|
| 1 | +use std::convert::TryFrom; |
| 2 | +use std::{cmp, fmt, hash}; |
| 3 | + |
| 4 | +use blake2b_simd::{blake2b, Params as Blake2bVariable}; |
| 5 | +use blake2s_simd::{blake2s, Params as Blake2sVariable}; |
| 6 | +use sha2::Digest; |
| 7 | +use tiny_keccak::Keccak; |
| 8 | +use unsigned_varint::{decode, encode}; |
| 9 | + |
| 10 | +use crate::errors::{DecodeError, DecodeOwnedError, EncodeError}; |
| 11 | +use crate::hashes::Hash; |
| 12 | +use crate::storage::Storage; |
| 13 | + |
| 14 | +// Helper macro for encoding input into output using sha1, sha2, tiny_keccak, or blake2 |
| 15 | +macro_rules! encode { |
| 16 | + (sha1, Sha1, $input:expr, $output:expr) => {{ |
| 17 | + let mut hasher = sha1::Sha1::new(); |
| 18 | + hasher.update($input); |
| 19 | + $output.copy_from_slice(&hasher.digest().bytes()); |
| 20 | + }}; |
| 21 | + (sha2, $algorithm:ident, $input:expr, $output:expr) => {{ |
| 22 | + let mut hasher = sha2::$algorithm::default(); |
| 23 | + hasher.input($input); |
| 24 | + $output.copy_from_slice(hasher.result().as_ref()); |
| 25 | + }}; |
| 26 | + (tiny, $constructor:ident, $input:expr, $output:expr) => {{ |
| 27 | + let mut kec = Keccak::$constructor(); |
| 28 | + kec.update($input); |
| 29 | + kec.finalize($output); |
| 30 | + }}; |
| 31 | + (blake2, $algorithm:ident, $input:expr, $output:expr) => {{ |
| 32 | + let hash = $algorithm($input); |
| 33 | + $output.copy_from_slice(hash.as_ref()); |
| 34 | + }}; |
| 35 | + (blake2_256, $constructor:ident, $input:expr, $output:expr) => {{ |
| 36 | + let hash = $constructor::new() |
| 37 | + .hash_length(32) |
| 38 | + .to_state() |
| 39 | + .update($input) |
| 40 | + .finalize(); |
| 41 | + $output.copy_from_slice(hash.as_ref()); |
| 42 | + }}; |
| 43 | + (blake2_128, $constructor:ident, $input:expr, $output:expr) => {{ |
| 44 | + let hash = $constructor::new() |
| 45 | + .hash_length(16) |
| 46 | + .to_state() |
| 47 | + .update($input) |
| 48 | + .finalize(); |
| 49 | + $output.copy_from_slice(hash.as_ref()); |
| 50 | + }}; |
| 51 | +} |
| 52 | + |
| 53 | +// And another one to keep the matching DRY |
| 54 | +macro_rules! match_encoder { |
| 55 | + ($hash:ident for ($input:expr, $output:expr) { |
| 56 | + $( $hashtype:ident => $lib:ident :: $method:ident, )* |
| 57 | + }) => ({ |
| 58 | + match $hash { |
| 59 | + $( |
| 60 | + Hash::$hashtype => encode!($lib, $method, $input, $output), |
| 61 | + )* |
| 62 | + |
| 63 | + _ => return Err(EncodeError::UnsupportedType) |
| 64 | + } |
| 65 | + }) |
| 66 | +} |
| 67 | + |
| 68 | +/// Encodes data into a multihash. |
| 69 | +/// |
| 70 | +/// # Errors |
| 71 | +/// |
| 72 | +/// Will return an error if the specified hash type is not supported. See the docs for `Hash` |
| 73 | +/// to see what is supported. |
| 74 | +/// |
| 75 | +/// # Examples |
| 76 | +/// |
| 77 | +/// ``` |
| 78 | +/// use multihash::{encode, Hash}; |
| 79 | +/// |
| 80 | +/// assert_eq!( |
| 81 | +/// encode(Hash::SHA2256, b"hello world").unwrap().to_vec(), |
| 82 | +/// vec![18, 32, 185, 77, 39, 185, 147, 77, 62, 8, 165, 46, 82, 215, 218, 125, 171, 250, 196, |
| 83 | +/// 132, 239, 227, 122, 83, 128, 238, 144, 136, 247, 172, 226, 239, 205, 233] |
| 84 | +/// ); |
| 85 | +/// ``` |
| 86 | +/// |
| 87 | +pub fn encode(hash: Hash, input: &[u8]) -> Result<Multihash, EncodeError> { |
| 88 | + // Custom length encoding for the identity multihash |
| 89 | + if let Hash::Identity = hash { |
| 90 | + if u64::from(std::u32::MAX) < as_u64(input.len()) { |
| 91 | + return Err(EncodeError::UnsupportedInputLength); |
| 92 | + } |
| 93 | + let mut buf = encode::u16_buffer(); |
| 94 | + let code = encode::u16(hash.code(), &mut buf); |
| 95 | + let mut len_buf = encode::u32_buffer(); |
| 96 | + let size = encode::u32(input.len() as u32, &mut len_buf); |
| 97 | + Ok(Multihash { |
| 98 | + storage: Storage::from_slices(&[&code, &size, &input]), |
| 99 | + }) |
| 100 | + } else { |
| 101 | + let (offset, mut output) = encode_hash(hash); |
| 102 | + match_encoder!(hash for (input, &mut output[offset ..]) { |
| 103 | + SHA1 => sha1::Sha1, |
| 104 | + SHA2256 => sha2::Sha256, |
| 105 | + SHA2512 => sha2::Sha512, |
| 106 | + SHA3224 => tiny::new_sha3_224, |
| 107 | + SHA3256 => tiny::new_sha3_256, |
| 108 | + SHA3384 => tiny::new_sha3_384, |
| 109 | + SHA3512 => tiny::new_sha3_512, |
| 110 | + Keccak224 => tiny::new_keccak224, |
| 111 | + Keccak256 => tiny::new_keccak256, |
| 112 | + Keccak384 => tiny::new_keccak384, |
| 113 | + Keccak512 => tiny::new_keccak512, |
| 114 | + Blake2b512 => blake2::blake2b, |
| 115 | + Blake2b256 => blake2_256::Blake2bVariable, |
| 116 | + Blake2s256 => blake2::blake2s, |
| 117 | + Blake2s128 => blake2_128::Blake2sVariable, |
| 118 | + }); |
| 119 | + |
| 120 | + Ok(Multihash { |
| 121 | + storage: Storage::from_slice(&output), |
| 122 | + }) |
| 123 | + } |
| 124 | +} |
| 125 | + |
| 126 | +// Encode the given [`Hash`] value and ensure the returned [`Vec<u8>`] |
| 127 | +// has enough capacity to hold the actual digest. |
| 128 | +fn encode_hash(hash: Hash) -> (usize, Vec<u8>) { |
| 129 | + let mut buf = encode::u16_buffer(); |
| 130 | + let code = encode::u16(hash.code(), &mut buf); |
| 131 | + |
| 132 | + let len = code.len() + 1 + usize::from(hash.size()); |
| 133 | + |
| 134 | + let mut output = Vec::with_capacity(len); |
| 135 | + output.extend_from_slice(code); |
| 136 | + output.push(hash.size()); |
| 137 | + output.resize(len, 0); |
| 138 | + |
| 139 | + (code.len() + 1, output) |
| 140 | +} |
| 141 | + |
| 142 | +/// Represents a valid multihash. |
| 143 | +#[derive(Clone)] |
| 144 | +pub struct Multihash { |
| 145 | + storage: Storage, |
| 146 | +} |
| 147 | + |
| 148 | +impl fmt::Debug for Multihash { |
| 149 | + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 150 | + f.debug_tuple("Multihash").field(&self.as_bytes()).finish() |
| 151 | + } |
| 152 | +} |
| 153 | + |
| 154 | +impl PartialEq for Multihash { |
| 155 | + fn eq(&self, other: &Self) -> bool { |
| 156 | + self.storage.bytes() == other.storage.bytes() |
| 157 | + } |
| 158 | +} |
| 159 | + |
| 160 | +impl Eq for Multihash {} |
| 161 | + |
| 162 | +impl hash::Hash for Multihash { |
| 163 | + fn hash<H: hash::Hasher>(&self, state: &mut H) { |
| 164 | + self.storage.bytes().hash(state); |
| 165 | + } |
| 166 | +} |
| 167 | + |
| 168 | +impl Multihash { |
| 169 | + /// Verifies whether `bytes` contains a valid multihash, and if so returns a `Multihash`. |
| 170 | + pub fn from_bytes(bytes: Vec<u8>) -> Result<Multihash, DecodeOwnedError> { |
| 171 | + if let Err(err) = MultihashRef::from_slice(&bytes) { |
| 172 | + return Err(DecodeOwnedError { |
| 173 | + error: err, |
| 174 | + data: bytes, |
| 175 | + }); |
| 176 | + } |
| 177 | + Ok(Multihash { |
| 178 | + storage: Storage::from_slice(&bytes), |
| 179 | + }) |
| 180 | + } |
| 181 | + |
| 182 | + /// Returns the bytes representation of the multihash. |
| 183 | + pub fn into_bytes(self) -> Vec<u8> { |
| 184 | + self.to_vec() |
| 185 | + } |
| 186 | + |
| 187 | + /// Returns the bytes representation of the multihash. |
| 188 | + pub fn to_vec(&self) -> Vec<u8> { |
| 189 | + Vec::from(self.as_bytes()) |
| 190 | + } |
| 191 | + |
| 192 | + /// Returns the bytes representation of this multihash. |
| 193 | + pub fn as_bytes(&self) -> &[u8] { |
| 194 | + self.storage.bytes() |
| 195 | + } |
| 196 | + |
| 197 | + /// Builds a `MultihashRef` corresponding to this `Multihash`. |
| 198 | + pub fn as_ref(&self) -> MultihashRef { |
| 199 | + MultihashRef { |
| 200 | + bytes: self.as_bytes(), |
| 201 | + } |
| 202 | + } |
| 203 | + |
| 204 | + /// Returns which hashing algorithm is used in this multihash. |
| 205 | + pub fn algorithm(&self) -> Hash { |
| 206 | + self.as_ref().algorithm() |
| 207 | + } |
| 208 | + |
| 209 | + /// Returns the hashed data. |
| 210 | + pub fn digest(&self) -> &[u8] { |
| 211 | + self.as_ref().digest() |
| 212 | + } |
| 213 | +} |
| 214 | + |
| 215 | +impl AsRef<[u8]> for Multihash { |
| 216 | + fn as_ref(&self) -> &[u8] { |
| 217 | + self.as_bytes() |
| 218 | + } |
| 219 | +} |
| 220 | + |
| 221 | +impl<'a> PartialEq<MultihashRef<'a>> for Multihash { |
| 222 | + fn eq(&self, other: &MultihashRef<'a>) -> bool { |
| 223 | + &*self.as_bytes() == other.as_bytes() |
| 224 | + } |
| 225 | +} |
| 226 | + |
| 227 | +impl TryFrom<Vec<u8>> for Multihash { |
| 228 | + type Error = DecodeOwnedError; |
| 229 | + |
| 230 | + fn try_from(value: Vec<u8>) -> Result<Self, Self::Error> { |
| 231 | + Multihash::from_bytes(value) |
| 232 | + } |
| 233 | +} |
| 234 | + |
| 235 | +impl PartialOrd for Multihash { |
| 236 | + fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { |
| 237 | + Some(self.cmp(other)) |
| 238 | + } |
| 239 | +} |
| 240 | + |
| 241 | +impl Ord for Multihash { |
| 242 | + fn cmp(&self, other: &Self) -> cmp::Ordering { |
| 243 | + self.as_ref().cmp(&other.as_ref()) |
| 244 | + } |
| 245 | +} |
| 246 | + |
| 247 | +/// Represents a valid multihash. |
| 248 | +#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] |
| 249 | +pub struct MultihashRef<'a> { |
| 250 | + bytes: &'a [u8], |
| 251 | +} |
| 252 | + |
| 253 | +impl<'a> MultihashRef<'a> { |
| 254 | + /// Creates a `MultihashRef` from the given `input`. |
| 255 | + pub fn from_slice(input: &'a [u8]) -> Result<Self, DecodeError> { |
| 256 | + if input.is_empty() { |
| 257 | + return Err(DecodeError::BadInputLength); |
| 258 | + } |
| 259 | + |
| 260 | + // Ensure `Hash::code` returns a `u16` so that our `decode::u16` here is correct. |
| 261 | + std::convert::identity::<fn(Hash) -> u16>(Hash::code); |
| 262 | + let (code, bytes) = decode::u16(&input).map_err(|_| DecodeError::BadInputLength)?; |
| 263 | + |
| 264 | + let alg = Hash::from_code(code).ok_or(DecodeError::UnknownCode)?; |
| 265 | + |
| 266 | + // handle the identity case |
| 267 | + if alg == Hash::Identity { |
| 268 | + let (hash_len, bytes) = decode::u32(&bytes).map_err(|_| DecodeError::BadInputLength)?; |
| 269 | + if as_u64(bytes.len()) != u64::from(hash_len) { |
| 270 | + return Err(DecodeError::BadInputLength); |
| 271 | + } |
| 272 | + return Ok(MultihashRef { bytes: input }); |
| 273 | + } |
| 274 | + |
| 275 | + let hash_len = usize::from(alg.size()); |
| 276 | + |
| 277 | + // Length of input after hash code should be exactly hash_len + 1 |
| 278 | + if bytes.len() != hash_len + 1 { |
| 279 | + return Err(DecodeError::BadInputLength); |
| 280 | + } |
| 281 | + |
| 282 | + if usize::from(bytes[0]) != hash_len { |
| 283 | + return Err(DecodeError::BadInputLength); |
| 284 | + } |
| 285 | + |
| 286 | + Ok(MultihashRef { bytes: input }) |
| 287 | + } |
| 288 | + |
| 289 | + /// Returns which hashing algorithm is used in this multihash. |
| 290 | + pub fn algorithm(&self) -> Hash { |
| 291 | + let code = decode::u16(&self.bytes) |
| 292 | + .expect("multihash is known to be valid algorithm") |
| 293 | + .0; |
| 294 | + Hash::from_code(code).expect("multihash is known to be valid") |
| 295 | + } |
| 296 | + |
| 297 | + /// Returns the hashed data. |
| 298 | + pub fn digest(&self) -> &'a [u8] { |
| 299 | + let bytes = decode::u16(&self.bytes) |
| 300 | + .expect("multihash is known to be valid digest") |
| 301 | + .1; |
| 302 | + &bytes[1..] |
| 303 | + } |
| 304 | + |
| 305 | + /// Builds a `Multihash` that owns the data. |
| 306 | + /// |
| 307 | + /// This operation allocates. |
| 308 | + pub fn to_owned(&self) -> Multihash { |
| 309 | + Multihash { |
| 310 | + storage: Storage::from_slice(self.bytes), |
| 311 | + } |
| 312 | + } |
| 313 | + |
| 314 | + /// Returns the bytes representation of this multihash. |
| 315 | + pub fn as_bytes(&self) -> &'a [u8] { |
| 316 | + &self.bytes |
| 317 | + } |
| 318 | +} |
| 319 | + |
| 320 | +impl<'a> PartialEq<Multihash> for MultihashRef<'a> { |
| 321 | + fn eq(&self, other: &Multihash) -> bool { |
| 322 | + self.as_bytes() == &*other.as_bytes() |
| 323 | + } |
| 324 | +} |
| 325 | + |
| 326 | +#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))] |
| 327 | +fn as_u64(a: usize) -> u64 { |
| 328 | + a as u64 |
| 329 | +} |
0 commit comments