMnOjXzrn1KWLs8gdyViVSUB5g6pjGDTtgSlXmXHpxGOG3XkRapP2+h6OgsAIqOziJ1+pYd07cOyoT4ABVNEylvlkji4rp9iD13RiZFhbuOMh04ZCOTPrE/UJ30SQsGDdlYpxp7Zygtsdc/GLQIxltY0fncrUZtOpSwcE4620vjCIcCzJ3emCOGObl+MPeHNIoKnB3ZX13ehngWz7U7arcVx7FqcRLZzctjol6TxlsZ1HMVn0/bOapuRW4mq9Y3dqTenhw6qIDcVclsWJvkal2PjKaBZmyHw4tIyajdiP3fvm5Mi24ltOxu52pqZgWBKB26Tq6jn2v6YR29qunGe5f3bZB6YTQNNF/bDigmqXFFrR6bkGLRpl8JwYToN/K8OD684EV7MiW1gp79tzDhP/ZI9IryAMVFDfoib7vxYru6ff7jfr16YzQNNF+z+oWIz9j1RYpP2/n/0DYDJvKLgYoSQ7gCQtsNJt4imBq9F9gPGev2uXOluDiLhKQwgbgwiUkhNm9IdLRerLbTvWhPzp2RSdGWXWuuWpbGmhWpUa1Tz42mgWZsZg0ZG9xDxhYvCZB1uN3eTci2CDayKJxXt+7tuXNyKCpK2GVa6zZbmTs7B4CZ05ty5DHRvXrWTl60Cdyt6VWm5zTfzoAhBUz4lzNXKK0uVvsIqvJDG2QPRtNA87Xz4YWk1LKPoKqfPmlCv9Oi+17txf7jhxxQ9sROTSfPRRwbCGBZ1ldAnlPzz25ezsa1Oxtpm9bFk9PCuUZE3JZyQpn2SUUoM564LXaABvPKqcjeebJRkR1PMD/6y9E4q4z8TfYLn78pkYyssqjXqCoQsHhu7FzenzGLGV+ns3BW2r6fdIBWLEql52EFNMooJzEpRL+jN5PTPLqXTqxvmrXeTsceJSyc6c5JqdP1rjn7e174aADhsNn3gx107Mkbmfq5O2/sXou1jAX49o3mPH7iIXxwcwdKttiNiU1LkzAGXrmwG0/97hCmvBi9K0x4sY5+qOmHdfSqplfcboN4LRbz9ee3cvjnyZ35/NbWbNvi/MmaV8eHZcGDo3/l6Y/ncNK56x2v54XmbUrZkhfPDQ8v4tmPZjLqgUUkJtftcrj74oftCu6e/3hRrz6IxXz97R9JTBmWztrPEuh8tf0NkebHlxNMsfhycDpTj0un/UXbSWgcvU9Y/Jaxbp07b96QyH9Ht+GNSd/xztTvKN4aZOa3WY7W9EM7vZLf2pNeiMWMXfyPBL4elkru50E6Xm3vM2ldw2ycEiRcAdtWG4rmx1GaG/3u7eXL0hl4pH3lrKMHryGnqXPfYPeiTeBVO8TN/tAr7l7Bq4+0da2v0g99BH5Yx5rEYr5OfbMF95/Qhzdv6kxxDX0E0z/Nof/w6A4E8GI9/ZADfjgu/bBdnT4XcfKKAI4yNRy79eZbFN5+FhoV4bBh5Mk9uWDgoXTtXUy7Ls5dqn/VslT+/VpbHnx5Fve/OJtlC9MIhWJgI+5BUkqIu15aykv3taFkq/Od8U7XG9RzBflFSfy20tsP4IPxYQ4fuplvxud4uhyxwu2MHXTBem77aibXj/2FRk3L+eyBdgCEQoZlPzXiD/9YzFX/mcfcCVksmhad+yB78T7ih5p+WEevakpscHvf6TtiM1dOWcClny0irUk5Xz7k7C17wLvj48Zze3LN8F7cfcnBnHJBLj37Fzpf1GVxQYtO3bfy+XstuPoM+5ZI51y+2tGaftiu4O75jxf1/MCL7OkyqpQhkwtpeUoZK9+1P+Tc8kscBGDolEKOnVDI8jcSKVkVva4XP2Wsm+fOaenlDBy6iYuPH8gFQwaRlBxiyCm5jtb0QztdYocX+0+nUWUcPbmY5r+rYNW79pewWp5RTmIzix/PTWHh3xLJ6B3COBAPT/39ME45fSn/eOlLklMqqCh3rgvdizaBFzXdzPQBQ/Mp2BzP4rnuXRXEDxnrh3X0gtvb9dgL1vHAV9O5c9xM0puW8eH9u17ifdnMNBKSw7TqGt1ccHs9/ZIDfjgu/bBdnT4X8XwggDHmcmPMdGPM9HJq/y3wTeviadJy5wjinBblbM6N38sz6iaUEU9c5Jv+cfnlhDLsS3BWZMUT3LxzJEhwczkVjaO/HAV5CWTm2NsnM2c7W/IS9vGM6CguDDLnu0b0G+zsZS8mftSSa8/tzy0X9aVoS5C1K5y/16kX4oIWd7+0lCkfZTFtvPP3qXOj3iEd13Nkr5X864H3uOfSL+nbdS13XTTFkVp70+/ofJbMT6NgszvHRkNwoPkK7mdsoyblBOIgEIDDz9vAytn2aPTGzcvocHgRqVkVJCSH6TakgDVRasC5vY5+qemHdfSqple8aoPUZw0pX1Nz7FuqmAAcel4ea2c738by6vjI22Dvm1vy4vn2iyy69oq9e65vyk1kU24iC+c0AuCb8Tl06u7sevphu1bl1vmPV/UagobSR1BVy9+VkfuFXWvt5wk0OaqcQDwkZls07lPBlnnR+8DDLxnr9rlz74H55K5OojA/gVBFgGmTmnBwH2cHO/ihnV5J7cn6oSG1Yatq/rtyNkyy+2EDQeh663YGflhC72dKqSg0pLQLR73m6pWNuOvmoxh1xVD+N7k169Y6/0GSF20Ct2q6nendDyti4LB8Rn81k9ueXsyhgwq5+YnFjtb0Qx+BH9bxQDWkfE2v0gd71Pm5LJ+96xVBfvq0Cf2jfFsAcH89/ZIDfjgu/bBdnT4X8XwggGVZL1uW1c+yrH7x1P6eBwtnpdCqfRnN2mwnGB9m8PACvp+Y4dhylvRNp9HX9hVgGn2dR/Fhdq3iw9JJ+y4fysMEN2wnPnc72ztFv4P1+6lNOO40+5JUx522ju+nOPft64ysclLTI/fbSgzT56hCVi1OdqyeXdM+qJo0L+WI4zbxv3FNHa3nDYvrH13OysVJ/PefzWKm3stjBnDWHX/g3LvO575XhzJjYUseGD3EsXp7cuzvNvA/n9wWoLYONF/B/Ywt3LDzjXTuhEyaR0ajdzm2gNwFKZRtCxCqgKU/pNOsc3Quyef2Ovqlph/W0auaXnGzDdJQNKR83bph5/3jf5uYQZMupY7VquTF8ZGYHCI5NbTj/32PKmD5Imfbr17I35TAxtxEWrW33yd7Dypg5RLnBnf4Zbu6ff7jxflWQ9JQ+giKV+zsTlk/JZ7U9vaxktQizOYfglgWVJRAwezgjr9Fgz8y1u1zZ9i4LoluhxaSmBQCLHoPzGeVg/kK/minV1J7sn5oSG3YkhU7v4q3cUqQ1Pb2h/2hbRCKfEl187dxmKBFWsfoDwTIaGy3mY2xOO/ChYz9pH3Ua4BXfbBu13Q/00c/2pYLj+zLRcf04ZFrOzH7u3QevaGTozX90Efgh3U8UA0pX7es39kHO2tCNi2rfPM/HIYZn+fQz4GBAG6vp19ywA/HpR+2q9PnIsF9P6R+CocMz93ZiofeXUogDia+n8WK35KiMu+mzywn+detxBVV0O7qeeSd2Zz805rR7OnlNJqymYqcBNaPOgiA8tbJbB3YmLY3L8CKM2y6uDUE6nZZ+1se+YVe/fJJb1zOmxO/5u0XOvDv19px+6O/cPzpa9iYm8RDN/WKwprWLKtpOTc+sYy4gIUJwFefZfLjl40dqwdw5xNzSW9cTkWF4fkHO7O10NkRPbc9t5xeg7aSkVXB29Pn8dZjzZnwfrajNXv0L+a4M/NY9msyz42bD8Dov7fipynOBIjb9ao7+tBljDr3OxqnbeNvIyeweHUWNz1zsiO1EpNC9DmygGfu6ezI/P3IyYx955pOLPk+neL8IA8M7MPx169myffprJ2fCsYiq/V2znxoGQApGSGO/tM6nj6tJxjoNqSAg4cWRGU5nFxHP9f0wzp6VdON9y6v2yB+4OS+8/Gotqz8IZVt+UGePbIbR49az4of0tgwPwkMZLQu56QHdl5G/vljurF9a4BQuWHRF+mcN3oZOZ3379sLNfHi+MjMKefu5xcC9jeOpn6Sw89fOfttIy/akwAv3N+BWx77jfj4MOtWJfHk7V0cq+WX7er2+Y8X51t+4GT2zLophbyfgpQVGL4cmk7nkaVs/CpI8fI4TMD+8L/nPXYnarvzt/PLXSl8M7wRlgWtzygjvWv0PqTyQ8Z6cS678Jd0vpnYhKf/PZ1QyLD010aM+3dLx+pB7LbTvWhP3vLwHHodFqk5/ivefrEjRVvi+fOtC8jILOPep2exdGEj7h7ZN6p1/cTJ/eeXm5PI/ymO8gLD18NS6XBVGZu+jqNkeQBjIKmlRbe/2B/Ml+UZZl6RAsYiqZlFj4frPsj1lrt/pFfvjaRnlPHmv8fy9uvdSU6u4JTTlwIw7euWfDGuXZ3r1MSLNoHbNb3un3RLrPYRVOXFOvqBk9v1n9d05bfvMtiaH+S2w/tz6vUr+e37DFbNT8UYyG5dyoiHdn5LftEPGWS22E6TtnXvF6jOD/uP+ied4Yft6vS5iLEcurGBMeY9YDCQA6wH7rEs69W9PSfdZFmHm2GOLM+eLHm3t6v1uoxa42o9gHCB+5eZDKSn7ftBURTKy3e1HoCJc/Z+VvVFye/cPVFOm7LA1XoAE7a89rNlWf1cL1wH+5uxXuTro8u/d7XezQcNdLWeSJ3VdMMpB8Xl5LhaD2DChheUrw64fckcV+s93NH9wR+BFPdvExXeFp0rztRWIM3d9jIAoeh9K7m23N6uACYYW5dCrMkXZe/GfL6CNxl70rwCV+uN69HY1XrgTcZaZWX7flAUBRo1crUeQCjf/X4JL8Q1cfnb/HX8ss2BmJD7fMxnrBf5etzcIlfrTfl9b1frAYSXrXK9puus6F+BYV9M0P3vMoZLnb+S2m5c7iPw4kbik6z/KF8d8OKKb1ytd2W7o1ytBxBIcn/QgCc54Da3cwc8yR63xWU6fxuc6ibkvbLHfHXsXdSyrPOdmreIiN8pY0VEnKF8FRFxhvJVRMQ5ylgREWcoX0WkoQvs+yEiIiIiIiIiIiIiIiIiIiLSUGgggIiIiIiIiIiIiIiIiIiISAzRQAAREREREREREREREREREZEYooEAIiIiIiIiIiIiIiIiIiIiMUQDAURERERERERERERERERERGKIBgKIiIiIiIiIiIiIiIiIiIjEEA0EEBERERERERERERERERERiSEaCCAiIiIiIiIiIiIiIiIiIhJDNBBAREREREREREREREREREQkhgS9XoBdGDBBdxep8xVLXK13+o/u1gP4sHsz12uGNue5W9AYd+sBVkWF6zUDSUmu12z040pX64VKSlyt5ysuHye3Dzrd1XojF33laj2A5w/u7npNL7LHD9xuf3ghnJ/v9SLELpfz9eGOvVytN3B2uav1AH76QxvXazJvoavlwkVFrtbzjAft9EDjDFfrhTZudLWeOGvCQHfzp/NPZa7WA1h2do7rNUOr17paL7y12NV6fmKSEl2tF964ydV6vuLye/SUYR1drddizHpX6wHk/qGl6zUrli53vabbPOkH8aANG9e4sav1PDkfcf/U0hdG9j3N1XonzF3uaj2ASed2db2m230EnrAs92t6kK9ur2eonvXB6ooAIiIiIiIiIiIiIiIiIiIiMUQDAURERERERERERERERERERGKIBgKIiIiIiIiIiIiIiIiIiIjEEA0EEBERERERERERERERERERiSEaCCAiIiIiIiIiIiIiIiIiIhJDNBBAREREREREREREREREREQkhmgggIiIiIiIiIiIiIiIiIiISAzRQAAREREREREREREREREREZEYooEAIiIiIiIiIiIiIiIiIiIiMSTo9QIcqJwWZdz85DIym1RgWTD23RzGvNbM8bqpjSq47oFFtOtSgmXBk3d0ZsGs9DrPd/qdjcidmkhiVpj/+zRvl7/99loyvzzaiFO+3UhipsX6afHMfSKNcLkhEG9xyM1baTqwvM7LUOmGx1dy+HGFFGwKcsWwblGb7970G1zIlfevJS5gMe69LD541tnX0ot1BPfXEyAQsHh6zFw2rU/g3j91jfr8R/1lLgOO3khBXgIjzz0SgEtGLWTAMRupKDesW53CU/f2pHhrfNRrg3dZEOvcOkbc2H8m39aMFVNSSc4Ocf7YFbv8beY/M/n2b0245IfFJGeFCZXDlDubsXFeElYFdD2jkMOuzK/TOlbl1f7qdvZ4kXVu13T7tfRi31G+OieW2lpL/hJH/leG+Cw49L8VAKx6NkD+1AAEID7TouP9IRKaQukamH1GkOSD7OemHRKmw93hA66d06SEG2/5gcysUqywYfzYDoz5qAtHHbOKERfOo03bQq6/5jgW/ZYVhTWtmR/yLlbb6dfdN48Bx2yiIC+Bq84cBEBaejm3//0Xmrbcxoa1yTx88yFsLXKmDevFvuMHXmxXp/oI1v+1nOJvwsRlGtr9KwGAjf+ooPjrMCYe4lsbmv0lSFwjg1Vhsf6BCrYvsLBCkH5ygKyL69bdM+qOWQw4cj0F+YmMvGAwAH+4dCEnnLaSwnx7ed54qRvTv4v+NvaiDRKfGOaxDxYQnxAmLmjx9dgs3n6ylaM1ITYzfdRdsxlw5AYK8hMY+Ydjd/nb70cs4dJrF3D+8f9H4ZaEqNeuyum+EL9x7f35nnkMOMbuI7jq7CMAOOq49Yy4cglt2hdz/YUDWDQ/o0418h4opXRaiECmofm7KQAUPLOd0m8qMEFDXGtD1l1JBCL5mv/QdsoWhqHCIuXkeNL/X9323VG3z2TAEbl2vv5xKAC33vcTrdtuBSA1rZzirfFcc/GQOtXZm1jMHq9renGOd/ofV3HCmeuwLFi+KI0n7+xKeVmcY/XUR+AcL46R4SPs/ccYi/EftmTM222iMt+5dyWx8asgCVkWR35cDMCiZxLZ8GUQE4CELIueD24jqanF2s+CLH89ccdzi34LMOjfxaR3O7B+AvURxG6mx1I/mhf1HLsigDGmjTFmijHmV2PMPGPMqGjOPxwyvPJAGy4f1oPrhnfj1D9upG3nbdEsUaMr71zK9K8zufykwxg5vA+rlqREZb7tTi/lyJcLdptesi7A+m8TSGkR2jEtMdPiiBe28H+f5NHv4UJ+urXunQxVTfwgiztHdIjqPPcmELAY+dAa7hrRnssGd2XI8ALadi51tKbb6wjerCfA8ItzWbkk2bH5T/q0JX+55rBdps38IZurzjmCq887krUrUjjn4qWO1fcqC7zkdL6Ce8eIG/vPwb8v5NTX1uw2vWhdkFXTUkhruXMg1ZJxjQiVGc7/fAVnf7ySee83pnB19MbMebG/up09XmSdFzXdfi292Hf8mK8QWxlbycljpMnwMAe/ULHLtBYXhen1nwp6fVBB42MsVr+085QjqTX0+sD+W10GAQCEQoZ/vtSbKy89iRuuHcYppy2mTdstrFiewQP3HcHcX5rUaf774oe8i+V2+qQxLbn7z312mXbOJcuZ9WMWl512JLN+zOLsS5c7Utur8wKvOZ2vXm1Xp/oI0k+Jo+XTuw5ESTk8QLv342n3XgIJbQ35o+1+gqJJYawyaPd+Am3fimfLRyHK11p1qj9pbBv+cv3hu00f834HrrnoWK656FhHBgGAN22Q8u2GW8/vylUn9eSqk3rQ79gtdOuz1dGasZrpkz5rzV+uG7Db9Jym2+g9YBMb1jnXP1GV030h9UkstV8nfdqSu0f23WXaiiWpPHDjocydkRmVGqm/iyfnyaRdpiUNiKPZOyk0eyeFYJsAhW+UAbBtcgVWGTR/J4Wmb6RQ/FE5FWvr1oadNLYNf7lx0C7T/nZPf665eAjXXDyEaf9rybf/a1mnGnsTq9njdU23z/Gym27ntBFrGHXOYVx1+gDiAhbHnrzB0ZrqI4idNmy7Tls54cx1XP+Hwxh5Vn8GHLuZlm1LojLvlqeXc9iLu86r/cXbOfKjYo74sJgmx1aw5AX7w/+Wp1RwxIf29EMe3kZyK+uABwGA+ghiNdMhtvrRvKjn5K0BKoAbLcs6GBgIjDTGdI/WzPM2xLN4rn2Cva04jlWLk8huHr1vxdckJbWCnv23MOE/9sluRXmA4qLofEDUpH85CY13D7k5j6RxyE3FYHZOa9y9guSm9mPTO4cIbzeEyqKyGADM/SGNogLnRg9W17VPCWuXJ5C7MpGK8gBTxzRm0AlbHK3p9jqCN+uZ03w7A4YUMOFfzr3JzZuZRdGWXTuoZn6fQzhkx8uCuY3JbrbdsfpeZEE94Gi+gnvHiBv7T8sB20jMCO02fdqDTTjilo2YKvmKgYqSAOEKCJXaV11JSKvbSX5VXuyvbmePF1nnRU23X0sv9h2f5ivEUMZWcvIYST/MIq7amNRg2s7/h0vZpR0bTfl5ySxZbHcIb9sWz8qV6eTkbGPVynTWrI7uQNma+CHvYrmdPndGJkWFu7ZBBg7ZyKRPWgAw6ZMWDBqy0ZHaXmzXesLRfPViuzrZR5DcN0Bc+q4BmjowgAna05J6GirW2x/2GwPWNrAqLKxSMPGGQGrd6s+blU1RobPf2N4Tb9oghtISO3uCQYtgvIVVt7EU+xSrmW7vO7tfTeWy6+fz+rMHO75dwZ2+kHomZtqvc2dk7tZHsGpZGmtW1DHUqkjsE0egWr4mHR7cka+JPeMIbYjsqAasbZadr9vBxEMgtW6N23mzc/aSrxZHD1nD/yY5d0WSWM0er2t60dccF2eRkBQmEBcmMSnE5g2J+35SHaiPIHbasG06lLBwTjrbS+MIhwLMnd6YI4ZF59wnq1+I+Ixd3+yr9hGEtrFrX2zEurHxtDipbvuT+ghiM9MhtvrRvKjn2EAAy7LWWZY1I/L/IuBXwJFWTLPW2+nYo4SFM6PXKKxJ8zalbMmL54aHF/HsRzMZ9cAiEpN3/3ApWtZ+mUBSszCNu1Xs8TFrJiaScXAFcd6cn0dFdvNyNq7duQKb1sWT0yL2GhFerOcVd6/g1UfaEg471ANfC/932hp+npbjSi23ssBrbuar15zaf5ZNTiW1WQU5B+86iqrjiUUEU8K8fkQH3ji2A30uzSephkFa0eDW/up29niRdV6/j7idPV5knV/yFWIzY704RlY+E2DG8UE2fR6gzVU7c3T7GphzTpB5l8RROCN67ZOmzYrp2KmABQuyozbPffFD3nmdr25rnFVG/ia7AzV/UyIZWVEcbV2F37ZrJafz1Yvt6nYfQVWFn4RJOcLu0kkbFsAkw7KTylh2ahmZI+KIy3DmHPCUs5bx7JtTGXXHLNIaOXOMVOVmGyQQsHhu7FzenzGLGV+ns3BW2r6fVAd+yvTDj17P5o1JLFvkfCc81I++EDfFYvvVS8WflpM0yP6wIXloEJNsWHdKMbnDi0kbkUDAoXwF6HHoZgryE1m72rn88UP2+KGttXlDIv8d3YY3Jn3HO1O/o3hrkJnfOne58+rUR9Cw27ArFqXS87ACGmWUk5gUot/Rm8lp7twX+QAW/SOR/w1LY93n8XS6evdauePjaX5y9NZbfQSxUc8rsbZdnbwiwA7GmIOAPsAP0Z53UkqIu15aykv3taFkq7MjQuKCFp26b+Xz91pw9Rl9KN0W4JzLVztSq2IbLHgplR7XFO/xMYWL4pj7eBp97ytyZBncUtMIMDdGiLvN7fUcMDSfgs3xLJ7rXYPs3EuWEAoZpoxr4XgtN7OgPnEyX73m1P5Tvs0w/fksBly3ebe/bZiThAnARdOWcuGUZcx6LZMtK6N/b2A391e3s8eLTPfyfcTt7PEi6/yarxA7GevFMdL2mjB9J1aQ87swue/bpxwJTaDPBPu2AO1uCrH4tjgqonDV5aSkcu78y7e8/EJvtpU4cz/3mvgh7/zSTnebtqsz+erFdnWzj6CqvNcqIAiNTrLztXSehQlA+3EJHDQmgfx3QpSvjv7Kj/3vQfzp7GFc8/+OJX9zIpdeMz/qNapyuw0SDhtGntyTCwYeStfexbTrEp1L5O6JXzI9MTHEuRct5u2XujhfjPrRF+KlWGm/eqXw9TIIQsqJ9tVdyuaFIQAtPkul+X9T2PpuGRVrnPmyAMCxx63hf5NaOzZ/8Ef2+KGtlZZezsChm7j4+IFcMGQQSckhhpyS60pt9RE0/DbsqmWp/Pu1tjz48izuf3E2yxamEQo5O3iu86jtHDt5Ky1+V87Kd3f9VmvBnDjiki0adY5OvqqPIHbqeSXWtqvjAwGMMWnAh8B1lmUV1vD3y40x040x08ut/Rt1FBe0uPulpUz5KItp46Nzn6i92ZSbyKbcRBbOaQTAN+Nz6NTdmXvGFa+Ko2R1HJNOz2LcsGy2rQ8w+cwsSjfaL1lJboDvrsmg3yOFpLV15xsHTtm0Lp4mLXd+kyCnRTmbc90LaLe4vZ7dDyti4LB8Rn81k9ueXsyhgwq5+YnFjtWrbtgpa+h/9EYeu6sXjl0TOMLtLKgv9itfcXZUZ7Q5uf8UroynaHU8/zq1HW8Obs/W3CAfnN6O4o1x/PZpOu2OKSYuHlKyQzTvu40Nc6N7aTXX37tczh4vMt2r9xG3X0svss6v+Qp7z9iGlq9etrVyTgqTN8luvwYSIL6xPT2tOyS2sShdUbeMj4sLc+c93zL1y7Z8+42znabV+SHv/NJOr1SQl0Bmjn1MZ+ZsZ0ueM5dd89t2rc6pNqwnx6SLfQSVCj8LUfxNmOb3BzGRHqOi8SFSjrBvGxDMMiQfaij9NfofVBXkJxIOGyzLMH5MO7p0L4h6jUpetkGKC4PM+a4R/QY7e5lTv2R689bFNGtZwrNvf81rH31JTtNS/vHm12RmOXOfVa/7QrwUy30Ebij+vJzSaRVk3Ze0I19LJlaQNCgOEzTEZQVI6BVH2a/O9MMG4sIccew6vprs7MUc/JA9fmhr9R6YT+7qJArzEwhVBJg2qQkH99ntsI869RFEv4/Aq/114kctufbc/txyUV+KtgRZuyLF8ZoALX5XzvpJu95KK3dcsM63BaikPoLYy3QvxNp2dXQggDEmHjsc37Es6781PcayrJcty+pnWVa/eLM/H7ZYXP/oclYuTuK//2wWleXdl/xNCWzMTaRVe3tUeO9BBaxc4kxAZnQJccq0TZw0eTMnTd5McrMwwz7MI6lJmLJCw7dXZtDzhmJy+jb8y24snJVCq/ZlNGuznWB8mMHDC/h+YobXixV1bq/n6EfbcuGRfbnomD48cm0nZn+XzqM3dHKsXlWHDdrIWf9vGX+9vi/bS50eGep+FtQH+52vOHufsGhyev/J7lrGJT8s5Y9Tl/HHqctIa17BOR+vILVJiEYtyln9XQqWBeUlhvWzksjsEM1Lnrq/v7qdPV5kujfvI26/ll5knT/zFfadsQ0tX90+Rrat2Pn//KkBktvbw5jL88CK9JuWrobSFYak1nUZ4mxx3Y0/sWplOh992LUO8zkwfsg7v7TTK30/tQnHnbYOgONOW8f3U5y5t7TftmtVTrZhvdiubvYRABR/Gyb/zRAtHo8nkLRzIFWwuaHkpzCWZRHeZlE61yLhoOgPxs7M3vnB7RHHrmPF0kZRr2Fzvw2SkVVOarp9W8aExDB9jipk1eJkR2v6JdNXLElnxEn/xyVnDOWSM4ayaUMSo/54NPl5SY7U87IvxEux3EfghtLvKih6q4zsR5N3yde4Zobt00M78rVsbohgO2e60/v028jqFWls3qjsaYg13bZxXRLdDi0kMSkEWPQemM8qB9sgNvUR4EAfgVf7a+Vt0Jo0L+WI4zbxv3FNHatVvGJnbm6YEiS1/c4Bq1YYcifG0zwqAwHURxCLme6FWNuuwX0/5MAYe+jkq8CvlmU9Ee359+hfzHFn5rHs12SeG2dfjm7031vx0xRnd7oX7u/ALY/9Rnx8mHWrknjy9uhc2uyHG9PZ9GM82wsCjB2czcFXF9P+rJpHRy95J5mtK4P8+kIKv75gv8Ef9c8CkrKjc62I255bTq9BW8nIquDt6fN467HmTHjfuXuphEOG5+5sxUPvLiUQBxPfz2LFb86cEFZyex3Bm/V0wy0PzuaQfnmkNy7njbFTeeelTpx98VLi4y0efH46AAt+yeC5h3s4Ut+rLPCS0/kK7h0jbuw/E69rzpofUyjNj2P0Ue0ZMGoz3c+ueZR0zwsK+PK25rx3cjuwoNuZheR0i95AAC/2V7ezx4us86Km26+lF/uOH/MVYitjKzl5jCy6NY7C6YaKApjxf0Fa/zlEwTcBti03mAAktLDocJf96X/hDMPq5+IwQSAAHe4KEazD7tS9xyaG/d8Kli3N4JkXJwLwxmuHEB8f4s8jZ5KRsZ17H/iapUsac/ftx9Z9ZavxQ97Fcjv9lkd+oVe/fNIbl/PmxK95+4UO/Pu1dtz+6C8cf/oaNuYm8dBNvaJeF2L3vGBfnM5Xr7arU30E6+4sZ9vPYUIFsOx328m6PEj+6AqsMlgz0u4oTTrE0Oz2eBqfHcf6v1aw8lx7evqpARI71+2Dqlvu+5lD+mwmvXEZb3z8Be/8syuH9N1Eh86FWBZsWJfCM3935hjxog2S1bScG59YRlzAvs3CV59l8uOXjR2rB7Gb6bfcP5ND+kb2nU8n887LnZn4aduo15GdYqn9esvDc+h1WOT9efxXvP1iR4q2xPPnWxeQkVnGvU/PYunCRtw9su8B19h8dynbZ4QIF1isO7WY9MsSKHyzDMpg07XbAEjoGSDz1iTSzoon/4FS1v9hG1gWqafEk9C5bl9YuOXe6RzSe5N9jPx3Au+82o2Jn7fjmGFr+N8kZ68GALGbPV7XdPscb+Ev6XwzsQlP/3s6oZBh6a+NGPfvlo7VA/UREGNt2DufmEt643IqKgzPP9iZrYXR+fbx7JuTyfspjvICw9RhaXS6ajsbvw5SsjwABpJbhun+l52fe+VPjyOpWZiUNnX/bEt9BLGZ6RBb/Whe1DOWQzc2MMYcBXwN/AJUDvG5w7KssXt6TnogyxoYPMGR5dkTk+zsKMvqzvhxiav1AD7s7sEIPbdvDFLTTTSc5sHNTwJJ7ncQBjIbu1ovtHGTq/UAvih//2fLsvq5XvgAHVC+mizr8MBxbizeDsHm7mbPFV995Wo9gOcP7u56TauiwvWafmCCjo2N9LWGlq+w/xnrRb663QYZONv9K1D99IeertcMzVvoek1f8KCdHpeT42q90MaNrtYDmGT9J+bzFSIZa4a5sXg7BBo59S33mnX8MppXn6qdZWe730cQWr3W3YLG8Tth7sYqd/+19EKwjbuX2Q170EcwcdvbDSpjG0ofQVxTZ660syctxpS4Wg8g9w/utkEAKpYud72mL3jRhm3c2NV64aIiV+uBj/oIXG6/xmVnuVrvuP8td7UewKRz+7teU30EDvHJZ3lu21sfgWO93pZlfYPTNwYXEfEh5auIiHOUsSIizlC+iog4Q/kqIuIcZayINHTuD5EWERERERERERERERERERERx2gggIiIiIiIiIiIiIiIiIiISAzRQAAREREREREREREREREREZEYooEAIiIiIiIiIiIiIiIiIiIiMUQDAURERERERERERERERERERGKIBgKIiIiIiIiIiIiIiIiIiIjEEA0EEBERERERERERERERERERiSEaCCAiIiIiIiIiIiIiIiIiIhJDNBBAREREREREREREREREREQkhgS9XoBdWGCFQu6WLCpytd6HBzd1tR7AnUtnul7zwQ69Xa0XbNva1XoAFStWuV4zXFrqek1r4ybXa4oDDJi4OFdLVuSud7Xec527uFoP4G/Lprle89b2h7tb0Bh36wFYluslTdD9JpFp1MjVeuH8fFfr+Yrb+6zLx+X3h8a7Wg/gz4s+d73mC507uVrPxCe4Wg/Aqih3vWYgOdn1mqZRqrsFN250t57fuJx5YZf7CBb1d7UcAE8tf9/1mtcddISr9QJJSa7WA7Dcj1hP2urhgi2u1rMqKlytJ84Jrd/gar3VA10tB8D7qya6XvO8Nu7mqxfnzn7JAbfbIBI7woVbXa034ZAMV+sBfLBqtOs1z2k9yN2CvumDdb+PySovc7egJ6/lnv+kKwKIiIiIiIiIiIiIiIiIiIjEEA0EEBERERERERERERERERERiSEaCCAiIiIiIiIiIiIiIiIiIhJDNBBAREREREREREREREREREQkhmgggIiIiIiIiIiIiIiIiIiISAzRQAAREREREREREREREREREZEYooEAIiIiIiIiIiIiIiIiIiIiMUQDAURERERERERERERERERERGKIBgKIiIiIiIiIiIiIiIiIiIjEkKDXC1AXNzy+ksOPK6RgU5ArhnVzpWa/wYVcef9a4gIW497L4oNnmzXYmp/e0obFU9JJza7g8vELAfjqqebM/FcWKVkhAIbctJZOQ4pY+nUaUx5tSajMEJdgMey2tRx0xNaoLAe4s11H3TmbAUespyA/kZEXHAvAHy5dyAnDV1KYnwjAGy92Zfp3zr2mbu8/btfLaVHGzU8uI7NJBZYFY9/NYcxrsVfTD7zYrrGU6f++pT2/fplJWnY5N0z4BYAvnmrFj+83JTWrHIATb15FtyFbyFudwOPHHUqTDtsAaNtnK79/cHlUlqOS21kQS6/l3gQCFk+Pmcum9Qnc+6eujtS47r55DDhmEwV5CVx15iAA0tLLuf3vv9C05TY2rE3m4ZsPYWtRfNRrK1+do2PywE25rSnLp6SQnB3ivLGrdvnbrH825ru/5XDRD0tJzgrz25g0Zv0zc8ffNy9M4OyPV5HTvSwqywLuv5bxiWEe+2AB8Qlh4oIWX4/N4u0nWzla04v9Z/TUGZQUBwiHDKGQYdQZvaJeY9TtMxlwRK59bvDHoQDcet9PtG5rn+OkppVTvDWeay4eEvXa4M37lh/EUt55UfPdmzsy/8ss0rLLuW3iLADGPdmG799vSmpWBQCn3LKC7kMK2LwqkUeO602TDqUAHNSniHMeWhqV5QDvjhE32ndV+aFNkNqoguseWES7LiVYFjx5R2cWzEp3rJ7asM7wYt+B2OlHe/HGjsyYnEV6djmPTZ61Y/r415szYXQL4oIWfYbmM+LOFTv+tmlNAjcO7cNZ16/i1CvXRmU5Krm5Xb06Jv2Qr25vW+Wrc3ReeeCev7EjMyZlkpFTzuOTZ++YPu615owf3Zy4oEXfoflccNdK5nyVwTsPt6WiLEAwIcyFd62g55GFUVsW8Ef2+GF/hdh6LR0bCGCMSQK+AhIjdf5jWdY90awx8YMsPnk9h5v/sTKas92jQMBi5ENruP28DmxaF88zYxfx/YQMVi5KapA1Dz0rj35/3MSnN7XdZfrhl2xk4GUbd5mWkhXinFeW0qhZBRsWJvHeRR0Y9d38Oi8DuLddJ33ems/+fRA3/GXWLtPHvN+B/77bMaq1auL2/uPF/hoOGV55oA2L56aQnBrimc9/ZebX6axclBxTNb3mRr56sV1jKdMPO3MTR/xxPf+6cddsOeqSdRx7ee5uj89uV8p1Y+fWuW5NvMiCWHot92b4xbmsXJJMSlrIsRqTxrTk0/facOOD83ZMO+eS5cz6MYt/v3YQZ1+ynLMvXc7rT3WOem0/5is4n7E6Juum6+8L6XnhFibf3HSX6VvXBVk9LYW0luU7pnUZvpUuw+0PdTcvTGDclS2iOgjAi9eyfLvh1vO7UloSR1wwzOP/WcD0qRksmJnmWE23959Kt13Qg8L86A9yqjRpbBs++7A9N9w1Y8e0v93Tf8f/L716LiVbnanv1fuW19RHUP9rHn7WRo7+f7m8c8Ou7YpjL13H0Mt3/xAqu912bhk3e7fpdeXlMeJG+66SH9oEAFfeuZTpX2fy4KiDCcaHSUwKO1rPj23YWMxXiK1+tGPP3sgJF+Xy3HU783Xet+lMn5jF3yfOIj7RYsumXdsdb97Xnt5D8utcuzq3t6sXx6Rf8tXtbevHfIXY7COIpfPKwWdv4MSLcnnuuk47ps2dls70iZk89sXsSL7aH4M2yirn1tcXkNW8nJULknlwRHde+vnnqC2LH7LHL/trrL2WTt4aYDsw1LKsQ4HewInGmIHRLDD3hzSKCuKiOcu96tqnhLXLE8hdmUhFeYCpYxoz6IQtDbZm2wHFJDeu3clt8x7baNTM/gZAky6lhLYHqNhuorIcbm3XebOyKSp0rjNxX9zef7zYX/M2xLN4bgoA24rjWLU4iezm5ft4VsOrWQ84nq9ebNdYyvQOhxeR3LgiKvOqKy+yIJZeyz3Jab6dAUMKmPCvJo7WmTsjc7f3roFDNjLpkxYATPqkBYOGbKzpqXXm03wFhzNWx2TdtBxQSmLG7u3XaQ/mMPCWTZg9NE8XfZZG51OLorIMlbx4LcFQWmK/lsGgRTDewrKcrej2/uOWebNzKCpM2MNfLY4esob/TXLmWwbe7Dv1gvoI6nnNjocXkpLhfRvWq2PErfZdJT+0CVJSK+jZfwsT/mN/g6qiPEBxkbMXJ/VpGzbm8hViqx/t4IGFpFbrI/jireYMv2oN8Yl2Yy4jZ+d++tP4LJq2LaV1l21RqV+V29vVi2PSD/kK7m9bn+YrxGAfQSydV3YfWERatXyd+FYzho9cWyVf7b+371lCVmSfbdN1G+XbDeVR+owL/JE9ftlfY+21dGwggGWrvHZ8fOTH4ZfHWdnNy9m4dmdn0aZ18eS0cPbNzoua099swisndeXTW9qwbcvuO96CcRk0676NYGJ0Xk4v1rGqU85azrNv/Y9Rd84mrVH0viVWndvr6fV2bdZ6Ox17lLBwZmpM1/SC2/kaq9vVi2Pkuzeb8+SJh/DvW9pTUiVf81Yl8o/f9eTFcw9m2Y+NolrT6yxwgxfreMXdK3j1kbaEw9E7Yaitxlll5G+yb2mTvymRjCzn3rsqxWoO1MTpjNUxGX3LJqeQ2qyCnIP3fCws+bwRnU6J3m2twLvXMhCweG7sXN6fMYsZX6ezcJZzo+C9Ylnw4OhfefrjOZx07nrX6/c4dDMF+YmsXe3MtvVDDtREfQQNt+bXbzTnbyceyrs3d9ytDfvoyb145pweLIliG9arY8Tt9p0fsqB5m1K25MVzw8OLePajmYx6YBGJyc5fbaGSX9qwsZivEPv9aOuWJrPgx3TuPPUQ7jurB0sibbrSkgCfvNCKs65ftY85HBgvs8etY9IP+Vqd23nnl3yF2O0jiOXzynVLk1nwQyPuOKUn95zZg8Wzdt9Pf/g8i/Y9i3cMFogGP2SPX/bXWHstnbwiAMaYOGPMLGAD8IVlWT/U8JjLjTHTjTHTy9nu5OLUWU3fMHJ65InbNfuO2MRVU+fzp88Xkta0nEkPttzl7xt/S+LLv7fk5Aej1xj1YrtWGvvfg/jTWUO55o/HkL8pkUuv/dWxWm6vp5fbNSklxF0vLeWl+9pQstWdEWle1PTSfuerdWD5Gsvb1e1jZOCI9dzyv1mMGvsLjZqU8/mD9m1Z0puUc/u0WYz6fC6n3LWC967rSGlR9La1l1ngFrfXccDQfAo2x7N4buyf8EJs58Ce7Ctj69J+1TEZXeXbDDOez6L/dXl7fMz6WYkEk8Nkd4nuoBmvXstw2DDy5J5cMPBQuvYupl2XEueLuuzGc3tyzfBe3H3JwZxyQS49+0f3vo37cuxxa/jfpNaOzd8PObAn6iNoeDWPuiCXu7+awc1jZ5PRtJyPHzgIgIymZdzz7c/cPHYOp9+9nLdGdYlaG9aL7epF+84PWRAXtOjUfSufv9eCq8/oQ+m2AOdcvtqV2n5rw8ZavkLs96OFKgzFW4I88MkvjLhzBU9d1QXLgn8/3oaT/7SWpFRnbqPhVfa4eUz6IV+rcjvv/JavEJt9BLF8XhkOGbZuCfLgp3O58K4VPPnnLrts01ULk3nn4XZc9sjSqNb1Q/b4ZX+NtdfS0YEAlmWFLMvqDbQGBhhjetbwmJcty+pnWVa/eBKdXJw627QuniYtd3Yg5rQoZ3Ous5ead7tmWpMKAnFgAtDnvDzWzUnZ8bfCdfH858qDOO2xlWS2i15HqhfbtVJBfiLhsMGyDOPHtKXLwQWO1XJ7Pb3arnFBi7tfWsqUj7KYNj7T8Xpe1fTafuer2f98jfXt6vYx0iiSr4EADDh/A6tm2yMXg4kWqZn2JapaH1JCdtvtbFoWvfsNeZmxbnF7HbsfVsTAYfmM/momtz29mEMHFXLzE4sdq1ddQV4CmTn2iWVmzna25O3p0tZ1F+s5sCf7yti6tF91TEZX4cp4ClcH+fepbXh7cDu25gb5z+ltKNm4s0NqsQNXAwDvX8viwiBzvmtEv8Gxd0n5vA12rm3Ji+fbL7Lo2iv6r9+eBOLCHHHsOr6a7MxtAcD7fcdL6iNoeDUbNSnf0YYdeN56Vs62v/lftQ3b5pBistuWsiFKbVgvtqsX7Ts/ZMGm3EQ25SaycI6933wzPodO3Z3PdD+2YWMtXyH2+9GyW2yn/0mbMQY69dmKMVCUF2TxzEa881A7rh7Ul3GvtuDjZ1sxfnTzqNX1InvcPib9kK+V3N62fsxXiO0+glg8r8xqXsbhJ+XtyNdAwM5XgM1rE3jsT10Z+dRimh8U3UFxXr+WbvB6Hd3aX71ez2hzdCBAJcuyCoCpwIlu1HPKwlkptGpfRrM22wnGhxk8vIDvJ2bEVM2iDTvv1bZwQgZNupQCUFoYx78u7cCQm9fRpl9xVGt6sV0rZWaX7vj/EYNzWbE0upfkrsrt9fRmu1pc/+hyVi5O4r//bOZwLS9r1h/O5Wvsb1e3j5HCDTsbC/MmZNEscq+/rZuDhCNXx9y8MpFNy5PIalta0ywOiJcZ6xa313H0o2258Mi+XHRMHx65thOzv0vn0Rs6OVavuu+nNuG409YBcNxp6/h+ilP3sY39HNgXJzJWx2R0ZXct4+IflnPB1BVcMHUFac0rOOvjVaQ0sYPVCsOScWl0/l1R1Gt78VpmZJWTmm5/8JaQGKbPUYWsWpzsaE23JSaHSE4N7fh/36MKWL7IvXXs028jq1eksXmjczX9kAP7oj6ChlNzS5U27C8TsmgR+fZN1TbspkgbNrttdDpTvdiuXrTv/JAF+ZsS2JibSKv29n7Te1ABK5ek7ONZdeXvNmys5CvEfj9avxPymDfNnv/apUlUlBsaZVVw33/n8ux3M3j2uxmcdOk6Tr96DSdelBu1uu5nj/vHpB/y1eb2tvV3vkLs9BHE+nll/xPzmFs1X8vsfC3eEscj/68b59+2km79Y6OPwG1+2V9j7bUM7vshB8YY0wQotyyrwBiTDBwH/C2aNW57bjm9Bm0lI6uCt6fP463HmjPh/exolthFOGR47s5WPPTuUgJxMPH9LFb8Fr1vbbpd86Nr27HihzS25Qd5+ojuHDMqlxU/pLF+fjLGQEbrMk6K3AJg+ps55K9I4Otnm/P1s/Yo1D+8sYTUnIo6L4db2/WW+2ZwSN/NpDcu440xk3jnn104pM9mOnQpxLJgw7oUnvnbIVGvW8nt/ceL/bVH/2KOOzOPZb8m89y4+QCM/nsrfpriXEh6UdNrbuSrF9s1ljL93Ws7svT7dIrzgzw4qA//d91qln6fzrpf7U6vzNbb+f1DywBY9mMjJj7Zmrg4CxMHZzywjJTG0btvphdZEEuvpddueeQXevXLJ71xOW9O/Jq3X+jAv19rx+2P/sLxp69hY24SD93Uy5HafsxXcD5jdUzWzRfXNWPtj8mU5sfx5lEH0X/UZg4+e88n8Gt/Sia1eQXpbeveZq3Oi9cyq2k5Nz6xjLiAhQnAV59l8uOXjR2t6fb+k5lTzt3PLwTsbxxN/SSHn7+K/reNbrl3Oof03mSfG/x3Au+82o2Jn7fjmGFr+N8k564GALH9vrU36iOo/zXfuKYzS77PYGt+kHsGHsZJ169i8ffprJmfCgayWm/nnIeWALDkx3TGPdGWQJxFIM7i7AeXkto4Olnrl2PED20CgBfu78Atj/1GfHyYdauSePL2Lo7W82MbNhbzFWKrH+3pkZ2Z/30GRXlBrup/GGfduIoh527gxZs6cdOw3gQTwlz15KIaL0UcbW5vVy+OSb/kq9vb1o/5CrHZRxBL55VPjezM/O/SKcoLcmW/vpxz42qGnruB52/syI3DDiUYH2bkU4sxBsaPbk7u8iQ+/EdrPvyHfSu4u96dT0YUPuMCf2SPX/bXWHstjeXQjQ2MMb2AN4A47CsPfGBZ1l/39px0k2UdHjjOkeXZo4Z8Y4daunPpLNdrPtiht6v1gu3auFoPoGLFKtdresEEHRsvVG98Uf7+z5Zl9fN6OWrrgPI1kGUNDJ7gxuLtYIWi92F27Qq6n+d/W7bbbRcdd2v7w90t6EZPRHUevJaBJPc7l00j565CU5Nwfr6r9aDh5Svsf8ammyzrcDPMrcWzuX1cenBM/nmRe7fbqPRCZ/eu7AFg4p27rceeWBXlrtcMJLv/zZJA86au1qtYutzVegCTrP/EfL6C+gic8tTyb12ved1BR7haz4u2Xbg0elf1qjUP2uqBtDRX61nbtrlaDxpeG1b5Wn+8v8r9fD2vjbv56kU/oVUR/UG9++RBvpq4uH0/qIFraPkKDaOPwO1zSy/OKz/wIF/PaT3I3YI+6YP1pC+kPHq3Oq8VD17LSeF/7zFfHXvntixrDtDHqfmLiPiV8lVExDnKWBERZyhfRUScoXwVEXGOMlZEGrqA1wsgIiIiIiIiIiIiIiIiIiIi0aOBACIiIiIiIiIiIiIiIiIiIjFEAwFERERERERERERERERERERiiAYCiIiIiIiIiIiIiIiIiIiIxBANBBAREREREREREREREREREYkhGgggIiIiIiIiIiIiIiIiIiISQzQQQEREREREREREREREREREJIZoIICIiIiIiIiIiIiIiIiIiEgM0UAAERERERERERERERERERGRGBL0egF2Y1leL0HMebBDb9drTlg7y9V6J7Qyrtbzigm6f8haoZDrNSX6jAlgEhJcrRmX2djVehVr1rpaD+DW9oe7XvPS35a5Wu/Vrh1creeZgPtjI0MbN7pb0PjjvdJtJhAgkNbI1ZrhoiJX63nhhc6dXK85YsFqV+u90621q/UAb3KgQ1vXS1bMXeB6TXGQ+gii7rqDjnC95vurvnW13nltj3S1nq+Ul3u9BBItLudrICXF1XrhkhJX6wGc18b9fH1r1TRX613Yxif56kH7w6qocL2mxAarwuX3Zg+Oj3NaD3K95osrvnG13pXtjnK1nldMnPt9sFaFy30h9ewcVlcEEBERERERERERERERERERiSEaCCAiIiIiIiIiIiIiIiIiIhJDNBBAREREREREREREREREREQkhmgggIiIiIiIiIiIiIiIiIiISAzRQAAREREREREREREREREREZEYEtzTH4wxzwDWnv5uWda1jiyRiEiMU76KiDhHGSsi4gzlq4iIc5SxIiLOUL6KiN/tcSAAMN21pRAR8Rflq4iIc5SxIiLOUL6KiDhHGSsi4gzlq4j42h4HAliW9UbV340xqZZlFTu/SCIisU35KiLiHGWsiIgzlK8iIs5RxoqIOEP5KiJ+t7crAgBgjBkEvAqkAW2NMYcCV1iWdZXTC7cv/QYXcuX9a4kLWIx7L4sPnm2mmvW43uPXt+GHSek0zqng5SkLd0wf82oOn7yeQyBocfiwQv509zoqyuHJm9qy+JdkQhWG487O47xrNkRlOQBueHwlhx9XSMGmIFcM6xa1+e6Lm69lTosybn5yGZlNKrAsGPtuDmNec3bf8WK7evVaRkN9zleA0VNnUFIcIBwyhEKGUWf0inqNUXfPYcBRGynIT2DkeUcDcMGVvzHwmA1YFhTkJfDkfb3I25QU9doQW5n+1e05rJqSQlJ2iDM/X7PL3355NZ0f/5bNiO9XkJQVBiBvQTzf/CWH8q0BTABO+3AtwcQ9Xiltv3hxXHrxWrpxjFTlxToqY52R2qiC6x5YRLsuJVgWPHlHZxbMSne0Zqy0J72o+d0dmayZmkRSdphTPl2/y9/mv5rGzEcbc+Z3a0nKDO+YXrw2js9OacYhIwvpfunWqCxHJbe3rRs5kNOkhJtu/oHMrG1YYcO4sR0Z83EXLr1sFocPXEtFeYB169J44rEBFBcnOLIMfjhGoqU+52ssZY8far54Y0dmTM4iPbucxybP2jF9/OvNmTC6BXFBiz5D8xlx5wqK8oM8eUVXlsxO49izN3DJA8vqXL8qP/QRgHfrGQhYPD1mLpvWJ3Dvn7o6WsuLvpBoUsbuyg/nXE7VfOXGTsycnEl6djmPVMnYia+34ItIxh46NI/z71zBkplpvHZbRwAsy/D761fS76S8qCwHxNZ2rU81/bCO0aR83ckv7R6n6r15U2d++TKTRtnl/OWLmQB8+mRbvnmvGY2yywEYfvMKDhmazw8fNeGLl1vteO6aX1O54/NZtOkRvbEosbJd98XN9mSs9W0HavGYp4ATgM0AlmXNBo6pbQFjTJwxZqYx5rMDWsI9CAQsRj60hrtGtOeywV0ZMryAtp1Lo1nClzWdrHf8uXk8+M7SXabNmpbGtxMyeGHyQl6ZupCz/rwRgK8+bUz5dsNLXy7k2fELGftWDrmrotfpN/GDLO4c0SFq86sNt1/LcMjwygNtuHxYD64b3o1T/7iRtp23OVYPvNmuXtSMoqeoh/la1W0X9ODq0w517GR70met+cu1/XaZ9uFb7bn6D0dxzYij+PGbppz/p8WO1I61TO/8+62c8GrubtO3rotjzbRkUltW7JgWroCpNzflyPs2c+bYNZz81joCwegMAgD3j0svXstKTh8jlbxaR79mrNP5euWdS5n+dSaXn3QYI4f3YdWSFCfK7BBL7UkvanY4o5ihr2zabXrxujhyv00ipUq+Vvr54QxaHh39dfZi27qRA6GQ4ZWXD+WKP53M9aOO45TTFtG27RZmzmjOlZedyFVXnsia1Y0497xfHanvh2Mkyp6iHrZhYy17/FDz2LM3cvtb83eZNu/bdKZPzOLvE2fx2ORZnHLFWgDiE8Occ9NKLrhreZ3r1sQPfQTgXdtu+MW5rFyS7EotL/pCouwp6mEbVudcDa/m0Wdv4JZqGTv/2wxmTMzioYkzeWTyTE6OZGzrbiX89fPZPDhhNre8NY/Xbu9IaPcm7gGJte1aX2r6YR0d8BTKV8Af7R4n6w06ez3XvDFvt+nDLl3LXeNmcde4WRwyNB+Aw8/YuGPaxU/+Rnbr7VEdBBBL23Vf3GxPxlrfdm0GAmBZ1qpqk0L7UWMUEPUem659Sli7PIHclYlUlAeYOqYxg07YEu0yvqvpZL1DBhbTKHPXXeezN7M59+r1JES+hdo4x25lGgOlJQFCFVBWGiCYECYlbX92u72b+0MaRQVxUZtfbbj9WuZtiGfxXPuDhW3FcaxanER283LH6oE329WLmtFUH/PVTfNmZlFUGL/LtG3FO39PSg5hRe/z6V3EWqa36F9KYkZ4t+k/PJRN/5vzMWbnhlzzTTJZXcvIPrgMgKTMMIEoHkZuH5devJZu82odfZyxjuVrSmoFPftvYcJ/7JG9FeUBiov2eZGuOoml9qQXNZv1LyOhhnz9+eEM+ty8BVNt+qpJSaS1CZHRKUq9p1V4sW3dyIH8vGSWLM4CYNu2eFatTCc7Zxszfm5OOGyfsi5YkE1OkxJH6vvhGIm2+tiGjbXs8UPNgwcWktp416z84q3mDL9qDfGRPoKMHPscNiklTLcBRcQn7p7H0eCHPgLwZj1zmm9nwJACJvyriSv1vOgLibb62IaNhfeufYmlfAXoVkPGTn6rOadctXq3jE1MDhMXOSUp2x7AVG/g1kGsbdf6UtMP6+gE5avND+0eJ+t1PryQlMb7f77/0ydN6HfaxqgsQ6VY2q5743Z7Mtb6tmszEGCVMeYIwDLGJBhjbqKWoWeMaQ38DvhnHZaxRtnNy9m4duc3xDetiyenhbMNez/UdLvemiVJzP0hjWt/15mbft+JhbPsET1Hn1JAUkqY83v35IL+3Tnryo2kZ0ZvIIAXvNh/KjVrvZ2OPUpYODPVlXpSa/UyXytZFjw4+lee/ngOJ527ft9PiKI//vk3Rn82hcEnruXtlzo7UsMPmb5icgopzSp2fOBfactye7DF+Eua8fHpLZnzSoZjy+AGr/LVzWPEy/eQBuyAMtbpfG3eppQtefHc8PAinv1oJqMeWERisrNtnFhvT3pRc/WXSaQ0C5HZbdcaFSWG+a804pCRhY7U9UMWNG1WTMdOBSxckL3L9ONPWMZPP7VwpKYfjpEoq5dtWD9kjx9qrluazIIf07nz1EO476weLJmV5kid+iAGsqBWrrh7Ba8+0pZwOIqfLNZSA+0LqZdtWJ1zxUbN3KVJLPwxnXtO7cUDZ/VkaZWMXTwzjduG9eGO/+vDxQ8t2TEwoK78sF29qOmHdXSA8tVDfjhGpr7ZgvtP6MObN3WmeMvuHyJP/zSH/sOjOxDAD9sVvG1PusHp7VqbgQBXAiOBVsAaoHfk99p4CrgFiPqQ7ZpGJjr1rVE/1XS7XigEW7fE8Y/PFvGnu9fy4BUHYVmwcGYqgTiLd2fO5c0ffuXDF5uwboUz9wN1ixf7D0BSSoi7XlrKS/e1oWRrw/1WZ4yql/la6cZze3LN8F7cfcnBnHJBLj37O/OhRk3efKELF50yhKnjW3LqOSsdqRHrmV6xzTD7hQwOG5W/e80QrJ+RyODHNnLKe+tY/kUKa79NcmZBXOBVvrp5jHi1jg3cgWbsUziYr3FBi07dt/L5ey24+ow+lG4LcM7lq50otUOstyfdrlmxzTD3xXR6Xbv7MT/nmXS6XbSV+FRnisd6FiQllXPXX6bx0gt9KCnZeYWg886fTyhkmDK5nSN1/XCMRFm9bMPGevb4pWaowlC8JcgDn/zCiDtX8NRVXRra8VFrMZAF+zRgaD4Fm+NZPNf9D+IbcF9IvWzD6pwrNmpWZuy9n8zh/DuX88xVXXfU69RnK49Mnsl9n83m0+daU1YanQ9b/LBdvajph3V0gPLVQ7F+jBx7wToe+Go6d46bSXrTMj68f9fLyi+bmUZCcphWXaN7lbtY367gbXvSLU5v132O7bMsaxMwYn9nbIw5BdhgWdbPxpjBe3nc5cDlAEnU/v6om9bF06Tlzm845rQoZ3Nu/F6eUXd+qOl2vZwW5Rx58haMgW59SggEYEteHFM+aky/IUUE4+3bBXTvX8xvs1No0a5s3zOtp7zYf+KCFne/tJQpH2UxbXymo7Vk/7mar2b/3yjzNtiDb7bkxfPtF1l07bWVuT+l7/d86mLq+Jbc+9R03nk5+lcFiPVML1wZpGh1PB+d1gqA4twgH5/RitP+s5aUZiFa9C8lKcs+h2lz7DY2zU+k5REN6t5uO3jxWoK7x4hX69iQHUjGupGvm3IT2ZSbyMI5jQD4ZnyO4wMBYr096XbNopVxbF0dx9jh9u0dStbHMe73TTnxgw1smpPAygnJzHw0g7KiACYAcYkWXS+Izj0AYzkL4uLC3PWXb5nyZTu+ndZ6x/Tj/m8ZAw5fy+23DobdbsQQHX44RqJJfQSq6WTN7Bbb6X/SZoyxP5QyBorygqRnR/92K15r6FlQG90PK2LgsHz6Dy4gPtEiJS3EzU8s5tEbOjlatyH3hbjWht2PfAWdcznF7ZpZLcp2ZGzHPlsJGGu3jG3VeRuJKWFWL0ylw6Fb61zTD9vVi5p+WMdoU756K9aPkfQmO7+9fdT5uTx/Sfdd/v7Tp03oH+XbAkDsb1fwrj3pJqe36z6vCGCM6WCM+dQYs9EYs8EYM8YY02FfzwOOBE4zxiwH3geGGmPerv4gy7Jetiyrn2VZ/eJJrPWCL5yVQqv2ZTRrs51gfJjBwwv4fqKzlzb2Q0236x1x4hZmfWNfhmr1kkTKywwZWSGatCpn1jdpWBaUlgRYMCOVNp0a5gdUldzffyyuf3Q5Kxcn8d9/NnOwjhwoN/M1wezft70Tk0Mkp4Z2/L/vUQUsX5S8X/M4UC3b7PywZOAx61m93JnRfrGe6Vldyxnx/UrOnbKac6esJrV5Bad/tIaUJiFaH72NvIUJVGwzhCsg98ckGndsuAOtvHgt3T5GvFjHhu4AM9bxfM3flMDG3ERatbdHgfceVMDKJfvXUbC/Yr096XbNzK4VnPXtOk7/MpfTv8wlpVmIk/67geQmYY5/Z+OO6d3+uJUelxdGbRAAxHIWWFx3w4+sWtmIjz7sumPqYf3WcfY5C7jvnqPYvj1K16etgR+OkWhSH4FqOlmz3wl5zJtmz3vt0iQqyg2NsmJvEAA0/CyojdGPtuXCI/ty0TF9eOTaTsz+Lt2FTtuG3RfiVht2f/IVdM4VKzUPOyGP+dMaA7BuaRIV5QEaZVWwYWUioUjUblqdyLolyTRpE51+WD9sVy9q+mEdo0356q1YP0a2rN/5oe2sCdm0rPLN/3AYZnyeQz8HBgLE+nYFr9qT7nJ6u9amN+Vd4DngjMjv5wHvAYfv7UmWZd0O3A4QGS11k2VZFxzoglYXDhmeu7MVD727lEAcTHw/ixW/OXtZYz/UdLLew39ux5zv0tiSF2TEYd258MZcTjgvjyduaMPlQ7oSH29x8z9WYgycdvEmHr++LZcP6QqW4fhzN9Ohe/QGAtz23HJ6DdpKRlYFb0+fx1uPNWfC+9n7fmIduP1a9uhfzHFn5rHs12SeGzcfgNF/b8VPU5wLZi+2qxc1o6he5itAZk45dz+/ELC/TTH1kxx+/ir636S45YFZHHJYHumNy3jjsy955+XO9DtyI63aFWOFDRtyk3ju4Z5Rrwuxl+lTrm/Cuh+TKM2P472j29D32ny6nl3z6P3EjDA9L97CmDNbgoE2x5bQdsi2qCwHuH9cevFaunWMVPJiHcF/GetGvgK8cH8HbnnsN+Ljw6xblcSTt3eJdoldxFJ70oua39yQxfqfEtmeH+C/xzan1zWFdDorupfzqy0vtq0bOdCjxyaO+78VLFuawbMvTADgjdcO4cqrZhKfEOLBR/4HwIJfs3n26X5RrQ3+OEairF62YWMte/xQ8+mRnZn/fQZFeUGu6n8YZ924iiHnbuDFmzpx07DeBBPCXPXkoh2Xyrx6UF+2FcVRUR5g+oQs7nhnPq27RKcN64c+Amjwbbta8aIvJMrqZRtW51wNr+ZzI7vw6/cZbM0Lcm3/fvz+xpUce+56XrmpE7cN600wweLySMb+9lM6nz3fmrhgGBOA//fgkqgNwoq17VpfavphHR2gfI3wQ7vHyXr/vKYrv32Xwdb8ILcd3p9Tr1/Jb99nsGp+KsZAdutSRjy0eMfjF/2QQWaL7TRpuz0q9auKpe1an8Ra37ax9nGjAWPMD5ZlHV5t2veWZQ2sdZGdIXnK3h6XbrKsw82w2s5W6rEJa2e5Wu+EVn1crQd4crMeE3Tum1B7YoVCrtd026Twv3+2LCv6vcr74Ga+ZsTlWAOTf3dAy3mgApmNXa1XsWatq/W8culvy1yt92rX2nzBL8o8yNdAirPfyK5JuMTlDxJruuGUw7zKV6h7xu5XvqaddsDLeSDCRUWu1vOLEQucvUVDde90a73vB0WbBzkQ6NF13w+KsvDcBa7XdNsk6z8NNl8jjx+M+gh85f1V37pa77y2R7paD/Dmhr5e5Hri/n3Tsa6sCvevCPFF+fsNNmPrc766fc7l+vmWR95aNc3Vehe28SBfJWY05DZsfc5X19sDXrR5PPDiim9crXdlu6NcreeVQJL7AwfC26M/CGOvPDhG9pave/xU0RiTFfnvFGPMbdiXPrGAc4HP92cBLMuaCkzdn+eIiMQq5auIiHOilbHKVxGRXakNKyLiHLVhRUScoXwVEb/b29eLf8YOxMrhRFdU+ZsF3O/UQomIxDjlq4iIc5SxIiLOUL6KiDhHGSsi4gzlq4j42h4HAliW1d7NBRER8Qvlq4iIc5SxIiLOUL6KiDhHGSsi4gzlq4j4Xa1uOG6M6Ql0B3bcvMGyrDedWigREb9QvoqIOEcZKyLiDOWriIhzlLEiIs5QvoqIH+1zIIAx5h5gMHZAjgVOAr4BFJAiInWgfBURcY4yVkTEGcpXERHnKGNFRJyhfBURvwrU4jFnAcOAXMuyLgYOBRIdXSoREX9QvoqIOEcZKyLiDOWriIhzlLEiIs5QvoqIL9VmIMA2y7LCQIUxJh3YAHRwdrFERHxB+Soi4hxlrIiIM5SvIiLOUcaKiDhD+SoivrTPWwMA040xjYFXgJ+BrcCPTi6UiIhPKF9FRJyjjBURcYbyVUTEOcpYERFnKF9FxJf2ORDAsqyrIv990RgzHki3LGuOs4slIhL7lK8iIs5RxoqIOEP5KiLiHGWsiIgzlK8i4ld7HAhgjOm7t79ZljXDmUUSEYltylcREecoY0VEnKF8FRFxjjJWRMQZylcR8bu9XRHg8b38zQKGRnlZJIac2Lafq/XeX/mVq/UAzm9/jOs1rYoK12tijPs1Y5/r+WqFw4S3bYv2bPfK7Xqe8OD4eLWru7cve2XF167WA7is3dGu1wyXlLhe022BxET3i3oTA+5mbMBgEuKjOkuBuPR012u+c3AbV+uNWLDK1XoA7/Xu5HrN8LyFrtf0RfvV8qSq+ghihQfHyHltj3S13gervnW1HsA5bY5wvSaW+2EQLi11tZ4J1uaupjHB1Yw1gQCB5JRoznKf/HDO5cX+emHbo1ytd9/S6a7WA7inw2Gu1/SDuOws94tucr8kPmjDmrg4V+t58RlFIMXd9yyAP3cc7Gq9Oz3I14e6uPs5HrjflvRCsHUr94vupYtpj60Ty7KGOLEsIiJ+p3wVEXGOMlZExBnKVxER5yhjRUScoXwVEb8LeL0AIiIiIiIiIiIiIiIiIiIiEj0aCCAiIiIiIiIiIiIiIiIiIhJDNBBAREREREREREREREREREQkhuxzIICxXWCM+Uvk97bGmAHOL5qISGxTvoqIOEcZKyLiDOWriIhzlLEiIs5QvoqIX9XmigDPA4OA8yO/FwHPObZEIiL+oXwVEXGOMlZExBnKVxER5yhjRUScoXwVEV8K1uIxh1uW1dcYMxPAsqx8Y0yCw8slIuIHylcREecoY0VEnKF8FRFxjjJWRMQZylcR8aXaXBGg3BgTB1gAxpgmQNjRpRIR8Qflq4iIc5SxIiLOUL6KiDhHGSsi4gzlq4j4Um0GAjwNfAQ0NcY8CHwDPOToUomI+IPyVUTEOcpYERFnKF9FRJyjjBURcYbyVUR8aZ+3BrAs6x1jzM/AMMAAp1uW9avjS1YL/QYXcuX9a4kLWIx7L4sPnm2mmg2wXk6LMm5+chmZTSqwLBj7bg5jXotOzRdv7MiMyVmkZ5fz2ORZO6aPf705E0a3IC5o0WdoPiPuXMHimWm8cltHACwLzrp+FQNOyovKcoCz67knbr+WNzy+ksOPK6RgU5ArhnVztJaXNaOlPuerX15LHSMHbvRNnZkzOZNG2eXcN2nmjumTX2/BlDdaEIiz6DU0n7PuXA7A2Gdb882/mhGIszjvvqX0PLYgasviVQ7E+vtzpUDA4ukxc9m0PoF7/9TVlZrRUJ8zdviIVZxw5jqMsRj/YUvGvN3G8Zqxvr+2al/CbU8s2PF7izalvPV0O8a82cqxmk5mz3d3ZLJmahJJ2WFO+XT9Ln+b/2oaMx9tzJnfrSUpc+cXWIrXxvHZKc04ZGQh3S/dGtXlcTMHYum9sr7VjJb6nK9+OF/3omYsHSPP39iRGZMyycgp5/HJs3dMH/dac8aPbk5c0KLv0HwuuGslc77K4J2H21JRFiCYEObCu1bQ88jCqC2LH85/vKjpRd9LNNXnjB09dQYlxQHCIUMoZBh1Ri/Ha8Z6G9aL/dWp7Pn4lnb8NiWD1OwKRo6fD8CUp1rw879ySM2qAGDYTWvoMmRnjhasiee5E3oweNQ6jrxsfY3zPVB+yDsv1tGLc9loqc/56ofsAffX0+33LSe366e3tGHxlHRSsyu4fPxCAL56qjkz/5VFSlYIgCE3raXTkCIApj3flNn/zsYELI6/Zw0djymKynL4Zd9xq+aou+Yw4KgNFOQnMPL8YwC44IrfGHjMeiwLCvISefKvvcjblFSnOvu8IoAxpi1QAnwKfAIUR6btkzFmuTHmF2PMLGPM9DotaTWBgMXIh9Zw14j2XDa4K0OGF9C2c2k0S/iyphfrGA4ZXnmgDZcP68F1w7tx6h830rbztqjM+9izN3L7W/N3mTbv23SmT8zi7xNn8djkWZxyxVoA2nQr4aHPZ/O3CbO5/a35/PP2joQqorIYgLPrWRMvXsuJH2Rx54gOjtaoDzWjpb7mK/jjtdQxUjdHnL2eUW/O22Xagm8zmD0xm3smzOSvk2dy/BVrAFj7WzI/fdqE+ybNYNSb83j3zo6EQ9FbFi+2qx/enysNvziXlUuSXakVTfU1Y9t12soJZ67j+j8cxsiz+jPg2M20bFsSzRK78cP+umZZCtec0ZdrzujLqDP7ULotwHeTsh2t6WT2dDijmKGvbNptevG6OHK/TSKl5e6N1J8fzqDl0c5sZzdzIJbeK+tbzWipr/nqh/N1r2rG0jEy+OwN3PH2rn3+c6elM31iJo99MZsnvpzNqVfafQSNssq59fUFPD55NiOfXMwz13aO6rL44fwn1vqY3HCgGet0H0Gl2y7owdWnHerKIAA/tGG92F+dyp7eZ23mgtcX7TZ90CUb+PPnv/Lnz3/dZRAAwPgH2tDp2OgNsKrkh7zzYh29OJeNJrVhd/Iie7zq13LzfcvJ7XroWXmc9/rS3aYffslGLvt8IZd9vnDHIICNixKZ/1kml49fwPmjlzL+L62j1g/rl33HrZqTPm/NX0b132Xah2+35+oRR3PNBUfz4zdNOf9Pu7+37q/a3Brgc+CzyL+TgaXAuP2oMcSyrN6WZfU7gOXbo659Sli7PIHclYlUlAeYOqYxg07YEs0SvqzpxTrmbYhn8dwUALYVx7FqcRLZzcujMu+DBxaS2njXjtIv3mrO8KvWEJ9oAZCRY9dKTA4TF7lGRvn2AMZYUVmGSk6uZ028eC3n/pBGUUGcozXqQ80oqpf5Cv54LXWM1E2Xw3fP16lvNefEq1btyNf0SL7OmphN/1M3Ep9o0aTtdpocVMqyWY2itixebFc/vD8D5DTfzoAhBUz4VxPHazmgXmZsmw4lLJyTzvbSOMKhAHOnN+aIYRujWWI3ftlfKx06qIDcVclsWFu3EdP74mT2NOtfRkLG7rer/PnhDPrcvAVTbfqqSUmktQmR0SmKo1gj3M6BWHqvrG81o6he5qsfzte9qhlLx0j3gUWkVWvDTnyrGcNHrq3SR2D/vX3PErIi5+xtum6jfLuhfHv1BD5wfjj/ibU+JpfUJWMd6yPwgh/asF7sr05lz0EDtpLcuPafNP06MYPMtttp6sAHSH7IOy/W0Ytz2ShTGzbCi+zxup/ADU5u17YDimudsb99kUH3U/IJJlo0blNGVrvtrJ2dEpXl8Mu+41bNeTOzKCqM32XatuKdvyclV2BZdT//2OdAAMuyDrEsq1fk387AAOz7p3gqu3k5G9cm7Ph907p4clo4u8P5oaYX61hVs9bb6dijhIUzUx2rsW5pMgt+TOfOUw/hvrN6sGRW2o6/LZqZxk3DenPz//Xm0oeW7hgYEG1urKfXr6XsW33NV7/QMRJ965cls+jHDB467VAePfsQls2287VgfQJZLbfveFxmi+0U5CbsaTYNgl/en6+4ewWvPtKWcDh6nd5uqa8Zu2JRKj0PK6BRRjmJSSH6Hb2ZnObb9/3EOvDL/lrp2JM3MvXzBjl4Za9Wf5lESrMQmd123ZYVJYb5rzTikJHR/zYVNOwcEGfU13z1w/m6VzVj3bqlySz4oRF3nNKTe87sweJZu5+n//B5Fu17Fu8YLNAQ+XF/daPvJdrqa8aCfRvNB0f/ytMfz+Gkc6N7Gfea+K0N2xD319r48c0mPH/SwXx8Szu2bbEHIJSVBPjmpeYMvnadIzX9kHderKMX57LRVF/z1S/Z48V6uv2+VZVb23X6m0145aSufHpLmx0ZW7Q+nvSWO7dto+blFOXG72kWByyW9x2vj8s//nkhoz/9ksEnruXtl+p+VbLaXBFgF5ZlzQD67/OBkYcDE40xPxtjLt/fWntjauiHshw+H/NDTS/WsVJSSoi7XlrKS/e1oWSrc6PiQxWG4i1BHvjkF0bcuYKnruqyYx0799nKY5Nn8dBncxjzXCvKSqPf4enWenr5WsqBqS/56hc6RqIvXGEo2RLk9jGzOevOZbx0VTcsaw/btYF/nuSH9+cBQ/Mp2BzP4rmx0RFVXzJ21bJU/v1aWx58eRb3vzibZQvTCIWcPSD8sL9WCsaHOXzoZr4Zn+NOQZdUbDPMfTGdXtfu/mH/nGfS6XbRVuJTo7+RYy0HxBn1JV/9cL7uVc1YFw4Ztm4J8uCnc7nwrhU8+ecuu2zTVQuTeefhdlz2yO6XY21I/La/utX34rT9yFjH+whuPLcn1wzvxd2XHMwpF+TSs78zgxAr+akNGyv7a3X9R2xk1NS5XPn5r6Q1LWfCg60BmPJUCwZdsoHE1N2vgBUNfsg7L9bRi3NZJ/m5DVvJzezxYj3dft+q5NZ27TtiE1dNnc+fPl9IWtNyJj3Y0v5DDdu1pu1fF7G+73h9zvXmC1256NShTB3fklPPXlHn+e3z+87GmBuq/BoA+gK1vebLkZZlrTXGNAW+MMYssCzrq2rzvxy4HCCJ2l+eYtO6eJq0LNvxe06LcjY7MKrFbzW9WEeAuKDF3S8tZcpHWUwbn+lorewW2+l/0maMgU59tmIMFOUFSc/eeXnAVp23kZgSZtXCFDoeWhy12m6up1evpdRefc1Xv9AxEn2ZLcroG8nX9r23EjAWW/OCZDYvI29t4o7H5a9LpHGzsr3Mqf7zw/vz/2fvvuOjqvL/j7/OzKSHJITQO1IUUAEBwa7Y16+ua2+7tnVdXXWt69pdV9ff2nvZta5trWsHbCgWUBSkSe+9JCGQEFLm/P64EwghlJC595J738/HIw/IZOZ+7r1z533PnDlzbu991jJkWBGDDikmJc2SmV3NtffP4p6rurtaN1nczNjN8jWSvbVlbNXId9ox8h3nDdrvLp/NquXuTmEfhuO1xsADi5g9NZvi1U171pG61i6Ism5RlI9OaA1A2fIoH/+mFUe/voJVE1NZMCKD8ffkUrE2golANM3S6+zGt2Gbeg6IO3bVNmwY3q/7VTPo8ttUsO8xhRv7CCKRTX0Eq5ekcu+Fvbj0wVm06dJ0vvVYnzAdr172vSRbIzK2YflqGj7Ir3CF075aU5jCt5/k02uvdUz+IafBy9lRYWnDNuXjdXuyW27qa93n9FW8cqHThlw0IYupHzfnk7vbU14SxUQglhZn398mZ5r5MOSdX8er1+9lk8mzPoIG9sGGJXv82E6vz1vg7X6tnbH9Ty/k9Qu7As4MACVLNu3btctSyG6dvG+zh+HY2VXec40a0Z7bHviBl//Vs1HL2ZEZAZrV+knDuYbKCTuycGvtksS/K4B3cKZbqXufp621A621A1NIq/vnrZo+IZP2XSto3XEDsZQ4h5xQzJiRuTv8+J0Rhpp+bCNYrrxnHgtmpfP2v1u7XAsGHlXIlG+cbVoyJ52qSkOz/CpWLEijOpGdKxelsXR2Bi07JvONvrfb6c9zKQ20S+ZrWOg1knz9jlzNtG+dfbhsTjpVlRGy86vY+4hCfni/JZUbDCsXpLFibgZd+631eW0bJwzn5+fv6cQ5+w/g3IP6c/fl3fn5u5ym9uGfaxlbO19TIw3v+MjNd95MtGxTzn6Hr+LLj1s1eBkNEYbjtcbBv1rBlwG8LEDzXlWc/O1Sfv35Mn79+TIyW1dzzNsryGgZ58iXV268ffffrqPPRSVJGQQAgcgBcccu2YYNw/t1v2oG3aCjC5lcu4+gwukjKF0T5e7f7c4Z1y9g90FNu+0KYTpeve17ccFOZWxD8zXVNKwNm5ZRTUZW9cb/DzigmHkzMxq0jIYKRxu2yR+v27R2xabvIP4yIo9WPdcDcMHrM7hy9GSuHD2ZIeet4MBLliVtEACEI+/8ag94/V42yTzpI2hoH2xYssfr7fTjvOX1fq2dsdNH5NKyZzkAPQ8vYeoHzanaYChemErhvDTa7V2WpKrBP3b8qlmjXcdN/TlDDlrOonkN/wJSXducEcAYEwWyrbXXNnTBxpgsIGKtXZv4/5HA33ZuNbcUrzY8dmN77nplDpEojHwtn/kz3B2BFoaafmxjn0GlHH5SIXN/yeCxj6cC8Pw/2/PDF41/YT18aQ+mjsllbWGMSwbtw8lXL+TQ01bw5DXduWZYP2KpcS55YCbGwLQfcnjv8fZEYxYTsZx/5xxy8qu2X2QHubmd9fHjubz+sXnsNXQduflVvDRuCv+5tw0jXmsRuJrJsCvnK4TjudRrpHGe/lMvZnyXy7qiGNcOHsTxVy3ggNOW8/y1Pbj18P7EUi3n3T8DY6B9rzIGHreSW4cNIBKznPn32USSOGuUH/s1DOfnpmxXz9gb759MTl4lVVWGx+/swboSd0cVh+V4TUuvpv/+xTxya+Ovn7Yj3Myer6/KZ/kPaWwoivD2wW3Y67ISup+crDfuu7YgnSt3tZrJsCvnaxjer/tVM0ivkQcv7cHU73JYWxjj4oEDOPXqRRx22goev3o3rh62N7GUOJc+OAtjYPjzbVg2L523HurAWw8501nf9MpUcguS008Qhvc/QetjctvOZqwX7dfmBZXc/Ph0wPkm4Kj3CvjxK3e/BRiGNqwfx6tb2fPG5V2ZN7YZZUUx7ttvTw65YgnzxjZj2dRMjLHkdajg/+5s/PTGOyIMeefXey6v38smi9qwm/Mje7zeTj/OW27u13cu78z8sdmsL4rx8H69OeiKZcwfm83yqRkYA7kdKjjmzoUAtOxZzh6/Kuapo3YnErUcdfuipPXDhuHY8bLmdXeMZ899CsnJq+CF9z/n5X/1YOB+K2jfuRQbN6xYlsFjd/dtdB1jt3JhA2NMzFpbZYz5zFo7rMELNqYbzugocAYcvGKtvXNbj8kx+XZf0+BSsgsyse1edSKpXp371fbvlGRndD3I85q2KnkDE3ZYsi8gswv6NP7Gj9bagV7V8y1fI4fvxNo2IX5cHDUEr49/zR/tec3fdz7Q85phuLhuJN37gQMj17/kab6C9xmbm9LSDs37zU6u7c6pXl3oaT0/RHPcna6vPtVrvf2251m/LPS0HsCr/bz/Nn98Q9OeSntX5XX7FdRHECghaMO+vvBbz2ue2nE/z2uGoQ3rdf8SwCeVrzWpjN2ZfM2NFtghGb/aybXdOfGy4A9q9ON4tdXVnta7ffY4T+sB3NptH89rhkG0Rb7nNUeserpJ5Wvi8Q3KWD/ar15njx+fUUQyvb/sra3w9rKmN8zwPl/v6unpyxHw6TMuj8U6tPe85vCFD201X7eVEN/jXCdlgjHmPeANYOOcBNbat7dV1Fo7B9i74asrIhJ4ylcREfcoY0VE3KF8FRFxz05nrPJVRGSb1IYVkVDbkaFC+cBq4DDAAibx7zYDUkREtkv5KiLiHmWsiIg7lK8iIu5RxoqIuEP5KiKhtK2BAK2MMVcBk9kUjDWCP/eYiIh7lK8iIu5RxoqIuEP5KiLiHmWsiIg7lK8iEmrbGggQBbLZPBhrKCBFRHae8lVExD3KWBERdyhfRUTco4wVEXGH8lVEQm1bAwGWWmv/5tmaiIiEh/JVRMQ9ylgREXcoX0VE3KOMFRFxh/JVREItso2/1TdCSkREGk/5KiLiHmWsiIg7lK8iIu5RxoqIuEP5KiKhtq2BAMM8WwsRkXBRvoqIuEcZKyLiDuWriIh7lLEiIu5QvopIqG11IIC1ttDLFRERCQvlq4iIe5SxIiLuUL6KiLhHGSsi4g7lq4iE3bZmBBAREREREREREREREREREZEmRgMBREREREREREREREREREREAiTm9wpswRi/18Bd1vq9Bt4w3o4xOb3jfp7WA3ht4Vee1/RjO0NzzAadARONelzT2xywlRWe1nOKev/6MDFvT92/73SAp/UA3lk01vOaJ3YY7HlNr8XLy/1ehUCy1dXE15T4vRqBU10S/H368u4dPK85YskYz2se1a6f5zU9f0+p9rJ7jPdtH6/r+XJ+9uGYjaSne1rvVB/eO7++8FvPa57aYajnNb1+jdiqKk/rhYWNx4mXlXlbNATnZ1+OV4/3663d9vG0HsCIJRM8r+lLG9Zj1as1Y74rfGi/hoHn5yzwPF/v3K2/p/UA3vGh/RqGPtiqRYv9XoXNaEYAERERERERERERERERERGRANFAABERERERERERERERERERkQDRQAAREREREREREREREREREZEA0UAAERERERERERERERERERGRANFAABERERERERERERERERERkQDRQAAREREREREREREREREREZEA0UAAERERERERERERERERERGRANFAABERERERERERERERERERkQDRQAAREREREREREREREREREZEAifm9Ao1x1X0L2PfwEopXxfjDsN0DW3PgISVcfMcSohHLx6/m8/qjrQNVLyUtzr2vTyMlNU40Zhn9UT4vPdDe1Zrg3nY+efVu/PRZPjktKrn3swkbbx/+XBtGPN+WaMzS/7AizrpxPrPGZ/Ov63cDwFo4+cqFDD6mMCnrAd4/l2GqGXQFbSu49oG5NG9ZhbXw0SsFvPts8LIgDMerH8+lW9v4yNVdGfdpHrkFlTz82eSNt3/4bGs+er4V0Zhln8PW8LubFrJiYSqXHbIX7XZbD0DPAaX88e55SVmPGkE/P/tVM+j8eE2CjlfV3Lb7ruzI2E9zyCuo4ukvpm+8/d1nCnjvuQIiMcu+w0q48OalVFXCA9d0YtakDKqrDIefUsjpl61o9DrU5vV+DcN7vLDwK2MjEcvD705m1fJUbruwl+v1gpI92+PlfnUzBx6/ejd++rQ5uQWV3PfZzxtv//jZNgx/vg3RmGXAYUWcfdMCJn6Vy8v/6ERVRYRYapxzbppP3/1LkrYuYXgvAspYt+j8HIyaQdqvDWnDVlYYHrquAzMnZmIi8Me/LWbv/dYlZT1q6D2X7Aw/zpVhOT+HIV/dqtmQPtgZ47N44i9dnDtYw2lXLWbIMUVJWxcIR965Wc/VgQDGmDzg30BfwALnW2u/S9byR76ez3vPFXDtQwuStchdrmYkYrn0rsX89fRurFqawiMfzWTMiFwWzEwPRD2Ayg2Gv5zRi/KyKNFYnPvenMa4UblMG5/tWk03t/PgU1Zy1LnLeOzPPTbeNuXbHMaNzOefIyeQkmZZsyoFgI67l3HXhz8TjUHR8hT+clQ/9jmikGgSXpl+PJdhqbkrcDtf49WGf/29I7MmZ5KRVc0jH/7C+NE5LJiZkawSW/A6C8JyvHr9XLq5jYedsopjz13OQ3/utvG2Sd804/uReTz4yWRS0izFqzYFaOsu5Twwckqj69YnDOfnsOYruJuxfuSrjlfV3J4jTyvk+PNWcc8VnTbeNuGbbL4dkcsTn00ntVa+fvV+HpUbDE99Pp3yMsNFh+zBIb8upk3HikatQw0/9mvQ3+PtSoLYhgU44bxlLJidQWZ2tat1IFjZsz1e7lc3c+CQU1Zw9LnLeOzP3TfeNvmbHMaNbM69n/yc6CNwMrZZfiV/eW4a+W0qWTAtgzvP6s1TP/6YlPUIw3sRCG/Gup2vOj8Hp2aQ9mtD2rAfv9wCgKc+n07xqhg3ntWNRz6eQSRJ8yXrPVewBa2PIAzn5zDkq5s1G9IH23n39dz70RSiMShcnsKVR/Zl0BFFSfmMC8KRd27Xc/vSAA8Bw621uwN7A78kc+GTx2aztjiazEXucjV79S9jybxUli1Io6oywqh38xh61JrA1HMYysucfRqLWWIpFmvdrejmdu4xpISsvKrNbvvkP2044ZLFpKQ5G5ZbUAlAWkZ8YyBWbohgTPI23I/nMiw1dxGu5mvhihRmTc4EYH1plIWz0mnRpjKZJerhbRaE5Xj1+rl0cxv7DFlLszr5Ovw/rfjNpUs35mteQVV9D026MJyfQ5yv4GLG+pGvOl5Vc3v2HFJKs+abf9D2wYstOO1Py0mtk6/GQHlZhOoqqCh3vrGazA/p/NivQX+Pt4sJXBu2oM0GBh9azIj/tnS1To0gZc+2eL1f3cyB3kPWkl2nDTvyP6054dIltfoInL937VtGfuKY7dhrPZUbDJUbTFLWIwzvRSDUGetqvur8HJyaQdqvDWnDLpiRRv8D1228LTu3mhk/ZyZlPUDvuUIgUH0EYTg/hyFf3azZkD7YzT/jMpjkNF03CkPeuV3PtYEAxpgc4CDgGQBrbYW1ttitekHVok0lK5ekbvx91dIUCtq6F8pe16sRiVge+2gyr/00gZ9G5zB9gnuzAYD327l0TgbTvs/hxv/bk9tP7sPsWts3c3w21wzrx7VH9OOCu+YkbaSUH89lWGr6zet8bd1hA7v1KWP6+Cy3SmzkZRaE8Xj14rn0ehuXzEln6thmXHdcb248aXdmTti0bSsWpHHVUX248aTdmTo2ucdSGM7Pfh+vfvEyY73KVx2vqrkzFs9OZ/LYbC7/VQ+u+U13pk9wvh1y4HHFpGfGOaNfX84e1JuTL15JTvPkDQQIQ/aEYRvrE9Q27B9uns8zd3ciHk9yj9dWBD17ani9X722dE4G08Y244bj+nLrSX2YNWHL43Tsh/l07Vu6sbO1sfzOnqC2e3YFXuRrGPZrWPLVa15v49basN36lPPdiFyqq2DZglRmTsxk5ZKUpNXVe67gCmIfgR81w/AaCbpt9cHO+CmLyw/ry58P35OL/zEvaZ9xQTjyzu16bs4I0A1YCTxnjBlvjPm3Mca7BAuI+kbPuPkNWa/r1YjHDZce25ezh+xNr36ldO5Z5mo9r7ezuspQuibG39+bxFk3zufBS3purNej/zru/WwCd30wkXcfa09FeXI6Ovx4LsNScxfgWb6mZ1Zz01NzeOr2jpStc39Eo5dZELbj1avn0vN8rTaUrony/96fyu9uWsi9f+yOtdC8VSVPf/8z94+Ywvm3LuD+P+1G2drkNXvCcH4Oab6CRxnrZb7qeFXNnVFdDevWRHnog5lcePMS7vxDF6yF6eOziEQtr4yfzItjf+GtJ1uydH7q9he4g8KQPWHYxq0IXBt28GFFFK9OYdZk77o6gp494M9+9Vq82rBuTYw735/MOTfN54E/9txsny6cnsHL/+jM7++ek7SaYXgvAqHNWNfzNQz7NQz56gfv+wjqb8MedfpqCtpW8Keje/HELe3pPbCUaDR5K6L3XIEWuD4CP2qG4TUSdFvrgwXoOaCUhz+fzD8/nMJbj7ZN2mdcEI68c7uemwMBYsAA4AlrbX+gFLi+7p2MMRcZY8YZY8ZVssHF1WmaVi1NoWW7TdfbLGhbyeplyRut6He9ukpLYkz8rhkDD3F3ag+vt7NF2w0MOmY1xkD3/uswBtYWbj4sqn2P9aRlxlk4PTnTUvnxXIal5i6g4flqG56v0Zjl5qfm8MU7+XwzvHmjV7ohvMiCMB2vXj6XXm9jQZsKhhxThDHQs38pJmIpKYyRkmbJae5MUbXbXmW06byBJXOSd62zMJyfQ5qvsAMZ29TyVcerau6MgraV7H/sGoyB3fuXEYnAmsIoX7yTx8BD1xJLcaYC7D2oNKnTqoYhe8KwjVsRuDZs733WMmRYEc9/NZ7rH57F3kNLuPb+Wa7WDHr2gD/71Wv5bSrY95jCjX0EkcimPoLVS1K598JeXPrgLNp0SV4/WRjei0BoM9b1Ptgw7Ncw5KsfPO8j2EobNhqDi29fwhOfTuf25+eybk2U9t2absbqePVU4PoI/KgZhtdI0G2tD7a2jj3KSc+MsyBJn3FBOPLO7XpuDgRYBCyy1o5N/P4mTmBuxlr7tLV2oLV2YAppLq5O0zR9Qibtu1bQuuMGYilxDjmhmDEjcwNTDyA3v5KsHOfDmtS0OP0PKGHhrOR9WFMfr7dz4FGFTPnGWf6SOelUVRqa5VexYkEa1YlLraxclMbS2Rm07JicRqgfz2VYau4CGp6vpqH5arnynnksmJXO2/9u3dj13SFeZ0F4jldvn0uvt3Hw0UVM/CYHgMVz0qmqMOTkV7FmdYzqxEzVy+ansXRuOq07lSetbhjOzyHNV9iBjG1q+arjVTV3xn5Hr2HC185lVRbNTqOywpCbX03L9pVM+Doba6G8LMK0n7Lo2L3p5qsfwrCNWxG4Nuzz93TinP0HcO5B/bn78u78/F0O91zV3dWaQc8e8Ge/em3Q0YVMrt1HUOH0EZSuiXL373bnjOsXsPugtUmtGYb3IhDajHW9DzYM+zUM+eoHr7dxa23Y8jJDeZnzUciPX2YTjVk690zeQAC95wq0wPURhOH8HOLj1TVb64NdviB142dcKxalsnhOOq2S9BkXhCPv3K6XxCs1bM5au8wYs9AY08taOx0YBkxNZo3rH5vHXkPXkZtfxUvjpvCfe9sw4rUWySzhe814teGxG9tz1ytziERh5Gv5zJ+RHph6APmtKrn6/rlEIxYTga8+aM73n+e5WtPN7Xz40h5MHZPL2sIYlwzah5OvXsihp63gyWu6c82wfsRS41zywEyMgWk/5PDe4+2JxiwmYjn/zjnk5FclZT38eC7DUtNvXuRrn0GlHH5SIXN/yeCxj51FP//P9vzwhXsnPK+zICzHq9fPpZvbeN+luzHlu2aUFMa4cGA/Tr96EcNOW8WjV3fl8mF9SUmxXP7gHIyBqWOa8ep97YlGIRK1XHz3PJol8RrWYTg/hzFfwf2M9SNfdbyq5vb844+dmfhdNmsKY5y1T2/OuXoZR51eyP1XdeSiQ3uRkmK59qEFGAPHn7eK+67sxEWH9gJrOPK01XTrnbyBAH7s16C/x9tVBLUN67UgZc+uxM0cePDSHkz9Loe1hTEuHjiAU69exGGnreDxq3fj6mF7E0uJc+mDszAGhj/fhmXz0nnroQ689VAHAG56ZSq5BY3vJwjDexEIx/Falxf5qvNzcGoGab82pA1bvDqFG8/ohok412K+7pH5SVmHGnrPFVxB7CMIw/k5DPnqZs2G9MH+8n0z3n68LdGYJRKBP9w5L2mfcUE48s7tesa6eGEDY0w/4N9AKjAHOM9aW7S1++eYfLtv5HDX1meXEJILkZiU5F0ndEfYyort3ynJXlv4rec1T++4n+c1w+BT++aP1tqBfq9HQzQ4XyP5dkjsKI/WLsG4OenMlvzIAT+YmGtj+Oplq5LXcNtR7yz63vOaJ3YY7HnNMGiK+QoNy1g/8tWP16UEw4glEzyveVS7fp7XrPcCe27y4T1eGPIV/MlYr9ta8fLkDaTZlUXSvf2gIL7B+0tPvu5DH8GpHYZ6XjMM70eaYsbuVB+sGebR2iWE4PzsixDs19C0YUOgKeYr7Pp9BF4LTZ+E1/nqg3cWjt3+nZJMfbDu2Fa+utp6t9ZOAJpcsIuI7OqUryIi7lHGioi4Q/kqIuIO5auIiHuUsSLSlHn7dU0RERERERERERERERERERFxlQYCiIiIiIiIiIiIiIiIiIiIBIgGAoiIiIiIiIiIiIiIiIiIiASIBgKIiIiIiIiIiIiIiIiIiIgEiAYCiIiIiIiIiIiIiIiIiIiIBIgGAoiIiIiIiIiIiIiIiIiIiASIBgKIiIiIiIiIiIiIiIiIiIgEiAYCiIiIiIiIiIiIiIiIiIiIBIgGAoiIiIiIiIiIiIiIiIiIiARIzO8V2IwBE416WtJWVXlaLyxsVaW3BY3xth5wesf9PK95z7wxntf8y55HeFrPlm/wtB4AFd6X9JxV3knTcWKHwZ7XfH3Rd57XPLXDUG8L+nCuxHpf0nN+5KvXz6UNwxOJ5/vV6/c9AEe16+d5zSfnf+15zYu7HOh5TXGJDxlrMjK8rReSNnqkZYG39XzYr5637YBZDwzxvGb3V0s9rRdP9f58yeg3va8pspMi2dme1ouvW+dpPfCnDXv7nB+9r9l7f28LRnz4jqi3pxB/+NF+je1aH/MFRbTA2/YrPrRf/eiDvW72JM9r/nO3PT2t58trchsfyWpGABERERERERERERERERERkQDRQAAREREREREREREREREREZEA0UAAERERERERERERERERERGRANFAABERERERERERERERERERkQDRQAAREREREREREREREREREZEA0UAAERERERERERERERERERGRANFAABERERERERERERERERERkQDRQAAREREREREREREREREREZEAifm9AjuroG0F1z4wl+Ytq7AWPnqlgHefbe163YGHlHDxHUuIRiwfv5rP648Gr6Yf23jVfQvY9/ASilfF+MOw3QNXr4Yb+/b1a7sx9fPmZLeo5JqREwEY+UAHxr7Wiqz8SgCOuW4hexxaDMCSXzJ564aubFgXxUTg8ncnkZJuG70eNbKaVfHnv8+kc88yrIUHbujBtAk5SVt+XSlpce59fRopqXGiMcvoj/J56YH2rtULkzBkTxhq+nG+DNJ+ffzq3fjp0+bkFlRy32c/b7z942fbMPz5NkRjlgGHFXH2TQs2/m3V4lSuPLQfp1y1kOMvXpqU9YBwnJ/Dwuvn0o/nMUg5sDV+7NcgZfqL1/Rg0ufNadaikls+GQ/A+w904utXW9OshdOGPeHa+ex5WBFVFYaXb+jO/InZmAiceusceg1dk5T1gPC8RsLAj/3q9fsfP3LAq5pX3PQzg/dfQXFRKpeeefBmf/vNWbO54PJpnHHkEZSsSU1OvVsmM/jAlRQXpnLpafsDcP4V0xl80EqqKg1LF2Xy4G19KV2XkpR69fHimM0dtZScMSvAQEXbTFacsRvNP1lM1uQiMFCdncLyM3ejOjc5+7VlQSnXXvEtzfPWY63ho5E9+N8Hu3PDNaPp0L4EgKysCkpLU7nkyl8lpWZKSjX33/4xKbE40Wic0WO68OIb/WiWtYEbr/ySNi3XsWxlNn9/4GDWlaYlpWYYhaGtFYY2LHh/7grSc/m/6zoz44tcslpUcenwqQB88WBbfvxvAVn5VQAMu2YxPQ8t2fiY4sUpPHZUHw65Yin7/355UtajRiRiefjdyaxansptF/ZK6rLr8/yonygrjRCvNlRXG644cS/Xa4ZBGPoKIZh9zX++fQqDD1pFcWEql5w0FIDsnEr++s9JtGq3nhVLMvjHtXuybq177clf/3YhR520FGth3sxsHrixF5UVUdfqubVfP/5Le2Z/nkNmiyrOHz5zs799/68CRt3dlj/9MJXM/GqqKwwjbmrHskmZmIhl2M1L6TSkNCnrUSNIr0vXBgIYY3oB/611UzfgFmvtg8lYfrza8K+/d2TW5Ewysqp55MNfGD86hwUzM5Kx+HpFIpZL71rMX0/vxqqlKTzy0UzGjMhlwcz0wNT0YxsBRr6ez3vPFXDtQwu2f+cmWA/c27cDT17Jfr9bxmtXdd/s9gMvWMohF23+AVR1Fbx65W6ccf9s2vUuo7QoRjQleYMAAC6+cQ7jRjfnziv2IJYSJy09ntTl11W5wfCXM3pRXhYlGotz35vTGDcql2njs12t6ye38xXCkT1hqen1+TJo+/WQU1Zw9LnLeOzPmzJ28jc5jBvZnHs/+ZmUNMuaVZs3p56/rQv9E4OvkiUs5+ddgdsZ68dz6fXzGLQc2Bo/Xh9ByvShpyznkN8t4fmrem52+7ALlnDkHxZvdtvXr7YB4JaR4ylZlcKjv+vD9e9PIJKk+e3C8BrZFQQxX8H79z9+9IV4VfPTDzrwwRtduOrWCZvdXtBqPf0Gr2LF0iTXe78dH7zeiatun7TxtvFjW/D8oz2IV0c477LpnHreHJ57xJ0PVrw4ZqPFFeSNXsaCv+yNTY3Q+vkZZI9fRdFhbSk8tiMAuV8tJX/EIlae2i0pNaurDU8/N4BZc1qQkV7Jo/d9xE8T2nDXvQduvM9F5/1IaWnyOsQrKyNce/tRlG9IIRqN88DfPuaHCe3Zf/B8xk9qy3/f3ZPTTpjE6b+ezL9f3idpdXcVQewjgHCcn8Ny7grSc9nv5NUM/u0K3rmm62a3Dz1/xVY/5B/+9450P7ik3r811gnnLWPB7Awys6tdWX59rj+7DyVF7n2ouasJYhs2DJ+teVXv03fb8f6rHbn6zikbbzv1/HlM+D6fN57twinnz+OUC+bx3IM9klq3RotWGzj+rMVcfPwgKjZE+et9Uzj42BV8+r+2rtRzc7/2PamI/ues5qNrOm52e8mSFOZ9k01Ou4qNt/383+YAnP/xTEpXRXnz/K789n+zMEnqIwja69K1SwNYa6dba/tZa/sB+wBlwDvJWn7hihRmTc4EYH1plIWz0mnRpjJZi69Xr/5lLJmXyrIFaVRVRhj1bh5Dj0reN1F2hZp+bCPA5LHZrC12b5SS3/XAvX3bbd+1ZObuWGNvxug82u5eRrveZQBkNa8iksTdkJlVRd9BaxjxpjNSqaoyQulatyceMZSXORsRi1liKRab3LENuxy38xXCkT1hqen1+TJo+7X3kLVk51VtdtvI/7TmhEuXkJLmhE1uwaa/fz+8Oa07baBDz7Kk1K8RlvPzrsDtjPXjufT6eQxaDmyNH6+PIGV6j31LyKyTr1uzdGYGu+9XDEBOQSUZOVXMn5i8QZ9heI3sCoKYr368//GjL8SrmlMmtGBtyZYfLPz+yqk89+geSX+fN2V8PmvXbF5v/JgC4tVOV9m0yXm0aL0huUVr8eyYjVtMZRyqLZHKOFU5qdj0TcdppCIOJnnlCosymTWnBQDry1NYuCiXghbra93DctD+8/lidJfkFcVQvsF5LmPROLFoHGthv0EL+eTL3QD45Mvd2G9QMAe3BrGPAMJxfg7LuStIz2WXwevIyNvxD91/GZlL804baNVj/fbv3EAFbTYw+NBiRvy3ZdKXLZsEsQ0bhs/WvKo3+afmW7Rfhxy6kk/fcz6I//S9tgw9dGXS69YWjVpS0+NEonHS0qtZvcK92Y/c3K8dB5fVm6+f39mWQ/6ybLP26upZ6XTez5kBIKugmrScapZNSt5AlqC9Ll0bCFDHMGC2tXa+Gwtv3WEDu/UpY/r4LDcWv1GLNpWsXLJpqrRVS1MoaOtuQHpd049tDAuv9+23L7ThvqP35PVru1G2xmlsr5qTjjHwr3N258Ff7ckXTyZ3ZFibjuWsKUzhqn/M5NF3xnPF32eSluH+iNRIxPLYR5N57acJ/DQ6h+kTgjsbQD1cydcwZE9YatbmxfkyDPt16ZwMpo1txg3H9eXWk/owa4KzP8vLIrz7eHtOuWph0mv6feyEWNIzNgzPZRhyYFcQ1Ewf9WJb7jiqPy9e04PSRBu2Q+9Sfv6kBdVVsGpBGgsmZ1O0pOlO7RzG47UegchXv97/1PCqL8TPmvseuJzVK9OZO9O9Kau35ojjF/PjNwWuLd+LY7Y6L5XiQ9rS5W8/0fXWH4mnR1m/ex4A+R8uoPPtP5H94ypWH9Nx2wvaSa1brWO3boVMm9Fi4219e6+gqDidJUuT+5xGTJwn//keb/z7v/w0qR3TZrWkee56CoudDtXC4kzycsqTWnMXFYg+Aj+EpQ3r97nLC37s1+9fbMnjx+zB/67rzPpEG7aiLMLXT7XhkMuTd8nA2v5w83yeubsT8XgSR3Nth7Vw5/O/8PD/JnLMacm9zEETEYg2bG1B/WzNz/2al19B0Srn/WrRqjRy8yu284idt3pFGm8/35EXPv2Ol0d9R+m6GOO/zXetntf7deanzWjWupJWe2zehmu5+3pmfZpDvAqKF6awfHIGJUuTN1NJ0F6XXg0EOB141Y0Fp2dWc9NTc3jq9o6UrXN3ZKGp55zq9jePva7pxzaGhZf7dujZy7n+q/Fc+dEkmrWq5IO/dwacKfrm/tCMMx+axSVvTmHyiHxmfpO8N9/RmKV773V8+Gpb/nRif8rXRzj1okVJW/7WxOOGS4/ty9lD9qZXv1I6J/mbuLs4V/I1DNkTlpo1vDpfhmG/xqsN69bEuPP9yZxz03we+GNPrIXX7+vIr36/lPSs5E+rqPOzb5KesWF4LsOQA34LaqYffPZS/v7VOG78eDw5rSp46w5nmur9Tl1OXtsN/OP/+vH637rRbUAJkVjTfYLDdrxuRSDy1a/3P+BtX4hfNdPSqjnt3Fm89FTP7d85yU47fzbV1YYvPnZnWlXw5piNlFWRNbmIeTf3Z+7tAzAVcbLHOd9KK/xVJ+bfOoB1+xSQN3pZcgsD6emV3PyXr3jymYGUrd/UkXrogfMYldTZABxxG+Hi647njItPodduq+jSsSjpNZqIQPQR+CEsbVg/z11e8Xq/DjprJVeMmszFH/5CdqtKRtzZAYAvHmzL0PNXkOZCH8Hgw4ooXp3CrMneDQYEuPq0vlx2wl7cfP4eHHf2MvoOcueSB7uwQLRhawT5s7UwnLcAsnMqGXLYKs47cghnHzqU9IxqDj0u+e26Gl7u18r1hjGPt+KAK7ccdLTXKUVkt6nkxV935/O/t6P9gDIi0eStSNBel64PBDDGpALHA29s5e8XGWPGGWPGVdqGTbkWjVlufmoOX7yTzzfDmydhbbdt1dIUWta6DkVB20pWL3P3ejhe1/RjG8PCy33brGUlkShEIrDv6StY8LPzDfm8NhV023ctWflVpGbE2f3QYhYnscG4alkaq5alMX1iMwC+Hl5A997rkrb87SktiTHxu2YMPCT4U6tCA/OVhuVrGLInLDXB2/NlGPZrfpsK9j2mEGOge/91RCKwtjDGrPHZvHxnJy4d0p+PnmnLO490YPhzbZJSU+dn720rY5tSvvohDDngpyBnek6tNuwBZyxjXqING43BqbfM5aaPJ3DJv39hfUmMVl2SP72qV8J0vNbHrTasL9nj0/sfr/tC/KrZpkMprduV8ehLo3n2nc8paFXOQy+Opnm+u9/qHnbcYgYduJJ7b9qLpM6ZX4cXx2zGjDVUtUgjnp0C0Qile+WTMW/zY3TtgAKyJhYmtW40Gufmv3zF51924ZsxnTbeHonE2X/oQr78unNS69VWWpbKz1NbM7DfYorWZJCf53xRID+vjOISd6+77rcg9RH4ISxtWL/77rzg9X7Nblm1sQ27z+mrWDzR6WtdNCGLT+5uzwMH9mXMc60Y/Xgbxr6YnGn8e++zliHDinj+q/Fc//As9h5awrX3z0rKsrelcIUzsGtNYQrffpJPr72CdexsS9D6CIL+2Zqf563iwlSaFzjHQfOCDawpTN3OI3ZevyFFLFuUTklRKtVVEb75tCV79HdvgI6X+7V4QSprFqby3K968ORBvVi7LIUXju/OupUxIjEYdtNSzv1gFr95aj7lJRGad0nezAtBe116MSPAMcBP1tp654qx1j5trR1orR2YYhoyvaPlynvmsWBWOm//u3Vy1nQ7pk/IpH3XClp33EAsJc4hJxQzZmRuoGr6sY1h4eW+LVmxKZQmj2hOm8Q35HseXMyyaZlUrI9QXQVzxubQOonXqCpalcrKZWm07+rU6ze0mAWzM5O2/Prk5leSleNcXzY1LU7/A0pYOCt514PZxe14vtKw6XPDkD1hqen1+TIM+3XQ0YVM/sZZ/pI56VRVGJrlV/G3t6fw2JjxPDZmPMdesJQTL1vE0eclZxSuzs++2GrGNqV89UMYcsA/wc70Ncs3tWEnjGhBu15Om7JifYQNZc5b16mj84jELO16Nt2BAOE5XrfKlTasH/vVj/c/fvSF+FMT5s/O4axjjuD8Ew/j/BMPY9WKdK747YEUFbr3Ye4+Q1dy8u/m8rcrB7Ch3N1vxnlxzFY1TyVt3jpMRTVYS8aMNVS0yiBl5aYMzZpcRGWrZL6Htlz1p+9YuCiXt9/rvdlfBuy9jIWLcli1OrnfYM1tVk5WptNZm5pSxYA9l7JwcS7fjevIEQfPBuCIg2fz7Q/uXAJhFxKYPgI/hKUN68+5y1te79e1K2Ib///LiDxaJdqpF7w+gytHT+bK0ZMZct4KDrxkGfv+NjnXCn/+nk6cs/8Azj2oP3df3p2fv8vhnqu6J2XZW5OWUU1GVvXG/w84oJh5M0PTBwuB6iMI/mdrfp63xoxqyeHHO5cEOfz4pYz5IjkDgOqzcmk6u+9dQlp6NWDpN6SIhS5mupf7tWWvDfzph1+4+KvpXPzVdJq1qeR3780iu2UVlesNFWXOgN15X2cTiUFBj4YNwtmWoL0uY9u/S6OdgQtTUvUZVMrhJxUy95cMHvt4KgDP/7M9P3zh3pMRrzY8dmN77nplDpEojHwtn/kz3B1N7HVNP7YR4PrH5rHX0HXk5lfx0rgp/OfeNox4rcX2H9hE6oF7+/bly7oze0wOpUUx/j6kP0deuYjZY3JYMjULjCW/wwZOumsuAJm51Rx44VIePr4vGNj90GL2OKy40etQ2xN3dOO6e2eQkhJn6cJ0Hviru9M45req5Or75xKNWEwEvvqgOd9/nudqzV2IK/kK4ciesNT0+nwZtP364KU9mPpdDmsLY1w8cACnXr2Iw05bweNX78bVw/YmlhLn0gdn1TtlVDKF5fy8i3ElY/14Lr1+HoOWA1vjx+sjSJn+78t6MeO7XNYVxbh+30H835ULmDEml4VTszAGWnQo56y7nG81laxK4ZHf9sEYZ4ar8x6YkZR1qBGG18guJjD5Ct6///GjL8SrmtfdMZ49B6wmJ6+CF97/jJef7sHI9ztt/4E7W+/On9lzYCE5eZW88NEoXn6qO6ecN4eUFMudj48DYNqkXB77Rx9X6ntxzG7o3IzSvfPpeN8kbMSwoX0Wa/ZrRZv/zCJlxXowhqrmqaw4pVvSavbZYyWHHzqXOfPyePyBDwF47qV+/PBjew526bIA+c3LuO7Sb4hELMZYvvquC2N/6sjUGS25+covOeawmaxYlcUd9x+S9Nq7mMD0EUA4zs9hOXcF6bl84/KuzBvbjLKiGPfttyeHXLGEeWObsWxqJsZY8jpU8H93Ju3y8buU5gWV3Pz4dMD51uqo9wr48StvZgnaRQSmDRuGz9a8qnfd3ZPYa2AROXmVvDhyNC890Y03nu3MX++ZxJG/XszKZencdc1eSa9bY/qkHL4e2ZKH3xhHdbVhzi/N+PiNdq7Vc3O/vndFRxaOzWJ9UYzH99+dA65Yzl6n1n+pp7LVMV4/tysmYmnWuopf3bcwKetQI2ivS2NdvLCBMSYTWAh0s9Zud67unEi+HRI7yrX1qY+tqvK0Xmi4/YnIrsCHi8rcM2+M5zX/sucRntaz5ckbubWjPql45Udr7UDPCzdCg/PV5Nt9zTD3V0xcZ2JejOHbJCznydcXfed5zVM7DPW2oA/n5k/jbzS5fIWGZawv+er1cxnEC+nVx+P9aqLeXNO7Nj8y/cn5X3te8+IuB3pb0IfXyKf2zcDnK/iTsZFmzTytZ9c33dktGiLaNjmXS9phPuRd1VL3rse6NbMeGOJ5ze6vlnpaL57q/fny89E3NbmMbQr5qjasO7w+b8XX+TAVvA/P5e1zfvS+Zu/9vS0Y8WKy6M2NLH2xyeUr7Pp9BOordEe0pXvf5K+XD/u1uqj+D9rddN3sSZ7X/Odue3paz+vXJMAnla9tNV9dXRtrbRkQmq+NiYh4RfkqIuIeZayIiDuUryIi7lC+ioi4RxkrIk2Z98O+RERERERERERERERERERExDUaCCAiIiIiIiIiIiIiIiIiIhIgGgggIiIiIiIiIiIiIiIiIiISIBoIICIiIiIiIiIiIiIiIiIiEiAaCCAiIiIiIiIiIiIiIiIiIhIgGgggIiIiIiIiIiIiIiIiIiISIBoIICIiIiIiIiIiIiIiIiIiEiAaCCAiIiIiIiIiIiIiIiIiIhIgGgggIiIiIiIiIiIiIiIiIiISIBoIICIiIiIiIiIiIiIiIiIiEiAxv1dgMxZsdbWnJU3M211gq6o8recXE416Wy811dN6APH16z2veV33Azyvef7UiZ7We7ZPL0/riXvsfnt7Wi/y/RRP6wFgvB9PZ6sqPa0Xbd3K03oA1StWel7zjN5HeV5z6f/ae1qv/ZnzPa0HQKn3JcMgkpHhaT0/2jzRZs08r1ldUuJpPa/fh/jl4i4Hel7zpKnLPa331h7enyvFPV6/NuMe94GA9+cRgKqFizytZ1K87yPwQ/crx3he8+CJ3rYLvj7U2zazuCd+UD9P68V+mO5pPQCTleV5zXhRkaf1ItnZntYDiK9b53nN23oN9bzmrBd297RejwtneFovVIzxtNyiawZ7Wq/DfeM8rQcQbd/G85pV8xZ4Wi/aIt/TegCRzEzPa97Xf3/Paxb/to+n9Qo+metpPQCWbP1PmhFAREREREREREREREREREQkQDQQQEREREREREREREREREREJEA0EEBERERERERERERERERERCRANBBAREREREREREREREREREQkQDQQQEREREREREREREREREREJEA0EEBERERERERERERERERERCRANBBAREREREREREREREREREQkQDQQQEREREREREREREREREREJEBifq9AY1x13wL2PbyE4lUx/jBsd9frFbSt4NoH5tK8ZRXWwkevFPDus61drzvwkBIuvmMJ0Yjl41fzef1Rd2t6Xc+v/fr8qJ8oK40QrzZUVxuuOHEvV+sF6Xj96q8FLPwik/QW1Zz04eLN/jbpmRy+/38tOGvMfNLz4wAUTkvh61sKqFwXwUTg+LeWEEuzSVmXlLQ4974+jZTUONGYZfRH+bz0QPukLDvs3M6Cli1Kufayr8nPKydu4aNPevK/j/agW+dCLr9oDBnpVSxfmc3dDx1A2frUpNYGf7LHj+PVq+z5861TGHzQSooLU7nklP0AOODw5Zx18Ww6di3lynMGM3Nqriu1vc5XgPZdy7j+/mkbf2/bsZz/PNyZd19s3POZ+8gS0satI54bY9XD3QAwa6tpfu9ioisqqG6VStG17bHZUdK/XEP2O6s3PjY2fwOr7utKVbf0Rq1DbV6fK8PC67YWBL/d49Zrcnv8eC4jEcvD705m1fJUbruwl6u1/DhXunnsjLuxGctGpZGWH+eI9ws3+9uMZzOYdE8zjvt2JWnNLcu/SWHy/dnEKw2RFMue166j1ZDKpK2LH8dOGPixX3/924UcddJSrIV5M7N54MZeVFZEXavnR7sHvD+PeP1c+vW+Mij9PdNvSWH1l1FS8i2D3tkAwNxHY6z+IgoRSM239LqjgrRWUL7Y8MOv08jo4vQJ5OwVp+fNyctXgBPOcl6XxliGv9WOd1/qmNTlh5Xbx2tKShX33zKclJRqolHL6LGdefHN/vz+zB8YMmAhVdVRlixvxr1P7k9pWVpSa9fwIuv+fPsUBh+0ynnvfNJQALJzKvnrPyfRqt16VizJ4B/X7sm6tSlJrw3+tO+ymlXx57/PpHPPMqyFB27owbQJOa7W9Pp86eZ5pOVTC8gaX0J1ToyF/3S2JbKuitYPzyO2soKqlqksv7wL8ewYkbVVtHloHmmzy1h7UD6rzuuQlHWooT4Cd3h1vDZL3cDth4+ie77zXujmTw/lnH4T6dK82Pl7WgVrN6Ry8qunJr22V22tK26YwOD9l1NclMalZx8CwJkXTOeo4xdQUuT0L7/w1O6M+86d3PPj/Ygf7R4vs8DL/p53/vISZRtSiccN1fEI5z56EjkZ5fz9zE9o13wtS4qaceMrR7J2fXLaIVfcMpnBBzr96Zeetj8A518xncEHraSq0rB0USYP3taX0nWNaxO4OhDAGHMlcCFggUnAedba8mQtf+Tr+bz3XAHXPrQgWYvcpni14V9/78isyZlkZFXzyIe/MH50DgtmZrhWMxKxXHrXYv56ejdWLU3hkY9mMmZELgtmJq+T38964M9+rXH92X0oKXKnYV1XkI7XHr9ZR++zS/jyupab3b5uaZTF32SQ1a5q03pUwahrW3HwP1fSYo8KyosiRGLJGQQAULnB8JczelFeFiUai3Pfm9MYNyqXaeOzk1ZjV+R2vnqRBdXVhqdfGMisuS3ISK/ksX9+wE8T23LlH7/j6Rf3YdLUNhx12ExOOWEKL7zWP2l1a/iRPX4cr15lz6fvt+P9/3bk6jsmb7xt/uws/n713lx20y+u1vY6XwEWz83kshMHAM7r5cUvx/Ldpy0avdz1h+VRemxz8h5auvG27LdWsWGvTEpP6kTWW6vIfms1a3/XivKDcyk/2BlcEZtXTvN/LErqIIAaXp4rdxVuZqwfba0aQW73uPWa3Ba/nssTzlvGgtkZZGZXu1oH/DlXunnsdP51ObuduZ5x12/e8Vy2NMLyb1PJbLtpn6Y1t+z3xBoyWsVZMyPK17/P41dfrq67yJ3iZw74LWj52qLVBo4/azEXHz+Iig1R/nrfFA4+dgWf/q+tazX9aPfU8Oo84sdz6Uc7PUj9Pa2Pr6bd6VVMu3HTAO6O51bR9U9O38Cil6PMfypl4wf+6R0sA9/Y0Oi69encfR1HnbSUK8/ch8pKwx1PTuSHr1qwZEGmK/V2FUHoI6isjHLt34+ifEMK0WicB277iB8mtOenSe145rV9iMcjXHjGOM44YRL/fnVg0urW5XbWffpuO95/tSNX3zll422nnj+PCd/n88azXTjl/HmccsE8nnuwhyv1/WjfXXzjHMaNbs6dV+xBLCVOWnrctVo1vD5funkeWXtQPmuOLKD1E5u2Je+9Fazv24zi41uT995y8t5fQeEZ7bAphsKT25C6qJzUhUmLgM2oj6Dpfs51/cFf8838jlz10VHEItVkxKq4ZviRG/9+zQHfsq4i+V/GAu/aWp9+1JEP3uzCVbdM2Oz2d1/rxtuv7pbUWnX50Yb1s93jVRZ43d9zydP/x5qyTefE3x4ynnGzOvDil/357cHj+e3B43ls+JCk1Pr0/XZ88Honrrp90sbbxo9twfOP9iBeHeG8y6Zz6nlzeO6Rxn0JxLVLAxhj2gOXAwOttX2BKHB6MmtMHpvN2mL3RtrXVbgihVmTnRfQ+tIoC2el06JNckct19WrfxlL5qWybEEaVZURRr2bx9Cj1gSmHvizX/0QpOO17aBy0nK3bLSPvasFg64twphNH/Qv/jqD/F4VtNijAoD05nEiSd0NhvIyZ4GxmCWWYrHJG2ewS/IiX73IgsLiTGbNdU7a68tTWLA4l4L8Mjq0K2HSVGe05E8/t+OAfd1pBPuTPd4fr15lz+SfmrN2zeaNv4Vzs1k8P8v92h7na117Dy1m2cIMVixpfMO+ok8mNnvzbUn/fh3rD3U+8F9/aC7pY9du8biM0SWUH+juNyrCwu2M9aOt5Qc/X5fJfE1uix/PZUGbDQw+tJgR/225/TsngR/nSjePnZaDKknN27INO/HubPa8phTMptvyeleR0cq5b06PauIbDNUVyVmPsORAXUHN12jUkpoeJxKNk5ZezeoV7nxLtYbf7R4v+PNcet9OD1J/T97AOCl1Jv+K1erXj683eKVjtzKmT8xhQ3mUeHWEyePy2G/YSs/q+yEofQRgKN/gvKeMRePEonGsNfw4qT3xuNOF/cvMlhTklyW5rrcm/9SctSWbv3cecuhKPn3PGUT26XttGXqoe8es1+27zKwq+g5aw4g3nX6eqsoIpWvdn6TY+/Ole+eR8j2yidfpJ8j6cQ1rD8wHYO2B+WSNc16PNj1K+e7Z2BTvcjfogvI5V1ZqBfu0W8pbU/YAoCoeZW1F7Xar5eges/hoeneX1sCbttaUCS1YW+LOYIbt8aMNG7Z2j1f9PbUd1HseH/7UE4APf+rJwX3mJm3ZU8bnb9GfPn5MAfFqp90zbXIeLVo3fvCs22fdGJBhjKkEMoElLtfzTOsOG9itTxnTx7v7AUeLNpWsXLIpuFYtTWH3Ae41eL2uV5dX+xXAWrjz+V+wFj5+tTUf/ze403F6sV/nf5ZJZuuqjR/411gzzwmy4ee3prwwSrdflbLX75N7AoxELI98MIV2XTbw/outmD4h2LMBJLiar15nQeuW6+jepZBpMwuYtzCPoYMW8t0PnTho6HxaFpS6VndjfQ+zJ6THa6AdfOxKRn3o3odykeIq4vlOlsbzU4isqdriPulfl1B0Q3Kn/INwnSvrcC1j/Wprhem5dPs1WcOP5/IPN8/nmbs7kZHl/mwAdXl5rvTSks9TSW8dJ2/3LbO1xuKRaeTuUUU0Sf1Jfr/n8lmg8nX1ijTefr4jL3z6HRXlUX76tjnjv813taZfvDyP+PUa8bqdHob+nrkPx1j+fpRoNuz9zKZOzPLFhh9PTSOaZenypyry9knet4Pnz8zid5fNoVluJRUbIgw8cDUzpzRL2vJ3YYHoI4iYOI/f9T7t2qzlvZG7M2325m26ow6ZyZdjuia9bg2/2sx5+RUUrXI+kCtalUZufpJGH26HF+27Nh3LWVOYwlX/mEm33UuZOSWbJ+/sxob1wRvU5uV5JLqmkurmTj9BdfMUovX0E7ghTO8r62jyn3N1yCmhaH0Gfz/8C3q1XM3UFQXc/eUBrK9yjqN92i1ldVkmC9bkubYOfvaJHnfyXA47ZiEzp+XxzCO9Wbc2+YMF/Ghr+dXu8SsLXO/vsYaHL/gQLLzzfW/+931v8rPXs3qtc55cvTaL5tnr3atfxxHHL2b0yDaNXo5rAwGstYuNMfcCC4D1wEhr7Ui36nkpPbOam56aw1O3d6RsnbuNFlPP4D03R6V7Xa82L/crwNWn9aVwRSq5+ZXc9cJUFs7JYPIPwfs2pRf7tWq94ecncjn6uWVb/M1Ww/Kf0jjhzSXEMiwf/a4NBX020G6/5E1PFY8bLj22L1k5Vdzy9Cw69yxj/ozgTvvnRb56mQXp6ZXccs0onnh+EGXrU7n/sf245ILvOfvkiXw3riNVVa5NXuPU9zh7wna8Bl0sJc6+h63m+fu7+LYOKTPWY9MiVHVO/mjYsJwra3M7Y/1qa4XlufTyNen1czn4sCKKV6cwa3IWe+5b4l6henh9rvRK1XqY9lQWB/67eKv3KZkZZfJ92Rywjfs0lJ/vufwUxHzNzqlkyGGrOO/IIZSujXHD/VM49LhlfPFB4ztrdjVenkf8eo143U4PQ39P18ur6Hp5FQv+HWPJqzG6XFpFakvLkJHlpOTB2qmGKVekMvCdDZvNINAYC+dm8caznbjz6QmUr48yd3o21dXB/mZskPoI4jbCxX89gazMDdx21Rd06VDEvEXNATjz1z9THY/w2dfdkl84ISxtZvCufReNWbr3XscTd+zG9InN+MONszn1okX856HOrtX0Sxj6e8L0GqkRlM+5YpE4e7RayV1fHsCk5a25/qCvuWDgeB4dMxiAY3vO5KMZbs0G4PDrNfLR21147bmeWAvnXDSNCy6bykN39Ut6HT/aWn61e/zIAi/6e37/xK9ZtTaL5lnreeTCD5i3Ms+1Wttz2vmzqa42fPFx4y875+alAZoDJwBdgXZAljHm7Hrud5ExZpwxZlwl7lwfLJmiMcvNT83hi3fy+WZ4c9frrVqaQst2m0aBFrStZPUy96674XW9Gl7vV4DCFc7orDWFKXz7ST699lrnSV0vebVfSxbEWLsohXeOb89/D+1A6bIY/zuxPWUro2S2rqbtoHLS8+PEMiwdD17PqqnuTJdZWhJj4nfNGHhIsKdW9SJfvcqCaDTOLdeM4vPR3fhmrPMmcOGSXP56xxFc+pfj+OLrrixZ5t4oRj+yp0ZYjtegG3hgEbOnZlO82r1px+J5MSKFzlSNkcJK4rmbj+NMH13CepcuCxCGc2VdO5KxTSFf6wrLc+nFa7KG189l733WMmRYEc9/NZ7rH57F3kNLuPb+Wa7Vq+HnudJtpQujlC2K8umv8/l4WAvWL4/w2Un5lK903iaXLYvw3WW5DLy7hOxOyZuFwa8c8JvbbVg/9mu/IUUsW5ROSVEq1VURvvm0JXv093agjle8PI/4/Rrxqp0elv4egFbHVrPyU+eDxkgqpOQ5tzfrbUnvaFk/P7kd1iPfacflpw3iunMHsHZNjCXzg/VBXF1B6iOoUVqWxs+/tGHg3osBOOKgWezbfxF3P3oQm13LJ8n8ajMXF6bSvMB5TpoXbGBNobttWS/bd6uWpbFqWRrTJzp9O18PL6B772C+F6nhxXmkOjeFaJHTTxAtqqQ61/3LLUB43lfW5nYfgVeWrctm+bpsJi13vrk9clY3erd0ppCPmjiHd5/L8JnuDgSo4XWfaHFRGvG4wVrD8Hc707N3sSt1/Gpr+dHu8SMLvOjvWZX45n9RaQajpnShT4cVFK7LoEUzZ8biFs1KKVqX4Vr9GsOOW8ygA1dy7017kYx2j5tfszwcmGutXWmtrQTeBvareydr7dPW2oHW2oEpuHstvcazXHnPPBbMSuftf3sz1cX0CZm071pB644biKXEOeSEYsaMzN3+A5tIPYf3+zUto3rjlKppGdUMOKCYeTPdfwF7y7v9mt+rkrPGLOC0LxZx2heLyGpTxa/fWUxmy2o6HLiewumpVK03xKtg2ffp5O2WvCnOcvMrycpxpr9KTYvT/4ASFs4K2nO5Bdfz1ZsssFx1ybcsWJTHWx/03nhrXo4zvY4xljNPnsiHn/RMct1N9b3OnpAer4F28K9W8KXLU5CXD84m4wvnzVHGF2soH1z7gquWjG9LKHdhIEA4zpX12m7G7vr5urkwPZdevCZreP1cPn9PJ87ZfwDnHtSfuy/vzs/f5XDPVW531Hh/rvRSbs9qjvtmFcd8tppjPltNRus4w94qJL1lnIoSw7cX59L3qlIKBiT3urn+vOfaJbjahvVjv65cms7ue5eQll4NWPoNKWLh7OB94Oj1ecSP59KPdnrQ+3vKan24v3pUhMyuzlfiKgqdmQMB1i8yrF8QIb1Dcr8uVzOtess25ex3+Cq+/LhVUpe/CwpEH0Fus3KyMp0P0FJTqhjQdwkLl+QycO9FnPZ/k7jl3mFsqHDvw04/28xjRrXk8OOXAnD48UsZ84Wb7Vlv23dFq1JZuSyN9l2d6bH7DS1mQQDPlV6fR8oG5NBsdCEAzUYXUrqP+23JML2vrMPVPgKvrC7LZNnaLLrkFQEwpONiZhc6A4GGdFrEnKI8lq9zb6p+P/tEm7fYNDPxfgcvZf4cd7505tf7PK/bPX5lgdv9PekplWSmVmz8/749FjF7eT6jp3bhVwNmAPCrATP4amoX19YBYJ+hKzn5d3P525UD2FCenBl73BwqtgAYYozJxJkyZRgwLpkFrn9sHnsNXUdufhUvjZvCf+5tw4jXWiSzxGb6DCrl8JMKmftLBo99PBWA5//Znh++cO/FHK82PHZje+56ZQ6RKIx8LZ/5M5I/9a9f9cCf/dq8oJKbH58OOKNgR71XwI9fuTsCNkjH6xdXtmTp9+mUF0V59cCODLi8iF6n1D/qKy03Tt/z1vDuSe3AQMeDy+h0aPKuo5LfqpKr759LNGIxEfjqg+Z8/3le0pa/i3I9X73Igj67r+CIg+cwZ34eT9zzPgDPvtKf9m3XcvzR0wD4emwnRnzuzoccfmSPH8erV9lz3T8mstc+ReTkVfLi8K946cndWLsmhT/+ZRq5zSu47eEJzJnejJsvHZD02l7na4209Gr671/MI7f2SNoy8+5bTOrkUiIl1bS6YCZrT2/Jut+0oPk9i8n8tJjqghSKruuw8f6pU8qobhGjuk3yR8P6ca7cRbiasX60tcLQ7gF3XpPb4sdz6TU/zpVuHjtjr85h1fcpbCiO8NEhLdjjT6V0Pbn+y1XNfjmDdQti/PJEJr884XRWH/DvYtJbNP7DqjAcO1sRuHydPimHr0e25OE3xlFdbZjzSzM+fqOdqzX9yFevzyN+PJd+tNOD1N8z9boU1oyLUlkM3x2eTpdLKikcHaVsnsFEIK2tpefNTsfqmh8jzHs8BRMFE4EeN1WQkuTTyo33TyYnr5KqKsPjd/ZgXUngZ10JRB9BfvMyrvvj10QiFmMsX43pwtjxHXn+gbdISanm/90wAoBfZrXkoWe2GOfQaF5l3XV3T2KvgYn3ziNH89IT3Xjj2c789Z5JHPnrxaxcls5d1+yV9Lo1/GjfPXFHN667dwYpKXGWLkzngb+69YWPTbw+X7p5Hmn1yDwyfllHdG0Vnf80hcKT2lB0fGtaPzyPZl+spqogleVXdNl4/06XTyGyPo6psmT9uIYl1+9GZYfGv17VR9D0P+e668sD+X9HfUZKtJqFa3K4+dPDADimxyw+nu7u+2iv2lrX3f4je/ZfTU5eBS/87xNe/ncv9hywim49SrAWVizN5JF/upOxfr3P87rd40cWeNHfk99sPf88x2lrRCNxRkzozpgZnZi6qBV3nfkJxw/6hWXFzbjh5SOSVvO6O39mz4GF5ORV8sJHo3j5qe6cct4cUlIsdz7uxMy0Sbk89o8+japjrIsXqTDG3A6cBlQB44ELrbVbnRslx+TbfSOHu7Y+9TFRb69xaauqPK3nFxPzZjqijfVS3Z/+ta74+uR9mL2jvD5eAc6fOtPTes/26eVpPYBPKl750Vo70PPCjbBT+WqGebV6ANj99va0XuT7KZ7WA5yeK4/ZquR+K3F7oq28+WZtbdUrVnpeM9rMvUtQbM2iF9t7Wq/9mfM9rQcwsvTFJpev0LCM9SNfI5nefoPGjzaPH6/J6hJvp/OOpHv/wa8f70VsdfKm1N9RJ01d7mm9t/bw/pumn9o3A5+v4E/GRpt726FdXVzsaT2ASIb3396Ll5V5Ws+keN9HYCuTN/Pdruzgid62C74+1Ns2M8CIVU83uYxtCvkaP7i/p/ViP0z3tB6AycryvGa8qMjTesaPc8g676efNzHvBxDNeqH39u+URD0unOFpPQhRH4HHn3Et/stQT+t1uC+p4yB2SLR9G89rVs1b4Gm9aIt8T+sB2PX1D4x3k9efHQKs/nXjPkhvqIJP5npaD2D4kke3mq+u7nFr7a3ArW7WEBEJI+WriIh7lLEiIu5QvoqIuEP5KiLiHmWsiDRl3n+VUURERERERERERERERERERFyjgQAiIiIiIiIiIiIiIiIiIiIBooEAIiIiIiIiIiIiIiIiIiIiAaKBACIiIiIiIiIiIiIiIiIiIgGigQAiIiIiIiIiIiIiIiIiIiIBooEAIiIiIiIiIiIiIiIiIiIiAaKBACIiIiIiIiIiIiIiIiIiIgGigQAiIiIiIiIiIiIiIiIiIiIBooEAIiIiIiIiIiIiIiIiIiIiARLzewU2YwwmluJpSVtV6Wk9P0TS0z2vGS8v97SeSU31tB4A1npfsrra85rP7bWHp/VumD7G03oAn3T1vGQoRL6f4mk9W1XlaT0AkxL87LFrSjyt5xT1Pl+rS7zfzg6/9bbebVO+9LYgMLKL5yU9ZzLSiXTf3dOa8cnTPK3nh1/u6+V5zZ4XjfO2YIq373sAqI57XjLaKt/zmu8e1trbgkNaeVsP4Ls3va8ZEnbDBo8Let/uMbFdqyvIDSbF+220lRWe1/TD6MHNPa133sQfPa0HMKKH5yVDIWXJGk/rVZeVeVoPINbC+3aP132FptKHvnQfzpVY79vNu505wdN6vX70/lw5coDnJf3h8THb6V/e9hFU+9HmqfL+cxHP28yV3vdtx304V/rRn5734nee1hs22ft+5uF9tv43zQggIiIiIiIiIiIiIiIiIiISIBoIICIiIiIiIiIiIiIiIiIiEiAaCCAiIiIiIiIiIiIiIiIiIhIgGgggIiIiIiIiIiIiIiIiIiISIBoIICIiIiIiIiIiIiIiIiIiEiAaCCAiIiIiIiIiIiIiIiIiIhIgGgggIiIiIiIiIiIiIiIiIiISIBoIICIiIiIiIiIiIiIiIiIiEiAaCCAiIiIiIiIiIiIiIiIiIhIgMb9XYGelpMW59/VppKTGicYsoz/K56UH2rte96r7FrDv4SUUr4rxh2G7u14PYOAhJVx8xxKiEcvHr+bz+qOtXa8ZiVgefncyq5anctuFvVyv58c2Pj/qJ8pKI8SrDdXVhitO3Mv1ml5vpx/HK7hz/Lx/XUdmfZFDVosqLho+HYCvHmzD+P/mk5lfDcCh1yyh+6FrmTM6my/uaUd1hSGaahl2/RK67LcuKesRJl4frwVtK7j2gbk0b1mFtfDRKwW8+6y7Nb3eRr/OXTqPNP2a7buWcf390zb+3rZjOf95uDPvvtj44+ed67ow/fM8slpUctmIKQB8/mA7xr3Wkqz8KgCOuHYRPQ9ds/ExxYtTeeTIvhx6xRIOuGhZo9ch6ApalnHNtWNpnr8eGzd8/NFuvPu/nlzw+wnsO2QJVZURli7N5v57B1NamurKOnj9GvGqXt6ny8gdvQqsZc1BLSk+vA0t/reI7AnFWAPVOSksO68r1XnJ369+tbOymlXx57/PpHPPMqyFB27owbQJOa7U8uq89edbpzD4oJUUF6ZyySn7AXDA4cs56+LZdOxaypXnDGbm1Nyk1rzilskMPtCpeelp+wNw/hXTGXzQSqoqDUsXZfLgbX0pXZeSlHotW5Ry7eXf0Ly5kwMffdKD/324B926FHL5xWNJTammutrw6NP7Mn1WQVJqhpHeV7rDzXbI1ui5DEa9Gm68N/jqrwUs/CKT9BbVnPTh4s3+NumZHL7/fy04a8x80vPjG29ftyTKW8d2YMBlRex5QUlS1iNMvDh+/vyXHxk8dBnFRWlcct7hAHTrXsyfrppASmqceLXhsQf2Zsa0/KTXBm+28Yqbfmbw/isoLkrl0jMP3uxvvzlrNhdcPo0zjjyCkjXuvC8IUl/htqhPa+ctub2adaMtsXzo9rrz8dGKx6tZ96WFCMSaG9reHiGlpWHdmDgrH4ljK8GkQKsrImQN1ndPG8qP8/MJZy3kqJOWYoxl+FvtePeljq7X9CZjJzL4gETGnnEQAGf/YQZDDlqOtVBcmMYDf9uLwlXpSa/tRw6EoZ0etP70yTels/KrGKn5lv3/VwrAzEfSWPF5DBOB1HxL3zvXk97KsuSDGPOeS9v42LUzIgx9o5Sc3eNbW3y9XB0IYIy5Avg9YIB/WWsfTNayKzcY/nJGL8rLokRjce57cxrjRuUybXx2skrUa+Tr+bz3XAHXPrTA1To1IhHLpXct5q+nd2PV0hQe+WgmY0bksmBm8oOqthPOW8aC2RlkZle7Wgf820aA68/uQ0lRcjr3tseP7fT6eK3hxvGz98mFDPztKt6/ptNmt+97/kqG/H7lZrdl5ldz6r/m0Kx1FSump/Pqud244rupSVuXXYGb+Qr+HK/xasO//t6RWZMzyciq5pEPf2H86BwWzMxwpZ4f2+jHuUvnkWDUXDw3k8tOHLCx9otfjuW7T1skZdn9T1rFvr9dwVtXd93s9v3OX77VD/k//ntHehy8pt6/BUGyM7a62vCvp/dm9qx8MjIqefixkYz/qTXjf2rDc8/sRTwe4fwLfua003/h2Wf2TsYmbMbr49WreqmLy8gdvYoFN+yBjUVo/9AMSvfMo+iotqz+dQcA8j5bTov3l7DinC5JrQ3+tbMuvnEO40Y3584r9iCWEictvWFvABvCq/PWp++34/3/duTqOyZvvG3+7Cz+fvXeXHbTL0mtVbvmB6934qrbJ228bfzYFjz/aA/i1RHOu2w6p543h+ceSU5HdXXc8PQL+zBrTgsy0it59N4P+enntlz425946b97MW58ewYNWMwFv/2J6245Mik1d0VutmH1vtK97XSzHVIfPZdN+/xcHzfeG/T4zTp6n13Cl9e13Oz2dUujLP4mg6x2VVs8ZuxdLehw0PqkrcOuJCh9BJ9+3Jn3396Nq28Yt/G28y+ewisv7M64sW0YuO8yzr94Ctf/+cCk1gUPt/GDDnzwRheuunXCZrcXtFpPv8GrWLHUnT6QGkHqK9wa9Wk1Tt7/RWh+Kiy9ddNz1eK3EVpdYgAofDXOqn/FaXtDlFieocODUVJaGspnWRb+qZoew4M3ECBobdjO3ddx1ElLufLMfaisNNzx5ER++KoFSxZkulbTs4z9sAMfvNGZq277eeNtb73UlZee6gnA/506jzMunMljd++Z1LrgfQ5AONrpQetPb/frSjqdWcGkGzYdF13P20CPyzYAMP+lVGY/kUafW8tpd1wV7Y5z2rRrZ0QYf3lmgwcBgIuXBjDG9MUJx8HA3sBxxpgeSaxAeVkUgFjMEkuxWJu8pW/N5LHZrC2Oul8ooVf/MpbMS2XZgjSqKiOMejePoUe52/Fe0GYDgw8tZsR/W27/zkngxzb6wY/t9Pp4BfeOn06DS8nI27E3C236rKdZaycgW/Ysp3pDhKoNJqnr4yf389Wf47VwRQqzJjsNzvWlURbOSqdFm0rX6vmTPd6fu3QeCU7NGnsPLWbZwgxWLElOI7vLvuvIyNuyo3Rrpo7Mo3nHDbTqGdhO1KRnbFFhBrNnOd9aWr8+hYULcmhRsJ6ffmxDPO40x6dNa0FBy7LGrfxWeH28elUvdWk55d2ysGlRiBrW92xG9vgi4hmb2j5mQ7XTVeMCP9pZmVlV9B20hhFvOiPRqyojlK51c2y3N+etyT81Z+2azT94Wzg3m8Xzs5JfLGHK+Pwtao4fU0C8OvGanJxHi9YbklavsCiTWXOcDpn15SksXJRLQQtnVoesTKe9k5VZQWGhu53/fnK7Dav3ld5IdjukPn5vo1eCen6uy633Bm0HlZOWu2VH6Ni7WjDo2iKM2fyENe+TTJp1rKR594qkrseuIEh9BJMnFrB27ebnZ2shM9N5v5KVXUnhanfyx6ttnDKhBWtLthxw9Psrp/Lco3u43kcQpL7CrVGfVuNkDjBE60zGFc3e9KYqXqsrIH13Q0pL529pu4GtgHiFBx/SeCiIbdiO3cqYPjGHDeVR4tURJo/LY79hK7f/wEbwLGPH52+RsetLN/2enlGFte50EnidA3UFt50erP70/IHVpORuvgGxWmMaqteDqecQXfpRCm2P2bnjyc3hWXsAY6y1ZdbaKuBL4MRkFohELI99NJnXfprAT6NzmD7B3dkA/NCiTSUrl2yaCmrV0hQK2robHn+4eT7P3N2JeNybD0792EZw3kjc+fwvPPy/iRxz2nLX6/m1nV7z+vgZ92JL/nVML96/riPr12z5Rmbax7m07r2eWFqgGqGu56vfx2vrDhvYrU8Z08e79wGAX9vo9blL55Hg1Kxx8LErGfWh+x0oY19sxaNH9+Gd67pszNeKsghfP9mWQ69Y4np9H7masa1al7Jb92KmT9t8hPaRR83lhx/aJqvMZrw+Xr2qV9E+g4wZa4msq8JsqCZrUjGxQqdzv8U7i+h63QRyxhay+gT3p4zzSpuO5awpTOGqf8zk0XfGc8XfZ5KW4e63qsLwnqs+Rxy/mB+/cWeK/tYt17Fb10KmzSjgyWcHceFvf+Slp9/i97/7kWdf7u9KzV2Eq/mq95Xe8KIdoucyGPVqePneYP5nmWS2rqLFHpt/2F9ZZpj4r1z6/6nY9XXwSaD7CJ5+dE/O/+NkXnhjOBf8cTLPP93HlTp+buO+By5n9cp05s5053JPfgtDH0FtQe3TWvFYNTOPraJkeJyWf9zyY6W1n1nSehkiqcH5MlZC4Nqw82dm0XefYprlVpKWXs3AA1dT0CZ5g6Dr4/fr8rd/nM7z73/OIUcv4aWnkjpWrl5e5EBdQW6nh6E/feZDaXw5LJulH6bQ/U9bvh6XDU+hzbG73kCAycBBxpgWxphM4FggqRcaiccNlx7bl7OH7E2vfqV07unOt6j8VN/IDzdHuww+rIji1SnMmuxdQHm9jTWuPq0vl52wFzefvwfHnb2MvoPcvT6cX9vpJa+PnwFnreKSUVO58MPpZLeq5NM7223295Uz0vn8n+049s6FnqyPh1zPVz+P1/TMam56ag5P3d6RsnXujVL3axu9PnfpPBKcmgCxlDj7Hraar4e7e/3owWet4MovJ3LJR1PIblnJ8DudiPn8gfYMPX8ZaVnuTUW+C3AtY9PTK7nplm946on+lJVtGpF++hlTqa42fPFZ52SU2YLXx6tX9SraZlB4dFs6PDCd9g/NYEOHTIg6xVef2IG5/+xHyb755H2+IvnFfRKNWbr3XseHr7blTyf2p3x9hFMvWuRqzTC856rrtPNnO6/Jj5M/OCc9vZKbr/uSJ58dRNn6VI47ejpPPTeQsy86iaeeG8hVl3yX9Jq7EFfbsHpf6T6v2iF6LoNRD7x9b1C13vDzE7nsc0XRFn/76eHm9D23hJSsgHXCbBLoPoJjT5jLvx7dk9+dcjT/emxPrrjuJ1fq+LWNaWnVnHburI3TVgdNWPoIagS5T6vVpVF6fBQj5+gIRf/dvE9gw2zLiofjtL0heJcFIIBt2IVzs3jj2U7c+fQE7njyZ+ZOz6a62t0BHH5/NvLiE7049/8OY9TwdvzfKfNdreVVDtQW9HZ60PvTAXpcsYGDP1tH219VsuCV1M3+VjwxSjTD0qzHzvXHupbM1tpfgP8HfAIMB34Gtph31hhzkTFmnDFmXKUt36lapSUxJn7XjIGHBG+quFVLU2jZbtNI5oK2laxe5t716nrvs5Yhw4p4/qvxXP/wLPYeWsK1989yrR54v401Clc4L6Y1hSl8+0k+vfZa52o9v7bTS14fP9ktq4hEwUSg/+mFLJ246TpGJUtTePPiLhx/7wKadw7W1H87la80bFSnX8drNGa5+ak5fPFOPt8Mb+5qLb9fk16du3QeCU5NgIEHFjF7ajbFq1O3f+dGqMnXSAQGnrGSRT87nTaLJmQx8u6O3HfAXnz3bGu+erwtY15o5eq6eG1HMrZ2vlZUle7QcqPRODfd8i1ffN6Zb7/psPH2w4+Yy+B9l/DPu4fg1hz2Xh+vXtYrObAlC27uw6Lr9qA6K0ZFq82nwFu7bwuyf9ryA4GmatWyNFYtS2P6xGYAfD28gO693W3D1gjye67ahh23mEEHruTem/Yi2a/JaDTOzdd+yedfdeWbsZ0AOOKQOXw9xvn/V992pmeP1UmtuStxuw2r95Xu86odoucyGPXA2/cGJQtirF2UwjvHt+e/h3agdFmM/53YnrKVUVb+nMYP9zTnv4d2YMoLOUx4Mo+p/2nmynr4Ich9BACHH7WAb75yvvgx+ov29NrDnbadX9vYpkMprduV8ehLo3n2nc8paFXOQy+Opnn+zvWT72rC0kcA4enTyj3GsPbzTZ+IVS63LLqmmnZ/i5LaMXCzATS4j6Cp5OvId9px+WmDuO7cAaxdE2PJ/MztP6gR/O6HrTFqRHv2O2yZa8v3MgdqC3o7vUZQ+9Nra/urSpZ/uvklIJd9HNvpywKAuzMCYK19xlo7wFp7EFAIzKznPk9bawdaawemmB2/dkVufiVZOU7epqbF6X9ACQtnBe96itMnZNK+awWtO24glhLnkBOKGTMyd/sP3EnP39OJc/YfwLkH9efuy7vz83c53HNVd9fqgffbCJCWUU1GVvXG/w84oJh5M909fvzYTq95ffysXbEpEKePyKVlT+dNUnlJlP9e0I1Dr11Kx4E79gFNU9PgfCWtQcv353i1XHnPPBbMSuftf7d2uZY/2+jHuUvnkeDUBDj4Vyv40oPLAqxdsalx+8uI5rTq6VwE8MI3pnH11xO5+uuJDD1/OQddspQhvwvOt61rbC9ja+dramxHvtli+fNV37NwQTPeeavXxlv3GbiUU06dxu23HsCGDe5d593r49XLetES541QbPUGmo0vYu3gfFKWb+o0zZ5QTEUb966P57WiVamsXJZG+67O6Pd+Q4tZMNu9DpuwvOeqsc/QlZz8u7n87coBbChP9jc3LFdd+h0LF+fy9vu9N966uiiDvfo4U5D323MZS5YG54Op+rjZhtX7Svd51Q7RcxmMeuDte4P8XpWcNWYBp32xiNO+WERWmyp+/c5iMltWc9yrSzfe3ud3JfS7uJje56x1ZT38Esw+Asfq1ens2W8VAHsPWMniRe5MB+zXNs6fncNZxxzB+ScexvknHsaqFelc8dsDKSoMRhs2LH0EQe/Tqliw6YP/tV9aUrs4H/hXr7UsvKKaln+KkNkveIMAajSkj6Cp5GtuvvMhZ8s25ex3+Cq+/NjdL3n4eR5p13HT5wNDDlrOonluTSvvbQ7UFuR2ehj600vnb/qofsUXMbK6bvrmv43DspEptGnEQAD3ehwBY0wra+0KY0wn4DfA0GQtO79VJVffP5doxGIi8NUHzfn+87xkLX6rrn9sHnsNXUdufhUvjZvCf+5tw4jXWmz/gTspXm147Mb23PXKHCJRGPlaPvNnBKMhWMOPbWxeUMnNj08HnFFao94r4Mev3B2h5cd2en28uumdyzszf2w264tiPLxfbw66Yhnzx2azfGoGxkBuhwqOSVwCYNyLBRTNT2X0o20Y/WgbAM58YTZZBVsMiG+y3MxX8Od47TOolMNPKmTuLxk89vFUAJ7/Z3t++MKdk6wf2+jHuUvnkeDUTEuvpv/+xTxya3KvZfb65d2YO6YZZUUx7hm6N4f9eTFzxzRj6S+ZGCCvwwZOuMvdadN2NcnO2D59VnH4EfOZOyeXR58YAcALz+7JxZeMJyW1mjvv/hKAab+04NGHBzZ29bfg9fHqZb22T8wiWloFUcPyMzsTz4rR+sV5pC4rBwOVLVJZcXYXV2r71c564o5uXHfvDFJS4ixdmM4Df3VvGlmvzlvX/WMie+1TRE5eJS8O/4qXntyNtWtS+ONfppHbvILbHp7AnOnNuPnSAcmreefP7DmwkJy8Sl74aBQvP9WdU86bQ0qK5c7HxwEwbVIuj/0jOdch7rP7Sg4/ZA5z5uXx+H0fAPDcy/158PGh/PGCH4hGLRUVER58YkhS6u2q3GzD6n2lu9xqh9RHz2Uw6rntiytbsvT7dMqLorx6YEcGXF5Er1O8mSVnVxSUPoLrbvmBvfqtJCe3ghff+JiXntuDh+/pzx8um0Q0GqeyIsoj9/ZLel3wcBvvGM+eA1aTk1fBC+9/xstP92Dk+52SXmdrgtRXuDXq02qcxTdUUzrOUl0MM4+pouUfIqz7xlIx34KBlLaGNolLABT911KxEFb9O86qfzsfXHV6LEosP1iDAoLWhgW48f7J5ORVUlVlePzOHqwrcffbzp5m7D6FiYz9nJf/1YOB+62gfedSbNywYlkGj93dN+l1wfscqBH0dnrQ+tN/vjaDwh+iVBYbRg3LpvslG1g5OkbZvAgYyGgXp/ctm77gUjQuSnrrOJkdd/7aBMa6eGEDY8xooAVQCVxlrf1sW/fPibSwQ1KOdm196mOrdn4Uxc4V9P56ZJF079/Yxcu9nb4qkunu1DX1iZf5cH3U+i5O4rJIWsNGMTbWX6eO8bQewKFdZ/1orU3+Jy8uanC+mny7rxnmybrVMDFXx5ptwVZ5P9DDpLg73VJ9bKW3l7oIwznEL9GcHE/r3fbzNmPCFUO7zG9y+QoNy9jczHZ2SPcLPFs3gPjkaZ7W88OMfw3yvGbPi8Z5Wi+S7da3ELbOljdsmspkiOTneV7TRLy9NmlVZ+8vkfLpd7cEPl/Bnzas1+8t/Xhf6XUbBKC6pMTTeqHpI/CB1+8Pzpv4i6f1AM7o8WOTy9imkK/RHt08rVc9c46n9QBiHTts/05JVrVosaf1vO4nBH/6CLzu0wLv+7X2+NH7bXxkwGtNLl+hYRnrS762yPe0XvXqQk/rAcQ6tPe8ZvWy5Z7W86P96nUbHcLRn37UZO/367V9Rm41X11Ne2vtgW4uX0QkrJSvIiLuUcaKiLhD+Soi4g7lq4iIe5SxItKUeftVCREREREREREREREREREREXGVBgKIiIiIiIiIiIiIiIiIiIgEiAYCiIiIiIiIiIiIiIiIiIiIBIgGAoiIiIiIiIiIiIiIiIiIiASIBgKIiIiIiIiIiIiIiIiIiIgEiAYCiIiIiIiIiIiIiIiIiIiIBIgGAoiIiIiIiIiIiIiIiIiIiASIBgKIiIiIiIiIiIiIiIiIiIgEiAYCiIiIiIiIiIiIiIiIiIiIBIix1vq9DhsZY1YC83fioQXAqiSvzq5WMwzb6EfNMGxjWGo2pl5na23LZK7Mrkb5usvVDMM2+lEzDNvY1GoqX7dNr5Fg1AzDNoalZlPaxsDnK6gNu4vVU83g1AtLTfURbIPydZerGYZtDEvNMGxjY2oqX7dNx6tqNpV6YanZlLZxq/m6Sw0E2FnGmHHW2oFBrhmGbfSjZhi2MSw1/djGMAjDseNHzTBsox81w7CNYaoZBnqNBKNmGLYxLDXDsI1hEYbnMgzbGJaaYdhGP2oqX90RhmPHj5ph2Maw1AzDNvpVMwx0vKpmU6kXlppB2UZdGkBERERERERERERERERERCRANBBAREREREREREREREREREQkQIIyEODpENQMwzb6UTMM2xiWmn5sYxiE4djxo2YYttGPmmHYxjDVDAO9RoJRMwzbGJaaYdjGsAjDcxmGbQxLzTBsox81la/uCMOx40fNMGxjWGqGYRv9qhkGOl5Vs6nUC0vNQGyjsdYme5kiIiIiIiIiIiIiIiIiIiLik6DMCCAiIiIiIiIiIiIiIiIiIiI08YEAxpijjTHTjTGzjDHXe1TzWWPMCmPMZI/qdTTGfGGM+cUYM8UYc4UHNdONMd8bY35O1Lzd7ZqJulFjzHhjzAce1ZtnjJlkjJlgjBnnUc08Y8ybxphpied0qIu1eiW2reanxBjzZ7fq1ap7ZeK4mWyMedUYk+5BzSsS9aZ4sY1h4XXGKl9drat8TX49zzNW+RocQc/XRE1PM9avfE3UDnTGhiFfE3U9zVjlqzu8ztdETbVh3asb6HxN1Ax8xqoNGxxBb8MqX12tp3x1p6byNSCCnq+JmuojcK+e+gjcqetpxrqar9baJvkDRIHZQDcgFfgZ6O1B3YOAAcBkj7azLTAg8f9mwAy3txMwQHbi/ynAWGCIB9t6FfAK8IFH+3YeUOBFrVo1XwAuTPw/FcjzqG4UWAZ0drlOe2AukJH4/XXgXJdr9gUmA5lADPgU6OHl8xrEHz8yVvnqal3lq7u1Xc9Y5WtwfsKQr4manmasX/maqBfojA16vibqeJqxyldXjxf1EbhTU21Y92oGOmPVhg3OTxjasMpXV+spX5NfQ/kakJ8w5GuipvoI3KvnacYGPV8TdQLVR9CUZwQYDMyy1s6x1lYArwEnuF3UWvsVUOh2nVr1llprf0r8fy3wC85B6GZNa61dl/g1JfFj3axpjOkA/Ar4t5t1/GSMycE5yT4DYK2tsNYWe1R+GDDbWjvfg1oxIMMYE8MJriUu19sDGGOtLbPWVgFfAie6XDMMPM9Y5as7lK+e8Cpjla/BEPh8TdT0NGP9yFcIfsaGKF/B24xVvrpDfQTu1VQb1gUhyli1YYMh8G1Y5WtwKF9do3x1R+DzNVFTfQQBEKJ8hQD1ETTlgQDtgYW1fl+Ey40zvxljugD9cUYvuV0raoyZAKwAPrHWul3zQeA6IO5yndosMNIY86Mx5iIP6nUDVgLPJaaG+bcxJsuDugCnA6+6XcRauxi4F1gALAXWWGtHulx2MnCQMaaFMSYTOBbo6HLNMAhVxipfky5M+QoeZKzyNVBCla/gXcb6kK8Q/IwNfL6CLxmrfHWH8tXdWmrDJl/gM1Zt2EAJVcYqX5NO+ZpkytdACVW+gvoIXKA+giQLWh9BUx4IYOq5zfURPX4xxmQDbwF/ttaWuF3PWlttre0HdAAGG2P6ulXLGHMcsMJa+6NbNbZif2vtAOAY4FJjzEEu14vhTLnzhLW2P1AKeHHNn1TgeOAND2o1xxmx2BVoB2QZY852s6a19hfg/wGfAMNxpk+qcrNmSIQmY5WvrghFvoJ3Gat8DZTQ5Ct4m7Fe5iuEJmMDn6+JWp5mrPLVNcpXF6kN64rAZ6zasIESmoxVvrpC+Zr8OsrX4AhNvoL6CFyiPoLk1wpUH0FTHgiwiM1HRHTA/elvfGGMScEJx5ettW97WTsxrcco4GgXy+wPHG+MmYcz9c1hxpiXXKwHgLV2SeLfFcA7ONPwuGkRsKjWyLM3cULTbccAP1lrl3tQ63BgrrV2pbW2Engb2M/totbaZ6y1A6y1B+FMazTT7ZohEIqMVb66I0T5Ct5lrPI1OEKRr+BfxnqUrxCOjA1DvoIPGat8dYXy1QNqwyZVGDJWbdjgCEXGKl/doXx1hfI1OEKRr6A+Areoj8AVgeojaMoDAX4AehhjuiZGgpwOvOfzOiWdMcbgXG/jF2vt/R7VbGmMyUv8PwPnoJ/mVj1r7V+ttR2stV1wnsfPrbWujmA0xmQZY5rV/B84Emf6DddYa5cBC40xvRI3DQOmulkz4Qw8mC4lYQEwxBiTmTh2h+Fc78dVxphWiX87Ab/Bu+0NssBnrPLVHSHLV/AuY5WvwRH4fAXvM9brfIVwZGxI8hV8yFjlqyuUr+7VVBvWBSHJWLVhgyPwGat8dYfy1TXK1+AIfL6C+gjcoj4C1wSqjyCWrAV5zVpbZYz5EzACiALPWmunuF3XGPMqcAhQYIxZBNxqrX3GxZL7A+cAk4xzPROAG6y1H7lYsy3wgjEmijNY5HVr7Qcu1vNDa+Ad5zVMDHjFWjvcg7qXAS8nTupzgPPcLGac64kcAfzBzTo1rLVjjTFvAj/hTF0yHnjag9JvGWNaAJXApdbaIg9qBpofGat8DYxQ5Ct4m7HK1+AISb6C9xkbhnwFfzI20PkKvmWs8jXJ1EegNmwjqQ3rArVhgyMkbVjlqzuUry5QvgZHSPIV1EfgFvURuCBofQTG2sBebkRERERERERERERERERERCR0mvKlAURERERERERERERERERERKQODQQQEREREREREREREREREREJEA0EEBERERERERERERERERERCRANBBAREREREREREREREREREQkQDQQQEREREREREREREREREREJEA0EkJ1ijKk2xkwwxkw2xrxhjMlsxLKeN8acnPj/v40xvbdx30OMMfvtRI15xpiCHb29zn3WNbDWbcaYaxq6jiIioHzdzv2VryLSKMrYbd5fGSsiO035us37K19FZKcpX7d5f+WriDSKMnab91fGBoQGAsjOWm+t7Wet7QtUABfX/qMxJrozC7XWXmitnbqNuxwCNDggRUSaEOWriIh7lLEiIu5QvoqIuEP5KiLiHmWsBJ4GAkgyjAa6J0YxfWGMeQWYZIyJGmPuMcb8YIyZaIz5A4BxPGqMmWqM+RBoVbMgY8woY8zAxP+PNsb8ZIz52RjzmTGmC04QX5kYpXWgMaalMeatRI0fjDH7Jx7bwhgz0hgz3hjzFGC2txHGmP8ZY340xkwxxlxU52/3JdblM2NMy8RtuxljhiceM9oYs3tS9qaIyCbKV+WriLhHGauMFRF3KF+VryLiDuWr8lVE3KOMVcYGUszvFZCmzRgTA44BhiduGgz0tdbOX/yYFQABAABJREFUTYTMGmvtIGNMGvCNMWYk0B/oBewJtAamAs/WWW5L4F/AQYll5VtrC40xTwLrrLX3Ju73CvCAtfZrY0wnYASwB3Ar8LW19m/GmF8BmwXeVpyfqJEB/GCMectauxrIAn6y1l5tjLklsew/AU8DF1trZxpj9gUeBw7bid0oIrIF5avyVUTco4xVxoqIO5SvylcRcYfyVfkqIu5Rxipjg0wDAWRnZRhjJiT+Pxp4Bmcqk++ttXMTtx8J7GUS10UBcoEewEHAq9baamCJMebzepY/BPiqZlnW2sKtrMfhQG9jNg6EyjHGNEvU+E3isR8aY4p2YJsuN8acmPh/x8S6rgbiwH8Tt78EvG2MyU5s7xu1aqftQA0Rke1RvipfRcQ9ylhlrIi4Q/mqfBURdyhfla8i4h5lrDI28DQQQHbWemttv9o3JIKitPZNwGXW2hF17ncsYLezfLMD9wHn8hZDrbXr61mXHXl8zf0PwQnbodbaMmPMKCB9K3e3ibrFdfeBiEgSKF+VryLiHmWsMlZE3KF8Vb6KiDuUr8pXEXGPMlYZG3gRv1dAAm0E8EdjTAqAMaanMSYL+Ao43TjXVmkLHFrPY78DDjbGdE08Nj9x+1qgWa37jcSZvoTE/fol/vsVcFbitmOA5ttZ11ygKBGOu+OM1KoRAWpGe52JMxVLCTDXGHNKooYxxuy9nRoiIsmifBURcY8yVkTEHcpXERF3KF9FRNyjjJUmTQMBxE3/xrkuyk/GmMnAUzizULwDzAQmAU8AX9Z9oLV2Jc71Tt42xvzMpilL3gdONMZMMMYcCFwODDTGTDTGTAUuTtzvduAgY8xPOFO3LNjOug4HYsaYicAdwJhafysF+hhjfsS5NsrfErefBVyQWL8pwAk7sE9ERJJB+Soi4h5lrIiIO5SvIiLuUL6KiLhHGStNmrF2h2eVEBERERERERERERERERERkV2cZgQQEREREREREREREREREREJEA0EEBERERERERERERERERERCRANBBAREREREREREREREREREQkQDQQQEREREREREREREREREREJEA0EEBERERERERERERERERERCRANBBAREREREREREREREREREQkQDQQQEREREREREREREREREREJEA0EEBERERERERERERERERERCRANBBAREREREREREREREREREQkQDQQQEREREREREREREREREREJEA0EEBERERERERERERERERERCRANBBAREREREREREREREREREQkQDQQQEREREREREREREREREREJEA0EEBERERERERERERERERERCRANBBAREREREREREREREREREQkQDQQQEREREREREREREREREREJEA0EEBERERERERERERERERERCRANBBAREREREREREREREREREQkQDQQQEREREREREREREREREREJEA0EEBERERERERERERERERERCRANBBAREREREREREREREREREQmQXXoggDHmNmOMrfVTZoyZZIy5aCeWlZpYXr+deOw8Y8y9DX1cPcv5tzHmgcT/TzTG/LKV+/3eGDPTGFNujPnRGDOsETVjxpg/G2N+NsasN8YUGWM+MsYcUM99t7udxphDEs9F31q3WWPMn3Z2Hd1Qz7FT8/Op3+sGYIzpmVjHvB28v0k8h7+r529dE9u2wBhj6vn7KGPMm1tZ7jhjzPN1bosYYy40xnxrjClJHIeTjTHXGmOyd2wLN1tee2PMO8aYdcaYVcaYR40xmTvwuI7GmLcS67DGGPOaMaZVPff7vTFmhjFmgzHmF2PM2XX+PtAYs9oYk9vQdQ+yMOarMeY0Y8zbxpiliW0+t5E1la/KV+Wr8rVeYctYY0yOMeZ2Y8z3iWNqWeLY7NmImspYZawyVhm7hbDla+L2J40x0xLHYpEx5itjzOGNqKl8Vb4qX5WvWwhjvta5/58T213va2MHaypfla+BzdfEfvmTMWZKIh/mGWMeqb1fla9bF8aMTbwe6suG9J2sqYxVxgY2YxP3c60Nu0sPBEhYAwxN/Pwf8BnwlDHmzAYuJxW4FeiX1LVrmL2BCYn/9wd+rnsHY8zpwJPAi8AxwBTgg9qBtKOMMVHgf8BdwHvAscC5QDUwaif24dYMBd5I0rKSqfaxU/Nzma9rtElPnOMxbwfvfyrQHHilnr+dkfi3I7B/Y1bKGBMB/gs8CnyXqHss8BxwCXBHA5cXA0YAnYHTgCuAU4Cnd+BxHwN7AOcBFwIDgY8Tx3XN/c4AngLexsmH4cCLxpgTa+5jrR2H87q7siHrHhKhylfgZKAL8EFjiylfla8NpXwNpTBlbCfg9zjH5MnAH4C2wFhjTMeGFlPGKmMbShkbOmHKV4AMnGP7ROBsYBXOMTWkocWUr8rXhlK+hk7Y8hWARGf8LcDKnS2mfFW+NlRTy1ec5/Nh4E3gV8A/gDOBF2ruoHzdrjBm7BdsmQ0bGlpMGauMbaimlrGut2GttbvsD3AbsKqe278HXm/gsrIBC5y7E+sxD7i3kdsSBcqAvRO/vw/8tZ77TQeerfV7BJgEvLQTNf+c2Oaj6/nba8A6oH1DthM4JLHMvn4fHztz7CRhuRlJWs5xif3YZQfv/w1w51b+NgknzNYBj9Xz91HAm1t57Djg+Vq/XwbEgcPruW86MKyB23kGzgm5a63bTk3U6LEDj+tR67a9Evvs5Fq3TQderPPYt4HJdW47G1gGxPw+NneVn5Dma6Sx61trWcrX5C9X+dqw7VS+7sI/YctYIKvuaxjIT7x2bt2JmsrY5C9XGduw7VTG7qI/YcvXbTxuAfDwTtRUviZ/ucrXhm2n8nUX/QlzvgLPAP/Z1mtjB2oqX5O/XOVrw7bT7XwdA7xV57GXJx6bVes25Wv9+zl0GduYTK1nWcrY5C9XGduw7WzSbdimMCNAfdYCKTW/GGOyEtMwTDfOtCpzjTGPGWNy6jwG4Lla02d0STw+wxjzT2PM/MS0C3ONMf+oW9QYc6UxZpFxph15bUenu0joCcSAqYnf+wMT6yy/W+J+r9fcZq2N44xCOqYBtWpcAXxhrR1ez99uxDngL6j7B2PMzcaZ0nWdMebl7U01YepMmWIctxljVhhj1hpjXjTGnFlnn28x9Uri9i2m9zDGHGCM+TLx3K42xvzLGNNsh/fC1tf7MGPMWONMCbLcGPO4qTUlSK11PMoY854xZh3OCCKMMZ0Sx0BhYr1GGGN61Vn+X40xs2otf7gxpo0x5hCcEyTA3ESNedtYz+7AfjgjLuv+rQ/QF2ck03vAKYlRRjvrSuAda+0WU8tYa8uttZ81cHnHAD9Ya+fWuu1/QAVw9DYe1w+Yb62dWav+RGA5zqhTjDPtSg+g7rqOBPrUHGsJ7+F8IHFUA9c/jAKZr7AxT5NF+brt9Va+bkn5KhDQjLXWllpr19e5rRCYD2wx3dkOUMZue72VsVtSxkog87U+1tpqoBjn22ANpXzd9norX7ekfJVA56sxZhBOR/71DVh+fZSv215v5euWmky+JqTgfCu5tmLAJH5qKF8bJtAZm0TK2G2vtzJ2S00mY40HbdgmMRDAONf/iBnn+qNnAwcD79S6SybOSKQbcZ6Qm4HD2Hwaj8MS//6dTdNnLDXGGOBd4I/AYzjTQ9wKFNRZjVOBYcBFwF9wRrrctQPrPs8YY3GCMQWoSPzeHmfKf2uMuS1x990T/06rs5hfgHxjTMvEMruY7Vzf2jjTsHbBORi3YK2djTPC5qA6fzoDOBxnetercA7Gf29vO+u4HGdKradxpoddD/yzgcsAwBizP840OcsSy/ozm6bw2JHHx+r8mMTtvXGm11gFnITznJ9JPSGEMzL4Z+B44BljTD7wNdALuBjn2MgCPjXGZCSW/1vgBuB+nBflH4FZifv9BFyTWPZvcI7FjVN81GMYUEr9U+ycCVQBbwGvAi0T92+wxDHTFWe/7Mj955k6112px+7UOZ6ttRXAbDYd7/VJxwnRujbgTKMCkIbT0Kx7v5rphTYu31pbgnOZjZ2+lmZQhShfd4jyVflai/JV+dpoYc7YRLu1O5s6B5SxytjalLHK2EYJW74aR8wY08IYcyVOR9Gztf6ufFW+1lC+Kl8bJUz5mlifR4F/WmsXb2WZylfla40w5ys4x+apxphjjTHNjDH9cQbQPG+tXVerpvJ1G8KUsQlHGufD5ZoPmPeqs0xlrDK2Rpgz1vU2bGNGVHilBVBZ57aHrbUv1vxirV2JcwACzosCmAt8bYzpZK1dAPyQ+PNsa+2YWvc9CjgCOMFa+16tGi+yuUrg19baqsTjegOn41xPYluOxRmpfzvOqLn7gSNxrp16UuI+yxL/Nk/8W1xnGUW1/r4SZ9qIapxpJ7amfeLf+du4z3ycF3ltGcCvak7gxphS4D/GmD2stb9sY1kk7h/FOYE8Za29KXHzCGPMJ7XWqSHuBr611p5Wq8Zi4DNjTF9r7eRtPLa+Y+cInJE1t+Bs//GJb1RgjCkE/muMGWqt/a7WY96w1t5cq/4dOEHXL/FtN4wx3+BMOXM+zol2MDDSWvt4reW8XWsZ0xP/HW+tnbftXcA+wC9b+Tbz6cAn1trVxpgROMfKGTjXK2momudnwQ7evwrnONyW5mx5PIOzns3rub3GLOBiY0wLa+1qAGNMu8Q6bgCw1hYlnrNBOFMA1Ric+De/zjJ/rvU3cYQpX3eU8lX5WkP5qnxtrLBn7H0407nVPoaUscrYGspYZWxjhDFfT8PpEAOn8+w0a+33tf6ufFW+1lC+Kl8bI2z5eh7QBrh3G8tUvipfa4Q2XwGstU8Y55vL77Ppy6X/w3l91aV8rV/YMvZL4AWcY6wzzuCG0caYvWu9FpWxytgaoc1YL9qwTWFGgDU4O2AQcADONCC/M8bcWvtOxphzjDHjjTOtRSXOSBZwpirZlsOAwjrhWJ8vasIxYSrQyhizzen4rLVTrbUTSIxASfw/H/jGWjsh8VP3Tb6t87upfbu1dr61Nlb7JJFEn9hao/hwXtQGZ//viI5AW5zRZ7W9Xc99t8k4U2IMBV43tUY74Ty3lTjBsS21j52an7GJvw3GmRqk9gv8LZwX/QF1lvNhnd8PBz4BSmqt01rgR2Bg4j4TgGONMbcbYwYnThw7qw3OiK7NGGP2BbqRCAfrjEB6GzjRGJPeiHp1j7/672Rtd2vtFlPu7ODyzHbqvAKU44xM62Sc6U9qRsfVfs6eBP5gjPmNMaa5MeYM4Jx67gfOPmyzA+sbJmHM121SvipfQfmaoHxtvNBmrDHmjzjXLbuw5o1OYpnKWGWsMtahjG2cMObrCJztPQbnW2OvGWcqzpplKl+Vr8pXh/K1cUKTr8aZHvou4Fpb5xJXdZapfFW+Kl+BRJ7eAtyE8y3283Ge52fqWabytX6hydjE/W+11j5nrR1trX0JOBTnWPxzrfsoY5WxyliHq23YpjAQoMpaOy7x84219mHgDuAG40xdgTHmRJyRTd8BpwBD2DQFxfYOlBbA0h1Yj+I6v1fgPMlbDUhjTDTxAsoFegPjEi+mwcAPib/Vfg5qvvmfV2dRNb/XXYdtqZnSqvM27tO51v1qrKj9S6IxvA4n9HZEzQG4os7tdX/fEc1xpsJ5HCcQa3424Ew/03E7j6997NT81FxDpy3OdTg2SoTlarYcYbO8zu8FON/IqKzzc2itdXoWZ8qUU3FCebkx5o6dDMp0ao3ArOWMRN1Rxpg841zL50MgB2eEXo0qnP1Yn2ji77DpWOi0E+u4NUVseTyTuK14aw9KfGhwJs5reT7OyMcy4CM2fz7uTNz2FlCIM6XbbYm/1X3eNrD9PAibMOVrMilfla81lK8O5Wv9QpmxxpjjgUeAv1hr36nvPtuhjFXG1lDGOpSxWwpdvlprixLbO9xae05iu/62A+tYm/JV+VpD+epQvm4pTPl6A7AQGFnr9RIDUhK/N+S1qXxVvtYIZL4mXjuPAA9Za/9hrf3KWvsczjXZzzHGDKizWOVr/cKUsVtIDBL4Bqh7vGyPMlYZWyOQGZvgahu2KVwaoD5TcYJpN5ydcgow1lq7cfoSY8zBO7is1ez4i7+hPsMZIVdjeq3/Hwo8jDM9yrmJ22quMbE7m091sjvOaK6VO1rYWrvQGDMP53ofD9f9uzGmK9AX52RTW6s698sAstmxkwhsmv6lVZ3b6/5envi37gkmn02jgopxRtPchvMiqGvJDq5TfZbWXadEeLXAOaZqqzuipxB4jy33HTgjprDO9CYPAA8Y55okZ+G8mBfjjO5piELqjPBJnFhPxTlR1DctzhlsGp22Euc6OvVpS+LklThm5uBc66Wh18vZmmnUuUZKYnRhN7azH6y1HxpjOuCMdiyx1i4yxkwGPqh1nzKc61O1xrluzCyc6xpV4FyjprY8tnxuZUtBzdekUb5ul/LVoXyV+gQ6Y40x++GM4H7SWnvPzhRWxm6XMtahjJW6Ap2v9RiPM33mDlO+bpfy1aF8lbqCmq+9cL7tWMSWioAD2fQt3G1Svm6X8tXRlPO1AOf5mlDnoeMT/+7G5hmbh/J1RwU1Y7dlh76lvfHOytjtUcY6mnLGut6GbQozAtSnb+LfhYl/M9hyJMlZdX6vSPxbd6TEZ0C+Mea45K3eRn/AmabjeWB44v8XsvlUHrfV3NlaOweYgRP4wMYXwinAxztR/yFgmDHmyHr+9necfVZ3+p4jjDHZtX7/DU5AjNvBmgtxQvKEOrf/ps7vixL/7lFzQyJINl7LxVpbCowBetUz4mmctbYxATkWZ2qR2iOIfoMzOGZ7Df3PgD7AlHrWaXrdO1trF1pr78Z58fZO3Ly147E+03Gm3KntEJxw+wvOybb2z4vAcca5bhPAaGAfY8xm164xzpQrrRN/r/Eg8BtjzKF1V8IYk26MOWwH1re2j4FBxpjaI/aOB9JwXhPbZK2tss60Q4sSjZ7dcV5Pde+33DrX0akALgbetNaW1LlbF5zXl2xbIPPVBcrXrVO+Kl9l6wKbscaYPjhvYoYDlzeyvjJ265SxylipX2DztS5jjMGZWnTuTtRXvm6d8lX5KvULar7exJavlZ+BrxL/n9TA+srXrVO+Nv18XYnzDda63+Sumc58Xp3bu6B83VFBzdgtJD7g3B9n2vmGUsZunTK26Wds7fu504a11u6yPzjhUYwzbcIQ4CDgSpyA+V+t+12C8yK+Eee6FvcDsxO3HVfrfnOAz3GujTEQZ5SOwXmiSoBrcK6lchbwVK3HzQPurbNu5yaWn70D2/ENcFHi/38F3t7Gfc/AueZDTYP0eWA90LfWfTrjTHPx2+3UjeJ0yJYCtyeWdzzOdU2qgTPr3H8ezkieL3FGm/w+sf/fqnWfQxLbXXt9LPCnWr9fmVj+HcCRwFM4gWiBLrXu933iOTkROAnnJLAU5+Cuuc8BOEH+H5zQPSyx798Aem7n2Fm1jb/3wXkxvY8zvchFOCN+h29rWxO3FwALcKboORNnNNypwGPAGYn7PAX8I7HOhyT2fxz4da3n0OKMptoX2HMb63pk4r4ta932r8T6ptVz/wGJ+5+T+D0bJ5xnA+cl9uGlOCOkvgEitR4bSezb9cC9OKOmDsW5ds8s4IFa950FPLOdYzAFmJx4bo/FOb6XAS/Vud9nwGd1brsH+DXOa/oGnOP4tjr3OS6xLYfhfCPmM5xjuH0967IcuMqL7GoKP4QzX3sDJ+Nct9riTLFzMnBwrfsoX5WvylerfG3sDyHLWJzR5wtxXr+H1NruIUDvWvdTxipjlbFWGduYH8KXrwcC/wN+i/OaPAnnWzvVwLG17qd8Vb4qX63ytTE/hCxft/LYUdTKm8Rtylflq/LVuc8DON98vjmxXb/H+RbzmNrblbiv8rX+10kxIclYYC+cqd3PTRzXv8P5RnUh0KnW/ZSxylhlrHW/Det7CG5n596WeKJrfiqAmcD/A5rVCYJ7E094Cc51FPZly4A8EpiIc9La+GLFGWl1L86LeAPOyPo76wTHTgUkznUsKoFuid8/By7ZzmN+nzj4NuBM+zCszt+7JGqfuwP7MIYTWBMTB30RzuiVA+q57zzgvsR+X544IF8F8mrd5xC2H5AGJxxX4kwh8jJOkNQNyO44jexSnNFAJ1B/o3tfNp3ESnGmzLkfyN3OsbPVgEzcZxjOiKnyxLHzeO3ns75trfW3dsBzif20IbHvXgL61Do+vsE5uZUl9v8FdZZxNc50J1XAvG2sZyrO1D41gZeSWO7T23jMFODjOuv7fGJ9K3GO9UeAnHoeG8EZ0TcG57o55TgjoW+tvc8T2/z8DhyDHXA6r9YltuMxILPOfUYBo+rc9nriedmQqP/7epZ9dGLfliX2yavUakzUul9/nBNUl+2tb1h+CGG+1rPNNT+jat2nC8pX5avyFZSvjfohZBnLpte0Mnbz9VLGKmOVsUn+IXz52gV4s9Z6LMLpBB1az/2Ur8pX5avydad/CFm+buXxo9gyb7qgfFW+Kl/B+dbrjTgf5pYl9ufTQKs691O+bv11EpqMBdrjTIG/NLGtqxPbsnud+3VBGauMVcaCy21Yk3iwiKsSU9K8D3S11s7zeXWaHGPMQ0B3a+2v/F6XpsgY8w9gkLX2cL/XRSTZlK+No3xtHOWrBJ0ytnGUsY2jjJUgU742jvK1cZSvEmTK18ZRvjaO8lWCThnbOMrYxtnZjI25tD4iklz3ANONMT2ttbrGUgMYY7JwZtk42e91EZFdkvJ1JylfRWQHKGN3kjJWRLZD+bqTlK8ish3K152kfBWRHaCM3UmNydhI8ldHRJLNWrsIuABo6/e6NEGdgL9Za0f5vSIisutRvjaK8lVEtkkZ2yjKWBHZKuVroyhfRWSrlK+NonwVkW1SxjbKTmesLg0gIiIiIiIiIiIiIiIiIiISIJoRQEREREREREREREREREREJEA0EEBERERERERERERERERERCRAYn6vQG0t8iO2U0dvV2n2xGxP64WG8biernAhjbCWolXW2pZ+r4ebCvKjtkvHFE9rzpiY6Wm90FC+ShMSlnzt7HH7debELE/riciuJwz5CmrDiog/wpCx+fkR29HjNuxc9cG6w3jcSeDDZYZNxPvvMtp43POaYRCGfFX7NUDUBytNyLbydZcaCNCpY4zPP27lac1TOwz1tF5YmJi3h5atqvK0HuB9Qxt8aWyHwaf2zfl+r4PbunRM4fsRHT2teVS7fp7WC4tQ5KsERhjytXPHGGOGd/C05rHtB3haLzRC0IkqwRGGfAW1YQNFGStNSBgytmPHGCM+KvC05jkd9/e0XliYlFRP69nKCk/rAUQyvP+QM15W5nlNz/nQt/1p/I3A56var8GhPlhpSrbVftWlAURERERERERERERERERERAJEAwFEREREREREREREREREREQCRAMBRETk/7N332FWlHcbx79zyva+CyxdepUiRbBSjC0q9hI1iSXG2FBR1KhJfG2JvWFNFLvRGIOFJgp2QIQVQXovu8CyvZ8y7x9LlQ5Tds/cn+vKFZndPfeUZ37nmec8Z0ZERERERERERERERERiiCYCiIiIiIiIiIiIiIiIiIiIxBBNBBAREREREREREREREREREYkhmgggIiIiIiIiIiIiIiIiIiISQzQRQEREREREREREREREREREJIYE3F6BfXl2VAdmT8kkPSfEo5/9uG35hJdzmTg2F3/A5IhhxVxy12o2ronnpiF9aNGhGoBOR5Rz1d9XWLo+/YeUcfW96/H7TCa8ncW7zzSz9PUbQqbTeTnN67j18RVkNgljmjD+rRzGvRx7+/XmR1dz5AlllBQG+OPwrrZmbeWF9upWZqx49KbWzJiSRkZOmBenLtq2fNy/cvjwlRx8AZMjh5dx5d35hEPw+C1tWPpTIpGwwQnnFXHh9RstWxevtB0v1Fgv7Fc3Mr2wjbHk8ZvbMHNKOhk5YZ77fMG25R++3ISPXmmCP2AyYHgZV9y1btvPNq4LcvWQ7lw8Kp9zrrauvoLaqx3c6NuBjmWsZKq+HpoD6cN+/t9M3nu26bbfWbEggTGTFtOhZ7Ul6+KF9upGpq6fYyPPS5mx4qVRHZnzWSZp2SH+/lkeAP99rDXT3mpGanYIgPNuW02fYcWE6wxevr0DK+amYPjg0nuW021wmaXro3PEesH4KI+8u5BgXBR/wOSr8Vm88XhLWzPd2K9jp82mqtJHNGIQiRiMPKuX7ZleaK9uXQPFgoY0BgveqHdeGIOF2N+vXsm0M8/WOwIYhnGyYRiLDMNYahjG7QfzGkPO28if31iw07J536Qxa3Imj3z6I499/iOnX71+289yD6vh4clzeXjyXMsnAfh8Jtc+sI67Lm7HH4Z0YeiIEtp0qrE0w+1MN7YxGjF46b7WXDW8BzeO6Mrpv91Em07WDMrsiRvbOfndLO68uL2tGTvyQnt1K7MhsKK+Apx4QRH3v7l8p2V536Tw7aR0nvtsES9NW8S5f9oEwJcfZRCqNXjh80U8M3ER41/PoWBN3KFtyBZeaTteqLFe2a9eeH/2an0Fa2rsCecXce+bS3da9uM3KUyflM6zUxbw/NQFnHP1hp1+/uLfWtF/qLWDp6D2ahen+3agYxkrmaqvzvZhh51dzHNTFvHclEWMfnoVzVrXWTYJwAvt1a1MXT83/jwvZTYEVtXXY8/byOjXf95l+UlXruf+ST9y/6Qf6TOsGICpb9UPUD84JY/b3prPW/e2Ixo92ORd6RyxR6jW4LaLunDNKT255pQe9D++lK59K2zLc/OcvP2SHlx3Rm9HJgF4ob2CO9dADYEVNbahjMGCN+qdF8ZgwRv71QuZdufZNhHAMAw/MAY4BegOXGQYRvcDfZ3ug8pJyQjvtGzy680Yce16gvEmAOk54d39qeW69K1i/co4ClbHEw75mDYug8EnlcZUphvbWLQxyNJ5SQBUV/pZszSB7NyQrZlubOe8GSmUl/htzdiRF9qrW5lus6q+Ahw+qJLUzMhOyz5+LZsLrttA3JYam7GlxhoG1FT5iIShrsZHIC5KUkpkl9c8GF5pO16osV7Zr154f/ZifQXrauzhgypIzdi5Rn7yWhPOu3bDtj5sxg592G8nptO8TR1tulh/YaH2ag+n+3agYxkrmaqvzvZhdzT1f5kMObP4YCJ3ywvt1a1MXT83/jwvZbrNyvradVAZyRn7N866bkkSPY6p37fpOSGS0sKs+DHlYGJ3S+eIXQxqqurrayBgEgiamKZ9aV45J73QXsGdayC3WTdG0DDGYMEb9c4LY7Dgjf3qhUy78+y8I8BAYKlpmstN06wD3gFGWPHC+csTWTgjlT+f1pO/ntODpXnJ2362cXU8o0/qxV/P6cGCGalWxG2TnRti0/rtM68K84PkNLf3RHY6041t3FGzVrV06FHFojnJ+/7lQ+D2djrBC+3VrcwGwLb6CrBuWQLzZqRww687ccvZHVmUlwjAsaeVkJAU5aI+PblkQHfOvXoTaZnWdEK90nbcbq9O1Fiv7FcvvD+73V5dZFuNXb88nvkzU7jxtC6MPqcTi/PqLxBrqnz8Z0wzfnNzvhUxu1B7jR06lrGR6ZX2uhuu9GF39OWHGQw9s8SqSE+0V7cyneaF/eqFbXQrswGwtb4CTHm1OX/+VR9eGtWRyi0fArbpXskPk7OIhOvHY1f+lEJRfrxlmTpH7OPzmYwZP493Zucx+6s0FuVZN4Hjl9zaRtOE+8cu4Kn/zeWUCzbs+w8OkRfaq4fZVmPdGIMFb9Q7t8+RWP2cywttx41Mu/PsnAjQElizw7/Xbll2yKIRg4rSAPd/NI9L71rF43/qjGlCZtM6np05m4cmzeV3f13JU9d1oqrcuhlqhrHrMjtnTLqR6cY2bpWQFOGuF5bzwj2tqaqwd2ahm9vpFC+0V7cyGwDb6itAJAIVpX6e/HgJV969nvv/eBimCYvmJOPzm7w1Zx6vzVjA+883IX+VNbel8krb8UKN9cp+9cL7s0frK9hYYyMRg4pSP49/tIgr7lrHg1e3wzThjUeac+YfNpKYbOG9VHeg9ho7dCxjI9Mr7XU3XOnDbrVwdhLxiVEO62rdnVe80F7dynSaF/arF7bRrcwGwNb6OvzSAh79+gfum5RHRtM63rq3HQDHX7CBrNw6/vLr3rz5t3Z07FeGz2/dztY5Yp9o1ODaU3tyyaDedOlTSdvOVbZlubWNoy7oyfUjenH35d047ZICeg6w/hFsO/JCe/UwG8cInB+DBW/UOy+MwYI39qsXMu3OC1j3UrvYzaqzy6obhnEVcBVAq5b7d1Jk5dZx5ClFGAZ07FuBzwflRQHSssME4+tvn9K+VyXN2taQvzyBDr0rD34rdlCYH6RJi7pt/85pHmJzQdCS124omW5sI4A/YHL3C8uZ+kEW30zMtD3Pre10khfaq1uZDcAB19c2Lfe/3Oc0D3H0qaUYBnTtW4XPB6VFfqZ+kEH/oeUEgvW3quo+oJLFPybRvG3dvl90H7zSdrxQY72yX73w/uzR+gr7UWMPvr7WcdQpJRhG/W2/DB+UFQVYNCeZrz/J4OX7W1JZ5sfwQVy8yemXbTqkDdlK7TV26FjGRqZX2utuuNKHzciu//bUtHEZlj4WALzRXt3KdJoX9qsXttGtzAbggOtry/0cgwVIb7L9G2lDfrOBR3/fDQB/AC7524ptP7vnzMPJbWfds5B1jtivsizA3O9S6T+klFWLk2zJcGsbizbWf2haWhTk20+z6NKrgnnfp9mW54X26mE2jhE4PwYL3qh3XhiDBW/sVy9k2p1n5x0B1gKtd/h3K2D9L3/JNM0XTdPsb5pm/5zs/VudAScXMe+bdADWL08gXGeQmhWmbHOA6JY7pGxYFU/+ikSatak9xM3YblFeEi3b1dGsdS2BYJQhI0qYPjndstdvCJlubCOY3PTwSlYvTeC//2xmc1Y9d7bTWV5or25lNgAHXF+bZO//Rf5RJ5eS93X9beHWLosnVGeQnhWhScsQeV+nYJr1t7FeODuZ1h2t+UaVV9qOF2qsV/arF96fPVpfYT9q7MH0XwEGnVTKj9/UP7pq7bJ4wnUGaVlhHv5gMWNnzGfsjPmMuHITF1xfYNkkAFB7jSU6lrGR6ZX2uhuu9GEBolH46uMMhowoOYTV35UX2qtbmU7zwn71wja6ldkAHHB9zT6APmzJhu0D0bMmZtOqS/23x2urfdRU1b/OT1+m4/ebtOxs3UQAnSP2SM8KkZxW/0W6uPgofY8pY83SXR+nYxU3tjE+MUJicmTbfx9xTAkrl9i3jeCN9uphBzRG0NDHYMEb9c4LY7Dgjf3qhUy78+y8I8D3QCfDMNoB64ALgd8c6Is8cW0nfv4ujfKiAFf3P4LzR61l2AUbeXZUB0YN700gGOXaJ5ZiGPDz9DTefbQ1fr+Jz2/yh78vJyUzbNkGRSMGY+5syQNvLcfnh8nvZLFqcYJlr98QMt3Yxh4DKjnhnCJWLEhkzISfARj7UEu+n2rfieXGdt4+ZiW9BleQnhXmjVnzef2RXCa9k21bnhfaq1uZDYAl9RXgwT+1Ze53KZQWBbi4X3cuHVXASRcW8djNrblqaBeCQZNbn1yNYcAZlxXy6E1tuGpoFzANTrxgM+27W9MJ9Urb8UKN9cp+9cL7s0frK1hUY/9xzWHM/S6VsqIAl/brySW35HPihZt5YlRb/jSsG4Ggyc1PrNzt7b+spvZqD6f7dqBjGSuZqq/O9mEBfpqeQk7zkGXfotrKC+3VrUxdPzf+PC9lNgCW1dcx13ZmwfR0KooC3DCgP2ePWs3C79JZNT8Zw4CcVrVc/velAJQVBnnokh74fCaZuXVc/eQSyzYIdI7YJatpiFGPrcDvMzF88OXHmcz8PMO2PDe2MTMnxN3PLgLqv5077cMcfvjS3m/meqG9gjvXQA2AJTW2oYzBgjfqnRfGYMEb+9ULmXbnGaaNDzYwDONU4AnAD7xsmub9e/v9vr3jzM8nNLVtfXbn/FaDHc3zCiNg5xyTXZlh6yZ87DcnRu5/SQ97ssUU8z8/mKbZ3+31OBAHWl/7904wZ05qvbdfsdxJLfo4mucVnqivEjMaY32FA6ux/XrHm9MntnJq1QA4teURjuZ5htN9O/Xr5BB4ob6C+rAxRTVWGpHGWGMPtL727h1nThqf48SqbXNp66MdzfMKI2jdc8P3hxmydlLd/vAl2fPYgr2JVlU5nuk4F8a2p0Tfa3T1FQ6sxqr/Gjs0BiuNyd76r7a2ZNM0xwPj7cwQEfEi1VcREfuoxoqI2EP1VUTEHqqvIiL2UY0VkcZs/x8IJSIiIiIiIiIiIiIiIiIiIg2eJgKIiIiIiIiIiIiIiIiIiIjEEE0EEBERERERERERERERERERiSGaCCAiIiIiIiIiIiIiIiIiIhJDNBFAREREREREREREREREREQkhmgigIiIiIiIiIiIiIiIiIiISAzRRAAREREREREREREREREREZEYookAIiIiIiIiIiIiIiIiIiIiMUQTAURERERERERERERERERERGKIJgKIiIiIiIiIiIiIiIiIiIjEkIDbK7CjZXNTOL/VYEcz8//XzdG8lr9Z5WieW3zpaY7mRQqLHM0DMEN1jmcaAedP2Zpf9XU0L+HTOY7mARByPtJpi+cmcVKLPo5mfrB2pqN5Z7Ua6GieW8xw2NlAw3A2D8A0nc/0AleOpfORTlsyN5lTWx7haOboZT85mvdw136O5kmMMaOORxpxcY5nOq7S7RVwhht92CsWr3A07+UeXRzNA1w5L73QhzX8fsczHd+vgC8pydm8Zk0czQNgufORTlsxN4VLWx/taOYZP292NO/ji45xNA8gOneh45lmOPYHtcw658dg3eBLTXU0L1pe7mieV7jRf/1w3feO5p3RcoCjeW4xIxG3V0EaKSPowpjEXt4qdUcAERERERERERERERERERGRGKKJACIiIiIiIiIiIiIiIiIiIjFEEwFERERERERERERERERERERiiCYCiIiIiIiIiIiIiIiIiIiIxBBNBBAREREREREREREREREREYkhmgggIiIiIiIiIiIiIiIiIiISQzQRQEREREREREREREREREREJIZoIoCIiIiIiIiIiIiIiIiIiEgMCbi9Aoei/5Ayrr53PX6fyYS3s3j3mWaWvG760+uJn1VBND1A4VPtATDKI2Q+sg7/xjoiTeMovrUlZoofwibpY/IJLqvBiJpUDUmn8twcS9Zjq7HTZlNV6SMaMYhEDEae1cvS13cjc+Rf5jHw2E2UFMVx7QVHA3D5yEUMPG4T4ZBB/toknvhbTyorgpbmbhWMj/LIuwsJxkXxB0y+Gp/FG4+3tCVrR3a12d3JaV7HrY+vILNJGNOE8W/lMO5l6/PiAmGevO0TgsEIfl+UL35ox9hx/ejYejM3X/o1ccEIkaiPx984ioUrmlqe79R2epFd7fXpUe2YNSWD9JwQT302b9vyT15uxvixTfEHTPoNK+V3d61h45o4rh/SixYdqgHofEQlf/r7SkvWA5w9J72UefOjqznyhDJKCgP8cXhXW7O28sJ+dWMb3TiWXmDXsZxwW0uWfZ5GUnaYyycu2elnM1/KYdrfm3Pd9z+TlBUhEoKJd7Riw/xEohHoeVYJg/60yZL1AOf7Wm707byQ6cY2utW3i8VrLi+yq75+eUcOa6YmkZAd4ZxP1u30s5/+lcbMf2Rz8fRVJGRFKV8b4P1TWpLeLgRA0z61HP1/my1ZD/DOeemF/qsX9is4U+tG3jGHgUdvoKQ4nmsvHbpt+ennLue0c1YQifj4/tumvPJsD8uzvcSu9jPnzmQ2fBFHfFaUoR+WArDwqUTyP4/DMCA+O0rfBypIaGoSDUHeX5Ip/TmAGYHWZ9TS6aqag87OyanklltmkJlZg2nChAkdGDeuC5deOpfBg9cRjRqUlsbz6KODKCpKtGR7d+RG7fHC9bpb/Uk3amxyapgb71tC285VmCY8/udOLMxLsy3PjW30Arv265M3H7ZtDPaZz+dvW/7xy0355JWm+ALQf3gJl921FoAVPyfy7G2HUVXhx+czefSTn4lLMC1ZF4j9cTS3xtBifb96JdPO6zzbJgIYhvEycBqw0TTNnla/vs9ncu0D67jjwvYU5gd5evwSpk9KZ/WShEN+7ephGVSemknGk/nblqW8X0htryQqz2lD8vuFpLy/mfLfNSXhmzKMkFk/YaA2SpPrllNzbBqRZnGHvB47uv2SHpQV2/OhuBuZUz5qwcfvtuHme37atmzOjGzGPtOJaMTHZdcv4vzLlvPK011syQ/VGtx2URdqqvz4A1Ee/c9CZk1LZ+GcFFvywN42uzvRiMFL97Vm6bwkEpMjPP3JAuZ8lcbqJdZeuNSF/dz8yKlU1wbx+6M8fftHzPypNZed+QNjPzyCmfNac+Tha7j63Jnc+PBplmaDc9vZ0DTmGjvsvEJO/f0Gnryx/bZlP32TyszJGTzx6TyC8SYlhdvfnpodVsPjk+fv7qUOidPnpJcyJ7+bxYev5HDrk6tty9iRF/arG9sIzh/LhqAx19ee5xTT99LNjL+l9U7Ly9YHWflNCmkt6rYtWzQhnUidweUTlhCqNvjXSZ3pdnoJ6a1Ch7we4Hxfy42+nRcy3dhGN/t2sXbN1dA05vra6ewKul9Sxhejm+y0vCLfz7pvEkluEd5peWqbMGd9uP6Qc3fHC+elF/qv4I39upXdtW7K+DZ8/H47br57zrZlvY4oZNAxBVz72yGEQ37SM2pty28IGnONbXNWLe0urmHO7dvrWIfLa+h6Q/0XApa/nsCiZ5Po/bdK1k+KI1pnMHRcKeFqmHp6Bi1/XUdSy+hBZUciPl56qQ/LlmWRmBjiqacmM2dOLu+/343XX6+ftHLGGYv5zW/m8cwzAw55W3/Jjdrjhet1N/qTbtXYq+9czqyvMrl/ZDcCwSjxCQd3LuwPN99H3NSY6+vw8ws57bKNPD6y3bZlc79JZcakDJ6aMn+nMdhIGB67oT03P7mcdj2qKSvy4w9aNwnAC+NobtR0L+xXr2TaeZ1n56MBxgIn2/XiXfpWsX5lHAWr4wmHfEwbl8Hgk0otee26Hkn13/bfQcLMCqqHpgNQPTSdhBnl9T8wwKiJQsTEqI1C0CCa5P/lS8ovzJ+TRXnpzheBc6bnEI3UN8mF8zLIbmbnRZpBTVX9cQoETAJBE9O697XdsrPN7k7RxiBL5yUBUF3pZ83SBLJzrRnc35lBdW39sQz4owT8UUwTTBOSE+s/cEhOrKOwJNmGbCe3s8EZSyOtsT0GlZOasfNg6cTXm3L2tfkE4+tPxIyc8O7+1FJOn5Neypw3I4XyEufeC72wX93YRnD+WDYQY2mk9bX1wCoSMyK7LP/8/uYMua0AjJ2Xh6p9RMMQrvHhD5rEpVg5aOR0X8v5vp03Mp3fRg/37bxgLI20vjYfUEN8+q41csYD2Qy4tRjDsP3k30Hsn5de6L+CN/arU+b/mE152c5fyDn1zJW890YnwqH641paEu/GqjlpLI20xmb3DxOXvnMhC6Zs/3ekmu39WAMi1QbRMERrDXxBCCQffBEsLk5k2bIsAKqrg6xZk0Z2djVVVdvHLBMSwuzSkbaIG7XHC9frbvQn3djOpOQwPQeUMuk/9d9SDYd8VJbbdwPoWH4f2YexNNL62nNQBSm/GIOd8FpTzrm2YJcx2DlfpHNYt2ra9aifhJWWFcFvYanwwjiaGzXdC/vVK5l2XufZ9s5gmuaXhmEcZtfrZ+eG2LR+eye/MD9I1yOq7IrDVxImmlXfCYxmBfGV1hfImqPSSJhZQdPLlmDURim7vBlmqrUnu2nC/WMX1N+i6u1mTPi3/be9cCNzR786Yx1fTc61NcPnM3n64/m0OKyWj15ryqI8+75BAc632R01a1VLhx5VLJpjz4fxPiPKi3/5Hy2blvHB1O4sWNGUZ94ZxMM3TeRP58/EMEyue/B0W7J3ZPd2NiSxVmPXL0/g5xmpvPmPVgTjo/z+7jV06lMJwMbV8dx8Ug8SUyJcPHot3Y+ssCTTjXPSK5lO88J+9cJxbChirb4umZJKarMQTbvtfMvULqeUsnRKGmMGdyNc7WPonet3O4ngUDjd13I6zyuZbmzjVk727bx4zeW0WKuvqz5LIqlZmOxudbv8rGJtgA9GtCAuJUq/G4vJHWDtJPdYPy+92O+J5f3qVq1r2aaCHr0389urFlBX5+dfz3RnycJMR7LdEGs1FmDBE4ms+TCeYIrJUWPLAGhxYh0Fn8cx+fhMIjUGPW6rJC7DmlHypk0r6NChmEWLsgH43e/mMnz4Cior47j99qH7+GvZE7drulP9STe2M7d1DaVFQW5+cAntu1ayZH4Kz9/fntpqez6IdPtYuiXW6uv65Qn8PDOFNx5qSTA+yuV3r6VTn0rWLU/AwOSvv+lM6eYAx44o4pxrCizL1TiaPbywX72SCfZd59k3Rcxmxm4mYtr/DZxdBZdUgw82vtwJX0WE7D+voq53MpFc6x4NMOqCnhRtjCM9K8QDr/7MmuWJzPvevmf9uJW51QWXLyMSMZg6obmtOdGowbWn9iQ5LcxfXlxK285VrFqcZFueW202ISnCXS8s54V7WlNVYU9HMGr6uPKes0lJrOXe66bQrmURpx23kDH/HsSXP7RjSP/ljP79V4x69FRb8sGZ7fQSp9trJGJQWernHx/9zJK8ZB75U0ee//ZHMpuGeHHmj6Rlhlk2N4kHr+jEU5//RFLqoX9r1Y1z0iuZTvPCfvXCcfQKJ49lqNpg+rNNOf/VFbv8LP/HJAw/XPPtAmpK/bx1YQcOO7qCjDbWfVPG6b6W03leyXRjG8H5vp3XrrlikZP1NVxt8ONz6Zz8yq6Do0lNw1wwbQ0JmVEK58Ux5ZpmnD1+LXEp1q1MrJ+XXuv3xPp+davW+fwmKakhbr7qWDp3K+H2e3/givOGY9c3u2OdG+2n243VdLuxmiUvJrDizQS6Xl9N8U8BDB+cOK2YUJnB15em02RwiOTWhzZGkJAQ4q67vuGFF/puuxvAq6/24tVXe3H++T9z+ulLeOONw63YLM9xs6Y72Z90Yzv9AZOO3St47t4OLJqbyh/vXMb5V63l9Sfb2pLntfdnpzg/BgsVpQEe/mgBS/KS+cfVHXjpu7lEIwY/f5/KY+N/Jj4xyl3nd6Hj4ZX0PrbcklyNo9nDC/vVK5lg33WenY8G2C+GYVxlGMYswzBmhdj/WfKF+UGa7PCc05zmITYX2Pe8sWhGAF9R/cCoryhENL1+DkXil2XU9k2BgEE0I0Bdt0SCS2v29lIHrGhj/aSC0qIg336aRZde1nwbtqFlAgw/bR0Djt3EI3f1wqmLs8qyAHO/S6X/EHtv7eF0m4X6DuHdLyxn6gdZfDPR/pnvFdXx5C1qzsCeaznpqCV8+cNhAEyb1Y6u7TbZluv0djYWB1tfwfn2mpNbx6BTijEM6Ny3EsNnUlYUIBhvkpZZfweWDr2qyG1by/rl1jzTzY1z0iuZTvPCfvXCcWxMGkt9LVkdR+maOF75dSeeP64L5QVBXj2jIxWbAiz4KIP2x5XjD0JyToRW/Sop+MmeD5Gc6mu5leeVTCfz3Ojbeemaq6FrDGMEZasDlK8N8sEZLfn30FZUFgT431ktqdrkxx8HCZn1H0jl9KwjtU2I0hX2rEesnpde6vd4Yb+6Ves2b0zg2y+aAwaLF2RimpCWsesdPLyksfRhf6nlr+vI/7S+Ha37JJ6mx9bhC0J8tklW3xAl8w7te25+f5S77vqGqVPb8u23rXf5+bRpbTn66LWHlOFlbrUdp/uTroxLFMRTWBDPormpAHw9MYeO3e2rsV56fz5Qjam+ZjcPMXiHMVjfljHY7OZ19BxUTlpWmPjEKP2GlbBsnnV30tA4mj28sF+9krkjq6/zXJ8IYJrmi6Zp9jdNs3+Q/X9e16K8JFq2q6NZ61oCwShDRpQwfXK6betZMzCFxKn1Oz1xaik1A+tvyRBpEiDup0owTYyaKMFF1YRbWXc3gPjECInJkW3/fcQxJaxcYs2HYA0pE6Df4E2c+7sV/N9NR1BbY+8szfSsEMlp9R8uxsVH6XtMGWuW2ruNTrdZMLnp4ZWsXprAf/9p36330lOqSUms7+DEBcP067aO1fkZbC5Jok+XfACO6LaetRvsmvHvzHY2RgdbX8H59jrw5GLmflPfRtYtTyBcZ5CWFaZ0c4DIljtVF6yKJ39FAs3aWDPZyvlz0juZTvPCfvXCcWxMGkt9bdKlluu+X8DVXy7i6i8XkZob4ncfLiWlSZi0FnWs+i4Z04S6KoP1eUlkdbDu1tVO97Xc6Nt5IdONbXSjb+ela67GoDGMEWR1CXHx9NVcMHUtF0xdS3JumDM/WEdSkwjVRT6iW/qvZasDlK0MktY6vPcXPABeOC+90++J/f3qZq377qvm9O5XCECL1hUEAlHKSqwbr2uMGksfFqBi5fYh64KpcaS0r29Hic0jFE4PYpoQroLiHwPbfnZwTG68cSZr1qTxwQddty1t0WL7N2AHDVrH2rWph5Dhbe7UdOf7k25sZ3FhHJsK4mnZrv521X0Gl7B6mX13CPLO+/OBa0z1ddBJxcz9pr6mrVsWT7jOR1pWmCOOL2XlgkRqq31EwjB/eiqtO1VblqtxNHt4Yb96JdPO67xG+2iAaMRgzJ0teeCt5fj8MPmdLFYtTrDktTMeXUfcvEp8ZRGaXrGE8gubUHF2NpkPryNpSgmRnCDFo1sBUHVKFulPryfnhuVgQvXwDMKHWbMeAJk5Ie5+dhFQP5Nx2oc5/PClvbMYncgcff+PHN6/iLSMEK+On8abL3TkvMuWEwya3P/sLAAW/pTOmAd7WJq7VVbTEKMeW4HfZ2L44MuPM5n5eYYtWVvZ2WZ3p8eASk44p4gVCxIZM+FnAMY+1JLvp1pbsLIzqrjjii/xGVF8Ppj6fTu+m9uGiqo4rrvoO/x+k7qQn0dfO9bS3K2c2k6vsbO9PnptB+Z/l0pZUYAr+/fhwlFrGX5BIc+MascNw3sSDJrc8MRyDAN+np7K24+2xO+vv7Xj1X9fSWqmNc+wdvqc9FLm7WNW0mtwBelZYd6YNZ/XH8ll0jvZtuV5Yb+6sY3g/LH0AjuP5YcjW7NmRjLVxQGePborx4zcQK/zi3f7u30vKWLCba14+ZROYELPc4pp2tW6u1o53ddyo2/nhUw3ttGNvl2sXnN5jZ31depNTcifmUBNsZ+3j23NETcU0+W83X/jruD7BGY/mYnPb2L44ej/KyQ+49Afa7WVF85LL/RfwRv71alaN/pvP3B430LSMup49YPJvPmvLnz6cRtu/PMcxrw+lXDIx2P39UWPBTh4drafH25JoXBmkLoSg8lDM+hyXTUbvwxSscIPPkhqEaXXXysBaHdRDXPuTGHaGemYJrQ5q5b0Lgc/RtCjRyEnnLCSFSvSeeaZiUD9IwFOPHE5rVqVY5qwcWMyTz/d35Jt/SU3ao8Xrtfd6E+6dc3+3L3tGf3IYoLBKPlrEnj8js62Zbm1jbHOzv368DXtmbdlDPayfr256JZ1nHBhIU+Nasd1w3oQCJqM3DIGm5IRYcRVG7j51O4Yhkm/YaUMOMG6u055YRzNjZruhf3qlUw7r/MM06YHGxiG8TYwBMgBNgB/NU3zX3v7mzQjyzzSGG7L+uxJ/v+6OZrX8jerHM1ziy/d2WdbRgqLHM0DMEPO31LOCDg/d6fmV30dzUv4dI6jeQCfht75wTRNe67qbHKgNdaN+vrB2pmO5p3VaqCjeZ6xu4ci2S0WH9rVELhwLKdE31N9tcHoZT85mvdw136O5kmMMa37AHR/GXGx/43PyZWvxXx9BXdq7BWLVzia93KPLo7mAa6cl2bYursi7BcX+j2G3947G+6O4/sV8CXZ923T3eY1a+JoHsDE5Y/GfI11o76e8fNmR/M+vugYR/MAonMXOp7pOBeu190YD3WlvqY6e+eJaLk1z34/EFPM/6i+2uDDdd87mndGywGO5rnG6f6kxkNjhhF0fkzi07q39lhfbXsXNU3zIrteW0TE61RjRUTsofoqImIP1VcREfuoxoqI2EP1VUQaO9++f0VEREREREREREREREREREQaC00EEBERERERERERERERERERiSGaCCAiIiIiIiIiIiIiIiIiIhJDNBFAREREREREREREREREREQkhmgigIiIiIiIiIiIiIiIiIiISAzRRAAREREREREREREREREREZEYookAIiIiIiIiIiIiIiIiIiIiMUQTAURERERERERERERERERERGKIJgKIiIiIiIiIiIiIiIiIiIjEkIDbK7ALw3A0ruVvVjma1+/bckfzAGYPb+J4Zji/wNE8IxjnaJ5bmZhRxyOTZjt7jkQiEUfzPMMAI+BsyT/vyDMdzRu19FNH8wAe69rb8UwzHHY40HQ2z0sc7vOITVyorw937edo3hEzaxzNA8i7sLPjmZFFSx3P9AKnzw8AX1qqo3nhgg2O5om9XunXy9G8E+esczQPYMpRrRzPjJQ7OxZi+P2O5oEL/XRwpT/py8xwNC+arxprG4fbzyfHd3U0r8VHaxzNA8i/tJ3jmZElyx3PdJpX6quRkOBsXk2to3kA1Dkf6QqH289ZPU90NO+3i+Y6mgfw1rAjHc8Mr1vveKbYxOFz0gw1rGKnOwKIiIiIiIiIiIiIiIiIiIjEEE0EEBERERERERERERERERERiSGaCCAiIiIiIiIiIiIiIiIiIhJDNBFAREREREREREREREREREQkhmgigIiIiIiIiIiIiIiIiIiISAzRRAAREREREREREREREREREZEYookAIiIiIiIiIiIiIiIiIiIiMUQTAURERERERERERERERERERGKIJgKIiIiIiIiIiIiIiIiIiIjEkIDbK3Aobn50NUeeUEZJYYA/Du/qSObYabOpqvQRjRhEIgYjz+plyeuu+KtByZcGwSzo+X4UgLVjDEqmGWBAMAva/V+UuKZQuw5+OttHQtv6v03pZXLYXaYl6wEw4uI1nHROPoZhMvH9Fox7o7Vlr70n/YeUcfW96/H7TCa8ncW7zzSzNS8YH+WRdxcSjIviD5h8NT6LNx5vGVOZOc3ruPXxFWQ2CWOaMP6tHMa9bP1+vfGv8xl43CZKiuK45ryjADjmhA1cfPUyWrer5KZLB7Lk53TLc7dyow54gVPtZ+Tdcxl4zCZKiuO49sJjAbjk6sUMOm4jpgklRXE8fk8vigoTDjpj4u0tWP55KknZYX4/YRkA3z7ZhJ/ezSQxKwzAMaM20n5IBQAznsth3nsZGH4Ydnc+hx1XeYhbuZ1T+/WXnK6xTud5JdONeqcaaz036oCdfZCVfzMo/RICWdDjP/X90XVjDEq/AIz65YfdYxLXFMIlsOxWg6r5kH0GtLn90PqvN46excBBBZSUxHPN5b8CoF2HEq67aQ6JiWE2FCTx0P0Dqa4KHuJW7pkXao/TeY71Qf46j4HH1vdhrz3/aACOOaGA3/xxax/2SJYusK8P60bb8QI39mtyapgb71tC285VmCY8/udOLMxLO+TXnXdXApu+DBCXZXL0/+r7o0uejmfj5wEMH8RlmfS8v5qEpibREMz/awJlC/yYYWhxRoj2f6g75HXYqmW7Km5/bOG2fzdvXcPrT7Vl3Gv2Xc863QfxSj/dif3qxDXe/vD5TJ4aN4/CDXH87coutmZ5gVPn5I33zGfgcYX1Y0znDAYgJS3EHQ/9RNMW1Wxcn8iDtx5ORfnB9++K7quh5psIvkyD3LeSACh5upaar8MYAQN/K4OsuxLwpRqE10cpuKiKYJv679LF9fSReduhtd0bb/uBgYMLKCmO55rLTgCgfccSrrs5j2BclGjEYMzjvVm8MOuQcvYm1vuTbmTG0jmyJ26Mp3uFG2MvZ/62/jMg04SVS1J4/M4uhOr8h/y639yRybppiSRkRznj44Kdfjb/X6n88FAG53+3joSsKBVr/Yw7NZe0dvXjs0161zHo/4oPKd/tfogX6p0XttGNc9LObbTtjgCGYbQ2DGOqYRgLDMOYbxjGSKszJr+bxZ0Xt7f6Zffp9kt6cN0ZvS2bBACQc4ZJ52ejOy1r/juTnu9F6flulIzjTNa/aGz7WUIr6Plu/c+snATQtmMFJ52Tz02/6ce15w5g4PGbadGmyrLX3x2fz+TaB9Zx18Xt+MOQLgwdUUKbTjW2ZoZqDW67qAvXnNKTa07pQf/jS+natyKmMqMRg5fua81Vw3tw44iunP7bTbTpVG15zpSPWnD3tUfstGzVsmTuG9WbebMzLc/7JbfqgJucqK+OtZ+PW/GXG/rvtOz919tx3W+O4fqLj2Hm10256Mqlh5TR8+wSznl51S7Lj7hsM7/9aDm//Wj5tkkAm5fEs+iTdH43YRnnvLyKKX9tQTRySPE7cWq/7sjpGutGTfdKphv1TjXW+hrrRh2wsw+SfbpJpzE790Vzf2fS/V2T7v82yTjWJH9LH9aIh5bXmLS6yZq+65SJbbn7tqN3Wjbyltm88lJPrrniV3z7dUvOvWCxJVm744Xa48Y2OtmH/ct1/XZatmpZCvff0sf2Pqwb+7UhsLu+urVfr75zObO+yuSqU/px7Yi+rFmWZMnrtjgzRL/nd74Wb3dZLUd/UMlR71fS5Pgwy56LB6BgcoBoncHRH1Qy+N1K1rwXR/U6Y3cve1DWrUji+rOO4PqzjmDkOX2pqfbx3ZRsy15/d5zug3ihnw7O7FcnrvH2x4jLCli9LNH2nIYglsZgp4xrwd1/6rvTsvMvX0nezCz+cMbR5M3M4rwrVh5SRvKvg+Q8vvMHQAkD/TR7M4lmbyYRaO2j7NXtk6kCLX00ez2JZq8nHfIkAIApE9py960792Evv3o+b73aleuvHMbrL3fj8qvnH3LOnnihPxmr9RWcOUf2xI3x9IYglmrsVtlNaznj4nWMPL8f15w5EL/P5PhTN1ry2h3PrmL4Pzftsrwy38/6b+NJbhHeaXlqmwinj9vA6eM2HPIkAHC3H+KFeueFbQTnz0m7t9HORwOEgVGmaXYDBgHXGobR3cqAeTNSKC859FlKDUFqPwj84ksD/pTt/x2pBqy7jt+j1u2rWDQ3jdoaP9GIj3mzMjhq+K6F20pd+laxfmUcBavjCYd8TBuXweCTSm3NBIOaqvq2EwiYBIImpnXzKRpEZtHGIEvn1Q9CVVf6WbM0gezckOU582ZnUl668yzTNStSWLcq2fKs3ebHUB04ALbXV6faz/w5WZSX7dx+qiu3/zshMXLI50mrgVUkZOzfp/lLp6TS5delBOJN0luHyGhbR8GP1g0eObVfd+R0jXWjpnsl0416pxprfY11ow7Y2QdJ7Qf+X3xpek99WH8ipPStnxBghXlzm1BeFrfTslaty5n3Yw4Ac2Y15ejj1lkTthteqD1ubKNjfZDZWa71Yd25/mkQbK2vbuzXpOQwPQeUMuk/9d/WCId8VJZbc+PFrP4Rguk7F+vAL+qrsaW+Gkb9v6NhiNQa+IIm/hR7LjZ7Dy6hYE0iG9fb+21up/sgXuingzP71YlrvH3Jya1l4NASJv27ib1BDUfMjMHOm525S/sZNHQTUz5sDsCUD5szeOihjVPG9/XjS9t5kDXhyABGoH5ZfE8/kY32NdJ5c3Mo/8W3tU0TkpLqPxxLTglRtNm+GuuF/mSs1ldw5hzZMzfG0xuEmKmxO/L7TeISovj8UeITImzeaM2FerMBtcSnR3dZ/v2DGfS7tdT2z7jc7Id4od55YRvB+XPS7m20bSKAaZr5pmnO3vLf5cACoNHfK8Y04f6xC3jqf3M55YINtuetfdog7yQfReMNWv5pe4WqXQfzL/Cx8Aof5bOty1u1JJme/UpITQ8RnxCh/7GbycmttS5gN7JzQ2xav30QtzA/SE5zuwfE62fZjBk/j3dm5zH7qzQW5aXs+48aYSZAs1a1dOhRxaI5znw4L/Zyur660X5++6fFjP14KkNOXs8bL3SyJSPv9Sxe/XUHJt7egprS+rfDig0BUneoP6m5ISo22HNLaaf2q9M11o2a7pVMcYaTNdbJ+up0H2TdMwZzTzYommDQ4k/OjQ6tXJHGoKPzATh2yFpymtr3bU4v1B63a12s9mHd3q9usbu+urFfc1vXUFoU5OYHl/DMB3MYed8S4hMtvJ3Ubix5Mp4vhqeQ/0mQjtfVX6s3+1UYfyJMG5rCl79K4bDf1xFn05Mtjj91E9M+ie0PV2O1n+42J67xtvrj3av419/bEI068I2aBiBWx2C3ysiqo7iw/gOq4sJ40rOse/TJ7lR+FCJh8PbB/8j6KBt+W8XGP1VRm2dPjX/xmcO5/E/zePW9iVzxp3mMfbGHLTngjf6k1+qrk+eIW2PbborFGrt5Yzz/HduaV6d8x5vTvqOyIsCcb+17HMmazxJIahohq+uu52HFWj8fndmMSZc0YcOsuN38tTWc6Id4od55YRvdYPc22nlHgG0MwzgM6AvMcCLPTqMu6Mn1I3px9+XdOO2SAnoOKLM1r9X1Jn0mRck61WTjO/UXMMEm0HtilB7/jtJ6VJRld/iIWHQXnjUrknnv5Tbc/2Ie9z7/IysWpRCJ2HvhZOzm5Z2YTRiNGlx7ak8uGdSbLn0qadvZ3kcguJWZkBThrheW88I9ramq8Ny3OmOe3fXVrfbz2nOd+f1pQ5k2sQWnn7/a8tfvfXERV3y+hN9+tIyUJmGmPZgLgGnupiAZ1hckJ/er0zXWjZrulUxxnp011un66nQfpOV1Jr0mmmSdYrLp384Nwj/xUD9OG7GMJ1/4jMTEMOGQfZc7Xqg9bta6WO7D6j3Envrqxn71B0w6dq/gk7ebc91Z9bfMP/+qtbZmdhpZy/GfVdD81yFWv1U/WFT6kx/DD0M+r+DYiRWsfDWOqjXW195AMMqRwzbz9cQcy1+7oYjlfrrb7L7G22rgsGJKNgdZOi+2JpHtr1gag3VD2St1EICkk+vv7uLPMcgdl0yz15LIGBlP0V9qiFZaf6KeOmIFLz1zOL8772ReGnM4I0db+K2vX/BCf9Jr9dVJboxtNySxUmNT0kIMGlbIZScO4pKhg0lIjDD0tAJbssLVBj89n0afkbt+uzmxaYSzp+Zz+v820P/2Er4alU1dhT3jB070Q7xQ77ywjW6wexttnwhgGEYK8D5wo2mau3xqbhjGVYZhzDIMY1YIe795boWijVsutIuCfPtpFl16OfMcnOxTTIo/q28NvjgIZNQvT+4OCa2gZtfHXx+0yR+04IYLBjD690dQXhpg/SprnnG4J4X5QZq02D5TMad5iM0F9nwDd3cqywLM/S6V/kOcux2nU5n+gMndLyxn6gdZfDPR3medivMOqL6aB15fG0L7mTaxBUcNs74jmpwTwecHwweHX1C87fb/qbkhyvO315/ygiApTcN7epmD4vR+dbrGulHTvZIpztpbjW3M9dXpfk/WKVD8mSNRAKxdk8Zdo49l5B+H88Xnrclfb9+HAF6oPW7VuobQB7GT199D7BojcOWcLIinsCCeRXNTAfh6Yg4duzszRtD81yE2TKn/oCp/fJCco8P4ghCfbZLZJ0LZfOs/xO5/bDHLfk6hZLN939ZyU6z30xsKu67xturer5xBw4sZ++Ucbn9qKb0Hl3HrY/Y8C7ihibUx2K1KiuLIzKlf38ycWkqL7KlBlZ+EqPkmTNY9CRhbRuSNOAN/ev1/x3X1429pEF696y2vD9UJJ63mmy9bAPDV1JZ06Xboz8neEy/0J71WX506R3bkxni62/Z7jKAR1Nc+g4opWJtAWXEckbCPb6Y0oVtfe77wWr46QMXaAB+NyOX9Yc2pKvDz8dnNqN7kwx8HCZn1NTW7Z4jUNmHKVljzmK09sbMf4oV654VtdIPd22jrRADDMILUF8c3TdP87+5+xzTNF03T7G+aZv8gFj0w1CbxiRESkyPb/vuIY0pYucS6Z0f/0o4f7pd8YZDQrv6/Q0VgbrkTVc1aqFkN8a2sy916+6AmuTUcdUIhX0xoat2L78aivCRatqujWetaAsEoQ0aUMH2yTfcx3CI9K0RyWv2He3HxUfoeU8aapfYdS3cyTW56eCWrlybw3382szFH3HDA9fWAH8jsXvtp0bpy238POm4Da1da/yFOxcbtncqlk9PI6VzfSe8wvJxFn6QTrjUoXROkZFUcub2tvK208/vV6RrrRk33SqY4Z181trHVV6f7IDv2YUu/gITDbIvaRXpGDQCGYXLhpQsZ/1F727K8UHvcqXWx34f18nuInWMEbuzX4sI4NhXE07Jd/bfh+gwuYfUy+ybSV67aPoSzcWqA5Hb1A6cJzaNsnunHNCFcBSVz/dt+ZqXjf72RL2L2sQCx3093kxPXeFuNfbgNlx59BL8/ri9/v6EjP36XxsM3d7Qtr6GItTHYHU2f1oQTzqh/9NMJZ+Qzfar1dajmuzDlr9eR/XAivoTtX8uLFJuYkfqv5IXXRQmvNQm0sH44ffPmBA7vUwhA7yM2sW6tfbdb90J/0kv1FZw5R8Cd8fSG4oDGCBpBfd2Un0DX3mXEJ0QAkz6DilljUx82s0uI879bzzmf53PO5/kk5UY47b8bSGwSpabIR3TL51zla/yUrQyQ2tr6R7A41Q/xQr3zwja6we5ttG16jVE/dfJfwALTNB+zI+P2MSvpNbiC9Kwwb8yaz+uP5DLpnWw7ogDIzAlx97OLgPqZ4tM+zOGHL62ZJb7sdoPyWQbhEsg70UfLP5mUfm1QsxLwQVxzOOzO+gv58tmw7lkfRqD+26yH3RUlYGG7v/OxeaRlhAiHDZ69vxMVZfbOrolGDMbc2ZIH3lqOzw+T38li1eIEWzOzmoYY9dgK/D4TwwdffpzJzM8zYiqzx4BKTjiniBULEhkz4WcAxj7Uku+nWlskRz84l179iknLCPHaxC954/kOlJcG+dNtC0nPrONvT+WxfFEqd197hKW5WzldBxoCJ+qrY+3nvjwO71dEWkYdr378OW++2In+R2+iZdtKzKjBxoIExjzY85AyPr6xFWtnJFFdHOCFoztz1MiNrJmRzKYFCWBAWss6fnVf/QVTTudaOp9aytiTO+ILmAz/Wz4+C79M5dR+3ZHTNdaNmu6VTDfqnWqs9TXWjTpgZx9k+e0G5T9AuATmnmTQ4uotfdhV9f3UuObQ5s7t9zP76VSDSCWYISiZatDpWZPEDgeXPfquGfTqU0haei2vvTueN8Z2IzExzGkjlgPwzVct+HRCWwu2cve8UHvc2EbH+iAPzN3SBwnx6oQvePP5DpSXBbl69NY+7ByWL07lL9f2szQX3NmvDYHd9dWt/frcve0Z/chigsEo+WsSePyOzpa87o+3JlL0vZ9QicG04Sl0vKaWTV8FqFrpAwMSW0Tp/pf6yU9tLqpj3l2JfHNmMpjQ8swQqV2snQgQnxCh79ElPP1Xe5/tvpXTfRAv9NPBmf3qxDWe7CyWxmBH//0nevXfMsY0+SveeK49773cljse/okTz1zHpoIEHril1yFlbL67htrZEaIlJvmnV5L2hzjKXquDOii8of6LAHE9fWTelkDtnAhlL9Vh+AEfZI6Ox5d+aLetHv2X7+nVZxNp6XW89t4E3nilG0893Jc/Xv8Tfn+UUJ2fpx/pc0gZe+OF/mSs1ldw5hzZEzfG0xuCWKqxWy36KY2vJzfhqfdmEYkYLF+QyoT3Wljy2l/enMWGmQnUFPv4z3HN6X19GZ3Oq9zt7274Pp68p9Lx+U0MPwy6p5j4jEPrw7rZD/FCvfPCNoLz56Td22iYNj1MwTCMY4CvgJ+ArWfvn03THL+nv0kzsswjfSfYsj574kt0dtZav2/LHc0DmD3c+Rn7kc1FjuYZwdi8NeEuTOu/1bEvvuwsR/MiGzc5mgcwJfreD6Zp9nc8+CAdVH31ZZmDAic5sXrb+JvZezeRXxr5xaeO5gE81rW345lm2NpHFYiLdvcAqBjT2OorHHiNdaO+Ytj+dK+dHDGzxtE8gLwLrfkg7UBEFnnjtsFOMwL23tpxd/w5zk5YChdscDQPYIr5n5ivr7BljMAY7sTqbeNLTXU071ffrXM0D2DKURbeUnA/RcqdHQsx/NY/GmFfXOmnu9CfDLRo7mhe1OHxJYDJ1W80qhrbWMZg/Tk5juY1/8jKu/vtn/xLnR0HAYgsWe54pie4UF+dPkeiJc7f1v/TurcaVX2FgxgjcKO+ZmQ4mnfx9LmO5gG8NexIxzPD69Y7nik2cbqm2/S5+97sbYzAtlEZ0zS/BmJ/hFtExGGqryIi9lGNFRGxh+qriIg9VF9FROyjGisijZ2zXycSERERERERERERERERERERW2kigIiIiIiIiIiIiIiIiIiISAzRRAAREREREREREREREREREZEYookAIiIiIiIiIiIiIiIiIiIiMUQTAURERERERERERERERERERGKIJgKIiIiIiIiIiIiIiIiIiIjEEE0EEBERERERERERERERERERiSGaCCAiIiIiIiIiIiIiIiIiIhJDNBFAREREREREREREREREREQkhgTcXoGdGGD4/Y5GRquqHM37vq/zu/zaxdMdzxzTqbOjef4WzRzNAwivWuN4phuim4sczTMCQUfzAKhzPtJxJpiRiKOR0eISR/Me7zXA0TyAaxbkOZ7pdH3FMJzN8xB/aqqjeaZpOpoHQJnzkY5zob5ihh2N+6Gv83OHx64e63jm79sc42iez+EaABCtqHA804iLczwzsrnY8UyJHdHyckfzJvVMczQP4KrFeY5nvti5vaN5RsD5sRcz7Oz7c32o8/07s6bG0TzDhfdLqp2P9ILIpk2O5q0d7Py17EurXnM88w8O92GNoPN9OzMccjzTl5joeGaksNDRPFfGYL3C4fdnp/uvr/do52gewENL/+t45q2HDXI0z5X+q9PjWYAvPt7xzGhtraN5brxX7u0zLt0RQEREREREREREREREREREJIZoIoCIiIiIiIiIiIiIiIiIiEgM0UQAERERERERERERERERERGRGKKJACIiIiIiIiIiIiIiIiIiIjFEEwFERERERERERERERERERERiiCYCiIiIiIiIiIiIiIiIiIiIxBBNBBAREREREREREREREREREYkhmgggIiIiIiIiIiIiIiIiIiISQwJur8DBymlex62PryCzSRjThPFv5TDu5Wa25/YfUsbV967H7zOZ8HYW7z5jb+bNj67myBPKKCkM8MfhXS197c9ub8aqqckkZke4aPyqnX4255+ZfPuPJlw+YymJWVEidTDt7mZsnJeA4YNj79pIyyOrLVsXJ/bryDt/ZOBRGygpjufaS44H4DdXLOKkEaspK44H4NXnuzDrO/uOqdPtx+k8N87LYHyUR95dSDAuij9g8tX4LN54vKWtmV5gZ+3Zm7HTZlNV6SMaMYhEDEae1atR5h1QfQ3B1DubsWl+AmYYupxVRr+riy1Zj61i6b2rIeS5kdmyXRW3P7Zw27+bt67h9afaMu41e+tdcmqYG+9bQtvOVZgmPP7nTizMS7M10wvcaLOx0gf51y2dyPssk7TsEPdPmQPAB4+14Yu3m5GaHQLg3NGr6D2smHDI4JXRHVk1L4VIxODoszdy2nVrLVmPrZzer+D8eelGe3W6P+BGf9KNtuMFbuzXWMqcdkcTVk9NIjE7wnmf7Fwvf/xXOjP+kc1vp68kISsKwOaFcXz1lxxCFT7wwVnvryMQb1qyLm6dIz6fyVPj5lG4IY6/XdnF9rxYeX/emxEXr+Gkc/IxDJOJ77dg3ButLc+48Z75DDyukJKiOK45ZzAAKWkh7njoJ5q2qGbj+kQevPVwKsqDlmd7hVtjBLFyLTv2lk7M/SyT1OwQ92zpw374WBu+ersZKVv6sGePXsXhw4qZ/kETJr2wvR+ybkEyd43Po02PSsvWx8n96ta4nRf6sE5vo8Zg7eOFMXy7Mt+9tT0/f55JSnaIWybPBWDy462Y8U5TkrPq6+spo9fQbWgJAOsXJPH+n9tRW+HH8MEN434imGBN/xW8cSzd6hM42U93YxvtrLG2TQQwDCMB+BKI35LzH9M0/2rV60cjBi/d15ql85JITI7w9CcLmPNVGquXJFoVsQufz+TaB9Zxx4XtKcwP8vT4JUyflM7qJQm2ZU5+N4sPX8nh1idXW/7a3c4uo9elJUy5NXen5eX5AdZ8k0RKi9C2ZT+/mw7ARZ+somqzn4+vaMl5/12NYcE9JZzar1M+acXH7x3GzX/J22n5uHfa89+3OliatTtOtx832qsb52Wo1uC2i7pQU+XHH4jy6H8WMmtaOgvnpNiW6Ta76yvYW3v25fZLelBW7NwAjR15B1Jfl01IJVJncNEnqwhVG7x9ymF0Oq2ctFZhS9Yl1t67GkKeG5nrViRx/VlHAPXH9LUvZvDdlGzbc6++czmzvsrk/pHdCASjxCdEbc90WyzW2Fjqgxxz3gaG/249L93UeaflJ125nlP+uG6nZd9/kkOozsd9n86httrHn4cfwZEjNtGkde0hrwe4U1/B+fPSrT6Bk/0Bp/uTbrUdt9ldX93Yr7GW2eXscnpeUsrU0U13Wl6R72fdN4k79WGjYZh6axOGPrSJ7G511BT78AWsGUR18xwZcVkBq5clkpQSsT0rlt6f96RtxwpOOiefm37Tj1DI4N7n5/L9l9msX51kac6UcS346O3WjLp//rZl51++kryZWbz38mGcd/lKzrtiJa880cnS3IYiFvuvEFvXskedt4Ghv1vPy7/ow55w5XpO+kUfdtBZmxh01iYA1i5MYswV3S2dBOD0fnVr3M4LfVint9GLY7AQm31YN8bw7crsf+4mjvpdAe/c3HGn5cdekc+Qq/J3WhYJw9s3deCix5bRonsVlcUB/EHrJgF45Vi6VV+d7Ke7sY121lg7Hw1QCwwzTbM30Ac42TCMQVa9eNHGIEvn1V84VFf6WbM0gezc0D7+6tB06VvF+pVxFKyOJxzyMW1cBoNPKrU1c96MFMpL/La8douB1cSn73rSfHN/E44avQnD2L6saGk8rY6qAiApO0JcWpSNP1lTwJzar/Pzsikvc2/2t9Ptx4326sZ5CQY1VfXnSCBgEgiamNa9fzdUttZXsLf2eMGB1FcMCFf5iIYhUmPgC5rEpVj3oU6svXc1hDy3MrfqPbiEgjWJbFxv72B4UnKYngNKmfSf+pnE4ZCPyvJGezOpAxFzNTaW+iBdjiwjOWP/JkoZhkltlZ9IGEI1PgJBk8RU6y4Y3aivbpyX3ugTONufdKPtNBC21lc39musZTYfUEN8+q790O8eyObIW4tghz7s2q8TyepSR3a3OgASMqP4LCoVbp0jObm1DBxawqR/N7E9C2Lr/XlPWrevYtHcNGpr/EQjPubNyuCo4Zssz5k3O3OX8Z5BQzcx5cPmAEz5sDmDh1qf24DEXP8VYutatvMB9GF3NHNcEwaOsLbtOr9f3Rm380If1vlt9OQYLMRgH9aNMXy7MtsfWU7SbsZgd2fxVxk071pFi+71n3MlZ4Yt67+Cd46lG/XV6X66O+8h9tVY2yYCmPUqtvwzuOV/trw1NGtVS4ceVSyak2zHy2+TnRti0/q4bf8uzA+S09zuDzmdteKzZJKbhcnZcjG/VU7XWlZMSSEahrI1ATbNi6ci35pBR7f362nnruSZ179g5J0/kpJat+8/OEhOb6fb+9Wp8xLqZ9uNGT+Pd2bnMfurNBblxfZMVCfrq9NME+4fu4Cn/jeXUy7YEFN5e6qvHU4uJ5AU5ZWj2vPq8e3pe0UxCRnWTQRwuxaI9Y4/dRPTPrG/45vbuobSoiA3P7iEZz6Yw8j7lhCfaP+sW7fFYo31Qh9kyqvNuevEvvzrlk5UbrlY63/qZuKTItzY/0huHjSAU65aS8pBDMDuiRvb6ZXz0un+ADjbn/Tqe7Pd9dWN/eqFzJWfJZHcLLLtA/+tSlfWf+g6/vJc3j+zJXkvpVuW6dY58se7V/Gvv7chGjX2/csW8ML786olyfTsV0Jqeoj4hAj9j91MTq41d+bZl4ysOooL6x8DWVwYT3qWfeM9bovF/it44/1y6qvN+duJfRm7Qx92R7M+yrF8IoAb+9Ur43Zu9GGd5pVjuaNY7MPuyMkxfCczv301l0dPPpx3b21PVWl9fS1cnoBhwEuXduWJXx/O1OebW5rpxWPpFKf76W6xq8baeUcADMPwG4aRB2wEPjVNc4bVGQlJEe56YTkv3NOaqgp7Z2gYu2ljsTTrLVRtMOvZLAbeuHmXn3U7t5SU3DDvntWGr+5vSu4RNRgW3fbPzf06/r+HceW5w7j+t8dRXBjPFTcssC3L6e10c786eV4CRKMG157ak0sG9aZLn0radq6yPdNtTtRXN4y6oCfXj+jF3Zd347RLCug5oCwm8vZWXzfOTcDwwe+/Wc6lU1eQ93Impautu3tJrL93eU0gGOXIYZv5emKO7Vn+gEnH7hV88nZzrjurLzXVPs6/ytrnqzdUsVZjY70PMuzSfB7+ahb/N3EO6U3reOe+9gCsyEvB5zd5/PuZPPLNLCa+1JKNq+Ity3WjvnrlvHS6PwDO9ie9/N5sZ311Y7/Gema42mDOcxn0H1m0y8+iEYMNsxMY9shGRry9npWfJrPuW2vuVuTGfh04rJiSzUGWznNu4DTW358B1qxI5r2X23D/i3nc+/yPrFiUQiQS2wO4bom1/ivE/vvlkEvzeeCrWfxlSx/2vS192K2Wz0khLjFKyy7W9knc2K9eGbdzow/rNK8cy1+KtT7sVk6P4TuVOfiSDdz+5RxuGv8TqU1DfHxfWwAiEYMV36fymyeXcs1/5jNvUhZLvkmzLNdrx9IpbvTT3WJXjbV1IoBpmhHTNPsArYCBhmH0/OXvGIZxlWEYswzDmBUyD2xWsD9gcvcLy5n6QRbfTMy0ZqX3ojA/SJMW22cQ5zQPsbnAvVvNW61sdZDytUH+fXpbXhvSjoqCAO+e2ZbKTX58ATjmzk1c+NFqfv38eurKfGS0tWY2k5v7taQ4nmjUwDQNJo5rQ+duJbZlOb2dbu1Xp8/LHVWWBZj7XSr9h8T+rVUPuL7izLcuDlXRxvpZk6VFQb79NIsuvSr28ReNI29v9XXxR2m0Pa4Sf7D+0Su5R1SzcZ51H1TF+nuX1/Q/tphlP6dQsjlu3798iAoL4iksiGfR3FQAvp6YQ8fu9p6TDcW+amxjq6+x3gdJbxLC5wefD46/qIDlW2ZMfzeuCYcfX0wgaJKWE6JT/3JWbmnPVnCjvnrlvHS6P7AjJ/qTXn5vtrMP68o5GeOZZasDlK8N8p8zWvHW0NZUFgR4/6xWVG3yk9wsTPMBNSRkRQkkmrQ5vorCn63pw7qxX7v3K2fQ8GLGfjmH259aSu/BZdz62FJbM2P9/XmryR+04IYLBjD690dQXhpg/aok2zMBSoriyMypryGZObWUFtnff3ZTLI4RxPr7ZdoOfdhjLypgxS++9ff9h00YYPHdAMDd/Rrr43Zu9mGdFuvH8pfsHCPw0hi+U5mpO9TXIy/cyOof6+trRm4d7Y8sJzkrTFxilK5DS1hn4YfLXjqWTnKjn+42q2usrRMBtjJNswSYBpy8m5+9aJpmf9M0+weNA7loNLnp4ZWsXprAf//ZzKI13btFeUm0bFdHs9a1BIJRhowoYfpk625/57bsLnVcPmM5v522gt9OW0FKbpjz/7eK5CYRQtUGoar6KU1rvk7C8JtkdbLmtmpu7tfM7Jpt/33UkAJWLbducPiXnN5Od/ar8+dlelaI5LT62/zGxUfpe0wZa5YmOpLdEOx3fcW6D5btEp8YITE5su2/jzimhJVL7DuWTubtrb6mNg+x9rskTBNCVQYb8hLIbG/dbStj/b3La47/9Ua+cOCxAADFhXFsKoinZbv62ad9BpewepkzA7cNxZ5qbGOrr7HeBynZsP3Cevak7G3fmspuUcuCbzMwTait8rFsdirNO1r3jRU36qsXzkun+wPgfH9S78329GHd2K+xnpnVJcRvp6/iN1PX8Jupa0jODXPOB2tJahKh9bHVbF4UR7jaIBqG/JkJZHZovGMEYx9uw6VHH8Hvj+vL32/oyI/fpfHwzR1tzYz19+ettt6Sv0luDUedUMgXE5rangkwfVoTTjgjH4ATzshn+lRn+tBui6Uxglh/v9yxDztnhz4sQDQKsz7JYeDp1k8EcHq/emXczo0+rNO8ciz3xo4xAq+M4TuZWbZxe32dNymT3C3fqu58fAkFC5Ooq/YRCcPyGWk061RtWa53jqWz3Oinu8HOGmvNQ953wzCMJkDINM0SwzASgROAf1j1+j0GVHLCOUWsWJDImAk/AzD2oZZ8P9W+EysaMRhzZ0seeGs5Pj9MfieLVYutufXdntw+ZiW9BleQnhXmjVnzef2RXCa9k23Ja0++MZd1M5OoKfYz9ph2DBy5me7n7f6WRdWb/Xx0eSsMwyQ5N8wJjxRYsg7g3H4dfc9sDj9iM2kZdbw6bgpv/rMzh/fdTPvOZZgmbMxP4ul/HG557lZOtx832qsb52VW0xCjHluB32di+ODLjzOZ+XmGbXkNgd31FeytPXuSmRPi7mcXAfUzGad9mMMPX9o3i9HOvAOprz0vKeHz23N5+9S2YELXc8rI6WrdRIBYe+9qCHluZcYnROh7dAlP/7WTrTk7eu7e9ox+ZDHBYJT8NQk8fkdnx7LdEos1Npb6IM9d14WF36VTURzgpoEDOPPm1Sz8Lp01PyeDATmtavj9g/Uzw4f/Lp9/jurMnSf0BdPgmPM30LqbdRMB3Kiv4Px56XR7dbo/AM73J91qO26zu766sV9jLfOzm5qyfmYCNcV+3jy2Df1uKKbreeW7/d349Ci9Livlg3NaggGtj6+izVBrBlK9co7E0vvz3tz52DzSMkKEwwbP3t+JijLrvxk3+u8/0at/MWkZIV6b/BVvPNee915uyx0P/8SJZ65jU0ECD9zSy/LchiIW+68QW9eyL17XhcVb+rC3DhzAGTevZvEv+rCXPLj9241LZqST2byWJm2tv3OD0/vVrXE7L/Rhnd5GL47BQmz2Yd0Yw7cr883rO7JsehqVxQHuG9SXE29ay7Lpaaz/ORkMk6xWtZzzwAoAktIjHHtlPk+d0RMM6Dq0hG7DSg5107bxyrF0o0/gNDe20c4aa5g2PaTCMIxewKuAn/o7D7xrmub/7e1v0nxZ5qDASbasz56Y4bCjebt9UIjNrl28yPHMMZ2c/aAg0La1o3kA4VVrHM90gxGwbb7QHgIduVHJTj6te+sH0zT7Ox58kA6qvhpZ5pG+E5xYvW18ibE/K/hPP+Y5nul0fXXjfcsr/Kn23YVmd+zq8+3N5LJXGlV9hQOvsW7U15h6OOoejF39teOZv29zjKN5PodrAEC0wvnbk7rRHzBDzl7jmSHrJvDtrynmf2K+vsKWGmsMd2L1POWqxcsdz3yxc/t9/5KFfAnOTxyI1tTs+5digD87y9lAn/PPuZ208blGVWMbyxiB431YF65lX1r1leOZf3C4D2sEnX/Mhhm25vG0B8KNPmy02rpvJu8PI+D8ozYa2xgsHOQYgcP9V8fH713w0FLnxwhuPWyQo3luHEczEnE80xfv/F2JorXOPhKpodVX21qWaZpzgb52vb6IiFepvoqI2Ec1VkTEHqqvIiL2UH0VEbGPaqyINHbOf/VWREREREREREREREREREREbKOJACIiIiIiIiIiIiIiIiIiIjFEEwFERERERERERERERERERERiiCYCiIiIiIiIiIiIiIiIiIiIxBBNBBAREREREREREREREREREYkhmgggIiIiIiIiIiIiIiIiIiISQzQRQEREREREREREREREREREJIZoIoCIiIiIiIiIiIiIiIiIiEgM0UQAERERERERERERERERERGRGKKJACIiIiIiIiIiIiIiIiIiIjEk4PYK7MQEMxx2ey3sZZqOR47p1NnxzA/WznQ07+x2cY7mucUIOr+dZqjO2UDDcDbPSxyuP74m2Y7mhVetcTQP3Kmv1y5Z7GjemM5dHM0DXHmv9CUlOZ4ZKStzNM8INKxuX6wwDANffLyjmdHaWkfz3Dgnf9/mGMczRy/7ydG8hzoc7mieW4zDWjmeGf3Z2fdKsZnD1weG3+9onhtjIC92bu945j9WzHA077Z2Rzqa5xZX+ndRZ/sF0dJiR/M8xeE+nj8tzdE8p6+3AP7gQh/2nTXfOpp3YeujHM0DXBkrjFZVOZ7pNMfHfMU+hrPf93Wj7dx62CDHMx9eOd3RPDe20TMc7vM0tPqqOwKIiIiIiIiIiIiIiIiIiIjEEE0EEBERERERERERERERERERiSGaCCAiIiIiIiIiIiIiIiIiIhJDNBFAREREREREREREREREREQkhmgigIiIiIiIiIiIiIiIiIiISAwJ7OkHhmE8DZh7+rlpmjfYskYiIjFO9VVExD6qsSIi9lB9FRGxj2qsiIg9VF9FxOv2OBEAmOXYWoiIeIvqq4iIfVRjRUTsofoqImIf1VgREXuovoqIp+1xIoBpmq/u+G/DMJJN06y0f5VERGKb6quIiH1UY0VE7KH6KiJiH9VYERF7qL6KiNft7Y4AABiGMRj4F5ACtDEMozfwR9M0r7F75fal/5Ayrr53PX6fyYS3s3j3mWbKbMB5T49qx6wpGaTnhHjqs3nbln/ycjPGj22KP2DSb1gpv7trDQArf07kudvbUV3hwzDg4U/mE5ewx7v4HJBgfJRH3l1IMC6KP2Dy1fgs3ni8pSWvvTdOHksvbCPAzY+u5sgTyigpDPDH4V1tzbJaQ66v4MyxHHnnjww8agMlxfFce8nxAPzmikWcNGI1ZcXxALz6fBdmfWdPO4qlmv7Z7c1YNTWZxOwIF41ftdPP5vwzk2//0YTLZywlMStKJART72zGpvkJmGHoclYZ/a4utmQ9wJ3z0o1jOXbabKoqfUQjBpGIwcizetma5/Q25jSv49bHV5DZJIxpwvi3chj3sv371SoNvcb6fCZPjZtH4YY4/nZlF1uzvHJO2pU54baWLPs8jaTsMJdPXLLTz2a+lMO0vzfnuu9/JikrQiQEE+9oxYb5iUQj0POsEgb9aZMl67FVrFwb7CinSRWjbptJZmYNpmkw8ZP2jPugEympddxx13c0bVbFxg1JPHjvYCoq4izPh9jcr3ZpyPXV6Xrn1ntlrNTY90a3Y8HnmaRkh7h50k8AfPpES2a+05TkrBAAJ9+6hq5DS7f9TfG6OB47sRcnjFzL8VcVHPI67ChW9uueuNVez/ztGk46Jx/ThJVLUnj8zi6E6vy25akPax+nz5GW7aq4/bGF2/7dvHUNrz/VlnGv2Te2FUt14PlRHZj9WRZp2SEe+Sxv2/KJr+QyaWxz/AGTvsOKufjO+vGD/z3TkqnvNMXnh9/fs4LeQ0osWQ9wZ7964RooltqrE1Rft/PK5wZ25b17a3t+3tKHvWXyXAAmP96KGTv0YU8ZvYZuQ0sAWL8giff/3I7aCj+GD24Y9xNBiz7ngtjZr/vi5DgaxNZ+3edEAOAJ4CTgQwDTNH80DOO4/Q0wDMNP/e1X1pmmedrBrOTu+Hwm1z6wjjsubE9hfpCnxy9h+qR0Vi9JsCrCk5l25g07r5BTf7+BJ29sv23ZT9+kMnNyBk98Oo9gvElJYX2TjIThiRs6MPKpZbTrXk1ZcQB/0LriGKo1uO2iLtRU+fEHojz6n4XMmpbOwjkplmX8ktPH0gvbCDD53Sw+fCWHW59cbVuGjZ6gAdZXcO5YTvmkFR+/dxg3/yVvp+Xj3mnPf9/qYGnWL8VaTe92dhm9Li1hyq25Oy0vzw+w5pskUlqEti1bNiGVSJ3BRZ+sIlRt8PYph9HptHLSWoUPeT3A+fPSjWO51e2X9KCsOGh7jhvbGI0YvHRfa5bOSyIxOcLTnyxgzldprF6SaFumxZ7gIGusnfV1qxGXFbB6WSJJKRE7Xn4nXjgn7czseU4xfS/dzPhbWu+0vGx9kJXfpJDWom7bskUT0onUGVw+YQmhaoN/ndSZbqeXkN4q9MuXPSixdG2wo0jE4J/P92bZ0kwSE0M89dwUZv/QjF+dtJK8Oc14752unHfhQs67cCGv/NP6SVexul9t9AQNtA/rdL1z470ylmpsv3MKOeq3G/j3qJ37/cdcnr/HD/k/vq8tXY4vOaTc3Yml/bonbrTX7Ka1nHHxOq4+YwB1tX7ueHQ+x5+6kSn/a25bpvqwjXuMYEfrViRx/VlHbMt/7YsZfDcl27a8WKsDx5+3iZN+X8CYGzttWzb/2zRmTc7iocl5BONNSgvrr2XXLk7k2w9zeOSzPIo3xHHfRT144svZ+CyYs+NWvyfWr4Firb065AlUXwFvfG5gZ17/czdx1O8KeOfmjjstP/aKfIZclb/TskgY3r6pAxc9towW3auotPhzrljar/vi5DharO1X3/78kmmaa36x6ED29EhgwQH8/n7p0reK9SvjKFgdTzjkY9q4DAafVLrvP1Sma3k9BpWTmrHzh0wTX2/K2dfmE4yvL34ZOfU/z/sinbbdqmjXvRqAtMwwfksnjBvUVNW/YCBgEgiamNbV391yvv14YRth3owUykvs+zaB3RpifQXnjuX8vGzKy+z/EHV3Yq2mtxhYTXz6rs3nm/ubcNToTRjGDgsNCFf5iIYhUmPgC5rEpUQtWQ9w/rx041g6zY1tLNoYZOm8JACqK/2sWZpAdq41H2Y65RBqrG31FSAnt5aBQ0uY9O8mdkXsxAvnpJ2ZrQdWkZixa9P5/P7mDLmtAIydl4eq6+truMaH3+L6GkvXBjsqLkpk2dJMAKqrg6xenUZOTjWDjlrHlMltAZgyuS2Dj15neTbE7n61U0Ptwzpd79x4r4ylGtv+yHISM/Z/Iur8yZlkta6hWefqQ87+pVjar3viVt/O7zeJS4ji80eJT4iweWO8rXnqwzbuMYI96T24hII1iWxcb98HDbFWB7oNKiP5FzX209dzGXHNum3jsOk59efGrMlZHHVGIcF4k6Ztask9rJqledZ8IOhW24n1a6BYa69OUX3dKvY/N7Azr/2R5STtZgx2dxZ/lUHzrlW06F4FQHJm2JJJVlvF0n7dG6fH0WJtv+7PRIA1hmEcBZiGYcQZhnEL+1n0DMNoBfwa+OchrONuZeeG2LR++20hC/OD5DS3t2PvhUyn89YvT+DnGamMPq07d57TlSV5yfXLVyRgGHDPxV0YdXIPPng2dx+vdOB8PpMx4+fxzuw8Zn+VxiKLOrh74kb78cI2NnINsr6C+8fytHNX8szrXzDyzh9JSa3b9x8cBC/U9BWfJZPcLExOt533YYeTywkkRXnlqPa8enx7+l5RTEKGdR9UOc2t9mqacP/YBTz1v7mccsEGW7PcPiebtaqlQ48qFs1JdizTAgdVY+2urwB/vHsV//p7G6JRY9+/3Ah5ob4umZJKarMQTbvV7LS8yymlBBOjjBncjeeP7cqAKzftdhLBwYr1awOAps0q6dCxmIULs8jIrKW4qP4bnMVFiaRn1NqS6YX9arEG24d1k1PvlV6osd+9lsvjJx/Oe6PbUVVaP1JaV+Vj2vPNOWGkPROCvLBfd+RUe928MZ7/jm3Nq1O+481p31FZEWDOt1m2Zu5IfVjruP3edfypm5j2ib2D/16oA/nLE1k4M407Tz+ce87twbIt44RFBXFkt9jez8pqXkdRgTWTdtxuO07xQn8yBo6l6usOYv1zAzf267ev5vLoyYfz7q3tt/VhC5fXf8710qVdeeLXhzP1eWvviuSF/QrOj6PF2n7dn4kAVwPXAi2BdUCfLf/eH08AowHLP10wdnO87Z615IVMp/MiEYPKUj//+OhnfnfXGh75U0dMEyJhgwXfp3LT08t44IMFTJ+Yxdyv0yzNjkYNrj21J5cM6k2XPpW07Vxl6ev/khvtxwvb2Mg1yPoK7h7L8f89jCvPHcb1vz2O4sJ4rrjBni/lxnpND1UbzHo2i4E3bt7lZxvnJmD44PffLOfSqSvIezmT0tXu3JnBCm6111EX9OT6Eb24+/JunHZJAT0HlNmW5eY5mZAU4a4XlvPCPa2pqmhUd2A52Br7BDbW14HDiinZHGTpvEY1IH1AvFBfpz/blGNu2nUCUP6PSRh+uObbBVw1bSHf/6sJJRbW11i/NkhICHPnX7/lxWf7UF3l3PtSrO9XGzTYPqxbnHyvjPUaO+jiDYz+Io+R438itUmIT+5vA9Q/d/WYywuIT7an6cT6ft2Rk+01JS3EoGGFXHbiIC4ZOpiExAhDT9v9Yx+spj6stdx87woEoxw5bDNfT8yxNccLdSASNqgsDXDfhz9x8Z2reOKazvV5u8k0DGtWJAb6PfvFC/3JGDiWqq87iPXPDZzOG3zJBm7/cg43jf+J1KYhPr6v/s52kYjBiu9T+c2TS7nmP/OZNymLJd9Y9zlXrO9XcGccLdb2a2Bfv2CaZiFw8YG+sGEYpwEbTdP8wTCMIXv5vauAqwASSNrv1y/MD9Jkh+dx5jQPsbnA3sEiL2Q6nZeTW8egU4oxDOjctxLDZ1JWFCC7eR09BpWRllV/C6t+w0pY9lMSvY6x/kOWyrIAc79Lpf+QUlYt3v82eKDcaD9beWEbG6OGWl/B3WNZUrx91vnEcW346yPf25IT6zW9bHWQ8rVB/n16fcezoiDAu2e25dz3V7P4ozTaHleJPwhJ2RFyj6hm47x40ts0qpnc27jVXos21s/ULC0K8u2nWXTpVcG8762dtLaVW9voD5jc/cJypn6QxTcTM23Ps9LB1NiDqq/GgV2IdO9XzqDhxQwYUkIw3iQpJcKtjy3l4V88W64xi/X6WrI6jtI1cbzy6/rnrZYXBHn1jI5c+sEyFnyUQfvjyvEHITknQqt+lRT8lERGG2tu6RbL1wZ+f5Q7//Yt0z5ry7dftwLq+wSZWdUUFyWSmVVNaYk9t5OO5f1qh4bch3WD0++VsV5jU5tsv431wIs2MvaKLgCsyUtm3oQsJvy9DdVlfgwfBONNjvqdNXdlivX9upXT7bXPoGIK1iZQVlzfb/5mShO69S1j6sfW3/VxR+rD7vH3GuUYQf9ji1n2cwolm+P2/cuHwAt1ILt5LQNO2YxhQMe+FRgGlBcFyGpex+b12/tZRflxZDaz5u6Mjb3fs7+80J9s7MdS9XX3YvVzA6fzUptsH1M98sKNvLylD5uRW0f7I8tJ3vI5V9ehJaybl0yno635nCvW9yu4M44Wa/t1n3cEMAyjvWEYHxmGsckwjI2GYYwzDKP9frz20cAZhmGsBN4BhhmG8cYvf8k0zRdN0+xvmmb/IPs/sLMoL4mW7epo1rqWQDDKkBElTJ+cvt9/fzC8kOl03sCTi5m7ZQbUuuUJhOsM0rLC9D2+lFULkqit9hEJw/zpqbS28DmA6VkhktPqi29cfJS+x5SxZmmiZa+/O07vWy9sY2PXUOsruHssM7O332b5qCEFrFqeaktOrNf07C51XD5jOb+dtoLfTltBSm6Y8/+3iuQmEVKbh1j7XRKmCaEqgw15CWS2t+cRDE5w41jGJ0ZITI5s++8jjilh5RL7aqw756TJTQ+vZPXSBP77z2Y2Z1nvIGvsAdfXuAOsr2MfbsOlRx/B74/ry99v6MiP36XF1CQAiP362qRLLdd9v4Crv1zE1V8uIjU3xO8+XEpKkzBpLepY9V0ypgl1VQbr85LI6mDd7exj99rA5MZbZrFmVRofvN9529Lp37XghBNXAXDCiauY/m1LG7Jjeb/aoyH3YZ3n/HtlrNfYso3bB7zmT8qi2ZZxgD+9t4Dbv87j9q/zOObyAoZes86ySQAQ+/u1nvPtdVN+Al17lxGfEAFM+gwqZs0yuyf4qA9LjI0RHP/rjXxh82MBwBt1oP9JRcz/pv711y9PIBwySM0K0+9XRXz7YQ6hWoONq+MpWJlIxz4VlmQ29n7P/vJCf7KxH0vV1+288LmB03k79mHnTcokd8sdFjofX0LBwiTqtnzOtXxGGs06Wfc5V6zvV3BnHC3W9us+7wgAvAWMAc7a8u8LgbeBI/f2R6Zp3gHcAbBlttQtpmlecrAr+kvRiMGYO1vywFvL8flh8jtZrFqcYNXLezbTzrxHr+3A/O9SKSsKcGX/Plw4ai3DLyjkmVHtuGF4T4JBkxueWI5hQEpGhNP/UMCtv+4OBvQbWkr/4dZ8kwogq2mIUY+twO8zMXzw5ceZzPw8w7LX3x2nj6UXthHg9jEr6TW4gvSsMG/Mms/rj+Qy6Z1sWzMt1CDrKzh3LEffM5vDj9hMWkYdr46bwpv/7MzhfTfTvnMZpgkb85N4+h+HW54LsVfTJ9+Yy7qZSdQU+xl7TDsGjtxM9/N2P7u05yUlfH57Lm+f2hZM6HpOGTldrZsI4PR56caxzMwJcfezi4D6bxxN+zCHH76079tGbmxjjwGVnHBOESsWJDJmws8AjH2oJd9PbTQX+gdcY52or27wwjlpZ+aHI1uzZkYy1cUBnj26K8eM3ECv84t3+7t9Lyliwm2tePmUTmBCz3OKadq1Zre/ezBi6dpgR917bmb4r1axYnk6Tz8/GYBXXz6c997pyh13TefEk1ewaWMSD9w72PJsiN39aqMG24d1ut658V4ZSzX2rRs6sHx6GpXFAe4f3Jdf3biW5dPTyF9Q/0FxZqtazn5gxSHn7I9Y2q974kZ7XfRTGl9PbsJT780iEjFYviCVCe+1sC0P1Idt7GMEvxSfEKHv0SU8/ddOtmfFWh146tpO/Dw9nfKiANcM6Me5o9Yw9IKNPH9LR24Z3odAXJRrHl+CYUDrLtUMPq2QUcP64g+YXHZf/fpYwa22E+vXQLHWXh2i+rqFFz43sDPvzes7smxLH/a+QX058aa1LJuexvqfk8EwyWpVyzlb+rBJ6RGOvTKfp87oCUb9HQG6DSuxZD0gtvZrQxJr+9Uw9/GgAcMwZpimeeQvlk03TXPQfodsL5Kn7e330ows80hj+P6+rDRgH6yd6Wje2e2OcTQPwAw5/+1ZI2jvbdB2x/Ht3N0DUWw2JfreD6Zp9nc6N9bra6Bta0fzwqvWOJrnlmuXLHY0b0znLo7mAa48ZM6X5Pyth6NV9j5/7ZeMwP7M/7TWp6F3XKmvcOg1dn/ra7ov2xyUcOpBr+fBiNZa9w3z/dLIHvx4sEYv+8nRvIc62DPRraHxd++871+yWORnZ98r3TDF/E+jra9bfn8I+9uH9Z1wUOt5sAy/s88SN8Phff9SDPjHihmO5t3Wbq/zUmKGG/07X6o9d2zbk2h5uaN54I0+rBtjBP40ex6jtieRMusfL9oQvbPmW0fzLmx9lKN5gCtjhV65BnJaY+7DNuT66vRnBm58LuKGh1dOdzTv1sP2+3KqUfMlOD9xIFpj3Rc0Gqq91dc9XjEYhpG15T+nGoZxO/W3PjGBC4BPDmQFTNOcBkw7kL8REYlVqq8iIvaxqsaqvoqI7Ex9WBER+6gPKyJiD9VXEfG6vU0d/oH6grh1yt0fd/iZCdxr10qJiMQ41VcREfuoxoqI2EP1VUTEPqqxIiL2UH0VEU/b40QA0zTbObkiIiJeofoqImIf1VgREXuovoqI2Ec1VkTEHqqvIuJ1+/UwMcMwegLdgW0PbzBN8zW7VkpExCtUX0VE7KMaKyJiD9VXERH7qMaKiNhD9VVEvGifEwEMw/grMIT6AjkeOAX4GlCBFBE5BKqvIiL2UY0VEbGH6quIiH1UY0VE7KH6KiJe5duP3zkXGA4UmKZ5GdAbiLd1rUREvEH1VUTEPqqxIiL2UH0VEbGPaqyIiD1UX0XEk/ZnIkC1aZpRIGwYRhqwEWhv72qJiHiC6quIiH1UY0VE7KH6KiJiH9VYERF7qL6KiCft89EAwCzDMDKAl4AfgApgpp0rJSLiEaqvIiL2UY0VEbGH6quIiH1UY0VE7KH6KiKetM+JAKZpXrPlP583DGMikGaa5lx7V0tEJPapvoqI2Ec1VkTEHqqvIiL2UY0VEbGH6quIeNUeJwIYhnHE3n5mmuZse1ZJRCS2qb6KiNhHNVZExB6qryIi9lGNFRGxh+qriHjd3u4I8OhefmYCwyxeF4khZ7Ua6GjepPXO38XnpBZ9HM80Q3WOZzrONN1eAye4U18Nw5aX3ZPw6rWO5rnC4X0KMKZzF0fznljxjaN5ADe2O9rxzGhVleOZTvMlJTkfWup8JE7XWMMAn8/Sl9wnD7xX+rt0dDzzoY7O1vTzF+Q7mgfwbvfmjmdGFixxPNPx92cPnJNbuNOHdXj/muGwo3luMAL785RIa93WfpCjee+scb4Pe2Eb5/uwbrTXSHGxs4EuXHO5xPka6/C+jZSVOZrnChfa60XtjnM076XV0xzNA/hD22Mdz/QCf3aW86GFzkfigc+5vPCZQaB1K8czR3dytr7etPRHR/MAnuh6uOOZ0ZoaxzOd5ktNdT50L92sPV79maY51I51ERHxOtVXERH7qMaKiNhD9VVExD6qsSIi9lB9FRGvc/jrSyIiIiIiIiIiIiIiIiIiImInTQQQERERERERERERERERERGJIZoIICIiIiIiIiIiIiIiIiIiEkP2ORHAqHeJYRh/2fLvNoZhDLR/1UREYpvqq4iIfVRjRUTsofoqImIf1VgREXuovoqIV+3PHQGeBQYDF235dzkwxrY1EhHxDtVXERH7qMaKiNhD9VVExD6qsSIi9lB9FRFPCuzH7xxpmuYRhmHMATBNs9gwjDib10tExAtUX0VE7KMaKyJiD9VXERH7qMaKiNhD9VVEPGl/7ggQMgzDD5gAhmE0AaK2rpWIiDeovoqI2Ec1VkTEHqqvIiL2UY0VEbGH6quIeNL+TAR4CvgAaGoYxv3A18ADtq6ViIg3qL6KiNhHNVZExB6qryIi9lGNFRGxh+qriHjSPh8NYJrmm4Zh/AAMBwzgTNM0F9i+Zvuh/5Ayrr53PX6fyYS3s3j3mWbKbIR5dmY+elNrZkxJIyMnzItTF21bPu5fOXz4Sg6+gMmRw8u48u58QnUGT45uxZK5SRg++NP/raP3URWWrMdWOpaxk2mFhlxfb350NUeeUEZJYYA/Du8as5lOt51Y2q9v3dqBnz/PIiU7xO2T8wCY8Hhrpr/TlOSsMACnjV5F96ElzPpfDp+/0HLb3+YvTGLUxz/SqkeVJevixn6F2K/pLdtVcftjC7f9u3nrGl5/qi3jXmu5l79qOBpyjR07bTZVlT6iEYNIxGDkWb1sz4zF9nrj6FkMHFRASUk811z+KwDadSjhupvmkJgYZkNBEg/dP5DqqqDl2WBv7Zl5Zxr50+KJz4py8kebd/rZwpeTmPtwGiO+3UB8pgnAgheTWfF+IoYP+t5ZRu4xdZati9M1NpbeK/emsfZfoWHXV69cizidmdO8jlsfX0FmkzCmCePfymHcy42z3/z8qA7M/iyLtOwQj3yWt235xFdymTS2Of6ASd9hxVx85yrmfpnO239vS7jOIBBncvGdK+l5dJll6+KV2uOFay4rNdQaq2sue7ixX+2q6WNv6cTczzJJzQ5xz5Q5AHz4WBu+ersZKdkhAM4evYrDhxUz/YMmTNphjGDdgmTuGp9Hmx6Vh7weW3mhxrpR00dcvIaTzsnHMEwmvt+CcW+0tj3TKg21voI33p+dyhx5148MPHojJcVxXPub43f62dkXL+OKGxZy0Ym/oqzU+qdCBOOjPPLuQoJxUfwBk6/GZ/HG49aMoU2+vTnLP08hKTvMbyes2Olns/6ZxVd/b8bVMxeTmBUhUgdT7m7Ohp8SMHww5K4NtB5kzRisG9cFELvt9ZeSU8PceN8S2nauwjTh8T93YmFe2iG/7j7vCGAYRhugCvgI+BCo3LJsnwzDWGkYxk+GYeQZhjHr0FZ1Zz6fybUPrOOui9vxhyFdGDqihDadaqyM8GRmrG3jiRcUcf+by3dalvdNCt9OSue5zxbx0rRFnPunTQBMeDMbgBc+X8Tf31nGi/e0IGrhzYF0LGMn0yoNtb4CTH43izsvbm/1yzaoTDfaTizt1yPP3cQfX/15l+XHX5HP6Ak/MnrCj3QfWgJA/zMLty275PElZLWqtWwSALizX71Q09etSOL6s47g+rOOYOQ5famp9vHdlGxbM63UkGsswO2X9OC6M3o7MgkgVtvrlIltufu2o3daNvKW2bzyUk+uueJXfPt1S869YLHluVvZWXvanVnNcS8W77K8Kt/Hhm/jSWoe2basdKmf1eMTOOmjQo59qZgf/i+NaGSXPz1oTtfYWHqv3JPG3H+FhltfvXIt4kZmNGLw0n2tuWp4D24c0ZXTf7uJNp2qbc2067w8/rxN3PH6zn3Y+d+mMWtyFg9NzuORz/I47Y/rAUjNCnPrywt4eMqPXPPYUsaM7GTpunih9njlmstKB1tjY3GMIFb7sDtyY7/aVdOPOm8DI1+bv8vyE65cz18n5vHXiXkcPqy+fzvorE3bll3xxGKyW9VaOgkAYr/GutFe23as4KRz8rnpN/249twBDDx+My3aWDe2Yzf1Yb2ROeXjVvzlxoG7LM9pWk2fgYVszE+0PHOrUK3BbRd14ZpTenLNKT3of3wpXfta80XT7meXcNbLa3ZZXr4+wOqvk0ltEdq27Kd/ZwLw2/ErOOfV1Xz5YFNMiz7ncuO6IJbb6y9dfedyZn2VyVWn9OPaEX1ZsyzJktfdn0cDfAJ8vOX/PwOWAxMOIGOoaZp9TNPsfxDrt0dd+laxfmUcBavjCYd8TBuXweCTSq2M8GRmrG3j4YMqSc3ceST049eyueC6DcTF13+DKiOn/purqxfH0/fYim3LUtIjLP7RmhMNdCxjKdNCDbK+AsybkUJ5id/ql21QmW60nVjarx2OLCMpPXzAfzf7wxyOOKPQ0nVxY796oabvqPfgEgrWJLJxfYJjmRZosDXWabHaXufNbUJ52c6z+Fu1LmfejzkAzJnVlKOPW2d57rZ8G2tPkwEh4jLMXZbn/T2N3reU139/ZYv1nyfQ5tQa/HGQ0ipCSpsIRXOtuwuC0zU2lt4r98Ttmm6BBllfvXIt4kZm0cYgS+fVXxtXV/pZszSB7NzQPv7q0Nh1XnYbVEZyxs592E9fz2XENesIbhkjSM+p37Z2PSvJ2rKdrbpUEar1Eao1sIoXao9Xrrksdig1NqbGCGK1D7sjN/arXTW985G71tf9MXNcEwaO2HTI+b8U6zXWjfbaun0Vi+amUVvjJxrxMW9WBkcNt/7Y2Uh9WA9kzs/Lprxs1+vhP9z0M6880w1z18tsCxnUVNXXnUDAJBA0LctrNbCahIxdZ/xPu78Zx962EcPYHlS0NI42g+snVyVlR4hPi7LhJ2vG89y4Lojl9rqjpOQwPQeUMuk/9XceCId8VJbv86b++2WfEwFM0zzcNM1eW/6/EzCQ+uenuCo7N8Sm9dsH/grzg+Q0t7fBeSHTC9u4blkC82akcMOvO3HL2R1ZlFc/C6x9jxq+m5ROJAwFq+NYMjeJTeutG0TVsYydTKs01PrqFY257TRkX72ayz9O7s1bt3agqnTXi+45H1s/EcANXqjpOzr+1E1M+6SJY3lWaMg11jTh/rELeOp/cznlgg2253mpva5ckcago/MBOHbIWnKa2jsz3UnrPo8nsVmEjK47D7BWb/CRlLt9QCCpWYTqjfsz31vc4nZNP1QNtb565VrE7fbTrFUtHXpUsWhOsmOZdstfnsjCmWncefrh3HNuD5blpezyOzPGZ3NYz8ptkwUaIy+218aoodZYN3ipD+sWJ2r61Feb87cT+zL2lk5U7uaD+Vkf5dgyEcBpXmivq5Yk07NfCanpIeITIvQ/djM5ubW2ZlqpodZXr7w/u1ljjzx2A5s3JbBiyaHfYn1ffD6TMePn8c7sPGZ/lcai3fQrrbJsSgopuWGadNv5PMzpVsuyKalEw1C6JsjGeQmU51v/yESnrgu80l5zW9dQWhTk5geX8MwHcxh53xLiE6253eMBjxCZpjkbGLC/vw5MNgzjB8MwrjrQrL0xdjMJ297ZPN7I9MI2RiJQUernyY+XcOXd67n/j4dhmnDShZvJaV7HdSd34bm/tKR7/0r8futWRMcydjLt0lDqq1fEUttpKI65pIC7v5zNreN/JL1piP/dd9hOP185J4W4xAjNuzSeW8ftiRdq+laBYJQjh23m64k5zgTapCHV2FEX9OT6Eb24+/JunHZJAT0HWPe84d3xUnt94qF+nDZiGU++8BmJiWHCodj4QDxcDQteSKbH9bveVnB3+3Z3x0AajljrgzSU+uqVaxE3209CUoS7XljOC/e0pqqiUX/jeieRsEFlaYD7PvyJi+9cxRPXdN5pn65ZlMhbD7TlygeXubeSFvBae40VB1BjY26MwEt9WDc4UdOHXJrPA1/N4i8T55DetI737tv5Vv3L56QQlxilpcYIGnwewJoVybz3chvufzGPe5//kRWLUohEGu+Fh/qwsZ8JEB8f4YLfL+WNFzrbHwZEowbXntqTSwb1pkufStp2tqe+haoNZj6Xw1E37jqRque5JaTkhnjrrHZMu68ZzY+oxmfh51zg7HWBV9qrP2DSsXsFn7zdnOvOqn9E6/lXrbXktfd5XwHDMG7e4Z8+4Ahgf6fpHW2a5nrDMJoCnxqGsdA0zS9/8fpXAVcBJLD/t2EvzA/SpEXdtn/nNA+xucD6WS1ey/TCNuY0D3H0qaUYBnTtW4XPB6VFfjKyI1x9z/ptv3fj6Z1o2d66WY06lrGTaZWGWl+9ojG3nYYqtcn2mZGDLtzAS1d02+nncz6KjbsBgDdq+lb9jy1m2c8plGyO2/cvNyB21tid6qtx4DOfizbW78vSoiDffppFl14VzPvevpnpXmqva9ekcdfoYwFo2aqcAYMKHMm1W8WaAJVr/Uw+s35CTvUGH5+ek8Pwf28mKTdKVcH2C++qDX4Smlj0AECxRWPvgzTUPqxXrkXcaj/+gMndLyxn6gdZfDMx0/Y8J2U3r2XAKZsxDOjYtwLDgPKiAGnZYTbnx/HoH7py7RNLyD2s8XzrcXe81F4bs0OosTE3RuClPqzTnKrpaTuMERx7UQFPX9Z9p59//2ETBsTA3QDAO+118gctmPxBCwB+d8MyCjc0nscHOjZGcID11Svvz2612dxWlTRrUcUzb3xVn9u0hidf+4qbLzua4iL72m9lWYC536XSf0gpqxZb/55bujqO0jVB3jitHQDlBUHeHNGOi/67guQmEYbctXHb775zXlsyDqvb00sdMKevC7zSXgsL4iksiGfR3FQAvp6YY9lEgP35ikzqDv+Lp/4ZKiP258VN01y/5f83Ah9Qf7uVX/7Oi6Zp9jdNs3+Q+P1dbxblJdGyXR3NWtcSCEYZMqKE6ZPT9/vvD4YXMr2wjUedXEre1/W3ZFm7LJ5QnUF6VoSaKoOaqvpT4ocvUvAHTNp2tu5CX8cydjIt1CDrq1c08rbTIJVu3N4h+mlSFs13mPUajULe+Gz6nh4bEwG8UNO3Ov7XG/mikT0WYAvbauyO9TXOOLALx/jECInJkW3/fcQxJaxcknhAr3GgvNRe0zNqADAMkwsvXcj4j9rv4y8ah4zOYUZ8s4nTPqv/X2KzKL96v5DEJlFaDK1l9fgEInVQsdZPxSo/Wb1i+za2jV0M9EEaZB/WK9ci7rQfk5seXsnqpQn895/NbM5yXv+Tipj/Tf0+XL88gXDIIDUrTGWpn3/8rhsX3b6KLgPKXV7LQ+ed9troHVSNjcUxAi/1YZ3lXE0v2bB9jGDOpOydvvkfjcKsT3IYeHpsTATwSntNz6r/YKxJbg1HnVDIFxOa2p5pIUfGCA60vnrl/dmtNrtqWRoXn/IrLj9rGJefNYzCjQmM/O2xtkwCSM8KkZxW/yi/uPgofY8pY81Se8Z7crrUcvXMJVzxxTKu+GIZqbkhLh5XPwkgVG0Qqqr/Svuqr5PxBSC7k1UTAZy/LvBKey0ujGNTQTwt29W/V/YZXMLqZdZMItnrHQEMw/ADKaZp3nqgL2wYRjLgM02zfMt/nwj838Gt5q6iEYMxd7bkgbeW4/PD5HeyWLXY3hloXsiMtW188E9tmftdCqVFAS7u151LRxVw0oVFPHZza64a2oVg0OTWJ1djGFCyOcidF7XH8NU/A2T006ssWYetdCxjJ9MKDbm+Atw+ZiW9BleQnhXmjVnzef2RXCa9k21lhOuZbrSdWNqvr17fiWXT06koDvDXQf045aY1LJ2exrqfk8GArFa1nP/A9tunLpuRRkZuHTltrP8mlRv71Qs1HSA+IULfo0t4+q+dbM+yUkOusZk5Ie5+dhFQP4t62oc5/PClvTOoY7W9jr5rBr36FJKWXstr747njbHdSEwMc9qI5QB881ULPp3Q1vLcreysPd+NSmfTzDhqS3x8NKQJPa6roP251bv93fROYVqfXMPE03Lw+eGIu8vwWXhnPqdrbCy9V+5JY+2/QsOur165FnEjs8eASk44p4gVCxIZM+FnAMY+1JLvp9o3GGbXefnUtZ34eXo65UUBrhnQj3NHrWHoBRt5/paO3DK8D4G4KNc8vgTDgEljm7NhZQL/fbI1/32yNQB/fvNn0nOsmWzlhdrjlWsuqxxsjY3VMYJY7cPuyI39aldNf/G6Liz+rn6M4NaBAzjj5tUs/i6dNVvGCHJa1XDJg0u3/f6SGelkNq+lSVt77rYS6zXWrf7knY/NIy0jRDhs8Oz9nagoaxx3zVAf1juZo++dw+FHbCYto45XP/qMN1/sxOSP2liesztZTUOMemwFfp+J4YMvP85k5ucZlrz2+BtbsGZGMjXFfl46uiODR26i5/mlu/3dqs0BPrisNYYPkpuFOfmRdZasA7hzXRDL7fWXnru3PaMfWUwwGCV/TQKP32HNIy0Mcw8PNjAMI2CaZtgwjM9M0xx+wC9sGO2pnx0F9RMO3jJN8/69/U2akWUeaRxwlAiT1uc5nnlSiz6OZ4o9ppj/+cE0zf5O5blWX30nHMTaNiJuPLzPAw9hfmLFN45n3tjuaMczY/rhj1v40+y79fyeTCp92dH6Cs7X2HR/jjko8dcHubYHJ1rV+J+huS/+Lh0dz4wsdvbZz+f/nO9oHsC73Zs7nukJLryHON1/BY0RxBIjsM+nRFrOjEQczXtntfN92AvbqA9rCxeuuaZE32tUNbbRjBGovdoT6bf32cy/9OLyaY7mAfyh7bGOZ3qhvfqzsxzPnFT4YqOqr1v+/oBqrPqv9gi0buV4ZqRg475/yUI3LvjR0TyAJ7oe7nimGQ47nuk0X2qq45mTy17ZY33d29XfTOqfk5JnGMaHwHtA5dYfmqb5372Fmqa5HOh94KsrIhLzVF9FROyjGisiYg/VVxER+xx0jVV9FRHZK/VhRcTT9mcaeBawGRgGmICx5f/3WiBFRGSfVF9FROyjGisiYg/VVxER+6jGiojYQ/VVRDxpbxMBmhqGcTMwj+2FcavYvzeOiIh9VF9FROyjGisiYg/VVxER+6jGiojYQ/VVRDxtbxMB/EAKOxfGrVQgRUQOnuqriIh9VGNFROyh+ioiYh/VWBERe6i+ioin7W0iQL5pmv/n2JqIiHiH6quIiH1UY0VE7KH6KiJiH9VYERF7qL6KiKf59vKz3c2QEhGRQ6f6KiJiH9VYERF7qL6KiNhHNVZExB6qryLiaXubCDDcsbUQEfEW1VcREfuoxoqI2EP1VUTEPqqxIiL2UH0VEU/b40QA0zSLnFwRERGvUH0VEbGPaqyIiD1UX0VE7KMaKyJiD9VXEfG6vd0RQERERERERERERERERERERBoZTQQQERERERERERERERERERGJIQG3V8B1huFsnmk6m+cSX0KCo3kntezraB7AS6u/cjzzD22OcTxT54gcLCMQdDTPDNU5mlcf6kJ7dficvPGwoxzNAxi/7gfHM09teYTjmU6LlJW5vQoxyYxGiVZXO5ppBJztwpvhsKN5AJFFSx3PdLq+vtu9uaN5AJPWzXE886QWfRzPdLz/KvYxnK95Rlyco3nRqipH88Cduu5LTXU078LWzvdhn171teOZ17c92vFMX1KSo3lunCOe4fD1rCfajgtjBGYk4mieG2OTk9Z7pA/rsMhm3THfFi70XzGc/b6vG2Ow4TVrHc902uOdujue+c7qLx3PdKOf7rRoebnbq7AT3RFAREREREREREREREREREQkhmgigIiIiIiIiIiIiIiIiIiISAzRRAAREREREREREREREREREZEYookAIiIiIiIiIiIiIiIiIiIiMUQTAURERERERERERERERERERGKIJgKIiIiIiIiIiIiIiIiIiIjEEE0EEBERERERERERERERERERiSGaCCAiIiIiIiIiIiIiIiIiIhJDNBFAREREREREREREREREREQkhgTcXoFD0X9IGVffux6/z2TC21m8+0wz2zNvfnQ1R55QRklhgD8O72p7Hji/nW7sVwCfz+SpcfMo3BDH367sYmuWncdx7C2dmPtZJqnZIe6ZMmfb8s9eac7UV5vj85v0GlbMuXeupKI4wPNXd2Xlj6kcdd4GfnPvckvXxelj6cb5Ae612VjmxrEMxkd55N2FBOOi+AMmX43P4o3HW9qa6Ubb8cJ5adc2Pn5zG2ZOSScjJ8xzny/YtvzDl5vw0StN8AdMBgwv44q71jH1v5m8/9z23BULEnlq4kI69Ky2ZF3AG+/Pqq/2cPq8zGlex62PryCzSRjThPFv5TDuZbXXQ+VGfbUr89GbWjNjShoZOWFenLpo2/Jx/8rhw1dy8AVMjhxexpV351OwJo4/HN+VVu1rAejar5KR/1hr2bqAN46l6qs93Kh3Y6fNpqrSRzRiEIkYjDyrl6154I0am5wa5sb7ltC2cxWmCY//uRML89JszbRrG9+8pSPzPq8fI/jzp3kAjH+8Nd++3YyU7BAAp9+6mh7Divn+gyZ89mKLbX+7fkEyoz/5kVY9Ki1ZFzfajlfOES/wQvvxQn2NpX6P1/uwXmivXuBG/9WNMVjQOWIHu2r686M6MPuzLNKyQzzyWd625RNfyWXS2Ob4AyZ9hxVz8Z2rWDonhZdu7wCAacK5N61h4ClFlq0LeONY2pln60QAwzAygH8CPQETuNw0ze+seG2fz+TaB9Zxx4XtKcwP8vT4JUyflM7qJQlWvPweTX43iw9fyeHWJ1fbmrOV09vp1n4FGHFZAauXJZKUErE9y87jeNR5Gxj6u/W8fFPnbcsWfpvOj5Oz+eukOQTjTcoKg0D9m+6IUatZtyiJ9YuTLF0PN46l0+cHuNtm3WRnfQV3jmWo1uC2i7pQU+XHH4jy6H8WMmtaOgvnpNiS50bb8cJ5aec2nnB+EadftolHRx62bdmP36QwfVI6z05ZQDDepKSwvmsz9Oxihp5dDMCKBQnce3kHSycBeOH92av1FWKvxkYjBi/d15ql85JITI7w9CcLmPNVGquXJNqS55X26sZ7pV2ZJ15QxBmXFfLwyDbbluV9k8K3k9J57rNFxO1QXwGat63luSmLdvdSh8wLx1L11b766nS92+r2S3pQVhy0NWMrr9TYq+9czqyvMrl/ZDcCwSjxCVHbssDebTzyvI0c97t8Xr+5007Lh16xnuF/XL/TsgFnbWLAWZsAWL8wiRev7GbZJAA3a0+snyMNgd311Qvtxyv1NZb6PV7uw3qlvTYUdtZYN/qvTo/Bgs4Ru9hV048/bxMn/b6AMTdu77/O/zaNWZOzeGhyHsF4k9Itn3G17lrFA5/8iD8AxRuC3HZSH/r9qgi/RZ8+e+FY2p1n96MBngQmmqbZFegNLNjH7++3Ln2rWL8yjoLV8YRDPqaNy2DwSaVWvfwezZuRQnmJ3/acrZzeTrf2a05uLQOHljDp301szwJ7j2PnI8tIzgjvtGza67mcfM0agvEmAGk59bP+45OidBpYRtCGQQ03jqXT5we412YbANvqK7hzLMGgpqo+MxAwCQRNTNO+NDfajhfOSzu38fBBFaRm7DxZ7JPXmnDetRu21deMnPAuf/fF/7I4fkSxJeuwlRfenz1cXyHGamzRxiBL59VPOKyu9LNmaQLZuSHb8rzSXt14r7Qr8/BBlaRm7lxfP34tmwuu20DcXuqrHbxwLFVf7auvTtc7N3ihxiYlh+k5oJRJ/6n/Fkw45KOy3N4bWtq5jR2PLCMp48Br6KwPc+h3xiZL1gG8U3u8sp27YWt99cJ+9UJ9hdjq93i5D+uV9tqA2FZj3em/OjsGCzpH7GJXTe82aNfPuD59PZcR16zbNgabvvUzrsTotg/9Q7U+DMPaxuSFY2l3nm0TAQzDSAOOA/4FYJpmnWmaJVa9fnZuiE3r47b9uzA/SE7z2LrAB+e30639+se7V/Gvv7chGjVsz3LDhhWJLJmZzgNn9Obh8w5nxY/2za7bSudI7LK7vrrJ5zMZM34e78zOY/ZXaSzKs+9ccaPteKG9Or2N65fHM39mCjee1oXR53Ricd6ud1f58qNMjj/T2ltSeeH92QvtdXdiucYCNGtVS4ceVSyak2xbhtprbFi3LIF5M1K44deduOXsjizK2/6NlILVcVzzq87ccnZHfpphbVvywrH0wjbujtP11Yl6B/W3v7x/7AKe+t9cTrlgg61Z4I0am9u6htKiIDc/uIRnPpjDyPuWEJ9o750D3divX77WnAdP6sObt3SkqnTXAdw5H+XQb0ShZXlu1R4vnCNuc6K+eqH9eKG+usHpbfRKH1bt1TlO9mGd6r+Cs2OwoHMkFuQvT2ThzDTuPP1w7jm3B8t2aDNL5qRwy/A+3PqrPlzxwHLL7gYA3jiWdufZeUeA9sAm4BXDMOYYhvFPwzB2qWCGYVxlGMYswzBmhajd7xc3dvN5sd2zltzg9Ha6sV8HDiumZHOQpfPsf4NzSzRsUFUa4I5xP3LunSt44Zqutu9XnSMxzdb66qZo1ODaU3tyyaDedOlTSdvOVbZludF2vNBend7GSMSgotTP4x8t4oq71vHg1e12yls4O4n4xCiHda2xNNcL789eaK97sM8a2xjrK0BCUoS7XljOC/e0pqrCvm8Bqb3GhkgEKkr9PPnxEq68ez33//EwTBOymoZ44/ufefbTxfzxb+v4+zVtqSy37rLSC8fSC9u4BwfehzUPrsY6Ve8ARl3Qk+tH9OLuy7tx2iUF9BxQZmueF2qsP2DSsXsFn7zdnOvO6ktNtY/zr7L2Oc6/5PQ2HnNJAX/98gdum5BHWtM6Pri33U4/XzknhWBilBZdrLsecqv2eOEcaQBsHyPwQvvxQn11g/NjBN7ow6q9OurAxggaQf8VnB2Dhf9v787Do6oON45/z8xkD0kIYd9kBxcEBARUVNBardVatWq1WqttrVata7W41LrUtrZa96V1qevPjbqgiKCoVVyQHRXZ14QkZCMkkGTm/P6YsCnuc89N7n0/z8NjDGHeuTN33nvmzMm9eo0EQbzJsKk6xnXPz+fkCSu55ez+27av39Babpo2hxtenMdzd3SlYXPqfuE3DM+l13leLgSIAcOAu6y1Q4FNwGWf/SFr7b3W2uHW2uFpZHztGy8vTqN9l4Zt/1/UuZENJW6uN+aS6+3043HdfZ+NjBpfyYNvzuayW5ew9+gaLvnHEk8zXWvbuYFhh2/AGOg1pJaIsdRWeHtqQ71GAs3Tfm0JNtXEmDejDcMP8u6UO37sO2HYX11vY1HnBsYcXoUxydMomQjU7NCvbz7XloOOTu3ZACAcx+cw7K9f4Cs7tjX2azRmufKeZbw+sZC3J7f1NEv7azAUdW5kvyOqMQYGDq0jEoHqiijpGZa8wuRv5vYbXE+X3RpYuyx1r4MwPJdh2MYv8M3HsOab71su+w6gojT5mxvVFWm882ohAwbXepoXho4tL8mgvCSDRfPaAPC/yUX03T1Yj2te+0YiUYhEYMxJ61n5mbMGfvhCe/Y5KnVnAwD/uicMr5EWwPM5gjDsP2HoVz+4nyMIxxhW+6tT32yOoBWMX3fkYg4W9BoJgnadtzCi+TOuvkNrMQY2fuYzrq796snITrB60efP2PptheG59DrPy4UAa4A11tr3mv//aZKFmRKL5mTTtVcDHbtvIZaW4KCjq3h3Sn6qbr7FcL2dfjyuD/6tBz/bbxg/HzuUG8/ry9wZefztwr6eZro25Hsb+OSd5ONYsiyTpsYIuYXeXqNKr5FA87Rf/ZJf2EhOXvJ1kZ6RYOj+NaxekvUV/+rb82PfCcP+6nobRx1Wzdy3k5PEa5Zm0NRgyGvu10QC3nqxLWOPrkx5bhiOz2HYX79AADvWcsHfVrBqSSbP/quj52naX4NhzPermfO/5AdTa5Zm0NhgyC+MU7UhSrz5DN3FK9NZuzydTj0avuSWvpkwPJdh2MYv4KBf3fZdRlacrJz4tq+H7V/FisXejV8hHB1bWZ5OWUkGXXslfzNtyOgqVi1N3WTirrjexur12yf25r7Sjs47/OZ/IgFzJrVjn6PKUprpx74TltdIC+B5v4Zh/wlDv/rB9TaGZQyr/dUpjzvW7fgV3M/Bgl4jQTD8sAoWvp3cnnXLMmlqNLQpbKJ0VQbx5o+6ytZkULw0i/bdU3f2zDA8l17nefYrydbaEmPMamPMAGvtImA88FGqbj8RN9wxoSs3PLaMSBSmPFHIyk8zU3XzX+iyO1YweHQt+YVNPDJzIQ/f1IlXnmjnWZ7r7fTrcXXNy+fx3t8O4NMZ+dRWxrhk5AiOunAV+5+wngcv6cfVhwwllm45/R+fbjvdx2VjhlO/MUq8McLsV9pxwSML6NK//jvfDz+eS9evDwjPPrsjr/sV/HkuCzs0ctE/lhONWEwE3nyxLe+/VuBZnh/7Thhel15u41/O3o15M9pQUxHjZ/vsySkXF/O9Ezdwy0U9+c24QcTSLBfesmJbvy54N5eizo107pm6N/dbheH4HMZ+hWB27B4jNnHIsRUs/ziLO15ObsqDf+3KB6978yYmLPurH8dKrzL//JuezJuRS3VFjJP32Z2fXVTCYSdW8I8Lu/OrgweQlma55J+rMAbmv5vLf/7WiWgMohHLeTeuIa9t6q7dHYbnUv3qXb+67ru2RY1ceeciIPmbXNOfL+LDN739La6wdOxd1/bm0ps+JS0tQfHqTG6+vL+neV5u4wPn9mdJ8xzBlfsO54gLVrH43XzWfJSDMVDYbQsn3rD9rIhL38ujoHMDRT1Se/khP57HsLxG/OaiX8Ow/4SlX4M07gnzGDYs+2tL4HXHuh6/gvs5WNBrxCtedfqt5/Tjo3fz2VgR4+wR+3DcRas5+IRS7r64LxePH0IsPcHZNy/GGPjkgzyev7Mr0ZjFRCy/uH7Ztl/SSoUwPJde5xnr4YUNjDFDgH8B6cAy4HRr7Rf+Wl6eKbT7mvGe3Z9d2tXFF7wUpIuCfIlIpttBQGKL++vz3rfyLeeZv+yxv/PMMLxGptqnP7TWDnce/B18q36NHOLo3iWZmNtTH9nG1H/Y2yKF4DX50tpZzjOP6NrKf+G7hWqN/QrfrGN96deo99cL3JFt8vYsRi2G6371wStrZzvPPKzLEOeZYThWhqFfAfIihXZU7DBH9y7JpKc7zUvUeXs91pYi0qaN07zExo1O8wBuW/m288xze+7nPDOS7e3ZGT7Lj9dIa+zY1jAHG4Z9xxchGPe8sm6O80xfxrAh0Br7Fb7hHIEP41eMlyf+/rzQzMG65sOcxBOr3I9fT+w+xnlmGHxZv3p6kXJr7Ryg1RW7iEhLp34VEfGOOlZExBvqVxERb6hfRUS8o44VkdbM7VIhERERERERERERERERERER8ZQWAoiIiIiIiIiIiIiIiIiIiASIFgKIiIiIiIiIiIiIiIiIiIgEiBYCiIiIiIiIiIiIiIiIiIiIBIgWAoiIiIiIiIiIiIiIiIiIiASIFgKIiIiIiIiIiIiIiIiIiIgEiBYCiIiIiIiIiIiIiIiIiIiIBIgWAoiIiIiIiIiIiIiIiIiIiASIFgKIiIiIiIiIiIiIiIiIiIgESMzvO+A7a/2+B94zxnmkbWpymmeiUad5AL/ssb/zzIdXv+0882fd93Mb6MP+SghqAHDed7ap0WmeeMSH1+QRXYc5z3xi9TvOM0/sPsZtoPrVO8771e04S4LjsC5DnGdOXPO+88xjuo10nikese47L9q5k9O8RF2d0zzAlzGByc5ymhcrLHCaB3BuT8fvnYHFD7kfN/e7y/FrcnmJ0zwAfIgMA1/6LgSibdo4zYvX1DjNA3/GsE+umeE884TdDnCaZ+Nxp3nJUPeRzvkwfvVlvicEYt27Oc1LVFU7zQMf5iaBi5YsdJ759757OM9sSXRGABERERERERERERERERERkQDRQgAREREREREREREREREREZEA0UIAERERERERERERERERERGRANFCABERERERERERERERERERkQDRQgAREREREREREREREREREZEA0UIAERERERERERERERERERGRANFCABERERERERERERERERERkQDRQgAREREREREREREREREREZEAifl9B76L4QfVcNa164hGLC8/XsiTt3dUZgpc+PdV7HtIDVXlMX49fqCnWQBFnRu45ObltG3fhLXw0mNFPHe/t9voRyZ481zed1FfZk9rS167Rm6cNmfb96c80JlXH+xMNGbZe1wFJ01YydLZudx/WR8ArDX8+IJVDD+84jvfhx0FfX8NkzA8l+r04GR69bjefVEfZk0rJK9dIzft0LGTH+jEK80dO3RcJSdPWMmS2bnct61j4bgLVjMyhR3rx/6qjvVGGLonDNuofv1ubruoFzOnFpBf1Mit0xZs+/6k+zvy0oMdiMYs+4yr5rQrVjPnzTwe/nN3mhoMsXTLaVesYvB+G1NyP7YKw2skDFw8rudfMZeR+5VSVZnOOT89cKe/+/HJSznjvE846XuHUlOdnvLsrYLad7+7eiEjx5ZRVZHO2cePAWD/Q9Zz8llL6d5rExf8bCSLP8pPWd75E+Yycsx6qiozOOeU5HP50zMWcdjRq6ipzADgobsHMHOGd4+vi+eyYEopedPLwULNQUVUHdYBgPxXSymYWoaNGDYNyWPDCd1Skte+3SYuOe9t2ratxyYML73aj/9OGkTv3So476z3SE+LE48bbr93XxYtKUpJput9J6zCML4LwzZ27VXHZf/4ZNv/d+6+mYdv7clz/+nqWWaQHtc7L+rDrKltyS9q5O/T5m77/sv3d2Lyg52IxizDxlVyyhWr2FgZ4x+/6s+SubkcdHwZZ1y/PCX3YSs/5rc1R+CNoI7tPiuInd4S3hvktGnid9ctpmf/OqyFm//Qj0/m5HmW59XjOvmyLix7rQ3Z7Zr4+ctLAXjnn+2Z/2RbsgqbANj/olJ6H1QLwHt3FbHgqQJMFMZdWcxuYzel5H5sFaT91bMzAhhjBhhj5uzwp8YY87tU3X4kYjnnhrVccXIvfnnQAA4+uooe/Tan6uZDnTnlyUImnNzb04wdJeKG+67rzq/G78Hvjh7ID08to0e/+sBlevVcHnB8KZc+/NFO3/vonXxmTSnkhimzuXHabI749ToAug2s40+T5nL9K3O59OGF3H95H+JN3/kubBOG/bUl8LpfIRzPpTo9OJlePq4HHl/G5Z/p2IXv5DFzSiF/nTKHm6bN4cjmju0+sI4bJs3lL6/M5fKHP+JfKexYP/YdUMdqDNs68vzKVL9+N+OOL+eqRxbt9L35b7fh/SkF3PLqAm59bQFHn1UMQF5hExMe+JR/TlvAeTcv45/n9UnJfdgqDK+RliAo/Tr1xW5c9buRn/t+UYd6howsp7Q4K+WZOwpy3019oQtXnjNsp++tXJrDdRftzYJZbVOfN6kbV12w7+e+/9wTvTn3tLGce9pYTxcBuHgu09fUkze9nNVXD2TVdYPImVNNWslmsj7eSO6salZdN4hVf96dqsNTt53xhOHeh/bhl+cdzfmXHc4PD19Ej25VnHnqLB75v8GcfdGR/OeJIZxx6qyUZbred1qaoM4RhOH47Efm2uXZnHvMMM49ZhjnHzuUzfURZkxt51le0B7Xg44v5Q+PfLzT9xa8ncfMKW256dW5/OO1ufzwrOQcQVpGghMuWc3PrlyZkuzP8mN+W3MErXcMuyM/nsegdrrf7w0AzpqwjJlvteVXh+/DOUcPZfXSbM+yvHxc9/xxFcfe//m+HHb6Bk59YRmnvrBs2yKADYszWDQpn9NeXsqx969k6tVdSMRTcjeA4O2vni0EsNYustYOsdYOAfYB6oCJqbr9AUPrWLcinZJVGTQ1Rpj+XAGjD6tO1c2HOnPBe7lsrIp6mrGjitI0lixIllP9piirl2TSrlNj4DK9ei4Hjqohp2DnT5qmPdyJI89eQ1qGBSC/KLltGVkJos3nAWnYEsGY7xy/kzDsry2B1/0K4Xgu1enByfTycR20i4599eFOHH322i/t2MYtEYyxKbkP4M++A+pYNIZtFXl+Zapfv5s9Rm2kzWf6dfLDHfjxOcXb+rWgKPn3vfeso7B5rN5jQD0NWyI0bkndQDYMr5GWICj9unBOOzbWpH3u+7+84CMeuH0QNnWH/10Kct8tmNWWjdU7P7arl+eydmWOJ3lf9Fy64uK5TF+3mc19crAZEYga6gfmkvthFfnTyqg4siM2LTktGM9L3eNQUZnNkmXJDxXrN6exek0+Re2Sv6GWk53s8pzsBioqUjcx7nrfaWmCOkcQhuOz32OCvUdXUbI6i9J1mZ5lBO1x3X3URnI/M4ad8nBHjj5n3Q5zBMm/z8xOMHDkRtIzEinJ/iw/5rc1R9B6x7A78uN5DGqn+/3eIDuniT1HVPPK08lFnU2NETZt9O5E8F4+rt1G1pFZ8PU+zV8ytQ0DflBNLMOS372Rgp4NlMxN3dgyaPurZwsBPmM8sNRam7Llb+06NVK2bvvpNMqL0yjq7O2BLiyZfurYbQt99qhj0Wx3b9ZcZbp8LkuWZbLo/Tyu/uFgrjtuT5bNyd32d0tm53LZ+KH84dChnH7D0m0fWqVC2PbXFiLl/QrheC7V6cHh+nEtXpbFJ+/nMeGHe3HNcXuwdIeOXTw7l4vHD+GSQ4dwxg3LUtax2nd8ozFsK8jzKzMMXD+u65Zl8tF7bbj0yN2ZcOxAFs/5/Ph8xqS29N5z07aJ1lQIw2ukBQpEv2617wHr2VCWyfLF3p2CcyvtP9478rgV3P7wG5w/YS65bRo8y3HxXG7plknWoloitU2YLQmy59YQq2gkff0WshbV0v2aT+h6w6dkLEvtqVS36ti+lj69Kvjk0yLuvn8EZ576IY/c+wy/PO1D7n90qCeZEpw5gjAcn/3u9AOPKGP6pPaeZoThcS1elsUn77XhD0fuydXH7sGSXYxhvebHnHpIBWoM61IYOn0rl+8NOnXfTHVFGhf+eTG3T5zN+dctJiMrhb8a/xl+PK5zHi7koR/0YfJlXdhcnfxIu3Z9jDY75Lbp1Ejt+tQtbA3a/upqIcCJwOOpvMFd/Saz16trwpLpl8zsOFfcs4x7rulOXa2bFWkuM10+l/Emw6bqGH98fh4nTVjBbWcP2JbVd2gtN06bzTUvzuWFO7rRsDl1v00Vpv21BUl5v0I4nkt1enC4fly3dux1z8/n5AkrueXs/tvy+g2t5aZpc7jhxXk8d0fXlHWs9h3faAzbCvL8ygwD5/0aN2yqjvKXFz7itCtWc9Nv+u6Ut2pRFv/5c3fOunFFSnPD8BppgQLRrwAZGXFO+PkSHrmnv/dhaP/x2kvP7saZx43j3FPHUlmewRnnffzV/+hbcvFcNnbJovIHHen618V0vWkJDT2ysBEDcUu0Ls7qqwZQfkJXOt+xPOXhmZmNXHnpG9x9/wjq6tM58vuLuOeB4Zzyq2O554HhXHj2jJTmyTaBmSMIw/HZz06PpSXYd9wG/je5yNOcMDyuibihtjrG9S8s4GdXrOTm3/R3emz2Y049xAIzhnUtDJ0O7t8bRGOWvrvXMunxzvz2mOTlXn7yqzWe5bl+XPc+uYIzXlvMqS8sJbd9E9P/3Kk5cxd3JIVnZg3a/ur5QgBjTDpwFPDUF/z9r4wxM40xMxvZ8rVvt7w4jfZdtq/MLurcyIYSb0/pFpZMP0RjlivvWcbrEwt5e7Kb67e5znT5XBZ2bmDE4RswBvoMrSViLBsrdv611K796snITrBmUepWioZlf20pvOpXCMdzqU4PDtePa7vOW7Z1bN+htRjDF3bs6kWpuS6X9h33vqxjW1u/us4MwzaGhevHtahTA6MOr8QY6D90EyZiqWnu1/J1adx4Zj/Ov2UZnXf7Zq+7rxKG10hLEqQ5AoBO3TbRsUsdtz/yFvdPfI2iDpv553/eom2hN9eQDPv+47WqygwSCYO1hsnP9aD/oCrPslw9lzUHFrH6T4NYM6E/8ZwojZ0yaCpMp3afAjCGLX1ysAaiG5u+8ra+rmg0wZWXvMFrb/bi7fd6AHDoQcv437vJr998pyf9+21IWZ4kBW2OIAzHZz87ffgBlSz9KJeqDelf/cPfQRge18JODex7eMW2OYJI5PNzBF7xY049rII0R+CHMHQ6+PDeoCSD8pIMFs1rA8D/JhfRd/daT7LA/eOaUxQnEgUTgb1OqNx2+v82nRrZWLw9d2NJGrkdUjeWDdr+6uKMAIcDs6y163f1l9bae621w621w9PI+No3umhONl17NdCx+xZiaQkOOrqKd6fkp+o+hzrTPcsFf1vBqiWZPPuvjoHNdPlc7nNYBR+9XQBA8bJMmhojtClsonRVBvHmPixfk0Hx0izad0/dQSgc+2uL4km/QjieS3V6cLh+XIcfVsHCt5O3v25ZJk2N5nMdW7atY1PzYZX2HV98Yce2tn51nRmGbQwL14/ryO9XMu/t5OkT1y7LpKnBkFfYxKbqKNefNoCfXbaaQSNSP6kRhtdICxOYOQKAlUvzOPnwQ/nFMeP4xTHjKC/N5PxTD6CywpvrLWv/8VbbdtvfH485qISVy9p4luXquYzWJE8rGtvQQO6HVWwc1ZZNw/LJ+ngjAGklmzFxS7xNqj60slx4zgxWr83n2Rd23/bdDZVZDN4j+bIfslcJ64q9e2xDLFBzBGE4PvvZ6Qf+oJQ3PL4sAITjcR3x/QoW7DhH0JCcI/CeH3PqoRaYOQI/hKHTwf17g8rydMpKMujaqw6AIaOrWLU0Nb+UtCuuH9fa0u3j0yVT8ijqn5xn7TN+I4sm5dO0xVC9Oo2qlel02rs+ZblB219dLE07CQ9OSZWIG+6Y0JUbHltGJApTnihk5afevJjClnnZHSsYPLqW/MImHpm5kIdv6sQrT7TzLG+PEZs45NgKln+cxR0vfwTAg3/tygeve/fC8iPTq+fyjnP68/G7+dRWxDhvxHB+fNEqDjxhPfdd3JfLxg8hlm751c2LMQY+/SCPF+/sRjSWwETgtOuXpnRgGob9tYXxpF8hHM+lOj04mV4+rree04+P3s1nY0WMs0fsw3EXrebgE0q5++K+XDx+CLH0BGc3d+wnH+Tx/J1dicYsJmL5xfXLyEtRx/qx74A6Fo1hW0WeX5nq1+/m7+f0YeGMNtRUxDhz+BBOvGgN408o5/aLenHe+D1JS7Ocd8syjIGXHuxI8YoMnvxnF578ZxcArn5sEQVFrbNj/er0FqRV9+ul185mr2EbyCto4KEXpvHovf2Y8kKPlOd8kSD33aV/nsfgfSrJK2jkP5Pf5JG7+7CxOo3f/P4T8ts28Mdb57BsURuuPGdYavKumbX9uXxuKo/+qz97Dd1A7/41WAulxdnc9pe9UpK1K66ey863LSNSG4eoofRn3UnkxKge246O/1pJjz98hI0Z1v9yt12fk/Rb2GNgGYcctIxlKwq48+8vAvDAo0O55c7R/OaMD4hGLQ0NEW65a1RK8sD9vtOCBWqOIAzHZ7/GBBmZcYbuV8VtV/fzPCtoj+st5/Tjoxl5bKyIcdbwYfzkojWMO6GUOy/qw0Xj9yaWluCcW5Zsq9RzRg2lbmOMpkbDB6+05YrHPqZb/9R8WOXH/LbmCFrvGHZHfjyPQe10v98bANx1bW8uvelT0tISFK/O5ObLvbssgZeP64u/68aa97Kpr4xxz379GXN+Kavfy6Hs40wwkNe1gUOvKwagqP8W+h9RzYPf70skZhn/x2IiKbwyStD2V2M9vLCBMSYbWA30ttZWf9XP55lCu68Z79n9Ca0UvZn7RpHR4F+PyDa5WNm5s4dXv+0882fd93Mb6MP+OjXx1IfW2uHOg7+DVtGvrp/LIF5Aa1d8eI0458Nz+cTqd5xnnth9jNtA9evX9k06VuPXAFG/emLimvedZx7TbaTzTNem2qcD36/gT8fGundzmte02rtreH4hH/ou2sH73zrdkcn8Zr+NlwpNK1c7z1z8kPsPtvvd5XYuJLq8xGkewCsld7a6jm0N/SreiOblOc2L19Q4zfPLk2tmOM88YbcDnObZeNxpHmiOwDOag/WE6/cFiaqvPHynPnPjRueZFy1Z6Dzz7333cJ7p2pfNEXh6RgBrbR0QmiVhIiKuqF9FRLyjjhUR8Yb6VUTEG+pXERHvqGNFpDWL+H0HREREREREREREREREREREJHW0EEBERERERERERERERERERCRAtBBAREREREREREREREREREQkQLQQQEREREREREREREREREREJEC0EEBERERERERERERERERERCRAtBBAREREREREREREREREREQkQLQQQEREREREREREREREREREJEC0EEBERERERERERERERERERCRAtBBAREREREREREREREREREQkQLQQQEREREREREREREREREREJEBift8Bv0UyM53mJTZvdpoHEMnKcp6ZqKtzmhdp08ZpHgCbtziPPK3feOeZ4+ZvcJr3+tB8p3kAJNxHhkHdMSOd5mVPfN9pHoCJRp1n2njcaV6sV0+neQCJdSXOM3864BDnmUtuGew0b8A1i5zmAVDhPjIMTFq60zzb1Og0DyBaVOQ8M15W5jTP9fsQvxzTze14AOAnH7s9jjw5qJPTPPGWdfxe1g+RjAznmfH1pU7zXB8rk6HGeWS/02Y5zzxsQY3TvFdHd3WaJ94x++zhNM/O+shpHkC0sK3zzHhFpdM8P/rVpLn/COMn3cc4z6yetJvTvMLTqp3mAeB2OBAatce5fc+VN2m+0zyASPt2zjPja4ud5kU7dnCaB2DS05xn3jx0lPPM6pPdjkEKPtnoNA+AmU9/4V/pjAAiIiIiIiIiIiIiIiIiIiIBooUAIiIiIiIiIiIiIiIiIiIiAaKFACIiIiIiIiIiIiIiIiIiIgGihQAiIiIiIiIiIiIiIiIiIiIBooUAIiIiIiIiIiIiIiIiIiIiAaKFACIiIiIiIiIiIiIiIiIiIgGihQAiIiIiIiIiIiIiIiIiIiIBooUAIiIiIiIiIiIiIiIiIiIiARLz+w58F8MPquGsa9cRjVhefryQJ2/v6CQ3ErHc+twCyten88czB3ie58d2Pjh9FnWbIiTihnjccP4xgz3N82Mbc9o08bvrFtOzfx3Wws1/6Mcnc/I8y0vLSHDTk5+Qlp4gGrO89VIhj9zc1bO8rbzYXz++Mp3yN2OkF1r2nVgPwLLb0ih7PYaJWNIKYffrtpDRwZJohE/+mM7Gj6LYOHQ6qondzmxMyf0AKOrcwCU3L6dt+yashZceK+K5+910QdC5el1GTIL7Lp1IeXUOv7/7+5zxgw84YPBKEtZQuTGTGx45iA3VOZ5kX/j3Vex7SA1V5TF+PX6gJxk78mN/dbWN518+m5FjSqiqzOCcU8cB8PtrPqBbj1oAcnIb2VSbxrmnH+zZfXB9fHZxrMyfXkzeu6UANHTOpvSnfWg7dS1575YSz0kDYMOR3anbvW3KswF+dOpqDju2GGthxeJcbp4wgMaGqCdZYeJ63OPHGMRF9/zumoWMHFtOVUU6Zx87GoDcvEYu/+t8OnSpp3RdFn++ZC9qN6Z5kg/+jGFdd50fmV49ru9PyKN4egYZhQm+/8KGnf7uk/uzmfe3PI5+Zz0ZbS0AH9+bw/JnsjARGDqhhk77N6TkfoB/72WDzo/H9eiTk8dKYyyTn+nCc4909zwzDN2jY6U3vHpcF1yRSVnzHMF+/90EwOLbMih9LYaJQHqhZc/r68lsniNYeHUmNR9HsU3Q5ahGev8ydf0K7ud7wsLr12VR0SYuuWAGbdtuxlrDS5P78NwLAznlpHl8/7ClVFdnAPDgf/bmgw+9eX368bp0fRxxvY1+zYe6ntv28nHNunk9sffrsAVRau/qAUDsrVoyH60gsrqBTTd3I94/c9vPZ/xfBWlTNkIENp9VRNM+335OrSW85woDl+OeiEnw74snUladw6X3fp9ffH8mR43+hKraLADumTSCGR/18CTbxevy/AlzGTlmfXJ+8pQDAfjpGYs47OhV1FQmjyMP3T2AmTNS/xi7mvc9/8p5jNy/jKrKdM458QAATjnrU0aNLcVaqKpI5+ZrBlNRnvkVt/Tt+PH+x9XYLmISPHD+s5RV53DxA4fTt/MGfn/sm2SlN1FSmctVj42nbkt6SrJcjns8XQhgjLkAOBOwwHzgdGvt5lTcdiRiOeeGtVx+Ym/Ki9O47aXFvPtKPqsWe7Nz7+jo00tYtTSL7Ny451l+budlp+xBTaX3B3G/tvGsCcuY+VZbrj9/ELG0BBmZCU/zGrcYfn/SADbXRYnGEvz96U+YOT2fT2bneprrxf7a6egmup3UxEcTMrZ9r8fpjfQ+N/kB/+pHYyy/O42BVzVQOiVKosGw78R64vXw3o+y6Hh4E1ldbUruSyJuuO+67ixZkE1WTpzbJn3M7LfyWLU4KyW331J52a/g9nV5/MELWLm+gJzM5P7z+LS9+fekEQAce+ACfn74LP7+xAEpzwWY8mQhzz9QxCX/XOXJ7X+WH/urq22c+lJ3XnymFxdeMWvb9/5y9YhtX5/x2wXU1Xp7THF5fN7Ky2NltKqBgjdLWHXZ3tj0CB0f/JTcWeUAVB3YmapxXTzJ3apdhy0cdfJazjpqBA1bolz+94UceEQpU//b2dPcliBoY1g/xiAuumfqc1144fHuXHT9wm3f+8kvVjDn/UKeun83jv/FCo4/YwUP3NLPk3y/xrB+dF1Q3v/0+lE9/X5ax3uX5e/0/briCOvfySC78/btq14SZdVLmRz2Qjn1pVHe+EVbDn+5nEgK1kL5+R7Pb0Hr1559azns2GIu+Ok+NDYarr17Hh+82Y51q7I9ywxD9+hY6Q0vH9cuP2qkx08bmP+H7e9rep2+hX7nbgFg5SPpLL0rgz2u3kzJlBiJBsN+EzcRr4f/HZ1L5yMaUzZHAO7ne1qCIMwRJOIR7rt/GEuWFpKV1chtN09m9pzke4+Jzw3kmYmDUpb1RVy/Lv04jrjeRr/mQ8Hd3DZ4+7g2HJLHlh/mk/330m3fS/RMp+6KTmTdVrrTz0ZWNZD2Zi21d/fAbGgi5w9rqb0vG6LmW2X7/Z6rpQjSGPb4AxewYod5WID/m74Xj7++tyd5n+X163LqpG68+NRuXHjVnJ2+/9wTvXn2sT6e5YK7ed+pL3bjxSd7cuE187Z975mHe/HI3f0B+OEJKzjpzCXcceOeKc0Ff45b4G5sd8IBC1hR2pacjOQi1T8c/wa3vTiK2cu6cOSITzjloLnc+8qIr7iVr8fluMezSwMYY7oC5wHDrbV7AlHgxFTd/oChdaxbkU7JqgyaGiNMf66A0YdVp+rmv1BRpy2MPLiKV/6vvedZ4N92uuTHNmbnNLHniGpeeTq5IqupMcKmjV6fIMOwuS45cxiLWWJpFpu697m75NX+2nZ4glj+znc+tsP4PV5vMFvHlwbi9ZBogsQWMGkQy03dhleUprFkQfJAU78pyuolmbTrlLozDrREXvcruHtdti+oZfQeq3jxne2rpes2b19Vl5XRmBxie2TBe7lsrHL3281+7K+utnHh3CI21nzRikjLAQev5Y2p3q36d318diZhMY0JiFsiDQma8lOz6vTrikYt6ZkJItEEGZlxNpRmfPU/auWCOYZ1PwZx0T0LZrVlY83OEwijDi5j6vPJN05Tn+/M6IPLPMv347n0o+uC9P6n/YhG0gs+v/PPuTGPvS/eCDvMj657LZMeR2wmmg653eLk9ohTMS81E1ZheI+3K0Hs1+6961g0L48tm6Mk4hEWzCxgzHjvegfC0T06VnrDy8e1cHictC+dI2DbHIHZYY4gvsUQSbNEUzhH4M98j7+CMkdQUZnFkqWFANTXp7F6dR7t2tWlNOOruH5d+nEccb2NfvSrH7x8XON7ZWHb7HzbiR7pJLp9fn4gbUYtjWNzIc1gO6WR6JJG9NNv/3m13++5WoIgjWHb59cyZo9VvDDDzRlP/LBwTrvP7bOuuJr3XTi78HPbWL9p+/9nZsU961k/jluuxnbt82sZM3Alz7+3/fXRs30Vs5cl++79T7tx8F7LUpbnctzj2UKAZjEgyxgTA7KBdam64XadGilbt/1gV16cRlFn7z/8+/WVK/n3jT1IJL7dKrpvyq/ttBauf/Bjbv3vPA4/Yb2nWX5sY6fum6muSOPCPy/m9omzOf+6xWRkufnNhjteWsATs+Yw6608Fs3xdvWr6/116a1pvH1IFusnxeh1TnLVVIdD40Sz4O1x2bz9vWx6nNZIWv5X3NC31LHbFvrsUcei2d6cRr6F8axfwd3r8rxjZ3Dnf/clYXfeR3/5w/d5+tpHOXT4Ev49aXjKc1uCMO2ve+y9garKDNat8a7zXPcdeH+sjBekU3VwZ3a7Zha9rvqQRFaU+oEFAOS/VUL3v8yjw2NLidQ1pTwbYENpBs8+2J2Hps7g0ekz2FQbY/Y7hZ5ktUCBG8O6HoP4paCwgcry5IKVyvIM8gtTe6rhHfnxXPrRdUF//7P2tQyyOsYpGLhzl9avj5Ddafv7g+yOcepLU/P22a8eaCEC1a8rF+ew5z5VtMlvJCMzzvADNlDUaYunmWHoHh0rveHH47r4nxm8MT6X4klp9P1t8rXR8dAmolkw/eBc3jw0l91+3kB6CucI/JrvaQECMUewVccOtfTpU8miRUUAHPWDT7nr1pe44Lx3yc3xbnznmh/HET/40a8u57ZbErMhTqL99g8EbVEMsyG1HejyPVcLEogx7Pk/nsGdz+2L/cw87LEHLOSh3z/N5SdNp02Wdx3k5+vyyONWcPvDb3D+hLnktvF+n/Vj3vfU33zKgy++zkHfX8cj93hzlg4/jluuxnYXHPUOt08atdPrY2lJIQfssRKA8Xsvo0P+ppTngvfjHs8WAlhr1wI3AauAYqDaWjslVbdvdvH+0+vVhCPHVVK1IY0lC9y9eP3YToCLTtiTc48ezJW/GMSRp5Sw54gaz7L82MZozNJ391omPd6Z3x4zlM31EX7yqzXehgKJhOGcI/bklFF7M2DIJnr2925lsx/7a5/zGtlvaj0df9DEmseTg86aBRFMBPabVseYl+tY/Z806lenfgIpMzvOFfcs455rulNXG+zrV3vdr+DmdTlmz5VUbszi09Wf/82i+14YyXFXnsyrM/vy47ELd/GvW7cw7a8ABx6yljemdvPs9v3oO/D+WBmpayJnQSUrrhrK8j8Nw2xJkDuzjOr9O7LyyqGsvmQvmvLTKPrvypTmbpWb18ioceWc/r1RnHLwaDKz4hx8ZIknWS1JEMew4HYMEhaun0s/ui7o73+a6uHje3LY49zar5W5q/v2bfjVA34LYr+uXp7DU/f34Pp753Dt3XNZviiXeNzbD8vD0D06VnrDj8e13/lbOHBaLZ1/0Miqx5IfclTPj2KicNBrtRwwuZYVD6VTl8I5Ar/me/wUlDmCrTIzG7ni8re45759qKtP48WX+3H6r37I2ecfTkVlFr88Y9ZX30gr4cdxxA9+9KvLue0WJQRjSteCMoYds8dKKmuzWLRm53nYiW/vzk+uPZGf//VYNtRk89sfzUh9eDO/XpcvPbsbZx43jnNPHUtleQZnnPexp3l+zfv+567+/PzIg5k+uQs//Ik3l3/x47jlYmy336Dm18fanV8f1z95IMeNWciD5z9DdkYDTfHUf6TuYtzj5aUB2gJHA72ALkCOMeaUXfzcr4wxM40xMxv5+itHyovTaN9l+0qIos6NbCjx9pQfu++zkVHjK3nwzdlcdusS9h5dwyX/WOJpph/bCVBR2vwGrSKNd14tZMDgz0+OpYof21hekkF5SQaL5rUB4H+Ti+i7u3fb+FmbamLMm9GG4Qd5d3pDP/bXrToe0UTZ1OTpWdZPilG4f5xIGqS3g/whcWoWprZ6ojHLlfcs4/WJhbw9uW1Kb7sl8rpfwc3rcq/e69lvr5U8ec1j/PH0aQzrv5YrT31tp5959YO+HDhkeUpz/Ra2/TUSTTDmwGLenObdZQH86juvj5VZn1bTVJhBIjcNohE2DS4ka3kt8TbpEDEQMdSM6kDGKm+OX0NGVVKyJpOaynTiTRHentqeQUODP3nydTq2pffrl3ExBvFTVUU6bYuSz0nboi1UV3h3OQ3Xz6UfXRf09z+1q2NsWhNlyo+KeHF8e+rXR3j12CLqyyJkd0pQV7J90qZufZTM9qm5DqHfPeCXIM4RAEyZ2IXzThjBpT8fxsbqGOtWent9zDB0j9+vkaAeK/18XDv/oJH1zXMExS+lUbRfE5E0yGhnaTskTs3C1E2S+z3f44egzBEARKMJrrz8LV6fvhtvz+gOQFVVFolEBGsNk1/pw4D+G1Ke6yfXxxE/uexXl3PbLYktihIp2/7b5Ka8CdsutR9EunzP1RIEZY5gcK/17L/nSp6+6jGuOW0a+/Rby1U/e43KjdkkbLJjn58xiN17enead79el1WVGSQSJnkcea4H/QdVeZbVEuZ9p0/uwphx3v0ij/P3Pw7GdoN3K+GA3Vcy8fJHufaUqQzvu44/njSNlWVtOf++H/Dzfx7LlNl9WbMhL6W5rsY9Xl4a4BBgubW2zFrbCDwLjPnsD1lr77XWDrfWDk/j6193dtGcbLr2aqBj9y3E0hIcdHQV707x6HzjzR78Ww9+tt8wfj52KDee15e5M/L424V9Pc30YzszsuJk5cS3fT1s/ypWLM7yLM+PbawsT6esJIOuvZIrUIeMrmLVUm8LK7+wkZy85ClH0zMSDN2/htVLvHtcXe+vdSu3r/wqfz1Kdq/kRGlmZ0vlexGshXgdVM+LktMrNZOoSZYL/raCVUsyefZfHVN4uy2ap/0Kbl6X9zw/kmOvPJmfXP1T/vjAeGZ92pVr/zOObu23vyHcf/BKVq0vSGmuv8K3vw4dXsaalblsKAtO34GbY2VTQToZK2sxDXGwlqzF1TR0zCJavf0NYs78Sho6e3P8KivOZODeNWRkxgHLkFGVrPb4WNlCfGXHtvR+/SzXYxA/vTu9PYccVQzAIUcV8+7r3l3P2vVz6UfXBf39T0H/Jo5+u4wjpyX/ZHVMcOgz5WS1T9Dl4C2seimTeAPUrolSuzJK4eDUnKLTjx5oIQI3RwBsOx1u+06bGXNIOW+83MHTvDB0j46V3nD9uG5auX3KsfT12LZ5gMzOCTa8H8VaaKqDqhTPEfgx39MCBGKOACwXnPcuq1bn8+xzg7Z9t7Bt/bavx4xew4qVwTpmuj6OuOZHv7qe225JGkflkPZmLTRaTEkj0XWNxPtnpjTD5XuuFiIQcwR3vziSY64+meP+9FOufmg8Hy7uyp8eHke7vO1n6Dhw8HKWFXvz4bWfr8u27TZv+3rMQSWsXNbGoyT/5n27dN9+yvpRY9ezZoV3Z/NyfdxyMba76+V9Oer6Uzjmzydz5SOHMHNJF/74+Hja5iTHIMZYTj9kFhPf3T2Fqe7GPbHvfAtfbBUwyhiTDdQD44GZqbrxRNxwx4Su3PDYMiJRmPJEISs/Te1BrSXwYzvbFjVy5Z2LgOQKpunPF/Hhm96tXvLrubzr2t5cetOnpKUlKF6dyc2X9/c0r7BDIxf9YznRiMVE4M0X2/L+awWeZnplwaUZVH0QobHK8Pb4LHqd08iGt6LUrYiAgcwuCQZemTwgdD2pkY+vyOD9Y7KwFjr/qIncAak7v9EeIzZxyLEVLP84izte/giAB//alQ9eD9Ybw8/wtF/B34799dHv0aNDNdYaSipyuemJAzzLuuyOFQweXUt+YROPzFzIwzd14pUn2nmW58f+6mobL/3jTPYaUk5eQQMPPfsKj/57IFMm9WTs+LW8MdW7swH4xcWxcstubdi0dyHdb5qPjRi2dMuhekwHOjyxjIy1mwBDU2EGpT/pldLcrRbNz+N/U9pz61MziccNyz5uw8tPdfEkq4UJ3BjWjzGIi+659Mb5DB5eSV5BI/+Z8haP3NWbp+7vyeV/m8/3frSWspJMbrh4cEozdxSW9yOuefm4zrgon7L309lSFeGFg9qzx29r6X1c/S5/Nr9fE92/v5nJRxYRicKwK2uIpOiXqUK87wSuXwEm/GMBeQWNNDUZ7ry+H7U13v6GdRj2Hx0rveHl4zr3kiwqPojSWGWYPj6Xvmdvoeyt2LY5gqwuCXa/KjkJ3+OkBhZckcXbP8oBC11/1EibAan8ZQH38z0tQCDmCPbYvYxDxq1g+fIC7vjnSwA8+J+9OejAlfTuVQnWsL40h1vvGJnS3B25fl2C++OI6230o19dz22Dt49r1l9KiM2rx9TEafOz5Ww+pR22TYSsu8ow1XGy/1hMvHc6ddd1JdEzg8YDcsn99UqIGup/0x6i3/603X6/52ohAjmG3erso96lX9cNWAwlG3L565NjPclx9bq89JpZ7DVsQ3J+8rmpPPqv/uw1dAO9+9dgLZQWZ3PbX/ZKeS64m/e99Lo57LVPRXIbX3yNR+/tx/D9yujacxM2YSgtyeSOP++Z0swduT5ugX9ju0OHLuG4McnLFk+f34sXPxiQstt2Oe4x1sMLghljrgFOAJqA2cCZ1tovPDdKnim0+5rxnt2fXYlkun3DnNi8+at/KMUi2e5XPifq3F5LL9LGq1VcX8xu/man+UkFE/XyJB67dtAHbk+59vpQ9x/gv9r4xIfW2uHOg7+D1tCvdT/e12le9sT3neYBmKi76zxtZeNxp3mxXj2d5gEk1vlwHfqI+3799Aa3b5YHXLPIaR7AKxX3tbp+hW/WsX70q0lze+pF25Sa34L+JqJFRc4z42XenQJxV1y/D/GLH+9/fvKx2+PIk4M6Oc0DmGqfDny/gj8dG21X6DQvvqHCaR740z+uu8D1sRL8OV56dpH2L3HYAreXinp1tPtFxVNqHmh1Hdsa+tXss4fTPDvrI6d5ANFC96eBjldUOs0zMfeXMzJpXv4u464l6ne9WNRL1ZP6OM0rPM39JXBeKb2r1fUrtPw5gtrj3c7B5k2a7zQPINLe20VZuxJfW+w0L9rR/RlhrA/v122D+zFz5VFuxyAFn2x0mgfw6sxrvrBfPT2KWmuvBq72MkNEJIzUryIi3lHHioh4Q/0qIuIN9auIiHfUsSLSmrn/9TcRERERERERERERERERERHxjBYCiIiIiIiIiIiIiIiIiIiIBIgWAoiIiIiIiIiIiIiIiIiIiASIFgKIiIiIiIiIiIiIiIiIiIgEiBYCiIiIiIiIiIiIiIiIiIiIBIgWAoiIiIiIiIiIiIiIiIiIiASIFgKIiIiIiIiIiIiIiIiIiIgEiBYCiIiIiIiIiIiIiIiIiIiIBIgWAoiIiIiIiIiIiIiIiIiIiARIzO87sCMTiRDJynaamaivd5rni2jUeaSJud217OYtTvMAbGOD80wTzXSeOX1MJ6d5P56/1GkewKsDnUf6wxincdkT33eaFxrWuo0rr3CaB5DY4r7T/dD/D/Oc5l06/12neQCv9HYe6ZyJRYkWFDrNTFTXOM1z3TsAi//Z1Xlmn1MrneaZ9HSneQDxGsf7DhBt39555jNj3WZuOXw3p3kAvPS0+8yQcN6xPjBt2rgPdTy+i+TmOM0DiFe6PY745dXhHZzmHTlrhdM8gCmDnEeGQqS6zmle3Glakq3f7DwzkpXlPNO1RJ3bfQfcz20DFBy9ymnevjNrneYBvDLYeWQo5E2a7zTPj9dkhHbuM/PznOYlKquc5oFP/Zrmfi4k/1G3c6LD57gfhby69xf/nc4IICIiIiIiIiIiIiIiIiIiEiBaCCAiIiIiIiIiIiIiIiIiIhIgWgggIiIiIiIiIiIiIiIiIiISIFoIICIiIiIiIiIiIiIiIiIiEiBaCCAiIiIiIiIiIiIiIiIiIhIgWgggIiIiIiIiIiIiIiIiIiISIFoIICIiIiIiIiIiIiIiIiIiEiBaCCAiIiIiIiIiIiIiIiIiIhIgWgggIiIiIiIiIiIiIiIiIiISIDG/78B39eD0WdRtipCIG+Jxw/nHDPY078K/r2LfQ2qoKo/x6/EDPc3aavhBNZx17TqiEcvLjxfy5O0dPc/MadPE765bTM/+dVgLN/+hH5/MyfMkq6hzA5fcvJy27ZuwFl56rIjn7vd2G9MyEtz05CekpSeIxixvvVTIIzd39TQT/HkuIxHLrc8toHx9On88c4DneV7tOzMntKFkegYZhQkOfaFip7/79P4s5v+tDUe+U0ZGW0vFvBizrm6T/EsLg87ZRNdDG77zfQgTP7ouDJl+9B247Z6uveq47B+fbPv/zt038/CtPXnuP951bBj2HfBuzDPp991Y8loe2e2a+OXkTwF4658dmfN/hWQXNgFw4EUl9D14I3WVUSae05Pi+VnsdWwlh/1xXUruQ9gcffJqDju2GGMsk5/pwnOPdPc0z4/ucdU7eS+Xkff6BrBQM66QmsM7kL6ynqJ/ryayJUFjUTql5/TEZkdTnu3H4+pHx7p4Ln93zUJGji2nqiKds48dDUBuXiOX/3U+HbrUU7ouiz9fshe1G9NabWZ6rIl//n4SaWlxopEEb3zYiwef24erfj2NHp2qk/nZDdTWpXPmNT9OSWYYuX6/FeSxnR+vyx35Mdb60anJ47O1sGJxLjdPGEBjQ+qPHztyvc/6MScB3sxLzJ6Qw/o30skoTHDw89U7/d2S+zP56KYcDnu7goy2FoDF92ay8plMTBT2+sMmOuzfmJL7ESZOuuf3sxg5poSqygzO/vl4AC774wd07b4RgNzcRmpr0zj3jHEpz4Zgvc9rSZl+bGMYxgRezW8vuSpKxZsR0gotQ59Nzgmsuj1KxXQDEUhrC/2ubSK9A2ycb1h6bfOx0kL3s+K0G2+/830IGz+Oz0F9XZ4/YS4jx6ynqjKDc045EICfnrGIw45eRU1lBgAP3T2AmTO8eYxdz/eA++fS9f4atM/yll9tqHrTkFYIez6TAGDNHYaq6QYMpBVCrz8lSO+w/d9sKYYFP47Q5SxL59O+ecd6uhDAGHM+8EvAAPdZa2/xIueyU/agptKbN5+fNeXJQp5/oIhL/rnKSV4kYjnnhrVcfmJvyovTuO2lxbz7Sj6rFmd6mnvWhGXMfKst158/iFhagozMhGdZibjhvuu6s2RBNlk5cW6b9DGz38pj1eIszzIbtxh+f9IANtdFicYS/P3pT5g5PZ9PZud6lunXc3n06SWsWppFdm7c05ytvNp3ev5oM31+Ws/My3ZeVFBXHGH9O+lkd96+fXn9mhj3VCWRGNSXRph2TCGdDy4n0uqXPm3ndb+67rqwZPrRd667Z+3ybM49Zti27P+88R4zprbzJGurMOw7W3kx5tnr2Er2+dkGXrh45zcnI08vY99flu/0vVhGgrEXllD2aSZln3p7/PKTlx3bs28thx1bzAU/3YfGRsO1d8/jgzfbsW5VdqoiPsd197jqnbTV9eS9voG11/bHxgydblxK3ZB8iu5bRcXJXdk8KJc20zdQ8GIplT/pnNJs8KfTXXesq+dy6nNdeOHx7lx0/cJt3/vJL1Yw5/1Cnrp/N47/xQqOP2MFD9zSr9VmNjRFufCmI6jfkkY0muC2y17g/fnd+dM947f9zG9+8i6b6tNTktdSedmvfrzfCvLYzo/X5Y5cj7XaddjCUSev5ayjRtCwJcrlf1/IgUeUMvW/qT9+bOV6n/VrTgK8mZfoccwWep28mdmX7TyPU18coWxGGlk7zBFsXBJl7csZHPxCFZtLI8w4I4/xL1VhvF3n4ZTXcwTOumdyD16Y2JuL/vDhtu/d+McR274+85z5bKr1bg44SO/zWlqmy7ywjAm8mt9uf3SCTiclWDxhe0l2+XmcHr9Nfl38aITV90Tpc2Wc7L6WvR9rwsSgoQzmHJ9G4YGNmADNwULwxrBbBfF1OXVSN158ajcuvGrOTt9/7onePPtYn5RmfZYf8z1buXou/dhfg/ZZXtFRlg4nWpZfsf2E/Z1Ps3Q7J/kB//rHDOvuNex2xfYP/FffFCF/v2+f6dmlAYwxe5Isx5HA3sCRxhhv3iE6tOC9XDZWuXunMGBoHetWpFOyKoOmxgjTnytg9GHVX/0Pv4PsnCb2HFHNK08nV7g0NUbYtNG7o3dFaRpLFiTLsH5TlNVLMmnXyeuV2YbNdcnnMRazxNIs1uPFin48l0WdtjDy4Cpe+b/2nuZs5eW+035EI+kFn19UMO/GXPa6eFNyGNYslsW2D/0TDez0d0Hgol9dd11YMv3oOz+6Z6u9R1dRsjqL0nXevnkJw77jpR4jN5FZ0PS1fjY929J9eB2x9OCu8Pe6Y7v3rmPRvDy2bI6SiEdYMLOAMePLUnXzu+S6e1z1TvraLWzum43NiEDUsHlQLjkzq0gv3sLmgTkA1O3VhpwPqlKeDX6NYbdz0bGunssFs9qysWbnSYtRB5cx9fnkB3BTn+/M6INT+zpxn2mo35LMi0UTxKKJz7z/sBw8YjnT3vN2cspPXverH2OeII/t/Hhd7pTvw1grGrWkZyaIRBNkZMbZUJrhaZ7rfdav9wVezUu0G95Eev7nx6QL/pLN7hfV7TQPUPJaGl0P30I0HXK6JcjpEadyfnA+pXIxR+Cse+YWfa57trMccPA63pjWLeW52/ID9D4vzMIyJvBqfjt/H0ssb+cbiu3weVt8M9s6NprFtg/9E1vABGwOFoI5hvWDq+1cOKfdlxxHvOXHfI9r/uyvwfosr80+EPvMCbSjO3ZsPTuNYytfg4yulqw+336jPVsIAAwC3rXW1llrm4A3gGNSHWItXP/gx9z633kcfsL6VN+879p1aqRs3fbfCikvTqOos7eDiE7dN1NdkcaFf17M7RNnc/51i8nIcvPb5B27baHPHnUsmp3jeVYkYrnjpQU8MWsOs97KY9Ec71YQgT/P5a+vXMm/b+xBIuFmFOZ631n3WjqZHRMUDPz8B1gVc2NMObKQV48uZOjVNYE6GwCO+lW85arv/OierQ48oozpk9wsRAoD12OeDx8u4l9H9GPS77tRXx2qyTBPO3bl4hz23KeKNvmNZGTGGX7ABoo6bUnVzX8lF93jqncaumeS+ckmIhubMFsSZM+pIbahkYZumWR/WANA7rtVxDZ433kux7BbuehYP48hBYUNVJYnP4SrLM8gv9D7yzx5nRkxCf519bP89+ZHmPlRVz5evv1cf4P7l1BZk8Xa0vyUZrYwnvarn/srhGNs58fr0pUNpRk8+2B3Hpo6g0enz2BTbYzZ7xR6mun6ufRr33E5L1HyWhqZHRLkD9x5HqK+NEpmp+2/WJDVMcHm9V5OiTrn+RyB3x0LsOfeG6iqyGDdGm/n71zzY27bdabrPL/316DOb6+8LcrM76VRNilCj7N3OOvKPMPsY2LMOS6N3lc0Be5sAAR0DBu21+WRx63g9off4PwJc8lt480Y1q/5HpfPpV/PYxg+y1tzm2HOYREqXjJ0/U3yQ/94PRQ/mLwkwHfh5ah3ATDWGNPOGJMNHAF87oIYxphfGWNmGmNmNtjN3zjkohP25NyjB3PlLwZx5Ckl7Dmi5rvf8xZkV6vovF7tEo1Z+u5ey6THO/PbY4ayuT7CT361xttQIDM7zhX3LOOea7pTV+v9Bw6JhOGcI/bklFF7M2DIJnr2r/M0z/VzOXJcJVUb0liywN2EtMt9p6kePrknhz3O3bTLvy/cu4nvvVjBuCcrWXRfDnF3n7G48I37tZFgPQCtncu+8+M4AhBLS7DvuA38b3KR92Eh4XLMM+zkDZz1+iec8eJicts38toN3p0WtwX6yo7dafya+Gbj19XLc3jq/h5cf+8crr17LssX5RKPu1mw56p7XPVOY9dMqn/Ygc5/XkqnvyyloWcWRA1lv+pB3qvldP3DIszmBDbm7ePregwL7jrWr2NIUCVshDOv+THHX3wSg3qV0atrxba/Gz9yKdPe6+3jvXPC0zGsn/trGMZ2QZeb18ioceWc/r1RnHLwaDKz4hx8ZImnma6fSz/2HZfzEk318Ok9WQw8t/7zf7mr7QzWb616PkfQErrnwPFrmD7N+2sCu+bH3LbrTNd5YRkTgNv57Z7nxhk+pZH2P0hQ/MT2bWsz2DJ0YhODH2tk7b+jJII3BfmN5ghaS7+G6XX50rO7ceZx4zj31LFUlmdwxnkfe5Lj13yPy+fSr+cx6J/lAXQ71zLklQSFR1hKn0jegbV3GTqdbIl+x6tLeLYQwFr7MfAX4FVgMjAX+Nyv7Vpr77XWDrfWDk833/y0lhWlyVUZ1RVpvPNqIQMG136n+93SlBen0b7L9hVKRZ0b2VDi7alNyksyKC/JYNG8NgD8b3IRfXf39nGNxixX3rOM1ycW8vbktp5mfdammhjzZrRh+EHensLE9XO5+z4bGTW+kgffnM1lty5h79E1XPKPJZ7lgdt9Z9PqKHVrokz9USEvj29H/foI044tZHPZzrWW1ydOLMtSszg4y1G/Tb+m4e1pLeXrc913fhxHAIYfUMnSj3Kp2hDsax275HLMk1PURCQKJgJ7n1jBurneX8+spfg6HbvT+DXyzcevUyZ24bwTRnDpz4exsTrGupXeP74uu8dl72w8uB1rbxhA8VX9iOdEaeyUQWPXTEou78PaGwawaUwBjR28Owb6NYZ11bF+HUMAqirSaVuUnERrW7SF6grvjyeuMmvrM5izqDMj90wumI1GEhwwbAWvfxDcywKA92NYv/bXsIztwJ/XpStDRlVSsiaTmsp04k0R3p7ankFDvZ0Qd/1c+rHvuJyXqFsdpW5tlOnH5PPqIQVsXh/hzWPz2VxmyOoYZ3PJ9rmC+vURMjt8/tKDrZWLOQI/uwcgEk0wZmwxb77m3WUB/OLH3LbrTNd5YRkT7MjV/DZA0eEJNkz9/Kdk2b0hkgV1S4K10uqbzhG0ln4Ny+sSoKoyg0TCYK1h8nM96D+oyrMsP+Z7XD6Xfo8HgvpZ3o7aHW6pnJbs0U3zDatvMcw9PML6Rw3F/zasf+Kbd6yn58Gy1v7bWjvMWjsWqAAWp/L2M7LiZOXEt309bP8qVizOSmWE7xbNyaZrrwY6dt9CLC3BQUdX8e4Ub08XWVmeTllJBl17JVfVDBldxaqlXhaW5YK/rWDVkkye/VdHD3O2yy9sJCcvebxOz0gwdP8aVi/xdt9x/Vw++Lce/Gy/Yfx87FBuPK8vc2fk8bcL+3qWB273nfz+cY58u5zDp23g8GkbyOqYYPwzFWS2T7BpTYRE83Bs09oIG5dHye7q5vIWrnjdr+IV933nx3EE4MAflPKGLguQMq7HPLWl2xdPfToln/b9v/lZm1ozrzt266mU23fazJhDynnj5Q5f8S++K7fd47J3ItXJU7NFyxvI+aCa2tEF275HwlIwcT0bD2nnSbYfnb6Vq4716xgC8O709hxyVDEAhxxVzLuve7+9Xmbm59aTm5X8ADU9rYl9Bq1lVXEBAPvsvpZVJQWUVbo7k5dfvOxXf/bX8IztwJ/XpStlxZkM3LuGjMw4YBkyqpLVns6DuH8u/dh3XM5L5PWP8/3/VXLo1CoOnVpFZscEY5+pJrO9pePBjax9OYN4A2xaE2HTyiht9/r8JQZbM6/Hr352D8DQfcpYsyqXDWXBmvf1Y27bdaYf2xiWMYHL+e36ldu/rpweIatX8uvNa8A21+nmdVC/0pDRJXinKgraGDY8r8uktu22z2mNOaiElcvaeJbler7H9XPpx/MYhs/yNu/QsVVvGDKbO3bQAwn2fjn5p+PJls5nWDqe+M071tNfkTXGdLDWlhpjegA/Bkan8vbbFjVy5Z2LgOSKu+nPF/Hhm96utrvsjhUMHl1LfmETj8xcyMM3deKVJ7yaXIRE3HDHhK7c8NgyIlGY8kQhKz/95r959k3ddW1vLr3pU9LSEhSvzuTmy/t7lrXHiE0ccmwFyz/O4o6XPwLgwb925YPXvXthFXZo5KJ/LCcasZgIvPliW95/rcCzPPDvuXTNq33nvYvyKH8/jS1VEV46qB2DfruJXsft+oOp8g/TWXRfNpE0izEw5KqNZLQN1iDU63513XVhyfSj7/zonozMOEP3q+K2q/t5mrNVGPYdL8c8/z2/B6vey6G+Msbt+w3kgPPXs/K9XEo/ygQD+d0aOfy67Zd5uXPsQLbURog3Gha/mseJDy6nqF+wzv3ndcdO+McC8goaaWoy3Hl9P2prvF1V7Lp7XPZOx1tWEK1twkYN5ad3I5EbI+/lMvJeLQegbkQ+Gw/05hrPfnQ6uO1YV8/lpTfOZ/DwSvIKGvnPlLd45K7ePHV/Ty7/23y+96O1lJVkcsPFg1t1ZruCOi4/400iJkEkAq9/0IsZ83oAMG7kMl57L9hnA9jKy371Y8wT5LGdH6/LHbkeay2an8f/prTn1qdmEo8bln3chpef6uJZHrjfZ4M2J/HhxbmUv59GQ5VhysEFDPhtPT2P3fWYNK9fnC6HNfD6DwswUdjrik0YN1fzccbr8auz7rnqAwYPLScvv4H/PD2ZRx4YyJRJuzF2/BremOr92QCC9D6vpWT6sY1hGRN4Nb/96e+jVM+M0FQFMw9No/tv4lT+L0L9iuRZAzM6Q+8rkh/K1cyOsPb+CCYteSrt3n9oIs3tyRCcCNoYNsivy0uvmcVewzaQV9DAQ89N5dF/9WevoRvo3b8Ga6G0OJvb/rJXynO3cj3f4/q59GN/DdpneUsvM2ycaWiqgjnfi9D1N5bq/xk2rwAikN4ZdpuQ2jNXGevhhQ2MMW8B7YBG4EJr7bQv+/n8aJEdlfUDz+7PriTqd3HtMC/5cPG+SBvvVjh9Eev6cTWentxil2xjw1f/UIpFMn14k57m7tQuAMe8v9RpHsBvBr75obV2uPPg7+Cb9mueKbT7Rg5xct/CxETdzx7ZJre/uRLNy3OaBxDfuNF5ph8iWW5/m+X38991mgcwvvenra5f4Zt1bH5aezu64MfO7htAotr764buyHXvACx7bIjzzD6nLnCaF8l2f8mNeI3bfQcg2j44vzH8ReqG7+Y8862Xfh/4foXmMawZ7+S+bWVibi8p5kfH+vG6jJeXO82LFhQ4zQOIV1Y6z/SD63mJI2etdZoHcN6g11tdx7aGfo327eU0L750hdM8cP8eLywSdd5eC3pXXI8HkqFu57dHz3R/ieU/DX6+1fUrfLOO9aNfXb+39OM1GevZ3Xmmrd3kNq/e/dk4fenXNPeXF3P9Wd6IOe7PTv3nvSd+Yb96ekSz1h7g5e2LiISV+lVExDvqWBERb6hfRUS8oX4VEfGOOlZEWjP3v0YtIiIiIiIiIiIiIiIiIiIintFCABERERERERERERERERERkQDRQgAREREREREREREREREREZEA0UIAERERERERERERERERERGRANFCABERERERERERERERERERkQDRQgAREREREREREREREREREZEA0UIAERERERERERERERERERGRANFCABERERERERERERERERERkQDRQgAREREREREREREREREREZEAMdZav+/DNsaYMmDlt/inRUB5iu9OS8sMwzb6kRmGbQxL5nfJ62mtbZ/KO9PSqF9bXGYYttGPzDBsY2vLVL9+Ob1GgpEZhm0MS2Zr2sbA9ytoDNvC8pQZnLywZGqO4EuoX1tcZhi2MSyZYdjG75Kpfv1y2l+V2VrywpLZmrbxC/u1RS0E+LaMMTOttcODnBmGbfQjMwzbGJZMP7YxDMKw7/iRGYZt9CMzDNsYpsww0GskGJlh2MawZIZhG8MiDM9lGLYxLJlh2EY/MtWv3gjDvuNHZhi2MSyZYdhGvzLDQPurMltLXlgyg7KNujSAiIiIiIiIiIiIiIiIiIhIgGghgIiIiIiIiIiIiIiIiIiISIAEZSHAvSHIDMM2+pEZhm0MS6Yf2xgGYdh3/MgMwzb6kRmGbQxTZhjoNRKMzDBsY1gyw7CNYRGG5zIM2xiWzDBsox+Z6ldvhGHf8SMzDNsYlswwbKNfmWGg/VWZrSUvLJmB2EZjrU31bYqIiIiIiIiIiIiIiIiIiIhPgnJGABEREREREREREREREREREaGVLwQwxnzfGLPIGLPEGHOZo8z7jTGlxpgFjvK6G2NeN8Z8bIxZaIw530FmpjHmfWPM3ObMa7zObM6NGmNmG2NedJS3whgz3xgzxxgz01FmgTHmaWPMJ83P6WgPswY0b9vWPzXGmN95lbdD7gXN+80CY8zjxphMB5nnN+ctdLGNYeG6Y9WvnuaqX1Of57xj1a/BEfR+bc502rF+9WtzdqA7Ngz92pzrtGPVr95w3a/NmRrDepcb6H5tzgx8x2oMGxxBH8OqXz3NU796k6l+DYig92tzpuYIvMvTHIE3uU471tN+tda2yj9AFFgK9AbSgbnA7g5yxwLDgAWOtrMzMKz56zbAp15vJ2CA3Oav04D3gFEOtvVC4DHgRUeP7QqgyEXWDpkPAWc2f50OFDjKjQIlQE+Pc7oCy4Gs5v9/Evi5x5l7AguAbCAGTAX6uXxeg/jHj45Vv3qaq371NtvzjlW/BudPGPq1OdNpx/rVr815ge7YoPdrc47TjlW/erq/aI7Am0yNYb3LDHTHagwbnD9hGMOqXz3NU7+mPkP9GpA/YejX5kzNEXiX57Rjg96vzTmBmiNozWcEGAkssdYus9Y2AE8AR3sdaq19E6jwOmeHvGJr7azmrzcCH5PcCb3MtNba2ub/TWv+Y73MNMZ0A34A/MvLHD8ZY/JIHmT/DWCtbbDWVjmKHw8stdaudJAVA7KMMTGSxbXO47xBwLvW2jprbRPwBnCMx5lh4Lxj1a/eUL864apj1a/BEPh+bc502rF+9CsEv2ND1K/gtmPVr97QHIF3mRrDeiBEHasxbDAEfgyrfg0O9atn1K/eCHy/NmdqjiAAQtSvEKA5gta8EKArsHqH/1+Dx4MzvxljdgOGkly95HVW1BgzBygFXrXWep15C3ApkPA4Z0cWmGKM+dAY8ysHeb2BMuCB5lPD/MsYk+MgF+BE4HGvQ6y1a4GbgFVAMVBtrZ3icewCYKwxpp0xJhs4AujucWYYhKpj1a8pF6Z+BQcdq34NlFD1K7jrWB/6FYLfsYHvV/ClY9Wv3lC/epulMWzqBb5jNYYNlFB1rPo15dSvKaZ+DZRQ9StojsADmiNIsaDNEbTmhQBmF9/zfEWPX4wxucAzwO+stTVe51lr49baIUA3YKQxZk+vsowxRwKl1toPvcr4AvtZa4cBhwPnGGPGepwXI3nKnbustUOBTYCLa/6kA0cBTznIaktyxWIvoAuQY4w5xctMa+3HwF+AV4HJJE+f1ORlZkiEpmPVr54IRb+Cu45VvwZKaPoV3Hasy36F0HRs4Pu1Octpx6pfPaN+9ZDGsJ4IfMdqDBsooelY9asn1K+pz1G/Bkdo+hU0R+ARzRGkPitQcwSteSHAGnZeEdEN709/4wtjTBrJcnzUWvusy+zm03pMB77vYcx+wFHGmBUkT30zzhjziId5AFhr1zX/txSYSPI0PF5aA6zZYeXZ0yRL02uHA7OstesdZB0CLLfWlllrG4FngTFeh1pr/22tHWatHUvytEaLvc4MgVB0rPrVGyHqV3DXserX4AhFv4J/HeuoXyEcHRuGfgUfOlb96gn1qwMaw6ZUGDpWY9jgCEXHql+9oX71hPo1OELRr6A5Aq9ojsATgZojaM0LAT4A+hljejWvBDkReN7n+5RyxhhD8nobH1tr/+Eos70xpqD56yySO/0nXuVZay+31naz1u5G8nl8zVrr6QpGY0yOMabN1q+B75E8/YZnrLUlwGpjzIDmb40HPvIys9lJODhdSrNVwChjTHbzvjue5PV+PGWM6dD83x7Aj3G3vUEW+I5Vv3ojZP0K7jpW/Rocge9XcN+xrvsVwtGxIelX8KFj1a+eUL96l6kxrAdC0rEawwZH4DtW/eoN9atn1K/BEfh+Bc0ReEVzBJ4J1BxBLFU35Jq1tskY81vgFSAK3G+tXeh1rjHmceAgoMgYswa42lr7bw8j9wN+Bsw3yeuZAPzBWvuSh5mdgYeMMVGSi0WetNa+6GGeHzoCE5OvYWLAY9bayQ5yzwUebT6oLwNO9zLMJK8ncijway9ztrLWvmeMeRqYRfLUJbOBex1EP2OMaQc0AudYaysdZAaaHx2rfg2MUPQruO1Y9WtwhKRfwX3HhqFfwZ+ODXS/gm8dq35NMc0RaAz7HWkM6wGNYYMjJGNY9as31K8eUL8GR0j6FTRH4BXNEXggaHMExtrAXm5EREREREREREREREREREQkdFrzpQFERERERERERERERERERETkM7QQQEREREREREREREREREREJEC0EEBERERERERERERERERERCRAtBBAREREREREREREREREREQkQLQQQEREREREREREREREREREJEC0EEC+FWNM3BgzxxizwBjzlDEm+zvc1oPGmOOav/6XMWb3L/nZg4wxY75FxgpjTNHX/f5nfqb2G2b90Rhz8Te9jyIioH79ip9Xv4rId6KO/dKfV8eKyLemfv3Sn1e/isi3pn790p9Xv4rId6KO/dKfV8cGhBYCyLdVb60dYq3dE2gAztrxL40x0W9zo9baM621H33JjxwEfOOCFBFpRdSvIiLeUceKiHhD/Soi4g31q4iId9SxEnhaCCCp8BbQt3kV0+vGmMeA+caYqDHmb8aYD4wx84wxvwYwSbcbYz4yxkwCOmy9IWPMdGPM8Oavv2+MmWWMmWuMmWaM2Y1kEV/QvErrAGNMe2PMM80ZHxhj9mv+t+2MMVOMMbONMfcA5qs2whjzX2PMh8aYhcaYX33m7/7efF+mGWPaN3+vjzFmcvO/ecsYMzAlj6aIyHbqV/WriHhHHauOFRFvqF/Vr02KetoAAAOfSURBVCLiDfWr+lVEvKOOVccGUszvOyCtmzEmBhwOTG7+1khgT2vt8uaSqbbWjjDGZABvG2OmAEOBAcBeQEfgI+D+z9xue+A+YGzzbRVaayuMMXcDtdbam5p/7jHgZmvt/4wxPYBXgEHA1cD/rLV/Msb8ANip8L7AL5ozsoAPjDHPWGs3ADnALGvtRcaYq5pv+7fAvcBZ1trFxph9gTuBcd/iYRQR+Rz1q/pVRLyjjlXHiog31K/qVxHxhvpV/Soi3lHHqmODTAsB5NvKMsbMaf76LeDfJE9l8r61dnnz978HDDbN10UB8oF+wFjgcWttHFhnjHltF7c/Cnhz621Zayu+4H4cAuxuzLaFUHnGmDbNGT9u/reTjDGVX2ObzjPGHNP8dffm+7oBSAD/1/z9R4BnjTG5zdv71A7ZGV8jQ0Tkq6hf1a8i4h11rDpWRLyhflW/iog31K/qVxHxjjpWHRt4Wggg31a9tXbIjt9oLopNO34LONda+8pnfu4IwH7F7Zuv8TOQvLzFaGtt/S7uy9f591t//iCSZTvaWltnjJkOZH7Bj9vm3KrPPgYiIimgflW/ioh31LHqWBHxhvpV/Soi3lC/ql9FxDvqWHVs4EX8vgMSaK8AvzHGpAEYY/obY3KAN4ETTfLaKp2Bg3fxb2cABxpjejX/28Lm728E2uzwc1NInr6E5p8b0vzlm8DJzd87HGj7Ffc1H6hsLseBJFdqbRUBtq72+inJU7HUAMuNMcc3ZxhjzN5fkSEikirqVxER76hjRUS8oX4VEfGG+lVExDvqWGnVtBBAvPQvktdFmWWMWQDcQ/IsFBOBxcB84C7gjc/+Q2ttGcnrnTxrjJnL9lOWvAAcY4yZY4w5ADgPGG6MmWeM+Qg4q/nnrgHGGmNmkTx1y6qvuK+TgZgxZh5wLfDuDn+3CdjDGPMhyWuj/Kn5+ycDZzTfv4XA0V/jMRERSQX1q4iId9SxIiLeUL+KiHhD/Soi4h11rLRqxtqvfVYJERERERERERERERERERERaeF0RgAREREREREREREREREREZEA0UIAERERERERERERERERERGRANFCABERERERERERERERERERkQDRQgAREREREREREREREREREZEA0UIAERERERERERERERERERGRANFCABERERERERERERERERERkQDRQgAREREREREREREREREREZEA0UIAERERERERERERERERERGRAPl/VNwWjmCpQwQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn import metrics\n", + "\n", + "df_confusion = pd.DataFrame(confusion_matrix_batch).sort_values([1,0], ascending=False).to_numpy()\n", + "\n", + "N = int(df_confusion.shape[0] / 2)\n", + "\n", + "fig, ax = plt.subplots(2,N,figsize=(6*N,12))\n", + "\n", + "for i, cm in enumerate(df_confusion):\n", + " col = int(i%N)\n", + " row = int(i//N)\n", + "\n", + " metrics.ConfusionMatrixDisplay.from_predictions(y_true=cm[2],y_pred=cm[3], colorbar=False, ax=ax[row,col])\n", + " ax[row,col].set_title(f'Batch #{col}: {cm[1]} (AUC: {round(cm[4][\"macro\"],2)})', fontsize=15)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Refitting base tree with parameters from each iteration of grid searching" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "import _pickle as cPickle\n", + "\n", + "def get_tree_size(df, random_state, savefile=True):\n", + "\n", + " N = df.shape[0]\n", + " tree_size = []\n", + " df.reset_index(drop=True, inplace=True)\n", + "\n", + " t_i = time.time()\n", + "\n", + " for i in range(N):\n", + " \n", + " row = df.iloc[i,:]\n", + "\n", + " if row['clf'] == 'RF':\n", + " clf = RandomForestClassifier(random_state=random_state, **row['params'])\n", + " elif row['clf'] == 'OF':\n", + " clf = ObliqueRandomForestClassifier(random_state=random_state, **row['params'])\n", + " else:\n", + " print('Cannot identify estimator')\n", + "\n", + " clf.fit(X,y)\n", + " tree_size.append(cPickle.dumps(clf).__sizeof__())\n", + "\n", + " new_df = pd.concat([df, pd.DataFrame(tree_size, columns=['clf_size'])], axis=1)\n", + "\n", + " print(f'Refitting trees took {int(time.time()-t_i)} seconds')\n", + "\n", + " if savefile:\n", + " with open('mnist_runtime_output.pkl', 'wb') as handle:\n", + " cPickle.dump(new_df, handle)\n", + "\n", + " return new_df" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Refitting trees took 39 seconds\n" + ] + } + ], + "source": [ + "df_size = get_tree_size(df_cv, random_state=random_state)" + ] + }, + { + "cell_type": "code", + "execution_count": 248, + "metadata": {}, + "outputs": [], + "source": [ + "df_size['clf_size_MB'] = df_size.apply(lambda x: x['clf_size']/10e6, axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Plot score versus performance metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import r2_score\n", + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.linear_model import LinearRegression\n", + "\n", + "def bestfit(df, y, x='mean_test_score', clf='RF', degree=1):\n", + " dff = df.query(f'clf == \"{clf}\"')\n", + "\n", + " # poly = PolynomialFeatures(degree=degree, include_bias=False)\n", + " # poly_features = poly.fit_transform(dff[x].to_numpy().reshape(-1,1))\n", + "\n", + " # model = LinearRegression()\n", + " # model.fit(poly_features, dff[y])\n", + " # y_hat = model.predict(poly_features)\n", + "\n", + " # return y_hat\n", + "\n", + " y_hat = np.polyfit(dff[x], dff[y], degree)\n", + "\n", + " return np.poly1d(y_hat)" + ] + }, + { + "cell_type": "code", + "execution_count": 249, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCgAAAF7CAYAAAAQSroCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACfxUlEQVR4nOzdd3xV9f3H8dcne+8AgSTsvYcMFUURV921rdVqXVWrtnbbVmvV1v5sa23d1qp11FHr3nsiggIispQNYRNGyF7f3x/nAlmEzHtukvfz8biPmzPuOZ90fDn53O/38zHnHCIiIiIiIiIifgrzOwARERERERERESUoRERERERERMR3SlCIiIiIiIiIiO+UoBARERERERER3ylBISIiIiIiIiK+U4JCRERERERERHwX4XcAbS0jI8P16dPH7zBEROqZN2/edudcpt9xBIPGYhEJRRqHRUT819hY7FuCwsxigA+B6EAcTzvnfl/nnGnAC8DqwK5nnXM3NnbdPn36MHfu3DaPV0Sktcxsrd8xBIvGYhEJRRqHRUT819hY7OcMijLgaOdcoZlFAjPN7DXn3Ow6533knDvJh/hEREREREREJEh8S1A45xxQGNiMDLycX/GIiIiIiIiIiH98LZJpZuFmtgDYCrzlnJvTwGlTzOwLM3vNzIYHN0IRERERERERCQZfi2Q656qAMWaWAjxnZiOcc4tqnDIf6B1YBnIi8DwwsO51zOwS4BKA3NzcevepqKggLy+P0tLStv8lgiQmJobs7GwiIyP9DkVEpEU6+liscVhEOrqOPg6DxmKRzi4kung453aZ2fvA8cCiGvsLavz8qpndbWYZzrntdT5/H3AfwIQJE+otE8nLyyMxMZE+ffpgZu31a7Qb5xz5+fnk5eXRt29fv8MREWmRjjwWaxwWkc6gI4/DoLFYpCvwbYmHmWUGZk5gZrHAMcCyOuf0sMDoaWYT8eLNb+69SktLSU9P75ADMYCZkZ6e3qGz3SIiHXks1jgsIp1BRx6HQWOxSFfg5wyKLOBhMwvHSzw85Zx72cwuA3DO3QucCfzQzCqBEuCsQHHNZuuoA/FeHT1+ERHo2GNZR45dRGSvjj6WdfT4RaRxvs2gcM4tdM6Ndc6Ncs6NcM7dGNh/byA5gXPuTufccOfcaOfcZOfcLL/iPZjrr7+eW265BYBly5YxZswYxo4dy8qVK32OTESka9A4LCLiP43FItIavnbx6Kyef/55Tj31VD7//HP69+/vdzgiIl2OxmEREf9pLBaR5gqJIpkd0SOPPMItt9yCmTFq1Kh9g+6rr77KP/7xD8LDw/nwww957733fI5UpBPKXwG71kN8BqQPgshovyMSH2gcFumESnbD9q+hshTSB0BSlt8RyUFoLBbpxLZ9Bdu+hqg46D4CEru3+y2VoGiBxYsXc9NNN/Hxxx+TkZHBjh07uP322wE48cQTueyyy0hISOAXv/iFz5GKdEKr3ocnz4HyQrAwmHEDTLgIouL9jkyCSOOwSCdUsAne+A0sfs7bTukN330Cug/3Ny45II3FIp3Yuk/g6YugYIO3PfQUmH4dZAxs19tqiUcLvPvuu5x55plkZGQAkJaW5nNEIl1EwSZ47lIvOQHgquHN38HWZY1/TjodjcMindD62fuTEwC71sKsO6Gywr+YpFEai0U6qbI9MPO2/ckJgKUvQt7cdr+1EhQt4JxTBWERPxTnw57N9ffv2Rj8WMRXGodFOqEti+vvW/MRlBUEP5YQZWYpZva0mS0zs6VmNsXPeDQWi3RShdtgQwPJiPwV7X5rJShaYPr06Tz11FPk5+cDsGPHDp8jEuki4rt5U35rMoPkHH/iEd9oHBbphLJG19838FiISQ5+LKHrNuB159wQYDSw1M9gNBaLdFKJWdDn8Pr7Mwe3+61Vg6IFhg8fzjXXXMORRx5JeHg4Y8eOpU+fPn6HJdL5JWTCsTfBKz+Fom0QEQ1HXA0JKqLW1WgcFumEcibBIRfD3AfAOcgaA5MuhXA9rgKYWRJwBHA+gHOuHCj3MyaNxSKdVFQsTLkCti7xCmWawdjzIPuQdr+1Oefa/SbBNGHCBDd3bu3pKEuXLmXo0KE+RdR2OsvvIdJiO1bBg8fDiDP2F8Vc9CycfBv0PcLf2JrAzOY55yb4HUcwdNaxuDP8DiIhrbwYdqz0unik9oP49Da9fEceh81sDHAfsARv9sQ84CrnXFGNcy4BLgHIzc0dv3bt2lrX6CxjWGf5PURC3s51XmelyDjoMQJiktrkso2NxUpJi0jHUVEKhVtg9j2195cV+hOPiIi0rag46DHS7yhCVQQwDviRc26Omd0G/Br43d4TnHP34SUxmDBhQuf6FlJEgi8113sFkWpQiEjHkZIDfY+svS8qod3bHYmIiISAPCDPOTcnsP00XsJCRKTTUIJCRDqO6ET4xi0w+rvezzmT4dxnlaAQEZFOzzm3GVhvZnur1E3HW+4hItJpaImHiHQsGYPg5Nvh6N956+CiE/2OSEREJFh+BDxmZlHAKuACn+MREWlTSlCISMcTEQXJvfyOQkREJKiccwuADlnkU0SkKbTEQ0RERERERER8pxkUQRIeHs7IkSOprKykb9++PProo6SkpLBmzRqGDh3K4MGD95376aefEhUV5WO0IiKdk8ZiERF/aRwWkcZoBkWQxMbGsmDBAhYtWkRaWhp33XXXvmP9+/dnwYIF+14aiEVE2ofGYhERf2kcFpHGaAZFA57/fAN/feMrNu4qoWdKLL88bjCnjW279e5Tpkxh4cKFbXY9EZHOSGOxiIi/NA6LSLBpBkUdz3++gd88+yUbdpXggA27SvjNs1/y/Ocb2uT6VVVVvPPOO5xyyin79q1cuZIxY8YwZswYrrjiija5j4hIR6axWETEXxqHRcQPmkFRx1/f+IqSiqpa+0oqqvjrG1+1KmNcUlLCmDFjWLNmDePHj2fGjBn7ju2dziYiIh6NxSIi/tI4LCJ+0AyKOjbuKmnW/qbau95u7dq1lJeX11pvJyIitWksFhHxl8ZhEfGDEhR19EyJbdb+5kpOTub222/nlltuoaKiok2uKSLS2WgsFhHxl8ZhEfGDEhR1/PK4wcRGhtfaFxsZzi+PG3yATzTf2LFjGT16NE8++WSbXVNEpDPRWCwi4i+NwyLiB9WgqGPvmrq2rlhcWFhYa/ull17a9/OiRYtadW0Rkc5GY7GIiL80DouIH5SgaMBpY3u1aQslERFpPo3FIiL+0jgsIsGmJR4iIiIiIiIi4jslKERERERERETEd0pQiIiIiIiIiIjvVINCRERERERERKCyHLYuhaLtEBUHmYMhLi1ot1eCQkRERERERERg9QewfjZsXABp/aDnOBh8IsQmB+X2WuIRRHl5eZx66qkMHDiQ/v37c9VVV1FeXs77779PcnIyY8aMYcyYMRxzzDF+hyoi0ilpHBYR8Z/GYpEQtXM9LHoGPrwFVrwNn94HH/wZtn8VtBCUoAgS5xxnnHEGp512GsuXL+frr7+msLCQa665BoCpU6eyYMECFixYwNtvv+1ztCIinY/GYRER/2ksFglhhZvgy6dq79u5GnauDVoIWuLRkIVPwTs3wu48SM6G6dfBqG+36pLvvvsuMTExXHDBBQCEh4fz97//nb59+3LUUUe1RdQiIp1LG4/FGodFRJpJz8QiXUtELDjXwP6ooIWgGRR1LXwKXvox7F4POO/9pR97+1th8eLFjB8/vta+pKQkcnNzWbFiBR999NG+6Ww33XRTq+4lItLhtcNYrHFYRKQZ9Ews0vVkDoQx59Tel5wDWWODFoJmUNT1zo1QUVJ7X0WJt78VGWPnHGZ2wP1Tp07l5ZdfbvH1RUQ6lXYYizUOi4g0g56JRbqeiBiY9mvIGu3VosiZBKPPgtTcoIWgGRR17c5r3v4mGj58OHPnzq21r6CggPXr19O/f/9WXVtEpNNph7FY47CISDPomVika0rOhok/gPNfhRk3QLehQb29EhR1JWc3b38TTZ8+neLiYh555BEAqqqq+PnPf875559PXFxcq64tItLptMNYrHFYRKQZ9Ews0rWF+ZMq8C1BYWYxZvapmX1hZovN7IYGzjEzu93MVpjZQjMb1+6BTb8OImNr74uM9fa3gpnx3HPP8b///Y+BAwcyaNAgYmJi+NOf/tSq64qINIWZHW9mXwXG0183cPyA462ZrTGzL81sgZnNrfvZdtEOY7HGYRGRZtAzsYj4wM8aFGXA0c65QjOLBGaa2WvOudk1zjkBGBh4TQLuCby3n71r6tq4YjFATk4OL730Ur3906ZNY9q0aa2+vohIQ8wsHLgLmAHkAZ+Z2YvOuSU1TjvYeHuUc257kEJut7FY47CISBPpmVhEfOBbgsI554DCwGZk4FW3p8mpwCOBc2ebWYqZZTnnNrVrcKO+3SaDr4hIiJgIrHDOrQIwsyfxxteaCQp/xtvGaCwWEfGXxmERCTJfa1CYWbiZLQC2Am855+bUOaUXsL7Gdl5gn4iINF1TxtLGznHAm2Y2z8wuabcoRURERKRL8zVB4Zyrcs6NAbKBiWY2os4p9XsQ1Z9lgZldYmZzzWzutm3b2iFSEZEOrSljaWPnHOacG4e3DOQKMzuiwZtoLBYRERGRVgiJLh7OuV3A+8DxdQ7lATk1trOBjQ18/j7n3ATn3ITMzMwD3aNNYvVLR49fRHzVlLH0gOc45/a+bwWew1syUk9nH4s7cuwiInt19LGso8cvIo3zs4tHppmlBH6OBY4BltU57UXgvEB1+cnA7pash46JiSE/P7/DDmjOOfLz84mJifE7FBHpmD4DBppZXzOLAs7CG19ranC8NbN4M0sEMLN44FhgUUuC6MhjscZhEekMOvI4DBqLRboCP7t4ZAEPB6rLhwFPOedeNrPLAJxz9wKvAicCK4Bi4IKW3Cg7O5u8vDw68pTjmJgYsrNb13daRLom51ylmV0JvAGEAw865xY3cbztDjxnZuD9m/G4c+71lsTR0cdijcMi0tF19HEYNBaLdHZ+dvFYCIxtYP+9NX52wBWtvVdkZCR9+/Zt7WVERDos59yreEmImvsOOt4GOn+MbosYNBaLiPhL47CIhLqQqEEhIiIiIiIiIl2bEhQiIiIiIiIi4jslKERERERERETEd0pQiIiIiIiIiEjTle2BbV9BdVWbXlYJChERERERERFpulUfwF0TYcO8Nr2sEhQiIiIiIiIi0nSbFoCFQfcRbXpZJShEREREREREpOk2fQGZQyAqrk0vqwSFiIiIiIiIiDSNc7BxAWSNbvNLR7T5FUVEREREpM2Z2RpgD1AFVDrnJvgbkYh0SXs2QdFWyBrT5pdWgkJEREREpOM4yjm33e8gRKQL27jAe+85ps0vrSUeIiIiIiIiItI0m74ADHqMbPNLK0EhIiIiItIxOOBNM5tnZpf4HYyIdDEVpbD5S1j1LqT1g6j4Nr+FlniIiIiIiHQMhznnNppZN+AtM1vmnPtw78FA0uISgNzcXL9iFJHOqHgnzLodPv67VyQzMg42LYSsUW16G82gEBERERHpAJxzGwPvW4HngIl1jt/nnJvgnJuQmZnpR4gi0llt+gJm3uolJwAqiuGt66CssE1vowSFiIiIiEiIM7N4M0vc+zNwLLDI36hEpMvYvb7+vrUzoWRnm95GSzxEREREREJfd+A5MwPvGf5x59zr/oYkIl1Gcnb9fTlTIDa1TW+jBIWIiIiISIhzzq0CRvsdh4h0UVmj4dAfwaw7vO3ELDj2DxCd0Ka30RIPERERERERETmwuDSY9luIz4S+0+Did6DnmDa/jRIUIiIiIiIiItK48kIo2gYDZ0Byr3a5hRIUIiIiIiIiItK4TV9471ntt9pMCQoRERERERERadzGBd571qh2u4USFCIiIiIiIiLSuE0LIK0/xCS32y2UoBARERERERGRxm1c0C6FMWtSgkJEREREREREDqxoOxTktWv9CVCCQkREREREREQas2mB9541pl1vowSFiIiIiIiIiBzYvgKZ7TuDIqJdry4iIiIiIiIi/nEO8lfC7vUQlw4ZgyAypnnX2LQAUvtCbEp7RLiPEhQiIiIiIiIindXK9+Cp70F5EZjBjBthwsUQFdf0a2z6AnqOa78YA7TEQ0RERERERKQzKtgIz1/mJSfAm03x5u9g69KmX6N4B+xa1+4dPEAJChEREREREZHOqTgfCrfU379nU9OvEaQCmaAEhYiIiIiIiEjnFN8NUnJr7zOD5JymXyNIBTJBCQoRERERERGRzimxO5xxH8RnetsRMXDyHZA5pOnX2DgfUvtAXFq7hFiTimSKiIiIiIiIdFa5U+CS92H3Bi/JkNYfwpoxV2HDfO8aQaAEhYhIiDOzI4Bjge7A35xzy8wsARgHLHTO7fIzPhEREREJccnZ3qu5CjZBwQboNb7tY2qAlniIiIQoMws3s/8C7wG/BS4EegYOVwLPA5f7E52IiIiIdHob53vvSlCIiHR5VwPfBH4GDAVs7wHnXCnwHHCiP6GJiIiISKe3YR5YOGSNCsrtlKAQEQld5wGPOOduA7Y3cHwp0D+4IYmIiIhIl7FhHnQfDpGxQbmdbwkKM8sxs/fMbKmZLTazqxo4Z5qZ7TazBYHXdX7EKiLikz7AJ40c3wWkBiUSEREREelaqqthw+dBW94B/hbJrAR+7pybb2aJwDwze8s5t6TOeR85507yIT4REb/tARrr5zQA2BakWERERESkK9mxEsp2BzVB4dsMCufcJufc/MDPe/CmKvfyKx4RkRA0E/iemVndA2aWilc0872gRyUiIiIind+Ged57V0hQ1GRmfYCxwJwGDk8xsy/M7DUzG36Az19iZnPNbO62bfoyUUQ6jZuAgcC7wN6ZZKPN7FJgPhAP3OxTbCIiIiLSmW2YB1EJkDk4aLf0PUFhZgnAM8BPnHMFdQ7PB3o750YDd+C11KvHOXefc26Cc25CZmZmu8YrIhIszrm5wBnAEODfgd23APcAscDpDSyLExERERFpvby50HMshIUH7ZZ+1qDAzCLxkhOPOeeerXu8ZsLCOfeqmd1tZhnOuYaq2YuIdDqBsa8PMIP9rUaXA28454r9jE1EREREOqnKMtj8JUy5PKi39S1BEVhT/QCw1Dl36wHO6QFscc45M5uIN+MjP4hhioj4zjlXBrwceImIiIiItK/Ni6C6Iqj1J8DfGRSHAecCX5rZgsC+3wK5AM65e4EzgR+aWSVQApzlnHM+xCoiIiIiIiLSNfhQIBN8TFA452biTVVu7Jw7gTuDE5GISOgxs7OBK/CKZaY3cIpzzvm6XE9EREREOpkN8yChOyQFt9GmHmpFREKUmV0L3ABsAWYBO/2NSERERES6hA3zvNkT9bvdtyslKEREQtflwPvA8c65Cp9jEREREZGuoGQX5C+H0d8J+q1bnKAws77AdKA7XheONWYWBfQANjvnytsoRhFpiR2rYPcGiE+H9IEQHul3RNJ8ScBTSk6IiIiISNBs/Nx7D3L9CWhhgsLM/gz8DAgHHPAJsAaIAZYA1wL/aJMIRaT5Vr4HT50HZQVeYuKEv8LosyEy2u/IpHk+B3L8DkJEREREupC9BTJ7jgv6rcOa+wEzuxT4JXAXcCw1Cl065wqAF4GT2ypAEWmm3Rvg2R94yQmAqgp45aewfZm/cUlLXAtcZmbB/9dBRERERLqmDfO9GdixKUG/dUtmUFwOPOec+4mZNVRRfiFwZevCEpEWK9rmvWpyDgo2QtZof2KSFnHOfWBmFwGzzWzvTLWq+qe5i4IenIiIiIh0Ps7BhrnQ7yhfbt+SBMUg4J5Gjm8DMloWjoi0WnwmJHSDwq3795lBUk//YpIWMbNJwEN4Y/XUwKsuByhBISIiIiKtV7ARCrf4Un8CWrDEAygF4hs53hvY1aJoRKT1knvBGf+CmGRvOzwKTroNMob4G5e0xG1ABXAqkOacC2vgFe5zjCIiIiLSWeytP+FTgqIlMyg+BU4H/lb3gJnFAOcCH7cyLhFpjX7T4JIPYfd6b0ZF+gAIV1fhDmgUcL1z7iW/AxERkeYzszhgMNANb8bbNuAr51yxr4GJiBzIhrkQFgk9Rvhy+5b8xfJX4A0zexR4MLCvh5kdB9wAZANnt1F8ItJSaX28l3RkWwG1bBYR6UDMLBU4H/gWMJ76z9uVZjYPeAp42Dm3M7gRiog0Im8e9BgJEf50/2t2gsI597aZ/RBv6vHeRMSjgfdy4AfOuU/aKD4Rka7sQeB7Znanc67S72BEROTAzCwZ+B1eQfkY4CvgMWAlkI/X+S4NGABMBm4F/mRmdwF/dM7t9iNuEZF9qipg43wYd55vIbRozrdz7j4zexEvMzwEb8BdDjzlnNvQhvGJiHRlM4GT8Lp43A2spn4XD5xzHwY7MBERqWclXq22/wP+45xb3djJZtYPb2n0JcAFqMi8iPhtyyKoKIacib6F0OJF6c65zcAdbRiLiIjU9naNn+/HW79ckwX2qVCmiIj//gDc65wra8rJzrlVwA1mdjNwWVNvYmbhwFxgg3PupBZFKiLSkPWfeu85k3wLQVXzRERC1wVtdSEzOx5vaV44cL9z7uY6xy1w/ESgGDjfOTe/xnE9EIuINMI5d1sLP1eGN/421VXAUiCpJfcTETmg9Z9CUi9IzvYthBYlKMzsUOAKYCCQjvctXk3OOde/lbGJiHRpzrmH2+I6geTCXcAMIA/4zMxedM4tqXHaCXhj+kBgEnBP4H0vPRCLiPjMzLKBbwA3AT/zORwR6WzWf+rr8g6AsOZ+wMx+AHwEnAFEAeuAtXVe69owRhERaZ2JwArn3CrnXDnwJHBqnXNOBR5xntlAipllQa0H4vuDGbSISEdlZsmBFqM19x1rZjeb2V1mdoGZRbXg0v8AfgVUH+C+l5jZXDObu23bthZcXkS6rIKNsHudr8s7oGUzKH4LLACOc85tb9twRES6LjM7AvYXvdy7fTBNKJLZC1hfYzuP2rMjDnROL2AT+x+IE5sSj4hIV2VmMcATwCmB7f/gLdf7F17r0b2zjh3wYzM7wjm3p4nXPgnY6pybZ2bTGjrHOXcfcB/AhAkT6tYtEhE5sL31J7L9nUHRkgRFd+CvSk6IiLS59wFnZrGBmQ7vU78wZk1NLZJZdxkeDVy3wXOa8kC87wJml+BVoyc3N/cgIYmIdEo/wpuRNg/YApxNoK4P8E/gDSASOB34LvAbvC//muIw4BQzOxGvjWmSmf3HOfe9tvwFRKSLWv8pRMRAj5G+htGSBMVSILWtAxERES7ESxxU1NlurTwgp8Z2NrCxieecSRMfiPXNnYgIZwPvOueOATCzXwB/Bh50zl1e47ynzSwZb8l0kxIUzrnf4CU0CCSMf6HkhIi0mfVzoOc4iGjJ6rO205IExU3AHWb2kHNuQ1sHJCLSVTnnHmpsuxU+AwaaWV9gA3AW3kN0TS8CV5rZk3jLP3Y75zbhPQzrgVhEpGl6Aw/W2H4B+AvwZgPnvgFMD0ZQIiKNqiiBTV/AlCv8jqT5CQrn3LOBoj9LzOx5YA1QVf8094fWhyci0nWZ2XXAs865RQc4Phz4pnPuxsau45yrNLMr8R6Gw/G+yVtsZpcFjt8LvIrXYnQF3nTkNmtxKiLShaQA+TW2dwTe8+ufyg68gvPN5px7H28ZoIhI621cANUVvhfIhBYkKMxsEHAjXrG0cw9wmgOUoBARaZ3r8RIGDSYogBHA7/HG5EY5517FS0LU3HdvjZ8dXvvoxq7xPnogFhEREelc8gIFMn1uMQotW+JxN9ANuAqv3ejONo1IRESaKgao9DsIERGpJd7M0gI/731PrLFvr4QgxiQicmDrP4W0/hCf4XckLUpQTAZucc7d0dbBiIh0dWaWhDdFeK90M2uoJUYacA61W4OKiIj/7g28anrWj0BERA7KOa9A5oBj/I4EaFmCogDY1taBiIgIAD8Frgv87IB/BF4NMeBX7R+SiIg00cN+ByAi0iw7V0PRtpBY3gEtS1A8hdcS6a42jkVERPbXeDC8RMVzwMI65zigEJjtnJsVvNBERKQxzjkVGBaRjmX93voT/hfIhJYlKP4JPBzo4HE7sJr6XTxwzq1rXWgiIl2Pc+4D4AMAM+sN3Oucm+NvVCIiIiLSKa2fA9FJkDnE70iAliUoFuN9ezcBOLmR88JbFJGIiADN/ybOzLoDG4EZzrl32ycqEREREek01n8K2RMgLDT+fG9JguJGvASFiIiEHvM7ABGRrsrMVjXzI845179dghEROZjSAtiyGIY2Nu8guJqdoHDOXd8OcYiIiIiIdHR9gBKguYkKEZHg2zAPcCFTIBNaNoNCRERERETqywfSgUrg38B/nHM7/A1JROQA1n8KGPSa4Hck+xw0QWFmubC/6OXe7YNRkUwRERER6WKygFOBC4C/AX82sxeBB4E3nXNaJi0ioWP9HOg2DGKS/I5kn6bMoFgDVJtZnHOuPLDdlME1NKpsiIiIiIgEgXOuEngGeMbMegDnA98HXgM2mNnDwEPOuRX+RSkiAlRXQd5cGHG635HU0pQExd6imJV1tkVEREREpAHOuc3AzcDNZnYY3qyKHwO/MbMfO+fu8jVAEenatiyCst3Q+zC/I6nloAmKukUxVSRTRERERKRZ5gG9gWHAZLw6FSIi/lk7y3vvfai/cdQR1twPmNl5ZtankeN9zOy8VkUlIiIiItLBmdkkM7sX2AQ8itcK+lLg774GJiKy9mNI6Q3J2X5HUkuzExR4FYkbS7NMCpzTKDPLMbP3zGypmS02s6saOMfM7HYzW2FmC81sXAviFRHpKnbjTSFe7HcgIiJdlZl1N7NfmNli4BO8opn/AoY756Y45/7lnNvjb5Qi0qU5582gCLHlHdCyNqN2kOORQHUTrlMJ/Nw5N9/MEoF5ZvaWc25JjXNOAAYGXpOAewLvIiJdgpmFA+cAxwLdgV855z43s1TgZOAd59wGAOdcKfCwb8GKiHRxgY4dx+PVa3sV+A3winOuytfARERq2v41FOeH3PIOaFmCAg5QJNPMUoBv4E1ja/wCzm3ae55zbo+ZLQV6ATUTFKcCjwRaMs02sxQzywp8VkSkUzOzOOBNvFlrRUAckBo4XIBXfO1B4FpfAhQRkbpOAkqAl4CtwDHAMWYH/H7POefqzSIWEWlXa2Z67x01QWFmvweuC2w64D9m9p9GPvK35gQRqGkxFphT51AvYH2N7bzAPiUoRKQruB6YAJwOzAK27D3gnKsys2eB41CCQkQklMQC327iuQ5QgkJEgmvtLEjoAWn9/I6knqbOoFgAPIK3vOM84CNgVZ1zHFAIzAaeaGoAZpaA1y/6J865grqHG/hIvdkbZnYJcAlAbm5uU28tIhLqvgXc55x7wcwaqvi+AvhOkGMSEZED6+t3ACIijdpbf6LPYXDg2V2+aVKCwjn3AvACgJn1Bv7onHuntTc3s0i85MRjzrlnGzglD8ipsZ0NbGwgvvuA+wAmTJjQ4PITEZEOqCfwRSPHi4HEIMUiIiIH4Zxb63cMItKFFGyGgg0QmwLp/Zv2mZ1rYM/GkFzeAS3o4uGcO6o5yQkzyzCzVWY2pc5+Ax4Aljrnbj3Ax18Ezgt085gM7Fb9CRHpQvLxlrUdyHAaSNqKiIiISCe39hN48iy4/2h4+GRY8gJUVTbhcx977yHYwQNa1ma0ucKBPnjr8Wo6DDgXONrMFgReJ5rZZWZ2WeCcV/GWkqzAa890eRDiFREJFe8AFwSKZdZiZn2BC4HXgx6ViIjUY2YXmVmzn63NLNzMLm6PmESkk9qdBy//BDZ+7m0XbIBnLoaN8w/+2bWzIDYNMga3a4gt1dIuHq3mnJvJQVqWBrp3XBGciEREQs4NwFzgM7zaPg443sxmAJcBZcD/+ReeiIjUcCtwtZndDjzpnNve2Mlm1h04G+9ZNx24v/1DFJFOYeca2Las9r6qcshfATkTG//s2o+95R1hwZir0Hy+JShERKRxzrkVZjYdr5XojYHdvwi8LwLOdc6tb/DDIiISbAOBPwJ/B/5mZnOBT4GVwA68L+bSAudNBsYEPvcA+7vliYgcXEwKRCdBWZ0eE3EN1VSvYfcGL7kx8dL2iqzVlKAQEQlhzrl5wGgzGwEMxXvAXe6c+9zfyEREpCbn3FbgEjO7AW+W25k03ELUAUvwkhn/Un01EWm2HiPgmOvhlZ/t3zfqu5A1qvHPrZ3lvYdogUxQgkJEJCQFWjB/AdzhnPuHc24R3qwJEREJYc65DcDvgN+ZWTdgGJCJl5jYBiw+2PIPEZGDGvltr3PHjtWQkAk9xkBiVuOfWfsxRCVCj5FBCbEllKAQEQlBzrlCM0sHCv2ORUREWiYwq2Kr33GISCcUkwj9pnmvplo7C3InQ1h4e0XVaqFZGUNERABmAxP8DkJEREREOrjCbbD9q5Be3gFKUIiIhLJfA982swvMrNGuRyIiIiIiB7QuUH+iz+H+xnEQzV7iYWZHAEudc9sOcDwDGOac+zCwqxCvVd6qFkcpItI13QrsxGs99xczWwkU1znHOeemBz0yEREREek41s6CiFjIGuN3JI1qSQ2K94BzgccPcHx64Fg4gHOuCC9BISIizdMPr6jausB2dx9jEREREZGOau3HkHMIRET5HUmjWpKgONg043CgugXXFRGRGpxzffyOQUREREQ6uJJdsHkRTPu135EcVEtrULhGjh0KqHWSiIiIiIiIiN/Wfgw46H2Y35EcVJNmUJjZVcBVNXb9w8xuauDUVCAJeLANYhMREcDMkoBj8JZ8gFfT5y3n3B7/ohIRkaYws3hgCt4yvbedc1t8DklEuppVH3j1J3Im+h3JQTV1iccuYG3g5z5APlB3cHXAIry2eP9ofWgiImJmFwN/AxLYv8TOAYVm9jPn3AO+BSciIo0ysx8C/4f3BZ4DZgBbzCwTWA/82Dl3n48hikhXsPoD6D0FIqL9juSgmpSgcM49DDwMYGargV87515sz8BERLo6MzsFuA9vxsR1eElggOHAj4D7zGyrc+4ln0IUEZEDMLNvAncBLwAv4XVkAsA5t83MXgdOxRvnRUTaR8Em2LYMRn/X70iapNlFMp1zfdsjEBERqedXwFJgknOusMb+d8zs33gz1q7Ge/AVEZHQ8kvgPefc6WaWTo0ERcBc4AfBD0tEupTVH3rv/ab5GkZTtbRIpoiItL/RwEN1khMABOpPPBw4R0REQs9I4LlGjm8CugUpFhHpqlZ/ALGp0GOU35E0yUFnUASWdFQDQ5xzFWa2qgnXdc65/q2OTkREGmvt3FhHJRER8VcVjX8Z2BMoClIsItIVOQer3oc+UyHsAMPRjlWw+UsoLYDMQdDrkAOfGwRNWeKxFu8heO+D8Dr0UCwiEgxfAN83s7ucc7UeYs0sATg/cI6IiISeL4DjgNvrHjCzMOBbwGdNvZiZxQAfAtF4z/BPO+d+3zahikinlL8SCjbA1J9722V7YO0sWPgUJPWEYafD29fBmo+84xHR8O1HYdBxvoV80ASFc25aY9siItJubgGeBeab2e3AksD+vUUyBwBn+BSbiEj7KtwG5YWQ0A2i4v2OpiXuBJ4wsz8AjwT2hZnZYOBPeGP51c24XhlwtHOu0MwigZlm9ppzbnabRi0incfq9733vfUnvnodnr14//GMgfuTEwCVZfDOjdB9JCT3DFaUtTRliccq4Cd7u3aY2XXAs865RY1/UkSknRTvhD2bICYZknv5HU27cc49b2ZXAn8G7mD/7DXDmxZ8pXPuBb/iExFpF9XVsOo9ePlnsGsNDDwWjv0jZA72O7Jmcc7918xGAtcAvwnsfh1vDDfg986515pxPQfsrUkUGXhpVrOIHNiqDyApG9L6ec/P7/+p9vGSXfU/k78CynbjrUILvqYs8cgFEmtsXw+sYH+7OxGR4Nm0EF643FsrF58JJ/0D+h0F0R3y27WDcs7dbWaPAzOAvngPtSuBt5xzu30NTkSkPWxbCk98B6oqvO3lb0JFCXz3CYhObPyzIcY5d62ZPQucAwzBG8OXA4865+Y293pmFg7Mw5tBd5dzbk5bxisinUh1ldfBY8hJYAY4ryZFTUkNJCEGHgvJuUEJsSFNSVBswKtCXJOytSISfMU74NlLYftSSOgOpbvgf+fBCbdAxiDoPQXCwv2Oss0553YB//M7DhGRoMhfsT85sdeaj7x11JlD/ImpFZxz84H5bXStKmCMmaUAz5nZiJqzms3sEuASgNxc//7AEJEQsHmh96zc70hvOy4Npv4CXrxi/zkr34Pjb4b3/w9Kd0OfI+Dwn/r6xV9TEhQvAL8ys+OBHYF915pZY32bnXNuequjExGpqWAjpObCyDNg51pI7A7lRbBnA7z2S7jwTcge73eUbcbMxgKHOufuOsDxK4CPnXMLghqYiEh7ikmtvy8uDSI71ky5wLLozc65+w5wfCRwunPuxuZe2zm3y8zeB46nxqzmwL3uA5gwYYK+UBTpylZ94L33PWL/vqEnQXQCzH0QknNgwgWQPcFLTFQUe0tB4tP9iTegKQmKq4GdwDFAb7zZE5lAXDvGJSJSX0wqpOTCu3/cv6/HKDjsKqiuhLzPOlWCAvg9EAU0mKAATgCmo0KZItKZdB8Ow06DJc/v33fCXyElx6+IWup6wJnZDOBc51xpneOj8Mb5JiUozCwTqAgkJ2Lxns3/3Ibxikhnsup9yBwKiT3274tNgeGnwdBTarcS7TE8yMEdWFO6eJTgDZ6/BzCzaryimY+3c2wiIrVVlcC8h2rv27wQirZ5P0fGBj2kdnYIDbSnq+ED4KogxSIi0mK7isspr6ymW1LMwU+OT4fj/wzjzoPifEjpDVlj2j3GdvIucDrwgZmd7Jzb2oprZQEPB+pQhAFPOedebosgRaSTqSyDdbNh/PcbPl4zORFimjKDoq4LgFlNPTnQs/nbwBvOuS0tuJ+IiKeqAqrK6+8v2QGxqZAzKfgxta8M9i+ta8iuwDkiIiGptKKK97/ayl/e+IqCkgouOrwvZ4zLpntjiYqyPfD5o/D+TV5Bt+hEOOsJSO0LO1dBdJJXdyiqQ0zm/TdwG/A48KmZndTSTnjOuYXA2LYMTkQ6qfWfQmUJ9D3S70iardmpE+fcw865Nc34SDLe4Bw680ZEpGNKyYUhJ9feF5sKPcbA+a9Ct45XPO0gttL42DmCxhMYIiK++mL9Li77z3xWbStie2E5f379K175clPjH9q6BN774/5q82V74IUrYfad8PDJcN+RXqu84p3t/wu0gcAshyPwvhj82MxO8DkkEensVn8AFg59DvM7kmYL1twOC9J9RKQzi4qHY//gVSBO6wfDz4Bzn4eh34Duw/yOrj28DVxsZvWSFGY2DLgocI6ISEiavSq/3r5HP1nL7uIGZsPtVdBAAmPXGu/fgL1m3eEt8esgAsWMJ+K1iX7RzH7kb0Qi0qmteh96jYOYZL8jabaWLPEQEfFPWl84+lqYcqX3sBoR5XdE7emPeAUwPzOzB4EFeIWKxwIXAuXAH3yLTkTkIDISouvt65EcQ1REIy2hUxpoj5k+AHZvqL2vIK+V0QWXc26jmR0OPAn8A1jib0Qi0imVFsCG+V670A4odKtjiIgciBnEpXb25ATOuZV4XTpWAZfjtY77V+DnlcAxzrnl/kUoItK4Sf3S6J60P0kREWZcdfRAYqMaSVB0Gwon/g3CA2N8QnfvQXvxc7XPS24gkRHinHPFwKnAHWj5s4i0h7Ufg6uCftMaP68oH9Z9Ams+hsLW1O9tW5pBISISwpxzc4ERZjYGGIi3ZO4r59wXvgYmItIEA7ol8sQPJrMwbxdF5VWM6JnMyF4HmXIcGQvjz4e+U6Fkpzejojgf4jNgdx6EhcMRV0OP0UH5HVqhL7Ct7k7nnAN+YmavA92DHpWIdG4r3obIeMiZeOBzdqyG5y+HdYHeF1mj4ZsPQsaA4MTYCCUoREQ6gMD65QU+hyEi0mz9InfQL+ZLiCiBqGEQlnLwD4VHQObg/dtJPeHit2HnWq+rR/rAkJ9F55xbe5DjrwcrFhHpIpyD5W9CvyMhov4Su32Wv7k/OQGw6QtY9AxMu7r9YzwIJShEREKUmaUD3ZxzS2vs6wv8DEgDHnHOveFXfCIiB5W/Ep44C7Z/7W1HxsJ5Lzb+zV5RPlRXeEs7rEad9cQs7xWizCwXwDm3rub2wew9X0Sk1bYvh13r4LCfNH7e6o/q71v5DhzxSwjztwpEsBIULkj3ERHpTG4DBuFVfsfMEoCPgJ6B498xs6Odcx/6FJ+ISOPWztqfnACoKIEP/grfeRQiY2qfW1ECy9+Ct66D0l0w+XIYey4khW5Soo41QLWZxTnnygPbTXkGbqQgh4hIM6x4y3sfOKPx8wZMh2Uv1d435CTfkxMQvASF2oyKiDTfFOA/Nba/g5ecOBFvucdbwK8AJShEJDTtamByQP5yqCiun6DYMA+eOnf/9ns3eTMuDu0wHTlvxEtIVNbZFhEJjuVvQcbghrsh1TRgOgw9BZa+6G33OxqGntz+8TVBuyconHNbULcQEZGW6A7UfLo/AZi7d92ymT2Et9xDRCQ09T603q6qMefw/toKPlm5hBG9kpjYN52eKbHebIu6PnsAxnzP69wU4pxz1ze2LSLSrsoKvQ4eEy85+LkpuXDq3TD15+CqvVbOMUntH2MTtChBYWbxwNl4FeXTqT9DwjnnLmplbCIiXV0FEFtj+0jgoRrbu/DGYBGR0JQ9AU6+Hd7+PZQX4sZfyEex07no4bn7TpkxrBu3fGsMyQnd6n8+KbvxQm8iIuJZ8xFUlR98ecdeMYnQc0y7htQSzU5QmNlE4BUafyh2wEETFGb2IHASsNU5N6KB49OAF4DVgV3POudubGbIIiId1dfAN83sLuBkvMKY79Q4ngPs8CMwEeninINda6Gqwvsm7kBJhOhE1vY+k7IzJmPVFRTH9OD8e+bUOuWtJVtZubWQcb0Pg6ReULDBOxAWAUf9GqLi2vmXaR9mNgAYULNbh5lNAq7FG88fds7d51d8ItLJLH/Lay+aO8XvSFqlJTMobgUigW8D7zrnWvNw/BBwJ/BII+d85Jw7qRX3EOlSSisqKSytIiUukohwra7q4O7CGyd3AnHAKmonKI4AvmzKhczseLyim+HA/c65m+sct8DxE4Fi4Hzn3Hwzi8GrcRGN92/G086537fidxKRjq5kF3z+H3j/T15hy1FnwbRfQ2rveqeu2LqHs++fw9aCMgCumh7Z4CXLK6shYyB8/0XYuADKiyBrFPQY3Y6/SLv7M14iYu+yvAzgNSABKAHuMbOtzrnnfYtQRDoH57wERb9pHX7WWUsSFOOBPznnnm7tzZ1zH5pZn9ZeR0Q8X+bt5rZ3vuaLvN0cP7w7FxzWl36ZCX6HJS3knHvEzKqB04HdeGNvBexrQZoM3H2w65hZOF6yYwaQB3xmZi8655bUOO0EvGV7A4FJwD2B9zLgaOdcoZlFAjPN7DXn3Oy2+j1FpIPJ+xTevGb/9hePe8mJab+ud+qcVTv2JScA1uQXM6JnEos2Fuzb1y8jnn6Z8d5G+gDv1TlMAGrOkPgukASMwZsh9z5wFfB8kOMSkc5m+9ewex1M/anfkbRaS75eLQDy2zqQRkwxsy/M7DUzGx7E+4p0KOvyizjvwTm8vXQr2/aU8ejsdVz7/CL2lFb4HZq0gnPuP865bzrnLnTOraixP985N94598DefWYWY2bnmVn3OpeZCKxwzq0KtL57Eji1zjmnAo84z2wgxcyyAtuFgXMiAy9VpRfpytY1kJ9c+F8o3llv9/bCslrbL36xkVPH9OLCw/rQNyOe703O5d5zx9MtKabeZzuBTGBjje3jgY+dc4tqjMXDfIlMRDqX5YH2ogOaWH8ihLUkQfEscFxbB3IA84HezrnRwB0cIMNsZpeY2Vwzm7tt27YghSYSRNXVkL+y0VNWbitiZ3HtZMSslfms31HcnpFJaEkG/g3UTeb2AtbX2M4L7GvSOWYWbmYLgK3AW865OTRAY7FIF5FSfykH3YY3WCticr/aJcucg4zEKI4b3oMrjurPCSOy6J7YKZMTAEVACuybyXY4tdtCl+DNqBARaZ3lb0LmEEjJ8TuSVmtJguJqoJuZ3WFm/QPrltuFc65g7zd3zrlXgcjA+r26593nnJvgnJuQmZnZXuGI+OeLx+HOQ+D133hrfxsQGxVeb19UeBjREfX3S6fW0Jjc0L66syAOeI5zrso5NwbIBiaaWb2ixoHzNBaLdAXp/b0H4b2ik2D0dxpc9zw6J4V/fm88/TPjyUyI5v/OGMmGnSV8577Z/OJ/Cznn/jnc/f4Kissrg/gLBM1i4NzAkrwf4NWeeKvG8d6Asrki0jplhbDuk6Z37whxLalBsQvvoXUicDlAAzkK55xrUQvTmsysB7DFOecC3UPCCO7yEpHQMOh4GHcezL4HFj4F06+Dsd+DsP3Jh0HdE5k2KJM5q3eQmRjNxl0lXHl0f3qnd8zq59Km8vA6fuyVTe1px006xzm3y8zex5umvKjtwxSRDmHle9DncBh+Orhq7/XBX6D34RCXWuvUmMhwjhvRg0n90qioqmZnUQUn3v5RrXP++eEqThrVk5HZycH8LYLhr3jd6LYGtj8Hav7yx+LNFhYRabnVH3rtRTvB8g5oWYLiEdpo/bGZPQFMAzLMLA/4Pd76Zpxz9wJnAj80s0q8aXBnOee09lm6nvgMOPkfMP58eO1qeOnHMPdBOPGvkDMRgLT4KK4+YQizVubz1eY9HNInlUn90tTJQwA+AwaaWV9gA3AWcHadc14ErjSzJ/GKY+52zm0ys0ygIpCciAWOwatMLyJdVEVSDpEf3VJrX9WgEwiPiqO62hEWVn9CVkpcFABr84uprK7/KFfQCeslOedeMbOj8Wr87Abu3PscG5hVkUfjnexERA5uxVsQlRD89qIlu6F0N8SnQ1R8m1222QkK59z5bXVz59x3D3L8Trw2pCIC0HMMXPg6fPk0vPU7eGCG195txg1sJ5VrnvuS+et2AfDU3PX8YGo/fnXcYCIjlKToypxzlWZ2JfAGXpvRB51zi83sssDxe4FX8VqMrsBrM3pB4ONZwMOB9dNhwFPOuZeD/TuISOjISx5HduoAIncG6vZGxrF+2GV8+vkW/js3j2mDMjlpdE/6ZtR/YM1Ni6NXSiwbdpXs25cSF0luWuec7eec+5DadSf27s8Hzqi5z8zigZ/jFSxeE5QARaRjq9VeNCp4913/qfel6abPoe9RcOwfoEeDK4CbrdXLMEQkyMxg1Ldg8Anw0d/gkzth2csUDr+cReuGE5iEBMCDH6/m24dkM7Bbon/xSkgI1PF5tc6+e2v87IArGvjcQmBsuwcoIh3G06ujSOt/K5PjNhJJOStcDvd8FEHfjHzmrd3JvLU7eXvpFh48/xDSE2rXpeiWFMM/zx3P9S8uZu7anYzslcQNp44gp5MmKJopAW828Uxgjb+hiEiHsO0r2L0epv48ePfcsRoe+xaU7vK2V70LT+fB+a9CQutrkLUqQWFmCXjViet9PeucW9eaa4vIQUQnwDG/92pRvHktfT7/C69H9eDGynN5v9r7e7Kq2lFVpVVRIiLSdsbkpPKDR1ayvwFFCd+ekMGc1fvLhH2Rt5uV2wrrJSgARvRK5t8XHMKOonJS4iJJjg3it36hr92Kz4tIJ7QiUHc3mAUyd6zan5zYa/vXsGttmyQoWjTv28zOMrNFeOvp1gKrG3iJSDCk94fvPsH2Ux8jLCyMh6L+ygORf6WPbeLYYd3JUZHMrkYZKRFpV+N7p/Dj6QOJDPf+lj5qcCYZCVGsza/d1jqskUZviTGR9E6PV3JCRKQ1vnrNa/OcnB28e8Y0UNA4PAqi22bGdrNnUJjZacDjwNfAP4HLAtsRwGnAl4DWJ4sEWcbYk9ieOZlXX7mVIzc9yDsRV1OYcinxbjCgJR5diL59E5F2lRYfzY+OHsCpo3tSXlVNt4QofvNc7cY+k/qm0b9bgk8Rioh0AUXbvfaiU38R3PtmDIIJF8HcB/bvO/p3kNa/TS7fkiUevwCWAuPx1spdhldw7V0zGwF8DCxok+hEpFmGZGcw8Ac3UbbzcsI/+hPJ8++Cr5+BGTfAyG9DmIpldmbOuS20cGaciLSddflFLN9aSFREGIO7J9ItKcbvkNpcZHhYrQTEdScP44hBmXz49TYO7Z/O0UO6kxqn2REiIu3mq9e8Ns9DTwrufWOS4KhrvPsWbITUPpA1GsLbprxlS64yCvijc67UzPbOHQ8HcM4tMrP7gN/g9X0WkSALDzPi0rPhtLthwoXw6i/huUvhswfghD9Dr3F+hyjNEKjqfjYwEEin/gwJ55y7KOiBiUiDFm/YzbkPfsqOonIARmcnc8fZ4zptl4q9slPj+N7k3nxvcm+/QxER6RqWvQLJOdBj1IHP2bUO1n4MmxdBzkSvFWlCt9bfOz4d+h/d+us0oCUJinBgbxWkvT2iai5E+Qr4YWuCEpE2kj0BLn4Hvngc3r4e/nU0jDsXjr6uTYrYSPsys4nAK3iJiQNxgBIUIiGgoqqa+2euYkdROd0SoymvquaLvN3MXpnf6RMUIiISRGWFsPJdmHCB1+GvIUX58OKPYNX73vYnwKTLYcbvISJ0Z/a1ZCpwHtAbwDlXAmwFJtQ4Phgoan1oItImwsK8Th8/mgdTroAFj8Md42H2PVBV4Xd00rhb8frGfhvIcM6FNfAK9zlGEQkoLq9iZ1E5vzlhCEcP6cZpY3rxq+MGs26HHotERKQNrXwHqspgSCPLO7Yt25+c2OvTeyF/VbuG1lotmUExCzgGuC6w/SJwlZkV4yU8rgBeapvwRKTNxCTDcTfBuPPg9V97r3kPwfE3Q/+j/I5OGjYe+JNz7mm/AxGRg0uOjeSUMb34+f++wAX66SRER3DX2Vpa1xWY2YPAP51zcwLbRwBLnXPbmniJKrzueCUHO1FEurhlr0Bsqrdk40Cqyurvc9Uh/wVlS2ZQ3A28b2axge1r8JZ1XI+XtFiJV0hTREJR5mD43rNw1uNQWQqPngZPngM71/gdmdRXwP4ldSIS4krLq3jys3X7khMAhWWVLNm027+gJJjOB2qWsX8PmNHUDzvntjvn+jrnPmnrwESkE6mqgK9fh0EnNF6YMmMQJNVpP9r3SEjr277xtVKzExTOuc+cc78NLO/AObfNOTcGGAOMBEY759a3aZQi0rbMYMg34PI5Xlugle/CnRPh3ZugvPjgn5dgeRY4zu8gRKRpqpyjsLSy3v7i8iofohEfbAe619hW22cRaXtrZkLp7oN370jOhnOegrHnQXp/OPyncNLfvS4cIaxteoEAzrmFbXUtEQmSyBg44hcw+rvw1nXw4V+8GhXH/gGGn37gojsSLFcDb5jZHcA/gFXO1fxuVkRCSXx0BBdP7cfPnvpi3z4zOGKQihJ3EbOAa80sF9gZ2HeGmQ1o5DPOOfeH9g9NRDqNZa9ARCz0a8IS7e7DvaRERRFEJ3WIZ/sWJygC6+qOxcsU/805t8zMEoBxwELn3K62CVFE2l1yLzjzATjkInjtV/D0BfvbkvYY4Xd0XdkuvC4dE4HLAaz+PyzOOddmyWYRaZ2jh3Tj798Zw/0frSI5NpLLjxrA6OwUv8OS4PgJ8DDwY7zZEw44I/A6EAcoQSEiTVNd7SUoBkyHqCZ2hwqPgPDkg58XIpr9UGtm4cDjwJnsH3yfAJYBlcDzwC3An9osShEJjt6HwiUfwPyH4Z0/wD+nwoSL4KjfQlya39F1RY/gjbEi0kGkxEVx+theHDusOxFhRnSkGu10Fc65NcCRZhYF9ADW4CUtXvAvKhHpVDZ9Dns2wpDrDn5uB9WSb92uBr4J/Ax4HVi694BzrtTMngNORAkKkY4pLBwmXAjDToP3/w8+ux8WPe3Vqhh/vndcgsI5d77fMYhIy8RHa2JTV+WcKwfWmdnDwBzn3Fq/YxKRTmLpy2DhMKjzlihrSReP84BHnHO34RUDqmsptSsYi0hHFJcGJ/4VLv0Iuo+AV34G/zwS1s7yOzIREZGQ55y7YG/LURGRNrHsFehzWKee2dyS9H4f4G+NHN8FpLYkGBEJQT1GwPdfgiXPwxvXwr9PgBHfhBk3etWBJSgCNX5SaCCx7JxbF/SARET8tHUpVJVD1mi/I9knUJ+t2ZxzH7Z1LCLSCW1fDtu/8mrGdWItSVDsARpL2QwAtrUsHBEJSWZeV4+Bx8HH/4CZ/4CvXoOpP4MpP/K6gUi7MLOzgGuBoY2cpnU3ItI1VFXAzL/DB3+BnIlwwat+R1TT+zSvbtDeWm4aw0Xk4Ja97L0P+Ya/cbSzliQoZgLfM7O/1D1gZqnAhXi1KUSks4mK8wpmjjkb3rwW3v0jzH8Ujv8/GHxih2hd1JGY2Wl4RYm/Bv4JXBbYjgBOA74EXvYpPBGR4Nq4AF64ErZ8CcPP8JYhhpYL/A5ARDqxpS95s8Y6+QzmliQobsJLUrwLPBTYN9rMBgK/BuKBm9skOhEJTal94Dv/gVXvw2tXw5NnQ/+j4fibIXOw39F1Jr/Aq+szHkjAS1A86Jx718xGAB8DC/wLT0QkCCpK4YM/w8e3QXwGfOcxGHqS31HV45x72O8YRKST2rEaNsyDY673O5J21+wimc65uXj9nIcA/w7svgW4B4gFTnfOLWmzCEUkdPWbBpfNhOP/DHnz4J5D4fXfQuluvyPrLEYBDzvnSoHqwL5wAOfcIuA+4Dc+xSYi0v7WzfFaXs+8FUZ/F66YE5LJCRGRdrXoGe99xDf9jSMIWtLFA+fcq3jFMk/Fazv6G7zWo/2cc2+2WXQiEvrCI2HyZfDj+TDmHJh9N9wx3lv6UV198M9LY8KB/MDPJYH35BrHvwJGBDUiEZFgKC+C138DDx4HFSXwvWfgtLsgtuPUYTezK8zs7UaOv2lmlzbjejlm9p6ZLTWzxWZ2VdtEKiIhb9EzkDMJUnL9jqTdtShBAeCcK3POveSc+6tz7i/Oueecc8VtGZyIdCDxGXDK7XDJe5DWD168Eu6fDus/8zuyjiwP6A3gnCsBtgITahwfDBT5EJeISPtZ/aE3I2/23V61+ss/gQHH+B1VS5wPLG/k+Nd4tduaqhL4uXNuKDAZuMLMhrU8PBHpELYsga1LYMSZfkcSFC1KUJjZ2Wb2sZltNbOqBl6VbR2oiHQQPcfChW/AGf+Cgo3wwDHw3A9hzxa/I+uIZgE1n8pfBK4ys+vM7HrgCryq8SIiHV9pAbz0E3j4ZLAwOP8V+MbfIDrR78haaiBeMeMDWRw4p0mcc5ucc/MDP+/Bq1HUq1URikjoW/S0NyYOP83vSIKi2UUyzexa4AZgC97D8862DkpEOjgzGPVtGHwCfPQ3+OQur/Lwkb+CSZdBRJTfEXYUdwOnm1lsYAbFNcBE4PrA8cV4hTRFRDq25W/BS1fBnk0w5Uo46hqvc1THFgk01oc75iDHD8jM+gBjgTl19l8CXAKQm9v5p4KLdHrOecs7+h4JCd38jiYoWtLF43K8b+yOd85VtG04ItKpRCd61YbHngtv/Bbe+h3Mf9grqjmwQ07XDSrn3GfAZzW2twFjzGwUUAUsdc6p0IeIdFzFO7x/H754AjKHwLcfgewJB/9cx/A1MAO49QDHjwVWNveiZpYAPAP8xDlXUPOYc+4+vALKTJgwwTX32iISYjbMg51r4Ihf+h1J0LRkiUcS8JSSEyLSZOn94ez/wtn/8zLBj30THj8L8pv9XCaAc26hc26xkhMi0qEtfQnumgRf/s97+L70w86UnAB4AjjWzP5gZvumDppZpJndgJegeLw5FzSzSLzkxGPOuWfbNFoRCT1fPg3hUTCk63QvaskMis+BnLYORES6gEHHeq1J59wDH/wF7p4MU66Aqb+A6AS/owtZZnYE3oNsd+BvzrllgW/QxgELnXO7/IxPRKRZCrfBq7+AJc9Dj1Feh46sUX5H1R7+DpyAtzzvh2a2DHDAUCAN+Aj4W1MvZmYGPIA3e+5AszJEpLOoroLFz8LAYyE2xe9ogqYlMyiuBS4zs3FtHYyIdAERUXDYVfCjeV414pl/hzsnwMKnvNkVso+ZhZvZf4H3gN/iVXvvGThcCTyPt+xORCT0OQcL/wd3TYSvXoWjfwc/eLezJicIzDY+Fvg1XlemsXiJ5fXAr4BjnHPlzbjkYcC5wNFmtiDwOrGNwxaRULFmJhRugZFdo3vHXs2eQeGc+8DMLgJmm9knwBq8tdB1TnMXtUF8ItJZJfaA0++BCRfCa7+EZ38An90PJ/wFeo7xO7pQcTXwTeBnwOt4FdsBcM6VmtlzwInAn/wJT0SkiQo2wss/g69fg+xD4NS7IHOw31G1u0CS4i+BV2uvNROwVgclIh3DoqchKgEGHe93JEHVki4ek4CHAp+dGnjV5QAlKETk4HIOgYvfhQWPwTs3wH3TYNx5MP06iM/wOzq/nQc84py7zczSGzi+FC9BISKhqngHVFd2merr9TgHnz8Kb1wLVeVw3P/BpEshLNzvyEREQldlOSx5EYZ8AyJj/Y4mqFqyxOM2oAI4FUhzzoU18NK/OiLSdGFhMO5cb9nHlCu8ZMXt42D2vVDVpevx9gE+aeT4LiA1KJGISPOUF8Gi5+D+6fDPqV675cKtfkcVXDvXwqOnwYs/8pZxXD4Lplyu5ISIyMGsfAdKd3nLobuYliQoRgG3OOdeUmE2EWlTMclw3E3ww1nQaxy8fjXcOxVWve93ZH7Zg1dI7UAGANuCFIuINEfeZ/D0+bBjFezZ7LXS/Oo1v6MKjupqmPNPuHsK5M2Db9wK570Iaf38jkxEpGP48mmITYP+R/kdSdC1JEGxFWhOQR8RkebJHAznPgffeQwqiuGRU+G/3/O+jetaZgLfC1Rur8XMUvGKZr4X9KhE5OCWv1V/32f/grLC4McSTNtXwEMnwmu/gt6HwhWz4ZCLvJlyIiJycGV7vELCw06F8Ei/owm6lrQZfRDvgflO51xlWwckIgKAGQw9CQYcA5/cAR/d6j3wH3YVHPYTiIrzO8JguAkvSfEuXu0fgNFmNhCvKnw8cLM/oYlILcU7vIrrX7/hFfqNz6x/TlKO18++M6qqhE/uhPf+5K2XPu1eGH2WN5aLiEjTLX7O+4JuzNl+R+KLliQoZgIn4XXxuBtYTf0uHjjnPmxlbCIiEBkDR/wSRn8X3roOPvgzfP4YHPdHGHZap374dc7NNbMz8Pre/zuw+xa8Ku5bgdOdc0v8ik9EApyD+Q/D29d72wv+A8feBHHpUJzv7QuPhMN+7LVa7my2LIYXroCNn8OQk+Abf/M6NYmISPPNfwQyh3gdj7qgliQo3q7x8/14HTtqssA+VUASkbaTnA1nPggTLvKmDv/vfOgzFU74M3Qf7nd07cY596qZ9QGOBYbgjbHLgTecc8V+xiYiAbvWwQd1uki+dxOc9Tjs2QSVZdBzLGSN9ie+9lJZDjNvhQ9v8WoIfeuhTp84FhFpV1uWeDWMjvtT08bSgo2wOw9iUiA6yUuCxzVWviz0tSRBcUFb3dzMHsSbjbHVOTeigeOG1zXkRKAYON85N7+t7i8iHVCfw+CSD2D+Q/DuH+Hew+GQi2Habzr8gHwgzrky4KXAS0RCjauG6jodhyqKvXXEnXWK7sbP4fkrYOtiGPktOP7PEN9QN2QREWmyzx+FsEgYddbBz107C167GjYvhMQsOOYGWPoyjDkLBszosDP2mp2gcM493Ib3fwi4E3jkAMdPAAYGXpOAewLvItKVhUd4SYnhZ3jfUn52v1ft+OhrYfz5naqFnZmdDVyBNw429PTvnHMtSTaLSFtJzoZDLoHZd+3fF5sK3Yf5F1N7qSiB92+GWbdDQnf47pMw+AS/oxIR6fgqy+CLJ7wabAdL+O5aBy9dBdu/9rb3bIIXr4Az/gX/PQcueB1yJ7d/zO3A14da59yHganLB3Iq8IhzzuHVvEgxsyzn3KbgRCgiIS0uzVvrPP4CL4P8ys9g3r/hhL9C7yl+R9dqZnYtcAOwBZgF7PQ3ovaxcVcJn6/bydr8Yob3TGJMTirJcV2varV0YOGRcOiVkNrbe7jsMcpbjpY+wO/I2ta62V6tifwVMPZcOPaPEJvid1QiIp3DspehZCeMO+/g5+5ctz85sVdVBRRt9+oibfxcCYp20gtYX2M7L7CvVoLCzC4BLgHIzc1t9k22FpQSGR5GanzHnAYj0uX1GAHnvwyLn4U3fwf/Pt6bcjzjRkjq6Xd0rXE58D5wvHOu4iDndkj5hWVc/cxCPlq+fd++Xxw7iB9OG0B4mNaxSweS1BMmXQrjvu916uhMbTXLCuHdP8Ccf0JyjtcGuv/RfkclItK5zH8UknOh77SDnxub4tX+Kd1de39McuB4x132HOr/ejb0dFq3KCfOufuccxOccxMyMxto63UA2/aUcu8HKznx9o849a6PeWXhRorL1TlVpEMygxHfhCs/gyN+BUtehDsmwEd/g4pSv6NrqSTgqc6anAD4esueWskJgNvfWcHa/CKfIhJppciYzpWcWPU+3HMozLkXJv4ALp+l5ISISFvbuQZWvQdjv9e0f0N6jPC+iKtZSHPMObDpC0jt26E7gIT6DIo8IKfGdjawsa0u/tqizdz82rLAVjlXPP45j108icMGZLTVLUQk2KLi4ehrYOw58MY18M6NXkb6uD9566Q7VnX5z6k9BnY6JeX1ulRTXlVNWWW1D9GIyD6lu70ZafMfhrT+cMFr0PtQv6MSEemcPn8MMO/5talGfMsbn3es9NpaR8ZD6S445CJI69dekba7UE9QvAhcaWZP4hXH3N1W9ScKSyt49JO19fZ/tHybEhQinUFqHzjrMVj5nlef4snvQv/pcPzNkDnI7+ia6lrgGTN7trN2MOrfLYHk2Eh2l+yfJDJ1QAY5abE+RiXSxX39Brz0EyjcDIf+GI76LUTq/5MiIu2iugo+/w8MOMYrutxU0fHQd6r36kR8TVCY2RPANCDDzPKA3wORAM65e4FX8VqMrsBrM9pmLU6jIsLolRLL8q2FtfZ3T4ppq1uISCjofxT88GOv08d7/wf3TIFJl8GRv9q/Ti9EOec+MLOL8IoEfwKsAepOOXDOuYuCHlwb6Z0ez6MXTeT2d5bzRd5uThjegwsO60NCtIpkigRd8Q54/dew8L/QbRic9R/oNd7vqEREOrcV78CejXDCn/2OJCT43cXjuwc57vDa67W5qIhwrjhqAB+v3E5FlVfWIiMhKqRmTzjnKCitZEdROUVllZRUVFFSXkVJRRWltX6urrevpKKKispqzCDMDDMwAu9mhJlX4MNqHAsLnBsbFU5CdATx0RHER4cTH1Xj5+gIEqIjiKtxTmR4J1prK51TeCRM/iGMOBPevRE+uct7AD/mehh9dsiuFzezSXjtmCOAqYFXXQ7osAkKgFHZKdx59jj2lFaSGhdJhMYUOYhV2wr5ZGU+63cWc2j/DMblppIQE+qTQkPc4ufh1V94FeSP/DVM/TlEtF/x8PLKajbuKqFbUjRxUfrvTkS6sPkPQ3wmDDre70hCQpf+F2F871Se/eGhLNpYQGxkOKOyk+mXmdBu93POsbukgu2F5ewoKmdHURn5ReXsKCwnv8h77SgqIz9wfGdx+b7kSVPERoYTGxVObGQ4MZFhRIaH4Rw4HNXOu7/D6zzjXGAfjurq/fFVVjtKyqsoKq+kuom3jgoPIzU+kszEaDITor33fT/H7N9OjCY+KhzrWDUApDNJyIRT7gi0Jf2V1y5v7oNwwl8ge4Lf0TXkNqACr+XyR865Xf6G035iIsOJiQz3OwzpANbvKOb7D37K+p0lANz7wSr+fMZIvjOx+V28BCjcCq/8HJa+CFlj4NznveJrrbT3mWdtfjHrdgReNX7etLuEagcPXziRIwc1vcC5iEinUrgVvn4dJl/erknhjqRLJyjCwoyR2SmMzE5ps2vuLqkgb2cx63eUkLezmLydNd9LKCxruEtIYnQEaQlRpMVHkZ0ay6jsZNLio0mP9/YlxkTUSD7sT0TsTUpER4S16R/+zjlKK6opKq+kqKySwrJKisurKCzztovL9v9cWF7JzqJytu0pY1thGUs2FbC9sJyqBjIcsZHh+5IVPZJiyEmLo3d6HL3T4uidEU+PpBi1FpT212scXPgmfPkUvHUd3D/dq3w8/feQ2N3v6GoaBVzvnHvJ70BEQsXijbv3JSf2uvn1ZRw5uBs9krVMs8mc82aSvf5rKC/2ZpRN+RGEN/3RsLKqmk27S/clIdbuKGJ9IAGxNr+YPaW1n3kyEqLJTYvlkD6p5KZnk5sWx5AeiW38i4mIdCBzH4TqSq9FtQBdPEHREs45thSU8fWWPazcVrgvAbE3IVFQ5x/j+KhwctLiyE6NY3K/dLJTY8lMjCYtkHhIj48mNT6S6IjQ+ubQAks9YqPCyUiIbvbnq6sdu0oqvKTFnjK2FZbu/zmQyFi6qYA3l2yuNUskKjyM7LRYL2GRHk/u3gRGuvefob5hlTYTFgajz4Ih34APb/GWfSx5EaZdDRMvDZUs9lag3O8gREJJeQMdXorLq6isVueXJtudBy//FJa/CTmT4JQ7D1g8eE+pNwti/Y5i1gaSD+sDCYgNu0pqfRkRGW7kpMaRkxbHuNxUctPi9n0RkZMaR3y0HjtFRPapKIVP/+Ut7cgY4Hc0IUP/UjQiv7CMr7bsYfmWQr7asoevN+/h6y17aiUhYiLDyEmNIzs1lgl9UslOjQ1se/tS4iK75JKGsDDbl4QZ3Mi3I1XVjo27SvZ927J2RxHr8otZk1/Mp6t3UFSjBaEZZCXFMLhHIkOzkhiSlcSwrET6pMdrzbq0XHQizLgBxp0Hr/8G3rwW5j0MJ9zsVVP214PA98zsTudcw9OvRLqYwT0SiYkMo7Rif0Li+4f2IStZXSYOyjmY95DXPtRVwfE3UzXhB2wurGDdyvxAEqKIdTtKWJdfxLodxewsrqh1idS4SHLT4hiVnczJo7PITYsjNy2e3PQ4zYIUEWmOL5+C4u3e8g7ZRwkKvGUZy7fs2Z+MCCQi8ov2f3GZFBPB4B6JnDy6J4N7JDKwWyIDuiWQkRDVJRMQbSU8zMgJfMNyWJ3EoXOO/KLywNTRItZsL2ZNfhHLNu3ho+XbqQx8axMdEcag7okM2Ze4SGRYVhIpcSHxDbh0FOn94ZynvPZ6r/8a/vNNGHwiHHeTn72kZwIn4XXxuBtYTf0uHjjnPgx2YCJ+Gdwjiccvnsw9769k5bZCvnNIDqeM7qk/jBtRVFbJ5rVLSXn7F6Rvnc2qhPHcnXQV82cmk/fSW5RX7U/2hIcZvVJiyUmL5fgRWfROjwskIbx/q5Nj1WFHRKTVnINP7obuI6HvEX5HE1KUoACO/fsHbCkoA7wlGQO7JzJ9aDcGdU9kUPdEBvdIpFtitBIRQWZmZCREk5EQzfjeqbWOlVVWsXJrEUs3FbBscwFLN+3h3WVb+d+8vH3n9EiKYWhWIkOykhidncy43FS6qY2sHIhzsP1rwODUu2HNRzDzH3DXJDj0R3D4zyC6/YroHsDbNX6+H69jR00W2Ke1T9KljOudyp3njKWsspqkGP3BXF3t2FZYtm82oleQ0psBkZdfyDdKX+KXEU9RRRi/rryYV/bMIDcqniFZccwY3t1bTpnmLavMSolRdy4Rkfa28l3YthROu8ebJi77KEEBXPONYSREhzOwWyK9UmIJ07cwIS86IpxhPZMY1jOp1v5te8pqJS2Wbipg5or9rWSzU2MZ3zuV8b1TGZebypAeiVoeIp4V78B/z4ZKL1nJEb+CSz/w6lN89DdY8ATMuBFGnhnMf0guCNaNRDqa6IjwkKvf1J5KK6rI21l8wK4YZTVqc5hBz+RYJiVu59aof9CnajFbuh9B/rQ/8+veA/i/2K65/FREJGTMvhsSusOIb/odSchRggI4ZXRPv0OQNuJ1CMnkiBoty8oqq1iysYB5a3cyf91OZq/K54UFGwGvq8iYnBTG9U5hfO9UxuakkhqvpSFdTsEmePGK/ckJgA//4tWgOOOfMOFCry3psxfD3AfghD9D1uh2D8s593C730REQsLeZY01i1DWTEJsLiitdX5cVDi5aXH0zYjnyEGZXiHKQIHpXkmRRM25A97/M0TGwun/pPuo79BdSQkREf9tXQYr3oajroWI5jcj6OyUoJBOLzoinLG5qYzN9ZaJOOfYuLvUS1gEkhb3frBqXyXyfpnxjM9N5ZA+aRw2MINeKSq81umV7IA9m+vvL9zivedOgh+8C5//B965Ef55JHz/Jeg7NbhxikiHVl5ZzYZAYei9SzD2LstYv6O4VmFo8JYq5qbFcfjAjH11IHIDNSHS4w9QA2vzl/DvK2DTFzD0FDjxllBrnywi0rXNvhsiYrwvwKQeJSikyzHzCoD1SondN3umuLyShXm7mb/OS1q8vXTLvnoW/TLiOXxgBocPyGBK/3QStd6580noARmDAjUoAswgpff+7bBwGP99GHaq17M6d0rw4xSRkLeruLxWLYiasyE27S6hRldOoiPC9iUepvRP3/dzi1prV5Z5S9Jm3gqxqfCth2H4aW3++4mISCsUbYcvnoQx34X4dL+jCUlKUIgAcVERTO6XzuR+3kDhnOPrLYV8tHwbM1ds539z83jkk7WEhxljclI4fEAGUwdmMDonRcXEOoP4dDj9Xnjq+7B7PUTFw4l/g25D658bmwJTfxb0EEUkNFRWVbNpd2ntWhA7ivYtx6jZihwgIyGa3LRYJvZNI6dGAiI3LY7MhOi2qXuVNw9euMIruDbqO3D8zRCX1vrriohI2/rsAagqU2vRRihBIdIAM2NwD6+Dy8VT+1FWWcX8tbuYuWIbM5dv5/Z3l3PbO8tJiPYSG1MHZnD4wAz6ZcSr8FhH1Ws8XPwOFORBTIrXWlT/XYp0SXtKK/Ytu1i3o5i1O/b/vGFnyb421wBR4WH0So0lNy2Ocbmp9ZZixEW146NWRQm8dxN8cpc3E+zsp2DQce13PxERabmKUvjsXzDwWMgc7Hc0IUsJCpEmiI4IZ0r/dKb0T+eXx3lTeGetzOej5duZuWIbby/1ahX0SonlmKHdOHZ4Dyb2TdPsio4msbvWaot0AVXVjs0FpawLJCHW7ihi3Y79tSF2FlfUOj81LpLc9HhGZadw8qie5KZ5BSlz0+PokRRDuB/dv9bOgheuhB0rYdz34dg/QExy8OMQEZGm+fIpKNrm2+yJrQWlbNxdSkpsBH0yEnyJoSmUoBBpgZS4KE4cmcWJI7MAWJtfxEfLt/PB19v479z1PPzJWpJiIpg+tDvHDe/OEYMy2/dbNBERqaW4vLJeK86923k7Syiv2t+WMyLM6JkSS+/0OE4cmVVrFkROWhxJoVR7qKwQ3rkBPr3Pq5Nz3gvQb5rfUYmISGMqy+HDv0LWGF/G7LlrdnDjS0tYuGE3Wckx/O6kYRw7tDsREaH3Zar+YhJpA73T4+mdHs/3JvempLyKD5dv483FW3hn2Rae+3wD0RFhTB2YwbHDejB9aDfSE9RSSILLzI4HbgPCgfudczfXOW6B4ycCxcD5zrn5ZpYDPAL0AKqB+5xztwU1eJEGVFc7thWWNVCQ0psNsb2wrNb5iTER9E6PY2hWEscO71GrFkRWcgwRHWHG28p34cWrvFo5k34I03/n1cwREZHQ9vmjsGsdfOPvQV9CvHFXMdc8t4ivtuwBYNPuUq568nOe+MFkJvQJvXpFSlCItLHYqHCOG96D44b3oLKqms/W7OTNJZt5c/EW3l66lTCDCX3SOHZYd44b3oOctDi/Q5ZOzszCgbuAGUAe8JmZveicW1LjtBOAgYHXJOCewHsl8PNAsiIRmGdmb9X5rEi7KK2oIm9nce2ClDV+LqvcPwsizCAr2asFMX1IN3LT9ycgctPiSImL8vE3aaWSXfDmtd4DbvoAuPB1yJ3sd1QiItIUFaVel6WcyTBgetBvv35Hyb7kxL6Qqhxr8ouUoBDpaiLCw/bVrrjupGEs3ljAm0u28ObizfzxlaX88ZWlDOmRyEmjsjh1TK+DJisqqqrZWlDC6u3FfLWlkKSYCIZmJTGil9YdS6MmAiucc6sAzOxJ4FSgZpLhVOAR55wDZptZipllOec2AZsAnHN7zGwp0KvOZ0VaxDlHflF57YKUNepCbCmoPQsiLiqc3LQ4+mbEM21wZmAZRjy5aXH0SoklKgSnqrbaV6/Byz+Fwq1w+E/hyF9DZIzfUYmISFPN+zfs2Qhn/NOXAuxJsZEkxUTU6zKVGqKJeyUoRILEzBjRK5kRvZL52YxBrMsv5s0lm3lj8WZuefNrbnnzayb0TuXUsb04aWQWqfG1B42VWwt58rO1jM1N41dPL6SwzBtkDu2fzm9PHKokhTSmF7C+xnYe3uyIg53Ti0ByAsDM+gBjgTkN3cTMLgEuAcjNzW1tzNJJlFdWk7ez5hKM2jUhisurap3fIymG3LQ4Dh+QuX8ZRmAmRHp8VNfplFSUD6/9ChY9Dd1HwHefgJ5j/Y5KRESao7wIPvob9D3Ce/lgaFYSvzlhKL99/ktcoAnVaWN6Mqxnki/xHIwSFCI+yU2P4+Kp/bh4aj/ydhbzwoKNPP/5Bn73/CJueHEx0wZncuqYXswY1p3yymp+8+yXzBjWnX99uGpfcgJg1sp8lm0qUIJCGtPQX3SuOeeYWQLwDPAT51xBQzdxzt0H3AcwYcKEuteXTso5x67iinqFKNfuKGL9jhI27i7Z90AEEB0Rtm/ZxZT+6ft+7p0eR3ZqHDGR4f79MqHAOVj8HLz6SyjdDdN+682ciAjNb7pERKQRn97nde446jFfwzh5VBa56XGs2V5EZmI0I3omkZUc62tMB6IEhUgIyE6N44qjBnD5tP4s2VTACws28sKCDby9dCsJ0RFM6pfGp2t2cPq4nizfWljv89sLy32IWjqQPCCnxnY2sLGp55hZJF5y4jHn3LPtGKeEqIqqajbtKvWWYOwoqlcLYk+daaMZCdHkpsUysW+a146zRhIiMyGaMD/acnYEezbDKz+HZS97syVOfRG6D/c7qvZTVQGbv4TtX3stUrNGQ1JPv6MSEWkbpQXw8W0wYAbk1p24GlwJsZEcNiCDwwZk7Ns3e1U+c1blU+0cE/umM7lvGuEhUDBaCQqREGJmDO+ZzPCeyVx9/BDmrMrnuc838MqX3iz737+whF6pMbVmUAAM7B66vYwlJHwGDDSzvsAG4Czg7DrnvAhcGahPMQnY7ZzbFOju8QCw1Dl3azCDluAqKK2olXSoWRdiw64Sqqr3T4OICg8jOzWW3PQ4xvdOrdWWMzctTm2Vm8s5WPA4vPEbr5jajBth8hUQ3sn/c1zxNjx5NrhAsdPcQ+HMB5SkEJHOYfY9ULITjr7G70jqmbViOxc+/BmlFd74Gxm+kge+fwhHDMr0OTIlKERCVniYceiADA4dkMF1Jw/j6mcW8uqXm1mXX1LrnCuPGsCkvqFXgVdCh3Ou0syuBN7AazP6oHNusZldFjh+L/AqXovRFXhtRi8IfPww4FzgSzNbENj3W+fcq0H8FaQNVFU7NheUsja/qFYtCK8gZTG7iitqnZ8aF0luejyjc1I4eXQWvdPiyQnMguieFEO4ZkG0jV3r4aWrYOU7XoX3U++EjIF+R9X+irbBq7/Yn5wAWDcLNn2hBIWIdHzFO+CTO2HISSFZP+iVLzftS06A19Xjyc/WKUEhIk2TGBPJn04fyXcm5DBv7S4Kyyr4aPl2lm8t5N4PVrJ+ZzHnTMplXG5q1ykgJ80SSCi8WmffvTV+dsAVDXxuJg3Xp5AQVFRW2WA7znU7isnbWUxF1f5ZEBFhRs+UWHqnx3HiyCx615gFkZMWR1JMpI+/SRdQXe1Vdn/rOm8GxQl/hUMuhjD/p9cGRXkx7NlUf3/p7uDHIiLS1mbdDmV74KjfBv3WpRVe8enGajrtLK6/PHxXcQWVldVE+NwRSwkKkQ4iJS6KIwd348jB3fbtW7RhN49/uo4XPt/As/M3MLh7ImdPyuW0sb1IjtUfF81SVQnblsKO1RCf4a37jlHhUQkt1dWOrXvKaiQhigJ1IbyZEHXr0STGRNA7PY6hWYkcN7zH/q4YaXFkJccQEQJrTbuk/JXw4o9h7UzoeySccjuk9vE7quBK7AEjzoSF/92/z8IgY5B/MYmItIXty2HWnTDqO0GtI1RaUcmsFfnc88FKqqodlx7Zn8MHZBAfXf9P/m+MzOLVLzfX2vfNcdm+JydACQqRDm1Er2T+dPpIfnviUF5csJHHP13L719czP+9tpSTRvXk7Em5jM1J0ayKpvj6Nfjf96E60PJw4qXemkElKSTISiuq9tV+qNuSc/2OYsoq90/JDDPISo4lNy2O6UO6k5u+PwGRmxZHSoj2OO+yqqtgzr3wzh8gPBJOuQPGngtdcYyOiIYjrwYMFv0PkrLhxL9Cj5F+RxayzOxB4CRgq3NuhN/xiEgDnPOKHUfGwbF/COqtP1uzkwsfnrtv+9JH5/Hg+RM4ekj3eudO6ZfO3749mgc+Wk1ldTUXHNqXIwamBzPcA1KCQqQTSIiO4OxJuZw9KZcv83bz+KdreWHBRp6el8eQHomcMymXU8f26npTtksKYONc2LQQUnIh+xBIyal/3u48ePkn+5MTAJ/+E0acDrlTghaudA3OObYXlgeSDkWsyy/Z//OOYrYUlNU6Pz4qnJy0OPpnxnPU4Exy0+P3JSB6pcQSFQLfdkgTbPsKXrgC8j6DQSfASbeq1kJ6f2/2yFHXQGQsJPi/9jnEPQTcCTzicxwiciCLnoHVH8CJt0BCt4Of34aenb+h3r5HZ6/jqMHd6n1ZmZYQzTfHZTNtUCbVzpGZGBOsMA9KCQqRTmZkdjL/lz3Km1XxxUYen7OO372wmD+9uoxTRvfk/MP6MDQrye8w2191NXz+CLxZo3Jy78PhW/+u/w9G6W4o2l7/GoXb2jdG6bTKK6vJ21mjCGWdmRDF5VW1zs9KjiEnLY6pAzPpnebVgMhNj6N3Whxp8VGaBdWRVVV4beY++DNEJcAZ98PIM7vmrImGRERDaq7fUXQIzrkPzayP33GIyAGU7oY3fusVxZxwYdBvnxhT/0/7pJiIRp8h0hOi2zOkFlGCQqSTSoyJ5JxJvTl7Yi4L83bzxKfreGHBRv47dz2HD8jgoql9OXJgJmGdtRL/zjXw3h9r71s7E7YsqZ+gSOzpTSve/OX+fWHhkNa33cOUjsk5x67iilpJh5pFKTfuLsHtr0dJTGTYvlkPh/bPIDctNtCSM57s1NhGC1lJB7ZpoTdrYvNCGH66VwhTswRERDqnd2+Cwq3w3Se958gg2LanlM27y0iJi+Rb47N58tP1lFd5S0HDw4zvTe4dlDjakhIUIp2cmTE6J4XROSn8+oQhPP7pOh6etYYL/v0ZA7olcNHhfTl9bK/O9wdSVRlUlNTfX1Fcf19cKpx6N7xwuZekiEuHk/4BmUPbPUwJXZVV1WzcVRooQllUbzbEntLKWudnJkaTmxbHpL5p3gyIGrMgMhOjNQuiK6ksgw//CjP/DrFp8J3/wNCT/Y5KugAzuwS4BCA3VzNTRIJm4wL47F9eN6Ze44JyywXrd/KjJz5n/Y4SkmIi+NPpI3n2h5N5a+k2qp3jqMGZjM5JDUosbclcza94OoEJEya4uXPnHvxEkS6svLKaV77cyL8+XM2STQWkxUfxvcm9OXdybzITQ2+qV4uUF8HTF8LXr+/fF50EP3gPMgY0/JninbBno1cYMzm7zUMys3nOuQltfuEQ1FHG4oLSinrtOPdub9hVQlX1/n8jo8LDyE6L3deOMyctjt6BehA5abHERSnnL0DeXG/WxLZlMPpsOO4miEvzOyoJ6OjjcGCJx8tNKZLZUcZhkQ6vugruP8araXblZxCb0u633F5YxjfvmcXa/P1fvIUZvPyjqQzr2fSl3Is27GZbYRlHDQ5uvYzGxmI9TYl0QVERYZw+NpvTxvRi9qodPDBzFbe/s5x731/JaWN7ctHh/RjcI9HvMFsnKh6O+5PXum/xs9BjNEz7zYGTE+DNpIjreJlmObCqasfmglLW5hfV6oyxPtCac1dxRa3z0+KjyE2LY0xOCqeM7hlYhuG9eiTFdN4lUdJ65cXw3k0w+25v2dg5T8PAGX5HJSIi7W3eQ7BxPpzxr6AkJwC2FpTWSk4AVDvI21l80ARFVbXjrSVbePDj1Xy6egeDuicwbVBmyMz0VIJCpAszM6b0T2dK/3RWbivk3x+v5ul5eTw1N48jBmVy8eF9mTowI2QGrGZL7+8lKQ7/OUQnQFSc3xFJOygqq2ywDsS6HcXk7Symomr/LIiIMCM7NZactDi+MTJrX0vOvUsyErtapxtpG2tmwos/gh2rvMJox9wAMV2gGLEElZk9AUwDMswsD/i9c+4Bf6MS6eLyV8Jbv4c+U2Hkt4J22+TYSFLjItlZ54uWxmZCF5RW8NRn63lo1hrydpbQKyWWa78xlG9NyAmpZ30lKEQEgP6ZCfzxtJH8fMZgHv90HQ/NWsN5D37KoO4JXHpEf04d05OI8A7YzjAsHBKbMW2ttABWfQALHoPEHjDmHMg5pP3ik4OqrnZs3VMWmP1QYyZEoCbE9sLyWucnxUTQOz2eYVlJHD+ix74ZELlpcWQlx3TM/x1LaCrbA29fD5/d783W+v5L0PcIv6OSTso5912/YxCRGipK4X/f9541T7s7qN2ZeqXG8ZczR3P5Y/P2fRFz1fQBDOpefwb0mu1FPDRrDf+bu56i8iom9knj2m8M5Zih3UPymUgJChGpJTU+iiuOGsDFU/vy8heb+NdHq/j5/77gtneWc8VR/Tl9bDZREaE3mLWZpS95xTL3+uIJOO8F7+fSAkjvB+mNLBORFimtqGpwBsTewpRlldX7zg0z6JkSS25aHMcM7b5vGUbvNK8eRHKcZkFIEKx4G176ibfmePLlcPS13tIyERHpGt74jVdc/bv/hZTgF6U9ekg3XvnxVNbvKCYjIZqB3RKIi/b+vHfOMWtlPv/+eDXvLNtKRJhx8uieXHhYX0b0Sg56rM2hBIWINCg6Ipxvjs/mjHG9eHvpVu54dzlXP/Mlt7+zgsum9efbE7KJjuhknT+K8+Hjv9feV1kKK9+FT+70Cm9GJ3pry3Mn+xNjJ/XCgg1c/cz+Nq/xUeHkpsfTPzOeo4d08wpSBmZB9EyJ7dxJMgltJTvhjWthwX8gYxBc9CbkTPQ7KhERCaYvn4a5D8JhV8Hg430JITzMGNQ9sdasidKKKl5YsIEHZ67hqy17SI+P4kdHD+R7k3PplhjjS5zNpQSFiDTKzJgxrDvHDO3G+19v4453lvO75xdx17sruPTIfnx3Ym7naVFa3kBbUqjdmrRsD7z2a29WRWxoZ6A7kkP7Z3DbWWP2LcVIi48KqfWQIgAsewVe/ikUbYepP4cjfgWRHeOBT0SkS9izGTYvgooiyBgM3Ya0/T22L4eXroKcyXD079r++i2wYVcJT8xZx+OfrmNHUTlDeiTylzNHccronh3uOd3XBIWZHQ/cBoQD9zvnbq5zfBrwArA6sOtZ59yNwYxRRDxmxlGDuzFtUCazVuZz+zvLueGlJdz13kouOaIv50zqTXx0B895JmTC+PPhjWv274uIgdhUb/bEXpu/gLLdSlC0oZxAoUqRkFVZBm/8FuK7wTn/g6zRfkfU8exYA+tmeUXlcidD9iFBq3gvIl3ArvXwzMWwfra3HRkL5z7ftrNey4vhqe9DRDSc+SCE+7estKra8cHXW3ls9jre+2orDjhmaHcuPKwvk/ulddgvenz7a8LMwoG7gBlAHvCZmb3onFtS59SPnHMnBT1AEWmQmXHYgAwOG5DBnFX53PHuCv706jLueX8lF0/tx3lTeneMTgibF8GS570H5RFnQO/DvRajfafBjD/C6ve9xMTwM+ClH9X+7MBjIS4j+DGLiH8iouHc5yA5x9cH0lBXUFLBp2t28OHX2+idFseRgzMZ0C0Rdm+Ep86FzQv3n3zsTTDliqAWlhORTmzDvP3JCYCKEnj7Bi+pHJ3Q+us7B6/9CrYuhnOegeRerb9mC2wtKOW/n63nyc/Ws2FXCZmJ0Vw+bQBnTcwhO7Xjf9nj59edE4EVzrlVAGb2JHAqUDdBISIhalK/dCb1S2fe2p3c+e5y/vrGV9z34SouOKwPFxzaN3SLFW5fDg+f5K0lB1j8LJz4N5h4MfQY4SUm+hwOYRGQ0A2m/hLe/r1XjyJrNBzze7UsFemK0vr5HUHIe/bzPK5/cf+j3IMzV/PoxZPot2tx7eQEwHs3wdCTvA4oIiKtVbCx/r7ty7ylulXlEJUIEa14Nn3/Zvj8UZj6Cxh4TMuv0wLV1V7Ry8fmrOWtJVuorHYcPiDD68YxrDuRIdiNo6X8TFD0AtbX2M4DJjVw3hQz+wLYCPzCObc4GMGJSNON753Kvy+YyMK8Xdzx7gr+8fZyHpy5msum9eeCQ/sSGxVia982LdyfnNjr/T/BkG9AUpaXEa+ZFZ94ifcPUVmRV6U5LjW48YqIdADrdhTx97eW19q3YXcpC9bvol9MAzV+knp6XVDWzYaYFC8BnJQVnGBFpPPpMaL+vuP/Ah//A5a+DDmT4LAfQY9Rzb/2B3+BD26Gsd+Do645+PltJL+wjKfn5fHEp+tYk19MalwkFx7el+9OzKVvRufsHOVngqKh+XyuzvZ8oLdzrtDMTgSeBwbWu5DZJcAlALm5wW/xIiKeUdkp/Ou8CSzZWMDf3vyKv7z+FQ99vIarjhnItyfkhFB2t7qBXVXUH4ICwsLUWlREpCG78yBvLuzZTEbqEMZnRfHuqopap5RUVEHuUIhOgrICb2d0Iky5Eh4+GVxgTO59GHzzfi9xISLSXD3HwUn/gLeug/I9VBx5DWHzHiF87Yfe8V1rYfUHcPHbzWsL+uEt3oyv0WfDyXd4z4XtyDnHZ2t28tictbz25WbKq6qZ2CeNn84YxHHDe3S4opfN5WeCIg/IqbGdjTdLYh/nXEGNn181s7vNLMM5t73OefcB9wFMmDDhAH9hiEiwDOuZxAPnH8Jna3bw59eWcc1zi7j/o9X8/NhBnDgii7Awn9cbdx/hPRyX7dm/b+ov9FAsItIcezZ7BenWfQJAHPC36bdwwvZ+bC4o9fZFhdM3PR4yenvdj2b+HTZ/6X0D+c4N+5MTAGs/9ma4NTYWO+ctFdkw31uGlz0eug1rx19SRDqM6ASYcAE7ex7Bp8s3kh5ZwYS1f6x9TuEW2P510xMUM/8B7/4BRn0HTr2zXZMTG3aV8Nz8PJ6Zv4HV24tIjIng7Em5nD0pt1Yr0c7OzwTFZ8BAM+sLbADOAs6ueYKZ9QC2OOecmU0EwoD8oEcqIi1ySJ80/nfZFN5ZupW/vvEVVz7+OSN7reLq44dw+EAfi0x2GwrffwnmPwLbvoZx58KA6f7FIyLSEW1etC85sVfqx3/g9hNe5HfvF9ArNZbTxvRkSFbgwbrXOG+GRHmxN5OiYEP9a5buavyeeZ95NYQqy7ztmGQ4/xXoMbL1v4+IdAozt8Xyo9cKuG16LBPCwgOzZGuIiG3ahWbd4dUgG3EmnHYPhLX9zIWS8ireWLyZp+fl8fHK7TgHk/qmcfm0/pw0qmfoLZMOAt8SFM65SjO7EngDr83og865xWZ2WeD4vcCZwA/NrBIoAc5yzmmGhEgHYmYcM6w7Rw3pxvOfb+DWt77mew/M4bAB6fzquCGMzknxJ7CeY71XdVW7/IMjItLplRfW31dWwNDMKG4+fTgDqlcRt+0VwpdFey1Fuw/zuqFERHudUE74Kyx+BtbO8j5rYZBebyXvftVVMOfe/ckJgNLdsOxVJShEZJ+9jYEeXGocPupS0hfcvf9gv6Mgc3DjF6go8ZaJfHofDDsNTv9nmz4rOueYu3YnT8/N45UvN1FYVklOWixXTR/IGWOzyU1vfiH2rzYXsHxrIfFR4QztkURGYjRr8ospLq8kJzWO1PioNou/vfk5gwLn3KvAq3X23Vvj5zuBO4Mdl4i0vfAw45vjszlpdBaPzV7Hne+t4NS7PubEkT34+bGD6Z/ZBu2fWkLJCRGRlskcDJGx3sP8XkNOIbFbX8Zu/gIePdmrnA+1ZzpsXQof3Qor34ZeE+C4P8FnD8Jxf4SsRorXuSrYtb7+/oZmYohI51VVCeEH/jN2SI9E+qTH8cXGYm5JPZZzjxxNdvFS4rOHE957CsQ3Mot300Jv6dr2r2Dy5TDjxkbv1Rx5O4t5dv4Gnpmfx9r8YuKiwjlxZBZnjs9mYp+0Fi+BnrMqnysen8/2Qm+8nT60G+dOyuUHj86josoxvGcSf//OmA6zTMTXBIWIdD3REeFceHhfvn1IDv/6cBX3f7SKNxZv4dsTsrlq+iB6JMf4HaKIiBxM4VbYs4Wqk+/ACrcSNvsuygYcT/XEHxIbHgmf3L0/OQHeTIev34DELPjfhbAt0Ip0+ZuwZYlXnyLjIMWIw6PgkIsh79Pa+4ee0ra/m4iErlUfwEs/hqN/B8PPaLAmxIBuidx21ljeWrKFLzfsYk7kJGInnkRSY1+GVVfDJ3fAO3+AuHQ49znof3Srwy0ur+T1Rd4SjlkrvUoFU/ql8+OjB3L8iB7ER7fuz/HdxeXc+d6KfckJgHeWbmX6kG5UBRYeLN5YwK1vfsVtZ40lugMU2FSCQqQzKNvjFfwpL4a0frVbZIaohOgIfjpjEOdO6c2d767gsTlreXb+Bi49sj+XHdmPuCgNTyIiIWnXOnjmB7B+NuEAcWnknfAwP3i7iiMiK/nV9ArCC/Lqf27PJtixen9yYq+CPNiz8eAJCoABx8A3boWZt3oJi6OugdyGutSLSKcUEQ1RifDMRV770OnXe3XErPbsg9E5KU1fRrx1Kbz6S1jzEQw9GU6+HeLSWhxiaUUVH3y9jZe+2Mg7S7dSUlFFblocPz1mEGeM60VOWvOXcBzIjqJyFm8sqLd/8+5SThvTk6jwcGau2M57X20jv6icnilNrL/hI/0FINLRFW6Fd2+C+Q9520k94bv/bXyabAjJSIjm+lOGc9Hhffnz68u4/Z3l/G/uen59whBOGd0Ts7bt+LFldynLt+6hyjkGdkvsEAO1iEhIWTsLskZC/6O8ZRdAyrIniY/6Dg/OXM3Zh+TS+5AfwIZ5tT83+BvekhAzrxtHTZHxTbt3fDoccpE3ayIsvFV/RIhIB5Q7GS79EBY943XXeOyb0GcqTP895BzS9OuUF8Pi52D+w7B+DkQlwKl3wZhz6iU7mqKiqpqZK7bz0hcbeWvxFvaUVZIWH8UZ43pxyuieTOyb1ubPtADdk2KY0i+dV77ctG9fdmosQ7KSeGfZVrbuKeO4Yd3pkRxDUmzH+NO/Y0QpIge28fP9yQmAgo1er+YzH4KojvPHd05aHHeePY7zpuzgxpcXc9WTC3j0k7Vcd/IwRmWn1Dq3sqqaHcXlJEZHNqu68dr8It5dtoXthRU451ixpZAjB2cyoFvHWJMnIqGlsqqa8qrqrjfjyyJg1fuwfbm3HZVAwow/MLQyjIUbDWfAwGPhG3+Hj/8OETFw1LXeTAcLh8lXwCc1SoyNPhsyBjUvhoTMtvptRKSjCQuDUd+CYafCvIfgw7/AA8dAcg7kTITsid57j5FeQd7yYijeDkXboHAbrHgLFv4PynZD+gCY8QcYc3bjtSkaUFXtmLMqn5cWbuK1RZvYVVxBYkwEx4/owcmje3Jo/3QiwtuvLSnAzuIKvjm+F2NyUnh09lo27Crh58cO4kdPfE5VtZcI/s+cdfxgal/iIjvGv1UdI0oRObAdq+vvW/eJ16qtAyUo9prYN40XrjicZ+bl8Zc3lnHqXR9z5rhsfnn8YLolxrB6eyEPzlzDq19uYnivJH42YxBjclKbdO1lm/dw65vL2VNWCUB0RBjdk2KUoBCRZluYt4t/f7yar7cUcub4bE4YkdV1auiU5O9PTgCUF1L99evsYTjnH9aHnNQ4CIuHQy70/oAIC4fYlP3nH/5T6HuEtzQxrZ9XKDNG47CINFNEFEy6xEsu/H97dx4nV1Xmf/zz9L7vS5LupDv7SiAhCYQ1KkEIKJuDLA6bA6IDziiOIjgDzCCMPx1lfKmMCsimrIKAoIDsRAIkZA/Z93R30p2kl/S+nN8f93anu9NJr9VV1f19v173VVXnnrr13JuqJ11PnXvuyidgx2LYucQbXQFecdQiobG64/MiY2H6hTD7aig4pVcjJlpaHMt3HeSllcW8vLqY0qp6EmIiWTgtly/MHMXpk7KIjRqceR4+2rafGx//hAPVDcRGRXD7oqkcPzqV9SVVbcWJVk98tIvrThvLyNTQ/26gAoVIuMscf2Tb2DMhvmdf2kNRZIRx6dzRnHvcCH7x5mYeWryNv6wp4YYzxrF0+wHe3VQGwLsby1i+o5wXbjqVcUeZ+KimoYmyqgaS4qL4eNv+tuIEQH1TCy+vKebz03OJHqT/TEQk/K0vruTK337Ylk/WFq2juKKO750zhcg+zsIeVqqKj2iK2L+J809L5ZN9UF3fREp8tLciMfPI5ydmwaTPe4uISH/FJsG8670FoGI37PrIO83MOS/nJGYfXjLHdyyadqO5xbF850FeXVvCK6tL2FNeS0xUBJ+dnMMXjh/FZ6fk9GpE70DYV1nHvzy5ggPV3uSY9U0t3PHSWl666TSSuph4MyMxmtiowI7mGCgqUIiEu7wT4ZRvejMPO+cNVVtwK0SH/y95yXHRfH/RVC6bN4YfvvwpP3194xF9quqb2FJa3WWBYkNJJfe+sp63N5YyLiuBbyyYQE5yLPuq6tv67K+qJyIA5wSKyNBT19jM4s1lbNhb1aHYCfDw4u3848kFAzr5WahyBadi7/+sQ1vV5C9xz5slbC2r5qJZeYcLFCIigy0131tmXNznTdQ1NvP3LWW8tnYvf/t0L2WHGoiONE6fmM13Pj+Js6bmkhwXvDxXeqie4oq6Dm3OQVF5LcflpVKYmcD2/TVt625fNI2MxNjBDrNPVKAQCXcJGd4s5jMvhcYaSB8LSTnBjmpAjc1K5IGr5/DM0l1899lVdJpajUiDV9eW4Jxj8ogUxmYlUlnbyPefW80nO8sB2FpWww9eWMPvLhlD1IENmGthWU0uOXljiAzw+YEiMjQs33mQrz6ylH89a+IR62KjIobH6Algc+w0kk65i5HLfgKNNVROuYyiggspen8nuSmxpKo4ISJhqKKmkTc37OW1tXt5Z2MpNQ3NJMVG8ZkpOSyclsuCydmkBLEo0V56QjTZSbGUHqrv2J4Yw5jMRB65bh6f7CznYHUDx+WnMjMvNUiR9p4KFCJDQXScNxHQEHfJ7HzKDjXwo7+ub2vLTYnl1bUlPLXUu6RdekI0T1x/MmlNpVw3sYaTc1N4aMUh6hpb+M/T4pn3wQ1E7l0DwOy0AprmPAHkB2N3RCTMvPHpPgBqGpoZkx7P1FGp5KbE8sGW/Vw+b8ywuSrQnzdU88yy47h+5h9IjHY8vdFR8+oBrplfwLxxmeSkhP8IPhEZHorKa3l93V5eW1fCkq0HaG5x5CTHctGsPM6ePoKTx2UM2pwSvVHf2MLXzhzHT1/fSE1DMxEG1502lpaWFgAKMhMpyOzh1ZFCjAoUIhI2IiKMK08aw4y8FJZuP8iKneW8t7m0rTgBEBMVQUbxu+S8+S3OP7SPRWmFnH3uj/nGOzGc2rKsrTgBEFG+g5g1T8PIu4KxOyISZjISYwB4ZVUR3z1nCr9+dytLtu7nCzNHcvrE3s3+Hs6aWlooqqjjrvcODy+eNjKFS07MZ1y2JrsUkQBqqIb6SkjI8q7Q0UstLY61RZW8tWEfr6/by+o9FQBMyEnia2eM4+zpI5iZl0pEiI+Ia2h2/N87W7jmlEIiIoyoCOOva0o4dXwX8/6EGRUoRCSspMRHc/rEbE6f6F1i7qoHPuTdzWVt66+bbuS88lVo8v5wjijfzgkffJObT/4DWSUrj9zgjvehuQkilQ5F5NgWTM7m/re38OV5Y/jOM6toaPZ+qXr8w53UNbXww4tmhOQvbQNtXmEGv43c1rb/AF85eQwTc1OCGJWIDHm7l8Ib/wUlK2HKF+DUb0LWkafcdbb/UD3vbSrjnY2lvLuxlP3VDZjBrNFp3HruFBZOy2X8USZbD1VjMhKYNzaDX729pa0tOyl2SFyZTn+Ri0hYu3Tu6A4Fih8vqaU2chFfj3yRWPMnsasq5pTMapqTzoYNL3TcwPSLVZwQkR6ZNiqVp2+cz8fbDnT4cg7w/PI93PzZCWE7pLY3Zo1O4+eXn8Arq0uorGvk7Gm5nDIEfrUTkRC2fzM8dpE3egJg+aNQvgMu+z3EdvxS3tTcwvJd5byzoZR3NpaypqgC57xRcGdMzOLMydmcNiGb7OTwmDSyK/Exkdx67lSmjkjhxZVFzC5I5+r5hUNiomb9VS4iYW3+hExuOXsSv3xrMy0tjlPzo7lvx5d4sfkU7o56iFMi10F0Anmp0UTVpsPsq2D54+BaYPpFkFbgXTN75CyI7sF/VM1N0HAIYlMgQpNrigw3U0emUFRee0R7Wnw0sdHDIyekJMRwzoyRnDA6jRYHWUkxxAyDkSMiEkRlmw4XJ1pte4eSnRt5YnsShtHU0sKW0mre31xGVV0TkRHG7DFp3LJwEmdMymbGqNA/daM3xmQkcPPnJnLdaYXERUcNmYmaVaAQkbCWmRjLPy+YwIUn5OFw5CUai19+hB98HMsVjT/g4pb3uH3hFDKfv8GrtOfPgYsfhMo9sOlVeOpKb0OXPgbTvnjsF9u7Dpbc750WMulcmHNtj4YWisjQMm1UCjPzU1m1u6Kt7d/Pn8aIlOExSWarEanDa39FJIhiOo5OO+iS+NBm8tirZSzeXdLWnpUUw3nHjeTMSdmcMiFrWFxVKDF2aO2jChQiEvYiIqzDkLYzzruK12av4xeL9/LrtafzxisNfN/GcmnkTiJ2L4WJm+Ctezpu5LXbYcx8SMru+kUqi+CJy7wiB8CSX8KeZXDFUxCfFpgdE5GQNDI1nvuvnM3K3RWUHapnyogUZuZr/gURkUA5mDSRD3O+ypI9jSxpmcp6VwCA7W7q0O+WhZO4/KSCYIQoA0QFCpFeqKhtYMnWA7y0oojCrEQWHTeCaaPC57rCw0ZsInGFc/lOIVy4fRe3Pfg8tzbewLPNZ3JP9ANMamk68jnVpdBUf2R7q7LNh4sTrXYtgQNbIO/EAQ1fREJfXnoCeenhf66viEgoOlDdwEfb9rNk6wGWbN3P+pIq4HPERTqOS6vhG2MiWF0Ry3vbO55yV9vY0vUGJWyoQCHSCy+vKua25w9fpvKxJTt49sb5TMwN/xlzh6oJhaN5amEjz7z2a+5tuoJFDfdy/eYKvmnxxLt2/6mdeB2kjDz6hqJijmwzg8jwnWBJREREJBQUV9SyfGc5H21rX5CA+OhI5hSm84XjR3HyuAwKMhO4+fcrWFbpmJaXwnvbt7dtIyrCmDxCf5OHOxUoRHpoX2UdP3t9U4e2itpG1hVXqkAR4uyEy7m0pZGzPvgv7mm8jPu3zObtjId4OfleIqp2w6yrYO5XIeIYk7xlTYaJ58Cmvx5um/NVyBwf+B0QERERGSJqG5pZvaeCFbsOsnxnOct3llNS6V0evnNB4ri8NGKiOk5AfPdF0/nNu9uYMiKZG88cxwsrishNjuWfPzuBuYUZwdglGUAqUIj0kAOanTuivaXlyDYJMSmj4MzvkTH7an4SFcuXShz7quqJmPRnaKqFxJzur8iRkA7n/w/suARKVkHeXBhzMkRrkjgRERGRrjjn2FZWzYpdXiFi+a6DfFpcRbP/9/OYjAROGpfBCaPTOGF0GtNHpR5RkOhsfE4yd180g4M1DVwQF80VJ40hMSaKzCSNah0KVKAQ6aHclDhu+sx4/vPPn7a1JcZEMm2UJkYLJRU1DdQ0NpOTHNfxcktmbadwnDyu/TN6MYdIaj7MvNRbRERERKSNc47iijrWFVWypqiCFbvKWbGrnPKaRgCSYqM4fnQqXz9zPLPGpHH86DSy+lhUiI6MICc5DoAxGYnd9JZwogKFSC9cOCuPzKRYnvhoJ+OyErls3hgmjwhwgaJsE3z6kjch4+TzYcJZkDoqsK8Zwmoamli7p5Lt+6vJSoplRl4K2clxNDW3sHjzfu5+eR0lFXVcNm80V80v7HB1DxERERHpv8bmFjbvO8TH2/azpayaTXsPsa64sq0YYQaTcpI5Z/oIZo1JY9aYdMZnJ3X88UikCypQiPRCRmIsF5yQx/kzRw1Ogq0sgievhLIN3uONr8KJ18K5P4Ko4TeMzTnHC8uL+P7zq0lLiObq+YVs3neI0RnxZCbGcO3DH9F6xs1v39tGY7PjB+dNJSqym9M3RES64xxUlUBE1NEvRywSxpqaWyiuqCUqIoKRaTp9UQ6rqG3k0+JK1hVVerfFlWzcW0Vjs/dHlxmMz0rk3OkjmJaXyrSRyUwekUJSrL5qSu/pXSPSB4NW/S1df7g40eqTR+Ckr0HO1MGJIYTsOlDDw4u38e2Fk8hMiqGippE3N+zjgy37ueXsSXSeDuTJj3dywxnjGKU/tESkP6pK4JPHYMkvISYJzroTJp8LMRpWLENDUXktD7y3lceW7CA+JpJbz5nCF48fRVJcdLBDk0HinKOkso4t+6rZUnqILaWH2Frq3S+uqGvrl5UUy7SRycwYlcryXeX+c2HHgRruu2wWM/J6ceqsSBdUoBAJZV1MyulN1zk81Te1cNHsfH782oa2yZUumZ3HKeMzjyhOAGQnx9LS5TEUEemFtX+Ct+727tcehD9+Fa56AcYtCGZUIgPmhRV7eGjxdgAaa5u47fk15KcncMYkjRYaauoam9lWVt1WfGhfjKhpaG7rlxwbxbicJOaPz2RCThLTR6UydWQyOclxFJfX8rmfvtNhu43Njg0lVSpQSL+pQCESyrKnQPo4OLj1cNvxV0D62ODFFETRkcav393SVpwA+OMne/j2wkkcrGlgUm4SG/ceArzhhl85qYBI07mOItIPtRWw9MEj27e9qwKFDAkVtQ08vXT3Ee13vbSWs6bmkp8eT356Avnp8eSlx5MQo68Pocw7VaeO3Qdr2X2wxr89fL+oorbD7195afGMz0libmEG47OTGJedyITsJLKTY7Gj/A0VHRlBanx0h4IGeJcIFekvZRiRAGlpcUT091SQ1Dy44klY80fYvhhmXAyTPg/RcQMTZJipbWzhoD/5UnsNzS088vftPHj1HFbtqaShqYWEmEgamlvISRmex0pEPM65o/6R3SNRsZBWAGUbO7Ynj+xfYCIhIi46kgnZSWwrq+7QXlHbyO/+vp2GppYO7VlJMeT5BYvW4kVeWhw5yXFkJ8eSmRijuZ8CxDlHZW0TpYfq2VdZx+7yjsWHPQdrKams6/BDjhnkJseRnx7PnMJ0CjPzGZ+TxPjsRMZlJREf0/uiQlZyLLctmsrNTyxvaxuTEc/0vI4Tx++tqOXvW/azeMt+Zo1O4/RJ2YzR5OXSDRUoRAbY7gM1vLZuL6+sLmb++EwuOCGPCTlJfd9g9mT4zG0DF2AYy02JY2JuEpv8URLgzQcSHx3JNz87kZS4aF5eVcTeijounetdxUOzRYsMP03NLSzbeZDHP9hBVX0TV80v4KSxmST2ZcK26Dg4/RbY9g40N3htySNh7BkDG7RIkMRGRfKNz4zn/c1l1DZ6v4iPzUrkoWvmUpCRQNmhenZ1+DXeu11XVMnra/fS0NyxgGEGGQkxZCfHdlySYslJiSM76fDj5Lio/v+YMwTUNDRRWlXftpQd8u+33TZQ5q/rfLwjDEakxJGfnsBJYzPIa1c4yk+PZ2RqPDFRA18wWjgthydvOJll2w+SkxLLnIJ0CjIPz8tT29DET/+2iac+3gXAs8t2M6cwnV9/5UQy+3hpURkezA2x87PnzJnjli5dGuwwZJiqbmji355ZySurS9raJmQn8fvrTyJXv+QPiNW7K/jW08vZvK+a9IRo/uP8aYzNSqAgM5H0xFgqahqoaWwmJzku5IoTZrbMOTcn2HEMBuViCaal2w/w5d8s6fAr4gNXz+Gsqbl926BzULIKSlZDVByMOgEyJwxMsDKolIePbkNJFRv3VhEbFcG0USnkp3f/S3dLi6P0UD17yms7fMHeV3X4C/bRvliDV8xIjo0iNSGalDh/iY/yb6NJjY8mJS6KlPjotraEmEjioiOIjYokNsq/jY4gNiqif6OlesE5R2Ozo6G5hfrGZuqbWvylmer6Jiprm6isa6SyronK2kbvfmtbrdde5d9W1jUeMUoFvMJDRmLHAk/r/awkrwA0Oj2BEalxRIfgiJX1xZWc+/P3jphO7akbTuakcZnBCUpCxrFysUZQiAygnfurOxQnADaXHmLzvioVKAbIcfmpPP21+ZRU1JMaH01eescrdKQmxKDpmUSGt9c/3duhOAHw23e3csbELGKi+nCOtBmMPN5bRIaoySOSmTwiuVfPiYgwclPiuv0bxzlHRW3j4SKGPzKg9ct6RW1j2xf57WU1VNY1UlHbeMQcB92JiYo4XLSIimgrZERHmvc57sLRShoOaPSLDq0FiIZ2j3vzG29sVATJ7YovqfHRjE6Pb2tLi485ohCRkRgTcj+09EZTi+vyGDV1Nau5SDsqUIgMIDvKf3MRmqhxQGUkxpKRqOGBItK1qC5yblRE6P3CKNJbZnYO8L9AJPCAc+6/gxxSj5gZaQkxpCXEMDG350WQxuYWqtqNQqiobaS24XDBoK5t9EIz9Y2HRzHUNbYrLDS20NjF6A3o/rpoMZERbaMz2hc+YqMiiI2O7LQ+kpioCJJio0huN+ojOS6KuGE4eWRhZgKfmZzNWxtK29rGZiX277RnGRZUoBAZQAWZCXzpxHyeXXZ4NuwZo1KUjEVEBtFZ03L5zXtbaWw+/PXjhjPG9m30hEiIMLNI4JfAQmA38LGZveicWxfcyAInOjKCjMQYMhJjgh2K9FJSXDR3fnE6J64s4i9rSjhlfCaXzhmtEcXSLRUoRAZQfEwUtyycxNzCDN5cv5e5hRl8bmoO2clKxiIig+X4/DSevGE+L60o4lB9IxfNyuPEwoxghyXSX/OAzc65rQBm9iRwATBkCxQS3goyE7npsxP5p9PHDeocIRLeVKAQGWAj0+L58tzRfHnu6GCHIiIyLEVEGCcWpHNiQXqwQxEZSHnArnaPdwMnte9gZjcANwCMGTNm8CITOYbheIqL9J1OyBQRERERCX1d/fzcYRoF59xvnHNznHNzsrOzByksEZGBowKFiIiIiEjo2w20H56ZDxQFKRYRkYBQgUJEREREJPR9DEw0s7FmFgNcBrwY5JhERAaU5qAQEREREQlxzrkmM7sJeBXvMqMPOefWBjksEZEBFdQRFGZ2jpltMLPNZnZrF+vNzH7ur19lZrODEaeISLjrT741s4fMbJ+ZrRncqEVEpD3n3CvOuUnOufHOuR8GOx4RkYEWtAJFu2s5nwtMAy43s2mdup0LTPSXG4D7BzVIEZEhYADy7cPAOYGPVERERESGs2COoGi7lrNzrgFovZZzexcAjzrPEiDNzEYOdqAiImGuX/nWOfcucGBQIxYRERGRYSeYBYquruWc14c+mNkNZrbUzJaWlpYOeKAiImFuwPKtiIiIiEigBLNA0e21nHvYR9d8FhE5tgHLt8d8ERWLRURERKQfglmg6Mm1nHW9ZxGR/huUfKtisYiIiIj0RzALFD25lvOLwFX+7PInAxXOueLBDlREJMwp34qIiIhIyDPnejWCd2Bf3GwRcB+Hr+X8QzO7EcA5939mZsAv8GaPrwGudc4t7WabpcCOgAbeO1lAWbCD6AXFG1iKN7BCPd4C51xQhhb0J9+a2RPAArzjuxe4wzn3YDevF0q5ONTfF50p3sAKt3gh/GIO5XiDlocHW4jlYQjt90VXFG9gKd7ACvV4j5qLg1qgGA7MbKlzbk6w4+gpxRtYijewwi1eGRzh9r5QvIEVbvFC+MUcbvHK4Ai394XiDSzFG1jhFm97wTzFQ0REREREREQEUIFCREREREREREKAChSB95tgB9BLijewFG9ghVu8MjjC7X2heAMr3OKF8Is53OKVwRFu7wvFG1iKN7DCLd42moNCRERERERERIJOIyhEREREREREJOhUoOgjMzvHzDaY2WYzu7WL9alm9pKZrTSztWZ2baf1kWa23Mz+HOrxmlmamT1rZuvN7FMzmx/i8X7Lb1tjZk+YWVwIxJtuZs+b2Soz+8jMZvT0uaEUr5mNNrO3/PfBWjP7l1COt936Qf28yeBRLg7peJWLAxSvcrGEEuXhkI5XeThA8SoPB5BzTksvFyAS2AKMA2KAlcC0Tn1uA37k388GDgAx7dZ/G/gD8OdQjxd4BPgn/34MkBaq8QJ5wDYg3l/3NHBNCMT7Y+AO//4U4I2ePjfE4h0JzPbvJwMbQznedusH7fOmZfAW5WLl4j7Eq1wchHjbrVcuHmKL8rDycB/iVR4OQrzt1od8HtYIir6ZB2x2zm11zjUATwIXdOrjgGQzMyAJL1k0AZhZPnAe8ECox2tmKcAZwIMAzrkG51x5qMbrr4sC4s0sCkgAikIg3mnAGwDOufVAoZnl9vC5IROvc67YOfeJ314FfIr3H2BIxgtB+bzJ4FEuDtF4/XXKxQGKV7lYQojycIjG669THg5QvMrDgaMCRd/kAbvaPd7NkW/IXwBT8RLBauBfnHMt/rr7gO8CLQyO/sQ7DigFfucPB3rAzBJDNV7n3B7gJ8BOoBiocM69FgLxrgQuBjCzeUABkN/D5w60/sTbxswKgVnAh4EK1NffeO9jcD9vMniUi0M0XuXiHlEulqFAeThE41Ue7hHl4RCkAkXfWBdtnS+H8nlgBTAKOAH4hZmlmNn5wD7n3LKARthRn+PFq7zOBu53zs0CqoFAnxPWn+ObjldJHOuvSzSzrwQuVKBn8f43kG5mK4CbgeV41e2ePHeg9SdebwNmScAfgX91zlUGKM62l+uirUfxBunzJoNHuTiwlIsDS7lYhgLl4cBSHg4s5eEQFBXsAMLUbmB0u8f5HDlk6lrgv51zDthsZtvwzgM6FfiimS0C4oAUM3vcORfIhNGfeHcCu51zrRXBZwl8Mu5PvAXANudcKYCZPQecAjwezHj9hHWtH5PhnRO4DW+4XXf7OtD6Ey9mFo2XiH/vnHsuwLH2N97LGPzPmwwe5eLAUi4OLOVi5eKhQHk4sJSHA0t5OBTzsAuBiTDCbcEr7GzFq0i2TlAyvVOf+4E7/fu5wB4gq1OfBQzOhED9ihd4D5js378T+HGoxgucBKzFS3KGN5nRzSEQbxqHJ1i6Hni0p88NsXgNeBS4L9Dv24GIt1OfQfm8aRm8RblYubgP8SoXByHeTn2Ui4fQojysPNyHeJWHgxBvpz4hnYeDHkC4LsAivNlatwC3+203Ajf690cBr+GdC7YG+Eow3xz9iRdvuNhSYBXwJyA9xOO9C1jvtz8GxIZAvPOBTX5cz7U/hl09N1TjBU7DG0q2Cm844QpgUajG22kbIZ2MtQTsvaFcHLx4lYsDFK9ysZZQWpSHQzpe5eEAxas8HLjF/CBFRERERERERIJGk2SKiIiIiIiISNCpQCEiIiIiIiIiQacChYiIiIiIiIgEnQoUIiIiIiIiIhJ0KlCIiIiIiIiISNCpQCEiIiIiIiIiQacChQx5ZpZmZnea2YJBer0LzezOwXgtEZFwoDwsIhJ8ysUSDlSgkOEgDbgDWDBIr3eh/3oiIuJJQ3lYRCTY0lAulhCnAoWIHJV5koIdh4jIcKU8LCISfMrFg0cFimHKzK4xM2dmnzOz/zCzHWZWa2YfmtnJfp8zzex9M6s2s2Iz+/cutjPHzJ43szIzqzezDWZ2u5lFdeo3z8weNrONZlZjZlVmttjMLupimw/7saWa2f1mts/M6vz+J/VyPxcA2/yHd/jbdWa2vVO/L/v7WuXH96GZfamL7Z1nZu/4+1trZjvN7Dkzm+Svfxu42r/v2i3X9CLmDDP7mZlt8fd7v5ktM7N/66LvJWb2lpmV+3FvMLOfm1lMuz6JZnavv716Mysxs0fNrKDzsWqN1cz+2czWAXXAd3p7nESke8rDysPKwyLBp1ysXKxcHFrMORfsGCQI/OTwO2ApEAk8DsQAt/i3VwMPAr8BdgKX4g0H+0fn3OP+NhYBzwOb/ecfAOYD/wg855z7h3avdy/wGeBvwA4g03+NKcCVzrk/tOv7sL/uQ6AUeNXv/22gCSh0zlX1cD9zgcuBn/mxPuevOuSc+5Pf527gduCv/mu1ABf5+3uTc+6Xfr8zgTeB1cBjQDkwCjgL+JFz7hUzWwj8O3C6fxxa/d05t7WHMb8BnAH8GlgJJOAdpzHOufPa9fshcBuwDngaKAbGA5cAc5xz5f5/im8DpwLPAm8BE4Gv+/HPcc7t9re3wF+/Eu94/xYoAXY55/7S0+MkIj2jPKw8jPKwSNApFysXo1wcWpxzWobhAlwDOOATIKZd+xf99iZgbrv2GLwP+wf+4zi8D+q7QFSnbX/L38aCdm2JXcSQAGwA1nVqf9h//q86tf+D3/61Xu5rof+8O7tYN9tfd08X6/4EVALJ/uOf+n1zunm9h72PVp/+XVK72vcu+s3z+70JxHVaZxwuPl7v9/t/nfqc57c/1q5tgd92oPM+9uY4adGipWeL8nDbOuXhw23Kw1q0DPKiXNy2Trn4cJtycRAXneIh9zvnGto9fs+/XeKc+7i10e/zEV6lEWAhkItXcU4zs6zWBXjF73N2u+dXt943swQzy8RLxm8CU80spYvYftbp8Zv+7cTOHfvhSrwk80j7ffD340UgGa8CDlDh317SebjeAKoF6oGTzKywm7gBvu+cq2u/wvn8hxfhVXXv7dTnZWAFcIGZdc4Djzrn9nXxej09TiLSO8rDysPKwyLBp1ysXKxcHAIC9YaS8NFhiJVz7qCZweFz1No7iDfMCWCqf/vQMbad23rHzHKAu4ELgJwu+qbhVRyPFdt+P7ZMBs5UvOrq+mP0ad2PX+DF/yvgR2b2Pt7Qriecc6UDEYxzrsHM/hX4X2Cbf87bm8CfnHNvtOs6ES85ruxmk2OBIufcwS7WrQVOALKA9sl3Yxd9e3OcRKR3lIeVh5WHRYJPuVi5WLk4BKhAIc29bG9l/u2/4VUdu1IE3qy3wGt4H+ifAx/jVV6bgWuBK+hiwlbn3NFisKO094XhJbVzOfo+r/Xj2W9mc/HOpVuId07cz4C7zGyRc+6DgQjIOfd/ZvYC3pCzM4EvATeZ2VPOucs6xd2dvhyrmqNsp0fHSUR6TXlYebgz5WGRwadcrFzcmXJxEKhAIX21yb+tds79rZu+M4Hjgf90zt3RfoWZ/VMgguvkWElrE3AOsNM592m3G/L+g3jbXzCzmcAy4Ad4ybO71+sR51wx8ADwgJlF4k1AdLmZ/Y8/zHCDH/dMvGGGR7MFOMfM0pxz5Z3WTcOr0Jf1IKReHScRGRTKwygPi0jQKRejXCwDR3NQSF+9ijcE6lYzy+i80szizSzZf9haXbROfWbgnQ8WaIf82yPixEtyAPf4Sa8Dfxhe6/2sLp6/Hu8cufbbPuT37+r1jsk/FzGhfZv/H8Aq/2HrNltneL7HzGK72E7rsf4T3uf81k7rzwVmAS8651p6EFqPj5OIDBrlYY/yMMrDIkGkXOxRLka5eCBoBIX0iXOu2syuwvuwbzCzh/AurZSGd/mfi/ES7dvAp3hDnb7rJ5oNwCTga8AavNlwAxnrfjPbDFxmZluAvXhV7peccx+b2R3AXcAKM3sGbxjeSOBEYBHebM0AvzWzfLyheTuAeODLeJPhPNruJZcANwG/MrOXgUbgQ+dcV+cwdjYJeMfMnsc7NgfxhgF+He8cyPf8ffrIzH4EfA9YZmZP4c0gPRZv+Ns8vEsmPYx3earv+RMMvQtMAL7hH4fbengMe3OcRGQQKA8rDx/jOInIIFEuVi4+xnGSvujq0h5ahv7C4UsqLehinQMe7qL9YTpdKgiYgXe95z1AA94H/O941z3OaNevAHgG7xrONXhDsC4C7vRfr/BYr9NdbD3Y33nAYqDa38b2TuvPw6uAH8CbMXgX8Bfg6+36XIw3O+9uv08p8A5wSadtRQA/8fs1+693TQ/jzMQ7h28FXjKtxftP7j5gZBf9L/f3q8rft/V+3/aXyUrEm7F4q/9vtA+v+lvQaVsLuou1J8dJixYtPVuUh5WHlYe1aAn+olysXKxcHFpL63VhRURERERERESCRnNQiIiIiIiIiEjQaQ4KCVtmNqIH3Sqcc7UBD6YbZhYPpHbXzzlXMgjhiIgMCOVhEZHgUy6WoUSneEjYMrOevHmvdc49HOhYumNm1wC/666fc24gr2ctIhJQysMiIsGnXCxDiUZQSDhb2IM+awMeRc+8Ss/iFREJJ8rDIiLBp1wsQ4ZGUIiIiIiIiIhI0GmSTBEREREREREJOhUoRERERERERCToVKAQERERERERkaBTgUJEREREREREgk4FChEREREREREJuv8PUki9eOFepYUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,3,figsize=(6*3,6))\n", + "\n", + "var = {'x': 'mean_test_score',\n", + " 'y': ['mean_fit_time', 'mean_score_time', 'clf_size_MB'],\n", + " }\n", + "\n", + "for idx, y_var in enumerate(var['y']):\n", + "\n", + " sns.scatterplot(data=df_size, x=var['x'], y=y_var, hue='clf', ax=ax[idx])\n", + " ax[idx].set_xlabel('mean_test_score', fontsize=18)\n", + " ax[idx].set_ylabel(y_var, fontsize=18)\n", + "\n", + " for clf in ['RF', 'OF']:\n", + " tmp_degree = {}\n", + " tmp = df_size.query(f'clf==\"{clf}\"')[var['x']]\n", + " qlow, qhigh = np.quantile(tmp,[0.00,1.0])\n", + " x = np.linspace(qlow, qhigh, 20)\n", + "\n", + " for degree in [1,2]:\n", + " model = bestfit(df=df_size, y=y_var, clf=clf, degree=degree)\n", + "\n", + " tmp_degree[degree] = r2_score(\n", + " y_true=df_size.query(f'clf==\"{clf}\"')[var['x']],\n", + " y_pred=model(x))\n", + "\n", + " # print(f'{tmp_degree[degree]}')\n", + "\n", + " max_idx = max(tmp_degree, key=tmp_degree.get)\n", + " model = bestfit(df=df_size, y=y_var, clf=clf, degree=max_idx)\n", + " ax[idx].plot(x, model(x))\n", + " ax[idx].locator_params(axis='x', nbins=8)\n", + "\n", + " if idx == 2:\n", + " ax[idx].set_ylabel('clf_size (MB)')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Binning Figure\n", + "The `mean_test_score` is quantized into N number of bins and each corresponding metric variable is plotted with respect to each bin" + ] + }, + { + "cell_type": "code", + "execution_count": 250, + "metadata": {}, + "outputs": [], + "source": [ + "df_cut = pd.cut(df_size['mean_test_score'], 10).to_frame().reset_index(drop=True)\n", + "df_cut.columns = ['bins']\n", + "df_bin = pd.concat([df_size, df_cut], axis=1)\n", + "df_bin['bins_mid'] = df_bin.apply(lambda x: round(x['bins'].mid,2), axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 251, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXYAAAF7CAYAAAB2GdM5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAC8XklEQVR4nOzdd3hUZfrG8e+TEAi9gyC9I0oRsIuAoMDaC/a2uq6rrq5ldS1r3fXnuuradW1rW3vXBVQEBDsdRUQ6BJDeIYQkz++PMyEhhJAymTOTuT/XNVfeM+fMzM3OejJ55j3Pa+6OiIiIiIiIiIiIiCSOlLADiIiIiIiIiIiIiEjpqLArIiIiIiIiIiIikmBU2BURERERERERERFJMCrsioiIiIiIiIiIiCQYFXZFREREREREREREEowKuyIiIiIiIiIiIiIJpkrYAaKtUaNG3qZNm7BjiIgwefLk1e7eOOwcFU3nXRGJBzrniojETrKcc0HnXRGJD3s671a6wm6bNm2YNGlS2DFERDCzRWFniAWdd0UkHuicKyISO8lyzgWdd0UkPuzpvKtWDCIiIiIiIiIiIiIJRoVdERERERERERERkQSjwq6IiIiIiIiIiIhIgql0PXZFJLHs2LGDjIwMMjMzw45SZunp6bRo0YK0tLSwo8SNRH9f9Z6KSCyZ2UJgE5ADZLt7n9I8PtHPuaDzrogklkQ/7+qcK1J5qLArIqHKyMigdu3atGnTBjMLO06puTtr1qwhIyODtm3bhh0nbiTy+6r3VERCMsDdV5flgYl8zgWdd0Uk8STyeVfnXJHKRa0YRCRUmZmZNGzYMOE+EOUxMxo2bJiw39ZXlER+X/WeikiiSeRzLui8KyKJJ5HPuzrnilQuKuyKSOgS8QNRQYmev6Ik8v8uiZxdRBKSA5+a2WQzu7QsT5Do561Ezy8iySeRz1uJnF1EdqXCrohUanfccQf3338/AD///DM9e/akV69ezJs3L+RkUh56X0Wkkjnc3Q8EhgJXmFm/gjvN7FIzm2Rmk1atWhXzcDrniojEls67IlJSKuyKSNJ4//33OfHEE5k6dSrt27cPO45Eid5XEUl07r4s8nMl8B5wUKH9T7t7H3fv07hx4zAi7qRzrohIbOm8KyLF0eJpIlKpvPTSS9x///2YGd27d9/54WfEiBE89NBDpKamMn78eMaOHRtyUikNva8iUlmZWU0gxd03RcbHAHeFmUnnXBGR2NJ5V0TKSoVdEak0Zs6cyd///ne++uorGjVqxNq1a3nkkUcAGDZsGJdddhm1atXi+uuvDzmplIbeVxGp5JoC70X6HVYBXnX3UWGF0TlXRCoDM3seOA5Y6e77R+77J3A8kAXMAy5y9/WhhYzQeVdEykOFXZFk9dJJsH4x1GsF578fdpqoGDNmDKeddhqNGjUCoEGDBiEnkmjQ+yqSYCrh75eK5O7zgR5h58ijc65IgtE5d09eAB4DXipw32fATe6ebWb/AG4Cbgwh2y503hWR8lBhVyRZrV8MaytX83131wqvlZDeV5EEUwl/vyQTnXNFEozOuUVy9/Fm1qbQfZ8W2PwWOC2mofZA510RKQ8tniYilcbRRx/Nm2++yZo1awBYu3ZtyIkkGvS+iojEjs65IpIkfguM3NNOM7vUzCaZ2aRVq1ZVaBCdd0UqTptWLTCzuLq1adUiqv/G0Gbsmlk6MB6oFsnxtrvfXugYAx4GhgFbgQvdfUqss4pIYujWrRu33HILRx11FKmpqfTq1Ys2bdqEHUvKSe+riEjs6JwrIpWdmd0CZAP/3dMx7v408DRAnz59vCLz6LwrUnEWLVmKj7kn7Bi7sIE3R/X5wmzFsB0Y6O6bzSwN+NLMRrr7twWOGQp0jNwOBp6M/BQRKdIFF1zABRdcUOS+O+64I7ZhJGr0voqIxI7OuSJSWZnZBQSLqh3t7hVasC0NnXdFpKxCa8Xggc2RzbTIrfCJ9UTgpcix3wL1zKxZLHOKiIiIiIiISGIzsyEEi6Wd4O5bw84jIhINofbYNbNUM5sGrAQ+c/fvCh2yL7CkwHZG5L7CzxOz/jciIiIiIiIiEr/M7DXgG6CzmWWY2cXAY0Bt4DMzm2ZmT4UaUkQkCsJsxYC75wA9zawe8J6Z7e/uPxY4pKilIXe7XCKW/W9EREREREREJH65+1lF3P1czIOIiFSwUGfs5nH39cA4YEihXRlAywLbLYBlsUklIiIiIiIiIiIiEp9CK+yaWePITF3MrDowCPi50GEfAudb4BBgg7svj21SERERERERERERkfgSZiuGZsCLZpZKUGB+090/NrPLANz9KWAEMAyYC2wFLgorrIiIiIiIiIiIiEi8CK2w6+4zgF5F3P9UgbEDV8Qyl4gkn9TUVA444ACys7Np27YtL7/8MvXq1WPhwoV07dqVzp077zz2+++/p2rVqiGmlZLS+yoiEjs654qIxJbOuyICIS+eJiJSGtk5ubw7ZSlvTFrC8vXbaFavOmf0acmpvVuQmlLUWoslU716daZNmwbABRdcwOOPP84tt9wCQPv27Xfuk4qh91VEJHZ0zhURib6WrVqTsWRx1J6vRctWLFm8qNhjdN4VEVBhV0QSRHZOLle+OpVRM3/ded+yDZlMXrSOMT+v5LGze1Eltfxtww899FBmzJhR7ueRktH7KiISOzrniohUjIwli3nw09lRe75rj+m894MK0HlXJHmFtniaiEhpvDtl6S5/iBY0auavvDt1ablfIycnh88//5wTTjhh533z5s2jZ8+e9OzZkyuuUGeYaNP7KiISOzrniohUPjrviiQ3zdgVkYTwxqQlxe5/c+IShvdpWabn3rZtGz179mThwoX07t2bwYMH79yny5gqlt5XEZHY0TlXRKTy0HlXREAzdkUkQSxfv63Y/cv2sr84ef2pFi1aRFZWFo8//niZn0tKR++riEjs6JwrIlJ56LwrIqDCrogkiGb1qhe7v/le9pdE3bp1eeSRR7j//vvZsWNHuZ9P9k7vq4hI7OicKyJS+ei8K5LcVNgVkYRwxl4uDR3et2yXjhbWq1cvevToweuvvx6V55Pi6X0VEYkdnXNFRConnXdFkpd67IpIQji1dwvG/LyyyEVfhnTbh1MPbFHm5968efMu2x999NHO8Y8//ljm55W90/sqIhI7OueKiFSMFi1bce0xnaP6fHuj866IgAq7IpIgUlOMx87uxbtTl/LmxCUsW7+N5vWqM7xvS049sAWpKRZ2RCkDva8iIrGjc66ISMVYsnhR2BFEJEmpsCsiCaNKagrD+7Qs84rdEp/0voqIxI7OuSIiIiKVh3rsioiIiIiIiIiIiCQYFXZFREREREREREREEowKuyIiIiIiIiIiIiIJRoVdERERERERERERkQSjwq6ICJCRkcGJJ55Ix44dad++PVdffTVZWVmMGzeOunXr0rNnT3r27MmgQYPCjiolpPdURCS2dN4VEYkdnXNFBFTYFZFEkpMNU16G546BB7sFP6e8DLk55Xpad+eUU07hpJNOYs6cOfzyyy9s3ryZW265BYAjjzySadOmMW3aNEaPHh2Nf4kUVAHvq95TEZE90O9SEZGoa9OqBWYWtVubVi2KfT2dc0UkT5WwA4iIlEhONrx9Icz6KP++jRmw5DuY8wmc9gKklu2UNmbMGNLT07nooosASE1N5V//+hdt27ZlwIAB5c8ue1ZB76veUxGRIuh3qYhIhVi0ZCk+5p6oPZ8NvLnY/TrnikgezdgVkcQw/bVd/xAtaNZHMOP1Mj/1zJkz6d279y731alTh1atWjF37lwmTJiw81Kmv//972V+HSlCBb2vek9FRIqg36UiIpWCzrkikkczdkUkMUx9ufj9U16GXueW6andHTPb4/1HHnkkH3/8cZmeW/aigt5XvaciIkXQ71IRkUpB51wRyaMZuyKSGDYs3cv+jDI/dbdu3Zg0adIu923cuJElS5bQvn37Mj+vlEAFva96T0VEiqDfpSIilYLOuSKSR4VdEUkMdffdy/7iFxgoztFHH83WrVt56aWXAMjJyeG6667jwgsvpEaNGmV+XimBCnpf9Z6KiBRBv0tFRCoFnXNFJI8KuyKSGHqdV/z+A/eyvxhmxnvvvcdbb71Fx44d6dSpE+np6dxzT/QWQJA9qKD3Ve+piEgR9LtURKRS0DlXRPKox66IJIaeZwcrdhe16EvX46HHWeV6+pYtW/LRR7s/d//+/enfv3+5nluKUYHvq95TEZFC9LtURKRCtG65Lzbw5qg+397onCsioMKuiCSKlFQ47YVgxe4pLwd9AOu2CGYX9Tgr2C+JR++riEjs6JwrIlIhFi4ue49yEZHyUGFXRBJHapVgte4yrtgtcUrvq4hI7OicKyIiIlJpqMeuiIiIiETN8o2Zu/wUEREREZGKocKuiITO3cOOUC6Jnr+iJPL/LomcXSRs2Tm+y0+JjUQ/byV6fhFJPol83krk7CKyKxV2RSRU6enprFmzJmE/XLg7a9asIT09PewocSWR31e9pyKSaBL5nAs674pI4knk867OuSKVi3rsikioWrRoQUZGBqtWrQo7Spmlp6fTokWLmL+umQ0BHgZSgWfd/d5C+y2yfxiwFbjQ3aeYWTowHqhG8HvgbXe/PfKYBsAbQBtgITDc3deVNluiv69hvaciImWR6Odc0HlXRBJLop93dc4VqTxU2BWRUKWlpdG2bduwYyQcM0sFHgcGAxnARDP70N1/KnDYUKBj5HYw8GTk53ZgoLtvNrM04EszG+nu3wJ/AT5393vN7C+R7RtLm0/vq4hI7OicKyISWzrviki8UCsGEZHEdBAw193nu3sW8DpwYqFjTgRe8sC3QD0zaxbZ3hw5Ji1y8wKPeTEyfhE4qSL/ESIiIiIiIiJSNirsiogkpn2BJQW2MyL3legYM0s1s2nASuAzd/8uckxTd18OEPnZpKgXN7NLzWySmU1K1EvQRERERERERBKZCrsiIonJiriv8OoNezzG3XPcvSfQAjjIzPYvzYu7+9Pu3sfd+zRu3Lg0DxURERERERGRKFBhV0QkMWUALQtstwCWlfYYd18PjAOGRO5aYWbNACI/V0YtsYiIiIiIiIhEjQq7IiKJaSLQ0czamllV4Ezgw0LHfAicb4FDgA3uvtzMGptZPQAzqw4MAn4u8JgLIuMLgA8q+N8hIiIiIqWVkw1TXoaNS4PtjUuD7dyccHOJiEhMVQk7gIiIlJ67Z5vZlcAnQCrwvLvPNLPLIvufAkYAw4C5wFbgosjDmwEvmlkqwRd8b7r7x5F99wJvmtnFwGLg9Fj9m0RERESkBHKy4e0LYdZH+fdlZ8KHV8KcT+C0FyBVf+qLiCQDne1FRBKUu48gKN4WvO+pAmMHrijicTOAXnt4zjXA0dFNKiIiIiJRM/21XYu6Bc36CGa8Dr3OjW0mEREJhVoxiIiIiIiIiCSKqS8Xv3/KXvaLiEilocKuiIiIiIiISKLYsHQv+zNik0NEREKnwq6IiIiIiIhIoqi77172t4hNjjhmZs+b2Uoz+7HAfQ3M7DMzmxP5WT/MjCIi0aDCroiIiIiIiEii6HVe8fsP3Mv+5PACMKTQfX8BPnf3jsDnkW0RkYQWWmHXzFqa2Vgzm2VmM83s6iKO6W9mG8xsWuR2WxhZRUREREREROJC68MBK3pf1+Ohx1kxjROP3H08sLbQ3ScCL0bGLwInxTKTiEhFqBLia2cD17n7FDOrDUw2s8/c/adCx01w9+NCyCciIiIiUuHMLBWYBCzV514R2asv7gU8GKdUgdxsqJIOv3kgKOqmpIYaL441dfflAO6+3Mya7OlAM7sUuBSgVatWMYonIlJ6oc3Ydffl7j4lMt4EzAL20ixIRERERKTSuZrgs7CISPGWT4cZbwbjeq2CG0CdfaHXuSrqRom7P+3ufdy9T+PGjcOOIyKyR3HRY9fM2gC9gO+K2H2omU03s5Fm1i22yUREREREKo6ZtQB+AzwbdhYRSQCf3c7O2boDb2OPLRmkKCvMrBlA5OfKkPOIiJRb6IVdM6sFvAP8yd03Fto9BWjt7j2AR4H39/Acl5rZJDObtGrVqgrNKyIiIiISRQ8BNwC5ezpAn3VFBIC5n8P8scG4WQ/Y/9Rw8ySeD4ELIuMLgA9CzCIiEhWhFnbNLI2gqPtfd3+38H533+jumyPjEUCamTUq4jhdJiEiIiIiCcXMjgNWuvvk4o7TZ10RITcXRt+evz34LkgJfZ5W3DKz14BvgM5mlmFmFwP3AoPNbA4wOLItIpLQQls8zcwMeA6Y5e4P7uGYfYAV7u5mdhBBIXpNDGOKiIiIiFSUw4ETzGwYkA7UMbNX3P3ckHOJSLz54S349Ydg3P5oaNc/1Djxzt3P2sOuo2MaRESkgoVW2CX4IHse8IOZTYvcdzPQCsDdnwJOA/5gZtnANuBMd/cQsoqIiIiIRJW73wTcBGBm/YHrVdQVkd3syIQxf4tsGAy+M9Q4IiISP0Ir7Lr7l+yl07u7PwY8FptEIiIiIiIiInFm4jOwYXEw7nEm7HNAuHlERCRuhDljV0REREREAHcfB4wLOYaIxJtt62D8/cE4tRoMuCXcPCIiElfUbV1EREREREQkHk14EDLXB+ODfw/1WoYaR0RE4osKuyIiIiIiIiLxZv0S+O7fwTi9Hhx5bahxREQk/qiwKyIiIiIiIhJvxv4dcrYH437XQ/X64eYREZG4o8KuiIiIiIiISDz59QeY/nowrtsS+v4u3DwiIhKXVNgVSTY52TDlZdi4NNjeuDTYzs0JN5eIiIiIiARG3wF4MB74V0hLDzONiIjEqSphBxCJOy+dBOsXQ71WcP77YaeJrpxsePtCmPVR/n3ZmfDhlTDnEzjtBUjVaUFEREREJDTzx8Hc0cF4nwPggNNDjSMiIvFLM3ZFClu/GNbOC35WNtNf27WoW9Csj2DG67HNIyIiIiIi+XJz4bPb8rcH3Qkp+rNdRESKpt8QIslk6svF75+yl/0iIiIiIlJxfnwHlk8Pxu0GQIejw80jIiJxTYVdkWSyYele9mfEJoeIiIiIiOwqezuMuSt/e/Cd4WUREZGEoMKuSDKpu+9e9reITQ4REREREdnVxGfz28F1PwOa9Qg3j4iIxD0VdkWSSa/zit9/4F72i4iIiIhI9G1bD+P/GYxTq8KAW0KNIyIiiUGFXZFk0vNsqNGw6H1dj4ceZ8U2j4iIiIiIwFcPwbZ1wfigS6F+61DjiIhIYlBhVySZrJ4DW9dENmzXfUPug5TUmEdKVmbWz8z+ZmbPmFmXyH21IvfXCzmeiIiIiMTKhgz49slgnF4Xjrwu3DwiIpIwVNgVSSYTn80f12qy6765n8U2S5Iys1QzewMYC9wM/BZoHtmdDbwPXB5OOhERERGJubH/B9mZwfiIa6FGg3DziIhIwlBhVyRZbN8E018PxjUbQ9Wau+6fPTL2mZLTjcCpwLVAVwpMnXb3TOA9YFg40UREREQkplbMhGn/DcZ1WsDBvw83Txwws5pmNsjMzjGzpmHnERGJZyrsiiSLGW9A1qZgfOD57KwnplYNfs4fC1lbQ4mWZM4HXnL3h4HVReyfBbSPbSQRERERCcXoOwAPxgNvgbTqYaYJnZn9AVgKfAq8BHSL3N/YzDLN7NIw84mIxBsVdkWSgTt8H2nDYCnQ+6L8fXkzd7MzYf64mEdLQm2Ab4rZvx6oH5MkIiIiIhKeBeNhzqfBuOn+0P2McPOEzMxOBR4naFl2Cbte2bYKGAWcGE46EZH4pMKuSDJY9BWsmhWMOw+Dei3z96UVaMkwe0RscyWnTUBxjdM6AKtilEVEREREwpCbC5/dlr896E4tZAx/Bsa6+8nAB0XsnwTsH9tIIiLxTYVdkWTw/TP5476X7LqvSjWoFWld9cuo4EOmVKQvgXPNzArvMLP6BIupjY15KhERERGJnZ/eg2VTg3Hbo6DD0eHmiQ8HEKw3sSfLgSbF7BcRSToq7IpUdhuXw88fB+OGHaFd/92P6TQk+LllFSydHLNoServQEdgDHBc5L4eZvZ7YApQE7g3pGwiIiIiUtGys+Dzu/K3B98Ju3/nn4xyKL5G0RzYEqMsIiIJQYVdkcpuyouQmx2M+15c9IfGzsPyx2rHUKHcfRJwCtAF+E/k7vuBJ4HqwMnu/lNI8USkIr10EjxyYPBTRESS16TnYd3CYLz/adC8V6hx4sh04NiidphZCnA6MDGmiURE4pwKuyKVWc4OmBSpHabVgB5nFX1cu6OgSmQF3tkjY5Mtibn7CIJF1E4AbgRuAk4F2rn7pyFGE5GKtH4xrJ0X/BQRkeSUuQG++EcwTkmDo/8abp748hgw1MzuJn9NihQz6wy8BXQDHgkrnIhIPKoSdgARqUA/fwybfw3G3YdD9XpFH5dWHdoPCGbrrpoFaxdAg7Yxi5mM3H078HHkJiIiIiLJ4KuHYdvaYHzQ76B+m1DjxBN3f8PMDgBuIZj4ADAKsMjtdnfXLBQRkQI0Y1ekMvv+2fxx398Vf2znofnjX0ZVTB4RERERkWS1cRl880QwrlYX+v053DxxyN1vBfoADwMjgU8JZvIe5O53h5lNRCQeacauSGW1chYs+jIYtzoU9tm/+OM7DSH4ItyDmbuH/KGiEyYtMzsbuIJgEbWGRRzi7q7zs4iIiEhlMvYeyN4WjI/4E9RoUOzhycTMagLXAd+5+ycEiwqLiMheqHAgUllNLDhb95K9H1+rCbToAxkTYeFXsG0dVK9fcfmSlJndCtwJrAC+BtaFm0hEREREKtzKWTDtv8G4zr6aRFGIu28xs5uBK8POIiKSSFTYFamMMjfC9NeDcc0m0PWEkj2u89CgsOs5MPdzOOC0isuYvC4HxgFD3H1HyFlEREREJBZG3wGeG4wH3ByscSGFzQP2CTuEiEgiKXOPXTNra2aXmNktZtYmcl9VM2tlZlWjllBESm/GG5C1ORj3vgCqlPA/yc7D8sezR0Q/lwDUAd5UUVdEKpvsnFzenLiE7NygcJGdG2zn5HrIyUREQrbwy/w1LJrsBz3OCjdP/HoC+J2ZFdWqTEREilCmGbtm9g/gWiAVcOAbYCGQDvwE3Ao8FJWEIlI67vD9M8HYUqH3RSV/bOMuwcq86xbCnNGQnVXyorCU1FSgZdghRESiKTsnlytfncqomb8ypipgwa+jG96ZwZifV/LY2b2okqo1e0UkCbnDZ7flbw+6E1JSw8sT3zYBa4HZZvYiMAfYWvggd38p1sFEROJVqT9hm9nvgT8DjwPHEKy2BIC7bwQ+BI6PVkARKaWFX8Lq2cG4yzCou2/JH2uWP2t3+wZY/HX088mtwGVmdmDYQUREouXdKUsZNfPXIveNmvkr705dGuNEIiJx4qf3YenkYNzmSOg4ONQ4ce4FoAfQALiGYAbvC4Vu/wkjmIhIvCrLjN3Lgffc/U97uERiBmp4LhKeic/kj0uyaFphnYfCt08E49kjoV3/qMSSgLt/YWYXA9+aWd7VDjm7H+YXxzyciEgZvTFpCankcErqBJrbGgCa2xpOTx3HOzn9eHPiEob30cUKIpJksrNg9J3524PvDCZSyJ4MCDuAiEiiKUthtxPwZDH7VwGNyhZHRMpl4zKY9XEwbtQJ2h5V+udodSik14XMDUGf3SH36gNoFJnZwQSzDaoAR0ZuhTmgwq6IJIyV6zbzWNojDE2duPO+dNvBP9OeZmDKVO5Zd0OI6UREQjL5BVi3IBh3OwX27R1qnHjn7l+EnUFEJNGUpdlZJlCzmP2tgfVlSiMi5TP5BfDI5M++l5StIJuaBh2PCcbrF8PKn6IWTwB4GNgBnAg0cPeUIm5qvCYiCeXM9K8YmjoRL7ROmjsMTZ3Imelq7SMiSSZzI3zxj2CckgZH/zXcPAnIzBqZmSaNiYgUoyyF3e+Bk4vaYWbpwHnAV+UJJSJlkJ0VFHYB0mpCjzPL/lydhuSPZ48sVyzZTXfgfnf/yN3Xhx1GRCQazkgdB+z+fWLe9vDI/srCzGqYWS8zO9bMjomMa4SdS0TiyNePwNbVwbjvxdCgXbh5EoSZNTezF81sPbACWGFm68zsBTMrxeIhIiLJoSyF3X8Ch5rZywQFCoB9zOxYYBzQArg/OvFEpMR+/hg2rwjGPc4I2imUVYdBkBLp1KLCbrStBLLCDiEiEk21tq8odn+jnFUxSlJxzKy+mV1jZl8D64BJwAhgZGS8zsy+NrM/mVn9MLOKSMg2LodvHg/GVWtDvz+HmydBmFkrgvPpecB84NXIbT5wPvC9malhu4hIAaXusevuo83sDwSXE58dufvlyM8s4Hfu/k2U8olISU18Nn9clkXTCqpeD1ofDgu+gKWTYNMKqN20fM8peZ4HzjWzx9w9O+wwIiLl5e6s2l6F4v7StrotYpYn2sysLvBXggWE04HZwH+BecAawAhWcO8AHAI8CNxjZo8Df3P3DWHkFpEQjfs/2LE1GB/xJ6ipbgIldDdQHzjO3UcU3GFmQ4F3I8dcGPtoIiLxqSyLp+HuT5vZh8DpQBeCD7RzgDfdfWkU84lISayYCYsiHVBaHQZNu5X/OTsPCwq7AL+Mgt4XlP85BeBL4DjgWzN7AlgA5BQ+yN3HxzqYiEhZzJj0FZ2zlwefBvfkwPNilqcCzCNYY+L/gFfcfUFxB5tZO4LZZpcCF6FFhUWSy6rZMDUy76l2Mzjk8nDzJJZjgCcKF3UB3H2kmT1J/uQyERGhjIVdAHf/FXg0illEpKwKztY9qJyzdfN0HgKjbgzGs0eqsBs9owuMnwUKLTWERe7TAmoiEv82LKXFyAtIt2IuQOh6PPQ4K3aZou9u4Cl3316Sg919PnCnmd0LXFahyUQk/oy+Azw3GA+4GapWcPvteq12/ZnY6hNMGNuTOUC92EQREUkMZS7sikicyNwA098IxrWaQpfjo/O89dtAk26wcibMHwtZWyv+g2lyuCjsACIiUbF9E1tfOJWGucHiQN+nHUTfIeeS9dH1VCOL7VSl2on/Coq6KYn7XZW7P1zGx20naF0mIsli0TcwOzLZtHEX6BGDyaXnv1/xrxE7GUB/4Kk97O8XOUZERCLKVNg1s8OAK4COQEN2v/jO3b19ObOJSElMfwN2bAnGvS+EKlWj99ydhwaF3exMmD8OugyL3nMnKXd/MewMIiLllpMNb11IjXWzAJiR25atJz6N7d+WlR/fS0tfxkprRMte54YcVEQkRtzhs7/mbw+6E1I1j6qU3gJuMLMFwL15PcrNrA7wF2A4cG95X8TMrgEuIbhK7gfgInfPLO/zioiEIaW0DzCz3wETgFOAqsBiYFGh2+IoZhSRPXHPb8NgqUFhN5o6Fyjkzt6t1ZWIiCQjdxhxHcwNOstkeCP+2fBOjurWJtxcMWBmdc2sRqH7jjGze83scTO7yMyi+A2riCSMWR9CxsRg3Ppw6HRsuHkS093AN8CNwGozW2RmiwgWqvwL8DXwt/K8gJntC1wF9HH3/Qnan51ZrtQiIiEqy1eINwPTgGPdfXVZX9jMWgIvAfsAucDThS91MzMjuIRtGLAVuNDdp5T1NUUqnQXjYfXsYNzlN1CneXSfv3mvoL3D5hXBAmq5uZBS6u+DkpqZ9YP8xdDytvdGi6eJSNz66mGY/AIAG706v836M9cNOpjgY1vlZGbpwGvACZHtVwha6zxDsDp73j/egavMrJ+7bwohqoiEIWcHjL4zf3vwXVCJz4kVxd23mtlRwG+Bk4C2BOfXT4D3gRfcvZim7iVWBahuZjuAGsCyKDyniEgoylLYbQr8szxF3Yhs4Dp3n2JmtYHJZvaZu/9U4JihBO0eOgIHA09GfooIwMRn8scH/S76z5+SAp2GwJQXYcsqWDoZWvaN/utUbuMAN7Pq7p6Vt13M8Vo8TUTi18z3YPTtAOzwVP6w40+kNN2PwV2bhhyswv0ROBGYDKwgWJV9K0FR998ERYc04GTgLOAmgskQIpIMJr8Aa+cF4/1OghZ9wkyT0Nw9h+BLs2f2dmwZn3+pmd1PcJXxNuBTd/+0Il5LRCQWylLYnUWwWmW5uPtyYHlkvMnMZgH7AgULuycCL7m7A9+aWT0zaxZ5rEhy27AUfi6wOEObIyvmdToPCwq7ELRjUGG3tH5LUKjdUWhbRIDznvuOjHXbaFG/Oi9frO9u49ri7+Dd3+/cvDn7Yr7KPYDHBnYgJaXSz0w7Gxjj7oMAzOx64B/A8+5+eYHj3jazugQty1TYFUkG2zfBF/8IxilV4Ojbws2TwMysClDD3TfuYX8dYGt5Zu2aWX2COkNbYD3wlpmd6+6vFDruUuBSgFatWpX15UREKlxZCrt/Bx41sxfcfWk0QphZG6AX8F2hXfsCSwpsZ0Tu26Wwq5OuJKXJL4DnBOO+l1Tc5V7tjoIq1SF7G8weCYNur5jXqaTc/YXitkWSXca6bSxYvSXsGLI3a+bB62dBznYAHsk+ibdy+tOhSS2G7t8s5HAx0Rp4vsD2B8B9QFGzvD4Bjo5FKBGJA18/GlzZBtDnt9BQa4iXwwMEV+122sP+icDHwHXleI1BwAJ3XwVgZu8ChwG7FHbd/WngaYA+ffpoUoaIxK1SF3bd/d3IohE/mdn7wEIgZ/fD/O6SPJ+Z1QLeAf5UxDdzRVWqdjup6qQrSSc7a2d/Q6rWgu5nVNxrpVWH9gOC2bqrZsHaBdCgbcW9XiVnZrcB77r7j3vY3w041d3vim0yEZE92LoW/ns6bF0DwMTag3hw1ekAXDmgA6mVf7YuQD2CxXvyrI38XLP7oawlWGBYRCq7TSvg68eCcdVa0O+GcPMkvmMJagN78g5B793yFHYXA4dEahrbCL6Im1SO5xMRCVWpV0Eys07AXUBt4Dzgr8AdRdxK8lxpBCfn/7r7u0UckgG0LLDdAjU2FwlW3d2yMhh3PwPS61Ts63Uemj/+ZVTFvlbldwfQvZj9+wMlmhZtZkPMbLaZzTWzvxSx38zskcj+GWZ2YOT+lmY21sxmmdlMM7u6wGPuMLOlZjYtchtWun+eiFQqOzLh9bN39o7c1uxgzl19HmC0aViD47onxWxdEZGifXEv7IhcdXL4n6BW41DjVAItgXnF7J/PrvWBUnP374C3gSnADwQ1kafL85wiImEqSyuGJ4AmwNXABGBdWV7YgqWTnwNmufuDezjsQ+BKM3udYNG0DeqvKwJMfDZ/XBGLphXWaQg71/SaPQIO+UPFv2bySidYXLJYZpYKPA4MJvgSbKKZfVjCBSj3tnjlv9z9/qj9i0QkMeXmwgeXw+Jvgu2GHfl77VvZ7psAuHxAB6qklnqOQCKraWYNIuO8n7UL3JenVgwziUhYVs+ByZF1KGrtA4deXvzxUhJZQHHfGO4D5Jb3Rdz9dko4kUJEJN6VpbB7CHC/uz9aztc+nGDG7w9mNi1y381AKwB3fwoYAQwD5hKsPHxROV9TJPH9+mP+H9mtj4AmXSv+NWs1CVb3zZgIC7+CbeugernXUEwakYUe6hW4q6GZFdUQvAFwDrv2Ft+Tg4C57j4/8hqvEywEUdIFKPe2eKWIJLuxf4MfI1fE1mjI0t+8yGvPLgKgRf3qnNxr3xDDheKpyK2goq44E5FkMPqO/PUu+v8FqtYMNU4lMRUYbmb/cPesgjvMrCpwBjAjlGQiInGqLIXdjcCq8r6wu39J0T10Cx7jwBXlfS2RSmWX2bqXxO51Ow8NCrueA3M/hwNOi91rJ75rgLwlkh14KHIrigEladBW1OKSB5fgmF0WoNzD4pVXmtn5BP3GrnP3Ml2ZISIJbPKLMOGBYFwlHc56nUe+yyEnN1jK4PL+HUhLrtm6L4YdQETiyOJv4eePg3GjTtDrvHDzVB6PA28B/zOzm8gv4nYH7gH2A84OKZuISFwqS2H3TeAUgpOuiMRS5gaY8WYwrrUPdDkudq/deRh8HlnPa/YIFXZLZ1zkpxEUeN9j99kGDmwGvnX3r0vwnCVZXLLYY/aweOWTwN2R4+4mWJ34t7u9uNmlwKUArVoVNflYRBLW3M/h42vyt0/+Nxm19uedKeMAaFY3nVN7J9dsXXfXVWMiEnCHz27L3x50B6SW5c9qKczd3zGz/wNuIph04JFbCsHn2n+4+xshRhQRiTtl+Q30b+BFM3sfeARYAOQUPsjdF5cvmojsZtpr+Qs09L4QUtNi99qNu0D9NrBuIcwZDdlZUEWLfpeEu38BfAFgZq2BpyILN5RHSRaX3OMxe1q80t1X5I3N7Bng46Je3N2fJrLQRJ8+fQoXlEUkUa2YCW9ekH958eC7odtJPPneD2RHZutedlR7qlVJDTGkiEgJvHQSrF8M9VrB+e9H73l//hiWRD7GtTo0mPwgUePut0RqDecCHQgKurOBV919YpjZRETiUVkKuzMJvjXrAxxfzHH6xC8STe75bRhSqgSF3VgyCz64fvsEbN8Ai7+Gdv1jm6ESKO2sLzNrSlCMHezuYwrsmgh0NLO2wFLgTHa/NK3IBSiLW7yyQA9egJOBH0uTV0QS2Mbl8N/hkBUsjkafi+GwP/LrhkzempQBQOPa1Tijb7kWJJdCzCwdGA9UI/hs/nZkYR8RKY/1i2HtvOg+Z042jL4zf3vwXcFnZImqSAFXRVwRkRIoS2H3Lna/3FdEKtr8cbBmTjDuchzUKW7B2ArSeWhQ2AWYPVKF3djZ7S8Gd882syuBTwi+SHve3Wea2WWR/cUtQFnk4pXuPgK4z8x6EpznFwK/r6B/k4jEk+2b4dXhsDEo4NLxGBh6H5jx1BfzyMoJFiH/fb92pKcl33f3Zja/lA9xd29fwmO3AwPdfXPkaoovzWyku39bytcUkYo29aX8z+NdT4CWB4WbJ0mYWW+CRYYnuHtm2HlEROJJqQu77n5HBeQQkb3ZZdG034WTodWhkF436PU7ewQMuVezFEIUKcSOKHTfUwXGRS5AWdzile6u1T9Ekk1ONrz9W/g10vp7nwPgtOchtQorN2Xy2vdBd62GNatyzsGtQwwaqjbANqC0Bd69ipyrN0c20yI3TaIQiTfbN8PY/wvGlgpHa2J9tJnZ9cBR7n58gfteBc6IbM43syMKtg4TEUl2SbWcsUjC2pARFFIBGneF1oeHkyM1LZjFBcHlbSt/CieHiIhEhzuMuhHmfBJs124OZ78J1WoD8Mz4+WzPDmbrXnJkO6pXTb7ZuhFrgOpANvAMQeHhgOJupXlyM0uNXEGxEvgsCn3YRSTavnkctqwMxn0ugkYdws1TOZ0J7Fyrx8wGRu57HbgFaAbcEE40EZH4tNfCrpm1MrNWhbf3dqvY2CJJZtJ/wIM/rOl7cbizZDsNyR/PHrHn40REJP5983j+FSFVa8M5b0Gd5gCs2bydV74N/r6uVyON8w5N2tm6EBQTTifoaf4AsNTM3jCzYyN9y8vF3XPcvSfBIpcHmdn+Bfeb2aVmNsnMJq1ataq8LycipbV5JXz1cDCuWguOujHcPJVXG+DnAtsnAcuBc939XuApil/nR0Qk6ZRkxu5CgkseqhbYXlCCm4hEQ/Z2mPJiMK5aG3qcGW6eDoOCxdsAZo8KN4uIiJTdTx/Cp7cGY0uF4S/APvn1xOe+XMC2HTkAXHx4W2pVK8vSDJWDu2e7+zvufhzQErgT6A6MBBab2d/MrNzT99x9PTAOGFLo/qfdvY+792ncuHF5X0ZESuuLf8COLcH4sD9CrSbh5qm8ahKsC5FnIDA60rIG4Cdg35inEhGJYyX5hJ63WFp2oW0RiYWfPoQtkdk5Pc7ceXlsaKrXC1pBLPgClk6CTSugdtNwM4lIwrpv2+00rPora7btA3wRdpzkkTEJ3v0dOz/SHfdg8MVdxPqtWbz0zSIAaqdX4YLD28Q+Y5xy91+Be4F7zexwgoUprwJuMrOr3P3x0jyfmTUGdrj7ejOrDgwC/hHt3CJSRqvnBlfPAdRsAodeGW6eym0pwZdmmFlrYD/gwQL76xMsOCkiIhF7LewWXixNi6eJxFjBRdP6XhJejoI6DwsKuwC/jILeF4SbR0QS1j65K2mZ8itpuWr7HzNrF8CrZ0B2ZGHxI66B3hfucsh/vlrI5u3Bd/oXHdaGOulpMQ6ZMCYDecWHQ4CGZXiOZsCLZpZKcDXdm+7+cfQiiki5fH4neHD1Av3/AtVqhZuncvsIuDxyPjyYoIj7vwL79ye4glhERCJK/VeUmZ1vZm2K2d/GzM4vVyoRCfz6Ayz5Nhi3ORKadAk3T57OBfvsjgwvh4iIlM7WtfDf02Hr6mC72ykw8LZdDtmYuYPnvwq6atWsmspvj2gb65Rxz8wONrOnCHo/vgwY8HvgX6V9Lnef4e693L27u+/v7ndFOa6IlNWS72HWh8G4YUc4UH/mVrC7gC+BywmKuH9y9xUAkSsaTgbGhhdPRCT+lKVZ2n+A89jzN2UHR455qYyZRCTP98/kj+Nlti5A/TbQpBusnAnzx0LWVqhaI+xUldUGgst8Z4YdREQSXPZ2eOM8WDMn2G55CJz0JKTs+j3/S18vZFNmMFv3/MPaUK9G1cLPlJTMrCnBZ+CLgK7ACuAZ4Hl3/7m4x4pIAnKHzwp88TXodkjV1QsVyd3XAUebWR1gm7vvKHTIUcCS2CcTEYlfZbnucW8r/6YBuWV4XhEpaNt6+OGtYFy7GXT5TahxdtN5aPAzOxPmjws1SqIxs9TI1Q+vmNlnZtYrcn/9yP07F4Vw90x3fzFvtoKISJm4w4d/hEVfBtsN2sGZr0Ja+i6HbdmezXNfBrN1q6elcolm6wJgZh8SFBP+DvxCsFJ7C3e/QUVdkUpq9khY/E0wbnkwdDku3DxJxN03Fi7quvs2d5/u7mvz7jOzpmaWY2YDY59SRCQ+lHV54yIXTzOzesBvCC5LE5HymPYq7IgsCtv7ovibIdB5GEy4PxjPHgFdhoWbJ0GYWQ3gU+AwYAtQg2AhCICNBAvyPA/cGkpAEamcxv0fzHgjGFdvAOe8DTV3bwf7yreLWLc1+Fv6nINb0bBWtVimjGfHAdsI+j+uJFjgbJDZHuc7uLtfHaNsIhJtOdkw+vb87cF3w57/e5dw6Y0RkaRWosKumd0O5F2H4sArZvZKMQ95oLzBRJJabm7+omkpVeJzcbLmvaBWU9i8IlhALTd3t8t5pUh3AH0IeoR9TXApLwDunmNm7wLHosKuiETL1P/CF/8IxqnV4KzXoGH73Q7blpXDMxPmA1C1SgqX9msXy5SJoDowvITHOqDCrkiimvYKrP4lGHc5DlodHG4eERGRPSjpjN1pBD1zDTgfmADML3SMA5uBb4HXopRPJDktGAdr5wXjrsdD7X1CjVOklBToNASmvAhbVsHSydCyb9ipEsHpwNPu/oGZFbV6+lzgjBhnEpHKav44+Oiq/O2Tn4RWhxR56KvfL2b15iwAzurbkiZ10os8LkmpJ4VIssjaAmPvCcaWCkffXvzxIiIiISpRYdfdPwA+ADCz1sDf3P3zigwmktS+fzZ/3Pd34eXYm87DgsIuBO0YVNgtiebA9GL2bwVqxyiLiFRmK2fBG+dDbrAQGkffDvufWuShmTty+PcXwReKVVNTuKz/7jN6k5m7Lwo7g4jEyDdPBFekARx4PjTuFG4eERGRYpT6uml3H1Caoq6ZNTKz+WZ2aGlfSyQprV8Cv4wMxk32g9aHhZunOO2OgirVg/HskeFmSRxrgH2L2d8NWBajLCJSWW1aAf89HbZvCLYPvACOuGaPh781aQkrN20H4LQ+LWhWt3osUoqIxJfNq+Crh4JxWk3of1OocURERPYmFg0xU4E2BH3JRGRvJj0PnhuM+14S3ws1pFWH9gOC8apZsHZBuHkSw+fARZFF1HZhZm2B3wKjYp5KRCqPrC3w2hmwYUmw3X4g/OaBPf4+ycrO5clxwWzdKinGH47SbN2CzOxiMyv1Z2YzSzWzSyoik4hUkPH3QdbmYHzYlVC7abh5RERE9qKkPXZFJBayt8OUl4Jx1drQPQFarXYeGrRhgGARtUP+EG6e+HcnMAmYSNCP3IEhZjYYuAzYDvxfePFEpKIs35hJswI/K0RuDrxzCSybGmw36QanvwipaXt8yDtTMli2IROAk3vtS8sGu33vlOweBG40s0eA1919dXEHm1lT4GzgCqAh8Gxxx4tInFgzL5hgAVCzMRz2x3DziIhI+VkKNvDmsFPsqvTzBYqlwq5IPPnpA9ga+Xux51lQrVa4eUqi0xCCdRU9KPCqsFssd59rZkcDzwN3Re6+PvLzR+A8d18SSjgRqVDZOb7LzwrxyS35X7bVbgbnvAnpdfZ4+I6cXJ4YNxeAFIMrBnSouGyJqyPwN+BfwANmNgn4HpgHrCX4JdggctwhQM/I454Dbot1WBEpo8/vyu9JftSNUE1LHoiIJDzP5cGnnws7xS6uvfTiqD6fCrsi8eT7Z/LHfRPk6s1aTaBFH8iYCAu/gm3roHr9sFPFNXefDPQws/2BrgRFgTnuPjXcZCKS0L59Er57Mhin1YSz34C6LYp9yAfTlrFk7TYATuy5L20a1azolAnH3VcCl5rZnQRXVpwGXF3UocBPBEXgZ9x9eexSiki5ZEyCn94Pxg3aQ+8Lw0yTtMzsfGC8uy/cw/42QD93j1ziyAbgImBmTAKKiMQhFXZF4sXy6ZDxfTBu2w8adw43T2l0HhoUdj0H5n4OB5wWdqK4ZGa1gOnAo+7+kLv/SDBLV0ogOyeXd6cs5Y1JS1i+fhvN6lXnjD4tObV3C1JT4rgXtUgs/Pw/GBVZ5MdS4PQXoFmPYh+Sk+s8PjaYrWuarbtX7r4U+CvwVzNrAuwHNCYo6K4CZu6tTYOIxCF3+KzA5PpBtxfbvkYq1H+A84CFe9h/cOSYlwDcPRN4MSbJRETilAq7IvFil9m6vwsvR1l0HhZcvgbBJcAq7BbJ3TebWUNgc9hZEk12Ti5XvjqVUTN/3Xnfsg2ZTF60jjE/r+Sxs3tRJTUW64GKxKGlk+Htiwnqi8Cw+6HTMXt92MczlrFg9ZbgIQc0o0OTBGj/Eycis3hXhp1DRKLgl09g0VfBuEVf6HpCuHmS296+qU8DcmMRREQkUeivYJF4sG0d/PB2MK7dPCiUJpLGXaB+m2A8ZzRkZ4UaJ859C/QJO0SieXfK0l2KugWNmvkr705dGuNEInFi3SJ49UzIDtopcNgfoe/e+3bl5jqPjZm7c/uPAzVbV0SSUE42jL49f3vwXcElDBKmIhvRm1k94DeA2tyIiBSgwq5IPJj2av4f5X0ugtQEm0xvll+M3r4BFn8dbp749hdguJldZKa/HErqjUnFryf35kStNydJaNt6+O/psCUycbTrCTDormIfkmfUzF+ZszK4eODYbk3pss+eF1gTEam0pr8Kq34Oxp2HQevDws2ThMzsdjPLMbMcgqLuK3nbBW/AGmA48HqogUVE4kypq0dm1g+Y5e6r9rC/EbCfu4+P3LUZuBOYX+aUIpVZbi5MfDYYp6TBgReEm6esOg+Fb58IxrNHQrv+ocaJYw8C64BngfvMbB6wtdAx7u5HxzxZHFu+flux+5ftZb9IpZOdBW+eB6tnB9st+sIpT0PK3r+zz811Hvl8zs7tPw7sWFEpRUTiV9ZWGHtPMLYUGHRHqHGS2DSCnrkGnA9MYPfagRPUFb4FXotlOBGReFeWaYFjCRqav7qH/UdH9qUCuPsWgsKuiBRl/hhYG/nsst8JULtpbF63Xqtdf5ZXq0MhvS5kbgj67A65V5eyFa0dwYfTxZHtGL3hia1Zveos25C5x/3N61WPYRqRkLnDR1fDgsh36PXbwJmvQVrJ/jsYPWsFP/+6CYCBXZqw/751KyioiEgc+/YJ2BS5qr/XeYm1cHEl4u4fAB8AmFlr4G/u/nm4qUREEkdZCrt7q9SkoobmIiX3/bP541gumnb++9F9vtQ06HgM/PAWrF8MK3+Cpt2i+xqVgLu3CTtDIjqjT0smL1q3x/3D+7aMYRqRkI3/Z3D5MEB6PTjnbajVuEQPdXceVW9dEUl2W1bDlw8F4yrVof9NocaRgLsPCDuDiEiiKWuP3SIbmkccBqwu4/OKJJd1i+CXUcG46f7Q6pBw85RXpyH549kjwsshlc6pvVswpNs+Re6rVa0Kx3VvFuNEIiGZ/gaM/XswTq0KZ74KjUreSmHcL6v4YekGAI7s2IherepXREoRkfg2/p+QFVy5wGFXQh19jogHZtbBzIYUuu9gM/vIzL4ys0vDyiYiEq9KVNg1s6vNbL6Z5fW6eShvu9BtHfAH4OMKSyxSmUz+Dzu/J+l7ceK3LugwCFIiFwLMHhVuljhnZnXM7BQzuz5yO8XMaoedK16lphiPnd2L+07rTp/W9WlWN53a6cH/1zZvz95lBqJIpbVgAnxwRf72iU9Am8NL/HB359ECvXWvOlq9dcvDzGqa2SAzO8fM1FZHJFGsnQ8TnwvGNRrCYVeFm0cK+gdwY95GZP2ekcCxwP7Ak2Z2UjjRRETiU0lbMawHFkXGbQhWpFxR6BgHfiRoaP5Q+aOJVHI7MmHKS8G4Wh04YHi4eaKhej1ofTgs+AKWToJNK2LXMziBmNklwANALfLb2ziw2cyudffnQgsXx6qkpjC8T0uG9wnaLixdv41j/zWezduz+fcX8xjUtSm9W2v2oVRSq2bDG+dA7o5ge8Ct0P30Uj3F1/PWMGXxegAOadeAvm0aRDlk8jCzPwD/B9QhOH8PBlaYWWNgCXCVuz8dYkQR2ZPP784/lx71F0ivE24eKagPUPDceRbBebYn8AswDrgaeD/GuURE4laJZuy6+4vuPiDS82YR8Je87QK3ge5+grvf4+6FV3gXkcJ+eh+2rgnGPc+GarVCjRM1nYflj3/RrN3CzOwEgg+sq4BrCYoBg4FrgJXA02Z2fHgJE8e+9apz2/H7AZDrcP1b09malR1yKpEKsHkV/Pf0YHFKgJ7nQr/rS/00DxecrTtQs3XLysxOBR4nWFD4EgqsP+Huq4BRwInhpBORYi2dDDPfDcb120LvC0ONI7tpDCwrsD0E+Mrdf3T3LOB1YL9QkomIxKlS99h197bu/mFFhBFJKt8/kz/ue0l4OaKtc8E+uyPDyxG/bgBmAT3d/WF3/zxyewQ4EPiZApegSfFO792CQV2bALBg9RbuGzU75EQiUZa1FV47E9ZHLpxq1x+Of6jUrXu+m7+G7xesBaBP6/oc2r5hdHMmlz8DY939ZCIruRcyieCSYRGJJ+7w2e3524NuhypVw8sjRdkC1AMws1TgCGB8gf3bCGbwiohIRFkXTxOR8lg2NWhVAMEf6aVY+Cbu1W8DTboF4/ljg6KEFNQDeMHdNxfe4e6bgBcjx0gJmBn3nHIA9WqkAfDC1wv5eq7W75RKIjcH3v1d/u+Lxl1h+EuQmlbqpyrYh/qPR3fEEr2ne7gOAN4rZv9yoEmMsohISc35DBZOCMb79ob9Tgo1jhRpJnCemTUEfkfQtuyzAvtbE1z1JiIiEXst7JrZAjObZ2Zpke2iFk0rfJtX8dFFEtjEZ/PHlWm2bp7OQ4Of2Zkwf1yoUeJUcRUVj1mKSqJJ7XT+dlL+5Lg/vz2DjZk7QkwkEiWf3QY/R9ajrdUUznkT0uuW+mkmL1rHl5EvPHq0qEu/jo2imTIZ5VD8Z+jmBLPORCRe5ObA6AKzdQfflfiLFldO/wS6E7QnexyYCkwosP8YYEoIuURE4lZJZuwuAhaTX2xYHLmvuNviqCcVqSy2roUf3g7GdVpAp6Hh5qkIBfvszh4RXo74NB24wMxqFt5hZrWACyPHSCkc1705x/doDgSLqv3t459CTiRSTt8/A988FozTasDZb0C9VmV6qkfH5PfW/eNAzdaNgukEK7TvxsxSgNOBiTFNJCLFm/4arIx8Nug0BNocEW4eKZK7/w8YSLAY+53AMe7uAJFZvBnAC2HlExGJR1X2doC79y9uW0RKadp/g5msAH0uhNS9/meYeJr3CmaXbV4RLKCWmwsp6vwScT/wLjDFzB4B8iqQ3YA/Ah2AU0LKltDuOqEb385fw6pN23lzUgbHdtuHo7s2DTtWmZ333HdkrNtGi/rVefnig8OOI7E0exSMvCEYWwqc9nxwXi2DGRnrGTc7uGp1v2Z1OLqrOgREwWPAa2Z2N/BS5L4UM+sM3ENwPlevdJG44TDm78HQUmDQHaGmkeK5+3h27aubd/8a9BlZRGQ3JWnFMD+yinve9m1mpgUhRMoiNxcmPheMU9LgwAvCzVNRUlKC2RAAW1YFKxALAO7+PnAlwaW6jwKjI7dHIvdd6e5FLcYje1G/ZlX+ceoBO7f/8u4PrNuSFWKi8slYt40Fq7eQsW5b2FEklpZNg7cvAs8Ntof8I7+9TRkU7K171dEdNFs3Ctz9DYIC7i0Ei2ECjCL4ou5k4A531+qhIvFi23rYtCwY9zwHmnQNNY7snZnVNLNBZnaOmSXut/QiIjFQkil0rYDaBbbvIOh7IyKlNW8MrFsQjLudBLUq8cwptWPYI3d/AmgJnAHcBNwMDAdauPuTYWZLdAO7NOWMPi0BWLVpO3/94MeQE4mUwvol8OoZsCOy6OQhl8PBl5b56WYt38hnP60AoHPT2hyz3z7RSCmAu98K9AEeBkYCnxLM5D3I3e8OM5uIFJK5PvhZpToMuDnUKLJ3ZvYHYCnBefUlgqsgMLPGZpZpZmX/xSgiUgmV5BrwpQSr/xakxX1EymLiM/njyrhoWkHtjgo+QGdvg9kjYdDte39MEnH39cBbYeeojG49ritfzl3N0vXb+HjGco7ttmxn/12RuJW5AV4dDpt/Dba7HAfH/K1cT/lYgdm6VwzsQEqKZutGk7tPQYv4iMSfnOygp+7GpcF23hUQh1wGdfR5IJ6Z2akEi6Z9AHwE7Fxx2t1Xmdko4ETg6XASiojEn5LM2P0AuMHMppnZmMh9t5rZmGJun1dgZpHEtG4h/PJJMG56ALSs5D0z06pD+wHBeNUsWLsg3Dxxwsx6mdkVxey/wsx6xjBSpVM7PY1/np5/YclfP/iRlRszQ0wkshc5O+DNC/IX9ml+IJzyDKSklvkp56zYxIgflwPQrnFNfnNAs2gkFXa2JdvjjDEzO8DMbotlJhGJyMmGty+ED6/MX9Miz8qfg/0Sz/4MjHX3kwnqEIVNAsrdFtLM6pnZ22b2s5nNMrNDy/ucIiJhKUlh90bgbmAL0Jpgtm5joG0xt3YleXEze97MVppZkdfKmll/M9sQKSpP04dkSWiTnmfnZPeDLoFk6HNYsC/kL6PCyxFfbgd+U8z+oYDOdeV0WPtGXHhYGwDWb93BTe/+QGRRZZH44g4fXwPzxwbb9VrB2W9A1RrletrHxs4l7//yVw7oQKpm60bTHcCTZvaWmaUXsb87wbleRGJt+msw66Oi9/0yEma8Hts8UloHAO8Vs385EI1edg8Do9y9C9CD/H7pIiIJZ6+FXXff5u63u/vh7t4eMOBP7t62uFsJX/8FYMhejpng7j0jt7tK+Lwi8WVHJkx5ORhXqwsHnB5unljpNITglIH67ObrC3xRzP4vgINilKVSu3FIF9o1qgnA5z+v5K1JGSEnEinChAdgauT3Q3pdOOftcvdfX7B6Cx9NDxYKat2wBifEuBVJlVTb5WclNYZgobQvzKwSN8wXSTB559M9mbKX/RK2HIqvUTQnmHBWZmZWB+gHPAfg7lmRFmkiIgmpJDN2C7sI+LqkB5tZupmdX9Rqlu4+HlhbhgwiiWXme7At8n/1XudA1Zrh5omVWk2gRZ9gvPAr2LYu3DzxoRHFn/fWR46RcqpeNZX7h/cgb6LiXR//RMa6reGGEinoh7dhTGSdrZQ0OOMVaNy53E/7+Ni55EZm617evz1VUsvyca/smtVJ3+VnJfUf4CSgK/C9mZX70mARiYINS/eyX1/yxrnpwLFF7TCzFOB0YGI5X6MdsAr4j5lNNbNnzWy3P87M7FIzm2Rmk1atWlXOlxQRqTil/qTv7i+6+8JSPKQuwYffbqV9rYhDzWy6mY00syKfQyddiXsFF03rc3F4OcKQ147Bc2Cu2m8DKyn+fLg/+sIrag5sVZ/LjmoPwObt2dzw9gxyc9WSQeLAoq/h/T/kb5/wKLTtV+6nXbxmK+9NDQob+9arzsm9WpT7OaVo7v4xwayvKsBXZjZ0Lw8RkYpWd9+97Nc5Mc49Bgw1s7uBBpH7UsysM8Giw92AR8r5GlWAA4En3b0XwQzgvxQ+yN2fdvc+7t6ncePG5XxJEZGKE6spHGW9Fm8K0NrdewCPAu8XdZBOuhLXlk6BpZODcbsB0KhDuHlirfOw/LHaMQCMBi4p6osqM9sPuDhyjETJ1YM60mWf2gB8PW8NL32zMNxAkvSqkA2vnw05WcEd/W+CnmdF5bmf/GIuOZEvL/7Qvz1Vq8R2tm6ycfdpBO1z5gEfmtkfw00kkuR6nlv8/gPPi00OKRN3fwO4B7iF/L63o4CfCNrf3OHuI8v5MhlAhrt/F9l+m6DQKyKSkOL60767b3T3zZHxCCDNzHSJsiSWic/mjw/6XXg5wtK4C9RvE4znjIbsrFDjxIG/EfQPm2hmj5nZJWZ2sZk9RrDSbzbBgpUSJdWqpPLg8J6kRfp93jvqZ+av2hxyKkkqOdkw5WWaeHBV0T6+Mr81TY+z4Kgbo/IyS9dv4+3JwWXG+9RJ5/Q+mpkWC+6+DDgCGAk8RBEzv0QkRlKr7Hlf1+ODc67ENXe/FehDsMDZSOBTgpm8B7l7uT8ju/uvwJLILGCAowkKxyIiCSmuC7tmto+ZWWR8EEHeNeGmEimFrWvhx3eCcd2WkcXEkoxZ/qzd7RtgcYlbdFdK7j6P4APkfOBy4Gngmch4HjDI3eeEl7By2q95Ha4+uiMAmTtyue6t6WTn5IacSpJCTja8fSF8eCXV2AEUuIypRkP4zYPBeTIK/v3FPHbkBLN1f39UO6pVSY3K88reuftW4ESCK8zK2n5MRMpjRyaMvSd/O7Vq8LNKOpz4OJz+IqTovJgI3H2Ku1/n7r9x92HufrW7T4riS/wR+K+ZzQB6EswSFhFJSKEWds3sNeAboLOZZURmrV1mZpdFDjkN+NHMphP00jnT3dUcURLH1JchOzMY97koeT9Mdi7QdnB2ea+eSnzuPsnd9ye47OsM4Eygl7sfEOUPrVLAZUe1p0fLegBMXbyepyfMDzeQJIfpr8Gsj4ret3UNzHw3Ki+zYmMmr09cAkCjWtU466BWUXleKVJbimgP5oE/AcOA38Y4k4hMfAY2BOdBepwdTKoAqLMv9Do3eT+HJxAzm29mJxSz/zgzK/cHOHefFmnl2N3dT3J3rfAsIgkr1MKuu5/l7s3cPc3dW7j7c+7+lLs/Fdn/mLt3c/ce7n6Iuyf3VD9JLLm5MPG5YJxaFXqdH26eMLU6FNLrBuPZI0DfzwA7P1S+5e5vuvv0sPNUdlVSU3jg9B5Ui/Qc/ddnv/DzrxtDTiWV2rb18NXDxR8z5eWovNS/v5hPVnYwC/33/dqRnqYCRkVx90WRGbp72j/K3V+MZSaRpLdtHYy/PxinVoMBN4ebR8qqDVCrmP01gdaxiSIikhjiuhWDSEKbOxrWLwrG+50EtZJ4Yb/UNOh4TDBevxhWJm8bKzNraGZdC93X1sweNbP/mtmxYWVLBh2a1OKGIV0A2JHjXPPG9J3FMJFyy8mGxd/B2P+DZwfDfW1hzV46q2zIKPfLrt68nVe/D37fNKhZlXMO0WzdaDKzVmbWqvD23m5hZhZJOhMehMz1wfjg30O9lqHGkQrTFNjjF2siIsmomO7yUaXpeZJ8Jj6TP07GRdMK6zQEfngrGM8eAU2TtgXhw0AnglXUMbNawASgeWT/GWY20N3Hh5Sv0rvosDZ8OvNXvluwllnLN/LomDlcd0znvT9QpDB3WDsf5o+FeWNhwXjYXspZ4HXLv8DZMxPmk7kj+ILi4iPaUqNqrD7eJY2FQK6Z1XD3rMh2ST7batq0SCysXwLf/TsYp9eDI68NNY6Ujpn1A/oXuOsUM+tQxKENCNqXTYtBLBGRhBGrT/7RWRVEJFGsXQBzPgvG+3SHFn3DzRMPOgyClCqQmw2zR0G/P4edKCyHAq8U2D6DoKg7jOCD6mfADYAKuxUkJcW4//QeDHloPFuycnhi3DyO7tqUnpH+uyLF2rYuKODOGwvzxuRfmVFYShVoeTBUrw8/f7zn5zvwvHLFWbsli5e/CTLUrZ7G+YfqCtUKcBdBITe70LaIxIOx90DO9mB85HXBeVcSyQDg9sjYgVMit6LMBa6JRSgRkURR4YVdd1+BWj5Ispn0HDv/5jvod1Fb8TyhVa8HrQ+HBV/A0kmwaQXUbhp2qjA0BRYX2B4KTHL3UQBm9gKgqSYVrGWDGvz1uP34y7s/kJPrXPvmNEZcdaT6ksrucnZAxqSgiDt/LCydDL6H9h2NOkG7AdB+ILQ5HKrVhtwceOuCohdQ63o89DirXPGe/3IBW7NyALjo8DbUTk8r1/PJ7tz9juK2RSREv/4YLFIJwWJpB10abh4pi4eAFwgmg80H/gR8UOgYBza7+9pYBhMRSQRlKuyaWU3gbKAj0JDdZ+S6u19czmwiiWnHNpgamZCZXhf2Py3cPPGk87CgsAvwyyjofUG4ecKxA6heYPsogg+zedYTnFelgp3RtyWjZv7KuNmrmL9qC//8ZDZ/PW6/sGNJ2PLaK8wbE9wWTICsTUUfW71+pJA7IPhZVE/HlFQ47QWY8TrbP7iGamSxnapUO/FfQVG3HKu0b9i2gxe/XghA7WpVuOiwtmV+LhGRhDT6DnZOphhwC6Slh5lGysDdNwAbAMxsAPCTu68qyWPNLB0YDnwSmVAmIpJ0Sl3YNbODgP9RfOHBARV2JTn9+G5wqS5Az3Ohao1w88STzkNg1I3BePbIZC3s/gKcamaPA8cT9Av7vMD+loBmI8SAmfGPU7tzzL/Gs2HbDp7/agGD92vKIe1UV086W9dG2iuMCVosbFhc9HEpadDqkPxCbrMeJSvMplaBXuey8sO/09KXsdIa0bLXueWO/cJXC9m0PegOcMFhbahbQ7N1YyHS+7FD3pUWkfsOBm4lOKe/6O5Ph5VPJGksGA9zI63Pmu4P3YeHm0fKzd2/KOVD6gL/AQYDKuyKSFIqy4zdB4E0gm/GxuhyCJFCCi6a1lffb+yifhto0g1Wzgwuac7amoyF78cJZuiuA2oQXHJWsLDbD/gh9rGSU9M66dx1Yjeufn0a7nD9W9MZ9ad+1KqmxacqtewsyJgYWfRsDCybWkx7hc5Ba4X2A6H1YVCtVmyz7sGmzODLCIAaVVP57RGarRtD/yAo4Oa10GkEjARqAduAJ81spbu/H1pCkcouNxc+uy1/e9Cd5boCQhKaet6JSFIry1+uvYF73P3taIcRSXgZk4MCAUD7o6Fh+3DzxKPOQ4PCbnYmzB8HXYaFnSim3P0lM8sFTia47Owed98BYGYNCWYePBFixKRzQo/mfDLzV0b88CsZ67bx9//N4v9OOSDsWBJN7rBmbv6M3IUTIGtz0cfWaAjt+geF3HYDoO6+MY1aUi99s4gN23YAcN4hrWlQs2rIiZJKH6DgjNyzgDpAT4KrMsYBVwPvxziXSPL46b38z9xt+0GHo8PNIyIiEpKyFHY3AmuiHUSkUig4W/eg34WXI551HgYT7g/Gs0ckXWEXwN1fAV4p4v41BF+e7aTeYRXPzLj7xP35fsFaVm/O4rXvF3NMt6YM6Nwk7GhSHlvXBl8ezRsT/NywpOjjUqsG7RXyFj3bpzukxPear1uzsnnuy2C2bnpaCpcc2S7kREmnMbCswPYQ4Ct3/xHAzF4HbgkjmEhSyM6Cz+/K3x58lxYqFhGRpFWWwu67wLFoRpnIrrasCfrrAtRtBR2PCTdPvGreC2o1hc0rggXUcnPjvogSMvUOi4GGtarxf6d053cvTQLgxrdn8Ok1/ahXQ7MgE0Z2FmR8n7/o2bJp7FxQp7DGXSPtFQYE7RWq1oxl0nL777eLWbslC4CzD2pN49rVQk6UdLYA9QDMLBU4AnikwP5tBDN4RaQiTP4PrFsYjPc/LfhsKSIikqTKUti9EfjEzB4FHgLmu/se/nISSSJTX4ac7cG4z0Xq87UnKSnQaQhMeRG2rIKlk6Fl37BTxTtNQ4mBwfs15dQDW/DOlAxWbtrO7R/O5OEz9cdi3HKH1XPyC7kLv4QdW4o+tkajoIjbfmDQZqFO85hGjabMHTn8e/x8AKpWSeH3R2m2bghmAueZ2UvA6QS9dT8rsL81UKIV3UWklDI3whf/CMYpaXD0X8PNIyIiErKyFHbXE0yBOQi4HILLWAtxd9fKM5KQlm/MpFmBnyWSmwOTngvGqVXhwPMrKF0l0XlYUNiFoB2DCrsSJ24/YT++mbeaZRsy+WDaMo7ttg/DDijxmUAq2pY1sGBcfq/cjUuLPi61WtBeIW/Rs6b7V5orA17/fjGrNwdfIp7RpyVN66SHnCgp/RP4AFgZ2Z4KTCiw/xhgSqxDiSSFrx+BrZGugH0vCRbmFRERSWJlKb6+xB6vbRRJfNk5vsvPEpnzGaxfHIy7nQI1G1VAskqk3VFQpTpkb4PZI2HQ7WEnEgGgTnoa953Wg3Of+w6AW9//kb5tGuhS94qQkw3TX6OJBxMbm/gqmPIy9Dw7/4qH7O2w5Lv8Qu7y6ezxI0iTbpFZuQOg1WFQtUZs/h0xtD07h6e+CGbrpqUal/XXAp1hcPf/mdlA4ESCRTAfy7t6LbIIZgbB52URiaaNy+Gbx4NxtTrQ78/h5pF4odqEiCS1Uhd23f3CCsghkti0aFrppFUPii+zR8CqWbB2ATRoG3YqEQCO6NiI8w5pzcvfLmLtlixufu8Hnj6vd1FXp0hZ5WTD2xfCrI/IK5lXYwd8eCX8+Da0HwQLx0faK2wt+jlqNgnOI+0GRNorVP6Z1W9NyuDXjZkAnNa7BfvWqx5youTl7uOB8UXcvwY4peB9ZlYTuA54yd0XFn6MmbUkKATvA+QCT7v7wxUQWySxjfu//N8Jh18NNRuGm0fihT6giUhSU7sEkfJaOx/mjg7GzXrCvr1DjZMwOg8NCrsQLKJ2yB/CzSNSwE3DujB+zioWrdnKZz+t4N0pSzm1d4uwY1Ue01+DWR8VvW/+uOBWWGq1YKGzne0VuiXVKug7cnJ5ctw8AFJTjD8c1SHkRFIKtYDbgS+BhUXszwauc/cpZlYbmGxmn7n7TzHMKBLfVs0O1rMAqN0MDrk83DwSF9x9BVA5ei2JiJRRuQq7ZlaLYFXg3U6m7r64PM8tkjAmPpc/7ntJUhUayqXTEIIv2D0o8KqwW2pmNgR4GEgFnnX3ewvtt8j+YcBW4MJI4WCPs8PMrAHwBtCGoAAx3N3XxeQfFEdqVK3CA6f34PR/f4M73PHRTA5t35DmmiEZHXl/nO9N0/3zFz1rdWgw2z9JvTdlKUvXbwPgpJ770qph5Ws1Ucnt8cOBuy8HlkfGm8xsFrAvoMKuSJ7Rd4LnBuP+N1XKdjsSiFzlcDbQEWjI7udPd/eLYx5MRCROlamwa2ZnArcCXYs5LLVMiUQSSdZWmPpKME6vB/ufGmqchFKrCbToAxkTYeFXsG0dVK8fdqp4tVvvMDNLBR4HBhP0c5xoZh8WmuE1lOBDcUfgYODJyM/iZof9Bfjc3e81s79Etm+swH9b3OrTpgGX9mvHv7+Yz6bMbG58ZwYv/fYgtWSIAt+QUex1k169Pnb5d1C7acwyxbPsnFweGzsXgBSDKwaot25lZWZtgF7Ad4XuvxS4FKBVq1axDyYSpsXfwuz/BeNGnaHnOeHmkQpjZgcB/yMo6O6JAyrsiohElPqyBTM7CXiVoCj8b4Jv0F4D3gJ2EKwCfFf0IorEsR/fgcz1wbjXuZo9UFqdhwY/PQfmfh5ulvhWVA3sIGCuu8939yzgdYKFfAo6kaCno7v7t0A9M2vm7svdfQoEs8OAvNlheY95MTJ+ETgpuv+UxHLNoE50aloLgAlzVvPKd7oYJRrWpDYudv/q9DYq6hbw4fRlLF4b9JU8vkdz2jWuFXIiqQiRK+HeAf7k7hsL7nP3p929j7v3ady4+P9+RCoVd/j0r/nbg+6AVHUTrMQeBNKA4UAjd08p4qYJZCIiBZSlH831BEWAnsBtkfued/czgT5AJ2BaNMKJxDX3AoumGfTVF8el1nlY/jiv367swt1XRD7Ejim0a19gSYHtDPKLsyU+pojZYU0jlwXnXR7cpKhcZnapmU0ys0mrVq0qxb8osaSnpfLg8J5USQlq6/f8bxYLV28JOVXieyOnPxCcRgvK234zsl8gJ9d3ztY1gysHqLduZWRmaQRF3f+6+7th5xGJGz9/DBnfB+NWh+ZPCpDKqjfwgLu/7e5rww4jIpIIylLY7Q686O6ZBL0ZIdJ2wd1/BJ4GbopOPJE4tnQyLJ8ejDsMggbtws2TiBp3gfptgvGc0ZCdFWqcWDGzmmb2OzO7z8yeM7PnC92e2/uzFDmLt3DLhmKPKW522N4k0+yx/fetyx8HdgRg244crn9rOjm5u3XHkFL477bDGZnTd7eW5GYwMqcvz2w8mG1ZOeGEizMjfljO/FXBlwlD99+Hjk1rh5xIoi3SD/05YJa7Pxh2HpG4kZMd9NbNM/hurWVR+W0E1oQdQiSetWzVGjOLv1tqlfAzFHFLBmW5jiWV/JPttsjPugX2zwa0CpJUft8/kz/ue0l4ORKZWTBr99snYPsGWPw1tOsfdqoKFcXeYRlAywLbLYBlJT2mmNlhK/LaNZhZM2DlXnIkhcsHtGf0rBX8sHQDkxat47kv53NpP/U5LYtv5q1h1dZsrsy5ilNyJ3B3lf+QbjvI9DT+mn0R7+T0I3dHLkf9cyx/HNiBM/q2omqV5FzwOjfXeXTMnJ3bVw7oGGKaUqjXatefsjeHA+cBP5jZtMh9N7u7LmWR5Db1JVgTOQd2PQFa9g03j8TCu8CxwBNhBxGJVxlLFvPgp7PDjrGba4/pzINPl2R+Umxde2nlv7K6LH8pZQCtAdx9G8Ef/X0K7O8M6DpVqdy2rIaZkVpYvVbQcXC4eRJZwUvqZo8ML0fsRKt32ESgo5m1NbOqwJnAh4WO+RA43wKHABsiBdviZod9CFwQGV8AfFC2f2blkpaawoPDe+wsMN7/yS/8smJTyKkSy46cXP75yc+c/ey37MhxckjlrZz+LPPgO45l3pC3cvqTG/losnLTdv76wUwGPjCOtydnJOUs6U9/+pVfVmwGYPB+TdmveZ2QE5XQ+e/DVVOCn7JX7v6lu5u7d3f3npGbirqS3LK2wLh7g7GlwtG3h5tHYuVGoImZPWpm7S1ZptuJiJRDWQq7XwODCmx/CFxtZreZ2R3AFcC48kcTiWNTXoKcSNuAPhdDinr4l1mrQyE9Mul/9ojdm25WPlHpHebu2cCVwCcEfc/fdPeZZnaZmV0WOWwEMB+YCzwDXB65P2922EAzmxa55TU8vhcYbGZzgMGRbQE6Nq3Nn4/pDEBWTi7XvjmNHTm5e3mUACxcvYXTnvqGx8fO2/mf+D510os8tn/nxpx1UMudfY0z1m3j+remc8y/vuB/M5aTmyQFXnfn0TFzd25fNTBBZutWQpEWOQcX2O5nZqXpQZMDLCL/SjcR2ZtvHofNK4Jx7wuhkfqLJ4n1BAsEXw78AmSbWU6hW3aoCUVE4kxZWjE8AZxsZtUjM3ZvITj53hHZP5NggTWRyik3Byb9JxinVoNe54WbJ9GlpkHHY+CHt2D9Ylj5EzTtFnaqihS13mGRGV0jCt33VIGxE3zZVvhxX1J0/13cfQ1wdDTyVUa/PaItn/20gu8XruXHpRt5bMxcrhncKexYccvdeWfKUm7/4Ee2RHrm1qiayl0n7s+JPZrx3rRl2EfBsWZw32ndOfXAFqSmGJcd1Z6HR8/hvWlLcYd5q7ZwxatT6Na8Dtcf05n+nRtX6r5ZY35eycxlQevr/p0bc0CLunt5hFSgC4HR5C8yOZbgy7FXS/Jgd18NtK2QZCKV0eZV8NXDwTitJvT/S7h5JJZeYvc1I0REpBilLuy6+0SCS4DztlcBPc2sO8GMhFnurilMUnnN+RQ2LA7G+58KNYtrlSol0mlIUNiFYNZu5S7sqndYAktNMf55eneGPjyBrVk5PDZ2LoO6NlXRrQgbtu3glvd+4OMZy3fe16NFXR4+sxdtGtUEYHifliz5Xwo4VElJYXif/JbQrRvW5MEzenJZ//Y8+OkvjJr5KwAzl23kohcm0qd1fa4/tjOHtKt852B355ECs3X/qNm6YVsNNC2wXXm/URCJB+Pvg6ygDQ2H/RFqNQk3j8SMu18YdgYRkURTlhm7RXL3GdF6LpG4pkXToq/DIEipArnZQZ/dfn8OO1FFuhH4xMweBR4C5kdm1kqCaN2wJjcP68qt7/9ITq5z7ZvT+OiPR5CeppYseb5fsJZr3pjG0vXBledmcHn/9vxpUCfSUkvXBapT09o8dV5vfsjYwP2fzuaLX1YBMGnROs58+luO7NiI64/pTI+W9aL9zwjN+Dmrmb5kPQBHdGhE79b1ww0kXwO3mlkrYF3kvlPMrLhrw93d7674aCKVzJp5MOn5YFyzMRx2Zbh5RERE4lyZC7tm1g84hmAGwwPu/rOZ1QIOBGa4+/roRBSJI2vmwbzPg3HzXtCid7h5Kovq9aD14bDgC1g6GTatgNpN9/qwBLWe4BKzvP5hRV1O7u4etS/eJPrOObgVn8z8lQlzVjNn5WYe/OwXbh7WNexYocvOyeWRz+fw2Ni55LXCbVY3nQeH9+TQ9uWbWXtAi7q8+NuD+H7BWu7/ZDbfLwxaVE+Ys5oJc1ZzzH5Nue6YznTep3Z5/xmhcnce/XzOzu0/DlRfyTjwJ+BF4CqC2boOnBK57YkDKuyKlNbndwVf9AMcdSNUS+xzupRdpLZQjyLWBXL3xTEPJCISp0pdODCzVIKeYqeR/+H2NeBnIBt4H7gfuCdqKUXixcTn8sd9fxdejsqo87CgsAvwyyjofUG4eSqOeodVAmbGfad155h/jWdTZjbPTJjP4P2a0rdNg7CjhWbJ2q1c/fpUpixev/O+YQfswz0nH0C9GlWj9joHtW3AG78/hPFzVnP/J7P5YekGAD79aQWfzVrBiT2a86dBnXa2e0g038xfw6RFwaTQg9o24OBK2Goi0bj7QuAoM6sK7AMsJCj2fhBeKpFKKGMy/PR+MG7QPlg0TZKOmZ0J3AoU9425LpMSEYkoy4ywG4FTgWuBUQSrsQPg7plm9h4wDBV2pbLJ2grTXgnG1evD/sVN1JFS6zwERt0YjGePrLSFXfUOqzya1a3OnSd049o3p+MO1705nZFXH0nNask32fq9qRn89f2ZbN4ezLKqnpbKHSfsx/A+LStkgTMz46hOjenXsRGfzPyVBz79hTkrN+MO709bxkczljO8Twv+OLAjzetVj/rrV6RHP8/vrXuVeuvGFXfPAhab2YvAd+6+KOxMIpWGO3x2W/720bcFC+xKUjGzkwgmkf0C/Bu4LLJdBTgJ+AH4OKR4IiJxqXSN7gLnAy+5+8MEi0kUNgtoX65UIvHox7chM5gZRq/zIC2xigVxr34baBJZNG3+2KCQLhLnTu61L8d2C9qGLF67lf8bOWsvj6hcNmbu4E+vT+WaN6bvLOoesG9d/nfVEZzRt1WFFHULMjOG7N+MUX/qx4PDe9CqQQ0AcnKd175fQv/7x3HXRz+xevP2Cs0RLRMXruWb+WsA6NWqHod30GzdeOTuF7n7d2HnEKlU5nwKi74Mxvv2gf1ODDePhOV6gnpCTyCv0v+8u58J9AE6AdNCSSYiEqfKMq2oDfBAMfvXA1rlQyoX9wKLphn0+W2ocSqtzkNh5UzIzoT546DLsLATVSj1Dkt8ZsbfTz6AiQvXsXZLFq98u5hj9tuHfp0ahx2twk1etJarX59Gxrr8BdIu7deO6wZ3pmqVsnxvXHapKcYpB7bg+B7NeXPSEh75fA4rNm4nKzuX579awOsTF3PR4W249Mj21K0RvzPAHinQW/eqoztWeGFcSiayrkSpufv4aGcRqZRyc2D0Hfnbg+8KfqlIMuoO/C1yJXCNyH2pAO7+o5k9DdyEWuGIiOxUlsLuJqC4JoIdgFVliyMSpzImwq8zgnHHwdCgbbh5KqvOw2DC/cF49ohKW9hV77DKpVGtatxz8v5c9soUAG54ewafXNOPutXjt4BYHtk5uTw+dh6PjJlDTmSFtKZ1qvHg8J4c3qFRqNnSUlM45+DWnHpgC175dhFPjJvH2i1ZbM3K4fGx83j5m0X8/qj2XHhYm7hrmTFtyXomzAkuhOreoi79k+DLgQQyjtL1Rs9bg0LncZGSmP4arPwpGHcaCm0ODzePhCkVWBMZb4v8rFtg/2zgDzFNJCIS58ryV82XwLlmdl/hHWZWH/gtQe9dkcpj52xdtGhaRWreC2o1hc0rggXUcnMhJbYz/yqaeodVTkP2b8bJvfblvalL+XVjJnd+NJMHh/cMO1bUZazbyp9en7ZzcS+AY/Zryj9O7U79mtFbIK280tNSueTIdpx5UCue/3IBz4yfz6bt2WzMzOafn8zmP18t4PL+HTj74Fakp8VH7e3RArN1rxzQQbN148tFYQcQqbR2bIOxkaVZLAUG3RFqHAldBtAawN23mdlKghYMb0f2dwa2hJRNRCQulaWw+3eC4u4Y4IXIfT3MrCPwF6AmcG9U0onEg82r8lford8GOgwKM03llpICnYbAlBdhyypYOhla9g07VbTl9Q7rDdQiKOw+7+5jzGx/4CvUOywh3XF8N76et5oVG7fz7pSlHNttH47ttk/YsaLmw+nLuOW9H9iUGfTSTU9L4bbjunHWQRWzQFo01KpWhauO7sj5h7bm3+Pn85+vFpC5I5fVm7O46+OfeGbCfK46uiOn9W5BWmp4XyL9uHQDn/+8EoAu+9Rm8H5NQ8siu3P3F8POIFJpffcUbFwajHueA026hJtHwvY1MIj8/rofAleb2VaC1mVXAB+FlE1EJC6V+q8Yd58EnAJ0Af4Tuft+4EmgOnCyu/8UtYQiYZv6EuRkBeM+F1e6GaRxp3OB9guzR4SXo+J0B15090wgN3Lfzt5hQF7vMEkwdWuk8Y9Tu+/cvuW9H1iTIIt2FWfz9myufXMaV702dWdRd79mdfj4j0dw9sEVv0BaNNSrUZUbh3Rh/A0DuPCwNlSNFHGXb8jkpnd/YPCDX/DBtKXk5pbmavvoeXSMeuuKSBLauhYm/CsYV6kOA24ON4/EgyeAcWaWt0r1LQTtF+4gKPbOI5gkISIiEWWqULn7CIJF1E4EbiQoQpwKtHP3T6OWTiRsuTkwKfL9RZV06HVuuHmSQbujgg/3ALNHhpulYpSkd9j+MU0kUdO/cxPOPrgVAKs3Z3HLez/iHk6xMBqmLVnPbx6ZwLtTlu6873dHtuW9Kw6jQ5PaISYrmya107njhG6Muf4ohvdpQUqkfrpwzVaufn0aQx+ewKczf43pe/bzrxv5ZOYKADo2qcWQSjTLu7IysyvMbHQx+z81s9/HMpNIQprwAGzfEIwP+QPUaR5uHgmdu09095vdfVtke5W79wR6AgcAPdx9SYgRRUTiTpmnHrr7dnf/yN3/6e73uft77r41muFEQvfLKNgQ+eyw/6lQo7h1AyUq0qpD+wHBeNUsWLsg3DzRt0vvMCCvd1ge9Q5LcDcP60rLBsGXE6Nm/sqH05eFnKj0cnKdx8bM4dQnv2bRmuBXe+Pa1Xjptwdxy2/2o1qV+OhLW1Yt6tfgvtN6MPraozi+R34hYfaKTVz68mROeuJrJsxZFZMC72Nj5u4cXzmwAykpmq2bAC4E5hSz/xeCNSdEZE/WLYLvnw7G1RvAEX+K/mvUawUN2gc/JaG5+wx3n+nuuXs/WkQkuZSpsGtmZ5vZV2a20sxyirhlRzuoSCh2WTTtkvByJJvOQ/PHv1S6tRjzeoflyesddpuZ3UHQO2xcCLkkSmpVq8L9p/Ug72r6v77/I79uyAw3VCksW7+Ns575lvs//YWcSGuCo7s0YdTVR9KvU+OQ00VXu8a1ePSsXoy46kgGdW2y8/7pS9Zz3nPfc9Yz3zJ50doKe/25Kzfzvx+WA9C2UU2O667ZagmiI8FCl3syM3KMiOzJ2L/ntzrr92dIr1v88WVx/vtw1ZTgpyQUM+tnZn8zs2fMrEvkvlqR++uFHE9EJK6UurBrZrcCLwNtCQoULxVxezmKGUVCUYVsmD822Ni3N+x7YLiBkkmnIUCkKlb5+uyqd1gSOLhdQy4+vC0AGzOzufGdGQnRkmHED8sZ8tB4vl8QFDOrVUnh7hO78ewFfWhYq1rI6SrOfs3r8OwFfXn38sM4rH3Dnfd/O38tpz75DRf953t+XLoh6q/7+Ni55P3f4ooBHUjVbN1EkQakF7M/fS/7RZLb8ukw441gXK8V9L043DwSN8ws1czeAMYCNxNc/ZD3rWc28D5weTjpRETiU5UyPOZygtlkQ9x9R3TjiIQnOyeXd6cspW9uLhjUyN28s7ZI39+Fmi3p1GoCLfpAxkRY+BVsWwfV64edKircfSIwscD2KqCnmXUHcoBZusyscrj+2M6M+2UVc1du5otfVvHa90t29t+NN1u2Z3PnRzN5c1LGzvu67FObR87qRaemiddLt6wObFWfV393CF/PXc0/P53N1MXrARg7exVjZ6/iNwc045rBnejQpFa5X2vh6i18MC3oXdyyQXVO7KnZugnkF2Aw8OAe9h9D8CWdiBTls9vzxwNvgyqV94tDKbUbCdbuuRYYBczK2+HumWb2HjAMuCeceCIi8acsrRjqAG+qqCuVSXZOLle+OpUb3pmxc/ZUrci6VptT6pDd9cQQ0yWpvHYMngNzPw83Swyod1jlk56WygOn99g5C/Nv//uJxWvirxX9jIz1HPfol7sUdS86vA3vX3F4UhV1CzqsQyPe/cNhPHt+H7rsk/+/wf9+WM4x//qC696czpK15Xsvnxg3l0inCy7v34G01DIveyCx9xpwjJndbWZV8+40szQzu5OgsPtqaOlE4tm8MflXxDXrEaxhIZLvfOAld38YWF3E/llA+9hGEhGJb2X5K2Iq0DIaL25mz0f69P64h/1mZo+Y2Vwzm2FmuhZeKsS7U5Yyauavu9yXasFf3K9kHcW7P6wJI1Zy6zwsf1z52jGod1iS6NGyHlf0D/7+2JqVw/VvTyc3Nz5aMuTmOk99MY9TnviaBauD9foa1arKfy7qy+3HdyM9LbEXSCsvM2PQfk0ZcdWRPHpWL9o2qglArsM7UzIY+MA4/vr+j6zcWJb+yc67U4LZus3rpnPqgS2imFxi4F/AeIJWOsvM7EszmwAsB/4KfAk8EGI+kfiUm7vrbN1Bd0KKvtSSXbQBvilm/3qgclzGJyISJWX5TXorcFmUiqwvAEOK2T+UYPGJjsClwJNReE2R3bwxaQmp5HB66jiaW34RN9fh1ZwBvDlxSXjhklXjLlC/TTCeMxqys0KNEy3qHZZ8rhzYkW7N6wDw/YK1PP/VgpATwa8bMjn3ue+4d+TPZEcKzf07N2bk1f0Y0LnJXh6dXFJSjON7NOeza/px36nd2bde0B57R47z8reL6PfPsfzfiFms21Lyc1SOs/N/98v6t6dqFRU2EknkqrVjgL8AGUAv4EBgCXADMMjdK8cvLZFo+vFt+HVGMG5/NLQfEG4eiUebgAbF7O8ArIrGC0U+k081s4+j8XwiImEp9V8S7v4FcDHwrZl9YWYvRmbeFrw9V8LnGg8Ut9z0iQSXYri7fwvUM7Nmpc0ssjcr123msbRH+Gfa06RbfpeRFIObqrzGinWbQ0yXpMzyZ+1u3wCLvw43T/QU7B3WlfxOzrh7JpDXO0wqiapVUnhgeA+qRi61v++T2cxduSm0PKN+/JUhD4/n63lrdua7/fj9+M+FfWlcW30O96RKagrD+7ZkzPVHccfx+9Eosphc5o5c/j1+PkfeN5aHRv/Cpsy9d6rKm7XdpHY1hveJykVQEmPuvsPd73P3nu5eM3Lr5e73q12ZSBGyt8OYuyMbBoPvDDWOxK0vgXPNbLfVRM2sPsGEiLFReq2rKdDDV0QkUZW6sGtmBxPMtK0CHAmcB1xYxC0a9iWY/ZAnI3KfSFSdmf4VQ1MnUnjRencYmjqRM9MrTVExseT12QWYPTK8HNGl3mFJqMs+dbhmcCcAsrJzue7N6WTnxLad8tasbG569wcue2Uy67cGdaeOTWrxwRWHc9HhbSnibygpQrUqqVx4eFvG39CfG4d0oW71NAA2b8/modFz6HffWP79xTy2ZeXs9bl+f1T7pG95ISJJYuKzsH5xMO5+BuxzQLh5JF79neBq3THAcZH7epjZ74EpQE3g3vK+iJm1AH4DPFve5xIRCVtZrv17GNhBMJu2gbunFHGL1l8pRf2VuVtzQjO71MwmmdmkVauicmVGiWTn5PLmxCWc+uTXHPZ/n3Pqk1/z5sQl5MRJ/0QpueNygsW5Ctc18raHp46LaR6JaHUopNcNxrNHsFvlPTG1Qb3DktKl/dpxYKt6AEzP2MCT4+bF7LV/XLqB4x79kte+X7zzvvMPbc1HfzyCrs3qxCxHZVKjahX+0L89428YwFUDO1CzavDRZ93WHfzfyJ856p9jefmbhWRl5+78vJCdm1/Mr1UtlTM0W1dEksG29TD+n8E4tSoMvCXUOBK/3H0ScArQBfhP5O77CVoyVgdOdvefovBSDxG0ztnjt+xh1RhEREqrLIXd7sD97v6Ru6+Pcp7CMth1obYWwLLCB7n70+7ex937NG7cuIIjBbJzcrny1anc8M4MJi9ax7INmUxetI4b3pnBFf+dEvOZWFJ2KzdlUnXLbv+32kXdrBUxSiO7SE2DjscE4/WLYWU0PseFLma9wyS+pKYYDwzvSXpa8Kv34c/nMHPZhgp9zdxc55nx8zn5ia+YvypYIK1Bzao8d0Ef7jpxf80WjYK61dO49pjOjL9hAJcc0XZnv9yVm7bz1w9mMuD+sZz0xFfc8M6MXb6b2rw9h+vfiv3MbRGRmPvqIdi2LhgfdCnUaxVqHIlv7j6CYCLEiQQtzG4iaGPWzt0/Le/zm9lxwEp3n7yXHDGvMYiIlEVZCrsrgVgtCPEhcL4FDgE2uPvyGL12sd6dspRRM38tct+omb/y7tSlMU4kZeHu3PzuDyzNbVjscbMz67I1KztGqWQXnQqsrzh7RHg5oieWvcMkzrRtVJObhnYFgsWzrn1jOtuz937Jflms3JjJBf/5nr+PmMWOnKCieGTHRoy6+kiO7tq0Ql4zmTWsVY1bj9uP8X8ewDkHt6JKSvCf+NL1mfy4dGORj9HnBRGp9DYshW8j61+n14Ujrws3jyQEd98emUj2z0g/8/fcfWuUnv5w4AQzWwi8Dgw0s1ei9NwiIjFXlsLu8wRFiSrlfXEze43gkuTOZpZhZheb2WVmdlnkkBHAfGAu8AxxtFL8G5OWFLv/zYnF75f48NakDEbPWskbOf2B3ft85G2/lHkkf/ufeuuHosMgSImcbipHn92Y9A6T+HXeIa05vEPwZdLsFZt4aPScqL/G6J9WMOThCUyYE7Rxrpqawq2/6cqLFx1EkzrpUX89ybdP3XT+fvIBjLmuP6f02vuyAPq8ICKV2rh7IDszGB9xLdQo7qIlETCzs83sKzNbaWY5RdzKNdvG3W9y9xbu3gY4Exjj7udGJbyISAjKUpz9kqAY8a2ZPQEsAHabbuTu4/f2RO5+1l72O3BFGTJWuOXrtxW7f9le9kv4lqzdyl0fB5f2v5fbj5tbL6b+olG7HGPA5xzMOzn9yP1uMf07NeaYbvuEkDaJVa8HrQ+HBV/A0smwaQXUTtzZhu4+ycxOAZ5j195hRnBFRLR6h0mcSkkx7jutB0P+NZ5N27P59xfzGNS1Kb1bl7+1cuaOHP7+v1m8/O2infe1b1yTR87qRbfmdcv9/FJyrRrW4MEzejJh7mpWbdq+x+P0eUFEKq2Vs2Daq8G4zr5w8O/DzSNxz8xuBe4EVgBfA+vCTSQiEv/KUtgdXWD8LLtPcrTIfZW6cV+zetVZtiFzj/ub16sewzRSWrm5zvVvTWfz9uAL30uP6kj9wf+FGa+z/YNrqEYW26lKtRP/RW7aQHJfmQrAje/MoGfLeprxFmudhwWFXYBfRkHvC8LNU07uPsLM2gDHECwOYcAc4JMoXmYmcWzfetW57fj9+PPbM8h1uP6t6fzvqiOoUbXsF8PMWr6Rq16bypyVm3fed/bBrfjrb/ajetVK/Ss5rrVqUKPYwq4+L4hIpTX6DvBIH/EBt0CazneyV5cD44Ah7r6jol/M3cdFXk9EJGGVpRXDRYVuvy10y7uvUtvbStbD+2ql63j2/FcL+G7BWgC67FObqwd1hNQq0OtcVlojgOBnr3MZvH9zzjk4WORh3dYdXPfWdHJzC3+fIRWqc8E+u5WiHUNF9w6TBHBa7xYM6toEgAWrt3DfqNlleh535/kvF3DiY1/tLOrWq5HGv8/rzT0nH6Cibsj0eUFEktLCL4Mv4wGadIMeZ4abRxJFHeDNWBR1RUQqi1JPDXL3FysiSKI5tXcLxvy8ssgF1KqmGkd2bBRCKimJOSs2cd8nQQElLdX41xk9qVal+MLHrb/Zj2/mr2H+qi1MmLOa/3y9kIuPaBuLuAJQv03wR8HKmTB/LGRthao1wk5VZmZ2NkGbmY5AUSv3ubuXu4+5xDcz455TDmDyv8azbusOXvh6IYP3a8rhHUr++2PVpu1c/9Z0vvhl1c77DmvfkAeH92SfurqyIB4U93lhSLd9OPXAFiGkEhGpQO7w2W3524PugBR9ySglMhXQN54iIqVQlhm7AqSmGI+d3Yv7TutOn9b1aV43nYY1qwKQlePc8PYMzeqMQztycrn2zelkZQeXhV07uDNdm9XZ6+OqV03lkTN7kZYarHL+j5E/M2t50aucSwXpPDT4mZ0J88eFGqU8Ir3DXgbaEvQOe6mI28uhBZSYalI7nb+ddMDO7RvensHGzJJNUhn780qGPjx+Z1G3Sopx09AuvHLxwSrqxpGCnxcs+BWCGdx3WnceP+dAUlMs3IAiItH20/vBuggAbY6EjoNDjSMJ5VbgMjM7MOwgIiKJQjPCyqFKagrD+7RkeOQyyy3bszn+sS93zup8avw8Lu/fIeSUUtBjY+byw9INAPRuXZ9L+7Ur8WP337cu1x/Tmf8b+TNZOblc/fpUPrzyCNLTNAMhJjoPgwn3B+PZI6DLsHDzlF1Me4dJ/PtN92aMmtmcj6YvY+n6bfzt45+477Qeezw+c0cO9478mRe+XrjzvnaNavLwmb04oIUWSItHeZ8XlvwvBRyqpKTs/OwgIlKp5OyAz+/K3x58Fzu/1RLZC3f/wswuJlio/RtgIbsv1O7ufnHMw4mIxCnN2I2imtWq8NhZB1K1SvA/6wOf/sLkRWtDTiV5ZmSs57GxcwGonpbKA6f3KPVMqd8d2Y7D2gdXzv+yYjP3jvw56jllD5r3glpNg/EvoyA3N9w8ZafeYbKbu07oRuPa1QB4c1IGo39aUeRxs3/dxEmPf7VLUffMvi35+KojVNQVEZHwTX4B1s4Pxt1OgX018VJKzswOBl4gmIB2JHAecGERNxERiVBhN8r2a16Hv/6mKwA5uc5Vr01jw1bVb8KWuSOHa96YRk6kPcYtv+lKm0Y1S/08KSnGA8N7ULd6GgAvfL2QsbNXRjWr7EFKCnSKLKK2ZVX+JX6JR73DZDf1a1blH6fmt2T4y7s/7DxfQbBA2otfL+SEx77k5183AVC3ehpPnnMg957anRpVdQGOiIiEbPsmGHdvME5Jg6P/Gm4eSUQPAzuAE4EG7p5SxE2XS4qIFKDCbgU495DWHNstmFm4dP02bnhnOu7qtxum+0bNZt6qLQD069SYcw5uVebnala3Oveekl+A+fNbM1i9eXu5M0oJdC7QfmH2iPBylI96h0mRBnZpyhmRy/NXb95OxrqtQPB7ZNjDE7j9w5lsj/QHP6RdA0ZefSRDD2gWWl4REZFdfP0obF0djPv8FhqUvOWZSER34H53/8jd14cdRkQkEaiwWwHMjPtO7cG+9aoD8MnMFbzy7aKQUyWvr+et5vmvFgBQJ70K953aHStnr6+hBzRjeJ9gJfPVm7dz49szVLyPhXZHQZXgvytmjww3Sxm5+xdAXu+wL8zsRTN7vtDtubBzSjj+MrQz6WnBr+a8CbtZ2bnMiszSTTX487Gd+e8lh9A88jtGREQkdJtWwNePBeOqteGoG8LNI4lqJZAVdggRkUSiwm4FqVsjjUfO6rmzh+vd/5vFzGUbQk6VfDZl7uDPb83YuX33SftHbbX424/vRpuGNQD4/OeVvPLd4qg8rxQjrTq0HxCMV82CtQvCzVMG6h0mxfnsp5Vk7thz/+jLB3TgigEdSt0fXEREpEJ9cS/sCK6O4/CroWajcPNIonoeONfM1GNKRKSEVNitQL1bN+C6YzoBwYyrP742lS3bs0NOlVzu+ugnlq7fBgQrz5/Qo3nUnrtmtSo8dGavnQWWv338E3NXbora88sedB6aP/5lVHg5yk69w2SP3pi0pNj938xbE6MkIiIiJbR6Dkx+MRjX2gcOvTzcPJLIvgRyCa5s+62ZDTCzfoVvYYcUEYknKuxWsMv6tefIjsE31vNXbeG2D2aGnCh5fPbTCt6anAFA49rV+NuJ+5e7BUNhPVvW45pBHQHYnp3LVa9NY3t2TlRfQwrpNASIvI+J2WdXvcNkj5ZHvojak2V72S8iIhJzn98JHvn82/8vULX0CxSLRIwG+gAHAs9GtscWuI2L/BQRkQhd4lDBUlKMB4f3ZOjDE1i9eTvvTMng8A4NOeXAFmFHq9TWbN7OTe/mt2D4x6kHUL9m1Qp5rT/078AXv6xi4sJ1/LR8Iw98+gs3D+taIa8lQK0m0KIPZEyEhV/BtnVQvX7YqUpDvcNkj5rVq86yDZl73K++uiIiEleWfA+zPgrGjTpBr/PCzSOJ7qKwA4iIJBrN2I2BxrWr8a8zepA3WfTW939k/qrN4YaqxNydW977kdWbg9rZWQe1ZGCXphX2eqkpxr/O6EntasH3JE+Pn8+Xc1ZX2OsJ+e0YPAfmfh5ultJT7zDZozP6tPz/9u47vqr6/uP465MFIYwwwkzYS0C2uLdYROsCUWlt7bK2YrWuWltnh11urK2t1l9bRQFxVFFbJ05k7xVASMIKI4wQktzc7++PcwlJCEkgyT13vJ+Px3ncc+85997P997cT5LP/Y4aj084oebjIiIiYeMc/O+eQ9fPvRcS9eeNHDvn3P/VZfM7ThGRSKLCbpic3ieDH53ZC4D9JWVMemGBhuw3klcX5vH2si0AZLVJ5RcXDmj058xs3YxfXzao/Pqt0xayq1CdMhtNv7GH9qNvOgbNHSZHNG5EJmMGdqz22JiBHRmn0R4iIhIpVs2EjZ97+1knQf8L/Y1HREQkDqmwG0Y/Hd2X4V3TAVi+eQ8Pzlzpb0AxaFNBUfk8xmbwp/FDaN4kPD0HLhnahcuGdQFg655i7pyxGOdcWJ477mT0h9bdvf0170IgqoromjtMjigxwZg8cRh/GD+YJkner+gmSQn8YfxgnvzG8PLFGkVERHxVFoB37zt0ffQD0MBrWYiIiEjtVNgNo+TEBB6/ehgtm3qFxuc++4r/hnqWSv0Fg447pi9m74EAAD84vScn9mwb1hjuv2Qgma29OTDfWbaVqbWscC/HyOxQr93i3bDxM3/jOTrfqbJ9t8p28DaJU0mJCUwYmVU+n27n9FQmjMxSUVdERCLHwn/D9tXefv+LoOuJ/sYTx655ZjZn/+lDrnlmtt+hiIiID1TYDbPM1s34w/jB5ddvn76YPK1y3iD+PXsDn2R7c9v27dCcW0b3DXsMLZsm8+iVQzlYf7nv9eWaT7mxHJxnF2DVW/7FcZQ0d5iIiIhEtZJC+OBBb98S4bz7fA0n3uXuKmL99kJyd+l/ShGReKTCrg/GDOrEt07uBsDuolJumrKAQFnQ56ii27r8ffx25goAkhKMhycMpWlyoi+xjOzehknn9AGgqLSMm19aSKne34bX9WRo2srbXzXTW8BDRERERBrXF3+GfaFRh8O/Be36+BuPiIhIHFNh1yd3jT2O4zq1BGDuhl08+u4anyOKXoGyILdMXcSBUq94etO5fRjUpZWvMf3knN4MC82nvDh3N4++u9rXeGJSYjL0Od/bL9gI25b7G4+IiIhIrCvcDp885u0nN4Oz7vQ3HhERkTinwq5PmiYnMnniMJqleL1Kn/wwm09D0wjI0fnrrHUszCkAYEhWOj86q5e/AeHNkfnolUNJC72/f/5wLbPX7fA5qhjUd8yh/VUz/YtDREREJB7M+iOU7PX2T54ELTr6G4+IiEicS/I7gHjWK6M5D1wyiNumLcI5uPmlhcz8yelktGjid2hRY2nebh75n9cbtklSAg9PGEJSYmR8X9GtbRr3XTyQ26cvxjn46UsLeevmM2iVmux3aLGj93mQkATBgDfP7hm3+x2RiIiISGzauR7mPOPtN2sHp/7E33hEROLU/fff73cIEkFU2PXZ+BGZfJa9nRkL8sjfW8yt0xbx3LUnkKDVz2t1oLSMW6cuIhD05lb9+QX96ZXR3OeoKhs/IpMPV+Xz5pLNbNp9gF+8soQnrh6Gmd7fBpGaDt1OhfUfQd482LsVWnTwOyoRERGR2PP+ryBY6u2f+TNo0sLfeERE4tS93z7X7xAOc8unL/gdQtyKjK6Nce6BSwfRo10aALNW5/P0x+t8jig6PPK/1aza6g0FO6VXW751cnd/A6qGmfGbywbRqVVTAN5YvJlXFuT5HFWM6Tf20P7qt/2LQ0RERCRW5c2HpS97+617wIhrfQ1HREREPCrsRoDmTZJ44uphpISmEPjTO6uYv3GXz1FFtjlf7SwvgLdoksQfrxjSYL2ckxKt0mV9pTdL4aEJQzjYSfee15axccf+BnlsAfpVnGf3Lf/iEBEROQZm9qyZbTOzpX7HIlIt5+Ddew9dP/ceSErxLx4BvAWkp87JYVNBEQCbCoqYOieHstBoRhERiQ8q7EaIQV1acdfY/gAEgo6fTFnA7qJSn6OKTPuKA9wydSEu9DfLfRcPpEt6aoM9fqeWTStdNoRTerXjh2d4i7rtKw5w80sLCJQFG+zx41rr7tB+oLe/7gMoUdFcRESiynPAmNpOEvFN9nuwfpa333k4DLzM33iEQFmQSS8s4I6XF1Mc8P6nKA4EuePlxdzw/Hz9nyEiEkdU2I0g3z6lO6MHePOD5u4q4s6XF+OcvnGt6jdvriBnp/fN9PkDOnD58C4+R1Q3t4zuy6AuLQGYv7GAyR9k+xxRDOl3gXcZOADrPvQ1FBERkaPhnJsF7PQ7DpFqBcsq99Yd/QBorQjfzZifx9vLtlR77O1lW5ihqd9EROKGCrsRxMz44/jBdA7Nx/rW0i08P3ujz1FFlg9WbWPKl95r0jYthd9efnzULESWkpTAY1cNo2my97F7/L01zNug/+MaRMV5dlfN9C8OERERkViy+CXYGpolpM/XoMfp/sYjALw0N6fG41Pn1HxcRERihwq7ESa9WQqPXz2MxNB8sQ+8sZwVm/f4HFVk2FVYws+mLy6//uDlx9OueRMfIzp6vTKac89F3rQBQQc3v7SQvQc05Ua9dR4Gzb3e7qx+G4IafiYiIrHDzK4zs7lmNjc/P9/vcCRelB6A93/j7VsCnHefr+EIFAfKmLlkM0vzdtd43sF5d0VEJPapsBuBRnZvw0/P6wNASSDIjVMWsL8k4HNU/rv7taVs21sMwLjhmZw/sKPPER2bq0dllU+5kbOziHtfX+ZzRDEgIQH6hqYnLMyHvHn+xiMiItKAnHNPO+dGOudGZmRk+B2OxIsv/wp7cr39IROhwwB/44lTzjkW5RRwz2tLGfWb9/jx8/PL59U9ks4NuP6IiIhENhV2I9SPzurNqb3bApC9bR/3xXnx7/VFm3hj8WYAOrdqyr0XR+8flmbG78cNJqOF19t4xvw8Xl+0yeeoYoCmYxARERFpGPt3wscPeftJTeHsu/yNJw5t23OAv360lvMfmcUlT37KPz/fUOfFtSeckNXI0YmISKRQYTdCJSYYj0wYStu0FACmzs3ltYXxOQn+1j0HuPvVpeXX/3TFEFo2TfYxovprk5bCQ1cMKb/+i1eWkKchU/XT80xICvVOWPWWv7GIiIjUkZlNAT4H+plZrpl9z++YRPjkYTgQGu5/4vXQKjoWK452B0rLeGPxJq79x5ec9OB7PPjWStZs21d+vG1aCt89tQevTzqVMUcYvThmYEfGDc8MV8giIuKzJL8DkCNr37IpD185lG8/+yUAd81YwpDMdLq3S/M5svBxznHH9MXl305fe0p3TundzueoGsYZfTP43mk9eOaT9ew9EOCnLy1kyg9OKp9fWY5Scir0OtvrrZu/AnaugzY9/Y5KRESkRs65q/2OQaSSghyY/bS3n9oaTvupv/HEOOcci3J3M31eDq8v3MSeA5Wn4EtONM7p357xI7I4q18GyYle36zJE4cxY0Eed7+6lOJAkCZJCfzq0kGMG56p/ydEROKIeuxGuDP7ZvDDM73iVGFJGZOmzKc4UOZzVOEz5cscPlrtLRLSMyONn43p73NEDev2r/Wjf8cWAHy5fid/nbXW54iiXL8LDu2vetu/OEREqrEloT3rgh3ZktDe71BERI7sg99AmbeuBaffBqnpvoYTq7bsPsBTH67lvIc/4tInP+XfX2ysVNQd1KUl9319ALPvOo+/XjOS0QM6lBd1AZISE5gwMqt8Pt3O6alMGJmloq6ISJxRj90ocNv5/Zi9bicLcwpYmreH37+1inu+Hr1zzNbVhh2F/PrN5YA3NcXDE4aSmpLoc1QNq2lyIo9fPYyvP/EJxYEgD/93Naf1bsfgzHS/Q4tOfccABjhY/Rac/GO/IxIRKXdH6v2sLyykR8s0PvA7GBGR6mxZAote9PZbdYVRP/A3nhhzoLSM/y3fyvR5uXy8Jp+gq3y8XfMULh3ahXEjMjmuU0t/ghQRkaiiHrtRIDkxgSeuHkaLpl4d/tlP1/Pu8q0+R9W4yoKOW6cuYn+J1zv5hrN7MzQr3d+gGknfDi24a+xxAASCjpteXMj+kkAt95JqNW8PmSO9/a8+haJd/sbTyMxsjJmtMrNsM7uzmuNmZo+Hji82s+EVjj1rZtvMbGmV+9xnZnlmtjC0ja36uCIiIhKj3r0PCFUbz/klJDXxM5qY4Jxj/sZd3PXKEk74zbvcOGUBH60+VNRNTjQuGNSRZ749ks9/fi6/vGiAiroiIlJnKuxGiaw2zfj9uMHl12+bvojNu2N3sa2/f7yOuRu8otygLi258ZzePkfUuL51cjfO7pcBwPrthfzqjeU+RxTFDk7H4Mog+z1/Y2lEZpYIPAlcAAwArjazql35LwD6hLbrgKcqHHsOGHOEh3/EOTc0tM1s0MBFREQkMq37CLLf9fY7Hg/HX+FvPFFu8+4invwgm3Mf+ojL//wZL8zeyN4KUy0MzmzFA5cM5Mu7zuOpb47g3OMqT7UgIiJSF5qKIYqMPb4T3zixK8/P3kjB/lJumrKQF35wIkkx9gfAyi17eOi/qwFISUrg4QlDY/6PHDPjD+OHMObRWewoLGHKlzmc2bc9YwZVv9qt1KDfWHjvAW9/1UxY8G8o2AjpXeFbr/oaWgMbBWQ759YBmNmLwCVAxW8FLgH+6ZxzwBdmlm5mnZxzm51zs8yse9ijFhERkcgTDML/7jl0ffQDkBDbf383hgOlZbyzbAvT5+XySfZ2XJWpFjJaNOGyYV0YNzyTfqF1NkREROpDhd0oc/dFA5i3YRcrt+zly6928vj72dwyuq/fYTWYkkCQn760iJKyIAB3fK0ffTvExx89GS2a8McrBvPd5+YCcOeMxQzrmk6Hlk19jizKZPSH1t1h11ew5l1Iaws71/kdVWPoAuRUuJ4LnFiHc7oAm2t57Elm9i1gLnCrc+6wOS3M7Dq8XsB07dr16CIXERGRyLJsBmxe6O33PBt6neNrONHk4FQL0+fl8saizewtrjylWkpiAqMHdGD8iExO79Mu5jrliIiIv/RbJco0TU5k8sRhpCZ7i4g98f4aPlu73eeoGs7j761hxeY9AIzq0YbvntrD54jC65z+HfjWyd0AKNhfyq1TFxGsuqqC1MzM67ULULwbSg/4G0/jqW7J46o/LHU5p6qngF7AULwC8EPVneSce9o5N9I5NzIjI6OWhxQREZGIFSg+NNoJYPT9/sUSRTYVeFMtnPPQR4x76nOmfJlTqag7JCudX10ykC9/cS5PfmM4Z/dvr6KuiIg0OPXYjUK927fg/ksGcsf0xTgHN7+4kLduOp22zaN7cYP5G3fx5w+zAUhLSeShK4aQkFBdXSq23TX2OD5bu4Psbfv4JHs7z366nu+f3tPvsKJLvwvgiz97+6WF/sbSeHKBrArXM4FNx3BOJc658pUZzexvwBv1C1NEREQiyj8vrTxN1dxnoWCDd+z4CdBpiJ/RNZhrnplN7q4iMlun8q/vVR3UdGyKSg5NtfDp2sOnWmjfogmXDe/C+OGZ9ImTUYciIuIvFXaj1BUjMvk0ezuvLdzEtr3F3DptEc9++4SoLYTuLwl4vVNDfxzd8/UBZLVp5m9QPmmanMhjVw3lsic/o6QsyB/eXsXJvdoysHMrv0OLHl1Phqat4MBuKInZwu4coI+Z9QDygKuAiVXOeR1vWoUX8aZp2O2cq3EahoNz8IauXgYsbdiwRURExFcFG2HnWm//wG746A/efmIKnPNL/+JqYLm7ili/vf5/BzrnmLthF9Pn5vLmks3sqzrVQlIC54emWjitt6ZaEBGR8PK1sGtmY4DHgETg786531U5fhbwGrA+dNMM59wDCGbGby47nkU5BXy1Yz8frsrnmU/W84MzorNn5+/fWln+h9c5/dszYWRWLfeIbQM7t+KOMf349ZsrKCkLctOLC/nPpNNITUn0O7TokJgMfc6HJdMgGKj9/CjknAuY2STgHbwc+qxzbpmZXR86/hdgJjAWyAb2A985eH8zmwKcBbQzs1zgXufcM8AfzGwo3pQNXwE/DFebREREJMw+fQyKdnr7J/wAWnfzN54IkldQxIx5ubw8P5evduw/7PiwrumMG57J1wd3plWzZB8i9GS2Tq10KSIi8cW3wq6ZJQJPAqPxhgvPMbPXnXPLq5z6sXPuorAHGAWaN0niiauHc/lTn1Ja5vj92ysZ1aMNQ7LS/Q7tqHy8Jp//+9wb/tW6WTK/G3c8ZtHZ87ghfffUHny4Kp9PsreTvW0fD761ggcuGeR3WNGj7xivsBvDnHMz8Yq3FW/7S4V9B9xwhPtefYTbr2nIGEXkEP3zLSIRJRiAz0NTVzVpBWfc5m88EWB/SYC3l27h5fm5fLZ2x2FTLXRo2YTLh2cybngmvds39yfIKhpqmgkREYlOfvbYHQVkO+fWAYSGCl8CVC3sSg2Oz2zFzy84jgfeWE4g6Jg0ZT5v/uR0Wjb171vjo7G7qJTbpy0uv/6by46nfYumPkYUORISjIcmDOFrj86iYH8p//x8A2f2zeDc4zr4HVp06HkWWAK4oHd9Tx7M/xcMnQgJ6vksIuGnf75FJKIU7YRAkbd/2s3QrI2v4fjFOceX63fy8vxc3ly8mcKSskrHmyQl8LWBHRk/IpNTe7cjMUqnvhOPmWUB/wQ6AkHgaefcY/5GJSJy7Pws7HYBcipcz8WbA7Kqk81sEd6CP7c555aFI7ho8p1Tu/PZ2u28u2IbOTuL+PmMJUy+elhU9Hq9//VlbNlzAIBLhnZm7PGdfI4osnRo2ZTfXT6Y6/89D4A7pi/m7ZvPIKNFdC+U1+jKAvDGzYeKugCBA/D6JFjzDox/DhI1xbiIiIjEseK93mWLznDSj/yNxQc5O/czY34eL8/PZePOw6daGNGtNeOGZ3Lh4E60So2OTjNSJwHgVufcfDNrAcwzs/9VM3JYRCQq+Dmze3VVxyqDXZgPdHPODQGeAF6t9oHMrjOzuWY2Nz8/v2GjjAJmxh/HD6FjS6+n65uLN/PinJxa7uW/t5ZsZsaCPMAb1vTAxZpmoDpjBnXk6lHenMM7Cku4ffoiXNVxYVLZoimw4j/VH1vxH1j8YnjjEZEjSkq0SpciItJIygLe6KU9eZVvP+tOSI6dKWICZUGmzslhU4HXG3lTQRFT5+RQFnQUFgeYPi+Xq5/+gtP/8AGPvLu6UlG3U6um3HB2L96/9Uxe/tEpTDyxq4q6McY5t9k5Nz+0vxdYgdfpTEQkKvnZZS0XqLhCViZer9xyzrk9FfZnmtmfzaydc257lfOeBp4GGDlyZFxWvFqnpfD41cO46unPCTq47/VljOjWmr4dWvgdWrXy9xZz1ytLyq//cfwQXxcdiHR3XzSA2et2sm57IR+uyuefn2/g26d09zusyLXgXzUfn/8vGPbN8MQiIjXq1LIp7AxdiohI4ygLwPRrq//ie81/Yeg3YmI0U6AsyKQXFvD2si3ltxUHgtzx8mIee28NOwuLKSoNVrpPk6QELhjUkfEjsji5V1tNtRBHzKw7MAyYXc2x64DrALp27RrewCQiZHXtRm7ORr/DEKmVn7+95wB9zKwHkAdcBUyseIKZdQS2OuecmY3C62G8I+yRRolRPdpw83l9efh/qykOBLnh+fm8Puk0UlMiaz5R5xw/n7GYXftLAfjmSV05o2+Gz1FFtmYpSTx61VAu//NnBIKO38xcwcm92kZs4d53u/NqOZ4bnjhEREREIkFNo5lWvuGNZoqBL71nzM+rVNStKC/Ug/egE7p7Uy2MHdwpatYnkYZjZs2Bl4GbK3YoO0idxyQ3ZyMP/3eV32Ec5pbz+/kdgkQY36ZicM4FgEnAO3jDH6Y655aZ2fVmdn3otPHA0tAcu48DVzmNQa/RDWf35uSebQFYs20fD7wReVMST5uXy7srtgHQrW0z7hp7nM8RRYfBmen8dHRfAEoCQX4yZQEHSstquVecalXLaKpWmeGJQ0RERCQS1GU0UxTaXxJgad5uXl2Qx5/eWcVv31pR4/kpicaN5/Tmg9vOYtr1p3DVqK4q6sYhM0vGK+o+75yb4Xc8IiL14et4G+fcTGBmldv+UmF/MjA53HFFs8QE49GrhnLBYx+zs7CEKV/mcEqvdnx9SGe/QwO8RQoe+I83L32CwcMThtAsJfqHfYXL9Wf24qPV+Xy5ficrt+zlj++s4u6LBvgdVuQZdg3kHDai6pDh14QvFhERERG/Rfloph37ilmbX0j2tn3elr+Ptdv2HdYLtzZtmzfhVvV2i2vmrTD+DLDCOfew3/GIiNSXKmoxqEPLpjw0YQjf+cccAH4+YwlDMtPp2raZr3EFg47bpy9iX3EAgB+e2YsR3dr4GlO0SUwwHrlyKGMencXeAwGe+WQ9Z/bN0FQWVQ2dCGveqX7I4XFfhyFXhz8mEREREb+06gJ7aijeRsBopmDQkVdQVF60XZu/r7yQe3AKt/rqkh47i8TJMTsVuAZYYmYLQ7fdFep0JiISdVTYjVFn92vPdWf05OlZ69hXHGDSlPlMv/4UUpJ8m32Df3z2FV+s2wlA/44tuPm8Pr7FEs26pKfy28uO58YpCwC4ddoi3rn5DNqkpfgcWQRJSITxz3nzxb15KwQOQFJTuPAhr6ibEFnzTouIiIg0qggazVQSCPLVjkO9bw8WcNflF1JUx2nGEgyy2jSjd0ZzerdvTq+M5vRq35wlubu57z9HnopuwglZRzwm8cE59wmgFfJEJGaosBvDbju/H7PX72RRTgGLc3fzx3dW8osL/Rm2n71tL79/eyUAyYler9MmSSquHauvD+nMB6u2MWN+Hvl7i/nZy4t5+poReCOLBPBWdh72Tfj4Ydi5Flp2iYlFQURERESOmg+jmfYeKK08fcK2fazL38eGnfspC9Zt2ZSUpAR6tkujd/vm5VuvjOb0aJdG0+TD/5cYmpXOF+t2VLuA2piBHRk33P+eySIiIg1Jhd0YlpKUwBNXDePCxz9mb3GAv328npN7teWc/h3CGkdpWZBbpi6iJBAE4Kej+3Jcp5ZhjSEW3X/xQOZ8tZOcnUX8b/lWpnyZw8QTu/odloiIiIhEmgqjmYpf+ylNKKGYFJpc8ki9RjM558jfW1w+fcLB+W+zt+1j657iOj9Oy6ZJlYq3vds3p3dGC7q0TiUxoe4dFxITjMkThzFjQR53v7qU4kCQJkkJ/OrSQYwbnnlUjyUiIhINVNiNcV3bNuPBcccz6QVv2P5t0xYz8yen07FV07DF8OQH2SzO3Q3AiG6t+eEZvcL23LGsRdNkHr1yGBP++jllQccDbyxjVI829G7f3O/QRERERCTCBEhgRuBMTnBt6GFb2OTaMCdwJuNIoLayblnQkbNzf6WpEw4WcPceCNQ5hk6tmlaaOuHgVArtmqc02MizpMQEJozM4qkP17J+eyGd01OZMFJTMIiISGxSYTcOXDS4M59m72DKlxvZWVjCzS8t4PnvnxSWb6wX5xbwxPvZAKQmJ/LQFUP0TXkDGtGtNTee05tH313DgdIgN7+0gBk/OtXXuZRFREREJLIEyoJMemEBby/bwvspgIFzcMfLi3l/5TYmTxxGUmICB0rLWJdfWF60XRvqibtue2H56LvaJCYY3dpWnv+2d3uvkNu8if79FBERaUj6zRon7rloAPM27GT11n18sW4nk9/P5qZGXrzsQGkZt0xdVD6H1l0XHkf3dmmN+pzxaNLZvZm1Op/5GwtYmreHh/+3mjsv6O93WCIiIiISIWbMz6t23lmAt5dt4aInPqGwJEDuriJc3aa/JTU5kV7t08oLuAeLuN3apqmTgYiISJiosBsnUlMSmTxxOBdP/oQDpUEee281J/Zsw0k92zbac/7xnVVkb9sHwBl9M/im5n9tFEmJCTx65TDGPv4x+4oD/HXWWs7o245TerXzOzQRERERiQAvzc2p8fjKLXuPeKxtWsqhqRMqbJ1aNiUhgkfiZbZOrXQpIiISi1TYjSN9O7Tgvq8P5M4ZSwg6uPnFhcy86XTapKU0+HN9vnYHz3yyHvAWQ/jDuMENNm+WHK5r22Y8cMlAbpm6COfglpcW8fbNp5PerOHf22izpLAV6daZgsJWHO93MCIiIiJhtKuwhNcXbWJxbkGt52a2Tq00dULv0By4rRvhf4Vw+Nf3TvQ7BBERkUanwm6cufKELD5du4P/LNrElj0HuH3aIv7+7ZENWnTde6CU26YtKr/+q0sHhXWxtnh12bAufLAqv/y9/cUrS5k8cVjcF9R/knwv63cX0iMtjQ/8DkZERESkkQXKgsxak8+0ubm8u2IrpWW1z60wvGs6M358ahiiExERkYakyY/ijJnx28sG0bVNMwDeW7mNZz/9qkGf41dvLCevoAiAC4/vxMVDOjfo40v1zIxfXzqILunecLM3l2zm5fl5Pkfln0BZkKlzctgU+lncVFDE1Dk55XM+i4iIiMSSNVv38uDMFZz8u/f57nNzeWvplvKibm1f8181SlOmiYiIRCMVduNQi6bJTJ44jORE70+83721ok7Ds+ri3eVbmTo3F4CMFk341aWD4r7HaDi1Sk3m4QlDOPiS3/vaUjbsKPQ3KB8cXPn5jpcXUxxawbk4EOSOlxdzw/PzCZTVbVVnERERkUi2e38p//piA5c8+SmjH5nFX2etI39vcfnxXhlp3HlBfz698xzGDOxY7WOMGdiRccMzwxWyiIiINCBNxRCnBmem87Mx/fn1mysoLXPcOGUBb9x4Gi2aJh/zY+7YV8ydMxaXX//9uOMbZf5eqdmJPdvy47N68eQHayksKeOmFxcy7fqTSU6Mn+9xalv5ecaCPCaMzApzVCIiIiL1VxZ0fJK9nWlzc/jv8q2UBCp/Yd2iaRIXD+nM+BGZDM1KL+9kMXniMGYsyMP+451nBn8YP5hxwzNJjOBF0EREROTIVNiNY987rQefrd3B+yu3sWHHfn7xylIeu2roMfWwdc7xi1eWsn1fCQBXnZDFOf07NHTIUkc3n9eXj9dsZ3HubhbmFPDE+9ncMrqv32E1Oucc2/YW87eP19V43tQ5OSrsioiISFRZm7+P6fNymTE/l617iisdM4PTerfjipFZnD+gA02TEw+7f1JiAhNGZpHzZgI4SEpI0N9DIiIiUU6F3ThmZvzpiiFc8Ngstu4p5vVFmzitdzsmnHD0f+C9uvBQD8nM1qn88qIBDR2uHIXkxAQeu2oYYx/7mKLSMia/v4Yz+rRjZPc2fofWIIJBR15BEdnb9rFm297Q5T6yt+1j74FArfc/OO+uiIiISCTbc6CUNxdvZtrcHOZvLDjseI92aYwfkcnlw7vQqVVq+AMUERERX6mwG+fapKXw2FXDmPi3Lwg6uOf1pQzrmk6fDi3q/Bibdxdxz2vLAK+3wENXDKF5E/1o+a1HuzTuu3gAP3t5CUEHN7+0kJk3nU7L0HQb1zwzm9xdRWS2TuVf3zvR52irFygLsmHnftZs3cfa/H2s2bqX7Px9rN1WSFFp2TE/bud0/eMjIiIikSkYdHy2dgfT5+Xw9rItHCitPNVC8yZJXDS4E+NHZDKiW+ujHm23JaE9paVBdiS3R/11RUREopuqb8JJPdty4zl9eOy9NRwo9Radem3SqdUO4aoqGHTcPm1xeS/J75/WgxN7tm3skKWOJozM4oOV+by9bAu5u4q497VlPHLlUABydxWxfntkLKxWHChj/fZC1mz1et6uDfXEXb+9sHw159qkJifSq30afdq3oKik7Ihz7ALH1CtdREREpDF9tb2Ql+fn8vK8XDbtPnDY8VN7t2X8iEy+NrAjzVKO/d+4O1LvZ31hIT1apvFBfQIWERER36mwKwD85Nw+fLFuB7PX72TV1r088MZyfnvZ8bXe79+zN/BJ9nYA+rRvzq3n92vsUOUomBkPXn48C3J2sXVPMa8syOOsfhlcMrSLL/EUFgdYm7+vfOqEgz1xN+woJFi3+i0tmibRp31zerdvTp/2Legd2u+SnkpCaOGPsqDjhufnV1vc1crPIiIiEin2FQeYuXgz0+fl8uVXOw873rVNs/KpFjJbN/MhQhEREYlkKuwKAIkJxmNXDeOCx2axa38pL8zeyKm92nHh4E5HvM+6/H38duYKAJISjEeuHFqnXr4SXq3TUnh4wlC+8ffZAPzylaUM79q6UZ9z9/5SsvP3smbrvkrz3+Ydxdy27Zqn0CujOX06NKd3RnP6dPCKuO1bNKl1yGFigpWv/Hz3q0spDgRpkpTAry4dpJWfRURExFfBoGP2+p1Mm5fDW0u2HDa9VLOURMYe34krRmRyQvc25V9cN5TM1qmVLkVERCR6qbAr5Tq2aspDE4bw3efmAnDny4sZnNmKrDaH9w4IlAW5ddqi8jm/fnJuHwZ1aRXWeKXuTu3djuvO6MnTs9axtzjALVMX4lwdu8gegXOO7ftKWLNtb2jqhENF3Py9xbU/QEinVk3Le91W7IHbJi2lXvEdXPn5qQ/Xsn57IZ3TU7Xys4iIiPgmZ+d+b6qF+bnk7Dz8y+4Te7Rh/IhMxh7fibRGXK8iUtdWEBERkaOnwq5Uck7/DnzvtB4888l69hYHmDRlAdOvP5nkxIRKi22d1LMtC0Ir8w7JSufHZ/XyN3Cp1a3n9+WTNdtZvnkPc77aVd5rdVNBEVPn5DBuRPU9WZ1zbN59IDR1wt7QImb7yM7fR8H+0jo9txlktW7mTaFQoQdur4w0WoQWcxMRERGJNftLAry1ZAvT5+Xy+bodhx3vkp7KuBGZjB+eSde2mmpBREREjo4Ku3KYn43pz5frd7IkbzeLcgr40zur+PnY48oX2yoOlPFF6A/TJkkJPDxhCEmJCT5HLbVpkpTII1cO4YLHPibovHloAYoDQe54eTHvrdzK7V/rx1fb93tF3FBP3Oxt+ygsKavl0T1JCUb3dmmhwm3z8t63vTKa+zZNh4YbioiISDg555jz1S6mz8vhzcWbD/s7qmlyAmMHdWL8iExO6tm2wadaEBERkfihwq4cJiUpgckTh3Hh45+wrzjAX2et4+RebcuP5+8tprTMKwreeUF/emU09ytUOUqLcnYfcZGyd5Zt5Z1lW+v0OE2SEuiZ0Zw+7ZsfWsisQ3O6tU0jOcKK/BpuKCIiIuGQV1DEjHm5TJ+fy4Yd+w87fkL31uVTLWjEkkhsy+rajdycjX6HcZjMrK7kbNzgdxgi0oBU2JVqdWubxm8vP56fTFkAwA3Pz6c0VBE8WNQ9uWcbvn1yd79ClGPw0tycozo/LSWR3h1alPfAPVjEzWzdTAuQiYiISNwrKinjv8u3MG1uLp+u3U7VJQw6tWrKuOGZjBuRSY92af4EKSJhl5uzkYf/u8rvMA5zy/n9/A5BRBqYCrtyRBcP6czHq/OZNi+32qH4KUmJBJ0jARX4osXmgsMX6qioWUoit57fz+uJ26E5HVs2xUzvr4iIiMhBzjnmbyxg+rwc3li0mb3FgUrHmyQl8LWBHbliZCan9GqnL8NFRESk0aiwKzUakpXOtHm51R77aHU+MxbkMWFkVpijkmPVKT2VTbsPHPH4gE4t+d5pPcIYkYjEvfSulS9FJCIEyoLMmJ/HS3Nz2FxQRKf0VK4cmXXExVbjwZbdB5ixIJfp83JZl1942PFhXdO5YkQWFw7uRKtUTbUgIiIijU+FXanRKwvyajw+dU6OCrtR5MqRWczbsOuIxyecoPdSRMLsW6/6HYGIVBEoCzLphQW8vWxL+W2bdh9g3oZdvL9yG5MnDouphXNrKmKXlgX53/KtTJ+Xy8dr8g9bq6B9iyZcPjyT8SMy6d1e606IiIhIeKmwKzWqbej+plqOR6UY7j02bkQm76/cVukftYPGDOzIuOGZPkQlIiIikWTG/Lxq/1YAeHvZFm6btohRPdqSkpTgbYkJpCQZKYmJNd6WnGjlxyJlqqeaithPfLCGgsIS9hZXnpIsJTGB0QM7MH5EJqf3bhdTRW4RERGJLirsSo1qG7rfOT01jNGESQz3HktMMCZPHMaMBXnc/epSigNBmiQl8KtLBzFuePwOrRQREZFDalts9dWFm3h14aZ6PYdX+K1Q7A0VfJMTE2hy8HqF2w5eb5IUul7htkOF5IQKj1vhPtXcdvC8mUs2H7GInbOzcgeGwZmtuGJEJl8f0pn0Zin1ar+IiIhIQ1BhV2qkofuxJykxgQkjs/jPok3k7iois3WqptMQERGRcrWN2GoIJWVBSsqCjf489ZWUYHz3tB6MG55Jv44t/A5HREREpBIVdqVGGrofu/71vRP9DkFEREQiUG0jtvq0b84dY/pTEghSUlbmXQaClJS5CvtllIauF4duKy07eKzKZYX90gq3FYf2/ZTRogl3jT3O1xhEREREjkSFXamRhu6LiIiIxJfaRmz94IyejB7QISyxOOcIBA8VjEvLQoXiGgrBpdUUjCsWkSsWmN9ZtpWdhSVHfP4usTjtmIiIiMQMFXalVgeH7j/14VrWby+kc7qG7ouIiIjEqkgasWVmJCcayYkJpDVp+McflpXDHS8vPuJxTTsmIiIikUyFXRERERERKVdxxNbUOTlsKijyvtg/ISvmRmxFUhFbRERE5GipsCt1ltk6tdKliIg0HuVcEfHTwRFbsT5Kq2IR+9dvLKewpIy0lER+edGAmCtii4iISOxRYVfqTIttiYiEj3KuSHwwszHAY0Ai8Hfn3O98DinuxEsRW0RERGJPgt8BiIiIiIjEIzNLBJ4ELgAGAFeb2QB/oxIRERGRaKHCroiIiIiIP0YB2c65dc65EuBF4BKfYxIRERGRKKHCroiIiIiIP7oAORWu54Zuq8TMrjOzuWY2Nz8/P2zBiYiIiEhkU2FXRERERMQf1a3M5Q67wbmnnXMjnXMjMzIywhCWiIiIiEQDFXZFRERERPyRC1RcsSsT2ORTLCIiIiISZVTYFRERERHxxxygj5n1MLMU4CrgdZ9jEhEREZEo4Wth18zGmNkqM8s2szurOW5m9njo+GIzG+5HnCIiIiIiDc05FwAmAe8AK4Cpzrll/kYlIiIiItEiya8nNrNE4ElgNN4wtDlm9rpzbnmF0y4A+oS2E4GnQpciIiIiIlHPOTcTmOl3HCIiIiISffzssTsKyHbOrXPOlQAvApdUOecS4J/O8wWQbmadwh2oiIiIiIiIiES/2kYOi4hEEz8Lu12AnArXc0O3He05mNl1ZjbXzObm5+c3eKAiIiIiIiIiEt0qjBy+ABgAXG1mA/yNSkTk2PlZ2LVqbnPHcA7OuaedcyOdcyMzMjIaJDgRERERERERiSl1GTksIhI1/Czs5gJZFa5nApuO4RwRERERERERkdrUaVSwiEi0MOcO6wAbnic2SwJWA+cCecAcYGLFlYDN7EK8lYLH4i2a9rhzblQtj5sPbGisuGvQDtjuw/OGm9oZW9TOxtXNORfzwwh8yrv62Y0t8dJOiJ+2+tFO5dzGEy8/txA/bVU7Y4tybh2Z2RXA15xz3w9dvwYY5Zy7scp51wHXha72A1Yd5VNF+8+e4veX4vdXpMZfbd5N8iMSAOdcwMwmAe8AicCzzrllZnZ96Phf8FYIHgtkA/uB79ThcX355WJmc51zI/147nBSO2OL2ikNwY+8Gy/vqdoZe+KlrfHSTj8o5zaueGmr2hlb4qWdDaROo4Kdc08DTx/rk0T7e6L4/aX4/RVt8ftW2AVwzs3EK95WvO0vFfYdcEO44xIRERERERGRmDMH6GNmPfBGDl8FTPQ3JBGRY+drYVdEREREREREJByONHLY57BERI6ZCrsN55iHaUQZtTO2qJ0SreLlPVU7Y0+8tDVe2hkv4un9jJe2qp2xJV7a2SCqGzncCKL9PVH8/lL8/oqq+H1bPE1EREREREREREREjk2C3wGIiIiIiIiIiIiIyNFRYbcWZjbGzFaZWbaZ3VnN8VZm9h8zW2Rmy8zsO1WOJ5rZAjN7I3xR108d2tzazF4xs8Vm9qWZDfIjzmNRn7aZ2bNmts3MloY36mNzrG01s6ah6wd/pu8Pf/R1V8/39CszW2JmC81sbngjl+rEY84F5d1YyLvKueXHlXOjTDzmXeVc5dxoybmgvBtpoj1n1id+M0s3s+lmttLMVpjZyeGNvt7x/zR021Izm2JmTcMbfXkc9flM13jfcKhH/s0ysw9CPzvLzOym8Edf/78B/P4MV8s5p+0IG95k6muBnkAKsAgYUOWcu4Dfh/YzgJ1ASoXjtwAvAG/43Z4GbPMfgXtD+/2B9/yOOxxtA84AhgNL/W5LY7YVMKB5aD8ZmA2c5HebGuk9/Qpo53c7tB3V+xlTOfco2q28GwHtaYx2Kudqi4L3NKbyrnKucm605NwGek+Vd8P/fkRszqxv/MD/Ad8P7acA6dESP9AFWA+kho5NBa6N0PfgSPmr1vtGePydgOGh/RbA6miKv8LxiPu7Rz12azYKyHbOrXPOlQAvApdUOccBLczMgOZ4iSMAYGaZwIXA38MXcr3Vpc0DgPcAnHMrge5m1iG8YR6TerXNOTcL7/2NBsfcVufZFzonObRF6mTcsfzzGo/iMedCbP8cx0veVc49JFp/VuNVPObdWP45Vs49JBZyLsT2z2s0ivaceczxm1lLvC9/ngFwzpU45wrCFrmnXq8/kASkmlkS0AzYFJ6wK6nPZ7ou921s9cm/m51z80O37wVW4BXcw6leOTUCPsPVUmG3Zl2AnArXczn8B28ycBxeUlgC3OScC4aOPQrcAQSJHnVp8yLgcgAzGwV0AzLDEl39xHLbqqpXW0PDCxYC24D/OedmN3bAx6i+76kD/mtm88zsukaOVWoXjzkXYjs3xXLbKlLOPUQ5N7rEY96N5bwUy22rKF5yLijvRppoz5n1ib8nkA/8IzQM/e9mlhaGmCs65vidc3nAn4CNwGZgt3Puv40f8mHq85muy30bW4P8njGz7sAwvFET4VTf+B8lAv/uUWG3ZlbNbVW/0f0asBDoDAwFJptZSzO7CNjmnJvXqBE2vLq0+XdA69AfRDcCCzj0LVgki+W2VVWvtjrnypxzQ/ES2Kiq88pEkPq+p6c654YDFwA3mNkZjRWo1Ek85lyI7dwUy22rSDn3EOXc6BKPeTeW81Ist62ieMm5oLwbaaI9Zx5z/Hi9XYcDTznnhgGFQLjneK3P698ar2dmj9CxNDP7ZuOFekT1+UzX5b6Nrd6/Z8ysOfAycLNzbk8jxXkkxxx/hHyGq5XkdwARLhfIqnA9k8O7638H+J1zzgHZZrYebx6OU4GLzWws0BRoaWb/ds75kTyORq1tDn34vgMQGuKwPrRFulhuW1UN0lbnXIGZfQiMASJxIY16tdM5tyl0uc3MXsEbmjGr8cOWI4jHnAuxnZtiuW0VKeeGKOdGnXjMu7Gcl2K5bRXFS84F5d1IE+05sz7xbwRyK/Rwn074C7v1ib8bsN45lw9gZjOAU4B/N3rUldXnM92stvuGQb1ykpkl4xV1n3fOzQhHwFXUJ/6r8P8zXC312K3ZHKCPmfUwsxS8N/L1KudsBM4FMG/ejX7AOufcz51zmc657qH7vR8Jb3gd1Npm81bDTAld/T4wy4dvWo5FLLetqmNuq5llmFl66JxU4DxgZfhCPyr1aWeambUInZMGnE/k/lEfL+Ix50Js56ZYbltFyrkhyrlRJx7zbiznpVhuW0XxknNBeTfSRHvOrE/8W4AcM+sXOu9cYHl4wi53zPGHbj/JzJqFinXn4s3xGm71ydN1aX9jq09OMrw5mlc45x4Oa9SHHHP8EfIZrpZ67NbAORcws0nAO3ir5z3rnFtmZteHjv8F+BXwnJktwevW/TPn3Hbfgq6nOrb5OOCfZlaGl8y/51vAR6G+bTOzKcBZQDszy8VbKfGZMDejTurZ1k7A/5lZIt6XP1Odc2+EvRF1UM92dgBe8X6/kAS84Jx7O9xtkEPiMeeC8i4xkHeVc5Vzo1U85l3lXOVcoiTngvJupIn2nNkA8d8IPB8qeq0j1KsxSuLfbmbTgfl40wIsAJ4OZ/xH0YZqP9NHum+0xI/Xa/0aYIl50xwA3OWcmxkl8Ucscy6SFwEVERERERERERERkao0FYOIiIiIiIiIiIhIlFFhV0RERERERERERCTKqLArIiIiIiIiIiIiEmVU2BURERERERERERGJMirsioiIiIiIiIiIiEQZFXZFREREREREREREoowKuxKTzCzdzO4zs7PC9HyXmtl94XguEZFIpLwrIhI+yrkiIuGlvCuRSoVdiVXpwL3AWWF6vktDzyciEq/SUd4VEQmXdJRzRUTCKR3lXYlAKuyKSCXmae53HCIi8UJ5V0QkfJRzRUTCS3m3camwG0fM7Fozc2Z2rpndY2YbzKzIzGab2Umhc840s0/MrNDMNpvZ3dU8zkgze8XMtptZsZmtMrNfmFlSlfNGmdlzZrbazPab2V4z+9TMLqvmMZ8LxdbKzJ4ys21mdiB0/olH2c6zgPWhq/eGHteZ2VdVzrsy1Na9ofhmm9n4ah7vQjP7KNTeIjPbaGYzzKxv6PiHwLdD+67Cdu1RxNzGzB4xs7Whdu8ws3lmdns1544zsw/MrCAU9yoze9zMUiqck2ZmD4Yer9jMtpjZP82sW9XX6mCsZnaDmS0HDgC3He3rJCKHU95V3lXeFQkf5VzlXOVckfBS3lXeVd71nznn/I5BwiSUBP4BzAUSgX8DKcCtoctvA88ATwMbgQl4wwyucc79O/QYY4FXgOzQ/XcCJwPXADOcc1dUeL4HgbOBd4ENQNvQc/QHvuGce6HCuc+Fjs0G8oF3QuffAgSA7s65vXVsZwfgauCRUKwzQof2OedeDZ3za+AXwNuh5woCl4XaO8k592TovDOB94ElwL+AAqAzcB7we+fcTDMbDdwNnB56HQ76zDm3ro4xvwecAfwVWAQ0w3udujrnLqxw3m+Au4DlwFRgM9ALGAeMdM4VhH75fQicCkwHPgD6AD8KxT/SOZcberyzQscX4b3efwO2ADnOubfq+jqJSPWUd5V3Ud4VCRvlXOVclHNFwkp5V3kX5V3/Oee0xckGXAs4YD6QUuH2i0O3B4ATKtyegveh/jx0vSneB3IWkFTlsX8aeoyzKtyWVk0MzYBVwPIqtz8Xuv+fq9x+Rej2Hx5lW7uH7ndfNceGh479tppjrwJ7gBah6w+Hzm1fy/M9532cjul9aVVd26s5b1TovPeBplWOGYe+qPlB6Lw/VDnnwtDt/6pw21mh23ZWbePRvE7atGmrflPeLT+mvHvoNuVdbdoaaVPOLT+mnHvoNuVcbdoacVPeLT+mvHvoNuXdMG+aiiE+PeWcK6lw/ePQ5RfOuTkHbwyd8yXeNzEAo4EOeN/IpZtZu4MbMDN0zvkV7l94cN/MmplZW7yk+z5wnJm1rCa2R6pcfz902afqifXwDbxk8n8V2xBqx+tAC7xvCAF2hy7HWZVhIA2oCCgGTjSz7rXEDfBz59yBigdcSOjqZXjfej1Y5Zw3gYXAJWZW9bP/T+fctmqer66vk4jUTHlXeVd5VyR8lHOVc5VzRcJLeVd5V3nXJ431QySRrVLXfefcLjODQ3PGVLQLr/s8wHGhy2dreOwOB3fMrD3wa+ASoH0156bjfSNTU2w7QrG1peEch/ft08oazjnYjsl48f8Z+L2ZfYI3ZGCKcy6/IYJxzpWY2c3AY8B68+ageR941Tn3XoVT++AlwUW1PGQPYJNzblc1x5YBQ4F2QMUku7qac4/mdRKRminvKu8q74qEj3Kucq5yrkh4Ke8q7yrv+kSF3fhUdpS3H2Shy9vxvpWpziYA8zLlf/E+uI8Dc/C+mSoDvgNMpJrF+5xzR4rBjnD7sTC85HUBR27zslA8O8zsBLy5bUbjzVHzCHC/mY11zn3eEAE55/5iZq/hDWU4ExgPTDKzl5xzV1WJuzbH8lrtP8Lj1Ol1EpFaKe8q71alvCvSeJRzlXOrUs4VaVzKu8q7VSnvhokKu3I01oQuC51z79Zy7mBgCPCAc+7eigfM7PuNEVwVNSWnNcAYYKNzbkWtD+T9IvgwtGFmg4F5wC/xkmRtz1cnzrnNwN+Bv5tZIt5E6leb2UOh4SurQnEPxhu+ciRrgTFmlu6cK6hybADeN5jb6xDSUb1OItIolHdR3hWRsFHORTlXRMJKeRflXakfzbErR+MdvK71d5pZm6oHzSzVzFqErh789sWqnDMIb36WxrYvdHlYnHjJDOC3oeRWSWh4x8H9dtXcfyXenDUVH3tf6Pzqnq9GobmBmlW8LZToF4euHnzMgyt8/tbMmlTzOAdf61fxPtt3Vjl+ATAMeN05F6xDaHV+nUSk0SjvepR3Ud4VCQPlXI9yLsq5ImGivOtR3kV591ipx67UmXOu0My+hfehXmVmzwLZePPY9Acux0uoHwIr8LrQ3xFKKKuAvsAPgaV4qyE2Zqw7zCwbuMrM1gJb8b4F/I9zbo6Z3QvcDyw0s2l4wzs6ASOAsXirdQL8zcwy8YZ8bABSgSvxJvX+Z4Wn/AKYBPzZzN4ESoHZzrnq5hSqqi/wkZm9gvfa7MIbXvIjvDmJPg616Usz+z3wM2Cemb2Et4JoD7xhFaOAArzVM78N/My8idJnAb2BH4deh7vq+BoezeskIo1AeVd5t4bXSUQamHKucm4Nr5OINALlXeXdGl4nqSvnnLY42YBr8brzn1XNMQc8V83tz3k/JpVuGwT8G8gDSvA+yJ8BdwNtKpzXDZgG5OPNr/IlXlK+L/R83Wt6ntpiq0N7RwGfAoWhx/iqyvEL8b4h3Im3YmQO8BbwowrnXI63OmNu6Jx84CNgXJXHSgD+FDqvLPR819YxzrZ4c+osxEuaRXi/zB4FOlVz/tWhdu0NtW1l6NyUCuek4a1YuS70Hm3D+3asW5XHOqu2WOvyOmnTpq36TXlXeVd5V5u28G3Kucq5yrnatIV3U95V3lXe9X+z0IsqIiIiIiIiIiIiIlFCc+yKiIiIiIiIiIiIRBnNsStRxcw61uG03c65okYPphZmlgq0qu0859yWMIQjInJMlHdFRMJHOVdEJLyUdyXaaSoGiSpmVpcf2O84555r7FhqY2bXAv+o7TznnNV2joiIX5R3RUTCRzlXRCS8lHcl2qnHrkSb0XU4Z1mjR1E371C3eEVEIpnyrohI+CjnioiEl/KuRDX12BURERERERERERGJMlo8TURERERERERERCTKqLArIiIiIiIiIiIiEmVU2BURERERERERERGJMirsioiIiIiIiIiIiEQZFXZFREREREREREREosz/A46RbBqLrFdrAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,4,figsize=(6*4,6*1));\n", + "\n", + "for i, v in enumerate(var['y']):\n", + " sns.pointplot(data=df_bin, x='bins_mid', y=v, hue='clf',ax=ax[i]);\n", + " \n", + "sns.histplot(data=df_bin, x='bins_mid', hue='clf',ax=ax[3])\n", + "\n", + "for i, l in enumerate(var['y'][:2]+['clf_size (MB)']+[var['x']]):\n", + " ax[i].set_xlabel('mean_test_score', fontsize=18)\n", + " ax[i].set_ylabel(l,fontsize=18)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Top 5 `mean_test_score` of each algorithm" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
max_featuresn_estimatorsmax_depthmean_test_scoreclf
0sqrt200150.945RF
1sqrt200200.945RF
2log2200200.943RF
3log2200None0.943RF
4log2100150.941RF
\n", + "
" + ], + "text/plain": [ + " max_features n_estimators max_depth mean_test_score clf\n", + "0 sqrt 200 15 0.945 RF\n", + "1 sqrt 200 20 0.945 RF\n", + "2 log2 200 20 0.943 RF\n", + "3 log2 200 None 0.943 RF\n", + "4 log2 100 15 0.941 RF" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_cv_rf = df_cv[feat_cols[:5]].query('clf == \"RF\"').sort_values(by='mean_test_score', ascending=False).reset_index(drop=True)\n", + "df_cv_rf.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
max_featuresn_estimatorsmax_depthmean_test_scoreclf
0log2100100.952OF
1log2200100.951OF
2log2200200.949OF
3log2200None0.949OF
4sqrt200200.948OF
\n", + "
" + ], + "text/plain": [ + " max_features n_estimators max_depth mean_test_score clf\n", + "0 log2 100 10 0.952 OF\n", + "1 log2 200 10 0.951 OF\n", + "2 log2 200 20 0.949 OF\n", + "3 log2 200 None 0.949 OF\n", + "4 sqrt 200 20 0.948 OF" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_cv_of = df_cv[feat_cols[:5]].query('clf == \"OF\"').sort_values(by='mean_test_score', ascending=False).reset_index(drop=True)\n", + "df_cv_of.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualization of parameterized grid search result" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "# Replacing None value as string so it shows on plotly\n", + "df_cv_rf.fillna('None', inplace=True)\n", + "df_cv_of.fillna('None', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "dimensions": [ + { + "label": "max_features", + "values": [ + "sqrt", + "sqrt", + "log2", + "log2", + "log2", + "sqrt", + "log2", + "log2", + "log2", + "sqrt", + "log2", + "sqrt", + "None", + "None", + "None", + "None", + "None", + "log2", + "log2", + "None" + ] + }, + { + "label": "n_estimators", + "values": [ + 200, + 200, + 200, + 200, + 100, + 100, + 200, + 100, + 100, + 100, + 100, + 200, + 200, + 200, + 100, + 100, + 100, + 100, + 200, + 200 + ] + }, + { + "label": "max_depth", + "values": [ + 15, + 20, + 20, + "None", + 15, + 15, + 10, + "None", + 20, + 10, + 10, + 10, + 20, + "None", + 20, + "None", + 15, + 5, + 5, + 5 + ] + }, + { + "label": "mean_test_score", + "values": [ + 0.945, + 0.945, + 0.943, + 0.943, + 0.941, + 0.941, + 0.94, + 0.939, + 0.939, + 0.938, + 0.938, + 0.938, + 0.912, + 0.912, + 0.909, + 0.909, + 0.908, + 0.898, + 0.894, + 0.83 + ] + } + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "line": { + "color": [ + 0.945, + 0.945, + 0.943, + 0.943, + 0.941, + 0.941, + 0.94, + 0.939, + 0.939, + 0.938, + 0.938, + 0.938, + 0.912, + 0.912, + 0.909, + 0.909, + 0.908, + 0.898, + 0.894, + 0.83 + ], + "coloraxis": "coloraxis" + }, + "name": "", + "type": "parcats" + } + ], + "layout": { + "coloraxis": { + "colorbar": { + "title": { + "text": "mean_test_score" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import plotly.express as px\n", + "import plotly.io as pio\n", + "\n", + "pio.renderers.default = \"plotly_mimetype+notebook_connected\"\n", + "\n", + "fig = px.parallel_categories(\n", + " df_cv_rf.iloc[:,:-1],\n", + " color='mean_test_score'\n", + ")\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "dimensions": [ + { + "label": "max_features", + "values": [ + "log2", + "log2", + "log2", + "log2", + "sqrt", + "sqrt", + "log2", + "log2", + "sqrt", + "log2", + "sqrt", + "sqrt", + "None", + "None", + "None", + "None", + "None", + "None", + "log2", + "log2" + ] + }, + { + "label": "n_estimators", + "values": [ + 100, + 200, + 200, + 200, + 200, + 200, + 100, + 100, + 100, + 100, + 200, + 100, + 100, + 200, + 100, + 100, + 200, + 200, + 200, + 100 + ] + }, + { + "label": "max_depth", + "values": [ + 10, + 10, + 20, + "None", + 20, + 15, + "None", + 20, + 15, + 15, + 10, + 10, + 15, + 20, + 20, + "None", + "None", + 5, + 5, + 5 + ] + }, + { + "label": "mean_test_score", + "values": [ + 0.952, + 0.951, + 0.949, + 0.949, + 0.948, + 0.948, + 0.946, + 0.946, + 0.945, + 0.944, + 0.943, + 0.942, + 0.939, + 0.938, + 0.938, + 0.938, + 0.938, + 0.913, + 0.911, + 0.907 + ] + } + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "line": { + "color": [ + 0.952, + 0.951, + 0.949, + 0.949, + 0.948, + 0.948, + 0.946, + 0.946, + 0.945, + 0.944, + 0.943, + 0.942, + 0.939, + 0.938, + 0.938, + 0.938, + 0.938, + 0.913, + 0.911, + 0.907 + ], + "coloraxis": "coloraxis" + }, + "name": "", + "type": "parcats" + } + ], + "layout": { + "coloraxis": { + "colorbar": { + "title": { + "text": "mean_test_score" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "px.parallel_categories(\n", + " df_cv_of.iloc[:,:-1],\n", + " color='mean_test_score'\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "interpreter": { + "hash": "93e4dc7d4754bd0325258ba14c14aaf66418ce0b9905eb4643088c0b3d7c1548" + }, + "kernelspec": { + "display_name": "Python 3.8.13 ('of')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebook/mnist_runtime_output.pkl b/notebook/mnist_runtime_output.pkl new file mode 100644 index 0000000000000..7e887191e988d Binary files /dev/null and b/notebook/mnist_runtime_output.pkl differ diff --git a/notebook/simulation_benchmark_OF_vs_RF.ipynb b/notebook/simulation_benchmark_OF_vs_RF.ipynb new file mode 100644 index 0000000000000..a1ed78b3f8de7 --- /dev/null +++ b/notebook/simulation_benchmark_OF_vs_RF.ipynb @@ -0,0 +1,4659 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Comparing axis-aligned random forest versus oblique forest on simulation datasets\n", + "The previous notebook conducted visual analysis using `Iris` dataset. Here we extend our analysis using custom simulation dataset: `sparse_parity`, from which OF demonstrates significant performance improvement over RF. Additionally, we prepared two toy datasets from scikit-learn dataset module, `make_hastie_10_2` and `make_gaussain_quantiles`, that also simulates high-dimentionality problems. OF also outperforms RF on these datasets but in lesser degree." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Environment\n", + "- Python 3.8.13\n", + "- [Sklearn-Adam's dev branch](https://github.com/neurodata/scikit-learn/tree/obliquepr)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.8.13\n" + ] + } + ], + "source": [ + "!python --version" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import packages" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'1.2.dev0'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import sklearn\n", + "from sklearn.metrics import accuracy_score\n", + "from sklearn.model_selection import RepeatedKFold, cross_validate\n", + "from sklearn.datasets import make_hastie_10_2, make_gaussian_quantiles #imported in case of testing\n", + "from sklearn.ensemble import RandomForestClassifier, ObliqueRandomForestClassifier\n", + "\n", + "import os\n", + "import time\n", + "import itertools\n", + "from tqdm import tqdm\n", + "import _pickle as cPickle\n", + "from datetime import datetime\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "random_state = 123456\n", + "\n", + "sklearn.__version__" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'2022-06-29'" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "today = str(datetime.now().date())\n", + "today" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generating sparse parity simulation data\n", + "Sparse parity is a variation of the noisy parity problem, which itself is a multivariate generalization of the noisy XOR problem. This is a binary classification task in high dimensions. The simulation will generate uniformly distributed `n_samples` number of sample points in the range of -1 and +1 with `p` number of features. `p*` is a parameter used to limit features that carry information about the class. The informative binary label is then defined as 1 if there are odd number of the sum of data `X` across first `p*` features that are greater than 0, otherwise the label is defined as 0. The simulation is further detailed in our [publication](https://epubs.siam.org/doi/epdf/10.1137/1.9781611974973.56)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def sparse_parity(n_samples, p=20, p_star=3, random_seed=None, **kwarg):\n", + " \n", + " if random_seed: \n", + " np.random.seed(random_seed)\n", + "\n", + " X = np.random.uniform(-1, 1, (n_samples, p))\n", + " y = np.zeros(n_samples)\n", + "\n", + " for i in range(0, n_samples):\n", + " y[i] = sum(X[i, :p_star] > 0) % 2;\n", + "\n", + " return X, y" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def get_sample(func, n, m=None, o=None):\n", + " k = {}\n", + "\n", + " np.random.seed(random_state)\n", + "\n", + " if m: k['noise'] = m\n", + " if o: k['n_features'] = o\n", + "\n", + " k['n_samples'] = n\n", + " k['random_state'] = random_state # random_state for classifiers\n", + "\n", + " X, y = func(**k)\n", + "\n", + " return X, y\n", + "\n", + "def get_scores(X, y, max_features, max_depth, random_state, n_cv, n_repeats):\n", + "\n", + " clfs = [\n", + " RandomForestClassifier(max_features=max_features, max_depth=max_depth, random_state=random_state),\n", + " ObliqueRandomForestClassifier(max_features=max_features, max_depth=max_depth, random_state=random_state)\n", + " ]\n", + "\n", + " tmp = []\n", + "\n", + " for i, clf in enumerate(clfs):\n", + "\n", + " # if i == 0 and isinstance(max_features, int):\n", + " # if max_features > X.shape[1]:\n", + " # tmp.append(np.zeros(n_cv * n_repeats))\n", + " # continue\n", + "\n", + " cv = RepeatedKFold(n_splits=n_cv, n_repeats=n_repeats, random_state=random_state)\n", + " test_score = cross_validate(estimator=clf, X=X, y=y, cv=cv, scoring='accuracy')\n", + " \n", + " tmp.append(\n", + " test_score['test_score']\n", + " )\n", + "\n", + " # print(f'max_feature: {max_features} | max_depth: {max_depth}')\n", + "\n", + " return tmp" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "((500, 2), (500,), (5000, 3), (5000,))" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X1,y1 = sparse_parity(n_samples=500,p=2,p_star=2)\n", + "X2,y2 = sparse_parity(n_samples=5000,p=3,p_star=3)\n", + "X1.shape, y1.shape, X2.shape, y2.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualization of sparse parity at low dimension\n", + "At `p=2`, sparse partiy becomes noisy XOR problem (left). Adding one more dimension makes the 3D XOR problem (right)." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0.92, 'Sparse Parity at p=3')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuIAAAF1CAYAAACtaI9ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydZXhc1RaG3z0ucWvTpKm7eyk1oEAp7g5FLu7u7i7FoVC8BYpTWgptqbukLnH3ZDIu+/6YyRCZpEmaVOC898nD7ZG915lkZr6zztrfElJKFBQUFBQUFBQUFBQOLqpDHYCCgoKCgoKCgoLCfxFFiCsoKCgoKCgoKCgcAhQhrqCgoKCgoKCgoHAIUIS4goKCgoKCgoKCwiFAEeIKCgoKCgoKCgoKhwBFiCsoKCgoKCgoKCgcAhQhrqDQBEKIB4QQHx7qOBQUFBQUFBT+fShCXKFJhBDjhRArhBCVQogyIcRyIcSoQx1XUwghPhFCuIQQ1YGY/xBC9G3NWFLKZ6SUVwfG7SqEkEIITdtG7EcIkSGEmNIeY9eb524hxFYhhEUIkS6EuLu951RQUFBQUFBoiCLEFRpFCBEB/AK8CcQAScDjgLMd5mprcfuClDIMSAaKgE8Og5gOFwRwGRANTAVuEkJccGhDUlBQUFBQ+O+hCHGFpugNIKX8SkrplVLapZQLpJRbAIQQ0wMZ8jcDGfOdQojjak4WQlwhhNgRyLymCSGurbVvshAiRwhxrxCiAPhYCBEnhPhFCFERyGQvFUKoAsd3EkJ8J4QoDmRxb2nOBUgpbcCXwMDAOK8LIbKFEFVCiPVCiAm1YnpMCPGtEOJzIUQVMD2w7fPAIX8H/lsRyLZPCsQ5qNYYCUIIuxAivn4sQogeQoi/hBClQogSIcQXQoiowL7PgBTg58DY94Q4v+Y1eyBwfoYQ4uLmvA71XpMXpJQbpJQeKeUu4Efg6JaOo6CgoKCgoHBgKEJcoSl2A14hxCwhxElCiOgQx4wB0oA44FFgrhAiJrCvCDgFiACuAF4VQgyvdW5H/Jn2LsA1wJ1ADhAPdAAeAGRAjP8MbMaflT8OuE0IceL+LkAIEQZcDGwMbFoLDA3M+yXwjRDCUOuU04FvgSjgi3rDTQz8N0pKGSalXAJ8DVxS65gLgYVSyuJQ4QDPAp2AfkBn4DEAKeWlQBZwamDsFxq5pI74X+sk4HLgfSFEn8C13he4iQn508jrI4AJwLZG5lNQUFBQUFBoJxQhrtAoUsoqYDwggQ+AYiHET0KIDrUOKwJek1K6pZSzgV3AyYHzf5VS7pN+lgAL8Iu+GnzAo1JKp5TSDriBRKBLYLylUkoJjALipZRPSCldUsq0QDxNlVPcFRCfe4EwYHogps+llKWBbPDLgB7oU+u8lVLKH6SUvkBM+2MWcFFN5h64FPgs1IFSyr1Syj8C11sMvAJMasYc9Xk4MMYS4FfgvMD4z0kpoxr7aWSsx/B/DnzcijgUFBQUFBQUDgBFiCs0iZRyh5RyupQyGX95RyfgtVqH5AbEcg2ZgWMIZNFXBco3KoBp+LO5NRRLKR21/v0ifuG8IFDKcl9gexegU73s7gP4s+aN8VJAgHaUUp4mpdwXiOnOQLlMZWCcyHoxZe//VfkHKeVqwApMCiwI7Qn8FOrYQNnK10KI3EDpy+f15m4O5VJKa61/B1/vliKEuAl/rfjJUso2r/tXUFBQUFBQaBpFiCs0GynlTvyLHgfW2pwUKG+oIQXIE0Loge+Al4AOgYzsb/jLM4JD1hvfIqW8U0rZHTgVuCNQc54NpNfL8IZLKae1JP5APfi9+DPI0YGYKpuKqR6N7ZuFvzzlUuDbejcXtXk2MMZgKWVE4Jzmzl1DtBDCXOvfKUAeBK0Wqxv7qT2IEOJK4D7gOCllTjPmVVBQUFBQUGhjFCGu0ChCiL6BDHJy4N+d8ddAr6p1WAJwixBCK4Q4F3/t82+ADn/ZRzHgEUKcBJywn/lOEUL0DAj7KsAb+FkDVAUWdhqFEGohxEDRchvFcMATiEkjhHgEf/16cynGX07Tvd72z4Az8QvrT/czfzX+xZ5JQH3bwMIQY4ficSGELnBjcQrwDQStFsMa+6k5ObDA8xng+ECZj4KCgoKCgsIhQBHiCk1hwb8Yc7UQwopfgG/Fv6iyhtVAL6AEeBo4J1CDbQFuAeYA5cBFNFKyUYtewEL8YnUl8LaUcrGU0os/Qz4USA/M9SH+spKWMB+Yh38RaibgoAWlKAEHlqeB5YESmbGB7TnABvwZ7aVNDPE4MBx/Fv5XYG69/c8CDwXGvquRMQrwv555+BeTXhd4UtESngJigbW1MubvtnAMBQUFBQUFhQNE1C3vVVBoPkKI6cDVUsrxhzqWQ40QYiaQJ6V8qB3nmAx8HqjXV1BQUFBQUDjC+bc2LFFQOGgIIboCZwHDDnEoCgoKCv9phBAPAN1rOiIrKBzuKKUpCgoHgBDiSfzlOi9KKdMPdTwKCgr/bYQQ44UQKwLOUGXC33StpetpDipCiE+EEK5AmVyZEOKPgAtViwmslbk6MG5XIYQU7dQlOdBUbUp7jF1vntsCTmJVQog8IcSr7XVNCgcfpTRFQUFBQUHhX4AQIgJ/Y7Dr8a/P0eHv3VBQ0xG5DefSSCk9bTTWJ0COlPIhIYQJf5+IHlLKsQcSU+BpZTqgbatY682Xgb88c2Fbj11vnh5AqZSyItAw71vgFynlK+05r8LBQcmIKygoKCgo/DvoDSCl/EpK6ZVS2qWUC2pEuBBieiBD/mYgY74zYBFLYP8VgT4LlkAG9tpa+yYLIXIC7lUFwMdCiDghxC+BBeZlQoilNc3NhBCdhBDfCSGKhRDpQohbmnMBgUXxXxKwyRVCvC6EyA5kg9cH3KJqYnpMCPGtEOLzQG+G6YFtnwcO+Tvw34pAtn1SIM5BtcZIEELYhRDx9WMRQvQQQvwlhCgVQpQIIb4QQkQF9n2G3z7258DY94Q4v+Y1eyBwfkbAtapFBBrjVdQMi9+9q2dLx1E4PFGEuIKCgoKCwr+D3YBXCDFL+BuqRYc4ZgyQhr+Z2KPA3ECWFfydkk/Bb+t6BfCqEGJ4rXM7AjH4m6xdg99BKweIx99g7QFABsT4z8BmIAk4DrhNCHHi/i5ACBEGXAxsDGxai98xKwa/QP9GCGGodcrp+DPEUfidpGozMfDfqICN6xLga/xWszVcCCwMdDtuEA5+N6tO+K15O+PvRoyU8lL8Tx9ODYz9QiOX1BH/a50EXA68L4ToE7jW+0StRnX1f+q9LhcFbjZKgCHAe43Mp3CEcUSWpsTFxcmuXbse6jAUFBQUWsz69etLpJQNsm8KCm2BEKIf/sZlU/CLwN+A/0kpCwNOV88ASTUdkYUQa4A3pZSfhRjrB2CRlPL1gGvTAiCipmmZEOIJ/KLwTinl3lrnjQG+kVKm1Np2P9BbSnlFiHk+AS7AbynrwN874vaajsj1ji0HJkspNwshHgOOlVJOrLX/MaCnlPKSUKUpgdi+BbpIKX1CiHXAC1LKOU29roFzzwAelVIOC/w7gyZKUwKv2UIgsqYjshBiDpAqpXxyf/M1MmYv/B2R35JSFrRmDIXDiyOy2L9r166sW7fuUIehoKCg0GKEEJmHOgaFfy9Syh3AdPA3ZQM+B17Dn/kFyJV1M3CZ+DO+CH/jtUfxl7ioABOQWuvY4nqdg1/EnyFeIPwNlt+XUj6HP2PeqV5WV03TfRZeCmX/KoS4E7g6EKPEn62Pq3VIs3tBAEgpa/piTBJC5OMv8QjZ40IIkQC8gb/OPhz/a1LekvmA8hoRHiD4ercGKeUeIcQ24G38bl0KRzhKaYqCgoKCgsK/kECzr08I1FsHSBIB1RwgBcgTQuiB74CXgA5Syij82fTax9Z5hC6ltEgp75RSdsffdO2OQM15NpAupYyq9RMupZzWkvgD9eD3AucB0YGYKpuKqR6N7ZuFvzzlUuDbejcXtXk2MMZgKWVE4Jzmzl1DtBDCXOvfKfgbshGoHa9u7KeJMTVAj2bMrXAEoAhxBQUFBQWFfwFCiL5CiDuFEMmBf3fGnwlfVeuwBOAWIYRWCHEu/trn3/A7rOiBYsATyI6fsJ/5ThFC9AwI+yrAG/hZA1QFFnYahRBqIcRA0XIbxXDAE4hJI4R4BH9GvLkU41/Y2L3e9s+AM/EL60/3M381/sWeScDd9fYXhhg7FI8LIXSBG4tTgG8gaLUY1thPzclCiKsD2XmEEP2B+4E/mzGvwhGAIsQVFBQUFBT+HVjwL8asKb9Yhb/PwZ21jlkN9MK/6O9p4BwpZamU0gLcgt/2sBy4iEZKNmrRC38NdDWwEnhbSrlYSunFnyEfir9GuwT4EIhs4fXMB+bhX4Saib9+vNmlKAEHlqeB5YEFkGMD23OADfgz2k2VyzwODMefhf8VmFtv/7PAQ4Gx72pkjAL8r2ce/sWk1wWeVLSEo4HUwO/0t8DPAy0cQ+Ew5YhcrDly5Eip1IgrKCgciQgh1kspRx7qOBT+ewQWa14tpRx/qGM51AghZgJ5oerS23COycDnUsrk9ppD4cjniFysqaCgoKCgoKDQGgJuKmcBww5xKAoKSmmKgoKCgoKCwn8DIcST+Mt1XpRSph/qeBQUlNIUBQUFhYOIUpqioKCgoFCDkhFXUFBQUFBQUFBQOAQoQlzhkOLxevD5fIc6DAUFBQUFBQWFg06bCHEhxEwhRJEQYmsj+4UQ4g0hxF4hxBYhxPBa+6YKIXYF9t3XFvEcSezOSeOGN+7n2LvO5eFPXqSwvPhQh3RQ2J2TxuQ7z8EwrTuGk3twwdM3UFbV0oZlCgoKRwhS+VF+lB/l5wj+aTfapEZcCDERv4/op1LKgSH2TwNuBqbh9zh9XUo5Rgihxu8PejyQA6wFLpRSbm9qvvaqEbc77ahVanRaXZuPHYolm1cy7cHLcHlceLxe9FodYQYz697+ja4dOx+UGA4F5ZYKel4+nvLqSmr+/nQaLX1TerLp3QXUbfqmoND+7N2UxvxP/8RpczHpnKMZftyQdvs7/I/WiLfrF5mCgoJCO9NuwqRNMuJSyr+BsiYOOR2/SJdSylVAlBAiERgN7JVSpkkpXcDXgWMPKtsydjH25lMJP60vYaf25vRHrqS4orRd55RScvUrd2Nz2vF4vQA43S7KrZU8MPO5dp37UPPJgm+wuxzUvgl0edyk5WexNHX1QY3F7rSzLWOXko3/D/PNqz9w07i7mPv6T/z83jweOuMpnrn0ZY7EhewKCgoKCkcWB6tGPIm63bByAtsa294AIcQ1Qoh1Qoh1xcVtV75RWlXO+NvPZM2uTXh9XtxeD/PW/MXku85p1y/iMksFWUW5Dbb7fD5+X7ek3eY9HEhN34nd6WiwXUofu3PSDlocL8x+m/hzhnDULafR6YIRXPTMjThcDeNqK9K3ZvDX7L/Zs3Ffu82h0DJK88v48IFZOO0ufD7/+91hdbDsh1Vs+GvzIY5OQUFBQeHfzsFq6BMqpS+b2N5wo5TvA++DvzSlrQL7ZP4cnG5XHdHt9nrIKspjyZaVTB4yrq2mqoNRZ2h0X6QprF3mPFwY2Xswc5b8jNVhq7dHMLBrn4MSw9eLfuSJz17F6rQHt/2wfD4GnYGZd73cpnM57U4eOv0pUpdvR6VWIb0+eg7rzi1vXseKn1Zjr3Zw9OljGHh0f6Us5yCzdv4G1Bo14K6z3WF18Pd3Kxhx3NBDEpeCgoKCwn+Dg5URzwFqFz0nA3lNbD9obM/aHTI765M+9uZmBP9dWlXOwg1L2ZaxK7htS9p23vn5U75fNg+X29WieU0GI2ccPRV9vXp0k97ILWde1bKLOMK4dMrZhBnNqFXq4Da9Vs+Q7v0Z0294E2e2Hc9+NaOOCAewuxx8+dcPWO3/3CBk787lhate56ohN/HUxS+SlprR7DlsFhvZu3N5/75P2LJ0K06bE7vFjsPmZMfqXVw36nY+e3o2s1+eyz1TH+WFK19TyiGaSUVxJd+8+gPv3P0Ry39ajTdQ3tVSdAZtyJsflVqFwaw/0DAVFBQUFBSa5GBlxH8CbhJCfI1/sWallDJfCFEM9BJCdANygQuAiw5STACM7jOM2YsbZmcFMKRHf6SUPPLJS7z07bvotTrcHg/9UnqSFNeRhRuWIiVoNBqMOj2LX/qWfl16NXvuD25/gcLyYtbu2oxGrcHpdnHB5NO45Ywr2/gqDy/CTWGsnfErt7/7GL+t+QudRsulU87huavuP2gZ4YLyopDbVUJQYa3EbDSxZ+M+bp14Lw6bE+mTpKdmsvyHVTw373GGTGywJjmIx+3hjVveY/4nC1Fr1NirG97oeT0By8aAfnRYHSz+ZjlTLj6GEVOGHujl/avZtnIHd5/wCF6PF5fDxc/vzqPrgC68uugZ9MaWieexJ48KlqTURqvTcMKlx7ZVyAoKCgoKCiFpK9eUr4DJQBxQCDwKaAGklO8Kv7qaAUwFbMAVUsp1gXOnAa8BamCmlPLp/c3Xlq4p1XYrfa6YSFFFSXDRpEGnZ0zfYSx++Vu+/fsXpr94Rx2hrhICEPjkP/7XQgj6JPdg+0eLWiwmd2btJaMwm4Fd+5Ac36lNrkuhac567Gp+WDG/QQY6PjKWgjkbUalU3Db5PjYvaejI2aV/Zz7Z9k6jY791x4f8/N48nDZni+OadtUJ3P3hLS0+77+ClJLzu1xBcXZJne16o47pj1/MBXef3eIx1y7YwCNnPYNQCZASr8fLNc9N5+xb22fduOKaoqCgoHDE0W5ZwjbJiEspL9zPfgnc2Mi+34Df2iKO1hBmNLPurd+454On+XnlH+i0Wq448Xweu+wOAF7+9v0G2XKfbGgrKaUkqyiXvbnp9Eru3qIY+qb0pG9KzwO6jkOJx+th+da1eH0+jh4wEr3u8H+k/8yV97Fww1JsTgden/8GzKQ38voNj6NS+Su2ti7fEfLczO3ZeNweNNqGbx+vx9tqES5UAq2+eW/JPRv38cv7v1NRUsX4M8ZyzHkTQsbzbyN7Vw6WMkuD7U67iwWf/tUqIT7qhOHMLfiMlb+uxeVwM3rqcGI6RLdFuAoKCgoKCk3y7//mbgaJsR347L43Qu4rbYGtnRACl8e9/wP/RSzbuoYzHrkKl9cdvF384v4ZnDJ2yiGNC/x+5TqNDrPR1GBf35SerH97Hk98/hortq+nQ1QsJoOJJz5/lW/+/oUHL7qlyXptoQp9c2y3OvC6PU3GpdVrcTsb/p3oDDpOuOy4/VwV/PrhfN689X3cDjc+n48189bz41u/8uriZ9HqtPs9/0hGrVHT2K/Fv+iydRjDjBx7/sRWn6+goKCgoNAalBb3++HUsVPQaZonbiLN4fRLaX6NeEuRUrJo03JunvEw937wNFvTd7bbXM2hymph2gOXUmopx2Krpirwc95T15Fbkn/I4tqwJ5XB10yhw3nDiD5rANMeuDRkx9Jeyd357L43+Obhd9mSvpNFm1ewM3sfP6yYz8Q7zm70QZQQApc99OJcc4SJ6A5RIfcldu/IhDOP4uIHzuXBz+9Eb9JjNBvQG3XoDDouuOcs+o9p2jXGZrHx5i3v4bQ58fn8pVEOq4N9W9JZ+MXiJs/9N9CpRyIJneMalH/pTXpOuWbqIYpKQUFBQUGhdSgZ8f1w3wU38fXinyizVOBwOVEJFXqtlsTYDhSVl1DtsGHQ6VGr1Hz1wFvBsoa2RkrJ5S/cxtxl87A57aiEijd/+JgX/vcgN51xRbvMuT++X/57yMJPn8/HF3/+wD3nX3/QYyosL2byXedisVUHty3csJRj7jqXbR+Grt+/890n6pQfSSmxOe04ItzoyhpmWSPjIzCYQ9tPCiG46fVreebSl4PlKUII9CYdj31zH72H/1OCNGbaKJb/uAqHzcmYk0aQ2K3jfq9v6/IdaLQanPVuBBxWJ4vmLOWkK47f7xhHMkIIHv/uAW6bdB9ulwePy4NKrWLElKGc8r8TWz2u0+7k1w/ns2j2MkwRRs644WTGnjxKsZNUUFBQUGhXFCG+H+KjYkl9fyFv/zSL+ev/pmuHZG4762qG9OjPjyvms2jzSpLjErn8+HNIjO3QbnH8tXE5c5fNCwpGr/Rid3m5+4OnOHfSKXSIjm+3uRujoroSd4hSHKfbRanl0HSq/HDeVw1icns9ZBfnszR1NRMHj21wzupdG0OOtbNbJiPtfetkv/UmPdc8N71JgTbxrHFExIbz6RNfk7s3jz4jejL98YvpPqhrnePCo8OYOr1lJTzGMEOjJTNhkeYWjXWk0m1AF77JmcXyn1ZTml/GwHH96Duqd6vHcznd3Dz+HrJ25gRvnrb8vZUzbzqVa56b3kZRKygoKCgoNEQR4o2QV1KA0+2ia8fOxERE89Alt/HQJbfVOebsCSdz9oST2zWO3TlpvPzNu3y/Yn6IBjigUamZv24Jlx1/TrvGEYrjho0P+QTAbDBx0qjJBz0egB1Ze3C4Gi6UlFKSXpAdUojHhkeT42xYSuNMdPPUMw/xwf2zyNqRTUJKAlc8cTHHnDdhv3EMnTSIoX8Oal7Ma3axeM5ShErFcRdOotewHo0e2/+ovhjDjdgsdT3Q9SY9p113UrPm+zegM+ia9XtoDovnLCV7V26dBbYOq5PvXv+RM28+hfikOHw+H0IIJUOuoKCgoNCmKEK8Hun5WZz31HWkpu9CpRJ0iIrni/vfZNyAg+82tmbnRo69+3wcLmfQ2aM+QogGTYEOFgO79eWS487yN8EJ3CSYDSaOHXo0kwYf1aZzVdut3P3+k3y2cC5Ot4spw8cz46an6NGpa53jjh4wih+W/47VUVeoSuljWM8BIce+89xreXDm89hqNfgx6g1ce/KljDphOKNOaL8mQ+/ePZMf3v4Vl92FEPDDW79y4T1nc/mjoe301Wo1L/z+BHdNeQin3S8c3S4Plz54PkMnD263OP/NrPxlLQ5rQ693tVbD8h9Xs/q3daz5fT1CCMadNprb3r5BcVVRUFBQUGgT2sRH/GDTlj7itfF4PXS75CjyygqDC+HALy73fLK0XUtPQjHqxmms272lyWPMBiP5szcSbgo7SFHVRUrJTysXMPP32bg9bi6dcjbnTToVtbr1Dhah5ph4x1ms3bUZZ6CDqUqoiA6LZPcnfxMT8Y8oqrZb6XflZArKi/F4/e4lRp2BY4aO49enPw05vs/n454Pnuatnz5Bp9Hi8ri5YPLpvH/782ibuVC3NezdnMZNR93VoN5bZ9Qxc8sMkno27inv9XjZtDiV6opqBk8cSHRCVLvFebggpeSXD+Yz56W5VJZUMXjSQK559nJS+nbe/8kh8Lg9fPPKD3z+zGxsVfYG+41hBnQGHZbyanxe/+eBSq1Cb9TRdWAXhh87hLNuObXFolzxEVdQUFA44mi3x6GKEK/FvDV/cf5T12OxW+tsN+j0PHzxrTxw0cFrtOLz+dBM7dJ4PbDRjM/nY+6jH3DiISoDOVis27WZyXed26A0x6g38MRld3HXedfV2V5YXsyDM5/nxxXzMegMXHPyRdx7/o3o9vPkoNJaRVp+FikJScRGtH/G89Mnv2bW418GRV4NWr2W/z17Oefefka7x3Ak8f59n/D9mz/jqLUI1hhu5MNNbzRroWt9Hj7zKdbO39DgRqhmbHOkCa/HG7IzKvh/T6ZwIx9sfIP45Lhmz6sIcQUFBYUjjnYT4op9YS1ySwrw+nwNtjtcTtILsg9o7KLyEu778BlG3jCNsx77Hyu2NX0jIYTApDeG3Gc2GHnvtufIn73hXy/CAbZn7UGEeA/YnQ427E3F7rTzyCcv0eXiMXS+cBSvfPc+r17/GMXfpZL91VoevuT2/YpwgEhzBMN6DjwoIhz8bdRV6oZvQZVKoNEdeVVjLqe7zpOktqS60sp3r/8UFOHgz5A7bU6+ev7bFo+XsT2rURGu0Wno2DWBY86f0KgIB3A73VRXWPn40S9aPL+CgoKCggIoQrwOY/oNI1TiJsxgYlKIRX7NJb+0kIHXHMercz9k/Z4t/LDid46/90I+Xzi30XOEEFx3yiUY9XVt8ox6A3ecfQ0XHXsmEebwVsd0KElN38GMHz7mq79+wOZoWBJQn34pPZEhfi9GvYGhPQZw3D0X8OI375BVlEtOST6vz53J+NvPDJamHK5MPm98SCEupd955Uhh/Z+buKzvtZxkOpuTI87lnbs+xLOfpkYtJXtXTsiuo16Pl20rWu6nv3v93pCvPcCwYwbzxb4PGXrMYIxhoW+Ga8+/dv6GFs+voKCgoKAAihCvw6Bu/Zg66pg6mWi9VkdyfCfOnXhKq8d95ss3qbBU4grUN9f4VN/81sMh7f+C5115H6eNPR6DTk+kOQK9Vsc5E07mkUtvJ6c4jytevJ2O5w6l9/QJvPXjrHbLRrYVPp+Py1+4jTE3n8rdHzzFNa/dS6cLRrB+P3XwI3sPYXC3fnUWpQohMGj19E7uTmr6jjpOKU63k7T8LH5d/ecBxeuwObBX7/9GobUkduvIza9fi86gxWDWB2uS7/7wZmITY9pt3rZk1/q9PHjak2TvysXn8+GwOvnx7Xm8fO2MNp0noXM8LkfD94oQgqRejdfSN0bHrgkht2v1WvqN6YMQgglnHkVEXPh+O3aGxxya9RkKCgoKCkc+ihAPIKUkr6SAD25/geeuup/+XXrTI7ELd55zDavf/Bm9Tt/qseetW4Q7RHbW4/WwNzej0fN0Wh1fP/QOe2ct48fHPyL9s5V8eu/rVFRXMfz6qXy2cC6FFSXsyU3nng+e4ppX76XKaml1nO3NnCU/893S37A7HThcTqrtViqtVZz2yBVN3kQIIZj/3BdcOuVsjDoDapWK44aNZ/WbP7M7Jw2Hq2F5QbXdypqdm1oVZ2l+GfdMfYRTo87n1OgLuGHsnWTuOLDSpMaYOv04zr3zTHQGHUIIJp49juHHDW2XudqDL56e3aDLqNPu5K+vllBZWtVm88QmxjD25JHoDHVLjHRGHRfd13LrzkHjBxCfHNdAZGu0ak65xt8YSKvT8vaql5l07tHojDpUahVCVbdEymDWK7X8CgoKCgqtRhHiwB/r/6brJWPpcfnRJJ4/goUbl7Hs1bns/XQ5T1953wGXgCREhV7I5fZ4iImI2u/5SXGJTBpyVNC15e2fZmGxW+tYGtqcdj76/StizhpI3ysnsWzrmgOKuT344LcvQnqhV9mq2bh3a5PnhpvC+OCOF7H9uhf375n88fxX9EruTpcOyRhD3CSZDSa6dWzopuH1etmeuZuc4ryQ83i9Xm4++m7WL9yEx+3F6/Gyc81ubj76bqorqkOecyA8ccHzfPvKD1SVWrBZ7CyavZRrRtyKtarh63Q4krkjO+SCYo1OS1FWcZvO9eDnd3HshRPR6rVo9VriO8fx6Jz7WtXMRwjBq4ueZegxg9DoNGj1Wjr3TealhU8Tn/TP+zWmQzQPf3kP821z+bHkSwZPGIDeqMMcaUJn0HLaddNa3JRJQUFBQUGhhiNvRVgbsyNzD2c8elUdD+nf1y7ilIens/y1H9pkjrvOuZbLXri1jre1VqNl0uAxreqIuXjLypBNawC8Pi+7svdx4v0Xs+md+fRK7t7quFtKYXkxb/34CSt3bGBQt77ccsaVdK0lhl2NlOEIIRrd19jxNZw+7gRufesRrA47PukL7tdptJw/+bQ65/20YgFXvXwXDrcTj8fDsF4D+e6R9+vYUq6dv4GKkqo6TiZSSlxON398vpgzb2p9iVJ9snZms3re+joZZa/HS3WFlfmzFnLWzac1cfbhQe8RPcnZndfgiYbH5SGxe8udTJpCb9Rz78zbuP3tG7BX24mIjTigBjsxHaN5acFTVFdacTvd+7WADIsK47XFz5GzJ5finFK6D+pCZFxkq+dXUPg3IaXE6/WiUqlCNnpTUFAIzX/+3fLa9x8GvalrcHncbNq7je2Zu9tkjrMmTOP+C27CqDMQaQ7HqDdwVL8RfPXAW60ar09yd9SqputWXW4Xr839sFXjt4a9uen0u3IyL8x5h4UbljLjx08Y9L/jWLPzn/bxl045B5Oh4eI3n9fLgC6ta1Fu0BlY/voPjOw9GJ1Gi06jY3D3fix9dW4db/Wt6Tu58JkbKKkqo9puxeF2smbnJk6476I6Gd38tAK8IRYaOm1Oti7fxtOXvMTN4+9m5iOfU1lS2aqYa9i9YV/I+mOnzcmWpdsOaOyDxSUPno/OWK9cxKDl1GtPJCzS3C5z6gw6IuMi26zLZVikuUU+7Mm9khh2zGBFhCsoBPD5fDidTiwWC1VVVVRVVWG323G7289JSUHh38J/XojvyUkL2bVSq9GQWZjTZvM8ePGtFMzZyK9PfcrWD/5kySvf1mlE0xJuPfPq/XbT9Hi9bGujG4nmcOd7T1JptQRvatweN9UOG9e8em/wmCtOPI+xfYc3KCXxSh/Drj+RsqryVs3do1NXVs/4hbzZG8j5ai2b3l3AgK596hzz5o8f43TXzbp7fV7SC7LZsCc1uK3n0O4hmxHpDFr+nruSP79awtblO/j6he+4YsCNlOaXtSpmgI5dO/gtUuqh1WtJ6ZPc6nEPJl36dea1Jc/Re3gP/wbhv6R5Hy9kxc+rD21wCgoK7YqUEo/Hg9PpREqJWq1GpVL5rUWdTqxWqyLMFRT2w39eiE8cPBZDiBpjh8vJkO7923SuCHM4Rw8cRffELgc0Tt+Unvz0xMd0SUhuVJDrtTrGDWifniFWu420/Eyctcpj/tq4LFgaUputGTuxB8p+tBotC577kqiwqDrHOFxOcorzeeLz1w4ortiIaOKjYkPuyyzMCXnDpVapySstDP574NH96T6kGzrDPx01NVo1bpcHj8uD9PmFs9vppqrcwmdPz251vAOO6kvHrh1CLhg89dqTWj3uwabbgBTyM4r8/5D+18ZWZeeJ85+nIKOw6ZMVFBSOSKSUuFwu3G43QojgEyohBCqVCrVa3agwz8rKwuFw4Ha7G21ap6DwX+E/L8RvOv0Kwo3mOqUeJr2RK048j05xbVvj2hRSSn5d/SdnPXY1pzx4GV8v+hGvt6FwrOG44eNJ/3wl6Z+t5MJjzqhjuahSqTDpjdxyxpX7nXdvbjon3HcR2qldMJ/Si2tfu5fqep1Fa/B4Pdw842HizxnM4GuOJ+6cwbww+22klJiNocsQNGpNnTbxBeVFlFdXNDjO5XHz3bLfmow1PT+LxZtXUFxRut/rqs/xwyc28GQHcLpdjOozJPhvIQQv/fEkZ91yGtEJkYTHhDH+zKPqCPMavG4vq39rfYdXIQSv/PUMI44f6l8wqNOQ0jeZl/54qkWdGg81q35bF7Kcx+v1Me/jPw5BRAoKCu1JTSmKz+erI8JDEUqY79mzB4fDQXV1NZWVlVgsFhwOBx6PRxHmCv85/vOLNeMiY9jwzu88MutlflvzF1HmCG496yquPfmSgxrHLW89zMfz5wRdRRZvWcUXf33PT0983OiHnBCCxNgOfHbv67z87XvM+PETqqwWpoyYwPNXP0DHmNBeyTWUVpUz5uZTKa+u9D9i9NqZteAbtmfuZumr3zc4/v6PnmPm719jd/3TbfDxz1+lQ3Q8159yKc/PeRu78599eq2O8yefhkb9z5+ZQWfA5wv9QWvUNRTK4LciPOeJa1iyZTV6rQ6ny8nV0y7i9Rseb/aioP9Nu4g3f5hJQXlxsHzGbDBx7cmXNHidDCYD1z5/Bdc+fwUA5UUVLP8xdJlFRMyBOepExUfy/G+PY7PYcDvdR2TdsaXMgtfb8GmIx+WhvPDA6ugbY9vKHfww41fKiyoYf8ZYpl4xBYMp9N+PgoJC2yClxGKxYLVaiY6ObtWizBrhXlMCKKX09yBw/PPdoVar0Wq1aDQa1Gp1m60HUVA4HPnPC3GA5PhOzLzr5UM2/86svXw0r67AtTpsLN60gj83LmPK8AlNnq9Wq7nn/Bu45/wbWjTvzN+/xu501MlAON0uNu7dxvrdWxjRe3Bwu8fr4Z2fZ9VxlwGwOew8/eUbbPvwL7Zn7eGnlQvQa3W4PR7G9B3GWzc/Xef42IhoxvQdxort6+qUipj0xkZvfq597T4Wb16J0+3CEXiNZs7/mr6de3Lj6Zc361ojzOGsf+d3XpzzDt8v/50ocwS3nXU1Fxxz+n7PjU6IYvDEAWxenIrH/U/MBrOe8+48s1nz7w9TuAkOsFGqlBK3041Wrz2oX1xDJg0MluzUxhhmYPTU4W0+3w9v/8q7d8/EZXchpWTrih38+M5vvLPmlRaJ8eLcEgoyikjpm0xkbESbx6mg8G/C5/PhdrupqqqitLSUmJi2aTpWP6OuCHOF/xr/+dKUw4E/Ny4L2cK92mFj3ppF7Tbv+j1b6oj/GoQQDRxjrA4bLndoi8GCsmK0Gi2zH3qH7R8u4rN732DdW7/x10tzCAtRsvLlA2/SpUMS4cYwzAYTRr2BE0dO4tazrmpwrN1p57ulvzZwtrE57Lz63fstuVxiI6J57uoH2PXx36ye8QsXHntGsz/QH/7qHvqM7IXepA96SJ91y2kce8FEPG4PdmvD1/Fg8ssH8zk78VJOMp/NWR0u4ce3fz1oj3iTeyVx0hVTMJj/EcEGk56ew7pz1Kmj23Qum8XGu3d9hNPmDF6f0+YkP72Q32Y2rwzG5XDxyNlPc0nP/3H/yY9xXvLlvHHzu8oiMgWFENRekOnz+drdmjBUKYvP58NutyulLAr/SpSM+GFAVFhEoHyjrje4TqsjJjyq3eYd3nMQP634o4EYl1LSL6VXnW0RpnDio2LrLGysYUTvQcH/3y0xhW6JKU3OmxzfiT2fLGPRphVkF+cxsvdgBnbrG/JYm9MRylgEgPLq9il7CEVkbAQzVrxE1s5sSvLK6DGkGzqDjheufJ0/v1qCz+ulc59k7nz/ZgaO63fQ4gKYP+tPZtz2Pk6b/++noriSd+6eiUqtOmiLPm9963qGTxnKz+/Nw2l3cfzFk5l6xZSQDjTNxW518NfXf7N34z66DezClIsns2P1bjRaDc763TxtTpbOXcFZN50K+D3aZz3+FdtW7qRj1wQuffgCRgQ6lr556/us/m09Locbl8N/c/nbzD/o1L0j5yhdMhUUgtSIcI/HE8xcCyFCit+ashWz2XxA7/v61MxZcwNQkzEvLi6mrKyMLl26oNFogj9KxlzhSEMciXeTI0eOlOvWtX6R3IGyLy+DaruNAV1716l/bi3Vdiudzh+Opd4iSaPewM6ZS0hJSDrgOUJRWlVO7+kTgjXi4K/rHtl7CMteq1sj7va4GXDVsezJS6+zXavWsPz1HxjVZ2i7xCilpPtl48goqNtiXiVUnDX+JL555L12mbc53H3iw2xZshWX858nBQazng82vkFyr/b5nYXi/C5XhOxiGdMxmu/yPztocbQlxTklXD/6DqxVNhxWBwazAb1Jx90f3MLTl7yEvbruzaMQgonnjOOxOfeTvi2TG8feidPmCma59SY9d71/E5PPm8DJEecGBXhtEjrHMTvrk3a/NiHEeill+1gaHb4ceV80/3FqSlHqL8gsLy8nPz+f/v3/cRVzOp2kpqYG/79GoyE6Opro6GjCw8MbZNHXrl3LqFGjDii+yspKCgsL6dWrV1Cc18So0WjQarXBrLoizBXagHb7I1JKU1pAen4WQ649nkHXTGH87WfS8bxh/Lr6zwMeN8xoZt4znxMbHk2EKYwIUxhhRjNf3Pdmu4lw8JdqrHrjJ6YMG49apcakN3LZ8efw+7OfNzj2279/Ja8shBWdECTFtp+7jBCC9297HpPeGHS20Wm0RJjDeO7q+9tt3v2RsyeX1KXb6ohwALfTw7ev/XRQYynJDe0iU1ZQfsQ+tp1x2/uUF1XgCJT8OKwOLKXV/PD2r0R3iGrwxaoz6jjjRn/X0w8f+BSH1Vmn1MRpczLj9g+wWx14PaFLUCzlod2CFBT+S9T3BlepVHXeb/Uz4qWlpaxbt46UlBQGDRrEqFGj6N+/PwaDgby8PNatW8emTZvIzMykqqqqTT+TpJTBbHlNNlylUuH1euuUslRXV+N0OvF6vUfsZ6LCvxelNKWZ+Hw+jrnrXLJL8oNf8NV2K+c9eR2b3j3wVvJHDxxF/pwNLN+2FrfHw/iBozDqG3ahbGt6JXdnwfNf7fe4n1YuCDq61Mag1bFkyyouPPaMdojOz/EjJrLqzZ946Zv32JW9j/EDRnH7Of8jKS4x5PEer4eFG5ZSVFHK+DbwbQ9FXloBGl3DEgmvx0vG1sw2n68pOvXoSM7uvAbbO3RJOGIzQat+XYevnhOLz+djw5+b+WT729w79VEqiitRqVS4XR6ufPIShk7yl0htX7kz5Jet3eLAaXOS2K0DOXvqvl5CCAZPHNB+F6SgcARQ4w3elC1hjRD3+Xzs27ePiooKRowYgV6vx+Xyfx7q9Xo6duxIx47+JI3D4aC8vJycnBwsFgtOp5Ps7Gyio6Mxm81t+jkVavGn1+vF4/EE99cuZal/o6GgcLBRhHgzWbJlJWWWygYLutweN+/98jkvXffIAc+h1WiZPGTcAY/THsRHxaJWqRs2xRGiXevYwS/A1u7azPbM3didDqLCI4k0h3a52JW9j8l3nYvVbsMnfXh9XqafcB5v3/JMm37YdhvQJWR5g1anod/YPiHOaD+ufeFKnrrwhTo3BXqTnmufn35Q42hL1JrQD+tUKkFyryS+2PchO9bsprq8mv5j+xAWFRY8JiYxmoriUOsHJGFRZm5/90YeOPUJ3A7/Y3e1Ro3eqOO6F5v23Xc5XKSlZhARG0Gn7gevx4CCwsHA5/PhcrmCWeambHPdbjfr1q0jNjaWkSNHBsV5Y+cYDAYSExNJTExESsmaNWtQqVRkZGRgtVoxm81ERUURHR2NyWRqd2Hu8XhwB8wHnE4nKpWKiIgIRZgrHBKU0pRmUlheEnK72+vhx5ULSLpgBN0uOYpnvnwTVz2Hj38D1558CTptw6Y2Rp2e44aPb9e5p794Oze/9TDrdm9hW+ZuHv/sVaLPHIB2aldG3TiNpal+j28pJac+PJ3C8mIs9mqsDhsOl5PPFn7HnCU/hxzb7XGTV1LQ4t9ZfHIcx5w/Ab3pn66sQgj0Jj1n33pa6y+2FYw/fSz3fHwbKX2T0eq1pPRN5sHP7+SY8yce1DjakmMvnIRWVzdPoNFqmHDWuOAXa/8xfRg9dUQdEQ5w8QPnYTDV7ZarN+o4/tJjMZgMDD92CG+tfIljL5xIr2HdOfl/J/DRlhl07d/4IuN5H//BGfEXc+eUB7ly4A1cP+YOygrK2+6CFRQOETVZ8J07dwLsV4iWlZVRWlpKz5496dGjR4tFa00pSVJSEgMHDmT06NF069YNgLS0NNasWcO2bdvIy8vDbrfvZ7SWU9+VpabW3G63Y7FYqKqqwmq14nK5lFIWhYOCslizmWQW5tD3ikk43HWdTYQQqIQqmCk26g1MGnwU8545MhfJNcVnC7/jutfuQ6PWIKWPSHMEvz3zKYO6tZ9LyM6svQy/fmpIm8UaTHojiwJWiaNvOhmro+GH98RBY1jyynfBf0speX72Wzzz5Zt4fF7UQsVd517HI5fe3uwvFq/Hy9cvfsf3M37BVmVj2LFDuP6lKzFHmvn1wwVkbMuk/1F9OfGy4zBHmPY7XnWllU2LtqDRaRh+3FB0+oY3PvUpyCjkmcteYccq/5doz2E9uP/TO0jpk9ysazhcqa60cvsx95O7Jw+v14darSYhJY7X/36+WZ7fs1+ey6zH/CVXHreHYy+YyB3v3dSs17Q+W1fs4K7jHwq60gCoNWq6D+rK+xteb/F4ymJNhcOF2qUoq1atYty4xp/I+nw+du3ahcViQavVMmzYsAZjuRuxuK1PU4s1pZRUV1dTXl5OeXk5TqeT8PDwYMbcYPDbpFZWVlJQUECfPgf2BDI/Px+Px0Pnzp2D89d+8i2EqONhrmTM/7O02y+9TYS4EGIq8DqgBj6UUj5Xb//dwMWBf2qAfkC8lLJMCJEBWAAv4GnOF1R7CHG3x83cZfOYv24xiTEJXHXShQ1qi29840Fm/fFNsFZaq9bg8TW8YzbpjSx9dS7Dew3i34bNYWfl9vWYDUZG9x3W7p6yM3//mlveeiRkfXptThw5maem382xd5+PxV7dYP+IXoNY9/a84L/f+elT7vrgSWy1RLvJYOTxy+7krnOva3W8+7akc8uEe/G4PLgcLr/veISJd9e9SnxS423rf5+1kFevfxuNVg0IhICnfnw4WPfscrhY8fMaygvLGTRhAD2HdMftcnNh16soL6wIfnEIIQiPCePrjJkYw9p/jQFAZWkVu9buISohkl7DWp4hawwpJZuXpJK+LYuUPskMO3Zwi/7eXA4XBRmFxHSMbpA1bwmPnfssf3+3osH73GDS887aV5vMpIdCEeIKhwO1yzOEEKxcubJRIW61WklNTaVjx47ExcWxd+9ehg4dWueYthLi9fH5fFRXV1NWVkZFRQUul4uIiAj0ej12u72Oe0trqC/E61MjzGuX7NQIc41G02QZj8K/inb7JR9wjbgQQg28BRwP5ABrhRA/SSm31xwjpXwReDFw/KnA7VLKslrDHCOlDF37cRCwO+1MuvMcdmTuodphQ6vR8trcj5j90DucMnZK8LgZNz/F+IGjmPHjJ1js1eg0Otbv2RJiRMm63Zv/lULcZDC2eylKbRJjEpolvtbt3syQHv3RaBr61xp1Bi485ow6257+8o06Ihz8NxnPff3WAQnxF696A1vVPzcNTpsTt9PNe/d8zENf3B3ynOzdubx2/du47C5ctUJ64JTH+S7/M/LTC7n9mPvxuDx43B6ESsW4U0Yz/qyjsFXb62RvpJS4HG7+mr2Uk686odXX0Vw+e+prPn96Nlq9Fq/HR0JKHC/Of5KEzvEHPLYQgqGTBzN08uD9HxwCnUFHSt/QX64toTi3NOTjabVWTXlhRYuFuILCoSSUN3hT5OXlkZGRwYABA4iMjMRmsx3Uco2a+u2ICP+TMJ/PR1VVFQUFBZSVlbF27VoiIyOJjo4mKioKbYgSygNBCFHHF73mKYLT6awjzGvsEhVhrtBS2mKx5mhgr5QyDUAI8TVwOrC9keMvBPZv03EQ+eC3L9mWsQub01/+4Pa4cXvcXPb8rRR+swmtxv/GFkJw4bFnBB1CXpj9NtsydwfbrtegVqnpknBklwYcLhw/YiLhRjPVdmuTH/7l1ZWc9dj/+OSuV7nwmRtxez24PW7CDCZ6JnXj+lMvq3N8YUVD323we6u3tnucw+Zg76Z9Dbb7vD5W/rK20fMWfPonHre34Q4hWPHzGmY+9BlVpZY6u1b+ugaflLhDLBh1WB3kpxW0OP6WsvLXtXz53Dd1GuPk7M7jwdOe5IONb7T7/AeLsdNGsndjGi5H3XUEHpeHXsN7HKKoFBRaTmPe4KHweDzs2LEDn8/H6NGj0Wj8cqGxhj5Akws2D+TY2qhUKqKiooKf0b169aKyspLy8nKysrKQUtYR5jVxNxVHS6gtzGvOdblclJSUYLPZ6NSpUx0f8/Z+aqxw5NMWQjwJqN1tJQcYE+pAIYQJmArcVGuzBBYIISTwnpQyZN9yIcQ1wDUAKSltm4H68q8fgiK8Nh6flw17UhnTb3jI86afcB5PffkGtb+f1So1sRExTBk+oU1j/K+iUWtY8vK3nPnY1ezLz/Q/TvV6Ghzn8/n4a9Nyzhw/ldQPFvLhb1+RU5LP1FGTOWfCyei0ujrHp8QnkVaQ1WCcXkndWv3BqVKrEUIFNPSp1hkaz9JUV1jxehoKcen1kbM7l7LChosCHVYn6amZaPUaPO66r4cxzEDvET1bfgEt5LvXf8Rhrbtmwuf1kb07l+zduXTufWAe+FJKln6/ku/f/AlLuZUJZx3F2beeTlik+YDGbQ4VxZXYLHbcLjc6gw6DWY/P58Pj8r/WBrOeyx+96KDEoqBwoNRY+NWUjuzvM85isZCamkpKSgpJSUlN+ogfatRqNTExMcTExAD+G4gaYZ6RkYEQIlhfHhkZGbLrZ2sz2DXnqdXqoPc6+IV5jZVjjce5IswVGqMthHiov+DG3qWnAsvrlaUcLaXME0IkAH8IIXZKKf9uMKBfoL8P/hrx1gS6JW07D3z0PKt2bqBTbAcevvg2zp10CqZG/Lp9Ph9GvaHR8RKi41j04hwue/5W9uVnIqVkbL8RfHH/G23a4vdA8Hg9VNutRJojjtjHZT2TupH6wZ+k5Wdic9iZ8eMnvPdrw6ZDNqedmb/P5sqpF/DMVfc1Ot4DHz1HXmnDjLFRb+DV6x9rdZw6vZajTh3Fyl/WBgUb+JvNTLvy+EbPG3faGH7/5M9g85oafD4ffUf3bvT3pjNq6dKvM2mpGcGMtFanIaFzPONOHd3q62gu9bP0Nag1aizlDev0W8qHD37K3Dd+Dr4u2btyWPDZIj7c+Ea71b+XF1Xw1EUvsmXpNqTPh9fjQ6vToA44uHTq0ZHE7h0557bTGTvtwDoDKigcDGpqt71e736z4FJKsrOzyc3NZfDgwYSFNVxb0RZCfH92hweCRqMhNjaW2NhYANxuNxUVFZSUlLBv3z7UanUdYd6W1Ly+oTLmijBXaIy2EOI5QO1CzGSgYXcRPxdQryxFSpkX+G+REOJ7/KUuDYT4gbI1fSfjbj0Dm9OOlJLSqnKmv3Q7eaUFXH/qZazZtanOgkAhBB2i4/brCDKi92C2fbSIwvJidBot0e3sqd1cPF4P93/0HG//NAu310N8ZAyvXf8450465VCH1mpqFs9ec/LFfPHX91TbG3ZC3N8XRHp+Fq/O/QBHPbtClVDxyCW3cfKY4w4oxjvfv5k7jn0gWBri80kGHd2fyx+9qNFzRh4/jJEnDGPdgo04rI6ADaKOc24/g1EnDsdgNjRo6a436jnx8uM4+eoT+fSJr1jw2V9Ir49jL5jI9McvRqNt/xYB488YS+b2rAZ+6lJKeg7pdkBjlxWW8+2rP9QZ2+VwU5pXxryP/+Csm9veIlJKyb1THyUtNaPOEwq3y4M7cGNVVWrhk+3voNW1bR2qgkJ70FxvcAgsjt68Ga1Wy+jRoxtNJu1PiLeXwG4tWq2W+Ph44uP961ZcLhcVFRUUFRWxd+9evF4vRqOR8PBwwsPDWy2MQ1137Yx5zTE1Nea1hXl9VxaF/xZt8W29FuglhOgG5OIX2w1UhxAiEpgEXFJrmxlQSSktgf9/AvBEG8TUgEc/fTkowmuwOew8POslir/ZzKVTzuaTBXNQq9SoVSoMOj0/P/lJsz9QOkQf+OK0tuT2dx5n5u9fY3P6V//llRYy/cXbiY2I5thhRx/i6A6MoT0GEGYwNRDiJoORK6ee3+S5f25cFvKDzid9ZBflH3BskbERfLjpTbau2EHevnx6DO5Gz6FNd10VQvD4t/ez4qfV/Pn13xiMOk668ngGTxgIwCOz7+X+kx/H5/XicrgxhhnoPqgrp117EjqDjmufv4Jrn7/igGNvKWfdchrzZ/1JaV4ZTrsLoRLoDDpunXEdOoNu/wM0wc41u9HotA1EvtPmZNVv69pFiO/bnE727pyQZUI1+Hw+Ni/ZysjjhzV6jILCoaZmQebu3bvp0aPHfsVdRUUFVquVHj16BLthNkZjQrxG6DcnW34oy1t0Oh0JCQkkJCQAkJmZidVqJS8vD4vFgl6vJzo6mujoaMLCwlpU874/QjUXklLidDqDZS01vyuj0Rh0ZVH4d3PAQlxK6RFC3ATMx29fOFNKuU0IcV1g/7uBQ88EFkgpa6unDsD3gT80DfCllPL3A40pFKt3bgz5RvH5fOSWFvDOrc9y17nXsjR1DfFRsZwwYmJwkeaRhtVu46N5XzXw3rY57Tz+2StHvBBXqVR89+gHTL3/Yrw+Hw6XE6PewOQhR3H5Cec2eW6EORy1aJjp0ag1RIfv35+6OQghGHR0fwYd3TxbrYriShbN/htLeTVn33IaA47qG/zwtVbZWPb9SnQGLS6HpOew7lx47zlMOufoQ17+FBZp5oONb/DLB/NZ9eta4pJiOfuW0+gzstcBjx3dIQrpa1hrr1Kr2sSRJRTFuaWoQ7ju1EU0qMlXUDicqO0NXlRURM+eja8XkVKSkZFBUVERJpNpvyIcGhfRHo+H9PR0jEYjMTEx6HQHdjPeHNpCzGs0GiIjI0lK8q9psdvtVFRUkJ2djcViwWg0BoW52WxuUhi3prlRqK6fmzdvDvq0q9XqOhlzRZj/+2iT59dSyt+A3+pte7fevz8BPqm3LQ0Y0hYx7I9uHTuTW9KwLtjpchIf6a8l69GpKz06dT0Y4bQrhRXFjWZA9uVnHuRo2odxA0aS9eUa5iz5maKKUiYNHsv4gaP3+yF1ypgphDpEq9Fw+fFNi/j2YP3CTTx0xpP4fH4HlK+e/5bRJ43k0dn3IqXklvH3kL07F7fTnxnO3J7NF8/MYdI5rbuZauvHxqZwE+fdcSbn3XFmm40J0HdUb2I7xZK3Lx+f9x9BrtVpOOPGk9t0rhp6D+/RIANfH5/Hy5BJ/z5bUoV/BzULMpvzPnc6naSmphIeHs6oUaNYtWpVs+YIJcQz92Tx40e/oJFaOvSIJ3FAApJ/3Euio6PruJe0VZ15e2A0GjEajSQmJiKlxG63Bxd+Wq1WzGZz8JqMRmMwjrb4bK0R5jWdP2s8zB2Of5JqijD/99H+haSHCZdOOYdlWxtayEkk1XYr4abWN/w43EiK7YgqxJtTCMHwnv8eEREVFsk1J1+y/wMD5Jbkk12Ux+yH3uGiZ24KdkP1eD28d9sL9EpuuoSkKbweLyt+Xs3ONbvp0LUDx14wcb+OGh63h8fOfbaO84jD6mTNvPUs/mYZRrOB/PTCoAgHcDvd5KcVsub3DRx1cvMXC25ftZPXbnyHvRvTMIYZOO36aVz11KUHpZa8NQgheHnhUzx4+pNk78xBrVGjUqu4472b6Dmk9b+npohNjOGU/53IvI//aOAGo9FpUKtV3PvJ7RjNjS/gVlA4FNT3Bt9fKUppaSk7d+6kd+/ewdrp5lJbREsp2bV9N3Ne+J6Y6BjKiitJXbSD5N6duPCBczDFGIK2gkBwkWRNSUZjeNwedqzeTVleGXFJsfQd2we1+uDXTgshMJlMmEwmkpKSkFJitVopLy9n37592Gw2wsLCiI6Oxu12t0l9d21BHypjrgjzfx+H57dwO5BbUoBKqPDJuo+79Vo9P65YwHWnXnqIImt79Do9D118K49//mqdpjVGnYEnLr/rEEZ2aLA57Fz4zI0sWL8EvVaH0+3ixlOnc8LIibg8biYPOYowY+tt6GwWGzcffQ/56QXYqx0YTHo+uO8T3lj6PN0Gdm30vK0rduDzNfwyclgd/P7xQgYe3Q+71R5y/75Nac0W4pk7srnzuAdxBFq02yx2vn/zF0rzy3jg0zubd5GHgITO8Xyw4Q1y9+ZhrbLRbWCXdl8kefMb19J7RE++fe1HLBXV9B7Wg+gOUcQlxXLCpcfSsWuHdp1fQaGltMQb3OfzsW/fPioqKhgxYkSwXXwNzcnq1ghxt9vNtm3bKE4vJSoyGrvFQUFaAaZwIzm78vhxxm9cdP85dO/enZzdeVSVVuGqclPiLaG6upotW7YQGxtLdHR0nUWSUkr+/GIJezekoTcbSF26g4KMIo67eNKBv1ghaEkmWwhBWFgYYWFhdO7cGSkl1dXVlJeXU1hYiMvlorq6Opgx1+v1bRpPY8LcbrfXWRiqCPMji/+MEA/+cdfTPTLwv38bd593PR1jEnjqi9cpKCtiULd+PH/1AwztOeBQh3ZQkVJyxYt3MH/dYpxuFw6XX4y+88un9E3pydXTLjzgOT5/eg45u3NxBTLXDpsTbE6evvglPtw8o9Hzmqw1VAkSu3fEaDZir64rxg1mAx27NV8QfvX8N8HYanDanSyes4zrXrySmA7RzR6ruXi93jarYU/q2alNxmkOQgimTp/C1OlT9n+wgsIhpL43+P5EuN1uJzU1lZiYGEaOHBnS4aO5Qtzr9bJy+UpSOqcQ1SeGnX/tpTCzGFOECSklBrMer9tLfloBW5ZsZeOiVL/QlnDcxROJjIykZ8+edRZJ6nQ67CVOnJUutvy9jW4Du/hjiotg19o9jJk2grDoxp9c26psbPhzC5YyCyn9U+g/tnHr11DX1BqEEEG3FY1Gg9frJSIigvLycrZv347b7a7TXKg5dfMtvTGo/QSkvjCvrKzEbDYTFhamCPPDmP+MED9n4jRe+vZd7M66jgher4/Tjmrc4/lIRQjBZcefg9fr5e4PnmLj3q2ccN9FXDn1fF69/rEjciHq6h0beOarGezK3sfoPkN58OJb6NO58c6GCzcs5epX7iazMKfBPpvTzovfvNMmQnzhl4sbCF2ArF25lBdVEJ0QFfK8AUf1Ra1p+CjTYDYw7crjGXvyKN658yMcNgcykDlXqVQYzHomnjWu2fHt25xRp866Bp1BS96+ggMW4ns3pbFr3R7iO8eRvSuHz5+aQ0VxJQkp8Vz7/BUce8HEAxq/LVkzfz0fP/IFefvy6TaoK1c/fRkDxzVtUaqgcLjREm9wgKKiIvbs2UO/fv2CjW/q05y67Rqf8W1Ld1G1z8pa9RZS+iaT0DmeXev24PNJVCoVPYZ2xeP2Yq2wsXnxVhJS4lGpVLidbhbPWcaYS4aj0+kICwujQwd/UmHB53+xYeEmrNU2cnbkUmWpQrrBaXWhEios5dWERYeRvSuXbSt2Ul5cQWRnMz269UBK+PbVn6goqkRv1LFzzR6qyy2MmjqcyuIqhEoQGde+vTRqBHRkZCSRkZF07doVn89HVVUV5eXl5OTk4PV66whzrbbh97CUstUlLvWFeXFxcdDXvObaa3uYK8L88OA/I8QHd+/PsJ4DWbFtXZ3tEonF1tCP+t/AL6sWctOMh4IWhgAz589GSslbtzzTbvPOX7uY1+Z+SFFlKaeNPZ5bz7qKqLADa5wwb81fnPPENdhdTqSU7M3L4Pvl81j++g8M7t7QnWRr+k5Of+TKOtden9Kqhh0rW0NjH5r+D9TGP+Q0Wg1PfPcA95/yBEiJ2+VBo9Nw9OljmHDWOFQqFTNWvMSzl7/CjtW7AOg/ti/3fXJ7i+wBew3vQVpqQzHudrpJ6pnY7HHq43F7ePisp9n41xbA31XT43JT811elFXMC1e9js6gZfwZR7V6ntp4vV5W/7aOTYtSiUmM5oRLjyWmY/NuJJZ8u4xnL38VZ6BEZ/PiVO6a8hDP//44QyYObJP4FBTam5Z6g2/fvh2Hw8GoUaOazMiqVKomhXhNKUpJZhn7VmYwYHh/1Bo1mduzGXh0P8646RT+/HIJxggjXreXDinxxKfEIdSq4GekVq/F5/XhdXvrzFVWUM6u1Xvp2q8LIMAtSFubQViMGSkkap2ar1//jnGnjmbZ7NUUpBdRXV6Nw+5g5dfr6TWsO3lphXTt729pYo40s/qXdeTuzSd3dx5SQs9h3Tjh8mPbdV1M/d+FSqUiKiqKqKgounXrhtfrDXb9zMrKQkpZp7mQRqNp0wX1Pp8PtVodXChb8xTF4/nH+alGmGs0GlQqlSLMDwH/GSFusVWzcc/WBtt9Ph9PfvEaX9zfeAnBkcqTn7/WQIjanQ5mzp/Ni9c8jMnQ9t0JX5rzbtCzHWB7xm4+XjCHze8tINLcOntAKSU3vPkgNuc/C1S8Pi/VDht3vf8UC577ssE5r3z3Ps56TXtqoxIqJg0e26p46jN1+hS+euFbXPZ/5hMqQc+h3YmMa/oGZOjkwczO+pgl3y7HUmZh+HFD6Duqd3B/p+4deXPpC9gsNoQQreooeeG957Bo9tI6nTv1Rj3HXjix0Wx9c/jm1R/Y+OdmnPbGX2enzclHD33WJkLc5XRzx7EPkLYlHXu1A51Bx6zHv+TZXx5l6OTBTZ4rpeStOz4MivBgfHYn79z1Ee+uefWA41NQaE9qbAnz8vJITEzcb9bUarVis9no1KkT/fr1a1bJiS+EZShAZWUl27Zto1u3bjjzPKg16qCgjUqIIj+tgCuevIS+Y3qRszsPQ5iBHkO6IX0+jGYDVaUWzJEmKgor6NAlAb2p7g2B2+lBVSuT221gF7J35pCQHE9kXASJ3TtQkFXE2t82UJRfRFVFFRq9Bluhg9w9+dgtDqorrMQnx2KOMCEEFOeUIpF06NIBKSW71+2jU49Ehh5T17CgrfzMm5PJVqvVxMTEBJ9KeDyeoDBPT09HCIHZbMblcrVJeV/9mELVmNcW5kIINBpN8EcR5geH/4wQT8vPQqvRUF8zeH1e1u3ecmiCamcyi3JDblcJFSVVZaQYktp0vkprFQ/PeglHLf9yh9tJUXkJ7/z8KfddcFOrxrXYqskpDt1sZ+X29SG378zeF3RFqY9apSLMaOa5q+5vVTz1ufDes9nw5yb2bEzD7XKjM+gwmPQ89OXdzTo/IiacU6+Z2uQxpnBTq+Pr3DuJ1xY/y5u3vMfOtbsxR5o586ZTuPShC1o1nqW8mt8/WchnT37dpAivIT+9sFnjVpVZ2PDnZnQGLSOPH9Yg6//ze/PYuyktKKZdDv/cT1zwAt/mfdrkl6DL4aI0ryzkvoyt/w5LT4V/LzUi3Ol0kpOTQ6dOTa+byMvLIyMjA5PJROfOnZslpkKVpkgpycrKIj8/nyFDhmA2m6nMtuD1+IKZW1ullZRAJjohJZ74znH4fJLsnTnYLHbGnT6GLUu2UlZQTnLfJI67aBJpWfvqzBXdIZKw6DDKCyoIizFjKbMQ3SGavqN7odao8fl8aLVaoqJjKNGXI6OgrLgc8DfDKS8pBwk71+2hx+Bu2KtsGML0VFfYUGvKiEmMxhBmoDi7pNFrP1BaI+g1Gg2xsbHExvotlN1uNwUFBVRUVLBhwwbUanVw4WdERESLS1b2l11vzMe89roDRZi3P/8ZIZ4cnxgyQyqEoG/nxhseNIbP5+PPjctYsX0dHaMTOH/yqQdcftHWjOozhF9X/9ngA0Kn0ZIYk9Dm863fnYpeq60jxAHsLge/rPqz1ULcqDeg1WjweBs2UomP9GcW9uSk8ercD9mWsZuj+g9nWI8BrN+Tiqve71wIwSVTzubxy+6kS4fkVsVTH71Rz+t/P8/mv7eye90eElISGHfaGHT65tfhe71eygrKiYgJR29s+Ur7pti0JJXvZ/yCVq/lhleuZtpVJ2Awtc6CL3dfPjeMuQOn3dUgu9wYyb33v9jyl/d/581b30ejVYMQCAFP//RInZKRBZ/+FXJOh9VB2paMJjuY6gw6jGYD1ipbg30xiaFrZhUUDgdql6LUeEs3hsfjYceOHfh8PkaPHs3GjRsbzXLXp74Qd7vdbN26Fb1eT5/ufanIr8QX46PXiB506p3A5iWpWEqrMUWaOGH6ccExfD4fS2YvY+faPVQVV2G3ORl/xhjOv/esf0RcVt25dQYdp980jcWzl1GaW0avkT0ZOKE/qX9vQ6VS4fX6GDShP1EJkexetwdrlQ233RPIpKtwq7w4bU6EWlBtj0UXqaNwRzHWMhsGs574znFExkWQkBLXshe/hRyoSNVqtURHR1NdXU2/fv1wuVxUVFRQWFjI7t27g/vrO800hs/na5F4b0qY79u3j549eyrCvB34zwjx2IhoLjzmdGYv+Rl7rRIHo07Pgxfd3KKxnC4nJ9x3ERv2bKXaYcVkMHLPB0/z5wtfM7LPQelP1CyevuIeFm1ajs3pCH7AmvRGnrny3jZbrOlyu3j6yzd495fPqbZX42jkZqdTbOuFv1aj5aqpF/LR71/V+d2Z9EbuPu96lm9dy4n3X4TT7cLj9bJ65wb0Wh0GrR6P1xP8IjLpjVxx4nnMuPnpVsfSGEIIhk4axNBWNHv5fdZC3rnzI5w2JxJ/qctNr/2vTaz6Zr88l48f+SIoYHes2c0v78/n7dUvt0qMv37jO1jKq4OLR/eH3qjjmmenN3lM+rZMZtz2Pi6Hi9r3cA+c8jjf5n8W9O3WaEM/ppUS1I3sq0EIwXl3nclXz30btHEE0Jv0XPrQ+c26FgWFg0lj3uCNCWuLxUJqaiopKSkkJSUFz2luplalUgXHrilF6d69O+WZlXzyxpfB7Orok4ZTsK8Ya5WN5D5J6AxafpjxC9c8P53w2DCKs0vYvmonZfkVlOWXgwrmvv4zpggTR58xBvhHsO9au4esnbmYI00MmTSQM276p1mXlJLYxBg2LtqC2+Fm419b0Bv16E16OnRJwOvNx1ppRaPT4HV70Om1hIWZMWhMVOVV0WNYVzK3ZVNZUkX6tkzGnTmKlMHJza7BtlnsLP9+FcU5pST1SuSoU0c1uTanrWq7a2woAXQ6HQkJCSQk+L8/nU4n5eXlQacZvV4fFOZhYWEN5j/QmGoL88rKSoQQuN3uOhnz2laJijBvHf8ZIQ7w3m3PE2mO4IPfvsTlcZGSkMyMm55kdN9hLRrnrZ9msXb35qAorPHqPvep60j7dMVh84cYFRbJCSMm8fvaxbi9bpLjO/HKtY9w5viT2myOC5+5kXlrFmGvlwWvjVFn4Laz/ndA87x87cNUWauYs+QXdFotLo+HW868kutOuZSB/zsWay2/dKfbhdvj4bhhRxMbEc0fG5YSFRbB7Wddw/WHmV/86nnreO2Gd+pkeud/shCf18ud7/1zgyilpLrCijHM0OzFRpbyamY+9HmwhAP8Ndt5aQXMn/UXp18/rcXxrl+4qVERrjP4bxzCo8OpLKkkqVcnrnvxSkZPHdHkmPM/+RO3K3Tb+NW/rWPyueMBOPXak0hLzWjQbCe6QxRd+6fsN/ZLHjwft8vDd6/9iNfrQ6vTMv2xizjpin+fa5LCkU1j3uCNlY9kZ2eTm5vL4MGDCQv7x+Kvqbrv+tQcm5mZGSxFwSv46uO5RMSGozPoKM0v46MHPsPhdBARGc72lTsJizbjdXv5+oXvOOeO0/nlvflsXbaT6vJq4pNjCYvyC8RVv6xl1NR/Ss5S/97OpoWpmCNNuOxusnbkcObNJ6M3+Z8IVpZUsfb3DXi9Pnat2YPL4aLHkG7YLDbKCyvoOawb4fFmKvMtqDVqjOEmdAYtXpcHu8VBUq9ORB4dSUVRJaX5ZQydMoj8gnxWLV5D3rYCTCYTI44bCnqJObxuHwmP28O3L/9IUZbfkjFndy6leWWcecsp7f793pR41uv1dOzYkY4dOwIEu35mZWVRXV2NyWQKOrKYzeYWZ8T3R40DS+1YXS4XLpcruL9GmGs0mmY5+ij8x4S4TqvjtRse56VrH8bhcmI2mFr1R/LJgjl1MrM1FJWXsDsnrUlLvYNFTnEew647kSqbBY/XXytdVF7Cvry69bBb03eSWZTL0B79SYprmYPG3tx0flvzV9CbuwYhBGqVGpPeiM/n5dXrH2PcgJEHdD06rY5Z977Oy9c9Sk5xPj06dSHcFEa13crunLQGx/ukj1U7NlD1064Dmre9+fTJr0MsIHSx4NO/uOHlqzGGGVk0+29m3P4BVaX+L5xTr53Ktc9fsV9Bvn3VTrQ6TR0hDn4xvuyHla0S4hqdps6i1BpUahWXPXIhJ115fIvtEG0We0h7RemTdRaYnnDZsaz5fT0rfl6D9PnQaDWotRqe/P7BZr2PVSoVVz15KZc9fAFVpRai4iNRa5q3GMrj9rBl6TY8bg+DJwxodWmPgkJT7M8bvP7feY2TiVarZfTo0Q0W97UkIy6lZMeOHZjNZkaPHo1KpaI4uwQpZVA8lxdWAP5SEpfDjcftwevxYjDryd6ZyzMXv4zL4cLn9SKRlBVW4PX6iEmM9peYePzvc4/Ly2/v/4HT5kRn0NF9cFeqyixk7sih1/DuCCFI35KB2+nG7fJQkluKUAk2/LmZ+OQ41Bo1FUVV2CrsmCJMIARet4cOfTpRVlSBRqsmfUsGdouDiqJKfNLH/PcWMeDofqRtTscYZiC/rIiFnywhLN5MVEIkp914El17d8FldWOtsrJ91S58Xh86g5akXons25yBtcLaqJd5W2XEWzKO0WjEaDTSqVMnpJRBYZ6RkYHVasXlclFQUEBcXBxGo7HNRXFjwtzp9H+nqVQqtFpt0C5REeah+U8J8Ro0ag1hxtZfuko0fod5uPyRPT/7HSz26qAIB7939qOfvsz1p16Gy+Ni2oOXsSVtB1qNBqfLxWXHn8M7tz7b7Dvo1PSd6DS6BkJcSsm4/iN4/uoHGNKjP0Z927mzxEXGEBf5T02vXqtDrVLXuc4aIkzhbTZvKJb/tJoPH5xFQVohSb068b9nL2fMSS274SjMLAq5XaVWUVFcyeJvlvHytTPwuv3X53F5+Pm933E7Pdz21vVNjh0eHRYyGyaEICqhdesZplw0iT8+X4y7lm+6Vq/lhEuP4eL7z2vVmOPPGMsfny+qI7oBPB4vI44fGvy3SqXika/vZe+mNLYs3UZ0hyjGnTq6xTX1Wp2W2BbUhW9ZupWHTn8Kb+Bmwef1cf+nd7TIy11BYX/UL0XZ33dJRUUF27Zto0ePHsEMaX2amxGvrKykrKyM7t27061bt+D28NhwdHottiobpggTTpsTtUZNfNdYsrfk4fP6cNqcxHSMpiyvlOL8clTC/971uL1odRoSkuMwR5joOigFg9n/Xt2xdBcVRRXEdIhBSh9bFm/F5XBRlldGcu8kTr7mBH9cJRaKc4rRG/U4bA7sFgdVJVWoNGr6jE5Aqnz0HNSDrct3EB4fQdaObKSElH7J7Fm3D4fdH5ut0kbm9hyyd+ai0aoZeeJQ0rdkotfp0Gv1mExGvn3+J1BLKouqqMivwu1wk9AlHodVjaXMQsduHVCpG/9uPBRCvDZCCEwmEyaTiaSkJKSUrF271m/3u3cvdrud8PDwYMbcaGz+93Jzb+ZqC/Oac2pnzFUqVR0f87bM1h/JKK9CK7hq6gWYQojLxNgEeiV1C3HGweevTctxexo+7teoNezM3svlL9zOhj2p2Jx2Kq0WHG4nn/85l3d+/gwpJRv2pLI0dXWDhZe16ZXULeQCSp1Gx9h+wxnbf0SbivBQaDVaLph8OnptXTFm0hu56Yzp7Tbv4m+W8eSFL5CxNQuHzcm+zek8evazrPxlTYvG6Ts6dPc3tUbN758s5MWr3wiK8BqcNifzZv7RoONmffqN6ROyiYXOqOPMG09pUZw13PDK/+gxpBsGsyH403NoN2545epWjQcw8oRhjDx+KIZALbgQAoNJz2WPXEB8UsPFVT2Hduesm0/lmPMmtPnC1vrYLDbuO/lxLOXV2Kps2KpsOKwOnrnkJQqzQt9EKSi0lJoFmc0R4VJK0tPT2blzJ8OGDWtUhMP+m/RIKcnMzGTHjh3ExsY2aPZjMOk54+ZT8Hi8FGcXE9cpls59kxEqQafuHdEZdfQb05f45DiK8spwOZw4bE58Xh96gxaNTkNClzhGHD+UaVefELyu/L1FdBvUBZvFjsPuIndfPpYKKw6rk4KMQl699m0WzV7Gvs3pVJfbMEWa8Lg8fh/uUgtISdrmDLweL0m9EjnuwokMnzKEmI7RjJo6nE7dO9KxWwJGswFjuBGtXkt4lBmNRo3X4yN3dz5OuwutQQfC30StOLMUT7UX4VMjfRKv10dRdjHV1VbKiyuJTopCZ2r/GvG2GqdmjUDnzp0ZPHgwo0ePpnPnzrjdbnbv3s2aNWvYsWMHBQUFwQx2Y7SmxKXm77imcVDN+Q6Hg9WrV1NVVUVVVRU2my1YhvVf5T+ZET9Qrjv1Un5e9Qcrtq/H6XZi0BrQaNR8+/D7h01GvEtCEtszdzfYbnPaWLDu72DdeN19/m6TL33zDiVVZaiEGp/08cHtL3DBMac3GGtgt76M7D2Y1Ts31nGk0Wm13Hj69Da/psaYcfNT5JUWsGzrWnRaLQ6Xi3MnnsLd5zadMT4Q3rtnZkhP6nfvnslRp4xu9jhXPXkJ6//Y5F+oGfjCNJj0nH79NGa/9H2j9dgqjYryosomfcWFELz0x1PcM/URygsrUKlUeNwern/pKvqP7dvsGGtjjjDx9qqX2bF6F5k7sunSrzP9xvQ5oL97lUrF4989wKpf17Jo9lIMZgMnXTGl1TG2Jct/XA0hhIzP6+OPzxdxyQPKQk+F1lNTTuDxeNDpdPsVO06nE7vdjsvlCpaPNEXtBZj1qe2KMnr0aHbs2FFHtEspsVnseD0+ug1IweVwM/KEoajUar79YC4pnVOwVtgozilh96a9CLUgLDIMp92F1+3B5XST1C2OnpO60nVsMnanDa3e77RhCNNj0pkIjw5n19o9eN0+TOEmygvLSU/NRKPXEJUQicflwVppJcIbTnhsOHqTHpVKYAgzUJJXhjHcwLYVO5FeidPuxBBmQB3IWkfERZCzJw+7xY6lvBqf10fH7h2oKCjHZrHhcflj1IfrKEgrwuvxYq2yERYVRnWZBaFSoTfoSEiMRahV9DqqG5s2bfI/UazVhOdAvb7r05YNfWqPJYQgPDyc8PBwUlJS8Pl8WCwWysvL2b59O263u07Xz9rNn9qi1rx2HF6vNziekjFXhHgdtqbv5InPX2Pj3q30S+nFw5fcyqg+Qxscp9Vomf/clyzbuobl29aSGNOBsydMI8xobjjoIeLe829gyZZVDRr6eLxeHvvslQYivIbsolwkdR9FXfnynQzq1pcBXfs0OP6Xp2Zx45sPMmfJz3i8HgZ378/7tz1PSkLzPMqllHz51/e8/v1HVFotnHH0idxz3g3ERjS/zjjMaGbB81+xJyeNtPwsBnTtTXL8/i3zWovP56MgI3Q2NHdvXoNtRdnFFGYV06VfZyJi6pbLdBvYlbdWvsSHD3zKjtW7iEuK5dKHL2DPhr11yj/qI4QgLil2v7Em9ezE53s+YPf6vVRXWOk3pvcBeZLXzN1/bN8mhXJRdjGrfl2LWqth/Olj9tvYSKVSMe7UMYw7dcwBxdbWVFdag3WttXG7PFjKqw9BRAr/FmrqabOystBqtSQnN22nWlpays6dO9FqtfTp0/CzOBSN1YhXVlaydevWOmUttbPnTruTuW/8QurSbWTtzCE+OZYOXRJYO38DMYlRlJSW0rtPb6ZcOpnNGzfToV88Sz9fSUVRFVqdBo1GTVTHKHoM7M7QkUMwh5koKChg9+7d6PV6eo3rzq4/91GRX0XevkKEWqA36dAZdDhsRUQYwsnclo3epMNpc6I36qkorCQuOZauA1L8DXo27CM8zhwsM8tPK8BeZae8sAKD2YCUkl7De7J9xQ6slTb0Zj1leWXEJccxYsoQCrKKWD9/I0UZxUgfaHX+rpY+rw9ThImKokrUWjXmSDPdBnVlwtSj0Rl0uN1uKioqKCkpYd++fWg0GqKjo3E4HHUWytZQXWFl0ddLKcwoomPXBCadP57wRurMa/4upJSkpu+kymahc3ynZn+fhqIxUa9SqYiMjCQyMpKuXbvi8/mCzYVycnLwer1BYW4ymdpMFNc0KqqJq3YpS/3FnzU15rVdWf6NKEI8wNpdm5h857k4XE580se+/Ez+3LiMHx7/iONHTGxwvBCCCYPGMGHQ4SUcapg05CjevvkZbnv3MaqsVfhqfRi7PKGbsKhUKtRChbteuYnL7eb9X7/g9RufaHBOuCmMT+99nZl3vYzb425xKcod7z7OB799idXh93d+ac57vDjnXcKNYVww+VSeu/oBosOjmjVWr+Tu9Epu3Eu6rVCpVEQl+Ffj1ye20z/i2G518OQFL7B+4Ua0ei0uh5szbjyZ61+6qs6HY/dBXXnm50fqjLN3475G59doNVz2yIXN9ikXQtBnZK9mHdsWzHnlez568DOE8HcYffPmd7lv1h1B95MjiRFThkKI7zGD2dDi9QAKCjW0xBvc5/Oxb98+KioqGDFiBBs2bGj2PPVrxGtKUQoKChg2bBgmk6nOsTVxLJq9jN1r9+B1e9AbdFQUVRIZH0leWgEet4fILmFsWpLKvvQ0zrnxdOJMCayZuwG9WYe0gVqtomOXBIYdO5iuA7oghAha8NntfrFcmFtMVmo2CInBrKcwo4jojtFIn8QcbaIwvTjQzEciVCo69eyIMcxIeHQYLocLvUGLKfKf7xutXsfgCQNwuTxk78qhc++kgJOT33EqZ3ceLqebhM6xnHPn6Xx47ywMYQbsVgfmSAMxHWNw2p2UF1ai0ajpMjCF+OQ4Jp07jkHj+wcXrGq1WuLj44mPjwdg7+Z9LP1qFeVl5aQMTaL7oK5BS0GD3sB3r/5ESU4JVWUWVv68lnkz/+S8u05nwjnjQgpLn8/HnJW/kpq7B3Vg/02nTmdsv+HN/r23BpVKFYwb/IK5RphnZGRgt9vZu3dv8EmARtM6+dhYdj2Uh7mU/oZNNaUzarU6mC2vcWX5N6AI8QC3v/N4neyxlBKb087NMx5m58dLDmFkrefyE8+lX9dejLmp8XpglVDhkz4MOj1ajRbp8zUQ4l6fl4Ly4ibn0qg1aNQt+3PKLy3knZ8/rVPW4pP+L40qm4WPF3zD36lrSP1gYYvHbm8uf+RC3rv34zpWenqTnisevzj479dueJt1CzfidrhxOfzZ7Z/fnUdSz077dSyZdO545rz8fcPOlQKuf/kqzrr51La7mDYkfVsmMx/6rIFTy3OXv8KwYwcTGRtxiCJrHSl9kjn5qhOY9/HC4GJSg9nA8ClDGHbM4EMcncKRRihvcLVaHXRJqY/D4WDLli3ExMQwcuTIFguP2hnx+qUo9cVQ7WOzdmQTHhuOzWJHqFUICWX55Qj8fv5OqwuXzQpZ4Cx3M/ul74mIicDj9mAw6jnp6hMYddIwYhNjsFXZyNqRA0Dnvsmo1CrW/7iF8uwKEpLiqSqzYKuyodGrkSovSf0SqSqqDpQw+IiKi0B6fUTFR3L0WWPJ3pmL1qClU8+O7Fq3F2eFm45d40FC3zG92bR4K16Xh/yMQgr2FSKRlBdVYoow4nK4SduSyb7NGWxe4m8WFB4ThsfloTi7hMsfv5C4TjFUFFcRERtOz+Hdm3SnytmTx89vz8doNmCvcrJzwT769++PWq0mIyOD/MxC9m7bh0atoSCjiMi4cOzVThbPWU5UhyiGTBrYYMz0wmzW7N1C75TuqIQKu8vB+/O+ZHSfoQc1I6xWq4mJiSEmJoaOHTuSlpZGVFQUZWVlpKenI4QIlrG0pESnuWUuoYS5z+fD4fhn3VpNZt1gMNTJsh9pHF7q5hCyfk/oNvd7ctNxuV3otI0v0jic+XvLqkb3qVVqLj7uDHJLCpg0eCxnjJvK6JsbinazwcQpY45r89jW7tqMXqsP2fEUwO1xk1OSz2+r/+K0cSe0+fwHwuk3nIzX42XWE19hq7ITFmXmyicvZer0KYD/0e6i2UsblJc4bE6+eeX7/QrxHoO7cdF95/LFc9/g8/gQKn+3yVvevI6Trz6x3a7rQPnzy8UhPcGFSsWKn1Zz3EWTWTNvHVVlFgZPHEhi1w7NthA8VNz8xrWMmTaS32b+gcfpZsolxzDx7HFH7Ie+wqGh5rF7fW/wxspHioqK2LNnD/369WuwiLK5dcRCCDxuD3tS97Jnzx6Gjh1Cp06hy/ZqZ8/jkmIpyiomplM0GdsycdicWCqqUQmB0+ckc20RHrvXv/BxVx6xSbF06BJPfEocxTkl7Fq7B7fLTXRCJLvW7cVaZUMA5ggzY08bhdPmxBhmRCUEcZ1iKVerMZgMDJsymIkXHMXHD3+BpbwaS0k1qAUul4uhxw3imPMnYK928NVz3xKdGE2PUV2pzLFQUVxFlwEpzHnxezK3Z9PvqD5B56mCzCJM4UYi4/wt4mM7xbB23nrMkSaqSi143V6/6Pd4iUuOpfeI5nfa3rZ8BzqDlojYcDzCjdvmYe+6NKb97wQ6depEcofOrJu9heKcYnz4sNpseN1eVDrB3k1pIYW41WFDLVRBdzaDVk+JuwyXx41B176L0xuj5slNXFwccXH+BfT1S3TUanUwox4REdGo2K5dH94SGhPm69atY8QIf6+Kmox5TSnLkfIZrQjxALHh0eSWFjTYbjIY26wL5aEgJjwKrVrTIMsNkBAVy6x7Xq+z7faz/scbP8wMloqY9Eb6du7J+ZNPa/PYEmMT8Poa2g7WxuqwsTlt+2EnxIUQnH3r6Zx586k4bU4MZkOdN73D6gi5yA+gqqx5tcWXPXIhx1wwkeU/rkKtUTPx7HF0SGl9h9LW4vV4WfXbOvZs2Eti945MOufoRn20PS5v6AWmUpKXVsC5SZfhdrpx2V1BO8A+I3ty+7s30acFX4AHEyEEY04aqZSiKLSamjbh0FBQ1F9Q6fP52LVrF3a7nVGjRtVZNFf7+OZkIF12N5+8/CX5aYVEhEdQvrOa8+46I2TX3tqlKcddNImMrZmkLtuO2+UhPCachC7xFGQXkru9AJfdhUajIT45htx9+eSlF2IKM+D1+vB4vMR1ikFv1LHs+1UIIRh27CCEEGRsy2buaz9RkFVIYvdEMjZnBXzHfQyaOIDz7joDg9nAcedOYvmPq+k1qCeVZZXYbXaMyTo2bNiAx+KjurKa+OQ4vCoP/Yb1Ze28DTiq7UTGRaAz6Ni5ejdVpRYQoNGo8bg8+Lw+eo/sgdftxRBmwBxpAgEVJZXoDDrik+NI6tmytUVqjQbp/efzzuf1odaqKc4uYcvf2/B5ffQa0p3irGJ8LolGqIjvFofb7cHiqGLt2rV1FkhuStvGdyvmsbcgE59K0rNTN/LLiujbuechE+FAyL+3+iU6LpeL8vLy4FoAnU5Xp+tn7c6wbbHAteZ9VOPM0ljG/EgQ5ooQD3DXedfx4Mzn65SnmPRGbjxt+mH7y2sOZ0+Yxi1vPRJSiH/90NsNtj1z1X2MHziKt3/+lEqrhQsmn8aVU89vlycCI3sPoWuHZHZm72tUkJsNpsPGEjIUKpUqpHNJRGwEMYnRFGbWLekRKsHQyQ2zII3RuXcSF9x99gHH2VqqK63cMv4eCjKKsFfbMYYZeOeumby14sWQX1qTzj2aH97+tYGjjM/n47ePFvi/HOuxa91ebp98Hx9unoFGqyY8OqxJNxgFhSOF5niDq1QqvIE+CFarldTUVDp27Ejfvn0bPb45YsbtdrN4zt/kpxXSa2APhBDsXr+Xtb9vYNxpDdc2CSEozStj7U+bsJRVUVFShZSSsOgwhEqgj9YypMtAMlKzsFRa0On1FGQU4bS58Hq82KqsaPU6PG4P0R2iMEeZMUeYKEgvxOP2YK20sWfDPkwRRtxOD9uX7URr1KHWqkjoEodGqw429jr6zLEIlWD7yt106pbIMRdMoHOfJJxOJzs37mbflnR2b9yLPkyHb6CkutJKdGIUHqcXoRaU5JTicroDLddBqFV43V48Lo/f0q9vEmt/30DOrjzs1Q50Bi39x/RBZ2zZ99yQSQNYt2Aj+7ZkYLfZie0UQ3LvJL569jskMvhE4uSrT2D5j2twO92ERZmJSYzh3OvOwhCmp6qqitLSUt7/+TN+XP8n0WFR9EjozN68TFweD5MGjeGaaRfvP5h6VFot5FcUY7FbCT9AI4mapzhNodPp6NChAx06dAD8ZVXl5eXk5uZisVjQ6/VER0cHfidto6lqx9VYxtxutwe3f/zxx1x66aXBrP7hgiLEA9x65lXklxbx5g8z0Wo0uNxuLp1yNk9dcfehDu2AiDRHMO+Zzzjj0atwuBx4fT5UQsXXD77FxEFjQ54zbcxxTGuHUpT6CCFY8NyXnPPEtWzYm4rL7UZSN5tqddiOSH9RIQR3vHsTj5z9DC6HC+mTaLQa9CYd1zw3/VCHB8DaBRv44pk5FGUVM3jiAC59+EKSetTtrvrxI5+TsycvWGJjr3bgsDl59vJXmLH8pQZj9hvdh5OvPoGf3p2HJ1CiIlSCYy6YyN/frmg0FofNyRUDbkCoBNLn45jzJ3L7Oze0u0+4gkJ70Vib+vrUCOu8vDwyMjIYMGAAkZGNuww1ZUlYQ02zH0eFi+i46GA20mDSN0gO1FBZXMUPL/6GChWVJVXkpxcR3zmW6spqhEpgL3IQE6Wic58k1v+1marianweH16PNxiX1+13xHBaHdirHUQlRJCzOw+n3cWeDWlUlVbhdroxROj9n/U+H+FxkUTERmCrspOfXkiPId1Qa9RExIaj1qpwO9yUF1bQuU8SltJqvn3mZ8pyKvF6PKi1KmylDjr2jidtdzrR8VHEd40lY1sWAtCbdOiNOqxVNqI7RjF8yhAGTejPd6/+RHhMOEIlUOv8N0JpWzJZ+eMaJp47DiklZQXluJ0eYhOj0QaaGm1espUtf29Dp9fSb2wfug5MQSUEETFhaEwadHotq39bj0QG3VwqiiqxWx3cO+tWcnb7XbWSe3dCb/J/tkVFRfHLhkX8tvVvrB4H1rJ84sNj6J3Qla7xSZw7ciq4fS2yEFy9cyNv/vQxpaWlfLtpAXec9T+G9hjQrHND0Rr7QoPBQGJiIomJ/u+Umq6fBQUFWK1WHA5HMGNuMrWuy3lTcdW852r2Syn59ddfueCCC1o8T3ujCPEAQgie/98DPHTxLWQUZtM5vhNRYa3rPni4MWHQGAq/2cSqHRvwer0c1X/EYVPz3imuIyve+JHcknx2ZO7l9EevbLBo9n+v3s3Abn0Y3L3/IYy05YyeOoI3l73A1y9+R/auXAYe3Y/z7zrrkJSX1Gfex3/w+k3vBjPXhVnFLP1+Fe+vf61Opvuvr/9uUOcufZKda/dgrbJhjmhoheivxaz1oSph8ZxlCFXjH7TSJ+ss8Fw0Zykel4eHvjyyb4QV/nvUb1O/PwEjpaS4uBin08no0aP360bRVNv6+q4oOevz2TA/FZkoQfpL5jr1DN0AaO/adBw2Jym9kvG4vajUAktFFQaTAbfDi7XSRvdB3Rg0oR9blm3DWe30Z31VAumT/h8kXo+X0rwySnJK0Jv1jDt9ND6vl4KMIjQ6LeZIM9WVFuwWBwaTnsi4cKpKLVQUVQZfq13r9vDnl38T0yEKgIWfL0aj17Dm1/WU5pWS1DsRa4UVu81Oh+R4zr3pTFb9uo7qKqtf6Ifp8bq9/sSB1YEQKqZdfTyTzhuPx+3BVmWnMKMQt9ODzqDH6/ZQlF3M3Dd+ZsOfm7FbHXhdHtRaNVEJUZx63VR+nPErqcu2gwS9WU9Rdgk7Vu9Gb9ITmRBJTnouKrWK7J05RAfiBn8iwueV6E16egxt+HS3wlrFwo1LiY+Kw+l2oVVpKbNVktwhkW5dumEy/WP9iEqgNepJ6ZRMTFR0SPFaYa3i1e8/IMIUjgiPxqg38ur3H/Luzc9i1IcuKdwfbeEjbjQaMRqNqNVq7HY78fHxlJeXk56ejtVqJSwsLOjPbjQamyXMa6wQm4MQgurqasLD27fjdmtQhHg9wk1hDOrW71CH0eZo1BrGD2x+o5mDTVJcInmlhSHffE63mzd/+JgP7njxEER2YPQa1oOHv7ynwXaX0032rhwi4yKI67R/P/C2xOP28PYdH9YpH/F5fTisDj5+9Ase+uIf8dvUh2GoXXargy+f/SboEgN+ceB2ulG1IOPhsrv4e+4KqsosDbzXFRQOV2rs1nbs2EG/fv32KyYsFgs7duxAp9MxePDgZi/ADJURd7vdpKamYjQag64oI08aRlleJUVpJSBhyORBjDx+WOjYfTL4ntaH6fD6PKjQ02NgN0ryyzjm/AmccPmxFGeX0mVIMsKjYu+GNGxVdiQSn69urfSeDfuY/uTFjD9zLIWZxaRtzqAgoxi304WUBDPWdqsTn8eL2+3xZ+sF7NmQhjnCGMwam8KN7Fy1G7vVjkarQUgwR5pwuVwIlYqYxBguuv8cv/WgTs0zF71C7u489CY93kCH6VV/raWssoxOXRIxRRipLKlCqP1P4EBgrbDidnioLK6kqrSa6A5RjDhhKFUlVXzx9BwcVmfwJqi63Iq1wkq2zYmUULxhH06XE+mFyNgIzJF+H3KhEjhtToaEKEd0e9z8tWk5W7N2U1BWRKe4jmQW5uBwWnB5PCAEpx11PB3i/eUem/Zt46Xv3sNqs6ERai4YPY3eyd3rZJU9Xg9v/DiTdbu3oNfpiTZEMDphGFW2KsqrKw+pEK89llqtxmw2YzabSU5ORkqJ1WqlvLycvXv3Bj3ZgzaQhtBxt0SIg79cxmg8/MoeFSH+LyOrKJeXv3mPVTs2MKBrb+469zr6d+nd4Lh1uzbz8fzZ2Jx2zpl4CieNOuaQm+UXlBWjVjV8U3l9XrKKGjbKOVKZ9/EfzLjtA5ASt9vDwHH9eeyb+w6a4CzMKsbjbrhmwOf1seXvbXW2Tbl4Mj+89WudrLhKpaL/2L4hGwPl7s0L6YLi8/qI7hRDdXm1v1SncdvkIBqdhvLCCkWIKxwR1HiD+3w+Kioq9tumPjs7m9zcXHr37k1hYegkRChClabUlKL07NkzWKMLoDPomHb9FCJNUUGrvpp58vYVsOqXtbhdbkYcP5Reo3qw8Y9UsvZmg4DOPZNJ6pVIVEIUx148iRFThiKEILZTNJFx4UgH6Ax67NUOqLXER6gFao0aKcHtcqPWqP0lIiY9vYZ3pyS3DHdeSaBu24elzL+o0lph47cPF/i7ebq9aA1a+o3uhcFswO1wExEbTmVxFR26J5C/rxAEOG1OegztRkJKHCqVisTufsHWa1h3qiur8bj8gXk9Pkr2lJG2JhMEGKMM2KodAccUMJj1OO1O3E43TrsTj8dDaX4Zu9ftpcfQbmTtyMZgNlBWUI5ao8br9ZGxLYthxw4hc0c2HrcHgUBn1BIeE8bYaSOpKK1Cen0MnjSQLv07N/j9fzDvK1bv2ohZbyStIJttWXuIDovA6nTQN6kHz11xP8nx/rKOSquFl+e+j9lgpkN0PJXWKubtWsax4yZhtVSTlpaGzWZjTUYqy1PXYtD67YgLKovZnZNGXGQM0QfwhH9/QtzqsPHnpmWUWSoZ1LUvw3sObPTvOZRrihCCsLAwwsLC6Ny5M1LKYNfPXbt24XQ6iYiICGbM9Xp9cKyWCHEp5SHXOaFQhPhBZubvs3ns05fJLyukV1I3XrzmYU5uo3rsHZl7GHvLqdhdTtweN+v3pDJ78c/Me+YzJg7+px78xdnv8Nhnr+BwO/H5fHz796+cMHIS3zz83kH5I92WsYvU9J30SurGiN7/eDGP7jsUVwgrQ5PeyLTRx7R7XAeDzX9vrVMSApC6bBuPnPk0ry157qDEEBkXEbJbJEBsp7o2adMfu4iNi7aQu8df56k36TGaDdw/6/aQ58d1ig1pXwjQY0g3bp1xPb988Dtrfl9P3l5/c5CImDDKCysbZvmkJLFbh5BjKSgcLtRfkNmcRZTbtm1Dq9UyevRoHA4H+fn5zZ6vthBvqkFPzbFer5eo+Ei8Xi+Lvl7KpkVb/MI0rxRzpBmVWsW2FTuZdPlRjL14OPlbijEbzQyfMoSB4/oFSzncLg86vRatTsuES45i96J0MrfnEBUfQX5GIfYqf0mh9EpcXjfWSiu71uyl59DupPRLZvDkgaz6aS0SidPuIj4lDktJNW6X3zXFFG4kd08e5YUVeD0+1GoVWduziUrwC0iNTsPIqcPxen2ohYrKsioGHtuH8+89K5ipFkKQvjWTnWv3UF1h87dM1/pb1Xu9PsIizFjKq7EW29AbdLjVHkwRetQGNdUVNnzSX/MuvRKvz0t+WgFCBX1G9WLr0h2o1GrcAQcWtVpFfEocud5CUqu2Y/fY6RfVk2SpJ6pDJOPPPqrR32FJZRnr9myha4dkSqrKCTeYAB8RxnCiTBH06tQ1KMKllCzespK0/CziI2PQajoRaY4gt6QAl89NcnJyMKv8y46/iTKFoxUa9hSk4/F6KCwv5slL72p2NlxKicfrqeMW15QQd7icPPzpS+zLz0Sr1vD98nlcO+0Spo0+NuTxPp+vgRNQfYQQREREEBERQZcuXfD5fEFhvn37djweDxEREUFB3tzrOlxRhPhB5O2fZnH3+08Fa6B3ZO3l3Cev5ftHP+TEUZMPePw733sCi90a/IPz+rzYnHaufe0+dsxcDPib6Dwy6yUc7n+EYLXDxvx1S1iwfglTR7Wf4HW6nJz52NUs3rISjVqDz+djULe+/P7s50SaI+gQHc/tZ9e1T9RrdXSIjufKqYffAovW8PWL3zVwFPG4POxYu5v89AISu4Wu32xLwiLNTDxrHEu/X1mnLttg0nPxA+fVOdYUbuK9da+xbsFG9mzcR2K3Dow/c1yjXT2FgMTuHcnamU3tdbd6k55LHjiPTt07cs2z07nm2emAv5Tl+xm/8MkjnyPdMvi3azDpmf74xcFudqHwer0snrOM+bP+RK1RM/WKKUw8S/H3Vjh4NOYN3hg1mevareWbs/iyNjXHu1wutm7dSsGuIvJSi9j52z4mnD2OHkP+qUOubUm4ePYyFn6+mKiESLJ35VKSU8qwKUMwR5gozitm2Q8rOe/eMznzotOD5+fuzeP7N3/FYXWgM+g47YaT6No/hbAoM6dceyKl2WW43R6KsvwlJbXf8067i13r9lBRVEl4TBjbV+0KZpzju8TRsUsCWdtzsVfZqCy1UF1pw+P0oFL7BZ9ap8blcFNdbmX4lCFYK20sm7uS066fSuaOHDR6DaYkPaV5Zcz/+E8qiiqIT45j17q9uJxuXDaXv2TG4ws4lUTj8/qwlFuJ7RiNKdxIVEIU1dVWJp43ju+e/4nqSqu/REcl/NcSyNRfcN/ZfFA2i5K8UqTPh0qjwuP2sDNtDxuMO/BavJh0Brbb94IOrut1RbN/n063E5VaTXRYFOP6j8DpcGKx/2NxuyR1FV/8NZcySwVVtmoKyosZ2LUPOo2WCNM/Twstdiul1RWkl+TQM7Erx3QYx/b03Zxx1IlIi4u1a9cGM8pRUVEh1yLsy8/klbnvU1RRSnJcIneefQ3JcYlNCvHN6dtJL8giJb5T4HpcfPrnd5w06piQ74fWlLmoVCoiIyOJjIyka9eueL1eqqqqyMvLo6KiolnXBg2dVQ4XFCF+kPD5fDwy66U6CxEB7E4H9898rk2E+NLU1SHv+vbkpmNz2DEZjPyxYak/Y1OvkZvVYWPusnntKsQf/fRlFm1eicP1j8/nxr1bufGNB/n8/jcBePrKexnRexBvfD+T8upKzjx6Kref/T/CTWHtFtfBZOOi0I2jAD598mtS+iZzzPkT6dilfRd03vXhzXi9Xlb8tBq1RgMCrnrqUsaf3tBJR6VSMXrqCEZPHdHkmJUllVw15GYqS6rqfCGbIkzc89EtDBpfd9V+1q4cbhl/Dy6HC7fL/wWsEiq6Dkjh0ofOZ9I54xudS0rJY+c8y7o/NgU7Xm5anMqqX9Zw78ehs/UKCm1JzYLMmkzs/kpRMjIyKCoqapC5bo0Qt1gsbNu2DVmpYtmXazCFGZE+yccPf8HVz15G1wEpFGUVM2/mn1RXWJh4+ng2LNxMdEIkepMeg9mAlJLK4ircPhc2m43kpE7B+llrpZU1v69n3od/EJkQRXLvTjiq7fww41cmnn0Uy35fRUr3FI4+Yyx/ffU3erMea5Wt7vePhNw9eVgrbVQVV9G5TxLamHAKs4spTC+mY5cEhPA7Jgkh8Lr9ZSQ+rw+VWoX0SXxeHxqtGpvFjlqrZvuqnWxdtp3oDlFEJ0bhFV4iIyIxmPSYI80snbuSgowipE+i1qpRq9To9FpUGjUqtaCiyOLvDqpX+xeLmvVItY8u/TvTY2g3cnblBcpP/EJRb9JTVW7hsfOfDS5I1eq1OKwOfF4ff69YhWOUj65dO1OUU0SsMRq6qess1qyNy+1CArER0Qzq2oct6TsAKLdUEm4yU1xZitVmJSUhmfSCbFLiO/H98t9Jju+EUWdkc/p2yi2V5JYU8NRldwez3DannYdnvUhuSQF2p4NVOzeQHJtIr07duPb0SzEbTHi9XioqKoIt62s6Y9b4fG9M28ZTX72O2WAmOS6R0qpynvl6Bq9f9xg+n69Rcev1euv87WvU6pB2ybWPP9An7zXNgzweDyaTiZSUFCorKykvLyczMxMpZR1hXuMz3hyuvPJKfvnlFxISEti6dWuD/cJ/sa8D0wAbMF1KuSGwb2pgnxr4UErZrMfcihA/SFTbrVRZG3ooA+zJSWuTOSLNEVQHMsm10Wo06LT+DKZBp68jhGsza8E3zF02jytOOI/HL78Lk6FtFzV8OO+rBnM73S6++fsXZt3zWtBw/+wJJ3P2hJPbdO7DgV3rduO0OkPuc9ldwczuJ499yd0f3MyUiw/spkhKyQ9v/cJ3b/yMrcrGiClDufLJS0js1hGDycCjs++jsrSKiqJKErt3bDTL3Vy+eeUHqkotQdvCGrweL2OmNWyG8/TFL1JVagl+QPq8PnQGLWOnjWxShANsWbqtjggHvyPEojnLOPvW0+k5tPsBXYuCQmOEalPfFC6Xi9TUVMxmM6NGjWpwvFqtbrYQl1IGfaeHDx/ONy/8iNFkIDzan6goK6hgw5+biYgN5507PqLaYgUBX++ci1avxhhmRI+e2MQYsndmU5RfSLyIw6gzMXLqMKSUOKwOZr/4PUVZxZQVVlBVXo1ao6JT945k7sjh25d/xKfzYS91kh2Wyzl3ncqsZ77G5XRjrbCiUolatdleygrK8bq8pG3NRKPTYDDr8br8vuIuhxuvx4verMceWPQJgXp7u/81sVbZSN+SgcvpRnp9hEWHYavy9zSorrbiKHPQf1w/dqzYhcft/Sfj6pMgZKCuPYbE7h2J7RTLjlW7yNtXgDHMRHpqJkIjMEYYOO36qXz/5q94vR6cViderz+b7nF6ydqcg1r7T1mKSq3CEGZAp3JSUFSIvnsPugzqjFf4SIjxN7ipKK7kj1mLKMgsIq5zLCXdq/hj61IAjh8+gf+ddBELNy7lh5ULiA6PxOFysHLnBnxeiUql5umv32Bglz64PG7MGi0douM5yjCC3LJCrj/5kjplnanpO8ktLfg/e+cdJ1dZfvHvbdNne2/Z9B5IpUrvJQLSUQRE6SKKNEFRREVEpEgRKSK9d0hogZCE9JDes73vTi+3//64u5NsdpNsIAj+zPHDx+zMLe/M3Jl73uc9zzkMKa2kqqicjmgXsWScy486D7/HmfSltDSLa1ehaioThoyhLLeIcDhMS0sLD7z3FAs3L6c53I7P7WG/0ZMoyM6jqbOVzmhop1XsUZXDCHj8tIU78Xm8dEZDnDD1iB1OTPdUoA9s1YhLkkReXl4mgdYwDMLhMF1dXWzZsoXPPvuM2tpaXC4X6XR6h82fABdccAFXXnkl559//o42OR4Y3v3ffsCDwH6CIEjA34GjgQZgoSAIb9i2vXpXr2OPEPFdzQIEQTgMeB3Y0v3QK7Zt/24g+/5/QcDrJ+D1E4pH+jw3pGzQHjnHT0+9iN/+++5eVXePy835R52OLDkftSLJmDv40dcMnc5oiPvfeIL5a5fyyV9f3qPLODuaABiWiWEae+zL+W3FzCc/3unztmVnSOydP76P/U+cSiBn5ysBuqbzyUtzmPfWAnKLcjjpJ8dRPaaKeCTBJVN+RtPGrdrTD5/5hPnvLOKxlX/POLVk52eRnZ/1FV+Zg8/fXdTH6hBAkiU2r6hlzH4jM49FOiJsWVHbp0qhpXVmPvUxF//hhzs916L3l/Yi4T0wDZPFHyxj2L5D6GoJ0dUaonJEeR8/8nB7hPp1DZQMLqaw/NsV7rAX314M1Bu8B52dnaxdu5YRI0ZkEgi3x0Ar4j1SFMuyGD58OD6fr1cIDoBlmsgumTXz15OKp8ktzkHTVFySm1S3t3cymkJVVcrGlDD+wLEEg0H2PWI8wVI/yWSS+vVNhNrClA4ppmFDI5IkUbOqnpaaNjYvr8Gf7cMdcJHKU8kuDDD3g88pLilii1ADlo3Z/Z0WBBBFKeMzbpkWhmaQ0E28WR4mnDiacalRfPDPTxAQkBWJaEfUaeTe5mdBVw3CnRGwBXIKs5AUia7mEK117QiCQDDXz9B9h6CmNSdJ0aUg4Pw2mqaFaVkkwnEOmD6V5Z+sxpflJ9aVIBVPkVOURXZxgJWfruF7V0ynZHAJq+asYe4b89myohbLcuQMHr8XXXOcn2xbcFYULBuv7CEupnh/xWz8ipdBRRVcd+blGLrBa/e9TSKSIKcoh7kbFzNn+RImTR5PNBnnntce5flZb3DCtCPRDZ2jJ30HURBYtmk1Gxu3kBfMoSS/iC82r2Fk+RBmLP2Ulq42TMvE7/ExuLiq17VhWlur0rIkkh/MwTSNTAEulkpw7SO3Ud/ehCAIKJLM7394HeOqR1ITamJzVwNDy6vpSkQwTZMFa5ZQkVfKxtZazvnTFYwpH871p1/e73WZF8zh9guu418fvERnJMS+Q8ZQklvAzCWfcsDoyX3ChPakA8uOmjVlWaagoCAT3FNVVcWrr77Kxx9/zMEHH0x2djZXXHEFp512Wp99DznkEGpqanZ22u8CT9rOzetzQRByBEEoBaqBjbZtbwYQBOG57m2/fiK+G7OA2bZtn/Ql9/2vhyiK3Hze1dzyrztJprdN7/Rw+4XX75Fz/OL0S9jUVMu/3n8Jj8uNqqscM/lQ/nb5rZlt5q5etMvjpDWVJRtXMn/NEvYfs3M5wu7gmMmH8vq8mX1uOlOGT8D9Dcb37gqaqrNo5hKSsRSTjtiHvJLcL3Wc3JKcAW8ryxILZizhiLMO2fG40hpXH3I9NavrSSfSiJLIW/94j+se+xmv/v3NXiQcnGpaMp7ihb++xuV/+dGXeg07Q35pHpuWbenzuKkb5Bb17djf0UKhwK4nf1l5QVweVy+NO5AJTbrxpN+y+INlKC4Zy7L50e9/wOk/+y6WZfG3Kx5kxhMfoLhd6KrG/idO5VdPXbtTPfpe/G9je2/wgUhRNmzYQDgcZvLkyTutwO3IjnBbbOuKEovFiHbE+OTfc2nY2ERLbRuapjsEy6Ww3/GT2by8BtOysG0b23bGk52fxfeuOZkPX/oE3dQ488rTaK/r4r3HP2DTF1uoHFfGpBP3QbYd8iYrMiOnDGfFnDW017Yju2SwbdSkiigLhNpDtNW3kY5rVI4sZ9rxU/j4udkZiYkgikiKQ8QFgUyOgGWaVIws5aAT9ufT5+ZiCzadTSFEUUDxKLi9HnRVQ0tp3e+xgJE2EWURURFp2dKKrhnIioyoCKRiadYt2tg9MbfIygviCbjpaOzC1A0KqwoYPL6aF+58HVEU8Wd7ySnOdki1ZRPICxLrcFarmze3sOKz1bTVdRDtiiOAQ+Z1x05QkmUMLY2R1lFK3awvqiOoepHdCqqhIjSaLH5xEYn9IzTXtVA+pAxJEgm7oogxkUQ8yRc1jhd5SlP5ZPk8WsMdeFxuAl4/aV1FlhWwuycALhcejxvTNLv14DYel4d/vvcMf/nxLZnrY3TVcLJ9QZo62/B7vITiEU6YvNUJ7dMVn1Pf3kRlt447FI/w6Izn+PlpP+axGc9R01bP0NJqhpYNYnNzHXE1xdqmTVg21LQ0sK5+M2vqNvL4z/5CUUFhHwvAysIybj7np6yqXc+vnvgzuulItl6e/Q5/+cktvcj4npCm9GBnkpltUVRUxNFHH81nn33Ga6+9RktLC/F4fJf77QDlQP02fzd0P9bf430jbPvBnqiIT+NLzgK+4r7/dbjmez/GJSvc9vQ9tIU7qC6p5M4f38yQ0ip+9sBvaAt3cNL+R3HGISf16lgeKCRJ4uFr7uB3F1zLmroNDCkdRFVRea9tinMLu+Up/UskemDbNl9sXrNHifhfL/0Ns1fMJ5FOkdLSuBU3LkXhH9f8eY+dY09j9fx1XH/cr7FMCxuHVJ7/63M478Yzd7nv9jjjmlN47JansK2BadUkaec/Vu8+/gE1q+pIdzd/WqaFmtL484/uyXjnbg9TN/nikxW7N/AB4syfn8oXn6zs1YwqKRLDJg7p04SaXZDNkPHVbFiyqVdV3OVxccz5u5bkHHnuoTx287/7PC4IMO+thSz9aDm6qmcq9I/+6knKhpZQt7aBmU9+hJbWM17nn7+9iAd+8Sg/+/tlX+p178X/b/R4HPdI53ZVBU+n06RSTrFlypQpu9x+INry1tbWjLa8qz3Ei394HTNt4g168QV9uL0uph47iclH7Ys/x89Hz33KugXrsSybYH6AyuHlHHPhEfz7z8+hJTT8vgBvPTSThnVNZBcGySvNZe3nG9ANnbN++j2y8oK0N3Ti9roIZPsIuWVkl4ymaqgpzSG9goDH5zRLhrudTsqHlRJuj6CmnNj7nMJsOho7sW0nWVhxy9iWTdXYCmpW1LNq1jp8Pi9imUSoJYyhGxQNDdJR05UJCnKsEJ0Gyo76rgzRNw0TX44Xr89LUUUBUy6eyNzX51Ozso6u5hC2bVM+ooxh+wwBugPDbBvTtOjqJv6SSyKrJMjEI8YT6Ygy+5V5uNwKlmHiC3pJRJLYlo1umshuCUO3yC3NwzJNwt44giIQlAPkF+aRTCVJijrRmgTV51RjW3Noa211ej7ToBkq0XQcq7unIOD1YWHRGm5n9sqFWLaFLEpg2/i9PgzTJKWpeBQ3fo+PeCpOPJUklm5ifeNmRlUMY58ho/F7fIyqHMbvf/hLnvvkDTpjYabvdzSRWJRbX7yHvA/yKMzJ73WduRUX7ZFOrn/0D4TjEZJqmhU16xhVMYTKojIkUWRjUy2e7nt0MpWipqORxRtXMLSrAlVVCQaDGY15j3vJozOewyUrFOc6lej6tiZmfTGPk/c/KnPuXUlTtrTUU9NaT24gm32GjNnp98M0zQE7pyQSiUxvRk+j9JdEfwOyd/L4LrEnpiU7mh1sjwMEQfhCEIR3BUHo6doa6L4IgvATQRAWCYKwqL29/4jenaGpo4X7X3ucu19+hM3Ntbu9/56AIAhcecqFtL64DHNGHVv+PQ/N0JlyxQnc//oTPPvx6/zk7us5+JpTUXdBlHeG4txCDtvnwD4kHOD7R542oNmoKIoMK6v+0mPoD9Ullax7/FNuPf/nnHrQcdxw9uWse+wT9hn67UnMtCwrU50ydIMbTriVeDhBMpYiFUuhpXWe+v3zrJy7ZreP7fa6+d3LN2VcAXogyn0/D8u0dtkc+fFzn2ZI+LYQBBB38kNXMbxsh899FUw+al8uueMC3D43viyHHIyaMpzbXr253+1/9fS1ZOUH8QY8CKKAN+Bh8Lgqzt1mkpNOpnnviQ946JePMfPfH6GmnNebV5zLb1+5CX+2D1+WF1/QSzAvwM3P/DJDwrdFOqny7B0v8dLfXu/jWqOlNd59/H1M02Qv9mJbWJaFqqosWLBgQCS8ra2NxYsX4/P5qK6u/krSPk3TWLp0aSZxs4dEtNa0Ew8lyC/Lxxf0UTmqHC2tc+R5h5GVH+T28/7CwveWZL4biXCCwqo8ln2+DMEUCPiDhNoifPrSHLpaQ3j8TrVeccusnrMeURI5+7rTGP+d0ZQNKyWnMBuP34PL48LQTEzdxAZEScQX9JFXkktnS4jW2jY6m7pwe11MOWZfCsvz8QQ8DjuxQVd1EuEkYJNfkcfaeeuJdMVQ3ApaWnOIt2nTvKYVUzUdiYkoomu6I2tRjW2q7QKiJDqWibZNyZBiqkZV0LC+GduycXvd2JZNqCXM0g+/YNmslXQ0dtHe0Em4NYIvy4tpWY7eWxQYd+gYFs9cypp565j/9iI6W8P4srzkFueQU+ys5pm6hShJjjPU4BIu//OPKB9eii/bSYHULB0rYbB5eQ3LP1rFIacciGQoKKbCcHMQ1WWVtIU6SKQSSIJEfiCHurYm8rNyEXD6yMKJKLZts7ZhI81drXx3/2M4cMwUWkJtpDSVpJZCEkSw4ffP3sv1j/2RW5+6m7+89BAF2Xn87NSLue38a3G53Lyx4AMCHh8el5ulm1YSTyWJJuOkNZWOSBdlecXE00kGl1Yxceg4ZElifeNmpo7Yl8tO/AGGaRBNxmjuaiOUiDj+60Ef++yzD1OmTKGsrIx0Os3q1atZuHAh69evpyPUibJNhVoURbriYVbXrmdjU03m/rojDvLJ8nn89MFf89dXHuHmf93Jva8/vtMmy93xEe9J79wDaAC2NYavAJp28vgusScq4gOZBSwBBtm2HRcE4QTgNRyh+4BnELZt/wP4B8CUKVN2yxDy3++/xE/+dj0CApZtcdNjd/Dr71/NjedctTuH2aMQRZGUmuKSu68jpW7VuibSSVZuWcfjM17g0pN/sMfPW5JXxFu3PcGZv78MVVOxbJukmup1sSuyTEVBKYfve+AeP39eVi7XndW/1uybRG1rA5fecwPvL56NKAhMP/AYfjz+7H4ry2pK4+1/zmDcgbufwHrwKQcwU32VmU9+RLQrxrE/PIrn73yZV+57E7u7UmDbNrc8dx3ewM6bZb3BHT0vYO2ga12SJc66tq8ubk/h1CtP5rgLj2bLihpyinIoG7LjykPVyAqeq32MT1+eS2ttGyOnDmfK0RMzP9Jt9e1cvt/PSURTpBNpvAEP/7zpSR5c8FfyS/OYduxkXm17mlVz1yBKImMPGE3jxiZkRepXq97Z1EU8nOh3LIZmoKs6km/nP+oblm7ixbtfo2VLKxOP2IfTrjqJ7IIvH5SxF99ObCtFGQgBtyyLdevWkUwmmTp1KitWrMA0TRTlyzVA9/glDx8+nKKi3g5KiuJYv/a4tdiWjSgKWKbJU7e/wIZFG7FtSCc13F4XnqCHuo0NjJo0knA8zuYNdciyRDycIBFJUjm6jPULNhJujyC5JZ749TOce9MZ7H/iVD55aS6dLV0YmkE8ktjqX27ZyLIEAkQ7oliGBd1jUVMarXXtqGmNokEFxDqjRNqjzn4iJKNpXvzDG8iKhGlYZOUHSCfSGZmZJIsIooisyJim5biV2HavlUTbcny+bUukZHAxh5/9HR6/+SnioTiSLJGKp3F5FNSkSsq0cPncFFcVkIikiHXGcPvcVI+pJJgfxBYsln+8krkvLyTSEcXGRktpdDWHySnO7p50CHiDXmwb4uEEgZwAB4yfTOmbhSxJroREJ6ZhMaqliuyqLFZ8uprCygJO/9l04tEkWXlBfjkoj5U163jgrSepaamnubONZCqJLCnE0nG8bi8+t4fKPMcn/L7Lb8PjcmPbNkNKKlm4YQWmZeHqXi0XBQHTMikvKGH++i9YuP4LDhjtFG8Wrf+CbF8ARZDxuNwUZuczcchYOmIhEukkZx86ncLsPNbUbwSgNK+QoNeHJMn88cLrSaopXIpCZzSELMpYtoVu6BRlO71F/dkJRiIRJlaP4ZV575Hjz0IQRZJqkjc+f5/X5s7AsiwOGDOJI4fu1y8RN0yDe15/nLxgDh6XG8uy+GDpbI6fchgjKvpvvv+GiPgbwJXdCo79gIht282CILQDwwVBGAw0AmcD5w7kgHuCiO9yFmDbdnSbf78jCMIDgiAUDGTfr4rWUDs/+dv1faQYtz19Dyftf9Q3Gmc/f+1SxH6SJJNqiuc/eYNh5dXc/fIjtIU7mX7AUVx1ykXkfIV0rB4cvu9BtDy/lKUbV6LICook8+O7f8n8tcsQBYHjpx7BP39+57cygerrQCKVZL+rTqYj0oVpmZjAG3NnMn/5UsZT3Wd727ZJRvu60wwUkiRx/IVHZ/6+5I4LOf7Co5j/7mLcPjeHfu/AAZG7715+AstmLSe9nRNLVn6Qw888mNceeBs1uVVDLQgC1z12NSMmDfvSYx8IvH4PY/YfNaBtPT4Px/yg/+CHuy97gFBrOBOdnYqn0dI69139D2594QYAFJfCvodtdQ8oHVLSZ8UBnAnIxCP3oa22nUXvL+3zfOWIcjy+nQdefPb65/z+3DvR006z3rpFG3jzoXd5ZNm95Jfm7XTfvfjvQX/e4JIkYZpmv3rURCLBihUrKCkpYdSoURknld2xJNz23D02h5MmTaIl0sHna5ZQXlCS0feWDS+ldGgxbXXtmWrykeceSldzmMaNzfhz/OitEcf2L550ki0VL5iwftFGDM1xFhFEJydgzivzUVMaoiRSXJBPV0uI2a/MpWljM/M2L2WFbz3RnAhlegGKXybpUpGTAnLSaa6MdkQJ5AYYNKiQzoZOUok0NSvrUNwK6xZuxNBNbBsUtyuzGmWoRiY4p7MxlPHtVtwyLq+CbQsEcvyUFZbSvKmFVDyVcWLJQIDskiCjjxnKxo0baW/qdHTsgOySMHSTQI6jTfZn+xm930gaNjRh6AbjDxlDa00bm5ZtwZvt4bW/vYPH70MQRFKxJLZloZsW8VAct9dNsDvd17JsJEnEl+XlvX98wLi2oRQU5dBU04xal2b/aZMpHVyCIAi013c46aCjtyZbTxkxgYd/+kc+X7uUxs4Wfv/sPaTSaSRRQtVUDENHzLWJxqOYuoGtuBAEgQuOPpO2SCdd0QjZviA1bQ14XG5c3c/bts3bCz7io2VzqSgsxev2kNTSZLsd4qnpOhOHjed7Bx8PwOINK/jne8+wuaWOtnAHVYXlpHWVn37X8T8XBZFRFcNo7GyhKxZBEUUqC8t7VUl1Q0eWZARBIJKM0Z4Mcc7Rp5Kfn+/YJAsivrSH9nAXBcFcFJeHWcvmkScGmLTvxD7XflpT0XQNd5bTgyWKIpIoEk3tWMv9dRDxc845h1mzZtHR0UFFRQW//e1v0XWdyy677FLbth8C3sGxLtyIY194IYBt24YgCFcCM3DMRx6zbXvVjs6zLfYEEV/ILmYBgiCUAK22bduCIEzDkcR0AuFd7ftV8ea89/sllJqu89zHb3yjRNzn9mLZ/f9Yt4U7+O6vL8o4oKysWctj773AsodnkO3/6i4XkiQxZeQ+mb/n3PM6KTXl+K4q/1tNa89/8gbxVALT2vpDr5sGYTVKi7+T7GjvtDqP38NhZ35nj46halQlVaMqd73hNtjv+CmcdtXJvPS315EUGQHH9/ZP79xK9ZgqBo+v5vm/vEKkPcqEQ8dxyR0XUDLom02qbN7SwpKPlhPMdWKgd9Qgads2C95bnCHhPTANx/t8R1BcCpf/9WLuverhzE1fkiV8QS/n33I2yWiSKw/8ZUbDKkoiLrfCzx7c+SqNaZrc9eP7eslatLSOacZ48rbnuOaBb98qz17sPnqCcrb3Bt8REW9qaqKmpoaxY8eSnb118rw7loQ92N7m8NW57/LQW09lUiN/ftqPOW7q4bjcCif/9Dja13YSag0zaEwl4w4eQ8uWVgRg1LQRLJyxhFS313VP+/PmFTXEw07gW099X1cNcouz8Wf5cPtdJCJJkvEk9esa+bxmGXPNJWi6ihrUaMsJIQsykiVi2TZVoWJGpqpJRJN4g17Kh5SSW5jF4g+WYxomsizhy/Y6qbmmha71XqWyzd4VbgRQPAqGZuL2upAUiQOnT+PTl+bSsL4JQbR699fYYKgmTUvb6dwQwZ/jI9oRRU1pqGkNAYGCygJaNreSlR+gfl0DsXCC8mGl1K9ton5tvTPJckloyThdRggt7TQZIghILhlREikZUkykLUo6mUYQQE1qTDxiAvXrGikZVEypUMLYghF8WjOHQK4/Q4wt2+pTFHAet/nOuGnUtzcxonwo9e2NxNIJXLKCx+0hnIrz3fEHZGLrg8Egk6rGcOFRZ/LgO/8mlo5TmJ2HZugMLq5E1TXq2hrRdI2KglLW1G8gL5iLS1ZoDrcT1ROU5hZz1ETHEnZTcy1/eflhcvxZHDRmKsu3rMbv9XHt6Zew3yiHILtkhWx/kNK8InxuL+2d7SQMlaDXTzQZ5w/P3cfiDSvwebwcO+lQPlkxz1m1AC4/6Xz+fd09AFx89y/x+X24ZAVV1TAMnaaOFlasWEFeXl7Gw1wQBPweH8PLq9nUXEdxTgGxVBxFUhhcvOP74u44sMTjcfx+/y63e/bZZ/t9/NJLL32o+zO0gSv628a27XdwiPpu4SsT8R3NAgRBuLT7+YeA04HLBEEwgBRwdveL+dIziIHCsq1+xS429peqWOxJTBmxD7mBbOKp3svlPreXjY01aMbWH660ptIaaufBN5/khrOv/FrG43XvWd/w/xasqd2QSfLcFpqhM+mcfWl4sCbjH+vxexh74CgOOW3Py3Z2F4Ig8OM/XsApV5zE8tmryMoPMumIfZBkp0Jw7PlHcuz5R37Do3Rg2zYPXvsorz/wNqIkIYoCoizyl/dvZ+Tk/iv0znJ7P4/voon1hIuOoXhQEc/9+WXa6trZ9/AJnHfjGRRVOvZx//ziPp6782XWzl/PoLFVnHPd9xg8rnqnx2ypaevfLlE3mf/Orp2I9uLbjV15g29PrA3DYM2aNViWxbRp0/oQ9J5o+YHCMAwWLlyYkaK0hjp4+O2nyc/OwyUrpDWVv736KAeNdXzITcGkpaCTJqEVt8/HWNumaFAhVaMrWbNoLRXjylDDGrqqk1USpGpUBZ3NTuXZMhyts41jlyq5FOKuBBuDDTQG2vgktZTi9iK6kiEEE2RTRnEpRFwJZF3Go7mwBZuOqgjHFlXRtLCZUHOYxe8v7Q7nAW/Ag552NOFen5vUDvITAASpR14jkoymECUBy7QoqiqkaWMzXS0hdFXv0+QuSAK6quNyK6RjGkXlRfj9PmLhOJ3NIdR4msaNTRiawcq5axG7yXVRZSHlw0tpqW0lrzgHTdWIdyWc98a0ek3CTM2kdHAxLreSyUiYdOQ+HPPDw3n4xie6K+QCiksmkOejqymMqVmoSZWh+w4mWBTkyQ9eZukmx3ayPdJJQk1RWVDKFSf/kHA8imlaFOcUYpgGlm1x5LgDuXz6D2mPd5F2mfiDQXRNZ2LxSO4660bakl2IisSSmtWsb3QySHIDWYwdNAJBEMgJZNHQ0cyFh59BVzhEZUUF4wePyviJr6nbAJAJyZs6Yh9EQcyQ8J7r98qTL+CuV/5BKB4mHIly0gFHUVVYzpm3X8oXW9bgcbkpySvijhcfYL9REynJKyKtqTzw1pNMGDKa/GAuY6qG88mKzynNKwZJwO32MKRkECNHjiQUCrFp8yaSyRTBQIC8vDx+fsqP+fvbT7Kqdj1FOfn84rSfkJ+1Y5eyb0iassexR3zE+5sFdBPwnn/fD9w/0H33JE7a7yiu/vtv+jzuUdyccehJ/ezxn4Moirxz+5Mced3ZpLQ02DaaoXPKgcfy9oIPexFxcAz535z3wddGxP9XMWHIaBRJ7pMGZtsWZ57zXYacX8m7j75PLBznkNMO5ICTp32rPM8LKwo48pxDv+lh7BTz313Emw+/2+1UsvW6vvHEW3mx8V993k9BEDj41AOY/eq8TIMWgOySOfzMnYf9AEw+cl8mH7lvv8+VDi7hmgf6LWjsEIFsH6bZ/8Q9mPft/HHfi4FhIN7g2xLrWCzGihUrqKqqory8vN/tB1oR75GiqKrKQQcdlGnIDMcjiIKY0QN7XG4i8Sj17c2EQyEem/k8LbFO3IqL9xZ+wpbWei465izGnzgSOUvAhYfKkeXMfXMBbc1tbE7X0yi00JUTJSccQFZkpxglWrSm29gwuJGwFiMlpR3Jg1+moz2EJViIHhGPqSBIAh7BjVtwXCpMyaKhsYVkKMG+h49DTapsWLY5Y8foz/aRjKcxTce5JRVLo5lan8JYT2XctpwKsqzIVI2pxLYsPnlxDsG8AC6vKxOGJskSlunIWgzNoHZ1PRUjyxl34Ciy8oO0N3aiqTrz31xEVkGA5Z86doFIAm6vQmttG211bXh8HmzbIfSC4GQqJKIJtJSOYRiOW4qms2VlLefeeLqzspblI3toNrc8fxcLxaXoa3WOyNqfYiOfcUeOZv+j9qOzvou80hz2OWw8D7zzL2Yu+RSf28uSjSvQdJ3cQDbrGjYxd/ViZFnqXvW2SWsqPzz6DE4Y/R0efu9pPlo+F0mUUGSZP114AxMnTsxosUOhEFWBYowxh+D1ebn9tQcybiQ9/V5ZvgBDCyuprq7u9X773N5e12ZKUynN7etxv//oSfz1J7+mtq2Blvpmph9xPE/Peo3lNWvJ8jlV7Ib2ZnTDQNO1zHUqINAVC5MfzOXi48+lpq2R9xZ9TFpTKSsowTANkkaa37xwN8s2ryHo9fPDI77HETkHEGoNcdq4I/nBftN7BfTsCLtDxJPJZMZX/NuG//fJmmUFJdx92W+45qHfYVqONs6lKFx96o+YNHz8Nz08xg0eReNzi/hwyWd0xcIcMmE/QrEIr82b0WdbQRAoy/96o8//G6HpGh2RLgqy876UrGZ01fB+I3kNyyTHn8Ww0UO46t5L9sRQ/2fx1j/e66NlB1CTKqs/X8f4g/o651x9/2VsXLqZzu6KmOKSKaoq4vK//vg/MeReyC7IZt/DxrP0oy8wtpkYePxuzvz5qf/x8ezFV8fueINLkoRhGNTX19PQ0MCECRN2Wl0bSEV8WylKIBDoZcNWml9ESkuzYO1SXLKLoNdPSktx3p+uxDRNmrvayPIH0U0Dr8vNcx+/zvBAOcOHDGPyL7a6LaWSaW5/+B6aOjoQbIHokCiRjgQj2wchCgLuHDfrSuoQRRHZJeGTPQiKSHOkDcklYevd/RmyhiRIuESFnJxsQrEwWlLHaNfIL8+loDyfdFKlfn0TkuIQ5VBLGC2tI7skgp4Asa44Hp8bl9dFtDPWl5Dbzn/ZhVlE2iJYluOBrqX1XpPxbd9XqbvptH5tA9MvPx5d1Vn9+Tq++GQlzZtakBSZVCyV0aAnIykQBQQbEpEE8WgCSRZxuV0UVuZTaOez6YstWIaA7JIJ5PgpKM1jxaer+dEfHfOEKx+4hdq2BsaOGUVrUxufx77gN9N/Rl5ZFhP2HZNp0DVMgw+XzaEiv5SuuNProhk6iiyT7Q+ysbmGYaXVTB25DzUt9dS0NfDm/A/4cMlnWNgMKx2EKIpEEjH++MID/PuXf+uTIKnrOqFQiH0rR/HJqgX4PV4sbCYMHUNpTmEmTGlb7D96EjOXfMqWljoEQcStKPzgyO9h2zbNXW2kdZXy/BLciovKwjIqC8tYnF6Mjc0Db/2LaDJONBknyxdAkWRsLELxKD63F0mUEEWRomyH8Aa9fnRDZ1hZNcU5BaiGzuOzX+bROS9T01qPIit0xrr4x4xnGVE1lAMmTMa2bWKxGKFQiDVr1qBpGtnZ2RmrxG0boHe3It4z0f224f89EQe49OTzOWbKobz4yVuousZpBx/PuMEDayb7T0CWZI6deljm7/KCUoaVVbOqZn0v3bLX5eHq0y7+Bkb47YRt2/zhmXu54/kHMCwTWZS4/qzLuencn+6Wbdis5fP6rYhjw7uLZjFtdN/Gkr3YPfRnswgO+dk+lKcHOYXZPLHmQRbOWELd2gaqx1b1clX5T+NXT1/Lr07+HRuXbUF2Oc4sp1x+Ikedd9g3Mp69+PLYXooykN+L9evX4/P5mDZt1ytiu2rWDIVCLP1iGSs7NtEa60TWYNyE8QT9DrmvaWkAHEliNBmnvt3xMPC6PBiWQUJNopkGpbmFpDSVVTXrqayuoqKiotd5xh45mq43ouTq2SiyzOgRw1i8aDmxjgR+3UvQ5WLsd0bRaLTR3NVKe7QTWZJRDQNREMn35RJNxNEtHZ/oxid5aY10YMctRjU62t3OzhAtta2UDCommBcglUyD6TgRIXQ7nBgmXr+HdFIluyALNaWiJnp/70XJ0cIbmpmJkRclkXRCzbyXgiQgiRKmZaAoCp6AG1+2j5yibHTN4JW/vYkgQHtde8br3LZtbKPbj9wxd8Htc5OMpRzfNgv8OV4mnTqOUEsU3dJpXt+Cx++hZHARnoA3Y5saiyfY0LCZ8oJSBEGgtKIEMSQRHJGFmOp9HQkIpLQ0K2rWoBsGqq6C0P24msayoLGzhbxgDi3hDtyKi7xANvFEnJZIB8PLBwMQ9PlpCbVnJDPbQlEUioqKuP77V7HfinmsrtlAttvPuNLh1NbUoigKsiyTl5eXCeHxub385rxrWLJxBaquMapyGMU5BVz36B/4cNlnuGSFcYNG8ccLr6cwx3FJsSyL3z79N2paG5BEEcM0CCeieBQ3XpeHlTVrWVW7Dp/Hxz9++iey/U5za0pLU9PaQG4wm7ZIJ6IgEU7GCCejBLx+ZElG0zXaIh2sqFnLAaMnIwgCWVlZZGVlMWjQICzLyqwCNDQ0YFkW2dnZ5OXlZVaxBoJ4PE4wGBzQtv9p/E8QcYAhpYO4/uzdW47+JvHO7U9y0s0XsL5hM7IkY1omd13yaw4eN+2bHtq3Bve++ih/ePb+TEMrwB+evZ+A179bExa/x4ciK32IuEtR8Lm8LJixmHg4wb6Hjv/SqZpfB+LhOKZpfaWI+nQyjazIyMrX+1Nw1LmHsWrumj5VccuyGHfgaCzLYvOKGiRJpHrsoF5NcvufMJX9T5j6tY5vIMjOz+L+uX+hbm097Q2dDNt38F7rwv9CWJZFa2srOTk5AyLh4XCYtrY2KioqGDFixE637cGOpCk9UpTmlhZeWfEB89ctw+1ykUqmSAo6d1x8E6Io8sHS2eQFcxlVOYxIIsqHy+ZgGAZ+r4+Umsa2E1iWSSKdzISa3P3GowwuruTMQ6dTVeQ4rJiWSSAvwOghjn44FUvhC/oYvM8gcqwAoixRUVzJqjUv4ZXdCIJAMplEtiQ0QydimJiK8zos0QYLvicfQ31dPf6AD0M1yCvOZfPyWocgVQQYPXI47//jE7xZXtIJFUkWiXZEKaosxGwNoyY1x/7QLWFoJqIk0ONZIAgCakIlqyBIcXURnU0hWmpaM3EpAg6xVlwK006cjIFBbk4uYPPFRyvoaOwiEU10a9UFTNPKNE+C0xuWnZ+VsTlUXDLebC+mbjNuwjhG/GgYL9/7Om9umYFu6NRvaKStoZ0zrz+Fj575lEUzl9Ke6EAP6VQPr8o0Zeb4s0ilnHTOpRtX8cBb/6Kxs4VNTbVoho4kimiGjoCAqmuE4hF8bseacOmmVRimSV4wm7L8EjqETuq7Wkmkk/jdXtoiXYyrHkFrqJ2X5rxDLJngkHHTOHDMlF6/k0fuezBH7rtVttfY2Eg6ncayLNavX084FqU23ITH62X/cZM5aOzW39S7X3mEZ2e9hktWsGyb9kgn977xOLedf21mmw+WziYnkE0inUQSJTRDQ5FkVEOjIDsP07JQNZVX5rzLcVMOA5yJI9jMWbUQG9t5/ZqG3+vFMA1kSUYURFRDy1gjbg9RFDPVcHD6KXqIeTKZZMmSJZnns7Ozd1io+X+vEd+LPY/yglKWPjSDdfWb6IyG2HfoWHye/+5mytZQO7c8fievzZ2Bz+3hkpO+z7VnXPqlUkQB/rgdCQfH+vGPz92/W0T89O+cyC8e/l2fxwUEPvz5B8yKfYiNE/Dz/ZvO5PxbzvlS491TaK1r4w/fv4vVn68DAarHVHHjkz9nyPjqAR9j9fx13PWT+6hZVYckixx+1iH87O+X7dK7/MviqPMOY+aTH7F24XpScYf8S7LI9Y//jPWLN3LrGX8iFU85S9MFWdz26q8YPnHo1zKWr4ov43CzF988tpWirF27lgMP3HnD9baplqWlpb1cUXaF/qQpPVKUQCBAsDiH1z9/P+NgYtvw+dolNHW14lZcvDX/A1bVrifbl0VhTn535c8JfUmkU06jpWniVlwoPsfvub6tifr2ZuavW8b9V/ye4twCCnPyqcgrYUtLHcU5hdQ3NZIl+5k2bV/UqEZzTRtz7pnD4KoSNor1FIt5eCMugoaPdZ5aQrkxJFtCFiSCcT8xd5xVygbiWTHKhCLcgkLp0GLS6TTDv1PNyhnr+eyp+ahxFbNbomJZFrZpE2oLM2TiIIrKC1n68XL0lIZlWlhGN0kWbPxZPo4471DO+uUp6KrB83e+SqQjSiKSQESkO/sd24Z18zeiaRqyJJFbkkNnc5hkJInL50JPG9i2jcvrypDVQeMqiXXG0VIqhm46jwugpTTUhMaD1zxK5agKWmvbmXzURDZt3sJKNpBSVGLzX0DaCENLqjgyfz/ea5+DIRoEcgOcuN+RjKocxpL2Jby3aBbX/vP3IDgTPsM0yAvmkBvIQtU1srxBZzXD0BlVOZQhpYNY27CRdfWbmVA9Co/LjWEajK8eSVJN0dDRTH5WLkdP/A5XPfhrosk4iizz0bI5/Py0izl+av/Wrz3Xr9frpaysjJyCPK775+3UtNRj6DqPzniOS444m/FDR5OXl8dr82ZgmAaq7rjNmLbFvNWLex3P5/YSikcoys5HM3SiyRg+l9ch5LKCgiMVWdewqdd+kUSMaCqOKIgICPjdXrJ8QWKpBEk1haZrjK8exbGTDxvQd0uWZfLz88nPzycUCjFhwgRCoRBtbW1s3LgxswKQm5tLMBjMfP7JZHJARPy9997j6quvxjRNLr74Ym644YZezwuC8EvgvJ7hAKOBQtu2uwRBqAFigAkYtm1PGdBrGtAr34tvDCMrvxoZae5s5dH3nmNDw2YOHr8f5x1x6jdC6GPJOFMuP4GWUDtGd+X5tqfvYf7apbz228e+1DHbI539Pt4W7v/xHaEwJ58Xbn6Is2+/DFGUEHD0feM3DkVt6u2U8ewdLzHuoDFMOmKf/g+2A1iWRe3qOkRJompUxZdO3DN0g6sOuo7O5q5uazLYuGwzVx9yPc9ueZRAzs5/aGzb5vN3FnHrGX9ESzlLw5Zp8fHzs+lo7OSuD27/UuPaFWRF5s73b+Pztxfx+VsLyC7M5vgLjyKQ4+fswT8iHd/6PqcTaX5+xE280PAvXG4FBL5VzbF78d+H7b3Bd4Vt9dvTpk2jpqZmt1y2tpembB/Qc9dL/yCtq+R0W9HGE3FautrAhhsf/SOJdAq37KI11E5TZwuCICBLEtFkHAGQRQmPy41uGqR1jVEVwyjJc/qH6toaWbh+GSftdxSfrVzA4i0r6IiHsbE5YNAkvuOeRPP6VjavqqW9vgMBAa/mYShldKUi+F1eCvPzkWph6b4bcOMm4PJj2AYROc4KYwNWvslmq4lp9jgaNjcx+uARLHxpOR1NXcRDCcdaUDMzaZkA6YTKhgWb2OKpJbs4gKEZGRIuCAKBXD+X/OUCDjn9IFpr2/n0pTnUrKwlqyBIIuyECbm9LhS3QjqeJtYVJVgURItr1K1uyETHqwkVu1uAbpkWikumoDyfA0+eRnF1EY/d9G9kWcIWwTBMUvE0kiTR0dhFtMvxrFYtjTXDakiZOh3xCDWNzbg9LjapjRzlOoDjlAPRLZNjjj6Mlngn5/zpSto72wmrzueT7c+mqbMF3TRRdZWhpdV0xkJMHDqWfYeM5aXZ7zC0rApBEKgoKKMrEuaLmrXkBrLJdQe585JbeOz9F5izaiHxVIJbnrwLsBlX7UhqE+kkz8x6vV8ibpomL3z6Fq/Mfhuf28d5R59GKp1iS2s9oiiAJCKKEouaV3Po1IPo6uoiHI2Q1jRckowgCpiGSXNXK7/5911ouk6Zt4AfHnU6tz9/P5FEDMu2yAvmMqJ8MPPXLUM3HMcXVVcZUjooM5YvNq+mJdROYZajaTdMA8u0mb7/0WxsqqEt3Ml+oydx05mX43XvPMdhR+iR5/QEX6XT6YyMJR6PY1kWs2bNIpFI7NK+0DRNrrjiCt5//30qKiqYOnUq06dPZ8yYrT1Mtm3fCdzZfd2eDFxj23bXNoc53Lbtjt15DXuJ+P9jLFi7lCOvOxvDNEhrKi9/9i5/eOZeFv79HQqy/7MBJE++/xJdsXCGhAOk1DQzF3/K6tr1jBk0sCXfbTGyYmgmGWxbjPoSk5eT9j+K1he+4P0ln2LbNqVaIbedcgdJelfc0wmVNx9+d7eI+IrPVvHbM+8gEUuCZZNbksttr/6KoRMG7/Y457+7mEQkkSHhPdA1g/efmsWpV+7YCahmdR03nfw72urbezU/gRM/vWruGurW1lM1qpKW2jb+edO/+PzthUiyzKGnH8hV913ypZMCwSHTB03fj4Om75d57OV738Dux43E0A0u3+/n1K1tQBAEDjh5Gj9/6Apyi3K+9Pn34n8T/XmD9zh79LeM3dnZydq1axkxYgSFhY6bRI+P+EAhSRK67nhSb9myhfb2diZNmpTR6WqGTpYv4GQ3SDKGZZLlCxL0+VnXsJmqwjJkSSbZsAkXCiMrhrKlpR7DjFGcXcCI0sEEs7Koa2ukNK+oD4kREGjqbOWqB26hqasN0RaxsJi1/nOWp1ZTVJdDSVsetmkjCiKd6TA1Y1pIkEIQBIZEysnWfZQ05NNeFiGmxkgrGrZu49M8SLJIWtRY69/CNHM878yfRViPkB0I4ApJiJLoWAF2Ww7KLglvwIuhG+gpHS1hOlVp0ZGNCKJAOpFmzuvzGXfwGK689iaWxFdhYVItlFHgyUayJHxZftLxFKZlYas2XfUhBMmJfBclp8HS0Bw9utrde6KmNdSUyvhDx/L2QzOwbJu2URFq3c3Ylk1pYz7loUIs26LW20R7SYS0pSJGJLLlIKqgkeUOEE8kSEVTvFj/LtUtJYydOIpIMs59LzyBmBbQJJ0OO4TH5SZgGfg8XtrCnZimh45YF7pu8N0DjqU8v5gPls6muasN0zT56Iu5mJaJLEmEYmEKArlc84/fsqp2fXdcvIBLVogl44wdNLLX9dvftX7Lv//Ci5++BQhIgkhTuJUJQ8awqbkWURAQBRHd0PF7fZnK8hGTDuaJmS+SNrTM9dMVC7N0w0piqQRr6jdQUViK3+ND0zU8iouDx00llkyQSCeJJJzMRpescMCorc3CbZFOcvxZhBNRvG4PAgJxLcHpB5/I+K+pT8/j8VBaWkppaSm2bdPR0cGcOXNYt24d06dPZ+LEiRxzzDH88Ic/7LPvggULGDZsGEOGOEmeZ599Nq+//novIr4dzgH6Nx7fDewl4t9yNHY08+zHrxOORzlu6mEcNHbqgKupP/zzz3p5lCfSzpLYrU/exf1XfT2Vzx1h9soFfWQkAJIosWTDii9FxO++7FZO/e3FpNSt1VRZkrjtguu+1Bj9Xh+nHHQcAAtmLHa6evpBIjLwVM1we4Trjv9Nr4pv8+YWrjnsRl5s/Bdur3sne/dFS00rutbX4UVNqjRu3HEoraEb/Pzwmwi1hXe4jeySadzYTDAvyE8mXU2sK5Z57s2H3+ODpz/hyXUPUVDWv5bvy6CruQs11bdZM51QqV1dn9F2zntzAT9dWcsTax7cYXW8qyXEv377DPPeWog/28dpP53OiRcf8z+TELsXvbEzb/AeYr3tY5ZlsWnTJsLhMJMnT8bj8fTZfqAQRRFd11myZAmBQICpU6f2Otd+I/fl3YUfoek6CTWJIshcfOzZ+NxeFFnO6Io9igvdNNjcUudY6tk2g4or8LkdScDEYWP57gHHcPcr/6S1uY1IOE62P8CEitEs3rCc2rZGJy1YsJwqsQUpSaWprAPRFCgPF2IaFluqm0gLOm5NAVFgU3YDY3IGU91RQq4dJO5Jk87RiPmSiIKAZZnYuoVSqDDX/oIWowPTthARyPUGGb22CknsttKznffDIZCiI1NpCme+2whOoqauGaxZsI6bf/9H5sWWImsilmmzLqsWzV9GYWc28XAMLMAGW3A+Y3SzW7EioaUdHbYl2ciK7FTdTYuOxk7+cPZdFFTk01zcSaO/HU/ajWZoNFa249EVkARqcpvxaV5sySZsxfB5fHgFDx63m3giQbQrSiQnSUJOsqprC+888glexUu2L0hHtMtpTlWgttV53wUcScfoiqGcfdgpTBw6FoCbzr6KGYtnMWv55ximQX5WLm3hThLpFIl0irZYF6quUpRTiCSKhGJhdMtkU3MtBVm5xNNJLj/xB32uuzX1G5m9cgE+jw+XJGOYJvXtzVi2TTQRQ+i+NiVJIprY+vs+rnoksiyh4CRl6qaOauisrttAZywEOA3EoigiigJDSqp4e8HHmLaFbVuIgpOC6Xd7ee6T1zlpvyMpyy+mNLeIysJSAl4fzV1tGKbJlCHj9wgJH8jqliAIFBYW8otf/IJ3332XDz/8kE2bNrF8+fJ+t29sbKSycqvssKKigvnz+w+QEwTBBxwHbOsnbQMzBUGwgYdt2/7HQF7L3jvUtxivzXmP4Rd8h5sf/zN/eOY+jrvxPM65/fIBLZG2hTrY0lLf53Hd0Hnls3cHPIb2cCePvvssj7zzNM2drbs1/m0xqnIo7h1YC1aXfDm97bFTD+Pcw09BFLZexqIgcuOjf+wTkrS7GH/QmH6tnzx+N4efNfBUzfef+hjL6Kfia5h89trnuz2uEZOHZQJ7toU34GHM/iP73aezuYu7LrmfWHjHUcHgVMUHj6/m1fvfIhHp+/6l4il+d/afd3vMO8M+h43HG+h/STJzo8ZJ1OxsCbFoZt94eoBYKM6PJ/6Utx+dSXtDBzWr6njgmkf42xUP7tHx7sV/B3qkKDtyRdmeWKfTaRYtWoQgCEyZMqUXCYddu6Bsj1QqRX19PZWVlYwcObLPZPDwfQ/k0hN/QLY/SHFuIafudzStoQ4uvfdGqgrLaY90ktJUNENH03UEG1yKi6LcAlbWraMp1EbA6+f6s67gmMmHMr3iSKRagapUMZPaR/PWX9/lk2Wfd4/ZSdbssQuULBEXLkL5MVxeN6IokPSpKLqE4lGQRAlJlggOy+LEHx/HlMoJDA2VMzRagQAk1CTJVJqUlSYRTdKuOURNMSVsGyLZCVqLQggCSLJIODdOTUEzDd5WVF11/PhFHEvB7nGp3XrxdExjwbovwADBFBBtEcEUCOfFuj8zC6P7d1kQHNmLbdnILhnFrSDguC1ZhompG5mVQ1EUiYfjNG9qIV2io9gyGDaSLSHaIuFggq5gFFEXsVUbn+3FI7pJSyqaqZNIp/AbXiLZTiOrFw+KJtOlhdEVHVESCXh8uAU3iijjdXvJy8rlgJGTKM0uxE4auNLQ3NyMqqqU5Rdz4TFnMXbQSMca03SccJzr1CalpTEti45IJ+F4BNXQyfL4iSSiGIbJL077CVXFFfzsoVu57L6beHfhx9i2TVJNISDQGe2itq2R2rYG2iNdrKpdj2bopDSVRDpFPJUkqaUyv7ECAkXZBXhcTgOpYZqYpklnPOyEIgoChmWS1lVUXae2tYFQPEIilUQURBRZwbRMoqkE6xu3sHzLGj5btYDWcAcnTjuSwpwC9h06lmMnHcovTvrRgL9HO8PuWBeC8x33er3ss88+/OAHfScx0Pue04OdkP2TgTnbyVIOsm17EnA8cIUgCIcMZGx7K+LfUiTTKb7/p5/2qvYm0inemv8hb8ybmanc7gguRen3ogLwuAamxXrqg1f4yd3XZSKWf/r3X/O3y37LJSd9f+AvBOfiHlRU3qeipEgyVUVlvbq3dwed0RBPf/iq80PRDc3Qaexo4dF3n/1KVo/egJer77+Ue658CF3VM6maQ/cZvFt2dZ1NXf3a8xmaQag1vNvjGnfgaEZMHsbaBeszx1VcMgVl+Xynn7TPRe8v5ZZTfo+uGf1OLHrg9ro46Lv7UzKoiOWzV/aRvvRg1dw1pOKpPdbUOeXoic7rWbihVyR9f2M1NIP69Y3sd3zf/pc3HnqHeCTRS3KTTqrMeOIDfnDzWRSWfzuDHPZiz8MwjF16g29LxNva2tiwYQOjR4/eYYDIQCviPVKUpqYmiouLM7rV7SEIAucecQrnHP5dLMvih3+8ms3rlpCXnUM0Gac0t4jzjz6dz5Z+zr9mveL8Bne/NlmSOWb8QdxwwdV4XG7q1zey5unVDM2uJJmtEnUnqK1vJFGQJM+fQ3usi8ytwAaf4UEJKghR58Gy4aXkK02kAzpBr5+8kjxqGxuYOGw8hmbQsKGJVDyNHbUpDxXQWNaB4BKoCpUQUqLYBRai7TQ+SoLgyE2C4Ev5aCzroC6rDcuwaCVEti/AkI2lyC4ZSRJJx9XMuMBZ2TO6dKxcCxuHZNmijZwWQQRZFNF0Z0XQtEwEEWSPgsvlIis/SF5pDkMmVPPpS3OJd+u9BdFxT/EEPGDbKKqMLduIsjNxsAUblyYT96dJe3VHAuOSyDJ9TBk6kaKiApZsXEFdWz2iIBDQfBkHF8VQEGyBLi2CaqgUSblM3XciNV0NaLpObUcjuqEjKhKFJUWk4klWrFzBRyvnsaWrEdXUEQSBWNIZq2VbCDiuijZg2TZJLY3X5UEQRXTDYE3DRt5d9DGratfjkp2J0x0vPgDA5GHj6YyFSGmqs4KCjSQ6KcWmZaLICrIoopsGkWSczS115PiziCSiTqFMCJBQU4iCc8/vsU/e1kZZFAQU2YWlppBsZztNV7uva6fYd+0jt1FdUoUkiHjcbm4+5yqKsgvwSm5aW1p2+T0aCHaXiAO7XB2tqKigvn5rAbOhoYGysrIdbX4228lSbNtu6v7/NkEQXgWmAZ/ucly72mAvvhl8snwektj3Ikukk/z7g5d3uX9OIJuDxk1F3u5C9bo9/OTEc3e5f3NnKz+++5ektDSJdJKkmiKtqfzswVvZ1FQz4NcBjkTmqr//GqPXl1nkiIkH8fGdL37pxsUFa5fidvWtsifVFG99/sGXOua2OP7Co/n7vL8w/bITOPys7/DLf17F32b9EcU1cJ30jiq+kiQy/uAd6s52CEEQuHPG7zj7uu9RWFlAXkku0y87gb9/flefcZmGye/OvoN0Ut0pCfdn+zn3xjO56d+/AGDQThxBBEHY6bF2F6IocufM2/jJHRcwcspwxuw/kmN/eAQef1/JjqxIDB43qJ+jwNKPl2eaT7eF4lLYuHTzHhvvXnx7Yds2uq6j63pGirKzgB5d11mzZg319fVMnTp1pyl+AyHimqaxZMkSdF1n1KhRA5JECYLApuZaVjdspCArl4DXT2leER3REGvXraM0t5gRlUNwKy5HWtKtDZ65fA7xVIKa1XU8fsvTbOls5E31I2Y2zeb99jm8kf6QkUVDHamGKSD0zKttSAppbMvmyMoDmXrsJIaOr+baUy+hanAZaUkjasSZPukofF0uVs5Zg+yScXkUBBkkTaSsMY9RW6oYqQ8mLxR0PMNtEwsb07aRDIGspJ+0odKY20aOK0iOK4ssMYBZZUORgKmbW0n4NhBFkdLGfBRTRlN0NJeOYkhUtBchCgIIAoIkZJiLbYOIwMSjx3PQd/cjvzSPgrI8XC4Fofv9ty1HHmNZNiOmDGOoqxJV04jLCXSvgUd3gyQQzo+jenW6AlGapQ5EXeTCSadzx0U3MvP2p/nlpJ9QGMlFQ8cyLGzBIpDl5whlf8aKQ6nWy7jowLM5etp3iCXj1Hc043Z5EEWJtKYyY9lsqqqqWNq2gcWNa7AFSCQT5HiCGUeR7o/IaTxFwKO4EBGQRQndNIink6S1NG/N/4BYMoHf48PqloY8M+s1/vj8/YTjEZTuYB2vy0PQ60cURGRRQhYlBEQ8Lg9FWXmsqlnPZfffxIfL5hBNxWjsaME0DQTBCePpD6ZlEk5EHaJuW5lJIgiIgkBhMI/OaBi/5KYoOx/btnllzruUF5QgieIekwruqMejP+yoKLk9pk6dyoYNG9iyZQuapvHcc88xffr0PtsJgpANHAq8vs1jfkEQgj3/Bo4BVg7kvHsr4t9CmKbJ6tr16Kbe7/Pbk2uAhvYmwvEoo6qGIUvOx/rU9fdy6C9OpzXUjmXb2LbNkRMP5hen7zol8pXP3s38MPQam2Xy4qdvccPZV/azV18sXLeMl2e/00cf7lZc3HbBLynK/fKVysLs/H5vjqIgUppf/KWPuy2GThjM1fdd+qX3n3bcJIbuM4QNSzZlQiE8PjdTjp3EyCnDv9QxXR4XF/72PC787Xk73W7dog27qIK7GTyuivvm3NnLR/x7V0/n7X/OwOxHUjNkQvUunVl2F4pL4bQrT+a0K08GQE2pLJy5FF3dWsVXXDLlw8p22CRbPqyUpR8t71PJN02Twsq91fD/7xhITP32269cuZKKigpGjRq1y+0HEtCzevXqTINnJBIZkJTl3YUfcfsz91HT3kBrpIOJw8aiiDI1LfW8kHo34xveGQvh9zipgBOHjiMUCbGxqYYNL63H5VHoGBrBTtu4NRdyQiTpT7OmcQOoNi5bdkhd2kVSVgl4/Bw6Yn+GG4OJReNIgxS+WLqa3I+9uOxCPIKb4adV8b3fTufxXz9NqCNMw8YmGgs62SI3dlevWxjdojHYKEerNagZ1IKhGLg0maq2EsZkDaPTCGHoJqZt4fG50VI6kWiMZCqNz+i/N8Y0TBRTZsK6IXT5Y4iiSHbYj0/0ILtkdMNAkkUMdas8JasgSDKRZN2K9QyfOoTSscUYhok/20e0M4ZtOfc+t9dFY34HH7V+jifgIamlyG4LUFlXxNIx63EbCp64C13WMWSLsYmhfPbEXFq+aKGgPJ8RE4ZwyoajeTsyi6g7gdfn4dc/voYla1ayee1qNqfqWDBnFf5FHiRRxrAMPIqLEeVDKMopYEXNWu548UGemPkCbsXFyIohDKscjMvjpqqwjDc+f5+2cCcpPd392uiefEEkuVXPLYkiKU3FtCzCiUi3W4lObVsDJ049Er/bhyAKRBMx3IojPcoLFrClpQ5JlFAkGZ/XS7Y/izfnv08oFiY/K5egx09HJITX5UUzddI9VW6E7gRNMpzEIf/ORCE3mENnNIQsSbhdLmJaEkkUcblcJBMJUokkm+pqaGho2OnkeHexuxXxgfwuyLLM/fffz7HHHotpmlx00UWMHTuWhx56iMsuu+xS27Yf6t70VGCmbdvbajiLgVe7zyEDz9i2/d5AxraXiH/LsGzjKo676fsk08lespQe+D0+LjjmzMzfzZ2tfO+3P2HpppXIkoxLVnjkmj9z2ndOoKyghHWPf8ony+dR09LAlJETGD949IDGoZtGL8lHDyzLQtP7nyD0hw+WfIZm9K1UaobO+4tnM3XkvgM+1vaYPGICZQUlbGzqbS3mcbm56pQLv/Rx9yQkSeKuD37PGw+/y4x/fYisSJx48bEcf9HRX/+5u5de+4MoiZz/67M5/Wff7RPmUzWqkltfvJFbz/hjhoyLoogn4OGGJ675uoeN2+vmoQV388Av/smc1z9HlCSOPOcQLvnzRTv8If3eT6cz418fZeQtAJIiUTWqkmH7DPnax7wX3wxs2yadThOJRHYa5rEtmpqa6OzsZOjQoQwa1P8Ky/bYUUV8R64oA4m4r2tr4k/PP4AoSQS9fiLJGAvWLaMwkIcgCgwtG4QsyRiGQX17E+MHjyIvKxcRgY6uDnxuL4ZhIskicpaCT/BhpUySXpWEkOTN5R+gSjpZagCv7SbmSmJKJmlJ5cPNc1jpXodhGnR+HkZLqfjLfezbMZyA5OfTl+ZyzPlHUDaumKa3mjBzbBoDbbjjCtiQllSWV25C7JAY0VXF0FUVCG4RUzUch5YJ0DCog1RSRXeZlCiFxOJxpLSIL+3aqr2APv8WRRHFUiiPe/D43XjLvEiyjGUaxEMJot2VdEF0yKooiFz0m+9TWFkIks3GVZspH1PKlqW1SIqjdxcEEAMiM+tnk+PPQpEUgh4fHTkhihpzsLGxBAvDbWKLTuO6VCJTv6KJpR+twBf0UlhZQNWocu4861c8sug52tQu7nvnCTxuN51aCBMTbBvdNLC7r41pIyeS7Q/S2NGCqqepb2sk4PUjIrB082ri6SRuxU1WIItDJ+zHy5+9h9jtk27bkOyHA5iWhSRANBkj6A0gIKAbOrqhE4pHmDJiHz5fuxjTshx3Hn+AYaWDOHrSwcxesYCUlmZwySD2HzWRe15/DLor21a3L70oCuS4s4imYrhlBb/bj0dRkBSF+vYmBEHEJYm4ZAW9e5+A1+9IhWwBXdfwe7yOg40IdY3NDPFUMXvNQir9RdS2NbCltZ7xQ0eTn5+P2717hgWZ92E3iPjuJHCecMIJnHDCCb0eu/TSS7n00kt7SDi2bT8BPLHtNrZtbwZ2z9e4G3uJ+LcIuqFzzA3n0B7p6vOcLMsoksz5R5/OcVMPB5wv+rE3nMea+g0Ypgk4P1A/uONqhpVXM2HIGERR5PB9D9rtsZy8/1Hc+Ogf+zzuUhROOejYAR8nyxdAkZXu8fU+Tk8M7peFIAjM/NMznHTzD9ncXIfcnWZ335W//0oEf0/D5XFx+tXf5fSrv/sfPe/wSUPxBb2kYn3dagDmv7OIc284o9/nDj7lAN6KvMA7j77P5hVbGDSmimPPP5KsvP9MRHBeSS43P/3LAW9fNaqS2179FX++6B5iXTEs02Lfwyfwq6d+8TWOci++SfRIURKJBHV1deyzz87vgaZpsmbNGgzDoLy8PEOaB4L+iLimaSxfvpxgMNjHFWVnFXTbtlnfsJk5qxZR29ZIJB51nE0sC90wyPYbSKKUWZFM6Sp+t4/a1kaSacfucELVKMZVj0Q4xuKlu9+g2l1GjdhAzJtAMzUkW2LkoKHU1TYS8yTAgKgYx4VCVUk5m5vrWJFah2iIBJJeXCmZuDfJBrOWwZ3lGLrJjJc/4Ljzj6SosIhnX3oNO2UjWAKazyDt0rFsiy8K10OJgDfpZohYTs7qAIIHZnuWYGgm+eQQNqI0plsoiedTvD4HyZQd0pp5Q7Z5n0URxaPgDXooqS5BEAVEUSARSTLuO+PZsHgzsdAGRFFAEEVkt4QgCoTbo1SNdiR1w0YNwUyZaAnHN97QDARRINGRwsg3SUfSSLkSITVKXEjSVhhCsWUigbjjxCI6A3qn61MKPNmM1asxdZPmza14A14+nvM0SVeastwivli7mq5kGEmQMNlKDEVBxOvxUNNaR0FWPhUFJcTTSYI+pyL8yYr5pHWVxRtWoHQX0FJaqlt7LmJjIohixv5RFMRehTGX7CKtp8n2ZxGKR8jyBgglIsxft4wj9jkAv8dHLJnAti1M0ySuJjlm0qH88cIb6YyFuenxP/HXVx4hqaawbAtZlDAsE7esUJxfgmVbeD0eZFGioaOZaMoi259F0BvAtm1s28LG0Yt3RcMYloFLchx39hkymoLsPNKayoJ1X+D3eEnrKg/MeApFcCrysiwzunwYZ009HmwykfU5OTnI8sBo6e4Q8WQyic/nG9C23wT2EvFvET5aOgdV71s9FgSB/UZO5OGf/Ymx1VudMZZuXOnYWm13g1B1jXtffYx//uIvX3osQ8uqufncn/K7p+9B22ZM+Vm55GcNPOb9zENP5rpH+lolCgiceejJvR7TdI3nZr3B87PeIMsX5NKTvs+h+xyw0+MPKq5gxSMfsqZ2A6F4hInDxuJ1/3cnkO4piKLI71+7mSsP/GUfiYplWqxdtIGmzS2UDSnpd3+Pz8NpV53c73PfRkw9ZhIv1D9Ba107vqD3PzZp2Iv/PLb1Bh+IfjsWi7FixQqqqqooLy+npqYGw+hrA7ojbE+su7q6WLNmTS+v8W2xo4h70zS55cm/8MGST6lpbSTaLTmQBBGzm2iF4xES6RQfL5/L+EGjWLZlNaIgkFBTNHe1UVVUwQGDJiAIAuMOcvpM3n/rUz5eNx8EG9EWcSku2mKd7DN6DCvWrqEqWI6qG4wePIya5nqSpLBsG0s0CWfH8UkuFFVBVQx03ZF/NK9so6y0jCE/HIIxGmbfs5hYW5yUkgZbwMYm6VKdZshsk416PcPHV1Ni5KOZGgHFjzvgRuwSiJkJqrcUY2kWttR7mU4QurXekojkkhElkWQ0RSDHjygJWKaNL8tL86ZWXB4Fl0dBS+tgmdiWhaEa+LN8meviw2c+JdYVdyLVBef+KSsSsi4RdPuJq3EiyQQpMQ2SQGdhFF0ykCwJXd56Tdi2TXtumK7iGLnkkk6ptLW201DczIhhQ2ja0IKdsJxQJUHFFkC3DDRDR5Wde+a+1WOZ6BlDy4IW3mlcTpcvSmFxPm5Z6a5EmximyftLP0UUREzLwrRNR0stON7vQJ/V6bShIooiTZ0teBQ3bsVF0BvAtAxmLZ9Ha7gT0zJRDYcPhGIRbn3qr3TFwiTSCeasXkRKS2eOa3RbLWqmQVukgx6994iKIRTnFtDQ2oxhm5jdzim2ZTvFQVnBtE00w3DGnjZZWbOO2y+4jsKcfFpDHZTnO/eXllA7ndEQh43dD5/Pz5rmTYTFFEfscxCRSISuri5qamoQBGFAkfW7oxGPx+O7DPP5JrGXiH9F2LbN7BXzeX3uDHweH+cdcSqjqoZ9qWNFkjH6UxLYtk1lYWkvEg7Q0tXW74zQtExq2xq/1Bi2xQXHnsntz97X67HmzlYO+Ol32fzk3AHNXAtz8nn11n9yxm29dekv3PwQhTlb/ah1Q+fI685m6caVJNKOjdMb82Zy0zlX8qvzrt7leUYP+nJ66//vGDV1BNVjq9j0xZY+zymKTFdLaIdE/L8RgiBQMqh/p4q9+O9Hf97giqLskIjbtk1DQwMNDQ2MHz+eYNCZnO2IKO8IPWTftm02b95MR0dHH6/xbbEjacpHX8zlw6WfEYpFMa2tpM/chmgl1TSiIJBUU6yoXYvP7UUQBOKpBKqhUdtWz4MfPoPtk7n9gusYMW0YV77ya8JGFEmSEGwBn9tLNBlnY0stpmyhBjX8qpcVNWsdAojlVKK7V+uTQQ38GkXt2bQUd+IfE2SDUktrYzsf18zjkXeeIegN0u7qwhAshG4f7+43GVESUf0G0hCFq8+9lKsf+Q3Z3iBNa1tQ/AqK4cJ0mYgpJ+in50YnSiI5hVmOz3VHDMswMWwbl9fNis9WU1juNPt1NHZSNrQUxaOgpfTuECAwDZtUIk1eWS7t9R28cu9bzH5pLulEGkEQ6TEdtwyLYHaQ7+YeyVuRWTS72nFbLjxxF5IlkgqmwXJeUI9SxsZGRCQd0DDDJlg2kiWSm5tDPJEgFoojJEDwCFvfCxzSbFkiQ0qr+Gj+HGaH5iGFBZq8HSStNHWpRkRFIssfJKkmSesqlm3jUVykNWdV27QsbMHGrbj6Lc6Jgsj46pHUtDYQTydRdZ3RZUNIqyrrWmqwu68nsdt2cEXNWgB+cs/1uGSFRD+ZHjYg2M6xS3ILqW1toKG9iUgyTlp1SLtLdmHaFm5ZoaqwDLfiora1Ea8iolt6txWjSXVxJZFtfMotyyKZTiIJIoZlEYpH0HSdhvZmJEkiLy8v0yyt63omsn7Dhg243e4MMQ8EAhmJye5WxAcSb/9NYS8R/wqwbZsL7rwm04woiRJ3vfgwd192625b/AEcMn6/jO3WtvB7fP3aFU4eMQFN6/sl9bo9HDN5QPaVO8Ujbz/T52ZlWhb17U0Unbkvb/7ucQ4a19d6cP6aJdz+zH2sa9jE1BH7cPN5V9P24hd8usIxxj9k/H64Xb11YS/PfidDwoGMJ+rvn76Xi084l+LcvlWnvRgYph03mbo19X2CgAzdYMj4gWlk92IvvmlsH1Pfc0OWJKnf6rau66xatQpZlpk2bVqvm7YoirtVEe9xWVm8eHG/UpTtIYoiG1tqWTljM36vn+OmHEqWL0hLVxuWbZFIJxG7rT+2umU47LTHKk7AsZrVDJ14KoFpmgiCgFtxYZkWr8+dwSUnfp+r77uF+euXOfsajoNGKBHBtmzSSYdAaS06Q/wVBAv8bG6uwyXLWJqNTu/3YOOIJoKuAAExyRa1gaufupV56xYjmALY4BU9GFa8l6bbtiFlqGDAkvUrefy9Z7BVi+UbVqOiodsmLkNmxcgtFDblUNaY7/BjAfzZPtJJFUWRsW0b2e0C2yYRSSDJEoloEkmWkN0KiltxGt4FJ4lTCsrYko1gCzRvamHpRyvYuGQTqUTa8RDvdksRRMdtxe12kdySYEJ4GOnhKj48aLKGpumIpuhUw4VtlDISCCbkCjlYpoUvy8v0y08ga79sfvbXW2nW2ki5NSxMRFtEsSSQQRecivamplpC8bBzvGzn8wzqfnKUIG1GF+F4xNGT2zaSJHb3UjlJpz53TwLr1vt7T16GZVsUZOWS5QuS7QuS0tJUl1SQk52LaRk0hFtJpBPdKw29S3u6aaCbO77uRdFZ6VAkGd0y6YyFcXeTbwDDcmRTpm1hmCaKZBNPJ1BkhaLsPJJaGtu2+dur/6Ql3E59exNNna0ZtxdZlJm/fikIAqquMm/tEs4/6vRe383tI+tTqRShUIi6urpMZTsvLw9VVXH145rWH77tFfG99oVfAR8u/YyXZ79DIp3sNsE3SGlpfvbgb+joR+e9K5TkFXHzeT/NVEAA/B4vE4eN47SDj++zfXFuIVedehF+z1YphltxUZidx09O3LmjxkCwoWlLv7NxgFAszHE3nkdnNNTr8Xfmf8jhvzyTt+Z/wPqGzTw36w2mXnECa+s3cfTkQzh68iF9SDjA63NnZEj4tlAUhVlfzPvKr+V/CWsXrufx3zzFs39+iZbaNs74+Sn4cwLIytYfO4/fzQ9/cy6+4LdXN7cXe9ED27ZRVbVfV5SenINtEQ6HWbBgAcXFxYwbN65P5UyW5d1KygyHw8RiMQYNGtRvQM/2mLt6Ebe/9gB/fuFBbnrsT3z3Nz8ikogyrLyaSDxKOBEhlnYMF+zu//V5zUAynexOLhQyWyqSgoDzHrw88w3eW/pJr/0s28I2bXLlLIqUfBRRwRRNOpJhCl355GflIIoSurgdIRPBlnCCeowkFaWlfLZ6Aemkhp7QURMaMSuBaIkoppyppmeMrwVQkhKvLHof7xoFEwvd5XhZG6JJ0k5TW9nKlqpmdMVZ0bBMC0FwAs6cxkvH89u2nIq34lGIR+KoiTS16+upXVuPZdmoos76gjoWDlnNivyNLPx0KalEiqZNrc4qiduVYdQuj0JOQTbpZJpIe5Qx+4xkWGAQKVEFn4CYJ1HkKaA4q5CCrLyMLAQEBrsrySoOEDwwyCm/PIFpJ02kQixmojgaj8dDdtKPZElYWFiihSzKgI2m60SS0V6fqg1ElQStVqdDZC3HEMHGCdDRDB3DMlEkGc3QMqE+LknBJbu6x2QjiSJZviDrGzeT0tIUZucRTcSoLCjhspPOZ2TFUOiOst/2/LtqVez5Tmm6TjgRRZFksCGlbW0YtWwb3TDQdA0BgdK8IjwuDyk1RUN7C/Fkgmgizry1S8jyBhlSUkV7pAu/28uEwaOxbMf6EGBwcRWbm+uYvWrBTsfl9XopKytj7NixTJs2jerqakzTpLW1lZqaGtauXUtra2u/RckeJBKJbzUR/5+uiFvd1d2cQBbZ/qzd3v/FT9/qlzzKksyMRbM478jTdvuYvzrvag4eN42H336KSCLGWYdN5+zDpqPI/XtX33HxTUwePp6/vfJPQrEIpxx0LL8887Iv9Xq2x6ETDuD1uTP7fY3gLKc++9FrXNntUGLbNlfcf3MvtxfTMomnk/zykd8z80/P7PBc+Vm5zkzb6n1zFICcPfBa/hdg2zZ/vfTvvP/Ux2hpDUmWeOLWZ7jm75dxzyd/4rUH3mLhjKXkFmdz1rXf46Dp+33TQ96LvRgQeoj2rgiwbdvU1NTQ2trKxIkTd9igNdCkzB4pSmdnJz6fr189eH/426uPEknGUE2HHCzbtIqbHv8zx034Tvfv41arEAEBr8tNUuvtkCHgNOUNrxjMhsYthOMRwLGQEwSBpo4W/j7z3/2eX5JEAoIPWZQRDLCwUW2NL5rWkJ+dS7Y/m41NW7C6Y++3JdU+r9epgHocUqxoEobkOGI4Q7ZRNBldNJ3Gxm0YnipruHDTLLeRcjm6aQEwJQvTpyFaAm3FIRL+NPvUDXN04ZKI7FawAwI1/iZSZpqskI/cSJBQc8jRgwO66kwcDNlEc2mU1ueR0xHAm3bxwl2vkZ+Vi6qr6IbujBWnGq57TNbl1iB6RIIJP2LrFg4ZNoWg6Wd98yaG5JczIWsUn7iXkFuYg5HSWbNhAy5dJqEnaWloI74sxj9m/ZvX7nmX7KIAtb56cvxBXLILKdJJpxjGlCwM0cA2nCmTaW2lwcGol8LWHCzRprU0RMqvku3LJhSP9JmEaYZOTiALSRTJDeSQSCdpj3Y5jayizIjywQiCQFpXKc0rYsqICbR0tfHu4lk8MuM5dKN/V7OdOWmLgkhBVi5dsTApLU1TZysIAlK33WBGrtP9PbRtSOlpPl05H83QnbAp20SxZScN1tBZsmkl1UXlKLJEaV4R5fklbGmuQzcN9hs5EZcs09jZQnu4cycj6w1BEAgEAgQCAQzDwO/343K5CIVCNDY2YlkWOTk55ObmkpOTk5mAJxKJAUlT3nvvPa6++mpM0+Tiiy/mhhtu2P78h+F4h/doPV+xbft33c8dB9wDSMA/bdv+00Bf1/8sEX9l9jtcdu9NxFNxTMvipP2O5PFf3k3QN3AdUc8sdftGCgFhh8R5IDh0nwN22aSYOZcgcNZh0znrsL6m818V3z/yNP703N+pa2vsQ5ABUmqa1lBH5u94KkFDe3O/x5q3evFOz3Xx8efy2IznSam9z+NWXBwxcfddX/4XsfTj5Xzw9KyMhZ/RLUW546J7kBSJkkFFXPvIVex72IRvcph7sRe7jYH4D2uaxooVK/D7/UybNm2npH1HcpZtoaoqK1asICsriylTpvD5558PaKyWZbG+cTOhRASv24NbcWLD353/ISs2rCalqSiyTMDjJ5aKoxl6HxLujFHG6/EwonwI46tHsbmljtW168nxZdHU2cKg4gokSaKxq7XPvgGvn5iZJJD2EsRP1E6golIQyCcnmE1zV9vWVYRt3lbFchxNLGyiyThuyYVbkzE9NlE7gWyJeFWPU9EGBEPAkrdSPEu0sbAIBxIIloAg9mjJHZmIaAn4dA+aR6fTE6EoLnLgmVOJxBI8Vfs6aUkDEzrywlS3l5Ff17fh2pZtbBEkUySQ8KC7TFRbI9IZ7a6kC92x7CAoAuuqakl6VHS3QTpbw294Wda1nlE11exvTGD0xBEEA0GsJlhn1bKltpaiRB4RMUawwYu33YXu0knbKkZtC7URk1huinhVgiy3QE4giMvlwut3k7Z1UmqKSCKGaZvYQFbYx8jVVYAjoynoyGL1hDoS8tYClwCI3QF+tmURSyWoKChhbPUI1jdsRhQEJo+YQI4/m5SWpisWYlz1KEryCrFtm/lrl9Eaau8mzRnxPrIkYZqWM+HqBwJOP4Fh6sSS8Uw4kBOUJ2CYZje/cai4EzJoU5xTQHNnGzZ2JrfEskxSuookSt02x1r3dUZmG7fiyFwUSULv/v4NLq3qM654KsGrc9+jsaOF0VXDOXHaEZljZK41y0KSJHJycsjJyWHw4MEYhkE4HKarq4vNmzcjSRJLly4lEons0iXJNE2uuOIK3n//fSoqKpg6dSrTp09nzJg+wXuzbds+qdf7KAgS8HfgaKABWCgIwhu2ba/e6Um78T8pTVmwdinfv+OntIU7SKppVF3jrfkf9mko3BV+ePTpePqRWVi2yfHdFoP/zfB5vCz8+9uc/p0T+g338Xt8HLrP/pm/vW4Pyo4aOG2bz3dCxvcdNpb7rrgNr9tDli9I0BegOLeQmX969itNav6X8OGzn5BO9L2hA5i6SePGZm488bfUra3vd5v/Rsx+dS7nj7qEo92ncP6oS/j0lbnf9JD24huAYRgsXLiQqqqqAaVa7qpZs6uri0WLFjFo0CBGjBixW2mAtz1zD62hDgzLJJ5KEElEMQ2TpJaiPtSMaZkYpkE0GUPrp3opCgKKpFCaU8TI8iGsrFlLQ0czOf4sHvrJ7/nr928iN5BDQXYeAa8ft9xbJxvw+hhSUsWI6iFkF2XhE738sOJUph9wDJqt88Wm1bSG2jPUTLLEjLpE1iRcuMgP5nLGISfy5zNvcqrKlo4lOWE7tmhRqOfi1dzItoRkSBmpjCCLuHCRRsUWbLCEDOEXbPCpXkRNQBAFciuy8U0K8q8lr/JszZvE5SSutGPTK1kS9XmtdJuGYAkOmbSwEDUR0RQQbAFLtLG7nWJsbERFRPEriJKIIAvEy9Ik3GlEU0CXHIs9QzBQNZXlwfXsc9g4AGRZotxdzK8OvoLT9aMZ1lCOho4/6cYSbEzTwptwIRoCSpdEsN6D3mWwJdlIA21oikFzrJ3WcAeReAxrG6lUWWM+tmBjKCa620Q0RYqac1ANLVMNt3FWjy3bwuf2IiKQVlXqWxu73U3gi81rmLdmMR3hTlpDHby94EOemPkC81YvJp5KIHanVvZYPtqAR/FQkJOfWVXe/j4+tLSKoWWDCHgD5GXlOv7qXj+27Tj5uGSZYSWD8Ht8eF0e/B4fw8qq2XfIODwuN6LguKsEvL7M9eRSXPTMmXVTZ1hZNRY2bZFOirMLOGj0FLa0NrB44wpkyUVdW2Ov76Ju6Pzumb/x+ryZrKnfwL8+eImH3n6qz/ekv2ZNWZYpKChg+PDhTJ06lXHjxuH1epk1axaPPvoop5xyCvfddx8dHR19jrdgwQKGDRvGkCFDcLlcnH322bz++ut9ttsBpgEbbdvebNu2BjwHDNiv+H+yIn7H8w9kupN7oOoanyz/nLq2RqqKygd0nCkj9+Gmc67k98/ciyAImZngi7c8vMvK+ubmWj5buZDinAKOnHRwn9netwX5Wbk8+6sHSOsaHyyZnZGp+Nxe9h89iSMnHpzZVpZkLj7+HP757rN9woji6SRHXnc2f/zRDfz01B/1e64fHX8OZx56MrNXzCfg9XPQ2Km7lZz1vw5JkhAEoY9edlvomsFLd7/Ozx8eWDLqtxmzXvyMP11wd2YFoH5dI3/4wV1YpsVhZxy8i7334r8N/V3btm2zceNGVFXl4IMPHrA3+M4CenqkKDtzRdl2e9u2M0S9I9LFEzNfwOgm2E4aoYHP7cU0LSoLytANHTNp9iLhDpF1NLgel3NO3dJp6mrHskzyg7mcv/90SgtLWNG2kVAiQmhzFK/tItsM0kkYsMj15TJ22Ai6omEuOvYsfnT8OSxdupRRo0bx4py3eXbeG46tH05THjaYooWM04AnCSIH50/mH3/5CzmBLNSUyvpX1vOPjufJSvuQbBlEaPF2YItgiCY2Nl7FC4JNSksTV+P4RA8JIY2IgGR3N2KqErImoso6LktBx+RjeQG6T8dULDRJx60rCJaI5bIQNSETtJPyq4iWiCflwhZsJFOkIz9KbiSAYAq4VQVRFBA9Ivmj87FMi85NXUiVFnYaDEynedMyCQYDjB46ko63W/nslc8RRIHhk4fg9rj58OlPWda0mmWl60gpKmF/nIJkNoou9XxQ2JKj1S/rKCCvJJeknKIrHaagM4eczX4woa04RGtxCEQQTBHRFhzndNuZOPRIZxRJAexMA6VtO+9hli+Iz+ujNdJJeX4Ja+s3Ek7oWJbN5uY6SvIKGVk+hM54mLr2JkRR7JakCN22jc7xLSz8bi+SIBBNisiShEdxk9bVbjlKHgU5eeT6swj6gizeuJzcQDZ1bY3YQMDjx7Zs/C4vmqFh2haptEpHtJMTph7OOws/wuvyYnU3mfYkEeX4s9FNneqiSt767ePMWb2YtnA7BUo2gyqruPHJP5PlD+BzeXno7afQdJ2zu1f1N7fUUdNST0VBCYIgkOPP4pMVn3PB0WcQ8G7VeQ/ENcXlcnHuuecSi8U444wzOOaYY/jwww9JJvvKbRsbG6msrMz8XVFRwfz58/s77AGCIHwBNAHX2ra9CigHtq1wNQAD1n5+O9nf14zNzXX9khW34qKxo2XARBwcTfcPjj6ddxd8jNft4bsHHrNTfbZt21x2z4386/0XkSUJQRAJev3M+suLDK/4diYACoLAy7/+B/96/0X++c6zmLbJBcecycXHn9NnufgvP7mFaCLOMx+92qc7O6mmuP6ff+AHR32P3GBOv+cK+gKcsN+RX9dL+X+No79/GDP/3TtdcnuYhknt2oavfSyNm5r54OlZpGIpDjh5GhO+M3aPRRv34B83PNHntapJlX9c//iXIuINGxoJtYYZtu8QvIG9XvTfdqTTaZYvX05eXh5ZWVkoysBXzvoj4ttLUXZVBX/z8/f5w7P3kUinOGyf/fnDhTfQ1NlCOB5FNw16lLU2EEslAJtFG5bjcbnxKM5/STXtOIAIYjc5EhhUVE48lSSWjtPU0YxhmrSF2hlcWE5yncaiDV8wuXosKxo2EIpF8clevl/yXTbGatkUryUci/Cd8fvxg6O+Bzi/35ZlkWsGMlrfnkRK07LAAtEWkAQZn+jljH1PJCeQxYJ1y/jdg3fTLLQgZ8kUSLmoKY2EkUSXTVwo+EUXSStNSk85QS2ihGiJ2CKUS8W06h2IpoCcljBlC2TwRz0UJnNontCJFbWQdKeabUuQcKfxJt1oLp2iUK6TdqmYYAkIloDq1tkypJmC9mxyEn5kS8KtKsiyhOxREP0iutsEGYLFAbS1IcRqAVtxCKotChQF8+n8oA1vq4sESRRJYe38DVSPqSJ3eC6bqppQOhSUmExHWZismB9fzI1gC87kQ3YkJ25DIbjWj5b0kK14CXZ4EU0RWZfIDQUoacpj5YQtdBSGCcZ9SIbTAIoA7UVhwFk9F9haxENweq8iySiiJDK4uIrOaAjLth2v7u7UzpZQG/lZuVQUlLK6dgNuxYXP4yOZdmwJbdsm6PZjY9MR7SSpqt2GEiZpVHL8WUwduQ9nfedksrv/7ff4uOvlf/DSZ2/jdXtIaypFuQV0RcMMLRvE4JIq1jVsorWrnYnlozls3P5saqxhRd06DMvE7/E6DjCihGVb5AayufuS3/DsrDf46Is5mJbJmtqNyLJENBlnnyFjCPoCyLLM2ws/zBBxIbM+sxX98bXdtS8sKSlh2LBhDBvWv710f+fo5561BBhk23ZcEIQTgNeA4X0G3H3IAQ2O/1EifuiE/VlVu75PU4Oqa4z5En7UVUXlA7YrfPbj13jqw1d6VeTjqQTTf30Rqx/9eI+TlZ1h+ebVXPfI7Xy+ZgmFOfncePaVXHjsWf2OQZIkLjrubC467uydHtOluHjiurtp7mpl5uJP+z4vK3y2ciEnH7DriPeuaIi7X3mEN+a+T0F2Hj8//Sec+C0g6RuWbuLdx98nnVA59PSDmHbc5P/o57YjjD94LKdeeRKv3PtmJlFueyhuhfEHjf5axzHjyQ/566V/xzRMLMPi9Qff4aDv7sevnrp2j75PLTV9tbHO4227dZxQW5hfTb+Nzcu3OLHMmsGFt32fs36x+83We/GfQY/H8OjRo8nLyyMSiWAYxoBT+bYn4tsH9GxqruXDpZ8hSzLHTz2c0jzHSs22nWrjsk2ruPmJO/G6PeQEsvho2Vx++9Td/Pi4c/C43KS7Nd+CIDquJ93OLpZlkdZVFEmmvKCUopx8VmxeS1pXkUWJY6ccxm++fw1H3XA2lmWR0hynmKRmc8fLDzmrAthMGTyeo0YfzBdLV5IfyGNi9hhiRpyaWAOaoWNZFhsatyBLMre+eA81rQ00t7RltMJWT4Y64BZd+CwPvpSHtKAyY8Usml7o4IV5bxFrjxI1kkT1BCkjTbGchxJwQQJM23Ts9wQ7857quo6BARYkU0l0xSBgeFE0CUEVUF06RpZJLCeFphqYogl+G0u0QbAxJQu3JuPV3YiSSGdhjLRHJRj1k5Y0Wqq6SPs17Djkkc2mkY2ErBguSWGMPJQRnsH4inwYqknEH8Fo0xlfN5TW8hA+0UNSShPriuNrzkaTNVTBCYUqcRWSTqqkJBXFlCgMF2FGTcx8i459Y0zurKBjfQeW7KSLShYQFhAEC5dHxt0RRLAcEmmLNrYNgbiXQbXF1FW3YUlNFLVmYwvQUtlFPKuHMINtO7Ibv8dHSk07qwC2TTQRZ9nmVfhcHifJ0rYz6UeGabKqZh37Dh1LWkszpKSSfQaPYVXdetrCHfg9fqrzymlPdNIVj5DtD+L3+EikkiTVFIqs8NmqRdS2NnLLuVdnKs3Xnn4JZx86nUgyRmNHC//+8GU2Nm6hMxZiU0stk4dNoCS/iNEjRvLU528gSzJuxYUXgeqiSjpjIUKJCEW5+Xz/iO8R9Pn5+Iu5lOeXsGTTStK6Y3MpiiJr6jdmbBo9ylaJ7+CSSgaXVrKpqRaf20M8leTIiQf3qobDVo34QDAQ15SKigrq67cWtRsaGigrK+u1jW3b0W3+/Y4gCA8IglCAUwGv3GbTCpyK+YDwP0nEf3nmpTz5/ktEk/FME6LP7eXn3/vJHnEb2RkeeOPJPi4ktm1T19bI+obNjKwc+rWevwdrajdw0NWnEO8eSyQR46r7b6GhvYVf/+BnX/n4JblFO1hKZkDR9pFElEmXHUdLqD1jofj52iXcdPbAAn72BHpu1Nt+2V/466s8dstTaGkN27L5+PnZTDt+Mre+cMO3goxfcseFHH/R0cx/ZxGfvjyHDUs2oaac908URTw+N6f9dM819pqmyQt/eZWX/vY68UiCkVNGsHbBOnR16yQ3nUgz5/X5LHhvMfsdP2WPnbugPJ/2+r5av4LyvN06zi2n3s76JRsxdTPzXj3xm6cZPHYQ046bvEfGuhdfHYIgYJom69atI5lMMnXq1IyP8EDSNbfF9gE920pRVtWs48K7fpGR1z0+43meufH+zD6yLLNs0yoS6aRjxWbbZAeymbNqIVcd/0MG55ezSk2hGzqiIGDbTo1PlmVkSUbTdcrzS6gsKOHW83/BD++8hmgihixKnLz/UYysGIIkSsRTCac62F3GNi0zQ9aW1axmzKCRYAvIUZGZzGZeeCkpIU24PcpTH77M/LVLcCtuEvEETaE20qQR2ZrWCI6c8MAxU+ja0EXMkyBkRJndupg3n52FIeqIlkBMc+4Rpm1Sb7UyzF9NZzKEgYmE5BBvHJ2+2+UmpaYwTIOQ4nCWlFslJUEg5SXhTyPYONVlwJK3MzoQBERbIp6VIu5PQV6EpDftOHhYYiZ+Ppj2saGwgRalE7ehkFZUlnjWkK0H+MGxZ1C/upGldSEkRcIbc1O5stBpFvWJaDkGYVcMd1zBVmxM06Qj1oW2XmPT5i3kCM7EwSXIuDSF7Jws7nnjDzxyy5N8MXslXZEIkUAcX5cb22UiSTKSW4KE5TSmdn9klmgTjPlQLBk1X2d9XiOItuOp0X1b9Lk9JNVUjyVJ5nFJlJAksXvi5TipbG+YYFgmy2vWMLi4Co/LQ1ukg3A8giRKpLU0KxvXdX9uFpIo0hUNO0QYaOpsRZIk1jRs5Mf3XMcTv7iboaWDeG3ue3y8fB6hWISmrhbSmoZuGpiWSXtE491FH+N2uXHJCrppkBPMxuP24JJkmsNthBNRDNOgI9TFva8+RktHa7dmXaQj0oXP5UG3DBRZIZqMU9/eRJY/yGUn/SDzuhRZ4ZZzrub1eTNp6mplVMXQfnvuTNMccO/GQFxTpk6dyoYNG9iyZQvl5eU899xzPPNMb6c3QRBKgFbbtm1BEKbh9Fl2AmFguCAIg4FG4Gzg3AENjv/RZs3yglKWPPge5x5xCmX5xUwYPJqHf/YnfnfBtV/7uXdkBSiJovOF/A/htqf/1qdTP6mmuOP5vxNLxnn8veeZcvnxjL7oMG598i5iyXifYyzbuIoH3vgXr8x+B3U7zf2lJ/8Ar6uvvjLg9XHQ2L4hQNvjgTf+RWu4s5ePeTKd4vfP3EsoFh7gqwTDNFi6cSUbGjZjWRYfLJnNw289xYK1S3eopW5v6OD6E37DMe5TOcZ9KjeceCvtjR10tYR49FdPoiadiF9wSOaCdxezcOaSAY/p60bVyArOuOYU/vbJn/jR7edTUl1EIDfAIacfyEOL/kZeSe4eO9e9Vz3Mv373LF0tIbSUxorZK3uR8B6kE2k+fPaTfo7w5XHR776P29e7Wdrtc3Ph7wYeptVS08qGJZsw9d43uXRC5cFrH+WsQRdyhHQy5wz+ER8913eFZy/+c0gkEixYsACv18ukSZN6hXnsri94T/V20aJFmKbJlClTMnrw+9/8F4ZpUJRbQH52Hi2hdqevyND40/N/54jrzuTuVx6hNdROLBknnk5S29qApqq0NrfwyLV/4ZDx++NW3CiygiRJ5GflIYsSkiDiVhS8bi9jBo3kj8/dj0tWGFI6iFxfNn956WGWbVjFmNKhiIKIJEmI3avegiB2EzSJtK7x4qy36DJCZDd6mdO2mAQpDMHqlgbYNHe2srZ2AyndCfWRkBw9t+jBJSiUyUVUFpYSTyQIW1HCVhSv7qYt3UlCT5BQU8T0ZK8FdgubLe315AvZAJg40egSEla3NlkWZSfcpjuq0bQtLMEi6ks4+mVbwJSsjLPJtjBkk678KKIg4tXduFBAtCmM5FBRW0hZUwH5Yg4jxw6j0xtBMZ0kUdFwJhgxX5KZT33E4k+W0VLTSiKcQEtpGKqBZVpk+QPYlk1zcYfT5KkLyIZE0qeiizpEwRf3oGgSiipC3CZ3ox/JLVE4vZh1+9Uzf+JqWsu6HMItiuQKWQweXIUodDe9did0GpJJ2q2hywamaRJUvU4TZfd9RxJEvG4vfo8Pj+ImJ5DtkFZBwCUruCQXkiCSG8hyPL37gWmafP+IU8kL5lDf3ozVvWIjCE74nm4aWJZFIp0iqaWcOV3GgtBGsEHVNH795J2c9+eruOuVR/h87RLWNWyiMxoinkogSzKWbWc8z1VN5fV5M9nUXIfX7XEmibZFPJ3I9D1oloFqaHyw9DPi0Ri1jXXIokQ8nSTLF3B66GyboC/ALedczWETervEBbx+zjviVH55+qWcvP/R/fbQ7Y40ZSBEXJZl7r//fo499lhGjx7NmWeeydixY3nooYd46KGHejY7HVjZrRG/FzjbdmAAVwIzgDXAC93a8QHhf7IiDlBdUsmT19/zHz/v2YdNZ139pl4m+eBIOsYPHvUfG8f8tcv6dQ2QRIkf3HF1r8bMO55/gBc+eYslD76Lx+XBNE3Ouv0y3l3wsdOEI8t4XW4+uetlRlU5+qsDxkzm9ouu58ZH/4hLdmHbNn6vj5l/emZAX553FnycWd7dFm7FxeINKzhq0nd2eYzX587gwjt/jmE6LgWmZaLISmZ5ecqICbz7h3/jdW/VA2uqzuX7/4KulpATxQwsnLGEKw64lgt/ex6SLAG9iWY6kebTl+cy7dhvV/VUkiTOuOYUzrjmlK/l+JGOCO8+9n6/xHt7CIKA4tqz7jfHXXAUpmny2M1PEWoNk1OczUW3/YDjL9y17KkHkY4osktGS/cNg6hdXZ+5abXUtPLnH92DIMDhZ3311Nq92H00NTUxevRosrOz+zy3uxXxrq4ukskko0aNoqCgoNdziVQSWVbQdJXVdRtRdY2XZr/NjIWzcLtc5GflEY5FMC0TyXaIsm3bFGYXMGXKFARB4I3fPsbP7/k1szcsIpZK0hHpxOfxEk8lKc0rYmhpFTecdTmHXnsGQY+P2taGbsmAzDuzZ/KLMy/h4nuvJ6WmkSXZcc6wLJJqGt3UUUSJYsORiTSPCpMMpx3Zie3YDgoImd9P07JIG2p3kqeNYTkV7Jz8HMJ6hFQ0TTKaIk0aW3DItWw7mm5HDtH7vTNtkxarE9EQkW0RS7QxJJPMlMECXTQRLRHBFjBEE0u0EW0BxZTQ5Z1/Trpk4jUEDMkASaCkJZ+qLcUIpmOHqLUaxKrjKLZEOqAhpqX/Y++s4+yozjf+PaNX9q5bsrtxFxIgBLdCsWJFCpQWb0tx2iI1akBbaCnFrVC0OBQNUlwTQgJxl91N1u3q6Pn9MXdvdrO7yQYCbX/l4QMkI2fOyJ15znue93mR+Hi2R4GIkW636GyOo2kaIqrgdgbfsWRFhlX5i/Ftn5SZYc3IjURTgRWjE3GpXFKCp7poXvb7pASziHbC5oeXXcYHyU9p7WpHCp94NEk6ahFJmNiajWe7jN99FIsXrcRL+3iah6t7NIxuo1CLkSJDKmRlpUECfImqarnZA0UoqIpCSayIlq42Mo6F4zmUxorYe8IurN64nrUt9Wzs2CS7C6yTJXfN+gd3XfQnbn/hAd5ZNIfmztY+0fNuW0JN1QJyLn083wuK/ngey+pWU1lYhu3YOJ6Ta9/Dx3J6B9kMXcf1PBrbmxhRMZShxeWsbazDyf7+QrqJFALLztCS6OCSE37I6/PfI9rZRDyZoKkj6F9FQSkCeOq9F9ltwo7bbMzQM0l6axisj/hhhx3GYYcd1mvZ2Wef3fOYNwE3DdCfF4AXBtWhzfA/S8T/XTjvqNN56PWnWbVhHclMCl3T0VWN+y/765fqnDK2agSrN67rs9x2bWbNeb1XJDpjW6xvqufh15/htIO/xV0v/oMXZ7++KYJvBzr3b/76LJbc/UZuv4uOOYtTv34cby+YTUE0xl5TZg76x1ZdOqRfaYvruVQUlQ6w1yYsXb+Sb199Xp9Zhp5OBR8uncfvHvwrV5+xybT/nafeI9mZypFwAN/zSXQkWbNwXb/yE0VVCEW37K7w/xHrl9VjhPRBEXEjbHDIadtf3/+NMw/mG2cejOu4aPq2/35GThmOHMDGbvNnz0pZ3Pmze9nzqN3QTf0/Qor0v4Rx48YNSLYH4wsOwT1dtWoVbW1tRCKRPiQc4IjdDuDjBxawtKke23UQCGzHpiGTorywDEM3MM0QmqJRGivCVA0M02BMzcjcM/HpmiW8uWQ2NZVVGLpOQ3szuqpzyfE/5LG3niVtZ3jqnVnkhcMsq1udrZMjsV2b+997hjdWzGFYWRUb25soiRVR27yBZCaF6wdJoKZiElHDxPQYSxOryFMiJGQKJ0vAuiPPmqbjSx9NVcn4NgoKLkH1xg6nk5Bq0tjWTDyUxPZcfHw0XwXVR/EFniLZPOWsW2euomBrbqCNloFmNxqKEHJN2rz2QDsuA79vX/UpSRbQFU6B9DaR+80nJSVIIUmEUwipoHsqY9dV4SkeQs1a8iUMOj5tZ7RRhaXbaK6Kowdl5eN+F3HZhee45BXnkepKgAK26lIfayYZzuBHfYQUOFGX9kgcw9OZWDsC0zRIpJ2eJxpcu8IQ9esbMSqC37wvIIPD4olrKW8oZMe8Er521D50JNrZ+RszeHHR68yrW0xcTzCmdCR1yQaEE9gt6uiUJgvwMh7JwgwJr3uGXFDbspGCSIyJQ0fTkuwgnk6w28Sd2XP6TBzhs9uUnbn7pYfpTCdyF6s7Effax2/lxCmH8/Hj8yn3Cmkp68AxNv1Wuom+oes5og1ZKVD2O9uW6MTx3Vz+QM55pcd7UFO6rSqDSuC7TtiJsBFi8vDx/PK+P7GifjWun80dkBJdVbnn5UepKqmkvLAU3/XZ0NnE1BETKM0rwrIs5iyezwcfz2bciDEUFhZuU9L1YDFYIv7vwv+kNOXfiWg4wuwbn+O2C3/PyQd8k58c9wMW3Pkqh8782mdq7+l3ZzHutL3RDh7GsG/P5J6XHhnUfr84+cJcokQ3wmaImRN27Ne3O5lJ8erHbwNwxwsP9iG4UkrWNdWxasPaXsuLYoUcucdB7Dtt920a8V50zJl9pC2qojJm6Eimjtx6suFtz92P7Q5c8haCAcY9s3pfr9rlG0gn+0qEMskMoWioXzmLbursuP9U3n9uNhvXNAx4vHQizZtPvMvrj75NoqOv1Oe/DUNHVeaq3vWEUASKqhDOC2GEDYyQznEXHcXUvSZ/YX35LCQcwAgZnHPd93pJXHRz4A/BxtWNHBo9lhOGnf6VVOU/CIOJiFuWxUcffYSUcouuKMftfTjTR08ONKhCYGSLkPjSJ5N975UVFCOEwHVd8qJRTMPIuZQANLW3IER3qXSowzlA/AABAABJREFUKCylKxXnglt+yTMfvMKrH7/NZXdfzaoN64LS5m43cdHZ2NbIkvUr6UonGFpczpG7H0R+JC8nYdA1DVVVSbhpHN8OpCDolEdLep2HoigorkCztSByLxTyo3lMHTGeHcdMpjRWjGVZJPxkUEwmG/12VQ9buJuKwPQcb/b4syc9NE9B9wPfb83XSKUyFIRiIAUhz0BDRUFBdzViBTEUL3BoEd2v0c1fp1mNtWnrKDLoS8g3iXoRIjJMOGOiexr4YGZ0YvEIobRBXjxEXkcYRQhqxlcRKYjQ1RbHqDDQwhqO4eBqHtF4iOraMkatGsr0NWPZdfUkpi0aQzQdypVIl9l/ggcLUm6KTrcLnE3LFV+hpCkfIQWfmMu559XHWP9pHSs+XcWqzHrEEIWkkmF9YkN2BkKgeSpjP62i6pMShq+oYPycGsJxE1VRCZvB+6czGSdqBhIWz/f4cNl8fvH3a5m78lNmL/+EKSMnYOpBIUFFqJiaQU3REJoWNnL3eQ9QvqqAYWvKmTp/FLq96XvrSx/Xc8nYNmEzjCoUNEXB1A2mjpgYSE7cIO9JyuAsVUUlpBuEdZNwNpnS9QPbTUPTmTRsLD/65ve48OgzOXDHvThmj0MYWVGDrukoCEK6ybRRQTGcdxbNobpsCBUFpehaMDCNRqMUFBaSF4tRWVFJPB7n008/Ze7cuaxevZr29vZBVb8dDP7Tifh2CcFurbSnEOJk4LLsXxPAD6WUn2TXrQXigAe4Usrtl831HwrTMPnOgcfynR4v7s+C5z54lW///rxcUlFt8wbOu/EX2I6zVReXvabM5MGf3sj5N/2Spo4WVEXljINP4LCZB3DiVef02d7QdIZXBLaOttM/wVWEgu1sPTo6GOw6cSduueBqzr/5lwjAcV2mjBzPP39z96D2r23egDuIqerNC2qMmjqccF6YdLw3GQ9FQ4zbeQxXPXMFPz/yd0HFOB9cx6W8ppTfnXgNmqHh2C67HTaDXzx0SS8pxvvPz+G3J/wh9/F3XY9L7jyfA0/+7IWfbMvh7l/cx7N3zCKTtJi8xwQuvOmHjN5h5Gduc1tQMqSYPY/alfefnZ1LcoSA3P751SupW7GBdCLDzEN2Zuioyi+lT58Fh3/vYIZNqOLR656mua6FXQ+dwfN3vkRbQ3u/2/u+pLmuhWvO/CvhWJjdv7H1nIev8MVia0S8tbWVpUuXMn78+H6j4D0hhKA4r4DSwmI6El2oioLv+wHh1XQa25uwLIvJNePYb8fd0VSNo/c8mJ3GTM21MbyiGpBYjo2mhWnpbMeyLdriHcQiebR3dWBlAwWCoIiPqqi5ZLqUlWZdYx26qlLbtIGElcLQdFzPxfU8LNmFp3skupLsoI9jibmGhuQm2YJA4PqBx7eKguU46FpQrKWhrYVSv5D6VCMJP4kvJYoQ+GqWfHb/T2wWDd9sAkiqEt8Ponk6Go5w8WyXUH7gwqI5GqYvSEbT6J5OXCZQpUrEUbEUG0fvHRk3LR0hBRnTRnc1ir2CoAhPjYm30kHTVPzuZNNsAmu31Z2QAUlOiwztVidDRlWwatFaNE0jOjbKMlFLpCPEkLXFaK4anJaQOMJl7K4j0VSdFQtWgxqct/AClxsXj8aSdurMJtQ2QcQO4eIwenkVkVQ2UFQHy0avJhFLERNRGpOt1AwZgmd4tLodhHWTKlFOpjFNuMvA0oNvTihtMPmTEWwY1kpjVTsoAQFe37KBlmQ7AkFzZwtSQnuikzUbaykrKOHImQfyyifvoKAwbfQk8sN5rHm8A9sTuLoPSHRbo6yxkA01rUGNExHkB6iKQlVJJS2drSQySYYUlWWTQgOPcakoONlBYVGsgKHFlcSTcRRFkBfOY/mGNTiew64TduLPZ/0SQ9+Up3HukacC8OR7L7ChNYh6R0KRIKE5G70P6SaVRWVsaG2kob0Zx3U4dJf9GVUzIheBdxyHjo6OnDOSaZoUFxdTVFRENBr9TDORqVSKWGzrJhH/LogtFf8YVANBac/l9CjtCZzUs7SnEGIPYImUsl0IcSjwaynlrtl1a4EZUsq+9gcDYMaMGfKjjz76XP3+/4Cp3zuAhWuX9VleVlBC42PzB/XASinpSHQSDUWCyI/nMeqU3alraeg1Go2YYRbd9RojKmv448M385v7/9JH515VWsn6B2dvUxW6rcGyLRasWUpxfiGjhgwf9H53vvAQF9/6K5KZgRNgdVXju18/lr/9+M+5Za7jcvrkc2hY24ibTeBTdZVILMy4ncYyaffxHHLaAaycvwYrbTHnpY9587F3ekWGjbDB8RcfxVlXBS+mztYuThh2eh/PayNscO/iW6kcUTHo8+qJK469ig9fnIvdgwRHYmH+tuBmKoeXf6Y2txW25XD7pXfz/J0v4VguNROquPjWc5m2z5Qv5fhfFGbd+yrXn3PrFj3ZAcbsOIo7P75hm9oWQsz9Xwg4bIbP96EhSM4aSH5SV1eH53kMH977HdFTirLDDjv0KtDz3nvvsfvuu/f7nrz9hQf55T3XEE8HCYaKEOw4cjKXH3cO1z5+G2tbN1BaUMSPj/0+Jx/Qv83ljY/cySMfvICqqlQUltGVjPPxqoWYukFLV1tudk1TNdxszYXuaf/AQCMgThDIA3p+qwVQEImhawYhzSBshFnTvD5wIxGBvZ2UElMa+NLHdHUc4WHoOpZv46keETWM5dnY0skR21zjPf7c76ruBT6E0waGr5MO2+SFI0ydMJHY+wZunc3a4o00mK1UthYjEHTmp0jEUphCp1nvCNr3YezSaorbY0ggGc2QCmWoaC0OouMFOrpqINrIadadjEO2HlEPt/YASoFKXixKOC+EPxRG7DycFco6Gm+sR09ruWi80i0IEGCWmFjChg6JzPbJUmzSEZumHTqJaVGiHxsYloaaJempaFA9VHVVUGDlrhuI6CFMz6CyuhxVU1hbW0e5WoyRb9L2aSvFK2PYhkMoraPbOgiJZTokYmmWTlmHbphoqorjOfhS5p4LgLBuBjIRISiM5hFPB4MziWTEW+WYjoGnekgJuq2yobqF2hHNGJqBqijoqoblBdHsZDoYgEVDEfaevAtzVyzAdh1ChknayuB4LmcefCKKovDE289TUVjO7pN34t1FH7G2KRgQ7DFhZ/5w5k+JhiK9nvu6lo0cfsXprGuqy1l3VhSWsdvEHWlobGR501o0RWNkZQ1nHnwSx+516BY5Qzqdpr29nba2NpLJJLFYjKKiItavX8+uuw6uZs5ee+3F/PmD40RbwBemRdwejGmrpT2llO9JKbvDSx8QeCx+hW3Acx+8yuQz98c4dCRjTtmTf7z2NCs3k4F0oy3e0aey5UAQQlAUK8yNbFVV5Y0/Pc60kRMJGyHyQhEqi8r452/vZkRlYJN5/tFnMGn4uJyvZ8gwiYYi/ONnN29XEg7B7MGM8dO2iYQDfOeAbzKsvIqQ0dtVQ1OC6bpoKMKQknJ+f8ZPAVjXWMdZf/4J487Ym9X7NTDu6+MI54UCyYKUpOJp5r46j4eveYIf7HwRI6cM58Bv78ebj73bR55hp22evX1W7u//euiNfj29fc//zPKGhrWNfPhCbxIOYGccHr/+6c/U5meBYeqc/9cf8ELicV5MPs7fF906IAlva2znuTtn8cxtL9BcP+hxdy/4vk/Duia62uKfp9tbxSGnHsjFt55D+bCyLW63cXX/XuZf4cvFQAV6ekpRNq+SOVAU3fd9Hn/zObrSiU0ETwgmVI7mxQ9eozHRSmVxGYoQ/PqBv3DeTT/n+ifvYmNbE7Zjs66pnrZ4B1+ftjf/uORGHvn5rfzjpzexx5QZGJoevJuzzRqaTl4oEpQTVzXCZijwVBbdX32BqZt9JHGqouL6Po5rk7BS+MlAl2v7Tk6fi4SahnIKu2JEM2EKMlE8z8VRHKQvAy0v7iZ60beOCtCDeEuIqdFem6iugqN7pIwMkaTJneddw9++dw27jNqB9BSPxrw2xi2upqg+j+L6GCOWVxBLhDFtI3cNKjcWU9yWj6v4eIpPfleEIRtLUB2BnlHxGyUdbhztnChDDxray+avP2bkdXokWpNonoq7xuHT+xagzPbJUyNZoYyyiYQTkHurzYK4xMMPrAc1kApkQjYJJYWxUMFM6zkXHM1V0ezg/wJQPYEhdTzXx1FczKiJMBTUmMZOe01j7IRRgXe4kCieQHeC2VJX93F0l2gyRCwVpSgvn8JIXnB/NyuI50mJ53v4vk++mc/0xnGMfbeKkbMrSBRmUHyB6quongIKFNcUM235GHb8eAw7N04gqoQxhEYilcjOgihYtsXrn7xPPJ0knk7S0tWOJ33KC0tY37yB9c31RIwQRbF8lteupq5lI6pQaO1q59G3n+Pgn3+H2ubedtmvzX+XjW2NSOnn8rw6Ep1sbG1iUf1KygtKOWjnfSgtKOGdRbP7uYO9EQ6HGTp0KFOmTGHmzJnU1NSQyWTIZDLMmTOHFStW0NLSMqgckf9UbA9pyraW9jwTeLHH3yXwshBCArdLKe/obychxPeB7wMMGzbsc3X4vw3Pf/gvvnXl2TlyvWrjOs667hKKY4VsaO1LBIpiBYGt0GfEyCHD+Pi2l1jbUEvKSjOhZkwvgh0Jhfngxmd45r2Xef2T9xlWNpTvfv1YKou/nCjsYBA2w3x443Pc+PQ9PPrms+RH8jjt4G/RkehiWe1Kdp24EyfudxSRUJjapg3sePbBOV/5NdQy31zC1fdexpLfL2LZRyty7TqWg2u73HzxnVz1z18OmKiYSQb3ynVcHrz6MTy37wffc1zSiW23rPQ8j0XvL0EzVDY3lnEdlxUfr879fcE7i7j3t/+gdlk943Yazam//jZjpm3/Cq6KomCEjAHXv3z/a/z5+zdl7bvg5ovv5AfXnMEx5x8x6GPMnjWXa878K4n2BL7nM/1r0/j5Az+moOSL8f4/+JQDOPiUA/A8j2+WnUy8va+uf/ikmn72/ApfNjYn1YORovT0Be+JuSsW8P6SuQA5IuH7Po99+AKVRWVEIxE0VSXlOtS3bOSelx9D1zT++Nit7Dx6KpZr4UufQ3fYl1MPOp6yojKklEwfNYkhRWWsbaxDItGUwJ4wkUmhahq6CCQTmqahODaKqgZ6282CG0IIEIJkJhXIZqSkQ3b1jVYLaIl2Mqa+ilVD65ERia24KDIouZ6RVq9Icu+D0EP6Eei6w0qYLi/ZKxruGX5ufUrJ8JvH/8Kt37+aVrr41F9GZW0xqqvi6i7go7sq45tGUDeqiagVIhnOEI2Hg35kWbWQoPlqIBHJRjDDTToffDyXYbEq8oSOoWv4Tm/9sBTdZyPxHEmiK0lxRRHxhjjtb7WRC6FvjqzMUNhB4r0UoKoCTMG6UQ1IXxJKGoE9YzI4V6QgkjJzbjCJkjQxI8qYvOE4rkN7fRe13kaK8gp449P3kVLSHosjR/rUrC1HSHA0FyvkgBAIX6Esv4Q2t4uIEcLUDTKO1WsA5vkumqohgcJ5YfQ6gSvBSGoUKXlsrGylpC0fz/DJ2zWf/A88sMCRHizxGJOspn5GK4mGFKoSyFVsz8H1PUzNyBWL8n2f8sIyTjnwWKQvsXZK8eG6T5n18Zt4nofju2hCyVUi/9Edv+Why27M5Za9PPctPN8jbIazEqmgGuiek3YBx2fSmMAdrrywhPqWBjpTcYry+joh9ftYCkEsFiMUCtHR0cEOO+xAZ2cnbW1trF27FkVRKCoqori4mFgsliukNVjMmjWLCy+8EM/zOOuss7j88st7rf+iZNbbg4gPurSnEGJ/AiLes/70nlLKDUKIcuAVIcRSKWWfMGGWoN8BgTTl83f7vweX33V1nwh3ykpj6Ea2IMCmdREzzG9O+fF2cXTojoD3B03VOGbvwzhm78MG3ObfjVgkj599+3x+9u3zt7jd1f+4gXg62cvyKWWl+eXfrmHGx+P7bC+lZN7rn6JqKuN2HtOLqEPwspi2b6AXffeZD0l2Jfs9rpTQXNe6Tef03J0vccfl95BJWv0OAjRdY+xOAdF+/7nZ/OaEP+bkFc21LXz08jyue/1qJs7se15fFNoa2vnz92/qYxF4+2X3MPOQnageW7XVNtYsWscVx17dSyoy71/z+ek3fs0tH1y33fvcE6qqcvrvvsMdl95DpsfxzbDB935/6hd67K+wCVt6p2malkt4XLVqFe3t7bkCPQNhoIj4J6sX5Qhqz4+4oem0xjtwfY9wcYi65g1IKTGyhXo64p3MWT6fr++8N47r8uj7z1NeXMqhexzA42+9wC3P3ktXIo7tORTHCgFIWxli4Si7T9qZttY2VjStQ1EUygpKSGVSNHW24vsyKAikaPgEPuGO6wQFjny/D5nujqTrioaM+FiFDjV2BStjtXj4SEXiZSPcW5xsF5skH74CCTZ7j3WPD7JtuarHxo4m1nTWkvCSOGknW9Y9SG7UHRXVVzHSGsd97QhueeM+IjakohlKWwoQvkDxA5Lb6/gyWGS2GYSKTFxho+oKwiXLrYM+Cily5y48Qbw9SbwlmNUQQqCGNNyE21trk4NEy9MRocCTfPRuI3mJd7HSAVF2NZdYMgoiqHopCEirVCSW6qBZGhUdReR9qmPoUaIpneIJMYbsPIT5qxejqzqNHS20VydoKu9g3LJqCtqjCE/BdDV8U5KWFr7vMXHoaN5Y8mHfWRBVw9AMbNtGWydIqRl84aMJDdNSyEuEWLJDLdOmTkTUK+D4uKqLlD6276GvgxEHVbO2sQ5N1YJBVlamr6kqnh8kJEspWVa7guriIUwaMZZPP/2UA3fbl2EV1dzx4oM0tregaTqWY1NeWEpzZyuNHS1Ulw4BID+SF8wy2FaQBIxEVRUqi8qQBM5nmqqRtjIYmk50M9OIwaDbQ1xVVYqLiykuDoq42bZNe3s7GzZsIB6Ps3btWtatWzcoJxbP8zj33HN55ZVXqK6uZpddduHII49k0qRJPTdbA+zbQ2Z9B70Dz/tvi8y6G9tDRzCo0p5CiB2Au4CjpJQ59iGl3JD9fxPwFIHU5Sv0wIr6Nf0u70rFufPiaxlRWYMAhhSXc93Zv+KHR5zy5Xbwvxyvz3+vzzQggFAVVK3/n0go67Jx8W3nEs4L5Vw7dFMnkh/mvOu/B8Cid5dgpQZ2b3n90bdZNnfloPr5ztPvc9NFdxBvSwwYiddNjeMuOhopJTecf1sv4iqlJJMKCtV8mXj7qff7JVGe4/HGo+8Mqo0n/vpMn3N2HY81C9axZuHa7dHNLeKb5x7Oxbedy9DRlRghnbE7jebq537F9H2nbn3nr/CFQ1VVbNveohSlv30cx+Hxt5/n/Jt/wW8f+AsN7c0MLa4gZIT6PLNDiysozMtHCEF7oitr8SqwXYdUJo1EkrRS+H5Q3GR1Qy3XPHkbh/zsu/zy3mtIppNIIYmYYTK2RSwcRc1K5XzfJ2KG2WvqTKaNmsQLV96HoqhUlVQSi0RRhILju5QXlFBZUEY0FMlGR/uJSYlN/DpiRvBNycbSVizh5CpTDiRD2Ry6GhAYIYICNP0hIMACoQps3+HFh/9FW2MHvu/TUtSJkGCmdRQ38BXPdGb4+Ja5DG+sIBI3iMfSJPLSaJ6KIhXSEQtf+OBvUqE4uouj2qxrqMUyHHzL2yRPESIXuQcBenABpO8Hhdd8EJqCm3GD66WBGgmuuyRYL4UkFbbxLB8v5fFiy1u0210YQqesq4hoPBxcsuy5BiQcXNPHCXsgJOanKpFIGDOso+gCf55Nsi4RuO9IQVVrKSM2DKHGKcfeAzqqkoSFieoqCBuq3yvGrNP5cOUnfW5OyDA5aPpelMQKiYYiQSTeFZhpHTMd6NbzO/LYYcEovrnjwQhN5M4/O0xBCFjfugFTN4LaGn7gXx6QaidnjamrGo7n8bdnH2T27Nm8Ov8dLrj1VyxZv5xRFcNwXQfLsYmFo1QUleJLSSy8yZFk5zFTURUVz/ewXRvHdZk4bCzf2udw9pu0Kx8t/5RXPn6b2cvmc+K+R/ZK+BwsBirmYxgGFRUVTJw4kV122YUZM2bg+z719fVMnz6ds846izfeeKPfNmfPns2YMWMYNWoUhmFw4okn8s9//rPXNl+UzHp7RMTnsJXSnkKIYcCTwHellMt7LI8CipQynv3zQcBvt0Of/l9hREU1y+pW91lenFfASV87mm8f8M1ckZqeSKST3DPrEV6a+ybDyqs476jTmDR83JfV7c8NKSXvLJzN+qZ6dh67Q65Y0PZGTdnQfq+v7Trs9a09eO+xD7Ct3smYh3//EADG7zyGuxfewpM3PMOqT9YwceY4vnn+EZQMCUbolSMrMCPmgEl/juXw+iNvM37nrZ/bvb/5x8DJgwKm7DGJC286m8rh5WRSGZr6Kf8OsHzuqq0ea3vCddx+pwellLhO3wFQojPJnZf/nVcfehPf89nzqF1pWNfYy9u9G6qm0lTbwsgpI76IrvfCQd/9Ggd997PZjH6FLxbxeJzm5mamT5++VVeUbqiqyh2zHuKB15/E0A1sx+HNBR9y98V/YsLQ0SzfsIaElQQpGVpcQcQM4Xgufz77CjqTXdz0z7/z8coFyB6RZd/3+Wj5p7TFO/ClxNQMVm9YR8bJ4PoenuchhILj2tQ2BfEqRVGYt3IhI0qq8OKS6aMnE08nCZshwkaIgmg+jueyoaWBioIymuKtFKh5bMg093teEtA1jXwtj4gZ5syjT+L6N+9BtnX0P1fdMxNz81XZ8ugCgS8lmqLids8cdu+nSKQIiu1ElTDPrv4XnvDxfUl7SZzGeIih9aUoUuArgSmi1WUzpLqMUJNJ7YgmEuUZNo5oRfgCRzjoaZ0xq6uCiLciaS3tIqVZhCzJ2tENTF48EtKAAnq5jtPl4js+fshH9VWkH2ixyb5evIybmwDwHR8XD1Wo+EIifPBUHyOho8c04hUpGiKtQSJmWmXM/CGo/mbyIASKD3pGRU+r2SC7T2tbOzU1QykuKiKZTuMk3KBQ09uSss7A7hBFkJniMmp0DemWFO15nUGVUU8weuVQPi5dAUJmBxcBkbZsi/eWfEzaTqOpGplCh4K6SC7x1FckVshGz2i88cy7WENciHloHZsGKfGxGVqT7Wiahi998sJRhhSV43ouy+tX556BtJNhZMUw1IjO7I2LuPutxymKFWAoOo7v8o2dv8ZHqxegqiqtXe1cePSZFEQ3OZJ8snYpNeVDae1qBykpihZwyoHHEdJN4pkksUge5YWlSCRPvvcie0/dlfzItlkLDqa8vRCCUaNGcfbZZ/Pmm2/y+uuvM2fOnAHdlerr66mp2RRTrq6u5sMPP9zSIT6TzLo/fG4iLqV0hRDdpT1V4G4p5SIhxNnZ9bcBVwAlwC1Zstitn6kAnsou04CHpJSz+jnMfyzeXvAhVz90I6sb1rPXlF34+bcv2ObEwq3hytMv5dRrLu7l3R0xw/zquz/Kke/NSXh7vIOdzzmMhvamnKzlzucf5IbzfvdfETFvaGvia5d8i9rmjQjA9Ty+sesB/OPnN2/3wkeXn3ge7y2e2+v6mrrBgTvvzaWXX8gvNnax6P2laJqKY7vMPGRnTvv1prFm5fByzvnzWf22feDJ+3H3L+5nIO8NAQw2v7Wptv8PrxEyeGjNXZRUFueW6aaOETJyWvWeKCrvX4/X32Bue2DPI3fljsv+3me5burs9c3epY193+fi/X7KusXrcbIJrm88+g6hqIluajhWb+JuWw5jdxy93fv8Ff7z0N+zKaVk5cqVtLa2UlBQMGgSDgERf+StZynMK8jpW5s7Wnjspae5/ZyreWPZh6yoX8M7iz7Clz7xTIqT9j6Sr03fkwtvuSJbTlwJSFRWT+1LSW3LRpAQNkwa2ptRVQXND95ZEonjbvKrFlmf8oxtsa5lA/tO240fHft9QoaB47m0tWwkZITwXY+asqHMmDCNx994Hi0TJBx69CUVqlCwPYdWrx1X8xgzcSR7Ns/g4befCa5jNqK7xWtNkBAaDUVwPIeMFbzBXJnVhGet6NJZu0WhCKrzKmlqbUE4oLsamq/geh4lzQUBAc7aI/oikNP4SHRDw9QNKp1iqtaU4bg2G8pb2VDVwvyCNHmJMLbh0pWfRPcUCpvyqNpYhqooKMUKfsInkQwqkmphjbRuoXSIQBLj9j0nL5sQKrKRcalKVEtBc1VwJa1qByuH12MrDp7vM7p+aK5kfX9XSXgyKJKkeqhCId2aIRFLYoQMSvOLSZZ4hBcbFCVjgV0jPqZiULDEwJioksxKjTQ0LCwUqWD6OgkliN73JOPtiU6iepioFyLcpmOHHYy0lpMGCRkM6upbGghVR1m8wxoK1uYRyhhoVRrrCxtx0y6xcB5VFRUkMym+vf9R/Gveuxh6iNUNa1GFEiT9ug4Z2+LGZ/9OKp0i7VpUFpcRDUcDFx5Vx7Jt4hmLO55/gKfencXhux7Aifscyexl82ntbCdkmIF3uWtj6gaWbTF3zULGDRudI9F1rQ0sq1vFLuOmbfF53BzbWt4+Go2iaRq77777gNv1Fywa6Hv4eWTW/WG7MJr+SntmCXj3n88C+jAVKeVqYNvuwH8QHn3zWU6/9kc5Ardqwzoef+t55tz8AuOqt19C3HH7HE7Gtvnp335PfWsDpfnF/OqUiznniIH1qX967DY2tDb0qpDp+h7n3PAz2jrb+fl3Ltxu/fsi8J0/XMCK+rW9JCMvzP4X1z95Fz85/uwt7LntOGCnvbjx3N/xo9t/i+d7OK7LYTP3595LryccCfHnV69i3ZJaapfXM3LyMKrGDB102/nFMf7yxu/5zQl/pH5FH8UWesgYdMn0sTuOZu6r8/ssD0VNCst6k2tVVfnmed/gyRuf6xVFD0VMvn358bm/2xmbO396L8/f9RKZlMXk3SZw4c0/ZMz07ff8Vo6o4PTfnMw9v34Qz/GQvo8eMvjmeYczZtooVn6ymjmzPiYcC1NUXkD9yg05Eg7guR6e66ObBr4nc4mvoajJoad/neLKou3W16/w3wPLsvj0008pLCxkp512Yv78+du0f2c6TkN7E7INCvJilOQVkslkqKmpYcqESUyZEGhDbcemvrURJ20hbY/X5r/LgrVLGVpSQV3rRlo62oIKh1mS2j2g9XwfK6vlDhkmeaEojZ0tCASaqub8uw1NZ2LNGIYXDeHm867Ckz7n3fJLpJTYrksi00Z5YSm7jJ/Gmws+IG2lkdAvCQfwsv1ACDqSXfzw1l9wzfE/4eX5b9MW7wikHN2R1J7kIxsy1lUdIcDxXBKZJKZvoHgKigRb9ejmJhnXJmwGjllWl03X+i4wJEYPRxTHcFkyZR3jl9UQyhh4io8UksbyJgoSUaKNEaqbShCWAE+iYTIqPoTS5gIW7LCa1rKuIDrsC6rXlTNsfQVSyCDp25K4MR9FA9Eh8ZIuhlTxI4Dd65Syf5b4SpAUKgXggeJ3S03AV33aCuMIV6B4Cp7mo/hBVdDNI+IAUvgIBJ70UXQFUSSgBTqaOymtKuXcv5zFHQsfZmrneJpEI6qqBk4imoLt2MzNW0axHQEkruqheAppI4MIKahOMMjqOWBSbYWC+gjRVBg8cA0PNaSgWipCSgxXRxMq0WUm6SUJosNCNI/qwHHdwCPcB0PV0FSVlq42omaYe195gsaO5uCZRZDIJPF8n8aOZl7/5H2iZoR0JkNXOkHb+g40VWNdXgG7TdyZrlSceSsXsaaxjpgR4ZpHbuXGp+9hQ3tTLvETgnyr0UOGB1VWFQXP93JJlFL6ucCalJL5qxdT21xPeUEpu4ybNiDZ9n1/m4n41lBdXU1t7Sbfkbq6OoYO7fut7yGzPnQgmbUQoltm/eUR8f9F+L7P+Tf9slcU1fM9EukUP7/7jzx2xe3b9XjfOfAYvnPgMTiu02/ly83x1LuzepHwnvjFvddy6K5fY6exX56+dfbSeTzz/itEzBAn7X80I4cM7HzTkejk7QUf9tFtp6wMtz13/3Yn4gBnHHoi3/36sazasI7SgmJKC4p7rR8+sYbhEz+bQ8bYHUfzwPI7ePyv/+SOy/4efLQ9H0VVOOGSYxg9bSTpRJpQtK8utSe+94fTWLjPZX2I9ff/cFq/L6UzrzyFVDzDi3e/gqqp+L7PiZcem5PVAPz2xD8y5+V5ORvEhe8t4YK9L+XuhbdsVy/yEy89ll2/MYPXH3kb3/XY57g9GbvjaP7yw5t56b7XcG0XTVdx+3GXgcCF5ojvH4JQBO89N5tYYR7HXngkh5150Hbr41f470G3K8qECRMoKSnB9/2tVtbsiVQmzU8fuBYQJDIJ4qkELe1tTBoxjgNn9B4YG7rByMoa2traaGxspDPZFRA8IRhSVEZ7V8cmuUY3ZPA9iKghMo7N0JIKYpE8OlNxoqEwGdvGciy8bK2GSDjMIdP2ZU1DLT+647fMXfEpngw0vsPKhlJdNpT5qxcHs4PSw2PLFQcDP/LAkLyxvZnk6gz3nPYnrnrlJj5duQRcKG0toLa4sedOuc57fjZJ0gff9qkRFazTG3o5s0h8HNdFkSokA6s/EDiGi5HRSEUsHMNDdz2WTlhPUUce4ZRJOmTTVtJFaK1OxA3hqh66FyQPCk0gPUksHqa6rox1I4P+KUB5c1Hu3BRFwfd8tJSC7wY2gFL1kT4oGYGnBjMDwoeewX8BuJpLKGMGCaaGj6s46I6G8ARVtSVUbCyksyjJ8kl1tA2NU9ZSgHS6o9PkItXdfuMKAmkIHN8johmomoqmqXQ0dBDRw6TKUkhFojjgCnAyNumoTXukE3cnh+J5UVRXRXMCAj7uzSqapnWwNrQx12/NUZny6UgMK4iA61bgh24ZDoYXDFT8fIGMS7yMiy5VRiyvRDGbSFU4pFIp8vIiOK6D4zrEM0la4x0Ymk5htICWrjY830MQJCULBOub6tBUFdfblBDs+w6NHS00tDeTsS0MXUcCad8haafxs25AjusgPZ+CcIxoOMKQ4nKklBy+8wG8vOgdTN3Ecm3GDR3JpGFjAXjy3Rd57O3nURUF13PZa8pMzjvitP7zi7YhIp5IJAZVVXOXXXZhxYoVrFmzhqqqKh5++GEeeuihXtt8UTLrr4j4Z8TGtkbi6b52Zr70eWvBFnVFnwuDIeEABZEtW7pdce+feO7Ke7dHl7YIKSU//OtPuf/VJ0jbGTRV48oHb+CWC67mtIO/1e8+GdtCDJAYlNpCgZ7PC13TvzAdOsBxFx7FvsftyZuPv4tru+x2+C68/cR7HFl0IpmURUFZPmdfcwZf/87+/e4/fucx/PXNP3DXz+5j+cerqBhWxim/Oom9jtqt3+1VTeWim3/I9/9wKi0b2qgYVoYZ3uSrvmF1A3NemtfHzcSxXJ64/p+c+5fvbb+TB0ZOHs7I326Sbc15+WNevv/13MCiP4vHboSiIcbvMpZvnHUwF9967nbt11f470G3FKWjo4MZM2ZgZkuDb6tN2SdrFtMab2dkWTWNHa2k7BQ+cOfF11CS3/8MS7fLytSRE1GEQspKU5gX1GBwewRkAgIcEPgrT/oxsaJ8nn7/ZdKZNB2JLlo6W/F9H1M38TyP6rKhCARXP30LLQ+0E08ncT0viB5Kn1Ub11PbvJFYOIqPpCRWRFN8y25LQRJiQJ986XP7Kw8y/I0qdh2xA7VePZ7h01DS2q8+3PO9nDOIj4+l2tQpTfgyiAAjZS7pM2yEKAjHSKoJTMekKJnHxvwWHMPFMVxMW0MVGqlohtqCZoSEsG2iuRrReJiMYaM7as7txPclQlWQ0icvGaagI0oobRBxQmh+YN2nEAQypC/xbR9X9WjL70LzNPI7I4hs9Fr6vWXvnuaTCmeIZEKQJfyqraCg5iLnQiqonqSwI8bOH4wjFcvgmRLVJps5KnLXRfWVnMxH9zToDKpLCyGoW17PjeffSfXUKtJ7Z+jYP4P5nkDvUMFTEBmofrOEph07+WTPBqa9PwYjraMg0RyV6o9KaZ3RSSKcBikpac7HyGh4mkTIYNBjOBqqI0lFLNZOaaBmZTlhTDzhYzgamqMyYn5lUDVVShIVGVZOrKfDjiOlRFXUrBNQGxEzTCKTRBBUeLUcK0iS7TG4VbKE2JeSD5d+TGVROZbjEA2FWLJ+BYlMik7RhWmYpG0Ly3VIWGl2LppM/ar1tJgmM0fuwNRxk1jRsI6y/CIO2HEvTN0gmUnx5LuzqCqpQFMDDfv7i+dy5G4HMby8r6vWthLxwUTENU3jpptu4uCDD8bzPM444wwmT57MbbcF4o6zzz4bviCZ9VdE/DOiIJrfq/JkT1QUDV6n+EXhgm+ewYd/mDfgx2ltQ92X0o83P32fB/71ZG7mwHEdHBx+eMNPOWL3r/f70asoKqOmfAgr69f2Wq5rOkfveUif7b8orFtSS/3KDYyYPHy7lWgvqyrluAuPAuDe3zzEw9c8kbPEa9vYzp9/cBOR/Ah7Htm/Ff/4GWO59uXfkUllaFjbROnQ4n6364lILMKw8ZE+y+uW16ObWh8i7jouK+Z/8Qmdr9z/er8adiEEQhG55ExFUQhFTb524uAkPF/h/yd83+ejjz6isLCQGTNmfK58BlUJZogyVobq8kqEotAW76CqpJK6lo28Pv9dpIT9p+9BTVkwPa1kS93vMGI8v/7OxfzlqbvI2BmO2/sbPP3uLOLpZK4Spic99p60C+OGjqKorJg3PvmA2UvnUxQroDAvn+V1q0lmUhi6wYr6NSxZv6KXfSrQK8quKIFriuu66OFozt+8W8vt+l4f7Xd35Fr4goViJeu9BuLL3qJYKyTtZdBQexf06b7O2W+G9LIyDgUc4WbblLnGo0YE0zDJ+BYhxWRYVyUIiNaZpLForOxAKJAJ24ELigxcRyzNAR9c3UN1lZx2HILqocIXmBGTMYXDGbKqLOd24nv+JpmJH+xj6y6e4lPYGWPJ5HWMWFVBflcUv0CipVSkLZFIMmUubTvE0VYI1A4V17CQ0ifcZWI6eo9LkC2KY4OmKsTUPLyES6gsRMrPINM+JIKqnN2SFoHAS3tggAgLUvF0IJ3xJW1r29h92o7EDtmHh994HMPW8RU/d85l8/JpmdxBKK7js2nkoFiCSJtJfGgqeF5dBcPWUazgmFKRpCJp5u2yEpmNWVUqxUQ8k7BjorjZwaCt4QuJZ7oUbogyNTWCZWNrSRcGuu3uGRlNVVFF4GtvOTZSBhbFSJl7DnvKmHwp2dDWSEEkRnNHG5bbrQVSSGaCPgsffOkRd1IohSb3v/ZPlqxfSUEkj2N3OYQJJSNIJ1KYmoHtOoDMuQgp2b7YA8zq+74/6OKBwWzA4JJBDzvsMA47rLclc5aAB6f3BcmsvyLinxHRUIR9d9iNf817J/cwB8vDXH7ivz9id+L+R3Hbc/f3G50XwL7T+o+ibm88/MYzveQ73dBUjVlzXu+3PLQQgnsvuZ6DL/82tudiOzbRUJjiWBG/OeXHX3if04k0Pz/qdyx+fymaESQI7n74LvzioUtyNoWfF57r8cifn+rlSw1gpSzuueKBAYm4lJL7f/cwD/3xcVRVwbFdDvj2vvzotnPRjcHNlnSjZnxVn+RHAM3QGLfTFzcz0I2BBomhaIgRk4exfO5KpJTsuP8O/PiO8wjnbbvf7PaA7/u88sDrPHPbi9hpmwO+vS9Hn/sNQpHPXjTrK2w7VFVl0qRJg4pubQm+7xPxNCryS9jQ2QyZYCr9uL2/QWNHC2de9xPiqQRCCO55+VHu+tG1jB4yvJfv+F5TZjK6agR5ZoSG2g0cs+OB/PiB31PXvBFfSiqLSlhSt4rv3vCjoACKotEWb6e5sxUhBBk7+N1n7ExQlCdLLLsJdk8oQiEWjpIfiZGy05TEinBdl9ZER+DLnCVK/SVgKp7AlAaKFHTIOK7i0e53IpTAvWMAmTn4DGxunNWn6I5CTdlQ9tlhVzLtGZ6a9SKedCmqKKBqbDXDGmt4u+sjXNHDajA7WHAVj878JGXNBfjKJo20kIF0xFd9vLUuwhREYxES6STCAs/0g8TKbJOGrQU2gqpLxcZi8pKRQIOfUHMWjZ7qoXUp1Cwog3EqnV0duErg5OQrfp9Ty/1XCqqHDGVd83rSHWmUAgVpi1z0nJ5X3QeZkTgZJ2dtqCCIdyR47+EPcB5w0X0FsgONvESIrvwUuqsSSfeo/iw3+aFHEpuWG7aO4ivdYfugOqetM2HhcDoLk2ysbqFjfIr8DyMoltLjNgWDNcPSQUKozWTi/OEsm1xLaHSYpo7WrKQ2yZDictriHTgEpDiYVNnyLFPGsXE8J3df/Z6SKSHI2DYL1i7jR3f+lsqCMmrKhiJ0hWcXvsGOk3agra2N1atXo6oqlbFS1jXWUVFcRmcyTnFeYc6bfHN4nodhDM72MJlMDpqI/7vwFRHvAd/3eXnum7w2710qisr4zoHHUFHUt8S1lJKTf38e7yyc04uE66rOz046n5P2P/pL7HX/EELw+p8eY/KZ+7O0rnd0MxqOcOm3fvil9ENT1H6z9IMiAgM/fntMnsGSu9/g9ucfZHndavbdYTdO+fpx5IU/30d4MLjh/NtZ+O4SHMvBymqnP3j+Ix646hFO+/XJ2+UYya4U7gBe4A1rBi6bPuvvr/KPPz7eSyf++sNvEckLc/4NP9imPgwZWcnMQ3dm9qy5OY04BGXrj73wyG1q67Pg69/Zn3ee/qBPVFxKyZ//dRVGKPh4qNrgpiC/KPzx9Ot564l3ySSDa167rI7XHn6LWz7483YbmH2FwSEvL2+bJCibI5PJsGDBAoqLi7n9gj9w76uPk5YOO4+dwvF7H85V/7iBtJWmrKCYzlSc5s5W/vbiw1x9xmU5Ir6sdhWX3HklXakEiUSCsw/7DmcdeTIH7Lkf6xrreej1p3jo9aeJhfJo6WylLd6R8+O2HafPu7DnN4Rsomf3OWqKiqKo5EdjFMcKOWDMXiyvW83axjqKo4WknQzpzcvrQi7KqAgF4QtcxcMVLkIogXOI7+N3V3PpB4ovcomNfSABHxIyzaoVa0inM7SlOvDKJRnLYa2zkWRrhrLCYkrWF6AlBamwRSKaZviaCgq7YqiOQmdhkjVjGogkTCoaioLkSJTA8aQzIJHSkVh2Blt3MIQGUXAdHzWuALKHTluhtCWQYwoEwg+i5kIRoAk8xcfqsmiwOonoGkZaR7dVhDfwrIqiKNSv3BBE323wWrzg/mQZfn8Dn5zTiR+Qcc/3cWVQlt5TJWr3JfcFoZSJa7h05aewDRfD0nro0KG8qYh4YZqW8k7CvoEMS3Cy54XAtHWK2vMo7MgjmgqRmeqwcWYbw98pR6pBRF5z1FxirkQihUS3VcYvqOETYxVqgUJ5QUlWC+4yc8JOeK7L+0s/xvH6/z71hOVY6KqOL/0+Mzq+72U93mF5/VrKYiUoikIsEiORTpH0MkwbGyREW5bF2YX53P+vJ1ixYQ1VpUM49WvHoQzwgH4W15T/ZGyPgj7/L2A7NgdeeiLH//YHXPvYbfzi79cw+pQ9eH3+u322fXH2azzz/it9Ir2qqnDOkadu85Sp67k8897L/Omx25g15/UBJS/bCkVRWHz3G/z21J9QUVhGLBzlqN0P4qObX2R4xXbxod8qvnPAMYQMs89yz/c5dJf+tdDdqC4byu9Ou4SrTr+U+pYGfnz7b3n6nVnMmvMGT7z9PC2dbdu9v57r8a9/vNmneIyVtvjnrS8MsNe2I68wSjjWf4R3xJSB7S8fvPqxvlH0tM3zd72EY2/9xbk5fnLn+UzdaxKaHkSQJu8xgRveuYaKYdsvUXMg7HLwTnztpH0wIyaKqqCbOpqucuDJ+9HR1BFUTvs3k/D1S2t547F3ciQcgutdt7yet596/9/Ys6+wOfqLJvdEa2src+fOZdSoUYwePZrCWAHf3utIrv3ezzlxv6Ny5eZ9Kfl4xUIWrl3G2sY6Hn7zGTqTcRRFwXJsfnbPH0mkkxhSZWh5JQ++/TRrGmrRNZ0xVSNY3bAeXdUCeZWUuT5FwxG29GnIkTApUYRCYSQfIRRChkFhXgHfmHkAJ+57JLGsNCU/kpdzatkcrudiKDpSQEa1sIWDLjUKQjEK8wsImQZCKDndb3+96WE30tt/PBsS9oRP2srQ9UkHrufSlYiTsjK4nsuGjiaSb8cZtWgIw1dXMmHxMKYsGElpayG6paJIQUFXFFt3iCZDeKrE03xs3cET3ibTPgm27SBdiW24eGkXrKBD3Q7ZviLxVB/VC2wIhRR0B2alDOwFJUHVyA67kyUT1+MYLlKRZKI2ltr/e9N3fZy4AwKcIo+0aeFoHq7m9U/ChSQdtvEUHz+r5ZaaxAsF2vrAR13migIZtoaSrSa6eIe1OLoXjHGEJBOxkEJSVVsalJ+v1FA0Ba1IR81TgaAtXw3IdXljIc2ZdtrzEvjjFXRNRSrBOpm7xQLhB/8arsaUBSMI2yajhw7H8z2SmTSrNqwhGo5QVhBIRrulIluCEPTLWbofm4JwDFPT2djWmHMT8nwvF1T7ZPViHn/3BZY2reHS75zHQ1fcyq9P/TEF4RiLFy9mzpw5rFixgtbW1tyM1BeRrPnvxFfhnCzunvUIHy6dlyPX3VOHJ1x5Dhsf+bjXTX/4jWdyOqie0DWdVz9+m+P2OXzQx21oa2LPi46muaOVjGMT0g2GlVfxzvVPUZjXv9/ztkAIwS+/cxG//M5Fn7utz4LdJu3Mj4/7Adc+diuQ1WZKn4d+dhP5PYoADIRH33yW0669GNdzcVyXO55/EFVRiYTCOK7D7069hJ98a/u5qARWeQM7d2wvKIrCWVedws0/uqtXdNuMmFssm97R1NHvctfxaNvYTsU2OJ20bmzjBzMuItmZxHU8zLDBusW1Xxr5FUJwyZ0XcOTZh/HEX//J6w+/jWZovHL/a7x0778YMXkYbQ3tRGJhjjn/CI784WGD1gX2h4XvLeHuX97P2kXrGTahmtN/+x2m7TNli/sseGdxv2Qlncgw99X57P+tvT9zf77CtmNLZLs7Yq1pvT9rUkpWr15Na2trr7L3qqr2IRAH77wv9//rSbqyifgSSUtnK6deexFNHS20d3aQsFJMHDqaouIiFKGQyKSob2lgZGXgqjSuehTvL/6YsCEJG2auz926Vr8fd5fq0iFYtkXGtomGw+RH8rAch1g0ys9OPJ/9p++JIgSX3nUVpfnFDC+vYl1jXVZb2xe+lAwpLKOjoZOMameT8zRmjp/O0IoKPlw6j41tTXQm4/Rb5UcjKCHfbfUHm7wAs9IUKQJyrHaCvdEi5OokYz6+4mNmdErrCvBUP4hqSoh1RbB1F93VSIctdFunvLEQxeuObstcAR9P8VGlgid8HMMlkZdm5bgNFLXmUdKaT3F7jLzyGFYyg227eCEfs0PvNfsqssdVHIGBjhV2yIQddFtDd1RSEQsEZPJsjE4NMUBcUiKxHYdM1MawNBSpBNKXzSCkgq96OIagYWQbQzeUIn0oKMgnrWQw2vTcsysBpUBBeILK+mIcw8UybRRPwQ7bSBHIioQMbB3XlTYQGqJT3JyPIsFVPXzdR1e03IyKQBA2woQOyuPYyEH848mnWGdvxFN8hq+pQHOzSakikPgonkK42eC9xXMBiS8l8UwSVdXIM6KBDr5HJdE+54sgPxojnooHNTbcQOaodHvrA2UFJcTCUYqiBXQmu2joaMZIGxy8076MqhzGG5++zx0vPJgtqGXz9qLZ/Po7PyIvL4+8vDyGDRuG53l0dHTQ3t7O6tWr0TQNz/OIRqODqn2RSqWorv5yAo+fFV8R8SzufeWxfrXMXck481YuZMb4TTp8Uzf6/SAIBu9q0o0f/vWnrG/akLPqc1yHFfVr+Mntv+OuH/9p20/kPxC/Pe0nnPL1Y3lh9muEzRDH7HXYgM4EPZHKpDnjTz/OFSTqhud7xFPBh/JX9/2Z3SftzJ5TdtkufTVCBqN3GMGKeb0rbQpFsNMB07fLMbpxxA8OJZIf4d7fPERzXSsjJg/jB9ecvkVyOGm38cx5eV6f5b7nccqEsznhkmM4/TcnD2pW5taf/I2Ops7cwMNK29gZhz997wZuevfLe/aGja/i7Sffw3XcXpU2V3wcSKpagdsuvYcV81ZzyV0XfKZjzP3XfH5+5O9yg572xg4uO+RX/PbJnzHzkJ0H3C8SC/eqqtoNTVcpqyr5TH35Cl8MVFXFdd1eRNy2bRYsWEBeXh4zZszoNZDr3h6CiN6dLz7EP974J+lMOvA31nRM3cBxHd745D12GTcdL+TQ2NVKfWcjJcUl2K6D7/sMLa3ItXvekacxe+l8VtSvwfU8RlRUB05QCEzNoD3ZiZdNRBYCdhg5iQ9ueIbX3n+T3z1+E+OGjcbUDaTvU9/awD477MaIimreXfRRUN1SVRkzZASu7bJs46r+aDQSSWOyFT2qEc1EsBWblGYxe9V8hnZWsK6pnprSoXielxt09ISPj1A2I2A9SHguWu5DLB6lur48SApUfRZMX43qK0ghESIg7MH2At0J7k0oZSIQlLQU4GpetiBSEC32FYmvuwjbYMH01XTFAjePYWsqKGspwFN80hEbvS2DmqeSXxzGy3hYZHqT8O7z8AQyJDExmPzpCFzDDapu6lk9tggqfmo9vMIDnXf2RKVEs1R0RSUTDawObdvFdIJvfY4HCImGRlNVOxXri4IIvaNh5Ol4qkdadQOCLQXhkImddlB0hfLGAhQ/IPaqLwilDSzDRZGCjZWteLZPQV6Y+h3acEOCmcOnU3vPGmQraJ6ClC5OucuE8jGUtRaSuS3JM/qLSNWnfWw80OAbLmOX1CAAW/cCGZArcPECP+/sdZNSsrahlhAGCgJXur385U1NJ+1Y6JrGyMoaQppJS1cbuqbR1NGG57nYnkvECOH5wUC0umwIlYVlHLXTgaiaysia4YyvHo0QgkfefJbywlLCZjA4XtdUx4K1S9l1/I69fqclJSWUlATvW8uyWLhwIU1NTaxfv568vDyKioooLi7ODbJ74r9BmvI/S8Q7Ep28u+gjCqIx9pg0Y0ACbbk2d734j15E/NSDjueh157uQ9x9KelIdHH4z09B13TOPPQkvrHrAQOSIt/3ee7DV3E3i5DYrsOjbz77/4aIA4ypGskF3zxzm/Z5d9GcrU6Npe0Mtz//wHYj4gAX3nIOP9r/Z7iOi+/56KaOGTE558+9++/7PoveX0q8Lc7kPSZSULJly8h4e4KnbnqW95+bQ8mQIo676CgOOGlfDjhp30H37fvXnM6Cd5dgpa2ccwAEzlp2xuaxPz/F0FGVHHLagVtt6/1nZ/eJ/kspWfLhcuyMjREaXDLM58XsWXO3Gum2UhavPvg6p/7qJMpreudtdLZ2Ub9yI0NGVlBUXtjv/rdsNvMAgdzopovu4L6lA3v+v/fc7Jx7S0/4UnLoGV/fYp+/wpeLnsmUAB0dHSxatIixY8dSXt53pqjn9v9442luefY+8qMxQoaB5diYmoGuaoFfsqaRTqXQVI1x1SOpb2mkqbMVX/qcf/RpjKrcVBchPxLjsV/cxoLVS1m6dCnHHHwEL897i+c++BfvLppDMpOmID9GSX4RmqpxxG7Bb3V4eTWH73IAby75kJBuknFsZozbgZEVNdl282hobeKNT97D9wMP7/xwPh2pzn6vR8ax8BQXJ6LheW5WbytZXrsaRVGpa9lIQTgvK8fp+4yrnoKneDlXDgj02CNXDqGsqRBfkbQXxinojOb05LqjMm5pNQunrcHT/MCaUCpodhD17tb8dktPbMNFdRU6C5Lonoqn+DRUthHKGAxfW0FhWx6FrXkMqS/GdIP3UXfxnXTMIjHKovCTCKrd+/2RI5YG+JqPyAhs3QkK89hB3lI42yfhCogqqK6KZwV6bgR4ug++QHUD+UgoaaDZKq4aPDNCEShZqYVUwcpzSOkWlXXFSBX0AoMhsTLS8TTaeJPM/K4gWJfSgkqlLhiOBlJDKoGsJa1YmLZOJmzTOLSdlrIu8u0IhXo+sZI81jdtoEm00nJAEu89Cz2h0haLk5hkMfyDMqz1SYSUQfsKTP9oLLYRJFMmYmlClgEKqI6CbTp0lSZ73I9NcHCDQQwiSA4VKjuPncrDP72ZJetXcO+rj+N4LgdM34s3PnkP13OZNfctpJQYmkZeOI+CaIzvfu0Ypo2axA4jJ9LV2kFeXh5lZZve347rEAltkmgqQtlqPQDTNDFNk1GjRhEOh0kmk7S1tbF06VIcx6GwsJDi4mIKCwtRVXXQyZqzZs3iwgsvxPM8zjrrLC6//PJe60VA5P4KHAakgNOklB9n1x2SXacCd0kp/7DVA/bA/yQRv/mff+cnd1yJoWlIKcmPxDjrsJN4ewD/7zteeJCDZ+zLN/c6FAgy5n907Pf50+O3IYRAEUHWvaYonHXdJbno9isfv82pXz+emy+4qt92g8pS/fdxIO3f/xJChtnvlFhPyOzgZ3uhdnk9vz7u9yiqQHiBnm7U1OFc9cwVlAzZZBVYv3IDPz7wF3S1xRFC4Noup1xxIif/tH9v9Hh7grOmn09HUwd2Joiwzn1lPj+49gyOPucbg+7fmGmjuHX2ddzzywd468n3+qzPpCwevuaJQRFxzej/5y+UwD7wy4LreFu5ywE0Q2fFvNU5Iu55Hjecfzuz7nkF3dSxMw77n7A3l9x1QZ8kyrWL1vfbZu2y+gGnNz3P483H+uaIAISjoT4Dgq/w70X3lLWUknXr1tHQ0MCOO+5IJNLXuhM22RECvPTRm4TNEKZuMLyihoVrl5FxMkhMIkYIUzOIxWLE4wkEPt+Y+TUuOf5sCqL5fYp/QTAzOn3MZJYtXcb3/3oZby34kLZ4B4WRfIrzC2mLdxAJhZkyYjzH7fONXH9O2OtwdpqwA8s3rKGqqJx9J+/Gq/Pe5tM1SyiM5LNy41psJ6jW6XgObCEtpKygGMdxaU8GRF0g6EjGEQTVNw1VI26liJph4plkn/1dtW8y57A1FVRuLMYXEs1TqGwIzl0KP0h+lIKC9jzCKYPFO6xl7JJqIukQmeKgr0YykHYECYQC1Qu06HbIYcX4OsKeidasoDkqmqsybG05ymaSEUF2kJD2CTXpqI7SY92mKL4nfKQiicQiWJkMiirQPQ0THVxBNBJBMQTxrgRmKBQYCOxo8JG1mLHLqlBsBUUBK+wECaSSnA5dauCpPr4lgj/rHkpSEBNhdEvD131SmRROvoswFD5OLKRSKUJxFXzdx7R0FBR8TaI4QeGhUNoIrB4ViaM7jJXDyLgrwYbW9a10unF0TeOgHffhFwuuhalB8m/aSlPaUIi2UUVmZzIEoLlZP3URJI6GMyYdNQmQgoLSGO1VXeiWjr2Zc5bMqrt9NiWm+tLn45UL+Mfr/+TcI09lz8lB4CuRTvLinNd4e9FsMtmk4bJYMbqq05Ho4pg9D6W6dAhCCNqbWvsEXA7ccS+efv9lSmJFpO00UTPM+JrRAz/UWXRrxIUQfWQsnZ2dtLW1sWLFCn7xi18Qi8Woq6vbouWh53mce+65vPLKK1RXV7PLLrtw5JFHMmnSpJ6bHQqMzf67K3ArsKsQQgVuBr4O1AFzhBDPSCkXb/VEsvifS9acvXQel955FRk7Q1cqQTydpL61gVueuW/A6KuUkh/f/rtey353+iUsvut1rjj5oqB8rISOZLxXNchkJsU9Lz3CknUr+m1XVVUO3GmvPsfVVI2j9/jy/LL/UxHMVGx5rBgNRTh+n8ET2S1BSsnPjvgtrRvayCStoBy7lKxbUseCdxb32u7SQ66gaX0z6XiaVFcKO2PzwJWP9FuCHuCJG57pRcIhIM23XXI36W3Uno+YNIwLb/5h4CrSDzqa+4+QbY5DTj+wTxuqrrL74TO32Qrx82DGQTviOVuviuh7HhXDNpHff/zxCV6691/YGYdkZwrHcnjzsXe56+f39dm3sKz/fIv8ktjAM1aeP2C/3EH09ytsf2xJcqWqKplMhvnz55NKpZg5c+aAJBwC4t4tTSmKFWI7wW8zFsmjqrSScVWj2HnEZC76xunsNXUmrfEOOlNdREIRLj3hHEYPHdGLhLuey6qN61jbWIeUkoffeIaLHriSp96dRVNHSyADySQozMunNL+IupYG3l30EUf+6gyefndWjiQU5xdSv6SeR657iqNOPZ2Trzyfqx66gYvv+E1g6xYrJD8Sw9AMdE0nGuqb9D11xIQcuemGzPp0+1KiKSqWa+O4DhnHQumvgFrPRVlZSmlLAVkOHUg3goApuq3lxOSKFOz84XjGLq1m6ZT1tJR34Hs+ZkrH0zw8tXvgLbP6cGgvjuP7PhoqEStETW15kOC4BYriqC56W/DtzUXAe6z3NR+vCBwluMeRSJiiIYWQARyJFbdINCSRPqTVDBndJvFJglGLh6CnVIQHnbEkzUM7s/rvgND6ShBFXz+jCTffQ2oSLaUEtoyajxQSxVUCZ5lEguaONtpDcVZMrydVZGFFHBw9eH+ojpK9tALVV4gmQ6iuQiQZQqzymfBRDeMWVjN2XjVFH0ZId6a56u83kEynCPkGSgpUoaFZKoqSdXPx5Sb3FoLb0p34qugq8Z0zaLuFKB9ahqH3P+vp9rAh7JauuJ7H428/R31LQ27dI28+S3NnGzuMmEBRXgERM4TrecTCUcZVjeTRt57j5GvO56zrL2HOyk975dpJKRmeqiK2LMSqd1cRjYf4+UkXUBLbumx1oGRNVVUpLi5mzJgx7Lbbbtx9991IKXniiSeYPn063/3ud/vNMZk9ezZjxoxh1KhRGIbBiSeeyD//+c/NNzsKuE8G+AAoFEIMIShlv1JKuVpKaQMPZ7cdNP7nIuK3PXd/v3ZPaStD2AyRSPeNDACsaVjf5+aPHDKMNY21JDPpPuXYuyGRvDrvbSYOH9vv+tsv+iO7nX8EiXSSRCZFXjhKaX4R1539q89wdv/5SGXSPPCvJ3l34RzG1YzirENP6tciEoKPbtgY2Ks5Goqw4+jJnLDf9rHaW7eklpb6lj4/1Ewyw9M3P8d+x+8FwIp5q2hr6Oi7Xcri6ZufY+cDp/dp+4Pn5vQi4d3QNJVVn6xhyh4Tt6mvheUFxIpitG7s7RwjFMG0fbecgNiN039zMktnr2D53BWBRlNRKB9Wyk/uOG+b+vJ5UVCSz4U3n80N592G63r9kl9NVxk2oYYx00fllj3x13/2Kzd55tYX+MEfT+9F2k7+6fHc+dN7eznOhCImJ1567ID90g2dsTuNZtlHvQfSQhH93uOv8O+F67osXbqUsWPHMmRI//7DPdEzIn7ekacxZ9l8mtpbAKgsLOOSQ85kxtQdGTJkCBnbYvay+cz7ZD4nH3F8nyh4VyrOBTdfwZLawPt+p7FTeWfh7BzRhyAKrfo+rZ3tNHe1Yqg6hXn5pKwUP7nzSp752Z3MX7OY21/4B41rmvB1Sa2zsc+sYEtXO5XFZchE0PeDdtqX1+a/S1cqjmmYjBoygpqyoSxYuxTHdftNtlOEgqIoVBaVUd/a0EcemcNm4x5H8zClnmtNCkk6YpOXDG+2m6CwLY+d3x8HCniKD35QgdI2XYQUqJ6CVCTrRjbSXpZA8QWdSoKxdVWBhGQr6CiKU9ZSBL1I+Kbz1B0Np9XFljZOvofV5WI32Ch+cFJuNhIsUiAyYEdstJSCiY6nyMDZpS1K1A6DDLy7VU8BKfA0j7L5BSgouMLFQMOwNSzVwTbdIOLtKSRTGRrHtZOKZhAIlk2upXJdETWJstx16jPrKwS+7iMtienquIaH6qiU1xcR7QqzfkQTQ5LFVNeVIQkKJq0aU48nPHw1mKnAzw68DBFUnfWDQVNeJEJ7V4LV/noqS8uJRfLoTHb16xeuoOSKDAlAV1UUX/D8Gy+x/7Q9MCIhXp33Nh3JTiqLyolFoogURMwwETNMSDeZs3w+1WVDsWybB99+momjxjG9sBCApXNWcN+9D9MQaSEUDiEWezR+3MiwQ/pW0twcgy3oM2zYMAzD4MYbb2TYsGGsXr2638F8fX09NTU1ub9XV1fz4Yd9FBJVQG2Pv9dll/W3vP9CIAPgf46It3a19zsiUhTBdw84lpufvbff/Urzi/odgT33wasDknAIotuF0YG1w8Mrqll133s89tZzLK1dyQ4jJ3LMXodi9mP599+Ols42ZpxzKC1d7SQzKUKGyR8fvoXXrn2klwa/G6/Pf4+uZLzftoYWV/D7My/npK8dvc0JsgPBSlkD/rjTiU2Dt1RXClXtf7uutv77W1RR2O9y1/UoKN2ytrw/KIrCRbf8kCtP/hN2OuuKoKmYEZOzrh7YdaUnQpEQ17/xe5bOWc6qT9ZQPXYo0/ad+rkqFn5WHHbGQUzbZwqvPvgGqUSasupSHrvuaTqaOvF9n50OmMbP7vtRr30S7f0PmjNJC9/3e/1ev3n+ESQ6kjx87RPZ37/guIuP4oSf9C0o1RM/vuM8Ltr3chzLwbFdjJCBGTE457o+xdW+wr8JUkrq6+tpaWlh5MiRgyLhEPyGur8FY6tG8ugvbuPtBbPp6uxkWF4Fe++2Z05bGjJM9pm6K1rc6zfR/JZn72PhumWUFwZVld9e8CGNHS2knUwvkmO7Dm2JDqSE0oJiFCHIC0Vpi3dS39rIw28/S8g3yFeitImuXsmHIivkDazmUiiKSkEkxtLalUwfPZmffft8Zo6bDsBP7/kDdS0baY93Yrs2SLK+0CIbOSVnIdczorw1rB29kcmfjggi2QJsw2XV2A1MWDwMxRXofm9KobsaruIhTXIEVfUVfNWnqaKd5ePrQEA4HUITCn4+6GLr73NX9XAMD8UTOQmF6OccFEdBKAI9oeEqLlm/kj45p/igJwOpqhQ+ii9Qs+J4rUvFF1k7QrKJpyKwH5QRiXQlvvARMvBAlwISQzJUHDGEZrudomgJYmlt9hgq4biJoqoIN8jt6UPGJWi+FrimIILZhizy4iEmLqgBAZYRBHbCKYOa9eUsG1vLmBVVIFQyYYfa0Y3UrC3HzBgoUqW1sosVhbUYSZ3ylYV0+e1kylOohSq+25fDaIqKnR2oqorKfjvsgfAFrZ908PAzT/O6nE2T0UZbuoPm9lZGVFTTGu9AZqAg6rCkbiUzxk5DEQph08SXknVN9UwfFwSKZr35GrNZRIHMCyp1Kk0Mf28Yuxyy01bvv5Ry0A5a3RpxIQSjR/cve+mPE/bzHRzIVX+g5YPG/xwR/+aeh/Kvee/2sR+0XYffnvYTEIJbn72vl0ZbUzUu+Gb/H95YOA8YuACLgK2WZY+Ewpx60PGDPof/Vvzy79ewoa0JJ2u5lbEtMliceu3FLLrrtT7br2+qH7CyV1NHC9c/9TeO3/fw7UbER08bidKPdZ8ZNtj/hE02deN3GYfbj8WhGTHZ97g9+237uIuPYv7rn/aKyKqayvCJNdSM23oEAIKXxfN3vcQDVz1KW0M7I6cM5+xrT+ejl+dTv3IDU/eaxEmXHceQkZWDag+Cl83EmeOZOHP8oPf5olA1Ziin/urbub8fe8GRtGxoJRwNkVfYN9lmwsxxLHy3rwxv5NThfQbNQghOueIkTrzsONob2ykqLxxUMurYHUfz98W38vTNz7F6wTom7jqOI88+bECpy1f4YrH5x9HzPBYtWoQQghEjRvSxLtwWDC2uYFrFWOwim4zh8+t/XI8iBCftdxQ7jgnIg4/k09VL0FSV8TWjc0XJltWuImKGEUIQTyVY11jXq0R9T7ieh6FqWI6Nqii4no+mqlSVVmLZFqFwGCmD7bpJWiAryUoYpMDUTDrdLrpSCVwvKAE/rKyKjGNx7WO38ez7r9DU0YJAwe5RmEVTFEoLS1CFQMogF0lVFRg4lpRDfmuUiUuGIaRCMi9NU0UHzeUd+IpP45A2htaV9ruf6qsIW+AYLq7hUz+uBbdKkvEtjKSG7gWFbDJhC0MxiQ9LUbg8ShCM7X2/feHjaj6+6tNa2UVxWz6xrjASiSKVvpF/GeT5IEFDDZxc+uljt3TDEx6aVPtd5wsfTw/+FbqCkdTQhIaDQybkYNo6TpFHvDjNcRcfiWapvPzsG3SmuyiQeQxfXI5haeiOhil0FF3JReU377MpDVRFRXqyzzl12zLqroarefiKJC8epm2HOEu1WkavHormKBS2xFi84zpCronjO9imh+ooTP5kBKqtgpCUNMQITzFZl9/QxytesxXUUBhXOEwfPZmUlUZrVNBRSJQ4NNS34FkekUiYZCrFp6uWYioG08dMoLKygg9XzmfesgW0OJXYlkPCSBFSN71zlyXWYEiVsBrMeqe9NOu9jf0+Q58HgylxX11dTW3tpqB2XV0dQ4cO3XyzOqCm527ABsAYYPmg8T+nET9p/6OYNHwc0VCgHRRCEDHDXHX6pRTnF3Hjeb9j+ujJvfbxfZ+7XnyoX9nK+UefQcTsq9FTFZXiWCEvXH0/sch/tpn8l4Wn3pmVI+E9sbJ+bb/FeXYZP23gghW+x7Laldw965Ht1j9N17j87xdjRkxUPXgZh6IhqscO5ageCZXhaIjzb/g+ZsTMJTWGIiZVo4dw2JkH9dv2zgdM53t/OBUzYhItiGBGTEbvMIKrn71i0P175M9PcfNFd9K4rgnHclg+dyW3XXIPJ156LPcsvIUf3XbeNpHw/3QIISirKu2XhEspOfjUr6EZWu4eKIpCKGJy4U0D+8obpk7FsPJtcoQpqy7le78/jd8/9ytO+eVJX5Hw/xAkEglmz55NcXExU6dORdf1rTouDIR0Os2cOXOIRCLYYfjRHb/hwyUf8/7iuZx38y+Yt3Ihnck4Vz19C9+7/lLOuO4nnHXdJbmAzoRhY0hZaVzXYdHa5YHeWek7KFBFkPSXcSwaO1pY21hPR7KTS44/m9KCYvaauAspkcYoMHAzDtpmtQUlEk96bGhrwPU94ukEsUgetuNw+/MPcO6NP+f5D1+lqaMVx3OxvU0Vc4UQIATJdJLOZJzWeDvrGuuImJGtzoIJD9KxDE0V7fiaTzQZwswEmm/NV3EmStbMaAysCvuB4imonkoqmqFreIoLTjmDmpqhREqjiCIFpVTFjJr4nkcrndh6UEjHFz626pAyM7iKR7cofdnEWuwCl7rhzdi6GzicDGSwJXP/QchNA5ue17Qbntr/96ZbyW2ZDr4e7J8oTgf3WWqYwiA53abrMAe5m8qGtY2s+ttKlDk+kXkaE2fXBNdL9bF0B9f2epFwsdk/YddA2dw+cjOonoLiK6i+ghVyCKcMJi4ehpHRED6UNuUzfFkF6YhFOmQjhU9JUwGqreLoLq7u4Quf0hX5feO3AqQLxS0xSkURiqLguR4r2tbwaOYlnmp8hWavDcu38dIelmsjEHi+x8crF9HQ0oTuKTS1tbAh3URSS5HXFab17dbgmkvJ8HHVaKZOOp6mqzWObdsUFhfg2IMYFW4DHMfBMLb8vt9ll11YsWIFa9aswbZtHn74YY48so/k9RngFBFgN6BTSrkRmAOMFUKMFEIYwInZbQeN/7mIuGmYvH3dEzz02tM89tZzFMcK+eERp+Ts71bWr2Hx+uW99vGlT2tXG/e/+gQ/POIUADqTXUgp+eER3+XjlQt46LWnMDQD13cZWlzBn37wCw6becB2i9Zm7AxPvP0Cn65ZyqRhY/nWvocT7mcA8J+M/ipsBpAY/VynKSMncPDO+/LinNexHLvP+pSV4dE3n+Xco0773H3zPI9EJskeR8zkrvk38NydL9FS18rMQ3dmv2/tjWH27t83zjyYMdNG8fQtz9PW0M5eR+3GQad8DTM8sKRo5wN35JRf2STbE+x1zB5M3GXcoPvnOi73/+7hvlU1UxZ3/fw+rn/999t2wv/F6Gzt4uL9f0rDmkYUVUH6PlrIYPfDd+GUX57IyCkj/t1d/ApfMDZu3MiaNWuYMmUK+fmBtEtVVWy773tia2hpaWHZsmVMmjSJoqIibrrzSlRFzUlQWjrbePyt5/F8n1VN6xlZWYOqaSxct4x7X3mMc444lXMOP4XFa5fz4aK5OJ5LyAzhSx/p+HjZYIIiFDwZWMKpiko0HCWZTuH5Hqsb1tOR7OKYXQ9BNw3ub3oCtVBDtwxcO40g0Ox6+Pibsab1TfUML69mY1sTy+pWBS5enhNUl9xMg+F6LqlMINsSBFFx13UoziukNd4+4DVSPRV8aCuOM7S+FMUXVDQU0TS2g/LCEtQ8nWajlU93Xs3k+SOyxWMkluHmXE7WD2ukuaKdotp8Hvj9o6wsqSWtBfdLOEHsu6ahgiHrivE1iYOL8AVtxV2UNxeBD54SOLlU15URT6dJhzK0DOtkyOqSnLzAEz6+4qF7+oC6gQC9aa6rejk5Sk90R+UVBOGMCUpAJEWxQegbMUKWZEHLcsLFIbo64pgtBsteXorRoqLZCgqBZ7p0ttSXzXomwPc3paD2nBnonYgp8RVJ7ehmCjvyEFLgacHz5ktJaWMBGdOipbyLVNRC9ZVuZU3QghCbnhM/SLyV2QRcR3dJiTQirTAsNpSMsJgvF9Ge6kJVVBzpYkk7p0fP06NIJI5jM3v1JygohJUwUpVMMcZSlV/KgvcWcuMTXby3fC4Zx0Kt1PA7JZ0NcUKaSebDJI9lnuKEy475Uqsqa5rGTTfdxMEHH4zneZxxxhlMnjyZ2267DYCzzz4b4AUC68KVBPaFpwNIKV0hxHnASwTDwbullIu26fjb71T+e2AaJqcfcgKnH3JCn3Vzln8SeMfSm/AkM2le/+Q9Dtp5H777hwv5aMWnAOw8dgr3XfpXfvXdi5m3ciHDyquYPnrydtXZNrQ1sev5h9MW7ySRTpIXjvLTv/2eD298jpryPtMn/7H4/jdO5sqHbuhVoEdTVfaZuuuAVTYf/eVt/OT2K7nx6bv7jQ4UbEF/Pxj4vs9VD93AtY/dRsa2KMor4I9n/Yyzrzljq/uOnzGWy+6+aKvbSSm54YLbeOFvryB9iaarPHXTc1z97BVM32+HQfWzo7kTz+k/UrB24bpBtfH/BX85+2Zql9b3Kv6jaj5lVSVfkfD/5/B9n8WLF2PbNjNnzuwlRem2LxwspJRYlsXq1auZMWMGphkMojevpOr6Hk9/8BLNHW1YtoXjuUwYNgZDN1i5IfjtebbLmbsfy5kHnsB5t1+BoRus3rgOIUQuCgtgajq25xI2wziujcTH9Tz+Ne9d1mxYzym7Hc2z779CWzpwPso4FiDQUVGFRloG704FkSPkrufiSY+v77Q3n65ZQl3zxt7K1SwZl4G2JfcWdTwHxw38ord6rUQg/Ri7vBrNDQiSYevULCljzdQGRhcO56T9juLulx7m/b0WM3X+SMJJs9tsheYhHThhl1FrhuKrkpZwO47nBXPyCrkYdcnGfCQS1VVQnUBWUtpUEFgeIlB9FSzQWzTy0hGEIDvzsKkypyIV0hELV/ExUjrCUXKGfJv02JuLXrKyH69/kYDQBLIC1MZALuJqLmq9IPN4F7qqU+0UUz+0hZrGUsJJE9UVOR/u7iMNmoQjsaysrt900W01W/BI5K6Tp3hkIg4NI1tpjyXQUTFTQWVRQ+p40sPIaCBgyIZShjSV0j41SdeQFH59cH2FEJjCYMOQliCB1Q/kLlJKXN1D9RXKO0rIlGQQHtR1bkTRVVJ2GuELRFau4/uBXrtAyyOmRVnhrMV3PcZVjoKNPr7u067FqbHKaS9OsmDemxSG8jGljvBBa1PZtXw6EwpGEVOjrFm4jvVL6xg5ZXj/12cgz+cBthVCDIqPHXbYYRx22GG9lmUJeHdbEjh3gOO8QEDUPxP+56QpW0NN2dB+J4MMTWd4eRV7XHg0Hy6dh+M6OK7Dh0vns+dFR1OaX8xRexzMjmOmbPdktwtv+RUbWhtz0phEOklTRytn//Xyrez5n4WfHH82X5u+JxEzTDQUIRaOMmrIcO677K8D7qNrOtef82tGVFb3ua4RM8y5Rw4uMXEg/O7Bv/KHR24mnkrguA5NHS2ce+PPefLtz/yb6oPZs+Yy655XsdM2juWQTmRIJzL84uircOwtGAH3QH5JPmKA5JSqsf89g7HPC8/1ePefH/Yi4QB2xmHWvf/6N/XqK3xZiMfjRCIRpk2b1kcP3rNS5tZg2zYff/wxADvuuGOOhAOcuN+R+L5PS2cbTZ2trKxfQ13zRizHwvEcOpJdbGhtxLIt0laGgy8/maN+dQarkxvZe8fduOr0S0mkA+225/uYusEOoyZx/N7fYMqICYSNEIoQQXl6GcgYq0sqWbRmGZf94xqWblyN9CWu5wZRdSQ2bo6EA72i4iHD5IqTL+bEfY9k8tDRJPupEA3kmKDiBcf2pQxIeMBSc2SvP3iaT148TDgdXCcJuJpHSXMBXsZjWd1qHnvrWYaVDEU1FBZOX0P98GbaSrtYN7qRleM3UNFQhB3yWFvTQOPQdlyjr0+5agWVJQ1LQ/VVFBQ0qbH5hopUCCV0zISO0gnCz5JUJTgRM62DIrBjLtGpeQg1a+MnQCoDk2JfCcLDPQk0gJcXRKFdxcOPSfxQYGUou8BpdzATBiNWVhKJh4Kqnb0ue39HC0LS3RLIbnQPEhCQDlu4mkcqapEJ27QXxMmEbDzNp6swxZLpa4mXpQn7BlPqRjG2q5qYFsW0dHRLyxF3w9bRUxp5q02MqM6Q/YdSWl6CE/aoHdFEw6gOTFcHBSzTwTE8dEunbGMBaqekkTbeWjk7SD520xiaTlgz8YWPg4tUfFzfozHdipW0yDdjjBk6gmnjJlFUXoiX8ejo6sJK2sSm5VNZUk5lRQVVQ4ZSWVyG7ioMc8qx2tMkEomgWFU/DmO5ezRIx5T/Jvz/OpvtgL2mzGRoSUUfb29d06kpG0rKSvfSLUspSVsZHn/7+S+sT8++/0ofeynP93jpozdz9lv/Cfho2SfsceFRGIeMoOy4HbjqwRt6RagM3eC5K+/lvb/+kxvP/R3//O3dLPnbGwwpqdhCq4G28YWr7mdoSQWxcB75kTxCusklx5/Nwbvs95n763kef378dlKZ3h+ulJXmivv+/Jnb3Rwv3vMKmaTVZ7mUPp+8uXBQbRimznEXH0Uo0lv6YkZMzvjtd7ZLP/8b4Pv+gM+800/i01f4/4XCwkJGjBjRb7Bj88qaA6Gzs5M5c+ZQXV1NXl5enwjbTmOmctN5V7LvtN0ZVjoURVUJGyFi4SiKomK7Ns2drViOzSNvPMPi9csJRSPc+9rjzJrzOrXNG2hsb8FxgyRK27VZtHYZHyz9mEN22Y89Js9AIrOEQmVizRgaWhrZ2NlMR6oLy7HoSHURH8BKtyd0ReOl3zzA0bsdxNy5czn9wG9REIn1pX7ZU1SkyEWOey7PbTZQtFF0yyB8HN3DNp2A9MpsWXrp057oZO3GWiqNUoSu0Dyui9ppLbSPSODj0x5NUNSYx45zx7DjR2OYMm8kY5ZWYWQC2Z/hqoRTA8sX+y6Ruf4KQPEDzbRAoLoq0vMxTRPLsdHHmTghF1f1guTNnieWheopWcnOpiPm9ORdPqIFNEcBT5BnRIOIczd1FkGEWPF7X/mBYreBbMeheUgHRtQgHNtk0ysVn/qaZhbstJrm8g5SEYtUJENBVx4hy0BICGcMfCGJbDAZ/UkVSpMg1G4QiprEyqK4IS83CyNlMNjKa4+g+xpv2x/RNS1D8iCX6gNrmDJqHJ4pMdCJWCaap1DQFaE8XUJDZRuap9Hc1cqG1kZ8X+ZyMbrdbYaEy6lQS1A1QUckwbcPOZrSgmI6ujpJ2xmSXpphyhBmHDWdMWNH5QaKQgh8BSZNnoCwVKLhPBLtSVzpsLGznkWLFtHQ0NBHbjaQh3h/cBxn0Nv+O/E/KU3ZEoQQvH7to5x09Xl8uPRjFKFQXljKvZf+hXcXfdSnrD1AIpNibUNtP61tHygDVDkc7JTLl4EPFs9l/0u+RcYOCGdLZxtX/+NG6lo2cOuFvau9Ths9iWmjJ/XXzICYMGwM6x74kLcXfkhrVzt7TZk5oP/4YBFPJ7DsvgQZoLap/nO13ROeO9BgSfQpMb8lnP6bkwmFTR6+9gmSnSkqhpdzznVn/k95WuuGzqTdxrPovaW9SIOiKuz+jV3+jT37Cl8GtlbQZ0tEXEpJXV0ddXV1TJ8+nWg0Sn19fb/77DhmCjuOmcL1T97F3JUL6Eh0oqoqYT2o9juhejRL1q/E1A0QgsXrljFh2FieeHcWK+pXYzs2QpB1JpEIfBo7WrnuiTs5Yd/DOfH7V/C3lx5m5fq1NG1oIS6TqIpKxrEG9vTeDBFCGOjcdP3fOPO732LK1ClEY9EsaaYX2VZ8gRSgSjVX4Kb/iwQICOkBIbZdO+dc1VmcIhOyMS0dIQPi2V4cx8MDD4bWljJ8XQW+kAwximjZM06j3kYqkyKcNhjaUBJIXDyFqBUmpPpE0iFi8Qif7rSK/M488Ae+vwMnLvY82QAKgnA8FDiaWBnKTx5KwVyF9AfJHoodkTvlHHpdGolC4MQifIFnBfdFiYObdLI7ZluRPZ5N2S1F2XQum461aeBQO6KJjqokhm5QUBtBM1RaS+JsGNNKs9GOEFA3upmSpnzGL6xBZNtVPRVhQc3qMoraYviKj6U4KGmFdLMVJGGqPqAGGvBs/2xs2ru6sIocVpt1OJbD+OhoVjesx9B1LNemwM7H8W2ELkiXZ6t8Kg4RO4RreLiKR0EkhvQ8MtLBljaloWIyXoYRVTU0plqpa9vI5GHjeOOV92jobKLAy4OMz9znPuEH15/Bp2uWUNuyAQEMLSrn8h+cx0f/nM+q+asZPXkkB536NUqrS4jH47S1tbFw4UJ836ewsJCSkhIMwxg0uU4mk0Sj0UFt++/E/xwRX7JuBdc/dRfL61az7w67cd5Rp/cpzjC0tJI3r3uc5o5W0naGmrKhCCFI2xkiZriPe0peOJqzt/oicPw+h/PQa08HU5lZaKrGUXsc9G8n4p7nce5NP+fOFx7qE6lMWWn+/vJjXHn6Zf16724rVFVlv2l7fO52upEfiVEQjdHcj2PLpOGDT6TcGg48eT8+enkemc0qaPqeP+jiOxC4gpz8s2/x7Z8ej+u4X2r1y/8k/OTOCzhvj5/gWA5W2iYUNYnEIvzwujP/3V37Cv9G9KyUuTk8z2Px4sVIKZk5c2buQ74l8p62MkRDYQoiMXzfJ55O4HgOYypH0NLeRnlhCS1d7RiaTsaxaE90MrKihrRl4cvNnDmkRFUEiqLy0fJPeWnuW+i2RqYrQ0pNIxBY2AMGXfpDBhsDnU83LGXuumW8u+AT7ISFZWWDC938NEuuw45JyshsWjcATDtw3UAlR8IVJSju8un01YxYU0k4ZRAvSFNb04RUYPySGiobinPSCg+PivcLqN29AUVRyE8EAwRflWgZNRgU+AppzUZ3VfK7otiKM2gddU8EyYt9ISRocRWr0Gb+hkWMqh2y5UJBgh4R9m5nctljdeBU7mkewhO5pMnuLYQUZMI2ZsbIkfG+fc32WMCI1ZW0JDtpHtJOzIyS3xzB1jx8pwk0iS/A9HQq6nvwk2wipfAVQmkjkNqoEun6SM8PjqvI7MBLBv7nEFTyVCApkmi+TmleEasa19Eab0cVKpZtB1IgReCrAsMyIOPjlLooQgm+NSKodOr6HhVlJbQ2tKMKwYqONbjCw1pro2oanfO6AnlJl0OBkoen+LznzWdSyyi8Do8/nPFTlqxfgRCCycPHETHDHHL6AcABva5Vfn4++fn5jBgxAtd1aW9vp6mpifb2dlzXpa6ujuLiYsLh8IA8qNtD/D8d/1NE/JW5b3H0r87Ecmw83+ODJR9z8zP3Mu/WWVSX9dXZlhWW9Pr7QTvvy7iqkSxatwLLCV52pm4wasgwDpv5tS+s39ed/StmL5vP+qYNWI5NSDepKCrllvOv/sKOOVj84eGbuf+VJwaUCxiawaoNa7cLEd/eUBSF35/5Uy64+YpeMx0RM8wfz/rZdjvO3t/cndcefovZL84lk8ygGxqKqvCz+39EKDJw5dCBIIToQ8LTyQyJ9gTFQ/ovPPX/CcMn1vDgqrt4/q6XmPvKfKrGDOGUK06iZEjx1nfeBniex0cvz2PFx6uoHFnBPsfssU22h1/hy8VApDqVSvHJJ59QXV1NdXXvXJOB9llZv4bzb72CzkSclq52TMNgVOVwisMxzj/wFP786j0oikpnKk7KSuO4LoWRGEfvcTBPvvNCv9FbgUJJrJCM49AR76QiU0JhqIBGpxkHLytXoV8ruV7IrvfxSdgp1ooNXP/0nbiOT1wmMKURVEUUflazAWbGQGhiiwS8+1iW5hISajBbpwaFXTzfBy9IHmysbKOoPQZCEE2FgoTKloJsgHiTx7XvgenoWLqLo2Wvsbep/1LIXv1JxjL4wkfpx7lkS/A0F9XVBlJis35kE5bj4bTaKPQfvLBNB8dwCSVNVF/JDSj6a882HdSk0me9QBD2QxScW0ri3ja8eN/nSgC+kpWwOILyukLcFg8v38WxXfKcMHvX7ci61AYWT1mLqwbRbV+RaLK7BQlC0lraRU1dOdInFy1HkXiqj4eP4il4iofuapi2Tsa0UTyFsBaioqiUlngb9U0NuB0OiiPQbIW0YqFKlXFtw/DSLrWlTTi6ixA2rnSRUuL5Hl/fbV++Vr0rF9z3G7riG7Cz+Qy6hPxoHo3NzViaTUFnFF1TUXWFldp6QtFA4jVz/PTB3l4gGGSXlZVRVlZGV1cX69evB2DlypVkMhny8/MpKSmhqKioV+7IVxHx/zBIKTnrukt6Ea6MbeG4Llfc+2fu/snWNcGKovDmdU/wuweu5/5XnwQkJ3/tm1zx3Yu/UPJTFCtkwR3/4uW5b7Jw7TIm1Izh0F32/48gXH996m/9ynW6YTs2IyuHfYk92jaceehJFERj/Oq+66ht2sCUkeP5w5k/ZZ8ddut3e9/3mfvqfOpXbmT0DiOYsuekrc5KKIrCrx+9nAXvLOKD5z8iVpTHgSfvR1l1/wUwtgV2xuYv59zCa/94M8iCj5icc91ZHHzKAVvf+TOidWMbt/7kb7z7zw9RNYUDvr0fP/jjaURikS/smJtj5fzVPHj1o0gJS2Yv5+X7XuPSey5i/2/tvfWdB4FUPMWF+1xO/cqNWKkMZsTklh/dxY3vXkvV6MFVbvwK2x/bKk1pampixYoVTJkyhYKCvv7vm+/j+z7rmuq54NZf0ZWMU1pQRGE0RkN7C6ft9U2mDZtIdVUVx2QO5bcPXI/tOhiazl5TduHOi6/h7lmPoKkaQog+emtD1xhfNYZ5KxagisA+sN3rwMPvpUvugy148LmKh4uHklIIaQYO2QTPrEMKInCBEfmCpNPPe7pnu3LTMguLYcoQuowkGWHjWpmgLU8wekUV4Ww0tqq2hI1DWnOFcrpPWfoST/pECiJYqS7aC+NkTIuCjljOScWTEt1WyURsUuEMExcMz0lqelr0Wbqd031bpo1h6yDAVX0ULyD9/V0eKSQbh7ThRF30Do1ELI2R0vpNnhSegvAVfMXvETXvT5cOmbBDKGWgbBb1lgRVNhc3LCdSolEYjwU2gYpAej1kdD3kNwKBIlXUVoEf9vEcFyfjUujl8fXVu1K+ZzmWY7Hug3V4Its3ARtHtNEyogsRElStLEVk++wjMZLBYMMxugdAAkcLZorGLx7Gspm1dGWSTBw+ll+f+CN+d+K1WIkqOvwu8H1iqTxG7TGczl0yqLNXoEiXtJdBItFUFcd1uP2FB4gdG4aQJF/GSKbTpKw0lmuTTmcCOWb2gbAyDriSUH6IIaO2nA82GHieh2mauYG17/t0dnbS1tbGunWBU1FxcTFCCDo7O7cpIt7W1sYJJ5zA2rVrGTFiBI8++ihFRb2DiEKIGuA+oJLA/PEOKeVfs+t+DXwPaM5u/rOso8oWIbbFCuY/BTNmzJAfffTRNu2zoaWB0afumdMw90RFURkNj87bXt37n4Jx6Mh+i/QAhM0QJ+x7BPdc8pcvuVdfDNqbOrhg78to3diG53goqsKoqcP506tXEY4GkW3bcnj9kbeY+8p8yoeVcfj3DqZyxOd/+QyEq0/5M28+/i52elNCixkxufLpXzDj6ztu9+NZaYvvjv8BbRvbc/p23dQZOWU4t835y5cilUp0Jjm+6tQ+Uh9VV/nTK1cyfd+pn/sYt17yN5668Tkca9OzLRTBpN3Gc9O7f/pcbQsh5kopZ3zePv6XYbt9aHLSi37w3nvvsccee+D7PitXriQejzN16tQBC3osX76coqIiysrKsByLy//2B2Yvncfi9SsoiOYzafhYkFDbUM9lx/+QfSfvysb2Ji5/4Boc18HzfZKZJPtM3Y0bz/0d3/79edQ1b2DhuuU5m1ZNVSmI5pNIJ4noIdJpC0VCJBWmw4jjah46gdWcI13wZV9lwxaZeje5E9lS64EziIaCgkpMRmlVOga+oP21KcDw9cAVWQ0qTwsPqtaXUlNbEVgM+gqKVEiFLUxLR/FENpoMCEnDPp0YY0Ksa6ojmU4x473xqK6C4iloXhBEykRsFs5cy4hFFeR1RRASdEfNRcW7S8o7mofqKUgl0JgjwBUehtd/LFEiaSpvByEo7SoIXGhEICkxnb5R8YxhUzesmZLW/CDan7sMveUpPoG1n+YoKP14XXi6j1csURMKarJ3UuimW9i7mJBUgwFh2Azh+x6xojzibUnCsRCFQwrobOwknbboNOJ0GSmSZWkqaypYJtYgWyXR9hBmxKBscT5mUs8dSxJ4o6ei2UEUAsVVWLnDBr6+1z6M7xjGipZ1PN/4Op7wibohJtaOwE261O/ZTqPXgu/4aLaKpdn4qsR0dcLhMNKQVBaX09TRQkE0RsrK0NrVju/7RPRwkCTpqhSkoyiewNN9vnv40Vxx/iX93q9tQUtLC52dnQOWq7dtm7a2Nm699VaefPJJTNPksssu4+CDD6aqastVrC+99FKKi4u5/PLL+cMf/kB7ezt//OMfu1cLACHEEGCIlPL/2DvrOLmq+/2/z7XxnXXNxp0AwYIXt5YihQJVWmipQZW2UKffClCDClABCoUWa3GXQPGEBOKe7CbrOjt+9fz+uLOzu9mNQZD+yMMrZDNz5dw7szPP+Zzn8zyLhRAxYBFwhpRyZYGIp6WUu/Ql8b5xTYmGInje2J9ipW/Ri/r9jG0tMSlC4atnXMBfvnH1OzugtxG//vwfaN/YQS6Vw8pb5DN51r2+kRt/cCvgV1G/cMDXuObL1/PkbfO589f/4bN7fZmFTyx+W8aTTqR59q4XRpBw8EN+bvv57kscHY75dz5Pqi89osnUNm22rGlhyXPL3pZzbo0X73+Fsfi+a7t867jv888r737L53jq9mdHkHDwq3xrFq4jPbBjN4s9ePuwo8meaZosWrQIVVXZf//9t5uqN7wifvd/H+blVYuoLq0kFo6SzKbY1L6ZgYEEwVCQfWfMQVVV1rVuwvVc6sqrGVdZy/SGyby+YTmO6zChpgGhKMwePw1VVVGEoKa0iul1k1CEwHU8NKn6VqQxiHq+k4WiKoTDYQxFR/VU4maUkBNgMKhSILbK2BwJT0hkoWKqFLywpYBSYjheIVRHUVHEVl/527b1wPVcIqEQmqKhKipBJ0AkE0KxBQFLR3NUFFcQNHW2TOjCU31HlXzIZOXBm+mNDVD2Woi9/juBuW9MRXc0UERR+iGRGHmdGYsbifdHMEwNw9KLMovBqriQAsPW/GvTCndBym2S8MH7FU9EqU6UoTkqmqkSzBtorjpm+mfQMpi6voHS/pHV060lRgr+WMYi4f4LAUoW5CjF4eio+sFx4oJl2DiWg2u7SE9SPbGSlnFdzLcXsLhyNa/OWsHqKZtpa+ihtDfGvOReHOUcyN4vT2LKyjrGLazAyBmFa5MFe0uJ5qoYplb8vFSkQvVAKfKePKvbNnBf6inyuomtOQwEM6xo2EjTlE5QfRcaXdFwdNe/3kK/QS6TI5fKkUvnGF9VTyafRRGCsBHE0DSCWoAZTOLk/kMpTUYJ5YMcW3sYHzps98h3Pc/brhrAMAxqa2u54ooruOqqqzjiiCPo7+/nggsu4Lnnntvuse+//37OP9+3RD7//PO57777Rm0jpWyXUi4u/JwCVgHbZ/g7wPuGiJdEYpx80NEY2sgP5XAgxNc+sqfJ683i2i9fQSQYLto9KopCyAjy3G/v4crPfW+3JYu+27Atm1cffW2Uy4lt2jxx6zMA3HPN/bRt6ChWah3LIZ81+eWnfvumo7e3h77OBJo+9gdSR1PXbj8fwLrXN4yqRIPv771xWfPbcs6tkU1mt+lE47ket/70XzSt3PzWTrLNlcL3hkvRHowNx3F47bXXmDRpElOmTNkhaR9OxNe3NRHQDIQQzGycgioEfal+XAW+eOqn2HvSTFRVJWwEcT2vKD3JWfniZ+BFH/wEZdE4iqIUrVYro2W093ciEeQdkzwmprRJyxz7l+xFeTgOqm+1Jh0PDRXVUQgRJKZECQjdl3NIQcQKoW5NpqHolGI4OuXJGBEnSFSLEFAMIrEwiqLieu4I690dwRMeubyJoigEjQCO7pCOZdHkyM8c1Vap7IzTX5Zmxd6bWHz4OgYCaSa9WAOrPFRHJdIfRLNU9PxQOI1AoHiCaDI4JC8ZphsfCsIZ+k+1FIQUO6UjD1oGwgSGzadVT8HStu1RPTyxclfhCs/fTxfIzM7fZwWBmldwHQfHcunvHGCduxllrWT8hmrq11Yy/fVxTFpWy8RVtXQH+lmyciW5+Wk0VJ/FCYHiUQw+UhjyQdccDc1SUW2V7roEMRHh2YZFPJibj4UF0g8yklKS0y3yhkmJHkERfmiUZKhxwRI2ruLrz8NdAT42+1QaK+upLq1kxvipfPyIM/nNoZcxeWktyZVJxjdVM2VDPd7rFpm+7C7f0zHv8y7YF2azWSZOnMi3vvUtHn/8cY466qjtbt/Z2UldnS89rKuro6tr+9+jQoiJwH7Aq8MevlgIsVQIcZMQYqea4943RBzg79/+LQfO2IdwIEQ8EiOgG3z6hLP4wofePz7MuxsHTN+HRdc9yqdPOIt9Js3iY0efzoI/PsQRc+a920PbrZDSr4iOBdf2v8jn3/k8Vn50xHY+m2fzqt1vb+lLXkYTDUVR2Ouwmbv9fOA3SgYjo71+VV1j3PR3JljowBP33+7zju3y7F3Pv6VzHPexo9ADIyeRQhFMP3Aq0fh7v/nn/QYpJU1NTZimyf77709l5c71Xwwn4jPGTca0LRzXwc5ZNFTUceHJH+eBn97EhSefB/i/W5OqG6ktq2LZptWsb28mlcvwnY9+iZ/efg1nXvF5NnVsZnrDZG755m84esbBhANB9pu2NwiJoqoFwYjA9Exeyy9jXEU9cxpmEjD9SYCnSdKRHEbUIK+ZSBVCWghDM8gYOdzhZHpQcF34K2eYZEpNgl6Qw5X9ODx8AErOr27v8j0FvJxHOGlgWRaO4qGM4ToigHAmQGkiwoxV4ynpDWPkNUKpAJpU0S11xH5ba7SlQsHdQxT6EEdrrwdPtK3P4NFjH7ndcPtARaq4qourbIcsy+3ZJY4NIYSfSGmrI65hZ3pPVUfxV+yFX0ywW030nAaORC9U88PZIAFTZ3xzNUkzg5mz0A0dBWXEysnWF5KPmHRVJUiWpBESVpRv9O+3qyA93wVGDpa7FUmtUkUyl2ZcuBYBOIoHniCcDvoOKlJjvFXHCZHDqLOq+O6pF/GRucdz1uwTiT9vsOL51eTTJqqqEimJUD2+knw2z6r/ruWB6x7lxsv/waM3Pkk2te3esu1hV4j4WK4pxx9/PHPmzBn15/7779+lcQghosC/ga9LKZOFh68HpgBzgXZgpwJJ3jfNmuA3Pb54zX2sbF5Lc2cLc6fstcMwmfcCkpkU37/pKv45/z5cz+OsI0/hqs99f5Tt4u6C53k8suAZ7nz2AUJGkM+efC6Hzj5gm9vPaJzCTZf+9m0Zy3sFRkBnr8NmsvyFVSOasFRN5fAz/MbOYGRsBxTP9Qi8CXeUnRnTBf/3SW78/q3ks75u1m/YNDj/xx/f7ecD34rxph/ehpmzil+KqqZSUVv2tmjSx0Lj9AZO//IHufePD+FYo+3qpJTbLmjvJM7/ySdY9PQS2jd1kkvlCEWDBEIBLr/lG2/twHvwlrF1I6TjOCxfvhzDMIhEIiNSMncEVVWLmvOzjvggC1a9wdOvv0AoGOKQvfbnex+7mGhoaOJluw4/vOO3tCW6UBSFbD7HxR8+n/a+Lv7z4qNUxvzP5Kdff5FXVixiYvU4LjjhXM4+7lQaPzEPR/o2cpZn4yGxNQcjbiCyfoOkKWxUVFQh6DH7cHAJB0K40sWy7CHTDK9A8AYbOUVhEUdAVs2jairLBtYwvqma1hldQ/P1QdIu/eqpx1A0/NYcTkiI90aoTpeiztRIBNIY5tgrnFIBT5GorkK8P0rXuH5UTfV/F03/4IP17a31MFLIgr+4T5BVVy1qswf38pA4YRc9M0jARh9nxNiHVdNhiFRLAZ4hkRNUAi0KXsobu3mzqLfftg1h8ZYK4UuDdEmJiIINQjP8mHrhj95T/DClwdWAwWMw7BqHX04w5zeDDp/AqJ7iu9cgCVg6Qghs0x41/uHXLBX/mqu7y/yG2qSgpC/CltndGLaGFbLxhIer+Q3D03oncNbBJ/Ng+zPIaoUSK0rYChJKBXAdF9cMIhTBcYGDCUiD8VMbOeCouRzWezB/uOTPbFneimooxcToVH8aFP87cM3LG8hPs4mWRlj16loGupOc850zdzkl03XdUam620Imk6GiYqT73VNPPbXN7Wtqamhvb6euro729naqq6vH3E4IoeOT8NullP8ZfFxK2Tlsm78CD+3MOHcLERdCnAxci9/a8Tcp5ZVbPS8Kz38QyAKfGdTY7GjftwOzJ0zfrT7Rbyc8z+PoSz/Kyua1mLZfbf3HU//huSWvsPLG+Ri6ged5/O7ff+XX9/yZ3mQ/+03Zi2u+fMV2yfO2IKXk3J99iUcXzieTzyKE4PZn7uWy877CDz/59RHjen3+Ula9upZNy5vJJrPsd+w+fOhzJxEpeefcM95JfPtvX+Mrh16KnbfIZ02C0SCxsihfvPoCAE7/8odoWtE8IkVTKIKGqfXUT659W8Z09tdPp2pcBbf94i562/qYc/gsLvzZpxk/Y9zbcr5wLMyfXvkNv7noDyx5bjlCCA47bR7fvOHidzR2+Eu/vpCZB03nZ5/41agqmW5oHHX24W/p+JGSMH9ZfC0LHl3Eutc3UDuxhg+cddibspvcg7cP6XSapUuXMnHiROrr61mwYAGu6+70e3GwIi6lpKO9g3P2O4mLT/sMRsCgoaJ21HEWrHuDps4WJtQ1Ar7X+D+fvZ/Z46dhaAaKIujq76En2YsZjhBMBPjlv/+EEQ7w4UNO4MnF/8W0LBzTRXgeUpEs27SK6ZWTyOJLvlw/IgcAQ9NxPbdYtRf42l1fWuwN8dFhlXHwA3m6rX6yVbmRdLUY8iNQXAUhJJqugS2xcXBVv0ocyOkoUpAqy5KvsMCDhvIaElX9NLRWjiaow07iah4NajWx8TEGNg4M0cJCwpFE+qR9kGQWwnByIZNAzhjRIOkYLqqlArJIwv3LHZuEy8L5VWfIB3xEsE5Aoe+wJOoA1KRKt6n1lkhU1OI4xgrk8RQPGYKAbWApeRRHwTJ9L3RVV4lUhDCx8SwPI6xj9RSKF0MFfkbNfgpQXWXMCYJha3iKP0EIRoPkUrlCYJS/qgAStSAdEgiEB9GBEPmgiRssNNdbGqGEgRbXMBIawZxByApQ6sSYojbiJBw+t8+5nHnph7nlwTu44/mHfA27Z5PsT6Gg0NPay6xDZrD3kX4w36sPvYZjeQRCAbLJLJ7rp3l6ikeiM4GiKHRs7KJmXDUVdWVUNVTQtrGTdH+GkorYqOvcHna1Ij5+/M67tp122mnccsstXHbZZdxyyy2cfvrpo7Yp8NkbgVVSyt9u9VydlLK98M8zgZ2Kzn7LRFwIoQJ/Ak4AWoCFQogHpJQrh212CjCt8Odg/PL9wTu57/saT7/+AutaNxVJOIDt2HQmevjPC49y3jGnc9mNv+RP9/+9aCO4YM0bHP+d83jp2vt3OcHyqcXPF0k4+MQ8a+b4xT//wGdOPIfG6nq6W3r42ge+S19HP+awRsHFT7/Bv699gL8suoZ45WirsP91NE5v4J8b/8ZTt82naeVmZh40naPPOaJIzk781DEsfW4ZT//rv6iaghCCSDzCT+/9/ts6rpK5pYQ/Vwr5AIcfeTjjZ749JHwQDVPq+O3Tv8CxHYQi3hUbTSEEx573AZJ9Ka7/1o14rq/Z1XSV8757FpP3nviWz6GqKoeeOo9DT/3/S2b1/wva29vZtGkTe++9N7GY/2U+SKx1fed6U1RVxbZtli1bhuXavNSylDeev4MJ1Q1ccvoF1JSNlLiYtjWCOxmazkA2xfjqep5c/Dz5XI6eZD+eK7FTDr1mPwnSfPfGX7Df1DkcOedgHnzlSTzPRVN1LMfB9Tw29G4uVqYHubWiKHzulI9x+zP3ksqmAUFQBAmZBhkjj6fYQzaFgyiQvIFcCiRkwnkUKQokbQjj8tVk7Bzx7giaq9BTOYCha6imyrjNlbRM7MYKuqiegiZVkmRIZpOEZ0RoSfbQsKkC4Sm4qusfW/gEz9FdooEIVZtLSWgp1EoVN+kgTDANy9cquypCBVv1nVBswyETzfv2fFLFEy6GqSM8BeEIEHIE8R/bi6TwbxU8XSB1gcj5WxSptA7VH6vDKI/g3JylqOcYg9MXZTLb6QlRpAJVAteSaB0qwvNfOQm40sXOOBz1kUPpaOpm9YK1Q+FKO4HBRM+tIZEonoKmaWRTWdbv24aR0pCeRyQVIpQL+N7u0p+EOLqL4giClkFGz+Opg9csMXIqdWurCToGuqchpaR8Xhm1k6o59YsnEwoEmRwfh5kz2WBtRlEVvLjkkOC+TKmaxMe//1GMgnxvoDtJvLKEFS+sxDadYZMNgaIqhGJB9IDG6oVryVk5SivjWGYeVdv14s2OmjWHY1cDfS677DLOOeccbrzxRsaPH8/dd/uN/21tbTQ0NDwipfwgcDjwKWCZEOKNwq6DNoVXCyHm4t+BJuALO3Pe3VERnwesl1JuBBBC3AGcDgwn06cDt0p/PfEVIURpwQJm4k7s+77G0o2rRpDwQaRzGd7YsIJTDzmeP953MzlrZANdzspzxT9+x39+8tddOt/9Lz9RJOHDoaoqTyx6jgtP+Rg/Pe9qOjd3+7PeYbDyNn0d/dx+5T18+df/fzbARuMRzvjKqWM+pygK37np63zie+ew/KVVVNSVs9+x+7ytRPW39/yZH/79V+QtC096/Gv+/Zx68HH86/vXve1Wgpr+7ivbzvjyh5h38gE8d88LuI7HkWceyoRZje/2sPbgbYSUklWrVpHP55k3b96IZeodxdxvDdu2aW9vZ+rUqVz76N95fvkCYqEI61ubWN60ltsv+z2R4NAK335T90ZXNBKZJCEjSH8qwamHHI8mVHoSvTieQ96yUKQgooToNRMIAbFQFMd16cr0EtANDE1HVTUsxwIJZSVx0tkMDi6DuS2KEHz1jAs476jT+dLvL8c1HVo6O0kEUgV7w2EkfCvOZgsbaYBmKT5BLJBZgWCy3UBFKk4gqyHbPKwSm+pVZQghyEZNsuE8ju4RlWGkKjEDFp6Q9KYGUEQKZ7LDpglt/nEl1LaWE09G0C3Nd4SpEvRbaeSAS3BuiLxiEX1aQ7dUHNVDaiAUsHSb9dNakQbU91ZSt7kC13SRQvUbH3UHy3AIZQPbEI+MAQ0US+BVCcgNS9wU4LmSlU1rqY3XoWRFMTV0ZzAY8DO8Wi+kQInrZFrSGOijxqOqCk0rWuje0o305A717R5ecTKmFNoth1fkJRJPk3iKT64RgnHrKjEjNp3lfeTCFlbAYWrzOIJ9Ormw32ir2ALd1NBsX3PuKZKaRAUVZimWY2KpNiIiiAdiHPOxD3Di+ccghGDT8maeuf55EiKJZmmomkJIC7EmtZGjJx/My/e/SrgkTOPscdi2w5pX1yIl6AENM2sVJWSariFdSUVDOf0tCaykQ0ZkmH74FFasWUEgEKCiooLy8nLC4R2vpr9Vjfj2UFFRwdNPPz3q8fr6egokHCnlC2xjKUNK+amdPtkw7I5v0gZgeCdaC37Ve0fbNOzkvu9rTKmfQFAPjPLqjgbDTB83mebOFjR19MsopeSNDSt2+XyxUARN1XDckdpbRQgiwTCJ7gHWvLZ2FAkfhGM5vHDvy+9ZIu7YDk/84xme/Md89IDOqRedzJFnHrpbSWvD1Hoapr79jYvtvZ18/6arydtDUphMPstDrz7NU4uf54g5B3HPfx/mjQ0r2WvidM496jQiof//ZEP1k2v52HfOfreHsQfvENauXUswGGTmzJmjfm+3F3O/Nbq7u1m3bh3xeJzSyjJeXPkatWVVCCGIhiJ0JXpYtXk9B07fp7jPhJoGvv3hi3ho+bP0pRKc/YEPMTs8hcv+eSV7VU4jbWdp3tRCNpBnwE7hai6KVJhQWU95rJQNbU2UhGP0ZwbwHBukRFU18tm8rx8v+D0DVGplJNcOsOHFDZxdfzL/an4QEQLd1pG2xJXukDzFo0gNBoNmpJTork4obZALWORDJqWBErqdPnpjCWZ0jUdTVURcBVMgXdDzGoruN+TlgjmMUIC8tFA8BU962F7he0gBqfgksbOhn/6KNI7mUpIOU74xRsfUBFqVht1jsc/CKagF4qijsGFaK121CYQJJckIWl7FSTtYro2CQMqCHlp4pOJZwtmd0/zHKqJk3TxO1oSE7x1ShPQL4P1mEvORPA35yu1Wu7fVqCm3+jl6VJzM3Vls3cYwjaF5kQtWzqZ9YweOZe+QhLvCRUhlVEjQcDLu6RJPlRjCQNrSDwtCEEkEmTBQSzacp78shZb0/daHk3fXdbECFnbQRaqSCek6LMsmo+dxFQ/Lc7BSNsvWr+IkcSye53H/Hx7GDrho6NS4FaQTaSQuec3m8fvm89zNL6AZGniScDxMLp3HylkIVfg9CwVZkJQeqm5QUVdG0Ahy4Alz2ffoOUzeZ6IvScrl6O3tLaZkxuNxKioqKC0tHVMLvquuKe+XiPux3s1bv+u2tc3O7OsfQIiLgIuAXdL8/K/jQwcfR3ksTtbMFTvfFaEUwnJOw/VcbHe0HZMQgjkTZ+zy+T59/Nlc+58bRxFxCZx6yPHkenOIseyzhuG9qhF3XZfvnPQjVi1YU9RxL3thJa998hi+ecNX3uXR7TqeWPRf/wNpq5c/k8/yj6f+zYW/uZT+VIJ0PkskGObyG6/k1T88yMTaPRXjPfjfxYwZM/C8sQsBO1MRl1KyceNG+vr62HvvvWlubi7ar3rSQxVqoRnUTxIcDkVRmFLdyO2X/QEpJU/c/RQ3XvkvMiU5lg2swZI20pDorkbQ9V1PFKmwsmU9U6VDKpshlUsXJSWqolIaiWNm8hhCx8Jv4gyJAEenDuSOK/9NKBYmn81TIiKUT5jOspbV2F7h83mrJkwk1MtqUtk0qZAvv7BCNvmgiRS+fjpeEyfRl6S1oYeJah0pO4UeVYn0BH2HDmFQ2Rcn2ZBjwEoPrchuzUILunRX8chHTHRLwwxYbJrY4TdppmD/N6ahWaovtxG+JWLDlip6ypPMXD6eYN6XNqiOgqXaoAoMW0VKQSqao6umn4ruEnR7a6oymj4IBGR872zpyVHVZCkkkZ4g1Rvi2zjCEHkcuxl0kNz6CI8LMy5ZTbfbjmprI48oJZ70yO3IGUSAF5RgAsJvMt9afy+EAB1UTcEIGVRXVLC5qRVLdwoBSBqqVEAEiSej6EKlta6Hkr4Ig80G/RUpEtUZ9uuagdltokZVEoE+NFP175Dn2xf+t2shlwLtGzpp29SJDHiIEKSzWRRV9VdspEQk/f4nx3KQniSbylFZX077pk6/oq8qeI6HqvtcwcpbDHSnOOSUgzj94g+hqkMcIhQKjUrJ7O3tpampCVVVKS8vp6KigkgkghBil3pA0un0+ybivgUY/s0+DmjbyW2MndgXACnlX4C/gJ+s+daG/L8DXdN56dr7ufC3l/LU4heQUnLEnIO48Vu/LlY3Lzz5PG5+/K4RUfMhI8gPP/m1XT7frAnT+P3FP+WSP/4QvRDVDHDfFTcSDUWINISpbCinbUPHmPsHIwHO+tppb+JKdx/6Ovp56G+P07S8mb0Om8VJ5x9HNB5hwaOLWL1w7Yhmynwmz+O3Ps3Z3zj9bWtwfLsQCgRRxqjkq4rKq6tep72vE6dASjL5LDkrzxevvYzHfnn7Oz3UPdiD3YZdjbkfjkE9eCQS4YADDsCyLFzXJRIM89EjT+XO5x5AVzVs12HfybOLxQwpJf9d9grPLXuVZE+CxikTaW9u4dnbX2RidSPPOq9hSwdhC6QisVQHVSpEciGsoEN3by99/Qkm1DYgTUlPvg+JJKAadCd6iIdLKDfjWFg4wqWmv4Lk6gGsSJ6K+gpy6RxSOqxJNiNUcHUXD6/IFRX84BshBY5pE9ANMjKPi0c+YBWTOlNmGls6VNVVYFRpeF0e4WTAnwAIyZapHXTWJFAVFTngoUcKWvuxSmtbEfNwLoinSFzV9B1XElEM0yeog+dXHAVhQ+OmKnRbxTZcpJCEHIOAqeMpEk9IPN0jUZMiU2IVtNfDTzVU7R1e1U72pvyhKSPTMIdLSerWlm8lqR86xliWh0OP+Vt5AZ/g67qGDErW3LMWZZyO7HcKEw1fAqS6O6l9lmBEDXJeHtUeutWDY1R1Bc+RGKqO9CSGNFjZu56YEyboFFI0C82uMSI4no2lO3SM68ca72EmTSzdIh+1OXbzgcgKCeNUbMsjk8hj41DRX4KnSjoa+hlfFmbz6hZu/ckd9LT2ks/kmFrdwBtla7E1vw9n8qY6DFtD6EPuRa7tks/5bj2e56EZGo5nI6UvCfI8FyNkcNJnjxtBwreGoiiUlZUVY+VN06Svr4+mpiYymQwlJSXkcrltTsS3RiaTKfaPvJexO4j4QmCaEGIS0AqcB2ztnfYAvsn5HfjSkwEpZbsQonsn9n3HsWrBGj8UZMUWps6dxPk//jhT505+18ZTX1nLo7+4Dcv2dcBBY6Rzw7Vf/inlsVKuvfcmktkUs8ZP5Q9f+RkHbSP1ckf43Ckf56wjPshTi18goBuccMCRhAIhwP+Fv/zWb/Gdk36IbTlF+zghBKquctKnj+Ok8497S9f7VrB+yUa+9oHLcCwbK2/z0oML+Ocv7+aG137HwscXk0uPDqMRAt6Yv/R/joh/cN6xYy4fGbrO5q7WIgkfhOd5PLX4+V1a2ns3sKGtiWeXvEx5rJQPzjuWgLHzdnR78P8/tkfENU3bJhFPpVIsW7aMyZMnU1vruxgNJ+7f+MjnmNE4maWbVjGuoo6PfuDUouzv3y88wm/+/RcMVadvoJ+FP13KX752FZrQiQQNotkItuvgKA4aKkIVCCEI54LEdBUloNLvDJDemMLWLXRVw3X81UypQk+qj7ARJGwGsWyHQI9G2sySz+Tp6emje3qShJFCdf1gHkPTsKWLVCSlbgmN4+tRAgoDiSRz62aT6kkx8FI/S+s3YOM3zwnFl33kTZOW9jYmNdUzQIpMWR7N8hMnu6sHUB0FoYMtPBzLHLM2DP6DhqXh6h7CFbjK0H1XPAXVVXBVz4+zH+YUYoddyvpieHgoLrgKxUqwWtCdS08SToXYq6NkyF1l8PUftQwwEtsiaaMr4IMGglvZKQ7zZRlhNahA1ZHVqL2CqRMnsGrhOqxcHrVJYgZ8pxZPyDGq96OhqApCEbiOS1iEsFUbU1iodiGwCD+0yHU83x7R83BdD6s/QyBoFCZdQ+OzFcf3L1cVPGw818PCJlQdZPpe00hZaT580Yf4w9N/BxX6uwZQVEl/MEVP4wDCE4iAwnnHncETtzyDbqjMOWwmK15Zjei2OKBnBlVzqulf10e+L4+LnwCqaAqu7Raq/3k81yNeWUJFfRmt69pxbJdoWQRFU+hvS7Dw0cUcfe4RO7w/gwgEAtTV1VFXV4eUkmQyyYoVK1i9ejVCiGK1PBaLjfm58L4h4lJKRwhxMfA4vgXhTVLKFUKILxaevwF4BN+6cD2+feFnt7fvWx3TW8HCJxbzwzN/jlnwZe5s7uK1J17nV0/+jDmHzXo3h4ahjx3VrKoqP/3Mt7ni/Et3qaN4eyiLlfLRo8ZuSpxz2CxuXfNnHrnxCVrXt1MzvopJcyYw5/DZVI3buSCNtwtXX3At2eRQs6mZNbFNmz9/52bGzxznz9S38p5WVZWSipJ3eqhvGdFQhPt+ciNn/OTCYmOM7ThceeHlfP/mq2GYdnwQQihvexPnm4WUkq9d9yP++sg/URQFVVHRVY2nrr6D/abOebeHtwf/A1BVdUyN+KDDyj777DNCMzqciCuKwqkHH8+pBx8/av+bH7+T8mjcd6OwHPKezfruzex/3L68cO/LVJeUY2FhCwdX8bClA9IjEUuBKgh4BqpQ6VT7EKrAc72CDZ2CjoqHh+nY6BEdo0dnS3UnW6o7KeuOkQ3lScVz/rkNiXAEAcvAkB6ZsInUPNAkGTvHmQedzDn7f4hrvnQDwYxCvZekRXZi4yCk4hsjSt+n2kirbJjehpQSxRFoji/JUVDABsUQ2J5D1AyTNkY28KuWQm1bGSEryObJXViqTSaSQ0il4FEusModPFViGja6o6F4fuCNE/DQsyqhXNCvOgvfCcTUbFzdI2DqCE8Q6w8SzAXG1HIPf2y4H/e2nEbEmEcZtr8ANaAg88MlLcPP5/9PbxMIS2HR40t91yghUE0FPexPrIQnkKqEHbQpeK6HgkJZTSl6QCdaWkvrxg48XIShorsKXeUJSnujeLpEuiAKAZeGpZEPWmiuinAFmuvbWWY0f0W8uzrhS4aESzgeJuNmmTNpJrcu+g/xWAn9m/vRMgoD4RRT2uvpiSZwFI99S2ZxyPi9eaDncfSAQTASoHFOPW5GMu2AyaxdtIGsl8IUJqqhIl2/GVZRFfSABggi8TCKpjDQk8I2HTRdxcxagKS8ppS+9v7t35jtQAhBPB5H13UOOOAAHMehr6+P1tZWkskkkUik2PQ5mCWQzWZ3SZrS19fHueeeS1NTExMnTuSuu+4qVue3GksTkMIX/zhSygMLj5cDd+IbkTQB50gpd3jRu8X2oGDb8shWj90w7GcJjCnCHWvftxsDvUkyA1lqJ1YXtUYv3Pcy133zb77GaeT4yGdN/vT1v3D9gt+9k8PcZQjxzlnJVdZX8OkffuwdOdfOIpfJs3HpplGPe67HKw8v5HO/OJ9/XnnPKCKuqAqHnnrQOzXM3Yrj9j+Cjjtf57HX5pMz85x4wFFUl1WybNNqbn3qHix7SECuqxqnHXbiTuvr+pL9bGzfzMTaxrctPGo4Hnj5CW567E7y1sgJxKk/OJ8t/1z4jvqU78H/JraWpniex5o1a8Z0WAFGhQNtC47rYlsWAoGqaqhS4noup37hJFRdRXlG5e/efViajaIqBBSDdC5TdOawPYcQAYT0deiu4hZcTAABlUoZakChvqaWDb1NfmCLIuipHsDSbFRHIR+ykcJ3HZFmgJJcBEMPkDaypLuzxNvCrHpwOT/IvYGdtxCqQt2GCjpn92KrTkH/rhD0dEpSUTaP70LPqb4Nn5SYYb86L6VElQp6UMd1PRxpY+Q1LMOvrGu2iu6oKKg0Te4g1h9mn/WT0RyFVEmOzpp+MMCM2rQf1EflshJkHsyQhYgJsH0NfTGmXhbIsvAJvMBvBHU1WaxObw2JBFG4f3LsbYqv8XaeA7A0uxAV77d3bnN7F7pW9wxV3IctFYRyBm7I1/1HYmFSLSmGJcOPiVAsyOS5EwlHQrz84EKEC6pUUYRCW10PnZX9xBIhcCGvmBhSR8GXvQgpcDTXL186KgPxDAJIlmTpr0qjmyp22CFhJjmifhaXn/MVPnbVxaSbUjimg2ZoyJwkTIhzag9Hr9NZ39/MYy8+R+mUEpY9vpLSmjidm7qx0zal1XG6Nvdgmw7R0gie51FSHiMYDdLT2su4afWU1ZZRWlnClrWtZAYyWDkLM2siPQ/P9XBdybgZu8fEQAiBruvU1NRQU1ODlJJMJkNvby8rV66kqamJ+fPno6rqTstYAK688kqOO+44LrvsMq688kquvPJKrrrqqm1tfoyUsmerxy4DnpZSXimEuKzw7+/u6Lzvvv/YO4hUf5qff/LXLH56CaqqEIwG+dZfLiEQMvjZx3+NmRtdQRzE+jc2voMj3YM3A1VTt1ntNYIGtROq+fGd3+Xnn/y1H1kvJaFokF88+GMCof9d+UMkFOasIz804rFfXfQDFqx5g43tm7Ecm4CmU1tezXWX/GKHx3Ndl0v++ANuevwuArqBZVt8/Ngz+PM3rhrToWd34c8P3TamdWYqm+a1tUuYN3O/t+3ce/C/gx1JUyzLby40TZMlS5ZQWVk5psPKjo41CNu2OWj8HB5e8izlsVL6+hPU1tQwb+Z+6IbOaV88hekfmsbzv3qDcCCIqqqsaF6LFBBWg9i2gy0cbOkwPlBLjzNAhizCFaBBpV4GNmiGjqFqBPUArnBwpcRRHWzdwTb8yvEg8gGLUjWKmlWIiQjTVtST78yTV/K4jk88pOOh9QrmLp1K7/g0iYoUSZnBxiYRS5MPWgSzBiFTRSLQFI0KM0qPkUAYfpUz5Bik7Ry+OYsgnAugu77ndGddH4apMXPleHTXLwBV9OporkqqNEesJczqvTfTsV8vhqUjHY9QNsj4lmo/8VEtEPCC1N1P1PTDajzVwzW8EWS38IoBfiy74glEgcy/lTU+w9WRQpIPmYTyAb/yvA2MIHXDxmXnCv0BriSVSBVdbAKRAGZmbF6RSWRZ9uwKHMvxQ3kKk0LP8QhkdWaumQASdGtkcU0gCOUNvIIzih122DK5C830P5s1U8UyHA58bSYN+9Zx6iEn8PLqRdSX1LDQaiMeiGG5NrigdMMbrGQNm5HCY+XiTUxrnMQRh87l8eeepZt+Ju41jqYNzfS09BCMhshn81h5m0wiy8S9J5BPm6xesI7Sqjg1E6qomVhFMBygYXo9y/67kmRP0ndv8Vwm7zNx1H2QUuLYLpq+7e/vHUEIQTQaJRqNMmHCBKZMmYJpmjz77LPMmzePiRMn8qlPfYqzz96+u9b999/Ps88+C8D555/P0UcfvT0iPhZOB44u/HwL8Cx7iPhIfP+0n7JqwVocy8EG8lmTn338V9ROrNkuCQeIlb/3dUbvdxgBnUM/PI+XH1yIYw9VvY2gwYc+dyIAh546j3u7bmfVq2vQDJ2ZB03bbZVW13XJmjmioci7Lv8ojcZ5/frHeeaNF1netIYZ4yZz4gFH7dSKyZV3/ImbH78L0zYxC/KWf86/l5qyKn5x4WVv25i39sIfhBDKqCr5HuzBWBiUpvT397Ny5Upmzpw5KuJ6VzCoK//KGZ+BXnjo+afxkg4lr+nc1v0vTr3oZGbO81OaFUUp/u7bju1LQMJBVNPGsVxUXSU0LoLX3o/uaITdEA4Olm0TDUf4+pmf497bHsJyLRQEyUgaW/Or0INWgUDRGi5LHk3TCOYNrF7TlyM4Ho7q0tbQSzaSJ5gzmNxRzz77z+K5vgXk0qZPinQJUpKLmKiOgqdJpCYppYTGnlo0QyG5NMWaqVt8vbKnYIdschELzVEh44+joiuO7qh+M2bBRrEkEWHDrDZCLQFKusJMWV+PkOAYHmv3bqHz0CQNizSMLg1PxZ9guPjJmpbh18BdQXQg6LuBDIMvMwFc3wFGKiBM//54ikR4AsXbfnV8VFNmQZ8eHNARin8N24Mc9v/BYwJIRzLiKQlWbnQGyHDYBdcRYMTKTLw3ihuQeMJf3fGQSNVDc33Kpgc0v9orJWbI9l1hChIcT0hUR8V2bZ5lIYtvWUswHMB1PKJumKSdRskKZjVPIGgZrK3aQj6ZpyJeyriqOha/sZRNVhNbStrxXI+WbBdlbgmNXiVmJo+i+640nvTYsrqFWFmEfMYPukp0D/Dlaz7HG/OX8srDiwiGA4Qm1ZBNZiirLuXp25/j3O98pHidnc3dPHDdIyS6BiivK+O0L3+QqnFv/vd1ECUlJZx77rn86U9/4vXXX2f9+vV0dXXtcL/Ozk7q6uoAqKur294+EnhCCCGBPxfMRABqBpM1C32Q1Tsz3vfNWu+Wta2sXbR+lCzBylu0rhvTqKWIQDjAed/+yHa32YP3Br71l0uYMLuRUDRIKBokEA4w9+g5fGqYjEY3dPY5cg6zD56xW0i467r84OarKT1zNuUfmcO4jx3Inc8+8JaP+1ahKArH738kX//I5zhl3rE7LVv61d3Xj/AmB8hbFr+/70aklNz57AMc8fUz2eei4/npP35HMpPaLeP9xLFnjghPGYLk4D3V8D3YCSiKQn9/P2vWrGH//fd/SyS8o6ODZcuWsc8++5BszZB6fIAj0/sxZX09sttj2QuruPmHt9O0cjNT6ycya/xUOhM9JNJJdFVD13Qsx8aWDpqmUVVWQXNnK0JVqCyvYN6B+zFhfCM/v/C7rPjnMzT21VC2NkLYCZKLWdiag+7plOQjRXKnSgUDHSTkXBOZl0xsrkW6EulKPOGxdtYWWhu76azpp3lyBy8dspwXkq9RVlZKwNARAj9xsfD1n4nlyIctSspK6CpLsLxkPR2d3ayb1IJp2JiGjadIFOmnPbqOhxN0CeYNVMcXcwxikI9nAjmS8TRT1tUDEleVaKbKtGUNaBGVlpk9EADFFagooENQC5CN5EiX5JBCojkqjjpMZiQ8PNXFUVzfxxz861YkA/FM4QaxzfL4IGEWikBuvY0A4QiUbSU9jth+rObOsbG954Bt+osLBKrpB/EU/+0OfX47plvcP9wXIN4XJZwNEBsIETR1Jm6sIVGeJqlkcHsc6sprCGoBPMdjv4VTmbWwkUgiRHldGZ7moQuV0ppSMgMZTMtmg70FJSXQsxokJD3BfjKBfCG6XvoWhsK3L0wPZHBch8lzJzB+ViOxiignfuY4Ju8zAStvk+pNoeoava19LHxsMbbpyyXNnMW/f3c/Zs6iekIV2WSWf//uAWxr53IAdgaD45w2bRqHH344AMcffzxz5swZ9ef+++/flUMfLqXcHz81/itCiA+8lXG+byriPa29aIY2IpId/DeyHtZGVFCHQ1EVzrz4VD76zTPfiWHuwVtEvKKEv77+e1a+spq2DR1M2XfSbok73x4uu/EXXPfArUX7yLbeTi749bcoi8Y58cCjdtt5WnvauWP+A/SnBzj5oKM5fK+DipX3RHqALd1tTKxpJBZ+awEGA9sg1pl8jm9c/xP+9ui/ihKSda2buP2Ze3n9+scJB0Nv6byfPuFsbn3q37y+bhnpfBZd09FVjVu+c81OOaf0DPTx3b/9nH8//yiqovDxY87g5xd8l2gowuOvPcsDLz9JPBLjMyeew8zxU9/SWPfg3cO2Vptc12XTpk1YlsVhhx22S/0yg1/Ygz+vXbuWTCbDQQcdhK7rtG/sAClJ9qTQDI1AwMDK+98lK15axcTZ47n2S1fw9yfuYkN7M6cdegKPLpjPxrZmXN3l5HnHcFTlPH780O8wDJ1p4yejaSp6QCcYMLj7/ge5df49bCxtYiDoJ2yCQM/50emGXdBoIxCKwMj4KZamYfPGxHVM8Gqp6oqTC1mkYjks3fY12J7A0hz68kka68ah9WrkbBOkX2XVbRVXkRiORnW8gi1rWrFUm82TOgnkDURI+PpxwyZg6diGjeoqhN0gGXL0V6QY11I1ogqdD/rVUU/6toqO4peYXc1Ft1SUhGDcpkoIA4pAjWtQDyw1iSphHG1okoAmhrTWQtBR14fmKJT1lyA8sFUXLyDpmNTHprpOQkaA6c+MQxnY6j1TuG/Sk3ieN1IHPsyEZeq8yaz97/rR7zldgMs2g+xGvJeG2yruvDx59DmH2SqO9Y63LQcB6IbGjM3jsRwLia+zV6RCR10fSEkmkcHMmQx0JJEByfT9p9K0YjN23qaqoZI5lTNYlFqOHtYY6E9hZU1wR1b8PdsDHYSjEAgGKNjsF4i5QNNV+rsSlNaXsKV9M5VVlRz3yaNY/uJq8DykKpG2xHMla15bz5zDZ5HsSZLL5Kls8CfLJZUl9LT0kupLUV47ukES2Kl+jkFYloVhjDa4eOqpp7a5T01NDe3t7dTV1dHe3k519dgFbSllW+HvLiHEvfgJ8/8FOoUQdYVqeB2w4zI87yMiPnmficWZ2HDoAZ3DzziEZ+96YVS1HHzd8Ue++uF3XWqwBzsPIQR7HTqLvQ59+11u8lae6x64haw5UlaRNXP85Nbf7jYi/uDLT3Luz7+E53lYts01//kbHzr4OP7x3Wv56nU/4pbH78bQdWzH4ZIzPsuVn/vem3rPWva2l1KFENzw0G1FuQpA3jJp6WnnH0/9my+c+sk3dW2DMHSD+b+6iwdfeZJHFzxDVWklF5x8LpPrJuzUuA/56mls7motptD+9dF/8vyKBTRW1vPskpdI57Noqsbv77uJ6y75BZ856Zy3NN49eO8gm82yZMkSqqur0TRtl0j4oDZXCIFlWSxdupTS0lL222+/4u9QWU2p3xyoiKKmVQhBy9o2Fj25hFnzZvDUbc/SsqyZxsYqjv3sIex/6gxi1aVsXL8Rvcng5VsXcoAxm5e9N1idW0d5QxlhJ8i///QgL/EGtm2TimdQUAjngpgBi2zEJJoTaK5GKBcgUhLBczwGRArNUVE9FReX5skdlKklePlBGYsAAYoqUDVf053MpZg1YToL17zhp246KuFMkIGyNKZqs2rzOhTFbwKUQiIVCOQ0zJADQqIYCnOSU6m0ylgQXoYrPKygTcu4bhpaKwvabsmaWZtBChRb+GE+isCfE3hIAYmeASalahBZkKbETdvQToHMC3+VskBgNVPxK9/Co6Wxh+5xCTzFI7gygGL7VoepsizdZQNgSRRNxcHBGIvaFCQ+QlcQcfB6PN+jXApfkhKEaGDsMDoloOAeIvCedxF5P5xIFI7pqi66q+/8m3Ws92BhkuD/g202eQ4n+Z7joahKIVQHPEWSD1m+s4qtEc4EEChIHXK5PAPZJA2bKlnVvgZFVYpSkin6OMpmltIe7sZtdZm4ppbOqn7SsSyarfkTKFsjnDUIhAwqGyvIDmSJxCOU18Tp3NJLPp1j4qwJfOpH56IGFXp7e+nL9xEo1enf0g8CSqvKqGmsJFsIOQpFgyD9tGtN14r8LBgJjn3x+Br9tzPM57TTTuOWW27hsssu45ZbbuH0008ftY0QIgIoUspU4ecTgZ8Wnn4AOB+4svD3TpXZ3zfSlHhFCR/56mkEw1tV1gSc9oVT2PcDe425n6ZrvDF/2Tswwj34X0NzZwuvrHp9m89vaG/eLefJmTk+/suLyZl5TNtCIsnkszz86tN87Bdf4R9P/pu8bZLMpslZef54/9+55j9/e1Pn0lSNwDZsMiPBMIY++gsnm8/x2ML5b+p8W0NVVc44/GT+/I2r+dlnv7NTJBzg3hcfo7O/u0jCAUzbYs2WDTy5+HnShQq+4zrkzDxf/v33GMgkd8uY9+DdRXd3N6+//jqzZ8+moaFhh8maW2PQaSWVSrFw4ULGjx/P1KlTR0xk9z5yNgeeOJdQNIRjuuQzefKZPK7r0t+Z4Edn/pwl/12OpmusW7qeGy+7jQPm7M+BM+dS4kZ4/p6XKK0q4aC6fTij8njKM3HqQ9WEmnSWG+sJGUEiwbBPZpHYwiGSC6J6CoatM66ziqPW78/tX7yGs4MnoqNhKDqKqqApfvCaPsEgHosStAP+N7vm+4bLvIcxoCI7XJLJJDWigmg+TMgOko9YDIbCeK6HZTh4igTPJ+R2wCWU1gmbQfbrmU6FVkaaDF5QoqMRcUJIXeJqHo7m4AmPKesaCGd0ZnQ0IoXfhKnZCoatsXFymx/Y0+chc3KoYuwNk47Isfy+BbmwiSNccgGLZXtvZN2MVtbM3sL6aa0gJCW9EWpfKUFNjU1rpJRIDzAlTspFlCl4vkAcEVOYfcgs1i0a7boFkC9xYJ1EtZSC/saXxEgBmqshR4hQdlwAUTVlxGaBUMB/bPByC4fZlh3jcHiuxJUutuGgm/6ETXVUUpEsczomE1ANFENh4pY6YpuDSM+vpls5myn7TebYc45kXHMlU5+tY/ILtVQMxJmyrp7y3hIUTxBLhpm+ehxBPUgwEqBuUg0z5k1HKIK+rgEi8TD7HLUXF/7iU0RLI6x6fi2L7l1Kcl2WE845msaZ4xi3dx0lDVESAwPoMRXTNImWRTn63CPoa0/Q09JLonOAEz59DOHYtldWdyUDI5PJ7HK8/WWXXcaTTz7JtGnTePLJJ7nsMr8nqq2tDSHEoLtfDfCCEGIJsAB4WEr5WOG5K4EThBDrgBMK/94h3jcVcYCLrvwMZdWl/Pm7NxeXmFzb5Tsn/4h5pxzox7JutfQkBETi783I9j14d7ChrYmzrriItS0bEUKQ20Yj4dwpY0/udhXPLX0FRYz+csnks9z/0hO43kjikTVz/PruG/jGWZ/f5XMpisJFH/oEf3n49qFoayBoBPj4MWfwr/n3jdpHU1XGVzfs8rl2J97YsIJ0LjPqcdO2xlzO1DWN+W+8xBmHn/xODG8PdiOGS0g2bNhAf38/Bx10EIZhYNv2myLibW1ttLa2su+++4755a0oCp/8wbkcc94HeO7R55l/4wtEYuHisnrT8mbK68rJ5NLEymPYGYfO5h42rG3m5mvuIrU5Rby5k1hplK5AH02xVlqWdZDPmuQdiwq9FMMwEI7wq8+agpAKES/EER1zsZM2oX0irPA2UnVMDcp/BHnpe0lLRfqyy415ckGTut4KVEeQjGVQXJ/I79U8iUhfEAKCiZEqrAaPtkwnHeFedNOXp1iGjae4aJZKOB8gGzbxFI9YbQknBY6gq68TxVTw0gGI+/psRSrUtVTgqC4RM4T0JIGUzoELZ+HIgo5ZeMXUz0kb6lAQeML3UB9tFVhwh5ESz5CFirNHW20PydKsX+VXBIqmYpc7WK6DBOK9Eaaua0ApWPttbWhYJK9CghSoOQWZkyiqwtSDJ+EGPbb0tvmOJyP2A09x6VD7qN9SgfDwZTNyrCTOkX+PCQG6ruN5rp+KrAh0Q8PzPKQnUQ2VYDhAZiC7A3W5f6whviII5ozC/QZP8ShLxAhYGhd/6FMccdoh/PxfvyFv5HFd/1xSShY98TqvPf4642eNo2tLD+n+NAAaKpM21hVPFY6FKKmIoRoq/Z0Jssksia4ktmkTLYtSUhGjt72PFc+vYtkLK4mURmhasZnKhgomz5nI/LufJxgMctiZ8yitL2HFihV4nkfZ5DLO/NaHkKakrKa0+Pu0LewqEd/VinhFRQVPP/30qMfr6+uRUn4QQEq5Edh3rP2llL3ALicavq+IuBCCFa+sHrHs47ke+YzJmoXr0HQVaysirmoqB564/zs80j14p7Fh6SZuuPRGVry8mpKKEs659EzO/Mqpo+Qdjutw1LfOpr23C09uWwAYDoT42We/vVvGpioq21qr3JqED6I3+eaDE371+R/Q2d/DAy8/QUAPYFomnz7+bP548c94cvHzZMyREcOGZvDFUz/1ps+3OzCtYRLRYLhY+R6Eqqg47tj9H8E9iZ3/s7Btm6VLlxKNRjnwwAOLv6c7irjfGp7nkclk8DxvTJ/x4RBCMG5aPfvkZ7PkkRUYAQPN0PBcDwmkUylqy2sxDJ1EaoDmvha+dO3l5MMm7jSXso4YkzbUsXLfJmTeQ7E0QjKApVr0ewOUuFGCGJiajV5ICJ28pp50X4b+yjQvi+XMv2EhQvFXrtD98BglpDGpvY61jVuwFH9FSLc09l89E2WQoKUljnDBBM/y0AIG4xM1OOUOnVV9BE2DQF5noCyN5qqojko0FcIJukxLNWKRw0pYeD0u0pXUuGW01/ehCN9iMGQGEO4wD+7B5lKUwuek/3jA0ocq3yNCeYZCd6QqGSjNIDRBMB1AsSGSDZBJB0hUZpi4uo6KnhiKotBR30dTYwd17RUIQ+A4LgFL82NWdlSZViSBUICNrzXhOf51CG9Qlz30f1f1qG0rQ3hDriuiONqhxM7tu5kPvYdKqmJUjaugZU0b+ZwJQqCqij+xMRRKq+LkM3ksz8HULXRLQ5X+BGP4fVNUxR83PvFWPAUBOIpDPmRhODrSlbx4/6u0b+wkn8mD8PXc9jAZjGPZtK5t87XzgzKtYVIZpZAA6roe0/edwpqFG4iWRiipiBEIB8ilc+i6xsJHF7PypdXoIQMza1LRUMHm1S1IKWmc00BNbTWbV7QyY/9p7H/8/kV3o167l6STJN+XxRImFRUVxUCerfF2E/F3C+8rIg6w+Kk3xjR4723r5SvXfJ4bvn0zmuYnjBkhgysfuQIj8Nb0X//LkFLywJ8f5Z+/vJv+zgRT9p3El39zIXsfsXuqve8FbFnbyiWHf5tc2td559J5/vrdv9O9pYcvXPXZEds+uei/JDPpUSRcVVTikRimbTF3yl786qIfcNCMubtlfB/Y+2DEGBXxSDBMaaSE1t6OUc8dMG2fN32+gBHgzh9cT1tPBxs7NjNj3BSqSv1KxTO/upMzfnwha1s3oikqmqbx90t/x6wJ0970+XYHzj3qNC6/8ZdkzXzxtVEVlYqSMlLZ1CgNvyIUjp17+Lsx1D14i/A8j0WLFjFp0iRqampGPKcoyk43dFmWxZIlS9A0jenTp2+XhA8/93P/eJGu5m76OxNITyJUBUUTqIpGqjeNAA44fi5/evZWbM8mrARRAipd5X1U9JfgqRLF9ccppUS1NOIDYQgLjjj0QCpa4lTVVRJxQ6xuWkPGyNAxtQ9dang9DnpYJ4vF5NYG6ifXMOP4GTz55HM4KYeoDKPqGknS9JUNMHlzA57rYcuCZMsvNiOTHp50mZxqYCCeIR+wkJ4klAkgVYkZsEFIol6IFreDHrWfmlQpUvHorOyntzKJkFAyEPEntPlhwgxRsAgscr3hriojyffgY8MbEy3FxtYdcqE8sd4QUkK8P0YsFaErmaC8J4al+42KVS2lZIw8JckwgbyOJySO6qG7qi8XKdi4FJtJC2NyFQ835EHWRHiQC5rotuYH+2yF5gmdTNpYVyTCI8auiKJtY9HmXYARMrCyo/ttFNXvM9i0tBk95E9KbNP2NfuGRjgWxPM8PFeiegpSA0+VIP0G00h5GJn0J36uNTThVD0FV/jb5MIWQgz5jyd7kqxdtME/z1bUJ5/O47kSKUHXNRRVwXXdEW4uwZjvjR8tDWNmLWJlUSKlEfo7+gsTYIEnPbq29NC0YjOBgvy3pCKG67jEK+NoYYVQJIishJWvrGH/4/f1nYSqqqiqqioG8vT19bFy5Upc16WsrIzy8nLi8XhRF74ryeFvRprybuF9R8Qj8QjpxOglbKEofPCCEznxU8ey9PkVBCNB9j58Nqr2ziRVvldx+y/u4vZf3EU+68svVi9Yy7dP+hHXPPtLZh40/V0e3e7BbT+/c5SbTj5r8p/fP8gnvncO0fjQrHpDezO2O7rp1/VcTj/sJG669De7fXwBI8B/fvxXTvuRPymwXQdVUfjkcR+hrryan95+TXFyKRCEAkF+96Ufv+Xz1lfWUl9ZO+KxibWNvPHnJ9jQ1kQqm2HOpBlva8jPziISCvPy7x/gwt9cyvPLFiCE4Pj9j+Bv3/wVf334n1x113Woip9aJwQ8+LO/Y2xDC78H720oisK8efPekvVoMplk2bJlTJ8+ne7u7p1O33vtiddZ8vRKqidUkexLY2ZMgiGdukm1hGMhjjjzUKrHVTLvgwdwwzfuJKgGcSwbM2/hSY+MyFHaEaGlphvXVlEMP+J+SncDU+sncWjVQWzYsomJVRNwXY916noUTcHVXMj7xM/OO0jdD35x37BYn1yLmCqIuhGCahCkRLUVwvUR1DYVy7QKBNyXZYCHk7YRIYWp0ycT2hyi3evG8VxCGYOkkcEMWyRqs3TH+umOJhBSId2QobalHE942JpDNpInGzFxhcus9ASfqAqJqvlphkZA9yu+hVvrIVHGqBkPVpgl0tePG5JYKkx5bwmO5qHoCq7noTkKFd0leAUXFil8D/KJ62sI5o0inVddpVid9pNMh+rb/nnANCyCWT/pVFLYeJSnoX/8npoBJjTVoHqjPc09PH9SJQReQKLaAj2kEwwFUFWFXGpkAcC1Pfra+vBciW05lFaV4HkSM2cSLY0gdEFHU1eRCEfMoG8ZKfzmYC/p4Zg2WkBH0RU8c+hzXy3YS0ayQRRPFJNLHccl2TN2P4xTIPNWzsIxHeRgVRxZkAD59pSu45HsTaPpOiWVMVRVwbZskn1J7LxDNpklXllC3eRa+tr7UQ2Njk2dVE2oRkoPUED4k45RfXqMDOQZP358sVre1dXFunXrCIVCVFRUoKrqLjVr7iHi71Gc9dXTuPGH/8DMDul69YDOUR89HCNoYAQNDvng/2bc+e6GZdr888q7iyR8EGbW5OYf3c5Vj17xLo1s92L1wnVj2lJphkb7xg6m7TcFKSU/uPlqfnPPn0dopwcRDYY5br+3r8J67H6H0/Kvhfz7+UcYyKQ48YAP8Pv7buJXd98wRMKFoK68mkd/8Q/2mTz7bRsLwJT6iW/r8d8MJtdNYP6v7yZv5RGIouXhT87/Fhee8jGeXPxfYqEoHzr4uLdstbgH7y5UVd0lK7PhaGtro7m5mblz5xKJROjr69tpOcvmVS1omk9upfQIxoIEQwFKq+KsX7yBZy0H3dAZ6EkyZ+IMXsstpXddL47jIFRBMGsQ6QrhOR695Uk0S2VcWw0RK0Rvex8DXUmEIjCzJoFwACOo4zke45061qpNqI6Cq3hoikY0HSSfNTEXW9So5fRXJf3KakAnFowSWmmgaSqq5suzhBB4SqGWq0r2PmYWtdFKPNdFb9WQ4wTPhxaTJYfreuQM0w/zESol3RHqN1cgpKC8r4TSRJSVc5rJRPL0VSTJTrOJJyOQkKiKyoS9Gkn2pEh0JchnTaSUKNt8uYZVzCUE0oYvtXB9Yml4GprjryAIVxQJsaO6OKpLyAwMuhsWqtICYQB2wZYSnzTbqosUHoajE877zhwScDQHIQWu5qJZI0leJpKnvLukSOZHjlrgDVaOFbA1G9AgbyMdSawsOoqIg99c6f/tkcuYVDVWYGYM4rVxelp6kMOsAwcnJwKFXMD0J0taAFmQQynK0BiE8KciigtCFcXJzVh69q1hBA3qJtWQ6EqQ7Euj6SoS38HEzFr+6kPjOMrrSult7WPvD+xFIGyw8qW11E6qoG5yDStfWUu8Ks7kfSfSsrYNy7RRgC2rWzFKdFRbQzM0Dj/jkOJ5+7sSZAaylFbFiZYOFby2rpZns1l6e3tpaWnBsiyEEFRUVIyolm+NPdKU9zDO+vppNK/ewhO3PoMR1HEshzmHz+Kb13/l3R7aew69bb1s67tu/ZKN7+xg3kaMn9nAloKWbThs06JqXCUANz9+J9f8529jkvCgEWBCzTjO3ipmfnejNBrnwlP8YKLlm1Zz29P/ITdMciGlZCCToi+V2O5x1rVs5IaH/kFTZyvH738Enz7+bCKh90ZD8pINK1nftom9J81i+rjJb+oYQWO0/VVjdT0XnHzeWx3eHrxHMKhl3RV4nseaNWvI5/McdNBBRSnKrujKqydU4dgOMl/wopaSYCRA67p2rLxNRX0FiiJ46rZn+fTlHyGRSdLd0o0iFSasqyWWDoOExo4aarrL2TCpjXWz29ggOpjUUU9fWz8f+NihLHpwKWsXr8fK26i6StWqOPmGWjpCvQQsg+k9E9hU0UrP9AQAtW3lRFp0BqZlUXMqlV0l9NsDJGqTNFANa30dshb0ybiXd0kkElTvU87pHz2ZWCjOJf/8MXa7g5JU/CAdQZEUjmurxBMghIeremi2SlVXnMzknO/YUmZQWhEn3Zdhv7334fKbvk7zyi1c942/sW7RBjzXT2Icq+AhRvzsO7goBWmJ5qh4eAW7QIE2LNRGd7RCoBCFJs5hZgsF8jlIQKWQaJ6KkOpWUhloa+ilorcEzVYxDQvD1kEKzKBFy7gugvkAuqeN9AenUMlXBNIDKT0CWcMn/VJiuzb9nYltv5EKovJcKkcmkaFuag1tGzrIJLIjVgiAgiRGokoFT/GQNQKtV6OkKk6qJ0k+Z6Jpmn9/HQ+h+a81CDzHw/NchCJwcMmFTYQrCOcCPmlXhe+64jrUTK9iwt6NLH12BVbOwnU98uk8juWiB3UyAxnKakpRVZXpB05l+oFTMbMWoViI9o2dCCRNy5s58KS5JDoThEvCNM5soG5KLeuXbeCIsw9l2n6TqagrxzZtHvnbkyx68g2ipRHCJWE+/KWTmTCrcfStEoJIJEIkEiEQCJDNZonFYsVqeTAYpKKigoqKCoLBoc/+PdKU9zAUReHSv1zCZ6/4BE0rNlM7sZqGqfXv9rDekyirKUVuY8m2cfq765KxO/HJ753LwsdfH7FK4ioe3RU9fPmv3+PmS3/Lr+66oRjYMxwCwTfPuojLzvvKToXO7C489foLYy6nZ/JZHlv4LEfve9iY+z2+8Fk+csXnsR0b23V4bOF8fnPPX3jtTw9TGo2/3cPeJpKZFKd871O8sWEFmqpiOw4nHXgUd/7g+j0Skj3YJQghRvkNm6bJ0qVLqaioYObMmSOasIcTcSklm1e3kE/nqZ9SS6w8NuLY0w6ZTPX0Kno29BItjZBN5QhGgnQ2ddE4owEhfFmbYzm4fQ53fu86fvyFX7DxhWYGupI40m8cdh2X5gmdDJSlCdoBhCrYPL6DdqWHxtkNRAMxHrvpKWbOm8GWNS1sWNrE4aEDOfULJ/L8v1/iEetZuuMJdFsFCe31fUxeX8e+L0/GDrgsnr4GO+Zf0xbZxbTyBsoHSlBVDSufY92EVl4z18CT84k/FePDxx7Pqtb1aCnf3UQtOBtL4U9gpASBRLc0vJAvzfMU32tcuALWO5jl/ufnYZ/wZUOT5kygqqGS1rXtWHkL07QKTZTbeN0KspHhrZJFJxJFINwhcr11w6eQfiPf4L9VXfVD+sRQm7siRfHngooGr5DguXTfjSD8z/0ZKxup7inFyOtMXTeO7qoE4FelfU4si9fvGA5G3iho0AvRO/78bEgzPhaGPed6Lv3ZJGuCTeQqTKqtUgL20Gfe4JUqUmAGbfKYhFTDj5vXlKLOHPClJNL3Uw/Hwhi6Rl9ngpxqsnpyE1XdZcSSIXIhi2BOB1dBCH/Vo31tJ+mBDJZpUTmhgr62fhzLRg/qqKpC95Yecqk8FQ3lVNSVkUvnyWdM2jd1YQR1QrEQ6USGN55ZRi5jotsuCx5ZTEVDOZqhMeOAqZTVlGKbNrf+5A5efmghRsigvzPBpL0n8uhfn+Tzv/pMYRIxNlzXRdM0KisrqaysREpJLpejt7eX1atXY9s2paWldHd3k0wmqa/feW7X19fHueeeS1NTExMnTuSuu+6irGxksJAQYgZw57CHJgM/klJeI4T4CfB5oLvw3PeklI+wE3jfEfFBVNSVU1FX/m4P4z2NYDjIGV85lfuve3iEPCUQDvCZKz7xLo5s92LGgdP46X++xxXnX0WmK4MnJO31vWyY3sbGFzuoKPkZPQO9Y+4b0A0uOeOzbzrN8rklL/ON63/CsqbVVJSU891zv8TXP/L5HYbxlEXj6Ko2qkIf0A0qSsZOJfM8j09f/fURE4qsmaOlu41f3XU9P7/gsjd1DbsDX/r993ht3dIRgUKPv/YcP//n77ni/EvftXHtwf8eBon1IBEfGBhg+fLlTJ8+naqqqlHbWzmbga4UFWUV3P2b+3j9mWUoqsAI6hxz3gdI9acpq45TO6eaVCbJBT//BH0t/VRWVJEZyJDqz/D8f16idV07y55f6TdHmjYta1pRFIWTPn4Mf/3vP3DtkSw0Gc/4VV1NQVVVTGHDOH8S0deRoLy2jE3LNtGytp1ILIRr2bz88AIO/uT+PP3AAtSNw6z6PBiIZ6hLVNBS0YWp2hiWXiCXLm0T+yhdEiWfyNNVnWCgNI3h6iChX0vy6CPPYJRqOIqL6vrH0xxf/iMVSUdNHzNWN/pNgZaLp0p6qgYQri+B8JIePaIf70CVqXP9lSzX9di4vJl0Io0o6IwHMayvcaumzcFHQS0QcyHwfdGLt29YVVrg67SlgqcWLIlDkqhqIIWNJzxc4RW9vgf3l0IipIJUPXJhC2lIdFujsitORX8J4KeCKq5KXUeFL3GW/vgc1cM2HBzFJZINMnLKUJCCiEE9/o7huR6tK9opdaJU2nE/+GjEVfowdZvWib1MXVNPLp/HytuES0KES8JkU1lsz8FUbAJSQ9MUsokMMhbCCOmsrmmisqeUkoSfXCoAV1VRXKXQXKqT7k2T7EujKIK+ln7cwgQsGDXwXN/qOT2Q4YizDmHqfpPpbukh2Zuip7WXYCRArCxK7YQqLNPB8yRW3sYybdo3dCA04bu2ABuWNNGytpVwLEQoFsLK23Rs7KBhWj1m1tyuj/jWzZpCCMLhMOFwmMbGRt/Xv7+fP/7xjzz99NNUVVVhWRYnn3wyEydO3O7rcOWVV3Lcccdx2WWXceWVV3LllVdy1VVXjdhGSrkGmFs4twq0AvcO2+R3Uspfb/dEY+B9S8T3YOdw0VWfIRgNcM9v7yebzlE7oZqLr72IuUft/baeN5fJs/zFlQQjQWYfMmOXkvLeDOaddABLj9lEe0env/xXmJTnrDw3PvYvTjnoGO578fFRbinlJaXUlI3+ct8ZLFj9Oh/8/qeLxLizv5sf/P1X9CUH+L8dWB+eefjJXPzHH4x6XFEUPnHsmWPus7ZlYzGafjhM2+Ke5x9514h4S3cbdz77wCgrxpyV54aHbttDxPdgFLY3UR0k4rqu09rayubNm9lvv/0Ih0fLr15+cAG3X3U3SImu6VimQ8PUWoQQbFrezJ+/czN1k2oZ6BugYXodP7nzcnp6e6gcrzBp0lDY1JR9JvK1Iy/DthxUVaG8vpzFTy/h+E8ezSv/XkQ2lRslpTFMnVzMRFEVbMchWBrg4A8c4Psr15Sy8uXVbFreXGCiMG5mA33dfdTEa5h38H6s3rKBglU3UlB0DXELloKKKnxpiSdAl8TnlqFrGs1dHb7coWDHpzoKGS/LtJZGVtc24eIhhaRhSwWVPaU4QZdAxkDzVBzFJRnP0VM1gCIVopkQrupiBi20gIayVnLln//I7L7JbHh9k2+Lt5UcRQqJVEFxto7tGU7Phx71kCi2/4HsFmz6hraXOLqLq1ps2qsDpVrD0hyiVpBEf5LGTVVU9sSRqh/F7ioemqsiPP/IluHQ0FrB5A215IM2/bVJFIbpqwvjEd7Q+05TVJbMWk9DSxWRzNgpkH71fXjEzxjvV+FX7nMpE9dzi1kRSqHpcvA+uIqHq3k0Te5gclM9ActAD2m4jke6L02sooRkWYZ1E1rwhER1FaatHkeJE8G2HMprSjGjDvWtETxDoggFFxehCcLRENKVlFaXoii+o0uiK4ljO6iaBp7//mmYVsNATxI1oFA+tZT1qzbw718+SCAcIBIPIwTEKmIku/2mUFVXcdM5rLxNIGSgqir3/fERLrr6fKy8hREKIITAtRxUTSGTzFFSGSMY2f6q8uDv9bagqiqVlZVce+21/OhHP2L27Nnk83kuueQS7rjjju1qxu+//36effZZAM4//3yOPvroUUR8KxwHbJBSNm930DuBPUR8D7YLRVH4zI8/wfk/+jiO7Tci7Sz6Ovu55Sf/5KUHFxAuCfORi0/lw188ZYddz4/f+jS/+9J1RRvJYDTIVY9ewdR935xmeKfHm0rgaqPlHpZt86NPfoOnFr9A1swVG59CRpDrv/rLMUnBquZ1vLJqMXUV1Zyw/wfGnEj8+NbfjJK7ZPM5fvvvv/C9j19MKLDtykBJJMYjP7+VM358IbbrFD/m//m9P41yOhlENBTepu94LPTuNLXMf+NFTv3BZ7Y5rmx+tBxoD/Zge9A0Dcuy2LhxI5ZljdCDD0dHUxd3//a+YmDblhUtDPSkSHT2Uzellv7OBK7r0bK+FaRg5fNrufPq/3DUpw7jkRuepH1VJyWVJZzzrTOpbKigZkIV4ZIwiqIQCAdIdA+w4Y0mVjy3Gj2sQT8jJAkTN9WwevZmiPsOFwfNnssHDz6Wnq5uSsqiNK9uGfKolpK2tW0cMHE/orEonznio9x51/3kDdO3HcwZ1LVVgApxO0KH14stHIQmkJpHdXsZmYEUToXrWxRW+NaJruqSD9gormBzpAPp+kmRE5trqOiJ+5ZzOUnKybJm5hb6y1KYQRvD0jAsn/hL4U8qAq06Mggr/7WSHrcDMowg4YNe2wifhG+tuR6+naM6KJ6CDPg6dWH72zqqS6JygMruOEKCrbl4qkcuYpEqzxFUDVSh0iP6UVRBWSKGo/l6d+H6uumBWJZYJoSQglDW8JNEJYSyBsHmClShjqkHB/B0ieO5zFoxgZAZ2GrcoriNcAYbRYdsGYvHK/xlBP1kVCtnI/QCcS/cpEHpjECgeSqqpXDo5r0xsxZaUC0ew5OSRG6AdbNaUFx/20BBKuM6LrlUjl7PI14bwdZcdEfFLdjYCNdvHA1Fg3iuh2YYhKIhBrpT+E4pDoFIADNnYaYsIiVRJs5uZPpeU/n3rx5g5YK16AHNDykK6mxeucWXsWgaya4BnzQHDWon15BOpenr6Ke3rY/6KbUEwgb1U2tpXdtONp1j3PR6TvvSjrnBrvqIT58+naOOOopLLrlkh9t3dnZSV+eHGNXV1dHV1bWjXc4D/rXVYxcLIT4NvAZ8S0q5U4Eee4j4W0SyL8Xz976MmTU5+JQD3rLe/Mnb5nPjD26la0sPtROq+fwvz+eYcz+wm0b75iGE2CUSnk6kuWi/r5HoGfCXZFt7uf7bN7F28Qa+/bevbnO/TSua+d0X/+T/8hcey6ZyXHr8D7in7VY0/e17yx6214E8tfj5UY9PqZ/AvlNms+TPT3DVndfx4oqFTK2fxGXnfZl5M/cbsa3runz66q9x74uPoQgFRVGIh2M899t7RsW1L9+0ZsxxKIqgtaeDqQ2TtjveI/c+mI67XuelFa/huC5HzDlouzr1cVX17DNpFovWLRtBfCPBEJecccF2z/V2wHVdzv3Zl8fU3oM/CTzpoKN2y7l6k/08uei/BHSDkw48eo9ryv/nWL58OXV1dcyaNWub1fOelh6EomAEdNo2dpDPmHieh205NC3fjJn3U1mDkSCGoWPmLf7775fp2NLJ2tc2UFVfRWdzN3/86l/47i1fp6SiBCtvEQgH6NzcRSaRpWlNM67nEiuLkexM4QyTp4SzQeYsmUw2nmfyrAn89Tu/xvM8XNdl88p2NE3FCPjnVVD8Snl1nEwyy/JHVrL/qunka2xCwRD5tVkUTxAZH0W2SaZnx9EyvgdP9ajsjTMpX08qn8Zp9qg2y0hHsvRWJskHbZCSZKkLQhJygtiqw8ChJp+f/WGWPrYcR3FZlnyZRFkKw9KQUmKFC5pkT6GxuQrD0n3ymIPQZoO0TI+630PplmJItTGGjtpTPFAUhKEg8iMlHkHHoDQRxQ466JaGgqAvnmHTtDYcz8PNuZSrJVR0lRLoU4dELx5IRSI8CDi6PxYNsMSQxzi+3l0G/cZS4Q4jzoVx2tJBc1R0uZ3KbUFK4woP1VOKIUHDbgQSSdbMM1CTocYtQ8mLEcYInuqhOiMlGIqi+gGEtjPivuVU06+uo4LiN+4O6vf1gE4+YzK1Zxwbalsp3RxBkQLDMVBdFel5hKIhomVhEl1JrLyFoio4toOmq0TKwkTjMaobK6idWMOpXzyZ1x5fTCgYIhaPEYoFSPVnMKIaXo9H45w6mpe0ougqlmWjuh4DXUnKG0sJx0IIIahsqODsb57O07c/R7Q0wuR9JnHMxz9AMLTjXqDhkrMdIZvNjmrWPP744+noGJ278fOf/3ynjjkIIYQBnAZcPuzh64H/w391/g/4DbBTX6x7iPhbwMsPL+SKc64EJI7tct23/saHLjyRb7xJB5bBSvBg02D7pk6uuuBaEIJjzjlyN478raF51RbuueZ+tqxtYd8P7M2ZF59KadXIRr+H/vo46UR6hC7SzJo8dft8Pv2j86gZXz3msR/+y2PY1ugkRNuyWfTUGxx8yoG792KG4bdf/BGHfe0Mcma+uFQYNAJcd8kvAN9D+/qv/XK7x/jbo//i/pceH+FmksllOfuKi1h8w+Mjtp01fiotPe2jjuF6HvUVY1e1t4au6Ry176E7tS3APT/6C8d++xw6+7t9X1fH5hPHfoRPn3D2Th9jd+GNDSvIW6PtvcD/4imLxvnV50fLb3YVf37oNr5+/Y/RVc0nAVJy309u5Lj9j3jLx96DdwfbIteJRIKenh4mT57MpEnbn8iW15UhXa+wxJ9B1VXCJX513LZtghEDM2ujKH4znK778eOrXlpLaV0JRlDHCOr0dyRYs2g9ZTWlvPzQAqychaqpVE+o4oX7XirIQCQ1E6ppXT/y9z3g6oSTQdzVNs/f9TKHnTWPzk1dKErB/1p6GCEDO+/3Tix4dBEv3vcqwUiQIAHkRo/Sugh9ARuj1PAbBW1JiR1lr1VRcISfUFkXIGVm0HK+DeCkdXVYuounpFEdlVzE9ENiVJeYiEAA5pw9h2mzpvD4v54mpWfQHN9xJGAbkIeqrlIaWisJ5gxfblKo4OKNrnUPEmJPeIWEyiEy5eENvZ46OGEPkYNctUNws17kwRLPbyR1FPKGhRNy0RyVRHkKA4MpK6oIpwOEskFUT2wVwDNYaXfRbRVPlUSMILY1OhPCdhxWHNlMo1NL2Yuh4nEkstgcOxaKEw1HkomZBNMGruqBUtDbD7qhFO5VLpqnfUYf6c05JmysKcphJJJoMIIWUEkl/AmNcAWp/tTwm1lEieuvZnrCQxMaqhSggKFrRV/woBFkTnoqfVoCxRGUVJSA52GEgux33D4c/dHD+dvl/6B1fRvS83Ad15+gdaeQLtRNqqa7pYfNq7aw8pW1dDZ1kU1mMbN5hCLID3jomk77mm7MrEVpbYxUr4Kq+RO3UDzE+FnjKK/3+/LGzxzHZ/9v1/vMdjXQZ2spylNPPbXN7Wtqamhvb6euro729naqq8fmKAWcAiyWUnYOPjD8ZyHEX4GHdmqg7CHibxq5dI6fnnvlCKcNgAdueJT+7gGuuPvyHTbcbY0bf/CPUcczsyZ/vfyW9wwRX/TUG/zg9P/DMm0812PVK2u4/7qH+cvia6luHNJKvz5/6aiQHADN0Fn3+sYRRHzNa+tYu3gD9ZNrSfQkx7S4khJS/aOrLLsTe0+axevXP8Yv7/gjC1YvYfaEaVx+3sXMnbrzKaI3PHQrma3kFJ70WLVlPZu7WhlfPeQ285NPf4sXViwcQdojwRBfPu0zb1vFtrG6nrV/f54XVyykrbeTeTPmMrF2tGXUOwFN1bZpQTe+qp7XrnuUyvhba6he2byWb1z/E/KWSZ6h363Tf3wBHXe9TvRdkuTswe5HS0sLW7Zsoa6ubqdsy+qn1PHhL53CvX98qJgmOHXuFBxp098xwNlfP4P7//Aw/V39REsjVI2vxMxaROLhYmVbSonnefzjJ3fQtaXbrxbnLCJlYaomlROPl9K0upnKhkoSbQn0oE7LmlZctxCpLilICPL87Xu38pfv/h3bciipiCGlxMwUiKKAaGmE9EAW6UkipREi8TAeLqqhES8vYaA/idPhP68oAlVTfULlSaQQKK7Ak4Px7IrfsOiJEe4erudhehZBQkSCYeZ9ZC6HnT6Pp76xgE3rmiFHwRNcIZ6MEMwFivdhVNPiMFkGBTcRgiBV0GwFx3FxhEuiLM36GS0orsL4TVWk4jmskI1UYHpHIwFTH9HEOUhmB6l+IGcwfkkNwcIEQZWjK6aDeT1S8fdTUXA8F09IlGGE3dIdPN0jrWZJ9aeIhgwcXII53Q/IkYNBPmOHE4Gv6W5t6KGxqRrD1FCkwCtOTWThZ7AMBz2nE8j6ExlNVXFdf7Jh52361ASapuKp+DaZZgCF0badTsZhxuZGNs3swHMl+XqHxp5q4tUlxfBCPaAz0DWAaouiNjtaGsF1Xeom1zB5v4mEYkEq6spp39RBMBoq2h4iJen+NH0dCf70tb/h2A523td2e55H5bgKguEgZdWlDHQPIIB0b44Js8cDHqmBDJMPbmTa0ZPo7e2hvLx8p1Jsx7y3uyBNSafTxGKxHW9YwGmnncYtt9zCZZddxi233MLpp5++vc0/xlayFCFEnZRycKZ9JrB8Z8+9h4i/SSx4bNE2ifZL97/KSw8u4PDTDt7p40kp6d7SM+Zznc071Cq9I5BScvWF145wULHyNo7tcvOPbuO7N3+j+Pi4afUsevIN/4tgGDzXo7qxsrCvxeWnXsHKV1YjJSiqH4MbDAdGhQg5lsPco4caRJe9sIKbf3w7zau2MHGv8Vzw00+y16Gz3vI1Tm2YxI3fevPpmDnTHPNxVVHIWyOfO2yvA7nvJzfy9et/zKrN6ymLxbn07C9w2XkXv+nz7wyEEBwxZ97beo6dwT6TZ1Eai5PeqoE0Egzz0898+y2TcIBbn7xnzCRURQgeeuUpzjtmux+2e/A/AM/zWLVqFY7jMG/ePJqbm3Gc0atqY+GYc49k2kGTef7hF1lwz+v0dHaj6waTZ0/gqLMOY98jZ3P9N28im8xi5WzO+vqHkQr84//uQFp+zkJpVZwVL60iXBLGdVwsyyY7kKNrQw+bs21YpsUXfvMZ9jpwNr+68PcAtKxtw3VcPK/gRS09cum8r9UNaPR3Jvy0wbKoL0fI5DELkekCvxAUjUeomVBDzdRK1i7YiGoreJqCZ3ng+QR/kCv2dfbhuR5SkYUmTajqipOKZ5GKnwjp6NK39NMlNWVVzGqcCvgNcNdf8gs++v0vkLRTSCmJJUNU9JQgFJCF4/WVp4gno37l2NmKWigSV5ckyzJEUiFi5UHSiQwODj1V/Tiah9Qc1s5q9dMufTk3rQ09jG+uRi3ouwWFuHqPIhF2dBfVVrBUh6AcWz4pwgJTtfFsl0w0T0VvCZ7tFl1lXCHxVL963FfrV55ltuBDrjKiui4QOIoLnkBhDNIvBVE3RLYyT6AlVtCKKwUnlaGpSqw/QumCWFGjPtxVRgkrfpMt/nVKAa7moaHj2e7IfA8Jkc4gJ40/HKVM5dO/PZctr7Xw6I1PIT1/oti9pccP/FEECEE2lUNRFWonVnP0uUew4NFFNK/YTKo/g2M7xZXsYNQP9Nm0fIsfrJPKgvSJvWu6CAFGQKd6fBVlNXHaN3Ri5S3yWYtwLISiCM7+9hmEawPU1tTS1dFFc3MzqqoWvb8jkchOFy13hYgP+o3vLC677DLOOeccbrzxRsaPH8/dd98N+AFgn/vc53jkEd+JUAgRBk4AvrDVIa4WQszFn4U2jfH8NrGHiL9JuK63zVhk13F5+K+P7xIRH9RO9bSOtsmrGf/mXDl2N/o6+kl0JUY97rkerz66aMRjZ3zlVB7+2xMjiLima4ybVs+0/aYAcNsv7mL5i6uw8kOV80H7oqCAfMYnrsFIwG+Iqq8AYOETi/nhmT8vrh70tfez4qXV/OLBH7H/sfvu1mveVZx79Ie5+q7rR5Hu0kicaWNovk888ChW3vjsKN/j9wOEENx/xU0c9+1zcTwX27FRFZVTDz6OTx73kbd07J6BPq5/8Bb++cx9OGOEtXhSjukgswf/Gxj84s7n8yxZsoSamhomTJiAEGKXAnrAt7KdPG8C8YYYqeYs6xduIhwL8doTr3PkRw7lR3d9h76OBJF4mFhZlP6efg75yP6ops6kfSYSjoVZ+cpqwPeEVhUF23LYsrbND1gRgh+fdhV1E2vo6+zHc/xiRNeWbhzLRVGEX2GXfrHDtf3qvKIpuI6L9DzfRrDwx3M9PFdi5iwqx1VQXVvNGnsDkVgEJ+iQ6kv7bikuoAvUgIqbcnxCOYzwVHWX4moe7Q29KJ5CeWeMQF4nZkQZn6sin84TLgnjeR6v3fU6s18dTzf9KI5CyUDEt/fTBK7n0dbQS+v4bho31VDbUT7C/8Q1JJlQHkdz6azvpT5Yjbo+jRt12VLZTV9lyo9kdzVKEzEUV5AoT5EP2rSO72HclipUt+C2IiTSg2jWXzF0NJdBy8CtHa2GIy9sXM9Fd1XiA1EcxUN3VX9FQhUIIekvT2JGHDJlOcIySEkigpHTCvX8YdV4JLqnkgtYaJ6CZo8MCWpv6KM+X4W6edhqAD5BtzUbzdHwVN+ZRpEC4fkhS4o3rOGzWpDxTCraYr5Fo/QQKkyfO4VVr6z132t4mEELRSokatJoawyCaoDEhgQzD57OYzc/RTaVK64wS+E7pmi6ilAU9jt2Xz75w3N48T+vcPdv7yeXziOl9FdSCkQ8l8qhaiqKqhaq4yA9iWZoBMMBcukcekD335uepHFmA+F4CMdyOPKsw5gwu5GS2igvPvwKTz7/HI7tMn7WOE78zDFkrSxNTU1kMhni8TgVFRWUlZVtt1q+q0R8LKekbaGiooKnn3561OP19fVFEg4gpcwCFVtvJ6X81E6fbCvsIeJvEgeduP+IGezWsMzRsowd4cKffYprvnL9CHlKIBzgc784/02N8c1g/ZKN/POXd9O0cjMzD5rOxy87m3HTfDlFMBJEenLM/SLxkUv8jdMb+PkDP+Tqz15DoieJdD32PXpvvn/bpcUvgweuf2QECYdC7G86zyV/+AIv3Psy4ZIwp33hFA44fm5xmz9+7S9jSnj+9I2/cuOSP77VW/CWcOlHv8g9zz9Cc2cLmXyWgG6gqRq3Xf777c76328kfBD7T9ub1jsWcd9Lj9HR20Uql+GF5Qs4/ccX8IUPfZIPHXzcLku8mjtbOPDLp5DOZ0dNiAbhei4nHbh7GkH34N1Bf38/K1euZObMmVRUDH0v7ioR7+zsJJVKsd8B+/HHm/+KlbfIJLPc+/sHyaZynPLZ46md6Evp0okMf7zkr2xZ10I0FqN5dQuf/+X5RMuiJLoHCIYCKKoK0q8qqpqK9CSZ/gwbBjYhFIHneiS6B4ZIlyfRdBXb9Kv4XuF7xbF8dyZF83XdI4oahkq8qoQDTtwP27TRNBXbcgiGAnhxiee5lE4sJdWRItVbkPQVos8H3TmCoQATBuqYkKrzY8NdX1uslWgI4XHvHx7io5eewY0P38FjNz2O2+9SQbw4YQDwbP/v9nG9hDNByvtjWIYFQhS12Ev23VCUklRlSgnsHaLx5EksWP06HZ19SEdi2Bpzlk5Ct31K0rilmlV7N5GJmlhBB1tzEAJcVRJJB3FUF1fz0C2NqWvHkQ9bBR32aP9tANUVSCGwdV9XrnnDGiHxSXI2auFMgLJYOaUvBzGSGlIDxR4i4cP/zpbkiPVHRjijeMKjoaUCVQo8vKETFCQtfZUpKvtKsTS/2XTwaVf1UApjEopANjvEasIorgATn0DPCeDaHuFYiHQqgxWwEVKQiKfpj6Roq+xh4pY6br3iDjRDw8yaI2We0p+IhaIhpuw7iYv/8DnuvfZhnvzHMyR7kji262uwtQLpBlRdw87bKJpHuCSMYzk4loOZNVFVf5u9DpvF3GPm8MQt85GepKQyxkcvPaOY07L69TUsuH8xE6Y2ohkaW1a38t+7X+bDXzyZuro6PM8jmUzS29tLU1MTmqYVq+XhcHjE5/+uNGvuip783cYeIv4mESuL8vU/fYlff/4Po54LRoIc/4ljdvmYJ3/meIQQ3PTD2+hu6aF6fCWf+/mnOfa8d8Y15fX5S7n81Cuw8hbSkzSv3MKzdz3P71+4mqn7TiZSEuagkw9gwWOLcIY1VAbDAc7+2mmjjnfAcXO5o/lmult6CEaClAxLqWvf1MFAT3LMcQgBx33sKE7/4gdHPSelZPOaljH3a1qxeVcvebcjFo6y+LpHueu5B5m/5CUmVI/jgpPPo7F6T3rrthAOhjj3qNM44bsfY8Ga14sa+/lvvMTnP/hxfveln+zS8b7z15/Tlx4Yc8VqsAH3+x+/hHFVe16T/1UkEgnWrFnD/vvvTyg0sp9C0zTMbUjEhmN45H0kEmHzihayySyV43xSbwR1Xrz3FU757PHFfebf8V96WvuIVkQoLy+lr72fO353D8dddCSvP7CM/s4B6ibX0LyqBdd20XS1KLOTUqKqapFoB6MBFFUhm8wVSfjWsE0bLP87xQjqpPrSIMHMWeQzeVa/ugbpQbw6zsYlTf7Kmqow/YCppPrS5PrzMEyZJV2fhJdPLGPOgbPp7+gnk8yRHEjS35NADWlgSvJdJo/d/DSLX1pKc18LTqddJJNbQwhBfCCC5vi2ep4GFCrXnpB+LL2AXMCkuaqTjtW9rGhfjxEqyEgUqGkvR7c1HN2fbKiOyrimatbv00q+zCTeG8UTHmpBBuNpkoBZ2F+AZqtkSnLkKyxq2suLundPkUhVokzWWVa9nqlL69FToRFSEz/URlLVV0q2zqI90U1l/0Q8VSI0STAUwkwOvZ8Gcz8VR0Eqg5Vt3318uI58qx0QCNob+ijvK/GdVJSh54sOLYCqKriuR6hVxwrYKJ6C4gm8VTY9lT1+E2VJls0TOpm0sY6SZJiSVASpeGya2k6gzyDaGmCsKYkQgurGSs79zpk8/OfHeeq2+WSTOYyQgcRCmrIwgVRQVJXaCdV0t/biOi75TN7/TPX9NPE8Sd3kWk790slU1JYxc950cpk8sbIo2WSOLWtaiZZF6GntQ+DLWQDKa0vZvHLL0P1XFEpLSyktLWXKlCmYpklvby8bN24kl8uNqJbvLLneVu/RexV7iPhbwIc+dxKe53HtxTf4WizXIxQNMvuQmZzwiaPf1DFPOv84Tjr/OF9XJgTdLT389fK/s/6NTcycN53Tv/RBymvLdu+FFPC7L/1pRKV5sDp93Tdv5LdP+/Y+l9/yDS7/8E9Zt3hDoYpjc8Knj+XDXzxlzGP6v/hD0prWDe08eMMj/Pc/L29zHI0zxhGNj91EJ4SgpDxGsjc16rl4VclOXefWyKVz3Punh3j2rhcIR0OccfGpHHX24btciR1EwAjwqRPO5lMFJ5K8lSedy+xpDNwOHnr1KRauXTKi0TWTz3LDQ//gkjM+O8r6cXt4ctF/xyThAsFnTz6Hiz74iVG2k3vwv4V4PM5BBx005pfyzlTELctiyZIlVFRUMGPGDOY/+SytrzUx0JskVh4lEA4USe1w9HUkMAI6jrSRUtLT1cvmda00TmtAN3Quv/UbBKNBfnLWlXS39ODYcogUDNMH4/fAoRnaVqmRwyD896xQBeFokPSAL6VSNAVVVUj2pFi9YC3BSJD+jgSBsIGqq6iqSk9bL8neFO7WDlQKqAGVyXMmkEwPkMlmCEQDTKofj/eGh2Zo9Pb3gSZRYiGaFm8mn81v0ykE4ROpSRvq6C0bAOkHCWmahmoKLN1BdVVKEmFKiTJQlmGgJI1nW6ieX+lH4LuRDB0SqXjojkZJMIp3iEZkSQSzw8S1XRzNRRkMMmKwouxi5HWW7b+JUDZAOBNEqhJPlQQ8nZLaGNGyCJsndjF76YRRFFWRgkh/kPBLARLTkr5WXkpcPLJ2DpWhECGJnzYqBztA2convPAaeY5XbMyUSPrLUqhhFaZpRNapWNLGVTyEwG+aHbZCgiislJhDLi3SlmwZaKfEjqBFVOIDEXRbwzL8HAnVUajbUklrXTfTt4xjrBetZkIVl9/+TR7/+zP0tfsW12beQrqF6yq8HsFIkFAshBEyiMYjmKZFPp0nVhZDFJ5XNYVL/34JJRVRLMtCNVQybRnuvfZBljy7gpLKGOGSMJP2bfRdbwqcJjOQpbQ6PmpsgwgEAtTX11NfX4/neQwMDNDb28umTZvIZrO0tLQUq+XbgxDiTX+Hv9PYQ8R3Aj1tvWxc1kTtxBrGzxg34rkPX3QKB524P4/f+gyJrgQHf/BA5p18wFuWGgghWL9kI1878rvYpo1tObzx7FL+8/sH+NMrvxk1jrHQ297Hw397nM2rW9j7iL048VPHEIqO7cZh5a1R1lqDWPnyquLP0dIof3j+appWbqazuYupcycXl6C2Bddxued393P37+6jt70PIUZ3fg/H2d/YfgPded85i1uv+NeIhs5gOMDHv7vrFnxW3uLLh3yLto0dWAWXlzWL1rH8pVVc/LvP7/LxhqOrv4fP/fbbPPbafKSEuVP24qZLf83ek956U+n/b3hkwTOkc5lRj6uKyvw3XtolIh4JhelPD4x6XNc0/njxzwgaY6fh7cH/DhRF2WZlbEdEPJlMsnz5cqZNm0ZVVRUDPUnuv/oxyEOyN8XyrtWMm16Hqqqc9fWRK33TD5rKoqfeAMOjo6WDRHuScdPrKauOk0vnuekHtzH3mL0RiihWNoVSSLiEojWrQODYNs6A3xfhuKMr4oqqID2JEdCpmVBFZmlzUaebz5i4rkvQC2KbLo7l4EmJoigoqoKbSPuymK0+ZjVdY9ZBM8j25EAIDj7lQIyozssPvoaZN+nv7Pcr2Z5HU7KF1vpuPEVS3VFKRd8Y5En62+qeRtVAGf1VKeI9EfS8irQlUpfMXN7o65wVj9qOcjZObqOrPsHwim2yKktVdynC84PSdE8lXq1T01RFSmZYVLeabF2eeHcER3GYsbqxILXwnU4Qvvd2OBCiZVIP01Y2IFwwHA00aAl3Ub06juiWWAF7dDMpftMnEho3V9NR309NWxlIcISLp3n+zAmBV2js7KpNMDlTh6u46O5Qk6iiKYSiQaychWO7WJpNOprDCbkcsWof8hkLV7qorkJfQxo7ZhPtDqEPaL5W3hfLFDXkg/CQvre4Iig1Y+Qypt8AWpgGSHybREd1WblPE7biUtFTQjzhT0Bsw0GZGmDhotdo2dhCw5R6qidU0d3S6xcuBt8r0k+2zmdN0ok00XiUUCRIIKgzae+JVI2rZKB7gI5NXax6cS2hUJCy2lI6mjq58+p7WbNwHZqu0dPay4R4mFWvrmX8XuPo2tJTCLsyOPH8Y8f+5dz6d0BRKCsro6zMLz6++uqrKIrC+vXryefzlJaWUlFRQWlp6YjPg8F+iv8V7CHi24Hruvz2C3/iqdvnowd0HMth1iEz+Nl9PyRSMjQbq51Yw/k/+thuP//vvngd2dRQhdDK29imwx+/9heufuyn2913zWvr+MYx3/OthkybF+97hdt/eRd/fu0ayqpLR22vGRq6oY1pORgrH915PHH2eCbOHr9T1/GTc65k4eOLi9X27f2C6AGdg07cf7vHO/fSj5BN5rjnd/cVPssF51x6Jmd9bdcdMJ7+13N0NHUVSTj4X3IP3vAI53zzjBHV/F2B53kcfenZrGttKn7JvrZ2CUd+4yOsv+XF3eII8v8TKkvK0TUNeyu3C0VRKI+V7tKxvnLa+fzfbdeQHWYLaeg6px960h4S/j6ApmnbJOLt7e1s2rSJfffdt+gx/NIDr5JNZJk0cyLldeVsXr0FTdf57E8/zpwjZo/Y/5APHkjL+lYe/fsTqFKjtDpebKYPRYM0r9rCipfXcOAJc+na0s2mZc0M9CSLjidIX6ctELiOh6YXLAaVQiPgsB4c6Xpohs4+R80h2fP/2DvvALnK+ut/ntumz2zv2c2m954QOtJ7EQVEREQEFRURRMXGq6KgPwvNQrEgHaQTek8gBBLS+ybbe5mdPre+f9zdSZbdkIQEVOT8k83cOuXee57vc77nxHBwZQuaTyMZdavj2YGG9sEZIEmSMLIGQhJIkkCShVthHSCtkuQ2gApJ0LixmebNLeSXumErFWPKaFjfjJ7WSfjSrJtS72q7HejPS+JshqLuncj4DoNvVx4iy0ybMon+jf1k2tNIioR3IOXREQ4ZzURYgprGMjorosiShOPY2I5Dd34/0hhBVVMxiiITKAmSyWbJOFmy/VkquwtpmtFFcVeExlGdrJ5Vx8T11WiGggAUW2ZbTRuOZdFbmKKhVmHslgpXomJD6BkVU3bJ6qA2ezC9cmc4khsRXz+2nWQoQ1ljPt6shg149R2BM1F/gjFby1FMORcIJCS3Aqt6VawB9xtZU6iqrkTYDs2NbfRlYkhCYAnXwSbU7mNtcRupKRkivUHKOwuRHIn2oh4qmgqJxHfYcNoDMhjbtBEIInoAW7ER9g7S3p+XIBFI45O82Bmblqpummo60XQFyZZY2bWBFxqXUiry6OvtQw3LaH6VTCLrOuAMfB5ev5dsKouRNYn1xZGEa4fZsK4JI2PQvLmV6imj2Lamnu1r6jnz8tNY9fI6t19BVfCHfOgZnc7GbizHZMIBYznl68fj9XkoqizM+fXvLSRJorKyksrKSizLIhqN0tPTQ11dHV6vN0fKJUnC693ze/2DDz7INddcw4YNG1i2bBnz5o2cVyKEOB64AZCB2x3HuW7g9QLgfmA0rmPKWXuaqgmM4L3zCXJ4+MYneOneV9EzBsn+FNm0zro3NvK7Sz78hkDLstiwbHjyouM4rHxlzW63/9UXf086kXY1hkAmlaW3vY+//viuEdeXJImTvnIc2nvSrTx+D5+9/PS9fwMD2L6ugbefWT6suXIkeHwaB56ygOKqovddT5IkvvyLL/BYz738be0feaz7Hr50zec/0DTU0kXvkEkOD5VRVIW1S9bv9f4G8fzyV4eQ8EHohsHfnrmfh19fxPE/OI8jrzyLfzz34IgVsf8lXHj82Sjy8LqAIsucsGDv+i2u/OxXOf2g4/FqHsKBEH6Pj/kTZnLbd369v073E/wHQ5blYfaFjuOwefNm2traWLBgwZCgj1QsjalbNKxvorWujbziCKMmVjL90KnD7iltbW1ULSjlgj+cwy+f/AlFFQXoGfceO5hzEM4PuoE+o4oxdAvTtFA0Gc2rIisy/rAPj09j3OxaSqqL8QQ8rlPETqRQVmUGK8Zt29oJFYaonlhBYWUBRtbMNdNpPi3392B1GiBcECSYF2DQ3ltIAtWrYVs2Rtagq6kn13iXjqXZtrqeQCSQe150lUQH5CEyiuWSzbbKHY5eg6RzZ42Ht9CHrMooHhnHdJBUCU1yK8XCESiG4hJGy91WEhIOkN8dYvay8VTXl9AfSRIrTJFJZhg3cTR5eXnomoGwBFpMRrVUpqyvpjCex7oZ9bRU9tBXGKd1Ui96vknWMBFCorQzH1u2MTQLR3aQTQk1q+DR1VyVecBNEHDDcMBBsiV6C2M4OAQSHnwZDzhDSThAXizoJnvuJCkJ5gcI5gWIFIQI54f41NmHUVRegJHRSWSSbBvVhiVZGMLEElbOztCb9qBkFWLhJBunN7JxdiOd5VHUwQRQ9ytEtiUyQQMxQSEbNGit7qG1qgfZllAtha7iKLG8JBJu6JFsu64whmqhWAoKMlJSsHjTO8z91CycjETIHwYHPH4NRVPd70WWsC0rV5zTvBq27aBnDFKxFN0t3UyYN5YpB06koCyfeF+CP15+O688sJi6ldvJpnXX1lg3ad/eTndzD5vfrOPZv71EID+A6lOxB5yA9gWDFogTJkxgwYIFjBs3Dtu2+dOf/sQhhxxCLBbj5ZdfRtd3b5wxbdo0Hn74YQ47bNf9eEIIGbgFN8xnCvA5IcTgSP37wIuO44wHXhz4/x7jk4r4++DhGx8f5mdtZA1ef/gNsuksHt/7xNzuIyRJQtXUYa4i4BLW90N/T4yWra3DXrcMi8WPvMkVfxnZp/q0r53I6tfXsX1NPZpPwzIsTrzwmCFSkcaNTSRjKcbOHIPm2X3k/aa3t+yRTMfj0zjxouP46m/2PGpd82qUjS7d4/VHQklV0Y7gi/cgv/SDa/F/dtcNI5LrtJ7h9qfvpaWnPWeft2zTSu556RGe/uVdH3v3FMM0uO/lx7j/1SeI+ENccvJ5HDZjIWMrRvPP793IBb+53H1AOw4Br48nf/GPva5iK7LC3VffTH17E6u3baC2fNT7yoFMy6Sjr4uCUB4+z4cTpPQJ9i/eb9D9XmmKYRisXr2acDjM7Nmzh22bX5ZHX0sUzashhKC7uYcDTxnqsz9I5FOpFPPnz2fZsmUUVxVx3o/P5u5rHyQVTxEIBzjhy8ewbslGwo5DNqOjp7MoioxluhIVIYGRNnBsh87GbkzdRM+44WiyKuE47n160D7OMAxatrTRsqUNIaCstoxgfoBUfwpZVXKpn4rqas29fi+qplAzZRSRogh1K7cR64kjJIE34KW/qx9FVQZ6bFw9sOJxBwHbVtW/hxzt9DkJV98bLA4iZMhEM9imjTNAauWAjFKkkO3OEpmUR3x7HEu3yMoGipAGGK+D1/aQDRtML59IT6yPVFeKyeur3QZH4VDano/hs1AVhdJAEY4JHW2dWMKisCsPAWi6SmV9IVJW0FkSJYaM7FeoTBSz3duGx6PitT3uFAAOQh/04x5spNxJ0y0cDMXCkNxZid6iPlqre1AkhdKeAmzZRsmMLIFyBSTuYEQIgdfvRc8Y/GXlDaiaghCCv/34bravqWd7RxOVGwpRDDdh09AsHBwUW2bs1gqQHDJenbXT69G9BtigWDIZr4EyYLMoHIFZY7OltJlEJIGjO9iSQyLszpobionP8SIw3NkP2fUMFwMzFrbjICsSiiNz5LmHUTu9hnUr15HW06x/dTN6Ojtg/ynhMODSIwnMpIWiyCC7AychSZTUlNDfHaOnrY9VL61G9agEIn4kScI0TJKxFMloEkmTmHXEdIori+ls7GLd4o0cdPqCIdenJEnuAGA3z77dEXe/34/f7+fKK6/khBNO4Dvf+Q7/+te/uPzyy/nRj37EZz6za+nq5Ml7JBddAGx1HGcbgBDiPuA0YP3Av0cMrPcP4BXge3uyU9hHIr4n5XghxCjgTqAMsIFbHce5YWDZNcBXgK6B1a92HGcR/yFI9o/sM+zgdq1/mERcCMGx5x/Js3e+iJHZ0faueTVO+srx77utqg2truyM91a8B/HgHx7j9h/8w43ElSTMrMn515zLeT84C8dxWP/WRq7/0g10NHQiK+4Fc8VfvrlbR5eS6mKQdv3Q9AY8fP13F3HSRcf9W0joKV89gSdufWYIEReSG6Qx8/BpH2ifiXSStzetHHGZEIJt7Y1DSHoyk+KNde/w/PLXOG7+ER/omP8NMC2To646hxVb1pDMpBBC8Ogbz3L1577BDz9/GWceeiInHXAkb65fjlfzsmDirH2ynxpdNmq3qaG3LbqH7912bc7m8MLjz+b3X7sGVdn9IPMT/GdiZ2lKIpFg9erVjBkzhrKyshHXb9nSSn55HmbW9e/OK47kMgxgKJGfNWvWECI/58iZTD1wEoloikhRCMu0SPYladjQhGFYCMA0zJzuWgDIAl/Ym3u+DLpUgMB6bxCRPRABP5CU2batHVmVEJJEtj+V48qSLFFWU0o6lkbzahRWFHDGN0/m2b+9yMv3L0ZiwJ2iJI/upu6Bc3Kr56l4Gtu2SfYnc8+N4o48Okv7MBQrl0pZ3VWKs1AmW2hiPG/jEx7yAiHCBRFCpUHWbdiE7QVlqpcqYxRNLzS5hE62ELaErpkkCjNUekqZXjgNsy3L0o4VSCbYspPTO3sTGtkinVWvryPRmyRgerCwUZMKZrmFd0KAFfIGrIzF2LpyQv1+hCzomhZHKIJENk1nYR9ljfmuk4k19PkjAEtykGyBJbmfgeq40pauij4+5VvI/JPmsGTVEqyUiWTv/rkkJIGZNagcVzakQHXmt0/llm/fTvS1KLbkYMiul7liyq7MRNjYroE43pSHcVsq2TCtAUkIUoEMgYQXYbtpoaZq0aP043N8yFmJhC+NZAkkU3UbPlWJMdkqegvj9GX7ySR0EA6BtI+sargNndhM6h1NJpklq6aZcvAkjjvrWP70nTtY8cIqEn0JLMvG69GQA67bTawnjuk4eAIehBB4fBrbV2+nvaGLWFcMPWvgD/vwBb2k4mnChUEKK/Lp6uymfFQpxZWudEvRFMysicfjyVXEbdvOXauWZeUI+UhcYG88xAFqamq4+eabcRxnjwO+doNKoGmn/zcDg2ExpYOpmo7jtAkhSt678fthXyvig+X464QQ3x/4/3tHASZwheM4K4QQIWC5EOJ5x3EG5/1/7zjO/+3jeXwomHfsbF59aMmwyPXS6mJC+buPUN5XfP13F9Fa18a6NzYiqzKWYTLnqFlc+PPz3nc7f8jP7CNnsOLFVUMIpsenccrFw0l8S10bt//gH8Oq7//82X2UVBVx+w/vpKu5exi5//WXb6BmyijGzhgeVDOIWUdMJ78kb7inKaB6FI485/D9SsJbt7Wz7s0NFJTlM+uI6bu9cKsnVvGje77L9V/6PZZpY1s2ZTUlXPvETz7wOfXF+1298y7kJrIk8d4CfCKT4rmPORF/ePHTORIOboUjlU3zi7tv5KITz6U0vxiv5uVTsw7+SM7nsTee5dt//Cmp7I4+jL8+ez9CCG76xi92ud3qbeu55fF/0NrTwUkLjuL8Yz6D3/tJJf2jxq6avgcr4p2dnWzdupXp06e/b8KeEIJAno+qsVVIQnI9vgfIdiKR4Im7FmH0mFTWVlJZVoU/5H7Xgy4QHp8Hj89DtLOflS+vprS2lFlHzmDZ08vpbOikrb4DI6MjhETlhAr0tIFlWqiaSjKWwjJMNJ+Gx+ehvzu2i8qfg5AkhOQQjARJJ9I5Eq76VLw+D5Pmj+OAE+dTOb6cstGlPHrTU9Sva6R2eg29bb0E84OcfPGx3PPLh5Akga679+NoR3+uCXQQwbSXKWtG01bZgy05TBSjoc+i780eMkc7cIiDlvBxwLwFdK7uQDd1Jk4eS6w3Tn5dHjiwtnAjaTmDI0F3URRDdQccNf5RFEXy2dCxEU+r4rrTOGBLbiOkZAscC+LxBI7tVq4VZJS0TLWnklVldWhZjbItea6nuGLhOA6Fa4N0zFPI+nSaajuRdEFpZz4IyKg6Hl1l8EMbJP2W4pJgYQuqmovpqOgjU2ty5ee+SnZ7mrduWeYKeHcRGeIMlNhN2UIt8HDF7d8cslzPGm7MvAVCEViqha1YCEfQH06SFw3mBMKOZOeItyMcNk1pYtaKcXgzKrpmUDexld5AHPR+wr4APtuDP+UhEU6j+b3MK5jMzNh4dNPgtYa3qC9ow0RgOzaKKVEZLWFm5WRKE0U8+tfHmXvcbFY/tYF7ljxMR30nkcIQFWPLMHSTqvEVfOHHZ/PITU/y8n2vu78zr4o/z0eoPEi8J0G4OEg2lcUX9JHoTxEuDJNJZunr6CcWjVFYWsDW5fV4PF68AQ9m1mTigvHAjtwMWZZRVTVHyB3HwbKs3N+yLOfI+d4Q8WQymZOfCSFQVZWjjz6a9vb2Yetee+21u4uzH8RIFcX90hG6r0R8t+X4gVHC4EghLoTYgDuy+OAC3P2I3o4+3nnuXTSvxgEnzB3iKvKVX32Rd55/l0wyi5E1kGQJ1aNy5W3f/EhscXwBL7994Vrq1zfSvLmFminVjJpQuUfbfv8fl3P5ET+gq7kHcK0V5xw9i3OuOnPYuosfeXNEuzfbtvnNl29wU99GgJE1eOyWp/jOLqQu4F5wf3j1V1z7+f9j/ZsbEZIgUhTm5EtO4JjPH0F57chVqr2F4zj89pKbef6fLyMrUi4e+g+v/Gq3xzjktIUs7LibutX1+AIeqie9fxV1d6goLMWreYc0Cw5i5pjJ1LU2kDWGDno8qvaxb+B8dMkzI6ZZqorCK6ve5OwjhnvRf5j42V1/GELCAdLZDHc8fR+//soPR5Sp3P/K43zp/76DbrhJfS+9u4QbH72Dt256kpD/wx+cf4I9QyaTobGxkXnz5qFp7y/lO+i0A1iyaCnRzv5cM+PBpx9Ad3c3j/zlcTa8uBVfwMe61zax6tW1XPqHi5AkaYincbSzn79c9TeS/cmBQB+H3o4+JFXg8WvuTCNumE9/Zz+KR3HdTQwTIUuu64lp7/KxLkkysiK7YSqZDI5wXB9uAR6vh0wiw7svrGHUhCoOPGU+pm6y+tW1FFUV4diurW7Thmbu+/XDdDV1I6sygYifVDyNY7tpirIs5Zr1HQeCSR/jN1chKRKBPB9RO4aiKIQtDaPcpsnfScm0UqIbo1TUup78mYoMy59fheqV8Xo0tlQ25eQYlmKRZwU5/KJDad/azpYt2zBVE9VREbZbubYVh87SPkr7CrBNckmag7ru1roO2so7iTpxRkeLMWXLdRORJYQp8Pd5iXoT2Ng0ju2gbXQPU1aNRtUVdK+BNuA9LlSX9A/2m7pvGiRJ0Jfq51t//AkPrX2K4CwfeS0BKhuLMCUL2ZIHXE1cWMKm8eBu5CKZVl+Uhr5mSmuKEULQ3xXj/y68kW2r63EsB81WsBwp1yCaFw2hmjIOJrZqIxyJtD/tOiIKMBWTDVMaKO8spK22l6yqg+nqTGJqglKriCOZj52GqbMm8fVrL+Tdl1bz1K3PESgK4A35oN/GNEyyHh1Lsoi/GyXq9IJkUfdmI5vf3oqsKSR643h8HmqmVuPxe+hp7cVxHC689jwUTWHzO1uRZAnNq3H2lZ/m0Zufwp/vJdYddyvaKehq6iYVT6H5NfwBP6ZuUV5bSm97HxPmjeP4Lx1N9aSR3d52roIPVssty8rxEsuy0HV9j4tjyWSSYHDo/fiFF17Yo23fB83AzuSgChjUAHcIIcoHquHlQOfe7HhfifheleOFEKOB2cBbO738DSHE+cA7uJXzPe403Vf868bHufV7f3OTpITbXf7zR37IvGNcj+Hy2jL+vu5PPHLzE6xZvJ7qSaP4zOWn7ZF14P7E6CnV5BVHaN3WTn93P5GiXXtwDqKgNJ+/r/8Tq19fR3t9BxPmjKV22ugR192V9so2rWH2V0OWWzadzd27PZfiyiL+8Mp1xHrj6BmdwvICkrEUL933Gh31HUxeOIkDT5qPrHxwGcLzd73Mi/e8MqSqn05m+PEZ13L7yuGhS++FoipMnDvuAx9/Z8iyzO8u+Slfv+nqHNGTJImAx8ft3/k/jrrq7OHbSDJfOHrfYt3/01EYys8RmJ0hhCC8DyTWsixeWrmExs4W5k+cyYwxU3a/EdDUObyPYhC98SiV7yHiWT3Lxb//HumdBlipbJr69mb+9MSdXHX21z/YG/gE+w2mabJmzRocx2HOnDl79OAeM300p15+PG1rOtE0DwedtgARdNi6dSv1S1sorizKhZF0NnaxZcU2ZE0eUqFb+epakv1JSqrdR2BHQyeNG5tdci0ElmXjmK4uXJIFyf4ktuUgJIEv6KWkupjWunZKR7vaWz2ddX2kNQVTN7Esy62CO6BnTHem03aQPYr7OoJIcZg3n3ib2hk1zDzctVBMxVNsXLqZdDKDkTEIRJCfCmAAAQAASURBVPyYpoXtOCianLv3S5JAyJIrkRmYaXAsmwFbaZLRFMIjYSo2qhfIOKibBU2hJvo6ohSUu9e2IilgQWlVGcFwkJ62GC0lXUiSIGIEWZCezguLX+PdlnWMdUqxZBvLm3Vj4m2Jlqou+guSFMYjrqRAsnI+46rjfha2YSP7JBwPCB2Q3Hh1HNDlHTJOQ7EwZYvNU5uZUD8Kb1YjWZxh46gGCqQIo94uRtjSgPEfdFb1oSkaTd1tbG7ZhmVbJPME0WCC9vJeRm8to7An7NoZSk4ukVNtFzR5O/B0KHz33J9SXlDCZ688g8anG9jw1mYs063u4oCMtFPYj4Ml2WimQlYyMDSTrRNawAGf6cEf96KrBr35MSzDwpvVSPuzWNhItmDsxgqSnhTFlYUcd9anUFSF+cfNoW7ldl5Zusx1cxGunaVkSsRFimTMnUnZtLQOx3FQNJVMbxzLtNAzOo0bmhk/dyyO4yDJEoqq8MX/dy7bV9ejZ3SqJlRiWzbJaILmzc0UlRfRvr0Dr0/DNC3yKiPIkoTiUdDTOkWVhUw5cOJuLYl3xs7VciBXLe/q6sLr9WIYxrBq+XuRSCSGNGTvJ7wNjBdC1AItwDnAuQPLHge+CFw38O9je7Pj3RJxIcQLuPru9+KHe3MgIUQQ+BfwbcdxBiMV/wT8HHdQ+nPgt8CI3XpCiIuBiwGqq/fMNu/9sG1NPbd9/+8DHe87Lt4fn3EtD7f/M1cZLyjL58u/OH+fj/dBYRomv73kZl6691VUj4qRNTj2i0fx7Vu+tttpGiEEMw+bxszD3l/rfOgZB/K3n9w97PVBE/5dweP3cODJC3a5/L0YTNasW72dyw77PpZhkkll8QW9VI6r4MbXr9+lz/nu8OgtTw7RdQI4tkPz5hZat7VTMWb/VN73FF887rNUFJXyi7tvoKGzhYOmzOWa869gQtUYnrvuHk79yZdIZTNuYIcQ3PODmz72SY8XnXgudzx73xAiC6ApGkfPOXS3269v2MyfHr+T5u42TlhwJF84+tN09/dx2HfOpCfWi2W7zgfHzDmMB3/yl93qvOdPnMnTb7887Dfu1TyU5g+3rVxZt46RSpZpPcMDrz7xCRH/iPFeaUoqlWLVqlXU1NSQTqf3SlpWObGcQ44/iEAgwPr16yEB8+fP53HnuaGhPsItQLy3IdTUDSRJRs/qbF9bT92qeleKt5NrCcLt37Ftl4ALG7dR3LLxBbxoHpWxs2pRNYVENElfRxTHccgrCVO/tpH+rlhOPicrbtXdMtzIb82rkkqm0I0sKxavpGBUHgVlebx8/+IhlojZdBZFUbBtC1O3UTX3mWLbDo5pgRBofhWBW6FUPQpG1nD90DUDJjlERRzPC4Iqu5iVbatJ9MVp2tSCrMiomsKUgybS0dBFSVUxUzbVUtlRhOpXkDMSnXIXK9ZuoayimGR+Fl+fhiVb2LIDskV3SRR/xkvj2E7UfpnijjxwHHSPSSKUpiRWyPiqWnrkKPXj2xm9tgzFlLGFQyyUpKdoR36Ag+PKHgodhFfB3uygZ3T8hg+1XGPbvDby6txE0GhRAqPExjFsknYqV/PO6Fk8ikYymGHdrHrmvDUBLes6yciW+/ytrCtCZASF3WEkS6K3vZc/X3wHfrzub1AF07DcACPJyWnOFUsm6zGwLYlNk5roL0i4aZ62wFJsTK+FJqkEDT+OR2AaFpWhMvpTcap6iwmYXipmlHL2VZ9m/Jyxufe98OT5PLRkEdvtZmRLYFomlmYRivsGfsICQzcGLDQtGJBYOTY0bWohEPEz4/BpFFa4M7SyLDFu9hjAzd24+9oHySvJI5PSadniFjNGTaqgcUsLxeXFJHoSmFmDVDJNR1sHB4yaQ09PD/n5+R9I7ilJEo2NjaTTaaZMmYIQYki13DTNXEV9cP8jVcTfD4888gjf/OY36erq4qSTTmLWrFk8++yztLa2ctFFF7Fo0SIcxzGFEN8AnsW1L/yr4zjrBnZxHfCAEOLLQCPw2b15j7sl4o7jHL2rZUKIPSrHCyFUXBJ+t+M4D++0746d1rkNePJ9zuNW4FaAefPm7bMu59k7X8yFK+wMSRK8+dTbHHn2RxMrvzv87Sd38/J9r6FnjJxN1vP/fJmiigK++JNzd7P1nqFyXAUX/uI8/vqju3I6bkmRmHHYVFa/ujZ33J2helVKRhVz3B4a8++MX5z7G7cxaADpRIbGjU3ce/1DXPjzL3yg95BODJeBgNvElE2NvOzDxjFzD+OYucN/Rwsmzabl3uW8vWklummwcPIcNPX9p88/Dpg5dgo3fv1nfOuPP0GVXWsun+blmV/dtVvS/K/XF/GF67+Vk4Q8v+J1/vDw7UQCYZq6WrHsHaTIXXYH3z3rq++7z2u/9D1eXf0mqWwmR+j8Hh/Xf+WHI1ophv0hzF34U+cFdz9L9Qk+PHR3d7Np0yamTZtGJBKhvr5+r7ZXFIV0Os369espKyujuroaIQQHnDiPxY8uJZQXIJPKEgj7qZ1eQ13D1iEzO1MWTuTJW59l9eJ1pONpHMfB6/e6qZS4RYFBdmeZJqGCEKlYOueuEe3qxx/2Y+oG/rAfWc4QiPhp2dqGkTFIxzMoHhXb1vH6PTgOVI4ro217J45t4w/70ZM66ZhDfkEeN3/jNurXNu4g4QMaDEM3c2NJQzeQZYlAXgDLcKvsikchEPSjejXiPXEsw8Lj1UAIJs4Yh3ZqkJbVLaSVBMQdDKFjGCbJWJriqiIkWaJtazv5ZXlsX9OAoimUhoqJdkSxHRtTsnAsh/7OGIk5MoXLg4T7AxiqSd24VkyPTfW2UtZNq8cssGgv60XYgqxXZ0x3JWE1RMWkfGJrV1OQX0D6IAs5Kui2+mgp6sR5D88zTIOD7FlYb2ZxcAhZfkKr/WyQG4kFk/RM66eypZiqbcU49Q6OVMzGmU2kIzpeSSOtZ9BNd5ZV2IKtE5qZunp0joSDWxWvbC7Ckiws1cYBJF1CR3crzo6OJNy6uyXbO1I0hSvHMVWLaFEcR8K1HpRcd5eEN4Vf91HclseorlI2Fzbi+GwOLzmAheNmkpma4TPfP5XO9k7+9bdHiBRGmDJvEuXjSrnuFz/iB7f8kjcb3sXEIr83TFlbQe43aJs28kDz5CB51XwasiyYdeR0PnP5acPkt/G+BE/++RlWvLiKqgmVTD1wIql4CkM3iccT+Hw+mjY0M372GKJd/ZRUFHHuj8+ienoFXV1dbN68GZ/PR1FREUVFRXvs893Q0EB/fz/Tp0/fZbV88N/BwXE8Ht+rivgZZ5zBGWecMez1iooKFi3a4R8yYCYyzFDEcZwe4Kg9PuB7sK/SlN2W44X7bd4BbHAc53fvWVY+KG0BzgDW7uP57DEyyeHNg+BWgPURQm3+XXj0j08OC9nJprI8fOMT+42IA5x9xac55LSFvPbwGwghOPTTBxGM+LlgytexzESu6VNIbsT8WVecwemXnoTXv3fWct2tPbTWDU/w1DMGz9/18gcm4kecdQj3/OqhYQ2nHp+H6sn7pvn+MCDLMgunzN2nfbT3dvLk0heQJZlTDjzmv0JjftGJ53LW4afw+tplBL1+Dpm2YLczO7qh8+XfXjGkkp7MpNje1ohuGtjO0Os4lU1z61N37ZaIzxo3lcW/f5Qf/u163t60ilElFfzkvG9z2kHHjbj+pOpxjC4bxcbGrUOOGfD6+dbpe267+Qn2HxzHoaGhgc7OTubNm4fH4zpZuVJDe48rcIZhsGHDBqZNm0ZhYWHu9ZMvPo5QfoANy7YQKQxz/JeOIpQfRG4eWhH3h/2kk2mQXL21bdvomeyQCRQhBJlU1g2Hy5qMnz8GW7fpaOxi6sFT+PS3Tuale1+js6ELX9CLYbia2N6OPrJpHUl2Z88s08a2bWI9CcKFIUzdzPl/B8I+uup7SEczGKkRmsUHz0e4acSaR+XM75yK7JOo39xIvNWVspiJDHrWGLBGlMkvy6e3sY/qFwIcN/cwFhnPo6OjelX0Dtd+sbu5G3/YT0dDF9WTR1FaU0zxqEK6mnswDcvdjxTGl9ZIkMIjNDbO6MV2HLDBY6rMXjseRZKRkLBkg1QoMxhoiRSUGX3OGB7a8DTtvV0YGIQ9IQ4dP4+tPU3kaWH6rPiQQXnAG8B+2yDoDZDJZkjLWWRToqA9RHRcnEDcR3VjKbqi4+AgWRIT1lSx/IDNmJKJg4MsJCzHDdOJ5aVoqO1g7JbKIamXAJIt4SrW3Wq87YBu6djCdSLDcj9/S7aRLRlHdrA1h/XTGnIDiNFlo0j3pOnK9GIL2w1fEoICPcyx5kG0vt6OFUqzzLucc773aTo2d3Hb9+/E1E18IR+NJ7Qw8+QpOI7DV445h/zf+2lY04xsSTm/80FpjD3wTLdtG9WjkF8SwRvwMOtTM1w7TNxU7JatbWTTOovueJ7O7Z0k+1NsXVFHvDuGaZpEu6KErTC+gJdMMoueNfjcDz7D7CNn5hqbi4qK3Ob8VIru7m7WrVuHaZoUFhZSVFREJBIZse+usbGRaDQ6hIQP+czfoy23bRvTNHnwwQc54ogjhv/+/0Oxr0R8xHK8EKICN3XoROBg4AvAGiHEyoHtBm0Kfy2EmIV7e6gHLtnH89ljHHbmQTx350vDwlws02LB8ftGkEZCoj/JojueY9Wra6gcX8npXz9pt3IJx3FIx0eu5u5cUd5fqBxXweeuGuq1eeuKG/jrT+5i2dPvEIgEOPNbp3LKV0/4wI4ikiztUncu9sE55bOXn87L971OR2MXmWQGRVWQFYmTLz6ONx5/i3nHzsEX+PikKv7lybv49p9+iiy5JPbrN13NHVf8lnOPPP3fe2J7gHAgxEkH7HnxYPW2De7D+j3IGNncw+W9yBq7D5ACl4w/de2de7SuEIInf/53jrrqHLr6e5CEhG7ofOv0CznlwGP2aB+fYP/Btm3WrFmDLMvMmzdvyD1pUDqyJ/eptrY2ent7GTdu3BASDq505MjPHc6Rnzt86Os7SVMcx2HF0ncRiqB2Sg2NG5pJRJNDJCGqT3XtDXUbWZVJxVK0bW6nclwFh5y+kC/9/PNoXo0v/fzzANz+gztRPAqdDd1EO6PYluvZ7fFrGBkTIdyKdrwvjubV0Lwq42aPobullzcff5v+7tjQXoydBwQDdrKGblJQnk9/vJ/K6nJ6FkVpq2unvzuG1+chGAnQ3xNDUmQc2yEZTbH8+ZWsfnUd2bSOEK4kZ7Cg5QjXCtFxHLKpLJGiCGsWr6e7tcetwPo0bN1m5tbx1I1qoaesH4+jUeYvIt6TwFRs0pNM2tR2soruzlKJHRKkvrI49296Co+qIUmulCJuJnil+y08looISJSFi2nv68JxHApCecwdP53U8n7S6TRCFsjIgJMjzEXk4WBjOTZCgCM7qLqMsMEe6Kq0BgfdA7MKvYVxxm4d+pnmVN87DXRaa3so6oqgpmSskEPHhB48rQqyI1E2o5TlsXX0qrEhXhz1HU14HY8rUUFgqiabxzQy2Tee+MY43qCXUEEQIeDRm58i0Zd0XUE8KrHuOCsWrebIMw+nfFwpP//5r/GoKkGfj2zKyP0ehQThwjAen0asO+7aakoCSZGYfuhUxs4YDbgWzXdecy8N65tIJ9L0tPUx61PTyaazxHriNG5uxnZcmVYg5EPPmhSU5REuDDNmRm2OhOd+d0IQCAQIBALU1NRgmiY9PT20tLSwYcMGQqEQRUVFFBYWoqoqjY2N9Pb2MmPGjD26jgfXueqqqzjkkEO49tprd7vNfwr2iYjvqhzvOE4rcOLA34sZ2fYFx3E+WPlzP2DOkTM56NQFvPH4MjLJDNJA8tiXfvZ5Cso+eJDLSOjt6OOSud8m3pcgm8qiqApP/HkRv3rqGmYdPn2X2wkhGDuzlq0rtw1bNnHe+P16jrtCcVUR3/vrt0dc9vZzK/j7NffQtq2dcbPG8OVrz99tw2NBaT6jp1az9d1tQ/Sdmk/jxAs/OJnxh/zcuuIGXrz3Vd55/l3S8TTvPL+Sh298AgDbdvjpA99j4YnzP/AxPggM00CRlf3qsrOtrYFv/+manPf1IC767ZUcOesgygr2ysJ0vyGdTfPQa0+xtmEz00dP5DOHnbRfIuVD/uAuI8u9moe0/h7NuarymUNP3ufjjoTa8mrq7lzCG+veoTPazYFT5v7bPu//dWzdupW8vLwRe4YGvcRVddeSJ8dxGzJjsRhVVVVuuuUeYrDp2DRNVq1aRX9njFhHnKS6wxVICJeYCVlg6SY9LX1IkkR+aYSJ88fT39lPSU0xF/7iPFSPSn9XjKVPvU28L0FPSy8dTV30tPW5qZgeJZeSWT2pkqKqIjYu20wgEsDMmqTjGbas2IYQgrySCLHeGMIRONbQAaysuqTacRyMjEFvRx+vP7CUeGcC27IpH1OG5tPIZnQQ4At6EULCGUxCdMAX8hHMD9Lb1ksmqQ/o3N1Bj23ZOT38ypdX09vR59ouyiInH1Q9KicGDuN5ZSnNqXYa7TZszUayJdZp2/ArHjRJJW1nkVy1OjYOnZlehC7wqhqGY2FjYzsQI4FH1Sjw5GHZFh5VQ5Zk/B4vXdEeMhPSFL4ZwDZst1Kt2LRX9CIJQdybdm1mB9wbhSUwNBNbGoFlCwgkvUxaVz1QVd5hheioEAskCSS8OALaqntwqiS2VbbRJ8dRNRUcBzvPYcqocfQ299Pnie84xkCAj6lYpERm4HAC3WPSS5z7eYYD1Kl4+zUS0SS+kI/+rn76RAy1ykPA9hGWAvR19/Pmy29T21JNPJagsLSQVHcWhEOsO45pWXSVRGnI6yQg+6kWpYytGoWRMTj8rEM4/sKjUT0qve1R7rj6Tta/uZGqiZX4Qz7q1zex9Kl3CIb9yJqM6lc59wdn8eBvHiWbMfAFvVSNryCTyqCouzdeUBSF0tJSSktLcRyHWCxGd3c3jY2N6LqOEILp06fv8bPTtm2uuuoq/H4/119//X9VON7/bLKmEIIf3f1dlr+wklcfWoLH7+G4849k/Oyxu994L/GPa+6hrzOaS0szDRPTMLn+S3/gnrrb3/eHdtktX+O7x/zITV+z7QELIZVv3viRTR6MiJfue41ff/mGXHT928+uYPXr6/j9y79k8oKJ77vtj++9issO/R6ZdBY9o6NqKhPmjuOsK/fNNUTzapzwpWOY/akZfHHK1zAGplYHcc1nr+OBpr/nmkY/TDz11ot8+48/pa6tgbA/yHfOvJgfff6y/XJzuP+VJ4ZMv+YgXK/ur5/6xX0+xt6iuauVA755CrFUgkQ6SdAX4Oq/Xs9bNz1BeeG+pZ9OHDWW2rJRbBhBEvLDc7/FL++9CdMyyehZAl4/ZQUl/Pi8y/b1Le0SQggOnvbRDug+wXBMmDBhRNtVGDnmfmeYpsnq1asJBoPMmTOHxsbGEQd78d44L93/OtH2KBPmj2fhSfMG0gdlUqkUmzdvxorCi7e9hsfvVhgHpY2az4Oe0QeIr0vIHRz0rEHjhmbGzanF0E1Uj0oimuQPX/8TrVvbMLIGsd4E2XTWrSQrboDPoO589lEz2b62wbVozQsSiPiJ97qkLlIUJpgXpLO5m2wyi2EbBCMBZEUiEU0iSQLbcbAHqqNG2gDTDQvKpLLUr2t0q6OyRHFlIZm0jp7WyaZ1LMvGH/EjhMAX8DLvuDlsX9NAKpZCz+gIScIyTRwHTMOgrzOK4Vj4VJVA2E9vNoohmdSOH03lhArS2zNkNH0wohJLshGOg5NxUBQZIbuvu7NeNoqkYNgGyZ0tRwe21YVBSX4RpZEiEpkUm1u30R3ro6m7DcUr0zrNS0l7HpZi01rZQ8avIzmCPk8/fZNC5G8IuAE7ss3GqU256vfg/nFANiWmrqpFNiUM1cSxZCRLoEdMpOkamRqH7c0NhHq8WLaN3muSyEthC3vIDF1/Ik5vps+1r8QiHPUzcX01iumG9myY2kginHbJ/sCx006WpZVrObRvJkaxRbveTE9pP22F3W4ypSwo6S+gpzDK0hfXIp6H6dnxFFgFhAqCdDZ2YWRNWiu7aSrpQHVUeqQYbaVdlIgixs8Yw3FfOgqv30N/V4xffv63bFtTj2mY9LT2uYOzVAY9raOqEpk+nYNOWcBRZx+GkdJ5/I9P09fRR09LD8XVxWxbXY8QgqLKoTNMu4IQgkgkQiQSwePx0NHRQVlZGfX19SSTSfLy8igqKqKgoGBEKaNt2/zoRz/Ctm3+8Ic//FeRcPgfJuLgfvnzjpmdsyv8sLDk8bdyJHxn9Lb10t3aQ3Fl0S63nXbQZP647Hfcc92D1K3azvjZY/n8Dz67z17X+wLHcfjjd27PkfBBZFNZ/nLV3/jDK9e97/ajJlRyX8NfWfzYUrqaupm0YAIzDp2636rGL9776oj6fyEErz/8BiddNLIGeH/htdVLOevnX81ZF/Yn41x//x9JZFL8+it7ZTY0InTT2KXvu24Ob6z9KPD1G39IR193boCQSCdJZzN885Yf89BPbt3n/T/+879x1HfPoSfWixAC3TT42slf4PvnXMqXjjuLvz5zH1tbGzhs+gGcfcQpn0TV/w9gJCvMQbzX1WRn7OyuUlFRscv104k0N192Gz2tvWhejVWvrSXaEeWELx9DNpulpaWFmTNn8n/n30x3Wy++gA/V67qQeHyaawE44JAiyW6znmM5pBNpEmaS1a+tJ1wU5ObLbqOwPJ8tK+rwBb1Eu2LYtpWrLINbmc6mshiGQaIv4WrgLZtwQZBgXoB4X4JgnislCUYCjJ48ioYNTYCDP+Jn3KxaVr+6lkzSDRaSFYHH78GxnR3SkoFz9QY8pOMZ2uo70fwqtmFjZA13MCG5tLhyfDlCCI783KE8detz2JaNmTHwBjzMPno6S15YxprxdSRCaYQtCCZ9JEJpV3KgdXN8GzgDiaG5mdGBmHtbsvGoHrAHBg3CRBKulZ5t2JgjFCFkIdHU2UJ9e5M7CLNMDMt05R22RbQggTetUtlUQn5PiFgoSSDlQwAdlb1sn9+KaspkvDq+lIf5b05Ey6qkfVk2TmnEn/K6MhPdrVojwFIsLFmweWYzeaPykdOC2e+Ow467aZnxcIp1kXpwoKQ9j1ENpQgHYmNSKOUKqi0TMQOMX1eJsMFSbGRTZvLaGpYfsMl1kgEQoEgKUlhme1UbLeFOHMch49PR0hpBU8MxbeoKmsmzQwRVH44kWFtSx1i9hmAkQBfdjJpUycbSJiJ6GCNpENB8WHkOkckFHHzifFaufpdgMMi65zfRvKWVYMRPrCeBYRmk44MBUg79vQnKaorxh/wAFFYWEi4MUViRT0dDFx0NXfz1h3eRX5bH+T85hykHTtqzCxpobm6ms7OTWbPcVOXKykps2yYajdLd3U1dXR2aplFcXExRURE+nw/HcfjZz35GLBbjtttu+68j4fA/TsQ/KuzKks+2nT1qdqydWsMP/3nl/j6tD4xkf5L+7v4Rl21ZUbdH+9C82ofmTJNOZEYc+NiWRTr54Tuo/PTO3w4Likll09zy2N/5f+d/Z59J4ukHHcf1999COjv0PQohccrCXZocfWhwHIen3355WJXesi2eXLrPIQoAjCmvoe7OJSxZ9zYdfV0cNGUeFUVuj0VZQQlXn/ut/XKcT/DxwK6IeE9PDxs3bsy5q+y8vq4PbfSuW1VPb3tfrqrnD/t55YHFTDl6Aj09PYwePRo95so7NI+Kx6dhWxaJaJLymhK6W3owFbdCPEichSQwsq5zSTqWpmxsCY3bGnnr6bdxbBvTtLFsC0lISJKD7HVDfEzDwh/2M3HeOArK85E1heYtrWxcthkhSXh8GiWjiuht72PVq2vJK82jYlw5sz41nbY6N03wxIuPY8mjS+lt78Ub8FE7pZqNb2/BGWhqHZSY2JaNosrkFUeI9yUwDRN/nh/LMNFTOqMmViIkQfmYMpY8uhQ9qyMkQUF5HjXTqghXh9hS00LKl0XNKBiKSWdJlGDah1doaHka79jrKQ2U0JHsRTiSOyAQ7oBAFya64+rgI1qYpJHCdCyyWddDG3YUrAchSRJ9iX5kSXZdRxDYtuvf7eBQ2Bmmtq4cR4BkCcqThW4YkOxQXVeGKWy6K/oRhmDa6lokS2BJNt6Mxqzl41yHExs30MeW0DXDdUdxBAknTV97nKnrazGTJpbq2lYG4z5K2/PJeg3Gba4aOGGH4o0RhCrRXmyj9asIhwHSLbBl1yPck9FIB7ID71XkwqM6SnuRYq4NIg7oPoOYaSFJstsobEsoioosyWSMLEqxQsQKY1kWsZ4YekjHH/DjUTXKx5SRFGkOPe1A5s2bh+M4xONxFncvwzJNCKg4zk4hUw7ImuQGSCX1nK1nx/ZOSkeXYGQMWus6MHWDWE8cQzf543fu4GeP/JCCsrzdXrMtLS10dnYyc+bMIVVvSZIoKCigoMA1I0in03R1dbF06VKuuOIKKisrkWWZxx9/fI+TN//T8N83dNhLpBNpHvzDo3z78O/z08/+ilWvfWTGLDmc8Y2T8Po9Q16TVZlZh08nlP/fl8bnC/pQtJG1lwXl/x7njm1r6nnw94/yzN9fYNYR0/D4R7ADFIKFJ8770M9lU9PIgxEhBO29Xfu8/5ljp3DpqRfg9/jcaXJJxufx8qNzv8nYitH7vP8PAmkXsxmS2H+3GEmSOHT6AXzmsJPpjvVy/vWXsfCbp3Dln39GS/dwJ55P8L8LRVGGSVMaGxvZunUrc+fOHULCAfS0QaznPfHy720QFg7JZJLe3j5Gjx6NJLmN5/nFeSiaSiqextANcKB0dCnF1cUEC0IE8wKEC8OuwMLeQWyEBG2b2ykoKMQX8GHZDr2tPZhZEz2j55owvQEP5bUlFFYWcNZVn+aEi45l3RsbSfa7WmFTN3Ech/7uGKn+lOtslR9k1IQKzrzsVL73j2/zvX98m+Mu+RSnfv84piycRO3UGrwBL9WTR6F6NbfSLQmqJ1ZRVFGIkCRXQqmbrme5DTWTaygZXcyBZ89h+mmT6O3roaOxC3++n96aBCv9m1jeuQ6P46XfHycg+ZAlKdccqgVdG8RsNEtnuoeFzgxkU8ZybDfa3pEIpQNMjY4hgA/JkohlE1jOQPT54GdnD6pGxMD9T8JVrAkKwvk4gGmbrjf6wIdd1BUBhOvjPeB2IjkSjuwgHCjtyEdCIpj0IxyBUNzZCFs4qKbierbLbgCP5AiXkDsSzdVdWB4LgcATV3INnu5IQRBIeinuyHNj6yUHR3J/Vv5GjfKyYk468lN48CA5kntc27VDNDRz6EgDh4l6DWbWJOPXyfh0d1/CDT2yFAtbOGT1LJZhYVgG2axO94Zu6lZtJ5vW6e+KUd1XRl+in5SdJmbGKY4UsHDSHPeUhSAcDnPkmYejeTTMjDW0yVcGy9jR2DnryBkAlFQXkU1lMQ2TTDKDbdoEwn5C+UH0tM7y597d7fXa2tpKR0fHMBI+Enw+H9XV1RxxxBGcddZZyLJMbW0tBxxwAFdcccVuj/WfiI91RTydSHPJvMvpbOzMWQC+tegdLr7ui3z6mx9dnPZpXz+JTe9s5ZUHXkdRFRzboXxsGVff9d/5o5EVmTO+cRIP3/TkEHmK1+/h/B+f85Gei+M4/N/FN/Hi3a+4SXSKDAJmHDaN1a+tI5PMIITA49M4/RsnUzW+8kM/p+m1k2nrHW6pb1kmD7z6BAsnz+GwGQv3SYrzm4t/xFmHn8wDrz6BJCTOPfIMZo7ds0TJ/Q0hBKcffDyPLH7abXwagKqonHnoifv9eM+98ypnXHMRGSOLbdu8u3Uddzx7H9876+u8W7eO6pJKLjnp84yrrN3vx/4E/zl4v+tn54q4bdts2LABy7KYN2/ekAe94zgsuv05XrzvNQxDZ9oB7/KFn5yDP+RjzMxa8ooj9LT1onoUujt6WHjafGbNmklbWxvZbJZIcQhv0IOiyXgDHiQhGDtrDI5tEykKk+pPUjq6BD1tkMlkSUVTIOHGnDtuSEtHQyfBggDxvjiKqiBJEqZpYegGBRURxs8fR0lFEYefeQhjZ9by0n2v09feRyAUAAHpeIZsWmf7mgZkRcK2HLpaeogUh1n16hqKq4pImglsxeL4M4/loMMPYt0bG3Bsm6oJlSxbtJytK7fRtKkFI2uSTWdzYUG25Uakq5qCZZioqsoxnz6aUEGQd+5bCTIszV9Njz8GtkOr2kO1WoMHDykyyGLAtg/cWcqsg2mbhJNBYr39HJacxbqK7aS9WUK6nznJySh9gvaCXqLSQDPjTs2SuX9tV3OvyjK242BaboW6K9qN3+PDccCjyWRNN3fAVKxctPwObrnTXxIcnr+AerPZJeqOQBpI29752JZi49gO7RW9dJdEieWlcrtJhNJ4055cU6vAIRlIE0j6hthVSIA/6COQ5yFSk4+zQEJaJmE5FgKJ7WPbMNUdJHiidzSHhRfQ8loz744zsYTFEOdEIZAdCY/QMDwW/dk4Kirj+6vJtmXpifZim26jaqTOz6SKakqPLmPBYfM491OnkxcMD7l2Js4dxwU/O5d7fvUQ6YSMz6tiGqYrXRISeeVhHAfWLl1HIOJj9lEzaVjfxPo3N2LoJrKq4Av7SCcyFJTlk0m/v4NVW1sbbW1tOTnKnsBxHG6++WbWrl3LU089haqqOI5DZ+deJcv/x0C8X3LifyrmzZvnvPPOO7td78E/PModV985zIfb49P4V/tdBML+D+sUR0Tb9nY2L99KSXUxk+ZP2K9OGh81LMviz9/9K0/8+Wn3RqDIXHDNuXz28tM/lOM5jsPSRe/w3J0v4tgOx55/JAeevIAlj7/FtZ//v2E2lKGCIFf/8wpeeWAxsiJz7PlH7jZhdH9h2cZ3+dSVZw2Tp2gDoTWaojJz7FSev/6ej42WuSvaw8HfPp323k4yho5X1agsKmfJHx6hILz/XIgcx6H2vIU0dLYMWyZLMpZtocoKqqLy0E/+wgkL9j5w6sOGEGK54zgf/tTMfxb2+4PGtm0MY+SeiIaGBmRZpqSkhJUrV1JcXMzo0aOH3XPXvL6OO392H+HiEJlMBiNpMf+42Xz2O6cDEO3qZ9HfnmPL2i3MOXwWJ15wHJZps+gfz9KwvpH2LV1kU3rOEWvhyfO44GfnoqcN0ok0iqaw6I7nWfniapo2t5LoS+yw5BsI+VE9KmPm1KAINxZcVhW3aa47xsmXHMfck2fS2dlJLBYjEomw8dU67v7pAzlNt2VabsKm4uqoZVnGE/CgehSKKosQmls/Pu8HZzP94Cn0tUd5/ZE3ScZSvPbQG7Rta3PlMkB+aR7hghDRzn7XIjFrkkll8AS85JfkMXbWaEqqipl91AxWvbqWpxY9z6v5y1EsBWGDN8+L7jNBd+hLx8BxUHWFgOlFV0yEI/AJLwdFZ5LalsQb8FBSU0yyL4llWZSPKcMqcnhKeY36ruad4uDdX5BsS9iyjeOAosh4NQ+WZZEZCN0Z5DOyJOPTPGSMLKZl4U1rzFgxBtmUEQ4opoIlW7kqdeOcTjwRL4flzUdEHVrfbCVr6JiGia4YqIaCIxyEIzAVi5UHbCWrDv3tKbrMtFW1BOM+9zwlh4xXZ8vEJiatr3G9vAdkKJvmNJMJ6eR5I1geC1/CQ6w9RsqXzUlSXDIvOFI6gGnmONbWbWbx2JVkJX3IZ6LaMrIik8XAY6tMHz2Jz086nSd/tAghCcyB4ELHcfCHfQhHcNmfv8aUhRN55q8v0Nnczeip1Rx7/pG0b+/gydueJdWfZPy8cbzz3ArSmQyFhQVsX9Pgxt5rCgUVBWh+hUQswfzTZzH7UzNRLJWVL65l0a3PoagqBWV5BCMBPvvd0xk3a8yI12lbWxutra17TcJvvfVWXnrpJf71r3+haR9ZGN6HRtg+1hXxJY8uHUbCARRVYePbm5l71Kz9erzXH3mD+3/zMH2dUeYfP5fzrj6LooodXcPltWWU1360UesfFmRZ5tLffYWLrj2f/u4Y+aV5rkXTh4TfXnwTL977Wo5wv/X0cg478yASfYlhJBzAMm28AS/f//vlH9o57QoLJs3mmV/dxXf+/P9Ys32jaxVmmblGSt00WL5lNb+89yZ+fsFVH/n5fRgozitkwx2v8Mw7r7ChcQtTayZw7NzD97tmr7u/l/a+keU9gxp1Y6BR6/zrv037A+/ul3NYVbee+o4mZo+bRnXJhz+r8gn2DYqiEI/HaWhoYMKECRQXF4+4XvOWVhRFyVkXhguC1K9rzC23JJOagys4+avHEQ6HcRyH+377MKsXryWdyrjSkrJ8Jswdi5E1aK1rR/NqeHweQgVB9IzO1hV1jJpUSV9nP3pGx9gpqVhWZIprCrHSNv5CDRzIL8vDtmyy6SzhwjBvPPA2ekZnxuFTKS4r5JG3nsq5sQjJ1ToISbjuGULgD/vIpt3jeKdphPKCaIqXJ//0LHmFYX766V+RiCbJpvUcSRtEIprEH/IRKghSNaESx7ZRvSrRzn56WntZ98ZGtgcb2LR8K8d88QjUN1VkWUaVFDw+D0XVhaxv2kyZUoSdsshKOoZmYtkOISdATXsZFXYJHkklJZL0iwTjJo8n3BWiva6DminV1Jxaw+KHV6J1qeiOgbOT3MOSXI24ikJxXiEd0R0N4pKQXBtCx0ESbpOmK42zyPh0Vs6to6grjORIJMMZCvrD4DgUzyqmtrSazW31PKm/woTxtZRU5KP0GmyO1RNN9VNQHyIcC5Dx6myd2IyuGijImOzoQzA1i+bqTiZuqMaQTBwJNF2hpr6MlXO3UtKeBwhipUkSgTSmY5FMp2GwXvMegxFJSGA7vJ1cg3ejoLmiHV0yhs4QCDBkC8MZuPdJJlu7Gvjzqn9QpuTTVNpJypMlGPdS3lqInjaQJMHih99k2VPLScZTBMI+Vrywiu1r6tnw1hYSfQkkSbDylbVMPHgMVePHEuuOc9yXjqZ2WjUv3PUypTWuE1Y6maFrfZTQqSG6uroonV3Aad89nvrlzfj8XhaetGCXJLy9vZ2Wlpa9JuF/+9vfeO6553jkkUc+ShL+oeJjTcTzSiK5MICdYVn2frewu+uX93P3Lx8gk3RHs0/e+gyvPrCYO9bcTEHp/vUl/0+Cx+ehZNTID7n9hS3v1vHCPa8OkcFkkhlee2gJY2eOLD8QkEsD/Xfg0OkH8PYti+iLRyk7a/aw32BGz/KP5x76ryPiuqHz3PLXiCb6OWLmgVQVV+SWybLMSQcctVdhPXuLgHfPZ7EyRpb1jZuZXjv5Ax+vN9bH8Vd/gXX1m1BkBd3QOedTp3H7d37zX9sY9L+AeDxOW1sb8+fPJxjcdR9OcVWRqyUXYDs2qVg6l8Tb1NREa2src+fOzcVx93fF2PzOVoqrCulo6sLj00j2p8gkM3j8Wk6vPVh5d1MwHSRZoqAsj0wija7IbuhNOosv5CUb10lHM5SPLUMrVWmv7wAbDjxlAa89tIRsWsexbdYuWc+MQ6eyaUkdgUgAI2OgZw0kVcIf8aGnTUCgeFSELOGNaOQX5eH3uddMvDfOP3/+APFoklBegFQ8PezzsE0br9/rylE8CppXJd6XJBFNkuxPEsgLkE5myGxv59VHX+enN11J403fozcZJRIO05Pow+/xYcUtvJqHFFlM2cKQDfqFwfrKNNO9EyEGK4o20OLtYlnHelRD4cDADFKxFN6kiiQEhVqEvmyMNAP3fZsc+fT6PCQyySGuObZjo8gK1sBA3Bxo1gSX1HryNXqCcVeqqGoEZ4Tw+fyUFhbz8so3ME2TrJHl3bp1TKysJVIbJhQP0V7fzaZpTSPO6QjEkKq9N+0ZqHoPnJNw8Cc9ZHw6jbWdbsOnrSCcHY4477VJHIQsSTg4iIBg7IFjWB7djGLKGIq5Y1Wx8/oyQgji6QR4bKITEiS9aYQhiIVTZEIGc6OTUVWV7Wvq0bOmK5+Keelq6mb1q+sQAoqqCkFAIpakfXMPl9/4TSJFrnxl5ctrhhxUEq6zTVlZGWVlZdi2Tf/kfiYe0E1PTw9ZLUVTU1PO4WQQHR0dNDc3M2vWrL3y77/rrrt47LHHePzxx3PX5McBH2si/ulvnsJbT71DZicCJ0kSxVWFuxylfRAkYyn++Yv7c/6x4OrhEv1JHvzdo1xy/Zf227E+DnAcN1BiT22G3nnu3WGVGwA9o1M8qgjvau+wqriDw/RDpu6X890XWLuwV3OX7flAYVNTHT/6269Zsu5tygtKufrcb3DmoSftj1PcY6zcuo6jv3cOhmm4ukzT5DufuZhrL/zeR3YOfq+PMw4+gUeWPLPb9EzLtvaKuI+EC37zHVbWrcPYyRbygVefYPa4qXzrjC/v074/wb5hJGmf4zjU1dXR29tLWVnZ+5JwgNlHzmDdGxtZ98Z6kukU1WNHcdJXjmX9+vUYhjFMUz5wFIQQeEMeJEUmm8ygZwzifQkqxpbz24tuRs8YHHDiXI4451AmzhvPmtfX0d3SQzajYxoWqldB87nVaiEEiWiSeE+cnz32Q/q7Ynh8Gsuff5fX/vUm0c6o67pi27Rt68QX9mGZFv4SP30dbkiQlXU7GLPpLPG+OMd841Aa324j3p3EDjmYukGkKEzbtnbkAbeLkYjlYKT5Z644DZ/fQ7I/xbzjKrn/+kdQNLf6jQdivXECvgATJozn/mv+yK/uu4W6tgYKwnms2LKGPilGUA1gYCAcgWLLaF4PlmzRkGohLbK0BroxPTbYDkk5zZLSVYxJ1dB5UxenHHs4T1ivYjZZZC3dzcGUXZtCWZYpyS+ioaMZTVURCLLGQES9ENhCGur2gfs8yA/m0RPvcx1NPH76MwmytkFvIureiwV4NA8eVaO9r5vycAmST/CpUQfweNNLw4jyztXwQaT9WTcMaIBcS44gEdjxbJKQ8WY0DNXE8A4n8jsTa9uyUYWK3/TStK0VuVDCK3vAAVvY7kyBPWDjKZwBd0H32SoLGT1k4kmrOLaDbAmikQSp7jQlkSBt29pBCOK9cUzDIpgXQFIElmER7ezHn+/Do2lIQmCZO55htdNr8Aa99LS5lp7JaJJjvrhD/idJEvn5+eTn5zN+/HjS6TTd3d1s2LABXdcpLCxElmW6u7uZM2fOXpHw+++/n/vuu48nn3xyCKn/OOBj7Zoy49BpfOW6L+LxaQQifrwBL5Xjy7n+6f+3X/XZ29c2oGrDf1CmbrLihZX77Tj/7UjGUlx/4R84zvdpjlZP4/Ijr6Zp83Ct73vhD/tRRvh8FU1l6oGTmHfMLLwD8fXqgI3Yj+65Cs3z4Ull9hRFkQIm14wf9nvTVI3PHXHaHu1jS/M25l96Eg8vfpq23k5WbF3D+dd/mz/867YP45RHhGVZnPjDL9AT68uF9mSMLDc8cgfPvfPqR3YeALdefj1HzFyIV/MQCYRQZQVFHvr7kITEhMoxjCmv+cDHiacSPPvOq0NIOLhWlDc++tcPvN9P8OFgMOXSNE0mTdoz72JZkfnCT87m0hsv5vhvHMmlN36F7S3b8Hg8zJgxYxgJjxSHmXzARLqbe4lHE+SXhSmtLSWYF2Di/PE0rG8cIDcGT9/+PK89uIQzLz8VSXZlI2VjSpl48DgKywvwBX1kUzqZVJZAJEBpdTHyQOU8EPET7YrR1diJx6/lGkGjXVECIT/BSAA9rWNbTs5uUAiBkCCb0tF7LRKxJGvfWM/SRW9Tv7GZz1x+KrOPmoFlWpiGlXMzGQLhkvHHbl7EghPm8fkfncW8Y2YTzAugqArJeIpELIkkJA779MEAVBSWcdOlP+fUA4+lqbOVglAepmzRLXpBCHyWF6/PS3ltKXmlEY4/92hqP1WLHFZQZNl1CxESGUfn7ewa0tkUk7wTeOV3D/Klk8/JOaRIwiWtheF8zjj4ePxeH/nBCLXl1YwpHYVP86IpWq4KvjPBFQiS6SS6oZPRM7RFO2nubmNLaz3tvZ3Ytk1hKA9VVnAcB4+mEQyHGD2qmssvuRhFUnKfz0hKYTHwYk9xjK7SaG4VQzPZNKVpx29UWMSDKTIe3fVNH6lHzwY/XvLtML6ERqQrQMQfZGr/ODRNweOoBFQ/hWo+k8vHkR+OuGTcsRHCTSIdn63GcWwUVRlIZlVzdoNtde0omkIwP4ihu+GC6XiagrJ8bNsmFU+T7s+QiqepnTEaWXUddMANjPrCT85h0oIJlNWWcNIlxzHv2Fm7vL58Ph+jRo1izpw5zJvntsU0NTVhmiYbNmygvb19l30eO+Phhx/m73//O48//jiBQGC36/+34WPdrDmIZCzFxrc3Ey4IMW7WmP3eJNm6rZ0Lpn5tiPYPBhL4Tl/Izx/e9xCX/3Y4jsOlB13J1ne35dIu3WS4AP/cciuRwvAut+3v7ufsmguHBQh5/B7u2XY7+SV5rHptLW8/u4JwQYijzj18iDb/34119Zs49PJPo5sGyUyKoC9ATUklb9zwGOHA7iVSp//0Qh5/8/lhN+2gL0DXQ6v2S4z87rBk7duccPV5xNPJYcs+fcgJ/Oun+29QYJgG6WyGkD/4vtfq9rZGGjtbmFw9np/e+X/8/bkHUWUFEBSEIrz8fw9SWz48/nx3yOgZHl3yLGvqN/Kb+/80xAlmECV5RXQ8uHKv9w2fNGvutx06Ts77O51Os3LlSqqrq6msrCQWi9HY2Mi0aXvWoO04DosXL0aWZcaOHUtp6chpsI7jkM3oLH1yGQ0bm/DkeaicUYrHp7HhxS28++yaXEBbOpEhlB/kyju+ya++8DssLAxTp6CgkOZNLZiGRVFlIUK4WtsjzjqEo849PHestxa9w43fuBXNoyCEhG1Z+EI+/CEfpmFi6BZCQE9rL9lUdkACI1A9ru1heW0pxaOKSKfSdDZ3Me/0Wcw7fhbP3PQybz2+nEwy4zaM7gRfyIsky+ipLMecfwSX3nAxAM/f+RKP/nkRvW19bkBPQZCKMaUE8gJUja+koDSPn628yU1+VjUsx6ahuYlgu5dOby9IAn/Ix/QJk1gwcRaPv/k8m1u2oykqelbHwA3fEYDXcjX2aSfrhpc5do4g245DZVEZG29/hbtffJgf3fl/JAeKAo7jNsI7OGSNHbPTAkFhpID+RP+I17IsSeCAz+PeRy3HZnxFLRUFJfz4vMuZNWYKX/7dlTz0+lNDw4R2pNy7xxEC2RGY2HhTGrIluRVy2UHYwiXe0sjVbxxQhIywBWVOEf1qHAeoiZaTt9VP6/gejIBFsSefYruAU798AqcffjzRZD83PPJXnnzjeQzLJBIMc3zZoUgrbRbpr9FDP5IjUPwKFZlixm2vor8zRqgwSKQoTKwnTl9HFG/Qi5HRMXQTx3KlVJHiMIqmUFFbhj/s57NXnsbEeeN3fRHtBl1dXWzfvp3Zs2fneji6urro6elBkiSKioooKioiEAgMue8/8cQT3HjjjTz11FPk5eV94OPvB3zSrLkvCIT9+70xc2e89q8lI0onNJ/G2fsY2/5xwca3N7N9TcOQyHnHcdAzOovueI7PXfWZXW4bKYrws39dzf876zoYuEAd2+bH916V09/POnw6sw6f/uG+iQ+IqaMnUn/XUu59+THq2hpYOGk2pxx4DKqy+4r9TY/+lcfeeG6Xy+vbm5lUPW5/nu6ISGXTiF14gsdTif1yjHQ2zWV//Cn/fOFfmJZFTWkVf77sVxw959AR168tr84R7T9ddh3fO/tS3ly/nLKCYg6fceAHSlira63n4MtOJ5lNk86md9iX7QRlQAv/Cf69GHxY9/X1sX79eqZOnZp7UO8u4v696O3tJZ1Os3DhQsLhkYsCjuNg2zaSLDjkjAM5VByUW5bJZNj+ZiPJeAq5pxePx4ORMiiuKsK2bQLFPhrWNlMzoRrbtPAFfRzy6YU8+4+XaKvrQFFlXntwCaXVxUw7xLUhHTuzlsqxZWTTWYQkoXpUiquKOOyzB7H+jY1kU1mCeQHWL93EhqWb0PwqPp8X07BwBnTpQgj8AT+RvAgF/kJGjRrF6d89gVh/P5vfrCMTy2I7Nrbp/s7T8UyuUr70qeWkEjeC7YDmoHhk8ooi9LT2EeuNEy4MsXl5HeuWbEQIqC9vxFEE4VCAospCsvEsc4OTWeiZRbPZgd1j0drezq9X/9ltprSsIbNNg67fKTlLSs8O0HL3vCzbwufxYVomBaE8HMfh80d9mlXbN3Dfq4/j9wboT/ajmzrSeyb6HRy6+3t2+d1bto1AYJgGYX8Iv9fnhvVIMsXhAgzToKmrbXii5060TLFlyguK6Ur24ZEkbM1Bt0ywXRmMozskrR2a/MEKtiTc4Yciy9iAiUkT7aiOgkCwOdyAb7oHoQoUZLYZzWgRD2cccDzhQIiwP8ghmdkEYwqGZKDqGud/9WycUx2Oaz6aF+oX89ILi6lUSpgQqsEYY5CMJXFsh2Q0hRADqa0ZHceyXftfVQxxW8mksoQLQ/zxsts5+NMLmX7IFCYt2DvXt51JuKq6z71wOEw4HGbs2LFks9lccmYqlSKRSJBMJpFlmd///vcsWrTo303CP1T8TxDxDxNvPf0O/7jmnmGVBUmWuOIv32DaQR+8UezjhMaNzYx03WbTOltXbtvt9guOn8sjnXez8pU1OI7DrCOm4/F5drvdfwrCgRCXnHzeXm1T397EVbddu8vlhmlQml+0r6e2Rzh46vwRNe0Br4/Pfer0/XKM8677FouWvURGd2c+6lrrOe0nF/LGDY/tkUf66LJRjC4btU/n8PlffZOu/l5sZ6i2XxLug9OreQn7g/z8gv+cpNv/ZTQ3N9Pc3DykoRLeP+L+vWhsbKStrQ2/3/++JNyyrFxvy3tJiNfr5bhzj2Hjkjp62/rI9Mewcag6oJQlS5Zw8NkH4JG8tG3rAAmOu+BIAgNyD3/Ija/f9PZWbvrmrVx47XkccOI8iioL+dwPPsMjNz7pkvlIAEWV+dfvH6O/K0asJ07NlGri8RiyKiMJGcu2qZ05mu7mbvo6+kEIgpEAhm5SPbmSvLw88vLyKCwsQlObSJPNkfDce7UdN8RHwPLnVjJ2QS09Tb0ke1MUlOWTTWURQrDlna0UlOcT64kDgkq7iIbRHfQlYiQaknhsjQnB0fiFjypRyiPyC9S1N+EAFgNe245AQmALB0c47t8D5FsIUGWNrKljOw7JTMolzIbBzK8dO+C3blIUdkPkkpkkhmmMqN2GHY2F74UQYsBxRcK0TWRJdvMJ6tbxxf+7nGPnHsbSjSuG67l3golFa3/ngDxEIuDx4VE14ukkiUwKWZKH6r8H7i9CDPyWJIEmuU28pu02mg4OQySfRIEUQXJcX/MN0a1c9+U/UDuxmgNPPYBVr66lpKoIIQlS8TSP3vQU37ntUp5vWcwbrSvIFhmkejOoqkq0N4Yt2aSTaRL9CfJKIhx3yZG8fPfrOIaDbbrFMdOyMHWTQCRAsj/Jqu3tZBJZ9PsWs27xRk665FgWHD93xM/iveju7h5Gwt8Lj8dDZWVlLtL+nXfe4fbbb2fJkiUcdNBBPPbYY5x44om7nKn6b8cnRHwf8eDvHh3SDDoIRVOY+gkJz2H01JphgxVwPd0nzN2ziq7m1fb44v844NE3nh1ZQwgossKZh5xIfijvIzkXv9fHX759PV/5/Xfdh51lEfT6mTVuGp8/6ox93n9rd/sQEj6IjJ7l1/f/kbuvvnmfj7E79Mb6eHfr2mEkHNxp64OnzufwGQu55OTzKNyP3uif4IPBtm0ymQzz588fpuVWFGW3RNy2bTZu3IhpmsybN4+33nprxPV2JuFCiF1WAkMFQS7741dZ/epaDN1k9PRRtPe3UVBQgK7rTD9jIvPkGZRXVVBWUcqTf34WI2uQTet4gz4UzcS2bJ6/82UOGEgAnn3kDCYvnEg6nmbdmxt45IYnKawsoHVrO5Ik0dHcwbjZY9AUD4qmEMoLYFk2wUiA3vY+6tc2IkmCky4+jmmHTqW7pYeuph7yS/LQfJobsjMCFK/rae7g4FgOPq+X3nQf7ds7EJJAliX0jEWsJ45l2kiKRFVfCRF/mK5gH/lyhCnGWKLRGIv8r9Np9ZBQUzmSvYPPOsimgqOYbkjNTg2Rzk6rSUJCld2BxsbmuoEgHzAsA1nI1JaPwu/xkc5mGEkFJQlBwBtwHUVG+n4dCyEEyUyadDZLyB9AlhTe3bqWtfWbsG0LIaRd3o+FJFAVxSWwtkU8k8w5tnlk18XG0od/1gII+QKUFRRTWVTGS+++sdOJCRxhkzWz9HsS+DQPxN2+hqLSApo2t5K6+xVSsTRd9OANeAnlB+hu6eXRN57lgdeepDy/hOJwIdubGlghbWRNYiNqqcoouZz55lRSvSlC1X4iJWF6G/uQZMlNU1VlPH4P6UQGyzTJpnUkSSLRlyCYF+CV+xbv0bO4u7ubbdu2MWvWrF2S8GHflSSRyWRoa2tj/fr19PX18eSTT/L8889z3nl7V8z6b8EnRHwfEe3qH/F1RZGJ98ZhzH+eb7jjOGxYtpmNyzZTMqqIhSfNR1EVWurauOXbt7HixZV4/B5O+spxXHDN5/dL0+PEueMYP3ccG5dt3qERlwQev4cTLzx2n/f/v4bptZO4/YrfAG4j5RNLn+fhxU8T9ge58PhzmDN+/8t0Pn/UGcwZN43bn76Hrv5eTj3wGE4/+PhhjZIfBPUdzXhUbRgRtx2b9Y1b9nn/e4L3EzFHAiGeve7uj+Q8PsGeQZIkxo8fPyI52p00xTAMVq5cSWFhIbW1tbsk15ZlYdsDTXB7IHUK5Qc5+PSFRKNRNmzYwJQpU4hEIoBL/Ht7e2mub2Z7/TaSZpx0Ip07f8u0COUHMA2L9voOnvnri2SSGWYdOZ0DTpxHX0c/sioDroOKjQ2WiqpoRDuiREoiJPqSFNcU4zgwelo1RtagvzuObdv88//dz7o31tO4sQXNo5KMDu/3APe+bGYNTN1E86psW1EPjitbURQZIYGeNVBUGT1j4PFrGLpJwp+izdOL7TiUUMgF3/0cX7zlO0TT/UiWBP6Bz3hoRg9jeirYXNKENFBxFjv9a9mm63QWLiCRSWFkM66k0TRz1WnLsdjaWk9RKJ+g1088M/x9ybI8ROCryArme/TiO/9fykhYto1hGmQG3JmcEQbogzpxBwfTsrAHPMxtx0GWZCQh0FQPqiSj63puIKJIMqqiUhjOIxKI4NM0FElBVRTXAUY4DEaBOrjSwHQ2jYLMpwILUSWFSFGITW9vob8rhqRISJJEXkmEucfMYvnW1QQ8vtwA1XZs3mxeSTjlg4xDQ7gFn8dDrVTBvHnzmDd3Hnf86E4aNzQTLA4QyAvg9XtJ9LhuPgJBKD+IL+Slp7WXgrK8EX87O6Onp4e6ujpmz569V37fS5Ys4eqrr+bJJ5/M2SJOnvzxLmp+QsT3EQeePJ/Gjc1DtM/gXjy10z64Y8OHBUM3uPqUn7F2yXos00bVFHxBH7947MdcdfyPSURd/Vg2rXPvdQ/x+sNv8tc1N++XsJ7rn/5//OWqv/HcP1/CyBrMPXoW37rpq4Ty399i7H8Vpx90HD+441fDXveqHu774R/xeXxYlsUpP76A19a8RTKTQpIk/vbsA1x30Q/45ukX7vdzmlwznt9+9af7fb+TRo0d0mA1CEVWWDh59m63b+hozunDD5u+8APpwwvD+UyvncSKrWuHkDuPqvH5Iz/p9fhPxEg5EYOv7wqJRILVq1czbtw4SkpKhiwbrHoP6sEHSfiu9le3ajvLnl6BJAsWnjSfmimjaG9vp6GhgVmzZg2xWWvb1sG9v3qIWG8cf8jH8V85km0rmlj5/Gqy6SxevxfVpzF66ii+e/RP0NM6iqayZvF66tc2Ee+N0dseRfOpeEIaie4kvmIfm5dvxTQsqidXIYTExrc2ISsSzZuaASgsL2Djsi14fCrNm1vdKnwym8tZkGQJ29pBMlWPimVZ5JdESPanEUK4MwI46FnDrYgrMgyEB6maQh9x1o+vdz97BMv961nv1JFRsvhNH5Imk7F10sIaagNoQ9bRqYoWk6zJuiR6oHFSVVRURSVrZOlPxXFs15pvV/KQeDrJuYecyt2vPzbgIe4ajwsh8CgaiqwQ9AYoySvEsi06+roHvmcLY0B2N5jO+95U5Pc4Fw5ZIEsStm0PyElcvbdXUSnNK2R7R3MuyG3IZkIgC4mA5qOzt4twIMjW1gZMc7Bp1T3i4Hsd/EvHJG4msR2brqZuYt0xSmqKiHbEXMeTWIqTLj6O6LJHSRsryMfNTWlt70QSAsNjYdk2Ukyiwd/K3MKplI4qxh/284tHf5y7lhKJBF1dXbzx5DJeu/NNMrEMkizcQKqswYIT3r8a3tvby9atW/eahC9btozvfve7PPHEE1RUVOx+g48J/idcUz5M9PfE+Mqsb9Hf3Y+eMRBCoPk0vnXTJf+Rld57rn+QO//ffWTTOyqPQhIUlLlav/cOKABmHD6NG1657qM8zU8wgJse/StX3XbtQNOggyTJ/Oz8K/ju2V8D4JHFT/OF6y8jmUkN2c6remi+751/i4QinU2TSKcoihTsVUPPZX/8Cbcvujf3EBRCEPQGWPWX53bpfuI4Dpfe9EP+9sz9qAOetAXhfF7+zQMfyDFlY+NWDrn8DDJ6NudwM6a8msW/f4SQf/8MGD9xTdl/MAxjSKjLznjjjTc46KCDhrzW3d3Npk2bmDFjBqHQUMeit956i7lz5yLL8p6R8JXbufNn9+HxaRi6QWdjN6NnV1Mzu5IzLjx1yFS8kTX4/SV/xDQtQvlBUrEUlmHxzVsuYeu723jlgddJZ9IUjyvk3afW0FXfQzA/iG26el7HhlETK+hp6yUVT1E5rpJwYYiSUUWsX7qZURMqCOQFcByHtUs20N3UjcfvQZIk9IxOzdRR5JVEeOfZlciqjG1auVh7xaNgmza2ZSOrMnllYYrKC4kUR+hu6kHzaSSiSVq2tOIKuwW2ZZPKzzJ2QS3ZrRnWWVvprOwjrIWQZQlHgwkTxrJ89Sq8ihdFkjEsk3azC8VxGwtzAZECNFlDUiQqCkrJD0Vo6GjGsEwOnbaAtfWbqO9oHqiS7/qHJEsS3zzlAh5e/DR+rx/dMGiPdmI7DjUlVVi2hYVNVs+6sxPxKAGvn1gqgW1bOOwg4rvD4GBNIPBqHrJGdoj+XBqQsexq0ABQGimiK9YzZDuv6kG1FNJmBkcCa0DvvrM+vYAIR5oHYG00MDI6Hr8HW3ZITs+yRt9C+ZgyDp0+n7q2BrpifZi6wbZtDSRIISNjmzaSKZikjuGuX91E7fRdFwwzqSy3XvV3GjY00NsRRc8YzD95Fp+/+iwKiwpHLHj09vayZcsWZs2ahcez531cK1as4NJLL+Wxxx5j9OjRe7zdzrjwwgt58sknKSkpYe3atcOWO47DZZddxqJFi/D7/fz9739nzpw5ADzzzDNcdtllWJbFRRddxPe///33bv6Ja8p/KiKFYe5YfTOP3PwEby16h6KqIuYfO5t3X1zNc3e+xMKT5nPKJScQCO9bsMj+wqLbnxtCwsFtzult69ul/m39mxvZtqaeMdNHfwRnuH+w/q1N/OOae6hf30jttBouuOZcJs2f8O8+rb3GN0+/kJMPOJp/LV6E4ziccfDxjKvckSb64GtPDiPhAKqq8uK7iznr8FM+snNNZdJ8/carue+VxwAojhTyp8t+xckLj96j7X//1WsYW17D7x66jd54lEOnL+A3F//ofQn1vS8/yp3PP0TGyOamkJPZNKdf82VW/eX5vX4Pk6rHUX/XUh549QnqO5qZP2EmJy448pMUzY8BGhoaaG9vZ968eSMShJ3lLLvTgwMse2YFHp9GMC/A2iUbiHb1k0ln6GvsozBUzFHnHpZbt78nTiqeprDCbSz0h3w0b25l2aLlTF44kcv/fCkAPW29rH1mE7IiYxgGjuOQSWRRvQo9HX0gQVFlMWd/9wwOPGUBAH/90d00b2qhu7WHLSu2keh1myedgZTnSFEIzaPR3dILgKWbQ5IcTd2twkqyROmYIhwDmja0EO2MEe+NM2H+OFq2tOLYDkISaD6Vd2u20FsUY4WxGalSorQ9H8u2MXUTaWBgItmC+dZ0livr0W0DB5uJqRqcIsGWTINLrIWEjY1u63jx0tjdSlesh3Q2gzpgRTi6bBQNnS34VA+mbWNa5oh9HJqs4nc8BP1BmrpbMSwTwzQYXVKFT/WgGzrJTIrPHXwqPakonf3d1LU1ks5myAyQ7z0NWRsk7B5Fw6d5MC0TjySTMfUBm8WBZkxGHjgURwqpraimo797yOsZI0skGERPGJi2OSTpReDOEHr9Hnoa+vCnNcDBkRzeLdlES7oDRVXJdhkkl6c4ds5hfPn4c3hz3XK2bavHiwcLCyELHBmuvvJbORK+4sVVvHTPaxi6wYLj53DEOYchyxJev4eLfnU+y19YSTKapHZ6DUW1BXR1dbG1bit+v5/i4mKKiorQNI2+vj42b97M7Nmz94qEr169mksvvZR//etfH5iEA1xwwQV84xvf4Pzzzx9x+dNPP82WLVvYsmULb731Fl/72td46623sCyLSy+9lOeff56qqirmz5/PqaeeypQpuzcJ2B/4hIjvB4Tyg5z/489x/o8/x7N3vsjvv/ZHt9HFcdi4bDOP/XERt6644T9CgmHuojlHSLjNISM0VMqyxNaV2/5riPjyF1fyw1N/nvMd72zsYuUra7hu0TUfmsVhfXsTtzz2d9Y3buGQafO55KTzKNhP1eja8mqu/OxXR1wW9odyjh47Q7B3cfB7ip5YH7cvuoe3Nr7LjDGT+erJX6CswJ3eP++6b/H02y/lJCbN3W2c/Yuv8cpvH2T+xFnD9tXe28lra94iLxDmyNkHo8gK3zrjy3uVWHnzY38fNhCxbZstLdupa61nbMXovX6PQV+AC48/Z6+3+wT/mbBtmw0bNmBZFvPnz9+lbEmSJAzDcPXEuyHh4FZyHcch2hUjFk2g+TTyCiMUVhby2kNLOPJzh+b2EYz4kSR3al/zqGxf20jbtnZevOdVXn1oCad+/QQmzZ/AypfWYOgmsiLjDLiZ2LaNaZgk+5PIkkyyL020c0dv0qlfP4GbvnUrq15Z61a2bQccB8Wj4PFqRLtihAvDRLv6sW0bx7IRkpSz0PN4PSAcyieUYiRMulq7UVUFI2sQiPjZ8ObmnJWdkATNwU56ivtdlxNHwpItOsp6CWR9xOwEUlwgazLedyWmFU2moDNMv5rAiZqcdMwxjDlzHGdd+1VkIRPPJJFwo9xtx8412Nq2jWEZNHW2UhRxK6+KrCDJDoY1cgCMbho8ufoVZFmivKAUy7Jp6m4lmU1TnFfkWkpicdzsw/Chous6bzWs5rYX76e9rwvDdAn+SCR/6Pfu9gs4jk1NSSWzxk5lY1MdW1vrhxWzdlUPD/mCw4LCBtGZ6EEIiVAwQDKTcm0ThUv+VVkhG89SJPLJqmlsy6bT6aHX14+ERGF+Pg4OvfEob216l61t9bT1dJLVTGzdImwG8Ste8kflU1JaDMCWd+t49OanyCuO4Av5ePXBJXj8Hg4540DAHTQeOvD3IAoLC3Ech2QySVdXVy5IS9d1pk+fvldylPXr13PxxRfzwAMPMG7cvlnxHnbYYdTX1+9y+WOPPcb555+PEIKFC91ejra2Nurr6xk3bhxjxriJ6+eccw6PPfbYR0bEP9bJmh819KzBjd/4M9lUNndBZtM6ve29/OvGx//NZ+fiqM8dNmLzZenoMtdDdARIskT5f2DTaVdzN68/8gbr39o05AZ482W3Dgv/yaay3PLtDyeJ8s31y5n+laO44dG/smjZS/zsrhuY9OUjaOps/VCOtzO+fMI5eLXhlQdJSBw9+5D9eqztbY1M/NJh/L9//p5HljzDdffdwsQvHc6a7Rto6+kY0fUkrWe4/r5bhu3rZ//8A7XnHchFv/0un/n5JVSeM4812zfs9TklRggYAvehNdJMwSf4eOH9yLIQgmw2y/Lly/H7/UyfPn2XJNyyLAoKCli1ahUbN26kt7d3l5KXQSw8eT6ZVIa2xjawHBRFGQjocWULg/ek3vYobzy+jIrxFXQ1ddO6rZ227e2MnVVL+Zgy8oojPHbLIm765l94/p8vIytukqHm0/CFvPgjPmzLwUybOReLjes3sWHDBnp6eigoy2PC7LHIskwwP4iqKiBAT+kk+1M4lk379g4cx2HqQZMoKC9wdeG2PSDDsQgVhUh2p1E0Ba9Pwxvwoqd1QgUhvH4PpaNL8IW8KIpM2q9jS46bNungNlkqMC02jtKuAiZ4ajkpeDhFmQixZIy5C6cxo3QCX/nq+Zz3w7PRdYNkJk00FXPlIgNWfYPNkqqsoGkaluU6pLyzeRXjK0YT8gfJ6tkRZ24lIVFTUkV3vJeNzXX0xqMkMgkKw3lEkzFae9pZ17iJvng/v37sL6zvrWfGzBmcuvBYCvwRbNtCEgJFkvF7dh2fLnAdWCzL1YNva2/k5dVvUNdWT0pP73K7naFICr+44LssnDhnxOUObnNlPJ3Ao3nwaB78mg9ZyPhkLwekpiO6bVKxNNm0TkbPoioqXr8XIbkDSMu2SKZTdEa7GVVSQUEoD8Ujo5Z4GDujlpKSIsZWuNXwupXbkRWJzqZuNi3bSndrHyteWL3b9yGEIBgMUltbm2uaHj16NE1NTSxdupSNGzfS09PzvtfRpk2buPDCC7n33nv3OA13X9DS0sKoUTssbquqqmhpadnl6x8VPqmI70dsW709FzizM/SMweJH3+SCn577bziroTj3B2fxxhPL6GjoJJ3I4PFpyKrMNQ98j3hvgquO+/GQEBNJkSirLf2P8kN3HIcbvvFnFt3xHKpHxbFtikcV89sXfkFheQH16xtH3G7bmvoP5Xy+/NsrSexE+jJ6BsM0+MEdv+KuH9z0oRxzEPMnzuLnF1zJ1X+9Hk1Rc564i375TzwjEPTtbY2s2LqGmpIq5k6YsVca7m//6Rr6Ev25G2vW0MkaOmdccxG/uvD7eFSNrPEe2ZPjsLll+5DXXnp3Cdc/cMsQOUk8leD4H5xH0z1v71Wj5WcPO4ktLduHDQC8qoepNRP3eD+f4OMHIQTvvPMO48ePH9aUOYidmzKrqqqorKwkGo3S2dnJ5s2bCYVClJSUUFhYOEyeFCoLsOBzs+nfmuDtp9/F6/dgWzbdLT0c+mk3UKq3PcpfvvtXUvE0kiQhyRJzj5mNEILiqiL6u2PgOPS1R0nHM1SMcX2SI0VuquHCz8/mvqsfxTEdbNtBEQIhC8aOG0NpaWnuPHv6ukGAqilkZAnZkbEMC3/Ih6zKrtQlY6B5VCbOH8/SJ9927xWywDJtYp0xPD6Nkuoielp7XRmKEKRiKYL5ATSvRtX4Crqae8gzQ0hSOx6fhp52JRQqMiEzQJleyKSi8Qgh0Et00uk0s0+aTjgcJhqN8tqyxXz2d5cOqzoPhupIA5V6TVaRPTIVhSX4PD7GltcghOBfixeN+D0qskx7tMu1VrUtZElCURRS6TTl+SUD9xlBT6yXF1Yu5oWVi7n0jz9kbHkNfs03ENYjEMJ1KNFkDUkWQ+4rO7u5yLLsDhwcQSyZoKywmER7825/k5IkoSoKIV+QabUTCfoCQ4oJmqyiD1T8Hcet8hcEI9z9/ZvJC4RRegW/u/gWosko/oiXTDJLMOUjrAQwwzbJdArd1An5gxw+YyHLNq8knUpTXViOLAnSRpayohKuPPMSCgasbwORAK1bO8gkM6helUwizca3t5DsTxGI7H5WNRqNsnHjRubMmYPX66Wmpgbbtunr66Orq4vNmzcPk7AAbN26lS9+8Yv885//ZOrUqbs9zv7Arhq797bhe3/jEyK+HxHKD2IZI1tmvV+E+0eJQNjPbe/eyOJHl7J2yXrKRpdyzBc+lTu/P7/zB6674PfUr29EkiQWHD+Hq+647CP9Ue4Oz975Es/+/QWMrJFrLm3e3MI1n72Om5f8hlB+kHjvcL/YcOHu4+T3FtFEP1tb64e9btkWi95+eb8fbyR85zOXcN5RZ/LSyiUEvH6OnXvYMBJuWRYX/OZyHnr9KTRFxbJtJlTW8tz191IUKdij4zy/4rURqxt1rQ2cd923RoyPVmSFg6cO7Uv805N3ksoMrx7FU0mWbljBQVP3vI/x25/+Cne/+CgNnS1k9AyKJKOpGn+/6vef6Lr/h9HV1UUikWDWrFkUFY0cejWSM4oQgoKCAgoKCnAch1gsRmdnJ9u2bcPn81FSUkJRUREdHR20tbVx3BnHoGkap1x8Ai/f/zrRrn4mzB3LASfNB2DFiytJxdMUV7nnEOuJ09PWgz/kY9Wra93wFN0cNuuo+hRS6RTTZ0/nubJXsQwbIbnSQduyGTWxash5FgWKefOhd0j0JxAyOLqDoiooHoXKcRVkU1latraiZwwSUbdooHgULN1N4dRNA2/ASyaZobSmlPbt7VimTSDs54QvH8vd1z5AMuYmMdYo5fiqg7zduhpHdvAoGgsKZ3HOkWew9IllGFkDRVXoaOpk8mETcnIgx3H4wR3XYZgmiiS7wT4Dmmyv5nFDdYBYKoEkyVQXlzO2fDRZXac71sein/+Dx5c+j2Eaw7TXsiQjyzKZbAaE269i47g6bl2jL9E/zJXJtCw2t2zHq2o4zqDUaODzVxTGldXQ2NVCKpumuqSS0WWjWFu/iY5oFzIyiqwgD4TwRHxhFEkenr65E8TAAVRF5YrbfkZHXxeWaVEYyqcoUkB9RxO6aeyYUcHBo6jIksztT99LyOfn4KnziUzII9rej+ZRUTWN4toixmqj6aqM827TemRZpqKwjG3tjaTTGWzDpiCST6FdyMUnnsvssdO449n7SGXTHD/3CA49fD63fz/jWjBmDTx+D+HCEE2bmpm04P37qvr7+9m4cSOzZs0aEqglSRKFhYUjSlhuuOEGSkpKeOWVV7jrrruYOXPm+x5jf6Kqqoqmpqbc/5ubm6moqEDX9RFf/6jwCRHfj9C8GprPQzY99IL3Bjx85vLT/z0n9R6se3MDd/7sPpo3tzB+7jhOuujYIYOE8bPHcseqm0nGUiiq/B+ZXvnwjY8PC1GyLZvNK7bS3drDWd85g7t/+cCQdTx+D2dfuf8t6DyqtstW6uCHoNHeFUryizjnU6ftcvlNj/6Nhxc/TUbP5qo8a+s3cf71l7Hol//co2P4NO9AYMZw6KaBLEk4QuTIuhACv8fL986+dMi6sWR8xH0IIXYpNdkVYqk4kiRwHBtFVnAch/OPPpMTFxy5V/v5BP+deG+BwHEcGhoa6OzspKCgYAg5eO96uwvpEUIQiUSIRCKMGzeOZDJJR0cHb7zhhq7U1u5omo4Uhzn9GycN24epm0NmeGRFQiCYctAkNi7bDEIQLgghyRLdLT2E8gPYOHS1dnP6106irKqUklHF+IJ+13PcdtB8Ku3bO3j8j08zZkYNUw+ezPgZ4/jpA9/j7z+5h/6eGDUzR2HaBvXvNmEYOkKCirHl5JXmkUlm8IU9OBbYhg2SgyQkikcVYxkmkaIg42aN4cBT5zPlwEn84Wt/whfykoqlcGzw+bxMXJlPzNNPm9ZN0PFzydmf59SzjqN6ciWP3byIjt5OJiwcx0U/vSD3/oUQIEAakE+wUxVSFhKaoiFJEiF/AJ/HS1VhGdvbG9nW3oimqHz++m8xrWYS79atGULCxYCvumEYrvYdsBwb23HQDYO++MhZH4NID1a9d9ppMptiQ/NWwoEgiq1SlldCJpUm7AmgFan0JvrRTR3d0FEVlUggxOiyKho6WkYsSAy+R3BnTKPxfkzTRFNVsqZOe29nzrrQduycDaKqqMTSCVZuW8eWlu3c8ez9eBSNyVNGc4T3AEL5QaId/QTMALF3UliySW15JSEtSGd3F6WhQooKC0kbWb5y6OeYOWoK377lGrweDU3T+P0jt2GdZjF66igcx5WhBvMCxHpirkXl+6C/v58NGzYwc+bMXV5ng997MBjMyViuuOIKrrzySioqKrjooos47LDD+OlPf0phYeH7Hm9/4NRTT+Xmm2/mnHPO4a233iISiVBeXk5xcTFbtmxh+/btVFZWct9993HPPfd86OcziE+I+H5CrDfOxXMvIxEdWomVZIlzv/9ZDhyokPw7sXTR21zz2ety+um2+g7eWvQ2f3j1eia+J93yg7q8bF25jWf+/gLpRIbDzjyI+cfN+UCezu+HVGxk7a8kSaTiac79wWdJRJM8esuTOY/cM791CmddsfsESMdxWLx2GY8sfhqfx8d5R32ayTXjd7m+z+Pj5IVH8+TSF9HNHQMwv8fH108duXN7T6AbOo2dLRRFCsgLRj7wfgZx8+N/G+aNa1gmL767mFgyTjiw+9mCC48/h98++OddNiBZto0iy4ypGE1vPMrhMxbyqy//YFjs/FmHn8KSde8M03CblrlX1XCAM665iM3N24e4HfzzxYc5eu6hnHnocGL0CT6+sG2b9evXAzBv3jzWr18/YrrmniZl7gwhBF6vl3g8TlVVFeXl5bkKnxCCkpISiouLh/iGA0w7eApvPL6MWG/cTcKs70TzarRt66BibDmBvABb392Wm9nrbu8hXBbiM986jSPOOhRZljj36s9y18/vR1EkNzzGdnjmry8gKTIv3vMqJ19yHIeccSBlo0u59qmfIMvu/daybF64+2VWvb6GrpZuNJ9GsNTHzIMmESoM8s6id0lbaSRZYtSkKkqqCulp6+MnD34Pr9+DZdn86Tt30NnQheM4qB4VWZFJ9qdYLW2mMdCBT/USt5N8+x/XMHnWeOYcPRO5GAoKCoYMVAZx5KyDeej1p+js787xcE1WkSSZjJFFlWXGFE5iQtUYnl35Gi297QP2foKn334Zr6ahySqGZSKkQTIvMCwDSZIH5HFuCqQihFs9f7/v+H3sm3XLoDfez2kLj6a5pwPdNDhyziEs3bCC1t4OLNsN8FEdhZaednyal4DHRzQ1cqHBtN30Tsd26Op3HWxURcEwTSQh3Dh7Scr5pUvClcZMHz2Zd+vWAO5rkiRYH9jOTHUySkJB9amYWROpSEFNqMTa4gTDAUJeP6ZjcfHBnyUUChFvTfKjy3/JdqeeIAHGzhxNXjDCU8te4vwLzuDpO55HUiT6u2KMmljB6PfJQYnFYjkS/t7f/Puhra2N/8/eeYc3Vf5R/HOzk+6VbiiUvTfIlqlsFBBwgKKAioIoiuLADT8HDhy4wQEyZSMiMgTZUDYUKIWWtulus5Ob+/sjbaC0hS4UtOd5fKQ3ed/7Jk1vzv2+53vOpEmT+Oijj+jSpQt2u52tW7fi5eVV5jmuhVGjRrFlyxYyMjKIiori1VdfxeFw/21NnDiRfv36sW7dOurUqYNOp+Pbb78F3Em8c+fOpW/fvoiiyEMPPfS3yWWg2ke8yvDDW4v5/vVF2K1Fq+FKtYIFJ+cRFhP6D63MDUmSGF37YVLPpxV7rEX3psz5o3hwTHmx7MOVfPn8Ahw2Oy6XhMZLQ9u+rZi5ZHq5yLgkSexYuYv13/yGKLroc//tdBve2SM1mDH4dXauKh5HrfZSsy5viedcFpOVjORMQqKC0OhKv2O/8rzj3nuGxVtXYbZZkctkKOVK3p3wEo8NGlPquOz8HO584X6Onj+FXCbH7rQzuGNffpj+UYVSJ79Y+yPPfvmGOy5ZdDK0051888y7aK/RRHQ9hI9oSWp2erHjaqWa8z/85XE+uRasdiuhw1uQZy4u+7k8n4rEH3cTGhBS6nPsDjvdnh7GkYSTnhAitVLFJ5Pe5ME77inbC8LtVNNo3O1Y7MWr9F2atGPbnOVlnuvvRLWPeNVBFEWPW0NcXBwhISHUrOnWE588eZKQkJAilTZJkjwWheW5JlmtVg4fPkx0dDTh4eFFHrPZbBgMBtLT03E6nYSEhKDX6z3kYt+vB/np7SVkpuQguVxE1YsgNyOPjOQsNF4qnDYnotOFQiNHkAk89Pr93H5PF8+NgsPu5Je5a9m/8SCiUyQ3I4/IuhEIgoDT4eTSmRT8QvwQBAitoeeR2WPw11++ef/5f8vZtXYvMpUMY64RP70fbQY3Y817m8i+lIMguFMTI+qEo9apeX3lCwiCwM/vLGf15xswZhndDYSiC5lchkIh56+mR1EqVOi07utqvtPE9BGP0b5RU8+NSiG3KCTB6/f+wedrv+eiIYV8sxGVSkmAtz8KuYJccx52hwNJchHg7YfTKYIkcSYlEY1KjSBAnsUIEkQEhmB3SShkMsICQzh6/hQOpwNJApXSLeWooY9EIZOTnJmK2WpBkMmw2a0V+hA2iIrljjbd2X5sD1a7jXOpF4gOCifTmIvJYsLpElEgwyY6rukbXvh9IhdkmOzuoCQZAmKBXv5K9ysBCPYNJCokApkgcODMUWQy9/vopdHhFEXeGvscD985irfufR+1Ts0lycCveduRmWXoowNRB2tpGduYN8Y+S2pyGm+Neo/9Oce4oE9Da9egUMio0ymWmuHRfPzYa5zaG0/i8Yv4BvnQqlcL1NqSnU/y8/M5evQozZs3R6cre8EuNTWV4cOH8+6773L77beXedxNhGof8aqE3eZg768HyM820vL2poTWuD4JuR6O/HmsGAkHkCsUnIlL+MeJuNVsIz2pOBEDOLm38hHi2YYcvpj+HXbrZUsmq8nK3l8PsGfDfjr0K/uOwDvjPuSPxX9iNbkJVtzWo/yx+E9eW+b+grh4qpSmGNdlpwIArZeG6HqRZT7vlridLN66GlOBftlNhEWmfv4aw7r0Rx9QXGu6fs9mZv/8KVn5OfRr14PerbvQs2VnaodXLFV1/Z7NPPXZzCLV6192boB3YeGM4u4jZUX/9j2Z/9vSYrHOkcFh1yTNV0Kj0vDhY6/x6EfPF2uOLERYQAh6/5I1uYVQKVVse38ZS7etZcWODej9g3ik3700jy2fVVSOMQ9FKTrwrPyccs1VjVsTgiB4kjLr1q1LSMjlz7JcLvdUxMualFkS8vLyOHbsGA0bNsTf37/Y42q1mujoaKKjo3E4HKSnpxMfH4/VakWr0LHys3VovbW4xEwcVgemHDM1G0VjM9vISs1BqVbgsDtwoUQSJRa/u4Ijfx4n6dQlNDo1kfXCOX/kAiFRQWRcyiI7NYeA0AC8/HRYTe45IuuGo1AqSbtgYOGspTz6vtsC1Gqysu6rjZjzLbhcLgL0/khWid0/HUQSJeRKOU67g9yMPBx2B68sfQ5BEMhMyWL5B6sLbAUldwqn5CbjTrsTyQUyufs9LAwby8zNROalJC7pFG+t+IxDZ4+iVqp5cvCDRIdE8M6Szwn08ad+dG1Ss9IZ2X0Q4/vdS1JGCla7jUfnvuBxLXFJEicvxiMJ7t+jxW7B5ZKQy+V4abwJVKm4mJGCgIBSrkCr0pBvMbkDjJwODDmZ1NBHoNNosdisSAW/d61Kg1qpJteU6wnSKa1ZrxCnks9xNvUCof7BRATqcbkk0nIzEEURjUqN0WLC6ir+3X81ZILbFtMpiSjlSrdbjCAgF+RFvMcB5HIFCoWCmNAofvnrVyQkRFehnaX7//Wia7t7GsL8yUjOpEZgOHWFaI5K8TgU/tQKCuXJoePcn3WHQG5qPjVU4aQLudg1DqwOkcTzSTx4+zDy8/Op37budTXhFSXh6enpjBgxgrfffrvCJPx6gTvvvPMOP/74IwBOp5MTJ06Qnp5OYGAgMTEx+Pj4IJfLUSgU3GyF3P8cET994AzP9HoR0enemhSdIsOmDOaRt8dWat4a9aM4sCkO51XNmlaTla9nLKBp50b/aMOmSqNEoVIiOosTKP+Qyq9r/6ZDyBUKoKg3qtVkZevSHWUm4mfizrH55+1F7AetJiv7Nh7kyJ/HaNaliSeY4mo4nSIfTfqcE7tPEVEnnFHPDqN+m9JlJVdjydZSwnEUCjbs28IDvYcVOf7xL98w/au3PaQ5IfUimw/uIO6LjWU+59V486ePi0lIrHYbK3asJzs/h4CCTvfy4vWx01i3ZzM5pjxPWIZKoeTbZ94rFyl5oPcw/jq+n/m/LSnS/CQv2Bb+6ul3PfOt2/07H//yLVn5OdzV+U4eGzTGk06pVCgZ1WMIo3oMqdDrAWgcUw+5rDgRVytVDO18R4Xnrcatg5ycHA4fPkyzZs3w9i6a01BIxCtDwg0GAwkJCcXi6kuDUqkkIiKCiIgIRFFk28od5GTmoAvQ4pJcyNUKMi5lElkvnMCwAMJq6blwOglMAhqd2hM/v2v1Xhre1gCnzcHWxTuIbV4LuUJOYKg/coWczORMFEo5mZeyUGmUnDmYgCi6UOvURfYedhTIYpQaJRqNhrzMfETRhVwuc9sTBnjjEl3YLDZ8gr05deYULh8nW7/bha3A81zrrcGY7e7dUGnc8pSotBCSYzIQnSIuXAQFBhBVO5IpX79OWnY6Wfk51AiJwEfrzazFn9KrRWdkMgGt2l1BD/T1Z8fxfUzofx/RIRHkm42cT72IxWZFIVcQERRKkE8AMkFGem6mexdDcPepaJRqjGYTuCRsdjsgeK6ZsoLo+BxjLjmmXLw1OkIDgknKcEtcrAX2h5IE3modDpcTpygiStdossQ9Z64pD7ngdj0xWS0FPSmOMlfZHaLD44GukMkJ9PEnwMeXC4ZLqBQqjBbj5bkkCUNOJlsP7/L0vhQWUcx2C2N6DaNrk/YADJnUn29m/EDS2WRinBH07dqdvhN6ER0SjlLhtir2C/JBdLrQyFS0z2zCRXUqVruNCZ3vp2PjNiQmJmI0GvH39yckJISAgIBize5Go5GjR4/SrFmzcpHwzMxMhg8fzquvvkqfPhVLGy9L4M60adOYNm0aAKtXr2bOnDkEBl42Ivjjjz9Kbdz+p/Gf8hEXRZHp/WaSn23EnG/BYrRitzpY/vFq9m48UKm5hz4xEIWq5Opc0ulk3rzvvWLHs1Kz2fDdJn778Y9i2vKqhlwuZ9DEO4ttN2l0akY+O6yUUWWHWqsqybkRmUyG1uv6spBCHPg9zl19uQpWk5U9G9y/o1pNSk5adDldrP3qV+IPnmPb0p1M7jadHSVIWEqDWnm5c/9KCIBKUdR73WKz8PzXs4qQZqfoJM+cz6xFn5b5nFcjKb1k73GlXOHRFVYE4UGhHP/6D1594BkGtO/Fk4Mf5MgXm+jarEO55pHJZMx7ajYnv9nK55NncX+vu+ncpC0P9h3B3k/W0qtVFwBe/+EDRrwxkQ37trDn1CFmfv8+bR/vj8ly+UYn32zkncWf0eGJgQx4cQwb920t11qUCiXznpqNTq31yAy0Kg3hgXqm3j2+XHNV49aEj48Pbdq0KUbCwa37dDqdFSLhkiRx/vx5kpKSaNWqVbl0sIWQy+WE6IPx0nkRHBxMSHQwdosNm9VG0rlLCApoc09zgsICcTldOG1OoutFYrc4UKqUyOUyd0y9XOYJ8FGqlUTWCyeqfiQ6Xx2NbquPoyApU61RYs41uS0RcWvm9285gEwmw5JnJT8rH7vNgVwuo1bTGESHWJhYj0wmQ7S7SD2YQdaZXPas3ockSZjzLZgKenLcjXzeaH20RGfqGd9pFD3ad+LODt34ceZcFmxdgZ+XD3anHbVKTUq2wVNpzszPxnmFXt9isxJUUFTIMeYx6u3HSc/JJM9sJM9s5OylRIxWMz8//xl3Nu9Oo+h6hPgGEuQbgNVpR6FS0LVZBzLzs6GApCrkcqx2O07R6SbbLgmj1cylLIOnh8QlubDYragUSurXiCUyOKzE760roVIo3Q4pcgVpORk4HA5kgoDT6XBLa0ooBlwPosuFSqlEJrjlKiB5rmEyQYYEKGQy8q0mFDI53lovfLXeqBRKYsNq8vFjr+NwOvjutyW8veETDO1yqD+8Hv1n3MldTw6kdngNDwkH0Pnq6DqsI1azDSFPItoQym0+LbmzT0/CwsJo2rQp7du3JzQ0lMzMTPbu3UtcXByXLl3CbrdjNBo5cuQIzZo1K5eeOycnhxEjRvDCCy/Qv3/Fe3b27NnjCdxRqVSewJ3SsHDhQkaNGlXh8/3d+E9VxI//dbJY0AuA1WRj9bwNtO1TssF+WRBRO4zZ61/l6Z4vFquKOx0ih/6IIz/b6EnXXPHJGj5/5mtkBSlu77lcvLTwWToNal/hNVwP42eNxZxnZuMPf6BUKty7AVOHMGjinZWeu23fkt87pUbJHQ+WLeIcwNvfC4VS4UlyK4RKo/TYD46f/SDP3flKkd9lYVOmWJBGJ0kSNrONORM/4bYBpafpXYn7e9/NvHU/FHMGEV0u+rfvWeTYqYvnkJcwp7sBcnvZXmwJ6NykHUlbVhWLWpbJZMSERlV4XgB/bz+mjZjItBElp3SWBzFh0UwYcB8TBtxX7LGM3CzeWvhxEfmK1W7jYvolvv31ZyYNeRCTxUzbx/tzwZDs0XhvidvJjNGTeX7UpDKvY0S3gdSLrM3HK7/hguESd7TpziP9Rpep+bQatz4UCkWpKX4ymQyTyYQoishksjKT8MIkTplMRosWLSrVbF6nVSz6miGkJqSh1WkIjggirFYoIbWDiGylJzgqiEHT7mD1+xvx8tai1qqRkPDyc5MdSZIICPFDqVaQnpSJJEmERAUz+PH+1GpSg/gDZzm246RbeiK6UGvVbsmKxcaJk8fJTctHcklovDW4nCJOh0ij2xpw/8v3MPOuWaQmGtwx9w4nTruTvRsOsm/jQUBA56NFcklYTVYcohOZQobD7sDpcKLx0jKi/wAMGQZUNg3JcZdwOpyofVUoFUqsDhsOp5NEQxJKhZJOjdticzhISE1EQECj1vDoAHcz+/xNSziVfA4frRdWhx27045cJqNxdF2smfnMfuh5wsPDMeRksnrXRjLzcli8bTUbD2xz/74kF/Uia2Nz2EnOSMEFCEjIZW6vb6fL7Qojk8k8VWWH6MBqsxHkFUCGKsutP78KAgIqpYoWsY3Jys8h0ZCMw+nAz8uHmqFRGC0mbHYbIX6BJGWmlunzIBQYL0pI5JuMZOfnEuTjj9FqRia49fdKhdIdvlSzHmcuncdoteAq+D4QBIHerd2JrR+v+o4Ne7egFOSk5aSzPH8jtU5GI6wXeGrowwzpVHRXsOeT3dllP8SFs0k09Ill4lMPFrHMlMlkRSwxCy0HDxw4gMlk8gTeFPYuXA95eXmMGDGCqVOnMmTIkDK9P6WhpMCd3btLLrKZzWY2bNjA3LlzPccEQaBPnz4IgsCECRMYP/7mKtRUiogLghAI/AzEAOeBEZIkZZfwvPNAPiACzsJGpbKOrypcbSt4JQr1yBVBVmo2B/84jM5Xh1+IL5mXilcuBZkMc74ZnwBvEk9c5PNp3xToqS9LOV4f+T+WJM/3kPWqhkKp4Jkvn2TiOw+RnpxJWExouarV14JGp+HNVS8xY9DrAB7Zz0Ov30e9VmWPre16dyfmTv6i2HFBJqPnqG4ANO/ahNnrX+WL577l/LEL6GuEkJ6UgSm3uKwkP8dIZkoWIZHX35JqVbcpL983hVe/n+O5cLtcLpa89LlHUlEIvX8QdkfJEcVRweElHi8LZj4wldW7fsNktXjIuE6tZda451Epyx4b/HchPukcc5Z/ydHzp+nQoBWT73qIg2eOoVKqiunIzTYLq3dtYtKQB/lmwyIupl8q0mhpslp47Yc5TOh/L4G+AWVeQ4s6jfn66ffINxvJzMtGp6l4U2s1/h2QJAk/Pz/S09PZs2cPgYGBhIaG4ufnd00S4XA4OHz4MMHBwdSoUaPS+QkanZqJ7z3E7nX7ycvMo26rWPyivUlOTqZ58+aoVCry8vKQCTK2LtqB0+mk7/geHNtykqyUbCSXRJ3WsYyePoyLp5LZ9MMW0pMymP/KT/gE+tD/kT4ERQYSXUCaC9vJDh+JIzo6Gp1Wi3eAN1azDblSgVKtpGbjaEKigvlwxyx2/LKLn99ZQcrZVLwDvHHY7FhNdlQaJcERQWSlZqPx1hBRxx+XKJGbkYdXgI4+T3TnwoULbP96D1ajDRcu8n3zkCEQFRTG/jNHcUku0nIy0CrV6P2C+Pix19hz6hA2p51mtRoSVtCbkpiW7LFG9ff2xeawo1aq8FV6ERMT49H96/2DGHfHKH7cvIJEg3uMTCbD7rBzKSuNvq26kZSR6vbfVqrdDZwU+oNflnYICAiCjJNJZwjxCSoSxlYIrUpD23rNSM5I4+TFs4T4BRIRqMfudBAeqEcQBPy9fMl0ZbPprYXc9tQQDLkZReYQBDftlhXcEABFmjlFl4iEhM1hp2F4LBezUjFaje4bMY0XOaZ8RnQbyMGzxzh45hiiSyQyOAwkiTnLvmDpn+uI8AvGJbrINOUgukSUCiVeGi1zVnxF2/ot3M8HkjNSeeab17F629C08uKU4yIZutJtHQstBwVBIDU1lVatWmE2mzlz5gwWi4WAgABCQkLw9/cv8UbVaDQycuRIHnvsMYYPH162P5ZroDyBO6tXr6ZTp05FZCk7duwgIiICg8FA7969adCgAV27dq30uqoKla2ITwd+lyRpliAI0wt+fq6U594uSVLGVcfKM75SSIpP5qsZCzDnFw8S0Xip6VFA8sqLH978mQVvLPLECjusTuRyGaJYNPjEN9AHfbT7grLpxy3ubcGrIJML7Fi1mzvG9Cz2WFXC298bb/+qJ/stujdjWer37F6/H5vZRpveLQkMKzuhAvD28+LttTN5aegbiM7L7+HLi54lKPzyH1bzrk345K/Lcp+xjR8tkYhLLqlcVozTR07i3h53sX7vZrQqDQNv612ifWBEcBjdmnfgj7idRQi5Tq3l2XseK/P5rkadyFrs/3Q9ryx4nz+P7iYqOJznRz3BgA5l31X4u/DX8f30fm4kNocdpyiy++RBvlj3I18+NbvE4B+ZTEZksLtpedWu34pp4cGt795y+C8UMgVyuZweLTpe1y3Garcy8YPn+XnLKuQF3rvvjX+Jh+4cWTUvtBq3DK7Ug2u1Wpo1a4bL5SIzM5Pk5GROnDhBQEAAer2+GIkwmUwcOXKE2NjYIk2flYXOR8vt93RGkiTOnTtHeno6rVu39mhw/fz86NavC936dcFoNGIwGIhopifzQjYhocG069UGb19vEo5dwHAxg+DIQARBICM5k7Vf/kpUvUji98Ujii4UagXdxnUgNjaWoKAggqOCyMnIxWqyYzNZkSTQ13C/NoVSQeeht7Fw1jI03loUSjko5disDnfQTHgAwVGB5GeZGPrEANr3b405z0JqZgpms5l9yw+Tne7Wv2tVGtrlNiE+P4kUIR21UkUNfSTeGh0KmZzvfltCr1Zd6FaCFK5prQZsPfIX+WYj2UY3OdQq1QzrPqDI7+FsSiL7Th9m+9Hdbnu/gt+dQqHAZrcxe9wLBPj488Pm5cgQcBZE1gsymadXANwpnH5aH0w2M1H6CLJNuSAIuFwiroI8glqh0Zy4eBYfrdvT3GQ18/yoJ/hoxVc4RRGlQkGeOZ/Y8JqEBelZ98Z8ek13SyGMFpOnETRGH4mfly9HE08V8xe3Oe2oFSoQBPwD/LHjxMei42JGCrnGPGx2O/tPH6Fd/RZY7Vb8vXw5efEs3/++nKjgcC4YLiGIEjER0ThdLuQy9+66Sun2Y0/NNniI+O+H/sRkMRMZ4i4S5ZryWLR1JZ2blN67ZTKZOHz4ME2bNsXb25uAgAAiIyMRRZGsrCzS0tI4deoU3t7eHncipVKJ2Wxm5MiRPPjgg4weXTVp4qUF8ZSERYsWFZOlFD5Xr9czdOhQ9uzZ868i4oOB7gX/ng9soXxEurLjywSr2cqkTtPIyyju76nx0lC/TR16jS4/ET+8/Sg/vrUYh9WB4wq3EEEQUGlU2K12ZHIZSrWSZ7+5nE5pt9pL9Ld1uaQSnVduJWh0Grrd3alSczTv2oTlqT9wdOcJXKKLJp0aoVIrrznmnmfu4qMnPsdqulyFVaqVdBrcHp1P+TzRo/URjO9fXHJxNX5+8TNGvzWJ3w/uQKVQIAgC74x/yaOTrijqRNbix+c/rtQcfwfGz3nW4zADbltCh9PB95uWExYQwjmbpQgh1yjVPD5oLICnqnR1pcPmsDPyjccQXS4kyYVMJufDx17l8cFjr7GO51iybY07xrrgz/CJT14iIjiUO9rekjZZ1agASmvKlMlkhISEEBIS4oneLiQRvr6+hIa6bw7PnDlD48aN8fGpellToce5UqmkefPmpVbzCoNPateujcViwWAwcPL0SQDij5wFwS0LsJptJMencPFUMjo/HXkZ+fjrfbE77YjZkseycfDj/Xhx4JtkpWUjSG6pYPz+s3Qe0sH9HskEfAK9MWYZsVvtBd7c0H1kZ+xWd3Jxj1Hd6Di4HZIkkZR2EZlMRvPmzdm/+Aj+gX54B3hht9vxcqnpQwdcHWWsOrCZKH0EAu6dMHfEfMmoHxVLcqahSCqlXXTy/sqvqB9Th/NpSSRlpPC/JZ/hFJ3YHQ5sdhsOpwOx4Prio/NGAuZMfAWH6GTRlpXI5Qqa1KzHxAH3s+qv31izexMqhRKtUoPVYcPudHDBkIRLcqFVabHY3M4sLkEiy5iLt1aHj84bH5032cZcElISeWbYRN5dOg+ZTCDIN5A5E2YC7l1QtVKF2WbFdYUDSrYpH4foRKvW4LjC9lWtVCG6ROxOBzH+QThFJzmmPC6mX0KlUCIB+dZ8jpw/SWLaRUw2CzX0UThFES+NjjyTkYiAEC5kXsLfzx+XKKJWqfHVeXsaUiOCLstOpMLo0AIIgszz3pUEs9nM4cOHadKkSYlN0IV/T5IkkZ+fT3p6OvPnz2ft2rUIgsDQoUMZM6Z0y9/yom3btmUK3MnNzWXr1q388MMPnmMmkwmXy4WPjw8mk4mNGzfy8ssvV9naqgKVJeKhkiSlAEiSlCIIQmk+gBKwURAECZgnSdIX5RyPIAjjgfEANWqU3KxXGrYu3YHdYi/2pS9XyOj/SF8effehCsVhr/5iQ4lyF423mu7Du2C4YCCyTgR3PTmImg0v65s6D72NVZ+tK5YOKblcdOhX1F5YFEVO7Y3H5ZJo2K7eddOu/i1QKBW06Na0zM+/Y2wvkuIvsXTOSrcdmM1Ji+5NefbryTdsjX5evqx9cwGpWQbSczOpF1kbpULJ7wf+JCkjhXb1W1wzDOhWhtlq4cSFM8WOS5LE5kM7OPrl7/R/cQznUy+ikMtxSRKfPPEmres1A2DS4LEs276uSFVcJsiKyVlEl8ikuS/SOKY+3ZvfVux8uaY8Fm9dg81RXAbz5k8fVRPxfzkKCW1ZnVGujt7Oycnh3Llz5OTkEBwcjMViQafTVej7oDQUyl1CQkLK9d2l1WqpWbMmNWvWxGazkZ9kZvuyXQjpkHUxB5vVTnBEELkZuQgycOGiZt0a7Fl7kJ4juxMcGYRSrUTjpaZmg2hyM3Ix5ZpZ99VvhEQFIbkk9m08hMPqROurQ3SKOB1OGndswLi3HyhS/BBFkSNHjuDn50dMTAyCINCkc0OO7TyJxkuNIMmQy5T0Ht4DWQ05aw78wcXUZDRKFTang3u6DizxNR48c5TH576A+Qp5iEyQIUkSh84eY+DLD6KQyzmfloSPzpsaIRFY7XaSM1KLEHdfrRevfP8ek4eOY8vhv6ipj0SpUGLIzWTx1tUYrSZ8dF7kmYzYHDYk3M35dqcDp+jEYrWgkLsj6tVKJXnmPExWOT5aNwm12W2cTDrLkI592fruUnJNeYQH6j0NkT46b14aPZknP3sFcHuG++l8cOEiNTsdrVqDQq5wV+aRPLIZP50PckFGZl4OJqsZ0eVy+4pL4BBFdGoVQX6B2DLTSMs24BRFXKILnVpDbGQMPrmZ3NG6Gz2a38ZvB7aTle/2hX9h5BOEX5EN0a1ZB5ZsX4shJwOl3O368lj/+0v8nZjNZuLi4mjSpMl1b0oFQcDX1xdfX1+mTJnC/v378fb2Ztu2baxYsYJp06YxYsSIa85RFpQWuPP5558D7rAegBUrVtCnT58iDaVpaWkMHeoO83M6nYwePZo77ri5XLWuG+gjCMImIKyEh2YA8yVJ8r/iudmSJBXTIgiCECFJ0qUCov0b8IQkSdsEQcgpy/irUd5An/mvLeS7V34sdlwmE3jw9fu574WKfVBKC5bR+eqY8cPTdBxYcuOlJEm8N2Euv/+0BZvZXYVQqpWMeXkUo5677GByZMdxXh76pqdKrlAqmLn0eVre3qxC6/0vwJhjJOHYBfTRwVXiD18eXDRcotvTw8jIzXRXRVwuBnToycIXPq3SL/YbDafo5Nd9W7lgSKZtvea0qd+8yOOSJLHvdBydJg8pMc45PFDPpZ8PIEkSJy7Ek2vKp2WdxmhURfsRvlm/iCc/fRm5TI7ocuKl0WHIySxxTU1jGnD4y03FjscnnaPZhN4l+prX0EeQ+OOe8rz0vwXVgT5VC5vNhtPpLFdSJrg/x2fOnMFsNtO4cWNMJhMGg4HMzEx0Oh16vZ7g4GAUiorXqywWC4cPH6ZWrVro9ZW7HkmSxK/fbWbzT1tJir+EJEgERQeSGp+GIAgEhAbgH+JHbnou/R/pw8k98SSfScFwMQPfQG+yDbmo1ErsNjtaby06Xy1RdSJwOpwYLmbQ7o5WxLaoTZu+LdHo1J7zOhwO4uLiCA8PJzIyssh6Ni/cxpaf/wSgx6iudL+nM4IgcPDsMT5f8z05+bm0j22OTq5hz7k4/H39eOjOkTSp1QCARz96nj2n4zhz6XyxjANBEGhUoy7eGi8OJ5xAdIkE+waSbcz19Ja4HUYkdGotTWrW54Hew3hnyef4FvT0uCSJC4ZkooLD0Ck05FryScy4hMPp8IStCbhDcmSCW2+u9wnEJjpIyUnH38sXp+jEZLMQ4heISqFi0qAxTOx/P2k5GSjkCoJ9A9ze61mZNH2sDxq1GrVShVatITkjFZvTjpdah4RErsm9K69VaQj2C0RySYzuMYSsvGx++uMX7KKz4GbSvUPup/OhXYMW7D51CIvNguhyIRdk1I+sjdPp5M4W3XjkztGEhIQgyGWkZacT6ONfrKcJ4HTSORZvW43ZZuWO1t3o0rR9sb8Vi8VCXFwcjRo1wte37LbGdrudMWPG0L17d6ZMmYIgCOTn55OTk1OkyfIWxz8X6CNJUqniVEEQ0gRBCC+oZocDhlLmuFTwf4MgCCuAdsA2oEzjK4t6rWLRemuxGItqUtU6NfVaxVZ43tvv6cKB3+OKNXo6HU6aX6OaKwgCT8+bRJ/7b2fL4j9RapT0vvd26rSo7XmOMdfEc3e+guUqTfsLA19lYcI3+IdUPvb83whvf2+adipfMExVYeSbj3HBkFzE8WTt7s18umo+Twx96B9ZkyRJbD+ym21HdqP3D2JEt4Elat4LkZiWRJen7iLHmIdTdCIIAl2btmfla9+gUqpISr/EHc/fx/m0pCJbnYXQqTVMGvwgUPBFWrP0gIiH7hzJqB6D2R9/BH8vX75Y+yMfr/y2xOcmpF4s8bjeP6jUcKGKhipV49bBuXPn+Omnnxg0aBCxsbFlJuGiKHL06FF0Oh3NmjVDEAT8/Pzw8/OjTp06Hq12YmIiarXaE2GvVF5bInclcnNzOX78OI0aNcLPr/LXa0EQuOPBnnS/pzPbl+5k3dcbkWvkyBUy7FYHuZm5pCdlIBNkzJ+5kOCoIKLrR2K4mO52bfHR4rA70HppsFvt6Hy0KFQKFCoFXr46QmP0dB5aVMNttVqJi4ujdu3axXTzgiDQc3Q3el4h67Q57KzYsYGE1AsM7NCLfm17sPXILl6a/y5KuQLrpbPsOLaX5wc/Ssv6Tck3m1AKcrxLiIYXENAV9Id4aXRk5mWTkZeFoyAZVSiIexddksdnvLAKXHhTZi2wKnTanSi1SiK9w0lMT3bvjhcUIUVJol5kbfy8fTifmoRWrUHrdGJ12FArVGTbrUQGhuKj80Z0iXy08lu2HtnN3tOHEEUXPVt04n9jn+dM/BlGdBvAmj2bQYA8sxEvjQ6dpHXv/AkCMkGGWqmkVlg0giDDkJ3Op2sWYLXbcLlEBAQUBf73cpmMqJBwjBYTdqcdnUqLSqHEJtqRKxU8MfQhhnToQ1ZmFidOnMDhcLh3erSuEp1N6kXV5sXRpe8QV5SEOxwOxo0bR8eOHT0kHNzWojdC5vVvRGV9xFcBhUKgMUAxY0dBELwEQfAp/DfQBzha1vFVgXZ3tia8dijKK7balGolUXUjaNOnZYXnvX1EFxq2q4emwHlEJpeh1qp54qMJ120QFASBZl2a8OTHE3n0nXFFSDi45TSSq3gRSXJJbF60rcJr/qdgzDGy9MOVvHnfuyz831JyM0rv2L4VYcjOYH/84WK2g2abhU9XL/hH1uQUnfSf8QD9ZjzAK/PfY+rnr1FjdDt2Hd9f6pjRbz3Opcw08i1GLHYrZpuFrUd28d7SeQAMevkhTl48i8lqxuEs2qSqVqoZ1mUAz97zaJnXqFVr6dykHU1qNbhmCE+tsJKrKjuO7UNdipuMt6Z8vQHVuPUQHBxMcHAw06ZNo3v37syePZuTJ09eMynRZrNx4MABgoODqVu3bjHCIggCPj4+xMbG0r59e+rWrYvNZuPgwYMcOHCApKQk7PZr9/IYDAZOnjxJixYtqoSEXwmNTs3to7vQuGd9HDYnMQ1rEtOoJqJdRKlS4JJc2Kx2Lp1JJTczjwbt6qFQKZFcEv7BftRpFYtcXvSr3+VyeSwTC2E0Gjl48CD169cvU/OqKIo89flM3lnyGSt2buCV799n1uJPWbhlJTq1lmC/QKL0EajUas4bU5HL5TTW1ybXmEeQTwBymcxtGShXEuoXjE6tJTOvwEStgHQr5HJPk6bbCcXdhKlVa3jkjtH0btmFni06YbSaMFnNmK0WIv31ZBqzsYkObA6bpz/LITpxiE5ckov6UbVpEFXHLVuRJGRyOV5aHSN7DCbUPxi1QoXZYsZut5NrzGPj/q3kGPMxWk0s37GeZz5/nWbNmhEbEQNIZOXlEBag55m7J+Cj80alVKNRqgjyDcBX54OEgN1hI8uYg8lixik63Qmmkgu704FCoWDS4LH0bt0VrVqLv9aHBpG1aVKrAc1qNUQpV3Bvj6F46byIjo6mVatWtG7dGh8fHxITE9m1axcnTpwgIyOjxMb5q1FIwhs2bFguEu50Opk4cSLNmzfn2WefrbDL0IYNG6hfvz516tRh1qxZxR7fsmULfn5+tGjRghYtWvDaa6+VeeytgMpqxGcBiwVBGAdcAIaDW4oCfCVJUj8gFFhR8AtSAD9JkrThWuOrGnK5nI+2/4/5ry3k9x+3gAC97+3OmFdGV8ojVq6Q887G1/lz5S7+XPEXPoHe9H+4L7HNalV6zXmZeThsxe3xbFa7J7DhVkFqooFH2z2FxWjFZrahXq7ip7eX8Mlf71Kjwb9j28pit5YYBlT42D+Bbzb8zNbDuzw67MLU0LtfG8/Fn/YW++xn5Gax73TxmwmLzcqbP31MapaBkxfOFHscoEF0LCtf+4aokJI72cuC7s07Ui+qNqeTzhU5rpDJefvh50scI7pcqJWqIimfhfAqAxFPz8kkx5hL7fCat5R8qBpu+Pr6MnHiRCZOnEhWVhYrV67k5Zdf5tKlS/Tt25ehQ4fSqFEjz2c9NzeXEydOUK9evSL2ZteCl5cXtWrVolatWlgsFtLS0oiLi/M0ger1ejQadzFGkiQuXLhARkYGrVq1KlcFvawo1Jz3GduDh18eC8Dp/Wf4dMpXpCQY0Og0iA43Qb1wPInw+nqCawbiF+iL5IK8jHzqtqqDxWQl81IWEhJhMaFFilI5OTmcOHHC45hRFpxKPse++MOE+AcjCAIul4sVO9YTGRRGSlYaRqsJvX8wCO60YqvVSv82PYiJiWHBb0tJz8si0MuPsMAQt45JEFAoFKTnZCK5ROpE1MJLo+PEhXisdpfHCjAsIIT29VuweNtqfvxjBTnGXLQqDZFBYZw4fxqby4FKpSY+OYHokHA0Kg12p7tnTMKtNxjQvhe3NWrNscRTnE9LQpIk2tZrwRODHuTXfVvJt5rw1urIMxuxFzSJqhVyEARERP46d4ift6/mvWVfkJ2fgwQcPHuUs5cS3Q20Lhf+3j5EBIXSICqWHcf3YbW7XWykElRboX7BvHLvU+7QsuXzuZCWhE7nBQI4RbGYzA/cOurQ0FBCQ0NxuVzk5OSQnp5OfHw8Xl5ehISEEBwcXOwzWbjr0bBhw3LdNIqiyKRJk4iNjeWll16qMAkvS2omQJcuXVizZk2Fxt7sqBQRlyQpEyjmtVcgRelX8O9zQPOrn3Ot8TcCXr46Hnt3HI+9O65K55Ur5HS7u1OlnUKuRqsezVmgWlgsZVKj09CqZ4lv502LT576kryMPFwFFX6bxY7d6uC9CXP5cOvsMs1x5tA55j37LSf2nCJA78/o54dzx9helfb5rSrU0EcSGhjC+askFCqFiuFdB/wja/pmw6ISLQLzzEaOJJykeWzRi5XD6UAo5WbCZDXz+ZofsDtL9k6XoFIkHNyVyKNf/s7w1yawZvcmdwy1zosPJs4sFqhUiB4tOpV4Y+Cl0XFfr7tLPVdmXjaj33rcEyGtVWuYN3kWd3XpV6nXUI1/DoGBgTz44IM8+OCD5OTksHr1at5++20SEhLo3bs3AQEB/P777yxatKhc6YBXQqvVEhMTQ0xMDFarFYPBwLFjx3C5XISEhGA0GhEEgZYtW1aqyFMaCklTTEyMx+0FILJOhDsd0ymiUCmQK+RIogunXUQQ5dw9eSD6+sEc33MSrU5Di67N0cg1XDyRjFKlpGGHyzu7BoOBhIQEWrZs6bnBKAvsTgcy4XJwkiAImKxm4i+dx5CTTmp2OomGJOpG1KZuQDROp5OmTZvSTGjGqB5D2Hl8H68seA+z1YJSpuCRbiNoHtsItbeWI0mnefKzl8k3G5EE0KhU6P2D3Q2bEpy4eAaLzUZaTjr+3n7Ui4hh25HdBPsEIJPLiQwKI9+Sz8AOvVm7+3cMuRkevba/ly9+Xj58tX4hPVt0JjYihsXbVnEuNZF7Zz/Bw3eMYvG21Zy4eAatWkNoQDDJGakIBTkTAIguvlq3kPTcoj0ueZZ8vNVaVEp3OqfD6aRlnSZ89NhrbNi3lUc+fBb7VUUEueCWpCgVSo4fP07HBq357fhOLhiSkcnkIEm8dA2JCRQP5zEajaSnp3Pw4MEirieCIHDo0CEaNGhQLhLucrl46qmnCA0N5bXXXqvU9/CVqZmAJzWzLGS6MmNvJvynkjVvJdRvU5fbBrbjrzV7PRp0jZeaVj2a0axL4394deXDng37PSS8EJIkceTP424t3HUqkeePX+CJzs963gdTrpmPJn1O5qUs7ptxzw1bd3kgCALfP/chdz5/Hw7Ric1hx0ujIyxQzwvlSIr8JxEeFEqtsChOXjxb4uOlkXCNSs3QTn2rZA1KhZJfXvsGm91GjimPEL+gaxIaL62OBc9+yH2zn8Tlcm/r6tQa7up0Z6nkHWDQS2PZd/owdqcDm8OOyWrm/tmTiQmLplXdsrv1VOPmhL+/P/fffz/3338/eXl5PPHEEyxcuJDQ0FDefPNNhgwZQps2bSpFljUaDTVq1KBGjRpYLBYOHTqEKIqoVCoSExPR6/UVJvwlIT8/n6NHj9KwYUP8/f2LPOblp+PBN+/j7fvex+UUCY4IRK3ToFDKmfLpo9Rs5N55bNG2uYeUXTRcQBGqIDgkAEHhJlK7Nu1h0w9b8Pf1R2XS0LJH2Ys+9SNro/cPJiUrDZ1Gh9FiwiGK1I2IJiwgBENOBiarhe712xEbEUPt2rWLELiOjdqw+rXvyDa60yaVCiU5OTkkXrzA0/NeI8+c77HccyCQkZeNQ3SiUaqJDongrPE8SoUSo8VEvtHkDhTKzSDHnIeEm3CHBYSgU2uICAojNqwmOeZ8wvyDmTLvVVwFlqm5pnxCA0KoERKBzWHnh83LUStVGK0mjBYTapUalyRhtdmQy+WoVWqmDhvP6ws/KvF9cUkSCkGGw+lELpNhsprx1nrRIrYREQF6LqRf8tgdFj7f7nQQd/gwPt7e1KpVi08nvcmGfVvINubSsVEb2tVvUebfS6HUysfHh9q1a2O1WklPT+fYsWPk5uYSFhaGTCYrc2Kmy+Vi2rRpeHl5MXv27ErfcJY1NfOvv/6iefPmRERE8O6779K4ceNyJW7ezKgm4jcJ0pMz+HTqV/y1Zi8KpZxe997O019MYtfafaz7eiOSS6Lv2J70urf7TVMFLitUaiX2Emwe5Qp5mV7LdzN/wmYp2pBnNdv48e0lDJ86BLVWXcrIvxedm7Tj5Ldb+WrdQs5cOs/tLToy6vbB1w2kuVF46I6RHD1/sojXN4CvzpumBa4FV+OH6R9z+7QROJ3Oa0pqCj3AtSoNYYF6nhhStBn1aMJJPl75LRfSkunTphsP3zmqxE7+0qBWqQlVlS1U5a4u/Yhv2JJFf6wi15RHv3Y9aN+wVamfrVMXz3Lo7PFiNxZWu405y77k++klf6FW49bEBx98gEKh4Ny5c4iiyIYNG/jyyy954okn6Nq1K0OGDKFDhw4VlibZbDaOHDlCTEwM4eHhOBwOjyTAarUSHBxMaGioJ6mwIsjKyuL06dM0a9asVHLftHMjnpw7gaVzVgESWm8t4/83luj6kUWeV+hVXii1SU9P58iRIySdTmbdnM14eenIU5k488oiXC6J1r1alGmNWrWGL5/6H+8t/YKE1Av0btmZP4/tQ6lQ4q31ItDHj7PJiUTqw4iNLW6SkGPM452ln3P0/Eliw2sypOMdJKRe4NC54+SY89CptO5oeofdHV1f4LIiOp0YLSaUciUulxmX5EKmkHvkLYJMhkt0kW3MpVfLLnRu0o7XfphDSpaBTo1ak5SRikquwMfHfX26YLhEUIETikalJjMvm0RDslvDLghYbBZ0ag1NazVAq9YyqtsgRt0+hDm/fO0JJLoSlgJfbx9/LyQkerXsDECdiBgeHzSWbzcu5nTSWZwuEZkgI9g3gJRMA3+e3seQ7v148P2nOZ92EV+tNzPvn0rrupVzTdNoNOj1ek+6qyiKJCYmYjQa8ff3JyQkhMDAwBIJtsvl4sUXXwRgzpw5VbLrU5bUzFatWpGYmIi3tzfr1q1jyJAhxMfHlytx82bGde0Lb0aU177wZofFZOX+uuPJNuTgKkjkVKqVxDavxae73qvSD5YkSezZsJ9Vn6/Hkm/h9pFd6TumZxHP2Jz0XFZ/sYEzB89Sv01d7p48qFJkd+6UL1g9bz32K0KPFCoF3Yd3ZsYPz1x3/Kha40g9n1bsuM5Hy2d73v/X6MyrGk7RyeCXH2Lr4V1Y7FZPJPTGt3+kQ6PWpY7LyM1iwW9LmbngffItxmKPK+Ryhna6k/TcTPq168GE/vfh63W5O37lzl8Z/dYkbA47oktEp9ai9w9i/6fryxVdf6Ow+eAO7nr1Yc/W9JXo2Kg1Oz5094zvOxXH5kM7CPTxZ1jX/td0mykPqu0L/15kZGQQFBRU7Dpqs9n47bffWLp0Kfv27aNjx44MGTKETp06lVnbbTQaOXr0aKmac6fTSUZGBgaDAbPZTFBQEHq9Hl9f3zJf11NSUrh48SLNmzdHrb7+ddiYY8KUayIg1B+VpuRG5ishSRKnTp1i8/fbOfr7SbR+aiSXhGh3EVkngmlfPVnh76BPV8/nxz9+wU/nQ1ZOFiqVih+mf0wNfdGbA0mSePC9pzmWeAofnReG7EwMuZlEBIWSb87HkJOJt9YLk9VSTIomAN5abwK8fUnLTsdX54OPzgdDbgbhAXpyTXnIZXK8NDq2vrsUf++izYi9po/kbMoFlHIFev8gTiWdRSbIUClU+Hp5k2PMI89sRFFwo+Yq6EtZ+tIXdG162aL4kTnTWLR1dZHqNhRITYLDiQoIY1j7O+jXoSchISGo1Wq3xevFM4x7/xnPbl56diZGq5kR3QZgyM0kNSudYN8ATFYzdqeDH577mBC/svU3lASbzcahQ4eoW7dukc/slbryrKysYrpySZJ49dVXyczM5Isvvqiynpq//vqLmTNn8uuvvwLw9ttvA/D88yX3BQHExMSwb98+4uPjyz22Evjn7Av/K9i+Yic/vLmYjEuZNOnYkHFv3F/lBM/lcnHsr5MYc0w06dgQnwD3HfimH7dgyjN7SDiAw+Yg8fgFju48UaV2fF+9MJ+lH67yVKhP7D7Fr99t4oOts1AoFezdeIDn+7/q0aZvW7aTb17+gfc2vUnzrk0qdM6H33qA+IPnOL0/vqCSCjUaRDF57sQyjY+sG14iEXc6RALDK35B+rdDIVew5o35/Hl0D9sO70Yf4LYv9PO6dld8sF8gU4eNx+6089oPH2CxXa6MK+RyujW7jcUvfV7iWKfo5KF3ny6iTTfbLKRkGXhnyee8Pe6GXCDLheaxjUps7lQr1fRs2QWXy8X9s5/klx2/Ync6UCtVPPXZq6x9cz5dS4jorsbNjeDg4BKPq9VqBgwYwIABA7Db7fzxxx8sW7aMZ599lrZt2zJkyBC6deuGSlUymc3MzCQ+Pp6mTZuWWqVWKBSEhYURFhaGKIpkZmZy8eJF8vPzCQwMRK/X4+/vXyLRlSSJxMREsrOzadWqVZn9zL39vfD2L5skptDG0dvbm8jISE4rz+Ln54/kcpGTkYvJZGL37t0VuoEAGN/vXmQI/LJ9Aw1r1mPq8PHFSDhAWk4GJy7EE+wXiCAI5BTIUHy0XgT6+GPIycJks+AqoR9EAqKDwmgSXpcabSKIDo9EoVYxb8OPKOQKwgL1ZOVnExMahZ9XUTu9fafjOJdygaz8HGSCQHpuJhISMkFAdLkw2cxoVRrUSlWBS5SAS3KhUChpUrN+kbn+98iLbD2ym+TMVHe6tlyJUqGkZZ0mbHjze04nnWPJ1jXMXTufllENqa2PJjg4mJr6CDo3bsv6fVtIMlzCLrrDftbu2YyXRkv9KPfugbfWi/TcLM6nXqwwEbfb7SWScChdV758+XLmzp1LVFQUMpmMpUuXVmlje1lSM1NTUwkNDUUQBPbs2YPL5SIoKAh/f/8yJW7e7Kgm4sCyj1bx1fPzPUmX21f8xd6NB/l87xxq1I+qknNcOJXEtD4vkZ9tRCYIOOwOxr35ACOmDuX0/jPFvMgBXKJEwpHzVUbEL55KYuHsZUW2c6xmG2fjEti+4i86De7Ay3e9WaxBVHSITL/zFVZmLbpu1HxJ0Og0fLh1Fqf2nyHhaCLR9SJo1KFBmS/o9784kqM7TmC7IolUrVXRc3R3vP2qToP5b4QgCHRp2p4uTUsOl7oWnh42gV3HD7DxwDZPE1ZkUBg/XEO6ceri2RK15DaHnV92bLgpiHiQbwBT7nqYj3/51uMko5Qr8PPy4cmhD7F0+1pW7tzouZko3AK/69VHSF180BMEUo1/D1QqFX379qVv3744nU62b9/OkiVLmDFjBi1atGDIkCH06NHD07x46tQp8vLyaNWqValE/WrI5XL0ej16vR6Xy0VWVhYpKSmcPHkSf39/9Ho9AQEBHr3uqVOnEEWR5s2b35DGz0L3Fb1eT3R0NN79fdj5y26y07Ld53PBiCeH0qBtvSI3EAEBAZ4biKvXlZB6gbMpFwj2C6R5rYbYrDZahNRj5AuDiunar4Q71l3CJUnIBQFRFN0+4YIMtUJFtD4Cp9NJWk66O0H1iu8wAQG5IOezZ2Yjl8vJyMggPT2did3u4Ztty0jNMtCsdkNmj3uh2HfO178uwlvrhUatIceYi81hRylXEBsRg9VuRRBkmK1mHA4n6XmZOAusD700Osa+P5X5z8whoGCnLMDbjwOfrOeu1x4h7txxVEoVkUFhvPrA03yw/Cs+XbMAtVKJj9abHaf3M2XIw7z57edcTE8mJjgSmQtsTjsKhYJg30BC/UOIv5RADX0kWpUG0SUiukQCfCq2M2e32zl48CB16tS5rmPQlbryWrVqcfLkSXbu3ImXlxcdOnTg3nvvZcqUKRVax9UoS2rm0qVL+eyzz1AoFGi1WhYtWoRQ4KpT0thbDf95aYrD7mBI8GjMVwXnyGQyut/TmZd+erbS53C5XIyu/TCGC+lFSLBGp2b2hlc5c+gcX0yfX4RoAmi9tbyx8kValaNh5lqY3PU5Dm8/VuJjve7rzh1je/Hcna8gOopXHeQKGa//8hK39W9b4fMXeof7BZf/QrJt+U4+fnIeOem5yOUy+j/cl4nvPoRSVfX2YOWB3WFnza5NpGQZuK1R639lo9/RhJPsjz9CTGgUXZt1uOYN1EXDJeo92KXEkJ32DVqy6+PVN3KpZYYkSSz84xfeX/oFmXnZ9GvXgxfvnUx4UCh3PH8vv+7bWmyMj86bdW8uoHOTdpU6d7U05daBKIrs3LmTpUuXsnnzZho2bIgoishkMr755psqqQwWSgIMBgPZ2dn4+PhgNpsJDAwsV0hReWCz2YiLi6NmzZpF3FdSEtLYvmwnDpuTdne2ou5VgXcul4vs7GzS0tLIzc3F19cXvV5PUFAQmw7+yZsLP0IqeF6/NrfTPaY1TZs2LVOwy/+WfMbPW1cjSS4y87JxiiL1o2rjcDqxOx3MnzaH1CwDEz56nuSMVBDcyZohPoFE6cPZ+u5SwH0z8OoPc0g0JNMwMpZ7bxuETAQ/Pz+Oppxh5qI5ZOblEBEcSq3QaM6lJHr6Vww5meRbjNSNqIUgCIgukeT0VFRyFRnGLCx2K2qliroRtTBaTYzoOpBX7nuqyOsolJvkGHOJCY3m5QXvsnH/NkxWE3K5nKjgcBxOJ4lpSe44e0AukxHur0cmCPjpfNGqNQgyGbmWPPy93N+XoktkRNeBPDbwgXL/vq8k4UFBQWUeJ0kSH3/8MXv37mXRokUolUry8/OJj4+nVatW5V7HLY5qacqNQup5Q4mCf5fLxbEdJ6rkHCf3xpOXmVfsPDaLnV8+WcvUeZOY/+pC7Ba75zkKpRx9jRBadK8aYudyuTi262SpjweEFmh3S/m6lAC7peQEw+vhwsmLvHnfuyQcSUQCajeL4cUfpxFdr/gWZWnoeldHugy9DWOOCY2X+h8n4OCu/nadejcWuxVHgXVX79ZdWPryF9esmkqSxPo9m/l6wyIcTif39bqLuzv383ypmyxm1uzeRK4pj16tuvzjCZFNajXwRFJfD9H6CJrXblTMj9xLo2Py0Kq1Dq0MBEFgdI+hjO4xtNhjpQVgCJTcWFSNfy/kcjldunShS5cuWCwWhgwZQm5uLhaLhbFjxzJ48GD69u1bqQTBKyUBhWFDKpWK9PR0LBYLer2e4ODgKpMDmEwmjhw5UqKuPbxWKCOeKf43ceVag4KC3AmOkkRubi5paWmcPHWSlxe9g6+3Dz46b+x2G0u3raF/2x5lfm8Gtu/Fih0byMjNwlfnQ7NaDTmTcp5g30BmjHqCBtF1aBBdh7mPv87Uea+jVqhQyeUgE2heuyHgtmYd++5Uck356NQa/jy+j1yrke+nfcje4weZ+tVrmGwW5HI551Mvkpad7pbqWUwgSaiVKhrXbE18sjvLwOF0olVp0KjVpOQ4EHDv7p1Pu0hYYCinks6Rmp1OiG+g5/cjCAKNatQF3NKXuIQT6NQad7VbJicpIwWH04EouZAJAuCWwRjyMqkVVsOt6xcEMnIz6VqvLYPa9cIs2akdHVNqk/214HA4OHToELGxseUm4fPmzfPciBb2Tfj4+PwXSfgNxX+eiAeE+uMsoQIMoK+pL3ZMkiQsRgtqrRq5Ql7kuN1qR6VRFatgmHJNyOTFtxYlSSIvMx9vPy8++etd3hs/l8PbjyGTCXQachtPffZYhbYk7TYHx3aeQKGU06hDA+QKOS7RVUSDfjUGPNyHsFphKFTyYtIUAJkg0Kpni3KvxWKy8kTnZ8nPMnpITPz+szzReRo/J35briZQQRA8uvqbAXe/+ohbU3gFOftt/3bmrfmBxwePLXXck5+8xLe/LvbIIjYf2sFPm39hxcyv+Ov4fu584T4kSUJ0uXBJLiYNGsv/xr94y3SDL3vlC/o8N9rje2tz2JnQ/z5G3j64XPO4XC7PF6VO8/c4z0iSRP/2PdlxbF8xD3a5TE6HhtVfQP9VTJkyhcGDB/PYY4/hcrk4dOgQS5YsYc6cOURHRzN48GD69etX4SRNs9nM4cOHqVu3LsHBwUiSRH5+PmlpaSQkJKDVatHr9YSEhJRZL341cnNzOX78OE2aNKl0/LggCPj7+7tlNRFhyJbKkQsysnOy3Q2NajVGm7lMczlFJ9O+ehOtWk3jmHrEJyfw6/6t1A6vSZ45H7ns8ndt71ZdeaTXPczfvBSTy4FGpaZxzfpYbFZOXIgn32LyNGQGKJQcPneC+2Y/yfaju8k256FTa91SO8BqszGsbUdS8jLQarU80m80HRq0ZOVfG9l37CCxoTVZtm8j+07HIUouT53KbLNiyEknx5hD3xfuJcQvkHmTZxN7VdHE5rAjF2SE+AeRbcwtcHsRcbmkght7kMlAkNwuVM8Mm8Da3b+Ta85jQIcRPD5wDA6bnfT0dDIyMjiYc9DjAV4Wj3eHw8HBgwepVatWqb0SJUGSJL755ht+++03VqxYUWb51dXYsGEDkydPRhRFHn74YaZPn17k8R9//JHZs91ZIt7e3nz22Wc0b+5WAMTExODj44NcLkehUPBvMui4Gv95aQrAWw+8x7alO7BdYbGn1ql5bfkLtOt72V1iz6/7+eCxzzBcSEehlHPnuN48+u7DbFv6J58/+y3ZaTnofLWMnj6ckdPu9hAnU56Zu8LuK2bhp9GpefS9cQyaeDlERHSKCDKhwprAv9bs4Y1736GgfodSpeTNVS/R+LaGPNp+Kif3nC42pm6rWL7Y/6HnNT7f/9UipF0mlzF57sQi6ywrNsz/nY8mfYbFWFQDr/XW8PBbY2jWpTE1GkSVqbv/ZsL51Is0Gnd7iRZ/zWo3JG7ebyWOO5EYT+vH7iw2zkujY8XMLxn55uNk5eeU8NhX9G7dtcrWf6MhSRL7TseRkmmgXYMWhAUWv6m9FpZtX8ekj2eQY3LvJN3TbRCfTX77hhLybYd3cf/syRhyMgpCNtxfjhqVGplM4JdXv6FXqy6VPk+1NOXWhN1uL5GQSJLE0aNHWbp0KWvXriUkJITBgwfTv3//MlcgCwly48aNS4wYlyQJk8lEWloaGRkZqFQqj968rA4vGRkZnDlzhubNm6PVVu3fkSRJ3Df7Sc5dSkSn1IBcwGa38/LgxwnyDfCstTTXl9TsdIa9MYEQv0DyLSaOJJwEyZ3YKyuwDfx91iIAEhISMBqN7Eo6wier5xckGks0qlGPKUMf5pEPn8VP54MgCDicTo4knPBIQApRWNKQyeR8O+VdWtdsTHp6OgAhISHk5eWh0WiIqRVDt2nDOZxQdHdcEASUcgV1I2qhUavJNeYTERzK+je+L/K8XFM+w9+YQLYxl/TcLLKNuXiptfjqvEnOTHMXcQT3+xfqH0L8N9uuufNRaDeZnp6OKIoeUu7l5VWsUHMlCQ8JKZsVbCEWLFjAsmXLWLVqVYU/K6IoUq9evSKplwsXLiwStrNz504aNmxIQEAA69evZ+bMmR4f8EJnlPLcQNxgVEtTbiSe+eIJ5HI5vy/cikwuQ6VR8uh744qQ8JN7T/PyXW95dNyiU2Td179x7nAip/bFe44bs00seHUhLtHFvc+PANypno++O47Pp33jkZ9odGqi6kXSd0zR0JErq+zlRXpSBq/eM/sqrbmFZ+94haXJ83l63iQmd30Oh92Jw+ZAoVKg0al55efnPM9u17c1Sy/N57uZCzm55zTR9SO59/nh1GoSU6E1pSUasJTQiGoxWvl06peodW6rrEdmjWXo4/9MAmVF4E6hLPnv0u4oOfgGYNPB7SVGGpttFr5av8jTGHglTFYzX61feEsRcUEQaFuO0IkrsfPYPh6YPblIRXrxttWYbWaWvPxFFa2wKC4Ykuk34wHPLgW4d4H8vX2Z+cBURt0+hBD/sm/rVuPfh9KqgoIg0LRpU5o2bcrMmTM5deoUS5cuZdiwYfj6+jJo0CAGDhzoSTK8Gunp6Zw9e5YWLVqUSnoEQfD4f8fGxmIymTAYDJ6kxOsR3UuXLpGcnFyu5tLyQBAEJt85lreWzMVgyibYJ5B3x79EyzpNiniVS5JESEgIer0enU7nGe/v5YtKrsRis7pvggvCZVQKJSqlivTcTMw2C8kXknA4HDRu3JhHvp7hCf6RJIlTSWcxWc3c1rAVfx7di4RErim/GAkHPNH2SoWCrcd3M6TzHcTExGCxWDhy5Ah2ux2LxcKxpHiMFiNalaag70VCEGT4evmgVqjQFLzfvl7eXDAkY7ZZ0F2RG+Hn5cOXU/7HXa89gsVuJSwgBH9vP5x2BzWCw0nKTEUCIoND+fmFT69bgNNqtZ4QKYfDQUZGBmfPnsVisXhcePz8/HA6nRw6dIiYmJhyk/BFixbx888/s2bNmkrdsJUl9bJjx46ef3fo0IGkpKQKn+9WRjURB1QaFc99O4UnP55AbmY+IZFBxQjxj28tLlbRtlvsHN5+tFitx2q2sXD2UkY+e7fn7nbIY/2p1yqWXz5dS056Ll3v6kif+3tUaSV44w9/4CpBViJJEn+u3EXve2/nu+OfsfLTtZw9fJ6G7esxcMKdBOj9izw/QB/AU58+ViVrqt+mDlovTbGKOIDodGHOc5Otec9+S2RsOO3uKN3f+mZCnchaBPsFcsGQXOS4RqXmvl53lTrOz8u3QD9eVG+vUijRqtSUdtN9pYXgzQZJkjieeJpcUz6t6jZBoyp7LHZJeHvhx8VkIVa7jTW7f8eQnYE+oOorJF+s/RGHs+hNkEty4RSdNKvdsJqEV6NMEASBBg0a8OKLLzJjxgzOnj3LsmXLGD16NCqVikGDBjF48GDCwsIQBIH9+/cjSVK5CbKXlxe1atXyhPIYDAaOHDkC4CHlhdKF8+fPeywQq9J2rhCSJHHmzBl0cjXLX/sal+RCLrsc1nYlebTb7RgMBk6dOoXdbveEHXl5efHKfVN4ecF72BwORJeLyOAw1Co1Wfk51NRHcf5sAgqFgkaNGiG6RHdSpe6yLlsQZNhFBx89+hprdv/O2ZTzfLTy21LXrVaqQYIl29Zis9uZetcj/LnvL2qGRdGrc3ecTiepOzchOl1E+IeQkpuBw+nAKYrYHXbyzUacLicRQWEYctLJMxnp+vTdjOg6kKl3P+LpEwryDUClVNEqtgkpWQaycrJRKZV8NnkWtUKjuJiewms/fcB9/5tMoI8/cybOpGXs9Z0/lEol4eHhhIeHI4oiWVlZXLp0iePHj+NwOIiMjCyXJhxg2bJlzJ8/nzVr1lQ6Fba8qZdff/01d955p+dnQRDo06cPgiAwYcIExo8fX6n13MyoJuJXQOutRetd8h3ghVPJJTdqlbLhajPbsRit2K12FEoFvoE+NOrQgEYdyt9sUVbkZeThsBevqIoOkfwsdzBLSFQwD781psLnyM82svKzdRzcHEd47TDunjyIWo1LbyZs27cVUfUiSTx+oUigz9WwmW0s/N+ym56Ii6LIxv1biU9OYNqIiUz/6m1cLhcWuxVvrRd1I2sxZejDpY4f0rEvj388o9hxmSBj+shJLNm2tthjXhod9/YsvYHqn0RCygUGvDiG84YkFDIFLpeLuU+8wZg+wys859lLiSUeVymUnE4+x+pdv3Eq6RzNazdkWJf+qFWVT1ZNSLmA3VncW1wCktJTKj1/Nf57EASBOnXq8Nxzz/Hss89y4cIFli1bxtixY3G5XAQEBGCz2Vi2bFmFNd/gJro1a9akZs2a2Gw2DAYDx44d81gAKpXKG2aBKEkSJ06cQCaT0bhxY7flIKWfR6VSERUVRVRUVLGKbkRQMF89MZscq5HTyef4fO33pOdmERkUyiNdh6PRaKhdu7bbtk6uoGeLTmw69Ce+Wm+sditatZoGUbG8sfAjfj/4JwqFAoVcgUyQFQ/ZKehdUSlVBHj7sf3Iblbv+g1frTcOl5P+B3vy3viX6NaqI8GrAsk25hHmH8z5tGQkJERRxEfjRXZ+Dll5OUi4U4YFQWDBpqX46Lx4dIDb3UQhVyCKIgfPHcNmtyEgICGx99Qh2jdoyZh3nyLXZCTIxx3a8/jcGax/4/tinufXglwuJyQkhICAAA4cOEBYWBhOp5O9e/ei1Wo9EpZryZhWrVrFvHnzWLNmTaX7B6BsiZmF+OOPP/j666/5888/Pcd27NhBREQEBoOB3r1706BBA7p2vXV2hcuDao14GfH2mPfZ9OOWYg2PhVHfV8Pb34vAsABSEtw6sMYdGjDjx2cIibpxeqd9vx3k5bveLFZ9VmtVzNv/ITUbVi6gKCstm/EtJ5OfY8RusSOTy1CqlcxcMp0O/Uq3NbQYLfz41mI2/vAHTruT/GwjzhJuGKLrR7Lg5LxKrfFGIi07nc5ThpKWnY7d6UCpUFIrrAb3dBuIISeTbs3aM6hjn+v6TG87vIshr4xDdIlIktuWasFzH3B3l/78vGUVD747Faco4nA68Nbo6NqsA6te+/aGVLMqA0mSqDu2MwmpF4s4jcgEGXe2u503xj5Lizrl93R9+L1n+G7jkmIJehqVGm+tFxabFZPVjLfWi2DfQHZ/vLrSVfIv1v7I1M9nYrIWrcRrVRoOfv4r9aOLR3JXFNUa8f827HY7DzzwAKmpqchkMsxmMwMHDmTw4MHUqlWrSpqyXS4XR44cQSzwvXY4HB5JiLd31TS8F56j0Gu6MusuDDsyGAwer/KAwEAEhUByYhIBAQHExMQUGWO2WZiz/Et2Ht9PaEAI00c8xo9/rGDlXxsJ8PLDYrdwKukcwb6BpOVkeK4nPlovzDYrokvEW6OjRZ3G7DlxyC1xKSDZLslF92YdWPj8pxhyMnjtxw/YsG8LFrsVAQFBEHCKTkSX2/lEENx9XTq1Fl+dDzX1kax/87Je/OE501iybY37u0FwFxVqh9Xgx+kfM+z1CfjqLhPfPEs+Xz/1Ls1rly8/pFCOEh0d7bGkLOwtKNSVFxL2kJCQIrKTDRs28M4777B27drreoyXFWVNzDx8+DBDhw5l/fr11KtXr8S5Zs6cibe3N888c/0k7huIG6YRrybiZcTF08lMaD25CMnV6NTcNrAdO1ftwWYpGjbjcrlw2C6TTZlchj46hB/OVF007NWQJInnB7xK3NajnoAgjZeGXvd25+l5kyo9/4dPfM6aeeuLucwEhgWwJHl+mSoudpvbt91ivMqRQiFnwIQ7mDL30Uqv80ZhyCvjWLv79yI6brVSxcN3jmLuE2+Way6H08HMBe8zb80P5Jjy8NbqmDbiUe7pNpD45AT+On6AbGMuA9r3pHfrrjekmlVZ7D5xgF7PjcJoMZX4uE6tZdGMTxl4W+9yzXsuJZGWE/titJg9lSwvjRa9fzCJhuQipF8pVzC6x1C+e3ZOxV8IYLZaaDq+F0kZKQWNmu71D+nYlx9fmFupua9GNRH/b+ONN95Aq9UydepUAAwGAytWrGD58uVkZ2fTr18/hgwZQr169SpEbp1OJ4cPHyY4OJgaNWoAeKrPBoMBi8VCcHAwer0eHx+fSp0jJCSkiPygKlDoVZ6amkpaWhre3t7UqlWLoKCg614HO08dilKuRFmww3Au9QKSJOHn5UNSegr+3n5EBodxKTON1Ox0aofVQCdXcyw5HqVCiegSUcjliKJIkG8gL42ezP297nZnDbz0APlmI6nZGShkMuxOt4RGp9ZgczgACafoHq9Ta3l/4iuM7DYIp9PJ2/M/5Ms/fkalVKFUKPHS6BAQ+O3tn+j53D3o1FqUCiVOUSTfYmT1q98SFRJe5vdMFEUOHjxIVFQUYWFhpT7ParV6SPnFixfZvn079evX54cffmD9+vVV2hjpdDqpV68ev//+O5GRkbRt25affvqpSODOhQsX6NGjBwsWLCiiFzeZTLhcLnx8fDCZTPTu3ZuXX36ZO+64o8rWVwFUE/Er8U8QcYCzhxP4/JlvOPbXCXyDfLln2l0Meaw/B36P4/Nnv+HiySSCo4Kp1zqWHb/sxm4tutWt9dEyc8n0Ik2gVQ3RKbL5521sXLAZhUpB/3F96DT42iEsZcXImIdISzQUO67Wqfn68FwiY8t24Vj1+To+e/prT5KpXCnHy1fHV3EfExJ503RIF4FTdKLtX6fEZkp/L1+yfzlervlW//UbI998rIgWWhAE5DI5GqUKnUbHD9M/uqkbNNfs2sS9s54gz5Rf6nNCA4K5tOhAuW8kTied44VvZrHt8G70/kE8PWwCD78/rdgWM7grXHmrTpV7/VcjOz+HtxbOZem2tXhptDw68AEmDri/ym+cq4n4fxsul6vUv4fMzExWrlzJsmXLSE1NpW/fvgwdOpSGDRuWrdBREGFeo0aNUgmZKIpkZGSQlpaGyWTyxNf7+fmV6XvCbrcTFxdHVFQU4eFlJ4vlQaH3dWRkJDqdDoPBQGZmJl5eXh5f9ZLkPP1eeoBcYx5eGncjaEZeFk8NfYTGNethyMlkxvzZ2B0OJEnCbLfipdCgVqtJz8vCaDEVvH4JSYKIoFDu7XEX0+95DLvDzu3PjgABElIuYnPacTqdyOVy6kTEcD4tCZPVjEwQUCvVRAWGIrpcfPXYLLC7EHRKJnz2Ag7RiUqhxGq3cl/Pu3lh5CQWbVnJ/5Z8hoCAS5IY32+0R9ZSFoiiyKFDh4iIiCjX7yM7O5sPP/yQxYsX4+XlRZ8+fbj77rvp3Llzmee4HtatW8eUKVM8qZczZswokpj58MMPs2zZMmrWdMtbC20Kz507x9Chbjmm0+lk9OjRzJhRXNL5N6OaiF+Jf4qIlxXvjv+YtV/+Wuy4Wqfi8TnjGTj+H72rqzAebvkEZw8lFDuuVCtZfPE7/EPK7p+777eDLJy9lIzkTFr3bsGo54bdtCQc3BVsbf86xeQSAN5aL/LLSQRbTuzDobPXJu86jZbjX/1BzdCocs39dyEjN4vo0W1LTNEshE6t5eiXv1MrvEalzuVwOtANqFvijZCfly855bwR+idRTcSrURbk5OSwevVqli1bRmJiIr169WLo0KE0a9asRFJ+pQ95WZv0Cpv80tLSisTXBwQElEjKrVYrcXFxxMbG3jBbucLUz6tt9yRJwmg0YjAYPBaOoaGhBAUFcSTxJJcy08g25TF35bc4RHfAWt3I2nz39Pto1e7G1dNJ59h5fD8qhYIwhT/+wYEEBgVis9sZ8PJYDLmZKORyaoREIiEx+6Hn6dumO5sObOexuTMw5GSgVCgJ8gngzna3I0kSWw7/Ra4xH0Ou+7Fg30Biw2uSa8zl8dvvpW54DIIgkGHLZf62FRitJvq07sqkQWM9MsZTSWdJSL1IVHA4TWLql/m9qigJB7cG+7nnnmPNmjUEBQWxZcsW4uPjmTSp8rvn/1JUE/ErcbMT8Q3zf+fDxz/zyEMKodap+Wj7bOq1qvMPraxy2PDdJj6c9BlW02XiJVfIad6tCe9tKp8041ZEj2kj2Bq3q0hVViFXMLL7IL6f/lG55vIf0pDca1SSAVQKFc/e8yivj51WofX+HXj9hw+Y/fMnxbTVhVArVSQv2k+Qb0ClzzXwpbFs2PsHTvHyzZBKoWLcnSP59Mm3Kj1/eZBrzCM9N5Ma+khUyvI5H1UT8cphyZIlzJw5kxMnTrBnzx7atCn5rSwtTCQrK4t77rmH8+fPExMTw+LFiwkIqPzn80YiPz+ftWvXsmzZMk6dOkXPnj0ZPHgwbdq0QSaTcezYMXJzc2nSpEmJPuRlwdXx9X5+fuj1egIDA5HJZJhMJg4fPkzDhg3x9/ev2hdYAIvFQlxcXImpn1ej0MLx41Xf8uuRP1EqFMjlcu7pNpCokAi8NTp6t+rqIeGFKNw1uJro55uNTJ33GntOH0IukzG2zwieGPQgFwzJ9H95DJJLQi6XY7SYiAoOZ+u7SwFYs+d3nvnidTJys3CKTlyShJdaR7h/CD8/9wn1atfB6XR6pEEmk8ljNejv71/h3WpRFImLiyMsLIyIiIhyjd29ezdTp05l1apVVS4t+hfjhhHxm094+i9Aj3u6EBgWgEJ1eetMrVXRvGuTW5aEA/Qd05N+4/qgVCvx8tWh8VIT2zyGlxY++08v7W/Bl0/9j0Aff8+2p7dGR0SQnncnvFTuuRrXvH7Vw+60cyEt+brP+yfx0n1TWPLSPJrValgQ13wZSoWSHi06VQkJB/f7Hx0SiY/WC5VChbfWi4Y16jBr3PPXH1xFOHnhDNGj2uI/tBF1x3bBa2BdXv7u3ZIdlapxQ9CkSROWL19+TQcFURR5/PHHWb9+PcePH2fhwoUcP+7eNZk1axY9e/YkPj6enj17MmvWrL9r6RWGj48PI0eOZMmSJezatYvOnTvz5Zdfctttt/HQQw8xcuRIIiMjK0zC4XJ8faNGjejQoQNhYWFkZGSwe/duDh48yIEDB2jUqNENI+Emk4m4uDgaNGhQpoZBLy8vZDol28/sJywoBH8vXxTIWbBxKU1C69CreediJNxqtXLw4EFiY2OL+Wv76Lz58qn/sXPOL/z1wSqeHPwQgiDwR9xOUrLcmvKkjBRkMhmG3AzMNguCIJCWnY5cJkcmE3C63I2e+VYjMrmM2jVjALfkIiwsjGbNmtG+fXuCgoJISUlh165dHDt2zBPQU1YUkvDQ0NByk/ADBw4wZcoUVqxYUWESvmHDBurXr0+dOnVK/PuRJIknn3ySOnXq0KxZMw4cOFDmsf9FVFfEbxDysvJZ8NpCtiz+E6VayYDxfRnx9FCUquunoFlMVhKOnCcg1J/wWqU3XvxTyErN5vSBM4REBRPbrNY/vZy/FflmI4u2rOR44mla1WnKsK790arLH3qw7fAu7njhvmv6g3trdHw2+W3u63V3ZZb8t0CSJJ798g0+/uVb1Eo1TtFJizqNWf3atwRWEREHt1Z//Z4/iE9OoGmtBvRs2flva2TNMeYSfk+rYlIcQRCYN3k2j/QfXaZ5qiviVYPu3bvz7rvvllgRv5ZjQ/369dmyZQvh4eGkpKTQvXt3Tp2qfI/BP4EffviBN954g9atWxMXF0enTp0YMmQInTp1qpQl4pXIzMzk5MmTBAQEkJubi5eXl0cSUlXnyM/P5+jRozRp0qRc1nlx544z4cPpnkh7gKy8HD4Z/xoKp+DxKtfr9cjlcg4fPkz9+vXLtQPSe/oo9sbHoZQrAAGH6CQ8UM+xeb8jk8lYvG0Nz3/zNmk5GYD7WigTZMjlcpbM+Jze10jjlSSJnJwcDAYDWVlZeHl5ERISQnBwcKlWgy6Xi7i4OEJCQoiKKp9sMS4ujgkTJrB8+XLq1KlYUbAsiZnr1q3j448/Zt26dezevZvJkyeze/fuMo29iVGdrHmrwTfQh0kfjGfSB+UzoV/6wUq+mrEAhUKOw+GkXus6vLFiBn7BZddf32gEhgVc067w3wwfnTeP9Lu30vN0bdaBdW8uYNoXb3A8MR65TI7dacdW4NihUamJCYtmeNdbI21UEATeGf8Sz454jMPnThAZHEaDGlW/+6OQK8rtwlJemK0Wlm1fS0LqRVrWaUK/dj2Qy+V8v2lZiXp4SZJ4af7/ykzEq3Hjca0wkbS0NI+eNjw8HIOheAP6rYDjx4/z/fffs3fvXnx8fLDb7WzevJlly5Yxbdo02rVrx5AhQ+jatWuF0zQNBgPnz5+nTZs2qNVqj047LS2NhIQENBoNoaGh1ySO10Nubi7Hjx+nWbNm5Q6RqRVWA61aQ64pHx+dFznGPEL8g2jRsKnbhaRAEhIfH092djZ6vd5jOVwWSYgkSaTnZaH3CyYjL8szZlT3QUiSxC87f+XspfNoVGrPrpiAgFKhwCmKbI7biegS6dSoDT664raRgiC4rRoDAopo4A8cOIBSqUSv1xMSEuJJTK0MCT927BgTJkxgyZIlFSbhULbEzJUrV/LAAw8gCAIdOnQgJyeHlJQUzp8/f92x/0VUE/GbCHs27OfrGQuwmW2e3MWTu0/xyt1v88HWqtvC2br0TxbOXkZWajYtb2/G2FdH35SV9387ujfvyN5P1gHuC+yC35by2eoFmKxmRt4+mCl3PVwlYTV/J0L8g+jZquq67v9unL10no6TB2O2WTFaTHhrvagVFs2fc1ZwNOF0qeOy8nL+vkX+B9CrVy9SU1OLHX/zzTcZPHjwdceXJ0zkVkWjRo1Yv369Z0dIpVJxxx13cMcdd+B0Otm2bRtLlizhhRdeoGXLlgwZMoTbb7/dk7h5PSQnJ5OSkkLLli09JFsQBHx8fPDx8aFOnToe4njw4EEUCgWhoaGEhISUmfhnZWVx+vRpWrRoUaE4dV+dN59Oeovnv32bC4ZL1I2sxf/GvYBS4V6vQqHAx8cHm81G69atcTgcJCcnc+LECU9jqr+/f6m7aoIgEBtWk4vpyYT4BWKx23CKTga068Vz37zFxv3bkACnKCKXyRBdLiQk7E4HAgLL/1zH6l0b0fsHs3jGZwT7li65ufK9jY2NLZKYKkkSwcHBZGVlodfry03CT548ybhx41i4cCH165e9GbQklCUxs6TnJCcnlztt87+CaiJ+E+Hnd5d7LP0K4XSIHN9zit0b9tGsc+NSkz/LikX/W8b8V3/ynGfTT1vYuXo3Xx76mLCa+krNXY2KQyaTMbbvCMb2HfFPL+U/jTH/m0JGbranIddoMXE66RyvLHiPdg2a8+W6H5FKUFnUifxvSbRuNDZt2lSp8VFRUVy8eNHzc1JSkkdLGxoaSkpKikeaotffute90gikQqGgR48e9OjRA1EU2bFjB0uXLmXmzJk0btyYIUOG0KtXL3Q6XYnjz58/T3Z2Ni1btrymfae3tzfe3t7Url0bs9mMwWAgLi4OmUzmqeaWRvzT09M5d+4cLVu29FR8K4KGNerwyytfl1jlNhqNHDlyhKZNm3qCjEJCQoo0pp46dQpfX19PY+rVr3f2wy8w8aPnybcYkclkPHrn/fh7+7Hp4J8E+PgjSJCTn4NMkIFMwOVyIUkSKqXS0x+TmmXg87U/8OKoJ8v8uq5MTLVarRw6dAiXy8WlS5ew2Wxl9oGPj49n7NixfP/990U8vCuKstzklvac/8INckVQ3ax5BfZs2M/TvWbwYOPH+PSZr8lKy/5bz5+VWvL5HFYHM4fNYqj+Xr5+6fsKN4ZZzVa+u4KEA7hEFxajlZ/eXlyhOatRjX8L8s1G9pw6VMyr3Oaw8+PmFYy6fQiBPv7FxskEgc8nv/03rbIaZUHbtm2Jj48nISEBu93OokWLGDRoEACDBg1i/vz5ZGVl0bVrV0+EdnZ28evvqVOnaNGihec/X19fPvjgA8Cd9hcZGel5bN26dX/nSywz5HI5Xbt25aOPPiIuLo4pU6awd+9eevTowf3338+yZcswGo2Ae2du165dGI1GmjdvXi4PfZ1OR0xMDG3btqVx48ZIksTRo0fZu3cviYmJWCyXnZVSU1M5f/48rVq1qhQJvxJXE7q8vDyOHDlCs2bNiqWJFjamNmzYkA4dOhAZGUl2djZ79+7l8OHDpKam4nS6rVLrRMSw+tVv+X7ah6x57TseHfAAFrsVmSBDkMBkNiEVpGs2jWlAu/otCPD2w+VyecLH5DI5KZlpFXpdLpeLU6dOERERQceOHWndujXe3t6cP3+eXbt2cerUKbKyskrkBefPn+eBBx7g22+/pXnz5hU6/9W41k3u9Z5TlrH/RVRXxAuw9IOVfD1jgYekJp25xKYf/uDrw3MJ0Pv/LWto368NSfGXSox/L7RCXDrnF0JrhDDgkfJ7kSedvoRcUfzCKjpF4rYeLf+Cq1GNfxtKuccVENBptBz96nfunzWZzXE7kCSJ6JAI5k/7gK7NOvy96/wPY8WKFTzxxBOkp6fTv39/WrRowa+//sqlS5d4+OGHWbduHQqFgrlz59K3b19PmEhhNXD69OmMGDGC2bNnExgYyNmzZ/niiy+YNWsWs2fPLnKu+vXrc+jQIcDdpBYZGekJGgF46qmn/unY7XJBJpPRoUMHOnTogMvl4uDBgyxdupT333+f6OhojEYjderUYc6cOZWqVGo0GmrUqEGNGjWw2Wykp6dz4sQJnE4nKpUKu91Oq1atqqzZ82rk5uZy4sQJmjdvXmrVvxCCIODv74+/v38RnXZiYiIqlcpT2a8XVdszJja8Jnq/IBJSLuDn7YvVZkMhV6BSKN0SE603+RYTkiQhukREl4suTdqV+3W4XC6OHj2Kv7+/JyW10IElLCwMl8tFVlYWqampnsq+Wq0mPDycrKwsRo8ezRdffEHr1lUXInjlTW5kZCSLFi3ip59+KvKcQYMGMXfuXEaOHMnu3bvx8/MjPDyckJCQ6479L6LaNQW3S8lQ/b3YrpKFKFUK7p4ymAmzHyzXfPnZRvZs2I8gQLs7WuPtX7xJoyRkG3J4uPkT5Gfl4yiBjBciok44P8Z/Wa41AWSlZTMq5iHsVkexx9rd0YrZ618r95x/JyRJYsXHq/lp1lJy0nOIaVyTx+c8Qsvbm1XJ/AnHEvnmpe85vusUgdEBhN4dQboyi7qRtRnbdwTBfte31KrGrY0uT93FzuP7PJUscHuhPz5oDO9NfKVKzlHtmnJzoLzuKRs3buTVV19lx44dgLsi7u3tfUsR8dJgtVoZOHAgLpeLnJwc9Ho9gwcPZsCAAWWyEiwrzp07R1paGmq1GofD4XE08fb2rjKJQnZ2NqdOnaJ58+YV0p1fCZPJ5ImEl8lkhISEeBo+f/9zC8sP/UZixiUaRMeSkZvFscTT7tchSUTrI0lIvYCAwAO9hvHMsAnlcngqJOG+vr7ExMRc9/mSJJGbm8uKFSuYM2cOdrudBx98kKlTp+LnV7VmD9dLzJQkiUmTJrFhwwZ0Oh3ffvutx92opLG3CKoDfa5EVRPx47tPMa3PS5jzzMUei21ei68OfVzmuTb9tIV3Hv4IuUKOgLvaPH3+VLoPL1sDW056LovfW8Gudfs4fzSxxO0mtU7NeuPSCl24Zgx+nX0bDxQh42qdmlnrZtKiW9Nyz/d3YsFrC1k4e2kRaY1ap+a9TW/Q+LaGlZo74eh5Hr/tGawmG3aFg/1tT+NQOxHlLrQqDUqFkq3vLaVFncpr7Kpx8+JcSiIdJw/BbDVjslrQabTEhtdk+5zlJboeVATVRPzmgL+/Pzk5OZ6fAwICSpSnFOKhhx6iVatWnuTBmTNn8t133+Hr60ubNm147733bvpgoNLw+OOP06RJEx599FEkSeLkyZMsXbqUNWvW4Ofnx6BBgxg4cCDBwcEV+t6RJIlz585hMplo0qQJMpnM42iSlpaGxWIhKCgIvV6Pr69vhUl5ZmYmZ86coXnz5mVuSi0rrFYr6enppKamkp+fT1hYGDExMZ6Ku81hZ8WO9SRnptG8diN6tujk+f4ur8VqoazH29ubWrXK13+SmprKsGHDePzxx0lOTmbdunX079+fl14qf95FNYqgmohfiaom4qnn0xjT6FHsFnuxxzr0b8vba8pWCUtPyuC+uuOxW4vOo9KqWHjuawLDyn6RliSJkTEPYbiQXuwxmVxG3zE9mfbVk9e8YLlcLky5ZnQ+Wo8kxWK0MPuhD9i5ag9yuQylRskTH06g9323l3lt/wTsNgdDgkdhMRb33W7Vqznv/Va5ZM8Xh7zBzlW7kSSJ0/UvkhKZiXTVtbNprQYc/mITkiSRkpmGt9YLX6+ye95W49aA1W5l+Z/rOZ+aRIvYRvRt071cWtnroZqI/324lvvKmDFjykzE7XY7ERERHDt2jNDQUMBtg1hITF966SVSUlL45ptvbsjruNGw2+0lOp1IksTZs2dZunQpq1atQq1WM2jQIAYPHkxoaGiZLQBPnz6NKIo0bNiwxDGiKJKZmUlaWhpGo5HAwEBCQ0Px8/MrMylPT08nISGBFi1aVNiu8XoobJqsXbs2DocDg8FQxKu8Kir7kiRx7NgxdDqdx+avrEhPT+euu+7i7bffpk+fPp7jNputyrT4/2FU+4jfSITFhNKgTV2O7zqJ03E53UqtU3PPM0OvMbIotiz5s+RGSsn92F1PDCzzXIIgMHnuRGaOmIXjKimJS3Txx6JtDJxwBw3blWxFtP673/jiue8w5pg8EpsHX70XrbeWmYufx5hjJC/LSGiNkBJ14zcbslKzkVwlf5efP3qh0vMf33XS87tL1+cWI+EApy6eZfn2dTz1+asYcjJwuVz0bdOd+c/OIaCEJr5q3JrQqDSM7lH2v/tq3Ly4lvtKedxT1q9fT6tWrTwkvHB8IR555BEGDLg1PP9LQmnEVRAE6tSpw/Tp03nuuedITExk2bJljBkzBoCBAwcyZMgQIiMjSySgkiRx/PhxlEplqSQc3A2ler0evV6Py+UiMzPTYzPo7+9PaGjoNW0GC/3Or7RarGoUkvAGDRp40kUjIyM9lf2EhARMJpOnsl+em4hCFJJwrVZbbhKemZnJ8OHDef3114uQcKCahN/kqJRriiAIgYIg/CYIQnzB/4uVfAVBqC8IwqEr/ssTBGFKwWMzBUFIvuKxfpVZT2Xw2ooZNO7YCJVGhc5Xi9ZHy6Q5j9Cie9n1xzaLHdFZPKZWFEVsluJBINdDx4HtGTj+DgRZ8T9mm8XOrrV7Sxz35y9/8eHjn5NjyMVpd2IxWln6/i98+8qPnud4+3sTUTusCAnPy8pnz4b9nNoXX2FnlrhtRxnfejK9lIO5O/x+ln7wS5XEfweG+pdaUqvRoHyeqiVBH3057lgmlXzxdEkS9816kguGZKx2G3ang1/3baHfjAcqff5bGU7RSa4przrmvRq3FArdUwDmz59/TX/yhQsXMmrUqCLHUlJSALcXdt++fUlMTCzVfQUgJiaGpk2b0qJFiyJpoFlZWfTu3Zu6detec/w/DUEQiImJ4emnn2bbtm0sWrQIjUbDhAkT6NWrF3PmzOHcuXOe64DNZuPgwYNotVrq1q1bZlJaqMVu3Lgx7du3R6/Xk5aWxu7duz1x8Ff2cKSkpJCYmHhDSbjFYilGwgtxZXx9u3btCAgIIDk5mV27dnHixAkyMzOLrLc0FN60aLVaYmNjy7W+nJwchg8fzowZM+jXr2poVFk+lxcvXuT222+nYcOGNG7cmA8//NDz2K3iKnQzoFLSFEEQ/gdkSZI0SxCE6UCAJEnPXeP5ciAZaC9JUqIgCDMBoyRJ75bnvDcy4t5wMZ2c9FxiGtVApSnf9taZuHNMum1aMdKt1qr4fN8HxDSqUe71rP5iA58+9WUxf3GlSsG4Nx/gnmfuKjZmXPMnOHc4odhxpVrJkqTvSkzp/PHtxSx4bRFKlQJRdBESFcT/fn29XN7iJ/eeZkr354s0vWp0aoZNHcK41+8v8zyl4asZC1j2wcqiGnGtmtkbXqV51yaVmvvPlbt4Y/Q72Mw2ztdK4UKMAZf88t+GXCYnNCCY1Kz0YvZ2OrWWPXPX0DimckEJtxpEUWTmgvf5cMVXWB12gn0DeHfCy4zuMaTMc1hsFpZsW8v+00doWKMOo3sM+dfLfaqlKTcHMjMzGTFiBBcuXKBGjRosWbKEwMDAIu4rAGazmejoaM6dO1ek6e3+++/n0KFDpKamEhwczObNm5k/fz7Z2dnF3FfATcT37dtHcHBwkePPPvssgYGBTJ8+nVmzZpU6/maFJEkYDAZWrFjB8uXLycnJoXfv3vz++++MGzeOe++tfBJx4XmujIP39vZGoVBgMplo0aLFDXNgsVgsxMXF0bBhw3I1PRY2vhoMBrKzs/Hx8UGv1xMUFFRM6iZJEidOnEClUhEbG1uuSnpeXh533303Tz31FMOGDSvzuOuhLJ/LlJQUUlJSaNWqFfn5+bRu3ZpffvmFRo0a/auamQtwc2rEBUE4BXSXJClFEIRwYIskSaWyEUEQ+gCvSJLUqeDnmdxkRLyymDX2fTZ+/4dHRiHIBPo91Jtnviy7kf+VyM3I5Z6aDxVzdFEo5Xy+/0Nim8YUGzMw4B6MOaYS51NpVbzy83N0HNjec2zPr/t55e63sJoun0Mmk1GzUTTfHPmkzGud3n8mu9cV/72odWp+Sf8Rja5yzTMul4uF/1vGz+8sIz/LSHT9SB6f8wjt76waTrN63nq+mP4ddoedfQ1OYQy0oFDJkcsUaNUasvKycbqK73j4evmw8Pm59Gvfs0rWcbPDVrAb8MaPHzF35beYbZf9gQVBoKY+imfveZTx/e69prbakJ1Bu0n9yczLxmg146XRoVWp2fnhSupGlW9btiK4lJHKlM9msmbXJhRyOaNuH8w741+64TcC1UT834Wyuq+URsTL695ys+P8+fP069ePgIAAbDYbffv2ZejQodeUppQXkiQRHx9PWloaCoUCnU5HaGgowcHBVUrIK0rCS1pvXl4eBoOBzMxMdDoder2e4OBg5HI5J06cQKlUUqdOnXK9R0ajkeHDhzNx4sRiOzaVRUU+l4MHD2bSpEn07t27moiXZ+JKEvEcSZL8r/g5W5KkUjsSBUH4BjggSdLcgp9nAmOBPGAf8LQkSSXuywmCMB4YD1CjRo3WiYmJFV73jYLVbGVUzDhyMy5v0wuCgL/ej0Xnvyl3hb0Qu9bt5dURs3HanTgdbltDhVKOXKngteUv0K5vUY/QyV2f4/D2Y6XOp9aqWJw0H99AN+F4rt8r7Fm/v9jzNDo1n+2dU+ZK/ojosaQnZRQ7rvXW8MWBD4mqG1mmecoCl8tV7k70ssDpcJJxKQu/IB+OJZ/mwJkjOEWRZ+a9hsVesrxIrVRxbsFOIoLDqnw9NxNyTXlM+GA6K/5cj0tyueOcS7l+6NRaBnToxc8vflbqfA/MnszCP1biFC9bdcoEGZ2btGXr+8uqfP1Xwmy1UHdsZ9KyMxALbq5UChWNY+qx/9P1NzTtrZqI/7tQVveVWrVqERAQgCAITJgwgfHjx5dr/K0Al8tFr169ePTRRxk+fDg5OTmsWrWKZcuWceHCBXr37s2QIUNo1qxZpa7fiYmJZGdn06xZMwRB8Hh/p6eno1arCQ0NJSQkpFJSFbPZzOHDh2nUqBG+vr4VnudqXOlVnpGRgd1uR6fT0aRJk3Jpuc1mMyNGjGDMmDEezX5Voryfy/Pnz9O1a1eP5eK/yVWoADfsS+G6fwmCIGwSBOFoCf+VLqgreR4VMAhYcsXhz4BYoAWQArxX2nhJkr6QJKmNJEltQkJCSnvaP4pty3Zis9iKkBNJkrCarGxbvrPC83bo15aXfpqGcMVvy+kQsZltzBz2djEpzCOzxqLWlf4HLchk7Fi5y/NzXmZ+ic+TKeTkZxvLvM6aDUvWartEF0ERQWWepyy48iLudDj58e3FjIx5iLvC7uP9iXPJSc+t0LwKpYKwmnq03lra1G/O+P73sfvkQWzO4t7rABqlmrF9RvzrSTjAgBfH8MuODdidDpyieE1NuNlmYeVfG3nwnafo/exIXvhmVrFkuZU7fy1CwgFckosdx/ZhK+Wmp6rw85ZV5JryPSQcwO60E598jq2H/7qh567GrYdevXrRpEmTYv+tXLmyzHPs2LGDAwcOsH79ej755BO2bdt2A1f8z0Amk7Fo0SKGDx8OuMncAw88wMqVK9m6dSstW7bk/fffp1OnTrz44ovs3bu3TPrpK5GQkEBubq6HzAuCgI+PD7GxsXTo0IF69ep59OkHDhwgKSkJu724I9q1cKNIOOBZb+3atfHz8yMgIICgoCAOHz7Mvn37uHDhAlZrcXewK2GxWBg9ejSjRo2qFAmvis81uCvzd999Nx988IHn/Xr00Uc5e/Yshw4dIjw8nKeffrrC6/y347p7OJIk9SrtMUEQ0gRBCL9CmmK4xlR34q6Ge76Nr/y3IAhfAmvKtuybEykJaVhMxf+ArGYbqeev9dZcH38s2Y7DVjzkR5AJHPg9jtsGXE7tatKxIe9sfJ1X75lNZnJmsTGSy1XER7zL0Ns4d/h8MdtFyeWiXquyN42MffVejvx5HNsVNpBqnZohj/VH61W1nq5X4pVhb7P/t4Oe86775jd2rdvH/BOfV8l5z6cmlfhlIRNkPNxvFB8+dmOCkDYd2M5zX77JyYtnidZH8PqYaQzv9s84MxxNOMmB+KPYHGX/QrPZbXy/aTmiS2T70T18umo+uz5aTYMadQBQyEu+/MgE4ZrVMkmSiE9OwO6w06hmvQpV1g6cOYrJWjw3wCmKHE04RffmHcs9ZzX+vagK95XCKG+9Xs/QoUPZs2cPXbt2LZd7y62A0tbv6+vLqFGjGDVqFGazmXXr1jFv3jyOHDlC9+7dGTx4MO3bty9VzlZopWi1Wj1e5CXBy8uLWrVqUatWLSwWCwaDgbi4OARB8DizXMtj3GQyceTIERo3boyPz42RqRVaOgqCQOPGjT2NsIVe5ceOHUMURU+AkJeXl2eszWbj/vvvZ8iQITz88MOVWkdVfK4dDgd333039957L3fddVeR8YW41V2FbjQqu7e/Cii8HRsDXOs2ahSw8MoDBeS9EEOBWzpnvV6rWLRexZO8NDo1dVtWTvPqcpZeNXCVYOvXtFMjZi6ejsareGVckiTa97u8Mz74sf7oo4NRa93SGUEQUOvUPPHRBNTasm+VNb6tIW+sfMnjYuId4MW9zw9n/OyxZZ6jvEg4lliEhAOIDpH8LCO/fb+5Ss7Ru3UXNKri74NKqeSV+6feEInMpgPbGfTygxw4cxSzzcKpi2cZ+85TfPfr4io/V1lwNiWxQtrLwoqzzWEnz2xkymeXPfnv7XkXamVRuZZCrqBv2+4oFSVvKZ9IjKfhQ91pObEvtz05iKhRbdgaV/4KdpOY+nhpiv+tKuUK6keXz7GgGv9tlMV9xWQykZ+f7/n3xo0badKkSZnH/9ug0+kYNmwYP/30E3v37qVPnz4sWLCA2267jaeeeopt27bhdF4uPBVqwu12O40bNy7zNVer1VKzZk3atm1LkyZNEASBY8eOsXfvXs6fP4/FYinyfJPJxOHDh/8WEi5JEvXq1Ssig9NoNERHR9O6dWtatGiBWq0mPj6eXbt2MWfOHLZt28aYMWPo06cPjz766A2V0JXlcylJEuPGjaNhw4ZMnTq1yGOFrkIAK1as8Hzeq1EcldWIBwGLgRrABWC4JElZgiBEAF9JktSv4Hk64CJQW5Kk3CvGf49bliIB54EJkiSlcB3crM2aoigyvuVkLp5OxmFzV5yVaiU1G0Yzb/8HlSJsf63dy2v3zMZ6VcVdo1OzPO0HtN7FSYUkSbw3YS6//7QFm9mOIIBCraTX6G7UaRlLdL1IWvVsjkwmw2K0sOarX9m1Zi9B4YEMfWJAqR7lZcGN0nBfjQ3zf+ejSZ+VGPTT697uzPih8o0iWXnZNB3fi/TcLBwFEhUvjZYnhjzE2+Oer/T8JaH1o3dw4Ezx+9LQgBDeeWQGn6/5AbPVzOCOfZk2YiJeWq8SZqk6JKRcoNHDt2O9SjKilCvx1urINpZNCqRWqrCuOweA0WKixzMjOHHxDA6nE5VCgT4ghB0frCA0oLj8zGa3ET26LRl52UVkMV4aHfHfbSc8KLTYmNKQbzYS+0BHMvNzPLsdSoWS2PCaHPtq8w397FZrxP9dKIv7yrlz5xg61O1N73Q6GT16tCfau3B8QkICOTk5BAQEULt2bRYvXlxMU3vx4kUeeOABUlNTkclkjB8/nsmTJwNuu7gvv/ySQunmW2+9VWVWdn8X7HY7mzdvZunSpezatYv27dszcOBAfvrpJ3r37s3o0aOrhHza7XYMBgMGgwGn00lwcDDe3t6cPXuWpk2b4u1dNSm6V6PwhkIURRo0aFDm1+J0Ovn+++/56quvSE1NZdSoUdx9993cdtttN+xaVZbP9Z9//kmXLl1o2rSpZx2Fn7tCV6HCav+8efMIDw+/zllvatyczZr/FG5WIg5gyjMzf+aPbPppK4IAPe+9nbGvjELno6vUvJIkMWvMHLYt24HNYkehlCOTy3j++6fpdnena46L23aULYu3gwQHtxwm/WIGouhCrpATEhnER9tnl2hpeCvg0NYjvDDg1WJEXKlWct+METzwUtV0khuyM3h70VxW7/qNIJ8Anrr7Ee7pPuiGVSS8BtQt4kZSCEEQ0CjVWOyXX69CLuebp9/j/t5VZ11VEka/9Tgrd270rEsmkxHg7ceJr7dw8uIZRr89iay8HESXiN3pKFFDHujjT+byyzcYkiSx7fAu4s4dp25kLfq07lbq1vTy7esY+85U8i1F+xbUSjUzH5jK9JGPl+v1JKRcYMKH09l88E9kgowhne7g0yffItgvsFzzlBfVRLwaJaHaLq4onE4nmzdvZvLkycjlclq2bMmQIUPo0aNHlQbUOBwOkpKSSEhIQKPRoNfrCQ0NrZKUzCshSRJnzpzB4XCU20HG6XQyfvx4GjduzDPPPMPmzZtZvnw5kyZNomXLllW2xmpcE9VE/ErcjETcYrKy5ssN7FixCz+9H0MnDaBFt6ZVeg5Jkjix+xS71u3Dy1dHj5FdCYkKvv7AAsx59BPWf7vJU60Ht/tKp8EdmLnkxlR2bzQkSWJMw0e5dDalSJiS1lvL96fnERR+Y0nVjUKDh7px6uLZMj9fpVSx9o359GrV5YatySk6eWfxZ3yyaj5Gi5m+bbox++EXiAmLBgq+aJITUKvUvPnjRyzYtLRIBV2r0jB56Djefrhin7XPVi/g6c9fK3ITUojHB49l7qQ3KjSvKIoI19GlVyWqiXg1SkK1XVxRiKLImDFjqFOnDi+++CI7duxg2bJl/PHHHzRp0oTBgwfTq1cvdLrKFbny8/M5evQozZo1Q61Wk5GRgcFg8KRkhoaG4uvrWylSXqhvt9vt5Sbhoijy+OOPU6NGDV5//fUbKkepxjVRTcSvxM1GxC0mKxPbTCEt0eDRKqt1ah5+8wGGTRnsec6Kj1ezedE21Do1gx/tR697u/9tX/4A/X2HY84vXmWVK+RstK34W9dSlchKzeatB94jbutRBCAiNpzp85+iQdt6//TSKowlW9cw9p2nilTFVQolLperRC9zgG7NOrDlvaV/1xKvCbPVwtCZ49h+dA8qhRKbw86dbW9n0YxPUSkrZuN5+NxxbntycLGdAm+NjgXPfcjQzndWxdJvOKqJeDVKQrVdXFFIksQff/xBjx49ihx3uVzs3r2bpUuX8ttvv1G3bl2GDv1/e+cdHlXRxeF3dpPNbghJSGihhiY9ICBNmtKLCUWKfgpSpIkUAQURpCigoogC0osoICAQeu/F0DtCKKEGkhAI6Zvs3u+PFJPsJtlNB+Z9nvtkd+7M3HPnbnbPnXvmdzrRqlUrq0NKkjrhSRdEQpwD/OTJEwICAggNDaVAgQIUKVIEZ2dnq53hhEWmVapUsaqt0Whk+PDhuLi4MH369Cz5jQ4ODqZ79+74+fnh7u5uNgQK4nTv8+fPj1qtxsbGhgSfy9L2LyHSEU9KXnPE//5lEwvHLjdJuqPRafjbfwUarYbBdUdw3/dhoqOuzWfH2+81ZXR8oh9DrIGLR69giDFQvVGVDGuOp0WbfF1MbARQqVXsit6QZvKVF4Hw5xHERMfgXOjFDLNJybKdaxi7eBpBz4Nx0DnQsWEr1hzcYjZkBaBU4WLc+fNEDluZNtfu3eT6/VtUKV2BcsXcM91fj28GscVnD+FRcWOg02ip6l6R4794p6rCYg0BT4NYtH0VF25fpW7FmvRu3Y0C+Z0z3W9SpCP+6tKiRQsePXpkUv7tt9/Sq1cvix3xsLAwmjZtyrhx4xKVKh4/fkzBggURQjB+/Hj8/f1ZsmRJtpxHXsFoNHLmzBnWrVvHjh07KF26NF5eXrRt2zbdBDxpOeHmjhMcHExAQAAhISE4OTlRpEgRChQokK5zfPPmTSIjIxPVUaw5t9GjR6PRaJg5c2aWTZRZmsn1Zc0EmwmkI56UvOaIj3j7S87tv2BSns/RnonrxvL08TN+GjjHZKGlRmvLkotzeBoQwjjPycTqY0EIFKORL/8YRSOv+llq56Tu0zm47mhi1s8EPBpXZdahV+If6YVDURQioiLR2WmJNcRS4r06BIYEm9RTCUHnRu1YO2F+LliZcxgMBpbvXsu8zSuIjtXzQfPODPH6CJ2d6WJla7ly5zoNh3UkOkZPlD4KnZ0WB609J+dso3QR8xr5GUE64hJzWBqaEhMTQ4cOHWjdurWJUkUCfn5+dOjQgUuXXmghMqswGo1cunSJtWvXsm3bNooUKYKXlxft27fHxSV5iOLz58+5cuUKHh4eVoe2pExd7+jomJi6PqWzfOvWLSIiIjLkhI8bNw69Xs+cOXOy9Gm1zASbYXIvoc+rTmxMLPtWH2Rqzx+ZN3oJ930fmNQpUNjJ7D+ZwWAkv0t+Tu0+a+KEA6jUak7vPc8XbSfw/EkoEaGRRDyPIDIsim/e/4HHdwMwGAwc8f6HX4fNZ9X363jib+qEWUqH/m3MLqALCwlPfG00Gnl0J8CqRD6S7EMIQT6dPSqVCo2thoM//o2rY/IfFUFcJstJvUYSGR3JhiPbWbZzDYcu+BD4zFRH/kVGrVbTp00PTszZyvn5uxndbVCWOOEA/Wd+zvOIUKLiY9Ajo6N4EvqM4XO/TqelRJJ5MisXt3LlSipWrEj58uUZMmSIiVycoigMHTqU8uXL4+HhwZkzZxL37dixI7Ht9OnTs+Hssh+VSoWHhwdTpkzh1KlTzJgxg8ePH9OlSxc6duzI0qVLCQwM5NChQ8yfP58aNWpkKL5cpVLh4uJCpUqVqF+/PsWLF+fp06f4+Phw8eJFHj9+jMFg4Pbt24SHh2fICZ80aRJhYWFZ7oRD3JOTBPUSNzc3AgLM5zgRQtCqVStq167NggULrG4vsZzMP8t9idFH6RnW5AvuXL1HZFgUals1G+ds4cs/RtGk838JPzoN6cCxzSeShX0IlcC1mAuv1SpHoRIFsdHYxM14J0GlEvjffGQyQw1gjDWwfekeTmw/jd/lO0SGRaHR2vL75FVM2/I1NZt5WH0+e1ceRKVSYTQk1yR/eMOf25f8eOQXwIz+vxL+LByj0UjtFq/z5YqR5C+QPVJOryp+j+4xe+NSLvpdo0GVWgx+pxeFC1i26LZy6QoErjvPzHUL+G3LCp6GhdCgSm2m9vmCkPBQ3LrXQh+jJzJ+kaQQgkolyzP3029pVlMmqUmNWEMsx6+cMblRNRqN7Dx9MJeskrxKjBkzhm7durF48eJEuTggmVzc0aNHWbFiBdWrV6dmzZpAnFxc69atGTBgAMWKFUOr1XL48GE2bdqUrP/t27fj6+uLr68vPj4+DBo0CB8fn8TFgLt376ZEiRK88cYbeHp6UqVKlZwegixDCEGVKlWYMGEC48eP58aNG6xbt44OHToQFBTEgAEDCAkJQavVZmrxoxACZ2dnnJ2dURSF0NBQAgICEmeIy5cvj8FgsDgHg6IoTJs2jUePHrFs2bIMO+FphUBZytGjRylWrBgBAQG0bNmSSpUq0aRJkwzZI0kb6YinwZZFO7l9+W6ig22IMWCIMfBd759p0OENbDVxSUeqN6rKgO97M3/0EmxsbTAYjBQs7sp32ychhKB9v1as+9k7mSMuhECXX0ehEq4YzCTridHHcnbfeW5duJ0YV56QDXNyj+9Z9/B3q/9J/W89MnHCAdS2as4fvsy8UUuS3Uyc2n2WcZ6T+eXw91Yd51XHYDDw3V9z+Hn9Yp6FhfBGpZrMGjSJOhVr4HP1DC0+70F0bAwxsTEcuvgPv25cysk5WynrVtqi/oUQfNZ1AJ91HZBYpo/RU7Tb64SEhyarqygKV+/60vzzHrzbuB0rv5yT7lqAaH00l+9cxyW/c6IiSkYIeBrEiWvnKOzsyhsVa+bp1f4qocJGrUZv5n9Ra5t1UmkSSWq4urqyd+9ek/JixYqxbds2ABo1amT2qebx48dp2LAhO3fuBGDatGkcO3aMpk2bJtbx9vamZ8+eCCGoX78+z549w9/fHz8/P8qXL0/ZsnFJ53r06IG3t/cL7YgnRQhBhQoVaNasGWvWrGHt2rX4+PjQs2dPVCoVHTp0oGPHjhQvXjzTTrmjoyPBwcE4OTlRpkwZAgMDOX36NBqNhsKFC1OoUCE0GvPrvxRF4ccff+TWrVusWLEiU2u2ZCbYFwsZmpIG+1YdMru4EeDfk77J3nf6pAPrH//BpPVf8svh7/j933kUK1sUALcyRZm8/kucCjqic9Bip7OjVKUS/HxgGnVa18Lc/77OQUvQgyfJMkYmEBUexe1Ld6w+n9ff9jC7CFQfFcP5AxeJSZL2HiBWH8v10ze4e+2+1cd6lRk6ZzzfrvyVwJAnxBhiOXb5FM1GvcvVO758PPNzwqIiEhMDRemjeRb+nNELMia9l8C+c0cTs1iaw6gY+fvIdr5bMzfNfpbtXEOhrjV4a1RXKvdtRoOhnjx+GmiVLYqiMH7pD5T+oB7/m/YpzUd3p3KfptwNMA3ryiuoVCq6NumAxjZ5Rk+trR29W3fPJaskEst48OABJUv+d9NcokQJHjx4YFEdS9q+DBw8eJBNmzbRqFEjRo4cyeHDh1m1ahVarZYBAwbQsmVLfv75Z27fvm32ZscS7ty5Q0hICNWrV8fR0ZFy5cpRr149KlasiF6v59y5c5w+fZp79+4RHf2fb6EoCr/++ivnz5/n999/z1AWY0uRmWDzHnJGPA10Dlqz5YrRiNbedJbMPr89tZvXNNumbuva/P1oBbcv3cFOZ0fJ14on7mvTuyU7l+9NjCPX5tPi0aQaIUEhPLxp+nhJMSrY2Fp/6bwGt8d77jZCnsTN7Mcdy44O/dvy74nriRkGk2KjsSHwfhClKmbdYrWMoigKZ/ae58y+8zgXcqL5+01xKZK3ZJOCnz9lyc6/TDJQRun1TP5jJlfu+Jq0MRqN7D5zOFPHjYw2XYOQEoPRwPil3+Ooc2BIx94m+49fOc0nv45Lpspy6voFOnz1ESfnbLXYlk3HdzFz/UKi9NGJ43Dj4R28JvTh7LydFveT08wZ+i3X79/iyl1fhBAYjUbqV67FN71H57ZpEkmamHMcU87uplbHkrYvA2PGjEn2XghB8eLFGTp0KJ9++ikBAQGsX7+e4cOHExISQvv27fHy8qJChQoWjcfdu3d59uxZsiyTCdjb21OmTBnKlClDZGQkAQEBXLx4ER8fH4KDg7Gzs0tUf7FNMRmQ1VgSAvX48WOTTLBt2rRJs70k40hHPA28BrXj0tGryRZaCiFwKuhI+ZplURQFo9Fo8SMktVpN+RplTcqHzR5Ivba12bpoF7H6GFp++DbNujVi5/K9+F26S1SKWXkXNxdKVbLeMXZydWTh2V9Y8e1fHN98gvwFHHh3hBetPnybpV//ybVTvsmS/QDERMdQzqOM1cfKamJjYvnynclcOnolPl5ew5KvVvDNpvGp3vxYg9Fo5PSec1w4dAmXogV4+72mOLk6Wt3PTf87aGw0Jo64wWjgwq2rqNVqszPXDlrzi4ZuPLjNnE3LuXj7KkWcC9HpzTZ4vdkaW5vkX9Zv1WyIPjbWbB9JMSoKoxd+Q7em75jEpf/09wKTZDmxhliu3LnOv3dvUKlU+XT7B5i1fjHhURHJygxGA9fv38L3/i0qlDD9H8gLOOVzxGf2Fk5eO8f1+7eo5l6JmuWr5rZZEkm6lChRgnv37iW+v3//fmJoQXp19Hp9um1fdoQQFClShEGDBjFo0CCCgoLYuHEjY8eOJTAwkLZt2+Ll5ZVqMp579+4RHByMh4dHuiGjOp2O0qVLU7p0aQoXLszUqVPZu3cvJUuWZObMmbz77ruUK1cuu07VohCosmXLcv78eavaSzKODE1Jgze96tPh49ZotLboHLTYO+pwLuTE1C1fs+r7v/FyfY8WNl58UOFjjm89meHjCCFo0KEu32z8iunbJtH8vbg03617NaehZz3s7O3QaDXo8utwKujINxvHZXjGwqVoAYb9OpDVfktYePYXWvdsjhCCzp++g72jDrXNfzcVWns7vAa3zxO63LtW7OPikcuJqez1UXqiIqKZ3O27ZBk1M0KMPobP3v6Sr7tM5Y9v1zD/86W8596HS8euWt1XmaKliI4xo9UuVFQvW5mujdtjlyKhjc5Oy+B3epq02XPmMB79WzJr/WL2nj3Kyv0b6fbtIIr3qMPVFDPrzg5OzBo8Ca0m/XhmG5WaHacOmJTfD/Q3Oztma2PDo6eWr4x/GhZitlytVpvEsFuD36N7rD+8jdPXL6T66Ph5eCiTV8yk+sfNaTDUk5X7Nlj1mFkIQd1Kr/NBiy7SCZe8MLzxxhv4+vpy+/Zt9Ho9q1evxtPTM1kdT09Pfv/9dxRF4Z9//sHJyQk3NzezbV1cXNJUUfnzzz/x8PDAw8ODhg0bJnPa3N3dExeT1qnzYqp0FixYkH79+rF9+3Z2795N+fLlmTJlCo0aNWLSpEmcP38+8Qny3r17CQoKssgJT8mBAwfw9/fnxo0bbN26lcKFC7Nr167sOCVJHkbqiFvAozsBXDh0CaeCjtRuUZPlk1ex9qeNyeLH7XR2TNv6Na+/Zb2aSXrcOH+Li0eu4FLEmQbv1ENjlz2PrgIfBLHs65Wc2HGa/C4OdPusE617NbdaeunM3vP4nr2JW5mivOlVD1uNLQ9vPeLKP//i6uZCjabVrP7CGtb0Cy4cumxSbp9fxw+7phAS9JxlE1fyyC+A12qVpe+3PS3OrLn+100sGGOakMm1mAtr7lm/cr3PjJGsPuCdLFzE3k7H8V+8cS9SEs8JvTl57Tw2ahv0sXo8G7TijzG/JJvlVhSFku+/wYMg09AkgHLFSuO77IjJtbl4+yq/bFjCzlMHuRf40Gzb/Lp8LPzsB7o3S/5DPeWPmUxdOZuoFDcSOo0W/zVncMpn2ROCKX/MZOqq2SZPBRzt8xO47rzVmTUNBgN9fxzFXwc3obGxxWA08lqJsuyavpKCTv9JOUZGR1JrUFv8Ht9LPHY+rT29WnZlzlDL1QKyG6kjLskOtm3bxvDhwzEYDPTp04dx48Yxb948AAYOHIiiKAwZMoQdO3Zgb2/P0qVLEx3lpG0/+ugjli1blkxFZdWqVckWbx47dozKlStToEABtm/fzsSJE/Hx8QFS159+GXj+/Dlbtmxh/fr1+Pr64u7ujr+/P7t27Up1EWZqrFq1ij///JPNmzenm1BIkieQCX2SkhWOeMiT5xzb5IPRYKR++zdwdXNJvxGgj47By/U9s7rg1RtVyVGFEUVReHjrERo7WwqVyP0vvciwSIY3G8u9a/fRR8Wg0Wmwd4iLdz/q7YPaNm623cnVkZkHplG0tOWrrT9r/iVn95kmTdLl19Hts46s/mF98hsjeztm7p9K5boV0+17QO1hXD9z06Rc66Bl9tEfrA7NiYmNYfyyGczdtIywqAiqu1di9qff0Lh6vcQ6l/2ucfPhHaqXqUQZt1Imfdz2v0u1j5unmkUzn9ae4794U71M5VTt2HvmCG3HfUBMipCVfFod/n+dJb99clnK4OdPqTGgFYEhT4iO0SfW/ep/wxjTY4jF5x8S/pw6g9vx8MljIqIjUalUaG3tWDxyBj3esn5hz6z1i/hyyXfJxsJWbUOLWo3ZNnVFYtmibSsZ/ttEk7AYra0d/y49mKVJeTKDdMQleZnjx48zceLEZAosAGPHjjVb/+nTp1SrVi1xgefL7Ign5bfffmPhwoVUqFCBK1eu0KxZMzp27EjdunXTDVf9+++/WbRoEVu2bCF//vyZtsWStPPXrl2je/f/Fp7funWLyZMnM3z4cCZOnMjChQspVKgQECeJ2a5du0zb9ZKRbY74Kxkjvv+vQ3zX+2eESgWKwi+fzmfwT33xGtQ+3bYhgSGpPuq+dz3nVppfPHKZb96fQciT5yhGI6WrlGLSurG4lSmaYzakZPmkldy+dCcxzjwyNJKosCgOrD0Sp5Uef+8SHR7NhM7fsuD0LIv7bte3FVd9rpvcAGnzadk4d6vJbHZ0RDQLxixj5r5p6fatskllxlsBldr66C1bG1um9xvLtL5jUl1DUNW9IlXdk98kKIrCgfPHWLFnPWGR4YnKKmZtVqnSXaDZvFYjpvYew1fLfsBGrU5cgLhuwgITJxzAxbEAZ+ft5Md189nyz14KO7vy2bv9aV+vuYVnHodTPkfOztvJkh2r2eqzj5KF3Bji1TvDoR6zvZeZ3JDEGGLZe/YIIeHPE2fqd546aOKEQ9z1OH7ldJ5xxCWSvIw5FZWE2W5zLF68mLZt2ya+T0gEI4RgwIAB9O/fP1vtzQ1OnjyJt7c3R48eRafTERUVxa5du1i2bBnDhg2jUaNGdOzYkYYNG5oooGzatIn58+dnmRMOMH36dJo3b56Ydn769OkmaecrVqzIuXPngLinjMWLF09ckAkwYsQIRo0alSX2SKzjlXPEnwY8Y3rvn9GnkAWcO3IxtVvUpESF4qm0jMO5sFOqzpl71biZzXvXH/D75FVc9blGsXJufPhVd6o3yrp406CHT/i8zdfJnNKb524zrMkYVt1enCzOOyfZ/ccBk8WeiqKYzIUZjUbuXLnHozsBFs+Kv92jCf9sPcmRjf9gjDVgo7FBqFSMXT6Cce9MNtvG18wstzna9WmF3+W7RIUnd+adCjniXsV0ttpShBBWacGOnD+ZBVv/JCI6EkVRUInUbwJsVGpeL18t1f0JjOo2kPfe9mLHyQNoNXa8U78ljvlS//Iv6OTCtL5jmdbX/OyXpTjo8jG0U1+GduqbqX4Awsw41xAXdx8RFZnoiJcqXAwbtQ2xhpSLVhWKuhTKtB0SyauANSoq+/fvZ/HixRw5ciSx7FVIBFOnTh02bdqUGI6i1Wrx9PTE09MTvV7P3r17Wbt2LSNHjqRBgwZ4eXnRpEkT9uzZw6xZs9i6dSvOzs5ZZo+3tzcHDhwAoFevXjRr1szEEU/K3r17KVeuHKVLW5a7QpK9vHKLNQ9vOG4+HX2sgf1/pS8hZ6ux5X9ju5rIF9rZ29FnyofcvuTHgNrD2Lf6EA9u+HNy5xlGt57AofXHsuwcti/ZbbJA0Wg0Eh4Szuk957LsONZiTv4wNVRqldnwnlTrq1R89edofj3yPR9P/4hhcwax7sFyXn/LA3UqUo4Fi1v2aLRd31bUal4Trb0dals1OgctDs75mLI+44tireXqHV/mbV5BeFRE4g+hUYkbT5HkiZhKCOztdPz+xSwT5ZTUKF7Qjb5t3+N/zTun6YRbwp3H9zlw/hgBT4My3Me9gIf0/mEExbrXomq/t1i8fVWaCyo71GuOjZkbGjfXwhR1+e9GbkCHD9GkGBOVSoWLYwGaVK+fYXslklcJSxRYAC5cuEC/fv3w9vbG1dU1sdxcIpiXDSFEqjHhGo2Gtm3bsnjxYs6dO0ePHj3YunUrtWvXZtSoUWzevBkXF8tCYS3F2rTzq1ev5r333ktWNnv2bDw8POjTpw9Pnz7NUvskafPKOeKx+lizKeUVg9FkNjc13h/TlYEz+lCwuCtqGzXlapZl6uYJVH+zCgvGLCcqPDpZBsvoiGh++XRehpMEpOSR32OzthoNRgLvZ9xByixv92iCrcbUKTbnzOoctBmSYKzwejm6juhI657N0TnosLG1oePgdtiZuTH6aOL7FvWptlHzzcav+HHfVD6e2ovhcwez5v5yKryefRJSKdl+cj8GxfyNTM9WXRjeuR9dGrfji+6fcGHBbjrUb5FjtgFEREXyzviPqNSnKR2/7kfp/9Vj0KwxVt18ATx+GkitQa1ZsWc9/sEBXLnjy9A5Exg5f1KqbSb3GkVBRxd0dnG6/rY2tthrdSwd9VOyz9ZrJcqydvw8Cjq64KDLh85OS3X3ShyYsTbDqaIlklcNSxRY7t69S+fOnVmxYgWvvfbfonhziWCioqLSVGA5cOAATk5O1KxZk5o1azJ58n9POHfs2JFm27yOra0tLVq0YN68eVy9epX9+/dnOHa+RYsWVKtWzWTz9va2qh+9Xs+mTZvo2rVrYtmgQYO4efMm586dw83NjZEjR2bIRknGeOVCUxp0eIP5ny81KbfVamjUqYFFfQgh8BrU3mxM+eVjV8063M+fhBIS9DxLpABrNvNg31+HiQpLPqOsKApVGlTKdP8Zpfek/3F69zkC7gUSGRaFzkGLrcYWe0cdzwJDiAqPxsbWBrWtmrG/f5ZlzlG/ab1QFNg4dysoChqthr7ffkizro0s7kMIQZV6FalSL/3FndmBg84+LsV6ivsrO1sN1dwrMarrwFyxK4Ehs79iz5nDyZL0/L77byqUKMtnXSyLATUYDMxav4jQyPBkWuoR0ZH8tnkFY3t8SiFnV5N294P86dmyCxdvXyNKH03N8lUZ4vURZd1MH6u2q9ecR2vOcvnONRx0+czWkUgkqWNjY8Ps2bNp3bp1ogJL1apVkymwTJ48mSdPnjB48ODENqdOnTJJBNOjRw+WLl2aTIHF09MzmQILQOPGjdmyZUuyMoPBwCeffJJu2xcFW1tb3N3dM9w+K9LWA2zfvp1atWpRpEiRZO0T+Pjjj+nQoUOG7ZRYzyvniLuVKUrPCT1YMWU1MfGz4xqdhnf6t+G1WpYlLEkL58JOhD4NMykXQmDvaD5pi7U07dqIP6eu4cFNf2L1cfGwdvZ21G//BmWqmjoehlgD5w5eJDoiGo8m1XBwyh6pJAdnBxZfmM3RTT7x8oVFeKt7E1QqwZ6VBzm9+yxFShfmnQFtKVY26xaVqtVqBv7Qhz7ffEhocCjOhZwyHSe/4+R+fvp7IYHPgninfitGdOlHgfzOWWOwGbo0bs+I30xnhVVCRfemnmZa5BwxsTGs3LchUUklgYjoSH7+e1G6jvjdgAf0n/kFe84cxmg0mJXPsLPVcPH2v7z9+puJZYqiMPDnMfyxdz1R+mhs1DaoVSr6tn0vTQdbrVbjUfbF/LGWSPIC7dq1M1HNGDjwv8mARYsWsWjRIpN2KRPBHD9+nCNHjlC2bFwSrx49euDt7W2RM33ixAnKly+fobavGglp58eMGZNu2vlVq1aZhKUkOPEAGzZsSExnL8kZXjlHHOB/Y7tRv/0b7F15EEOsgWbdGlkkc2cJ74/pyqxPfkuWDdNOp6FVz7ezTP9bCKhcvyL3fR8gBAih4k2veny5wvRx0r8nrzOm3URi9DGAIDYmlqG/DqB939ZZYktK1DZqmnRuSJPODZOVt+/bivZ9W2XLMRPQ2NlaLEOZFt/9NYcpf/xMeFScUsel29dZvGMllxftx9khe5IbuToWYO34eXT7ZlDikwKDIZalo2dSsnDuZrmL0kdjSCUEJST8eZptI6MjqffpOwQ+e2I2o2gC+tgYShZyS1a27+xR/ty3IVExRR8bdyPw8U+jaV/v7Wy7FhKJJGuwVIHl+PHj1KhRg2LFijFjxgyqVq1qtXrLq4wlaesBIiIi2L17N/Pnz0/W/vPPP+fcuXMIIXB3dzc0xsNNAAAXe0lEQVTZL8leXklHHKCcR5lsSd3euldzAu4GsvK7dajVKmL0sTTu0pAhswZkSf9hIeGM7/wtlw5fxhAb5xwpipGj3j74bDtFw3f+06rWR8fweesJJjP0v366gMp1K1K2unumbDHEGlCpVVm6oDH0aRiXjl3FwTkfVRtUyvHY3pDw50z8/adkyWhijbE8fBJA928Gs3P6n2bbPQ19xuU71ynuWtSsLrgltKvXnMdrzrHn7GEMBgMtazcxKzOY0+S3d6BM0ZL4PridrFwIQROPtBdBrj20lbAUoSgpsVXbUrdiTSqUKJusfOX+DWblCG3UanaeOmiSkEgikeQtLFFgqVWrFnfu3MHBwYFt27bRsWNHfH19rVJvedWxJG09gL29PU+ePDGpt2LFCpMySc7xyjri2YUQgp4T3qPryE48uv0IFzcXnFwty0iYHj7bT/H1u9NMNLMhbkHoiimrkznip3efNZv+PUYfw7ZFOzN8c3DF5xo/D5rDjXO30Wg1tOvXioHf90ajtS6zWErWztzIoi9/x0Zjg2JUyO/iwA+7plCqYs7pP5/xvYit2pYoTMd4z5lDnL95hRrl/ns0qigKE5bNYMa6edjZatDHxNCgSi3WT1xkcSbKpOTT2ePVMHueVmSGBSO+o/24XkTH6DEYDdja2KLTaJnRf3ya7f69e4OwyPA06xR2dmXjpMUm5TZqG4QQpj/IQqCWiy8lkjyPJQosjo7/fU+2a9eOwYMHExQUZLF6i0TyoiN/zbIJXT4tZaq5Z5kTHv48gompOOEJBNxLrpgS/jwCc0ItRoOR52bi2C3hvu8DRjYfh+/ZWyiKQnRkNFsX7eSb//2Qof4SuHD4Eou/WoE+Sk/E8wgiwyIJvBfE563GW63MkRkKOxckOsb8GBsVhT/3rU9Wtmr/RmauX0iUPpqQ8FAi9VEcuXyKD6cPywlzc4xmNRpyYvYWerbsQr1KNRn8Tk8uLdxLxZJpK8tUL1MJB13aaxKCw55xP9DfpPyD5p3RabQm5QaDgTZvvGXdCUgkkhzHEgWWR48eJd5snzhxAqPRiKurq0VtJZKXAemI5zCB94PYu+ogp/ecw2AwYDQaCXsWhsGQ+qN7gH+2nkwzy6MQgsr1XktW9vpbHsTGpExuEpeNsrGFCjEpWTNjg4l0oj5Sj8+2Uzy+m7Z2aVp4z91mkmRJURSePw3j3xPXM9yvtVR1r0iRAuaTvwghTNLF/7Bmnkn4hD5Gz67TBwl+/nJpsVZ1r8iSUT/xz69b+HnwJIti1zs3aotrfudkWugpEcDRy6dMyhtXr8cnXh+h02ixs9Vgb6dDZ6dl9bi56Tr3KYmIikz3f8xSovXRrN7vzaQVP7Hu0JY0M6BKJK8ySRVYKleuTLdu3RIVWBJUWNatW0e1atWoUaMGQ4cOZfXq1QghzLa9d+9emnKGP/zwQ6IMYrVq1VCr1QQHBwPg7u5O9erVqVmzJnXq1MnRccgoa9eupWrVqqhUKk6dMv2OTCA1mcfg4GBatmxJhQoVaNmypdQHz6PI0JQcQlEUfhu1mI1ztiZqbQuVACGIjojGTqfhgy+70310Z7NxcDHRMRjT0CFPSCiUFFc3Fz78qjsrp60lOlKPoiho82mpUr8iDT3rpdJT2ty86Gc23MXWzpYHN/wpUsqyTJkpef4k1GxMoEoIwkLSDm3IajZNXkKtwW1N7NFptHRtklzWKeh5sNk+1Co1IeGhuDgWyDY7XwTsNHZM+ehz+sz4jNhU4sTVahvcXMx/br7/eBx9Wndn+8n92Nvp6NK4HQWdLF+Qu//cUQbOGsvNh3fQ2NjSu3V3fho4ATuNXfqNzfAw6BH1h3ryNCyEsMhw8uvyUch5Kv/8stms9KJE8qqTngLLkCFDGDJkSLptDQYDr732WppyhqNHj2b06NEAbN68mZkzZyZLnpMZHe/coFq1aqxfv54BA1IPI01L5nH69Ok0b96cMWPGMH36dKZPn55mxk1J7iBnxHOIIxuPs3n+DmKiY4gIjSQiNJLwkAjCn4UTq48lPCSC5ZNWsnbmRrPt67apjdGMAwxQtWEl5v4zw+ziyw+/6sF3OybR4oNmvOlVn1ELP+X7HZOtSr1uNBpZN8ub98r2xffMjVRvFDKSoCeBxp0bmGQrBYiJiaVqg8oZ7jcj1CxfjdlDvkFra4dapY6TnrTT0bt1NxpWTT6T0qp2E7NZH/Np7SlVuHhOmZynWXtoS6pOOIC9RkvbuqmHmlQqVZ4RXT5mQIcPrHLCL9y6QoevPuL6/VsYjAYi9VEs3fkXPb8fbo35yRg4aywPnzxOjHsPjQznXsBDRvw2McN9SiSS9EkqZ6jRaBLlDFPDnEzfi0blypWpWDFtRbe0xsXb25tevXoB0KtXLzZu3JjdJksygJwRzyG8525LN6V7VEQ0f05dQ9cRHU2cXZeiBeg//SMWjl2eqH9uZ29H03cb8sXSEWmuJvdoXA2PxhnXBZ05aA67/ziQany6nU5Dk3ffpGCxjM8ItvmoBZvn7+DutXvoI+Me9avUKt774l3yZZH+ujUM9uxF89cbJepnd3qzDfUq1zKpN/HDkXgf3UVoVDj6GD1CCHQaLb8Nm2bVzU5Wcy/gIct2reFRcCCt6jShQ70WuWZPWqEbpQoXZ9f0ldjaZI20Z1K+Wz03mfoNQKQ+ik3HduH/5DFurkVSaWkeRVHYfnKfiQJMjCGW9Ue3Z9peiUSSOtbIGUZERLBjxw5mz56dWCaEoFWrVgghGDBgAP37W5aILK+T1rg8fvw4UR/czc2NgICMh49Ksg/piOcQEaGmMmzmCA0OwxBrwMbW9NJ0GebF62/XYPcf+4mO1NOgQ11CgkJYMn4FpSqVpOm7b2ZauSQlT/yD2bl8n0lcuBACoRLkL+BAx0/aU7dNbb5o9zW3zt+mxGvF6TXxfWo2rW7xcTRaDYN/6sfnbSbEBQ3HR4Ws+XEDjTs1yBapyfSoWLIck3qNSrNOycLFuLRoLz+tW8j+88co61aKUV0H8EbFmjljpBl2nNxPl0n9iTUa0Mfo+X33WmqWq8qe71dnOCQjM3zYsguHL50wiaXPp7Xn2tKDaM0syMwKLt+5hlExXehrp9Hg9/i+1Y54WqQVAy+RSDKPNXKGmzdv5s0330wWlnL06FGKFStGQEAALVu2pFKlSjRp0iTb7LWUFi1a8OjRI5Pyb7/9Ns3EPAlImccXn0w54kKIrsBEoDJQV1EUs6sJhBBtgFmAGlikKMr0+HIX4C/AHfADuimK8lKuJmjWrTG3LvgRnWJBYkoKlSxo1glPoGx1dwZ815vgR08ZXP8znj8JIzIsEp2DlgVjljHX50cKFc+6GLhbF/3QaG1NHHFFUajWsAq/HPqOS8eu8lnzcYkz5kEPg7nabiITVn+eTE4xPeaMWJiYKRTi1F0iQyOZPXwhM/dNzZoTygaKuhTm+/7jctsMIG72+f1pnyYmwQEIi4rgzI1LLN6xmsGevXLcpu5NPVm5byMHzh8nPCoCO1sNKpWKlWNnZ5sTDlCv0utcvnOd2BSLNKNj9LyWQrPcEoQQdKjXgi0+e5L1aWtjS+dGbTNtr0QiSR1r5AxXr15tEpaSULdw4cJ06tSJEydO5AlHPK3U9ZaQ1rgUKVIkMWumv78/hQtnbA2XJHvJbIz4JaAzcCi1CkIINTAHaAtUAd4TQiSsrhgD7FUUpQKwN/79S4nnwLaUrFgCbb44x8OcAoqdTsPAH/pY1N/sYQsIehBMZFicwxUZFkXwo6f8PPi3rDMacCtThBi9qfKK2kadGBM+97NFJmEr0RHRzB62wOLjGGIN3LrgZ3bf5WNXLTf4FeeM70ViDabXKyI6kj/3rjfTIvtRq9VsnrKMjZMWM7JLf77+cATXlhzCs2H2Zlr9vPtgE/lDezsd/dq+j2sGF9HOHTqV4q5Fya/Lh0qlIr8uH+5FSjBz0MQssFgikaSGpXKGISEhHDx4MNlscnh4OKGhoYmvd+3axa5duyhcuHCq6dwVRWHo0KGUL18eDw8Pzpw5k7gvNZWS3CCtcfH09GT58uUALF++3KIZdknOk6kZcUVRrkK6j0HqAjcURbkVX3c14AVcif/bLL7ecuAA8EVmbMqraO21zPnnR/b/dQifbadwdXOhrIc73nO3cfff+7iVLUq/bz+kQYe6FvV3dJOPiXqJ0WDEZ9spFEXJskdTJSoUp1rDylw8ciXZrLitxoauIzoCcPP8LbNtH98JQB8dg8Yu/fhflVqFRqshOtI0Dj03YsRfVDS2GrOPKgHsbHM+LCUBIQQtajWmRa3GOXbMcsXcOTprIyPnTebo5VMUyO/EZ+/2Z3infhnu0821CL7Lj7Dp+C7+vXuTamUq0r5ec2zUMspPIslOksoZGgwG+vTpkyiFCP8psWzYsIFWrVqRL99/EqePHz+mU6dOAMTGxvL+++/TuHFjHBwc6Nmzp9njbd++HV9fX3x9ffHx8WHQoEH4+PikqVKS1WzYsIFPP/2UwMBA2rdvT82aNdm5c2ey1PWpjQvAmDFj6NatG4sXL6ZUqVKsXbs2y22UZB6R2o+2VZ0IcQAYZS40RQjxLtBGUZR+8e8/BOopijJECPFMURTnJHWfKopidqpKCNEf6A9QqlSp2nfu3Mm03S8ybew7mw1zsbFVsyt6Y5bGiEWERvDjgNkcXn8cRVEoXLIQoxZ+yutveQDQvXRvAu4GmrSzd9Sx5dkai235ddh8ti7cmey87OzteH9MV3qO75E1J/OSoygK7h/U527Ag2Tl+bT2LB45Q6aFzwMIIU4rivJiCBlnHZn/oZFIshg/Pz86dOjApUuXTPYNGDCAZs2aJYa4VKxYkQMHDuDn58fEiRPZuXMnANOmTQNg7NixOWe4JDfItsD7dENThBB7hBCXzGyWPuMwZ7zVX8qKoixQFKWOoih1ChUyn3DlVaJJlzexsU2ugqG2UfOmV/0sX6hhn9+e8Ss/Z/PT1ax7+Dt/+C5IdMIB3h/bFW2+5LOtdvZ2vDvcyypbBnzfh/od3kCjtSWfkz22dra81b0x/xvbNcvO5WVHCMGmyUtxye9MfnsH7O206DRaejTzpFvTd3LbPIlEInkhMKdG8uDBg1TLJZKMku7zVEVRWmTyGPeBkknelwAexr9+LIRwUxTFXwjhBkhtHQv55OeP+fekL0EPn6CP1KPRaShQ2IlhcwZl2zHtdHbY6UzDGzwHtCX0SSgrp69FUUAxGvEc2JaeE6zTcNXY2TJxzVgC7wfx4KY/pSqWwKXoq50QJyPUKFeFB6tPsdVnL0EhT2nqUZ9KpcrntlkSiUTywpCaGolUKZFkNTkR2HgSqCCEKAM8AHoA78fv2wT0AqbH/01dnV+SDCdXR5ZensOJ7afxu3KXUpVKUr9dHdQ2Oa8VLYTgg3Hd6TayE0EPg3Ep6ozWPuNqGIVKFKRQiRcn+1leRKvR0qVx+9w2QyKRSF5IUlMj0ev1Fqu3SCSWkKkYcSFEJ+BXoBDwDDinKEprIUQx4mQK28XXawf8TJx84RJFUb6NL3cF1gClgLtAV0VRzOcMT0KdOnWUU6fMKiVKJBJJnuYVjRGXSPIcQgh3YIuiKCbSKUKI9sAQoB1QD/hFUZS6Qggb4DrQnLjJxZPA+4qiXM4xwyUvFZlVTdkAbDBT/pC4D2/C+23ANjP1nhD3YZZIJBKJRCLJEYQQq4hTbSsohLgPfA3YAiiKMo84n6UdcAOIAHrH74sVQgwBdvLf5KJ0wiUZRmpuSSQSiUQieaVQFCXNRUxKXLjAJ6nsMzu5KJFkhMwm9JFIJBKJRCKRSCQZQDriEolEIpFIJBJJLiAdcYlEIpFIJBKJJBeQjrhEIpFIJBKJRJILSEdcIpFIJBKJRCLJBaQjLpFIJBKJRCKR5ALSEZdIJBKJRCKRSHIB6YhLJBKJRCKRSCS5QKZS3OcWQohA4E4GmhYEgrLYnIyQV+wAaUtq5BVb8oodIG1JDWttKa0oSqHsMkYikUgkLw4vpCOeUYQQpxRFqSPt+A9pi3nyii15xQ6QtqRGXrJFIpFIJC8WMjRFIpFIJBKJRCLJBaQjLpFIJBKJRCKR5AKvmiO+ILcNiCev2AHSltTIK7bkFTtA2pIaeckWiUQikbxAvFIx4hKJRCKRSCQSSV7hVZsRl0gkEolEIpFI8gQvlSMuhOgqhLgshDAKIVJVMRBCtBFCXBNC3BBCjElS7iKE2C2E8I3/WyATtqTblxCiohDiXJLtuRBiePy+iUKIB0n2tctOW+Lr+QkhLsYf75S17bPKFiFESSHEfiHE1fjrOSzJvkyNS2rXPsl+IYT4JX7/BSFELUvbWosFtvwv3oYLQohjQogaSfaZvVbZaEszIURIknGfYGnbLLZjdBIbLgkhDEIIl/h9WT0mS4QQAUKIS6nsz7HPikQikUheUhRFeWk2oDJQETgA1Emljhq4CZQFNMB5oEr8vu+BMfGvxwDfZcIWq/qKt+sRcRrDABOBUVk0LhbZAvgBBTN7Lpm1BXADasW/zg9cT3KNMjwuaV37JHXaAdsBAdQHfCxtmw22NAQKxL9um2BLWtcqG21pBmzJSNustCNF/XeAfdkxJvH9NQFqAZdS2Z8jnxW5yU1ucpPby7u9VDPiiqJcVRTlWjrV6gI3FEW5pSiKHlgNeMXv8wKWx79eDnTMhDnW9tUcuKkoSkYSFWW1LVnd3qq+FEXxVxTlTPzrUOAqUDwTx0wgrWuf1L7flTj+AZyFEG4Wts1SWxRFOaYoytP4t/8AJTJxvEzZkk1tM9vXe8CqDB4rXRRFOQQEp1Elpz4rEolEInlJeakccQspDtxL8v4+/zl5RRRF8Yc4ZxAonInjWNtXD0ydiiHxj7yXZCYcxApbFGCXEOK0EKJ/BtpnpS0ACCHcgdcBnyTFGR2XtK59enUsaWsN1vbXl7jZ1wRSu1bZaUsDIcR5IcR2IURVK9tmpR0IIeyBNsDfSYqzckwsIac+KxKJRCJ5SbHJbQOsRQixByhqZtc4RVG8LenCTFmGpGPSssXKfjSAJzA2SfFvwJR426YAPwJ9stmWNxVFeSiEKAzsFkL8Gz8raBVZOC4OxDlawxVFeR5fbNW4pOzSTFnKa59anSz73FhhS1xFId4izhFvlKQ4S66VFbacIS5sKiw+Ln8jUMHCtllpRwLvAEcVRUk6Y52VY2IJOfVZkUgkEslLygvniCuK0iKTXdwHSiZ5XwJ4GP/6sRDCTVEU//hHzAEZtUUIYU1fbYEziqI8TtJ34mshxEJgS3bboijKw/i/AUKIDcQ9Yj9ELoyLEMKWOCf8T0VR1ifp26pxSUFa1z69OhoL2lqDJbYghPAAFgFtFUV5klCexrXKFluS3AihKMo2IcRcIURBS88jq+xIgskTpCweE0vIqc+KRCKRSF5SXsXQlJNABSFEmfiZ6B7Apvh9m4Be8a97AZbMsKeGNX2ZxLrGO6kJdALMKjdklS1CiHxCiPwJr4FWSY6Zo+MihBDAYuCqoig/pdiXmXFJ69onta9nvCJGfSAkPoTGkrbWkG5/QohSwHrgQ0VRricpT+taZZctReOvC0KIusR9dzyxpG1W2hF/fCegKUk+O9kwJpaQU58ViUQikbys5PZq0azciHPM7gPRwGNgZ3x5MWBbknrtiFPiuElcSEtCuSuwF/CN/+uSCVvM9mXGFnviHBqnFO1XABeBC8T9iLtlpy3EKTycj98u5+a4EBeCocSf+7n4rV1WjIu5aw8MBAbGvxbAnPj9F0mivpPa5yYTY5GeLYuAp0nG4FR61yobbRkSf6zzxC0cbZgd45KeHfHvPwJWp2iXHWOyCvAHYoj7XumbW58VuclNbnKT28u5ycyaEolEIpFIJBJJLvAqhqZIJBKJRCKRSCS5jnTEJRKJRCKRSCSSXEA64hKJRCKRSCQSSS4gHXGJRCKRSCQSiSQXkI64RCKRSCQSiUSSC0hHXCKRSCQSiUQiyQWkIy6RSCQSiUQikeQC0hGXSCQSiUQikUhygf8DpiFwnt8qjh4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(12,6))\n", + "ax = fig.add_subplot(121)\n", + "ax.scatter(X1[:,0],X1[:,1], c=y1, cmap='PRGn')\n", + "ax.set_title('Sparse Parity at p=2')\n", + "\n", + "ax = fig.add_subplot(122, projection='3d')\n", + "ax.scatter(X2[:,0],X2[:,1],X2[:,2], c=y2, cmap='PRGn')\n", + "ax.set_title('Sparse Parity at p=3')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def run_experiment(n_repeat, n_cv, random_state):\n", + " n_samples = [100, 1000, 10000]\n", + " accs = []\n", + " \n", + " clf_kwarg = {\n", + " 'max_features': None,\n", + " 'max_depth': 10,\n", + " 'random_state': random_state,\n", + " 'n_repeats': n_repeat,\n", + " 'n_cv': n_cv\n", + " }\n", + "\n", + " for n_sample in tqdm(n_samples):\n", + " data_args = [\n", + " # name of dataset, function, n_sample, noise, n_features\n", + " ['sparse_parity', sparse_parity, n_sample],\n", + "\n", + " #sklearn toy datasets can also be test by decommenting these lines\n", + " # ['make_gaussian_quantiles', make_gaussian_quantiles, n_sample, None, 5], \n", + " # ['make_hastie_10_2', make_hastie_10_2, n_sample]\n", + " ]\n", + "\n", + " for arg in data_args:\n", + " X, y = get_sample(*arg[1:])\n", + " \n", + " for max_feature in ['sqrt', X.shape[1], X.shape[1]*2]: #max_features\n", + " clf_kwarg['max_features'] = max_feature\n", + "\n", + " acc = get_scores(X, y, **clf_kwarg)\n", + " accs.append([arg[0], n_sample, n_repeat, max_feature, clf_kwarg['max_depth'], random_state] + acc)\n", + "\n", + " df = pd.DataFrame(accs, columns=['dataset', 'n_sample', 'n_repeat', 'max_feature', 'max_depth', 'random_state', 'RF', 'OF'])\n", + " df['delta'] = df.apply(lambda x: x.OF-x.RF, axis=1)\n", + "\n", + " # with open('dat/simulation_notebook_rf_vs_of.pkl', 'wb') as f:\n", + " # cPickle.dump(df, f)\n", + "\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 3/3 [01:34<00:00, 31.53s/it]\n" + ] + } + ], + "source": [ + "df = run_experiment(n_repeat=1, n_cv=3, random_state=random_state)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
datasetn_samplemax_featuremax_depthRFOFdelta
0sparse_parity100sqrt100.4411760.411765-0.029412
0sparse_parity100sqrt100.3636360.4242420.060606
0sparse_parity100sqrt100.3333330.4242420.090909
1sparse_parity10020100.3235290.294118-0.029412
1sparse_parity10020100.4242420.363636-0.060606
\n", + "
" + ], + "text/plain": [ + " dataset n_sample max_feature max_depth RF OF \\\n", + "0 sparse_parity 100 sqrt 10 0.441176 0.411765 \n", + "0 sparse_parity 100 sqrt 10 0.363636 0.424242 \n", + "0 sparse_parity 100 sqrt 10 0.333333 0.424242 \n", + "1 sparse_parity 100 20 10 0.323529 0.294118 \n", + "1 sparse_parity 100 20 10 0.424242 0.363636 \n", + "\n", + " delta \n", + "0 -0.029412 \n", + "0 0.060606 \n", + "0 0.090909 \n", + "1 -0.029412 \n", + "1 -0.060606 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2 = df.copy()\n", + "df2['max_depth'] = df2.max_depth.replace(np.nan, 'inf')\n", + "df2 = df2.explode(['RF','OF','delta'])[['dataset','n_sample','max_feature','max_depth','RF','OF','delta']]\n", + "df2.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "dset = df2.dataset.unique()\n", + "max_depth = 10\n", + "\n", + "# for i, d in enumerate(dset):\n", + "# df_new = df2.query(f'dataset == \"{d}\" and max_depth == {max_depth}')\n", + "# n_feature = df_new[~(df_new.max_feature == 'sqrt')].max_feature.min() #minimum numeric max_feature\n", + "\n", + "# df_mf1 = df_new.query(f'max_feature == {n_feature}') #RF max_feature to be compared with OF 2x, 3x max_feature\n", + "\n", + "# for ns in df_mf1.n_sample.unique(): #n_sample\n", + "# for mf_not_1 in df_new.max_feature.unique():\n", + "# if mf_not_1 in [n_feature, 'sqrt']:\n", + "# continue\n", + "\n", + "# indexing = (df2.dataset==d) & (df2.max_depth==max_depth) & (df2.n_sample==ns) & (df2.max_feature==mf_not_1)\n", + "# df2.loc[indexing, ['RF']] = df_mf1.query(f'n_sample == {ns}').RF.tolist()\n", + "\n", + "df2['delta'] = df2.apply(lambda x: x.OF-x.RF, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
datasetn_samplemax_featuremax_depthRFOFdelta
0sparse_parity100sqrt100.4411760.411765-0.029412
0sparse_parity100sqrt100.3636360.4242420.060606
0sparse_parity100sqrt100.3333330.4242420.090909
1sparse_parity10020100.3235290.294118-0.029412
1sparse_parity10020100.4242420.363636-0.060606
\n", + "
" + ], + "text/plain": [ + " dataset n_sample max_feature max_depth RF OF \\\n", + "0 sparse_parity 100 sqrt 10 0.441176 0.411765 \n", + "0 sparse_parity 100 sqrt 10 0.363636 0.424242 \n", + "0 sparse_parity 100 sqrt 10 0.333333 0.424242 \n", + "1 sparse_parity 100 20 10 0.323529 0.294118 \n", + "1 sparse_parity 100 20 10 0.424242 0.363636 \n", + "\n", + " delta \n", + "0 -0.029412 \n", + "0 0.060606 \n", + "0 0.090909 \n", + "1 -0.029412 \n", + "1 -0.060606 " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Base Model Result\n", + "Three settings of the `max_features` are compared and their corresponding delta accuracy between OF and RF is shown as a box plot. After a meaningful number of data is simulated (i.e., `n_samples` > 10^4), OF starts to outperform RF significantly across all `max_features` settings especially when `max_feature` is greater than or equal to `n_features`.\n", + "\n", + "The most likely reason for this is because OF should be more robust to high-dimensional noise. Moreover, due to the ability to sample more variable splits (i.e. `max_features` can be greater than `n_features` compared to RF), then we expect to see an increase in performance when we are willing to use computational power to sample more splits." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGICAYAAAA+mPioAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA5sElEQVR4nO3deXxU9b3/8dcnIWGHEBgWWYwL1oWi1gjWWvcFrP1hK3Vt63qt99aqXfR6b++vteu1+89eF4qWq9aqtbEKVXCpC7ZFFFBURFBElLAOiWGHbJ/fH+cEhmSSzCSzZfJ+Ph7zyJzv+Z7vfGZykvmc7znf7zF3R0RERLq3gmwHICIiItmnhEBERESUEIiIiIgSAhEREUEJgYiIiKCEQERERFBCIJJ3zOwWM3MzK8t2LOliZieH7/Gytso60O6LZrYqBSF2mJmVhe/jlmzGId2PEgLJSzFfDt/JdizStZnZZWZ2Q7bjSJSZlYRJ4cnZjkW6lh7ZDkBEJEVeAnoDdZ1o40zAmpVdBpQB/68T7WZSCfD98PmL2QtDuholBCKSF9y9EdjVyTZqUxSOSJejUwbS7ZnZiWb2rJltNrOdZvaamV3ZrE7TefkDYspGhGUNZlYaU35YWH5TG6/ZVOfXrax/yMxqzSwSUzbezB4zsyoz22VmS83sJjMrTOA93mtmcecpD+O4N2Z5zzlsMzvfzBaHn8sKM7s8rDPGzCrMrNrMtprZA2bWP07bI8zsLjP7KHw/a81supkNbS/mmDammNnr4XtebWY/BIri1It7DYGZDTazGeHnts3Mnjezo+NdL9C8LHx+ErB/2HbT4+Rw/RFm9mczW2Nmu81svZm9YGafS/C9nWBm/ww/3w1mdjvQL069AjP7rpm9FL5GbfiZ3mVmg2M/A+CDcPH7MfHGvqd/M7NnwphrzWxd+PsrSyRmyV/qIZBuzcw+DzwGrAd+BWwFLgTuMbMD3f27YdXnCbphTwV+H5adBjQSJNanAI+G5afGbBOXu79jZguAi83sRndviIlpADAFmOPu0bCsHJhL0B1+Rxjv54GfAUcCl3T0M2jDOcA1wJ1ANXAlMMPMaoGfEry//wSOBa4gODq/KuZ9jAFeBooJPrP3gYOBfwVOMbNyd9/cVgBm9gWCz3UV8EOgHrg8jK1dZlYM/A04CrgXeBUYH5ZVJ9DEDcB/A0OAb8aUvxN+ETf9jqcBH4b1yoGJwJPtxDYxjGMrwe+xhmDfuz9O9WLgRoLPYiawneBzvxI4wcyOCXs33gnj/A3Bfv2XcPttMW19B5gP/JbgMxhH8Hs71cw+6e5VbcUteczd9dAj7x7AyYAD32mjTiHBP/EaYL+Y8mLgn0ADMDambDvwx5h6M4BFwFLgzpjyR4GPgYJ2Yvx6GOPZzcqvDMu/GFP2T4Ivw/ExZQY8EtY9Lab8lrCsLKbs3uDPPW4cDtwbs1wWlm0H9o8pjxB86TcC32rWxl+AWqBfTNlMYCMwqlnd8vC93NLO51MIfARsAobElA8Mf28OXBbndx5b9m9h2Xebtd1UvqpZ+YuJlIXl/yds4/wO7qPzws/skGb73qthu7fElBvQO04bVzaPIeb3F/fzBfrGKTst3OamVP8t6tF1HjplIN3ZMcAYYIa7r20q9OBI6xcER/5TYsr+SdAT0OQU4LnwcRqAmRlBF/NcD85pt+Uhgi+ErzYr/yrBkdsTYZtDgeOBWe7+ZkycTnCkDvCFhN5xch539w9jXi8KLCdICO5oVvfvBN34ZWHMAwmO4mcBu8xsSNOD4Gh/BcEFfG05BhgN/K+7b4qJYzPBEXkiPk+Q2N3WrPxuoM3eiQQ0bT857NVJWPg7/TQw093fbSoP97PfNK/vgZ3htoUWjCQYwt4eiomJvra7bw/bKTCzgWE7b4TvJ+F2JP8oIZDurOl6gLfjrFsS/jwwpux5YER4/v9Agi+/58PHIWY2kqD7PrYruVXuXk3QrTwl/AIlPI/7WeAh33uBW1txLiX4gj4wzrrOWhmn7GNgnbvvjlMOwXsH+ATB/5crgWicxyeAYe28ftN7WhZn3dJ2tm1yALDW3WO7zHH3Ovaea+8Qd59L0L1/GbApvBbgB2Z2eAKbJ/3ewus5XgF2EnzeUfb+jgYlGreZnWpmLxL0ANWw93cyMJl2JP/oGgLpzpoPL2tP05f8qcBugvP5fyfo5m0k6CUY0qxue+4jOLr/EnAP8JUwrtjzyMnGGU9rFxS29T+gIcly2Btr088HCN5jPDvbaCe2jXixJ/qZpOKza5W7X2pmvwDOBk4Avg1818xucPfbE4grofdmZl8E/kRwOuF6YDXB6ZtC4CkSPLgzs2OBZwh6aG4mSIp2hnE8nGg7kp+UEEh39n7484g465qO8mKPkhcRdKueRpAQvBJ2v243s9fD8lKC8+bxjubjmU1wdPZV9iYEy9z91Zg6TTHEi/NQgn/i8Y7mY1UDmFlp2DPRJB09CxB84ThQ7O5/62AbTb+fw+Ksi1cWzwfA6WbWL7aXwMyKCHoPahJoI24ytWel+xKCHqWfm1kJ8Apwq5ndEZ7WiSfZ9/YVggTgFHff0VRoZocmGe/FBEnEZHff00NiZn1R70C3p2xQurPXCC5au9zMhjcVhl8WNxL8Y53ZVO7BSICXCK4ROIV9ewGeJ0gITgReaOOLYB9h1/VDBFeKXwyMpdkRtbtvJLgA7fNmNi4mTgP+I1x8rJ2XajpPfXqz8m8nEmeyPLhSfTbwRTM7rvl6C0RabrmPRUAlwe+nqeelaRTGNQmG8leCL8Drm5X/C0EXeSK2AYPCz3sPMys1s33+h7p7DUES0gfo1VqD4e90PsHpokNi2ixm39EMTRoI9seCmLoG/Fcr8UKQnMZrB1r2Qvwn+j7o9tRDIPnuNDOL9495k7tPM7NrCb5MF5jZdIIhYBcAxwE/dff3mm33PMGFak3PY8tvjFOeiPuA64C7CE49PBCnzvUEww7/bmZNww7PAc4CHnT359p5jYcILkCcHh5VVgGT2XuKIx3+FfgH8JKZ3Q+8TvClcyDBxZr3E4yIiMvdG8zsmwQjKV41s7sJRidcEcY/JoEY7gG+BvzYzA5m77DD8wl6MRL5Hzif4LO+3czmEXypPk9wtP1NM3ssbKuOIFk8C3ik6SLANnyLYATDP8PfaQ3BsMN4MVUA5wHPh59lEXAuQeKxD3evMrMVwIVm9j6wAdju7n8l2Ne/CcwO9/da4AyCz2RT87akm8n2MAc99EjHg71D0Fp7LIupexLwLLCFoFv2deCqVtr9ZLj9DoLu8KbyvgT/XB04uAPxvhVu+2wbdY4EHifo/t9NMOb8JqCwWb1baDbsMCyfSDBSYhfBP//pBNPctjbs8JY4MbxI/CF4l4XbnNysfAjBiI13w9etCd/rbcDhCX42XwQWh+95NfAjgi+xdocdhuURgmGX1QQX0j1PMC/BQmBpe+8v/N3+nuCLtelI/eSwjfsIkoHt4f7zBkGvS88E39uJBL0/uwhONd1BMC9Ai8+foFdjaVh3Xfj7K23++wvrTgh/19tpNrySIJFYFK7bRHDtwBiC0R8vZvtvV4/sPSzcQUREug0LZnfcRHAdyKRsxyOSC3TOSETympn1jlN8DUHvyLOZjUYkd6mHQETympk9QHCB3zyC0w6fJjj//z7wKXffmsXwRHKGEgIRyWtm9lWCaaIPIbhx0AaCERD/1903ZDM2kVyihEBERER0DYGIiIh083kIhgwZ4mVlZdkOQ0REJCMWLVq0yd3jTgrWrROCsrIyFi5cmO0wREREMsLMPmxtnU4ZiIiIiBICERERUUIgIiIiKCEQERERlBCIiIgISghEREQEJQQiIiKCEgIRERFBCYGIiIighEBERERQQiAiIpIxz374LOc+fi6n//l07n7z7myHs49ufS8DERGRTFm9dTU3zr2RBm8A4Lev/5YxA8ZwVtlZWY4soIRARESkA+bOnUs0Gm23Xk1NDQCr+q7akww0eeifD7F14VYAIpEIJ510UsrjTJQSAhERkTSqq6sDYL/C/Vqs26+gZVm2KCEQERHpgESP5isqKgCYOnUqA98ZyB2L72Bn/U6+cPAX+O7E71JYUJjOMBOmhEBERCRDLjnsEi74xAU0eiPFhcXZDmcfSghEREQyqEdBbn715tSwQzObZGbLzWyFmd0cZ/0UM3vTzBab2UIzOyHRbUVERKR1OZMQmFkhcAcwGTgcuMjMDm9W7TngSHc/CrgCuCeJbUVERKQVOZMQABOAFe6+0t1rgYeBKbEV3H2bu3u42BfwRLcVERGR1uVSQjASWB2zXBmW7cPMvmBmy4AnCXoJEt423P7q8HTDwkTGj4qIiHQHuZQQWJwyb1Hg/pi7HwqcC/womW3D7ae7e7m7l0cikY7GKiIikldyKSGoBEbHLI8C1rZW2d1fAg4ysyHJbisiIiL7yqWEYAEw1swOMLNi4EJgVmwFMzvYzCx8/imgGKhKZFsRERFpXc4MhnT3ejO7FngaKARmuPvbZnZNuH4acB7wVTOrA3YCF4QXGcbdNitvREREurRE71GQqKa2mmYs7Kx03fMgZxICAHefDcxuVjYt5vnPgJ8luq2IiEiyotEo0WiUVF1nVlRUlJJ2gJQmKs3lVEIgIiKSCyKRCFOnTs12GC2kqpchnly6hkBERESyRAmBiIiIKCEQERERJQQiIiKCEgIRERFBCYGIiIighEBERERQQiAiIiIoIRAREUm5usY6FqxfwOotq7MdSsI0U6GIiEgKrdm2hiueuoK129diGJePu5xvHvPNbIfVLiUEIiIiMWpqaqirq+vwNMF/3f1X1tavBcBxZiyZQf/3+1NSUNLp2KLRaErvjRBLpwxERERSaJtva1G21bdmIZLkqIdAREQkRklJCUCHb27U94O+3PTSTXuW9x+wP9dNuY7CgsJOx5bOmxspIRAREUmhyQdMxsyYs3IOw/sO5/Jxl6ckGUg3JQQiIiIpNqlsEpPKJmU7jKToGgIRERFRQiAiIiJKCERERAQlBCIiIoISAhEREUEJgYiIiKCEQERERFBCICIiIighEBEREZQQiIiICEoIREREBCUEIiIighICERERQQmBiIiIkGMJgZlNMrPlZrbCzG6Os/4SM3szfMwzsyNj1q0ys7fMbLGZLcxs5CIiIl1bj2wH0MTMCoE7gDOASmCBmc1y96Ux1T4ATnL3j81sMjAdmBiz/hR335SxoEVERPJELvUQTABWuPtKd68FHgamxFZw93nu/nG4OB8YleEYRURE8lIuJQQjgdUxy5VhWWuuBObELDvwjJktMrOrW9vIzK42s4VmtjAajXYqYBERkXyRM6cMAItT5nErmp1CkBCcEFP8GXdfa2ZDgWfNbJm7v9SiQffpBKcaKC8vj9u+iIhId5NLPQSVwOiY5VHA2uaVzGw8cA8wxd2rmsrdfW34cyPwGMEpCBEREUlALiUEC4CxZnaAmRUDFwKzYiuY2RjgL8BX3P3dmPK+Zta/6TlwJrAkY5GLiIh0cTlzysDd683sWuBpoBCY4e5vm9k14fppwPeAwcCdZgZQ7+7lwDDgsbCsB/Cguz+VhbchIiLSJeVMQgDg7rOB2c3KpsU8vwq4Ks52K4Ejm5eLiIhIYnLplIGIiIhkiRICERERUUIgIiIiSghEREQEJQQiIiKCEgIRERFBCYGIiIighEBERERQQiAiIiIoIRARERGUEIiIiAhKCERERAQlBCIiIoISAhEREUEJgYiIiKCEQERERFBCICIiIighEBEREZQQiIiICEoIREREBCUEIiIighICERERQQmBiIiIAD2yHYCIiEiuiUajVFRUpKStmpoaAEpKSjrdVjQaJRKJdLqdeJQQiIiIxEj1F25dXV3K2opEIkoIREREMuGkk05KaXtNPQ1Tp05NabuppmsIRERERAmBiIh0cXW7YOVc+HhVtiPp0nTKQEREuq7ocrjv87BtA2BwynfhpBuzHVWXpIRARERy0ty5c4lGo23WmbD6d4zZtiFcchpf+G+eXDeY3T0GxK0fiURSfo1AvsipUwZmNsnMlpvZCjO7Oc76S8zszfAxz8yOTHRbERHJP73rNu+zXEADPeu3ZCmari1negjMrBC4AzgDqAQWmNksd18aU+0D4CR3/9jMJgPTgYkJbisiIl1IQkfyi7bDX6/buzx8PGd++Ya0xZTPciYhACYAK9x9JYCZPQxMAfZ8qbv7vJj684FRiW4rIiK5I5HTAYnpy6AB53Pg7iXU9RvF8pLJ7O7khELd9bRCLiUEI4HVMcuVwMQ26l8JzEl2WzO7GrgaYMyYMR2NVUREOiEajRKNRhk8eHCn2/qw39Gs7D+BgQMHBgWNjR1uq6qqqtPxdFW5lBBYnDKPW9HsFIKE4IRkt3X36QSnGigvL49bR0RE0m/w4MFMmTKlw9tb5Sv0eOJ6Cj5eSeP+J1B32l3Qb1inYpo5c2antu/KcikhqARGxyyPAtY2r2Rm44F7gMnuXpXMtiIikhtqamqoq6vr8BeweSNnv/cfFNdXA1Dw4T/YcN8VzB91dafiqqqqoqioqFNtdFW5NMpgATDWzA4ws2LgQmBWbAUzGwP8BfiKu7+bzLYiIpI/etZvoW+YDDQZtHNVdoLJEznTQ+Du9WZ2LfA0UAjMcPe3zeyacP004HvAYOBOMwOod/fy1rbNyhsREZF2lZSU0NjY2PFTBu40Tp9GQfX7e4r6HH4WU87u+CkICE4ZFBTk0rFy5uRMQgDg7rOB2c3KpsU8vwq4KtFtRUQkT5lR/8UZ9Hj6Ziy6jMaDTqX+1FuyHVWXllMJgYiISKI8chh1X+6+FwGmWvfsFxEREZF9KCEQERERJQQiIiKihEBERERQQiAiIiJ0ICEws77h3QVFREQkT7SbEJhZgZldbGZPmtlGYBmwzszeNrNfmNnY9IcpIiIi6ZRID8ELwEHAfwDD3X20uw8FPktwC+JbzezLaYxRRERE0iyRiYlOd/e65oXuXg08CjxqZt3zThAiIiJ5IpEeghHtVYiXMIiIiEjXkUhC8HjTEzN7NH2hiIiISLYkkhBYzPMD0xWIiIiIZE8iCYG38lxERETyRCIXFR5pZlsIegp6h88Jl93dB6QtOhEREcmIdhMCd9ckRCIiInmuw1MXm1mhmV2SymBEREQkOxKZqXCAmf2Hmd1uZmda4BvASuD89IcoIiIi6ZbINQR/AD4GXgauAm4EioEp7r44faGJiIhIpiSSEBzo7p8EMLN7gE3AGHffmtbIREREJGMSuYZgzyyE7t4AfKBkQEREJL8kM+wQ9h16qGGHIiIieULDDkVERKTjww5FREQkfyghEBERESUEIiIi0sGEwMyGpzoQERERyZ6O9hDMTmkUIiIiklUdTQgspVGIiIhIVnU0Ibg7pVGEzGySmS03sxVmdnOc9Yea2ctmttvMvtNs3Soze8vMFpvZwnTEJyIikq8SmZioBXe/M9WBmFkhcAdwBlAJLDCzWe6+NKZaNXAdcG4rzZzi7ptSHZuIiEi+y6VRBhOAFe6+0t1rgYeBKbEV3H2juy8gZjplERER6bxcSghGAqtjlivDskQ58IyZLTKzq1MamYiISJ5r95SBmY1x948yEEu8CxU9ie0/4+5rzWwo8KyZLXP3l1q8SJAsXA0wZsyYjkUqIiLSAe7O4yse59X1rzJuyDjO/8T5FBUUZTssILEegsebnpjZo+kLhUpgdMzyKGBtohu7+9rw50bgMYJTEPHqTXf3cncvj0QinQhXREQkObcvvp3vzfseT6x8gltfvZUfvvzDbIe0RyIXFcYeuR+YrkCABcBYMzsAWANcCFycyIZm1hcocPet4fMzgdz5lEVEJO/MnTuXaDTabr2mOhUVFTy448F91s1aMYtxa8dRaIVEIhFOOumktMSaiEQSAm/leUq5e72ZXQs8DRQCM9z9bTO7Jlw/LZwhcSEwAGg0sxuAw4EhwGNmBsF7etDdn0pXrCIiIokqKtp7SqAPfdjGtj3LPelJQY5czpdIQnCkmW0h6CnoHT4nXHZ3H5CqYNx9Ns1mQXT3aTHP1xOcSmhuC3BkquIQERFpT0eO5oesHsK3XvwWdY11FFgB/37cv3PeIeelIbrktZsQuHthJgIRERHJdyePPpmnz3uaxdHFHFZ6GKP6xzvGzY6EJyYys17AwQSnDd53911pi0pERCRPRfpEOGP/M7IdRgvtnrgwsx5m9nOCUQD3Aw8Aq83s52aWG2MlREREpFMSuZLhF0ApcIC7f8rdjwYOAkqAX6YxNhEREcmQRBKCc4B/cfetTQXuvgX4V+DsdAUmIiIimZNIQuDu3mK4obs3kMZhiCIiIpI5iSQES83sq80LzezLwLLUhyQiIiKZlsgog68DfzGzK4BFBL0CxwK9gS+kMTYRERHJkEQSgrXuPtHMTgWOIJiQaI67P9dUwcws3mkFERER6RoSSQheCG9qNNPdn28qNLNi4ATgUuAF4N60RCgiIiJpl0hCMAm4AngovPFQDdCL4H4DzwC/cffF6QpQRERE0i+RqYt3AXcCd4YTEQ0Bdrp7TZpjExGRPFZVVcXMmTM73c7mzZsBGDhwYKfbqqqqIhKJdLqdrijhqYsB3L0OWJemWEREpJtI5ZdufX09AAUFnb9rYCQSUUIgIiKSKR25U2BrKioqAJg6dWrK2uyOcuMmzCIiIpJVSghEREQk8YTAzK41s0HpDEZERESyI5keguHAAjN7xMwmmZmlKygRERHJrIQTAnf/L2As8HvgMuA9M/upmR2UpthEREQkQ5K6hiCcnnh9+KgHBgEVZvbzNMQmIiIiGZLwsEMzu45gmuJNwD3Aje5eZ2YFwHvATekJUURERNItmXkIhgBfdPcPYwvdvdHMzkltWCIiIpJJyZwy2B/Y3LRgZoPMbAaAu7+T6sBEREQkc5JJCMbH3r/A3T8Gjk55RCIiIpJxySQEBbHzEJhZKZr6WEREJC8k84X+K2CemVWEy18CfpL6kERERCTTEk4I3P1+M1sInAoYwQWGS9MWmYiIiGRMsvcyWAe8CrwBDDGzE1MfkoiIiGRaMvMQXAVcD4wCFgPHAS8T9BiIiIhIF5ZMD8H1wLHAh+5+CsEIg2haohIREZGMSiYh2OXuuwDMrKe7LwM+kcpgwpsmLTezFWZ2c5z1h5rZy2a228y+k8y2IiIi0rpkRhlUmlkJ8DjwrJl9DKxNVSBmVgjcAZwBVBLcWXFWswsXq4HrgHM7sK2IiIi0IqGEILzV8XXhxES3mNkLwEDgqRTGMgFY4e4rw9d8GJgC7PlSd/eNwEYz+1yy24qIiEjrEjplEN7l8PGY5bnuPsvda1MYy0hgdcxyZViW7m1FRES6vWSuIZhvZsemLZJgboPmPNXbmtnVZrbQzBZGo7omUkREBJJLCE4BXjaz983sTTN7y8zeTGEslcDomOVRJH6NQsLbuvt0dy939/JIJNKhQEVERPJNMhcVTk5bFIEFwFgzOwBYA1wIXJyBbUVERLq9ZKYu/jCdgbh7vZldCzwNFAIz3P1tM7smXD/NzIYDC4EBQKOZ3QAc7u5b4m2bznhFRETySTIzFX4vXrm7/zBVwbj7bGB2s7JpMc/XE5wOSGjbXFexqJIH5n9Iv549+MapBzPxwMHZDklERLqpZE4ZbI953gs4B3gnteF0Hy8u38h3/vzGnuUFq6p56aZTGDagVxajEhGR7iqZUwa/il02s18Cs1IeUR6ZO3curY1k+MuHRcR+/LvrG/nNg3MoH9LQanuRSISTTjop1WGKiIgkfbfDWH2AA1MVSHcztFdjQmUiIiKZkMw1BG+xd2x/IRABfpSOoPJFW0fz59Q1sO3B1/jbOxspMOfEYfV867LzMhidiIjIXslcQ3BOzPN6YIO716c4nm6jV1Eh91x6LOs27+SZOU/SN5nfhIiISIolc8rgh8Bmd//Q3dcA/c1sRpri6jZGDOytZEBERLIumYRgfHhzIwDc/WPg6JRHJCIiIhmXTEJQYGaDmhbMrJTkTjmIiIhIjkrmC/1XwDwzqyC4uPB84CdpiUpEREQyKpl5CO43s4XAqQR3F/yiuy9NW2QiIiKSMUl1+YcJgJIAERGRPJPwNQRmdp+ZlcQsD9IoAxERkfyQTA9Bi1EGZtYtRxm0NSVxRzS1VVFRkZL2NMWxiIgkK5mEoMDMBoXDDbv1KINoNEo0GqW0tDQl7fXoEXyMDQ2t38cgUdXV1Z1uQ0REup+OjjIA+BLdeJRBaWkpkydPznYYLcyZMyfbIYiISBeU8DUE7n4/cB6wAdgIXA0cl6a4REREJIOS7fIvBsYQzEHwAfBoyiMSERGRjGs3ITCzQ4ALgYuAKuBPgLn7KWmOTURERDIkkR6CZcDfgc+7+woAM/tmWqMSERGRjErkGoLzgPXAC2Z2t5mdRjBToYiIiOSJdhMCd3/M3S8ADgVeBL4JDDOzu8zszDTHJyIiIhmQzCiD7e7+R3c/BxgFLAZuTldgIiIikjnJ3P54D3evdvffufupqQ4o3zW68+qqGl5ZVUNDo2c7HBGR/FJfCzs/znYUXVK3nGkwW3bXN3LVH9/kjTVbARg3oh+///J4ehcVZjkyEZE88PoD8PR/wq7NcPDpMHUG9BqY7ai6DCUEHVBTU0NtbW3SswK+Vt2DN9b02rO8ZN02fv7w80wYUp+y2KqqqiguLk5Ze11BQ2MDv170a55Y+QRDeg/h28d8m+NHHp/tsESkkxK9b0w0GqV3w1Ya376VAg+ngF/xN5bdcw1Lhp+3T13d66V1HTplAGBmnzGzO1IZTL7bXt9ycEa8MknOQ8se4v6l91O9q5p3P36XG168gc27N2c7LJG88MdXPmTCT/7GkT94hl8/+262w4mrqKiICNV7k4HQwF2rsxRR15RUD4GZHQVcTDBT4QaCkQdfT31Yua2kpISGhoak72Vw9JbdvDB9Edtrg522d1EB133hBEaV9Gpny8TNmTOHwsKufwoi0SODmpoanih8Yp/Udmf9Tu567C4O7nHwPnV1ZCCSnKVrt/Ddx5bsWf7tc+9x+Ij+TBo3IiOvn9Tfa+12+PVDsKtmT9GIEy5h6nFTUx9YnkpmpsKLgW3An4GT3X2VmX2Q5vjyyvABPXng0iN5eNE6Gt254Jj9UpoMdEd1dXUM8SG8X/z+nrICChheMDyLUYl0HW0l3/M2FhLMWL/Xg8++wrZlrZ/mzFriXdwXLqmAv90CW9bAJ78EE76W+Ti6sERnKlwATHX3Jc3W6TL5JB0U6ct3Jx3cfsVuLtF/KBUVFZzmpzF42GCeXvU0g3oN4sbyGzn7wLPTHKFI/tu/X2OLsrI4ZTlj9LFw+ZPZjqLLSiQhOI+gh+BZM/sb8AjwlLvXpTUykQQVWRE/O/Fn/PgzP6ZHQQ/MdF2GSKKn3eLZXgc9CmBkH+eLY2p5urKQOjdOHN7A+EFtJwTRaJSKiop2X0On8HJPuwmBuz8GPGZmfYFzga8B95jZbGBAKoMxs0nAbUAhcI+739psvYXrzwZ2AJe5+2vhulXAVqABqHf38lTGJrmvqLAo2yFIHtlRt4OfL/g5cyvnctDAg7h5ws0cPKjr9O5Fo1Gi0SilpaUJb1PbCA9+0It3tvSgqMA5c0QtJw6t5bCiLQAMGDCAhoZ2GklAdXV15xuRlOvoTIWHAfOBt1IViJkVAncAk4HDgYvM7PBm1SYDY8PH1cBdzdaf4u5HKRkQkc667bXbePS9R9m0cxOvrH+F61+4Hveuc5a0pqYm6Xj/ubGId7YEx4l1jcbsNcVs2mUMGDCAAQNSd/zn7tTU1KSsPUmNDs1D4O7VwO/CR6pMAFa4+0oAM3sYmAIsjakzBbjfg718vpmVmNkId1+XwjhEJA8lM3IF4NniZ/cp/2jrR/z+z7+npKBkT1m+dXuv37XvMaJjbNhVwJBeKegWkJyXSxMTjQRiB41WAhMTqDMSWEdwgeMzZubA79x9erwXMbOrCXoXGDNmTGoiF5G8UVcXXB41vNdwog17E4i+9KW/9c9WWEnryPDohiUbWTxr+Z7l3kUFXDXlFEr6pPZ0XL4Mj843uZQQxLsSrHl/V1t1PuPua81sKMEFkMvc/aUWlYNEYTpAeXl51+n/E5FOSWbkCsBtZ9/GjS/dyKINixjRdwQ/OP4HfHq/T6czxKw7Z9xQqrbX8vgbGyjp3YOvn1SW8mRAclcuJQSVwOiY5VHA2kTruHvTz41m9hjBKYgWCYGISCIifSLcO+lettdtp3eP3hRYhyd27VIunTiKSyeOynYYkgW5tIcvAMaa2QFmVkww1HFWszqzgK9a4Dhgs7uvM7O+ZkFfXjga4kyg+ZwJIiJJ61vUt9skA9K95UwPgbvXm9m1wNMEww5nuPvbZnZNuH4aMJtgyOEKgmGHl4ebDyMYGgnBe3rQ3Z/K8FuQBHVmfHRzTe0kMu45Efl2kZiISKJyJiEAcPfZBF/6sWXTYp47ce6dEI5MODLtAUpKNI2PjkQinW6rqCh15zdTlaSIiHRFOZUQSPcRiUSYOjW3bjqSql4GyaxU9jiBep2k+1JCICJdWip7nEC9TtJ9KSEQkS4vF3ucQL1O0rXo0lkRERFRQiAiIiI6ZSAiQm1DLb997bfMrZxL2cAyvn3MtykbWJbtsEQySgmBiHR7dy6+k/uW3gfAqi2rWLV5FbPOnUU4t4lIt6CEQLosd+f+pfcz+4PZDOszjG8c/Q3GDhqb7bAknuqV8OYj0LM/HHUx9B6UsqZramqoq6vr1AV8T+x8Yp/lVVtWcfef76a0oLRTsUWj0ZSOWhBJJyUE0mU9svwRfrnwlwAsrVrKkk1LeOq8pyguLM5yZLKP6Ltw9ylQuy1YXjgDrvknFPXKblwxhtpQNrBhz3IvenWpOxuKpIISAsm4VBzRATy86+F9lqM7o9xecTtjCjt2W2sdzXVOaxMEjV/3Jw5pSgYAqlbwt2k3UTPixHbbTGRSn5KSEoBODTs8YfsJXP/C9SytWsqgnoP4/qe/z2n7n9bh9ppo2KF0JUoIpMsabINZwYo9ywUUMMhS1xUtqdFoLf/N7G7IrXPzw/sO50/n/ImNOzYyqOcgigqVGEr3o4RAMi4VR3QAp+46lWufu5a3Nr1Fr8Je3HDMDVxy2CUdbk9Hc53T6pF8zUS4ewFsD3oPqnsfwK6Rx+fkREJD+wzNdggiWaOEQLqs0l6lPPi5B1m9dTWDeg6iX3G/bIck8ZSMhq+/Cu/Mgp79eXFpLW6F2Y5KRJpRQiBd3uj+o7MdgrSnTykccxkAjcvUEyOSi5QQiOSBRR9WM/ut9Ywa1JsLjh1Nn2L9aYtIcvRfQ6SLe+6dDVx1/0Lcg+WnlqznT1/7dHaDEpEuRwmBSBcSb2jfPe8W4773nPwrH1Tz0zvu5ZBh7V9TkciwPhHpHnRzI5EurijO9XnWUJv5QESkS1MPgUgXEu9ofuzqGi66ez47ahsAKB9cz9j9SnNyWJ9kVnV1NXPmzOl0O1u2bAFgwIABnW4LgrgikUhK2pLUUUIg0sUdObqEF288mReXRRk1qDdrXn8x5a/R2iyEHdHUTqrmfUh1ezU1NcDe+TI6IxqNZu2LL5WvW19fD0BhYWqGi0YiESUEOUgJQQelKvOG1Gbfyry7p6H9e3H+scHwy4rFqW8/Go0SjUYZPHhwp9vq0SP4t9PY2NjptiD4smpqMxXq6upS1lY2v/hSeW1IU7KlXqf8poSgA1L9B57K7FuZd9eUy0fgEBw1Dx48mClTpqSszVSZOXMmBQUFKfuy0pefdFdKCDog1Vdl6x+QNB2Bl5Z27na7sPcIvKGhodNtQdDrJCL5TwmBSI4oLS1l8uTJKWvvo+qdrKreyadGD6Bfz47/qc+ZM0dJgUg3oIRAJA/dM281//PiKhzo36sH0y8axxEj+mc7LBHJYUoIRHJATU0NtbW1KblQdUc93LmkL05wi+Gtu+r5waMLufygXR1qr6qqKmWnH0QkdykhEMkR9fX1VFVVdXj72kbj2epSlu/oQ32YDDSp2dXQ4bbr6+sxs/YrikiXpoRAJAeMHTu206MMnqjswds7iuKu+/RwY+jQoR1uu2lsvojkLyUEIjkg0ZErbQ1PXLW15Uzkh/Svp3xII58aHL/LP9F7GVRUVHRs3oCajyhcdA9Wu52G8RfjI49Jvg0RyQglBCJ5Yv9+jazavncui96FzmUH11GcmsnlkrdrC8X3T8a2BwlMwZsPU3fpHHz4+CwFJCJtyamEwMwmAbcBhcA97n5rs/UWrj8b2AFc5u6vJbKtdND6t2DLWij7LBT3yXY03V5bR/OTdtdz86Nv8tSS9Ywp7cMPp4zjhLFDUvK6NTU11NXVMXPmzIS3Gb35FT69fW9vhjXWsWrmrSwefkFKYmpSVVVFUVH8UyUdtaFxA3NXz+XY4cfSp0j7vXQPOZMQmFkhcAdwBlAJLDCzWe6+NKbaZGBs+JgI3AVMTHBbSdaT34EFdwfP+w2Dy+fA4IOyG5O0ql/PHtx+8aeyHcYetYUtb7+8u7BvFiJJztO7n2Z+/Xx4Hkp7lfK/Z/0vB5YcmO2wRNIuZxICYAKwwt1XApjZw8AUIPZLfQpwv7s7MN/MSsxsBFCWwLYtbNu2jXnz5u1Ttt9++1FWVkZDQwOvvPJKi21Gjx7N6NGjqa2tZeHChS3Wl5WVsd9++7Fz505ef/31FusPOugghg0bxrZt23jzzTcBWL58OQDz5s1j7NixRCIRtmzZwpIlS1psf+ihh1JaWkp1dTXLli1rsX7cuHEMGDCAaDTKe++912L9+PHj6devHxs2bKCioqLFxWJlZWX07NmT+o3vcuHGu2M+rA0svv1S3jnk6xQVFbFp06YWV62XlJRwzTXXUFhYyKpVq1i7dm2L1z/++OMBWL9+fYvPvrCwkIkTJwLw7rvvsmnTpn3WFxcXU15eDsA777zDxx9/vM/6Xr168alPBV+Ib7/9Nps3b95nfd++fTnyyCMBeOONN9i+ffs+61evXs3o0cH9AF577TV27dp3mN6gQYM47LDDAFi4cCG1tfveYnjIkCEccsghALzyyisthuoNGzaMgw4KEqrm7x2ys+/Famvf27BhAyNGjGDKlClUV1fv2WdjHXHEEXv2vRUrVuCRIVRt+zuDqxcB0FByAIdcfCsDt9azcuXKFtsfddRR9O7dm7Vr1/Lhhx+2WH/MMcdQXFzM6tWrqays3FO+fPlyCgoKaGhoaHPfq6urIxqNsn79+hb7RkFBAWPHjmVz42bm182naZBG9a5qrnvwOj679bN7fneVlZV79p2SkhKOPvroTu97AwcO5IgjjgByc9/btGkTQ4YMycq+B6n9v/f++++3WH/00Ufv2fdWrVrVYn15efmefW/16tUt1k+cODGh/3vvv/8+GzZs2Gddpv/vtSWXEoKRQOwnXUnQC9BenZEJbguAmV0NXA3BH4nE16txe4uyPuzMQiTSZVkBb43/HgNrllLYsJORn72Yfn1KYeuG9rfNkh2+g2YjNtlduDs7wYhkmAUH29lnZl8CznL3q8LlrwAT3P0bMXWeBP7b3f8RLj8H3AQc2N628ZSXl3u8bDfTcvJeBo2NcNfxEH1nb9kFf4TDzul00zn5fsnduHJB0yiDfL+5kbtz/hPns6x671HoL076BZPKJnW67a5Mfxv5w8wWuXt5vHW51ENQCYyOWR4FNO97aa1OcQLbSjIKCuDSv7Ls3uvoXf8x+5/9LTjkzGxHJZJWZsb0M6bzwDsPsHbbWs4qO4uTR5+c7bBEMiKXEoIFwFgzOwBYA1wIXNyszizg2vAagYnAZndfZ2bRBLaVZPWLsGT4eQDsr2RAuolBvQbxjaPb7FwUyUs5kxC4e72ZXQs8TTB0cIa7v21m14TrpwGzCYYcriAYdnh5W9tm4W2IiIh0STmTEAC4+2yCL/3Ysmkxzx34eqLbioiISGJaznUqIiIi3Y4SAhEREVFCICIiIkoIRESkFfUNjTy1ZB3/2FBITa21v4F0aTl1UaGIiOSOf7l/IS8sjwLFzF7jHLdmM+NGDsx2WJImSgjy0Ny5c4lGo+1XTEBTO00zlaVC053zUtFm070YSkpKOt1WNBolEol0uh2RrqS1/xdrdhgvLO+1Z7m20fj+gy9y0QF1bbYXiUTavCun5C4lBHkoGo0SjUYZPHhwp9vq0SPYRRobGzvdFuy9VW2qvnjr6tr+55SMSCSihEAk1BBnVvt4ZZI/lBDkqcGDB+f9vPOgOdZFOquto/n5017m1VXVABQXFvBf53+W8rLSTIUmGaaEQERE4rr/ygk89voa1m/exefGj+CQYf2zHZKkkRICERGJq1dRIRdNGJPtMCRDNOxQRERElBCIiIiIEgIRERFBCYGIiIigiwqzZmdtAzMXr6Fqey2Fu4whvXJwgG/dTgqWPoZt20Djof8HH3xQtiMSEZE0UUKQBY2NzkV3z2fx6hoAigp6cu2hu7MbVHPuFD18PgWVrwSL835D3SUz8f2OznJgIiKSDkoI0qi1KUHf31rA4tU99yzXNRrPfVTPyHam8k10StCmqYFnzpyZfNCh0h3vc3qYDABY/S7WPn4Lr468osNtwt6ZCkVEJLfoGoIsiPehFxbk2J3ErGWUTo7FKCIiKaMegjRq7Wje3Vnwu/l7pgTt17MHt14xmU8MT80sYCUlJTQ2NnZ66uLGh/5Owaq/A+BFfRh53o/Yb9gnO9Vm09TFIiKSW5QQZIGZ8YerJvDUkvVs2lbL5HHD2a+kd7bDaqHu/IcoWP4ktm0DDZ/4HAwcne2QREQkTZQQZEnPHoVMOWpktsNoW2ExjYd/IdtRSI6oqqrq1HUpTTZv3gzAwIEDO90WBHHpLpUinaeEQETalcov3Pr6eoCUnTrSbatFUkMJgYi0K5HRLYnSLatFcpOu7hIRERElBCIiIqKEQERERFBCICIiIighEBERETTKIG9pzLiIiCQjJ3oIzKzUzJ41s/fCn4NaqTfJzJab2Qozuzmm/BYzW2Nmi8PH2ZmLPvc0jcsuKCjo9KO+vp76+vqUtFVQUKAx4yIiOSpXeghuBp5z91vDL/qbgX+PrWBmhcAdwBlAJbDAzGa5+9Kwym/c/ZeZDDpXacy4iIgkKyd6CIApwH3h8/uAc+PUmQCscPeV7l4LPBxuJyIiIp2UKwnBMHdfBxD+HBqnzkhgdcxyZVjW5Foze9PMZrR2ykFERETiy1hCYGZ/M7MlcR6JHuVbnDIPf94FHAQcBawDftVGHFeb2UIzWxiNRpN5CyIiInkrY9cQuPvpra0zsw1mNsLd15nZCGBjnGqVQOz9d0cBa8O2N8S0dTfwRBtxTAemA5SXl3tr9URERLqTXDllMAu4NHx+KRBvvNwCYKyZHWBmxcCF4XaESUSTLwBL0hiriIhI3smVUQa3Ao+Y2ZXAR8CXAMxsP+Aedz/b3evN7FrgaaAQmOHub4fb/9zMjiI4hbAK+FqG4xcREenSciIhcPcq4LQ45WuBs2OWZwOz49T7SloDFBERyXO5cspAck3tdnj3aQbsWpPtSJKyaecmnv/oeTZs39B+ZRER2SMneggkx0SXw72fg+1RzgSWDzkLyP2JiZ776DlunHsjdY119LAe/OSEn3D2gd160koRkYQpIejG5s6dS7yhl8euvpv9t+8tH7vpGZ588HfsLB7cZnuRSCRlsyS2FltzTXUqKir4nx3/Q53XAVDv9fz4Hz9mx2s70hKfiEi+0SkDaaFnw7Z9lgvwFmW5oqioiKKiIgB2+I591u3wHbhrZKmISCLUQ9CNtXq0/Bbw6JV7l4d/ktO//C2weHNDpUdHjuRXLljJH5b+Yc/yuWPP5UvHfymVYYmI5C0lBNLSJ6dCUR94+zEoGQPH/VtGk4GO+vYx32Z0/9G8tuE1xkfGc+GhF2Y7JBGRLkMJgcR36NnBowspLCjkokMv4qJDL8p2KCIiXY6uIRARERElBCIiIqJTBiKSbru3wrInoaAHHPq5bEcjIq1QQiAi6bO9Cu4+GWo+CpaHHkHhkK/TUNAzq2GJSEtKCEQkJeJNJjV209Mc2ZQMAGx8m/675vJe76OpqKhot01NJiWSObqGQETSprCxrkVZz4LGPZNJiUjuUA+BiKRE3CP5mokw7XnYtTlY7j+Cz37tF3y296DMBici7VJCICLpUzIarvkHLH4wuKjw6K+AkgGRnKSEQETSq2QMnHxztqMQkXboGgIRERFRQiAiIiJKCERERAQlBCIiIoISAhEREUEJgYiIiKCEQERERFBCICIiIighEBEREZQQiIiICEoIREREBDB3z3YMWWNmUeDDbMfRBQwBNmU7CMkr2qck1bRPJWZ/d4/EW9GtEwJJjJktdPfybMch+UP7lKSa9qnO0ykDERERUUIgIiIiSggkMdOzHYDkHe1TkmrapzpJ1xCIiIiIeghERERECYEAZjbDzDaa2ZKYslIze9bM3gt/DopZ9x9mtsLMlpvZWdmJWnJNqvYjMzvGzN4K1/3WzCzT70WyI937kJn1NLM/heWvmFlZRt9gjlNCIAD3ApOald0MPOfuY4HnwmXM7HDgQuCIcJs7zawwc6FKDruX1OxHdwFXA2PDR/M2JX/dS3r3oSuBj939YOA3wM/S9k66ICUEgru/BFQ3K54C3Bc+vw84N6b8YXff7e4fACuACZmIU3JbKvYjMxsBDHD3lz24wOn+mG0kz2VgH4ptqwI4TT1QeykhkNYMc/d1AOHPoWH5SGB1TL3KsEwknmT3o5Hh8+bl0n2lch/as4271wObgcFpi7yLUUIgyYqXTWuoiiSrtf1I+5ckqiP7kPavNighkNZsCLveCH9uDMsrgdEx9UYBazMcm3Qdye5HleHz5uXSfaVyH9qzjZn1AAbS8hRFt6WEQFozC7g0fH4pMDOm/MLwat0DCC7YeTUL8UnXkNR+FHYJbzWz48Jzu1+N2Ua6p1TuQ7FtTQWed03Gs0ePbAcg2WdmDwEnA0PMrBL4PnAr8IiZXQl8BHwJwN3fNrNHgKVAPfB1d2/ISuCSU1K4H/0rwdXmvYE54UO6gQzsQ78H/mBmKwh6Bi7MwNvqMjRToYiIiOiUgYiIiCghEBEREZQQiIiICEoIREREBCUEIiIighICERERQQmBiHQxZnaZmd2e7ThE8o0SAhEREVFCICLxmVmZmb1jZneb2dtm9oyZ9W6l7nVmttTM3jSzh8OyCWY2z8xeD39+Iiy/zMweN7O/mtkHZnatmX0rrDffzErDei+a2f8Lt11iZi1us21mETN71MwWhI/PpPMzEclnSghEpC1jgTvc/QigBjivlXo3A0e7+3jgmrBsGXCiux8NfA/4aUz9ccDFwATgJ8COsN7LBHPPN+nr7scD/wbMiPO6twG/cfdjw9juSfodigigexmISNs+cPfF4fNFQFkr9d4E/mhmjwOPh2UDgfvMbCzBLWaLYuq/4O5bCW5Csxn4a1j+FjA+pt5DAO7+kpkNMLOSZq97OnB4cA8bAAaYWf+wbRFJgnoIRKQtu2OeN9D6QcTngDuAY4BF4a1lf0TwxT8O+DzQq5V2G2OWG5u9RvObrTRfLgA+7e5HhY+RSgZEOkYJgYh0ipkVAKPd/QXgJqAE6EfQQ7AmrHZZB5u/IHyNE4DN7r652fpngGtjYjmqg68j0u0pIRCRzioEHjCzt4DXCc7p1wA/B/7bzP4Z1umIj81sHjANuDLO+uuA8vBixqXsvX5BRJKk2x+LSE4ysxeB77j7wmzHItIdqIdARERE1EMgIokzszuA5mP9b3P3/81GPCKSOkoIRERERKcMRERERAmBiIiIoIRAREREUEIgIiIiKCEQERER4P8D8FaU3sZF6FgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "dset = df2.dataset.unique() #get the list of dataset loaded\n", + "\n", + "ncols = 1\n", + "\n", + "fig, ax = plt.subplots(figsize=(8,6))\n", + "\n", + "sns.stripplot(data=df2, x='n_sample', y='delta', hue='max_feature', ax=ax, dodge=True)\n", + "sns.boxplot(data=df2, x='n_sample', y='delta', ax=ax, hue='max_feature', color='white')\n", + "\n", + "ax.set_ylabel(r'$\\Delta$ Accuracy (OF - RF)')\n", + "ax.set_title('Low volume digits data', fontsize=18);\n", + "ax.axhline(y=0, ls='--', color='black', alpha=0.3);\n", + "ax.legend([],[], frameon=False);" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAGICAYAAACOSxzfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABEwUlEQVR4nO3deZxcVZnw8d/TS0ISSJokHdYAAcImKEJAUDQgigRkIpJR3BBflMEZdNQZZxi3cWR0fHXewQUUURFFBgYDEhAiMAhBZAubQJAl7CEJabrphOzV3ef941aHSqe6U93VXdXL7/v51Ke7zj333qe7kqeePnXuuZFSQpIkSVLf1VQ7AEmSJGmos6iWJEmSymRRLUmSJJXJolqSJEkqk0W1JEmSVCaLakmSJKlMFtUa0iLi6IhIEXF6tWORpKGst/k0Ii6JiNSl7ev5Y+wxEDFKg5lFtbpVkGALH6sj4oGI+HxE1FU7xsGuyO+v8HFOtePbmoj4nH+wSENTRIyPiK/mc/ZrEbE2Ih6LiO9GxA7Vjm+wiIjbesjTv692fFsTEe+LiK9XOw6BRZFKcTlwAxDAjsBpwH8B+wNnVjGuoeIh4P8VaX+wwnH0xeeA54BLqhqFpF6JiH2AG4HdgauBnwM54Ajg74FPRMRJKaW7+vnU/w58G9jQz8cdaBuATxZpX1rpQPrgfcDHga9XNwxZVKsUD6SUft35JCJ+BDwOfDIivpxSaqpeaEPCS4W/v/4WEfVAbUpp/UCdQ9LQERFjgeuAXYCTUkrXF2y+KJ/D/xeYFxEHpZRe7q9zp5TagLb+Ol4FtQ1wng5gXEpp9UCdQ9Xn9A/1WkppDXA32cj1Xp3tEVETEV+OiNsjYnlEbIyIFyLixxExqfAYEbFH/qO1r0fEeyNiYUSsj4hl+Y8mt/iDLyJmR8SD+X4vRsQ3gPpiMUbE5Ii4IN9vY/7rBUXiOD0fx7ER8bWIeD4i1kXEPRFxRL7PzIi4IyLW5OP7avm/xS3i3SMiLo2IlyNiQ0Q8HRHfyr85FvbrnK/4hoj4r4hYAqwnG30iIkZHxJciYlH+99QaEddFxJu7HCfyUzsezn8svCoinoiIn+eLdPJzJXcHZnb5OHSP/v75JfWrM4B9gPO6FNQApJTuA74ENAJfLHaAiPhMRDyZzyNPRsRnSjlxdDOnOp+zfp/Poy0R8euImJLve0lBv27ndUeROdz59un5/Lksn++fy7+PjCsl5lJFxLiI+I98ft6Qf5/7VUTs3qXfpp8hIv4uIh4jy9P/WNDng/n3lc5pOfdExJwi5zwxIhZExCv596YXIuLqyD6JICJuIxul7jrd8PT+/NlVGkeq1VedxXRLQdsosgR9FTAPWAMcRpbgj4qIQ1NKG7sc5wTgb4ELgYuB2WSJ51XgW52dIuLk/HGfA75BNhLyCeC9XQOLiAnAncDe+WM+ALwZ+DTwzog4PKX0Wpfdvg3UAt/P/xz/ANwYER8n+9j0IuAy4APANyLi2V6MatRHxOQubR0ppZZ8vLsD9wITgB8DTwJHA/8CvC0ijs2P/hS6DFhHNq0kAcvyxfDvgbcClwLn54/5KeBPEfGO/JspwFfIfo/Xkf3u24FpwF8Bo8k+Jv4YcB7wCvDNgnP7yYQ0uHUWZz/toc8lwPeAUygo9vI+QzbV7yfAa8CHgB9ExMSU0r/1NpiImAb8kSy3nA+8CJxElq/KEhGHAn8AWvPxvgS8CfgsWf6cmVLKlXisrnka4NWUUntkAz03Am8D5pLl3ulk7yvHRcSMlNKSLvt+DphE9josJ/u5iYh/B75M9vN/FegATgZ+ExFnp5QuyPebCVwLPAL8R/5n3Bl4F9n725NkubkGeDtZzu50Zyk/s/pZSsmHj6IPssIuAV8DJpONahwEXJBvv7dL/wDGFDnOGfn+Hyho2yPftgbYo8sxHgWWFbTVAi+QFXeTC9onAM/nj3N6Qfs3821/2yWOv8u3n1vQdnq+7QFgVEH7X+Xb24DDCtpHAcuAu0r8HaZuHssL+lyWbzuhy77fzbefUdD29XzbbUBdl/6fz297T5f28fnf320FbQ8Aj5UQ/3OF+/nw4WPwP4BmYFUJ/R7J54xt8887c/5rwK4F/UaR/eGf69J+SVZGbHbMzhy1R0Hbf+fbjiloC+C3+fZLCto7Yzi9SLzFzvdnsumI23VpP7m74xQ57m095Or98n0+lX/+nS77nphvv7TIz9ACTOnS/5D8tm8VieMaYFXnz0J27VLqeoxSfi8+qvNw+odK8W9ko5MrgIfJRpavJis8N0mZdQARURsRDfm//P+Q7/KWIse+JqX0XOExgFuBHSNi23zzocBU4BcppVcK+q4kG2Xt6uR8vBd1af8JWWF+cpF9fpw2H0X/Y/7r3SmlhQXn3Ej25jK9yDG6cw/w7i6Pv4ZsygzZ7/HBlNINXfb7D14fwejqe2nL0euPkr253B/Z9JfJ+d//KOBmsk8LxuT7rgR2iYijevFzSBoaxpP9H9+azj4TurRflgpGXfN57zyyT7dP6k0g+Rx3EnBfSunWgmMm4Du9OVaRYx8EvJGsaB/dJe/dQTZoc1yJh1vPlnn63WQDEpDl4Q6yvLxJyqbXPATMzv+shX6VUlrRpe0jZIXyLwvjzcd8LbAdcGS+b+frc0q42taQ4IukUlwE/IZs/vJBwD8Du5Iloc1ExAfIpk68mS3nO29f5NjPFGlrzn+dBKwG9sw/f7xI38eKtE0jS+CbFZ0ppbaIeIJspKDHOFJKr0YEwLNF+r6aj61Ur6SU/rebbY3AtsCirhtSSi0RsYzXf/5CTxZp2x8YQ8/TMyaTfQT5JbJRkT9GxFKykZrrgblpyyk6koaWVWSF9dZ09ulagP+lSN/OXFssH/VkClmOKzV/98b++a//ln8UU+rSge095GnI3leWppReLbJtEXAwWX4tLKK7y9NB8d9Hp86YzyebEvkj4P9GxB1kU0YuTy4QMChZVKsUTxUkm/n5/9h3kI0Sn9rZKSLeD/wP2Uju35MVb+vJpm/8nuIXxrb3cN7o8nWLC1QKtpWruzh6iq8/9DX+td0c6xHgCz3s1wSQUrorIvYC3gMck398GPhKRByV8vO9JQ1JjwLviIi9U0qLi3WI7CLofYHn0pYrUvRnru0pfxfTU7+uNUvnsf8f3c/PLlYE90Vffv7u8nQCZtH9+8sigJRSc0QcRjZf+t3AO8g+Mfi3iDgh9f9yiCqTRbV6LaV0Z0RcCpwWET9IKXVeEPExsiL6mJTSpmQSEfuVecqn81/3L7KtWNszwL4RUVc4Wp3/+Gwfio+OV8sKsvmLb+i6ISK2B3Yi+2ixFE+RjXz/IaXUsbXO+TfSq/IPIuJvyebLn0E2nxtKfyOUNHhcTVaAfRLo7iZTp5FNDbu6yLYDirR15tre5s8VZJ84FsvVxc7T+Qf9xCLbuo6SP5X/urVR5v7wNHB8RDSklFq7bDuA7NOBV7bYa0tPAccDL6SUin0isJmUUjvZJ4m3AUTEG4H7yS42P7GzWwnnVQU4p1p9dS7ZX9nfKGhrJ/vPvenfVWRzKL5S5rnuB5aQ3axg09XZETEeOKtI/2vIisuuC/l/Kt/+2zLj6Tf54vc64M0RcXyXzeeQ/S5LjfdXZFfsFx2pjoI7qHVzlfsD+a+Fb2arKf7mJmnw+hmwGPh8kbxCRBxCNje4idf/gC70kYjYtaD/KLILoduB3/UmkHxR+DtgRkQcU3DMAP6pyC7Pkl0g/q4uMb+V/NKhBR4kG5U/KyK2mJYSEXUR0V/56xqyfLzZHykRMYtsuuO1pQxmkK3MBPCtiKjtujEiphR8XyxPP0628lPXPE0//qzqI0eq1ScppcURcQVZ8n17SumPZMsMnQL8ISJ+RTan+n3A2O6PVNK52iPi88CVwL0R8VOypPt/yOZf79Zll++QXQh4Qf7N40GypHcG8ARlXhwzAL5E9tHeNZHdlGEx2SjTB4HbgV+WeJzv54/z3Yh4J9kFoqvIfj/Hkv8UId/3LxFxN9lFlEvJRsTPBDYCVxQc827gjIg4l2yeZQdwXcrWKpc0CKWU1kTEX5FNibg+Iq4iG+lsAw4n+1RxNfC+lNLyIod4ErgnIi4k+yTtw2TLo56bUnqxDyF9hWy6w+8i4odkgyQnkQ1ydI19dWTrVn8yIi7Pxz2dbAnVh8mWy+vsmyLiY2S57uGIuJhs6sRYsiXn3k+2NOklfYi5q0vI1oP+58jW4L49f46/BV4my+NblVJaGBH/SjYH/KGI+A2v5+BDyZaZHZXv/tP8Hzc3ka10NYbsfWE7skGUTncDZwM/iojryVZpuSelVOyaIA2kai8/4mPwPnh9WaB/7Gb7/mQjF7cWtH2K7OKT9WRLz11E9hd112WT9si3fb3Icb9OlyWZ8u3vJ5sKsYFsvva5ZEXkFssmkSXrH5El71z+6wUULMmX73d6fv+ji8SxWcwF7ZdQ4vJF+WP8roR+08hGMFaQFbbPkK3TPbaU303B9jqy9VkXkl35vobs48bLgOMK+p1D9qawouD3+RvgkC7Hm0I2PaSFrKDu9tw+fPgYXA+yVT2+ls+bq8lGOB8H/hPYsUj/zpx/ej6PPJXPD08Bf1+k/xa5sIf8fRBZcbgmn08uy+eXLfIs2YWNPyUbNFlLdg3PW7vLvWQ3qbqQbAnQjfn97icbjZ9awu/pNmB1Cf3G5Y/5TP48K/J5e/fufo89HOtEsnWvWwpy8Hzg0wV93k+2IsiSfJ8mYAFwSpdj1eRf0yW8/olxt+f2MXCPyL8gkiRJFRXZHRJ/mVI6vdqxSOVyTrUkSZJUpooW1RFxcUSsiIhHu9keEfGDiFgcEQ/n58NKkqrEvC1Jpan0SPUlZEvJdGcW2QUJ08kumvpxBWKSJHXvEszbkrRVFV39I6V0e/6q2e7MJrutZwLuzt/meqeU0rLKRChJKmTe1kBKKfXXDbykqhtsc6p3IbsCttOSfJskaXAyb0sSg2+d6mJ/sRZdniQiziT7qJFx48Ydut9+5d60T5Kq4/77738lpbTFmr1DREl525wtabjoLmcPtqJ6CTC14PmuZIuibyGldBHZGsjMmDEj3XfffQMfnSQNgIh4vtoxlKGkvG3OljRcdJezB9v0j2uB0/JXkx8BrHReniQNauZtSaLCI9X5W44eDUyOiCXAv5LdypqU0oXADWS36FxMdhelT1QyPknS5szbklSaSq/+8aGtbE/A31UoHEnSVpi3Jak0g236hyRJkjTkWFRLkiRJZbKoliRJkspkUS1JkiSVyaJakiRJw8qVT1zJ8Vcdz/FXHc+VT1xZkXMOtpu/SJIkSX32wMsPcO7d5256fu7d57LP9vtw8JSDB/S8FtWSJEkaMhYsWEBTU1PRba2trdxbcy/Ubt7+i//9BW8f9XYaGxuZOXPmgMRlUS1JkqRBp7viubW1lVwuV3SfFe0reHzs41u0j31tLE0dTbS2thY9Zn8U2xbVkiRJGnSamppoamqisbFxs/aGhoai/VNKXL7mcl6NVze1BcHb69/OoeMO7fE8/cELFSVJkjTotLa29qr/mrRms4IaYEJM4JhRx/T7uYqxqJYkSdKQNy7GMSEmbNa2c83OFTu/0z8kSZI06HRO85gzZ07J+0xfMZ2v/umrPLfqOQ7b8TC+/fZvM2XslB73mTt3bjlhbmJRLUmSpGHh4CkHc93J17GxfSOjakdV9NxO/5AkSdKwUumCGiyqJUmSpLJZVEuSJEllsqiWJEmSymRRLUmSJJXJolqSJEkqk0W1JEmSVCbXqZYkSdKg1NTU1Kubs3TebrzzxjGlnqOxsbGXkW3JolqSJEmDTl8K3Vwu16fzWFRLkiRpWJo5c2av9+kc1e7Nrc37i3OqJUmSpDJZVEuSJEllsqiWJEmSymRRLUmSJJXJolqSJEkqk0W1JEmSVCaX1JMkSdKwsahtEff/8X6mTZjGR/b/COPqx1XkvBbVkiRJGhYW5hZyw8Yb4Jns+X3L7+Oi4y6qyLktqiVJkjRkLFiwgKampqLbFq5bCLWvP79r2V38/MqfM6FmApDdPbEvN5UphXOqJUmSNCyMjbGbPa+lltExuiLndqRakiRJQ0ZPI83Tm6bzNzf/DWtyawD49MGf5qNv+mhF4rKoliRJ0rDwpsY3ceMpN3Lfy/cxbcI09pywZ8XObVEtSZKkYWPC6Akcu9uxFT9vxedUR8TxEfFERCyOiHOKbN8+In4bEQ9HxL0RcWClY5QkZczZklSaihbVEVELXADMAg4APhQRB3Tp9iXgoZTSG4HTgO9XMkZJUsacLanP2jbC3T+Gq8+EBy6FlKod0YCr9Ej14cDilNIzKaWNwBXA7C59DgBuAUgpPQ7sERE7VDZMSRLmbEl99bvPwe/PgYf/B649G279ZrUjGnCVnlO9C/BiwfMlwFu69Pkz8H7gjog4HNgd2BV4uSIRSpI6mbMllaRw7ejoaOPkx67YbOR2zR0/YX7LfkX3Hci1oyup0iPVUaSt6+cB3wa2j4iHgM8ADwJtWxwo4syIuC8i7utuAXBJUlnM2ZJ6LUUNudoxm7WtrxnTTe/ho9Ij1UuAqQXPdwWWFnZIKa0CPgEQEQE8m3/Qpd9FwEUAM2bMGP4TdSSp8szZkkqyxUjz/euyKSCpg/ao4/GdP8icOXOqElulVLqoXghMj4hpwEvAqcCHCztERAOwNj9/75PA7fmkLUmqLHO2pL459OOw50xY9mfm/7mJ9fUN1Y5owFW0qE4ptUXE2cCNZHdmvziltCgizspvvxDYH/hVRLQDjwFnVDJGSVLGnC2pq8K506Vqas0BTcydO7dX+w21udYVv/lLSukG4IYubRcWfH8XML3ScUmStmTOllSoqamJpqYmJk2aVPI+dXVZudnR0VHyPs3Nzb2Ordq8o6IkSZJKNmnSJGbP7rq6Zg/aNkBqh/qxJe8yb968PkRWXRW/o6IkSZJGhto7v8eo7+3LqP+aTt3v/xE62qsd0oBxpFqSJEklaW1tJZfLlTSSPHHds7zr2W9tel774K+47+U6nm84cqv7Njc3U19fX1asleZItSRJkvpdw/oXSmobLhypliRJUkkaGhro6OgoaU51NB9I+unlRHp9yseex/4f9tj7XVvdd968edTUDK2x36EVrSRJkoaENGkv2t53ER1TDqBj+2m0veubdJRQUA9VjlRLkiRpQHTsdxId+51U7TAqwpFqSZIkqUwW1ZIkSVKZLKolSZKkMllUS5IkSWWyqJYkSZLKZFEtSZIklcmiWpIkSSqTRbUkSZJUJotqSZIkqUwW1ZIkSVKZLKolSZKkMllUS5IkSWWyqJYkSZLKVFftACRJkjR0NDc3M2/evJL7r1y5EoAJEyb06hyNjY29jq2aLKolSZJUkr4Uum1tbQDU1JQ+QaKxsdGiWpIkScPTzJkze73P3LlzAZgzZ05/hzOoOKdakiRJKpNFtSRJklQmi2pJkiSpTBbVkiRJUpksqiVJkqQyufqHpKGj9UW4/TvQ+gIc8D6Y8YlqRyRJEmBRLWmo6OiAS98HzYuz58/cln21sJYkDQIW1ZIGpQULFtDU1LTpecO653lXZ0Gdt+LWC7n9ue02a2tsbOzTOqqSJJXDOdWShoR19Q10ULtZ25r6yVWKRpKkzTlSLWlQKjrafMdr8IdzoaON1aOmMO3jP2La9rtXPjhJkrqwqJY0dBz1OXjTqdzy20t5dczuzLGgliQNEhbVkoaW7Xbk1bHTqh2FJEmbcU61JEmSVCZHqiVJktS/VvwF/vR9WL+SndbtzbLxb6p2RAOu4iPVEXF8RDwREYsj4pwi2ydExHUR8eeIWBQRLkIrSVVizpbUa+ta4Rez4M+XwxM38NYXfkjj6serHdWAq+hIdUTUAhcA7waWAAsj4tqU0mMF3f4OeCyldFJENAJPRMRlKaWNlYxVkkY6c7akUhXeW2DXlQs5Yt2rm7YFickv387cuXOL7jtc7i9Q6ZHqw4HFKaVn8gn3CmB2lz4J2C4iAtgWaAHaKhumJAlztqQ+WFu//RZt6+onViGSyqr0nOpdgBcLni8B3tKlz/nAtcBSYDvggymljq4HiogzgTMBdttttwEJVpJGOHO2pJJsMdI8bwk8eGn2/U5vYsZpP2bGmC2L7eGk0iPVUaQtdXn+HuAhYGfgYOD8iBi/xU4pXZRSmpFSmtHY2NjfcUqSzNmS+mr2+fCZB+BTt8KZC2CYF9RQ+aJ6CTC14PmuZKMbhT4BXJ0yi4Fngf0qFJ8k6XXmbEl9N2kv2OUQiGJ/nw8/lS6qFwLTI2JaRIwCTiX72LDQC8CxABGxA7Av8ExFo5QkgTlbkkpW0TnVKaW2iDgbuBGoBS5OKS2KiLPy2y8EzgUuiYhHyD56/OeU0iuVjFOSZM6WpN6o+M1fUko3ADd0abuw4PulwHGVjkuStCVztiSVxtuUS5IkSWWyqJYkSZLKZFEtSZIklcmiWpIkSSqTRbUkSZJUJotqSZIkqUwW1ZIkSVKZLKolSZKkMllUS5IkSWWyqJYkSZLKZFEtSZIklcmiWpIkSSpTXbUDkDSyLViwgKampl7t09l/7ty5vdqvsbGRmTNn9mofSZJKYVEtqaqamppoampi0qRJJe9TV5elro6OjpL3aW5u7nVskiSVyqJaUtVNmjSJ2bNnD+g55s2bN6DHlySNbM6pliRJkspkUS1JkiSVyaJakiRJKpNFtSRJklQmi2pJkiSpTBbVkiRJUpksqiVJkqQyWVRLkiRJZbKoliRJkspkUS1JkiSVyaJakiRJKpNFtSRJklQmi2pJkiSpTBbVkiRJUpksqiVJkqQyWVRLkiRJZbKoliRJkspkUS1JkiSVyaJakiRJKpNFtSRJklSmkorqiJg40IFIkiRJQ1WpI9XLIuLKiJgVEWWNbkfE8RHxREQsjohzimz/YkQ8lH88GhHtFvWSVB3mbEkqTakF8lnAFOB3wIsR8a2I2Le3J4uIWuACYBZwAPChiDigsE9K6bsppYNTSgcD/wIsSCm19PZckqTymLMlqXQlFdUppV+klI4GpgM/Bz4EPBYRf4qIMyJi2xLPdziwOKX0TEppI3AFMLuH/h8CLi/x2JJGkFiykJqHr4DXllc7lOHMnC1JJerVVI58Yv1aSmka8G6gHbgIWB4Rl0TEIVs5xC7AiwXPl+TbthARY4Hjgat6E6Ok4a/2ln9l1KUnUn/9Zxl14eHEC3dVO6ThypwtSSWq6+0O+cT5AeB04ChgEXANcBywMCLOSSl9t7vdi7SlbvqeBPypu48RI+JM4EyA3XbbrdTwJQ0yra2t5HI55s2bV1L/0W2vcdKTP9n0PNrW03LNv3D77p/vcb/m5mbq6+vLinUEMmdLUolKHqmOiHdExC+A5cD3gSeAI1JKB6WUvppSegvZfLotLmQpsASYWvB8V2BpN31PpYePEVNKF6WUZqSUZjQ2Npb6Y0ga4mpSjho6Nmur69hQpWiGPXO2JJWopJHqiHga2AO4E/gscGVKaW2RrrcA3+7hUAuB6RExDXiJLAl/uMj5JgAzgY+WEp+koauhoYGOjg5mz+5pqu7m2n9zC7WLb9r0fMK7vsDsA3vef968edTUuDR/L5mzJalEpU7/uAr4WUrpyZ46pZTup4fR75RSW0ScDdwI1AIXp5QWRcRZ+e0X5rueDNyUUlpTYnySRpC2k39Gx58vo6Z5Me3T30OadnS1QxqWzNmSVLqSiuqU0j/11wlTSjcAN3Rpu7DL80uAS/rrnJKGmbpt6Dj0jC6TQDQQzNmSVJpS76j4zYj4STfbLoyIc/s3LEmSJGnoKHWC4YeAP3az7Y8UmWMnSZIkjRSlFtU7k12kUszS/HZJkiRpRCq1qF4OdHdjl0OApv4JR5IkSRp6Si2qrwS+FhEnFjZGxAnAV8luXStJkiSNSKUuqfc14GDguohoBpYBOwETgZvICmtJkiRpRCp1Sb31wHER8R7gGGAS0AzcklK6eQDjkyRJkga9UkeqAUgp3Uh2EwBJkiRJeb0qqiOiDtgN2KbrtpTSY/0VlCRJkjSUlFRUR0Q98APg48DobrrV9ldQkiRJ0lBS6uofXwPeC5wBBHA28AngFuA54KSBCE6SJEkaCkotqj8AfJ1saT2Ae1NKv0opHQfcAcwegNgkSZKkIaHUonoq8GRKqR1YD2xfsO0y4JT+DkySJEkaKkotqpcBDfnvnwXeUbBtr/4MSJIkSRpqSl394zbg7cB1wE+B/4yIvYENwAeBywckOkmSJGkIKLWo/jIwGSCl9L2ICGAOMAb4IfCNgQlP0kjQ3NzMvHnzSu6/cuVKACZMmNCrczQ2NvY6NkmSSrHVojq/nN5eZNM+AEgpnQecN4BxSRoh+lLotrW1AVBTU+oMtuw8FtWSpIFSykh1O/AH4ARg6cCGI2mkmTlzZq/3mTt3LgBz5szp73AkSeqTrQ7zpJQ6gKeAHQY+HEmSJGnoKfWz0y8DX4uIgwYyGEmSJGkoKvVCxa8Ak4CHIuIl4GUgFXZIKR3ez7FJkiRJQ0KpRfWj+YckSZKGiVXrc2xs62DytqOrHcqQV1JRnVL6xEAHIkmSpMr5zxuf4KLbnyHX0cEJB+7Ef33wTYyuq612WENWqSPVkiRJGkIWLFhAU1NT0W2Llq/hF0smb3p+/SPLGL3yed46pR3IliHty+pMI1lJRXVEXLm1PimlD5QfjiRJkgba8nWxRdvL62vIVlJWX5Q6Ul3sjgkTgX2BZuCJfotIkiRJZetppLn1v6/ippZEe3q9uP7UiUdy9L5TKhHasFTqnOpjirVHxFTgt3h3RUmSpCGjYVTijL038lBuJ9ZsbONjR+xuQV2msuZUp5RejIj/AL4DXNc/IUmSJGmg7TOhgy/NObLaYQwbpd78pSftwK79cBxJkiRpSCr1QsUDijSPAvYHzgUW9mdQkiRJ0lDSm5u/pCLtQVZQf7LfIpIkSZKGmFKL6mIXKq4HlqSUXurHeCRJktQLPa1H3Z3O/nPnzu3Vfq5f3b1SV/9YMNCBSJIkqfeamppoampi4sSJJe9TV5eVgO3tpa9L3dLS0uvYRpJS51SfCkxNKX23yLYvAs+nlLZ6gxhJ6ldrW6CmDrYZX+1IJKmqJk6cyKxZswb0HPPnzx/Q4w91pa7+8S9k0z2KWZPfLkkVEamNw178KXx3r+zxv1+vdkiSpBGu1DnVe5NdrFjMX4Dp/ROOJGV6miM46cWb2H3V3dmT9o1wx3nc+tJomsdNd76fJKkqSh2pXkv3a1FPBTaUesKIOD4inoiIxRFxTjd9jo6IhyJiUUQ4n1vSZiZ3vLJF2/gNXjM9EMzZklSaUkeq/xf4akTcmFJa0dkYEY3Al4GbSjlIRNQCFwDvBpYACyPi2pTSYwV9GoAfAcenlF6ICO+ZKY1APY42Pz0JLi2o3WrqOXTOFzh04p4DH9gIYs6Whq+rH1rOBbc/z7pcOx88ZCc+e/QeRES1wxrSSi2q/xm4G3g6In4PLAN2At4DtAL/VOJxDgcWp5SeAYiIK4DZwGMFfT4MXJ1SegGgsIiXJAD2Ogb+6ny49ydQNwbe8UWwoB4I5mxpCGhtbWXjxo0lX0j48rrgvMfHksiK6J/ftYS1Sxdz8MS2Hvdrbm5m1KhRZcc7XJU0/SOfLN8EnE823WNW/usPgUNSSi+WeL5dgMK+S/JthfYBto+I2yLi/og4rcRjSxpJDvkYnHUHfPJm2Oe4akczXJmzpWHo+bW1mwrqTW1rSp0RrO6UOlJNSqmJ8lf5KPa5Qtc7NdYBhwLHAmOAuyLi7pTSk5sdKOJM4EyA3XbbrcywJElFmLOlIaChoYH29vaSl9Tbp2kNV//0gc3+M//V2w5i1ht6nr01f/58amtry4h0eCvpz5KIeFNEnNDNthMi4o0lnm8J2Qh3p12BpUX6/D6ltCal9ApwO9ko+WZSShellGaklGY0NjaWeHpJUi+Ys6VhaK/GcfzrCdOZsu0othtdyxlvncqsA/x/Wa5SR6rPA/4I3FBk22HAP5CNUmzNQmB6REwDXgJOJZuPV2gecH5E1AGjgLfkzy9JqixztjRMvf/gHXn/wTtWO4xhpdSi+hDg291suwv4+1IOklJqi4izgRuBWuDilNKiiDgrv/3ClNJf8hdDPgx0AD9LKXW3RrYkaYCYsyWpdKUW1bXAuG62jSMbnShJSukGuox4p5Qu7PL8u8AWt0SXJFWWOVuSSlPqpZ4LyV9gUsSZwH39E44kSZI09JQ6Uv114H8j4h7gl8BysnWqTwMOBt41EMFJkiRJQ0FJRXVK6faIOA74D7K1qYNs7tw9ZBco3jNgEUoa1Da0tTOqtsY7cUmSRrTerFN9G3BkRIwFtgdeBY4EPk529fekgQhQ0uC0ekMb/3jln7npseVM2W4b/m32G3jPG7ySXJI0MpVcVBc4CPgQ8AFgB6AFuKI/g5I0OC1YsICmpiYArl9Sx63L6wFYvmo9Z/96IX+/xwp2nDRhi/0aGxuZOXNmRWOVJKmSSiqqI+JAskL6VGAPYCPZih//AJyfUur5ZvHSULdxLax4DCbvA9uMr3Y0g8KLXW5pm0s1LF8HjlVLGinWt63nyVefZI8JezB+lO8NI123RXVE7ElWRH8IOABoA24GvgYsAF4AHrCg1rD3/J1wxYdh3atQPw5O+Snsd2K1o6qKwtHmpbc8xX/d/PqdqMfUJg7YaQJz5sypRmiSVFEPrXiIz/zhM7RuaGVM3Ri+edQ3effu765aPC0tLcyfP7/k/qtWrQJg/PjS/xhoaWnBO6J2r6eR6sVAIrsI8W+Aq1JKrwJExJaf70pDWOG0hkKtra3Mfvk8GnOvZg25Nayd+3fcsO9aiBjR0xrOmrkXzas3cN3Dy9ilYQxv33YFo2qrHZUk9a/u3h9+vu7ntHa0ArCubR1fW/A1Wse0brpou5LvD30pdNvasjHR2trSE3djY6NFdQ96KqqfB3YHDgSOBpZFxI2OTGskyeVybNvWslnbmLZWIrWToi+XJAwN3b2JdHUQcND+ACtpamqiaT3MnTu3V+cayX+YSBq6WlPrZs9Xp9XkyDGq9Pvh9Zu+5NDOXO2ni/2n26ogpTQtIo4EPgzMyX99NSKuBuaTjWJLw0J3CWnu3LkszR3OXi23bWqL/U7klA+cWqHIqqOpqYmmpiYmTpxY8j51dVk6aW9vL3mflpaWrXeSpCrq7v3h6Xuf5td/+fXr/XadyYeP/XClwtIg1ONQW0rpLuCuiPh7svWoPwScApxBVlR/KiLWppS8o6KGrT/veCp7vfFIeO4O2PnNMPOfqh1SRUycOJFZs2b12Gf1hjZ+/McXeGTpaxwydT/+5qjdGFNf+keJvZn/J0mDyRcO/QIvLX6JZ9ufZeZ+M/mbN/1NtUNSlZV685cOsosUb46Is4ATyC5iPBn4cEQ8mVLaf+DClKqno6Yejj6n2mEMSv96/VPc/PgrADy0ZBUta3J84737VDkqSRp49bX1vGPUO3gH72DOYU6hUB/WqU4pbQSuAa6JiHHA+8gKbEnDRGtrKxs3buxxJLkjwS2PjyO7wWpm/qPLObL26ZLP09zczKhRlZ9/KElSfyvrSquU0hrgsvxD0ghSE9AwKtGy8fWieuLojipGJEl9U+rF2V117uMF2gKo2XoXSSNNQ0PDpmWhenLy1A2Mqc2uWR5b0867tn+1V+eJCBoaGvoSoiT1m86Ls3urvr6e+vr6ipxLg9/wXRNMUp+Vug7pfg3wrp1yPNRSy/axlu1iA7W143p1Htc8lTQYNDY2VmR5ud6OamvosKiWtIVSP5b8+R3Pct39jwHwItvR1DGOuz5z0kCGJklV1d7Rzj3L7gHgLTu9hdoa73qljEW1pJJ1nXf4q7+MAl5/Q1m2roYLLr2KHcZsvoy98wclDQfr2tbxid9/gkXNiwA4YNIBXHL8JYypG1PlyLbu0rue4/J7X6RhbD2fe5erNA0Ei2pJfbb96MTza15/XhuJ7eq9L5SkoaW1tZVcLrfVqRkP5h5k0cZFm54/1vwY5/7mXA6pP6TkczU1NfV6Hna5bnhkGV+d93rcD75wL/98AGxb2TCGPYtqSSXrOtp8SNNqPvbze3mpdR31tcGXTjiA0942rUrRSdLAWs/6ktoGi85PF694tp7Ckm9drp0HX1rNfuPWdfuHhJ8w9p5FtaQ+27NxWxZ88WgeXbqKXRrG0Ljd6GqHJEm91rkK0dYuVDxqzVHcOe9OVudWAzCufhxfPOmL7LTtTiWfqxoXKnadkgew4xgqPmI+3FlUSypLXW0NB09tqHYYkjTgdhy3I5edeBlXPnElKSU+uO8He1VQV1rnSPOJG9tZ998P8IfHVzCqrobPHLM3nzn2xCpHN/xYVEuSJJVozwl7cs7h51Q7jF4ZM6qWi08/jBWvrWdMfS3bbeMI9UCwqJYkSSNeU1NTr6dmtLa2AvTqJlZNTU1VW59/ynbbVOW8I4VFtUaMvtyGtq+3oAUv8pCkoaKvRW4ul+vTubzp1fBkUa0Ro/PWsJMmTSp5n7q67L9IR0dHr87V3Nzcq/6SpOrp6wDI3LlzSSkx5YgpPLvyWY7a5Sj2atirn6PTUGFRrRFl0qRJzJ49e8DPM2/evAE/hyQpb20L1G0Do8ZW/NTXb7ye+2+5H4Dz7j+P7x/zfWZO9VPKkciiWpIkDU25dXDVJ+Hx66F+DBz9L/C2z/brKXqaOvhC0ws8MOYBiOx5e2rnO7d9h6YxTU4BHIEsqiVJ0pDSWeju88rveePy32WNubVw81f5zcOvsbJ+h6IXD/Z3oVtXX0di8zWgO+jddEENHxbVkiRpSBq//qWiba8wsd/OsbUi/OU7Xubap68FIAg+//bPc9wex/Xb+TV0WFRLkqQhZVOh+whw1Z2vb6gbw4adDqOxbrut3h2xv3zjrd/gqF2O4pmVz/COXd7BQY0HVeS8GnwsqiVJ0tB00Bx4bTk88CsYOxGO+RIb719R0RBqa2qZNW1WRc+pwcmiWpIkDV1vPTt7dLq/9/cVkPpDTbUDkCRJkoY6R6olSVK/e755Db/403Osz7Vz6uG7cfDUhl7t35e74ELf74TrEngql0W1JEnqVyvX5jj5R3fSsmYjAFc/8BLX/N3bOGDn8SUfoy93wYW+3QnXu+CqP1hUS5KkshWOLN/3Si0ta0Zt2raxvYNv/Go+c/au3WK/nkaIvQuuhpKKz6mOiOMj4omIWBwR5xTZfnRErIyIh/KPr1U6Rg0NK9fl+OzlD3LwN27i1IvuYvGK16odkjTsmLPVF+Pq0hZtdamtCpFIlVPRkeqIqAUuAN4NLAEWRsS1KaXHunT9Y0rpvZWMTUPPv//uMa7981IA7n6mhU//+gFu/oLz4aT+Ys5WV6XOc953Qgf7jm/niVWvj0zfs3I8B67Ksff4zadlNDU1FZ3/3JupHzVP3kA8/yfSxL2JjatgXSsdB84hTXlDSftL/aHS0z8OBxanlJ4BiIgrgNlA1wQtdZu8W1tbAfjfF3ag8MOWp1as5heXz2XPncu82GRdK9H6HGnKAVA7auv9peHLnK3NPPXUU6xdu3bTvOWe/NUE+OHqXVjfkfXNUcNvn4WP71TaOtK5XI6VK1dutV/t3T+k7tZzt2hP9/2U3Md+R9rp4JLOJ5Wr0kX1LsCLBc+XAG8p0u/IiPgzsBT4x5TSoq4dIuJM4EyA3XbbbQBC1WCVy+UAmDou8erG19u3H9XBuDL/Rdc8+hvq5v8D0baeNG4K7Qe8H0ZvR/uBfw3b71HewaWhx5ytLdTV1ZU0gtzWARte3HwO9ZpUX/Lo8/Lly1m7di0XX3zxlsduayOlbIrJJ1p/wHZF9o/2jTxx+Ze4ddzrc7IjougfBLlcjrFjx5YUl9SdShfVUaSt68SrB4DdU0qrI+IE4Bpg+hY7pXQRcBHAjBkztpy8pSGvu9Hmzo8JL/rwcXz2ige599kW9pw8ju/+9Rs5dPeJ3R6vtbWVXC7X7QUpNR05/urJLxId6wGINSuoW3ghAOnOH3LztC+zevSOJcXe3NxMfX19SX2lQcycrc00NDTQ3t7OrFml3UHwtg1/4ebHX9n0/H1v3pVZ796rpH0vvfRS2tvbt9ovR/e5to3SPm2sr69nzJgxJfWVulPponoJMLXg+a5kIxubpJRWFXx/Q0T8KCImp5ReQSqw44RtuPJvjmR9rp1t6re8oryYXC5XdOmktrY2tml/jVEda4vuV9+xnikv3cTiscdt1t7TqIdFtYYBc7a20NLSwvz580vqu8P6WqaNq2dDrp39tt3AAbnVzJ//ZEn71tTUsMMOOzBnzpyeOz6yM1z9KUhdltAbO5k3f+rHvNlPGVUhlS6qFwLTI2Ia8BJwKvDhwg4RsSPwckopRcThZJNmXUBymOrL4v59XdgfYOzYsTQ0NGzRno1i17G0fg92zj1XfOfaUVsUyvX19UWPB9kyUdIQZ87WZnqT1373Yh23vdyZM+t4U6xmVF3pUywaGxtLO99Bc2Cng+H5O2CHg2DtK7C2BfY9HsZsX/L5pHJVtKhOKbVFxNnAjUAtcHFKaVFEnJXffiEwB/h0RLQB64BTU+fEKQ07nYv7T5zY/bSNrjpHhkv5WLBQLpejsbGx51GPNX8Nt30bViyClufgtfyg3LY7MONTP2TGhF16dU5pKDNnq6ueLgIvHCTJdcAdKzYvMe5ZOZ5j2XJZvX65k+HkvbOHVEUVv/lLSukG4IYubRcWfH8+cH6l41L1TJw4seT5eeUo6ePKcZPhxP/Mvm/bAI//Djaugf1PcsRDI5I5W/0lotgUfWn48I6KGnLaOxJ/euZVmtdsZObeE5k4boCWvasbDQeeMjDHlqRhputo8/PbPc6FC57e9Pyc2YcwZ8bUrrtJw4ZFtYaUZ15Zy6f++xGaVmdr6Y3fpo5fnfYm9pzsUkiSNJicM2s/jthzIouWruJte0/m4KkN1Q5JGlAW1aqq1tZW1q5dy69//eut9t3YEfz4pV3YkF5f6WPV+jb+9b9v4z0TW7a6f1tbm+uQSlIFHb3vFI7ed0q1w5AqwqJaVTVmzJhNN3PpqnBxf4Dn14/drKDulGvP+nbqbpk71yGVJEkDxaJaVfWRj3yk221dl9urXRfQZUA6SLxz91HsvO3Om9r65UpySZKkXrCo1qBVrDB+bf7j/GTB0yRg8rajOP9Dh3DEXqXd8laSJGmgWFRrSDln1n58/K278+qaHPvvtJ1LNEmSpEHBolpDzk4TxrDTBOdGS5KkwaOm2gFIkiRJQ51FtSRJklQmi2pJkiSpTBbVkiRJUpksqiVJkqQyWVRLkiRJZbKoliRJkspkUS1JkiSVyaJakiRJKpNFtSRJklQmb1Peg9Ub2rjs7ud5oWUtsw7ciaOmT652SJIkSRqELKp78Ilf3MvC514F4LJ7XuDHHzmEWQftVOWoJEmSNNhYVAMLFiygqalps7bl64KFz22zWdt51y1kzRMbN2trbGxk5syZAx6jJEmSBi/nVHdjdA0EabO2bWqrFIwkSZIGNUeqoduR5heueZRL734egO1G1/Gtjx7FgbtMqGRokiRJGgIsqntw7vsOpKH1CVo21PCPH303248bVe2QJEmSNAhZVG/F7tsmdt+23YJakiRJ3XJOtSRJklQmR6oHm1cWw/Wfh2UPw55Hw3vPg7ETqx2VJA0JK9fm+Mq8R/nDX16mPSW2HVXH6W/bg7PfOb3aoUka5iyqB5vfnA4vP5J9/9g1UFsPp/ysmhFJ0pDxb79bxHV/Xrrp+frcRv7zpieZNnlbTnyj9xmQNHAsqius2JrYnda2LOO0zoI6b91fbuL6uXMB18SWNLJcdtllrFq1aov2trY2UkpF9oCbX94NqN+i/aJrbuXp214hIqir2/Ktb/z48XzkIx8pO2ZJI5dzqgeRNW21tNZufiv0V8dMq1I0klRd69atI5fLkVLa7NGTHeo3FG8f9Xp71+PlcjnWrVvXr7FLGnkcqa6wnkaa586dy/3bnsWxq66EV56EqUew8yk/Y07D1ApGKEmDQ0NDA7lcjokTS7+uZFb9aq55uZ4X148mSATwlsk5jtl1LDUxtug+LS0tNDQ09E/QkkYsi+pB5tWx0+C0hZBbD/XbbH0HSRqmGhsbe73PWDYye3ITa0Y3svu2HYyphdoagO5vidvY2Ninc0lSIYvqwcqCWtII15drSL5y0W+5/IV62lOwTX0NF370UI7ed8oARCdJm7OoliQNKd1d8J0SXPN8VlADrM918M+X38MXD3x9PrUXfEsaKF6oKEkaFjqAte2bT/N4rS2qE4ykEceRaknSkNLTSPM9HQ9x9YMvbXp+6lv2ZM5JB1QiLEkjXMVHqiPi+Ih4IiIWR8Q5PfQ7LCLaI2JOJeOTJL1uqOXsb73/IL74nn057oAd+Op7D+BLJ+xXzXAkjSAVHamOiFrgAuDdwBJgYURcm1J6rEi//wvc2J/n7+nGK93p7D83fwOWUjlvT9JQV+2c3Rfb1Nfyd8fsXe0wJI1AlZ7+cTiwOKX0DEBEXAHMBh7r0u8zwFXAYf158qamJpqamnq15mnnnbfa29tL3qelpaXXsUnSIFTVnC1JQ0mli+pdgBcLni8B3lLYISJ2AU4G3skAJOiJEycya9as/j7sZubPnz+gx5ekCql6zpakoaLSc6qLXYbd9Z6z3wP+OaXU49BwRJwZEfdFxH29ndIhSSqJOVuSSlTpkeolQOE9t3cFlnbpMwO4IiIAJgMnRERbSumawk4ppYuAiwBmzJjRNclLkspnzpakElW6qF4ITI+IacBLwKnAhws7pJSmdX4fEZcAv+uanCVJFWHOlqQSVbSoTim1RcTZZFeI1wIXp5QWRcRZ+e0XVjIeSVL3zNmSVLqK3/wlpXQDcEOXtqKJOaV0eiVikiQVZ86WpNJ4m3JJkgahh1Y8xAeu+wBH/PcRfPmOL7M2t7baIUnqgbcplyRpkMm15/jcrZ+jeX0zANc+fS0Noxv44mFfrHJkkrpjUS1J0iDReeffFR0rNhXUnX7/6O+Z9vy0ovt5F1+p+iyqB0hra2uvb23uLdElSQATYyJjGMM61m1qm9I+pYoRSdoai+oBksvlaGpqYtKkSSXv03lL9I6OjpL3aW5u3nonSdKQUDhAsseyPTj3rnNZsnoJ+9Tsw4ljT2TOnDlVjE5STyyqB9CkSZOYPXv2gJ5j3rx5A3p8SVJ1HLHTEVz//uvpSB1cfdXV1Q5H0lZYVEuSVEGd86Z7w+mB0uBnUS1JUgU1NTXR1NREY2NjyfvU19f36TySKseiugdtHYlbHn+Fl1au55h9JjFt0thqhyRJqqan/wBLH4Q93g5TD+/zYRobG/s8P/qSRy/hrmV3cfSuR/Oh/T/Ubb/ejmpLKo9FdQ/+4eq/cOuT2YWAF9z+PD/50EHM2G1ClaOSJFXFH74Jt3/n9efv/R7M+ERFQzjzpjO5a9ldANy59E7uWX4P3zvmexWNQVJxI6qobm1tZePGjcyfP3+rfVesD259ctym57n2xP+77gFO23P9Vvdtbm6mvb29rFglSYPDggULeGXFMmY/9r3N3jRXzT+XKx9qp6Ghoeh+3c1nbm1tZe3atfz4xz/eYltbWxsppaLH66CDu8bfBfF62y3P38IPfvADImLTClKdcrkcY8f6CatUKd6mvBeKpzlJ0siUyOVyvd5rzJgxfZoj3Vv19fWMGTNmwM8jKTOiRqobGhpob29n1qxZJfW/r20RC55qAaCuJviH976Zw3Zv2Op+8+fPp6WlpZxQJUmDxKbR5luegj/+56b2xTucSOPE3s+N/shHPtLnWB698VHuWX7PpufH7HYMn33nZ/t8PEn9Z0QV1b31X+/fn5sff4WlKzfwzn0msedkP0aTpBHr2K/CbkdsulDxmYUvVTyEn73nZ/zskZ9x19K7OHrq0XzsgI9VPAZJxVlU96C+toYT3uBtYSVJedPfnT0AFlZndY1PHvRJPnnQJ6tybkndc061JEmSVCaLakmSJKlMI276R0tLS0lL6nVatWoVAOPHj+/VOSRJQ4e3DpdUrhFVVPfmlrCd2traAKitre3VeVpbW3t9LklSdXTeOnzSpEkl79O5LnRHR0fJ+zQ3N/c6NklDw4gqqvsyMtA5AtHbJZPmzp3bq0QrSaquSZMmMXv27AE9x7x58wb0+JKqxznVkiRJUpksqiVJkqQyjajpH321Jgdfv3YRjy9fxdH7TuFTb9+T2poYkHPVPDqX2kf+h7TtFNrf+nnSpL0H5DySpN6JFY9Re9cPiHWv0n7wR+nY76RqhyRpELGoLsEvnx7FM6ufA+DuZ1pYu6GNLxy3b7+fp+bx66i/7m9ff/7sAjZ+eiHUj+n3c0mSemH9KuovO5lY/yoANc/eysYPXEHa651VDkzSYGFRTc9LKT23vJlnVu+6Wdvldz7JbqseAbpfGqm1tZVcLteri1KOXHIhUwuex5oV3H3leby87Ru63ae5uZn6+vqSzyFJ2tLWcvYuqx7gbfmCutOSm37IfTu/1qvzmLOl4cs51Vux7ahatqnZfBWPiaPSgJxrTf3kIm2lL+8kSRoYxXLx2iI5W9LI5Ug1W19qr/H+JXzpt4+woa2DKduN5r9OP4w37Dyhx30aGhp6fSOBhfVH0Fj3MJPalpEInpp4DKtH77jV/RoaGnp1HknS5hoaGujo6OhxSb22m5ZTe//PCRIdO72Z6R/8LtPHNPTqPPPmzaOmxvEsaTiyqC7BKYfuyrH7T+G55rUcsNN4RtVtPSH25UYzq9MYHhjzDo597TfU0MFer97OK9vuz9Lxh/R4nr6cS5LUO+3HfYv2t3yaWL+StMOB1Q5H0iBjUV2ihrGjOHjsqJL7dzf6vbVb4R65Zj41ZNNNalMbBy2fu6mo9ta2klRlE6aSJkzdej9JI46fQQ0i9XV1bNOxdrO20W2rqhSNJEmSSuVIdYVtdaT5ukfh/ks2PR11+CeYc3zvbpEuSZKkyrKoHmxO+E+YvC8sWQi7vxVm/J9qRyRJkqStsKgebGrr4ci/3Xo/SZIkDRoW1ZIkkd2YpTc37Fq5ciUAEyb0vMRq13O4YpM0PFlUS5JGvL4Uum1tbQC9WnfaZVCl4cuiWpI04vVludK5c+cCMGeOF5NLqsKSehFxfEQ8ERGLI+KcIttnR8TDEfFQRNwXEUdVOkZJUsacLUmlqehIdUTUAhcA7waWAAsj4tqU0mMF3W4Brk0ppYh4I3AlsF8l45QkmbMlqTcqPVJ9OLA4pfRMSmkjcAUwu7BDSml1Sinln44DEpKkajBnS1KJKl1U7wK8WPB8Sb5tMxFxckQ8DlwPuFCzJFWHOVuSSlTpojqKtG0xqpFS+m1KaT/gfcC5RQ8UcWZ+/t59TU1N/RulJAnM2Vt6eRFcdAx8YxJHPXceo3Mrqx2RpEGi0qt/LAGmFjzfFVjaXeeU0u0RsVdETE4pvdJl20XARQAzZszw40ZJ6n/mbGDBggV0/iFw3FNfYfyGZQDsuPpRDnjuYubOLb5OdWNjY59WFZE0NFV6pHohMD0ipkXEKOBU4NrCDhGxd0RE/vtDgFFAc4XjlCSZszdT3752U0HdacfcC1WKRtJgU9GR6pRSW0ScDdwI1AIXp5QWRcRZ+e0XAqcAp0VEDlgHfLDgIhhJUoWYszObjTZfcAE0Pb7p6bh9j3adakkAxHDIfTNmzEj33XdftcOQpD6JiPtTSjOqHUelDOmc/fIiuPYzsOxh2PNomH0BbLdDtaOSVEHd5WzvqChJUql2eAN86g/VjkLSIFTxOypKkiRJw41FtSRJklQmi2pJkiSpTMPiQsWIaAKer3Yc/WQy8MpWe6mSfE0Gp+H0uuyeUmqsdhCVYs5WBfi6DD7D6TUpmrOHRVE9nETEfSNpFYChwNdkcPJ10WDgv8PByddl8BkJr4nTPyRJkqQyWVRLkiRJZbKoHnwuqnYA2oKvyeDk66LBwH+Hg5Ovy+Az7F8T51RLkiRJZXKkWpIkSSqTRXUFRcTFEbEiIh4taJsYETdHxFP5r9sXbPuXiFgcEU9ExHuqE/Xw1F+vRUQcGhGP5Lf9ICKi0j/LUDbQr0NEjI6I/8m33xMRe1T0B9SQZ94eHMzZg4M5u2cW1ZV1CXB8l7ZzgFtSStOBW/LPiYgDgFOBN+T3+VFE1FYu1GHvEvrntfgxcCYwPf/oekz17BIG9nU4A3g1pbQ3cB7wfwfsJ9FwdQnm7cHgEszZg8ElmLO7ZVFdQSml24GWLs2zgV/mv/8l8L6C9itSShtSSs8Ci4HDKxHnSNAfr0VE7ASMTyndlbKLE35VsI9KUIHXofBYc4FjHZlSb5i3Bwdz9uBgzu6ZRXX17ZBSWgaQ/zol374L8GJBvyX5Ng2c3r4Wu+S/79qu8vTn67Bpn5RSG7ASmDRgkWukMG8PDubswcGcnWdRPXgV+8vMpVqqo7vXwteosvryOvgaqZL89zY4mLMHhxGXsy2qq+/l/Ech5L+uyLcvAaYW9NsVWFrh2Eaa3r4WS/Lfd21Xefrzddi0T0TUARPY8qNLqbfM24ODOXtwMGfnWVRX37XAx/PffxyYV9B+av5K2GlkE/nvrUJ8I0mvXov8x1yvRcQR+TlfpxXso77rz9eh8FhzgD8kF+dX+czbg4M5e3AwZ3dKKfmo0AO4HFgG5Mj+GjuDbK7QLcBT+a8TC/p/GXgaeAKYVe34h9Ojv14LYAbwaH7b+eRvqORjcLwOwDbAb8gukLkX2LPaP7OPofUwbw+Ohzl7cDzM2T0/vKOiJEmSVCanf0iSJEllsqiWJEmSymRRLUmSJJXJolqSJEkqk0W1JEmSVCaLakmSJKlMFtXSAIqI0yPi/GrHIUkqjXlbfWVRLUmSJJXJolrDQkTsERF/iYifRsSiiLgpIsZ00/ezEfFYRDwcEVfk2w6PiDsj4sH8133z7adHxDURcV1EPBsRZ0fEF/L97o6Iifl+t0XE9/L7PhoRhxc5b2NEXBURC/OPtw3k70SSBjPztoYbi2oNJ9OBC1JKbwBagVO66XcO8OaU0huBs/JtjwPvSCm9Gfga8K2C/gcCHwYOB74JrM33uws4raDfuJTSW4G/BS4uct7vA+ellA7Lx/azXv+EkjS8mLc1bNRVOwCpHz2bUnoo//39wB7d9HsYuCwirgGuybdNAH4ZEdOBBNQX9L81pfQa8FpErASuy7c/AryxoN/lACml2yNifEQ0dDnvu4ADIqLz+fiI2C5/bEkaiczbGjYcqdZwsqHg+3a6/6PxROAC4FDg/oioA84lS8IHAicB23Rz3I6C5x1dzpG6nKfr8xrgyJTSwfnHLiZmSSOceVvDhkW1RpSIqAGmppRuBf4JaAC2JRvxeCnf7fQ+Hv6D+XMcBaxMKa3ssv0m4OyCWA7u43kkacQwb2uosKjWSFML/DoiHgEeJJsr1wp8B/iPiPhTvk9fvBoRdwIXAmcU2f5ZYEb+QpvHeH1eoCSpe+ZtDQmRUtdPOiT1VkTcBvxjSum+asciSdo687b6myPVkiRJUpkcqdawFREXAF3XFP1+SukX1YhHktQz87aGMotqSZIkqUxO/5AkSZLKZFEtSZIklcmiWpIkSSqTRbUkSZJUJotqSZIkqUz/H4pwPm9EYYARAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,2, figsize=(12,6))\n", + "\n", + "df_new2 = df2.copy()\n", + "df_new2.loc[df_new2.max_feature==40,'RF'] = 2 #remove 2x mtry from RF\n", + "\n", + "for i, j in enumerate(['RF', 'OF']):\n", + " g = sns.boxplot(data=df_new2, x='n_sample', y=j, ax=ax[i], hue='max_feature', color='white')\n", + " h = sns.stripplot(data=df_new2, x='n_sample', y=j, ax=ax[i], hue='max_feature', dodge=True)\n", + "\n", + "ax[0].set_ylabel(r'Accuracy', fontsize=15)\n", + "ax[1].set_ylabel('', fontsize=15)\n", + "ax[0].set_title('Random Forest', fontsize=18);\n", + "ax[1].set_title('Oblique Forest', fontsize=18);\n", + "\n", + "for nc in range(2):\n", + " ax[nc].set_ylim(0.28,1.0)\n", + " ax[nc].legend([],[], frameon=False) #temp legend fix to remove double legends" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optimized Model Comparison via Grid Searching\n", + "The following is the optimized result from grid searching best paramters of three features: `max_features`, `n_estimators`, `max_depth`" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# number of grid searching iteration\n", + "n_gridCV = 20" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Grid Searching 20 parameter combinations took 1209 seconds for RF algorithm\n", + "Grid Searching 20 parameter combinations took 1144 seconds for OF algorithm\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import RandomizedSearchCV\n", + "\n", + "params = {\n", + " 'max_features': ['sqrt', 'log2', None, 40],\n", + " 'n_estimators': [100, 200, 300],\n", + " 'max_depth': [5, 10, 20, None]\n", + "}\n", + "\n", + "df_cv = pd.DataFrame()\n", + "feat_cols = list(params.keys())+['mean_test_score','clf','mean_fit_time',\n", + " 'std_fit_time','mean_score_time',\n", + " 'std_score_time','params'\n", + " ]\n", + "clfs = [\n", + " RandomForestClassifier(random_state=random_state),\n", + " ObliqueRandomForestClassifier(random_state=random_state)\n", + "]\n", + "\n", + "X, y = get_sample(sparse_parity, 10000)\n", + "\n", + "for clf, clf_lab in zip(clfs, ['RF', 'OF']):\n", + " t_i = time.time()\n", + "\n", + " search = RandomizedSearchCV(estimator=clf, param_distributions=params, n_iter=n_gridCV, random_state=random_state)\n", + " search.fit(X, y)\n", + " print(f'Grid Searching {n_gridCV} parameter combinations took {int(time.time()-t_i)} seconds for {clf_lab} algorithm')\n", + " \n", + " df_tmp = pd.DataFrame(search.cv_results_)\n", + " df_tmp.columns = [i.replace('param_','') for i in df_tmp.columns]\n", + " df_tmp['clf'] = clf_lab\n", + " # df_tmp.fillna('None', inplace=True)\n", + " df_tmp['mean_test_score'] = df_tmp.apply(lambda x: round(x['mean_test_score'], 3), axis=1)\n", + " df_cv = pd.concat([df_cv, df_tmp])" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(10000, 20)" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Refitting base tree with parameters from each iteration of grid searching" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "def get_tree_size(df, random_state, savefile=True):\n", + "\n", + " N = df.shape[0]\n", + " tree_size = []\n", + " df.reset_index(drop=True, inplace=True)\n", + "\n", + " t_i = time.time()\n", + "\n", + " for i in range(N):\n", + " \n", + " row = df.iloc[i,:]\n", + "\n", + " if row['clf'] == 'RF':\n", + " clf = RandomForestClassifier(random_state=random_state, **row['params'])\n", + " elif row['clf'] == 'OF':\n", + " clf = ObliqueRandomForestClassifier(random_state=random_state, **row['params'])\n", + " else:\n", + " print('Cannot identify estimator')\n", + "\n", + " clf.fit(X,y)\n", + " tree_size.append(cPickle.dumps(clf).__sizeof__())\n", + "\n", + " new_df = pd.concat([df, pd.DataFrame(tree_size, columns=['clf_size'])], axis=1)\n", + "\n", + " print(f'Refitting trees took {int(time.time()-t_i)} seconds')\n", + "\n", + " if savefile:\n", + " with open('simulation_runtime_output.pkl', 'wb') as handle:\n", + " cPickle.dump(new_df, handle)\n", + "\n", + " return new_df" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Refitting trees took 568 seconds\n" + ] + } + ], + "source": [ + "df_size = get_tree_size(df_cv, random_state=random_state)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Converting bytes into MB" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "df_size['clf_size_MB'] = df_size.apply(lambda x: x['clf_size']/10e6, axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Plot score versus performance metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import r2_score\n", + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.linear_model import LinearRegression\n", + "\n", + "def bestfit(df, y, x='mean_test_score', clf='RF', degree=1):\n", + " dff = df.query(f'clf == \"{clf}\"')\n", + "\n", + " # poly = PolynomialFeatures(degree=degree, include_bias=False)\n", + " # poly_features = poly.fit_transform(dff[x].to_numpy().reshape(-1,1))\n", + "\n", + " # model = LinearRegression()\n", + " # model.fit(poly_features, dff[y])\n", + " # y_hat = model.predict(poly_features)\n", + "\n", + " # return y_hat\n", + "\n", + " y_hat = np.polyfit(dff[x], dff[y], degree)\n", + "\n", + " return np.poly1d(y_hat)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCQAAAF7CAYAAAAKdlqMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADGo0lEQVR4nOzdd3iUVfbA8e9NIwmBBEIINYTee8AuqKCo2BW7CNjXn65rX7u7urqLfXWtCFhQVBQ7IoggqPTeO6ElBEI6KXN+f9wBAgkhZWbemcn5PE+eMHfeeeewK3feOe+95xgRQSmllFJKKaWUUsqXQpwOQCmllFJKKaWUUrWPJiSUUkoppZRSSinlc5qQUEoppZRSSimllM9pQkIppZRSSimllFI+pwkJpZRSSimllFJK+ZwmJJRSSimllFJKKeVzYU4H4AmNGjWS5ORkp8NQSqkyFixYsEdEEpyOwxd0LlZK+SOdh5VSynnHmouDIiGRnJzM/PnznQ5DKaXKMMZscfC9hwCvAKHAuyLy3FHPXwT8A3ABxcBfReS3yry2PDoXK6X8kZPzsK/pPKyU8lfHmot1y4ZSSgUhY0wo8DpwLtAFuNoY0+Wow6YBPUWkFzASeLcKr1VKKaWUUqpGNCGhlFLBqT+wXkQ2ikgh8AlwUekDRCRHRMT9sC4glX2tUkoppZRSNaUJCaWUCk7NgW2lHqe6x45gjLnEGLMa+A67SqLSr1VKKaWUUqomgqKGRHmKiopITU2loKDA6VCqLTIykhYtWhAeHu50KEqpwGPKGZMyAyJfAl8aY07H1pMYVNnXAhhjbgFuAUhKSirzfKDPxToPK6UCXaDPw6BzsVLBLGgTEqmpqdSrV4/k5GSMKe/a2r+JCBkZGaSmptK6dWunw1FKBZ5UoGWpxy2AHcc6WERmGmPaGmMaVeW1IvI28DZASkpKmaRFIM/FOg8rpXzFGDMGGAqkiUi3UuP/B9yJLTz8nYg8UNVzB/I8DDoXKxXsgnbLRkFBAfHx8QE58QIYY4iPjw/obLZSylHzgPbGmNbGmAjgKuDr0gcYY9oZ9yRpjOkDRAAZlXltZQXyXKzzsFLKh8YCQ0oPGGPOwNbv6SEiXYHR1TlxIM/DoHOxUsEuaFdIAAE78R4U6PErpZwjIsXGmDuBKdjWnWNEZIUx5jb3828ClwE3GGOKgHzgSneRy3JfW91YAnkuC+TYlVKBw71KLfmo4duB50TkgPuYtOqeP9DnskCPXyl1bEG7QsLbnnzySUaPtonq1atX06tXL3r37s2GDRscjkwppSwR+V5EOohIWxF5xj32pjsZgYg8LyJdRaSXiJwkIr9V9Fp/pHOxUiqIdQBOM8b8aYz51RjTr7yDjDG3GGPmG2Pmp6en+zhEnYeVUjWjCQkP+Oqrr7joootYtGgRbdu2dTocpZSqlXQuVkoFmTCgAXAicD8w0ZSzVEBE3haRFBFJSUhI8HWMR9B5WClVVUG9ZcOTxo8fz+jRozHG0KNHj0OT7Pfff8/LL79MaGgoM2fO5JdffnE4UqWUR2VsgMytEB0PjTpAeKTTEdVqOher2kxE2LG/ABGhWWwUISEBuIz9QC7sWQsH9kOD1tCgldMR+bNUYJJ7K91cY4wLaAT4fhlEKToPOyA7DTLWQUgYNGoP0Q2djkgpj9GERCWsWLGCZ555htmzZ9OoUSP27t3Lq6++CsB5553HbbfdRkxMDPfdd5/DkSqlPGrjr/DJNVCYAyYEBj0J/W6CiLpOR1Yr6VysarO9uQf4bH4qr05bR4kIt53elmtPTCKhXgAlSfP2wazR8Pt/7ePohnDNZ9Aixdm4/NdXwJnADGNMB2zh4T1OBqTzsAPS18JnwyFtpX3c5gy44FVoULbVtlKBSLdsVML06dO5/PLLadSoEQANG2pWUqmgl7ULvrrdJiMAxAVTH4e0Vc7GVYvpXKxqsz82ZvCvH1aTW1hCQZGLl6et45c1jt4or7pdSw8nIwDy9sL390P+fudi8hPGmAnA70BHY0yqMWYUMAZoY4xZDnwCDHevlnCMzsM+JgKLPzqcjADY+Iv9USpI6AqJShARre6rVG2Tvweytpcdz9rh+1gUoHOxqt2+W7qrzNjnC7ZxWZ8WhAbK1o3y5tQdC6FgH0TF+j4ePyIiVx/jqet8Gshx6DzsY8UFsGF62fFtf0Lf4b6PRykv0BUSlXDWWWcxceJEMjIyANi7d6/DESmlvK5uY2iQXHY8tqXPQ1GWzsWqNuuQGFNmrHOT+oGTjACIK6deRKtTbI0eFRB0Hvax8CjoeH7Z8eTTfB+LUl6iKyQqoWvXrjzyyCMMGDCA0NBQevfuTXJystNhKaW8KaYxXPIWfHod5KZDWB0Y8jw07ux0ZLWWzsWqNhvSrQkf/rGV9JwDAMRGhTOsX4AlSJt0hzMfhxnPgqsY4pJgyL+gTj2nI1OVpPOwA3pcAZtnwRZ3Z+7uw6D16c7GpJQHGYe3onlESkqKzJ8//4ixVatW0blz4H9xCJa/h1IBa3+q/YlqCPFtISS0Si83xiwQkVpRsS1Y5+Jg+Duo4LA5I5dVO7JwAZ2b1KNNQtlVE36vuAj2roOCbNtho14Tr7+lzsPBMYcFy9+jWvIzbdev0DCIb6fFtVVAOtZcrCsklFKqIrEt7I9SSjksOb4uyfEB/kUkLBwad3E6CqUCS1QctOjrdBRKeYXWkFBKKaWUUkoppZTPaUJCKaWUUp5RlGfb1CmllFJKVYJu2VBKqePJz7Stt2ISQdudKVVWxnpYPAHWTYF2g6HXNdCovdNRKaWUUsrPaUJCKaWOpbgQNs2AqU9Azi7oOwpSbtSaEkqVlpcBk26D7fPs413LYP00uH4S1G3kbGxKKaWU8muakFBKqWPZuQQ+HnZ4Cfqs/9gVEmf8XVdKKHVQxobDyYiDdi2BPes0IaGUUkqpCmlCwotCQ0Pp3r07xcXFtG7dmg8++IC4uDg2b95M586d6dix46Fj586dS0REhIPRKqXK2LWs7H74+e9Cv1E+aVWnPEPnYi8LOcalRGi4b+MIci6XsDR1P9NW76a4RBjUpTE9W8QRFqrlwJT/03lYKXUs+inmRVFRUSxevJjly5fTsGFDXn/99UPPtW3blsWLFx/60YlXKT8UGVt2LKYJhEX6PhZVbToXe1l8e+h80ZFjHc6D+HbOxBOklmzL5Iq35vDa9PX879cNDHvrDxZs3ed0WEpVis7DSqlj0RUSbl8t2s5/pqxhR2Y+zeKiuP+cjlzcu7nHzn/SSSexdOlSj51PKeUDzftAgzawb6N9bAwMfsr2A1deoXNxAIqsB0OehY5DYPNsaHUStB6g/0487OulOygqObxiq8QlfPD7FvonN8ToFjLlQToPB7iiAvs7XG+eqMCgCQnsxPvwpGXkF5UAsD0zn4cnLQPwyARcUlLCtGnTGDVq1KGxDRs20KtXLwBOOeWUIzLFSik/0bA1XP8FbF8IBfuhSXdo2svpqIKWzsUBLLaF7azR6xqnIwlaOQXF5Y6JaEkb5Tk6DwewwjzY9CvMfhkEOOVuaDMAIuo6HZlSFdKEBPCfKWsOTbwH5ReV8J8pa2o0+ebn59OrVy82b95M3759GTx48KHnDi5PU0r5uYZt7I/yOp2LlTq2S3o357MFqUeM3XBSK0JCNBuhPEfn4QC2dQ5MuOrw40/+gGs/h/aDj/0apfyA4zUkjDGhxphFxphv3Y8bGmOmGmPWuX838HYMOzLzqzReWQf3y23ZsoXCwkLN+CqlVAV0Llbq2Pq2asC4Ef04uW08/ZIb8M4NKZzQJt7psFSQ0Xk4gC38sOzYgrE+D0OpqnI8IQHcDawq9fghYJqItAemuR97VbO4qCqNV1VsbCyvvvoqo0ePpqioyCPnVEqpYKNzsVLHVic8lAEdGzN2RD8+uukEBndJpG4dXeiqPEvn4QAWWb+csXKKcyvlZxxNSBhjWgDnA++WGr4IGOf+8zjgYm/Hcf85HYkKDz1iLCo8lPvP6XiMV1Rd79696dmzJ5988onHzqmUUsFE52Klji8iLJSIsNDjH6hUNeg8HMB6XXtku+WQMOhzg3PxKFVJTqfWXwYeAOqVGksUkZ0AIrLTGNPY20Ec3BPn6YrCOTk5Rzz+5ptvDv15+fLlNTq3UkoFG52LlVLKWToPB7AW/WDEj7BuKohAh7OhWR+no1LquBxLSBhjhgJpIrLAGDOwGq+/BbgFICkpqcbxXNy7uUdbGimllKo6nYuVUspZOg8HqJAQaJFif5QKIE5u2TgFuNAYsxn4BDjTGPMhsNsY0xTA/TutvBeLyNsikiIiKQkJCb6KWSmllFJKKaWUUh7gWEJCRB4WkRYikgxcBUwXkeuAr4Hh7sOGA5MdClEppZRSSimllAoeRfmwZQ7MeR2WfAp7NzoajtM1JMrzHDDRGDMK2Apc4XA8SimllFJKKaVU4Fs7BT4bfvhxw3Zw/SRo0MqRcPwiISEiM4AZ7j9nAGc5GY9SSimllFJKKRVUctPhp0eOHNu7HnYudiwh4WjbT6WUUkoppZRSSvlA8QHIyyg7Xpjn+1jcNCHhZampqVx00UW0b9+etm3bcvfdd1NYWMiMGTOIjY2lV69e9OrVi0GDBjkdqlJKBSWdh5UKAnkZkLXTtjNUAUnnYqX8QL2mkHLTkWMhYdC4szPxoAkJrxIRLr30Ui6++GLWrVvH2rVrycnJ4ZFH7DKZ0047jcWLF7N48WJ+/vlnh6NVSqngo/OwUgGuKB9WToZ3zoT/nQQz/2MTEyqg6FyslJ8ICYUTboUBD0JMIjTvB9d/CU16OBaSX9SQ8AtLJ8K0p2F/KsS2gLMehx7DanTK6dOnExkZyYgRIwAIDQ3lpZdeonXr1pxxxhmeiFoppYKLh+dinYeVCnCp82HiDYcf//IMhEfDyXc6F1Ow02tipYJbXEsY+DD0uwnCo6BOPUfD0RUSYCfeb+6C/dsAsb+/ucuO18CKFSvo27fvEWP169cnKSmJ9evXM2vWrEPL05555pkavZdSSgU8L8zFOg8rFeC2zCk7Nv89yNvn+1hqA70mVqp2MAZiGjuejABdIWFNe9ouCSytKN+O1yAjLCIYY445ftppp/Htt99W+/xKKRVUvDAX6zysVICLSSw7FtsCwiJ9H0ttoNfESikf0xUSYJekVWW8krp27cr8+fOPGMvKymLbtm20bdu2RudWSqmg44W5WOdhFWjyCovZkJbDjsz84x9cGySfAvWbH34cGg4DHoKIKOdi8gJjzBhjTJoxZnk5z91njBFjTCOvB6LXxEopH9OEBNhMe1XGK+mss84iLy+P8ePHA1BSUsK9997LjTfeSHR0dI3OrZRSQccLc7HOw95XXOJi/ua9/GfKGl75eS1LUzMR7YRQLRvSc7jzo4Wc9eKvnPvKLL5cmEpBUYnTYTmrUXsY/g1cNgYu/C+MmgpJJzkdlTeMBYYcPWiMaQkMBrb6JAq9JlZK+ZgmJMAW6wk/KtMeHmXHa8AYw5dffslnn31G+/bt6dChA5GRkTz77LM1Oq9SSgUlL8zFOg9734It+xj21u+8/st6Xvp5HVe8+TtLU/c7HVbAOVBcwqvT1jF9TToA+/OLuGfiElbs0P8tiW8L3S+DPtdDs94QEnyXryIyE9hbzlMvAQ8Avsny6TWxUsrHtIYEHN4T5+GKwgAtW7bkm2++KTM+cOBABg4cWOPzK6VU0PDSXKzzsPeUuIT3Z2/CVeqr0oFiF98v30nPlnGOxRWI0rMP8P2ysu0sN6bn0rdVQwciUk4zxlwIbBeRJeXVXyh13C3ALQBJSUk1e1O9JlZK+ZgmJA7qMcwjk61SSqka0Lk4oIgIWQXFZcaz88uOqYrF1AmjTUIMa3ZlHzHesG6EQxEpJxljooFHgLOPd6yIvA28DZCSklLzlRQ6DyulfCj41rwppZRSyifCQkO48eTkMuMX9Gzm+2ACXFx0BE9c0IWI0MOXZgM7JNCteayDUSkHtQVaA0uMMZuBFsBCY0wTR6NSSikP0xUSSimllKq2k9s24n/X9uGtmRuIDA/ltgFt6ZMU53RYAemkNvF8fecpbNiTQ/3IcDo3qUejetresjYSkWVA44OP3UmJFBHZ41hQSinlBUGdkDhWz+NAoVXKlVLBIJDnYp2Hjy8mMoxzuzdlYKfGGCAyPNTpkAKWMYZOTevTqWl9p0NRPmaMmQAMBBoZY1KBJ0TkPU+dP5DnYdC5WKlgFrQJicjISDIyMoiPjw/ICVhEyMjIIDJS74wopQJXIM/FOg9XTZQmIpSqNhG5+jjPJ1f33IE8D4POxUoFu6BNSLRo0YLU1FTS09OdDqXaIiMjadGiZn2flVLKSYE+F+s8rJQKdIE+D4POxUoFs6BNSISHh9O6dWunw1BKqVpN52KllHKWzsNKKX+mXTaUUkoppZR/Kz4Amdsgb6/TkSillPIgTUgopZRSSin/lbEeJv8fvNoLxpwDG34Bl8vpqJRSSnmAJiSUUkoppZR/KsyHqU/Csk/BVQx71sJHl0PaCqcjU0op5QGakFBKqSBljBlijFljjFlvjHmonOevNcYsdf/MMcb0LPXcZmPMMmPMYmPMfN9GrpRSbtk7YM23R44dTEwopZQKeEFb1FIppWozY0wo8DowGEgF5hljvhaRlaUO2wQMEJF9xphzgbeBE0o9f4aI7PFZ0EopdbTwKIiOh9yjpqLIWGfiUUop5VG6QkIppYJTf2C9iGwUkULgE+Ci0geIyBwR2ed++AegPdWUUv6lfjMY8u8jx1oPhMTuTkSjlFLKw3SFhFJKBafmwLZSj1M5cvXD0UYBP5R6LMBPxhgB3hKRtz0folJKVUKnoTBqqt2mER0PTXtBvUSno1JKKeUBmpBQSqngZMoZk3IPNOYMbELi1FLDp4jIDmNMY2CqMWa1iMws57W3ALcAJCUl1TxqpZQ6WngdaNnf/iillAoqumVDKaWCUyrQstTjFsCOow8yxvQA3gUuEpGMg+MissP9Ow34ErsFpAwReVtEUkQkJSEhwYPhK6WUUkqpYKcrJJRSx5WRc4DF2zJZvSubdgl16ZXUgMT6kU6HpSo2D2hvjGkNbAeuAq4pfYAxJgmYBFwvImtLjdcFQkQk2/3ns4GnfRa5UkoppZSqFTQhoZSqUEFRMa//sp4xszcfGru4VzP+cXE36kWGOxeYqpCIFBtj7gSmAKHAGBFZYYy5zf38m8DjQDzwhjEGoFhEUoBE4Ev3WBjwsYj86MBfQymllFJKBTFNSCilKrRpTx7vz9l8xNhXi3cw/ORkeic1cCYoVSki8j3w/VFjb5b6803ATeW8biPQ0+sBKqWUUkqpWk1rSCilKpRfVIKUUwoxv6jE98EopZRSSimlgoYmJJRSFWrVMJrOTesdMdYsLpLWjeo6FJFSSimllFIqGGhCQilVofiYOrx6VW+GpbQgoV4dhvZoynvD+9E0Nsrp0JRSSimllFIBTGtIKKWOq31iPZ65uDv784uoFxVGnbBQp0NSSimllFJKBThNSCilKiU8LIRG9eo4HYZSSimllFIqSOiWDaWUUkoppZRSSvmcrpBQSh1Xdn4RK3buJ3VfPk3qR9K1eSwNoiOcDksppZRSSikVwDQhoZSqUGFxCWN/38wLP609NDbilGTuO7sjdevoFKKUUkoppZSqHt2yoZSq0KY9ubz887ojxt6fvZkN6TkORaSUUkoppZQKBpqQUEpVKOdACSUuKTOeXVDsQDRKKaWUUkqpYKEJCaVUhVo2iKJlw6gjxhrWjSCpYbRDESmllFJKKaWCgSYklFIValw/kjev68vJbeMxBvokxTHmxhRaakJCKaWUUkopVQNakU4pdVxdm8XyzvUp7MsvJDYynHpR4U6HpJRSSimllApwmpBQSlVK3cgw6kbqlKGUUkoppZTyDN2yoZRSSimllIOMMWOMMWnGmOWlxv5jjFltjFlqjPnSGBPnYIhKKeUVmpBQSimllFLKWWOBIUeNTQW6iUgPYC3wsK+DUkopb9OEhFJKKaWUUg4SkZnA3qPGfhKRgz22/wBa+DwwpZTyMk1IKKWUUkop5d9GAj84HYRSSnmaJiSUUkoppZTyU8aYR4Bi4KNjPH+LMWa+MWZ+enq6b4NTSqka0oSEUkoppZRSfsgYMxwYClwrIlLeMSLytoikiEhKQkKCbwNUSqka0h5+SikA1u7O5ueVu9m4J5ezuyRyQut4YqPDnQ5LKaWUqpWMMUOAB4EBIpLndDxKKeUNmpBQSrFpTw7XvvMn6TkHAPh8QSpPXdiF4Se3djiy2ssYczpwNpAIvCAiq40xMUAfYKmIZDoZn1JKKc8xxkwABgKNjDGpwBPYrhp1gKnGGIA/ROQ2x4JUSikv0ISEUoqVO7IPJSMOeuGntZzdtQlNY6Mciqp2MsaEAh8DlwMGEGACsBq7h/grYDTwrEMhKqWU8jARubqc4fd8HohSSvmY1pBQSlHicpUZKyoRyt+tqrzsQeAy4G9AZ2xSAgARKQC+BM5zJjSllFJKKaU8RxMSSik6N61PTJ0jF0zdNrANTWMjHYqoVrsBGC8irwB7ynl+FdDWtyEppZRSSinlebplQylF+8R6TLj5BD78Ywtrd+dwZb+WnNW5Me49q8q3koEXKng+E2jgk0iUUkoppZTyIk1IKKUA6N4ijn9dGkuxy0VEWKjT4dRm2UDDCp5vB2ijeaWUUkopFfB0y4ZS6pCQEKPJCOf9BlxnylmeYoxpAIwEfvF5VEoppZRSSnmYJiSUUsq/PAO0B6YDQ91jPY0xtwILgbrAcw7FppRSSimllMfolg2llPIjIjLfGHMptt3b++7h0dhuG2nAJSKy0qn4lFJKKaWU8hRNSCillJ8Rke+NMcnAYA63/lwHTBGRPCdjU0oppZRSylM0IaGUUn5IRA4A37p/lFJKKaWUCjpaQ0IppZRSKkDkFRaTkXPA6TCUUkopj3AsIWGMiTTGzDXGLDHGrDDGPOUeb2iMmWqMWef+3cCpGJVSygnGmGuMMbONMWnGmJJyfoqdjlEp5Xt7cwu55p0/GTluPiUucTocpZRSqsac3LJxADhTRHKMMeHAb8aYH4BLgWki8pwx5iHgIeBBB+NUSimfMcY8CjwF7AbmAPucjUjVans3wrqfYMvv0O4saHsmxLZwOqpaadvePIaPmUtqZj6vXtWb0JAynYGVUkqpgONYQkJEBMhxPwx3/whwETDQPT4OmIEmJJRStccd2HlviIgUORyLqs1y0mHSLZA6zz5e+RV0vxIueAki6joaWm2zfPt+RoydR2Gxi49uOoF+yQ2dDkkppZTyiGpv2TDGtDbG3GSMecRdDR5jTIQxJskYE1HJc4QaYxZjW9lNFZE/gUQR2Qng/t34GK+9xRgz3xgzPz09vbp/DaWU8jf1gYmajFCO27P2cDLioGWfQsYGZ+KppWatS+fKt34nPMTw+W0naTJCKaVUUKlWQsIY8zywFngbeBpo434qEliJvcN3XCJSIiK9gBZAf2NMt8rGICJvi0iKiKQkJCRUJXyllPJni4CWTgehFFJyrCd8GkZt9tWi7Yx4fx4tG0Yz6Y5TaJ9Yz+mQlFJK1Vb7tsDm2ZC2Cko8V86sygkJY8ytwP3A68DZwKFNjCKSBXwNXFCVc4pIJu4lysBuY0xT93s1xa6eUEqp2uJR4DZjTB+nA1G1XKOOkND5yLEOQ6BBm/KPVx4jIrw9cwN//XQxfVs14NNbT6JJbKTTYSmllKqtNs+GtwfA2PPgrdNg4TgoyvfIqatTQ+IO4EsR+asxJr6c55cCdx7vJMaYBKBIRDKNMVHAIOB5bEJjOPCc+/fkasSolFIBSUR+NcaMAv4wxvwObAaOvlUtIjLK58Gp2qVeIgwbD8s+h43TofOF0OVCiNS79N7kcgn//G4VY2Zv4vzuTXlhWE8iw0OdDksppVRtlb0LvrwF8t111kuK4Lu/QfM+0Kx3jU9fnYREB+B/FTyfDjSqxHmaAuOMMaHYlRoTReRb9wX4RPcF+VbgimrEqJRSAckYcwIwFjs/n+b+OZoAmpBQ3pfQAc78Owx4EEL1S7G3HSgu4W8Tl/Dd0p2MOCWZx87vQoh201BKKeWk3HTYn1p2fH+qYwmJAqCi8tqtgMzjnURElgJl/gYikgGcVY24lFJeVOISpqzYxZmdGuvdOu96BSjCdhya5d7SppSzNBnhdVkFRdwyfj5/bNzLw+d24pbT22CMJiOUUko5rG4C1G8GWTuOHK/f3COnr05Ry7nAJeU9YYyJBK4HZtckKKWU/5m1Lp07PlrItFVa1sXLegCjReQbTUYoVTvszipg2Ju/M3/zPl66sie3DmiryQg/Z4yJNsb0NsacY4w52/3naKfjUkopj6vXBC5+E+rUt49DQmHIc9C4c8Wvq6TqrJD4DzDFGPMBMMY91sQYcw7wFLZjxjUeiU4p5TcmzN1KfN0IBndJdDqUYJcGFDodhFLKN9anZTN8zDwy8woZc2M/Tu+gncP8lTGmAXAjdjtxX8peRxcbYxYAE4FxIrLPtxEqpZSXtBkAt86E/dsgOh7iO0BYuEdOXeWEhIj8bIy5Hbus+GDi4QP370LgZhH53SPRKaX8QlpWAdNWpTHq1NZEhFWrW7CqvDHAdcaY/4qI53oqKaX8zvzNexk1bj7hoSF8eutJdGse63RIqhzGmFjgMWxh90hgDfARsAHIwHacawi0A04EXgSeNca8DvxTRPY7EbdSSnlUw9b2x8Oqs0ICEXnbGPM1NkPcCTsRr8MWptzuwfiUUn7gswWpFLuEK/u1dDoU38naCVt/h9R50KwPtDoZYj2zV+44fgOGYrtsvAFsomyXDURkpi+CUUp5x5QVu7hrwiKaxUUxbkR/kuJ1tb8f24CtofYv4EMR2VTRwcaYNtgtzLcAI6hcsXellKqVqpWQABCRXcBrHoxFKeWHXC7h03nbOLFNQ9okxDgdjm8cyIGfn4KlEw6PdboALnodorx+B/PnUn9+F9tRozTjHtMqg0oFqA//2MLjk5fTvUUcY4anEB9Tx+mQVMX+AbwpIgcqc7CIbASeMsY8B9zm1ciUUirAVTshoZSqHeZsyGDr3jzuPbuD06H4Tsb6I5MRAKu/gVPvhhb9vP3uI7z9BkopZ4gIL05dy2vT13Nmp8b895reREfopZi/E5FXqvm6A9gtzkoppY6hWp+CxpiTgb8A7YF47B270kRE2tYwNqWUH5gwdytx0eGc07WJ06H4TskxakoWe7/WpIiM89S5jDFDsBfDocC7IvLcUc9fCzzofpgD3C4iSyrzWqVU1RSVuHjky2VMnJ/KsJQWPHtJd8JCy9bkKXEJoSHaYUMppVTtUOWEhDHmZuBNbAHLNcBWTwellPIPe3IO8NPKXdxwUjKR4bVoh0DDttC0F+xcfHisUUeIb+dURFVmjAkFXgcGA6nAPGPM1yKystRhm4ABIrLPGHMu8DZwQiVfq5SqpLzCYv7y0UJ+WZPOXWe2457BHcq09dyRmc+0Vbv5avEOUlo14LK+LYiLDmftrmwOFLto1ziGVvF1HfobqIPcBS6LRCSv1NjZwJlAPWA+8JGIaLckpZSqhOqskPg7sBg4R0T2eDYcpZQ/+WJBKkUlwtX9a1ExS4C68XDZO7BgHKybAm3OhJSRUM/zLU+NMafD4SKVBx8fTyWKWvYH1rv3MmOM+QS4CDiUVBCROaWO/wPbtrlSr1VKVU5GzgFGjpvPstRMnrmkG9ee0KrMMQeKS3ht+nomzLX3eBZs2UdEmGHmugyWbMsEoGHdCD4Y1Z+uzbQThxOMMZHABOBC9+MPsVvs3sG2Aj2YYRLgLmPM6SKS7UCoSikVUKqTkEgE/qPJCKWCm4jwybxt9EtuQLvG9ZwOx/cadYDB/4DTH4A6MRDitRUiMwAxxkS576jNoGwhy9IqW9SyObCt1ONU4IQKjh8F/FDV1xpjbsFWkicpKek4ISlVu2zNyGP4+3PZkZnPm9f15exjbH3btjefT+cdXnBaJywEl5hDyQiAvbmFvDtzI/++vCfh2n7ZCf+HTcwuAHYD1wB52GTEW8AUIBy4BLgaeBh7E08ppVQFqpOQWAU08HQgSin/8sfGvWzak8v/nRk42xQ8LiTEF101RmITDEVHPa6p8jahl3teY8wZ2ITEqVV9rYi8jd3qQUpKiifiViooLEvdz4ixcyl2CR/ffAJ9WzU85rHGQIgxuMT+E2oQHcHurIIyxy1O3U9eUTGxYRFei1sd0zXAdBEZBGCMuQ94HhgjIneUOu5z97aOS6lCQsIYMwbb8jlNRLq5xxoCnwLJwGZgmIjsq/lfRSml/Ed1EhLPAK8ZY8aKyHZPB6SU8g8T5m6lfmQY53Vv6nQoQU1Exlb0uAZSgdJ7bVoAO44+yBjTA9te9FwRyajKa5WqrI3pOWxMz6VunTA6NqlHw7rB/YV65tp0bv9wAXHREXwyst9xV5klNYhmxCnJvDNrEwBp2QW0a1y2zfLQHk2pHxnulZjVcbUCxpR6PBn4N/BTOcdOAc6q4vnHAv8FxpcaewiYJiLPGWMecj9+sJzXqtrEVeLNVZtK+VyVExIiMskYEw2sNMZ8hc3YlpQ9TP5R8/CUUk7Yl1vIj8t3cc0JSbWrmKUfMMY8DkwSkeXHeL4rcJmIPH2cU80D2htjWgPbgauwd/hKnysJmARcLyJrq/JapSpr4ZZ9XP/en+QW2kuFwV0SeebibjSuH+lwZN7x5aJU7v9sKe0axzBuZH8SK/H3DA8L4ebT2tC1WSw/rdhFj5ZxnNEhgYLCEt6YsYHCEhfndmvC5X1blCmGqXwmDsgo9Xiv+3dG2UPZC1Qp6yYiM40xyUcNXwQMdP95HHZLnyYkaqvMbbDmO1g+CVqdDD2ugsadnI5KqRqrTpeNDsDT2ErC1x/jMAE0IaFUgPpiYSqFJS6uqm3FLP3Dk8B6oNyEBNANeAI7Dx+TiBQbY+7E3qkLxS4rXmGMuc39/JvA49jWzW+4v+QUi0jKsV5b47+ZqnVyCop49vtVh5IRAFNX7ubKlJYM6hJcCQkR4a2ZG3nuh9Wc1Caet27oW6XVDI3rR3Jx7+Zc3Lv5obG2jWO4sFczil1CywbRREVogriWSRSRnQAistMY09jpgJRDivLhl2dgyQT7eNufNjEx4nuIbVHxa5Xyc9XZsvEG0Bi4G5gF6F42pYKIiDBh7lZ6J8XRqUl9p8PxD+lrIHMrtBtkN3s7KxIorsyBIvI98P1RY2+W+vNNwE2Vfa1SVZVdUMzKnVllxtOyy9ZHCGQlLuEf365k7JzNDO3RlBeG9aROWM2TB2GhIbRJKLt1QzmmrruuA8DB3/VKjR3k0//TtLhwLbBvMyz95MixzC2QtloTEirgVSchcSIwWkRe83QwSinnzd+yjw3pufz78h5Oh+I/fnrU3o346zKI9HyRS2NMfexy4IPi3dspjtYQuJYjO2Ao5bcaxkRwdpdEvlp8ZAmS1o3qOhSR5xUUlfC3iYv5ftkuRp3amkfO60xIiOOJS+Udb7p/SpvkxffbbYxp6l4d0RRIK+8gLS5cCxjD4SZbpYRoxx0V+KqTkMgC0j0diFLKP0z4cyv16oQxtIcWswRg46+w7ifbAtQLyQi3e7DbJ8Bebbzs/imPAR7wViBKeVKdsFDuPLM92zMLmLd5L5HhITxwTie6N49zOjSP2J9fxC3j5/Pnpr08cl5nbj69jdMhKe8Z58B7fg0MB55z/57sQAzKHzRoDSmjYN47h8cSOtsfpQJcdRISE7GtjF73cCxKKYftzyviu2U7uSKlBdER1ZkegozLBVMfg9iW0P8Wb77TDPdvg01MfAksPeoYAXKAP0RkjjeDUcqT2jWO4b3hKWzPzCcqPJSkhtFBsYJg5/58bhwzj417cnjlql5c1Kv58V+kApaIjPDm+Y0xE7AFLBsZY1KxtYKeAyYaY0YBW4ErvBmD8mNhdeC0e6F5X1jzA7RIgY7nQX29eaQCX3W+cbwFjHN32HgV2ETZLhuIyNaahaaU8rUvF6VyoNjF1f11DyoAyz+HnUvgkrch3HsF+ETkV+BXAGNMK+BNEfnTa2+oVFXtWAQrJ0PeXuh2KbQ8AcKjKv3y+lHh1I8KnnaVa3dnM3zMXLILihk7oj+ntGvkdEgqwInI1cd4qqrtQ1Wwqt8Uel1tf5QKItVJSKzA3qlLAS6o4DgtBa1UALHFLLfRo0UsXZt5bWtC4CgqgGn/gCY9oLvvbkpV9S6cMSYR2AEMFpHp3olK1Wo7FsP759oq7wALx8HVn0DHcx0NyylzN+3lpnHzqBMeyqe3nqjzpVJKKVUD1UlIPE2ZiipKqUC3aFsma3Zn869Luzsdin+Y9w7s3woXvRYIRaMCf/278l8bZxxORhz063+g9ekQETzFKSvjx+U7ueuTxbRoEMW4Ef1p2TDa6ZCUjxhjNlbxJSIibb0SjFJKBZEqJyRE5EkvxKGUctiEP7cSHRHKBT2bOR2K8/L2wsz/QLvB0Gag09Eo5SxXOV1mSwpBXL6PxUHjf9/ME1+voFfLOMYM70eDuhFOh6R8KxnIB6qamFBKKVUBrVqnlCKroIhvlu7gkt7Niamj0wKzXoAD2TD4KacjUcp5bQbAjH8dmZg49R6oU8+5mHxIRBj90xpe/2UDgzo35rWr+xAVobtSa6EMIB4oBt4HPhSRvc6GpJRSge+43zyMMUlwuEjlwcfHo0UtlQockxfvoKBIi1kCsG8zzH0bel0DiV2djkYp5zXrA8O/hT/fhLwMOOEWaD3Q6ah8oqjExcOTlvH5glSu7t+Sf1zUjbBQv9/CpbyjKXARMAJ4AXjeGPM1MAb4SUR0O7NSSlVDZW6FbgZcxphoESl0P67MpKu3D5QKACLCx39upUvT+nRvrsXZmP5PMKEw8O9OR6KUfwgJhVYn2c4a4oLQ2rGKKvdAMXd8tJBf16Zzz6AO3HVWO4zRci21lYgUA18AXxhjmgA3AsOBH4DtxphxwFgRWe9clEopFXgqc1VxsIhl8VGPlVJBYGnqflbtzOIfF3fTi+0di2DZZ7bXd2xzp6NRyr+EhAC1Y3XAnpwDjBw7j+Xb9/Pcpd25SlePqVJEZBfwHPCcMeYU7KqJu4CHjTF3icjrjgaolFIB5LgJiaOLWGpRS6WCyyfzthIVHspFvWp5MUsR+OkxiI6HU/7qdDRKKYdsycjlhjFz2Z1VwNvXpzCoS6LTIanSRMC/kucLgFZAF+BEbJ0JpZRSlVTlWx3GmBuMMckVPJ9sjLmhRlEppXwiu6CIyYt3MLRHU+pHhjsdjrPWTYXNs2DAQxBZ3+lolFIOWJqayaVvzCErv4iPbz5RkxH+oCgf1v0MPz4M/+0PSz91OiIAjDEnGGPeBHYCH2DbL98KvORoYEopFWCqsxH0feB6bC2J8pzgPmZ8NWNSSvnI5wtSySss4boTWx0xnplXyIIt+1i4NZN2CXXp17ohLRpEOxSlD5QUw9THoWFbSBnhdDRVtR+7XHiF04EoFchmrEnjjo8W0rBuBONG9qdtQozTIdVOIpC+GtZPgw3TYMscKC6A0DqQfIpdxeYQY0wi9hp4BNAZ2A28A4wRkdWOBaaUUgGsOgmJ462TCwdqV3NypQKQyyWM/30LvZPi6Nky7tB4cYmLsXM28/LP6w6N9UtuwP+u7UujenUciNQHlnwM6atg2HgIdX6liDEmFLgWOBtIBB4QkUXGmAbABcA0EdkOICIFwDjHglUqCHyxIJUHv1hKh8R6jB3Rj8b1I50OqXbJ3wcbZ7iTENMha7sdb9QRUkZC27Og1ckQ4Vxi3N1RYwi2jtr3wMPAdyJS4lhQSikVBKpbKrvcopbGmDjgfOzyNaWUH/t1XTqb9uTyylW9jhjfujePN37ZcMTYvM37WLM7OzgTEoW58Muz0KI/dL7Q6WgwxkQDPwEnA7lANNDA/XQWtpDaGOBRRwJUKoiICG/M2MB/pqzhlHbxvHldX+rV9u1rvuAqge0L7QqI9dNg+3zbwaVOLLQZAAMesEmIuJZOR1raUCAf+AZIAwYBgyooBi0icrePYlNKqYBVqYSEMeYJ4HH3QwE+NMZ8WMFLXqhpYEop7xo7ezON69Xh3G5NjxgvLHFRWFJ2kdOBoiC9CfT7G5C9E64Y6y+F0p4EUoBLgDnYJcEAiEiJMWYScA6akFCqRkpcwlPfrGD871u4qFcz/nN5TyLCakcXEUfk77PJh7VTYP1U+xgDzfvAafdBu0HQvK+/t5WNAoZV8lgBNCGhlFLHUdlZfzG2JoQBbgBmARuPOkaAHOAPYIKH4lNKecHG9Bx+XZvOPYM6lLkAb9kwmkGdG/PzqrRDYw2iw2nbOAj2U7tckLMLwqMhKg5y0mH2y9BpKCSd6HR0B10BvC0ik40x5W2WXg9c6eOYlAoqBUUl3PPpYn5YvotbTm/DQ0M6ERLiFwnJ4CECe9bC2h9tEmLrHyAltgZEhyE2AdH2TIhu6HSkldXa6QCUUioYVSohISKTgckAxphWwD9FZJo3A1NKec/437cQHmq45oSkMs/VjQjj0aFdaNc4hm+X7qRXyzhuG9CWVvF1HYjUgzK3wtx3YOF4qN8Mzv4HrP7OVnAf9JTT0ZXWDFhSwfN5QD0fxaJU0NmfV8TN4+czd/NeHhvahVGn6vdMjyk+AFtm2wTE2h9h32Y7HtcK+t4IPa+2KyJCQqt23vz99pZYZKyHA648Edni2JsrpVQQq/K6OBE5oyrHG2MaAXOBa0Xk96q+n1LKs7ILivhs/jYu6NGMhGPUhEiOr8uDQzpx64C21I0IJSKsiheP/sZVAn+8CX+8bh8XZMKHl9stGikjoVE7R8M7SgbQvILnuwI7fBSLUkFlR2Y+N74/l8178njt6t5c0LOZ0yEFvuzdsO4nm4DYOAMKcyAs0q46i2oAOxZB5hZYNhF6Xlm1ZMSBbNuS+dd/Ay447X7ocI62ZlZKqSDii82SoUAydt+dUsphXyxIJbewhOEnJ1d4nDGGBtERgZ+MAMjeBQvHHjUoEBIOAx5yIqKKTANGuItbHsEY0xoYCfzo86iUCnBrdmVz6Rtz2JlZwNiR/TQZURPpa2HWi/DOmfBCB/j6Tpt46DEMrpkID2yCE++wYwcdyIYpj0BBVuXfZ8sc+HyE7YKUvgYm3QSbZ3r+73McxphRxpgqXzMbY0KNMTd5IyallAoWfl05SCnlWS6XMK6cVp9BLywS6jaGwk1HjncaCjEJzsR0bE8B84F52Ho8AgwxxgwGbgMOAP9yLjxVm5W4hGWp+5m/ZS+R4aH0S25Axyb+f7f6z40Z3Dx+PpHhoXx660l0aeb/MfsVl8smF1Z/Y7e67Vlrx5v1gTMehY5DILHbkYWBc3aXPc+upTYhUdkVDovLKUk2f6ydu33rReBBY8yrwCcisqeig40xicA1wF+AeOBd74eolFKBSRMSStUix2r1GfTqxsM5z8Kn19hCawAhYTDgfmfjKoeIrDfGnIVt7fm0e/g+9+/lwPUiss2R4FStt2DLXq5550+KXfbfUf3IMD699SQ6N/XfL/jfL9vJXz9dTMsGUYwb2Z8WDcosPlLlKSmCzbNsAmL195C9A0woJJ8K/W+BjudBbAW7yxq2KTvWYQjUbVT5GOolljPWpPKv95z2wD+Bl4AXjDHzsduRNwB7sRUuGrqPOxHo5X7dexzuUqeUUqocmpBQqhYZN6f8Vp+1QrtBMPInWPwxLHjf3tVr3NnpqMolIguAnsaYbkBn7MXuOhFZVPErlaNcLti7wS5Nj23pj6tvaqSwuIS3ft14KBkBkFVQzC+r0/w2ITFuzmae/GYFfZIa8O4NKTSoG+F0SP6tMBfW/wyrvoV1U6BgP4RFQbuzoPMT0P7synfFaNrTJoKnPQ3FBXY1xcC/Q3hk5ePpcSUsHGeLDwOE1YE+w6v+96ohEUkDbjHGPIVdqXY55bf0FGAlNnnxjojs9F2USikVmDQhoVQtsTE9hxlrym/1WSuERUCz3vDlrZDQGU65y+mIyjDGxGA7bLwmIi+LyHLsqgjl7wpzbbLrp0ftl6/49nD5+9C0u9OReUyJQFp2QZnxjNxCB6KpmIjw7ylr+N+MDQzukshrV/cmMjwI6uF4Q/4+uwJi1Tew8Rf7329UA7stotP50OYMiKjGqpI69eCE26D9OfbfR4NWtt1yVTTvAyOnwJbfQVzQ6mSb6HCIiGwHHgMeM8Y0BroACdhERDqw4njbOZRSSh1JExJK1RIVtfqsNea9B3s3wjWfVb3tnA+ISI4xJh7IcToWVUW7lsP39x1+nLEOvr8frp0YNB0BosJDufHk1tz72ZFdac/q1NihiMpXVOLiwS+WMmnhdq45IYmnL+xKWGgtTMJW5GASYuVXsOEXcBVB/Ra2NWen8yHpZAj1wCViSGjNuxg17eloEuJY3Ksm0pyOQymlAp0mJJSqBbILivh8QWqFrT6DXk46/PIstD0T2g92OpqK/AGkoEXQAkvmlrJj236H3D1Bk5AAOLNTY569pBtv/rqRuhGh3DO4A31axTkd1iE5B4q546OFzFybzr2DO3Dnme0wpQst1mblJSFik+DE26DLJXY1gv5vpZRSysc0IaFULfDFglRyDhQft9VnUJv2FBTlwpDn/f2i+yFgujHmT2CsiMjxXqD8QHmF9hp1hMhY38fiRQ3qRnDNCa04r3tTQo2hXlS40yEdkp59gJFj57FyZxbPX9adK/vV4tVgB2kSQimllJ+rckLCGHM6sEpE0o/xfCOgi4gcbBSdg21jt7HaUSqlqq0yrT537c9n9c5sCopKaJcYQ7vG9XwbpLelLoBFH8DJd0FCB6ejOZ4XgX3YFRL/NsZsAPKOOkZE5CyfR6aOLbG73S//55v2cUQMDH3ZdngJQnHR/lUccvOeXG4YM5e07ALeuaEvZ3YqpztDbVFREqLrJba4pCYhlFJKVcf+7VB8wHZZCvPMquvqrJD4Bbge+PgYz5/lfi4UQERysQkJpZQDjtfqc9vePG7/aAHLt2cBUDcilI9uPoFeLRv4MEovcrns3v6YJjDgAaejqYw22AJpW92Pa/E3qwAS3QDOeAS6Xw75mdCgdc33zqtKWbItk5Fj5yHAhJtPpHdSkMxdVVGYC2t+gGWfwfpppZIQt0PXizUJoZRSqmYKc2HlZJjyd9uBqceVMOBBaNi6xqeuTkLieJ9ooYCrGudVSnnB8Vp9ztu891AyAiC3sIRXp63jjWv7BkdV+sUfwo6FcOk7tuq7nxORZKdjUNUUWR9a9HM6ilrllzVp3PHhQhrVi2DciP60SYhxOiTfKSmCDdNtEmL1d1CUB/Wb60oIpZRSnrdjMXx1++HHSybYNtCD/1HjQvHVrSFR0Z7mkwFteaSUH6hMq8+te4/eDQBrduWQV1gc+AmJ/H3w81OQdBJ0v8LpaFQAyS8sZl1aDmlZB2jRIIq2jWMI104NfuWz+dt4aNIyOjWpx/sj+tG4XqTTIXmfywVbf7dJiJWTIX+vbdHZ8yo7x7U8EUL0v1OllFIetmtp2bElE+x26PLqaFVBpRISxpi7gbtLDb1sjHmmnEMbAPWBMTWKSinlEZVp9dmnnOXNF/duRgM/2yNeLb/8y16wn/vvgLtTaIypDwzCbuEAW4dnqohkOxdV7VBQVMzYOZt5/sc1AISGGF65qhdDezRzODIFICK8/st6Rv+0ltPaN+J/1/Ulpk4Q1+gWgV3LbBJi+ReQtR3Co217zu5XQJszICwI5usAZIypC5yE3Vr3s4jsdjgkpZTyjphykg7x7SGibo1PXdlP8EzgYE+zZCADOHrSFWA5tmXdyzWOTClVI5Vt9dm7ZRxPXNCF0VPWkF9UwkW9mnFVv6TAb5W3aznMewdSRkLTHk5HUyXGmJuAF4AYDm+TEyDHGPM3EXnPseBqgXW7cw4lIwBKXMLDXyyje/NYWsXX/INXVV+JS3jy6xV88McWLundnOcv63HM1V8Bb+9GWPaFTUTsWQMhYdBuEAx+Gjqe65GLQFV9xpjbgX9hb8QJMBjYbYxJALYBd4nI2x54n3uAm9zvsQwYISIFNT2vUkpVSYu+divgjoX2cVgdGPSkR7ZDVyohISLjgHEAxphNwEMi8nWN310p5TWVbfVZLyqcG09OZnCXRAqLXTRvEEWdsADfqiECPzwAkXG20GAAMcZcCLyNXRHxODbRC9AV+D/gbWNMmoh841CIQW9PTmGZsewDxWTmFdEqOJtmBISCohLu/mQRU1bs5tYBbXjwnE6EhAR44vRo+ftgxZeweAKkzrVjrU5xt+m82O7XVY4zxlwGvA5MBr7BdkUCQETSjTE/Ahdh5/KavE9z4C5s97p8Y8xE4CpgbE3Oq5RSVRaXBFd+aFfsFeVCo06Q2MUjp67yGkcRqXkpTaWUV1Wm1WdpxhhaNIj2fmC+svwL2DLbtl0MvAv4B4BVwAkiklNqfJox5n3sKrQHsRfByguaN4giPNRQVHK4XFKT+pE0ia0FNQr8VGZeITeNm8+Crft4fGgXRp4aRJciB4tTLv7YdsooOQAJnWHQU7ZrS2wLpyNUZd0P/CIilxhj4imVkHCbD9zsofcKA6KMMUVANLDDQ+dVSqmqiW1ufzwsiDddKlV7zTxOq8+gdiAHfnoUmvaCPjc4HU119ASePioZAYCIZBtjxgGP+T6s2qNtQgxvXNuX+z5bwv78IprFRvLq1b1JrK8JCSdsz8xn+Ji5bM3I47WrewdPLY+dS2HJJ7BsIuSmQ3Q8pIyAnldD054BV/emlumOTQwfy06gcU3fRES2G2NGY9tA5wM/ichPRx9njLkFuAUgKenYNaOUUsofHTch4d6i4QI6iUiRMWZjJc4rItK2xtEppapl7HFafQa1WaMheycM+6DGbYgcVNE3kYq6HCkPCA0xDO6SyHd3ncq+vEIS60XSWJMRjli9K4sbx8wj90Ax40b256S2Ab5nJnu3TUAs+QR2L4eQcOg4BHpeY+tDaHHKQFECVFS8pBmQW9M3McY0wG79aI2t5/aZMeY6Efmw9HHuWhVvA6SkpOhnRKDJSbPbteo2huiyhcaVCnaVWSGxBXsBfHCC24peECvlt9bsymbGmnTuHXzsVp9Ba896mPNfe3Hfsp/T0VTXEmC4MeZ1ETnigtYYEwPc6D5GeVmLBtHBtZUpwPyxMYObx88nOiKUz24/iU5N6jsdUvUUFcCa72wSYv00kBJo3hfOGw3dLgvEbWXKzsHnAK8e/YQxJgS4ApjngfcZBGwSkXT3uScBJwMfVvgqFRhEYNNM+Pr/IHMLNOkBF74KzXo7HZlSPnXchISIDKzosVLKv7z16waiI0K5/qRWTofiWyLw44MQHmWr/gau0cAkYKEx5lVgpXv8YFHLdsClDsWmlE98t3Qn93y6mKT4aMaN7E/zuCinQ6oaEdi5GBZ+AMs+hwP7oX5zOOVuuyUjoYPTEaqa+S8wwRjzD2C8eyzEGNMReBY7X1e0paOytgInGmOisVs2zsLWp1DBYM86mHAlFOXbx7uWwmc3wqipEFPjHT9KeYcI5O6BmASPnbIyWzY2An892FXDGPM4MElEllf8SqWUr23PzOfrJTsYfnIycdG1bOnvmh9g/c9wzrNQL9HpaKpNRL4yxtwJPA+8xuEVaQa7BPhOEZnsVHxKedv7szfx9Lcr6ZvUgHeHpwTWXJa/D5Z+BgvHw+5lEBYJXS6CXtdA8mmBvI1MlSIinxpjugOPAA+7h3/EztMGeEJEfvDA+/xpjPkcWAgUA4uoYecO5Uf2bTmcjDg0thn2p2pCQvmf7F22DfXiCZC/F+5Z4bHPtMps2UgCSjcYfRJYz+FWdEopP/HuLFviZVQwVaCvjKIC+PEhSOgE/W9xOpoaE5E3jDEfY/vat8Ze4G4AporIfkeDU8pLXC7h+SmreevXjZzdJZFXr+5NZHgAfIF3uWDzLJuEWPWN7ZLRtCec/wJ0uxyi4pyOUHmBiDzq3kJxLdAJO0+vAz4QEY+tYhCRJ4AnPHU+5UfK264VHgV1AnR7mgo+Rfmw+jtYMsF2gxIXNE+BfveBq9inCYnt2GrCpWkNCaX8zL7cQj6Zu42LejWnWaAtb66pOa/a/Zc3fA2h4U5H4xEikgl85nQcSvlCYbGLB79YypeLtnPdiUk8dWE3QkP8vMvE/u22VeeiD+z8ExkLfYdD7+uhaQ+no1M+ICILsasXlKq6hI52G9fsVw6PDfk3NGzjXExKicDW320SYsVXcCAL6reAU++xWw4btff4W1YmITEZeMAYMwTY6x571BhTUX9lEZGzahydUqrSxv2+mfyiEm4bUMs+yDK3wqwXoMvF0GaA09HUmDGmN3CyiLx+jOf/AswWkcU+DUwpL8k5UMztHy5g1ro93Hd2B/5yRjuMv7a8LCmy28MWfWC3iInLbsU48zHoPNTe3VRBz719eZe7u0V5z3cHLhGRp30bmQoodWLg1PugwxC7HL5BMjTuDCG1rCC58g97N8KST20iInMLhNd1bzm8Glqd6tX/LiuTkHgQ2Iet9NsKuzoiAdDS40r5ibzCYsbN2cygzo1pn1jv+C8IJlMeAQyc/U+nI/GUJ4AIoNyEBHAutrCZFrZUAS8tu4CRY+examc2/768B8NSWjodUvkyNsCCsfZCLTcd6jWFU/8Gva/Vu5m105OAGGMGA9eLSMFRz/fAzuWakFAVi6oPrU52OgpVW+VnwsqvbBeorb8Dxt7cO+MRm2SPqOuTMCrTZSMfO6k+AWCMcWGLXH7s5diUUpU0cd429uUVcduAtk6H4lsbfoFVX8OZj0Kcn36Rqbp+lNNKrpRfgbt9FItSXrNpTy43jPmTPdmFvHtDCmd08rMibiVFsOZ7mD8GNs6AkDB7J7PPDdD2LAitzD0dFcSmA5cAvxpjLhCRNKcDUkqp4yoptvUglkywn3HFBdCoA5z1BPS4EmKbl33N/lTY+CtsmW0TaK0HePS6uzqfpiOAOZU92BgTCQwDpojI7mq8n1KqAkUlLt6ZtYmUVg1ISa5F/eyLC+GHB+wSx5P+z+loPKkRh7fHlSfTfYxSAWvxtkxGjp0HwIRbTqRXyzhnAyotcyssGGe3ZeTshtiWNunZ+3qo18Tp6JT/eB94BfgYmGuMGaod6JRSfmvXcpuEWDoRctMgqqH9XOt1NTTrA8faKlmQbQvHr/rGPl78EXQ4Dy55E6JiPRJalRMSIjKuii+JxU7ag4FDCQljTEts7+YmgAt4W0ReMcY0BD4FkoHNwDAR2VfVOJWqLb5duoPtmfk8dWFXp0PxrblvwZ61cPWnEB7pdDSelIbtYX8s3ag4YaGUX5u+ejd/+WgRCfXqMH5kf5Ib+WZJaIVcJbBuql0Nse4nO9bhHEgZCe0GabtOVS4R+dYYczrwLTDbGHOVJ9p9KqWUR+Sk2QTEkk9sK+qQcPvZ1vNqaH82hFWirXbGusPJiIPWfm/HW6R4JExfrTcsL+VSDNwrIguNMfWABcaYqcCNwDQRec4Y8xDwELaOhVLqKCLCW79upENiDGf623Jnb8reBTOet5NpxyFOR+NpPwM3GWPeEZEVpZ8wxnQBRgGTKnMidzHiV4BQ4F0Ree6o5zthE8Z9gEdEZHSp5zYD2UAJUCwinvnUUbXaxHnbePjLZXRuWo/3b+xPQr06zgaUvQsWfgALx8H+bRCTCKffZ7dlxCU5G5sKCCKy2BjTH5uU+NoY8zc0aayUckpRgd2KsWQCrJ8GUgLN+8J5o6HrpVA3vmrncxVXbbwaHNsAKSI7gZ3uP2cbY1YBzYGLgIHuw8YBM9CEhFLlmrEmndW7snnhip6E+HuLPE/64QEoKYQhzx3/2MDzT2zBynnGmDHAYmwx4d7ASKAQ+MfxTmKMCcUWxhwMpLrP97WIrCx12F7gLuDiY5zmDBHZU72/hlKHiQj/nb6eF6au5bT2jfjfdX2JqePQJYjLBZt+tash1nxvL6raDIRznoGO5wVN62DlOyKywxhzKvAJ8DKwsuJXKKWUB4nAtj9tEmL5l3BgP9RvbtvK9rzKtpitroZtoXkKbJ9/eKxpL4j3XN06v6jIZIxJxl5s/wkkupMViMhOY0y5t32NMbcAtwAkJeldDFU7/e/XDTSLjeTCXs2cDsV3Vn0LKyfDWY97dDL0FyKywRhzFjAWuOOop1cAI0RkXSVO1R9YLyIbAYwxn2ATvoculN1F2NKMMed7InalylPiEh6fvJyP/tzKpb2b89xlPYgIc6CtXcF+WPQRzHsX9m6w+2dPvB36jgjKuUT5lojkGWMuAl7CJnrF4ZCUUsFu3+bDrTr3bYLwaOh8oa0LkXyaZ7Yb1o2HS96CpZ/A2inQfrDd8lE3oebndnM8IWGMiQG+wHbuyKps73F37+e3AVJSUnTSV7XOgi37mLtpL48N7UJ4aC3pWZ2fCd/dC4nd4OS7nI7Ga0RkPtDNGNMLaI/d9rZGRJZU4TTNgW2lHqcCJ1QlDOAnY4wAb7nn3DI0OawqUlBUwl0TFvHTyt3cPrAtD5zTkcp+zntM2iqY+7a9aCvKhRb9YcCDtr96cNWfUb7TGkg/elBEBPirMeZHINHnUSmlgl9B1uFWnVtmAwaST4UBD9hkRJ0Yz79no3a2uPNpf7NJDw9zNCFhjAnHJiM+EpGDe6J3G2OauldHNMUWeFNKHeXNXzcQGxXOVf2Cpt3l8f38pK0MfPWEWrGsWkQWY7dsVEd53/qqkrw9xb0MuTEw1RizWkRmljmhJofVMWTmFTJq3HwWbt3HUxd2ZfjJyb5785JiWPuDTURsmgmhdaD75dD/ZmjW23dxqKAkIluO8/yPvopFKVULuEpsq/slE2D1t7ZVZ3w7OPMx26rTgy04K+SFZAQ4mJAw9hbJe8AqEXmx1FNfA8OB59y/JzsQnlJ+bX1aNlNX7uauM9tR16l92L62+TdY8D6cdCc07+N0NF5jjIkHGovIqlJjrYG/AQ2B8SIypRKnSgVKf0K1AHZUNg4R2eH+nWaM+RK7BaRMQkKp8mzPzGf4mLlszcjj9Wv6cF73pr5549wMWDQe5r1ni1TWb2F7q/e5Aepqt1xVPcaYJAAR2Vr68fEcPF4ppapl90pY8jEs/QxydkFkHPS+zm6ZaN732K06A4yvvsmUd9fsFOB6YJkxZrF77O/YRMREY8woYCtwhU8iVCqAvPXrRiLDQ3x7x9FJRQXw9V0Q1wrO+LvT0XjbK0AHbALg4La2WcDBQiFXGmPOLG+1wlHmAe3dyYztwFXANZUJwBhTFwhxFxyuC5wNPF3lv4mqlVbtzOLG9+eSV1jC+FH9ObFNFSt6V8fOJfDn27D8c3vnKPk0OOdZd5HKWpK0Vd60GXAZY6JFpND9uDIrwrRfrFKqanLSYdlndjXErqUQEma7yvW82rbsDHO4O5UXONb2U0R+K2/c7SzvhqNU4Nq5P5+vFm/n6v5JxMcE36RUrpn/tkXorv8KIuo6HY23nQR8WOrxldhkxHnY7RtTgQc4zmoFESk2xtwJTMFeFI8RkRXGmNvcz79pjGkCzAfqYy+2/wp0ARoBX7r3+ocBH+sSZFUZv2/I4Jbx86lbJ4zPbzuZjk3qee/Nigth1dd2W8a2P+1S0p5XQ/9bILGL995X1UZPYxMQxUc9VkqpmisqgLU/2iTEuqm2VWfTXjDkebvdsCYr/FwuSF8FGevtCovErn63YtDrCQkR2Q3Ukop7SnnfmN824RK4+bQ2TofiG7uWwexXoNe10PYMp6PxhUTs6rCDzgXmH0wIGGPGYrdvHJeIfA98f9TYm6X+vAu7leNoWUDPKkWtar1vluzg3olLaBUfzbiR/WkWF+WdN8rba1t2znsXsndCg9Z2NUSvayCqgXfeU9VqIvJkRY+VUqrKRCB1Hiz+GFZMsp2gYprAyXfa5Hrjzp55n00z4ONhUFJkH3e+EM5/AWLKbWTpiGolJNxLeK/BVn+Pp+xKBxGRUTWMTSl1lP15RXz851aG9mhKy4beKSzjV0qK4ev/s18yzv6n09H4ShFQ+pvcAGwL0IMysfOuUn7jvd828Y9vV9I/uSHv3JBCbLQXis7uWQd/vAGLJ0BxPrQZCBe8Au0GQ4je91BKKRUA9m2BpRPtaoi9GyAsCjpfAD2vsp9rnmjVeVDuHvj2b4eTEWBXFvYZDu0Hee59aqjKCQljTH/gOyq+IBZAExJKedgHf2wmt7CEW09v63QovvHn/2DHIrj8fYhu6HQ0vrIWuMwY8zpwAbaQ5bRSz7cE9joRmFJHc7mE535czdszNzKkaxNevqoXkeEevJgSgU2/wu9vwLopEBoBPYbBiXfYZadKOcAY0w5oV3ormzHmBOBR7Jw97litkpVStdCBbFg52bbq3DzLjrU61bbR7HwhRNb3zvsW5sC+TWXH8/Z45/2qqTorJF4EwoFhwHQR0QtjpXygoKiE92dvZkCHBLo089LE5U/2boLpz0CHc6HrJU5H40uvY1dE7AOigY0cmZA4HVjm+7CUOlJhsYsHPl/CV4t3cMNJrXjigq6Ehnio4nfxAVj2uV0RsXs5RDeCAQ9Bv1F+tcxU1VrPYxMPB7fSNQJ+AGKAfOB/xpg0EfnKsQiVUs5ylcDGGTYJseobu7KvYVs441GbWG/Qyvsx1G0MHYbY+hSlxfvXjc3qJCT6As+KyOeeDkYpdWyfLUglI7eQ2wb41yTiFSLw7V9tZeHzXwiatkaVISLjjTEu4BJgP3a+LYJDLUFjgTccDFEpsguKuP3Dhfy2fg/3n9OROwa2xXji32nuHlsfYu47kJsGCZ3hwteg+zAIj6z5+ZXyjBSg9AqIq7HFgXthV7nNAO4GvvJxXEopp6WtdrfqnGjrHEXGQq+rbV2IFv18e00bEQ2DnoLCXLsyI6oBnPtvSOzuuxgqoToJiSwgw9OBKKWOrbDYxZszNtCrZRwntqkFWxcWf2yzyue/ALHNnY7G50TkQ47stHFwPAObFD7EGBOJXbE2xV1EWCmvSssu4MYx81izO5vRV/Tk8r7l1UWt6klX29UQSz+1bTvbDYKT/gJtzqhVCUkVMBKAHaUeDwFmi8hyAGPMJ8AjTgSmlHJA7h5Y/oW9ft25GEwotB8MQ56zKxScTKg37gRXTYDs7RBeF+JaOhfLMVQnITEJOAe9Q6eUz0ycv43tmfk8c0k3z9yF9Gc5aTDl79DyROg70uloAkEs8D4wGNCEhPKqjek53DBmLntzC3lveAoDO9Zg+4QIbP7NdtFZPxXCIm1RrxPvgISOngtaKc/LBeIAjDGhwKnAq6Wez8eumFBKBaviA7B2it2SsW4KuIqhSQ+bhOh2OcQkOB3hYZH1ILKT01EcU3USEg8CU4wxrwEvAxtFRHsxK+UlBUUlvP7LevokxTGggx9Nbt7yw4NQlGeXaWvl/MoK8iyV8geLtu5j5Nh5hBjDhJtPpGfLuOqdyFVi99POfgV2LIS6CXDGI5AyCupqAxkVEFYA1xtjxgNXYGtHTC31fCsg3YnAlFJeJALbF9gOGcu/gPx9EJMIJ95ut2RoseVqqU5CIhPbRaM/cAdQ3h1bEZFqtRRVSh3p03nb2Lm/gNFX9Az+1RFrfrC9mM94FBI6OB2NUspt2qrd/OXjhSTWj2TciP4kN6pb9ZMU5dvlrHNes1W/G7aBoS/Zi7jwqOO/Xin/8R9gMpDmfrwImFXq+bOBhb4OSinlJftT7UqIJZ9Axjq7oq/TUPv51WYghOrX3pqozv9647EJCaWUlx1cHdG/dUNObhvkdw4Lsmyv5MZd4JS7nY5GKeX2ydyt/P3LZXRrHsuYG/vRKKZO1U6QtxfmvQd/vmlbjTXrA4Ofshdznuy3rpSPiMh3xpgzgYuwxYf/e3C1sLv4cCr2elkpFagO5NjVfEsmwKaZgECrU+CUu6DLRbZYpfKIKickRORGL8ShlCrHh39sIS37AK9e3Tv4V0dMe8pWI77yQwiLcDoapWo9EeHVaet56ee1nN4hgf9d24e6dapw2ZC5FX5/AxaOh6JcaH+2TTa2OkULVaqAJyIzgZnljGcAl5YeM8bUBe4FxovIZp8EqJSqOpcLNs+0KyFWfm0/uxokw8CHbavOhq2djjAo6foSpfxUXmExb/66gVPaxXNimyBfHbHld5j3ri1m16Lv8Y9XSnlVcYmLxyavYMLcrVzWpwXPXdad8NBK1nTZtQxmv2r31xoD3a+Ak++CxC7eDVop/xUDPAH8Bmx2NhSlVBnpa+1KiKUTISsV6tSH7pfbLRlJJ2oS3ctqlJAwxsRgqwyXuUoRka01ObdStd3437ewJ6eQtwYHeS2FogL45i6ITbKF7ZRSjsovLOH/Jizi51W7+csZbbnv7I7HX6ElYnuc//YybJgGETG2yNeJt0OsB9qCKhX49BuNUv4kb69NnC+ZYAtVmlBodxac/TR0PE9rG/lQtRISxpirgEeBzhUcphtDlaqmnAPFvPXrBgZ0SKBvq4ZOh+Nds16APWvhui+gTozT0QQqreujPGJfbiGjxs1j0bZMnr6oKzeclFzxC0Rs27NZL0DqXKjbGM56AlJGQlScL0JWSimlKqe40LaZXvyx/exyFUFiNzj7Gbuar16i0xHWSlVOSBhjLgY+BtYCbwG3uR+HARcDy4BvPRahUrXQ2Nmb2JdXxD3Bvjpi51L47UXocRW0G+R0NIFM77ypGtu2N4/h788ldV8+/7u2D0O6NT32wa4SWDkZZr0Iu5fZFU7nvwC9roPwSN8FrZRSSlVEBHYssnUhln8OeRk2eX7CrdDzKmjS3ekIa73qrJC4D1gF9MXuibsNGCMi040x3YDZwGKPRahULZNVUMTbMzcyqHNjerWMczoc7ynKh0k3Q3QjGPIvp6MJWCKym3K2zSlVFSt27OfG9+dxoKiED0edQP/Wx1iZVVIESz+F316CjPUQ3x4u/p+9sxQa7tuglaoljDFxwLtAN+yKuJEi8rujQSnl7/Zvh2UTbSIifTWE1oFO50HPa6Dtmdqq049U5/+JHsA/RaTAGBPtHgsFEJHlxpi3gYex/ZmVUlU05rdNZBUU89dBQb464ucn7QfEdZMgOsi3pVSRuyL7NUB7IJ6yKyBEREb5PDAVlOas38MtHyygXmQYH91+Mh0S65U9qCgfFn4Ac16F/dvsHaUrxkHnC7R1p1Le9wrwo4hcboyJAKKP9wKlaqXCXFj1LSz5GDb+Cgi0PBGGvgxdL9GthH6qOgmJUCDD/ed89+/SjVjXALfXJCilaqvMvELem7WJIV2b0K15EPc3Xv8z/PkmnHC7LSCkDjHG9Ae+wyYijkUATUioGpu8eDv3fbaENo1iGDuyH01jjyriVZAF88fA769Dbhq0PAHOfxHaD9aq40r5gDGmPnA6cCOAiBQChU7GpJRfcblgy2/uVp2ToTAH4pJgwAPQ40qIb+t0hOo4qpOQSAVaAYhIvjEmDUgBPnc/3xHI9Ux4StUu787aRE5hMX8d3N7pULwnNwO+ugMSOsGgJ5yOxh+9CIQDw4DpIrLX4XhUkHpn5kae+X4V/Vs35J0bUoiNKrXlIm+vTRr++SYU7Ic2Z8Dp70OrUzQRoZRvtQHSgfeNMT2BBcDdInLoWtsYcwtwC0BSUpIjQSrlc3vW2STE0k/tyr2IenYVRM+rIekkCNHdrIGiOgmJOcAg4HH346+Bu40xedh9zH8BvvFMeErVHntzC3l/9ibO796UTk3qOx2Od4jAt3fbLzvXfq4tlcrXF3hWRD4/7pFKVYPLJTz7/Sre/W0T53VvwovDehEZ7t52kbvHbsuY+y4U5UKnoXDa36B5X2eDVspBxpgxwFsi8qf78enAKhFJr+QpSoAtHF5ZXBVhQB/g/0TkT2PMK8BDwGMHDxCRt4G3AVJSUrTrkgpeeXthxSRYPAG2zwcTYutBDHrStuqM0N1Mgag6CYk3gEuMMVEikg88AvQHnnQ/vwJb+FIpVQVvzdxAXlEJfx0UxKsjFn8Mq76BwU9D0x5OR+Ovsji8LU4pjzpQXML9ny3l6yU7uPHkZB4b2oXQEAM56TYRMe9dWy+i22Vw2r2Q2MXpkJXyBzcCPwN/uh//AlyP7TJ3XCKyB2hdzfdOBVIPJkOwK5Ifqua5lAo8JUWwbiosmQBrf4SSQmjcBQb/wxZUrl9BRygVEKqckBCRecC8Uo/TgV7GmB7YDPAqEXF5LkSlgl969gHGz9nCRT2b0a5xOQXlgsHeTfDDA5B8Gpx0p9PR+LNJwDnY5K9SHpNVUMRtHyxgzoYMHjq3E7ee3gaTuwfmvALz3oPiAuh2OZx+PyQEeVFdpapmD5BY6rHP9i2JyC5jzDZjTEcRWQOcBaz01fsr5QgR2LnYbslY9plt1RndCFJG2VadTXvq9sEg4rF+JyKy1FPnUqq2efPXDRSWuLg7WDtrlBTDl7eCCbUtArUqf0UeBKYYY14DXgY2ioguwVU1sjurgOFj5rI+LYcXh/Xk0vbh8NOjNhFRcsDeZTr9fmgUxCu0lKq+OcCjxpgkYJ977FJjTLsKXiMi8g8Pvf//AR+5O2xsBEZ46LxK+ZesnbYmxJJPIH0VhEZAx3Ntq852Z2l76SBV7YSEe//c2diM8QsistoYE4Pd57ZURDI9E6JSwW13VgEf/rGFS3o3p3Wjuk6H4x2/vQTb/oRL34W4lk5H4+8ysV00+gN3AJiydwFERLSBtqqU9Wk5DB8zl315hXxwZTIn7XwDvh/jTkQMcyciKvpepVSt91dgHHAXdnWEAJe6f45FAI8kJERkMbaAvFLBpzAPVn/nbtU5A8QFLfrbjk7dLoWoBk5HqLysyhe0xphQ7J65yzk8KU8AVgPFwFfAaOBZj0WpVBD734wNlLiEu84M0juT2xfAjH/ZpeA9rnA6mkAwHjuvKlVjC7bsY9S4eSSaTCb3+ING33xk9+P2uBJOv0/boSlVCSKyGRjgXqHQBNiMTVJMdi4qpQKYywVb59i6ECsmQ2E2xCbZ2kU9r9bPplqmOnfYHgQuA/4G/AisOviEiBQYY74EzkMTEkod147MfD7+cytXpLQgKT4IKwMX5sKkW6BeUzh/tNPRBAQRudHpGFRwmLpyN09PmMajdb7jUvmZkBVFdu/taffqxZ5S1SAihcBWY8w44E8R2eJ0TEoFlIwN7ladn0DmVoiIgS4X28+mVqdoq85aqjoJiRuA8SLyijEmvpznV2ETEkqp43h12joE4c5gXR3x06P2w2f417rkTikfmjRrEfumPM/PYdOIKCnB9LwaTr8XGrZxOrQqExF2ZxUQHhpCfEwdp8NRChHRGg5KVVZ+pm3VueQTu30XA23PgDMfs62ltVVnrVedhEQy8EIFz2cC+s1DqeNYtTOLifO3MeKU1jSPi3I6HM9b8yPMHwMn3wWtT3c6moDkrssTB5S5ZSAiW30ekKq8rB2Qs9tWBfdh3RTJ28vcj5/inG0TiAorwtXjSszABwIyEQG2xs7E+dt4d9Ym6kaE8uC5nRjUOZG6dbSEivIdd920KhORmZ6ORamAUFIEG6bbdu9rfrA1ixI6waCnoMcwqN/M6QiVH6nOJ3o20LCC59sB6dULR6naQUR45rtV1I8KD87aETlpMPkvkNgdznzU6WgCjjHmKuBRoHMFh2mrEn+1cSZMGmX/HUTHwyVvQbtB3m1RVpBFye9vUDTrVfqV5LEk7iy6XfsvwhsHdueeH5bv4oWf1gKwP7+Iuz9ZzIej+nNq+wSHI1O1zAyqVtvnYI01nadV7bJzqbtV50TITbefgSkj3K06e2mrTlWu6iQkfgOuM8b8++gnjDENgJHY2hJKqWOYsSad39bv4YkLuhAbHWQtjETg6/+DA9kw/BsIc2iJdfEByN4J4dEQ09iZGKrBGHMxtnDwWuAt4Db34zDgYmAZ8K1D4anj2bcFPrsB8t2dAfMy4LPhcOtMiPdCJ4vCXJj7DjL7ZULz9zG1pB+7+9zDDRefV153loCSnV/Eh3+U3aI/e/0eTUgoX9MtGkodS/YuWPaZTUTsXg4h4dBxiLtV5yAIi3A6QuXnqpOQeAablJgOjHWP9TTGtAceAuoCz3kkOqUctjMzn/0FRTSuF0nDup6ZUItKXPzzu5W0aVSX605s5ZFz+pUFY2HtjzDkOUjs4kwMGRvgl2dgxZdQrwmcNxraDQ6UD8X7sLV4+gIx2ITEGBGZbozpBswGFjsXnqpQ1o7DyYiDCnNhf6pnExLFB+y/tZmjITeNhREpPF14MVdceCHDg2ReiQgPIalhFOvTco4YbxIb6VBEqrYSkXFOx6CUXynKhzXfw+IJsGGabdXZPMVeb3W7DKIrWkyv1JGqnJAQkfnGmEuB94D33cOjscvT0oBLRGSl50JUyvdcLmHG2jQe/HwZ6TkH6JAYw+gretKjRVyNz/3J3K1sSM/lnRtSCA8NsmrCe9bDlL9DmzOg/63OxFB8wLYZXf6FfZy1Az69Fm6aBs37OhNT1fQA/unuWnSw0lMogIgsN8a8DTyMtpvzT9HxEBYJxQWHx0JCoa6HVumUFMHij+DX/0BWKgXNT+Z+19/4KTuZV6/tzTldm3jmffxAnbBQbh/Yjt/WZVBY4gIgsX4dTm7byOHIlFKqFhKBrX/Ako9hxVdwIAvqt4BT/mpbdSYE9hZB5ZxqVYUSke+NMcnA2UAnbDJiHTBFRPI8F55SzliflsOtHyygqMRuGV27O4e7P1nE57edXKMq7/vzi3jp53Wc1CaeQZ0DZxtBpZQUwaSb7RaNi//nXOum7F2HkxEHicCedYGSkAgFMtx/znf/ji31/Brgdp9GpCovvh0MfcnWUBGX3S875HmIr2GtGFeJXRI741+wbzO06MemU//NsJ8iKCwRProphZTk4LsjldKqAZPuOJlVO7OoEx5K9+axtG5U1+mwVC1njPkL9gbcoGM8/xPwhYi85dvIlPKCvZtg6aewZIL9/AmvC10usnUhkk/TVp2qxqpdplpEDgDfuH+UCipb9+YdSkYctGlPHjv2F9QoIfHGL+vZl1fII+d3Dvj93WX8+m/YsRCuGAf1mzoXR3g0xLaEzKP2nkfFORJONaQCrQBEJN8YkwakAJ+7n+8I5DoUmzqekBDodjk06Q77t9stQwmdIKyatWJEYNU3MP2fsGeNPe81E/mNPtz20ULqR4bw8c39aZ9Yz7N/j0rIPVDM4m2ZLN6aSdO4SPq2akCreM8mC4wxdGseS7fmscc/WCnfuRGYX8Hza7E11TQhoQJTwX67CmLJJ7B1DmBsx7SBD9tWnXVinI5QBZFqJSSMMdcAfwHaA/HlHCIioj25VMBqGFO21kC9OmHERla/AOXWjDzen72Zy/u0CL6L642/wqzRdsle14udjSUmAc77D0y4yt6hBmh1GjTp6WxclTcHGAQ87n78NXC3MSYP2/7zL2gi2L+FRdjEQZPuNTvPppnw85OwfQE06gDDxkOnC/hqyU7u/3webRNiGDuiv2M1Fb5ftpP7P1966HHHxBjGjOhH8zjtKe81hXlQkAlRDSFca2k4qD2Hty2XZwVwjY9iUcozSoph4wy7JWP1d3brYXx7OOtx6HElxLZwOkK/sHN/Pku27WdHZj5NYuvQs2Wcfu7VUJWTBsaYR4GngN3YC+d9Fb9CqcDTIbEetw1ow5u/bgTsqut/XtKNpPjqTzjP/7ia0BDDfed09FSY/iFrB3w+0n5onTfa6WistmfCzdNhz1qIjIMmPZxdtVE1bwCXGGOiRCQfeAToDzzpfn4FtvClClY7l8DPT9lCYfWbw4X/hZ5XIyGhvDNrI89+v5oT2zTkretTiI1ypkvPzv35PPP9qiPG1uzOYdWOLL0w85adS+1Kma1zbJ2egQ9BYleno6qtwoGKMkKRx3leKf+xe4XdjrH0M8jZBVENoPf19iZT8z7aqrOUnPwi3p21ifd+23Ro7Op+LXngnI40qMEK6tquOqsY7sD2Yx4iIkWeDUcp/xBTJ4w7z2jHoC6JpGcdIKlhdI2WRM/fvJfvlu3knkEdSKwfRNcoxYUwcbjNol/5of8s4QsNh2a97U+AEZF5wLxSj9OBXsaYHkAJsErk4NIPFVT2brRfOJd/YS8Iz/4n9LsJwqNwuYR/fruKMbM3cX6Pprw4rCd1wkIdC7Ww2EVOQXGZ8bxC/U/TK/anwsdX2Bo5AKu+hrSVMOKHgGprHETWAoOBF4/x/NnABt+Fo1QV5aTBss/taohdyyAkDNqfA72uhvZnO9ey3c+t3JXF+7M3HTE2Yd42LujZjJPb6f9m1VWdhER9YKImI1Swi4kMJ6VVzYvEuVzCP75bRZP6kdx8emsPROZHpj4GqXPh8ve1urKXicjS4x+lAlL2bpj5b9vGMzQCTrsXTr7rUN2TA8Ul3DtxCd8u3cmNJyfz+NAuhIQ4e8eqWWwUV/ZryUd/bj00VicshA6JfpKUDDZ7Nx1ORhyUsd4WmNOEhBMmAP8yxvwD+IeIFAIYY8KBR7EJiUcdjE+psooKYO0PtlXn+p9BSuyNm3P/bWsf1S1vF74qLbugGJeUHd9foF+La6I6CYlFQEtPB6JUsPpm6Q6WbMvkhSt6Eh0RRKVVln0Of74JJ94B3S51OpqgY4w5HXtRmwi8ICKrjTExQB9gqYhkOhmf8oCC/TDnNfj9dSgphD7DYcADthCmW1ZBEbeOX8DvGzN4+NxO3HJ6G78oiBseFsLtA9vSsG4Eny9IpU1CXe4Z1IFOTes7HVpwiihnG4wJgQjtOOKQl4BzsVvqbjfGrAYE6Aw0BGYBLzgXnlJuIrBtLiz5GFk+CXMgiwPRTSjsezv1+l8PjTs5HWFAadOoLi0aRJG6L//QWEJMHdo00mR8TVTn29GjwBfGmEkistDTASkVTAqKSnj+h9V0a16fS3o3dzocz0lbDV/fBS1PhMFPOx1NUDHGhAIfA5djWyoL9m7caqAY+AoYDTzrUIiqpooKYN67MOsFyN8LXS+FMx+F+LZHHLY7q4DhY+ayPi2Hl6/sxcV+Noe0aBDN3wZ34MaTk4mOCCMqwrktJEGvUQfocyMsHHt47KT/K/PfjPINESkyxpwN3IMtXnlwf+Ba4DngFV1JrBy1bzMsOdiqcxMSHs2quAH8a3svZhd0peHiSN7tmUgvp+MMMK0TYnhpWE9G/7SWBVv20aNlLA+c05GOTXzf6SqYVDkhISK/GmNGAX8YY34HNmP3NR91mIzyQHxKBbT3ftvEjv0FvHhlL8eXWHvMgWz49Dp7x+6KsbZeg/KkB4HLgL8BPwKHKgeKSIEx5kvgPDQhEXhcJbaF2i/PQlaqLb561hPQrFeZQ9enZTN8zDwy8wp5f0Q/Tmuf4NlYRGzxzO0L7DaRFinQuHOVT2OMqVErZFVJderZpFWn82DfFpuIaNYLwoKoJlGAcScc/u3+Ucp5BVmwcrJNQmyZbceST4PT72de9KkMe3/5oUP35BTy+OTlfDDqRMeKIweqfq3j+d91fUjPPkCjuhHE19N5uKaq02XjBGCs+7WnuX+OJoAmJFStlpZdwBu/rOecromc2CZI9uWJwOQ7Ye8GuOHrQOpcEUhuAMaLyCvGmPL+w1mFTUioQLJ+Gvz0GKStgGZ94OI3oM2Acg9dsGUvI8fOJzw0hE9vPck7bYK3zYVxQ+1WEbBFNId/C026ef69lGfEJECHc5yOQinlT1wlsPEXWxdi9be2yHjDtjaB2eNKiEsCIHVhapmXLk3NIjOvUBMS1dCwbh0a1tVkvKdUZ8vGK0ARcBEwS/cxK1W+l6aupbDExUPnVv2uo9/64w1Y+RUMegpal5eLVB6QTMV7jzOBBj6JRB3icgmbM3LZn19E87goGle2W86u5bb464bp0CDZFoDteskx26j9tGIX/zdhEc3iohg3on+NWg0fU0kx/PH64WQEQP4+WDtFExJKKRUIdq90t+qcaFt1RsZBr2ttq84WKWU+Y5rFRZU5Ra+WcTSIjvBRwEodW3USEj2AJ0XkG08Ho1SwWLUzi0/nbWPEKa1p3ShIio5tmWPv8HYaCqfc7XQ0wSwbWxTtWNoB6T6KRWFrwXy1aDtPfrOCgiIXzWIj+d91fejZsoK8UNYOmP4MLP4IImPhnH9Bv1EVtlL76M8tPPbVcnq0iGPMjf1oWNdLF4quYttG8mjZO73zfkoppWouJx2Wf24TETuX2Fad7QbbVp0dhlT4+dK1aX3uGdSeV6atwyWQUK8OT13Ylfq6OkL5geokJNKAwuMepVQtJSI8890q6keFc9eZ7Z0OxzOyd8NnI6BBK7vU3A+q/Aex34DrjDFl9iUbYxoAI7G1JZSPrNmVzUOTlh16vGN/Afd/vpRPbzmJBkcnDQ5kw+xXYM5/bUu1k++0bTyjjp28EBFenLqW16av58xOjfnvNb2925EnPBL63WTrR5TWSXcCKaWUXyk+AGt+sPWH1k+1CeWmvWDI89DtMruVqxLqRYVz24C2nN21CVkFRbRsEF3uqgmlnFCdK54x2Ivl/4pIsacDUirQTVuVxm/r9/DEBV2IjQ6CzHNJMXw+0rYovO4Le7dXedMz2KTEdGy9HoCexpj2wENAXWwVd+Ujqfvyyoyt3Z1Des6BwwmJkmLbAWHGc5Cbbnu6n/WY3aZRgeISF3//chkT56cyLKUFz17SnbDQEM//JY7W/mw4bzT89pK9q3bmo9DiBO+/r1JKqYqJQOp8uxJi+RdQkAn1msJJf4EeV0Fil2qdtk54KJ21NbPyQ9VJSPwGDMV22XgD2ETZLhuIyMwaxqZUwMk9UMwTX6+gfeMYrj2hldPheMa0p2DLb3DJW7q/3AdEZL4x5lLgPeB99/BobAvQNOASEVnpVHy1UWI59SKax0URFx1uLxzX/AA/PwF71kKrU+CaT6F53+OeN6+wmDs/XsT01WncdVZ77hnUHuOr1Ud1G0H/m6HLxRAaVuEKDqWUUj6QuRWWfmpXQ2Ssh7Ao6DzU1oVoMxBCtLWyCk7VSUj8XOrP72I7apRm3GP6r0bVOi9NXcv2zHw+v+0kIsJ8cJfT21Z+DXNehZSR0PMqp6OpNUTke2NMMnA20Ak7r64DpohI2dv1yqs6NanPXWe249Xp6wGIjgjl35f3oHHWSvj8MZuwi28PV30MHc+r1JamjJwDjBw3n2WpmTxzSTfnEpiVXO6rlFLKCw5k22utJRNg8yw71upUOPUe6HwhRFZtRYPLJeQXFRMdEea7BLdSNVSdhMQIj0ehVBBYvn0/Y2Zv4ur+SaQkV1STMEDsWQ9f3WFbFA7RHQK+JiIHgG/cP8pBMZFh3DawLYO6JLIvt5Dk8H0kLXoYlk2E6EZ260PfGyG0clu0tmbkMfz9uezIzOfN6/pydtcm3v0LKKWU8h+uEtg00yYhVn0DRXnQsA2c8Yht1dmgegnqtbuz+fjPrcxev4dzujbhsr4tgqewugpqVU5IiMg4bwSiVCArcQl//3IZDevW4aEhnZwOp+YKc2Hi9fYL1rDxFVZuVp5njLkG+AvQHogv5xARkePO38aYIdhWzaHAuyLy3FHPd8JuC+kDPCIioyv72tomOiKMHo3DYfYbMPtVQODUv9m7WFW4g7V8+35ufH8exS4XH998An1bBUHyUiml1PGlrzncqjNru63J1eNKuyWjZf8aFQzflZXPzePmsWVvPgDr0tYzf8te3ro+hVjtpKH8nBfLeCtVe4ybs5mlqft57eregV/IUgS+vQfSVsF1n0NcS6cjqlWMMY8CTwG7gTnAvmqeJxR4HRgMpALzjDFfH1V/Yi9wF3BxNV7rea4S2LsJivMhrlWVl6p6jctlV0P8/KRtjdntMhj0JMQlVek0s9alc9sHC4iLjuCTkSfQrnE9r4SrlFLKT+Rm2MKUSybAjoVgQqHdIDjnGehwru165AEb03IPJSMO+mPjXrZk5NKjRZxH3kMpb9GEhFI1tCMznxd+WsPAjgkM7dHU6XBqbt67tqjSwL/bD03la3cAM4AhIlJUg/P0B9aLyEYAY8wnwEXAoaSCiKQBacaY86v6Wk9Iyy6gqNhFk9goQg/sh/nv2S4VJYWQfDoMfREaOdw6d9tc+PEh2yKzWW+4YiwknVjl03y5KJX7P1tKu8YxjBvZv9xCmUoppYJAcSGsm2KLU66dAq4iSOwO5zwL3a+AmMYef8vyujMZA+GhWkdC+T9NSChVAyLC45NXUCLCPy7qFvgFhDbOsF++2g2G0+93Opraqj4wsYbJCIDmwLZSj1OByvZ1rPRrjTG3ALcAJCVVbsVA7oFipqzYxb++X01WQRE3npzMvW23ETHt6cMHbZ4Jv79u6zOEOvBRlbnNrohY/jnENIGL37RLa0OqVqxWRHhr5kae+2E1J7WJ560b+lI/MsBXUSmlfMq9am0+sF1EhjodjyqHiF0BsXiC/dzI3wcxiXDCrXZLhpe7lLVPjOG09o2YtW7PobErU1qSHK81JJT/04SEUjUwZcVufl61m4fP7UTLhtFOh1Mzaavg0xtst4DL36vyFy/lMYsAT+yTKS87dnRXpBq/VkTeBt4GSElJqdT5F2/L5G8Tlxx6/OEfW/i/yBVEHH3g6m9g4MNQL7FSQXtEYS789rLtLgNw+gNwyt1QJ6bKp3K5hKe/XcnYOZsZ2qMpLwzrSZ0wbUCllKqyu4FV2IS18if7Uw+36tyzFsIiodP57ladZ/gsod4gOoJ/Xdqd3zdmsGzbfvq1bkj/1g2JitCvesr/6X+lSlVTdkERT369gs5N6zPy1NZOh3OE3VkF5BWW0KR+JFERlfgClL0bPrrC7mW8dqIttKSc8ijwhTFmkogsrMF5UjkysdEC2OGD1x7XvM17j3icX1RCWlhTynzlb9YH6vjo+rvcOhFPVbuGSkFRCfdOXMJ3y3Yy6tTWPHJeZ0JCAnwFlVLK54wxLYDzgWeAvzkcjgI4kAOrv4XFH9tuGQgknQwX3AldL3bsGqpFg2iu6BvNFX219pcKLJqQUKqaRk9Zw+7sAt68vi/h5ezdc0JhsYtpq3fz+OQVpGcfYHDnRB46rxNtEyq4u1uYCxOuhLwMuPG7KhfqU54lIr8aY0YBfxhjfgc2AyVlD5NRxznVPKC9MaY1sB24CrimkmHU5LXH1TT2yPoJLoHFrna0bjcYs36qHYxqYOuYRER56m2PbeufdqvSjoU2CXLFOEiq7O6WsvbnF3HL+Pn8uWkvj5zXmZtPb+PBYJVStczLwAOAVsF1kssFm2fZlRArJ0NRLjRIhoEPQY9htm2nUqpaNCGhVDUs2rqP8X9sYfhJyfRqGed0OIes2pnFHR8tRNwL56eu2k1oqOHlK3sSGV7OP3dXCXxxM+xYDFd9BM37+DReVZYx5gRgLHZ+Ps39czQBKkxIiEixMeZOYAq2decYEVlhjLnN/fybxpgm2H3J9QGXMeavQBcRySrvtZ74+wH0T25Icnw0mzPyAKgTFkLL5HaYfm9C2mrbkz2+HcR7+QJv/3aY+rjd71uvKVzyFnQfVqPtSrv2F3Dj+3PZkJ7DK1f14qJezT0YsFKqNjHGDAXSRGSBMWZgBcdVuZaPqqQ962yHjCWfQlaqXbXX/TLoeY0tcBzotcOU8gOakFCqiopKXDw8aRmJ9SK59+wOTodzhI3pOYeSEQdNWbGL3VmdaBVfzj/3nx6FNd/BkOftnkflD14BirBdLWaJSGZ1TyQi3wPfHzX2Zqk/78Jux6jUaz2ldUIM40edwIrt+ykoKqFjk3p0blrfXti1PtUbb3mk4gPw+39h5miblDv9ATj1rxBRs+Jf63ZnM3zMXLIKihk7oj+ntGvkmXiVUrXVKcCFxpjzgEigvjHmQxG5rvRB1anloyqQtxdWTLIFKrfPBxMCbc+CwU/Za6VwH6zcU6oW0YSEUlU05rdNrN6VzZvX9aWen1XLj4suUxaQ5nFRxNQp55/6n2/DH2/ACbfBibf5IDpVST2AJ0XkG6cD8aakhtEkOVEIds2PdnvGvk3QaajtBd8gucannbd5LzeNm09EWAif3noiXZtpHRalVM2IyMPAwwDuFRL3HZ2MUB5SUgTrpsKSj22rzpJCaNwVzv6nbdVZr4nTESoVtDQhoVQVbNubx0s/r2Vwl0SGdPO/D6euzeozsGMCM9akAxAaYnj6oq7Ex9Q58sA1P8KPD0LH82xfbOVP0oBCp4MIOhkbbCJi3U/QqANc/yW0PdMjp/5x+S7u/mQRzeOiGDeyf+B33FFKqdpABHYutnUhln1ma2nVTYB+N0PPq6BJd92SoZQPaEJCqUoSER79ajmhxvDUhV2dDqdcjetH8p/Le7JqZxaZeYW0SYihU5Oj6mDtWAyfj4AmPeCydyFE2xD6mTHAdcaY/4pIsdPBBLwDOTBrNPz+OoTWsXe7+t8KYWVXE1XHB39s4YnJy+nZMo73hvejYV3PnFcppUoTkRnADIfDCA5ZOw+36kxfBaER9gZNr2tsojrUv1a/KhXsHE1IGGPGAAcL9nRzjzUEPgWSsdXlh4nIPqdiVOqgb5bu5Ne16TxxQReaxfnv/sGEenVIqJdQ/pP7U+HjKyE6Hq75tMZ75pVX/IadF/8wxrwBbKJslw1EZKavAwsoIrDsc5j6mG3j2fMaGPQk1Ev00OmF0T+t4fVfNnBWp8b895o+lWuxq1QwKS6CrO02wVe/mdPRKHVshXm2VeeSCbBxBogLWp4AQ1+CrpfYzk5KKUc4vUJiLPBfYHypsYeAaSLynDHmIffjBx2ITalDMvMKefqblfRoEcsNJyU7HU71FGTBR8NsB4Prp+h+SP/1c6k/v4vtqFGacY/pt99j2bUMvn8Ats6Bpr1g2Hho2d9jpy8qcfH3Scv4bEEqV/VryT8v7kaYn7T+Vcpn9m2BWS/C4g9s54Gzn4EuF0MdTXQrP+Fy2c+BxRNg5VdQmAOxSXDafXZLRnxbpyNUyjOydsKBLNsxLLK+09FUmaMJCRGZaYxJPmr4ImCg+8/jsMvTNCGhHCMi/P3LZWTmFTJ2RD9CQwJwP2FJEXw2HPasgWs/g8QuTkekjm2E0wEErLy98MszMH+Mvdt1wavQ+zqPbkvKKyzmjo8WMmNNOn8d1J67z2qP0T3G6igiwppd2WxIz6FeZDidm9YnoV6d478wUIjAgnGwcKx9nL8PJt8BsS2hzemOhqYUGRsOt+rcvxUiYmyyrNfVkHRyjVo7q9pjb+4B8gtLaFw/knB/velQUgzrpsC3f4WcNGh5Egx9MeCu851eIVGeRBHZCSAiO40xjZ0OSNVuny9I5ftlu3hwSCe6NQ/Ayvki8N29sGE6XPiaxwr5Ke8QkXFOxxBwXC5YOA6mPQ0F+21BsjMe9vgS3D05Bxg1dh7Ltu/nX5d25+r+SR49vwoef2zMYPiYeRSWuAA4tV0jRg/rSZP6kQ5H5iG5e2w3gqPtWKgJCeWM/H2wfJKtC5E617bqbDMQznrctuqM0GLDqnKKSlz8tm4PT327gp2ZBVzapwW3DWhDq/jDq792ZObzzZIdXH1CEvWd7LiXthI+vc5uQQLY9jt8+ze4dmJArZTwx4REpRhjbgFuAUhK0otC5R2b9+Ty5NcrOLFNQ245vY3T4VTP7Jftl7XT7oU+N1TvHOmrYdcKu1mgSQ9o1N6TESpVfTsW2YTb9gXQ6lQ479+Q6Pmis1sychk+Zi67sgp4+/oUBnXxTC0KFXz25xXy9LerDiUjAH5bv4dlqftp0iVIEhIR0Xa5e/bOI8e1joTypZIiWD/NJsfW/GBbdSZ0gkFPQY9h+t+jqpaVO7IYNW4eLveG2QlztyIi3Hd2R6au2s1Xi7Yzd/NeRKB1o7qc3dXBLdAZGw4nIw7a9rudmzUhUSO7jTFN3asjmmJb4JUhIm8DbwOkpKQcvcdaqRorKnHx108XExpieHFYr8DcqrF8Evz8JHS7DM54tHrn2LkExl1g7zwDRDeE4d965UufUpWWnwnT/wnz3rVt2i59F7pf7pUWbctS9zNi7FyKXcJHN51I31Za/EwdW25hCRvTc8qM78094EA0XhJR136mfHAxFBfYscZdoYXnarUoVS4R2LXU1oVY9hnk7bGFulNG2roQTXtpq05VI+vSsg8lIw76dN42PluQSolLSGoYxT2DOnBhz2YkN3K4Zk7d+LJjMY2hTr2y437MHxMSXwPDgefcvyc7G46qrV6bvp7F2zL57zW9/bqrxjFtmwtf3gYtT4SL3qj+nslFHx5ORoDdp7/iq8BNSOSkQ2E2xDTRJZyBSMS2a/vpUdszvv8tcOYjEOmd7VS/rk3n9g8X0CA6gk9G9qdd4xivvI8KHo1iIhjaoylfLNx+xHjbhCD7byfpRLh5OqStgvBoaNoDYls4HZUKVtm7YOlEWxsibaVt1dlhiE1CtBvssVbOSsVElP16bAy0SajLut05NIqJ4Jr+STTyh7pAid2g59X23wXYrUrnvxRwq4Ocbvs5AVvAspExJhV4ApuImGiMGQVsBa5wLkJVW83fvJf/Tl/HZX1aMLRHYP2jBmDnUvjoCohtDld9DOHVXCbsctkP/qOlr6lZfE5wldhWX9/+DTI32wuZwU9DQkenI1OVlbbKbs/YMhuap8B1X0DTnl57u0kLU3ng86W0T6zH2BH9SAyW/f/KqyLCQvnLGe3Iyi9m6qrdxEWH89j5XejWPHCWz1aKMTYxHajJaeX/ivJh9Xf2y9aG6XZpeot+cP4L0PVSu2JTKQ8QEZam7mfy4h1MXry9zPP3n9OR/05fD8DCrftZszvbPxIS0Q3hnGeh1zWQm2G30jXu7HRUVeZ0l42rj/HUWT4NRKlSsgqK+Ouni2nRIJonLwysKrUA7F4J4y+yVaWv/6r85VyVFRICva+Hzb8dOd79shqF6Ii0VfDxMHAV28drf4SiArjqw4Bb2lbrHMiBX5+DP/5n/7+64FX736WXKqWLCG/+upHnf1zNKe3iefO6vtRzsmiVCjhtEmJ49ere7NifT1R4aGCuslPKCS4XbP3dJiFWTratDGNbwql/s6shtIaV8qD1aTl8vWQHXy/ezuaMPCJCQxjYMYHTOyQQFxVOVkER+/KK+HxBKrmFJYdeV1TiquCsPhbdEFoHdjFhf9yyoZSjnpi8gp37C5h460mB9yUkfQ2MvxDC6sCN30CDVjU/Z9uzbIGoWaPtUrCBD0HyaTU/r69lrDucjDho0wzI2qGrJPyVCKz6Gn58GLK226KsZz1ZsyTbcZS4hKe/WcG437dwYc9mjL6iJxFhftruS/m1qIjQ4NumoZS37N1oO2Qs+QQyt7hbdV5kkxCtTtVWncpj/r+9+w6PssoeOP696b33BgmhpNCkg1RFwYbYO4rddVfdYtui6xZ33eoW/ekqIvaKBVBABRFFqkBIIPSa3nuZzP398U5CCAECTM/5PM88ydx5M3PeSXIyOXPvuYXVjSzaUsjHW46w7UgNSsH4fpHcO6UfM7LiCQ04+tq/vsXEQ29tZk9pfcdYdJCvLN+0MilICNHJx5uPsPCHIzx0/gDXa1xXvgdevQxQMOdTiLDSriBB0TDhAaNhIB4Q6oJLWAD8u5naGRBpNGcTzqd8Dyz5Bez5EuIGw9XzIdm2DfOaWtv46bubWZJTxJ0TU3lsZgYertjMVgghXEFjFeR9ZBQhDq4BlLFV59RfQsYl8vdZWE1VQwtLcor4ePPRHTKGJoXy60syuWRI/AmXZAb6ePGrSzIYlBDM4q1FjOwTxq0TUkkKlx5k1iQFCSEsDlU08KuF2xjRJ5wfTe3n6HBOT8U+YycMswluXWz9KY1KuX6zstgsyLjMeMcdjHO66K+uf17uprURVv/DuHj5wYw/w6g7wNO2f66qG1u5c8EG1u2r4FcXZ3DHRBfd5lcIIZxZm8noB7HlLaM/RFszRA2E856AIdcava+EsIL6ZhNfbC/mk80FrNpVSmubJi06kAfPG8BlwxJI7eEOGSmRgfx0+kDuPDcNfx9PvDxlto61SUFCCIxp2j99dzMa+Oe1w1wr2VQdNGZGtDYY23HGDHJ0RM4pMMpohDXiVqgvg8h045134Vw+fRC2vg2Dr4YLfg/Btt/fu7C6kTnz1rGvrJ5/XT+cy4a66CwgIYRwVkXbjCLE1nehvsSYtThijrFDQMJw2apTWEWzqY2V+aV8uqWAL7YX09RqJi7Ej1vH92XWsESyEkJQZ/izFuzvYsu4XYgUJIQAnl+5m/X7K/nHtUNJjnChaVjVR4yZEc3VcMsnEJft6IicW1AMpEvPXKc28adGt+i0yXZ5uJ3FtcyZt47aJhOv3jaa8elRdnlcIYRwe3Ullq0634biHPDwhgEXGjletuoUVmJqM7NmbzmfbC7g89wiaptMRAT6cNWIJC4dksCovhGy/NLJSUFC9HqbD1Xxjy92cdnQBC4f5kJTBWuLjGJEfTnc8jEkDHN0REKcveiBdmsyum5fBXe8uh4/b0/evXscmQluti2jEELYW2sT5C8xZkPs/hJ0GySOMJZIZl8pW3VaSUOziZ3FdZTUNpEUHkD/2CC8XWl271kymzWbDlbyyZYCluQUUlbXQpCvFxdkxXLZ0AQmpEf1qufD1UlBQvRq9c0mHnj7B+JC/Pjd5dlnPI3L7upKjWUatUVw80JIGuHoiIRwKZ/lFPLAO5tJCvfn1dtGu9bMKCGEcCZaw6G1RhFi20Jj1mZIotEQe+h1spOVlTW0mHhp9T7+vnwnAB4Knr1uOJe6+XJDrTXbjtSwaGsBi7YWcqSqEV8vD87LiOGyoQlMGRiDn7eno8MUZ0AKEqJX++2nuRyqaODtu8YR6iprw+rLYcEso3fETR9AyhhHRySES3n1u/08+Wkuw5PDeHnOKMIDZdqwEEKctsr9sOUdoxBRuQ+8A4zm0cOuN7YH95B/Dm1hV3FdRzECwKzh8Q9zGJocRoobFtd3Ftfy6ZYCPt1SwP7yBrw8FJMGRPOzCwYwPTOWYD8Xef0uTkgKEqLXenvdQd7dcJj7p6YzOtVFphA2VMBrs6BiD9zwDvSd4OiIhHAZWmv+sjSf51bu4fyMWP59/XD8feQFsxBC9FhTNeR9bPSFOPAtoCB1Ikx+2ChG+AY5OkKjd0XlfmPb0Mh08PJ1dERWVV7XfNxYbbOJqoYWtylI7C+rZ9HWAj7dUkh+cS0eCsb1i+Seyf24MCtO3khwM1KQcJAWUxs+XvJC2FHW76/g1x9vY2L/KB4838pbZNpKUzW8fgWU5sN1bxl7dQsheqS1zcwjH2zlw01HuH50Cr+bleVau+kIIYSjtJlg70rLVp2LwNQEkf1h2q+NrTrDkh0d4VHF2+Cdm6FiLygPmPAQjP8xBIQ7OjKrSYoIwNtT0dqmO8YSw/yJD/VzYFRn70hVI4stRYicI9UAjOobzlOzspiZHU90sHsVlsRRUpCws/1l9Xy6pYBlecVMGhDFFcOT6BfjBNXkXuRIVSP3vr6RpPAA/nP9Oa7xT0lzLbx+JRTlwLWvQ//zHR2REC6jvtnEvW9sYtXOUn46fQA/npbuOv1ihBDCUYpzLVt1vgd1ReAXBsNvgqE3QOI5zrdVZ0sjfPl7oxgBoM2w+m/GDI5+Ux0bmxX1iw7iuRtH8MgHW6mobyElwp9nrxtOdLDrFSSKqptYnFPI4q0FbDpYBcCQpFB+eVEGFw+JJyHM37EBCruQgoQdVTe28NiHW1mztwKAnCPVfLWjhAVzx0jVz04aW9q4a8EGmlvNvH3XSEIDXGDdWUs9vHENHNkEV8+HgTMdHZHjNVQYxZmGMohIg5gs2T5MdKu0tpm589eTV1jDn64YzHWjUxwdkhBCOLeqg/D2jVC0FTy8oP+FRnPKARc69/KHxgrYt/L48Yp9blWQ8PRQTM+MJTNhAlUNrcQG+xHlQv9HlNQ28fm2IhZtKWT9gQq0hoz4EH5x4UAuHhxP36hAR4co7EwKEna0v6y+oxjRbnthLXtL66QgYQdaa37+/hbyCmuYN2cU6a4wM6WhAt6+wehefeVLkHmZoyNyvIYKWPpL2PKmcV0puPpVyJzl2LiE09lfVs+cV9ZRXNPEizeP4LyMWEeHJIQQzi84HgKjYeYzxladgVGOjqhn/MMgeSzsXXHsuDMtKbGixLAAEsMcHUXPlNc183muUYRYu68cs4b+MUE8eN4ALh4S7xqvyYXNSEHCjjw9ul8a4OnhZFPe3NR/V+xm8dZCHps5iKmDYhwdzqlVHTKWaVTugytfhuwrHB2RcyjOO1qMAGO7sUUPGfuchyY5Li7hVLYcqmLu/PWYteatO8cyPMV91g8LIYRNeXrDzR86OorT5xMI5z8Jb+ZBXbExNvJ2SBju0LBsraqhhV0lddQ1mUiLDqRPpHPMMKisb2FZXhGLthby3Z5y2syatKhA7p+aziVDExgQG+zoEIWTkIKEHaVGBnLp0Hg+3VLYMXZueqT0kDgLza1t7Cmto7immYQwf/pFB3bbE2JZbhF/XbaT2cMTuWtS2invt7imkcOVTQT6etI/Jtj+RaOibfDGVdDSADd9aKx/FIbG8uPHGsqhuc7+sQintCK/hPte30RkkA8L5o4mLVpyrBBC9AoJw+COL40+Er5BEDXQOXb+sJGS2iae+jSPRVuN/y1C/L1YMHc0w5IdU4SvamhhWW4xi3IK+W53GSazJiUigLsnpXHJkAQy4oOlh5M4jhQk7CjQz4vHZmYwaUA03+0uY1TfCCb2jyY8QNa+n4kWUxvvbjzEEx/nYtbg5aH4+7VDuXRIwjHJLr+olofe2czQpFCevmLwKRPhDwcr+cvSfL7bU050kC8/v3AAM7LiCLXX92nv1/DOTeATBHM/g9gs+zyuq4joZ+xtbm47OpY0GkISHBeTcBrvbTjEox/mMCgumFduG0WMCzb5EkIIcRbCkt12mUZXWw9XdxQjAGoaTfz5sx28NGcUgb72+TevuqGVpXlFLMkpZPUuowiRHOHPHRPTuGRIPFkJIS5VhMgrrOGbnaVUN7YyeUA0w5LD8PWWnRFtSQoSdpYQ5s/VI5K5ekTvSJS2tKe0nic/ycNs2fXIZNY88n4OgxNDSY0yquGV9S3csWA9gb5evHDzSPxOkVAq65r55xe7+G6P8S58aV0zj36YQ0KYPxP7R9v0fADIeR8W3gOR/eCmD2QJQndiMoxtTz99AGoLIWU8XPxX8AtxdGTCgbTWPLdyD39Zms+56VE8f9M5BPu5QNNaIYQQ4gwVVjUeN7b1cDU1Ta02LUhUN7ayPK+YxVsLWL27jNY2TVK4P7dPTOWSwQlkJ7pWEaLdjsIarnthDTVNJgCeW7mHV24bxdSBLrDU24VJQUK4rLLaZtrM+pixxtY2KupbSY2C1jYz972xieKaZt65ayxxPdifubCmiVW7So8Z09pojmfzgsR3/4FlvzT+wb7+TfCXNe/d8vA0On3fuRKaayAkHnxlHWJv1mbWPPlJLq99f4DLhyXwzFVD8fFyge18hRBCiLPQ3ZLEaRkxRARaf1ZvdUMry9pnQliKEIlh/sydkMpFg+MZkhTqkkWIztbsLe8oRrT71xe7GN03wm4zTnojeWaFy4oP88fXy4Nmk7ljLCzAm9gQY8eS3y/KY83ecv529dAeN7QL9vcmIdSfI10qzuE2SOwdzGZY9iv4/r/GThGzXwRvmWZ+SiFxQJyjoxAO1tTaxoNvb+bz3CLunpTGIzMG4eGqjYJbm6FsB1QfgZBEiB4ouUAIIcQJDU4M5dEZg/j78p20tJkZlhzKT6b1x9fLOksMKutbjJkQOYV8a+kJkRjmz63j+3LxkASGukERorOG5rbjxmqaTMe9ASqsSwoSwmWlRQXynxvO4Wfvbaam0URkoA//un44SeEBvLXuIK+uOcCdE1O5ckTPlz0khwfwy4sy+PHbP3Qkn4npUQxJCrXNSZiajSUauR/C6LthxtPGDAAhxClVN7Ryx4L1bDhQyW8uyWTuuamODunMmdtg69uw6AFjWpZSMPMvcM4c8JI+Q0IIIY4X4u/NHRNTmZ4VS2NLG8nh/mfd86yivoVluUUszilkzZ7yjp4Qt09M5aJs95gJcSLj+kXgoaBz/eHuSamE+MsSUFuSgoRwWR4eiumZsSz+8UTK61uICfYlIcyfdfsq+M3H25g0IJpHZ2ac9v1ekBXL23eOYU9pPaEB3gxODCUpPMD6J9BUDW/fCPu/gelPwfifGP+ECCFO6UhVI7fOW8eB8gb+ff1wLhni4k1Ny3bBkp8bxQgwPn7+KPSZALGZjo1NCOEwSqlkYAHGlEAz8KLW+lnHRiWciZenB/3OcjepsrpmluUWsySnkDV7jS06+0QGcOekNC7KjnfZnhCna0hSGK/fPobnVu6hor6Fueemct4g6R9ha1KQEC4vOSKA5AijYJBfVMvdr20gOTyAf18//Iy26/Ty9GBUaiSjUiOtHepRNQXw+lVQlm8s0Rh6re0eSwg3s6Oohlvnrae+2cSrc0czrp8Nf1ftpbEc2lqOHTOboKHMMfEIIZyFCfiZ1nqTUioY2KiUWq61znN0YMK1Fdc0sTTX6Amxbl8FZg2pUYHcMzmNmdmutzuGNXh5ejA+PYoRfcIxmbX0jbATeZaF29hbWseNL63F29ODebeOItRZp1eV7IDXr4SmKrjxPeg3zdERCeEyvt9bzp0LNhDg48m794wjI95NdlcJSQK/MCMvtPMNNsaFEL2W1roQKLR8XquU2g4kAlKQEKetoKqRz7YV8VlOIRsPVqI1pMcEcf/UdGZkx5MRH9zrihDd8fX2xNfRQfQiUpAQbuHggX3c8PoutFa8eddY+kYFOjqk7h1YA29dC15+cNsSiB/q6IiEcBmLtxby0DubSYkM4NW5o0kM8z/j+9pRWMMPBysxaxiaHEZ2oo36xPRUeB+45jVYeCfUFkFQDMx+ASLTHBuXEMJpKKX6AsOBtQ4ORbiQg+UNfLatkM+2FbH5UBUAg+KCeej8AczMjqN/rOxUJhxLChLCtTVUULD2A25Y7kOT9uOtSVWkBw4HnDC55rwPH90HYclw0wcQ3tfREQnhMuZ/u4/fLspjREo4L80ZSdhZNO3KOVLNdS+sob7F6Kbt6+XBO3eNZVgPd+OxmbRJcOcKqCuFwCgITXRsPEIIp6GUCgI+AB7UWtd0ue0u4C6AlJQUB0QnnM3ukjo+txQhcguMH5fBiaE8PGMgM7PjSXXWN+5EryQFCeHSSnJXccMyD6p1AG/6/IGMtfsgMQKGXO3o0I5qbYKlj8OGlyFlHFz7BgS6wZp3IezAbNb8eekOXvh6LxdkxvKv64fj5312O9Es2lrQUYwAaDaZeXPdQccXJABCEoyLEEJYKKW8MYoRb2itP+x6u9b6ReBFgJEjR8r+hO0Kt8Kh743t1VPGGrNS3XQ5gtaa3IIaluYW8dm2InaX1AFwTkoYj180iJnZ8R391oRwNlKQEC6rvK6ZGxc3UKLDeM3naQZ77DNu+OE1GHwVKEWLqY29ZfXUNppIjgggLtTPvkFW7IP35kDhFmMXjfN+A55O2ttCCCfTYjLzyAdbWfjDEW4am8JvL8s+o0a1XRVWNR43driyEbNZ42GF+xdCCGtRxoL+l4HtWuu/Ozoel3FkE8y/GFobjOtevjBnMSSPcmxcVmQ2a344VMXS3CI+31bEwYoGPBSMTo3g5rFZXJgVZ//XvUKcASlICENxHhzZaGw1lzgc4gY7OqKTqmpo4aaX13GwJZj53n9ghMeuozdGDwKlqGsysWDNfv62fCdtZk1siC8v3jySoclh9gly+yJjiYYCrnsLBl1kn8cVwg3UNZu49/WNfLOrjJ9fMIAfTU23WqOtWcMS+WRL4TFjN45JkWKEEPZSsQ/Kd4F3AMRkQIDMGjyJCcDNQI5SarNl7HGt9RLHheQCtr1/tBgBYGqGTfNdviBhajOzbn8Fn28rYmluEcU1zXh7Ksb3i+K+Kf2YnhlLZJC0Y7S5xipAgb+D+0+5CSlICCjYAq9eDM21xnXvALh1ESSOcGxcJ1DT1MqceevYU1LHS5fFMu7rImh/w9MvFIbdCEBeYQ3PLM3v+LrimmZ+/XEOr90+hlD/Hq4/1xoq9kJtIQTFQkQ/8PA4+de0tcIXT8Ka/0DCcLh6vu36RTRWQel2aKqFyH7GRQgXV1rbzG3z17G9sJZnrhrCNSOTrXr/Y1Ij+Oe1w/jnFzsxmTU/npbOuenRVn0M0YvUl8G+VbD1XeOf6+wrIS7b0VE5ryOb4PUroLHSuJ5+AVz2rCxVOgGt9WqMtzbE6agp6maswHhd52LLNppa2/h2dxmfbyvii+3FVDa04uvlwZSB0czIjmPaoFjn3VnO3TRVw44l8M1fwcMbpjwK6dPBV3pynA0pSDih1jYzBVWNeHooEsP8bb/9zrb3jxYjwKgob1rgdAWJxhYTOYerefyjbewrq+e5G4YzKTse0pdD0Vbjj0zcYIgeCMCRbqZlbz1cQ2V9a88KElpD/hL48E5oqTcKNZc/DxmXnbgoUX0Y3rsNDq+D0XfBBb83pgnaQl0JLPsVbH3HuO4bDDd+ACljbPN4QtjBvrJ6bpm3lrLaFl66ZSRTB8VY/TGC/Ly5fHgiUwZGY9aaiEB5N0mchc1vwfJfGZ/v/Mx4F3bucohKd2hYTqmlAVb88WgxAmD3Mji8ATIvc1xcwv0MvRZyPzh2bMRtLlOMqGs2sWJHCZ/nFrFyRwn1LW0E+3pxXkYMF2bFMXlgNAE+8m+c3e1ZCR/dc/T6e3OM1979z3dYSO5AfpKdTGFVIy+t3suCNQfw9vTggfP6c+2o5LPqKH9KVQePH6s84FRV5KZWE//7Zi9/X24szfBQYDJb+jZF9TcuXcR3s24uIz6YsIAeVpEr9h4tRoBRqFl4N8RkQvSA44/f9YVxfFsLXDXPeJfMlgq3HC1GgFFU+vwxuHmhTCETLmnzoSrmzl8PwFt3jWWYjZdX2TSvit6h+jCs+vOxYw0VUJwjBYnuNNdC4Q/Hj1fus38swr31GQ9XvQJf/xnMJpj0C0id7OioTqq8rpkvthezNLeY1bvKaGkzExXkw2XDEpmRHce4tEh8vE4xS1fYjrkN1r90/Pi296QgcZakIOFkPsst4uXV+wFobWvj6c92kBoVyAVZcbZ70CHXQN5Hx46NmOM0xQiAvIKajmIEgFnDIx/kkJ0YSp/I7qdJZcaH8JNp6fx7xW60hvAAb/5w+eCe/xNSW3S0GNHO1AR1RccWJNpMsPJpY/pWTBZcs8A+L0TrupmOWLQFmmukICFczoodJdz3xiaign1YMHeMbEkmOFLZQM6RauqaTQyICSYzIQQvTyd8Ma672dSguzEBAREw6FLY+Mqx47GyxEVYmW8wZF8B6ecZv4/+YY6OqFuHKhpYnlfM0twi1u+vwKwhKdyfm8f1YUZ2HOekhFulmbOwAuUBIfHHjwd3MyZOixQkHKS8rpn8olrqW0ykRQXRLyaIxtY2Pth4+LhjV+aX2rYg0edcYynCyj+BboNJD0PqFNs93mmqazbx5Kd53Y5XNrScsCAR4u/NfVPTuTA7jurGVlIiAkgKP40tj4JjjWUanZsiefkavSTa1RbBB3fA/m9g+M0w8xnwsdO2SuGpx4/1vxACo+zz+EJYybsbDvHYhzlkxAfzyq2jiQ6WJRS93aHKBu5esJHSumZC/b05UF7Py3NGMWmAk/X6CEmEiT+DL397dMw/XHpInIinN4z7kdHQcv9q8PSByY843RJR4Ub8nOsNGq01+cW1LN1WzLK8InILagAYGBvMj6amc2FWHFkJIbZfri1On1Iw6g7IXWjMhgbwCYTMyx0aljvotQWJrYerGJwY6pBf+OLqRh5dmMOKHaUABPh4smDuaIanhJMRH9KRnNqlxwTZNiD/UBh2Awy40NirOchJXvDVFFCwbwe3L2tmZ4UZT6Vo6/SuU2yIL/Eh/ie9Cz9vT7ISzvCPUUQ/mP1/xjKN1kajGDHrOYi0zH7Ytwrev92Ygnr588ZzaE/xQ2HG0/DFb42ZG/HD4Lxfg/fJnxMhnIXWmv98tZu/Ld/JxP5RPH/TCIJ8e+2fJdFJXkENFw+Jp7CqkfL6Fq4Ynsgnm48wNCmUUGdaaqMUnHMzhCbBD29AXBYMuQ6iulnWJwxR/Y2dp6oOgJefUVz3lN974b7azJpNBytZllvEsrxiDpQ3GKkjJZzHLxrEBZlx9JVZga4haRTMXQYHvwPlaSwNih/i6KhcXq/8C5BfVMvs575jZnYcf7lqKP4+nnZ9/K1HajqKEQANLW08vWQHr84dxa3j+7Isr4iaRhMAKREBTB5opwKBM227VbqDnFd/zu1l19GIL/PiPyPtkp9x6RtHqGpoJT7Uj39fP5xYW+6vrJQxtfTuTKgphOA4yy4WClb9xWjMFdEPbvkYYjNtF8eJ+AbD6HuMDuUt9RCWAgHh9o9DiDP0+8XbeXn1Pq4Ynsifrhwia2NFBy8Pxf++2UtVQysAn20r4sHz+9NkMuNc73cCgdHG0sch1zg6EtfhF+L024sLcTaaWttYs6ecZXlFLM8rpqyupWN7zrsn9eP8zBhigm34GlbYhlKQONy4CKvplQWJAbFB/OLCgfz58x3sK6vnxVtGkhhmv3eVS2qajhvbUVRDbZOJ7MRQPrpvAvlFtXh5KgbFhZAcYaclAE7k82VLeLBsLlGqmte9/8iAyiNQPo7FP7mRiroWYkP8iAmxQyL38Di2aWZxLnz6oLGLRvaVcOmzRmHAUTw8pHGaOCGl1AzgWcATeElr/acutyvL7RcBDcCtWutNltv2A7VAG2DSWo+0dnxjLQ26Hr5woExPFccoqW3uKEa0e2f9IW4ck+KgiIQQ4uSqG1r5Kr+Y5XnFrMwvpaGljUAfT6YMMnbGmDIwmhA/2Z5TiK56ZUFCKcU9k/sxMDaYn7z1A7P+s5rnbxrBqL4Rdnn8tOjjp2XNyI4jMsjHcnsQadE2XqbhpLTWvLhyJ3/KGcAwtZv/+fyNKGVZwnJoHYmj7yQxzAEFmpYGWPUMfPdvYz3i7BdgyLVO1fhTiM6UUp7Af4HpwGFgvVLqE61154YsM4H+lssY4HnLx3ZTtdZltopxemYs0zNjT32g6HW8umni1tpmRlpFCiGcyZGqRpbnFrF8ezFr91ZgMmuig325fHgi0zNjGd8vEl8v+87EFkcVVjWSc6SamqZW0mOCyIwPldmYTqhXFiTaTR0Uw8IfjeeOVzdww/++53ezsrlutO3ffRmcFMZTl2Xxp8930NDSxoT0SO6bmo7P2SSslnqoPgLefsbUfRfUYjLz64+28c6GQ1wSX8tfK36Pn+r0DllkP9j7NaROsm8hYPcXsOinxnrX4TfB9N8ZncKFcG6jgd1a670ASqm3gVlA54LELGCB1loD3yulwpRS8VrrQvuHK8RRWQkh+Hl70NRq7hi7b0o/meIshHAorTXbC2tZnndsU8r0mCDunJTGBZmxDE0Kw0N2xnC4oupG7n9rExsPVAHGvw4v3jyC6Zk23ChAnJFeXZAASI8J5uMfncv9b27k4Me/5x8HruH+K6bhbcOtxYJ8vbh5XB8mD4ymqbWNxHB/gnzPYgpX+R5Y+kvY+Rn4hsAFv4Psq8HXdRrkVDe0cs/rG1mzt5wfT0vnoRE+eCy7APIXGxkk83KoOgir/w53rYKYQbYPqrYYlj4O296HyP5w62Loe67tH1cI60gEDnW6fphjZz+c6JhEoBDQwDKllAZe0Fq/aMNYhThGZkIob985llfXHOBART03ju7DlEFO0nBZCNGrtLaZWbevguV5xXyxvZjDlY0dTSkfmzmI6ZmxvXZmszPbdqSmoxgBxu6vT3ycyzkp4UQGyW5ezqTXFyQAQgO8eWVWFPr5j2jb9iGLDl7NlLl/IDzcdu+CK6VOuF3laWlrhdX/NIoRAM018OkDxj/QfSec/f3bwf6yeua+up5DFQ387eqhXDkiybhh2q+Obp2272s4+L3xeflu2xYkzGbY9Cp88YSxu8aUx+HcB41dNoRwHd29PdN1xvvJjpmgtS5QSsUAy5VSO7TWq457EKXuAu4CSElxzdlZwjkNSwlnSFIYJm3Gx1OmPAsh7KemqZWv80tZnlfMivwSaptM+Hp5MLF/FPdPTee8jFjZotrJ1TS1HjdWXNtMY2ubA6IRJyMFCQuv6HR4YBOF7z7M7CNvUvqvzymc+hviz51jNA50VvWlkPfR8eMl212iILFuXwV3v7YBDbx++xjGpHXa6cMnAL5/3iiydGbL5RLFebDoQTi0FvpOhEv+cbShpRCu5TCQ3Ol6ElDQ02O01u0fS5RSCzGWgBxXkLDMnHgRYOTIkbLEX1iVh4fCBylGCCFs70hVI19uN5pSfr+3nNY2TUSgDzOy4jg/M5aJ/aMI8JF/nVxFekwQHgrMnV6ZzB6eSIwUkpyO/FZ1FppEyp1vkr/hC1oXP0r2Vw9S/cNLhM7+G6SMdWhopbVN+Hh5EOrfZf9132CIHgiH1x87Huzc66O01ry57iC//SSPpHB/5t066vg9mMP7wsxn4KN7jo4NuwlibLDFZmujsZXnt88ay14ufx6GXi9NK4UrWw/0V0qlAkeA64AbuhzzCXC/pb/EGKBaa12olAoEPLTWtZbPLwCesmPsQgghhE1prdl2pIYvthtLMdr7QaRFBTJ3QirnZ8ZyTko4ntIPwiVlxofw8q2jePKTXAqqGrlieCL3TjnLnn3CJqQg0Y2BI8+nKH0Vf3/pr1xf8Qqh8y5EZ12Jmv5bCEs+9R1YUXFNEx9sPMwr3+0nPMCbh2cMYlL/qKO/TL7BMP0peP0K459qgNTJkOC8++Mermzg0Q9yWL27jIn9o/j39cMJC/Dp/uCs2cYMhYp9EBQNcUPAP4wjlQ3kFtRQ09RK/5hgshJC8DrTvh97voJFD0Hlfhh2o9G0MjDylF8mhDPTWpuUUvcDSzG2/Zyntc5VSt1juf3/gCUYW37uxtj28zbLl8cCCy1bcXoBb2qtP7fzKQghhBBW1dTaxpo95SzfXsxX20soqmnq6Afx6MxBnJ8RS3qM9INwWQ0Vxv9DwXF4eXoydWAMQ+8LpbG1jZggP7xlhw2npIzm6q5t5MiResOGDVa/36bWNn793lqS8v7HPV6L8PZUeEx4ACY8AL72SVYvrNrD00t2dFxXCt67exwju25RWroDSncaccVmQ1CMXeI7He2zIv64eDsAj12UwQ2jU067E/HhygbuXrCR3EKjku3poZg3ZySTB57mOVcegK9+BznvQWS6sTwjddLp3YcQp6CU2qi1HunoOOzBVrlYCCHOhuTh3q20tpkVO0r4Ynsx3+wqo7G1jQAfTyb1j+b8zFimDoyWJoeurq0V9qwwmtHXFsLwW2DsvRAuva1OytQKpibwC7bLw50oF/e6GRJltc18t6eML3eUMDgxlGmDYk7YGdfP25Nnrh/HexuTmbX4fO5rfYPLVj2D3vQa6vwnYMi1Nu0vUVHfzILvDhwzpjVsPFB5fEEiepBxcVKdZ0VMSI/kT1cMITki4IzuK+dIdUcxAqDNrPn94u0MSw4j9EQzLTqr2Avf/B22vAXKAyY/ChN/Kk0rhRBCCCGcRGubma2HqvlmdykBPp6cmx5FZkLoKb9Oa01+cS1fbjeKEJsPVaE1xIf6cdWIJM7LiGFsWiR+3jJ1320UboG3rgVt2Sp67XOAhgv/AB7yfe5WwQ/w7b+geBsMvQEGX2X3lQDtelVBorXNzEur9/J/X+8F4OPNBby17iCv3T6GhDD/br9GKcU1I5OZNugqfr8ok/lbVvIHjzfI+OgeWPcizPgTpHTdSc86fL08iQnx5UhV4zHj4YFnsUWonWmteWPtQZ5eYsyK+MPsbG4YnYI6i94M1Q3Hd80tqGqkoaWN0JPVOMr3wKq/wtZ3wMMLRt5uzHYJTTzjWIQQQgghhPWt31/BTS+t7WhKGODjyXv3jCOrm6JEs6mN7/dW8OX2Yr7cXtLx2nlwYigPnjeA8zNjyIwPOavXn8KJlew4Woxo98MCGH8/hCY5JiZnVrYLFsyCpmrj+pdPQtUBo3efVw/e3LWyXlWQOFTRwMur9x0ztqe0np3FtScsSLSLCvLln9cN5+tzkrjrw8GMqPmS35a8R+i8CyD7Spj0C4jJsGq8gb5e/Gz6AG6Zt64jGceF+jKyz0l2mSjaZuwQYW6D5NEQP9RhjRkPVTTwyAdb+W5P+VnPiuhsQGwwShmzRdpdPTKZmBC/7r+gdCd881djaYanL4y5Byb8xOkbfwohhBBC9EYtpjb+b+WeY3ZIaGhp46vtJR0FifalGF/uMJZiNLS04eftwbnp0dw/LZ1pg2KIPdFrQ+FeultyEBQH3mf/f4dbKtl+tBjR7ocFMP7HENnP7uH0qoKE1sb0/q66GzuRyQOiWfrTKTz7RSITVo/iJ75LuH37p3hu+wD6TYOx90G/86y2lGNsWiQf3DuerYerCfbzYlhy2AmXmFCwGeZfDC11xnUvX5izGJJHWSWWnjKbjV4R7bMi/jh7MNePTj62Kq210XTG5/QTRXZiCC/cNIKnFuVRUtPMtaOSuP3c1OO7IJdsN3bO2PYhePvDuPuNXzQn7K8hhBBCCCEMbRqqGo+fEbuvrI5/f7mLL3aUsOVQFWAsxZg9PJHzM2IZ10+WYvRKCcMhJgtKco3rSsGMpyHgJG/i9mae3cyC8PIzZpA7QK8qSCRF+HPNyGTeXn+oYywmxJeBsZaqWnOt8c3wPPmSiAAfLx67KINLhybw2IcxPH/kPH4Zt5bZRUvwfOMqiBpgvAs/9DrwCTzpfZ2Kl6cHw1PCGZ4SfuqDcxceLUYAmJphw0t2LUjsLK7lyU9y+W5PORP7R/H0FYNJCu9SdCjZDpteg/2rYNAlMPgaiEzr8WP4eHlyQVYcI/qE09TaRkyIH96dd9goyjEKEXkfg08QnPsQjPsRBEZZ6SyFEEIIIYSt+Ht7cvuEVB54Z/Mx4x/+UIACshJC+Nn0AUzLkKUYAghLgRveNvoiNNUYs9bjhjg6KucVlw1RA6Es/+jYlMeN59EBelVBwtfLk5+c15+BccF8vLmAc1LCuGZkMkke5fDt/2DL28YP79h7IWHYKe8vOzGUhfeN59U1B/jNsnCe0ufzj8H7mVr5Ph6LfwpfPgUjboXRd9mnT0FNwfFj1QVgNtu0+SbAlkNV/HfFbpblFRPk68XTVwzmulHJx/+BqCmEt66HSsvSmaIcOLQOrp4PfiGn9ZjHdUQu2GwUInYsAt8QmPSw8b2U6qgQQgghhEs4VNHAivwSlm4rwstDYTJrPBQMTwknJtiXr3YUU17fQlp0IP2ig6QYYQcHyutZvauMvMIaJvSLYnRaBFHOtjNJWIrD/qF2OaFJcP1bsG+V0U8ibRIkj3XYMv9eu+1nS1sbPp6eYGqBzx+BDfOO3ugXBnd8CVHpPb6/w5UN/ObjXL7aUUKYvxcPZ1ZzRcsn+O1eDCjIutxYzpFkw12ndi6FN685duzq+ZA12yYPp7Vm7b4K/rtiN9/sKiPU35tbx/fltgl9CTvRbhd7v4YFlx0/ftcqSBh6+kGYmmHXMti0wPjoF2o8z2PuBv8ezCoRwsZkuzkhhHAsycPOzdRmZuOBSr7KL+Gr7SXsKjFm+6ZGBTJ1YAwT0iMY0SeCBWv28/flu4752nfvHsvo1EhHhN1rlNQ0cfurG8g5crTnwN2T0vj5BQPx9rLtG57Cvci2n134eFrWl1Ufgk2vHntjU5WxrOA0ChJJ4QG8PGckGw5U8tI3e/nlJhNPetzInMybuMf/SyLz34ZtH0DSaONd+4zLwNPKT3+f8XDVPFj5JzCbYOLPIG2qdR8DoxCxcmcp//1qNxsOVBIV5MujMwdx09g+BPme4py6W5uk1OmtWTKb4dD3xm4ZuQuNpiyB0TDtV8ZsFL9TbwklhBDt6ptb8fH0lBdWQggBxuushjJj2esZ9PrqifK6Zlbml7Iiv4RVO0upaTLh5aEYnRrBtaOSmTYo5pieaWW1zbz+/cHj7mfLoSopSNjYzuK6Y4oRAC+v3sfVI5NJjzlBXzshTkOvLUh08PA0dl4wNxw7foo+Et1RSjGqbwSj+kawv6yeV77dx+sbDvO/1imcn3YRj8RvJH3v66j3b4OQJBh1uzF7ISLVOufiG2zs+NHvPGPrGysvVTCbNZ/nFvHfFbvJLaghIdSP316WxbWjknveQCh6IPSZAAe+PTo27Oae9ZAozTeKEFvfg+qDRufcjEthyDWQOsX6BR4hhFsrqGpkSU4h7244xKC4EG4/N5WhyWGODksIIRynYh9seNnYmSwmC6Y8ZpVeZGazZltBNSt2lPJVfglbD1ehtbGL3YVZcUwdFMO5/aMI8ev+9be/jyfJEf6U1DYfM+50ywbcUGub+bgxk1ljMh8/LsSZ6LVLNjpoDd8+C188cXQssj/cvBDCks86tqqGFt5cd5BXv9tPcU0zA6P9+dXAw4wvew/P/auMg2IyYeBMGHgRJJxj834Pp6uu2cTn24p4fuVu9pTWkxoVyL1T+nH5sER8zuQdxcoDsHclHN4AqZOg77kQEt/9sbVFxsySre9A4RZQHsasjyHXwqCLwVcqs8K5yVRh52RqM/P0Z9t5efX+jrEgXy8W3jee/rHdbB8mhHBZkod7qLURProPcj88OuYTCHeuMN5QOk01Ta2s3lXGVztKWJlfSlldM0rB0KQwpg2KYerAGLISQvDoukvaCazZU8bNL6/DZNkdLy0qkHm3jaJv5Nk1kO9WY5XxP0KALP89UF5HbkEN9c1tPLdiN/vKG7hocBx/u3oY/j6yo4noOVmycSJKwTlzjE6je1dA9ABIm2KVYgRAWIAP901J545z01i0tYD/fbOPm1dHEhX0E+4c9gAXem4ipexrPFb/E775GwTFwoAZRnEibbKxXaUD7C+r56sdJazIL+H7veW0tmkGxQXz7+uHc9Hg+OO32Dwd4X1gxBzj0p3mOqMx5dZ3jMKFNkP8MLjwaWMGSHDsmT+2EMK5le+F2kJjBlREGvjbZglWQXUjC9YcOGasrtnEzuJaKUg4o9J8KNoKGogbDDGDHB2REO6n+jDkLTx2rKXe+P3rQUFCa01+cS0rdpSyMr+EjQcqMZk1IX5eTB4Yw9SB0UweEH18U/IeGpMayUc/mkB+US0Bvp5kJ4SSHGHlJSVNNUZPtlV/NgoSkx6GATPB//Qar7uLzQcrefqz7azdV0lkoA8/v3Agvp6KUamRUowQViMFCTCqn4NmGhcb8fHy4Ipzkpg9PJE1e8p5afU+/ry2hKd1Fn7eg5mS/CBXhe5gZNP3hG77ELXpVfDyh37TYNBF0P9CCIq2WXytbWbW76/gq+0lfJVfwt7SegDSY4K4bUIq0wbFMCY1wjadjNtMULzN2G3jwLdGc8rWBghNgXN/aizJOIPKvBDCxRz8HjbOh/zPjA7Q434E/S+wyZa9nh4e+Hl50tpmOmb8mC2EhXMo3AqvXmr0dwJjF6U5i86sEbIQ4sQ8fcA78Ngt5MEoEJ9AbVMr3+4uZ2V+CV/vLKWwugmAjPgQ7pyUxrRBMQxPDsPLCrnVw0ORnRhKdqINe4Ud+BY+vOPo9YV3wbVvQMYltntMJ1VR38wzS/NZu68SgPL6Fp74ZBtv3jHG+oUg0av1yoLEzuJaDlc2EBHoQ0ZcML7e9nsalFKMT49ifHoUNU2trN1bwbe7y/huTxl37E0D0ojyu4Gb4g8xw2sT/Y58g3e+ZaeO5NHG0o706cY/6GfQ56Kd1pqS2ma+2VXGih1GQ6HaZhM+nh6MSYvglrF9mDYolpRIGySchgpjucahtcblyEajAAEQnGAUIIZcB8ljnG75ihDCeqoaWmgxmYkJ8YP6clj7IuR+YNzYVAWf/BhueBfSz7P6YyeG+fOzCwbw5Kd5HWN9IgPIiO+d74I5tZz3jhYjAJprYMubUpAQ4iw1tprYXlDL/vJ6ooJ8GZwQS/h5v4HPHj56UOI5ENGv46rWmp3FdazMN2bRbthvzIII8vViYv8oHjw/mskDYogL9etRDFprGlvb8Pf2dI7tO394/fixTQt6ZUGioKqJ7/aUd1y/f2Qgs8L3k5zzDNSOhJQJEJrgwAiFu+h1BYlvdpXy8PtbKaxuwt/bk4dnDOTK4YmEBPgYU7PaWsHrBFtWWlmInzfTM2OZnmksQSipbWLNnnK+3V3Ge7v9+WdVMnAZE4MKuDIohxGl35N86En44knalBcNIWk0RwxCx2TiE59FQNJgvCP60IaivK6ZwuomCqubKKpupKimmaLqRuN6jTHeYjKa0cQE+3LxkHimDYphQnoUgafaKeN0aG3sb9tefDi0DsryjduUpzH1dvjNRrElZazxrqgQwq01tbbx9c5S3tt4CHObZnRqBHcMaMJr+8fHHmg2GQ3WbGT2OYmkRASwencZfaMCOTc9St71cUZlu7sZ22n/OIRwM4u2FPKL97d2XL98WAJ/mzgWz+m/M3ah8w+Hpipqd6/m20J/vt5Zwtf5pRRYZkEMigvm9ompTB0Yw4g+4ac9w2xvaR0fbDrCl9uLmZAexSVD4hkQE0ygnwP/PQlJ7NlYLxDk60VCqB8F1U3M7B/EXc2vEPKNZUnPRiDrSrj0WfCTZY7i7PSqgsSB8np+/dG2julkja1tPLUoj+yEUEaxzaiAVh2E7Kug/3Tr7X7RQzHBfswalsisYYlorTlY0cC3u8v5dk8C/yvL4C/MxqetgKFtuQz0OMSAisMMrPqOpH2fdNxHg/Zlp04i35xMvk4mXyex05xMtWc4saF+xIf4MzQpjBlZfsSF+jGqbwRZCSFnV5VuqYe6YqgrOfqxtgiKcuDwOmg0pnrhF2bMehhyjfEx8RyjWZIQolfJPVLNoYoGPJUH9aZWTGYobPEhOSDSyCGd2XAb31B/H6ZlxDItQ/rSOLWh18LOJceODbvJMbEIYWdKqRnAs4An8JLW+k/WuN9DFQ38ttMMMYCPNhfw9/RS9LJfs90nk5VNA/jalM1GHYqJjQT5ejG+XyQ/Pq8/UwZGEx965n3Oqhpa+Pl7W9h0sAqAHUW1fL2zlCuGJzIjO+6YLT/tauh18MMCo8EngJcfDL/RMbE4WN+oQB6/KIMH3tnM1X0bjxYj2uV+AON/BIkjHBOgcBu9qiBRUtPE/vJjt/fUGrLMO+Cd64+umTu0FhoegamPOyBKg1KKPpGB9IkM5IYxKcfc1tTaRmVDCxX1LRxoaCWnqgJKt+Ndnk9Q9U7im/cxq2kLfi0rO75G+0egwvoaBQCzP9QFQHMAVPrDNn9jfaC3v3G7d6fr3v7GrJG64uOLDu0fu641BGM3jMh0GHSJUXxIHmNclyUYQvR6RTVNPPN5Pi2WrcTW7CnH/+IM5k5/CrXw7qMHxg2GJHmh0+ulToaL/gIr/wRYmsylTXF0VELYnFLKE/gvMB04DKxXSn2itc47+VeeWlltM3XNpuPGf7EugG+a/0tJs7G7RKbaz52+y5k863ZGDB1itT47+8rqO4oR7XaX1NFsMvPC13v4/eWD8T6TndzOVuI5MHeZ8b8A2nj9Gt97l4ddkBXHm3eMIaV+a/cHmFrsG5BwS72qIBEV7EtsiC/FNcfuYexXnnf8P9VrX4DBV0HUADtG2DN+3p7Eh/p3qkxHAd3EWVcKJXlQsh1VkmdMv2ttMooIrQ1G9bfzxx49eJixE0hQjLFFafvnXT8GRIKHdN8VQhxvV0ldRzGi3TsbDnHl7RcTNmcRFOcaOSR5DISnnOBeRK8REA6j74KMy4x3EU60TbQQ7mc0sFtrvRdAKfU2MAs464KEhwcMTgwl50j1MeNfFAcy0TOHyWozkz23EqOqYNyPYdgQq76pdKImlx4KPttWxEPTBxB3FjMwzkr8EOMi8PHyYExaJNRlQ2y20YS+XUyW8WajEGepVxUkUqOCeOqybB545weaWo0Xw/dMSkN5lBx/sKeX8S6/KwuKhqDJxvahp6I1mJqOL1K0NBjNM9sLDV5ntlWTEEK08/c+vljp5aHw8vGD1InGRYiuguMcHYEQ9pYIHOp0/TAwputBSqm7gLsAUlJ6VsT18/Li8uEJ+Ht7sm5/BWH+3sw+J5GLs6IZafKCbzdCTTgMudvYct3KM1zTIgO5bGg8n2wp7BgblxZJXmEtA+NCCPY988btwgaCouGqebDhFdi9HNLPh5FzbboDoOg9nLIgYav1cgAXZMXy3t3j2F/eQHSwD1kJoaiyBuPduIajnWSZ8EDvqvopdXSJBhGOjkYI4cYmpEfh5+3RURgGuH9af4L85AWoEEJ00l2DL33cgNYvAi8CjBw58rjbuzMwPpicgip8vTy4f1o6RyobaWltIzkqBEIuhKQx0FoPobZp6Bjo58VjMzOY2D+ab3aVkhQeQE2TiYWbDrPg9jGObWwpuhc9EC78I0x5DHyDZCa0sBqn+2235Xo5y/0zOCmMwUlhRweTRhh7DOcvhsoDMOhi6CPv0AkhhC1kJ4byzl3j+HRLAaV1zcwensiovlIIFUKILg4DyZ2uJwEF1rrziwfHkxwewP6yes5JDiMzIYTYEMt2nQFhQJi1Hqpb8WH+XD0ymfMzYskvqqG22cTcCX0d19BSnJqHB/jbrtm06J2criCBDdfLnVSfccZFCCGEzQ1NDmNocpijwxBCCGe2HuivlEoFjgDXATdY6879fbwYkxZp9AhwoPBAH8b2i3JoDEIIx3HGJgndrZc7br6YUuoupdQGpdSG0tJSuwUnhBBCCCGErWmtTcD9wFJgO/Cu1jrXsVEJIYR1OeMMCZutlxNCCCGEEMJVaK2XAEscHYcQQtiKM86QsOl6OSGEEEIIIYQQQjieMxYkOtbLKaV8MNbLfeLgmIQQQgghhBBCCGFFTrdkQ2ttUkq1r5fzBObJejkhhBBCCCGEEMK9OF1BAmS9nBBCCCGEEEII4e6cccmGEEIIIYQQQggh3JwUJIQQQgghhBBCCGF3UpAQQgghhBBCCCGE3UlBQgghhBBCCCGEEHYnBQkhhBBCCCGEEELYndJaOzqGs6aUKgUOdBqKAsocFI49uPP5ufO5gZyfqzuT8+ujtY62RTDOpksulp8F1ybn59rk/I7VW/MwyM+CK3PncwM5P1dntdfEblGQ6EoptUFrPdLRcdiKO5+fO58byPm5Onc/P2ty9+dKzs+1yfm5Nnc/P2ty9+fKnc/Pnc8N5PxcnTXPT5ZsCCGEEEIIIYQQwu6kICGEEEIIIYQQQgi7c9eCxIuODsDG3Pn83PncQM7P1bn7+VmTuz9Xcn6uTc7Ptbn7+VmTuz9X7nx+7nxuIOfn6qx2fm7ZQ0IIIYQQQgghhBDOzV1nSAghhBBCCCGEEMKJuWxBQik1QymVr5TarZR6tJvbpyilqpVSmy2X3zgizjN1qvOzHDPFcm65Sqmv7R3j2ejB9+8Xnb5325RSbUqpCEfEeiZ6cH6hSqlPlVJbLN+/2xwR55nqwfmFK6UWKqW2KqXWKaWyHRHnmVBKzVNKlSiltp3gdqWU+pfl3Lcqpc6xd4zORHKx5GJn5s652J3zMEguPh2ShyUPOzN3zsPg3rnYbnlYa+1yF8AT2AOkAT7AFiCzyzFTgEWOjtWG5xcG5AEplusxjo7bmufX5fhLga8cHbeVv3+PA3+2fB4NVAA+jo7diuf3F+AJy+eDgC8dHfdpnN8k4Bxg2wluvwj4DFDAWGCto2N28p8FycVOepFc7Lq52N3zsCVmycXW+1mQPOykF8nDrpuHT+P8XDYX2ysPu+oMidHAbq31Xq11C/A2MMvBMVlTT87vBuBDrfVBAK11iZ1jPBun+/27HnjLLpFZR0/OTwPBSikFBGEkX5N9wzxjPTm/TOBLAK31DqCvUirWvmGeGa31Kozvx4nMAhZow/dAmFIq3j7ROR3JxZKLnZk752K3zsMgufg0SB6WPOzM3DkPg5vnYnvlYVctSCQChzpdP2wZ62qcZfrPZ0qpLPuEZhU9Ob8BQLhSaqVSaqNS6ha7RXf2evr9QykVAMwAPrBDXNbSk/P7D5ABFAA5wANaa7N9wjtrPTm/LcAVAEqp0UAfIMku0dlej39+ewHJxZKLnZk75+LenodBcnE7ycOSh52ZO+dhkFxslTzsZbVw7Et1M9Z1u5BNQB+tdZ1S6iLgI6C/rQOzkp6cnxcwAjgP8AfWKKW+11rvtHVwVtCT82t3KfCt1vpk1Tln05PzuxDYDEwD+gHLlVLfaK1rbBybNfTk/P4EPKuU2ozxx+UHXKfafSqn8/Pr7iQXSy52Zu6ci3t7HgbJxe0kD0sedmbunIdBcrFV8rCrzpA4DCR3up6EUVXroLWu0VrXWT5fAngrpaLsF+JZOeX5WY75XGtdr7UuA1YBQ+0U39nqyfm1uw7XmpoGPTu/2zCmF2qt9W5gH8a6MlfQ09+/27TWw4BbMNYE7rNbhLZ1Oj+/7k5yseRiZ+bOubi352GQXNxO8rDkYWfmznkYJBdbJQ+7akFiPdBfKZWqlPLB+AX9pPMBSqk4y1qk9ukxHkC53SM9M6c8P+BjYKJSyssyhWsMsN3OcZ6pnpwfSqlQYDLGubqSnpzfQYxKPpZ1ZAOBvXaN8sz15PcvzHIbwB3AKhepdPfEJ8Atls7CY4FqrXWho4NyEMnFkoudmTvn4t6eh0FycTvJw5KHnZk752GQXGyVPOySSza01ial1P3AUozupvO01rlKqXsst/8fcBVwr1LKBDQC12mtXWIqX0/OT2u9XSn1ObAVMAMvaa273ZLF2fTw+wcwG1imta53UKhnpIfn9ztgvlIqB2O60yOWqr7T6+H5ZQALlFJtGJ2vb3dYwKdJKfUWRkfyKKXUYeAJwBs6zm0JRlfh3UADRmW/V5JcLLnYmblzLnb3PAySi3tK8rDkYWfmznkY3D8X2ysPKxfJR0IIIYQQQgghhHAjrrpkQwghhBBCCCGEEC5MChJCCCGEEEIIIYSwOylICCGEEEIIIYQQwu6kICGEEEIIIYQQQgi7k4KEEEIIIYQQQggh7E4KEkIIIYQQQgghhLA7KUgIt6OUClNKPamUmmKnx7tcKfWkPR5LCCFcheRiIYRwLMnDwhVIQUK4ozDgCWCKnR7vcsvjCSGEOCoMycVCCOFIYUgeFk5OChJCiA7KEOToOIQQojeTXCyEEI4ledh+pCDRSyilblVKaaXUeUqp3yilDiilGpVSa5VSYy3HTFZKrVZK1SulCpVSv+7mfkYqpRYqpcqUUs1KqXyl1C+VUl5djhutlJqvlNqplGpQStUqpb5VSs3u5j7nW2ILVUo9r5QqUUo1WY4fc5rnOQXYZ7n6hOV+tVJqf5fjrrWca60lvrVKqau6ub+LlVJfW863USl1UCn1oVJqgOX2lcAcy+e60+XW04g5Qin1D6XUHst5lyulNiqlftHNsVcqpVYopaoscecrpf6llPLpdEygUuppy/01K6WKlFILlFJ9uj5X7bEqpX6klMoDmoCfn+7zJIToGcnFkoslFwvhWJKHJQ9LHnYuSmvt6BiEHViSwSvABsATeB3wAX5m+TgHeBl4ETgIXIMxvetmrfXrlvu4CFgI7LZ8fQUwDrgZ+FBrfXWnx3samAp8ARwAIi2PMQi4UWv9Zqdj51tuWwuUAkstx/8UMAF9tda1PTzPWOB64B+WWD+03FSntf7IcszvgV8Cn1seywzMtpzv/Vrr/1qOmwx8BeQArwFVQAJwPvBnrfUSpdR04NfARMvz0O47rfXeHsb8JTAJeAHYAgRgPE8pWuuLOx33B+BxIA94FygE+gFXAiO11lWWP4IrgQnA+8AKoD9wryX+kVrrw5b7m2K5fQvG8/0/oAg4pLX+rKfPkxCi5yQXSy5GcrEQDiV5WPIwkoedi9ZaLr3gAtwKaGAT4NNp/DLLuAkY1WncB+OXe43luh/GL+YqwKvLfT9kuY8pncYCu4khAMgH8rqMz7d8/XNdxq+2jN99mufa1/J1T3Zz2zmW2/7YzW0fATVAsOX63y3Hxpzi8eYbv0pn9H0J7e7cuzlutOW4rwC/LrcpjhYX77Qc90yXYy62jL/WaWyKZayi6zmezvMkF7nIpecXycUdt0kuPjomuVgucrHjRfJwx22Sh4+OSR524EWWbPQ+z2utWzpd/8by8Xut9fr2Qcsx6zAqiQDTgViMinKYUiqq/QIssRxzQaevr2//XCkVoJSKxEi+XwEZSqmQbmL7R5frX1k+9u964Fm4ESOpvNr5HCzn8QkQjFHhBqi2fLyy6/Q7K2oEmoExSqm+p4gb4DGtdVPnG7SF5epsjKrt012OWQxsBmYppbr+3i/QWpd083g9fZ6EEKdPcrHkYsnFQjiW5GHJw5KHnYCtfqCE8zpmypTWulIpBUfXmHVWiTFtCSDD8nHeSe47tv0TpVQM8HtgFhDTzbFhGBXFk8VWboktEuvJwKie7jjJMe3n8R+M+J8D/qyUWo0xVestrXWpNYLRWrcopR4EngX2WdasfQV8pLX+stOh/TGS4ZZT3GUqUKC1ruzmtlxgGBAFdE62O7s59nSeJyHE6ZNcLLlYcrEQjiV5WPKw5GEnIAWJ3qftNMfbKcvHX2BUFbtTAEZXWmAZxi/wv4D1GJXVNuA24Aa6aaiqtT5RDOoE42dCYSSxmZz4nHMt8ZQrpUZhrIWbjrGm7R/Ab5VSF2mt11gjIK31/ymlPsaYQjYZuAq4Xyn1jtb6ui5xn8qZPFcNJ7ifHj1PQogzIrlYcnFXkouFsC/Jw5KHu5I87ABSkBA9tcvysV5r/cUpjh0CDAWe0lo/0fkGpdQdtgiui5MlqV3ADOCg1nr7Ke/I+IOw0nJBKTUE2Aj8CiNZnurxekRrXQi8BLyklPLEaBh0vVLqb5Zpg/mWuIdgTBs8kT3ADKVUmNa6qsttmRgV+LIehHRaz5MQwm4kFyO5WAjhUJKHkTwsrEd6SIieWooxpelRpVRE1xuVUv5KqWDL1fbqoepyTDbGei5bq7N8PC5OjKQG8EdLkjuGZVpd++dR3Xz9Dow1bp3vu85yfHePd1KWtYQBnccsCX+r5Wr7fbZ3YP6jUsq3m/tpf64/wvi9frTL7TOB4cAnWmtzD0Lr8fMkhLArycUGycVILhbCQSQPGyQPI3nYGmSGhOgRrXW9UuoWjF/ufKXUPIytjsIwtuO5AiOxrgS2Y0xdetiSWPKBAcDdwDaMbrW2jLVcKbUbuE4ptQcoxqhif6q1Xq+UegL4LbBZKfUexrS6eGAEcBFGN2WA/ymlkjCm2h0A/IFrMZrXLOj0kN8D9wPPKaUWA63AWq11d2sQuxoAfK2UWojx3FRiTOu7F2MN4zeWc1qnlPoz8AiwUSn1DkaH51SM6WyjMbYwmo+xXdQjloZAq4B04D7L8/B4D5/D03mehBB2IrlYcvFJnichhB1IHpY8fJLnSZyJ7rbekIv7XTi6xdGUbm7TwPxuxufTZeseIBtjv+UjQAvGL/R3GPsOR3Q6rg/wHsYeyg0YU6pmA09aHq/vyR7nVLH14HxHA98C9Zb72N/l9osxKtwVGB19DwGfAfd2OuYKjO65hy3HlAJfA1d2uS8P4K+W49osj3drD+OMxFiDtxkjeTZi/FH7JxDfzfHXW86r1nJuOyzHdt62KhCjo/Bey/eoBKO626fLfU05Vaw9eZ7kIhe59PwiuVhyseRiucjFsRfJw5KHJQ8716V9n1YhhBBCCCGEEEIIu5EeEkIIIYQQQgghhLA76SEhXIZSKq4Hh1VrrRttHswpKKX8gdBTHae1LrJDOEIIYTWSi4UQwrEkDwt3Iks2hMtQSvXkh/U2rfV8W8dyKkqpW4FXTnWc1tqa+0kLIYTNSS4WQgjHkjws3InMkBCuZHoPjsm1eRQ9s5SexSuEEK5GcrEQQjiW5GHhNmSGhBBCCCGEEEIIIexOmloKIYQQQgghhBDC7qQgIYQQQgghhBBCCLuTgoQQQgghhBBCCCHsTgoSQgghhBBCCCGEsDspSAghhBBCCCGEEMLu/h+oro6KaU5a+wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,3,figsize=(6*3,6))\n", + "\n", + "var = {'x': 'mean_test_score',\n", + " 'y': ['mean_fit_time', 'mean_score_time', 'clf_size_MB'],\n", + " }\n", + "\n", + "for idx, y_var in enumerate(var['y']):\n", + "\n", + " sns.scatterplot(data=df_size, x=var['x'], y=y_var, hue='clf', ax=ax[idx])\n", + " ax[idx].set_xlabel('mean_test_score', fontsize=18)\n", + " ax[idx].set_ylabel(y_var, fontsize=18)\n", + "\n", + " for clf in ['RF', 'OF']:\n", + " tmp_degree = {}\n", + " tmp = df_size.query(f'clf==\"{clf}\"')[var['x']]\n", + " qlow, qhigh = np.quantile(tmp,[0.00,1.0])\n", + " x = np.linspace(qlow, qhigh, 20)\n", + "\n", + " for degree in [1,2]:\n", + " model = bestfit(df=df_size, y=y_var, clf=clf, degree=degree)\n", + "\n", + " tmp_degree[degree] = r2_score(\n", + " y_true=df_size.query(f'clf==\"{clf}\"')[var['x']],\n", + " y_pred=model(x))\n", + "\n", + " # print(f'{tmp_degree[degree]}')\n", + "\n", + " max_idx = max(tmp_degree, key=tmp_degree.get)\n", + " model = bestfit(df=df_size, y=y_var, clf=clf, degree=max_idx)\n", + " ax[idx].plot(x, model(x))\n", + " ax[idx].locator_params(axis='x', nbins=8)\n", + "\n", + " if idx == 2:\n", + " ax[idx].set_ylabel('clf_size (MB)')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Binning Figure\n", + "The `mean_test_score` is quantized into N number of bins and each corresponding metric variable is plotted with respect to each bin" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "df_cut = pd.cut(df_size['mean_test_score'], 10).to_frame().reset_index(drop=True)\n", + "df_cut.columns = ['bins']\n", + "df_bin = pd.concat([df_size, df_cut], axis=1)\n", + "df_bin['bins_mid'] = df_bin.apply(lambda x: round(x['bins'].mid,2), axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXMAAAF7CAYAAACQMBh9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADiEklEQVR4nOzdeZxcdZX//9fpJensnX3rbCRAFshGFB0VQRZBEFAUBWVRHMaFrzrquIz+FHV0nBl03FCHGZFFZRHZQXBBxBUJCQSyAdm7s3Rn6c6eTnef3x+fqq7qTu9dVbeq7vv5ePSjP3XvrVsHkr6pPnXuOebuiIiIiIiIiIiIiEh+K4k6ABERERERERERERHpnpK5IiIiIiIiIiIiIgVAyVwRERERERERERGRAqBkroiIiIiIiIiIiEgBUDJXREREREREREREpAAomSsiIiIiIiIiIiJSAMqiDiATxowZ49OnT486DBGJuWeffXanu4+NOo5c0HVXRPJBXK67uuaKSD7QNVdEJHe6uuYWRTJ3+vTpLF26NOowRCTmzGxT1DHkiq67IpIP4nLd1TVXRPKBrrkiIrnT1TVXbRZERERERERERERECoCSuSIiIiIiIiIiIiIFQMlcERERERERERERkQJQFD1zO3L06FGqq6s5fPhw1KH0WUVFBVVVVZSXl0cdiohItwr9uqtrroiIiGSC3hOJiOROHK+5RZvMra6uZtiwYUyfPh0zizqcXnN3du3aRXV1NTNmzIg6HBGRbhXydVfXXBHJNDO7GbgAqHX3k9K2/z/gOqAJeMTdPx1RiCKSJXpPJCKSO3G85hZtm4XDhw8zevTogvuDTDIzRo8eXbCfLIhI/BTydVfXXBHJgluAc9M3mNkZwEXAfHefB9wQQVwikmV6TyQikjtxvOYWbTIXKMg/yHSFHr+IxE8hX7cKOXYRyT/u/hSwu93mDwHfcPcjiWNqcx6YiOREIb+vKOTYRSSeCvm61ZfYizqZm03XX389N9wQiinWrFnDwoULWbRoEevWrYs4MhGR4qTrrogUgROAN5jZ02b2BzN7VWcHmtm1ZrbUzJbW1dXlMEQRyXd6TyQikjv5eM1VMjcD7r//fi666CKWL1/OzJkzow5HRKTo6borIgWqDBgJvAb4F+Bu66Qcw91vcvcl7r5k7NixuYxRRAqI3hOJiOROvlxzi3YAWqbddttt3HDDDZgZ8+fPb/1De/TRR/n2t79NaWkpTz31FL///e8jjlREpDjouisiRagauNfdHfi7mbUAYwCV3opIp/SeSEQkdwrhmqtkbg+sXLmSr33ta/z5z39mzJgx7N69m+9+97sAvOUtb+GDH/wgQ4cO5VOf+lTEkYqIFAddd0WkSN0PvAl40sxOAAYAOyONSETymt4T9Z+ZnQjclbbpOOCL7v7taCISkXxVKNdcJXN74IknnuAd73gHY8aMAWDUqFERRyQiWXPbxVC/GSqnwpX3Rx1NbOm6WyD08yLSKTO7AzgdGGNm1cCXgJuBm83sRaARuCpRpSuFRtc/yRG9J+o/d18LLAQws1KgBrgvyphEJD8VyjVXydwecPeCnownIr1Qvxl2a3hE1HTdLRD6eRHplLtf1smu9+Y0EMkOXf8kR/SeKOPOBNa5+6aoAxGR/FMo11wlc3vgzDPP5G1vexv//M//zOjRo9m9e3fUIYmIFDVdd0VERET0nigL3g3c0X6jmV0LXAswderUPp14ytRpVG/Z3K/gMq1qylS2bFbeuqfy8c8Q9OfYGytWPE9j49E+P3/8+PF885vf5PTTT6eyspKGhga2bt3KoEGDWLp0aZt1bwwYUM78+Qv6HFd7Sub2wLx58/j85z/PG9/4RkpLS1m0aBHTp0+POiwRkaKl666IiIiI3hNlkpkNAC4EPtd+n7vfBNwEsGTJkj61v6nesplv/Xptv2LMtE+cc2LUIRSUfPwzBP059kZj41GWnDC5z89fcsJkDu/5BB//6HXhmjv/JKZPrWLokCEsOWEyD48e1rrujaUv1fQ5po4omdtDV111FVdddVWH+66//vrcBiMiEgO67oqIiIjoPVEGnQcsc/cdUQciIvnrqssv5arLL+1w3/Wfy49hk0rmioiIiOSZK378NNV7DlE1chC3X3Nq1OGIiIgUg8vooMWCiEihUTJXREREJM9U7znEhp0Hog5DRESkKJjZYOBs4J+ijkVEpL+UzBURERERERGRouXuB4HRUcchIpIJJVEHICIiIiIiIiIiIiLdUzJXREREREREREREpABElsw1swoz+7uZPW9mK83sy4nt15tZjZk9l/h6S1QxioiIiIiIiIiIiOSLKHvmHgHe5O77zawc+JOZ/Sqx77/d/YYIY8uI0tJSTj75ZJqampgxYwa33347lZWVbNy4kTlz5nDiiSe2Hvv3v/+dAQMGRBitiEjh03VXRERERO+JRERyqXRkFSfPm01TUzMzpk3h9v/5HpWVI9i4aQtzXv1GpkyZwuDBg4HMXHMjS+a6uwP7Ew/LE18eRSxNzS3cu6yGu5ZuYVv9ISZWDuJdS6ZwySlVlJZYn887aNAgnnvuOQCuuuoqbrzxRj7/+c8DMHPmzNZ9IiJxo+uuiIiIiN4TiYhk2pR5r6K6uiZj56uqmsyWlc90ecygQRU896ffAnDVBz/Gjf97C5//l48BMHPGNG657acsWbIkYzFFWZmLmZUCzwKzgBvd/WkzOw+4zsyuBJYCn3T3PR0891rgWoCpU6f2OYam5hau+/lyHlu5vXXb1obDPLtpD0+sqeX7ly+irLT/3She+9rXsmLFin6fR0Sk0Om6KyIiIqL3RCIi2VBdXcO3HlqasfN94q29S8K+9lWnsGLl6oy9fkciHYDm7s3uvhCoAl5tZicBPwRmAguBbcA3O3nuTe6+xN2XjB07ts8x3Lusps0/nukeW7mde5f3P5vf3NzM7373Oy688MLWbevWrWPhwoUsXLiQj3zkI/1+DRGRQqHrroiIiIjeE4mIFJvm5mZ+94c/ceFbzmndtm7DJi6//PKMXnMjrcxNcvd6M3sSODe9V66Z/S/wcDZf+66lW7rcf/czW7h0yZQ+nfvQoUMsXLiQjRs3csopp3D22We37tOtLSISV7ruioiIiOg9kYhIsTh06DALX38WGzdXc8qC+Zx9xmmt+7LRZiGyylwzG2tmlYn1IOAsYI2ZTUw77G3Ai9mMY1v9oS73b+1mf1eSfYo2bdpEY2MjN954Y5/PJSJSLHTdFRER6YPbLobvLg7fpSjoPZGISHFI9szd9MLfaTzayI3/+5Osvl6UbRYmAr83sxXAM8Bv3P1h4D/N7IXE9jOAf85qEJWDutw/qZv9PTFixAi++93vcsMNN3D06NF+n09EpJDpuisiItIH9Zth97rwXYqC3hOJiBSXESOG893/+Co3fO9HWb3mRpbMdfcV7r7I3ee7+0nu/pXE9ivc/eTE9gvdfVs243hXN7etXPqqvt3W0t6iRYtYsGABd955Z0bOJyJSqHTdFREREdF7IhGRYrRowcksOGkud/7ygay9Rl70zI3SJadU8cSa2g4bz587bwKXLK7q87n379/f5vFDDz3Uun7xxax2jxDJuCt+/DTVew5RNXIQt19zatThSAHTdVdERERE74lERLKhqmoyn3hr5vrTVlVN7vaY/VtfafP4obtua12/+Lffs/Sl/g+0TBf7ZG5pifH9yxdx7/Ia7n5mC1vrDzGpchCXvmoKlyyuorTEog5RJC9U7znEhp0Hog5DioCuuyIiIiJ6TyQikg1bVj4TdQhZF/tkLkBZaQmXLpnS50mhIiLSO7ruioiIiOg9kYiI9F6UA9BEREREREREREREpIeUzBUREREREREREREpAErmioiIiIiIiIiIiBQAJXNFRERERERERERECoCSuVlWXV3NRRddxPHHH8/MmTP52Mc+RmNjI08++SQjRoxg4cKFLFy4kLPOOivqUEVECp6uuSIF5raL4buLw3cREckYvScSEcmd6pqtXHTZ1Ry/6HXMXPBaPvaZ/y9cc//4F0ZMOZHLL788o9dcJXMBmptg2e3w43PgW/PC92W3Q0tzv07r7rz97W/n4osv5uWXX+all15i//79fP7znwfgDW94A8899xzPPfccv/3tbzPxXyIiUhiycN3VNVekANVvht3rwncRkTjSeyIRkYyaPu8UbMSkjH1Nn3dKl6/n7rz9vR/g4vPP5eXlf+alZX9i//4DfP4r3wDgDa89lZ///OcZveaWZeQshay5Ce65GlY/lNq2txq2PA0vPw7vuAVK+/a/6YknnqCiooL3ve99AJSWlvLf//3fzJgxgzPOOKP/sYuIFKIsXXd1zRUREZGCovdEIiIZt6l6G/6rz2XsfHbev3e5/4k//ImKioG8773vBhLX3H//MjPmv4YzTntdxuJIp8rc5+9o+49nutUPwYo7+3zqlStXcsopbTP4w4cPZ+rUqbzyyiv88Y9/bL295Wtf+1qfX0dEpKBk6bqra66IiIgUFL0nEhEpeCvXrOWUhfPbbBs+fBhTqybxyvoN/PGvT7e2WcjUNVeVuctv73r/stth0Xv7dGp3x8w63f6GN7yBhx9+uE/nFhEpWFm67uqaKyIiIgVF74lERAqeOx1fc0lcc197Ktf/27+zZMmSjL2mKnMbarrZX93nU8+bN4+lS5e22bZ37162bNnCzJkz+3xeEZGClqXrrq65IpJPzOxmM6s1sxc72PcpM3MzGxNFbCKSJ/SeSESk4M2bfQJLlz/fZtvevfvYUr2NmTOmZ+U1lcwdMbmb/VV9PvWZZ57JwYMHue222wBobm7mk5/8JFdffTWDBw/u83lFRApalq67uuaKSJ65BTi3/UYzmwKcDWjqm0jc6T2RiEjBO/P0N3Dw4CFuu+MXQOKa+/kvc/V7LmXwoEFZeU0lcxdd0fX+xd3s74KZcd999/GLX/yC448/nhNOOIGKigq+/vWv9/mcIiIFL0vXXV1zRSSfuPtTwO4Odv038GnAcxuRiOQdvScSESl4ZsZ9P/sxv7j/IY5f9DpOWPx6KioG8vUvfjZrr6meuQsvD5NCO2o8P+etsOCyfp1+ypQpPPTQsec+/fTTOf300/t1bhGRgpTF666uuSKSz8zsQqDG3Z/vqLdau2OvBa4FmDp1ag6iE5Gc03siEZGMm1Y1ETvv3zN6vu5MqZrMQ3fddsz209/wD5z+hn9g6UvdtNXpJSVzS0rhHbeESaHLbg99iUZUhU9BF1wW9ouISObouisiMWRmg4HPA+f05Hh3vwm4CWDJkiWq4hUpRnpPJCKScRtXPht1CFmnZC5AaVmYEtqHSaEiItIHuu6KSPzMBGYAyarcKmCZmb3a3bdHGpmIREfviUREpJfUM1dEpAiY2blmttbMXjGzY5rzmNl7zGxF4usvZrYgbd9GM3vBzJ4zs6XtnysiIv3n7i+4+zh3n+7u04FqYLESuSIiIiLSG0WdzHUv7DvSCj1+EckNMysFbgTOA+YCl5nZ3HaHbQDe6O7zga+SuHU3zRnuvtDdl/QnlkK+bhVy7CKSf8zsDuCvwIlmVm1m10Qdk4jkTiG/ryjk2EUkngr5utWX2Is2mVtRUcGuXbsK9g/U3dm1axcVFRVRhyIi+e/VwCvuvt7dG4E7gYvSD3D3v7j7nsTDvxFu782oQr7u6porIpnm7pe5+0R3L3f3Knf/cbv90919Z1TxiUj26D2RiEjuxPGaW7Q9c6uqqqiurqauri7qUPqsoqKCqqqM51tEpPhMBrakPa4GTu3i+GuAX6U9duDXZubA/ySG7hyju8nqhX7d1TVX8kFTcwv3Lqtha/0hALbWH+LuZ7ZwySlVlJZYxNGJiEhP6D2RiEjupF9zd+7cyerSpqhDOsbOnfWsXr26w319ueYWbTK3vLycGTNmRB2GiEgudJTh6fBjSTM7g5DMfX3a5te5+1YzGwf8xszWuPtTx5ywm8nquu6K9E9TcwvX/Xw5j61MtVA90tTCp3+5gifW1PL9yxdRVlq0N1WJiBQNvScSEcmd9Gvu3Llz8Se+HnFEx5p73r9mtHJYvxGIiBS+amBK2uMqYGv7g8xsPvB/wEXuviu53d23Jr7XAvcR2jaISI7du6ymTSI33WMrt3Pv8pocRyQiIiIiIvlGyVwRkcL3DHC8mc0wswHAu4EH0w8ws6nAvcAV7v5S2vYhZjYsuQbOAV7MWeQi0uqupVu63H/3M13vFxERkY6ZWaWZ3WNma8xstZm9NuqYRET6qmjbLIiIxIW7N5nZdcDjQClws7uvNLMPJvb/CPgiMBr4gZkBNLn7EmA8cF9iWxnwc3d/LIL/DJHY25bok9uZrd3sFxERkU59B3jM3d+RKH4YHHVAIiJ9pWSuiEgRcPdHgUfbbftR2voDwAc6eN56YEHWAxSRbk2sHMTWhsOd7p9UOSiH0YiIiBQHMxsOnAZcDeDujUBjlDGJiPSH2iyIiIiI5IF3LZnS5f5LX9X1fhEREenQcUAd8BMzW25m/5doLyYiUpCUzBURERHJA5ecUsW58yZ0uO/ceRO4ZHFVjiMSEREpCmXAYuCH7r4IOAB8Nv0AM7vWzJaa2dK6urooYhQR6TElc0VERETyQGmJ8ZWL57XZNrCshP98x3xufM9iSkssoshEREQKWjVQ7e5PJx7fQ0jutnL3m9x9ibsvGTt2bM4DFBHpDSVzRURERPLEpl0H2zyeVDmIS5dMUSJXRESkj9x9O7DFzE5MbDoTWBVhSCIi/aIBaCIiIiJ5Yl3t/qhDEBERKUb/D/iZmQ0A1gPvizgeEZE+iyyZa2YVwFPAwEQc97j7l8xsFHAXMB3YCFzq7nuiilNEREQ6tm3vYSamfZf+W1enZK6IiEimuftzwJKo4xARyYQo2ywcAd7k7guAhcC5ZvYaQiPy37n78cDvaNeYXERERCLW3ATLbmdUUy1A+L7sdmhpjjiwwreu7kDUIYiIiIiISB6LLJnrQbL8pDzx5cBFwK2J7bcCF+c+OhEREelQcxPcczU8eB0DOQoQvj94HfziqrBf+ixZmaseuSIiIiIi0pFIB6CZWamZPQfUAr9JTJcc7+7bABLfx0UYokjsNTW3cPczW9hafwiArfWHuPuZLTS3eMSRiUgknr8DVj/U8b7VD8GKO3MbTxE50tTMlt1hANqAUs2oFRERERGRY0X6m4K7N7v7QqAKeLWZndTT55rZtWa21MyW1tXVZS1GkThram7hup8v59O/XMGRphYAjjS18OlfruAjP1tGU3NLxBGKSM4tv73r/cu62S+d2rTrIMnPycpLVZkrIiIiIiLHyouyD3evB54EzgV2mNlEgMT32k6ec5O7L3H3JWPHjs1VqCKxcu+yGh5bub3DfY+t3M69y2tyHJGIRK6hm5/7hurcxFGE1tWmhp+VqzJXREREREQ6ENlvCmY21swqE+tBwFnAGuBB4KrEYVcBD0QSoIhw19ItXe6/+5mu94tIERoxuZv9VbmJowgl++WCkrkiIiIiItKxsghfeyJwq5mVEpLKd7v7w2b2V+BuM7sG2Ay8M8IYRWJtW6JPbme2drNfRIrQoitgy9Od7198Re5iKTLr6g60rsvL1GZBRERERESOFVky191XAIs62L4LODP3EYlIexMrB7G14XCn+ydVDsphNCKSF+a/Gx79FDR1cG2Y81ZYcFnuYyoSycrcYQPLKDUlc0VERERE5Fi6h09EOvWuJVO63H/pq7reLyJFaNtzxyRymyiFi26Ed94KJaXRxFXg3L21Z+5x44ZiSuaKSFJzUxguuTfRs3xvTXjc0hxtXCIiIhIJJXNFpFOXnFLF9NGDO9x37rwJXLJYvTFFYmf1sa3sDzMQFr1Xidx+2LH3CAcaQ2Jm5tghEUcjInmjuQnuuRoevC71QVrT4fD4F1eF/SIiIhIrSuaKSKdKS4yJIyrabBtYVsJ/vmM+N75nMaUlqhwTiRV3WPVgWA8Y2rq5FFWH9Vf68LOZY4d2caSIxMrzd8Dqhzret/ohWHFnbuMRERGRyCmZKyKdcndWb98HQHlpSNxOqhzEpUumKJErEkfbnof6TWF9wrk0J95GKJnbf0rmikiHlt3Szf7bcxKGiIiI5A8lc0WkU1sbDlN/8CgQKnJFJOZWP5haz70w9MoFymgOVbvSZ8l+uQCzxqnNgkjs1W+GX38Bqp/t+riG6tzEIyIiInmjLOoARCR/rdq6t3U9oKwUjqj6TiS20lsslA+GWWfTTBlwlBIcDu2BwaMiDbGQras7AIT2NlNHKZkrEkvusPmv8LcfwpqHwVu6f84IzS8QERGJGyVzRaRTbZK5parMFYm1ujWw6+WwnnUWDBjcWpkLQMMWJXP7YX2izcK0UYMZoDshROKl6Qi8+MuQxN2+ou2+skHQdKjz5y6+IruxiYiISN5RMldEOrVqW0PrWskFkZhb9UBqPfciAJqtFJLdFeo3w8QFuY+rCBw40sTWhjCl/jj1yxWJj307YOnNsPTHcKCu7b4xJ8Kp/wQnvxMe+HDHQ9DmvBUWXJabWEVERCRvKJkrIp1atS1U5k6uHKSBZyJxl2yxUDoAjj8HoG1lbv2WCIIqDht2Hmhdz1S/3KJhZjcDFwC17n5SYtt/AW8FGoF1wPvcvT6yICUaW5fD334UqnFbjrbdN+tseM2HYOabwBLvvd5xC6y4Ex74SOq4i24MidySUkRERCReVGonIh1qOHSULbvDbX1zJg6POBoRidTOV6B2ZVjPPBMqwjWhuX2bBemTdXWp4Wczx6gyt4jcApzbbttvgJPcfT7wEvC5XAclEWlugpX3w4/fDDedHpKzyURu+RB41T/CdUvhvffArDNTiVyA0jJY9N7QciFJiVwREZHYUmWuiHRo9bZUv9x5k4a3STaISMysTm+xcGHrsin9bUT95hwGVFzW1aYlc1WZWzTc/Skzm95u26/THv4NeEdOg5LcO7gblt0Gz/zfsR96VU6FV/9TSNQOquz+XKVl0JRY79sOIyZnOloREREpAErmikiH0oefzZ00nAef3xphNCISqWSLhZIyOPG81s1OWuWYkrl9tq4u1WbhOFXmxsn7gbuiDkKypHYNPP0jeP7OYweYTXs9vOaDcOJbelddW1KeWtdvVjJXREQkppTMFZEOrUqrzJ2rNgsi8bVnE2x7LqxnvBEGjez4OLVZ6LPknQ+jhwxg5JABEUcjuWBmnyfUWP6si2OuBa4FmDp1ao4ik35paYFXfgtP/xDWPdF2X+nAMMzs1H+CifP7dv6SdndDTHtt32MVERGRgqVkroh0aGWiMndYRRlVIwd1c7SIFK3VD6bWaS0WjnFoDxzZBwOHZT+mItLc4qxPDECbOVZVuXFgZlcRBqOd6e7e2XHufhNwE8CSJUs6PU5yrLkJnr8D9taEx3tr4O//By1N8Mz/wq5X2h4/dHzoh3vK1TB0bP9eu7RdZa6IiIjEkpK5InKMxqYWXqndB4SqXEsfwiEi8ZJssWAlMPuCro+t3wLj52Y/piJSs+cQjU0tgPrlxoGZnQt8Bnijux+MOh7ppeYmuOdqWP1QalvTYXj0k8ceO2kxvOZDMPdiKMtQxX2bytxNmTmniIiIFBwlc0XkGC/X7uNocygCmjdpRMTRFD8zOw04BxgPfNPd15jZUGAxsMLd66OMT2Js71ao/ntYT3sdDBnT9fENSub2VvpwSVXmFhczuwM4HRhjZtXAl4DPAQOB3yQ+KP2bu38wsiCld56/o20i9xgG8y6G13wYql4Fmf4wvH2bBREREYklJXNF5Bjth59JdphZKfBzwjRzAxy4A1hD6KV4P3AD8PWIQpS4W/1waj33ou6PV3Kh15TMLV7uflkHm3+c80Akc5bf3vX+SQvhnbfkIhJdb0VERGKsJOoARCT/aPhZznwGuAT4BDCHkNAFwN0PA/cBb4kmNBFg1QOpdXctFkDJhT5YV3egda1krkiea6jpev/+utzEAdBQDS3NuXs9kQiZ2RAzO8vM3mNm46OOR0QkakrmisgxksPPykuNWeOUXMiiK4Hb3P07wM4O9q8GZuY2JJGE/XWw+S9hPeVUGD6x++c0bMluTEUoWZk7oKyEyRo2KZLfRkzuZn9VbuIAaDkK+7bl7vVEImJmHwJqgF8DtwHzEtvHmtlhM7s2yvhERKKgZK6ItOHurE4kc08YP4wBZTG5TDQ3wbLb206nXnZ7tqtepgN/7WJ/PTAymwGIdGrNw+BhMFd3LRZakkXlqszttfWJZO5xY4ZQWqJhkyJ5bdEVXe9f3M3+TNM1V4qcmV0C3Aj8HvgAbe9iqwMeA3rQB0pEpLjEJEsjIj1VvecQ+440ATFqsZCcTv3gdWEqNYTvD14Hv7gq7M+OfcCoLvbPAnJ4z6ZImvQWC3Pe2uWhTZSGRb0qc3uj/mAjO/c3AmqxIFIQFl4Ox5/T8b45b4UFHbVJziIlc6X4/Qvwe3d/G/BAB/uXAiflNiQRkegpmSsibayM4/CzrqZTr34IVtyZrVf+E/Bes2PHXZvZSOD9hEoEkdw6uBs2/jGsJy2CyqldHt6cTOYeqIWjh7IcXPFI75d73NghEUYiIj1SUgr/8NG228oq4KIb4Z23hv25pGSuFL+TCTMkOrMNGJejWERE8oaSuSLSxqqtDa3r2FTmdjedelk3+/vua8DxwBNAcrrUAjP7J2AZMAT4RrZeXKRTa38FLYmK9G5aLAA0UZZ60FCdpaCKT7JfLqgyV6Rg1G9q+3j4ZFj03twncjuKRaT4NNN1zmIScKCL/SIiRUnJXBFpY9W2VGXunLhU5nY3nTpLySl3Xwq8HZgN/CSx+Qbgh8Ag4G3uviorLy7F5baL4buLw/dMaNNi4cJuD2+tzAVVivWCkrkiBWjXuqgjSNH1Vorf88CbO9phZiXAO4FnchqRiEgeKOv+EBGJk1WJNgtTRw1meEV5xNHkyIjJsLeLhG0Wp1O7+6NmNh04G5hDGOzwMvC4ux/M2gtLcanfDLszlGA4vBfWJ7p7jD8JRs/s9ilNVgqeeNCgvrk9ta5WbRZECk6mrrX9UVIW7p5QMleK3/eBO8zsq8BtiW0lZnYi8HVgHvCZqIITEYmKkrki0mrPgUa2NoQBYLFpsQBhOvWWpzvfn+Xp1O5+BHg48SUSrZceh+YwlKsnVbmgyty+Wp+ozJ04ooIhA/WWTKQg7F4fvlsJeEs0MZSUh2RuQzW0NEfT4kEkB9z9LjM7Gfg88LnE5scIxQ8GfMndfxVVfCIiUdFvDiLSKr3FQmyGn0GYTr3sNqj++7H7ophOLRKl1WktFnrQLxegqU0yV5W5PdHY1MKm3aH4vqMWC1UjB7X5LiJ5wB12JZK5peXQdCSaOErLoImQ0N23Lat3EEkRuu3i8MFr5VS48v6oo+mWu3/BzO4F3kNoTZa8i+32RMsyEZHYUTJXRFolWyxAzCpzS0ph1lltk7llFXD+N0MiN4sVL2Z2OfARwiC00R0c4u6ua7XkRuMBePm3YT3mBBg3u0dPa6EUygZB0yG1WeihzbsP0NwSelPM7KDFwu3XnJrrkESkO/t3wNFEe5SSAUBEydyStDZY9ZuVzJXeyWRrpiwysyHAJ4Gn3f1xwnDg/pxvI7CPMFStyd2X9DtIEZGIKEEgIq3SK3PnTY5RMhegbnXbx8np1FlkZl8AvgzsAP4C7MnqC4p05+XfhIQs9LjFQqvKqbBzrdos9NAraf1yZ47T8DORgpA+/Kw0wrkCJWm/wtVvhmn/EF0sIlni7gfM7F+B6zJ42jPcfWcGzyciEgklc0WkVbIyd+TgciYMr4g4mhzb/mL4bqXgzbl61Q8DTwLnuvvRXL2oSKdWP5ha97DFQqvKKSGZu28bNB+NNtFRANbv3N+67qjNgojkoWS/XIj2GlfarjJXpHitAyZEHYSISL4p6esTzWyGmX3AzD6fmMSOmQ0ws6lmNiBjEYpIThw+2swriWE8cycNx8wijiiHGg+mbjcry+nlazhwtxK5kheOHg7DzwBGTocJJ/fu+SOmhO/eAntrMhpaMVqXXpmrZK5IYUi/Nb0kXypzN0UXh0j2/QD4RzPrqBVZbznwazN71syuzcD5REQi06fKXDP7D+ATQCnhovhXYCNQAawCvgB8OyMRikhOvLRjX2v/xlj1ywWoW5OaSF06EI4eytUrLwem5OrFRLq07gloTFSLzrkQevuBTuXU1Lp+c0gIS6fWJT48GzKglPHDB0YcTQSam+D5O1KJ/701sOz2MJAyi33KRfoln9oslJRDy1FV5kqx2wfsBtaa2a2EwWcH2x/k7rf14Fyvc/etZjYO+I2ZrXH3p5I7EwneawGmTp3a2TlEJM2UqdOo3pJn/w5Zn2tWC0qvk7lm9k/AvwDfBR4Gfp3c5+57zexB4K0omStSUNoMP5sUs2TujhdT69KcVuZ+Afilmd3r7v0a6iDSb/1psQDtkrkagtYVd29N5h43dmi87oSAkMi952pY/VBqW9NhePA6ePlxeMctUKpOYJKHdm8I3wePjv6XxRFVsGcD7FFlrhS1W9LW/9zJMQ50m8x1962J77Vmdh/wauCptP03ATcBLFmyxPsYr0isVG/ZzLd+vTbqMNr4xDknRh1CTvTlnfKHgfvc/eOd3O6wgh40KTezKYSL7gSgBbjJ3b9jZtcD/wjUJQ79V3d/tA9xikgvtBl+NmlEhJFEYMfK1LosdxVy7v4HM7sG+JuZJe9waN+w1939mpwFJfHU1AhrE//UDq+Cyaf0/hwj0orMG5TM7Urd/iPsO9wEwMyxQyKOJgLP39E2kZtu9UOw4s6sD6AU6TX3VM/cUTPh4K5o46mcGpK5e2vCByT6AESK0xmZOImZDQFK3H1fYn0O8JVMnFtEJAp9+Vf/BOCHXeyvA8b04DxNwCfdfZmZDQOeNbPfJPb9t7vf0IfYRKSPkpW5A8pKOG5MzJILyeFnJeU5vW3SzE4lVByUAW9IfLXngJK5kl0bnoLDDWE95629b7EAx7ZZkE7Fvl/u8tu73r/sdiVzJf/s2w5HEz+7o/MgmTtyGmwAWprC4MlKdW2S4uPuf8jQqcYD9yXuhCkDfu7uj2Xo3CIiOdeXZO5hoKtMzzSgvruTuPs2YFtivc/MVgOT+xCPiPRTS4uzOlGZO3vCMMpK49FnBgiVNsk2C2NPzGW/XIDvAEeBi4A/unt9Ll9cpNXqB1LruRf27RxDx4c2Jc2NSuZ2I9liAWDmuBgmcxu6GZDXUJ2bOER6I1mVCzDqONjy9+higWM/QFMyV2LAzMYAuPvO3jzP3dcDC7ISlIhIBPqSsfk78LaOdphZBXAF8OfenNDMpgOLgKcTm64zsxVmdrOZjezkOdea2VIzW1pXV9fRISLSQ5t2H+RAY7i7v7PhZ1UjBzFjzBCqRg7KZWjZt3crHK4P6/En5frV5wM3uPtD/U3kmtm5ZrbWzF4xs892sP89ievqCjP7i5kt6Olzpcg1N8GaR8J66HiYcmrfzlNSAsMTn8mqzUKX2iRz41iZO6Kbz+5HVOUmjg6Y2WAzW2RmbzazcxLrwZEFJPljd9rws1HHRRdHUuW01FofoEkRM7NJZnarmdUDO4AdZrbHzG4xMxWDiUgs9aUy97+Ax83sduDmxLYJZvZm4MtAFXB5T09mZkOBXwIfTwxQ+yHwVcKtxV8Fvgm8v/3z1KBcJHPSh5/N62T42e3X9DHBk+/Sh5+NnwfVz+Ty1WuBxv6exMxKgRuBs4Fq4Bkze9DdV6UdtgF4o7vvMbPzCNfPU3v4XClmm/6cul149gVQUtr3cyV7ODZUQ0tz/85VxNbVhVu1SwymjY5hnnDRFbDl6c73L74id7EAicKBq4F3Aqdw7PvjJjN7FrgbuNXd9+Q0QMkPu9KSuaNnRhdHklrbSAyY2VTgb4Q5O88ByUEXc4ErgbPN7DXurk+RRSRWel2Z6+6/BT4EvAP4bWLz7cCjhFsX/tHd/9qTc5lZOSGR+zN3vzdx/h3u3uzuLcD/EqZMikgWrdrW0Lqe20kyt2i1T+bm1s3Ae82sv1NLXg284u7r3b0RuJPQuqGVu/8lLQHxN8IHbz16rhS51Q+m1n1tsZCUvM23pSn0l5QOrasNlblTRg2mojyGCe+Fl4cPDjoy562w4LKchGFmI8zsBqCGUDwwEvgZ8EXgI4SBvl8Efp7Y9y2gxsz+y8xiNilUjmmzEDUlcyUevkq4/l7g7ovd/YrE1ynA+cCoxDEiIrHSpwSCu99kZg8SKhhmAwa8DNzt7t00QgssdB//MbDa3b+Vtn1iop8uhHYOL3b0fBHJnGRlrhmcOCFuydyVqfWEk3P96n8CLgD+ZmY/IFTPNrc/yN2f6uY8k4H0ioRqoKtS6muAX/X2uWZ2LXAtwNSpUzs6RApNSwusfiisB42Caa/v3/lGpP29aNjS/e30MXSosZma+tCbO5YtFiBUbJ/2KVjzcGpbWQWc/82QyM1dRfc6wiyIfwd+6u4bujrYzI4jtBO7FngfPRv4K8UimcwdPAYq8iCXP3RCGNzachTqN0UdjUi2nAP8wN0fbb/D3X+VuKu3x3cFi4gUiz5Xg7n7duB7/Xjt1xHeEL9gZs8ltv0rcJmZLSS0WdgI/FM/XkNEemBlIpk7ffQQhg7sb5Fogdme+LxoyFgYOi7Xr/7btPX/Ea576SyxrbvMhnWwrcP2M2Z2BiGZm8za9fi5am9ThLY8Dft3hPXs86G0nz//7SvFpr6mf+crQht2Hmhdzxzb1TzZIrf1ubaPh0+GRe/NdRRfBX7k7kd6cnBigM6XzewbwAezGpnkF/dUMjcfWixA6FNeOSXEpcpcKV4jCUVjnXkZqMxNKCIi+SOyrI27/4mOkwjHfOomItlTt+8ItfvC77GdDT8rWkcPw67E+8Pct1iAUNmVCdVA+hjrKmBr+4PMbD4haXyeu+/qzXOlSLVpsZCB7hrp09SVXOhQ7IefJVUvjToC3P07fXzeEaBPz5UCtW87HD0Y1vnQYiGpcmpI5u6tCcMs+/uBnEj+qQZOB37Uyf7TEseIiMRKn/7FN7N/IPQSOx4YzbFJWXf3PPnYWkS6snpbavhZ7Prl1q0Bbwnr8Sfl/OXd/dYMneoZ4Hgzm0Ho/fhu2t1ylhggcS9whbu/1JvnSpFyT7VYGDgCZryx/+cckZbMbdAsko60SeaOi3EytyaRzLWS1HVYJF/tTht+NiqPfsVJ3g3R0gT7trX9QE2kOPwC+LSZbQC+4e4NAGY2HPgscCnwjQjjExGJRK+TuWb2j4RPxhqBtYBKb0QK2Ko4J3PbDD/LfTI3U9y9ycyuAx4ntGS42d1XmtkHE/t/RBjiMxr4QWhZTpO7L+nsuZH8h0hubV2WSrieeB6UDej/OYdPBisFb1ZlbifW1aW3WYhpMvdwA9StDeuyilTFY4QSA82OuvvBtG3nAG8ChgFLCQN7GyMKUaK0Ky2ZOzrPKnOT6jcrmSvF6KvAG4DPAJ8ys+TdY5MI71v/DPxbRLGJiESmL5W5/wo8B7zZ3XdmNhwRybVkv1yAeXFrs5A+/CwHbRbM7DRIDTRLPu5ODwagkRgM8Wi7bT9KW38A+EBPnysxsOqB1HruhZk5Z2kZDJ8UksT1qsztyLraUJlbObicUUMykEAvRDXLaG3NXTYw0mSumVUAdwAXJh7/lNAC53+Bq0ndfebAR83sNHffF0GoEqU2lbn5lMydllrXbyaMJBEpHu5+0MzeCLwfuBiYQbguPw7cD9zi7k2RBSgiEpG+JHPHA/+lRK5IcVi1tQGAMUMHMHbYwIijybHtL4TvJWUw9sRcvOKTgJvZoER115N0MmwsoacD0ER6xx1WJfrllg+BmW/K3LlHTAnJ3IYt4XWso/b48dTS4qzfGZK5sa3Khbb9cssqoosj+H/ARcCzwA5Cm5mDhETu/xASBuXA24DLgM8RChskTpLDzyA/2yyA7oaQouXuzYQP2P436lhERPJFX5K5qwlTJUWkwB1sbGJ9YrL63EkjsDglXdxTlbljTgjVYdn3fkJy9mi7xyK5teNF2LMhrE84B8oHZe7clVNh81+g6TAcqIOh4zJ37gK3teEQh4+G/rAzxw6JOJoI1aQncyP/EPFy4Al3PwvAzD4F/Aeh5cyH0467J9GK4e30MJlrZjcDFwC17n5SYtso4C5gOrARuNTd92TmP0WyZlcimTtkLFTk0V1MSuZKkTOzMmCwu+/tZP9w4KCqc0UkbvqSzP0a8D0zu8XdazIdkIjkztrt+/BEKnFu3Fos7NsOh3aHdY765br7LV09FsmZNi0WLsrsudN7NtZvUTI3jfrlEj5Iq34mrEfPovUfoehMA25Oe/wA8J/Arzs49nHgzF6c+xbg+8Btads+C/zO3b9hZp9NPP5MbwKWHGtpSVXm5lNVLsDQCVBSDi1HoX5T1NGIZMM3gfOAEzrZ/wzwMPDJnEUkIpIHep3Mdfd7zWwwsMrM7idUFTQfe5h/tf/hiUg2pffLjffws+z3y+2ImX0RuNfdX+xk/zzgEnf/Sm4jk6KXbLFQVgGzzs7suUekJXMbNkPVKZk9fwFL9suFGCdz92yEg7vCuupVsOXvkYYDVAK70h4nPuVrsy19X48bHbv7U2Y2vd3mi4DTE+tbCe12lMzNZ/u3Q9OhsM6nfrkAJSXhA7Td65XMlWL1ZuCXXez/JaGXrpK5IhIrvU7mmtkJwFcIk32v6OQwJ0yeFJE8tmpbWjI3bpW5bZK5uanM7cD1wCtAh8lc4CTgS4Rrrkhm1K2FnWvDetZZMDDDSUXd9tupdXVpydxxMU3mpvfLnXxKPiRzc228u28DcPdtZqbS9Xy3K2342eg8S+ZCGIK2ez001EBzUxhEKVI8pgDruti/PnGMiEis9OVf+x8A44CPAX8E1OdLpECtSlTmDiovZcaYmPVvTPbLBZgQWTK3OxWAeoBJZiWrciHzLRagXTJ3S+bPX8CSydzyUmPKyAz2KS4k6f1yq14F/DCyUNIMSfSyBUh+H5a2LSmnGXgzuxa4FmDq1KndHC1Zszstj5RvbRYgdc31Zti3te01WKTwNQITu9g/AWjJUSwiInmjL8nc1wA3uPv3Mh2MiOROc4uzZntI5s6eOIzSkhgNPwPYniiGHTwaho7P2csmBjVUpm0abWYd/eY1CngPoGyYZFayX25JOZzw5j6doqm5hXuX1fCqlhYwaGpp4e5ntnDJKVWUDp+cOrBBf33TJXvmTh89hLLSkoijiUiyX25ZRWQtbjrwo8RXunuz9Fo7zGxioip3IlDb2YHufhNwE8CSJUsiby4cW8l+uZB/bRbg2LshlMyV4rIcuNTM/sPdG9N3mNkA4F3AikgiExGJUF+SuXuBukwHIiK5tWHngdap6rFrsdB0BHa+FNbj54HlNJH9z8AXE2sHvp346ogBn85+SBIbu9fDjhfCeuYZUDGi16doam7hup8v57GV27mtfCxuUO1j+fQvV/DEmlq+f/kiyoZOCH0m1Wah1d7DR6nbdwSIcb/cpiOwPfH3b9IiKC2PNp7g1hy/3oPAVcA3Et8f6PpwiVybNgsRV+YmE7XpCdvKaam1rrlSfG4EfgE8YmafI5W4nQ98HZgLXB5RbCIikelLMvdu4O2EC6uIFKiVWxta17Ebfla3NtyOCDD+5Fy/+pOJ70ZI6t7HsRUFDuwH/ubuf8ldaFL00lsszLmwT6e4d1kNj63cDsCVRz/XZt9jK7dz7/IaLq2ckkjmbgH3XH9gkpfWJ6pyAWaOi1lbm6TtL0BzorBqcn4MxnP392Xr3GZ2B2HY2Rgzqyb0QP8GcLeZXQNsBt6ZrdeXDElW5g4ZBwOHRRvLlfcfu019yqWIufsvzezfgc8BTxPeIztQQngv/R/ufleEIYqIRKIvydz/AW41s/uB7wIbgOb2B7m73k2I5DENP0vI8W2+7v4H4A8AZjYN+JG7P53TICS+ki0WrBRmn9+nU9y1tOvWCXc/s4VLx0wJt9M37oPD9TBoZJ9eq5isq00bfhbXytxkiwWAqiXRxZEj7n5ZJ7vOzGkg0nctLbB7Q1jnY4sFUDJXip67fz6Re3gvMIuQxF0L/Nzdn+nquSIixaovydyVhE/DlgBv7eK40j5FJCI5kRx+VmIwe0Lckrlpw88i7NnY24owMxsPbAXOdvcnshOVFK36LbB1WVjPeAMMbj/bqWe21R/qcv/W+kMwq11yQcnc1uFnAMfFNpnbfviZSJ7btw2aEte8qFssdGboeCgdEKrelcyVIpVI2ipxKyKS0Jdk7lcIyVwRKVDu3prMPW7sUAYNiNlnL8mejVYKY2dHG0vv6X516ZvVD6XWfWyxADCxchBbGw53un9S5SConJLaUL8FJi7o8+sVi7bJ3Ji2WUhW5g6dAOmD8iJkZuu7P6oNd/c8zepJxu1O65ebr5W5JSUwYkqItX5T1NGI5ISZnUIYFvxHd+/8TYmISJHqdTLX3a/PQhwikkO1+46w60DoWxi7FgvuqTYLY46H8opo4xHJlWSLBQzmdHVjTdfetWQKz27a0+n+S181BYanEpc0dN2WIS7WJXrmjhs2kOEVeTH4K7f216USTVVL8qmP8nTgENDbpK7Ewe60vxb5msyF0Gph9zpoqIHmJijtS72OSP4xs08Bb3T3t6Zt+znwrsTD9Wb2enffEUmAIiIR0b/0IjGUrMqFGA4/218LB3eF9fiToo1FJFf2bYctidbM0/4Bho7r86kuOaWKJ9bUtg5BS3fuvAlcsrgKdqaGfem2Xzja3MKmXeH/SWz75dakt1jIq365u4DRQBPwE+Cn7r472pAkb+xKq8zN1zYLkOqb682wb2vbProihe3dhMFnAJjZmxLb7gBeAL4AfBr4ZCTRiYhEpKS7A8xsqplNbf+4u6/shi0i/ZE+/Gxe3JK5O15IrSPslyuSU6sforVDUj9aLACUlhjfv3wR//mO+W16fvzHJSdz43sWU1pi7dosKJm7ZfdBjjaH//8zx8W1xULe9sudCLwTqAG+CdSY2V1m9maz/CkflogUUmVukq65UlymA2vSHl8MbAPe6+7fAH5E13N8RESKUrfJXGAj4faFAWmPN/TgS0TyVHpl7py4tVloM/xMlbkSE6sfTK370WIhqay0hEuXTGHowNQNPgunjAyJXIABQ2BQYsCa2iy0tliAGFfmJvvlWglMXBhpKOncvcndf+nuFwBTgC8D84FfAZvN7N/MbFakQUp0kpW5Q8bBwGHRxtKVymmptZK5UlyGAAfTHr8J+K27J2f4rALyowm7iEgO9aTNQnLgWVO7xyJSoJKVueOHD2TM0IERR5Nj6cncCUrmSgwc2Akb/xTWVa+CEZn7nWdgeQn7joT1ss17OHFCWrKjcioc2q3EAm2Hn8UymdvSDDXLwnrcPBiYn/8P3H078A3gG2b2OuB9wEeBz5nZR939xkgDlNxqaYE9ifqUfG6xAKrMlWJWQ/iADTObBswFvpW2fyRwJIK4REQi1W0yt/3AMw1AEyls+480sSHRzzJ2w88AtieGnw0aCcMmRhuLSC6seQS8Jaz72WKhvYHlpa3rZZv2cNmr0xIKlVNg23NwaA8c2Z+3CbxcWFeblswdF8P/DztfgsZ9YV11SrSx9NyzQDJx8BpCX12Jk31boelwWI9SMlckIg8BHzazUuBUQuL2kbT9JxHuHBYRiZWetFlow8yuNLPpXeyfbmZX9isqEcmaNdtiPPysqRF2rg3r8Sfl0zR1kexJb7EwN7PJ3PKS1M/Qss172u4ckZZciHmrhfWJD9AGlZcycXhFxNFEIH/75R7DzE41sx8RejLeDhjwT8B/RxqY5F6b4Wd53C8XYOh4KE3cabVnU7SxiGTWV4A/AR8mJG4/7u47AMxsEPA24PfRhSciEo2etFlo7yfAFXT+CdipiWNu62NMIpJFbYefjYgwkgjsfAlaEh1jCrNfbgPhtt+V3R0oAoSq2PVPhvXEBTByekZPnz4fal3dAeoPNlI5ONFiv32l2Lg5GX3tQuHuvJKozD1u7BBKSmL4IVJNWjJ38pLo4uiEmY0nvLd9HzAH2AH8L3Czu6/p6rlSxApl+BlASUm4G2LXK6rMlaLi7nuAM81sOHDI3Y+2O+SNQLw/MRaRWOp1ZS7Q3W8h5UBLH84rIjmQPvwsdm0WdryYWo+fF10cacysNHHHw0/N7DdmtiixfWRie2uDU3c/7O63JisSRLq19rHUBxgZbrHQkeWb61MPKqek1jFOLuw+0EjDofC7Zyz75UKqMnfgcBhzQrSxtGNmDxISAV8DXiJMSq9y908rkRtzu9Mqc/O9zQKkPkDbWwPNTV0fK1Jg3H1v+0Suux9y9+fdfXdym5mNN7NmM3tT7qMUEcmdvlTmQicD0MysEjifcGuaiOShlYlk7pABpUwdNTjiaHIsz5K5ZjYY+DXwD8ABYDBhkAPAXsIgnpuBL0QSoBS+Ni0WLsr6yy3bvIczZo8LD0akJXNj3GZhXd2B1nUsk7lH9kPtqrCevDhUEOaXC4BDhL6MtcBZwFnWeRsed/eP5Sg2idKuAqrMhVQy15tDQnfktGjjEYlODG+BEZG46VEy18y+BHwx8dCBn5rZT7t4yjf7G5iIZN7R5hbW7ghDaOZMHB6/232Tw8+sJF9u+b4eWELo9/UXwq29ALh7s5ndC7wZJXOlL47sg1d+F9Zj58CY47P+km365mogDwDr6lLDz44bOyTCSCKydXlqAF8etlhIGARc2sNjHVAyNw6SbRaGji+MAY7tr7lK5oqIiBStnlbmPkfogWvAlcAfgfXtjnFgP/A34I4MxSciGbS+7gCNTeGX6nlxG34GsCPRanb0LCgfFG0swTuBm9z9ATPraFL6K8C7chxTcWhugufvgOW3Q0MNjJgMi66AhZdDSWnU0eXGS49D85GwznJV7oDSEhqbW3hucz3NLU5picGgynBb/ZG9UB/jytzaVDI3lpW5NXk//GxG1AFIHmppgT0bwroQWiwAVKYlb2P8AZqIiEgc9CiZ6+4PAA8AmNk04N/c/XfZDExEMm/VtobW9dy4JXP318KB2rDOn+Fnk4Dnu9h/EBiWo1iKR3MT3HM1rH4otW1vNWx5Gl5+HN5xC5T2tctQAWnTYiG7/XIHlodk7oHGZtZu35e6voyYArUrY95mISRzzWDGmBhW5lanJ3PzrzLX3TdFHYPkob010HQ4rEcXQIsF0N0QIiIiMdLrxmXufkZvErlmNsbM1pvZa3v7WiKSWStr0oefjYgwkgjkWb/chF3A5C72zwO25iiW4vH8HW0TuelWPwQr7sxtPFFoPAgv/yasR82EcXOz+nIDy1JvJzpstbB/Bxw9nNUY8lWyZ+7kykEMGhCTqvAkd6h+JqxHTochYyINR6THdhdYv1xQMldERCRGcjGFohSYTuhHJiIRWrUtJHNLS4zjx8fsdt9kiwXIp8rc3wHvSwxCa8PMZgDvBx7LeVSFbvntXe9f1s3+YvDKb+HowbCee1EoC82iivJUkrJtMjd9CFp1VmPIR4ePNrNlT/hziGWLhYbqkMiHvOyXa2bXmFmv3wubWamZfSAbMUme2L0utS6UNgtDxkHpwLBWMldERKSo5d1IYRHJDndvTebOGju0TfIlFtKTuRPyJpn7ZWAk8AzwIULv8XPN7N+BZcAR4N+jC69ANdR0sz8GScUctlgAKCsxRg0ZAMDyzfWpHSPSk7nxSy5s3HUA97COZTI3//vlfgtYY2bXmVm3ZcNmNt7M/hlYC/xX1qOT6OxKS+aOLpBkbklJ6gM0JXNFjpH4IG65mT0cdSwiIv0Vg6aBIgKwreEw9QePAjEdfrY90WahYgQM76qzQe64+ytmdiZwM/CVxOZPJb6/CFzh7vFtNtpXIyaHHrmd7q/KXSxRaDoCaxMF3ZVTYeLCrL+kmbF4aiW/XV3Lhp0H2LX/CKOHDoz9bb/rag+0rmeOU7/cPHQ88G/AfwPfNLOlwN+BdcBuwuDfUYnjXgMsTDzvx8AXcx2s5NDuDan1yAKakVc5FXa9Enr+NjfFoz+8SM99DFgNxPAXIREpNpFV5prZFDP7vZmtNrOVZvaxxPZRZvYbM3s58X1kVDGKFJNVW9P65cYtmdt8FOrWhPX4k7J+y3lvuPuz7r4AmA+8C3g3cIq7z3f3roajSWcWXdH1/sXd7C90634PjfvCes6FOfv7vmhq6p/r1urc9DYL9fH7XCI5/AxiWpmbTOaWDoAJJ0cbSwfcvdbdryW0A/tPQuL2Y8B3gZ8CtwPfAT5CaBf2b8A0d/+Qu9dFErTkRrLNwtAJMLCAfnaTH6B5c0joihQ4M7vSzKZ3sX+6mV2ZtqkBeB+wst1xVcD5wP9lI04RkVyL8uPaJuCT7r7MzIYBz5rZb4Crgd+5+zfM7LPAZ4HPRBinSFFYmZ7MnRizZO7Ol6ElVCXnS79cMxsKPA98z92/7e4vEqpxpb8WXg4vP97xELQ5b4UFl+U+plxq02Lhopy97OK0ZO6yzXs4a+54GJFWmdsQv2Tu+jgnc5uPwrbnwnrCfCgbGGk4XXH3GuD/A/4/MxsHzAXGElrf1AEr3X1nhCFKLrW0pCpzC6XFQlL7uyFGTosuFpHM+AlwBbCxk/2nJo65DcDdDwO3dnDct4FPA8M6eyEzuxa4FmDq1KmdHdatL3/5y31+rohIT0WWzHX3bcC2xHqfma0mTHW/CDg9cditwJMomSvSb6u2NbSuY1eZuyMtRzp+XnRxpHH3/WY2Gtjf7cHSOyWlcOH3jk3mllbA224K+4uWw5pHwnLYxJwOnVowZQSlJUZzi6eGoA0ZA2WDoOlQPNss1IU2C8MryhgzdEDE0eTYjheh6XBY52eLhQ65ey1QG3UcEqG9NdB8JKxHFVCLBYDKtORtDK+5UpS6u72oHGjp8gRmFwC17v6smZ3e2XHufhNwE8CSJUu8d2GmfOmqM/v61Kz4xJ9/HnUIIpIFeTEALXHrxCLgaWB8ItGbTPiOizA0kaKRHH42uXIQlYNjmFRIypPK3IS/AYWT5Sgk29P+zMsGhe/Nh2HTX6KJJ1eOHoLD9WE9561hIE6ODB5QxpyJoeDl+S0NNDW3hBYPrQN54lWZ6+6tbRZmjhuK5VF7l5yozvvhZyId2502/GxUgVfmihSHDhOrZlZJaJ2wrZvnvw640Mw2AncCbzKzn2YyQBGRXIs8mZu41fiXwMfdfW93x6c971ozW2pmS+vq1LZMpCsNh46yZfchAObErcUCpCX2DMbNiTSUdj4LXGpm77PYZXqyrCYtkXTqtan12kdyH0suNaYGbuWyxUJSstXCoaPNrNme6Ns7IpHM3bc13HofE9v3HuZgYzMQwxYL0DaZO/mU6OIQ6a1dacncgmuzoMpcKXxm9iUzazazZkIi96fJx+lfwC7gUkKCtlPu/jl3r3L36YTZFE+4+3uz/d8hIpJNvU7mmtlpZja2i/1jzOy0tE37gS8D6zs4tpyQyP2Zu9+b2LzDzCYm9k+kk1vd3P0md1/i7kvGju00HBEBVm+L8fAzgB2JGQijZ8KAwdHG0ta3gD2EYQy1ZvY3M3ui3dfvIo6xMNU8m1q/5sMweHRYr3k09EMsVslk7pCxMPW1OX/59n1zgbSBPC2xGsizrjaVWD9u7JAII4lI8gOVwWNg5PRIQxHpld1pv7IUWmXu0HFQVhHW9ZuijUWk754j9MC9ndBm4U+Jx+lftwI3EvrpqiWjiMROX3rm/p5w0eys+cqZiX2lAO5+gJDMbSNRhfZjYLW7fytt14PAVcA3Et8f6EOMIpJmVZyHnx3YCfu3h3We9MtNcxyh4iBZPjM+wliKS3UimVs5FYZNgBPPg+U/DX8Xti4rqB6eveKhEpTZ50fSG/iUaWnJ3E17uPK101NtFiC0WohJYm9dnIefHdwNu14J66olod2GSKFok8wtsJ65ZuFuiF0vqzJXCpa7P0AiB2Bm04B/c/eMFDe4+5OEmTwiIgWtL8nc7t6Rl9JNE/KE1xGSwi+Y2XOJbf9KSOLebWbXEBIc7+xDjCKSZlVaZe68uFXmtumXe3J0cXQgcbuXZNrereGWfkjd3j37gpDMBVjzcPEmc5PmXBjJy1aNHMSYoQPZuf8IyzbXh43pt/02xKdvbqyTuTXLUuti/1mT4pNsszBsIgwowKr6yqkhmbu3JrS2KS2POiKRPnP3M6KOQUQkH/W1Z25X0x3/AdjZ7Qnc/+Tu5u7z3X1h4utRd9/l7me6+/GJ77v7GKOIJCQrc4dVlFE1clDE0eRYssUC5GNlrmRDeouFyYlE0nGnQ3mixcaaR3MeUtY0N8Gy29u2LygbBNNeF0k4ZsbiqZUAbN59kLp9R1I9cyFWlWLJZG5ZiTFtdF61d8m+6mdS68lK5koBaWmGPRvCutBaLCTFtLWN9ED79wx7a8LjluZo4+qCmc0ys3PbbTvVzB4ysz+b2bWdPVdEpJj1KJlrZh8zs/Vmlrzv6NvJx+2+9gAfAh7OWsQi0iuNTS28XBsGEc2dODx+E9XTk7kTToouji6Y2XAze7uZfSrx9XYzGxZ1XAWrTTI3UZlbPghmvimsd66FnS/nPq5Ma26Ce66GB6+DpsOp7U2H4N4PhP0RWDytXd/c9m0WYiLZM3fq6MGUl0Y+bza3WgcQGkxeHGkofWFmQ8zsLDN7j5mp/U2c7K2B5sawLrQWC0nJZC7E6gM06UZH7xmaDofHv7gqsvcMPfAfpPXENbMxwK+ANwMnAT80s4ujCU1EJDo9/e2iHtiU+IIwOXJTu6+NwB+B/w/4WCaDFJG+e7l2H0ebQzF9LIefbX8hfB84vG2FYJ4wsw8AW4BfAP+Z+PoFUJ1oNyO9VZ1IJFkpTFyQ2j77gtR6zSO5jSkbnr8DVj/U8b7VD8GKLoc7Z80p7ZO5QydASeI234Z4JBb2H2li+97wy3LsWiy4p34Gx54IFSOijaeXzOxDQA3wa8KQnXmJ7WPN7HCmqsDM7J/NbKWZvWhmd5hZRSbOK/2UbLEAYWhqIVIyVzqSp+8ZemAJ8Nu0x5cBw4HFwFjgaZR7EJEY6lEy191vdfczEj1rNgGfTT5O+3qTu1/o7l9394PZDVtEeirWw8+am6BuTViPn5d3Q3jM7ELgJqAO+ARwduLrn4Fa4CYze2t0ERaglmbY+lxYj58LA9Jubz/hzSHBC8WRzF1+e9f7l3WzP0tOnjyCspLws7Z8Uz2UlMCIqrAzJomF9XHul7trHRyuD+sC65drZpcQpqP/HvgAaXMi3L0OeAy4KAOvMxn4KLDE3U8izJt4d3/PKxmwOy2ZW7BtFtL6lMfkmis9kKfvGXpgLLA17fG5wJ/d/UV3bwTuBOZGEpmISIR6fd+fu89w9wezEYyIZF7b4WeFVSHVb7teSd0uOT4vWyx8GlgNLHT377j77xJf3yVUHKwh7dYy6YGdL0FjaCtyTK/OwaNg2j+EdfUzsG9HbmPLtIZueiE2VOcmjnYqyktbBy0+X11PY1NLqtVCQw209GRGamFbX3egdT1zbAEOUOqPwu6X+y/A7939bSQmqbezlHBbbyaUAYPMrAwYTNtkhURl94bUetRx0cXRH6rMlY7k6XuGHjgAVAKYWSnweuCptP2HCJW6IiKxErMmbiLxk6zMLS81Zo2LWYXYjhdT6/wcfrYAuMXd97ff4e77gFsTx0hPddQvN93s8xMLh5d+lZOQsmbE5G72V+Umjg4smhpaLRxpamH1tr2p5ELLUdi/PbK4cmVdemVu3K67rf1yKbjKXOBk4L4u9m8DxvX3Rdy9BrgB2Jw4Z4O7/7r9cWZ2rZktNbOldXV1/X1Z6Yn0NguFmswdOg7KEl07lMyVpDx+z9CNlcAVZjYa+EdgKPCbtP3TCHe4iYjESrfJXDPbYGbrzKw88bijwWftv9Z1d14RyT53b63MPX7cMAaUxezzmzbJ3LyszIW023g74DmLolhUd5NIOvEtqXWht1pYdEXX+xd3sz+LjhmCNiJelWJtkrljYpbMTVbmlg+BsXOijaX3mun6vfEkQpVYv5jZSEK7hhmJcw4xs/e2P87db3L3Je6+ZOzYsf19WemJZJuFYZPatukpJGapGQExuN5KD+Xxe4Zu/Bcwn9B+7EZgOWFOT9I5wLII4hIRiVRPMjubCJUDyaTCZo4dftb+S+8cRPJA9Z5D7DscptPGc/hZMplrMC4vkwrPA1eZ2TH3YZvZUODqxDHSU8nK3AFDYcwJx+4fOQ0mnBzW65+EI/tyFlrGLby84+pjgDlvhQWX5TaeNG2HoNWn2iwA1G/JfUA5tq425PvGDB3IiMHlEUeTQ0cPwY6VYT1pEZSWRRtP7z1PmJB+DDMrAd4JPNPR/l46C9jg7nXufhS4F/iHDJxX+qOlGfZsDOtCrcpNSt4NsbcGmo9GG4vkh+mv73xfxO8ZuuLujwBvAr4NfBk4x90dIFGtWw3cElV8IiJR6fZdtruf3tVjEclfK+M8/AxSSYVRM2BgXlbH3UD4JX6ZmX0XWJXYPg/4f8As4O0RxVZ4Gg+2TSSVlHZ83OwLYPsLoZ/yK7+FeW/LXYyZVFIKg0a13VZWAed/M/xS1tl/fw5MGlHB+OED2bH3CMs27YHXplXmNhT3573NLc6GnSGZe1zc+uVuex5awgeIBdhiAeD7wB1m9lXgtsS2EjM7Efg64dqciT7mm4HXmNlgQr/HMwn9eCVKDdWpPvujiySZ6y0hoTtyeqThSB5Y83BqXVIWrtV58p6hO+7+FG375Ca370Lvk0UkpnrSZmF9YuJ68vEXzSxv71cWkZS2w89ilsw9uBv2JebJ5Ge/XNz9fuA6wm223wN+m/j6bmLbde7e0RAe6cj2FeDNYd1ZxSoUT6uF/XWw7omwLh0Qvg+fDIveG/kvZWbG4kTf3Jr6Q9SVprUZLfLbfqv3HKSxOQx5mzk2Lz9Eyp704WcFmMx197sISdvPE4ZTAjxG+KDtbcD17t7vZtvu/jRwD+HW4BcI78dv6u95pZ92p/fLnRldHJmgIWjS3spEO3ArTfXHzZP3DD1hZkPM7Cwze4+ZjY86HhGRqPXk/repwLC0x9cDrwAvdni0iOSNVVsbWtdz4pbMbdMv9+To4uiGu//AzH4OnE3on2jAOuA37t7Q5ZOlre765SZNODn0cG3YDC/9OtyCWlqAt8K/+MtU8nrgMDi4K9p42lk8dSS/ejEMO3t2dwXnWkmoEivyNgtt+uXGrTI3/WdwcuElcwHc/Qtmdi/wHmA24Zr8MnC7u2esetbdvwR8KVPnkwzYvT61Hl3gydyR01JrJXNlz6ZUG6oZbyi4f4fN7EPAvwPDCa0fzwZ2mNlYYAvwUXfXB2IiEis9SebWEKb7ptNQHpECsCrRZmHKqEEMryjAZFV/JG+3h7ytzE1y93rgF1HHUfCSv6hA15W5ZjD7fHj6h3CkATb+CWaekf34Mu35O8J3K8nPZG5a39xnq/dz7vDJ0LAlfBWxZL9cgJnj4laZm8h1Dq+C4ROjjaUf3H0ZGqgTP7vSkrk96ZmbrH5Nr4LNF5VK5kqaVWk3ec17G/z5u9HF0ktmdglh8NkDwEPA/yX3uXudmT1GGCipZK6IxEpPBqA9AHzazJ4zs8T9nHzBzJ7o4ut3WYxZRHpgz4FGtjYcBuLaLzetMndCfnaGMbNFZvaRLvZ/xMwW9vBc55rZWjN7xcw+28H+2Wb2VzM7Ymafardvo5m9kLjOF27fxppE6MMmwfBJXR87+/zUuhBbLdSthW3PhfVxZ4TbJvPMSZOHM6A0vM1Ytrk+bbr6FvDi/Uw4vTJ3VpzaLOzdBnurw7oAWyxAayuxa7vYf7KZfTGXMUkOpbdZGDmj++OvvB8+uix8zzfpCeY9m6KLQ/JDeouF2W+NNpbe+xfg9+7+NkJeor2lQH6+0RcRyaKeJHM/A3wVOABMI1TljiXcDtzZV4FPDRApfKvb9MsdEWEkEdmeSOYOGBZuqc9PXwLO72L/eUC3iQMzKyVULZwHzAUuM7O57Q7bDXyUMHStI2e4+0J3L8wszP66VPXR5MXdHz/1tTAoUTm65pHCSy4+f2dqveDd0cXRhYFlpcybHD5IeqG6gebhiR59TYfgwM4II8uuZDJ3YFkJkyoHRRxNDtX0sM1Jfrse+KGZ/cLMKjrYPx+1RiheuxLJ3OGTYcDgaGPpryFjw3ArUGVu3O3ZBFsTNxrMOA2GjI42nt47Gbivi/3bgHFd7BcRKUrdJnPd/ZC7f8ndX+fuMwm9wz7u7jO6+sp+6CLSlfThZ7GrzG1ugro1YT1+LpT05HOrSLwK+EMX+/8AvLoH53k18Iq7r3f3RuBOwi1nrdy91t2fAY72Ndi8lt5ioSeJpNIyOOHcsN63FbYuz05c2dDSAivuDuvyIW2rjPNMcghaY3MLtaVp80oaije5sK4utFmYMWYIpSUWcTQ51KZn9auii6P/niAMO/uDmSlBEBctzbBnY1j3pMVCvjNLVecqmRtvq+5Pree9LbIw+qGZrnMWkwhFZyIisdKXDMf7gL/09GAzqzCzKzV1UiS3Vm5NS+bGbfjZ7vXQFFpMMD6v77waQ6iY7Ux94pjuTCYMgEiqTmzrKQd+bWbPdnWLcV7rab/cdOlJ0LWPZjaebNr0p9Tt7HMvggH5O2QrmcwFeOVIZWpHkSYX9hxoZPeBRiDG/XJLymDigmhj6Z+fABcDc4C/m1le/yMiGdKwBVoSn3UWQzIXUsncfVuhqTHaWCQ66S0W5hRciwWA54E3d7TDzEqAdwLP5DQiEZE80Otkrrvf6u4be/GUEYQ3xvk9gUikyCSHn1UOLmfiiI7uFi1iO15IrfN7+FktXV8bT6LrZG9SR+V/vekb8Dp3X0xo0/ARMzutwxcxu9bMlprZ0rq6ul6cPgdab/E2mLSoZ8+Z+abUbaiF1Df3+btS6wXvii6OHlg8rbJ1/dzetA+VCmySdk+t35nqlzszTv1ym5tS1e3jT4Lywm4v4e4PA6cRBgX/2czOizgkybZdaf1yR8+MLo5MSiZzvQX21kQbi0Rjz8bUtfm4N8LgUZGG00ffB84zs68Cyf+AEjM7kTA8eB5QOBPdREQyJFf3HsfoPkOR6B0+2swrib6N8yYNxyxmP4I7VqbW+V2Z+1vgA2Z2TEI30fP2msQx3akGpqQ9rgK29jQId9+a+F5L6EvWYWsHd7/J3Ze4+5KxY8f29PTZ556qzB07GwYO69nzBgwJCV2A2lVtf5nPV40HU1Oph02C6W+INp5uTBwxiEmJD5OeqktL8DUUZzJ3XW3qTs+ZY/O3Yjrj6lbD0cR/e+H2y23D3Z8jXAvXAQ+a2f+LNiLJqt3rU+tiq8yFor0bQrqx8v7UujBbLODudwFfBz4PrE5sfgxYRWiJc727/yqi8EREIpO3jSRFpO9e3rGf5pZQmBm7frmQGn4GoWdu/vo3Qi+wZ8zs+2b2ATO7xsy+T5jO20QYQNmdZ4DjzWyGmQ0A3g082JMAzGyImQ1LroFzgBe7flae2bUODjeEdVUPWywkFVqrhbWPQuO+sJ7/TigpjTaeHlg0LbRaWLEvrVK1SBMLyeFnELPK3PR+uZOLI5kLrR90vR74FfBt4LORBiTZ0yaZW2SVuVC011zpRrLFQkkZzL4g2lj6wd2/ACwBvkO4Hv+aULH7anfvyftkEZGiUxZ1ACKSeSu3NrSuY9cvF1KVuSOn97xKMyn5y0/6L0FZ4u7rzOxM4Bbgw+12rwTe5+4v9+A8TWZ2HfA4UArc7O4rzeyDif0/MrMJhATxcKDFzD4OzCX05L0vUb1dBvzc3R/LxH9fzvSlX27SCeeClYTbUNc8Av+Q58V3z9+ZWs9/d3Rx9MLiqSN5ZMU2jjCAwwPHUHFkZ9G2WUhP5h4Xp8rcmqIZfnYMdz9oZhcB/w18lN61sJFCkX5nxqgimeNcOS21VjI3fnZvgG3PhfWMgm2x0MrdlwHLoo5DRCRfKJkrUoRWbUsbfjZxRISRRODQntRwqL60WLjy/oyG0x13XwqcZGYLgeMJbWnWuvvzvTzPo8Cj7bb9KG29ndB+ob29QEFPK2qTSOptVeCQMTDlNbD5L7DladhfB0PzqIVEuv21sO6JsJ4wP9+rzludMi01BG1n2QSqjuwMbRbcw8T1IrKuLrQamDSigsEDYvQWK1mZW1FZ6P1GZwDHNAR3dwc+bmaPARroW4ySlbnDJxd8z+dWqsyNt1X3p9YF2mIBwMzWAx939w7vODOzC4DvunuR9EcREekZtVkQKULJ4WcDykriVR0GhdQvtw13f87df+Hud/c2kRt7ycrcskEwrg8JzmSrBW+Bl/K4KPmFe8Cbw3pBYVTlQmj1MrAsvN3Y0JSoDDqyFw7XRxdUFhxpambz7oMAzBwXoxYLhxugbm1YVy0p6AS9u29y94Nd7H/M3W/NZUySA81NYVAUFE+/XIAhY1NDPpXMjZ82LRbO7/rY/DYd6Oof1SHAtC72i4gUJSVzRYpMS4uzOlGZO3vCMMpLY/Zj3iaZe8xcsbxiZqPNbE67bTPM7Htm9jMze3NUsRWMpiOw/YWwnrQQSvtQDTn7Lan1mkcyElZWrEi0WLASOOkd0cbSCwPKSjh5crhDYPXBtDsFiqzVwuZdB1t7lceqX27NMlo7DxRYv1wzm2pmU9s/7u4rypglCxq2QMvRsC7syvK2zFLVuUrmxsvu9bAtURdw3OkF32KhG+OBTj+EExEpVrm6B1D9xURyZPPugxxoDNV7sRx+tiNtdteEvK/M/Q5wAmFiOmY2FPgjMCmx/11m9iZ3fyqi+PLf9hehuTGse9svN2nUcTBuHtSuhPW/h8YDMCDPKtprV6d+MZv5JhhWWHd6L542kqWb9rC5ZUzo6gwhgTJxfqRxZVLb4Wd59vcnmwq7X+5GQg/xwe7emHjck/es+T95UHquzfCzIqrMhZDM3fkS7NsKTY1QNiDqiCQXVt6fWhdgiwUzOw04PW3T281sVgeHjiIM/X0uB2GJiOSVXCVzC/eeO5ECs3JrWr/cOA4/255I5pYPgcrpkYbSA68Ffpr2+F2ERO5bCG9MfwN8GlAytzNt+uX2MZkLoTq3diU0HQ59aee8tf+xZVL64LMFl0UXRx8tnloJQLWPSW0sskqxZL9ciFllbnX6z+Di6OLom68QkrdN7R5LnLRJ5hZRZS6kKnO9BfbWFM9wN+laa4uF8kJtsXAG8KXE2oG3J7468grwz7kISkQkn2Q9mevuO1A7B5GcWbWtoXUdu8rcluZQwQhhOFRJ3l96xgPpGa3zgKXu/hiAmd0CfCKCuApHdaaSuefDU/8V1mseya9kbksLvPCLsB4wDE58S9fH56HFU8MQtBpPGy5XZG0W1tWmVebGpWeue+pncPSsgruV192v7+qxxMSudal1MbVZAKhMayVav1nJ3DjYtQ62rwjrmWfAoJFdH5+fvg3cQigIWw98HHig3TEO7Hf33bkMTEQkX/QpmWtmQ4DLCZPXR3Ns5a27+zX9jE1E+iA5/MwMZsctmbt7AzQdCuvCGH52FEgfm/1GwpvXpHrCNVY6kxx+NmRs28ndvTVxYZhivrcG1v4qDMTpS//dbNj4xxAXwNwLYcDgaOPpg3HDK6gaOYiaPWmVuQ3FVpkbkrlDB5YxbtjAiKPJkT0b4eDOsC6wfrkirVorcw1GFlmyM/3fxSK7G0I6ser+1HruxVFF0S/u3gA0AJjZGcAqd6/ryXPNrAK4FHg8UVQmIlKUev2bqpm9GniErhMMDiiZKxKBVYnhZ9NHD2HowDxJRuXKjhdS6zwffpbwEnCJmd0IvJXQ++t3afunAKo46MzB3bA7UVE1+ZTwCUZfmYXq3L/fBIfrYfNfYMZpGQmz31bclVrPf1d0cfTT4qkjeXDPIXb7UEbZ/qJKLLg76xNtFmaOHYL15+9iIUl+mAJQVfjJ3ERPxlnJuyMS204FvkC4Pt/q7jdFFZ9kSfLfkeGTobwi2lgyrX1lrhS/Ni0WCu9Onvbc/Q+9fMoI4CfA2YCSuSJStPpyD/K3gHLCJ15j3L2kgy8NhhCJwM79R9ix9wgQwxYLADtWptaFUZl7I6Eadw9wD+FWsvRk7mnACx08TwC2LkutO6kKvOLHT3PGDU9yxY+f7v586X3l1jzSz+AypPEgrErcWTi8Cqa/Idp4+iHZN7cm2Te3iNos1O07wr4joe1qvPrlPpNaF0EyF/gP4DPJB2Y2BvgV8GbgJOCHZnZxNKFJVjQ3hQpzgNFFNvwM2lXmboouDsmNXetge+Jt48w3FWqLhUyIySeqIhJnfUnmngJ8093vUY8akfyySsPPUuvxc6OLo4fc/TbgSkIC96fAee5+FMDMRhOqC+6OLsI8V51WFdjJ4KXqPYfYsPMA1XsOdX++aa+DihFhvebR0A80amsegcZEL9b57yyEPtCdOmVa6Kdaneybe2g3HNnfxTMKxyt1MeyXC6l+uWUVhfIBWneWAL9Ne3wZMBxYDIwFngY+FkFcki0Nm6ElMf+u2IafAQwZA2WJbk6qzC1+yapcgHkXRxaGiIhkX19+K9wL7Mp0ICLSf8kWCxDzytzKqamkXJ5z95+6+yXu/n53fyVt+y53P8Xdf5zcZmYVZnalmY2PJto8U9N9MrdXSsvh+DeHdcPmVHVLlFbcmVrPf3d0cWTA7InDqCgvSVXmAjQUR3XuukSLBQhtFmKh6UhqyM7EheHnp/CNBbamPT4X+LO7v+jujcCdQP5/Uig919ovFxhVhJW5ZqnqXCVzi9/K+8P3kvKCHJYqIiI915dk7r2E281EJM+kV+bOi1tl7uGG1ECl4qgQ60iyD1hBNATOKneoSVQFjp6VuVsJ86nVwr4dsO6JsJ64AMbNjjaefiovLWF+VWXbZG6RtFpYV5tWmRuXNgvbX4DmxrAujhYLAAeASgAzKwVeDzyVtv8QoVJXisWutGTu6CKszIVUMnfvVmhqjDYWyZ6dr6RmR8w6EwZVRhqOiIhkV1+SuZ8BxpnZ98xspsVmyodI/lu5tQGAMUMHMDYu09STCq9fbl/pmguh99/BxE0infTL7ZNZZ0Jp4mcn6mTuC78AbwnrBZdFG0uGLJ46MtVmAVIfwBS4dYk2CyUGU0cPjjiaHEm2WID+JXMrp4bb29N7e0ZnJXBFos3NPwJDgd+k7Z8G9GiiuhSI5PAzKM42C5D2s+WwtzrSUCSLVqW1WJh7cWRhiIhIbvRl1H094MCrgQ8DHU1tdnfv9txmdjNwAVDr7icltl1PeAOdfLP8r+7+aB/iFImVg41NrN8ZbvWdM3F4fKapJ7VJ5qpwteilJ5Imn5K58w4cBsedDi8/Hipc9myEkdMzd/7eSLZYsFI46R3RxJBhi6dW8lSbytziSOauT7RZmDpqMAPLYjIDNn34WX8+ULny/n6HkkH/BTwA1CYeLwf+mLb/HGBZ+ydJAWtts2DRXeuzrc0QtM3F2U5CUi0WSgfAiedFGoqIiGRfX5K5txGSuZlwC/D9xDnT/be735Ch1xCJhbXb97XOa4rl8LMdacPPJpwcXRySGzVp+ZSqDCZzAWa/JSRzAdb+Cl7zocyevyd2rEr17J11Jgwd2/XxBWLxtJFUF1mbhYONTdTUhwF7sWmxAKk2J0MnwIiqaGPJEHd/xMzeBFwENADfdw//siaqdas59j2rFLJdicrcEVVQXhFtLNnSPpkrxWfny6n3wTPVYoEOchVmVkFomzOQkAO5x92/lOvAREQypdfJXHe/OlMv7u5Pmdn0TJ1PJM7Sh5/Nm1QYw78yanviTWz54OKtrpGUZCKpdACMz3Dy/oTzgI8DHlotRJHMbTP47F25f/0eqho5qM337owZOpCRo8ay98AghtshvGFLwfcNWZ8+/GxcTJK5B3aGqnUILRaK6E4Qd3+Ktn1yk9t3AW9P32ZmQ4BPAre5+8acBCiZ09wUWvZAcVerVk5LrZXMLU7JqlyAeRdHFUU+6egfpSPAm9x9v5mVA38ys1+5+99yHJuISEb0pTI3F64zsyuBpcAn3X1P1AGJ5Lv04WdzJ8asMrelBWpXhfW4OVASk9uc46r5KGx7PqwnzIeyAZk9/7DxMOXVsOVp2PRnOLgbBo/K7Gt0paUZVtwd1gOGtR3Klmduv+bUXj9n8bRR1Kwcw3DbQvPuTXn7RqSnkv1yAWaOHRJhJDmUqX65hW8o8CXgT8DGaEORXmvYDC1NYV3UyVxV5ha9lYl+uWqxgLvvoIO5QIm7LJL/YJcnvjJ1t7GISM7163coMxtKmPrb0QWzr+8Wfgh8lXBx/SrwTeD9Hbz2tcC1AFOn5sXQDJFIrUwkcyvKS5gxJiYJhaQ9G+DowbAu7uFnAqE/ctPhsM5WImn2+SGZ6y3w0mOw8PLsvE5HNjwF+7aF9byLoLxnVa+FYvHUSmpeHMMctlB2sBaOHi7o25vXpVfmxqXNQqb65RaH4ilLjptd61Pr0UU6/AxgyBgoGwRNh5TMLUZ1a6E2MTdi1llQUXx35yXugrgcOB4YzbHXXXf3a3pwnlLgWWAWcKO7P53pWEVEcqVPyVwzezfwBWBOF4f1qTQu8Wla8nX+F3i4k+NuAm4CWLJkiT5Vk1hrbnHWbA/J3NkThlNaErPfLdP75RZ/MlfXu5pnU+tMDj9LN/sC+M0Xw3rNI7lN5q64K7We/+7cvW6OLJ42kmc8rQfw3pqCTqSsb1OZG5NkbrLNiZXApEXRxiLSV7vXpdajCvca1C2zUJ27c62SucUovcXC3IujiiJrzOzVwCOEJG5nHOg2mevuzcBCM6sE7jOzk9y99ZcIFYtJ0pe//OWoQxDpVq+TuWZ2MfBz4CXgf4APJh6XARcDL9BJAraH55/o7omSJN4GvNjV8SICG3Ye4PDRFiCuw89Wptbj50UXR27ELFPfgVwkc0fPhDEnhl9+X/kdNB6EAYOz81rpGg/AqgfDesQUmPa67L9mjp04fhiPloxLbajfVNDJ3GRl7qghAxg5JMMtP/JRS0tqAOG4uTAwJglsKT670ypzi7nNAqSSuXu3QlNj5tsTSXRW3R++lw4s1hYL3yK0RLgUeMLdd/f3hO5eb2ZPAueSlmtQsZgkfemqM6MO4Rif+PPPow5B8swx7RF64FPAamAhkChb4mZ3fzewBDgBeK4nJzKzO4C/AieaWbWZXQP8p5m9YGYrgDOAf+5DjCKx0nb4WQyTudvTK3OLN5nr7jvcvcTdn4g6lkglk7mDRmb3F/Bkr9qmQ7D+yey9TrrVD8PRxG37J78TSvryz3R+KystoXx0aiDPkZ2bIoymf1pavLUyNzb9cne+BEcS/+Zk68OUGDCzSjO7x8zWmNlqM3tt1DHFzq5kZa4V/+DUkclrrsPe6khDkQyqXZOaGTHrLKgoyt8BTgG+6e739CeRa2ZjExW5mNkg4CxgTWZCFBHJvb60WZgP/Ju7HzazZJlSKYC7v2hmNwGfAx7o7kTuflkHm3/ch5hEInHFj5+mes8hqkYO6tMgoExZubWhdR274WeQarMwYgoMqow0lN7KVB+w2Di8N/SHg5BIsiwWKs++AP70rbBe8wjMfkv2XitpxZ2p9YLia7GQNLpqFiRGm9ZWv8yU6C6f/VJTf4gjTeGuiNi0WEjvl1v1qujiKHzfAR5z93eY2QAgB6X/0kayzcKIKQXdt7tH2g9BK/ZK5LhIVuUCzLs4qiiybS+wKwPnmQjcmuibWwLc7e59vptYRCRqfUnmlpK6oB5KfE/vtL4W+FB/ghIpFNV7DrFh54HuD8yyVYnhZyUWeubGyuG94TZtKLiq3Ez2AYuNrctpbRuc7arASYtg2MQwjGzto9DcBKX9mhvatX3bUxXAkxbB2BOz91oRm3bc7NCUCTi4Y0O0wfTDujj3y4XsDSAscmY2HDgNuBrA3RuBxihjip3mo6n+saNjkNhsn8yV4pDsl1s6EE44N9JQsuhe4M3AD/pzEndfAajJu4gUjb7cv1kNTANw90NALaG9QtKJQPTZLZGYcPfWZO6MMUMYNKBPswcLV/L2MijE4WfpfcDGJFootP+K2R9oN9ITSZOznEgqKYETE9W4h3bDliwPPX7hF+ChyrMYB5+lO+n4mRzy0LPRGrZEHE3fJfvlAhwXlzYL1Yk2JwOHh77S0hfHAXXAT8xsuZn9X+IujTbM7FozW2pmS+vq6nIfZTGr3wwtTWEdhyrV9GTunsJtbSNpaldD3eqwPv7sYm2xAPAZYJyZfc/MZppl85YsEZHC0Zdk7l8IPWaSHgQ+ZmZfNLPrgY8AT/Y/NBHpibp9R9h1IBT0zJs0opuji9COgu6Xm5E+YLGSHLwEMHlx9l8vvbXC2kez+1rP3xW+WymcdEl2Xytio4YOpDYxBG3YkW24F+ackdhV5h7ZD7WJgZOTFhV8T2czu9nMTk17fJqZje3FKZqBTaTuVOupMmAx8EN3X0Qogvhs+4Pc/SZ3X+LuS8aO7U1Y0q02w88KdwBjj1Wm+pSrMrdIJKtyAea9LbIwcqAeeDXwYcIA9iYza2731RRphCIiEejL/aI/AN5mZoMSlbmfJ1xgr0/sX0kYkiYiObAybfjZ3DgOP9uxMrWecHJ0cfRNpvqAxYM7VCcqc0dOhyFjsv+a008LFYhH9sKah+Gcf8tOn97tL8KORN+B48+GocWfuDk0eBIcqGac72LDjnqOmzAy6pB6bV1tSOYOKC2hauSgiKPJgW3PparHi6Nf7tXAb4Fk2f3vgSuAHo2MdvedwIw+vG41UO3uyde9hw6SuZJFrcPPgNExSOYOHg3lg+HoQSVzi0WyX27pQDjhzZGGkmW30dpfS0REknqdzHX3Z4Bn0h7XAQvNbD6hQmG1e/KdvohkW7LFAsR0+Nn2RGVuWUUh3iqZkT5gsbF3K+zfHtbZ7pebVDYgJFdf/CXs2RjaemSjAjx98Nn8d2X+/HmodNRUOPB3Ss1Z8/JLHDeh8KagJdssTB8zmLLSwq5S7ZE2w8+Kol/uTmB82uOc3L7r7tvNbIuZnejua4EzgVXdPU8yqE1lbsG9d+g9s9BqoW6NkrnFoHZ1+LOE8B5l4LBo48kid7866hhERPJRxia5JJqKi0iOpSdz58QtmdvSkuqZO24OlBRce9nPAI+b2feAbwPrvVDvN8+FXPbLTTf7/JDMBVjzSOaTuS3N8MI9YT1wOJx4XmbPn6dGTJwJiXa5NRvXwhsKK5nbcPAoO/cfAWLSYgFSlfGQ25/B7PkL8AUzmwrsSWx7u5nN6uI57u5fzcBr/z/gZ2Y2AFgPvC8D55Se2p2ozLWScKdHHCSTufu2QdMRKBsYdUTSVyvvS62Lu8WCiIh0os/JXDM7DTiHUNHwTXdfY2ZDCT3AVrh7fWZCFJGurEq0WRg3bCBjh8XsjXn9JmhM9KwsvOFnEPqAOaleYHQw18HdPWMfvBW0mmdT61xV5gLMOhtKyqHlaGi18MZPZ/b8G/4QfrkGmHsRlMfgdn1gzORUvqxh27oujsxP63bGrF9uepuTymnF0grk48CtwEcJVbkOvD3x1RkH+p3MdffnaDtAWHIp2WZhRFV8kpqtQ9AcGqrj0V6iGLmn+uWWVcAJ50YaTi4lcg2VdDD3x91Vci4isdLrBIGZlRJ6ib2D1BvfO4A1QBNwP3AD8PWMRSkiHdp/pImNu8JtvvNi2S83ffhZQSZz1QesN6oTydySMpg4P3evWzEcZpwG634H254PvwSPqMrc+Z9Pa7Gw4LLMnTfPlYxMTVcv2VvNvsNHGVZRHmFEvZPslwswc9yQCCPJkb01qTYnxdEvF3ffCLwxUR07AdhISPA+EF1UknXNR1OtBuLQYiGpMnXNpX6zkrmFqnY17Fwb1sefDQOL/8NEM3s38AVgTheHFdzteSIi/dGXaq/PAJcAnwAeA1Ynd7j7YTO7D3gLSuaKZN2abXtJ3pQf++Fn2ehjmmXqA9YLLc2wdXlYj5+X++rV2eeHZC7Amkfh1Gszc94j+2H1Q2E9YipMfW1mzlsI0hILk9nJ81saeP3x3Q+1u+LHT1O95xBVIwdx+zXRtWZYv/NA6zoWlbnF1y+3lbs3ApvN7FbgaXffFHVMkkX1m8Gbw3pUjBKa7ZO5Uphi1mLBzC4mFJK9BPwP8MHE4zLgYuAF4OGIwhMRiUxfpnVcCdzm7t8hDI5obzUQo3dGItFJtlgAmDtxRISRRGT7C6l1ASZzpRfq1sDRRPIsil6dJ74ltV7Tze8Mt10M310cvndnzcNhujjA/EuhJAZDtJKGTqClJFTiVlkdyzbv6eYJQfWeQ2zYeYDqPYeyGV230itzj4tFMrfo+uUew93f5+5PRx2HZNmutLYucapOVTK38LmnkrllFXD8m6ONJzc+RcgvLAS+mNh2s7u/m9Cq5gTguUgiExGJUF8qc6cD3+xifz0wsi/BiEjvpA8/i3Vl7vDJMHhUtLH0k/qAdSOqfrlJwyeGBFbNUtj4Jzi0BwZ18k9d/ebUcJ3utGmx8O7+x1lISkrw4ZOhfiOTbSf/28Nkbr5YVxeSuROGVzB0YAzaWieTuaUDctvmJIsS8x96zd2fynQskkO716fWsWqzMC21VjK3MNWugl0vh/Xx58SixQIwH/i3xB3AgxPbSgHc/UUzuwn4HGqPIyIx05ffPvYBXWVNZgF1fQtHRHojWZk7ZEAp00YN7uboInNkP+zZENYFXJWrPmA9lF4VGNUt3rPfEpK53gwv/yZU0vbH3q2w/smwnnwKjDm+3yEWmtKRU6F+I5NsJ8s37aKlxSkpOWYIYN452tzCpl2hojoW/XKbj8K258J6wsnFNDDqSXrXtzw5K0LX5EKW/mFbnNosDB4N5YPD3SBK5hammLVYSCgFdiXWyVty0m9HXAt8KKcRiYjkgb4kc/8EvNfM/rP9DjMbCbyf0EtXRLLoaHMLa7bvA2DOxOEFkQDJqNpVqXVhDj9TH7DeqFkWvg8cDqMjSnrOvgB+95WwXvNw/5O5L/yC1jzS/JhV5SaNCLf9DrBmKg7vZP3O/cwaNyzioLq3efdBmlrCn10s+uXueBGaDod1kQw/S3hf1AFIBJJtFqwERk7r+thiYhaqc+tWK5lbiNq0WBgEJ8SixQJANTANwN0PmVktob3CPYn9JwIHOnmuiEjR6ksy92uEhO4TwC2JbQvM7Hjgs8AQ4BsZiU5EOrW+7gCNTS1AXFssvJhaF25lbrIP2CnAUEIy92Z3f8LMTgL+jPqAQeMBqE201Ji0KLq+smNOgNGzYNcr8PJv4ehhKK/o+/mevyt8LymDky7JTIyFpnJK63Ky7WTZpvqCSOa26Zc7JgaVuUXaL9fdb406BolAss3CiKpiqjLvmcqpIZm7bxs0HYnff38h27EyvP8AOOEcGBCDf3uCvwBnkeqX+yDwMTM7SGhN9hHgoYhiExGJTK9/I3b3pcDbgdnATxKbbwB+CAwC3ubuqzp5uohkyKptDa3ruRPjmMxdmVoXaGUuoQ/Yre5+GGhJbGvtAwYk+4DF27bnwRP/e6Lol5tkBrPPD+ujB2DDH/p+ru0vpBLUs86GIaP7H18hShvIU2U7ezwELWrr6lJFQDPHZbgyt7kJlt0OPz4HvjUvfF92O7Q0Z/Z1eiO9Z3VUbU5EMqH5aKoqNU4tFpJar7kODdWRhiK9FM8WCwA/AJ40s0GJx58ntFa4npDgXUcojhARiZU+Texw90fNbDpwDiGpa8DLwOPufjBz4YlIZ2I//Gx7ojK3dGColixM6gPWE/nQLzdp9gXw5++E9ZqH+36bY5vBZ+/qf1yFakSqMrfK6vjNpkJJ5qYqczPaZqG5Ce65GlanFRntrYYtT8PLj8M7boHSCIatVT8Tvg8eDSOn5/71c8TMPkIoSjirk/2/Bn7p7v+T28gkY/ZsCn3PAUbHOZlLSGrH8f9BIWrfYuH4c6KNJ4fc/RngmbTHdcBCM5sPNAOr3ZOf+IuIxEef71V19yPu/pC7/5e7/6e736dErkjuJIeflZYYJ4zP/9uSM8o9VZk7bnY0yY3MaNMHDEj2AUtSHzBoWxUYZWUuhFvMh4wL67W/6lu1ZHNTol8uMHAEnHBe5uIrNO3aLLxcu5+GQ0cjDKhnksncwQNKmTC8H6022nv+jraJ3HSrH4IVd3a8L5sO7k7d2lv1qlChXryuJhQndOYlwmwIKVTJFgsQ88pc1De3kOx4MTW474Q3x6nFQqfcfYW7r1QiV0Tiqk/JXDO73Mz+bGa1ZtbcwVdTpgMVkRR3Z2WiMnfW2KFUlMdssHb9ZmgMw98Yf3K0sfRPsg9YUrIP2BfN7HpCH7AnI4grvySTucOrYNiEaGMpKYETE8nXA3Vtq4Z7asOTsH9HWM+7uH99dwvd8MlhCBEhmQvw3Jb6CAPqnru39sw9buyQzA6fXH571/uXdbM/G5LDB6Go+uV24njC4MnOrEwcI4UqmRADGHVcdHFEpU0yd1N0cUjvxLfFQiszO83M/s3M/tfMZie2DU1sr4w4PBGRnOt1OZuZfQH4MrCDkIgojHsiRYrItobD1B8M1WuxbLFQHMPPIPQBe5uZDUpU5n4eeDWhDxiExEG8+4Dt2wENW8J68uJoY0mafQEsS8xNWvMwTD21d89PDj4DWPDuzMVViErLYdgk2FtNldUBsGzTHt54wtiIA+vczv2N7D0cPrPOaIsFgIaabvZH0OOyJo/anGRfOdDVpysV3eyXfLcrLZkbxxYDldNSa1XmFob0Fgvlg2PVYgHAzEqBnwPvILR2dOAOYA3QBNxPmN/z9YhCFBGJRF/uTf4woVLsXHfP/3shRYpQm365sR9+VrjJXPUB64F8HLw04zQYMBQa94dk7tlf6fmt50f2pW6jr5wKU16TvTgLReUU2FudqMz1vB+Ctj5b/XIBRkwOPXI7M3xSZl+vJ5L9crH8+UAle14Czga+1cn+cwjDdqRQJStzraRtYjMuBo+C8iFhiKeSuYVh+wup9iAnvBkGDI42ntz7DHAJ8AngMWB1coe7Hzaz+4C3oGSuiMRMX9osDAfuViJXJDrJfrkA8+JYmbs97S7Y8SdFF0eWqA9Ymnzql5tUXgGzEt0xdq+HurU9f+7qh6ApMetu/rtD24a4S9z2O8gaGcU+nttcT0uLRxxU59bVpdpYZzyZu+i9Xe8/XA9H9nd9TCa5p1qJjDkBKkZ0fXzhuwM4x8y+amYDkhvNrNzMvkxI5v48suik/5JJsRFToGxA18cWI7NUqwUlcwuDWixcCdzm7t8BdnawfzUQwzJ7EYm7vvwWuRyY0u1RIpI1K7c2tK7nxLkyd9hEGDI62lgyQH3AupC8xdtKYOLCSENpY/b5qfXaR3r+vOfTBljFvcVC0ojUW4oqq2PfkSZers1hwrKX1qVX5o7L8BCayuld79/5Evz07XC4oevjMmXXupBAhjD8rPj9N/AUoeXNVjP7k5n9EdgG/H/An4BvRhif9EdTYyqBGccWC0nJZO6+bdB0JNpYpGttWiwMgVlnRxtPNKYDf+1ifz0wMieRiIjkkb4kc78AfNDMiv5eO5F8lazMnTSigpFDYlZZ0nggVVlTwC0WIPQBM7O7gN8D/0qYkp68jzrZB+zD0USXB1paoGZ5WI+dAwMzXAXZH8efDSWJTkVrepjMbaiBDU+F9eQl8U4mpKtMJXOTQ9DyudVCMplrBtNHZziZ+/SPUuuxc8LQvymvgTd9EYZODNu3PA23vhUO7Mrsa3ekTb/cPKmMz6LEXWfnAJ8FqoFFwGJgC/Bp4Cx3b4wuQumX+k2QvOFlVIyvv+lD0KLowy09t30F7NkQ1vFssQCwDxjVxf5ZQF2OYhERyRu97pnr7n8ws2uAv5nZX4GNhN6O7Q7zazIQn4i003DoKFt2h9u0Yzn8rHY1YfYBxdBiQX3AurLrFTiSqEDMt0TSoJEw/fWw/snQCmLv1u77mb7wC1r/7qoqNyUtsdCazN20h8tePbWzZ0QqmcydMnIwFeWlmTvxrnWw9tGwHjcPPvTntr2YT74Ebr0wJKS2PQ+3nA9XPgDDxmcuhvZa++USl8rcZEL3PxNfUkySHwQDjDouujiilp7Mrd+kDxbzmVosQLgj4r1mdsw12cxGEgohHst5VCIiEet1Za6ZnQrcQkgEvwG4Ari6gy8RyaCm5hbufmYL7/zRX1q3OdCcx70ls2LHi6l14Sdz1QesK/nYLzfd7AtS62QSrjPuqRYLJeUw7+2ZjaVyaqg0q8zPBGiXRqRinlkeqk2fzdPK3MNHm6neEz5MO25shqty//YDWpP9r/3IsUP1Rk6H9z8WetcC1K2Gn5wL9VsyG0e6ZL/c8sGhUlikkO1Km10X5wRmm2Su+ubmrfYtFo6PZYsFgK8BxwNPAMk3XgvM7J+AZcAQ4BsRxSYiEpm+tFn4DnAUuAgY5e4lHXxlsFRFRJqaW7ju58v59C9X8NKOVL/G362u5SM/W0ZTc4zmZCX75ULBt1lAfcC6ln6L9+Ql0cXRmRPPS627a7WwfUVIvgEcf07mez1feT98dFn4XmhGVLUuZw+qB2B93QHqD+bf3ewbdh7AE/nWjA4/O7gblv8srIeMg5Pf0fFxwyfB1Y+mPsjavR5+cl7bJFWmHD2U+vBs0mIo7fXNXCL5ZXfaz4naLARK5ra64sdPc8YNT3LFj5+OOpRg23OwZ2NYn3gulA+KMprIuPtS4O3AbOAnic03AD8EBgFvc/dVEYUnIhKZviRz5wM3uPtD7l6f4XhEpAP3LqvhsZXbO9z32Mrt3Lu8JscRRWh7IrlQOgDGHB9tLP2nPmBdaVMVODvaWDoyoio1lG3DH7seSvX8Xan1gndlNayCU14BQ0OrgCklqT6wyzfXRxRQ59oMP8tkMvfZn0BTqPjl1ddC2cDOjx06Fq56KFWt3rAFfvIWqF2TuXggtHJoaQrrfGtzItIXyTYLVlKYdzFkSuW01FrJ3FbVew6xYeeB1rsvIrfy/tQ6vi0WAHD3RwkFEBcRWpR9jtCm7Dh3/3WEoYmIRKYvydxaIP/KZUSK2F1Lu76N9u5nsnibbT5xT1Xmjj0RSsujjaf/kn3ArP2OtD5gv895VPng6OG0qsBF+VsVmGy10HIUXv5Nx8c0NyX65QIVI+CEc3MTWyEZEYagVTZua92Uj0PQ1tUeaF3PzFSbhaZGePqmsC6rgCXv7/45g0fBFffDtNeFx/u3wy1vga3PZSYmSH2YArHplytFLlnBXjkVymI2PDbd4FEwIPFhlJK5+Sm9xcKAoTDrrMyevwBbM7n7kUQx2X+5+3+6+33ufjDquEREotKXZO7NhORDnv5mLVJcGg4d5aUd+7o8Zmt9nlQRZFtDdWog1viTo40lM9QHrDPbV6SqAicvjjaWrsw+P7XurNXC+t/Dgdqwnvf2rqsu4yrxC2XZ0f2MsJAwfXZTHiZz0ytzx2WoMnflvSEZC7Dgsp634KgYDu+5B2a+KTw+uCsMSNvy98zElT78LB/bnIj0RlNjqGKHgm6xkJFWAGapJJ6Suflp6/IwnA7CB8CZbrFQYK2ZzOxyM/uzmdWaWXMHX01Rxygikmt9Seb+CWgB/mZm7zezM8zstPZfGY5TJHZ27T/Cfz2+htd/4wn2He76Pcqkypj00Woz/Kzg++VmtA+YmZ1rZmvN7BUz+2wH+2eb2V/N7IiZfao3z41Em+FneZxIGjcHRs4I65d/A01Hjj0mOfgMYMG7cxNXoamc0rp83Zjw4dTzW+rzbsBjMpk7YlA5o4dkoLLPHf76/dTj136kd88fMBguuxNOTHyocKQBbrsYNjzV/9iSP4PDq2D4xP6fTyRK9ZvAE/MFCnj4WcZaASSTufu2dfzvlkRr1f2pdcxbLJjZF4DbgRnAX4DbOvi6PbIARUQi0pfq2t+mrf+P1tHLrSyxTUPQRPpge8NhbnpqPXf8fTOHjjb36DmXvmpK9wcVgyJL5kLoA2Zm04FzCEldA14GHu/p7WNmVgrcCJwNVAPPmNmD7RLBu4GPAhf34bm5l36L9+Q87tdpFqpz//p9aNwXeuemO7IvVbE7cjpMOTXnIRaEEalr2D+MPsCjdWM40NjM2u37mDtpeISBpbS0OOvrQtXwzLFD6KA7Su9t/CNsfyGsTzi3b33AywbCpbfC/R8K7TyOHoCfvRMuvR1OOKdvce3bnqpiVL9cKQbpQwJHHRddHPki/fb6huqCTnAXnWy3WCg8HwaeBM5196MRxyIikjf6ksx9X8ajEBE27zrID/+wjl8+W01jc0vr9mEDy3jPa6aydsc+fr/m2FlY586bwCWLq47ZXpS2pyVzJxRFmwUg9AEDHkp89cWrgVfcfT2Amd1JGBLRmpB191qg1szO7+1zI5GsChw6Pgway2fJZC7A2natFlY9mBpsNf9dIfkrx0obyHPSkL2t62Wb9+RNMnf73sOtH7BlbPjZX29MrXtblZuutBze9j/hVtxlt0HTYbjzcnjHj2HuRb0/n/rlSrHZnZ7MVeKyTTK3fpOSuflk67JU+4sTzwtDQuNtOHC3ErkiIm31Opnr7rdmIxCRuHp5xz5+8OQ6Hnx+a5tbikcOLuea18/gitdOZ8SgcpqaW7h3eQ13P7OFrfWHmFQ5iEtfNYVLFldRWhKTBFFy+NnQ8TBkTLSxZIiZXQ58hNA7t6Nmme7u3V2rJwPpU/CqgZ6WgPb4uWZ2LXAtwNSpWRyacWAX7NmQiO6U/E+ATjkVBo8OPUvXPAoD0gZjPX9Haj3/XbmPrVCktVmYUb67db1s8x7e+5ppHT0j5zLeL7fuJXjpsbCecDJMf0P/zldSCm/9LpQPgad/GIby/eJquPiHvW/voX65Umx2r0+tlbhsm8zdsym6OORYK+9PrWPeYiFhORCTWxBFRHou0iFmZnYzYehPrbuflNg2CrgLmA5sBC519/ybgiLSTy/WNPD9J17h8VXb8bRmJeOHD+Qf33Acl586lcEDUj+iZaUlXLpkCpcuien7mcaDqcqaImmxkOgD9mVgB6EPWF+vdR1lO3vabLTHz3X3m4CbAJYsWdL7Zqa3XRyqTSqndj10Y+uy1DqfWywklZSG6pnlPw2DrIZPDttbmmDjn8K66tVKIHQlrc3C8CNbGTVkALsPNLIsj4agratNS+ZmojL3bz9IrV97XWY+tDCDc/899NL94zdDj9D7PghHD8KS9/f8PMnKeCuFiQv6H5dI1JJtFqy0bSIzrtpU5moIWt5wTyVzBwyDmWdGGk6e+ALwSzO7192XdXu0iEhMRJrMBW4Bvk9oXJ70WeB37v6NxCCezwKfiSA2kax4ZuNuvv/EK/zhpbYtE6aMGsQH3ziTd5xSxcAytZw+Rt3q1PCS8SdFG0vmZKoPWDVtqxaqgK05eG6vbNv8EhObati29zBdjlMqlH656WZfEJK5AI2hrypH9tGaF1+gqtwuDRwKg0bBod1Y/RYWT63kt6tr2bjrILv2H2H00IFRR8i6RL9cCD1z++XArlTV9tAJMO/t/TtfOjM484tQPhie+Crg8PA/w9FDPWvl0NIMNYnflyecFBLDIoUu+WFw5dTQliTu0lrbKJmbR2qWQYNaLKRz9z+Y2TWE4et/JRR7tR8q4u5+Tc6DExGJUKTJXHd/KjH4J91FwOmJ9a2ERIeSuVLQ3J0/vryT7//+Ff6+YXebfbPGDeXDp8/kwgWTKCstiSjCApBssQDFlMzNVB+wZ4DjzWwGUAO8G7g8B8/tlaZmb/O9U8mqQAwmL85GKJl33OkheXb0YCqZ27gvfC8pz2yyrlhVToFDu6FhC4tOGMlvV9cCsHxzPWfNHR9xcKk2C+WlxpRR/UxwLr059LUFOPVaKBvQz+g6cNqnQsuPxz4bHj/+r+Hv5mn/0nUVcO3qMEQN1GJBikPTkTDkC3SHRNKgkWG4VuN+JXPzyar7Umu1WADAzE4lFICVAW9IfLXngJK5IhIrUVfmdmS8u28DcPdtZjauo4Ny1rtRpB9aWpzfrN7Bjb9/hRXVDW32zZs0nOvOmMWb502gJJ973jY3hQqy5bdDQw2MmAyLroCFl4fby3OlTTK3ONoskKE+YO7eZGbXAY8DpcDN7r7SzD6Y2P8jM5sALCUkkFvM7OPAXHff29Fz+xtTn7mnkrljToCKEZGF0ivlg2Dmm2DNw6FXKUBz4vsJb4bBo6KLrVCMmALbnoeDu1gyMVWJu2zznrxK5k4dNZjy/nzw1nQE/n5TWJcPhlOyOFf2NR8Kr/HQxwCH338tJHTPur7zhG56v1wNP8sqMyslXJdr3P2CqOMpWns2pe7sGXVctLHkC7NQpVy7SsncfJHeYmHg8PCeQgC+AxwlFHz90d3row1HRCQ/5GMyt0f63btRJIuamlt45IVt/OD361i7Y1+bfUumjeQjb5rF6SeMxfJ9sFNzE9xzNax+KLVtbzVseRpefhzecQuU5ugysv3F8L2kPCT5ikPG+oC5+6PAo+22/ShtvZ3QQqFHz43Mng2hOhMKp8VC0uwLQjK3vd4On4qrtNt+5w9roLTEaG5xns2Dvrn7Dh9lx94jQAb65b5wDxwIVccsfE/2E/2nXBUSuvf9E3gz/PnboYL83P+Akg6S0jVpbU6qVJmbZR8DVhM+ZJNsSbZYABilytxWyWTu/u1w9LBu6Y9azbPQkJhHe+Jb9OeRMh+43t0f6vbILpjZFEJrxwlAC3CTu38nA/GJiEQiH5O5O8xsYqIqdyJQG3VAIu01Nbdw77IattYfAmBr/SHufmYLb10wiQeeq+GHf1jHpl0H2zznDceP4SNnzOLUGaPyP4mb9PwdbRO56VY/BCvuhEXvzX4c7rAjkcwde2J2bkmOgPqAdaD62dS6qu/J3M5+Ri85pYrSbFXCzzqTME8u7fPFskEaYNJTlaki9UEHtzFn4jBerNnLiuoGmppbIm1Dsz69X+64fiRz3eGvNyYeWKiczYX57wzV4/e8D5obQ2Vw4wG48HvH3mGR/BmsqFTiK4vMrAo4H/ga8ImIwyluu9KSuWqzkJI+BK2hGsbMii4WgZXpLRYujiyMPFQLNGbgPE3AJ919mZkNA541s9+4+6oMnFtEJOfysUHng8BVifVVwAMRxiJyjKbmFq77+XI+/csVHGkKt+0daWrh079cwaKv/JrP3vtCm0Tu2XPH88BHXsft15zKa44bXTiJXAitFbqyrJv9mbK3Bg7Xh3Xx9MvtqA/YFcDVHXzFR01aMrePlbld/Yx+5GfLaGpuyUSkbTU3wSOfoE0iF6DpENx3bdgvXRuR1nGkfhOLp44E4NDRZtZs39fJk3Ij2WIB+lmZu/5JqE10MTnxLblNLM25AC67I3zAAPDcz+CX16TagQAc3gt1a8J68ikdV+5Kpnwb+DShQqxDZnatmS01s6V1dXWdHSbd2b0+tVabhZT0ZG79pujiiFhTcwt3P7PlmA9/m1tyeOOnWix05WbgvWbWryI0d9+WvAvO3fcR7oqYnIH4REQiEem7dDO7A/grcKKZVScq1L4BnG1mLwNnJx6L5I17l9Xw2MrtHe47nEgclRhcuGASj338DfzvlUtYMKUyhxFmUENNN/urcxNHcfbLhbZ9wEa5e0kHXzlsTJwHkrd4lw7sc+K+q5/Rx1Zu597l3fy97oueVLFL19okFra0JnMh9M2NUttk7pC+n+iv30+tX/uRfkTUR7POgvf+/+3dd3gcxf3H8feou0ruTa4Yg7EBN2w6NqGYXgymGgwkhOIE0iBACJDkBwlJSMN0CGB6MdWYFjoY27j3XiS5F0ku6prfH7PSnWSVk3Rdn9fz7KPd272d2ZNudPfdme+86SY+AtcT7NUJbog1wKa5VN6QUL7ckDHGnA1ss9bOqes4a+0T1toR1toRnTp1ClPt4lBFmgWTWLWdae6qtLnNM29uRG7+1iT7B5fGDODQsyApte7jm5dvcDe9vjfGXGuMGWOMObH60pATehOwDwVmVns8bm+gGWOibklLSYp4HWpaRGJFRNMsWGsvq2WXxqRK1Hr1h6w693dsncIbNxxLn45N+MIfLdp09X24rEnbbuGpR0WKBYi3YG5Q8oDFjdJi2LzQrXc7EhKTG3Wa+t6jr83OYvyIJs87V1UgvdjDkZIklvmlWSAvi+HDfcHcORt2c9UxfcJfJ8+abb40C/0a2zN32zJY/alb7zYEeh/b9Io1Rp/j4Kp34YULoDAPVk6Hly+BS1+qNvmZ8uWG0HHAucaYM4E0oK0x5gVrrRqJUNjp9cxt17vR/1fikoK5Ad38DfrnhZr4p1g47PzQlxdbPvVbf4oDhkBV5rcKqPODMaY18CZwq7U2339fPM/JYz+7P9JVOIA5+c6orZdILIjGnLkiUW2zNwyrNimJCfERyLUWTD2d93euhlWfwsGnhLYuW/yCuV0PD21Z4RWsPGDxYetiKHOTTDUlkFTfe3RTPfsbJVp6sceytAxIaQPFeyB3I5ntWtCxdSo79hZFvGfu2h2uZ26nNqmkt2hkMOj7R3zrx0xys8lHSuZwmDgNnj8f9u9w6R8ePd6tV9i5xg31rZ5TV5rMWnsHcAeAMWY08GsFckOktMg3qZRSLFTlN+lkcw3mRuTmb3Xl5bDUyyqYmg4HjQltebHnmmCdyBiTjAvkvmitnRqs84qIRIKSoYk0ULeMFnXu717P/pgx/0XInlX3MQW74cVxMPWnsH9X6OpSkWahVSdo3Tl05YRfUPKAxY0g5MuFCL1H0+tJu5aeGfwy440xvp5iuVkYYxjWKwOArF0FbN9TFPYqlZaV8/LMDaza6oK5BcVljculuHc7LHjVrbftER2T23Q9HK6ZDq27uu3da6HIr5PSh7fD61cr37PEtt3rqezIpwn9qmrRzt1Ag2YbzI3Izd/qcpRioS7W2ucCWeo7j3Hj558GlllrHwp9zUVEQkvBXJEGOjIzvc79448Kw3CsUNu6FKb92rd97M+h59HQNtP9HPsXGDTOt3/hK/DwUbD4TdejN5hKCmHnKrceXykWIAR5wGJakIK5Zx1Rd/qPkLxHh06oe/+wevaLU5FqYe8WKC1iWO/I5c2tyKV4x1uLK8d07i0qbVwuxR+e9vU6H/XT6Bnq3WkAjLqh9v3K9xxy1tovrLVnR7oecWvnGt96OCccDLKQTNJV5QZa8wzmRkUHDf8UC9Fwoy9+HYebaPhkY8x8bzkz0pUSEWks9QYTaYCNO/fzxpzah0uPHdSVccNivAde0V7XG6vU640w+g4Y/dsDjzv6BjhiPLz/C9izyQ3PfeNaWPQGnPV3aNs9OPXZvgysFzRp5IRYUSyoecBiXkUwt2UHaNen0adZlJVb676QvUeHXA6rPqp5ErSB58CRtaWIlyrS/fPmZh8wCdrpg7qGrSpBy6VYUgiznnTrya1g2NVBrGUQrJxe937le5ZYtmutbz1Ge+ZW3Fjyb48qJun6bPk2Hr58KEmJjeyfk9ELti1xN9BKCiE5LUi1jg0XD89kzobabxSGrINGWambOHXu877PPkktoE/zuX8fbtbab3Cfq0VE4oKCuSIBKigu46cvzCG/0A05HdWvPfM35lJUWk5qUgJ/PH8w44ZlkpgQw58TrIVpv4IdK9123xPhxN/UfvwhY90kPp/e63qeAaz4ANZ/A6f+wQUtEpo4AKAixQLEYzA3aHnAYl5Bru/vrsfwRucT/WLFNt6avwmAjBZJFJSUh+c9mpAIFz3rejFO+xWUFkJSmruxceRlyjsaqGoT8hzRqw9JCYbScsvcOr5wh0LQcikues2Xi3bYBGiR0fTKBZPyPUs82+XXM7d938jVowlCOkmXf5ublw0d+zfuPLGqjo8DIbv5W1YKb0w88OZvaQG89RP3WSJRX9FFRKRuSrMgEgBrLXe9tYhlm10+wSE9M3j+2pGVw6+6Z7Rg/IiesR3IBZcnt2JIbavOcOFT9Qeh0trC2Q/BxA+gg/cloCgf3r8Vnjun6hDHxqgSzI2vNAvBygMWFzbN8603MsXCvqJS7nrLN1neQ5cMCe97NDHJ9WBs6+XPbdvDbSuQG7gM/565WaQlJzKoe1sAFmbnUVzagNQGTTBnw24W5+TVeUxAuRSthRmTvQ1Td0qDSFG+Z4lnFZ9BEpKqTvgVQwK5sdRoVW6gbWj8eWJQfmEJf/toBeBiuile7+bUpAQevOgIJl8xLDSfGRa8XPMoHlBqGxERCZiCuSIBeH7GBqbOc72XOrZO4dErh5GaFGcBmm3L/PLkGhj3FLTpEvjz+xwHN3wLx/8SjPfabPgGHj0Wvvln4yfR2bLI/UxIgk6HNO4cEv1yfvCt9xjRqFP8/eOV5HgBtnOP7M7Jhzbg71eiQ3rVnrkAQ71UC0Wl5ZU31ELBWsuMNTu54qnvGffodxTVEzgOKJfi6v/B9uVufeDZ0dkzUPmeJZ7tWud+ZvSO2d6OIZ2kqxkHc//16Sp27C0G4KpjetOjXZhu/s6bUvf+ufXsFxERQcFckXrNXr+LP76/FIDEBMPDlw+jW3oYJkQIp+J98Jp/ntzfQr+TGn6e5DQ45R64/nPoeoR7rLQQPr0HnjrZF5gNlLW+nrkdB2iG33iWM9e33mNYg58+b+Nu/vud+9LermUy95xzWLBqJuFUJbDgepuFehI0ay1frtzO+MdncNmT3/Pt6p0BPS+gXIozHvatHzOpkTUMsSGXu7zONVG+Z4llJYWQ5/Vabd8vsnVpgpBO0pVx4A205mDV1j089916wH1m+MWpA8JXuFLbiIhIECiYK1KHrfmF3PTiXEq92YLvPHMgR/frEOFahcC0X8MON9Ss3jy5geh2JPzkczjlXpc3FGDzAnhiNPzvD+4LViD2bIaCXW49/vLlSgVrIdvrmdu+H7Rs36CnF5eW89s3F2G96ePuPvswOrRW4D8mteroJoGByiDMcL9gbl0T1TSUtZZPlm7l/MnfcvUzs5i93nfuIzPTeeLK4YwdVHPv7oByKW5dAms/d+s9hkPPUcGqenBV5Hs+bzL0PBraZrqf502Gi59TmhCJXbvXUzmvaIfYnPwM4JJ68uE2aZKuZhjMtdZy33tLKz/b//r0Q8homRK+CtQ3QbBS24iISABic7yRSBgUl5Zz04tz2b6nCIBzjuzOtcf1iWylQmHei7DgJbceaJ7cQCQmwfG/gEPPgfd+Dhu+hfJS+PrvsPRdOPc/0PuYus8Rx/lyxU9eNuzb5tYbkS/38S/XsGLrHgBOOLgjFwytJweoRC9j3BfZnasqAwvd09Po0jaVrflFzNuYS0pS0+5Dl5dbpi/ewsOfrz4gbcNRfdrxs5MP5oSDO2KM4eSBnZk6L4fXZmexKbfADb89qmdgE+nNeMS3fsykRk/qFxYV+Z6HXhnpmogEz661vvX2sRvMHTc8k8+Wb6txErShPTOaNklXi3aQ0gaK9zSbYO5HS7byzWo3KeWg7m259Khe9TwjyFp1rHu/UtuIiEgAFMwVqcWfpi2t7AV2SJc2/GXc4Zho/jLeGNuWwbRfeRsGxj3ZsDy5gejYH65+H+Y+Cx//3n1h2LkK/jsWjvqJS8uQ2qbm5271TWalnrlxrAn5cldv28N/PlsNQIvkRO6/IA7fp81NRi/XRuRvgrJSTGISw3q1Y/riLeTkFtCzfeOGFJeWlfPewk1M/nwNq7ftrbLv+P4d+dnJ/RlVbeRFUmIC40f0bPhM8Xu2wqLX3Hp6Txh4bqPqLCJNsMtvAtYYTrPgUnwNZeq8HO5+e3GVfN4lZeU0KbWrMa7N3bakWQRzC0vK+NO0pZXb9507KLyTFy95G1Z8UPt+pbYREZEAKc2CSA3enJPN8zPcRBBt0pJ4fMJwWqbE2b2P6nlyT7od+o0OTVkJCTDiWrh5JgwY63t89pMw+WhY+XHNz9viF8ztqmBu3MqZ41tvQM/c8nLLb99cRHGZ+2L769MPoWf7lsGunYRbhhc4tWWwZxMAw3r5Ui0UldQ9MVl1xaXlvDp7Iz966Et+8eqCKoHckw/tzNSbjuWFH486IJDbJLOfgjI3sQ6jbojZiZdEYtpOv2Buh9gN5oLvxlJFftwWyW4E1eJN+Xy1akfTTl6RamHvVihpwmRqMeCJr9aSvdtd4/lDujOiT8PSOjXJ5gXw1g2+7WFXK7WNiIg0mr5diFSzOCePO9/yTdT1r0uH0KdjqwjWKET88+T2OQFOui30Zab3gMtegcVvwvTbYf8OyM+Gly6Gw8fD2D9DK7+ASkWahZYdoHWQewxL9Mj2grkJydD18ICf9uKsjfzg9Z4/smcGE4/tE4LKSdil+/WCzd0IGb2qTIJWWFoW0GkKS8p4/YcsHvtyLTnVZnsfO6grk07uz+Ae6UGpchUlBS6YC274sobMikRGRc/chCRID/NQ+hDLaJlMQZ5rCyd/vpqTBnRqwsn8Xpu8bOh4cBNrF51ycgt45As3kqdlSiK/PWNg+ArfsxVevtzXgeK4W+HU+8JXvoiIxB31zBXxs3tfMTe8MKdyCNutpxzMyYfGYRCxep7ccU+HryeAMXD4RXDzLDjiUt/ji16DyUfBojegrAR++C9sX+b2lZXAvBegPLAgjsSQslLYPN+tdx0MyWkBPW1zXgF/mb4cgKQEw1/GHR7eoZISOhm9feu5bhK0wT3akpLoPrLU1zN3f3EpT329lhMf/Jy731lSGchNMHDekO58/IsTeWzC8NAEcgEWvOybuHHYVZAWonJEpG671rmfGb3jrnd8WnIiR/VxN7lmrdvF7PW7Gn+yKpOgbWhizaLX/dOWUej9/5h0cn+6pgf2eaPJSgrh1Stc5wWAAWfAj34fnrJFRCRuKZgr4ikrt/z8lXmVw69+dGhnfn5yHPZOCEee3EC06gAXPg5XvOnribd/J7x5HfxjELx/q+/Yonx4dxK8frUL/kn82L4MSva79QDz5Vpr+d1bi9lb5P4Wbhx9EId2bRuqGkq4Zfj1zM1zwdzUpEQG9XC/Y/98kf72FJbwyBerOeEvn/OnacvY5k1emZRguHh4Jp/+8iT+delQBnSpJUd3MJSX+yY+Mwkw6qehK0tEaldS6HqZAnSI3cnP6nLTmP6V65M/X934E7Xzv4EWn3lzv1uzg2mLNgPQp0NLrju+b3gKttZ9ns2e7bY7DXSfu5VKQUREmkjBXBHPQ5+s4Gsv71jvDi156JIhJMRbT79w5skN1MGnwE0zYOT1gPd6791a87HL3oOFr4StahIGjciXO23RZv63fBsA/Tq14ma/L7QSB6qkWfD1EhvSM6PKYZtyC3htdha79hbzz09XcvxfPufBD1ewc5/LVZuSmMAVo3rx+a9H89eLj6Rfp9ahr/vqT9zkbeAmPfMPkohI+OxeB1i33j4+g7mjB3RiUHd3k+uLFdtZnJPXuBNV6Zkbf8Hc0rJy7nvXN+nZ7885jNSkMAVTv/uPG60B0KI9XPZy7ZP+ioiINEB8jTkSaaQPF29h8ucut1qL5EQeu3I46S2SI1yrEPjgN+HPkxuI1DZw5l9h8EXw/LlQWlj7sXOnwNArw1c3Ca3sH3zrmfX3zN29r5h7311Suf3nC48gLVk9XOJKm64uf3J5SWWahdKycuZtzK1yWFFpObe9uZDEBENZua18PDUpgctH9eL6E/vRLb1FOGsOMx72rR/7s/CWLSI+u9b61tvH9uRntTHGcPOY/tz04lwAHv1iDZOvGNbwE8V5MPfFmRtZsXUPAGMO6RS+9GkrP4JPvHQKCUlwyRRoH6YewSIiEvcUzJVmb/W2vfz69QWV238edzgDu8XhkO15L8L8F916uPPkBqrXKDfZWX5O7cdUDJuU+JDjvoSSmh5Q76n/+2AZO/a6npdXHt2LkX3DOBO1hEdCopsscff6yjQLU+fmMD8rt8bDKwK5LVMSmXBMb358fD86tUkNU2X9bF4I675y6z1HBXRzQkRCZOca33qH+AzmApw+qCv9OrVi7fZ9fLB4M6u37aV/5waOQkjLgNS2LqVVnAVzd+4t4u8fu04MyYmGu88+LDwFb1sOb1xHZe/wM/8GfY4PT9kiItIsKM2CNGt7i0q54YU5lbk3rzu+L+cN6RHhWoVAtOTJDUR6ZtP2S+wo2uub5K7HMEio+1/SN6t28MYcF8zv2jaN28YeGuoaSqRUpFrIy4bycl79IavOw7ulp/Ht7SdzxxkDIxPIBfj+Ed/6MTdHpg4i4uzyC+bGaZoFgMQEw02jXaoha+GxL9fU84waGOPrnRtnwdy/fbyS/EL3Gf/a4/uGJ93O/l3w8iVQ7HoDM/KnMOKa0JcrIiLNioK50mxZa/nN6wtYvW0vAKP6tue3Z8RhcKh4H7w+0S9P7m2Rz5Nbl6ET6t4/rJ79Ejs2zwfrTWZVT77cguIy7nhrYeX2H88fTNu0OEyFIk6Gl2u2rBj2bmVzbkGdhxugXauU0NerNvmbYdEbbj2jNxx6duTqIhIpZaUuFdLTp8FDg9zPuVOgvCz8dalIs5CQXDUPdxw6b0h3emS4lDJvz8she/f+hp+kIpi7dyuU1N3exorFOXm8MtsFpzu3SeVn4ZjUuKwEXrvKjSwB93n79PtDX66IiDQ7CuZKs/X4V2uZvngL4Hr5PXz5MJIT4/At8cFvYPtyt97nBDfpWTQbcjkMPKfmfQPPgSMvC299JHQakC/3oU9WkLXLfcE864hunHpYlPYsl+DI8Au+5GXRLaPu3Lfd69kfcrOecDl+AY6+MfpS2IiEWlkpvDER3p0EWTMhP9v9fHcSvH612x9OO71gbrvekBjfWeWSExP46UkulURpueWJr9bW84wa+OfNjYN0VtZa7nl3CdbLcnDHmYfSOrXuv4PMdi3o27EVme2a8P9k+u2w/mu33v4guPjZuP/7ExGRyNB/lzCb8PRMsncXkNmuBVOuGxXp6jRb36zawYMfugBncqLhkSuHRW5obihVyZPbCcY9Ff1BhoREuOhZWPiK69GTl+1SKwyb4AK50V5/CVzOHN96HT1zF2bn8vQ36wBIb5HMvecMCnXNJNL8e9LlbuSSEaOYs2F3rYePPyqCPe+K98EPz7j11LaaoFGapwUvw7L3at637D33Pz1c742SAhdMhrhOseBv/Iie/Pt/q9mxt4hXZmcx6eT+dG6TFvgJ/IO5uzdAxzD0Yg2hd+ZvqvyfMaxXBucHkEKtyd/LZj0JPzzt1lPT4bJXoEW7pp1TRESkFnHYDTG6Ze8uYN2OfWTvjo8hTLEoe/d+fvbyXComP7/33EEM69W4D1tBuYsfKtXz5F74pJslPhYkJrkvfdd9BL9c4n4OvVKB3HhTEcxN7wWtO9d4SElZObe/uajy/XrXWRHMiSrhU2129XHDMxk7qOb2a+ygrowbFsFc2vNfgsJctz78akhtE7m6iETKvCl1759bz/5gqhjiDtCheQRz05IT+fEJfQEoLi2vvAEasCpt7oYg1iz89haVcv8HLh+/MXDfuYMxxoS20LVful65ACYBLn4GOg0IbZkiItKsqWeuNCuFJWXc+MJcdu93w2HHj8jk8pG96nlW7aK2d3VNeXIPGhPRKolUkb8Z8nPceo9htR72xFdrWbY5H4Dj+nfg4uGaAK9ZqJZmITHB8PDlQ5k6L4e7315MUWk5qUkJ/PH8wYwblkliQoi/qNemvNw38ZlJhFE3RKYeIpGWl1PP/jAO3d/pP/lZv/CVG2FXjOrFI5+vJr+wlBdmbOCmk/qT3jLA3PLVbqDFsoc/W822PUUAXHpUTw7PTA9tgTvXuDy51ssNfdr/Qf9TQlumiIg0e+qZK3FjwtMzGfO3L5jw9Mwa91trufvtxSzKyQPgiMx0/nBeGO7WR0Ks5cmV5sc/xUIt+XLXbt/Lv/63CoC05ATuv+Dw+Hy/yoHa9nC9m6AysJCUmMD4ET0r8+N2z2jB+BE9IxfIBVj5oW+ipUEXuJQwIs1Rq4517w/ne2NX8wzmtklLZuJxrnfuvuIynpuxPvAnx0kwd92OfTz9jWuT26Yl8evTDgltgYV58PKlvtEZQye4vOkiIiIhpmCuxI36Uli8NGsjr89xPUPat0rh0SuHk5Ych8P2578Ue3lypfnJ8Zv8rIZ8ueXlljumLqK4tByAX546gN4dWoWrdhJpicnQprtbz82KbF3qMmOyb/2YmyNXD5FIshbK65ngbODZ4akL+G6wQLNJs1DhmmP70DLFfeZ75tt17CsKcOK5tAyX8xtiOpj7x/eXUlLm8jL98tQBdGgdwrRM5WXwxnWwY6Xb7nUMnPWQy+0gIiISYgrmSrMwd+Nu7n13CQAJBv5z2VB6RHr281DYtjx28+RK81LRM9ckQrcjD9j9yuwsZq7bBcDhPdK51uttJM1IRaqFvCwqpySPJpvmwYZv3HqvY+tMFyIS15a+A1sX133MnOdg347w1KcizUJCMrRtXr3l27VKqUwflru/hJdnBRiYNcbXOzdGg7mfLd/KZ8u3ATCgS2uuPLp3aAv85Pew+hO3nt4Lxk+BpJTQlikiIuJRMFfi3vY9Rdz4wpzKO/W3jT2U4/rXMxwwFhXvg9evhpL9blt5ciVKGSzkzHMbnQ+DlKo9brfmF/KAN3lJYoLhz+MOJylR/66anXQvmFuyH/bvjGxdajLjEd+6euVKc1WY55v4CeC4W6Hn0S6ImnmU7328cxVMucAdH2oVPXPb9XETqsaRQCbe/cmJ/Ujx/mc+8dVaikrLAjt5RTB33zYoia2JmotKy/jDe0srt+89Z1BoPzfMexFmPOzWk1vBZS9D606hK09ERKSa+PqEI1JNSVk5N780l635biKEMwZ35acnxmn+tA9uU55ciQlJlELxHreReWCKhd+/s5g93tDQ60/sx6DuIZ68RKJT9RyO9eXkDKe8HFgy1a236wuHnBHZ+ohEyqf3wd4tbn3YVXDqfVX379sJ/z0DdqyALQvhpUvgyqmQ0jI09Sne75tcMw5TLAQy8W6XtmlcNCKTl2ZuZNueIt6Yk80VowLopVqlzc2CTgOaUNPweuab9azf6ToznHl4V44NZaeNjd/D+7f6ti98AroODl15IiIiNVBXJ4lrD3ywnFneUO3+nVvz14uPjM8JlOa/BPNfcOvKkytRLoUS30a1fLnTF23moyVbAejbsRW3/OjgcFZNoklFmgVwqRaiyazHfTlCj75J7a00Txtnwg/PuPVWneDUPxx4TKsOcNXbkOEFEzfOgFevhNLi0NRp93rfejOa/Ky6G048qHJyyMe+XENpWXn9T8rwC/jGUKqFrfmF/Ocz32Spd545MHSF5Wa5v98y7+/35LvDmw9aRETEo2CuxK135ufwzLfrAGidmsTjE4bTOjUOO6MfkCf3CeXJlaiWYv2+xPcYUbmat7+E33u5rQEeuPDw+JykUAKT7hfMjabAQtFe+OFZt56WDkMuj2h1RCKitBjeuwXw8lmP/TO0aFfzsW27w1XvQGvvs8ma/8HUH7sJpIJt1xrfejMO5vbq0JJzj3STSGbtKuD9hZvrf1KVnrkbQlSz4Hvgg2XsL3Z/Szee1J/MdiHq9V20F16+DPZtd9uDL4ITflX3c0REREJEwVyJGw8W3MNnKb/kwYJ7WLY5n9vfXFi57+/jj+SgTq0jWLsQqZ4n98TfwEEnR7ZOIvWo7Jmb0ho6HVL5+APTl7F9j0uJctnInhzdr0MkqifRokovsSjqmTv/RSjy8n6OuBZS4/B/i4SUMaanMeZzY8wyY8wSY8wtka5Tg333b9jucpvT/xQYPK7u49v3dT10KwK+S9+B934O5QH0GG2InX7B3DhMs9AQN472Xf/kz1dTXl7PRJLVU9vEgB/W7+Lt+ZsA6JHRgp+eFKIAfnk5vH0DbF3ktrsPhfMedhPHiYiIREDUBnONMeuNMYuMMfONMT9Euj4S/bqWb6Nfwha6lm/jhhfmUFjiviBMGtOf0wfFaU/V6nlyR/82svURCUByRTC3+9DK4enfrdnBK7NdwK5zm1R+e0YIh0mGWkYvaH9Q1S/G0nDpfrPQR0uahfIy+N6b+CwhCUZeH9n6SKwqBX5lrR0IHA3cbIw5LMJ1CtzONfDlg249qQWc9ffAglqdB8KVb7obeQDzXoCP7wJbT5CxISomP4Nm3TMXYECXNpx2WBcAVm3byyfLttb9hBgL5paVW+7xG81z99kDQzea58s/w7L33HrrrnDpS5Bc+yR0IiIioRbtY87HWGt3RLoSwVBaVs7UuTlsynWzw27KLeC12VmMG55ZmdNKGqfitT2qvByM297gTYJw4oBO/OLUEEzgUFYKC16GeVPcRDjpPWDoBDfcNlS5E6uXmZTi+9KiPLkSQypbvB7DACgsKeOOqYsq9//hvMGkt0gOf8WC5aq3I12D+JCcBq06u5nVoyWwsOIDX07OwePc8HGRBrLWbgY2e+t7jDHLgB7A0ohWLBDWwvu/gDI3ioIxd0C7PoE/v8dwuOwVePEiKC10N0fS0oN3M7ric1FiStVULc3UzWP68/FSF8R95PPVnHZYl9rnjmiRAanpbuRBtLS5dXh1dhZLNuUDcFz/DqHruLF4Knz5F7eelOYCuWr7RUQkwqK2Z248KS0rZ9JL87jtzYUUlbreokWl5dz25kJufnFuYJMSSI38X9uKjh0V/TtaJCfw0Pgjgh8sLyuFNybCu5MgaybkZ7uf705yKQ/KSoNbXm1l+vc+Of9R5cmV2OPly/3np6sqb8CMHdSVsYP1tyyeip5i0ZJmYcZk3/rRN0WuHhI3jDF9gKHAzAhXJTALXoF1X7r1Loc37n3Q9wQY/7zr3Q7wxQMw45Hg1K8izUK7PrrBDRzZM4MTDu4IwILsPL5ZXU8fmco2N7qDubn7i/nrR25kWmKC4d5zBoVmguNN8+Btv7/x8yZD5vDajxcREQmTaA7mWuBjY8wcY0xMj2OcOjeHD5dsqXHfh0u2MHVeTmgr8Pz58O9h7mecmTo3h0+W5HBx4hd0NzsB6G52cnHiFxSVlPLZ8u3BL3TBy76hVtUtew8WvhKCMl+qvUyAvfUMnROJRj2Gszgnjye/djcm2qQlcd95gyJcKYkqGV7PuqI8KMiNaFXIngMbZ7j1PidA9yERrY7EPmNMa+BN4FZrbX4N+683xvxgjPlh+/YQfJ5pqH074aM7vQ0D5/4LEhs5imLA6XDB41SO1fjoDpg7pWn1K94Pe1z+VNo373y5/m4e079yffLnq+s+uCKYu28blBSEsFZN849PVrJ7v0vZdPUxfTi4S5vgF7JnC7x8OZR6r8MJv4LDLwp+OSIiIo0QzWkWjrPWbjLGdAY+McYst9Z+VbHTC/BeD9CrV3TnJXz1h7p7FL02O4vxI0I4FCx3Y9XZfePI67PX83DyvzkjcXblY2mmhL8mP8HJCfP476x7GvbalpVCYS4U7HaBg4LdvqXi8UWv132O926Bj+8GrJcHznrdhf23K36W1/BYtZ+BmDsFhl4Z+HWKRFqbbpS27sbtz31LmTcpy51nDqRL27QIV0yiiv8w6bwsNww4UmY87Fs/5ubI1UPigjEmGRfIfdFaO7WmY6y1TwBPAIwYMSKIiWUb6ePfQcEutz7qpy5lQlMcfhEU7YH3b3Xb7/0cUtvAoPMbd77d63zrzTxfrr9RfdszvHc75mzYzfdrdzFnwy6G925f88FV8uZmQacQpCprouVb8pny/QYAOrRK4ZZTDg5+ISWF8MrlvpsDh5wFY34X/HJEREQaKWqDudbaTd7PbcaYt4CRwFd++6PrA24dNufWfWd7Uz37pXZDdk3njMTZWFt17g1r4YzE2WTvnALrbNXAbGFu1SBtQa5vf/GepleqvNT3ZSdc8rLDW55IIyRQ5tvoMZynv1lXme/u6H7tufQo5TeUaqoHFroeHt7yK3KVz34KNs93j7XqDAedEt56SFwxbjz408Aya+1Dka5PQNZ+6UYJAbTtAScHKbA14hooyodPfu9ucL/5Y0htDf0b8R7b6ddxoYOCuRWMMdw85iCufdbNJz358zU8MzGQYO6GqAvmWmu5990lePeAuW3sIcHPsW+tu7GQM8dtdxkMFz4BCdE8oFVERJqbqAzmGmNaAQnepBCtgNOAP0S4Wo3WKrXul7l7hmZDbaxx5nPgwEmUK7Z/UvYqPPdqeCuV0go6DfQqYer+GdAxCbDxexeEro3/rO8iUSqVksr13e0O56FPVgKQkpTAAxceEZp8dxLb/AMLeWHOm1uRq7x6ipt92+DNa+CiZyExKj9GSfQ7DpgALDLGzPceu9Na+0HkqlSHkgJf71mAM//qetAGy3G3QGEefP13KC+BV66ECW9B72MCP8fz58OWhb5tpVmoYswhnRnYrS3LNufz2fJtLNmUx6Du6QceWD2YG2WmLdrM92tdh4kjMtO5eHgQbgJXn2DYGN//m5Yd3IRnqa2bXo6IiEgQReu3kC7AW94X+yTgJWvth5GtUuN8tnwra3fsq/OY8eqN1jgFufSzTfxyn5gCLdq5JS3Dt96inRvOe8C+DFj1CXx4e+3nPOPB4Kc8mDvFTX5Wm2ETglueSDB5X5QybG7lQ18vXEVJ6SAggVtPOZi+HVtFrHoSxfzTLIR7Qp5A8qMrvY00grX2GyqTxcaAr/7mm3R14Dlw6FnBL+Pku6EwH2Y/6XKUvjQern4v8NzUuRth/07fttIsVFHRO3fSS/MAePSLNTx8+bADD6wSzI2uSdD2F5dy/7Rlldv3njuIhKZOclzbTTsADFz8HLTr3bQyJCoYY54Bzga2WWsHR7o+IiJNFZXBXGvtWuDISNejqaYv2szPX5lXmQ+yJmMHdWXcMPWqbJCtS2DWk7DwVVJK99d5qG3THXP0DbUHbJNbHNittz7t+sCGb2r+4DfwHDjysoadLxBDLodVH4W3TJFg8Pui5P8P59x9b5CcvIHJHX7HT07Ql26pRUYEg7nz6pmMSbnKpTnYtgy+/adbT2njbliHgjHu3EV73I2Sonx44UK45sOGD/VPTNGIpRqcMbgb/TquZO2OfUxbtJlfbt9Lv07VepxGcTD3sS/WsCmvEIBxwzIZ1qtd009a1007rNc7+YSmlyPR4FngYeD5CNdDRCQoojKYGw/enpfDr15fUBnInXhsHw7r1oa731lCUWk5qUkJ/PH8wYwblkliU+8qNwdlJbD8fRfE3fDtAbstVbu4VGybk+8K/pfthEQ3vHbhK+7LfF62+9IwbIILqiYkBre8SJUpEgzeF6UD3qNeXuvDj1hFcuLoCFVOol5qG3fjrWB3+NMs1JeLXLnKJd6Vl7tJXctL3fYp90Db7qErLyEBzpsMxXvdZ779O+H58+DaDxvWO7JdX30uqkFiguGG0Qdx2xsLsRYe+3IND15Ure9MiwxITYeivKgK5mbt2s9jX7ne4a1Tk7h97CHBObFu2jUb1tqvjDF9Il0PEZFgUTA3BF6dvZHfTl2E9Trk3jzmIH592iEYY3j0y7Ws27GP7hktGD8ijtMrPH+++xCY0Quuervx59mzFeY8C3P+C3s2V93XuisMvxo2zcOs+rjKLgOh7bGamOQ+3IXzA14kyhRpIjv3ebwM0FVUdIjvse514CdhrpXElPSeLpgbzsBC8T4XUKqLev5JvJvzX8ia6dYzj4IR14a+zMQkGPe0S7Ow7kvYswmmnO966LbpUscT/UbBKcVCrc4f0oN/frKSTXmFTJ2bwy2nDKBH9bk7MnrB1kVRFcz907SlFJeWA/DzH/Wnc9u0pp+0pBC2L6/7GN20a1aMMdcD1wP06tWrnqNFwswkRO38Ivfdd1+kq9AsKZgbZM99t5573l1Suf3r0wYw6eSDI1OZioT++TluOz/H3WEecnnoeyzkboRda+o/ribWui8Ps56Ape+6yTD89ToWRv7EBWsTk911LnyFond+QSrFFJFC6nn/UI9VkSiwf8dG6sqGu3/7hjr3i5DRy01stH+nC7KGWsFueHG8m5CpLspVLvFszxb41PtylpAE5/wrfJ+pktPcpFNTzofs2S5f75QLYOL70LJ9zc8p8/us2EGTn9UmJSmB60/sx73vLaW03PLkV2u599xBVQ+qCObu2w7F+yGlZWQq6/l61XY+WrIVgH6dWjHx2L5NO2FpMcx73uWCrq+d1027ZsVa+wTwBMCIESNqz5MoEgm2nIeeeDrStTjAL6+/jnuu/lGkq1HFL799KdJVCIuESFcgnjz+5ZoqgdzfnTXQF8gtK4W5U/jP/tv5NvVn/Gf/7S6wWl4WmspU5Kl8dxKUuvxSlBa67devdvujTfF+mPMcPHYCPHM6LH7TF8hNbgnDJ8IN38K102HwhS6QC5U9VreZjgDu59ArFcgViQJZZbV88fZsrGe/SJUcjqHuJbVnC/z3LMie5baTaun9pVzlEu+m3+6G2gMc+zPoMqju44MttTVc8Tp08eYp2rYEXrwYimrpMV9W7FtXz9w6XTqyFx1bpwDw8qyN7NhbVPUA/5QW4U5vU01JWTn3+n23+v3Zh5GS1Mivr2UlMPd5+M9wmParA0f81UQ37UREJEopmBsE1lr++elKHpjuG6rzp/MH8+OKSX38AquDy5fTw+xkcPny4AVWrXVDhfbvgrwc2LEKvnqw/lm4o8WutfDRXfDQofDez11vgArt+8HpD8Avl7leIV01+ahILHnTjgGoTDtToWJ7qrdfpFbpYZoEbfd6eGasCxqB+/9z0wyXw7Pn0dA20/08b7Kb4Vw3DCVerfwIlr7t1tv1gZNuj0w9WrSDCW/5grM5P8Arl7nPvNX5j+JSMLdOacmJXHu8691aVFrOM9+sq3pAFE2C9tx361mz3Y3IOGVgF0Yf0rnhJykvgwWvwuSR8O7PIM+7poQkGHYV9D+l5ufppp2IiEQxpVloImstf/lwBY996VIKJBh48KIjuWi437CcumZKXfYeTPsldB8KJQVQst/v5/5qj/mtF1fbTwNHgnx6L+zbAZ0OgY4D3If1cH4xLS+HNf9zqRRWfULV+hsYcLpLpdDvZDchhojUyRgzFvgXkAg8Za39c7X9xtt/JrAfmGitnevtWw/sAcqAUmvtiGDVa377M5i+eRZnJM6uVl+YXnYUCzqfEayiJF4dEFgIwRDqbctcrve9W9x2l8NhwlRo3dkFhpSrXJqLor2u12KFs/8ByS1qPz7UWneGq96BZ86A/GxY9xW8cS2Mf843QguUZqGBrjy6N49+sYY9haVMmbGBn550EOktvNezSpu7ITIVBLbvKeJfn64CICUxgbvPHtiwE5SXw7J34PMHYMcK3+MmAY64FE66Ddr3rUzXpgmG45sx5mVgNNDRGJMN3GOtjb4x6yIiAVIwtwnKyy1/eH8pz363HnCzxP7zkiGcc2S1mX7rnSn1ObeE077t8Ok9vu3EVOh4sAvsVgR4Ox0CHfpDUmrwyi3YDfNehNlPwe5qPQFatIOhE+Co61xwWUQCYoxJBCYDpwLZwGxjzLvW2qV+h50BHOwto4BHvZ8VxlhrdwS7bhcf1YdJb/6cC8u/5o9J/yXNlFBok7m79BreLDuRP4/sE+wiJd5k+PXMzcsis50boZHZLkgBpuwf4MWL3P8ncL1vL3/Vzeou0tx8fr9vaP0Rl8BBJ0e2PuCbTPeZsbB/B6yYBu/cDOc/5rvhXxnMNa4XvdSpbVoyE4/tw38+W82eolKmzFjvSw0XwZ65pWXlTJ2bw6s/ZLF0Uz4FJS4d3XUn9KF3hwAz7FsLK6a7v2X/0X4Yl6Zt9B3uO08FTTDcLFhr1c1aROKKgrmNVFZuueutRbwy233gTUlM4OHLh3LaoK4HHrx7fdMLNAkub2xyC29p5f30f8xbT2kFS6ZC/qYGXFARbF3slurltutbNcDb8RDoNABS29RwnlomXesyGOY8Awtfh9KCqs/pdiSMvB4Gj2tS748tCZ0pKSlnZ3JnetZ/uEg8GQmsttauBTDGvAKcB/gHc88DnrfWWuB7Y0yGMaabtTaApHGNN254Jp8t38brS0ZzY+K79DNb2GQ78HrZaMYO6sq4YfrSLfWoFliYct2o2o9tqDWfwytXQIk3sVr/U2D8lIhP+CMSEZvmwcxH3XqLdnD6/ZGtj7+OB7uUC8+e7XL5LnzVfQ49829uqEdFMDcxSSO6AnTNcX156ut1FJSU8cy367n2+L60TEkKX2qbakrLypn00jw+XLLlgH2rt+2ltKycpMQ6frfWwur/wef/B5vmVt038BwYfSd0OSzItRYREYkMBXMbobSsnN+8sZC35rmAZWpSAo9PGH5gHidrYdaTsHdb3Sfs0B9O/WO14GxL92WyYj0xxX1YDVSnQ11O3tqc+kf3gWb7Sjf0aPtK2L4cCnZVu4Zy2LXGLSs+qLqvbY+qPXk79IcZk2HVR75jKiZdqy4hGQZd4IK4mSMadm21uK3Ffazbt4++bVvxeZPPJhJTegD+s5RkU7XXbW3H9AA24/KcfGyMscDj3my+BzDGXA9cD9CrV6+aDjlAYoLh4cuHMnVeDua9ivPAgxcdwbhhmSQmNP29L3EuLQNS2kDxHsgN4mQ8S9+FN6/zTZw06EK44HFISgleGSKxoqwU3rvFfe4DOO1P0KpjZOtUXbcj4IrXYMoFLsXY7KcgLR1O+BVYb0LhhOS6zyGV2rdK4bKRvXjm23Xs2lfMy7OyuO74vm5UQlo6FOaFNZg7dW5OjYFcgE+WbmPqvBzGj6ilu8a6r+Cz/4Os76s+fvDpMOZO6D4kuJUVERGJMAVzG6i4tJxbXpnH9MXuw0bLlESeunoExx5U7QNv/mZ45yZY81n9Jz3+F3DomcGt6JDLXVC1ply9A8+BY252eaCqJ/3ftwO2r/AFeCt+5tcwg3h+jlvWNiB02qY7HHUtDLva5UELoooht0EbeisSO2qKiFZPpF3XMcdZazcZYzoDnxhjlltrvzrgYBfkfQJgxIgRASfqTkpMYPyInmRNSwALSQkJtX8hE6nOGJdqYdvS4M2sPu8FNxFOReBqxLWuh5/yI0pzNetx2LzArfc5AYZcEdn61KbX0XDJC/DSJW7Ss6//Duu+8e0vLXIjwoZcrvdzAK4/sR9Tvl9PSZnlya/WcuXRvUhNSnQjIrYsCmsw96WZdZf12uysAz87bPwePvsTrP+66uP9RsOYu6DnyOBWUkREJEoomNsAhSVl3PziXP633PW0bZOaxLPXHsXw3u2rHrjkLXjvVijMddsm0Q0P2778wJOGaqbUhES46FmX0H/ar1wP2aQ0OOvvdSf0b9XRLX2Oq/p40R7YsbJqgHfHCti11vdluD4dD4Ybv3dD4EIgqENvRWJLNlTJLpIJVM+zUusx1tqKn9uMMW/h0jYcEMwViZiMXi6Yu2ezC9Y0JZf7jMnw0Z2+7eN/CT/6fVBGiIjEpNyNLiAGbg6Fs/8Z3e+H/j+Ci56G164GLGTP9O2zZW5E2KqP3OfgEH3mjBdd09O4aHgmL8/KYkt+IW/NzeHSkb0go7cL5u7b7iZdDmHqmaLSMqbM2MCCnNw6j9uU65emLWeuS6ew+tOqB/U6Fk6+C/ocH/yKioiIRBF9wgnQ/uJSrn9+Dt+sdvMDZbRMZsq1ozg8M913UEEuTL/N5fGq0HEAXPiEmxk73DOlViT0//ohlyahbY/GJ/dPbQM9hrvFX2kR7FzjArvv/hyK8ms/R3GBPlSLhMZs4GBjTF8gB7gUuLzaMe8Ck7x8uqOAPGvtZmNMKyDBWrvHWz8N+EMY6x5S6rEfJ/xzOOZlN262emvdl/+v/up77NQ/wHG3NL1+IrHKWpj2a5e2AODEX0PH/pGtUyAOO8/1Hp7/Qs37l73nPndrUqt63XDSQbw6O4tyC49+uYaLhmeSVH0StM6HBr3c8nLLews38dePVpC9u6De47tntIAti93EZiumVd3ZY4QL4vYbE903IkRERIJEkbUA7C0q5dr/zmbWepdPtmPrFKZcN4qB3dr6Dlr3Fbx1Y9V0BKNugFPu9U3qFY8zpSaluty7XQ6D7x+FrJm1H5uuiY5EQsFaW2qMmQR8BCQCz1hrlxhjbvD2PwZ8AJwJrAb2A9d4T+8CvGXcl58k4CVr7YdhvoSQUY/9OJHhH8zNangwt7wcpv/G5dgEN7nn2f+E4VcHrYoiMWnp2765DjoeAsfdGsnaNMzOVXXvnzsl/j53h0DvDq0458juvDN/Ext27mfaos2cF+Jg7nerd3D/9GUszvF1Akk0BmwpFyZ+zSWJX9DN7GSz7cCrZaOZX34QDyU8B499VPVEXQ+HMb+DAacriCsiIs2Kgrn1yNtfwtX/ncX8rFwAurRN5cUfH03/zq3dASWF8NkfYcbDvie16QbnPwIHnRz+CkfS0Al1B3OHTQhfXUSaGWvtB7iArf9jj/mtW+DmGp63Fjgy5BUUaYrqgYWGKCuBt2+ERa+77YRkGPcUDDo/aNUTiUkFuTD9dt/2Of+KrQkA83Lq2V/DfA9So5tG9+ed+S470yOfr+GcsT1JqNiZuyFo5Szfks+fpy/nixXbqzx+wdAe3HpyX3Y+ewXD9vny3/YwOxmRsBILmM1+T+g0EMbcAYeeAwkJiIiINDfNOpg74emZZO8uILNdixp7b+3cW8SEp2exdLO7a9wjowUv/WQUvTu0cgdsXghTr4fty3xPGnShy0vbsv0B54t79U26ForcwCIiEv/S/YO5DZgErXg/vD7R1/MwuaWbPKn/j4JaPZGY9Om9sHerWx8+EXofE8naNFx6j5on6K3crxFhgTqkaxtOPawLnyzdyoqte5i5uzWVfw1BmARtc14BD328kjfmZmP9pk89rn8H7jhjIIN7pMPcKfTe97UL3FZ7fuV2+4Ng9B0w+EJNcCciIs1asw7mZu8uYN2OfTXu25ZfyBVPzWTVtr0A9OnQkhd/cjQ9MlpAeRl892/47P/cTLoAqelw9kNw+EXhqn70aeykayIiInWpnmYhEIV58NKlsPE7t52WDle8odnNRQA2fg9z/uvWW3V2acFijUaEBdVNow/ik6UuuP+fOUVBCebmF5bw2BdrePqbdRSV+iZMPrRrG+44cyAnHtwRU5EeYd4U4MBAbqX2B8HNszT/hoiICM08mFubnNwCrnjye9bvdJNBHNy5NS/+eBSd26bB7vXw1g2wcYbvCX1PhPMfVQ8ACO6kayIiIgCtOrmbg6WFgQUW9m6HFy6ELQvddusuMOEt6DIotPUUiQWlxfCe38R/Z/wZWrSLXH0aSyPCgmpor3Yc178D367eyXc5pZS2bUtScX6jgrnFpeW8OHMD//7fKnbvL6l8vHt6Gr867RDOH9qDxAQvbGstrP0CNs+v+6SlRQrkioiIePQfsZqNO/dz2ZPfk5PrZlUd2K0tL1w3kg6tUmDeCy63WLHrrUtiKpx6H4z8qfI1iYiIhIoxkN7TTXhUX5qF3CyYcj7sXO22M3rDVW9D+36hrqVIbPjuX7B9uVs/+DSXIiwWaURY0N08pj/frt4JQJbtTF8aFsy11jJt0WYe/HAFG3ftr3y8TVoSN4/pz8Rj+5CW7P1eykrdBHzf/st3460u6jQjIiJSScFcP6u37eWKp75na34RAEf2zOD5a0aSbvPg1Vtg+fu+g7seARc+GfTZXUOiYuIY/wlkREREYkmGF8zNz3FBgJp6aG1f6QK5+d7ESJ0Guh65bbuFtaoiUWvHavjyr249uSWc+Td3syRWaURYUB3TrwNDe2Uwb2MuKwrb0TcR2L8DivdBSqs6n/v92p088MEyFmTnVT6WnGi46pg+TBrTn3atvMn1iva6DjIzJkNeA3r9Km2GiIhIpWYdzH2w4B46pGxhZ0FXlm95jyufmsmOvcUAHNWnHc9MPIo2Gz+DdybBvm3uSSYBjv8FnPTb2Jnx96q3I10DERGRpqm4IWnLYM+mA29QbpoHL4yD/a5XGT2Guxy5zXFCUpGaWAvv3wplrtMCY+6Edr2DXkx9EwxL9DLGcPPo/vz4+R/Ith19O3Kzau3AsmrrHv7y4XI+XbatyuPnHtmd35x+CD3bt3QP7N0GMx+H2U9BYW7Vkxx8Ghx9M/zwlNJmiIiIBKBZBnNLy8qZOjeHo0q30DdhC6YUznzkOwqKywA3s+qTlx5Ky09+45scAqBdH7jgceh1dGQqHkvUG1hERIIp3W8StNysqv9f1n/jJjsr3uO2+54El74Eqa3DW0eRaLbgZVj/tVvvegSMujEkxdQ1wbBEvx8N7MyhXduQvb2T78HcjQcEc7fmF/LPT1fy6uwsyq3v8aP7tefOMwdyRGaGe2DHapjxH5j/su9GAkBCMhx+MRz7M+hymHusz/EubcbcKZCX7VIrDJugtBkiIiLVNLtgbmlZOZNemseHS7bwWQpgXEeFikDu6EM68fiYclKfGQO71vqeOOwqOP1+SG0TmYrHGvUGFhGRYPIP3ub55c1d8SG8frXLlwmuB9e4pyEpNbz1E4lm+3bAR3e5dZMA5/wr6JNJVXSW2OTNO7Ept4DXZmcxbnimb7IriXrGGG4a0593X/UFc3///Ae8nWT53VmHcfrgrjz99Vqe/HodBSVllccM6NKaO84YyOhDOmGMgaxZLh/u8mmAX7Q3pQ2MmOhuJqT3qFp4RdoMpcoQERGpU7ML5k6dm8OHS7bUuC+JUn6d9Aapzz0Jttw92LIjnPsfOPTMMNZSREREqvAP5lZMyLPwNXjrBpd6AWDIlSEJUonEvI/ugoJdbn3UDdBjWFBP799ZokJRaTm3vbmQz5Zv4+HLh5KUqMmCY8Xph3XhmaQuldvd2U5+YSm3vbmQ3729iOIyX3C2S9tUfnXaIYwblkkiFlZMd0HcrO+rnrRNNzj6Rhg+EdLSw3QlIiIi8anZfdt59YcsEinjwsSv6W5cXr3uZic3J77F6YmzGbxmve/gAWfAuf+G1p0jU1kRERFx2vhNYvbNP2D+i7B7ve+xYybBaX+K7cmcREJhzedu6DpA20wYc1fQi6irs8SHS7YwdV4O40f0rHG/RJ935m9iTXF7SHPbmWZ75b6KQG7r1CRuHH0Q1x7XlxamBOY9DzMehh0rq56s06Fw7M9dSoVYmW9EREQkyjW7YO623Xt5OPnfnJE4u/KxNFPCb5Jf9x2U3ArGPuBSK+hLoYiISGSVlcJHd/q2S/ZXDeSOvhNOuk3/s0XAvV8WvOzeMyX7oLzct++svwUtl/TOvUUs27yHZZvzefTLNXUe+9rsLAVzY8irP2Sxh5bk2lZkmH1VgrkAndukMv2WE+iQuB9m/tNNbLZ3a9WT9D4ejvs59D8VEtQrW0REJJiaXTD30rRvOaN4NtbW/J1vc2I3ut34AbTvF/7KiYiIyIEWvAzL3699f3oPBXJFwAVy35gIy947cF+bbi6w1kClZeWs27GPpZvzK4O3yzbns21PUf1P9lTk0ZXYsDm3gETK2GvTyDD7ONys442Ue3m1bDRvlp1ID7ODDt/cB3Ofg+K9vieaBJe3/NhbIHN45C5AREQkzjW7YO4liV8AtX/nS27bRYFcERGRaDJvSt37507RhDki4G581BTIBdiz2aVbqOO9kre/xAva5rN8iwverty6h6LS8lqfE4juGS2a9HwJrx7pKdy9/wEyE1xKukRjGWFWMiJhJbcmvUnX4l3wvd+kZklpMOQKOOZm6HBQhGotIiLSfDS7YG6Hsh1N2i8iIiJhlpdTz/7s8NRDJNoFeOOjrNyyYee+Kj1tl23OZ1NeYb1FGAN9OrRiYLc2DOzaloHd2rJm+14emL681ueMP0opFmLJbV3nctS2mkcy9vDmHAGgRXsYeT2M/Am06hjeSoqIiDRjzS6Ya9J7QH7tX/pMemYYayMiIiL1qud/N/rfLTHGGDMW+BeQCDxlrf1zMM5r87KpK+FI7pa1TJz8LSu27KGgpKze87VOTeLQrm0Y2M0FbQ/t1oZDu7ahZUrVrxBjyjszb2NujZOgjR3UlXHDQvwezehV9ac0yYhd04DaRzLaxFTM6f/neuOmtAxjzURERASaYTCXoRMga2bt+4dNCF9dRESakS0JnSkpKWdncmfUR0saRP+7JY4YYxKBycCpQDYw2xjzrrV2aVPPvTOxEx2pvSf7qqIM5mfl1rivZ/sWlT1tB3Zry2Hd2pLZrgUJCfXno05MMDx8+VCmzsvh7rcXU1RaTmpSAn88fzDjhmWSGMA5muSqt0N7/mbG5Nc9GsK06uh644qIiEhENL9g7pDLYdVHNecTG3gOHHlZ+OskItIM3NbiPtbt20fftq34PNKVkdii/90SX0YCq621awGMMa8A5wFNDua+Wjaam5l/wPD4iu3XykaTlpzAIV3bclg3vx63XdvQJi25SWUnJSYwfkRPHv1iDet27KN7RgvGj9Ctu5hU72gI/V5FREQiqfkFcxMS4aJn3QQQ034FpYUuaf9Zf3dfBhMSI11DERER8ef/v3vuFJcjNz3T9cjV/26JPT2ALL/tbGBUME78cuFx9Cv7ljMSZ1d53BiYXnYUX7c4hSV3nhb6nrIS2zQaQkREJKo1v2AuQGKSm8l30RuQu9Hl19Is2CIiIZXZrkWVnyINUvG/W/+vJfbVFEm1BxxkzPXA9QC9egWWC7ZLu9ZMyv85F5Z/zfjEL+hudrLJduC1stG8WXYiw7q3CXkgV219HNBoCBERkagWlcHcUE0KcQDl1xIRCZsp1wWl45mISKzLhiqpwzOBTdUPstY+ATwBMGLEiAOCvTW5ZERP5mzYzetlo3m9bPQB+8cfFfrh8Wrr44BGQ4iIiES1qAvmhnJSCBERERGRCJsNHGyM6QvkAJcClwfjxOOGZ/LZ8m18uGTLAfvGDurKuGGZwShGmgONhhAREYlaURfMJYSTQoiIiIiIRJK1ttQYMwn4CDcK7Rlr7ZJgnDsxwfDw5UOZOi+H12ZnsSm3wE1EdlRPxg3LVK5cERERkTgQjcHcgCaFaEweMRERERGRSLPWfgB8EIpzJyUmMH5ET8aPCH1KBREREREJv4RIV6AGAU0KYa19wlo7wlo7olOnTmGoloiIiIiIiIiIiEjkRGMwN6BJIURERERERERERESak2gM5lZOCmGMScFNCvFuhOskIiIiIiIiIiIiElFRlzM3lJNCiIiIiIiIiIiIiMSqqAvmQmgnhRARERERERERERGJRdGYZkFEREREREREJCiMMWONMSuMMauNMb+NdH1ERJpCwVwRERERERERiUvGmERgMnAGcBhwmTHmsMjWSkSk8RTMFREREREREZF4NRJYba1da60tBl4BzotwnUREGk3BXBERERERERGJVz2ALL/tbO8xEZGYZKy1ka5DkxljtgMbGvn0jsCOIFZHZarMeC0zUuXGUpm9rbWdgl2ZaNSEdjeWfp8qM3rLVZkqs0KzaHdjrM2NVLkqU2WqzNCXG5NtrjHmYuB0a+2Pve0JwEhr7c/8jrkeuN7bPARYEfaKBl+k/r4iTdfdfMT7Ndfa5iaFuyah0JR/KMaYH6y1I4JZH5WpMuOxzEiV21zKjDWNbXeby++zuZQZqXJVpspsbmKpzY1UuSpTZarM6C83grKBnn7bmcAm/wOstU8AT4SzUqHWDH/PgK470vUIp+Z4zRWUZkFERERERERE4tVs4GBjTF9jTApwKfBuhOskItJocdEzV0RERERERESkOmttqTFmEvARkAg8Y61dEuFqiYg0moK5kRlKoTJVZiyWGalym0uZzUVz+X02lzIjVa7KVJkSGLULKlNlqsxoKjdirLUfAB9Euh5h1ux+zx5dd/PRHK8ZiJMJ0ERERERERERERETinXLmioiIiIiIiIiIiMSAuA3mGmPGGmNWGGNWG2N+W8P+0caYPGPMfG/5fbX9icaYecaY98NRpjHmFmPMYmPMEmPMrcEq06/c+d65v2zqdTa13FBdqzHmN36v7WJjTJkxpr0xJs0YM8sYs8Ar875Ql+nt+4VX3mJjzMvGmLQglZlujHnP73qu8R4P5XXWWGaIr7OdMeYtY8xC77oGh+E6ayvzEL/f83xjTH5D/nabiwBeX7W7IbrOusoM1XUatblqc0NbrtrdegTw2qrNDdF11lVmqK7TxEmbG2C5anf1WVcaoKntZKxqShsWq5rSlsWyxrZtcc1aG3cLLqn5GqAfkAIsAA6rdsxo4P06zvFL4KW6jglWmcBgYDHQEpfH+FPg4CCVmQEsBXp5252bcp1NLTeU11rt+HOAz7x1A7T21pOBmcDRIS6zB7AOaOFtvwZMDNJreyfwF2+9E7DLOzZk11lHmaG8zr8C93jrhwL/C/Xvs7YyazjPFqB3oO+Z5rAE+PqORu1uqK6zxjJDeZ3VjlebqzY3qOXWcB61uw1/bUejNjdU11ljmaG8zmrHx2Sb24DXV+2uPutqCXAJ8PeeQR3tZCwuTWnDYnVpSlsW6bqH4brrbdvibYnXnrkjgdXW2rXW2mLgFeC8QJ9sjMkEzgKeClOZA4HvrbX7rbWlwJfABUEq83JgqrV2I4C1dlvFjkZeZ1PLDeW1+rsMeNkr21pr93qPJ3uLDWWZniSghTEmCfehflOQyrRAG2OMAVrjGujSEF9njWWG+DoPA/4HYK1dDvQxxnQJ8XXWWGa1Y34ErLHWbgigzOZE7a5PsNtdtbn1lOlRm9u0MoPd5jap3GrHqN09kNpcH7W5sdPmBlqu2l191pXANamdjGFNbcNiUVPbslgVrLYtrsRrMLcHkOW3ne09Vt0xXvfz6caYQX6P/xO4DSgPU5mLgRONMR2MMS2BM4GeQSpzANDOGPOFMWaOMeYqv33/pOHX2dRyQ3mtAHjnHQu86fdYojFmPrAN+MRaOzOUZVprc4C/ARuBzUCetfbjIJX5MO7LwiZgEXCLtbbcq0eorrPGMkN8nQuAC73rGgn0BjK97VBdZ61l+rmU2P8gEApqd32C3e6qza2nTLW5QSkz2G1uk8v1o3b3QGpzfdTmxk6bG2i5anf1WVcC19R2MlY1qd2MUU1qP2NYsNq2uBKvwVxTw2PV72bOxQ0dORL4D/A2gDHmbGCbtXZOuMq01i4D/gJ8AnyI+0MM5O5JIGUmAcNxvRJOB+42xgxownU2qdwQX2uFc4BvrbW7Kg+0tsxaOwT3hh5pAsuh0ugyjTHtcHeL+gLdgVbGmCuDVObpwHzvvEOAh40xbSGk11ljmSG+zj/jPnTMB34GzMP7WwnhddZaJoAxJgU4F3g9gPKaG7W7PsFud9Xm1lOm2tyglBnsNrfJ5YLa3TqozfVRmxs7bW6g5ard1WddCVyj26xQVyzEmtRuxqgmtZ8xrMltWzyK12BuNlXvgmdSbTiMtTa/YviKtfYDINkY0xE4DjjXGLMe1337ZGPMCyEuE2vt09baYdbaE3Fd4VcFo0zvmA+ttfustTuAr4Ajm3CdTS03lNdaoda7ydbaXOAL3J25UJZ5CrDOWrvdWlsCTAWODVKZ1+CGyVhr7WpcHq9D/Q8IwXXWVmbIrtN7v1zjfZC9CpfzZ121Y3IJ4nUGUOYZwFxr7dYAymtu1O5WPSaY7a7a3PrLVJvbxDJD0OYGq1y1uzVTm1v1GLW5xESbG2i5and9x+Siz7pStya1WTEsKO1mjAlK+xmDgtKexh0bBYl7g73g7jytxd1BrUiQPKjaMV0B462PxA2dMdWOGU3gkyU0qUx8Eyf0ApYD7YJU5kBc7pCKHE+LgcGNvc5glBuqa/WOS8d9cG7l91gnIMNbbwF8DZwd4jJHAUu8azfAc8DPgvTaPgrc6613AXKAjqG8zjrKDOV1ZuAlawd+Ajwf6t9nbWX67X8FuCbQ90pzWgJ8fdXuhu461eaqzW1qmRkEsc1tarl++9XuNv61VZsbuutUm9uItqgBr6/aXX3W1RLgEuDvvd52MtaWprRhsbo0pS2LdN3DcN11tm3xuES8AiH8hZ8JrMTNeneX99gNwA3e+iTvH/MC4Hvg2BrOMZqGBTkbXab3T3qpt+9HwSrT2/6Nd+7FwK1Nvc6mlhvia50IvFLteUfgutkv9Ory+1CX6T1+H+5D/GJgCpAapL+j7sDHuBw4i4ErQ32dtZUZ4us8BtebZTmuF0S7MFxnjWV6+1oCO4H0hrxXmtMSwOurdjdE11lXmSG+zomozVWbG4JyvX1qd5v22qrNDdF11lVmiK9zIjHe5gb4d6R2V591tTRgCfC9XGc7GYtLU9qwWF2a0pbF8tKUti1el4o75SIiIiIiIiIiIiISxeI1Z66IiIiIiIiIiIhIXFEwV0RERERERERERCQGKJgrIiIiIiIiIiIiEgMUzBURERERERERERGJAQrmioiIiIiIiIiIiMQABXNFREREREREREREYoCCuRI3jDEZxph7jTGjw1Te+caYe8NRlohINFK7KyISPmpzRUTCR22uRDMFcyWeZAD3AKPDVN75XnkiIs1VBmp3RUTCJQO1uSIi4ZKB2lyJUgrmigjGaR3peoiINBdqd0VEwkdtrohI+KjNDT0Fc+OcMWaiMcYaY35kjPm9MWaDMabAGDPTGHO0d8xJxphvjDH7jDGbjTF313CeEcaYt4wxO4wxRcaYFcaYu4wxSdWOG2mMedYYs9IYs98Ys8cY860x5oIazvmsV7d0Y8yjxphtxphC7/hRDbzO0cA6b/Me77zWGLO+2nGXeNe6x6vfTGPMRTWc7yxjzJfe9RYYYzYaY6YaYwZ4+78ArvbWrd8ysQF1bm+M+YcxZo133TuNMXOMMb+p4dhxxpjPjTG5Xr1XGGP+bYxJ8TumlTHmAe98RcaYLcaY540xvau/VhV1NcbcbIxZChQCv27o6yQiB1K7q3ZX7a5I+KjNVZurNlckfNTmqs1VmxsdjLU20nWQEPLe/P8FfgASgReAFOBX3s+rgaeBJ4CNwHjcMIIJ1toXvHOcCbwFrPaevws4BpgATLXWXuxX3gPAGOBTYAPQwSvjUOAKa+1Lfsc+6+2bCWwHPvKO/yVQCvSx1u4J8Dq7AJcB//DqOtXbtdda+7Z3zJ+Au4APvbLKgQu8651krZ3sHXcS8BmwCJgC5ALdgVOAv1hrPzDGnArcDZzgvQ4VvrPWrg2wzv8DTgQeBxYALXGvUy9r7Vl+x/0fcCewFHgN2AwcBIwDRlhrc71/el8AxwFvAJ8DBwM3evUfYa3N9s432tu/APd6PwlsAbKstdMDfZ1EpGZqd9XuonZXJGzU5qrNRW2uSNiozVWbi9rc6GCt1RLHCzARsMBcIMXv8XO9x0uBo/weT8G9mWd422m4N+JXQFK1c//CO8dov8da1VCHlsAKYGm1x5/1nv9Itccv9h7/aQOvtY/3vHtr2DfM23d/DfveBvKBNt72Q96xnesp71n3FmrU7yW9pmuv4biR3nGfAWnV9hl8N2R+4h33YLVjzvIen+L32GjvsV3Vr7Ehr5MWLVpqXtTuVu5Tu+t7TO2uFi0hWtTmVu5Tm+t7TG2uFi0hWtTmVu5Tm+t7TG1uBBalWWg+HrXWFvttf+39/N5aO7viQe+YWbi7LgCnAl1wd98yjDEdKxbgA++Y0/yev69i3RjT0hjTAdfYfgYMNMa0raFu/6i2/Zn38+DqBzbBFbhG5Dn/a/Cu412gDe5uIECe93OcqTbMI4gKgCJglDGmTz31BrjDWlvov8N6vM0LcHe4Hqh2zDRgPnCeMab6+/15a+22GsoL9HUSkbqp3VW7q3ZXJHzU5qrNVZsrEj5qc9Xmqs2NoFD9IUn0qdI131q72xgDvjww/nbjuscDDPR+PlPHubtUrBhjOgN/As4DOtdwbAbu7ktdddvp1a0DwTMQd6dpeR3HVFzHw7j6PwL8xRjzDW5IwMvW2u3BqIy1ttgYcyvwL2CdcXllPgPettb+z+/Qg3GN34J6TtkX2GSt3V3DviXAEKAj4N+4rqzh2Ia8TiJSN7W7anfV7oqEj9pctblqc0XCR22u2ly1uRGkYG7zUdbAxysY7+dvcHdgarIJwLgW8mPcG/bfwGzcXagy4BrgcmqYdM9aW1sdTC2PN4bBNVpnUPs1L/Hqs9MYcxQuX82puLwz/wDuM8acaa2dEYwKWWsfM8a8gxuqcBJwETDJGPOqtfbSavWuT2Neq/21nCeg10lE6qV2V+1udWp3RUJHba7a3OrU5oqEjtpctbnVqc0NIwVzpT6rvJ/7rLWf1nPsEcCRwB+stff47zDG/DgUlaumrkZpFTAW2GitXVbvidw/gC+8BWPMEcAc4He4xrG+8gJird0MPAU8ZYxJxCVEv8wY83dveMoKr95H4Ian1GYNMNYYk2Gtza227zDc3codAVSpQa+TiISE2l3U7opI2KjNRW2uiISN2lzU5krTKWeu1OcjXNf53xpj2lffaYxpYYxp421W3Gkx1Y4ZjMu5Emp7vZ8H1BPXiAHc7zVqVXjDNyrWO9bw/OW4PDT+597rHV9TeXXy8v209H/Ma+AXepsV56yYnfN+Y0xqDeepeK3fxr2ff1tt/xnAUOBda215AFUL+HUSkZBRu+uo3UXtrkgYqM111OaiNlckDNTmOmpzUZvbFOqZK3Wy1u4zxlyFezOvMMY8A6zG5aY5FLgQ15B+ASzDdZG/zWtIVgADgJ8Ci3EzGYayrjuNMauBS40xa4CtuDt+71lrZxtj7gHuA+YbY17HDd/oBgwHzsTNtAnwpDEmEzekYwPQArgEl5z7eb8ivwcmAY8YY6YBJcBMa21NeYKqGwB8aYx5C/fa7MYNH7kRl2foa++aZhlj/gLcDswxxryKm/2zL27YxEggFzfz5dXA7cYlPP8K6A/c5L0Odwb4GjbkdRKREFC7q3a3jtdJRIJMba7a3DpeJxEJMrW5anPreJ2kIay1WuJ4ASbiuuuPrmGfBZ6t4fFn3Z9GlccGAy8AOUAx7g38HXA30N7vuN7A68B2XM6UWbjG+F6vvD51lVNf3QK43pHAt8A+7xzrq+0/C3c3cBdutscsYDpwo98xF+JmVsz2jtkOfAmMq3auBOBv3nFlXnkTA6xnB1yenPm4xrIA90/sn0C3Go6/zLuuPd61LfeOTfE7phVutsm13u9oG+5OWO9q5xpdX10DeZ20aNFS86J2V+2u2l0tWsK3qM1Vm6s2V4uW8C1qc9Xmqs2NjsV4L6yIiIiIiIiIiIiIRDHlzBURERERERERERGJAcqZK1HPGNM1gMPyrLUFIa9MPYwxLYD0+o6z1m4JQ3VERBpF7a6ISPiozRURCR+1uRIPlGZBop4xJpA/0mustc+Gui71McZMBP5b33HWWlPfMSIikaJ2V0QkfNTmioiEj9pciQfqmSux4NQAjlkS8loE5iMCq6+ISDRTuysiEj5qc0VEwkdtrsQ89cwVERERERERERERiQGaAE1EREREREREREQkBiiYKyIiIiIiIiIiIhIDFMwVERERERERERERiQEK5oqIiIiIiIiIiIjEAAVzRURERERERERERGLA/wMrprJpbn2IwgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,4,figsize=(6*4,6*1));\n", + "\n", + "for i, v in enumerate(var['y']):\n", + " sns.pointplot(data=df_bin, x='bins_mid', y=v, hue='clf',ax=ax[i]);\n", + " \n", + "sns.histplot(data=df_bin, x='bins_mid', hue='clf',ax=ax[3])\n", + "\n", + "for i, l in enumerate(var['y'][:2]+['clf_size (MB)']+[var['x']]):\n", + " ax[i].set_xlabel('mean_test_score', fontsize=18)\n", + " ax[i].set_ylabel(l,fontsize=18)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Top 5 `mean_test_score` of each algorithm" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
max_featuresn_estimatorsmax_depthmean_test_scoreclf
0None300None0.886RF
140300None0.886RF
240200None0.879RF
340300200.873RF
4None200200.871RF
\n", + "
" + ], + "text/plain": [ + " max_features n_estimators max_depth mean_test_score clf\n", + "0 None 300 None 0.886 RF\n", + "1 40 300 None 0.886 RF\n", + "2 40 200 None 0.879 RF\n", + "3 40 300 20 0.873 RF\n", + "4 None 200 20 0.871 RF" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_cv_rf = df_cv[feat_cols[:5]].query('clf == \"RF\"').sort_values(by='mean_test_score', ascending=False).reset_index(drop=True)\n", + "df_cv_rf.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
max_featuresn_estimatorsmax_depthmean_test_scoreclf
040300200.998OF
140300None0.997OF
240200None0.995OF
340100100.975OF
4None300None0.974OF
\n", + "
" + ], + "text/plain": [ + " max_features n_estimators max_depth mean_test_score clf\n", + "0 40 300 20 0.998 OF\n", + "1 40 300 None 0.997 OF\n", + "2 40 200 None 0.995 OF\n", + "3 40 100 10 0.975 OF\n", + "4 None 300 None 0.974 OF" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_cv_of = df_cv[feat_cols[:5]].query('clf == \"OF\"').sort_values(by='mean_test_score', ascending=False).reset_index(drop=True)\n", + "df_cv_of.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualization of parameterized grid search result" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# Replacing None value as string so it shows on plotly\n", + "df_cv_rf.fillna('None', inplace=True)\n", + "df_cv_of.fillna('None', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "dimensions": [ + { + "label": "max_features", + "values": [ + "None", + 40, + 40, + 40, + "None", + "None", + "None", + 40, + "None", + "log2", + "log2", + "log2", + "log2", + "log2", + "log2", + 40, + "None", + "log2", + "sqrt", + "log2" + ] + }, + { + "label": "n_estimators", + "values": [ + 300, + 300, + 200, + 300, + 200, + 100, + 200, + 100, + 100, + 200, + 300, + 100, + 200, + 200, + 300, + 100, + 200, + 100, + 100, + 300 + ] + }, + { + "label": "max_depth", + "values": [ + "None", + "None", + "None", + 20, + 20, + 20, + 10, + 10, + 10, + "None", + 20, + "None", + 20, + 10, + 10, + 5, + 5, + 5, + 5, + 5 + ] + }, + { + "label": "mean_test_score", + "values": [ + 0.886, + 0.886, + 0.879, + 0.873, + 0.871, + 0.848, + 0.766, + 0.763, + 0.763, + 0.739, + 0.725, + 0.721, + 0.716, + 0.597, + 0.59, + 0.578, + 0.575, + 0.518, + 0.518, + 0.518 + ] + } + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "line": { + "color": [ + 0.886, + 0.886, + 0.879, + 0.873, + 0.871, + 0.848, + 0.766, + 0.763, + 0.763, + 0.739, + 0.725, + 0.721, + 0.716, + 0.597, + 0.59, + 0.578, + 0.575, + 0.518, + 0.518, + 0.518 + ], + "coloraxis": "coloraxis" + }, + "name": "", + "type": "parcats" + } + ], + "layout": { + "coloraxis": { + "colorbar": { + "title": { + "text": "mean_test_score" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import plotly.express as px\n", + "import plotly.io as pio\n", + "\n", + "pio.renderers.default = \"plotly_mimetype+notebook_connected\"\n", + "\n", + "fig = px.parallel_categories(\n", + " df_cv_rf.iloc[:,:-1],\n", + " color='mean_test_score'\n", + ")\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "dimensions": [ + { + "label": "max_features", + "values": [ + 40, + 40, + 40, + 40, + "None", + "None", + "None", + "None", + "None", + 40, + "log2", + "log2", + "log2", + "log2", + "None", + "log2", + "log2", + "log2", + "sqrt", + "log2" + ] + }, + { + "label": "n_estimators", + "values": [ + 300, + 300, + 200, + 100, + 300, + 200, + 100, + 200, + 100, + 100, + 300, + 200, + 200, + 100, + 200, + 200, + 300, + 100, + 100, + 300 + ] + }, + { + "label": "max_depth", + "values": [ + 20, + "None", + "None", + 10, + "None", + 20, + 20, + 10, + 10, + 5, + 20, + 20, + "None", + "None", + 5, + 10, + 10, + 5, + 5, + 5 + ] + }, + { + "label": "mean_test_score", + "values": [ + 0.998, + 0.997, + 0.995, + 0.975, + 0.974, + 0.965, + 0.95, + 0.885, + 0.839, + 0.768, + 0.726, + 0.711, + 0.708, + 0.691, + 0.642, + 0.617, + 0.613, + 0.528, + 0.528, + 0.527 + ] + } + ], + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "line": { + "color": [ + 0.998, + 0.997, + 0.995, + 0.975, + 0.974, + 0.965, + 0.95, + 0.885, + 0.839, + 0.768, + 0.726, + 0.711, + 0.708, + 0.691, + 0.642, + 0.617, + 0.613, + 0.528, + 0.528, + 0.527 + ], + "coloraxis": "coloraxis" + }, + "name": "", + "type": "parcats" + } + ], + "layout": { + "coloraxis": { + "colorbar": { + "title": { + "text": "mean_test_score" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "px.parallel_categories(\n", + " df_cv_of.iloc[:,:-1],\n", + " color='mean_test_score'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Appendix\n", + "The actual values used to generate the above plots" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    delta
datasetn_samplemax_featuremax_depth 
sparse_parity1002010-0.030006
40100.009507
sqrt100.040701
10002010-0.013043
40100.027995
sqrt100.011991
1000020100.153195
40100.244497
sqrt100.031197
\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "col_groupby = ['dataset','n_sample','max_feature','max_depth']\n", + "dff = df2.groupby(col_groupby).mean()\n", + "dff.style.background_gradient(cmap='RdBu_r', vmin=-0.4, vmax=0.4)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mean_fit_timestd_fit_timemean_score_timestd_score_timen_estimatorsmax_featuresmax_depthparamssplit0_test_scoresplit1_test_scoresplit2_test_scoresplit3_test_scoresplit4_test_scoremean_test_scorestd_test_scorerank_test_scoreclf
022.6469180.8857360.1994710.025627200None20{'n_estimators': 200, 'max_features': None, 'm...0.90700.91050.90650.81550.81350.8710.0458315RF
14.6635840.1358630.1737910.001995200log220{'n_estimators': 200, 'max_features': 'log2', ...0.74450.73450.74600.69100.66500.7160.03249713RF
214.3938510.9178730.1195770.011612200None10{'n_estimators': 200, 'max_features': None, 'm...0.77150.84150.84100.69400.68200.7660.0686967RF
34.2442910.0684940.0358840.000830100405{'n_estimators': 100, 'max_features': 40, 'max...0.50150.54150.82300.51550.50700.5780.12341516RF
42.8456860.0688760.1139680.003440100log2None{'n_estimators': 100, 'max_features': 'log2', ...0.73000.76900.73850.69750.66900.7210.03448912RF
524.7973280.8122830.1991150.00913020040None{'n_estimators': 200, 'max_features': 40, 'max...0.90300.92250.91650.82550.82650.8790.0435723RF
635.1235641.5698970.2911910.03060830040None{'n_estimators': 300, 'max_features': 40, 'max...0.90700.93550.93100.83950.81650.8860.0488031RF
710.9898320.2249410.0874250.007137100None20{'n_estimators': 100, 'max_features': None, 'm...0.89250.87800.90750.80550.75800.8480.0571426RF
86.7626630.0369050.0540620.001080100None10{'n_estimators': 100, 'max_features': None, 'm...0.79100.80050.86150.71500.64750.7630.0742118RF
95.0715980.1565690.1955900.003029200log2None{'n_estimators': 200, 'max_features': 'log2', ...0.76150.77400.74650.72750.68650.7390.03058010RF
102.9070800.0103510.1056910.000513200log210{'n_estimators': 200, 'max_features': 'log2', ...0.56900.60050.68100.57500.56050.5970.04397314RF
116.7826230.0837820.2618280.006789300log220{'n_estimators': 300, 'max_features': 'log2', ...0.73250.75500.76350.69900.67400.7250.03380911RF
120.8305650.0098660.0315750.001210100sqrt5{'n_estimators': 100, 'max_features': 'sqrt', ...0.51550.50350.55050.49500.52550.5180.01927718RF
137.4170670.0338230.0611580.000866200None5{'n_estimators': 200, 'max_features': None, 'm...0.53000.61200.69800.50850.52800.5750.07092817RF
146.7453070.1300550.0524710.0004951004010{'n_estimators': 100, 'max_features': 40, 'max...0.79100.80050.86150.71500.64750.7630.0742118RF
150.8196400.0013410.0305450.000182100log25{'n_estimators': 100, 'max_features': 'log2', ...0.51550.50350.55050.49500.52550.5180.01927718RF
1631.8839470.6136590.2621970.0097873004020{'n_estimators': 300, 'max_features': 40, 'max...0.89850.92750.92600.81850.79500.8730.0556484RF
1733.8369290.7978870.2803170.005591300NoneNone{'n_estimators': 300, 'max_features': None, 'm...0.90700.93550.93100.83950.81650.8860.0488031RF
184.6223060.0500760.1647800.001998300log210{'n_estimators': 300, 'max_features': 'log2', ...0.55700.60300.64700.57250.56800.5900.03254515RF
192.5908880.0123920.0976110.002019300log25{'n_estimators': 300, 'max_features': 'log2', ...0.50800.53150.53200.48900.52900.5180.01697220RF
\n", + "
" + ], + "text/plain": [ + " mean_fit_time std_fit_time mean_score_time std_score_time n_estimators \\\n", + "0 22.646918 0.885736 0.199471 0.025627 200 \n", + "1 4.663584 0.135863 0.173791 0.001995 200 \n", + "2 14.393851 0.917873 0.119577 0.011612 200 \n", + "3 4.244291 0.068494 0.035884 0.000830 100 \n", + "4 2.845686 0.068876 0.113968 0.003440 100 \n", + "5 24.797328 0.812283 0.199115 0.009130 200 \n", + "6 35.123564 1.569897 0.291191 0.030608 300 \n", + "7 10.989832 0.224941 0.087425 0.007137 100 \n", + "8 6.762663 0.036905 0.054062 0.001080 100 \n", + "9 5.071598 0.156569 0.195590 0.003029 200 \n", + "10 2.907080 0.010351 0.105691 0.000513 200 \n", + "11 6.782623 0.083782 0.261828 0.006789 300 \n", + "12 0.830565 0.009866 0.031575 0.001210 100 \n", + "13 7.417067 0.033823 0.061158 0.000866 200 \n", + "14 6.745307 0.130055 0.052471 0.000495 100 \n", + "15 0.819640 0.001341 0.030545 0.000182 100 \n", + "16 31.883947 0.613659 0.262197 0.009787 300 \n", + "17 33.836929 0.797887 0.280317 0.005591 300 \n", + "18 4.622306 0.050076 0.164780 0.001998 300 \n", + "19 2.590888 0.012392 0.097611 0.002019 300 \n", + "\n", + " max_features max_depth params \\\n", + "0 None 20 {'n_estimators': 200, 'max_features': None, 'm... \n", + "1 log2 20 {'n_estimators': 200, 'max_features': 'log2', ... \n", + "2 None 10 {'n_estimators': 200, 'max_features': None, 'm... \n", + "3 40 5 {'n_estimators': 100, 'max_features': 40, 'max... \n", + "4 log2 None {'n_estimators': 100, 'max_features': 'log2', ... \n", + "5 40 None {'n_estimators': 200, 'max_features': 40, 'max... \n", + "6 40 None {'n_estimators': 300, 'max_features': 40, 'max... \n", + "7 None 20 {'n_estimators': 100, 'max_features': None, 'm... \n", + "8 None 10 {'n_estimators': 100, 'max_features': None, 'm... \n", + "9 log2 None {'n_estimators': 200, 'max_features': 'log2', ... \n", + "10 log2 10 {'n_estimators': 200, 'max_features': 'log2', ... \n", + "11 log2 20 {'n_estimators': 300, 'max_features': 'log2', ... \n", + "12 sqrt 5 {'n_estimators': 100, 'max_features': 'sqrt', ... \n", + "13 None 5 {'n_estimators': 200, 'max_features': None, 'm... \n", + "14 40 10 {'n_estimators': 100, 'max_features': 40, 'max... \n", + "15 log2 5 {'n_estimators': 100, 'max_features': 'log2', ... \n", + "16 40 20 {'n_estimators': 300, 'max_features': 40, 'max... \n", + "17 None None {'n_estimators': 300, 'max_features': None, 'm... \n", + "18 log2 10 {'n_estimators': 300, 'max_features': 'log2', ... \n", + "19 log2 5 {'n_estimators': 300, 'max_features': 'log2', ... \n", + "\n", + " split0_test_score split1_test_score split2_test_score \\\n", + "0 0.9070 0.9105 0.9065 \n", + "1 0.7445 0.7345 0.7460 \n", + "2 0.7715 0.8415 0.8410 \n", + "3 0.5015 0.5415 0.8230 \n", + "4 0.7300 0.7690 0.7385 \n", + "5 0.9030 0.9225 0.9165 \n", + "6 0.9070 0.9355 0.9310 \n", + "7 0.8925 0.8780 0.9075 \n", + "8 0.7910 0.8005 0.8615 \n", + "9 0.7615 0.7740 0.7465 \n", + "10 0.5690 0.6005 0.6810 \n", + "11 0.7325 0.7550 0.7635 \n", + "12 0.5155 0.5035 0.5505 \n", + "13 0.5300 0.6120 0.6980 \n", + "14 0.7910 0.8005 0.8615 \n", + "15 0.5155 0.5035 0.5505 \n", + "16 0.8985 0.9275 0.9260 \n", + "17 0.9070 0.9355 0.9310 \n", + "18 0.5570 0.6030 0.6470 \n", + "19 0.5080 0.5315 0.5320 \n", + "\n", + " split3_test_score split4_test_score mean_test_score std_test_score \\\n", + "0 0.8155 0.8135 0.871 0.045831 \n", + "1 0.6910 0.6650 0.716 0.032497 \n", + "2 0.6940 0.6820 0.766 0.068696 \n", + "3 0.5155 0.5070 0.578 0.123415 \n", + "4 0.6975 0.6690 0.721 0.034489 \n", + "5 0.8255 0.8265 0.879 0.043572 \n", + "6 0.8395 0.8165 0.886 0.048803 \n", + "7 0.8055 0.7580 0.848 0.057142 \n", + "8 0.7150 0.6475 0.763 0.074211 \n", + "9 0.7275 0.6865 0.739 0.030580 \n", + "10 0.5750 0.5605 0.597 0.043973 \n", + "11 0.6990 0.6740 0.725 0.033809 \n", + "12 0.4950 0.5255 0.518 0.019277 \n", + "13 0.5085 0.5280 0.575 0.070928 \n", + "14 0.7150 0.6475 0.763 0.074211 \n", + "15 0.4950 0.5255 0.518 0.019277 \n", + "16 0.8185 0.7950 0.873 0.055648 \n", + "17 0.8395 0.8165 0.886 0.048803 \n", + "18 0.5725 0.5680 0.590 0.032545 \n", + "19 0.4890 0.5290 0.518 0.016972 \n", + "\n", + " rank_test_score clf \n", + "0 5 RF \n", + "1 13 RF \n", + "2 7 RF \n", + "3 16 RF \n", + "4 12 RF \n", + "5 3 RF \n", + "6 1 RF \n", + "7 6 RF \n", + "8 8 RF \n", + "9 10 RF \n", + "10 14 RF \n", + "11 11 RF \n", + "12 18 RF \n", + "13 17 RF \n", + "14 8 RF \n", + "15 18 RF \n", + "16 4 RF \n", + "17 1 RF \n", + "18 15 RF \n", + "19 20 RF " + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_cv.query('clf == \"RF\"')" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mean_fit_timestd_fit_timemean_score_timestd_score_timen_estimatorsmax_featuresmax_depthparamssplit0_test_scoresplit1_test_scoresplit2_test_scoresplit3_test_scoresplit4_test_scoremean_test_scorestd_test_scorerank_test_scoreclf
2014.5240530.1497070.1762160.002413200None20{'n_estimators': 200, 'max_features': None, 'm...0.97500.95450.97350.95150.96900.9650.0098016OF
213.6303490.0251650.1897260.000436200log220{'n_estimators': 200, 'max_features': 'log2', ...0.72050.73500.69350.70300.70100.7110.01507112OF
229.4958410.0367980.1125200.001209200None10{'n_estimators': 200, 'max_features': None, 'm...0.89550.86050.92700.86900.87250.8850.0240288OF
234.7896070.0207470.0338350.001132100405{'n_estimators': 100, 'max_features': 40, 'max...0.73150.89250.80000.71150.70400.7680.07091510OF
242.0420320.0189800.1077820.001827100log2None{'n_estimators': 100, 'max_features': 'log2', ...0.68600.68500.71050.67950.69400.6910.01079414OF
2528.3388020.6393130.1758200.00298820040None{'n_estimators': 200, 'max_features': 40, 'max...0.99350.99600.99550.99700.99400.9950.0012883OF
2642.5809220.8172360.2664960.00616730040None{'n_estimators': 300, 'max_features': 40, 'max...0.99750.99650.99650.99650.99550.9970.0006322OF
277.2227200.1024230.0888410.002096100None20{'n_estimators': 100, 'max_features': None, 'm...0.95450.93300.97750.93400.95100.9500.0162637OF
284.8047410.1105780.0569050.000938100None10{'n_estimators': 100, 'max_features': None, 'm...0.81400.81550.92300.83700.80500.8390.0433439OF
294.0947530.0463460.2126100.001701200log2None{'n_estimators': 200, 'max_features': 'log2', ...0.70750.71250.73800.68750.69500.7080.01737613OF
302.2913210.0135270.1188580.006729200log210{'n_estimators': 200, 'max_features': 'log2', ...0.61850.64600.61450.61700.59050.6170.01761416OF
315.4628500.0408450.2830850.002274300log220{'n_estimators': 300, 'max_features': 'log2', ...0.72700.76850.71950.70100.71250.7260.02304911OF
320.6202410.0046960.0336880.001071100sqrt5{'n_estimators': 100, 'max_features': 'sqrt', ...0.52300.53950.52400.53700.51500.5280.00919618OF
334.9765600.0190060.0653670.000670200None5{'n_estimators': 200, 'max_features': None, 'm...0.66150.61700.67400.62950.62800.6420.02182415OF
349.1474540.0420790.0574470.0021551004010{'n_estimators': 100, 'max_features': 40, 'max...0.97900.98700.98450.96800.95600.9750.0114914OF
350.6225720.0062880.0333400.001243100log25{'n_estimators': 100, 'max_features': 'log2', ...0.52300.53950.52400.53700.51500.5280.00919618OF
3641.1180290.6932190.2524480.0048693004020{'n_estimators': 300, 'max_features': 40, 'max...0.99800.99750.99850.99650.99700.9980.0007071OF
3724.1374950.1754880.2914140.002697300NoneNone{'n_estimators': 300, 'max_features': None, 'm...0.97200.97400.98350.96650.97400.9740.0054865OF
383.4947090.0114530.1716620.001387300log210{'n_estimators': 300, 'max_features': 'log2', ...0.60800.64650.61150.60850.59200.6130.01794617OF
391.9030000.0099250.0986120.000569300log25{'n_estimators': 300, 'max_features': 'log2', ...0.52650.54050.51400.52200.53200.5270.00896120OF
\n", + "
" + ], + "text/plain": [ + " mean_fit_time std_fit_time mean_score_time std_score_time n_estimators \\\n", + "20 14.524053 0.149707 0.176216 0.002413 200 \n", + "21 3.630349 0.025165 0.189726 0.000436 200 \n", + "22 9.495841 0.036798 0.112520 0.001209 200 \n", + "23 4.789607 0.020747 0.033835 0.001132 100 \n", + "24 2.042032 0.018980 0.107782 0.001827 100 \n", + "25 28.338802 0.639313 0.175820 0.002988 200 \n", + "26 42.580922 0.817236 0.266496 0.006167 300 \n", + "27 7.222720 0.102423 0.088841 0.002096 100 \n", + "28 4.804741 0.110578 0.056905 0.000938 100 \n", + "29 4.094753 0.046346 0.212610 0.001701 200 \n", + "30 2.291321 0.013527 0.118858 0.006729 200 \n", + "31 5.462850 0.040845 0.283085 0.002274 300 \n", + "32 0.620241 0.004696 0.033688 0.001071 100 \n", + "33 4.976560 0.019006 0.065367 0.000670 200 \n", + "34 9.147454 0.042079 0.057447 0.002155 100 \n", + "35 0.622572 0.006288 0.033340 0.001243 100 \n", + "36 41.118029 0.693219 0.252448 0.004869 300 \n", + "37 24.137495 0.175488 0.291414 0.002697 300 \n", + "38 3.494709 0.011453 0.171662 0.001387 300 \n", + "39 1.903000 0.009925 0.098612 0.000569 300 \n", + "\n", + " max_features max_depth params \\\n", + "20 None 20 {'n_estimators': 200, 'max_features': None, 'm... \n", + "21 log2 20 {'n_estimators': 200, 'max_features': 'log2', ... \n", + "22 None 10 {'n_estimators': 200, 'max_features': None, 'm... \n", + "23 40 5 {'n_estimators': 100, 'max_features': 40, 'max... \n", + "24 log2 None {'n_estimators': 100, 'max_features': 'log2', ... \n", + "25 40 None {'n_estimators': 200, 'max_features': 40, 'max... \n", + "26 40 None {'n_estimators': 300, 'max_features': 40, 'max... \n", + "27 None 20 {'n_estimators': 100, 'max_features': None, 'm... \n", + "28 None 10 {'n_estimators': 100, 'max_features': None, 'm... \n", + "29 log2 None {'n_estimators': 200, 'max_features': 'log2', ... \n", + "30 log2 10 {'n_estimators': 200, 'max_features': 'log2', ... \n", + "31 log2 20 {'n_estimators': 300, 'max_features': 'log2', ... \n", + "32 sqrt 5 {'n_estimators': 100, 'max_features': 'sqrt', ... \n", + "33 None 5 {'n_estimators': 200, 'max_features': None, 'm... \n", + "34 40 10 {'n_estimators': 100, 'max_features': 40, 'max... \n", + "35 log2 5 {'n_estimators': 100, 'max_features': 'log2', ... \n", + "36 40 20 {'n_estimators': 300, 'max_features': 40, 'max... \n", + "37 None None {'n_estimators': 300, 'max_features': None, 'm... \n", + "38 log2 10 {'n_estimators': 300, 'max_features': 'log2', ... \n", + "39 log2 5 {'n_estimators': 300, 'max_features': 'log2', ... \n", + "\n", + " split0_test_score split1_test_score split2_test_score \\\n", + "20 0.9750 0.9545 0.9735 \n", + "21 0.7205 0.7350 0.6935 \n", + "22 0.8955 0.8605 0.9270 \n", + "23 0.7315 0.8925 0.8000 \n", + "24 0.6860 0.6850 0.7105 \n", + "25 0.9935 0.9960 0.9955 \n", + "26 0.9975 0.9965 0.9965 \n", + "27 0.9545 0.9330 0.9775 \n", + "28 0.8140 0.8155 0.9230 \n", + "29 0.7075 0.7125 0.7380 \n", + "30 0.6185 0.6460 0.6145 \n", + "31 0.7270 0.7685 0.7195 \n", + "32 0.5230 0.5395 0.5240 \n", + "33 0.6615 0.6170 0.6740 \n", + "34 0.9790 0.9870 0.9845 \n", + "35 0.5230 0.5395 0.5240 \n", + "36 0.9980 0.9975 0.9985 \n", + "37 0.9720 0.9740 0.9835 \n", + "38 0.6080 0.6465 0.6115 \n", + "39 0.5265 0.5405 0.5140 \n", + "\n", + " split3_test_score split4_test_score mean_test_score std_test_score \\\n", + "20 0.9515 0.9690 0.965 0.009801 \n", + "21 0.7030 0.7010 0.711 0.015071 \n", + "22 0.8690 0.8725 0.885 0.024028 \n", + "23 0.7115 0.7040 0.768 0.070915 \n", + "24 0.6795 0.6940 0.691 0.010794 \n", + "25 0.9970 0.9940 0.995 0.001288 \n", + "26 0.9965 0.9955 0.997 0.000632 \n", + "27 0.9340 0.9510 0.950 0.016263 \n", + "28 0.8370 0.8050 0.839 0.043343 \n", + "29 0.6875 0.6950 0.708 0.017376 \n", + "30 0.6170 0.5905 0.617 0.017614 \n", + "31 0.7010 0.7125 0.726 0.023049 \n", + "32 0.5370 0.5150 0.528 0.009196 \n", + "33 0.6295 0.6280 0.642 0.021824 \n", + "34 0.9680 0.9560 0.975 0.011491 \n", + "35 0.5370 0.5150 0.528 0.009196 \n", + "36 0.9965 0.9970 0.998 0.000707 \n", + "37 0.9665 0.9740 0.974 0.005486 \n", + "38 0.6085 0.5920 0.613 0.017946 \n", + "39 0.5220 0.5320 0.527 0.008961 \n", + "\n", + " rank_test_score clf \n", + "20 6 OF \n", + "21 12 OF \n", + "22 8 OF \n", + "23 10 OF \n", + "24 14 OF \n", + "25 3 OF \n", + "26 2 OF \n", + "27 7 OF \n", + "28 9 OF \n", + "29 13 OF \n", + "30 16 OF \n", + "31 11 OF \n", + "32 18 OF \n", + "33 15 OF \n", + "34 4 OF \n", + "35 18 OF \n", + "36 1 OF \n", + "37 5 OF \n", + "38 17 OF \n", + "39 20 OF " + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_cv.query('clf == \"OF\"')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.13 ('of')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "93e4dc7d4754bd0325258ba14c14aaf66418ce0b9905eb4643088c0b3d7c1548" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebook/simulation_runtime_output.pkl b/notebook/simulation_runtime_output.pkl new file mode 100644 index 0000000000000..c243b54a0d94c Binary files /dev/null and b/notebook/simulation_runtime_output.pkl differ