|
| 1 | +# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, |
| 10 | +# software distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +from typing import Optional |
| 16 | + |
| 17 | +import torch |
| 18 | +from compressed_tensors.transform import TransformBase, TransformLocation |
| 19 | +from compressed_tensors.utils import patch_attr |
| 20 | +from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS |
| 21 | + |
| 22 | + |
| 23 | +""" |
| 24 | +Attention interfaces are functions with the following signature |
| 25 | +module, query, key, value, attention_mask, scaling, dropout, **kwargs |
| 26 | +They're gotten `from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS` |
| 27 | +
|
| 28 | +Idea: Yield a custom attention function which injects |
| 29 | +
|
| 30 | +Pros: relatively simple |
| 31 | +Cons: ordering is hard, since submodules aren't ordered; a little harder if you want |
| 32 | + to do stuff like attention output hooks |
| 33 | +We can just disable multiple attention transforms for now |
| 34 | +""" |
| 35 | + |
| 36 | +original_get_item = ALL_ATTENTION_FUNCTIONS.__getitem__ |
| 37 | + |
| 38 | + |
| 39 | +def make_hooked_attention(key): |
| 40 | + def hooked_attention( |
| 41 | + module: torch.nn.Module, |
| 42 | + query: torch.Tensor, |
| 43 | + key: torch.Tensor, |
| 44 | + value: torch.Tensor, |
| 45 | + attention_mask: Optional[torch.Tensor], |
| 46 | + scaling: float, |
| 47 | + dropout: float = 0.0, |
| 48 | + **kwargs, |
| 49 | + ): |
| 50 | + for submodule in module.children(): |
| 51 | + if isinstance(submodule, TransformBase): |
| 52 | + if TransformBase.args.location == TransformLocation.Q_ATTN: |
| 53 | + query = submodule(query) |
| 54 | + |
| 55 | + if TransformBase.args.location == TransformLocation.K_CACHE: |
| 56 | + key = submodule(key) |
| 57 | + |
| 58 | + return original_get_item(key)( |
| 59 | + module, query, key, value, attention_mask, scaling, dropout, **kwargs |
| 60 | + ) |
| 61 | + |
| 62 | + return hooked_attention |
| 63 | + |
| 64 | + |
| 65 | +_cache = {} |
| 66 | + |
| 67 | + |
| 68 | +def patched_get_item(self, key): |
| 69 | + if key not in _cache: |
| 70 | + _cache[key] = make_hooked_attention(key) |
| 71 | + |
| 72 | + return _cache[key] |
| 73 | + |
| 74 | + |
| 75 | +patch_attr(ALL_ATTENTION_FUNCTIONS, "__getitem__", patched_get_item) |
0 commit comments