-
Notifications
You must be signed in to change notification settings - Fork 747
Description
Here's a plan to enhance TxtAI with geospatial and temporal search capabilities:
1. Extend indexing for geospatial data:
- Use GeoPandas for geospatial data handling, as it integrates well with NetworkX.
- Implement a GeospatialGraph class that extends TxtAI's existing Graph:
import geopandas as gpd
from txtai.graph import Graph
class GeospatialGraph(Graph):
def __init__(self):
super().__init__()
self.gdf = gpd.GeoDataFrame()
def add_node(self, node_id, geometry, **attr):
super().add_node(node_id, **attr)
self.gdf = self.gdf.append({'node_id': node_id, 'geometry': geometry}, ignore_index=True)
def spatial_query(self, geometry, predicate='intersects'):
return self.gdf[self.gdf.geometry.geom_method(predicate, geometry)]['node_id'].tolist()
2. Implement temporal search functionalities:
- Use pandas for temporal data handling, as it's already part of TxtAI's ecosystem.
- Extend the Graph class to include temporal attributes:
import pandas as pd
class TemporalGraph(Graph):
def __init__(self):
super().__init__()
self.temporal_index = pd.DatetimeIndex([])
def add_node(self, node_id, timestamp, **attr):
super().add_node(node_id, **attr)
self.temporal_index = self.temporal_index.append(pd.DatetimeIndex([timestamp]))
def temporal_query(self, start_time, end_time):
mask = (self.temporal_index >= start_time) & (self.temporal_index <= end_time)
return self.temporal_index[mask].tolist()
3. Integrate with existing semantic search:
- Create a combined SpatioTemporalSemanticGraph class:
from txtai.embeddings import Embeddings
class SpatioTemporalSemanticGraph(GeospatialGraph, TemporalGraph):
def __init__(self):
super().__init__()
self.embeddings = Embeddings()
def add_node(self, node_id, geometry, timestamp, text, **attr):
super().add_node(node_id, geometry, timestamp, **attr)
self.embeddings.index([(node_id, text, None)])
def search(self, query, geometry=None, start_time=None, end_time=None, limit=10):
results = self.embeddings.search(query, limit)
if geometry:
spatial_results = set(self.spatial_query(geometry))
results = [r for r in results if r[0] in spatial_results]
if start_time and end_time:
temporal_results = set(self.temporal_query(start_time, end_time))
results = [r for r in results if r[0] in temporal_results]
return results
This implementation:
- Uses GeoPandas for geospatial indexing, which is compatible with NetworkX.
- Utilizes pandas for temporal indexing, which is already part of TxtAI's ecosystem.
- Integrates seamlessly with TxtAI's existing semantic search capabilities.
- Provides a simple interface for combined spatio-temporal-semantic queries.
To use this enhanced graph:
graph = SpatioTemporalSemanticGraph()
graph.add_node("1", Point(0, 0), pd.Timestamp("2023-01-01"), "Sample text")
results = graph.search("sample",
geometry=Point(0, 0).buffer(1),
start_time=pd.Timestamp("2022-01-01"),
end_time=pd.Timestamp("2024-01-01"))
This approach extends TxtAI's capabilities while maintaining simplicity and integration with its existing ecosystem.
Citations:
[1] https://networkx.org/documentation/stable/auto_examples/geospatial/index.html
[2] https://networkx.org/documentation/stable/auto_examples/geospatial/extended_description.html
[3] geopandas/geopandas#1592
[4] https://napo.github.io/geospatial_course_unitn/lessons/05-street-network-analysis
[5] https://pypi.org/project/networkx-temporal/
[6] https://www.timescale.com/blog/tools-for-working-with-time-series-analysis-in-python/
[7] https://pythongis.org/part1/chapter-03/nb/03-temporal-data.html
[8] https://github.com/MaxBenChrist/awesome_time_series_in_python
[9] https://unit8co.github.io/darts/
[10] https://www.timescale.com/blog/how-to-work-with-time-series-in-python/
[11] https://github.com/sacridini/Awesome-Geospatial
[12] https://www.mdpi.com/1999-4893/10/2/37