Skip to content

Commit ebb603d

Browse files
author
Yifan Peng
authored
Merge pull request #5 from yfpeng/master
add ga/cga models
2 parents 211bb74 + 6621dd5 commit ebb603d

File tree

1 file changed

+15
-8
lines changed

1 file changed

+15
-8
lines changed

README.rst

100755100644
Lines changed: 15 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -2,14 +2,16 @@
22
:target: https://github.com/ncbi-nlp/DeepSeeNet/blob/master/images/deepseenet.png?raw=true
33
:alt: DeepSeeNet
44

5+
.. role:: raw-html(raw)
6+
:format: html
57

68
-----------------------
79

810
DeepSeeNet is a high-performance deep learning framework for grading of color fundus photographs using the AREDS simplified severity scale. For more details, please see `<https://ncbi-nlp.github.io/DeepSeeNet/>`_.
911

1012

1113
Getting Started with DeepSeeNet
12-
============================
14+
===============================
1315

1416
These instructions will get you a copy of the project up and run on your local machine for development and testing purposes.
1517
The package should successfully install on Linux.
@@ -38,7 +40,7 @@ Installing from source
3840

3941

4042
Using DeepSeeNet for grading simplified scores
41-
-------------------------------------------
43+
----------------------------------------------
4244

4345
The easiest way is to run the following command
4446

@@ -71,8 +73,8 @@ More options (e.g., setting the models) can be obtained by running
7173
$ python examples/predict_simplified_score.py --help
7274
7375
74-
Pretrained DeepSeeNet models
75-
----------------------------
76+
Pre-trained DeepSeeNet models
77+
-----------------------------
7678

7779
Besides grading the simplified score, we also provide individual risk factor models. For example
7880

@@ -87,10 +89,13 @@ Besides grading the simplified score, we also provide individual risk factor mod
8789
The drusen score: [[0.21020733 0.2953384 0.49445423]]
8890
The drusen size: large
8991
92+
Here, we provide the following pre-trained models:
9093

91-
All models can be found at ``deepseenet``.
92-
93-
The pretrained models can be found at: `<https://github.com/ncbi-nlp/DeepSeeNet/releases/tag/0.1>`_
94+
* `drusen size <https://github.com/ncbi-nlp/DeepSeeNet/releases/tag/0.1>`_: non/small, intermediate, large
95+
* `pigmentary abnormalities <https://github.com/ncbi-nlp/DeepSeeNet/releases/tag/0.1>`_: no, yes
96+
* `late AMD <https://github.com/ncbi-nlp/DeepSeeNet/releases/tag/0.1>`_: no, yes
97+
* `geographic atrophy (GA) <https://github.com/ncbi-nlp/DeepSeeNet/releases/tag/0.2>`_: no, yes
98+
* `central GA <https://github.com/ncbi-nlp/DeepSeeNet/releases/tag/0.2>`_: no, yes
9499

95100

96101
Training DeepSeeNet model
@@ -122,7 +127,9 @@ Citing DeepSeeNet
122127

123128
If you're running the DeepSeeNet framework, please cite:
124129

125-
* Peng Y, Dharssi S, Chen Q, Keenan T, Agron E, Wong W, Chew E, Lu Z. DeepSeeNet: A deep learning model for automated classification of patientbased age-related macular degeneration severity from color fundus photographs. Ophthalmology. 2018 (Accepted).
130+
* Peng Y*, Dharssi S*, Chen Q, Keenan T, Agron E, Wong W, Chew E, Lu Z. DeepSeeNet: A deep learning model for automated classification of patientbased age-related macular degeneration severity from color fundus photographs. Ophthalmology. 2019. 126(4), 565-575.
131+
132+
* Keenan T*, Dharssi S*, Peng Y*, Chen Q, Agron E, Wong W, Lu Z, Chew E. A deep learning approach for automated detection of geographic atrophy from color fundus photographs. Ophthalmology. 2019 (Accepted).
126133

127134

128135
Disclaimer

0 commit comments

Comments
 (0)