Skip to content

Commit 9a9802c

Browse files
committed
typos
1 parent 44a2fc6 commit 9a9802c

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

src/NEPTypes.jl

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1335,7 +1335,7 @@ Returns true/false if the NEP is sparse (if compute_Mder() returns sparse)
13351335
"""
13361336
struct DerSPMF{T<:AbstractMatrix,FDtype,TT<:Number} <: AbstractSPMF{T}
13371337
1338-
A DerSPMF is a shift-tuned representation of NEP defined by a Sum of Products of Matrices and Functions [`SPMF_NEP`](@ref). This format makes more efficient the execution of [`compute_Mlincomb`](@ref) for the selected shift σ.
1338+
A DerSPMF is a representation of a NEP defined by a Sum of Products of Matrices and Functions [`SPMF_NEP`](@ref). This format makes the execution of [`compute_Mlincomb`](@ref) for the specified `σ` more efficient.
13391339
"""
13401340
struct DerSPMF{T<:AbstractMatrix,TT<:Number,FDtype} <: AbstractSPMF{T}
13411341
spmf::AbstractSPMF{T}
@@ -1358,23 +1358,23 @@ Returns true/false if the NEP is sparse (if compute_Mder() returns sparse)
13581358
end
13591359

13601360
"""
1361-
DerSPMF(spmf,σ,m)
1361+
newspmf=DerSPMF(spmf,σ,m)
13621362
1363-
Creates a `DerSPMF` representing the NEP `spmf` where the first `m` derivatives of the functions `f_i` in the number `σ` are precomputed. This format makes more efficient the execution of [`compute_Mlincomb`](@ref) for the selected shift σ.
1363+
Creates a `DerSPMF` representing the NEP `spmf` where the first `m` derivatives of the functions `f_i` in the number `σ` are precomputed. This will in general speed up the execution of [`compute_Mlincomb`](@ref) for the selected shift σ.
13641364
13651365
# Parameters
13661366
1367-
* `spmf` is an `AbstractSPMF`.
1367+
* `spmf` is the original `AbstractSPMF`.
13681368
1369-
* `σ` is a `Number` represeing the shift where the derivatives will be precomputed.
1369+
* `σ::Number` specifies where the derivatives will be precomputed.
13701370
13711371
# Example
13721372
```julia-repl
13731373
julia> A0=[1 3; 4 5]; A1=[3 4; 5 6];
13741374
julia> id_op=S -> one(S) # Note: We use one(S) to be valid both for matrices and scalars
13751375
julia> exp_op=S -> exp(S)
13761376
julia> nep=SPMF_NEP([A0,A1],[id_op,exp_op]);
1377-
julia> m=5
1377+
julia> m=5 # Precompute 5 derivatives
13781378
julia> Dnep=DerSPMF(nep,σ,m)
13791379
julia> V=rand(2,m)
13801380
julia> z=compute_Mlincomb(Dnep,σ,V)

0 commit comments

Comments
 (0)