Skip to content

Commit af90b65

Browse files
committed
clean up dge code
1 parent a690b1d commit af90b65

File tree

2 files changed

+25
-15
lines changed

2 files changed

+25
-15
lines changed

RNAseq/Pipeline_GL-DPPD-7115_Versions/GL-DPPD-7115.md

Lines changed: 15 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1291,16 +1291,23 @@ output_table$LRT.p.value <- res_lrt@listData$padj
12911291
tcounts <- as.data.frame(t(normCounts))
12921292
tcounts$group <- names(group)
12931293

1294-
# Calculate group means and standard deviations
1295-
group_means <- aggregate(. ~ group, data = tcounts, mean)
1296-
group_stdev <- aggregate(. ~ group, data = tcounts, sd)
1297-
group_means <- t(group_means[-1])
1298-
group_stdev <- t(group_stdev[-1])
1299-
colnames(group_means) <- names(group)
1300-
colnames(group_stdev) <- names(group)
1294+
# Aggregate group means and standard deviations
1295+
agg_means <- aggregate(. ~ group, data = tcounts, mean)
1296+
agg_stdev <- aggregate(. ~ group, data = tcounts, sd)
1297+
1298+
# Save the unique group names before transposing
1299+
group_names <- agg_means$group
1300+
1301+
# Remove the 'group' column and transpose the data
1302+
group_means <- t(agg_means[-1])
1303+
group_stdev <- t(agg_stdev[-1])
1304+
1305+
# Assign the unique group names to the columns
1306+
colnames(group_means) <- group_names
1307+
colnames(group_stdev) <- group_names
13011308

13021309
# For each group, add mean and stdev columns
1303-
for (group_name in unique(names(group))) {
1310+
for (group_name in group_names) {
13041311
mean_col <- paste0("Group.Mean_(", group_name, ")")
13051312
stdev_col <- paste0("Group.Stdev_(", group_name, ")")
13061313
output_table[[mean_col]] <- group_means[, paste0("Group.Mean_", group_means['group',])]

RNAseq/Workflow_Documentation/NF_RCP/workflow_code/bin/dge_deseq2.Rmd

Lines changed: 10 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -363,14 +363,17 @@ output_table$LRT.p.value <- res_lrt@listData$padj
363363
tcounts <- as.data.frame(t(normCounts))
364364
tcounts$group <- names(group)
365365
# Calculate group means and standard deviations
366-
group_means <- aggregate(. ~ group, data = tcounts, mean)
367-
group_stdev <- aggregate(. ~ group, data = tcounts, sd)
368-
group_means <- t(group_means[-1]) # Remove group column and transpose
369-
group_stdev <- t(group_stdev[-1]) # Remove group column and transpose
370-
colnames(group_means) <- names(group)
371-
colnames(group_stdev) <- names(group)
366+
agg_means <- aggregate(. ~ group, data = tcounts, mean)
367+
agg_stdev <- aggregate(. ~ group, data = tcounts, sd)
368+
group_names <- agg_means$group
369+
# Remove the 'group' column and transpose the data
370+
group_means <- t(agg_means[-1])
371+
group_stdev <- t(agg_stdev[-1])
372+
# Assign the unique group names to the columns
373+
colnames(group_means) <- group_names
374+
colnames(group_stdev) <- group_names
372375
# Add stats to output table
373-
for (group_name in unique(names(group))) {
376+
for (group_name in group_names) {
374377
output_table[[paste0("Group.Mean_(", group_name, ")")]] <- group_means[, group_name]
375378
output_table[[paste0("Group.Stdev_(", group_name, ")")]] <- group_stdev[, group_name]
376379
}

0 commit comments

Comments
 (0)