You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
### Set your working directory to the directory where you will execute your DESeq2 script from ###
@@ -1211,6 +1211,17 @@ setwd(file.path(work_dir))
1211
1211
1212
1212
```
1213
1213
1214
+
**Input Data:**
1215
+
1216
+
1217
+
* {GLDS-Accession-ID}_bulkRNASeq_v{version}_runsheet.csv (runsheet, output from [Step 9a](#9a-create-sample-runsheet))
1218
+
*`organism` (name of organism samples were derived from, found in the species column of the [GL-DPPD-7110-A_annotations.csv](../../GeneLab_Reference_Annotations/Pipeline_GL-DPPD-7110_Versions/GL-DPPD-7110-A/GL-DPPD-7110-A_annotations.csv) file)
1219
+
1220
+
**Output Data:**
1221
+
1222
+
*`runsheet_path` (variable containing path to runsheet created in [Step 9a](#9a-create-sample-runsheet))
1223
+
*`annotations_link` (variable containing URL to GeneLab gene annotation table for the organism)
1224
+
1214
1225
<br>
1215
1226
1216
1227
### 9c. Configure Metadata, Sample Grouping, and Group Comparisons
@@ -1265,6 +1276,16 @@ rm(contrast.names)
1265
1276
1266
1277
```
1267
1278
1279
+
**Input Data:**
1280
+
1281
+
*`runsheet_path` (variable containing path to runsheet created in [Step 9a](#9a-create-sample-runsheet))
*`group` (named vector indicating group membership for each sample, output from [Step 9c](#9c-configure-metadata-sample-grouping-and-group-comparisons))
1438
+
*`txi.rsem` (imported RSEM data containing counts matrix, output from [Step 9d](#9d-import-rsem-genecounts))
1439
+
1440
+
**Output Data:**
1441
+
1442
+
*`dds` (DESeq2 data object containing normalized counts and experimental design)
1443
+
*`normCounts` (data frame of normalized count values + 1)
1444
+
*`VSTCounts` (data frame of variance stabilized transformed counts)
1445
+
*`dds_lrt` (DESeq2 data object from likelihood ratio test)
1446
+
*`res_lrt` (results object from likelihood ratio test)
-*runsheet.csv file (table containing metadata required for analysis, output from [step 9a](#9a-create-sample-runsheet))
1522
-
-[GL-DPPD-7110_annotations.csv](../../GeneLab_Reference_Annotations/Pipeline_GL-DPPD-7110_Versions/GL-DPPD-7110/GL-DPPD-7110_annotations.csv) (csv file containing link to GeneLab annotations)
1523
-
-*genes.results (RSEM counts per gene, output from [Step 8a](#8a-count-aligned-reads-with-rsem)) or *_rRNA_removed.genes.results (RSEM counts per gene with rRNA entries removed, output from [Step 8d](#8d-remove-rrna-from-rsem-counts))
1586
+
*`contrasts` (matrix defining pairwise comparisons between experimental groups from [Step 9c](#9c-create-study-group-and-contrasts))
1587
+
*`txi.rsem` (imported RSEM count data from [Step 9d](#9d-import-rsem-genecounts))
1588
+
*`normCounts` (normalized count values from [Step 9e](#9e-perform-dge-analysis))
1589
+
*`VSTCounts` (variance stabilized transformed counts from [Step 9e](#9e-perform-dge-analysis))
1590
+
*`sampleTable` (data frame mapping samples to experimental conditions from [Step 9e](#9e-perform-dge-analysis))
1591
+
*`output_table` (DGE output table from [Step 9f](#9f-add-statistics-and-gene-annotations-to-dge-results))
1524
1592
1525
1593
**Output Data:**
1526
1594
1527
-
-**RSEM_Unnormalized_Counts_GLbulkRNAseq.csv** (table containing raw RSEM gene counts for each sample)
1528
-
-**Normalized_Counts_GLbulkRNAseq.csv** (table containing normalized gene counts for each sample)
1529
-
-**VST_Counts_GLbulkRNAseq.csv** (table containing VST normalized gene counts for each sample)
1530
-
-**SampleTable_GLbulkRNAseq.csv** (table containing samples and their respective groups)
1531
-
-**differential_expression_GLbulkRNAseq.csv** (table containing normalized counts for each sample, group statistics, DESeq2 DGE results for each pairwise comparison, and gene annotations)
1532
-
-**contrasts_GLbulkRNAseq.csv** (table containing all pairwise comparisons)
1595
+
***RSEM_Unnormalized_Counts_GLbulkRNAseq.csv** (raw RSEM gene counts for all samples and technical replicates)
> Note: Datasets with technical replicates are handled by collapsing them such that the minimum number of equal technical replicates is retained across all samples. Before normalization, the counts of technical replicates are summed to combine them into a single sample representing the biological replicate.
0 commit comments