@@ -107,7 +107,7 @@ cdef class Splitter:
107
107
object X,
108
108
const DOUBLE_t[:, ::1 ] y,
109
109
const DOUBLE_t[:] sample_weight,
110
- const unsigned char [::1 ] feature_has_missing ,
110
+ const unsigned char [::1 ] missing_values_in_feature_mask ,
111
111
) except - 1 :
112
112
""" Initialize the splitter.
113
113
@@ -172,7 +172,7 @@ cdef class Splitter:
172
172
self .y = y
173
173
174
174
self .sample_weight = sample_weight
175
- if feature_has_missing is not None :
175
+ if missing_values_in_feature_mask is not None :
176
176
self .criterion.init_sum_missing()
177
177
return 0
178
178
@@ -808,19 +808,19 @@ cdef class DensePartitioner:
808
808
cdef SIZE_t start
809
809
cdef SIZE_t end
810
810
cdef SIZE_t n_missing
811
- cdef const unsigned char [::1 ] feature_has_missing
811
+ cdef const unsigned char [::1 ] missing_values_in_feature_mask
812
812
813
813
def __init__ (
814
814
self ,
815
815
const DTYPE_t[:, :] X ,
816
816
SIZE_t[::1] samples ,
817
817
DTYPE_t[::1] feature_values ,
818
- const unsigned char[::1] feature_has_missing ,
818
+ const unsigned char[::1] missing_values_in_feature_mask ,
819
819
):
820
820
self .X = X
821
821
self .samples = samples
822
822
self .feature_values = feature_values
823
- self .feature_has_missing = feature_has_missing
823
+ self .missing_values_in_feature_mask = missing_values_in_feature_mask
824
824
825
825
cdef inline void init_node_split(self , SIZE_t start, SIZE_t end) noexcept nogil:
826
826
""" Initialize splitter at the beginning of node_split."""
@@ -843,13 +843,13 @@ cdef class DensePartitioner:
843
843
const DTYPE_t[:, :] X = self .X
844
844
SIZE_t[::1 ] samples = self .samples
845
845
SIZE_t n_missing = 0
846
- const unsigned char [::1 ] feature_has_missing = self .feature_has_missing
846
+ const unsigned char [::1 ] missing_values_in_feature_mask = self .missing_values_in_feature_mask
847
847
848
848
# Sort samples along that feature; by
849
849
# copying the values into an array and
850
850
# sorting the array in a manner which utilizes the cache more
851
851
# effectively.
852
- if feature_has_missing is not None and feature_has_missing [current_feature]:
852
+ if missing_values_in_feature_mask is not None and missing_values_in_feature_mask [current_feature]:
853
853
i, current_end = self .start, self .end - 1
854
854
# Missing values are placed at the end and do not participate in the sorting.
855
855
while i <= current_end:
@@ -1018,7 +1018,7 @@ cdef class SparsePartitioner:
1018
1018
cdef SIZE_t start
1019
1019
cdef SIZE_t end
1020
1020
cdef SIZE_t n_missing
1021
- cdef const unsigned char [::1 ] feature_has_missing
1021
+ cdef const unsigned char [::1 ] missing_values_in_feature_mask
1022
1022
1023
1023
cdef const DTYPE_t[::1 ] X_data
1024
1024
cdef const INT32_t[::1 ] X_indices
@@ -1039,7 +1039,7 @@ cdef class SparsePartitioner:
1039
1039
SIZE_t[::1] samples ,
1040
1040
SIZE_t n_samples ,
1041
1041
DTYPE_t[::1] feature_values ,
1042
- const unsigned char[::1] feature_has_missing ,
1042
+ const unsigned char[::1] missing_values_in_feature_mask ,
1043
1043
):
1044
1044
if not isspmatrix_csc(X):
1045
1045
raise ValueError (" X should be in csc format" )
@@ -1063,7 +1063,7 @@ cdef class SparsePartitioner:
1063
1063
for p in range (n_samples):
1064
1064
self .index_to_samples[samples[p]] = p
1065
1065
1066
- self .feature_has_missing = feature_has_missing
1066
+ self .missing_values_in_feature_mask = missing_values_in_feature_mask
1067
1067
1068
1068
cdef inline void init_node_split(self , SIZE_t start, SIZE_t end) noexcept nogil:
1069
1069
""" Initialize splitter at the beginning of node_split."""
@@ -1434,11 +1434,11 @@ cdef class BestSplitter(Splitter):
1434
1434
object X,
1435
1435
const DOUBLE_t[:, ::1 ] y,
1436
1436
const DOUBLE_t[:] sample_weight,
1437
- const unsigned char [::1 ] feature_has_missing ,
1437
+ const unsigned char [::1 ] missing_values_in_feature_mask ,
1438
1438
) except - 1 :
1439
- Splitter.init(self , X, y, sample_weight, feature_has_missing )
1439
+ Splitter.init(self , X, y, sample_weight, missing_values_in_feature_mask )
1440
1440
self .partitioner = DensePartitioner(
1441
- X, self .samples, self .feature_values, feature_has_missing
1441
+ X, self .samples, self .feature_values, missing_values_in_feature_mask
1442
1442
)
1443
1443
1444
1444
cdef int node_split(self , double impurity, SplitRecord* split,
@@ -1460,11 +1460,11 @@ cdef class BestSparseSplitter(Splitter):
1460
1460
object X,
1461
1461
const DOUBLE_t[:, ::1 ] y,
1462
1462
const DOUBLE_t[:] sample_weight,
1463
- const unsigned char [::1 ] feature_has_missing ,
1463
+ const unsigned char [::1 ] missing_values_in_feature_mask ,
1464
1464
) except - 1 :
1465
- Splitter.init(self , X, y, sample_weight, feature_has_missing )
1465
+ Splitter.init(self , X, y, sample_weight, missing_values_in_feature_mask )
1466
1466
self .partitioner = SparsePartitioner(
1467
- X, self .samples, self .n_samples, self .feature_values, feature_has_missing
1467
+ X, self .samples, self .n_samples, self .feature_values, missing_values_in_feature_mask
1468
1468
)
1469
1469
1470
1470
cdef int node_split(self , double impurity, SplitRecord* split,
@@ -1486,11 +1486,11 @@ cdef class RandomSplitter(Splitter):
1486
1486
object X,
1487
1487
const DOUBLE_t[:, ::1 ] y,
1488
1488
const DOUBLE_t[:] sample_weight,
1489
- const unsigned char [::1 ] feature_has_missing ,
1489
+ const unsigned char [::1 ] missing_values_in_feature_mask ,
1490
1490
) except - 1 :
1491
- Splitter.init(self , X, y, sample_weight, feature_has_missing )
1491
+ Splitter.init(self , X, y, sample_weight, missing_values_in_feature_mask )
1492
1492
self .partitioner = DensePartitioner(
1493
- X, self .samples, self .feature_values, feature_has_missing
1493
+ X, self .samples, self .feature_values, missing_values_in_feature_mask
1494
1494
)
1495
1495
1496
1496
cdef int node_split(self , double impurity, SplitRecord* split,
@@ -1512,11 +1512,11 @@ cdef class RandomSparseSplitter(Splitter):
1512
1512
object X,
1513
1513
const DOUBLE_t[:, ::1 ] y,
1514
1514
const DOUBLE_t[:] sample_weight,
1515
- const unsigned char [::1 ] feature_has_missing ,
1515
+ const unsigned char [::1 ] missing_values_in_feature_mask ,
1516
1516
) except - 1 :
1517
- Splitter.init(self , X, y, sample_weight, feature_has_missing )
1517
+ Splitter.init(self , X, y, sample_weight, missing_values_in_feature_mask )
1518
1518
self .partitioner = SparsePartitioner(
1519
- X, self .samples, self .n_samples, self .feature_values, feature_has_missing
1519
+ X, self .samples, self .n_samples, self .feature_values, missing_values_in_feature_mask
1520
1520
)
1521
1521
1522
1522
cdef int node_split(self , double impurity, SplitRecord* split,
0 commit comments