From 9e6663fb4766a4754fb91d261b0d1a2910374f97 Mon Sep 17 00:00:00 2001 From: RuthySheffi Date: Thu, 5 Jun 2025 21:59:04 +0300 Subject: [PATCH 1/3] Add export files feature to Three.js DevTools extension --- devtools/background.js | 187 +- devtools/bridge.js | 911 +- devtools/content-script.js | 35 +- devtools/devtools.js | 2 + devtools/export-handler.js | 40 + devtools/icons/16-light.png | Bin 0 -> 3079 bytes devtools/icons/32-light.png | Bin 0 -> 3657 bytes devtools/icons/48-light.png | Bin 0 -> 4195 bytes devtools/icons/64-light.png | Bin 0 -> 4869 bytes devtools/manifest.json | 44 +- devtools/panel/build/three.core.js | 58098 ++++++++++++ devtools/panel/build/three.module.js | 18130 ++++ devtools/panel/build/three.tsl.js | 560 + devtools/panel/build/three.webgpu.js | 73537 ++++++++++++++++ devtools/panel/build/three.webgpu.nodes.js | 73484 +++++++++++++++ devtools/panel/exporters/GLTFExporter.js | 3587 + devtools/panel/exporters/GLTFExporter.umd.js | 15814 ++++ devtools/panel/panel.css | 161 +- devtools/panel/panel.html | 8 +- devtools/panel/panel.js | 321 +- package.json | 3 +- utils/devtools/build-devtools.js | 33 + utils/devtools/rollup.gltfexporter.config.cjs | 12 + 23 files changed, 244826 insertions(+), 141 deletions(-) create mode 100644 devtools/export-handler.js create mode 100644 devtools/icons/16-light.png create mode 100644 devtools/icons/32-light.png create mode 100644 devtools/icons/48-light.png create mode 100644 devtools/icons/64-light.png create mode 100644 devtools/panel/build/three.core.js create mode 100644 devtools/panel/build/three.module.js create mode 100644 devtools/panel/build/three.tsl.js create mode 100644 devtools/panel/build/three.webgpu.js create mode 100644 devtools/panel/build/three.webgpu.nodes.js create mode 100644 devtools/panel/exporters/GLTFExporter.js create mode 100644 devtools/panel/exporters/GLTFExporter.umd.js create mode 100644 utils/devtools/build-devtools.js create mode 100644 utils/devtools/rollup.gltfexporter.config.cjs diff --git a/devtools/background.js b/devtools/background.js index 6028a0264cc487..d777087cafe616 100644 --- a/devtools/background.js +++ b/devtools/background.js @@ -3,26 +3,41 @@ // Map tab IDs to connections const connections = new Map(); +// Handshake: Track tabs waiting for content script readiness +const pendingMessages = new Map(); + // Listen for connections from the devtools panel -chrome.runtime.onConnect.addListener( port => { +chrome.runtime.onConnect.addListener( ( port ) => { let tabId; // Listen for messages from the devtools panel - port.onMessage.addListener( message => { + port.onMessage.addListener( ( message ) => { + + //console.debug('Background: Received message from panel:', message); if ( message.name === 'init' ) { tabId = message.tabId; connections.set( tabId, port ); + console.debug( `Background: Connection initialized for tab ${tabId}` ); } else if ( message.name === 'request-state' && tabId ) { chrome.tabs.sendMessage( tabId, message ); + } else if ( message.name.startsWith( 'export-' ) && tabId ) { + + console.log( 'Background: Received export-scene from panel:', message ); + console.log( 'Background: Forwarding export-scene message to tab:', message ); + chrome.tabs.sendMessage( tabId, message ); + } else if ( tabId === undefined ) { - console.warn( 'Background: Message received from panel before init:', message ); + console.warn( + 'Background: Message received from panel before init:', + message + ); } @@ -34,6 +49,40 @@ chrome.runtime.onConnect.addListener( port => { if ( tabId ) { connections.delete( tabId ); + console.log( `Background: Connection closed for tab ${tabId}` ); + + } + + } ); + +} ); + +// Enhanced error handling for port lifecycle +chrome.runtime.onConnect.addListener( ( port ) => { + + let tabId; + + port.onMessage.addListener( ( message ) => { + + if ( message.name === 'init' ) { + + tabId = message.tabId; + connections.set( tabId, port ); + + } else if ( tabId === undefined ) { + + console.warn( 'Background: Message received from panel before init:', message ); + + } + + } ); + + port.onDisconnect.addListener( () => { + + if ( tabId ) { + + connections.delete( tabId ); + console.log( `Background: Connection closed for tab ${tabId}` ); } @@ -41,15 +90,60 @@ chrome.runtime.onConnect.addListener( port => { } ); -// Listen for messages from the content script +// Ensure runtime context initialization +chrome.webNavigation.onCommitted.addListener( ( details ) => { + + const { tabId, frameId } = details; + + if ( frameId === 0 ) { + + chrome.action.setBadgeText( { tabId: tabId, text: '' } ).catch( () => { + /* Tab might be gone */ + } ); + + } + + const port = connections.get( tabId ); + if ( port ) { + + port.postMessage( { + id: 'three-devtools', + name: 'committed', + frameId: frameId, + } ); + + } + +} ); + + +// Listen for handshake from content script chrome.runtime.onMessage.addListener( ( message, sender, sendResponse ) => { + if ( message.name === 'three-devtools-content-ready' && sender.tab ) { + + const tabId = sender.tab.id; + console.log( `[Three.js DevTools] Background received handshake from tab ${tabId}` ); + if ( pendingMessages.has( tabId ) ) { + + const { message: queuedMessage, retryCount } = pendingMessages.get( tabId ); + console.log( `Background: Handshake received from tab ${tabId}, retrying message.` ); + pendingMessages.delete( tabId ); + // Retry sending the original message + sendMessageToTab( tabId, queuedMessage, retryCount ); + + } + + } + + //console.debug('Background: Received message from content script:', message); + if ( message.scheme ) { chrome.action.setIcon( { path: { - 128: `icons/128-${message.scheme}.png` - } + 128: `icons/128-${message.scheme}.png`, + }, } ); } @@ -93,40 +187,87 @@ chrome.runtime.onMessage.addListener( ( message, sender, sendResponse ) => { } - return false; // Return false to indicate synchronous handling + // --- BEGIN: Handle background download requests (for export fallback) --- + if ( message.type === 'request-background-download' && message.detail ) { -} ); + const { filename, dataUrl, blob, binary } = message.detail; + let url = dataUrl; + let cleanupUrl = false; -// Listen for page navigation events -chrome.webNavigation.onCommitted.addListener( details => { + // If a Blob is provided, create a blob URL + if ( ! url && blob ) { - const { tabId, frameId } = details; + try { - // Clear badge on navigation, only for top-level navigation - if ( frameId === 0 ) { + const blobObj = new Blob( [ blob ], { type: binary ? 'model/gltf-binary' : 'application/octet-stream' } ); + url = URL.createObjectURL( blobObj ); + cleanupUrl = true; - chrome.action.setBadgeText( { tabId: tabId, text: '' } ).catch( () => { /* Tab might be gone */ } ); + } catch ( e ) { - } + console.warn( 'Background: Failed to create blob URL for download:', e ); + sendResponse && sendResponse( { error: e.message } ); + return false; - const port = connections.get( tabId ); + } - if ( port ) { + } + + if ( ! url ) { + + console.warn( 'Background: No dataUrl or blob provided for background download' ); + sendResponse && sendResponse( { error: 'No dataUrl or blob provided' } ); + return false; + + } + + chrome.downloads.download( { + url: url, + filename: filename || ( binary ? 'scene.glb' : 'scene.gltf' ), + saveAs: true + }, function ( downloadId ) { + + if ( chrome.runtime.lastError ) { + + console.warn( 'Background: Background download failed:', chrome.runtime.lastError ); + sendResponse && sendResponse( { error: chrome.runtime.lastError.message } ); + + } else { + + console.log( 'Background: Background download started with ID:', downloadId ); + sendResponse && sendResponse( { success: true, downloadId: downloadId } ); + + } + + // Clean up blob URL after a short delay + if ( cleanupUrl && url ) { + + setTimeout( function () { + + URL.revokeObjectURL( url ); + console.log( 'Background: Cleaned up object URL for background download' ); + + }, 5000 ); + + } - port.postMessage( { - id: 'three-devtools', - name: 'committed', - frameId: frameId } ); + // Keep the message channel open for sendResponse + return true; + } + // --- END: Handle background download requests --- -} ); + return false; // Return false to indicate synchronous handling +} ); // Clear badge when a tab is closed chrome.tabs.onRemoved.addListener( ( tabId ) => { - chrome.action.setBadgeText( { tabId: tabId, text: '' } ).catch( () => { /* Tab might be gone */ } ); + chrome.action.setBadgeText( { tabId: tabId, text: '' } ).catch( () => { + /* Tab might be gone */ + } ); // Clean up connection if it exists for the closed tab if ( connections.has( tabId ) ) { diff --git a/devtools/bridge.js b/devtools/bridge.js index 7a756d9625dd8d..924a558536256c 100644 --- a/devtools/bridge.js +++ b/devtools/bridge.js @@ -5,6 +5,44 @@ ( function () { + const EXPORTER_URL = ( () => { + + const scripts = document.getElementsByTagName( 'script' ); + for ( let i = scripts.length - 1; i >= 0; i -- ) { + + const s = scripts[ i ]; + if ( s.src && s.src.endsWith( 'bridge.js' ) && s.hasAttribute( 'data-exporter-url' ) ) { + + return s.getAttribute( 'data-exporter-url' ); + + } + + } + + console.error( 'DevTools: exporter URL attribute not found on bridge script' ); + return null; + + } )(); + + const THREE_URL = ( () => { + + const scripts = document.getElementsByTagName( 'script' ); + for ( let i = scripts.length - 1; i >= 0; i -- ) { + + const s = scripts[ i ]; + if ( s.src && s.src.endsWith( 'bridge.js' ) && s.hasAttribute( 'data-three-url' ) ) { + + return s.getAttribute( 'data-three-url' ); + + } + + } + + console.error( 'DevTools: three.js URL attribute not found on bridge script' ); + return null; + + } )(); + // Only initialize if not already initialized if ( ! window.__THREE_DEVTOOLS__ ) { @@ -190,7 +228,7 @@ // Listen for Three.js registration devTools.addEventListener( 'register', ( event ) => { - // console.log('DevTools: Three.js registered with revision:', event.detail.revision); + console.log( 'DevTools: Three.js registered with revision:', event.detail.revision ); dispatchEvent( 'register', event.detail ); } ); @@ -230,7 +268,7 @@ observedRenderers.push( obj ); devTools.objects.set( obj.uuid, data ); - dispatchEvent( 'renderer', data ); + //dispatchEvent( 'renderer', data ); } @@ -369,6 +407,7 @@ if ( event.source !== window ) return; const message = event.data; + if ( ! message || message.id !== 'three-devtools' ) return; // Handle request for initial state from panel @@ -376,6 +415,835 @@ sendState(); + } else if ( message.name === 'export-scene' ) { + + console.log( 'Three.js DevTools: bridge.js received export-scene message:', message ); + const { sceneUuid, binary } = message; + + // Debug: Log all observed scene UUIDs + console.log( 'DevTools: observedScenes:', observedScenes.map( s => s.uuid ) ); + + try { + + let scene = null; + + // First try the normal approach - find in our observed scenes + scene = observedScenes.find( s => s.uuid === sceneUuid ); + if ( ! scene ) { + + console.log( 'DevTools: Scene not found in observedScenes, trying alternative detection...' ); + + } + + // Method 1: Look for active scenes in the global THREE namespace if available + if ( ! scene && window.THREE && window.THREE.Scene ) { + + for ( const prop in window.THREE ) { + + if ( window.THREE[ prop ] && window.THREE[ prop ].isScene && window.THREE[ prop ].children && window.THREE[ prop ].children.length > 0 ) { + + console.log( 'DevTools: Found potential scene in THREE namespace:', prop, window.THREE[ prop ].uuid ); + scene = window.THREE[ prop ]; + break; + + } + + } + + } + + // Method 2: Look through the app's own rendering engine if available + if ( ! scene ) { + + console.log( 'DevTools: Searching through rendering engine...' ); + const props = [ 'viewer', 'engine', 'renderer', 'scene', 'model' ]; + for ( const prop of props ) { + + if ( window[ prop ] && window[ prop ].scene ) { + + console.log( 'DevTools: Found scene through', prop + '.scene', window[ prop ].scene.uuid ); + scene = window[ prop ].scene; + break; + + } + + } + + } + + // Method 3: Look for scenes stored in the global scope + if ( ! scene ) { + + for ( const prop in window ) { + + try { + + if ( window[ prop ] && typeof window[ prop ] === 'object' && window[ prop ].isScene && window[ prop ].children && window[ prop ].children.length > 0 ) { + + console.log( 'DevTools: Found scene in global scope:', prop, window[ prop ].uuid ); + scene = window[ prop ]; + break; + + } + + } catch ( e ) {} + + } + + } + + // Method 4: Find the primary renderer and get its scene from there + if ( ! scene && observedRenderers.length > 0 ) { + + for ( const renderer of observedRenderers ) { + + if ( renderer._currentScene ) { + + console.log( 'DevTools: Found scene through renderer._currentScene:', renderer._currentScene.uuid ); + scene = renderer._currentScene; + break; + + } else if ( renderer.info && renderer.info._scene ) { + + console.log( 'DevTools: Found scene through renderer.info._scene:', renderer.info._scene.uuid ); + scene = renderer.info._scene; + break; + + } + + } + + } + + // Method 5: If we found one scene originally, use that even if UUIDs don't match + if ( ! scene && observedScenes.length === 1 ) { + + console.log( 'DevTools: Using the only observed scene:', observedScenes[ 0 ].uuid ); + scene = observedScenes[ 0 ]; + + } + + // Method 6: Find the scene with the most objects (likely the main scene) + if ( ! scene && observedScenes.length > 1 ) { + + let maxObjects = 0; + for ( const obsScene of observedScenes ) { + + const objectCount = obsScene.children ? obsScene.children.length : 0; + if ( objectCount > maxObjects ) { + + maxObjects = objectCount; + scene = obsScene; + + } + + } + + if ( scene ) { + + console.log( 'DevTools: Using scene with most objects:', scene.uuid ); + + } + + } + + if ( ! scene ) { + + console.error( 'DevTools: Scene not found for export:', sceneUuid, 'Available scenes:', observedScenes.map( s => s.uuid ) ); + // dispatchEvent( 'export-error', { + // sceneUuid, + // error: `Scene not found for export: ${sceneUuid}. Try refreshing the page and reopening DevTools.` + // } ); + + return; + + } + + // --- EXPORT STARTED --- + dispatchEvent( 'export-started', { sceneUuid, binary } ); + + // Load GLTFExporter and three.js using robust script injection/global fallback + let exportRecoveryAttempts = 0; + const MAX_EXPORT_RECOVERY_ATTEMPTS = 3; + function loadExporter( callback ) { + + if ( ! EXPORTER_URL || ! THREE_URL ) { + + console.error( 'DevTools: exporter or three.js URL not set' ); + return; + + } + + // Guard against infinite recovery/re-injection loops + if ( exportRecoveryAttempts > MAX_EXPORT_RECOVERY_ATTEMPTS ) { + + console.error( 'DevTools: Aborting export - too many recovery attempts' ); + dispatchEvent( 'export-error', { + error: 'Too many exporter recovery attempts. Please reload the page.' + } ); + return; + + } + + exportRecoveryAttempts ++; + // Try global fallback first + if ( window.GLTFExporterClass && window.THREE ) { + + callback( window.GLTFExporterClass, window.THREE ); + return; + + } + + // Try to find GLTFExporter and THREE in global scope + if ( window.THREE && window.THREE.GLTFExporter ) { + + window.GLTFExporterClass = window.THREE.GLTFExporter; + callback( window.THREE.GLTFExporter, window.THREE ); + return; + + } + + // Inject three.js if not present + function injectScript( url, globalName, onLoad ) { + + if ( window[ globalName ] ) { + + onLoad(); + return; + + } + + const script = document.createElement( 'script' ); + script.src = url; + script.async = false; + script.onload = onLoad; + script.onerror = function ( e ) { + + console.error( 'DevTools: Failed to inject script:', url, e ); + dispatchEvent( 'export-error', { error: 'Failed to inject script: ' + url } ); + + }; + + document.head.appendChild( script ); + + } + + // Inject three.js first if needed + injectScript( THREE_URL, 'THREE', () => { + + // Inject GLTFExporter if needed + if ( window.GLTFExporterClass ) { + + callback( window.GLTFExporterClass, window.THREE ); + return; + + } + + // Try to find GLTFExporter in window.THREE + if ( window.THREE && window.THREE.GLTFExporter ) { + + window.GLTFExporterClass = window.THREE.GLTFExporter; + callback( window.THREE.GLTFExporter, window.THREE ); + return; + + } + + // Otherwise inject exporter script + injectScript( EXPORTER_URL, 'GLTFExporterClass', () => { + + // Try to find GLTFExporter in window.THREE or global + if ( window.THREE && window.THREE.GLTFExporter ) { + + window.GLTFExporterClass = window.THREE.GLTFExporter; + callback( window.THREE.GLTFExporter, window.THREE ); + + } else if ( window.GLTFExporter ) { + + window.GLTFExporterClass = window.GLTFExporter; + callback( window.GLTFExporter, window.THREE ); + + } else if ( window.GLTFExporterClass ) { + + callback( window.GLTFExporterClass, window.THREE ); + + } else { + + console.error( 'DevTools: Failed to load GLTFExporter after injection' ); + dispatchEvent( 'export-error', { error: 'Failed to load GLTFExporter after injection' } ); + + } + + } ); + + } ); + + } + + loadExporter( ( GLTFExporter ) => { + + try { + + console.log( 'DevTools: Starting export of scene', sceneUuid, 'as', binary ? 'GLB' : 'GLTF' ); + + // Create a deep clone of the scene for export if needed + let exportScene = scene; + + // Pre-process scene to ensure compatibility with other programs + function prepareSceneForExport( originalScene ) { + + console.log( 'DevTools: Preparing scene for export...' ); + + // Create a clone of the scene to avoid modifying the original + const clonedScene = originalScene.clone(); + + // Fix common issues that prevent successful export + const problemMaterials = []; + const problemGeometries = []; + + // Track processed objects to avoid infinite recursion + const processedObjects = new Set(); + + // Process all objects in the scene to fix common issues + function processObject( object ) { + + if ( processedObjects.has( object.uuid ) ) { + + return; + + } + + processedObjects.add( object.uuid ); + + // Fix Mesh issues + if ( object.isMesh ) { + + // Fix missing normals (a common issue) + if ( object.geometry && ! object.geometry.attributes.normal ) { + + try { + + object.geometry.computeVertexNormals(); + console.log( 'DevTools: Added missing normals to mesh:', object.name || object.uuid ); + + } catch ( e ) { + + console.warn( 'DevTools: Could not compute normals for mesh:', object.name || object.uuid ); + problemGeometries.push( object.uuid ); + + } + + } + + // Fix material issues + if ( object.material ) { + + const materials = Array.isArray( object.material ) ? object.material : [ object.material ]; + + materials.forEach( material => { + + // Check for broken texture references + const textureProps = [ + 'map', 'normalMap', 'roughnessMap', 'metalnessMap', + 'emissiveMap', 'bumpMap', 'displacementMap', + 'aoMap', 'envMap', 'lightMap' + ]; + + for ( const prop of textureProps ) { + + if ( material[ prop ] && ( ! material[ prop ].image || material[ prop ].image.width === 0 ) ) { + + console.warn( `DevTools: Removing invalid ${prop} texture from material`, material.uuid ); + material[ prop ] = null; + problemMaterials.push( material.uuid ); + + } + + } + + // Fix NaN values in material properties + const numberProps = [ 'roughness', 'metalness', 'opacity', 'emissiveIntensity' ]; + for ( const prop of numberProps ) { + + if ( material[ prop ] !== undefined && ( isNaN( material[ prop ] ) || ! isFinite( material[ prop ] ) ) ) { + + console.warn( `DevTools: Fixing invalid ${prop} value in material`, material.uuid ); + // Set reasonable defaults + switch ( prop ) { + + case 'roughness': material[ prop ] = 0.5; break; + case 'metalness': material[ prop ] = 0.0; break; + case 'opacity': material[ prop ] = 1.0; break; + case 'emissiveIntensity': material[ prop ] = 1.0; break; + default: material[ prop ] = 0; + + } + + problemMaterials.push( material.uuid ); + + } + + } + + } ); + + } + + } + + // Process children + if ( object.children ) { + + object.children.forEach( child => processObject( child ) ); + + } + + } + + // Start processing from the scene root + processObject( clonedScene ); + + if ( problemMaterials.length > 0 || problemGeometries.length > 0 ) { + + console.warn( `DevTools: Fixed ${problemMaterials.length} material(s) and ${problemGeometries.length} geometry/geometries during scene preparation` ); + + } else { + + console.log( 'DevTools: Scene preparation complete - no issues found' ); + + } + + return clonedScene; + + } + + // Prepare the scene for export + exportScene = prepareSceneForExport( scene ); + // Create TextureUtils if available - needed for proper texture handling + let textureUtils = null; + if ( window.THREE && window.THREE.WebGLRenderer ) { + + try { + + // Create a temporary renderer for texture processing + const tempRenderer = new window.THREE.WebGLRenderer( { antialias: false } ); + tempRenderer.setSize( 1, 1 ); + tempRenderer.outputColorSpace = 'srgb'; + + // If there's a TextureUtils module available in the page + if ( window.TextureUtils ) { + + textureUtils = window.TextureUtils; + + } else if ( window.THREE.TextureUtils ) { + + textureUtils = window.THREE.TextureUtils; + + } + + if ( textureUtils ) { + + console.log( 'DevTools: Found TextureUtils for better texture export' ); + + } + + // Clean up + tempRenderer.dispose(); + + } catch ( e ) { + + console.warn( 'DevTools: Could not create temporary renderer:', e ); + + } + + } + + // Configure exporter with optimal settings + const exporter = new GLTFExporter(); + if ( textureUtils ) { + + exporter.setTextureUtils( textureUtils ); + + } + + const exportOptions = { + binary, + // Enhanced options for better compatibility + trs: true, // Use TRS instead of matrices for better compatibility + onlyVisible: true, + maxTextureSize: 4096, + embedImages: true, // Embed all images in the file for better portability + includeCustomExtensions: false, // Safer to exclude custom extensions for compatibility + animations: [], // No animations by default but can be added if needed + }; + + // Use try-catch for both export approaches + if ( typeof exporter.parseAsync === 'function' ) { + + // Modern approach with promises + exporter.parseAsync( exportScene, exportOptions ) + .then( result => { + + createDownload( result ); + + } ) + .catch( error => { + + console.error( 'DevTools: Error during async export:', error ); + dispatchEvent( 'export-error', { + sceneUuid, + error: error.toString() + } ); + + } ); + + } else { + + // Older callback approach + try { + + exporter.parse( exportScene, + function ( result ) { + + createDownload( result ); + + }, + function ( error ) { + + console.error( 'DevTools: Error during export:', error ); + dispatchEvent( 'export-error', { + sceneUuid, + error: error.toString() + } ); + + }, + exportOptions + ); + + } catch ( parseError ) { + + console.error( 'DevTools: Exception during export setup:', parseError ); + dispatchEvent( 'export-error', { + sceneUuid, + error: parseError.toString() + } ); + + } + + } + + // Function to handle the download process + function createDownload( result ) { + + // --- FILE GENERATED --- + dispatchEvent( 'export-file-generated', { sceneUuid, binary } ); + + // Generate a unique filename with timestamp + const timestamp = new Date().toISOString().replace( /[:.]/g, '-' ).substring( 0, 19 ); + const filename = binary ? `scene-${timestamp}.glb` : `scene-${timestamp}.gltf`; + + try { + + // Create a simple validation function for the export + function validateExport( result, binary ) { + + return new Promise( ( resolve ) => { + + console.log( 'DevTools: Validating export...' ); + // Simple validation logic + let valid = true; + const errors = []; + + // Very basic validation + if ( binary ) { + + if ( ! ( result instanceof ArrayBuffer ) ) { + + valid = false; + errors.push( 'Expected ArrayBuffer for binary export' ); + + } + + } else { + + // For GLTF (JSON) + if ( typeof result === 'object' ) { + // Object format is fine + } else if ( typeof result === 'string' ) { + + try { + + JSON.parse( result ); // Just to validate + + } catch ( e ) { + + valid = false; + errors.push( 'Invalid JSON in GLTF export' ); + + } + + } else { + + valid = false; + errors.push( 'Unexpected data type for GLTF export' ); + + } + + } + + resolve( { valid, errors } ); + + } ); + + } + + // Validate the exported file before attempting to download + validateExport( result, binary ).then( validationResult => { + + if ( ! validationResult.valid ) { + + console.error( 'DevTools: GLTF/GLB validation failed:', validationResult.errors ); + dispatchEvent( 'export-error', { + sceneUuid, + error: `Validation failed: ${validationResult.errors.join( ', ' )}` + } ); + return; + + } + + console.log( 'DevTools: GLTF/GLB validation passed!' ); + + // Check if we're dealing with binary data + if ( binary ) { + + if ( ! ( result instanceof ArrayBuffer ) ) { + + console.error( 'DevTools: Expected ArrayBuffer for binary export but got:', typeof result ); + return; + + } + + // For GLB (binary), ensure we're handling the ArrayBuffer correctly + const blob = new Blob( [ result ], { type: 'model/gltf-binary' } ); + downloadWithBlob( blob, filename ); + + } else { + + // For GLTF (JSON), ensure proper formatting + let jsonData; + if ( typeof result === 'string' ) { + + // Already a string, validate it's proper JSON + try { + + JSON.parse( result ); // Just validate, don't actually use the parsed result + jsonData = result; + + } catch ( e ) { + + console.error( 'DevTools: Invalid JSON in GLTF export:', e ); + return; + + } + + } else if ( typeof result === 'object' ) { + + // Convert object to formatted JSON string + try { + + jsonData = JSON.stringify( result, null, 2 ); + + } catch ( e ) { + + console.error( 'DevTools: Failed to stringify GLTF object:', e ); + return; + + } + + } else { + + console.error( 'DevTools: Unexpected GLTF data type:', typeof result ); + return; + + } + + const blob = new Blob( [ jsonData ], { type: 'application/json' } ); + downloadWithBlob( blob, filename ); + + } + + } ).catch( validationError => { + + console.error( 'DevTools: Error during validation:', validationError ); + dispatchEvent( 'export-error', { + sceneUuid, + error: `Validation error: ${validationError.message}` + } ); + + } ); + + } catch ( error ) { + + console.error( 'DevTools: Error during file creation/download:', error ); + dispatchEvent( 'export-error', { + sceneUuid, + error: `Download error: ${error.message}` + } ); + + } + + function downloadWithBlob( blob, filename ) { + + try { + + // For GLB files, ensure we're using the correct MIME type + if ( filename.endsWith( '.glb' ) ) { + + // Create a new blob with the correct MIME type + // Some viewers are strict about the MIME type + blob = new Blob( [ blob ], { + type: 'model/gltf-binary' // Standardized MIME type for GLB + } ); + + } else if ( filename.endsWith( '.gltf' ) ) { + + // For GLTF JSON files, ensure we're using the correct MIME type + blob = new Blob( [ blob ], { + type: 'model/gltf+json' // Standardized MIME type for GLTF + } ); + + } + + // Add a small delay before creating the download + // to ensure the blob is fully ready + setTimeout( () => { + + const a = document.createElement( 'a' ); + const url = URL.createObjectURL( blob ); + a.href = url; + a.download = filename; + a.style.display = 'none'; + document.body.appendChild( a ); + const sizeMB = ( blob.size / ( 1024 * 1024 ) ).toFixed( 2 ); + console.log( `DevTools: Created blob for download: ${filename}, type: ${blob.type}, size: ${sizeMB} MB` ); + + dispatchEvent( 'export-download-initiated', { sceneUuid, binary } ); + + try { + + a.click(); + + setTimeout( () => { + + try { + + document.body.removeChild( a ); + URL.revokeObjectURL( url ); + console.log( `DevTools: Download cleanup complete for ${filename}` ); + + } catch ( cleanupError ) { + + console.warn( 'DevTools: Error during cleanup:', cleanupError ); + + } + + }, 2000 ); + + // --- EXPORT COMPLETE --- + dispatchEvent( 'export-complete', { + sceneUuid, + binary, + size: blob.size + } ); + window.postMessage( { + id: 'three-devtools', + name: 'export-result', + detail: { + sceneUuid, + binary, + success: true + } + }, '*' ); + + } catch ( clickError ) { + + console.error( 'DevTools: Error triggering download:', clickError ); + + let altDownloadFailed = false; + let altDownloadError = null; + + try { + + window.postMessage( { + id: 'three-devtools', + type: 'request-background-download', + detail: { + sceneUuid, + binary, + filename, + dataUrl: url, + blob: blob + } + }, '*' ); + + } catch ( altError ) { + + altDownloadFailed = true; + altDownloadError = altError; + console.error( 'DevTools: Alternative download method failed:', altError ); + + } + + if ( altDownloadFailed ) { + + dispatchEvent( 'export-error', { + sceneUuid, + error: `Download failed: ${clickError.message}; Alternative failed: ${altDownloadError && altDownloadError.message}` + } ); + + } + + } + + }, 200 ); + + } catch ( downloadError ) { + + console.error( 'DevTools: Error setting up download:', downloadError ); + + // Only send export-error if the download truly fails + dispatchEvent( 'export-error', { + sceneUuid, + error: `Download setup failed: ${downloadError.message}` + } ); + + } + + } + + } + + } catch ( outerError ) { + + console.error( 'DevTools: Critical error during export process:', outerError ); + dispatchEvent( 'export-error', { + sceneUuid, + error: `Critical export error: ${outerError.message}` + } ); + + } + + } ); + + } catch ( outerError ) { + + console.error( 'DevTools: Critical error during export process:', outerError ); + dispatchEvent( 'export-error', { + sceneUuid, + error: `Critical export error: ${outerError.message}` + } ); + + } + } } ); @@ -406,6 +1274,43 @@ function dispatchEvent( name, detail ) { + // More selective logging to prevent large object dumps in the console + if ( name === 'export-result-meta' ) { + + console.log( 'DevTools Bridge: dispatchEvent', name, { + sceneUuid: detail.sceneUuid, + binary: detail.binary, + size: ( detail.size / ( 1024 * 1024 ) ).toFixed( 2 ) + ' MB' + } ); + + } else if ( name === 'export-result' ) { + + console.log( 'DevTools Bridge: dispatchEvent', name, { + sceneUuid: detail.sceneUuid, + binary: detail.binary, + size: detail.result instanceof ArrayBuffer + ? ( detail.result.byteLength / ( 1024 * 1024 ) ).toFixed( 2 ) + ' MB' + : ( detail.result.length / ( 1024 * 1024 ) ).toFixed( 2 ) + ' MB' + } ); + + } else if ( name === 'scene' ) { + + console.log( 'DevTools Bridge: dispatchEvent', name, { + sceneUuid: detail.sceneUuid, + objectCount: ( detail.objects && detail.objects.length ) ? detail.objects.length : 0 + } ); + + } else if ( name === 'renderer' ) { + // console.log('DevTools Bridge: dispatchEvent', name, { + // uuid: detail.uuid, + // name: detail.type + // }); + } else { + + console.log( 'DevTools Bridge: dispatchEvent', name ); + + } + try { window.postMessage( { @@ -484,6 +1389,8 @@ } + //console.log('Three.js DevTools: bridge.js loaded in page context'); + } } )(); diff --git a/devtools/content-script.js b/devtools/content-script.js index 228e2cc527b6c2..24973a68db6356 100644 --- a/devtools/content-script.js +++ b/devtools/content-script.js @@ -6,8 +6,18 @@ // Inject the bridge script into the main document or a target (e.g., iframe) function injectBridge( target = document ) { + if ( target.__threejs_devtools_bridge_injected ) return; + target.__threejs_devtools_bridge_injected = true; + const script = document.createElement( 'script' ); + // Use UMD/IIFE build for Three.js for global THREE + const threeUrl = chrome.runtime.getURL( 'panel/build/three.core.js' ); + // TODO: Use a UMD/IIFE build for GLTFExporter when available + const exporterUrl = chrome.runtime.getURL( 'panel/exporters/GLTFExporter.umd.js' ); + + // Only bridge.js is loaded from the extension package script.src = chrome.runtime.getURL( 'bridge.js' ); + script.onload = function () { this.remove(); @@ -15,10 +25,15 @@ function injectBridge( target = document ) { }; ( target.head || target.documentElement ).appendChild( script ); + script.setAttribute( 'data-three-url', threeUrl ); + script.setAttribute( 'data-exporter-url', exporterUrl ); + return script; } + + // Inject bridge into all existing iframes function injectIntoIframes() { @@ -102,11 +117,15 @@ function handleWindowMessage( event ) { } -// Listener for messages from the background script (originating from panel) + +// Listener for messages forwarded from the background script (originating from panel) +// Remove unused parameters 'sender' and 'sendResponse' to fix linter warnings function handleBackgroundMessage( message ) { - if ( message.name === 'request-state' ) { + // Forward 'request-state' and 'export-scene' to the bridge + if ( message.name === 'request-state' || message.name === 'export-scene' ) { + //console.log('[Three.js DevTools] Content script received and forwarding:', message.name); message.id = 'three-devtools'; window.postMessage( message, '*' ); @@ -127,3 +146,15 @@ window.matchMedia( '(prefers-color-scheme: light)' ).onchange = event => { }; + +// Handshake: notify background when content script is ready +try { + + chrome.runtime.sendMessage( { name: 'three-devtools-content-ready' } ); + +} catch ( e ) { + + console.warn( '[Three.js DevTools] Handshake send failed:', e ); + +} + diff --git a/devtools/devtools.js b/devtools/devtools.js index ab6742b968b111..644f75fee2c64c 100644 --- a/devtools/devtools.js +++ b/devtools/devtools.js @@ -1,3 +1,5 @@ +/* global chrome */ + try { chrome.devtools.panels.create( diff --git a/devtools/export-handler.js b/devtools/export-handler.js new file mode 100644 index 00000000000000..45ccc8de2ba31b --- /dev/null +++ b/devtools/export-handler.js @@ -0,0 +1,40 @@ +/* global chrome */ + +// Export message handler for Three.js DevTools +// This script is injected into the page to handle export messages specifically + +// Listen for export-related messages from the bridge +window.addEventListener( 'message', function ( event ) { + + // Only accept messages from the same frame + if ( event.source !== window ) return; + + const message = event.data; + if ( ! message || message.id !== 'three-devtools' ) return; + + if ( message.name !== 'request-state' && message.name !== 'export-scene' && message.name !== 'renderer' ) { + + console.log( '[Three.js DevTools] Export handler received message:', event.data ); + + } + + // Forward all export progress messages to the background page to reach the panel + if ( + message.name === 'export-started' || + message.name === 'export-file-generated' || + message.name === 'export-download-initiated' || + message.name === 'export-complete' || + message.name === 'export-error' || + message.name === 'export-result' || + message.name === 'export-result-meta' + ) { + + chrome.runtime.sendMessage( { + id: 'three-devtools', + name: message.name, + detail: message.detail + } ); + + } + +}, false ); diff --git a/devtools/icons/16-light.png b/devtools/icons/16-light.png new file mode 100644 index 0000000000000000000000000000000000000000..5e2e2cb3d2223a36cd6edc1bdbbf3e1e29ac32e1 GIT binary patch literal 3079 zcmV+i4EXbjP)StO&>uS)ve<0AYj> z5AR{$W90N^4L=L-RlQUJ&DC0@ZjPh;=*jPLSYvv5M~MFBAl0-BNIsH15C~g000{K(ZT*WKal6< z?_01!^k@7iDG<<3=fuAC~28EsPoqkpK{9G%|Vj z005J}`Hw&=0RYXHq~ibpyyzHQsFW8>#s~laM4*8xut5h5!4#~(4xGUqyucR%VFpA% z3?#rj5JCpzfE)^;7?wd9RKPme1hudO8lVxH;SjXJF*pt9;1XPc>u?taU>Kgl7`%oF z1VP9M6Ja4bh!J9r*dopd7nzO(B4J20l7OTj>4+3jBE`sZqynizYLQ(?Bl0bB6giDt zK>Co|$RIL`{EECsF_eL_Q3KQhbwIhO9~z3rpmWi5G!I>XmZEFX8nhlgfVQHi(M#xc zbO3#dj$?q)F%D*o*1Pf{>6$SWH+$s3q(pv=X`qR|$iJF~TPzlc-O$C3+J1#CT#lv5;6stS0Uu9wDA3 zUMCI{Uz12A4#|?_P6{CkNG+sOq(0IRX`DyT~9-sA|ffUF>wk++Z! zkWZ5P$;0Hg6gtI-;!FvmBvPc55=u2?Kjj3apE5$3psG>Lsh-pbs)#zDT1jo7c2F-< zhp7`Zb($s3n-)XMq%EV>(3)vyY4>O^>2$gY-Gd%Qm(Z8eYv>2*=jns=cMJ`N4THx> zVkjAF8G9M07`GWOnM|ey)0dgZR4~^v8<}UA514ONSSt1^d=-((5|uiYR+WC0=c-gy zb5%dpd8!Lkt5pxHURHgkMpd&=fR^vEcAI*_=wwAG z2sV%zY%w@v@XU~7=xdm1xY6*0;iwVIXu6TaXrs|dqbIl~?uTdNHFy_3W~^@g_pF#!K2~{F^;XxcN!DEJEbDF7S8PxlSDOr*I-AS3sI8l= z#CDr)-xT5$k15hA^;2%zG3@;83hbKf2JJcaVfH2VZT8O{%p4LO);n}Nd~$Sk%yw*W zyz8XlG{dRHsl(}4XB%gsbDi@w7p6;)%MzD%mlsoQr;4X;pL)xc% z+^yMd)ZNTI#eJ*$O)i@o$z8)e??LqN_gLa_%;TM>o2SC_kmoO6c3xRt`@J4dvz#WL z)-Y|z+r(Soy~}%GIzByR`p)SCKE^%*pL(B%zNWq+-#xw~e%5}Oeh2)X`#bu}{g3#+ z;d$~F@lFL`0l@*~0lk45fwKc^10MvL1f>Tx1&sx}1}_Xg6+#RN4Ot&@lW)Km@*DYM zGu&q^n$Z=?2%QyL8~QNJCQKgI5srq>2;UHXZ>IT7>CCnWh~P(Th`1kV8JQRPeH1Aw zGO8}>QM6NZadh`A)~w`N`)9q5@sFvDxjWlxwsLl7tZHmhY-8-3xPZ8-xPf?w_(k!T z5_A(J3GIpG#Ms0=iQ{tu=WLoYoaCBRmULsT<=mpV7v|~C%bs^USv6UZd^m-e5|^?+ z<%1wXP%juy<)>~<9TW0|n}ttBzM_qyQL(qUN<5P0omQ3hINdvaL;7fjPeygdGYL;p zD|wL_lDQ-EO;$wK-mK5raoH_7l$?~Dqf!lNmb5F^Ft;eTPi8AClMUo~=55LwlZVRp z zxOiFd;3B_8yA~shQx|tGF!j;$toK>JuS&gYLDkTP@C~gS@r~shUu{a>bfJ1`^^VQ7&C1OKHDNXFTgC{M|V%fo{xK_dk6MK@9S!GZ*1JJzrV5xZBjOk9!NTH<(q(S+MDf~ceQX@ zDh|Ry<-sT4rhI$jQ0Sq~!`#Eo-%($2E^vo}is5J@NVEf|KK?WT&2;PCq@=ncR8zO#GQ^T~S@VXG71PKNocF zOt)Y6$@AXlk6rM*aP%VgV%sIRORYVwJx6|U{ozQjTW{-S_si{9Jg#)~P3t?+@6&(! zYQWWV*Z9{iU7vZq@5byKw{9lg9JnRA_4s!7?H6|n?o8ZWdXIRo{Jz@#>IeD{>VLHU zv1Pz*;P_y`V9&!@5AO~Mho1hF|I>%z(nrik)gwkDjgOrl9~%uCz4Bzvli{bbrxVZ0 zepdf^>vOB;-~HnIOV3#R*zgPai_gEVd8zYq@2jb=I>#f&AH2?aJ@Kaeto= zBW0roDWxaa#YfCy3;!jp7W*3Bp$Ut4h4%rP!@=JG^%B0I1v|KdWlUiJ>zKq4&Qt-Z zC<-a17EI$Q9-}v)HC(|8W%m*8wLn9v*Dt7JA~x6KKb0bf7st8pTCf8%NN9 zZmh5wXr2K9|S@$7c;OD;pzW_G< VWv-M2zRdst002ovPDHLkV1gaV+r0n) literal 0 HcmV?d00001 diff --git a/devtools/icons/32-light.png b/devtools/icons/32-light.png new file mode 100644 index 0000000000000000000000000000000000000000..ab15f172770050c08df45c8cb9fd9f83bb635772 GIT binary patch literal 3657 zcmV-P4z}@$P)StO&>uS)ve<0AYj> z5AR{$W90N^4L=L-RlQUJ&DC0@ZjPh;=*jPLSYvv5M~MFBAl0-BNIsH15C~g000{K(ZT*WKal6< z?_01!^k@7iDG<<3=fuAC~28EsPoqkpK{9G%|Vj z005J}`Hw&=0RYXHq~ibpyyzHQsFW8>#s~laM4*8xut5h5!4#~(4xGUqyucR%VFpA% z3?#rj5JCpzfE)^;7?wd9RKPme1hudO8lVxH;SjXJF*pt9;1XPc>u?taU>Kgl7`%oF z1VP9M6Ja4bh!J9r*dopd7nzO(B4J20l7OTj>4+3jBE`sZqynizYLQ(?Bl0bB6giDt zK>Co|$RIL`{EECsF_eL_Q3KQhbwIhO9~z3rpmWi5G!I>XmZEFX8nhlgfVQHi(M#xc zbO3#dj$?q)F%D*o*1Pf{>6$SWH+$s3q(pv=X`qR|$iJF~TPzlc-O$C3+J1#CT#lv5;6stS0Uu9wDA3 zUMCI{Uz12A4#|?_P6{CkNG+sOq(0IRX`DyT~9-sA|ffUF>wk++Z! zkWZ5P$;0Hg6gtI-;!FvmBvPc55=u2?Kjj3apE5$3psG>Lsh-pbs)#zDT1jo7c2F-< zhp7`Zb($s3n-)XMq%EV>(3)vyY4>O^>2$gY-Gd%Qm(Z8eYv>2*=jns=cMJ`N4THx> zVkjAF8G9M07`GWOnM|ey)0dgZR4~^v8<}UA514ONSSt1^d=-((5|uiYR+WC0=c-gy zb5%dpd8!Lkt5pxHURHgkMpd&=fR^vEcAI*_=wwAG z2sV%zY%w@v@XU~7=xdm1xY6*0;iwVIXu6TaXrs|dqbIl~?uTdNHFy_3W~^@g_pF#!K2~{F^;XxcN!DEJEbDF7S8PxlSDOr*I-AS3sI8l= z#CDr)-xT5$k15hA^;2%zG3@;83hbKf2JJcaVfH2VZT8O{%p4LO);n}Nd~$Sk%yw*W zyz8XlG{dRHsl(}4XB%gsbDi@w7p6;)%MzD%mlsoQr;4X;pL)xc% z+^yMd)ZNTI#eJ*$O)i@o$z8)e??LqN_gLa_%;TM>o2SC_kmoO6c3xRt`@J4dvz#WL z)-Y|z+r(Soy~}%GIzByR`p)SCKE^%*pL(B%zNWq+-#xw~e%5}Oeh2)X`#bu}{g3#+ z;d$~F@lFL`0l@*~0lk45fwKc^10MvL1f>Tx1&sx}1}_Xg6+#RN4Ot&@lW)Km@*DYM zGu&q^n$Z=?2%QyL8~QNJCQKgI5srq>2;UHXZ>IT7>CCnWh~P(Th`1kV8JQRPeH1Aw zGO8}>QM6NZadh`A)~w`N`)9q5@sFvDxjWlxwsLl7tZHmhY-8-3xPZ8-xPf?w_(k!T z5_A(J3GIpG#Ms0=iQ{tu=WLoYoaCBRmULsT<=mpV7v|~C%bs^USv6UZd^m-e5|^?+ z<%1wXP%juy<)>~<9TW0|n}ttBzM_qyQL(qUN<5P0omQ3hINdvaL;7fjPeygdGYL;p zD|wL_lDQ-EO;$wK-mK5raoH_7l$?~Dqf!lNmb5F^Ft;eTPi8AClMUo~=55LwlZVRp z zxOiFd;3B_8yA~shQx|tGF!j;$toK>JuS&gYLDkTP@C~gS@r~shUu{a>bfJ1`^^VQ7&C1OKHDNXFTgC{M|V%fo{xK_dk6MK@9S!GZ*1JJzrV5xZBjOk9!NTH<(q(S+MDf~ceQX@ zDh|Ry<-sT4rhI$jQ0Sq~!`#Eo-%($2E^vo}is5J@NVEf|KK?WT&2;PCq@=ncR8zO#GQ^T~S@VXG71PKNocF zOt)Y6$@AXlk6rM*aP%VgV%sIRORYVwJx6|U{ozQjTW{-S_si{9Jg#)~P3t?+@6&(! zYQWWV*Z9{iU7vZq@5byKw{9lg9JnRA_4s!7?H6|n?o8ZWdXIRo{Jz@#>IeD{>VLHU zv1Pz*;P_y`V9&!@5AO~Mho1hF|I>%z(nrik)gwkDjgOrl9~%uCz4Bzvli{bbrxVZ0 zepdf^>vOB;-~HnIOV3#R*zgPai_gEVd8zYq@2jb=I>#f&AH2?aJ@KaetXI3pa0DBREnaoCuOfaY8{HAkSKhFcD#tIu;2e-yHZU-rBZntKVuE1U?hIUJj}(P zL*YOffrs%}X?;AVq7?-`Oh=k9e6SoSb6^=7OXF5-zz+hIudo&~@EI0i8us38FA{;n zuoOq-(v2eW(U^`WN}o02N_6I)MR*>UVAw!xml5c~Z#X&+nuC)CFTTZu(%v;WzfK^v z8XdSD%kgeH*uOI+1mITul?NPD+BQ<8Xi|=6h{%WIHr=^%oJdVq?s*T-2x3?2Apnc9 z4-Uo^I3wq`X0+pQ8ScaJ>1+p%EuHbDK&LhJ)%Xdsup)!IT(!)1Kwu2s!OeITU*vBV z9>*5U$NnXQV-uYtb9_fe4tL_g(%#9qHXUy%ilPUDf5i6uZxWE5o=8j+sThT;Gn!>s zFW?@J^KdsB^1RLxitsr`i0Yb7@2z+p&Pu%ymGOJdH)BDr&q;J#xB59q8w)m0xlGtc7i~yCcPja57;Qmr!1F>N~y{M zk$-qeKudJT^VJBs4M*%~q%Q>E8yuMWxg~v}h_NL0vHQL=Sy_jQxC;U5w4%iStO&>uS)ve<0AYj> z5AR{$W90N^4L=L-RlQUJ&DC0@ZjPh;=*jPLSYvv5M~MFBAl0-BNIsH15C~g000{K(ZT*WKal6< z?_01!^k@7iDG<<3=fuAC~28EsPoqkpK{9G%|Vj z005J}`Hw&=0RYXHq~ibpyyzHQsFW8>#s~laM4*8xut5h5!4#~(4xGUqyucR%VFpA% z3?#rj5JCpzfE)^;7?wd9RKPme1hudO8lVxH;SjXJF*pt9;1XPc>u?taU>Kgl7`%oF z1VP9M6Ja4bh!J9r*dopd7nzO(B4J20l7OTj>4+3jBE`sZqynizYLQ(?Bl0bB6giDt zK>Co|$RIL`{EECsF_eL_Q3KQhbwIhO9~z3rpmWi5G!I>XmZEFX8nhlgfVQHi(M#xc zbO3#dj$?q)F%D*o*1Pf{>6$SWH+$s3q(pv=X`qR|$iJF~TPzlc-O$C3+J1#CT#lv5;6stS0Uu9wDA3 zUMCI{Uz12A4#|?_P6{CkNG+sOq(0IRX`DyT~9-sA|ffUF>wk++Z! zkWZ5P$;0Hg6gtI-;!FvmBvPc55=u2?Kjj3apE5$3psG>Lsh-pbs)#zDT1jo7c2F-< zhp7`Zb($s3n-)XMq%EV>(3)vyY4>O^>2$gY-Gd%Qm(Z8eYv>2*=jns=cMJ`N4THx> zVkjAF8G9M07`GWOnM|ey)0dgZR4~^v8<}UA514ONSSt1^d=-((5|uiYR+WC0=c-gy zb5%dpd8!Lkt5pxHURHgkMpd&=fR^vEcAI*_=wwAG z2sV%zY%w@v@XU~7=xdm1xY6*0;iwVIXu6TaXrs|dqbIl~?uTdNHFy_3W~^@g_pF#!K2~{F^;XxcN!DEJEbDF7S8PxlSDOr*I-AS3sI8l= z#CDr)-xT5$k15hA^;2%zG3@;83hbKf2JJcaVfH2VZT8O{%p4LO);n}Nd~$Sk%yw*W zyz8XlG{dRHsl(}4XB%gsbDi@w7p6;)%MzD%mlsoQr;4X;pL)xc% z+^yMd)ZNTI#eJ*$O)i@o$z8)e??LqN_gLa_%;TM>o2SC_kmoO6c3xRt`@J4dvz#WL z)-Y|z+r(Soy~}%GIzByR`p)SCKE^%*pL(B%zNWq+-#xw~e%5}Oeh2)X`#bu}{g3#+ z;d$~F@lFL`0l@*~0lk45fwKc^10MvL1f>Tx1&sx}1}_Xg6+#RN4Ot&@lW)Km@*DYM zGu&q^n$Z=?2%QyL8~QNJCQKgI5srq>2;UHXZ>IT7>CCnWh~P(Th`1kV8JQRPeH1Aw zGO8}>QM6NZadh`A)~w`N`)9q5@sFvDxjWlxwsLl7tZHmhY-8-3xPZ8-xPf?w_(k!T z5_A(J3GIpG#Ms0=iQ{tu=WLoYoaCBRmULsT<=mpV7v|~C%bs^USv6UZd^m-e5|^?+ z<%1wXP%juy<)>~<9TW0|n}ttBzM_qyQL(qUN<5P0omQ3hINdvaL;7fjPeygdGYL;p zD|wL_lDQ-EO;$wK-mK5raoH_7l$?~Dqf!lNmb5F^Ft;eTPi8AClMUo~=55LwlZVRp z zxOiFd;3B_8yA~shQx|tGF!j;$toK>JuS&gYLDkTP@C~gS@r~shUu{a>bfJ1`^^VQ7&C1OKHDNXFTgC{M|V%fo{xK_dk6MK@9S!GZ*1JJzrV5xZBjOk9!NTH<(q(S+MDf~ceQX@ zDh|Ry<-sT4rhI$jQ0Sq~!`#Eo-%($2E^vo}is5J@NVEf|KK?WT&2;PCq@=ncR8zO#GQ^T~S@VXG71PKNocF zOt)Y6$@AXlk6rM*aP%VgV%sIRORYVwJx6|U{ozQjTW{-S_si{9Jg#)~P3t?+@6&(! zYQWWV*Z9{iU7vZq@5byKw{9lg9JnRA_4s!7?H6|n?o8ZWdXIRo{Jz@#>IeD{>VLHU zv1Pz*;P_y`V9&!@5AO~Mho1hF|I>%z(nrik)gwkDjgOrl9~%uCz4Bzvli{bbrxVZ0 zepdf^>vOB;-~HnIOV3#R*zgPai_gEVd8zYq@2jb=I>#f&AH2?aJ@Kaet`(9rg z6aUFe@0>Yv=KN<6p|4Dc3k3(&VaeM<#nOa}sM z5dw|+*8o2Nj{)a*o2L=*5qJ{#P3sGQ8Nen2GJgYWfO4RB*Sp*vJ_45`j$Z1~9|J50 z8dT>`U^7Dcye{!L1RsGOKpU_irroUsGx9SsV+J@1ysh>5xpdsZM*yH6_&lObCE{!a z@Ci_>@-pCgU_Sx5pMWahtXwz`(FC4Q2f`t?O665reg-(?u{#i$h0Mn9+NK#;4crbK zpKAhRw9}D}?o%qObY$aHc0o)ZAF9qlWVzYd*##^DhUS7mAMIqGmRD%`-cb8|mCyFr z?gcafyS2WRU@1)lK6A+YgUr?qB#dlP1VBRPd%!~NXMreGDjT+!Dr#t}J7p*|CBX0mU#@HF{^tT5%px`O{c!dvQoUQROSNJX_1*bL1poIuaCGRA*xx z0f4Q*J5ISja5q6@F~B$Kv;n^KIBsDB!^4hjiprKcvY{%wI>y$qaGr|5Vq^_QAs@+F zEt$i>cffPN2#@}DV1s^FXq!hpdSOy7Y*3jD@k>dUHN~kPjvRi?1P9qy4zZaL z&Vvku(f%!7RoV5fVk!b4Yy8uY>}EB#+L1LO;VudjkW}0f*o$1A?nCyLixH}GnU-JI z^4PG^bO_iK!r~4szY@}W0f|~ss8#|;5Tes)pIWpaOQclwn~+OXjn4B0 zLA-w2qj#g$4e`|3Ti%(-X}rg&D?|q6eS*ESQ-AhkzR2fTx&#W4xNonR6%n?Iw0>4d zUZ?UhE!({_Ji<;~M9Tq7qU)4m^h$%wjEK1=%q5a2{4)E)v(NXPjk1Z*1cKuCT%60;kSDL>$lnoKn8 zfY@~TWG(L|;X72i1VGM%x|sTNkuYkIW$=f7e~l17)zR&VM4Y>O^TsK1k(_TDEEPU`MAn za!$O4to`T{faERfBkI;5&X4O12U8(a0?UwOER2s3=dbK62U8(a0`@d@|7&TV z%SUyxkFm&bnA;?I(44KXV$R))f tPb6pL#Je<*4S_Ob76zwM%q5I5{0k?MudMr9@S^|#002ovPDHLkV1o42?pFW+ literal 0 HcmV?d00001 diff --git a/devtools/icons/64-light.png b/devtools/icons/64-light.png new file mode 100644 index 0000000000000000000000000000000000000000..f0968b3b989f02dcf884700ef0d4773bc8f79389 GIT binary patch literal 4869 zcmV+g6Z-6lP)StO&>uS)ve<0AYj> z5AR{$W90N^4L=L-RlQUJ&DC0@ZjPh;=*jPLSYvv5M~MFBAl0-BNIsH15C~g000{K(ZT*WKal6< z?_01!^k@7iDG<<3=fuAC~28EsPoqkpK{9G%|Vj z005J}`Hw&=0RYXHq~ibpyyzHQsFW8>#s~laM4*8xut5h5!4#~(4xGUqyucR%VFpA% z3?#rj5JCpzfE)^;7?wd9RKPme1hudO8lVxH;SjXJF*pt9;1XPc>u?taU>Kgl7`%oF z1VP9M6Ja4bh!J9r*dopd7nzO(B4J20l7OTj>4+3jBE`sZqynizYLQ(?Bl0bB6giDt zK>Co|$RIL`{EECsF_eL_Q3KQhbwIhO9~z3rpmWi5G!I>XmZEFX8nhlgfVQHi(M#xc zbO3#dj$?q)F%D*o*1Pf{>6$SWH+$s3q(pv=X`qR|$iJF~TPzlc-O$C3+J1#CT#lv5;6stS0Uu9wDA3 zUMCI{Uz12A4#|?_P6{CkNG+sOq(0IRX`DyT~9-sA|ffUF>wk++Z! zkWZ5P$;0Hg6gtI-;!FvmBvPc55=u2?Kjj3apE5$3psG>Lsh-pbs)#zDT1jo7c2F-< zhp7`Zb($s3n-)XMq%EV>(3)vyY4>O^>2$gY-Gd%Qm(Z8eYv>2*=jns=cMJ`N4THx> zVkjAF8G9M07`GWOnM|ey)0dgZR4~^v8<}UA514ONSSt1^d=-((5|uiYR+WC0=c-gy zb5%dpd8!Lkt5pxHURHgkMpd&=fR^vEcAI*_=wwAG z2sV%zY%w@v@XU~7=xdm1xY6*0;iwVIXu6TaXrs|dqbIl~?uTdNHFy_3W~^@g_pF#!K2~{F^;XxcN!DEJEbDF7S8PxlSDOr*I-AS3sI8l= z#CDr)-xT5$k15hA^;2%zG3@;83hbKf2JJcaVfH2VZT8O{%p4LO);n}Nd~$Sk%yw*W zyz8XlG{dRHsl(}4XB%gsbDi@w7p6;)%MzD%mlsoQr;4X;pL)xc% z+^yMd)ZNTI#eJ*$O)i@o$z8)e??LqN_gLa_%;TM>o2SC_kmoO6c3xRt`@J4dvz#WL z)-Y|z+r(Soy~}%GIzByR`p)SCKE^%*pL(B%zNWq+-#xw~e%5}Oeh2)X`#bu}{g3#+ z;d$~F@lFL`0l@*~0lk45fwKc^10MvL1f>Tx1&sx}1}_Xg6+#RN4Ot&@lW)Km@*DYM zGu&q^n$Z=?2%QyL8~QNJCQKgI5srq>2;UHXZ>IT7>CCnWh~P(Th`1kV8JQRPeH1Aw zGO8}>QM6NZadh`A)~w`N`)9q5@sFvDxjWlxwsLl7tZHmhY-8-3xPZ8-xPf?w_(k!T z5_A(J3GIpG#Ms0=iQ{tu=WLoYoaCBRmULsT<=mpV7v|~C%bs^USv6UZd^m-e5|^?+ z<%1wXP%juy<)>~<9TW0|n}ttBzM_qyQL(qUN<5P0omQ3hINdvaL;7fjPeygdGYL;p zD|wL_lDQ-EO;$wK-mK5raoH_7l$?~Dqf!lNmb5F^Ft;eTPi8AClMUo~=55LwlZVRp z zxOiFd;3B_8yA~shQx|tGF!j;$toK>JuS&gYLDkTP@C~gS@r~shUu{a>bfJ1`^^VQ7&C1OKHDNXFTgC{M|V%fo{xK_dk6MK@9S!GZ*1JJzrV5xZBjOk9!NTH<(q(S+MDf~ceQX@ zDh|Ry<-sT4rhI$jQ0Sq~!`#Eo-%($2E^vo}is5J@NVEf|KK?WT&2;PCq@=ncR8zO#GQ^T~S@VXG71PKNocF zOt)Y6$@AXlk6rM*aP%VgV%sIRORYVwJx6|U{ozQjTW{-S_si{9Jg#)~P3t?+@6&(! zYQWWV*Z9{iU7vZq@5byKw{9lg9JnRA_4s!7?H6|n?o8ZWdXIRo{Jz@#>IeD{>VLHU zv1Pz*;P_y`V9&!@5AO~Mho1hF|I>%z(nrik)gwkDjgOrl9~%uCz4Bzvli{bbrxVZ0 zepdf^>vOB;-~HnIOV3#R*zgPai_gEVd8zYq@2jb=I>#f&AH2?aJ@KaetdA*bDXu zRzNf;5@WBiHxTS%K}AKe7j|uHL8Isjc>Uv?apumuW!`&t_i6M?HoQA??zv~aJ9EyN zGncw3iuf<1zSaiR8vheeYXfSH|2zRiQ55?F?goAaZUK%08fs}@YvJ$lCJ^u}5P5%Z z0OtW)0!!4&=pvCtz-h>!PXvwyrV}UQH(&}d99Xdy#utGs0=7a1dZr`a1sDQM27V+? z$P2(JKrjA9vm=XucF4d!Ou4rn8SH4_CE{ev1113b0i9cS2-P8r0D$L_0WBM#t26L1 zrG6sIjjwEjt)kcSW_yLMrtDg${0v{xhNq}<;gaefhSlhgh! zups50PC#E|7R<#G@jLJ?a1pRGZRAMv2mp9h4eaFI+X;AC`zCpPH*0&(02_Kx8c`x- zrrZG>iOi~2K?niot3d;twiSRkwf)Kjy@zSv(E&Ext+MlhMZh`07~pf_guJbN+l3A; z1R(_UQv=56bywhhZM!r@Z+Gp#E92QqV`tE4U<>_yvLmyuUQZ)V#;@2UY^8v4rXqxZ zrSzfGfK{=f?))6xKOt{537vu0RL?lq9^k!{dm4~vG#T+RhKwJ8nZPI{MK22>1c2lN ze*j0#Q8j+l4PoQHt1awvf z?*J!ZW54|n@&P^#97{tEMu39 z@u38OI43u`=?)A-*7^eCggg!m)qfWw(=xgWh#{jdjM7T@lp&a83#;W{|PFn-;fwrHOaL+{TOIwaE&QjTj zfhEczV0ZGTu)*?(hc|;?tp6?q9z^y9X<6cK#GPaV@Ts<)l5)>bN^^)L+^BL7n1*r) z=tA~dbFl{YjkN&Z02d?KoV!%!A`xZ)@#(t|cm!Al_)KL_$ar1@cIl_B9#|B4;_@QmjfG$DCG67EzzQ~Zu{3AjcT z^-k$GAt^!}BuJ=?fCCfc8<4j@iFoe+i}QP8nlTM=(8EYR-)xp3zYek-??QH*NxtKPtU(x5Lcjs~fF}^Iy8zfG=Q-w#VSGa0 z9*)s{o%a1n_cty&02^VGp$Iv>3PL3WtWJCiCcPma?UB&LuxZLYjoM$Ap?5WGk!EC`;XW!Q;0A1d z|26TH_c7p5O5^cJmDvRG7ZGy$?8~_@v3;YI{%+U^aeSW9NvM>7Lx_jG{z&d_YK7+S z9pFO5gKvkt%{LIDz9qkEJY4mRNa*WWvy07#6UpChvZ65`GyPDTroOr1=6T5Zsbgg1j;$UY&$ zR)H!;H3XQHHRMRkgf!#v{as-r;#USCbwd}%-zsD=QL67+W|eWt|yI`R6vDVb#*jrT-C=@jB*>=bHPD5@pE z?6ueQ+D$oZCZ&fQV~FScS?Gf}%s&wSP&le3;5bS{(Ku~;j^wv&Ha>YrYlE@LRZ=0g z5L8RR`ouRm*Xi{P?3(wntjfHcq1QOeh2)3Hs!%NfAo;)?Y}z`N{QA84Fd~U0lVvU- zJq0cdMG#=V4T^wA1Me}*WLvNOXlj4t+8`Lh%BG}DIP z3l%}Y#@Jl{UE*QuMI^TOqV$7ovs}PB(6`(dpQ3Q;F%%Z13Ut|a9 zeu+Mt8h&hD6akwfgP9O0e*rcZsOh)FMG;Vs6g@u"], - "js": ["content-script.js"], - "all_frames": true, - "run_at": "document_start" - }], - "web_accessible_resources": [{ - "resources": ["bridge.js"], - "matches": [""] - }], + "content_scripts": [ + { + "matches": [""], + "js": [ + "content-script.js", + "export-handler.js" + ], + "all_frames": true, + "run_at": "document_start" + } + ], + "web_accessible_resources": [ + { + "resources": [ + "bridge.js", + "export-handler.js", + "bridge-patch.js", + "panel/exporters/GLTFExporter.js", + "panel/exporters/GLTFExporter.umd.js", + "panel/build/three.module.js", + "panel/build/three.core.js" + ], + "matches": [""] + } + ], "permissions": [ "activeTab", - "webNavigation" + "webNavigation", + "downloads", + "scripting" + ], + "host_permissions": [ + "" ] -} \ No newline at end of file +} diff --git a/devtools/panel/build/three.core.js b/devtools/panel/build/three.core.js new file mode 100644 index 00000000000000..55efd595baf2bb --- /dev/null +++ b/devtools/panel/build/three.core.js @@ -0,0 +1,58098 @@ +/** + * @license + * Copyright 2010-2025 Three.js Authors + * SPDX-License-Identifier: MIT + */ +const REVISION = '177dev'; + +/** + * Represents mouse buttons and interaction types in context of controls. + * + * @type {ConstantsMouse} + * @constant + */ +const MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 }; + +/** + * Represents touch interaction types in context of controls. + * + * @type {ConstantsTouch} + * @constant + */ +const TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 }; + +/** + * Disables face culling. + * + * @type {number} + * @constant + */ +const CullFaceNone = 0; + +/** + * Culls back faces. + * + * @type {number} + * @constant + */ +const CullFaceBack = 1; + +/** + * Culls front faces. + * + * @type {number} + * @constant + */ +const CullFaceFront = 2; + +/** + * Culls both front and back faces. + * + * @type {number} + * @constant + */ +const CullFaceFrontBack = 3; + +/** + * Gives unfiltered shadow maps - fastest, but lowest quality. + * + * @type {number} + * @constant + */ +const BasicShadowMap = 0; + +/** + * Filters shadow maps using the Percentage-Closer Filtering (PCF) algorithm. + * + * @type {number} + * @constant + */ +const PCFShadowMap = 1; + +/** + * Filters shadow maps using the Percentage-Closer Filtering (PCF) algorithm with + * better soft shadows especially when using low-resolution shadow maps. + * + * @type {number} + * @constant + */ +const PCFSoftShadowMap = 2; + +/** + * Filters shadow maps using the Variance Shadow Map (VSM) algorithm. + * When using VSMShadowMap all shadow receivers will also cast shadows. + * + * @type {number} + * @constant + */ +const VSMShadowMap = 3; + +/** + * Only front faces are rendered. + * + * @type {number} + * @constant + */ +const FrontSide = 0; + +/** + * Only back faces are rendered. + * + * @type {number} + * @constant + */ +const BackSide = 1; + +/** + * Both front and back faces are rendered. + * + * @type {number} + * @constant + */ +const DoubleSide = 2; + +/** + * No blending is performed which effectively disables + * alpha transparency. + * + * @type {number} + * @constant + */ +const NoBlending = 0; + +/** + * The default blending. + * + * @type {number} + * @constant + */ +const NormalBlending = 1; + +/** + * Represents additive blending. + * + * @type {number} + * @constant + */ +const AdditiveBlending = 2; + +/** + * Represents subtractive blending. + * + * @type {number} + * @constant + */ +const SubtractiveBlending = 3; + +/** + * Represents multiply blending. + * + * @type {number} + * @constant + */ +const MultiplyBlending = 4; + +/** + * Represents custom blending. + * + * @type {number} + * @constant + */ +const CustomBlending = 5; + +/** + * A `source + destination` blending equation. + * + * @type {number} + * @constant + */ +const AddEquation = 100; + +/** + * A `source - destination` blending equation. + * + * @type {number} + * @constant + */ +const SubtractEquation = 101; + +/** + * A `destination - source` blending equation. + * + * @type {number} + * @constant + */ +const ReverseSubtractEquation = 102; + +/** + * A blend equation that uses the minimum of source and destination. + * + * @type {number} + * @constant + */ +const MinEquation = 103; + +/** + * A blend equation that uses the maximum of source and destination. + * + * @type {number} + * @constant + */ +const MaxEquation = 104; + +/** + * Multiplies all colors by `0`. + * + * @type {number} + * @constant + */ +const ZeroFactor = 200; + +/** + * Multiplies all colors by `1`. + * + * @type {number} + * @constant + */ +const OneFactor = 201; + +/** + * Multiplies all colors by the source colors. + * + * @type {number} + * @constant + */ +const SrcColorFactor = 202; + +/** + * Multiplies all colors by `1` minus each source color. + * + * @type {number} + * @constant + */ +const OneMinusSrcColorFactor = 203; + +/** + * Multiplies all colors by the source alpha value. + * + * @type {number} + * @constant + */ +const SrcAlphaFactor = 204; + +/** + * Multiplies all colors by 1 minus the source alpha value. + * + * @type {number} + * @constant + */ +const OneMinusSrcAlphaFactor = 205; + +/** + * Multiplies all colors by the destination alpha value. + * + * @type {number} + * @constant + */ +const DstAlphaFactor = 206; + +/** + * Multiplies all colors by `1` minus the destination alpha value. + * + * @type {number} + * @constant + */ +const OneMinusDstAlphaFactor = 207; + +/** + * Multiplies all colors by the destination color. + * + * @type {number} + * @constant + */ +const DstColorFactor = 208; + +/** + * Multiplies all colors by `1` minus each destination color. + * + * @type {number} + * @constant + */ +const OneMinusDstColorFactor = 209; + +/** + * Multiplies the RGB colors by the smaller of either the source alpha + * value or the value of `1` minus the destination alpha value. The alpha + * value is multiplied by `1`. + * + * @type {number} + * @constant + */ +const SrcAlphaSaturateFactor = 210; + +/** + * Multiplies all colors by a constant color. + * + * @type {number} + * @constant + */ +const ConstantColorFactor = 211; + +/** + * Multiplies all colors by `1` minus a constant color. + * + * @type {number} + * @constant + */ +const OneMinusConstantColorFactor = 212; + +/** + * Multiplies all colors by a constant alpha value. + * + * @type {number} + * @constant + */ +const ConstantAlphaFactor = 213; + +/** + * Multiplies all colors by 1 minus a constant alpha value. + * + * @type {number} + * @constant + */ +const OneMinusConstantAlphaFactor = 214; + +/** + * Never pass. + * + * @type {number} + * @constant + */ +const NeverDepth = 0; + +/** + * Always pass. + * + * @type {number} + * @constant + */ +const AlwaysDepth = 1; + +/** + * Pass if the incoming value is less than the depth buffer value. + * + * @type {number} + * @constant + */ +const LessDepth = 2; + +/** + * Pass if the incoming value is less than or equal to the depth buffer value. + * + * @type {number} + * @constant + */ +const LessEqualDepth = 3; + +/** + * Pass if the incoming value equals the depth buffer value. + * + * @type {number} + * @constant + */ +const EqualDepth = 4; + +/** + * Pass if the incoming value is greater than or equal to the depth buffer value. + * + * @type {number} + * @constant + */ +const GreaterEqualDepth = 5; + +/** + * Pass if the incoming value is greater than the depth buffer value. + * + * @type {number} + * @constant + */ +const GreaterDepth = 6; + +/** + * Pass if the incoming value is not equal to the depth buffer value. + * + * @type {number} + * @constant + */ +const NotEqualDepth = 7; + +/** + * Multiplies the environment map color with the surface color. + * + * @type {number} + * @constant + */ +const MultiplyOperation = 0; + +/** + * Uses reflectivity to blend between the two colors. + * + * @type {number} + * @constant + */ +const MixOperation = 1; + +/** + * Adds the two colors. + * + * @type {number} + * @constant + */ +const AddOperation = 2; + +/** + * No tone mapping is applied. + * + * @type {number} + * @constant + */ +const NoToneMapping = 0; + +/** + * Linear tone mapping. + * + * @type {number} + * @constant + */ +const LinearToneMapping = 1; + +/** + * Reinhard tone mapping. + * + * @type {number} + * @constant + */ +const ReinhardToneMapping = 2; + +/** + * Cineon tone mapping. + * + * @type {number} + * @constant + */ +const CineonToneMapping = 3; + +/** + * ACES Filmic tone mapping. + * + * @type {number} + * @constant + */ +const ACESFilmicToneMapping = 4; + +/** + * Custom tone mapping. + * + * Expects a custom implementation by modifying shader code of the material's fragment shader. + * + * @type {number} + * @constant + */ +const CustomToneMapping = 5; + +/** + * AgX tone mapping. + * + * @type {number} + * @constant + */ +const AgXToneMapping = 6; + +/** + * Neutral tone mapping. + * + * Implementation based on the Khronos 3D Commerce Group standard tone mapping. + * + * @type {number} + * @constant + */ +const NeutralToneMapping = 7; + +/** + * The skinned mesh shares the same world space as the skeleton. + * + * @type {string} + * @constant + */ +const AttachedBindMode = 'attached'; + +/** + * The skinned mesh does not share the same world space as the skeleton. + * This is useful when a skeleton is shared across multiple skinned meshes. + * + * @type {string} + * @constant + */ +const DetachedBindMode = 'detached'; + +/** + * Maps textures using the geometry's UV coordinates. + * + * @type {number} + * @constant + */ +const UVMapping = 300; + +/** + * Reflection mapping for cube textures. + * + * @type {number} + * @constant + */ +const CubeReflectionMapping = 301; + +/** + * Refraction mapping for cube textures. + * + * @type {number} + * @constant + */ +const CubeRefractionMapping = 302; + +/** + * Reflection mapping for equirectangular textures. + * + * @type {number} + * @constant + */ +const EquirectangularReflectionMapping = 303; + +/** + * Refraction mapping for equirectangular textures. + * + * @type {number} + * @constant + */ +const EquirectangularRefractionMapping = 304; + +/** + * Reflection mapping for PMREM textures. + * + * @type {number} + * @constant + */ +const CubeUVReflectionMapping = 306; + +/** + * The texture will simply repeat to infinity. + * + * @type {number} + * @constant + */ +const RepeatWrapping = 1000; + +/** + * The last pixel of the texture stretches to the edge of the mesh. + * + * @type {number} + * @constant + */ +const ClampToEdgeWrapping = 1001; + +/** + * The texture will repeats to infinity, mirroring on each repeat. + * + * @type {number} + * @constant + */ +const MirroredRepeatWrapping = 1002; + +/** + * Returns the value of the texture element that is nearest (in Manhattan distance) + * to the specified texture coordinates. + * + * @type {number} + * @constant + */ +const NearestFilter = 1003; + +/** + * Chooses the mipmap that most closely matches the size of the pixel being textured + * and uses the `NearestFilter` criterion (the texel nearest to the center of the pixel) + * to produce a texture value. + * + * @type {number} + * @constant + */ +const NearestMipmapNearestFilter = 1004; +const NearestMipMapNearestFilter = 1004; // legacy + +/** + * Chooses the two mipmaps that most closely match the size of the pixel being textured and + * uses the `NearestFilter` criterion to produce a texture value from each mipmap. + * The final texture value is a weighted average of those two values. + * + * @type {number} + * @constant + */ +const NearestMipmapLinearFilter = 1005; +const NearestMipMapLinearFilter = 1005; // legacy + +/** + * Returns the weighted average of the four texture elements that are closest to the specified + * texture coordinates, and can include items wrapped or repeated from other parts of a texture, + * depending on the values of `wrapS` and `wrapT`, and on the exact mapping. + * + * @type {number} + * @constant + */ +const LinearFilter = 1006; + +/** + * Chooses the mipmap that most closely matches the size of the pixel being textured and uses + * the `LinearFilter` criterion (a weighted average of the four texels that are closest to the + * center of the pixel) to produce a texture value. + * + * @type {number} + * @constant + */ +const LinearMipmapNearestFilter = 1007; +const LinearMipMapNearestFilter = 1007; // legacy + +/** + * Chooses the two mipmaps that most closely match the size of the pixel being textured and uses + * the `LinearFilter` criterion to produce a texture value from each mipmap. The final texture value + * is a weighted average of those two values. + * + * @type {number} + * @constant + */ +const LinearMipmapLinearFilter = 1008; +const LinearMipMapLinearFilter = 1008; // legacy + +/** + * An unsigned byte data type for textures. + * + * @type {number} + * @constant + */ +const UnsignedByteType = 1009; + +/** + * A byte data type for textures. + * + * @type {number} + * @constant + */ +const ByteType = 1010; + +/** + * A short data type for textures. + * + * @type {number} + * @constant + */ +const ShortType = 1011; + +/** + * An unsigned short data type for textures. + * + * @type {number} + * @constant + */ +const UnsignedShortType = 1012; + +/** + * An int data type for textures. + * + * @type {number} + * @constant + */ +const IntType = 1013; + +/** + * An unsigned int data type for textures. + * + * @type {number} + * @constant + */ +const UnsignedIntType = 1014; + +/** + * A float data type for textures. + * + * @type {number} + * @constant + */ +const FloatType = 1015; + +/** + * A half float data type for textures. + * + * @type {number} + * @constant + */ +const HalfFloatType = 1016; + +/** + * An unsigned short 4_4_4_4 (packed) data type for textures. + * + * @type {number} + * @constant + */ +const UnsignedShort4444Type = 1017; + +/** + * An unsigned short 5_5_5_1 (packed) data type for textures. + * + * @type {number} + * @constant + */ +const UnsignedShort5551Type = 1018; + +/** + * An unsigned int 24_8 data type for textures. + * + * @type {number} + * @constant + */ +const UnsignedInt248Type = 1020; + +/** + * An unsigned int 5_9_9_9 (packed) data type for textures. + * + * @type {number} + * @constant + */ +const UnsignedInt5999Type = 35902; + +/** + * Discards the red, green and blue components and reads just the alpha component. + * + * @type {number} + * @constant + */ +const AlphaFormat = 1021; + +/** + * Discards the alpha component and reads the red, green and blue component. + * + * @type {number} + * @constant + */ +const RGBFormat = 1022; + +/** + * Reads the red, green, blue and alpha components. + * + * @type {number} + * @constant + */ +const RGBAFormat = 1023; + +/** + * Reads each element as a single depth value, converts it to floating point, and clamps to the range `[0,1]`. + * + * @type {number} + * @constant + */ +const DepthFormat = 1026; + +/** + * Reads each element is a pair of depth and stencil values. The depth component of the pair is interpreted as + * in `DepthFormat`. The stencil component is interpreted based on the depth + stencil internal format. + * + * @type {number} + * @constant + */ +const DepthStencilFormat = 1027; + +/** + * Discards the green, blue and alpha components and reads just the red component. + * + * @type {number} + * @constant + */ +const RedFormat = 1028; + +/** + * Discards the green, blue and alpha components and reads just the red component. The texels are read as integers instead of floating point. + * + * @type {number} + * @constant + */ +const RedIntegerFormat = 1029; + +/** + * Discards the alpha, and blue components and reads the red, and green components. + * + * @type {number} + * @constant + */ +const RGFormat = 1030; + +/** + * Discards the alpha, and blue components and reads the red, and green components. The texels are read as integers instead of floating point. + * + * @type {number} + * @constant + */ +const RGIntegerFormat = 1031; + +/** + * Discards the alpha component and reads the red, green and blue component. The texels are read as integers instead of floating point. + * + * @type {number} + * @constant + */ +const RGBIntegerFormat = 1032; + +/** + * Reads the red, green, blue and alpha components. The texels are read as integers instead of floating point. + * + * @type {number} + * @constant + */ +const RGBAIntegerFormat = 1033; + +/** + * A DXT1-compressed image in an RGB image format. + * + * @type {number} + * @constant + */ +const RGB_S3TC_DXT1_Format = 33776; + +/** + * A DXT1-compressed image in an RGB image format with a simple on/off alpha value. + * + * @type {number} + * @constant + */ +const RGBA_S3TC_DXT1_Format = 33777; + +/** + * A DXT3-compressed image in an RGBA image format. Compared to a 32-bit RGBA texture, it offers 4:1 compression. + * + * @type {number} + * @constant + */ +const RGBA_S3TC_DXT3_Format = 33778; + +/** + * A DXT5-compressed image in an RGBA image format. It also provides a 4:1 compression, but differs to the DXT3 + * compression in how the alpha compression is done. + * + * @type {number} + * @constant + */ +const RGBA_S3TC_DXT5_Format = 33779; + +/** + * PVRTC RGB compression in 4-bit mode. One block for each 4×4 pixels. + * + * @type {number} + * @constant + */ +const RGB_PVRTC_4BPPV1_Format = 35840; + +/** + * PVRTC RGB compression in 2-bit mode. One block for each 8×4 pixels. + * + * @type {number} + * @constant + */ +const RGB_PVRTC_2BPPV1_Format = 35841; + +/** + * PVRTC RGBA compression in 4-bit mode. One block for each 4×4 pixels. + * + * @type {number} + * @constant + */ +const RGBA_PVRTC_4BPPV1_Format = 35842; + +/** + * PVRTC RGBA compression in 2-bit mode. One block for each 8×4 pixels. + * + * @type {number} + * @constant + */ +const RGBA_PVRTC_2BPPV1_Format = 35843; + +/** + * ETC1 RGB format. + * + * @type {number} + * @constant + */ +const RGB_ETC1_Format = 36196; + +/** + * ETC2 RGB format. + * + * @type {number} + * @constant + */ +const RGB_ETC2_Format = 37492; + +/** + * ETC2 RGBA format. + * + * @type {number} + * @constant + */ +const RGBA_ETC2_EAC_Format = 37496; + +/** + * ASTC RGBA 4x4 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_4x4_Format = 37808; + +/** + * ASTC RGBA 5x4 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_5x4_Format = 37809; + +/** + * ASTC RGBA 5x5 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_5x5_Format = 37810; + +/** + * ASTC RGBA 6x5 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_6x5_Format = 37811; + +/** + * ASTC RGBA 6x6 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_6x6_Format = 37812; + +/** + * ASTC RGBA 8x5 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_8x5_Format = 37813; + +/** + * ASTC RGBA 8x6 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_8x6_Format = 37814; + +/** + * ASTC RGBA 8x8 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_8x8_Format = 37815; + +/** + * ASTC RGBA 10x5 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_10x5_Format = 37816; + +/** + * ASTC RGBA 10x6 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_10x6_Format = 37817; + +/** + * ASTC RGBA 10x8 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_10x8_Format = 37818; + +/** + * ASTC RGBA 10x10 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_10x10_Format = 37819; + +/** + * ASTC RGBA 12x10 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_12x10_Format = 37820; + +/** + * ASTC RGBA 12x12 format. + * + * @type {number} + * @constant + */ +const RGBA_ASTC_12x12_Format = 37821; + +/** + * BPTC RGBA format. + * + * @type {number} + * @constant + */ +const RGBA_BPTC_Format = 36492; + +/** + * BPTC Signed RGB format. + * + * @type {number} + * @constant + */ +const RGB_BPTC_SIGNED_Format = 36494; + +/** + * BPTC Unsigned RGB format. + * + * @type {number} + * @constant + */ +const RGB_BPTC_UNSIGNED_Format = 36495; + +/** + * RGTC1 Red format. + * + * @type {number} + * @constant + */ +const RED_RGTC1_Format = 36283; + +/** + * RGTC1 Signed Red format. + * + * @type {number} + * @constant + */ +const SIGNED_RED_RGTC1_Format = 36284; + +/** + * RGTC2 Red Green format. + * + * @type {number} + * @constant + */ +const RED_GREEN_RGTC2_Format = 36285; + +/** + * RGTC2 Signed Red Green format. + * + * @type {number} + * @constant + */ +const SIGNED_RED_GREEN_RGTC2_Format = 36286; + +/** + * Animations are played once. + * + * @type {number} + * @constant + */ +const LoopOnce = 2200; + +/** + * Animations are played with a chosen number of repetitions, each time jumping from + * the end of the clip directly to its beginning. + * + * @type {number} + * @constant + */ +const LoopRepeat = 2201; + +/** + * Animations are played with a chosen number of repetitions, alternately playing forward + * and backward. + * + * @type {number} + * @constant + */ +const LoopPingPong = 2202; + +/** + * Discrete interpolation mode for keyframe tracks. + * + * @type {number} + * @constant + */ +const InterpolateDiscrete = 2300; + +/** + * Linear interpolation mode for keyframe tracks. + * + * @type {number} + * @constant + */ +const InterpolateLinear = 2301; + +/** + * Smooth interpolation mode for keyframe tracks. + * + * @type {number} + * @constant + */ +const InterpolateSmooth = 2302; + +/** + * Zero curvature ending for animations. + * + * @type {number} + * @constant + */ +const ZeroCurvatureEnding = 2400; + +/** + * Zero slope ending for animations. + * + * @type {number} + * @constant + */ +const ZeroSlopeEnding = 2401; + +/** + * Wrap around ending for animations. + * + * @type {number} + * @constant + */ +const WrapAroundEnding = 2402; + +/** + * Default animation blend mode. + * + * @type {number} + * @constant + */ +const NormalAnimationBlendMode = 2500; + +/** + * Additive animation blend mode. Can be used to layer motions on top of + * each other to build complex performances from smaller re-usable assets. + * + * @type {number} + * @constant + */ +const AdditiveAnimationBlendMode = 2501; + +/** + * For every three vertices draw a single triangle. + * + * @type {number} + * @constant + */ +const TrianglesDrawMode = 0; + +/** + * For each vertex draw a triangle from the last three vertices. + * + * @type {number} + * @constant + */ +const TriangleStripDrawMode = 1; + +/** + * For each vertex draw a triangle from the first vertex and the last two vertices. + * + * @type {number} + * @constant + */ +const TriangleFanDrawMode = 2; + +/** + * Basic depth packing. + * + * @type {number} + * @constant + */ +const BasicDepthPacking = 3200; + +/** + * A depth value is packed into 32 bit RGBA. + * + * @type {number} + * @constant + */ +const RGBADepthPacking = 3201; + +/** + * A depth value is packed into 24 bit RGB. + * + * @type {number} + * @constant + */ +const RGBDepthPacking = 3202; + +/** + * A depth value is packed into 16 bit RG. + * + * @type {number} + * @constant + */ +const RGDepthPacking = 3203; + +/** + * Normal information is relative to the underlying surface. + * + * @type {number} + * @constant + */ +const TangentSpaceNormalMap = 0; + +/** + * Normal information is relative to the object orientation. + * + * @type {number} + * @constant + */ +const ObjectSpaceNormalMap = 1; + +// Color space string identifiers, matching CSS Color Module Level 4 and WebGPU names where available. + +/** + * No color space. + * + * @type {string} + * @constant + */ +const NoColorSpace = ''; + +/** + * sRGB color space. + * + * @type {string} + * @constant + */ +const SRGBColorSpace = 'srgb'; + +/** + * sRGB-linear color space. + * + * @type {string} + * @constant + */ +const LinearSRGBColorSpace = 'srgb-linear'; + +/** + * Linear transfer function. + * + * @type {string} + * @constant + */ +const LinearTransfer = 'linear'; + +/** + * sRGB transfer function. + * + * @type {string} + * @constant + */ +const SRGBTransfer = 'srgb'; + +/** + * Sets the stencil buffer value to `0`. + * + * @type {number} + * @constant + */ +const ZeroStencilOp = 0; + +/** + * Keeps the current value. + * + * @type {number} + * @constant + */ +const KeepStencilOp = 7680; + +/** + * Sets the stencil buffer value to the specified reference value. + * + * @type {number} + * @constant + */ +const ReplaceStencilOp = 7681; + +/** + * Increments the current stencil buffer value. Clamps to the maximum representable unsigned value. + * + * @type {number} + * @constant + */ +const IncrementStencilOp = 7682; + +/** + * Decrements the current stencil buffer value. Clamps to `0`. + * + * @type {number} + * @constant + */ +const DecrementStencilOp = 7683; + +/** + * Increments the current stencil buffer value. Wraps stencil buffer value to zero when incrementing + * the maximum representable unsigned value. + * + * @type {number} + * @constant + */ +const IncrementWrapStencilOp = 34055; + +/** + * Decrements the current stencil buffer value. Wraps stencil buffer value to the maximum representable + * unsigned value when decrementing a stencil buffer value of `0`. + * + * @type {number} + * @constant + */ +const DecrementWrapStencilOp = 34056; + +/** + * Inverts the current stencil buffer value bitwise. + * + * @type {number} + * @constant + */ +const InvertStencilOp = 5386; + +/** + * Will never return true. + * + * @type {number} + * @constant + */ +const NeverStencilFunc = 512; + +/** + * Will return true if the stencil reference value is less than the current stencil value. + * + * @type {number} + * @constant + */ +const LessStencilFunc = 513; + +/** + * Will return true if the stencil reference value is equal to the current stencil value. + * + * @type {number} + * @constant + */ +const EqualStencilFunc = 514; + +/** + * Will return true if the stencil reference value is less than or equal to the current stencil value. + * + * @type {number} + * @constant + */ +const LessEqualStencilFunc = 515; + +/** + * Will return true if the stencil reference value is greater than the current stencil value. + * + * @type {number} + * @constant + */ +const GreaterStencilFunc = 516; + +/** + * Will return true if the stencil reference value is not equal to the current stencil value. + * + * @type {number} + * @constant + */ +const NotEqualStencilFunc = 517; + +/** + * Will return true if the stencil reference value is greater than or equal to the current stencil value. + * + * @type {number} + * @constant + */ +const GreaterEqualStencilFunc = 518; + +/** + * Will always return true. + * + * @type {number} + * @constant + */ +const AlwaysStencilFunc = 519; + +/** + * Never pass. + * + * @type {number} + * @constant + */ +const NeverCompare = 512; + +/** + * Pass if the incoming value is less than the texture value. + * + * @type {number} + * @constant + */ +const LessCompare = 513; + +/** + * Pass if the incoming value equals the texture value. + * + * @type {number} + * @constant + */ +const EqualCompare = 514; + +/** + * Pass if the incoming value is less than or equal to the texture value. + * + * @type {number} + * @constant + */ +const LessEqualCompare = 515; + +/** + * Pass if the incoming value is greater than the texture value. + * + * @type {number} + * @constant + */ +const GreaterCompare = 516; + +/** + * Pass if the incoming value is not equal to the texture value. + * + * @type {number} + * @constant + */ +const NotEqualCompare = 517; + +/** + * Pass if the incoming value is greater than or equal to the texture value. + * + * @type {number} + * @constant + */ +const GreaterEqualCompare = 518; + +/** + * Always pass. + * + * @type {number} + * @constant + */ +const AlwaysCompare = 519; + +/** + * The contents are intended to be specified once by the application, and used many + * times as the source for drawing and image specification commands. + * + * @type {number} + * @constant + */ +const StaticDrawUsage = 35044; + +/** + * The contents are intended to be respecified repeatedly by the application, and + * used many times as the source for drawing and image specification commands. + * + * @type {number} + * @constant + */ +const DynamicDrawUsage = 35048; + +/** + * The contents are intended to be specified once by the application, and used at most + * a few times as the source for drawing and image specification commands. + * + * @type {number} + * @constant + */ +const StreamDrawUsage = 35040; + +/** + * The contents are intended to be specified once by reading data from the 3D API, and queried + * many times by the application. + * + * @type {number} + * @constant + */ +const StaticReadUsage = 35045; + +/** + * The contents are intended to be respecified repeatedly by reading data from the 3D API, and queried + * many times by the application. + * + * @type {number} + * @constant + */ +const DynamicReadUsage = 35049; + +/** + * The contents are intended to be specified once by reading data from the 3D API, and queried at most + * a few times by the application + * + * @type {number} + * @constant + */ +const StreamReadUsage = 35041; + +/** + * The contents are intended to be specified once by reading data from the 3D API, and used many times as + * the source for WebGL drawing and image specification commands. + * + * @type {number} + * @constant + */ +const StaticCopyUsage = 35046; + +/** + * The contents are intended to be respecified repeatedly by reading data from the 3D API, and used many times + * as the source for WebGL drawing and image specification commands. + * + * @type {number} + * @constant + */ +const DynamicCopyUsage = 35050; + +/** + * The contents are intended to be specified once by reading data from the 3D API, and used at most a few times + * as the source for WebGL drawing and image specification commands. + * + * @type {number} + * @constant + */ +const StreamCopyUsage = 35042; + +/** + * GLSL 1 shader code. + * + * @type {string} + * @constant + */ +const GLSL1 = '100'; + +/** + * GLSL 3 shader code. + * + * @type {string} + * @constant + */ +const GLSL3 = '300 es'; + +/** + * WebGL coordinate system. + * + * @type {number} + * @constant + */ +const WebGLCoordinateSystem = 2000; + +/** + * WebGPU coordinate system. + * + * @type {number} + * @constant + */ +const WebGPUCoordinateSystem = 2001; + +/** + * Represents the different timestamp query types. + * + * @type {ConstantsTimestampQuery} + * @constant + */ +const TimestampQuery = { + COMPUTE: 'compute', + RENDER: 'render' +}; + +/** + * Represents mouse buttons and interaction types in context of controls. + * + * @type {ConstantsInterpolationSamplingType} + * @constant + */ +const InterpolationSamplingType = { + PERSPECTIVE: 'perspective', + LINEAR: 'linear', + FLAT: 'flat' +}; + +/** + * Represents the different interpolation sampling modes. + * + * @type {ConstantsInterpolationSamplingMode} + * @constant + */ +const InterpolationSamplingMode = { + NORMAL: 'normal', + CENTROID: 'centroid', + SAMPLE: 'sample', + FLAT_FIRST: 'flat first', + FLAT_EITHER: 'flat either' +}; + +/** + * This type represents mouse buttons and interaction types in context of controls. + * + * @typedef {Object} ConstantsMouse + * @property {number} MIDDLE - The left mouse button. + * @property {number} LEFT - The middle mouse button. + * @property {number} RIGHT - The right mouse button. + * @property {number} ROTATE - A rotate interaction. + * @property {number} DOLLY - A dolly interaction. + * @property {number} PAN - A pan interaction. + **/ + +/** + * This type represents touch interaction types in context of controls. + * + * @typedef {Object} ConstantsTouch + * @property {number} ROTATE - A rotate interaction. + * @property {number} PAN - A pan interaction. + * @property {number} DOLLY_PAN - The dolly-pan interaction. + * @property {number} DOLLY_ROTATE - A dolly-rotate interaction. + **/ + +/** + * This type represents the different timestamp query types. + * + * @typedef {Object} ConstantsTimestampQuery + * @property {string} COMPUTE - A `compute` timestamp query. + * @property {string} RENDER - A `render` timestamp query. + **/ + +/** + * Represents the different interpolation sampling types. + * + * @typedef {Object} ConstantsInterpolationSamplingType + * @property {string} PERSPECTIVE - Perspective-correct interpolation. + * @property {string} LINEAR - Linear interpolation. + * @property {string} FLAT - Flat interpolation. + */ + +/** + * Represents the different interpolation sampling modes. + * + * @typedef {Object} ConstantsInterpolationSamplingMode + * @property {string} NORMAL - Normal sampling mode. + * @property {string} CENTROID - Centroid sampling mode. + * @property {string} SAMPLE - Sample-specific sampling mode. + * @property {string} FLAT_FIRST - Flat interpolation using the first vertex. + * @property {string} FLAT_EITHER - Flat interpolation using either vertex. + */ + +/** + * This modules allows to dispatch event objects on custom JavaScript objects. + * + * Main repository: [eventdispatcher.js]{@link https://github.com/mrdoob/eventdispatcher.js/} + * + * Code Example: + * ```js + * class Car extends EventDispatcher { + * start() { + * this.dispatchEvent( { type: 'start', message: 'vroom vroom!' } ); + * } + *}; + * + * // Using events with the custom object + * const car = new Car(); + * car.addEventListener( 'start', function ( event ) { + * alert( event.message ); + * } ); + * + * car.start(); + * ``` + */ +class EventDispatcher { + + /** + * Adds the given event listener to the given event type. + * + * @param {string} type - The type of event to listen to. + * @param {Function} listener - The function that gets called when the event is fired. + */ + addEventListener( type, listener ) { + + if ( this._listeners === undefined ) this._listeners = {}; + + const listeners = this._listeners; + + if ( listeners[ type ] === undefined ) { + + listeners[ type ] = []; + + } + + if ( listeners[ type ].indexOf( listener ) === - 1 ) { + + listeners[ type ].push( listener ); + + } + + } + + /** + * Returns `true` if the given event listener has been added to the given event type. + * + * @param {string} type - The type of event. + * @param {Function} listener - The listener to check. + * @return {boolean} Whether the given event listener has been added to the given event type. + */ + hasEventListener( type, listener ) { + + const listeners = this._listeners; + + if ( listeners === undefined ) return false; + + return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1; + + } + + /** + * Removes the given event listener from the given event type. + * + * @param {string} type - The type of event. + * @param {Function} listener - The listener to remove. + */ + removeEventListener( type, listener ) { + + const listeners = this._listeners; + + if ( listeners === undefined ) return; + + const listenerArray = listeners[ type ]; + + if ( listenerArray !== undefined ) { + + const index = listenerArray.indexOf( listener ); + + if ( index !== - 1 ) { + + listenerArray.splice( index, 1 ); + + } + + } + + } + + /** + * Dispatches an event object. + * + * @param {Object} event - The event that gets fired. + */ + dispatchEvent( event ) { + + const listeners = this._listeners; + + if ( listeners === undefined ) return; + + const listenerArray = listeners[ event.type ]; + + if ( listenerArray !== undefined ) { + + event.target = this; + + // Make a copy, in case listeners are removed while iterating. + const array = listenerArray.slice( 0 ); + + for ( let i = 0, l = array.length; i < l; i ++ ) { + + array[ i ].call( this, event ); + + } + + event.target = null; + + } + + } + +} + +const _lut = [ '00', '01', '02', '03', '04', '05', '06', '07', '08', '09', '0a', '0b', '0c', '0d', '0e', '0f', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '1a', '1b', '1c', '1d', '1e', '1f', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '2a', '2b', '2c', '2d', '2e', '2f', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '3a', '3b', '3c', '3d', '3e', '3f', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '4a', '4b', '4c', '4d', '4e', '4f', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '5a', '5b', '5c', '5d', '5e', '5f', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '6a', '6b', '6c', '6d', '6e', '6f', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '7a', '7b', '7c', '7d', '7e', '7f', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '8a', '8b', '8c', '8d', '8e', '8f', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '9a', '9b', '9c', '9d', '9e', '9f', 'a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'aa', 'ab', 'ac', 'ad', 'ae', 'af', 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'ba', 'bb', 'bc', 'bd', 'be', 'bf', 'c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9', 'ca', 'cb', 'cc', 'cd', 'ce', 'cf', 'd0', 'd1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9', 'da', 'db', 'dc', 'dd', 'de', 'df', 'e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8', 'e9', 'ea', 'eb', 'ec', 'ed', 'ee', 'ef', 'f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'fa', 'fb', 'fc', 'fd', 'fe', 'ff' ]; + +let _seed = 1234567; + + +const DEG2RAD = Math.PI / 180; +const RAD2DEG = 180 / Math.PI; + +/** + * Generate a [UUID]{@link https://en.wikipedia.org/wiki/Universally_unique_identifier} + * (universally unique identifier). + * + * @return {string} The UUID. + */ +function generateUUID() { + + // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 + + const d0 = Math.random() * 0xffffffff | 0; + const d1 = Math.random() * 0xffffffff | 0; + const d2 = Math.random() * 0xffffffff | 0; + const d3 = Math.random() * 0xffffffff | 0; + const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' + + _lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' + + _lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] + + _lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ]; + + // .toLowerCase() here flattens concatenated strings to save heap memory space. + return uuid.toLowerCase(); + +} + +/** + * Clamps the given value between min and max. + * + * @param {number} value - The value to clamp. + * @param {number} min - The min value. + * @param {number} max - The max value. + * @return {number} The clamped value. + */ +function clamp( value, min, max ) { + + return Math.max( min, Math.min( max, value ) ); + +} + +/** + * Computes the Euclidean modulo of the given parameters that + * is `( ( n % m ) + m ) % m`. + * + * @param {number} n - The first parameter. + * @param {number} m - The second parameter. + * @return {number} The Euclidean modulo. + */ +function euclideanModulo( n, m ) { + + // https://en.wikipedia.org/wiki/Modulo_operation + + return ( ( n % m ) + m ) % m; + +} + +/** + * Performs a linear mapping from range `` to range `` + * for the given value. + * + * @param {number} x - The value to be mapped. + * @param {number} a1 - Minimum value for range A. + * @param {number} a2 - Maximum value for range A. + * @param {number} b1 - Minimum value for range B. + * @param {number} b2 - Maximum value for range B. + * @return {number} The mapped value. + */ +function mapLinear( x, a1, a2, b1, b2 ) { + + return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); + +} + +/** + * Returns the percentage in the closed interval `[0, 1]` of the given value + * between the start and end point. + * + * @param {number} x - The start point + * @param {number} y - The end point. + * @param {number} value - A value between start and end. + * @return {number} The interpolation factor. + */ +function inverseLerp( x, y, value ) { + + // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/ + + if ( x !== y ) { + + return ( value - x ) / ( y - x ); + + } else { + + return 0; + + } + +} + +/** + * Returns a value linearly interpolated from two known points based on the given interval - + * `t = 0` will return `x` and `t = 1` will return `y`. + * + * @param {number} x - The start point + * @param {number} y - The end point. + * @param {number} t - The interpolation factor in the closed interval `[0, 1]`. + * @return {number} The interpolated value. + */ +function lerp( x, y, t ) { + + return ( 1 - t ) * x + t * y; + +} + +/** + * Smoothly interpolate a number from `x` to `y` in a spring-like manner using a delta + * time to maintain frame rate independent movement. For details, see + * [Frame rate independent damping using lerp]{@link http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/}. + * + * @param {number} x - The current point. + * @param {number} y - The target point. + * @param {number} lambda - A higher lambda value will make the movement more sudden, + * and a lower value will make the movement more gradual. + * @param {number} dt - Delta time in seconds. + * @return {number} The interpolated value. + */ +function damp( x, y, lambda, dt ) { + + return lerp( x, y, 1 - Math.exp( - lambda * dt ) ); + +} + +/** + * Returns a value that alternates between `0` and the given `length` parameter. + * + * @param {number} x - The value to pingpong. + * @param {number} [length=1] - The positive value the function will pingpong to. + * @return {number} The alternated value. + */ +function pingpong( x, length = 1 ) { + + // https://www.desmos.com/calculator/vcsjnyz7x4 + + return length - Math.abs( euclideanModulo( x, length * 2 ) - length ); + +} + +/** + * Returns a value in the range `[0,1]` that represents the percentage that `x` has + * moved between `min` and `max`, but smoothed or slowed down the closer `x` is to + * the `min` and `max`. + * + * See [Smoothstep]{@link http://en.wikipedia.org/wiki/Smoothstep} for more details. + * + * @param {number} x - The value to evaluate based on its position between min and max. + * @param {number} min - The min value. Any x value below min will be `0`. + * @param {number} max - The max value. Any x value above max will be `1`. + * @return {number} The alternated value. + */ +function smoothstep( x, min, max ) { + + if ( x <= min ) return 0; + if ( x >= max ) return 1; + + x = ( x - min ) / ( max - min ); + + return x * x * ( 3 - 2 * x ); + +} + +/** + * A [variation on smoothstep]{@link https://en.wikipedia.org/wiki/Smoothstep#Variations} + * that has zero 1st and 2nd order derivatives at x=0 and x=1. + * + * @param {number} x - The value to evaluate based on its position between min and max. + * @param {number} min - The min value. Any x value below min will be `0`. + * @param {number} max - The max value. Any x value above max will be `1`. + * @return {number} The alternated value. + */ +function smootherstep( x, min, max ) { + + if ( x <= min ) return 0; + if ( x >= max ) return 1; + + x = ( x - min ) / ( max - min ); + + return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); + +} + +/** + * Returns a random integer from `` interval. + * + * @param {number} low - The lower value boundary. + * @param {number} high - The upper value boundary + * @return {number} A random integer. + */ +function randInt( low, high ) { + + return low + Math.floor( Math.random() * ( high - low + 1 ) ); + +} + +/** + * Returns a random float from `` interval. + * + * @param {number} low - The lower value boundary. + * @param {number} high - The upper value boundary + * @return {number} A random float. + */ +function randFloat( low, high ) { + + return low + Math.random() * ( high - low ); + +} + +/** + * Returns a random integer from `<-range/2, range/2>` interval. + * + * @param {number} range - Defines the value range. + * @return {number} A random float. + */ +function randFloatSpread( range ) { + + return range * ( 0.5 - Math.random() ); + +} + +/** + * Returns a deterministic pseudo-random float in the interval `[0, 1]`. + * + * @param {number} [s] - The integer seed. + * @return {number} A random float. + */ +function seededRandom( s ) { + + if ( s !== undefined ) _seed = s; + + // Mulberry32 generator + + let t = _seed += 0x6D2B79F5; + + t = Math.imul( t ^ t >>> 15, t | 1 ); + + t ^= t + Math.imul( t ^ t >>> 7, t | 61 ); + + return ( ( t ^ t >>> 14 ) >>> 0 ) / 4294967296; + +} + +/** + * Converts degrees to radians. + * + * @param {number} degrees - A value in degrees. + * @return {number} The converted value in radians. + */ +function degToRad( degrees ) { + + return degrees * DEG2RAD; + +} + +/** + * Converts radians to degrees. + * + * @param {number} radians - A value in radians. + * @return {number} The converted value in degrees. + */ +function radToDeg( radians ) { + + return radians * RAD2DEG; + +} + +/** + * Returns `true` if the given number is a power of two. + * + * @param {number} value - The value to check. + * @return {boolean} Whether the given number is a power of two or not. + */ +function isPowerOfTwo( value ) { + + return ( value & ( value - 1 ) ) === 0 && value !== 0; + +} + +/** + * Returns the smallest power of two that is greater than or equal to the given number. + * + * @param {number} value - The value to find a POT for. + * @return {number} The smallest power of two that is greater than or equal to the given number. + */ +function ceilPowerOfTwo( value ) { + + return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) ); + +} + +/** + * Returns the largest power of two that is less than or equal to the given number. + * + * @param {number} value - The value to find a POT for. + * @return {number} The largest power of two that is less than or equal to the given number. + */ +function floorPowerOfTwo( value ) { + + return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) ); + +} + +/** + * Sets the given quaternion from the [Intrinsic Proper Euler Angles]{@link https://en.wikipedia.org/wiki/Euler_angles} + * defined by the given angles and order. + * + * Rotations are applied to the axes in the order specified by order: + * rotation by angle `a` is applied first, then by angle `b`, then by angle `c`. + * + * @param {Quaternion} q - The quaternion to set. + * @param {number} a - The rotation applied to the first axis, in radians. + * @param {number} b - The rotation applied to the second axis, in radians. + * @param {number} c - The rotation applied to the third axis, in radians. + * @param {('XYX'|'XZX'|'YXY'|'YZY'|'ZXZ'|'ZYZ')} order - A string specifying the axes order. + */ +function setQuaternionFromProperEuler( q, a, b, c, order ) { + + const cos = Math.cos; + const sin = Math.sin; + + const c2 = cos( b / 2 ); + const s2 = sin( b / 2 ); + + const c13 = cos( ( a + c ) / 2 ); + const s13 = sin( ( a + c ) / 2 ); + + const c1_3 = cos( ( a - c ) / 2 ); + const s1_3 = sin( ( a - c ) / 2 ); + + const c3_1 = cos( ( c - a ) / 2 ); + const s3_1 = sin( ( c - a ) / 2 ); + + switch ( order ) { + + case 'XYX': + q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 ); + break; + + case 'YZY': + q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 ); + break; + + case 'ZXZ': + q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 ); + break; + + case 'XZX': + q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 ); + break; + + case 'YXY': + q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 ); + break; + + case 'ZYZ': + q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 ); + break; + + default: + console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order ); + + } + +} + +/** + * Denormalizes the given value according to the given typed array. + * + * @param {number} value - The value to denormalize. + * @param {TypedArray} array - The typed array that defines the data type of the value. + * @return {number} The denormalize (float) value in the range `[0,1]`. + */ +function denormalize( value, array ) { + + switch ( array.constructor ) { + + case Float32Array: + + return value; + + case Uint32Array: + + return value / 4294967295.0; + + case Uint16Array: + + return value / 65535.0; + + case Uint8Array: + + return value / 255.0; + + case Int32Array: + + return Math.max( value / 2147483647.0, - 1 ); + + case Int16Array: + + return Math.max( value / 32767.0, - 1 ); + + case Int8Array: + + return Math.max( value / 127.0, - 1 ); + + default: + + throw new Error( 'Invalid component type.' ); + + } + +} + +/** + * Normalizes the given value according to the given typed array. + * + * @param {number} value - The float value in the range `[0,1]` to normalize. + * @param {TypedArray} array - The typed array that defines the data type of the value. + * @return {number} The normalize value. + */ +function normalize( value, array ) { + + switch ( array.constructor ) { + + case Float32Array: + + return value; + + case Uint32Array: + + return Math.round( value * 4294967295.0 ); + + case Uint16Array: + + return Math.round( value * 65535.0 ); + + case Uint8Array: + + return Math.round( value * 255.0 ); + + case Int32Array: + + return Math.round( value * 2147483647.0 ); + + case Int16Array: + + return Math.round( value * 32767.0 ); + + case Int8Array: + + return Math.round( value * 127.0 ); + + default: + + throw new Error( 'Invalid component type.' ); + + } + +} + +/** + * @class + * @classdesc A collection of math utility functions. + * @hideconstructor + */ +const MathUtils = { + DEG2RAD: DEG2RAD, + RAD2DEG: RAD2DEG, + /** + * Generate a [UUID]{@link https://en.wikipedia.org/wiki/Universally_unique_identifier} + * (universally unique identifier). + * + * @static + * @method + * @return {string} The UUID. + */ + generateUUID: generateUUID, + /** + * Clamps the given value between min and max. + * + * @static + * @method + * @param {number} value - The value to clamp. + * @param {number} min - The min value. + * @param {number} max - The max value. + * @return {number} The clamped value. + */ + clamp: clamp, + /** + * Computes the Euclidean modulo of the given parameters that + * is `( ( n % m ) + m ) % m`. + * + * @static + * @method + * @param {number} n - The first parameter. + * @param {number} m - The second parameter. + * @return {number} The Euclidean modulo. + */ + euclideanModulo: euclideanModulo, + /** + * Performs a linear mapping from range `` to range `` + * for the given value. + * + * @static + * @method + * @param {number} x - The value to be mapped. + * @param {number} a1 - Minimum value for range A. + * @param {number} a2 - Maximum value for range A. + * @param {number} b1 - Minimum value for range B. + * @param {number} b2 - Maximum value for range B. + * @return {number} The mapped value. + */ + mapLinear: mapLinear, + /** + * Returns the percentage in the closed interval `[0, 1]` of the given value + * between the start and end point. + * + * @static + * @method + * @param {number} x - The start point + * @param {number} y - The end point. + * @param {number} value - A value between start and end. + * @return {number} The interpolation factor. + */ + inverseLerp: inverseLerp, + /** + * Returns a value linearly interpolated from two known points based on the given interval - + * `t = 0` will return `x` and `t = 1` will return `y`. + * + * @static + * @method + * @param {number} x - The start point + * @param {number} y - The end point. + * @param {number} t - The interpolation factor in the closed interval `[0, 1]`. + * @return {number} The interpolated value. + */ + lerp: lerp, + /** + * Smoothly interpolate a number from `x` to `y` in a spring-like manner using a delta + * time to maintain frame rate independent movement. For details, see + * [Frame rate independent damping using lerp]{@link http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/}. + * + * @static + * @method + * @param {number} x - The current point. + * @param {number} y - The target point. + * @param {number} lambda - A higher lambda value will make the movement more sudden, + * and a lower value will make the movement more gradual. + * @param {number} dt - Delta time in seconds. + * @return {number} The interpolated value. + */ + damp: damp, + /** + * Returns a value that alternates between `0` and the given `length` parameter. + * + * @static + * @method + * @param {number} x - The value to pingpong. + * @param {number} [length=1] - The positive value the function will pingpong to. + * @return {number} The alternated value. + */ + pingpong: pingpong, + /** + * Returns a value in the range `[0,1]` that represents the percentage that `x` has + * moved between `min` and `max`, but smoothed or slowed down the closer `x` is to + * the `min` and `max`. + * + * See [Smoothstep]{@link http://en.wikipedia.org/wiki/Smoothstep} for more details. + * + * @static + * @method + * @param {number} x - The value to evaluate based on its position between min and max. + * @param {number} min - The min value. Any x value below min will be `0`. + * @param {number} max - The max value. Any x value above max will be `1`. + * @return {number} The alternated value. + */ + smoothstep: smoothstep, + /** + * A [variation on smoothstep]{@link https://en.wikipedia.org/wiki/Smoothstep#Variations} + * that has zero 1st and 2nd order derivatives at x=0 and x=1. + * + * @static + * @method + * @param {number} x - The value to evaluate based on its position between min and max. + * @param {number} min - The min value. Any x value below min will be `0`. + * @param {number} max - The max value. Any x value above max will be `1`. + * @return {number} The alternated value. + */ + smootherstep: smootherstep, + /** + * Returns a random integer from `` interval. + * + * @static + * @method + * @param {number} low - The lower value boundary. + * @param {number} high - The upper value boundary + * @return {number} A random integer. + */ + randInt: randInt, + /** + * Returns a random float from `` interval. + * + * @static + * @method + * @param {number} low - The lower value boundary. + * @param {number} high - The upper value boundary + * @return {number} A random float. + */ + randFloat: randFloat, + /** + * Returns a random integer from `<-range/2, range/2>` interval. + * + * @static + * @method + * @param {number} range - Defines the value range. + * @return {number} A random float. + */ + randFloatSpread: randFloatSpread, + /** + * Returns a deterministic pseudo-random float in the interval `[0, 1]`. + * + * @static + * @method + * @param {number} [s] - The integer seed. + * @return {number} A random float. + */ + seededRandom: seededRandom, + /** + * Converts degrees to radians. + * + * @static + * @method + * @param {number} degrees - A value in degrees. + * @return {number} The converted value in radians. + */ + degToRad: degToRad, + /** + * Converts radians to degrees. + * + * @static + * @method + * @param {number} radians - A value in radians. + * @return {number} The converted value in degrees. + */ + radToDeg: radToDeg, + /** + * Returns `true` if the given number is a power of two. + * + * @static + * @method + * @param {number} value - The value to check. + * @return {boolean} Whether the given number is a power of two or not. + */ + isPowerOfTwo: isPowerOfTwo, + /** + * Returns the smallest power of two that is greater than or equal to the given number. + * + * @static + * @method + * @param {number} value - The value to find a POT for. + * @return {number} The smallest power of two that is greater than or equal to the given number. + */ + ceilPowerOfTwo: ceilPowerOfTwo, + /** + * Returns the largest power of two that is less than or equal to the given number. + * + * @static + * @method + * @param {number} value - The value to find a POT for. + * @return {number} The largest power of two that is less than or equal to the given number. + */ + floorPowerOfTwo: floorPowerOfTwo, + /** + * Sets the given quaternion from the [Intrinsic Proper Euler Angles]{@link https://en.wikipedia.org/wiki/Euler_angles} + * defined by the given angles and order. + * + * Rotations are applied to the axes in the order specified by order: + * rotation by angle `a` is applied first, then by angle `b`, then by angle `c`. + * + * @static + * @method + * @param {Quaternion} q - The quaternion to set. + * @param {number} a - The rotation applied to the first axis, in radians. + * @param {number} b - The rotation applied to the second axis, in radians. + * @param {number} c - The rotation applied to the third axis, in radians. + * @param {('XYX'|'XZX'|'YXY'|'YZY'|'ZXZ'|'ZYZ')} order - A string specifying the axes order. + */ + setQuaternionFromProperEuler: setQuaternionFromProperEuler, + /** + * Normalizes the given value according to the given typed array. + * + * @static + * @method + * @param {number} value - The float value in the range `[0,1]` to normalize. + * @param {TypedArray} array - The typed array that defines the data type of the value. + * @return {number} The normalize value. + */ + normalize: normalize, + /** + * Denormalizes the given value according to the given typed array. + * + * @static + * @method + * @param {number} value - The value to denormalize. + * @param {TypedArray} array - The typed array that defines the data type of the value. + * @return {number} The denormalize (float) value in the range `[0,1]`. + */ + denormalize: denormalize +}; + +/** + * Class representing a 2D vector. A 2D vector is an ordered pair of numbers + * (labeled x and y), which can be used to represent a number of things, such as: + * + * - A point in 2D space (i.e. a position on a plane). + * - A direction and length across a plane. In three.js the length will + * always be the Euclidean distance(straight-line distance) from `(0, 0)` to `(x, y)` + * and the direction is also measured from `(0, 0)` towards `(x, y)`. + * - Any arbitrary ordered pair of numbers. + * + * There are other things a 2D vector can be used to represent, such as + * momentum vectors, complex numbers and so on, however these are the most + * common uses in three.js. + * + * Iterating through a vector instance will yield its components `(x, y)` in + * the corresponding order. + * ```js + * const a = new THREE.Vector2( 0, 1 ); + * + * //no arguments; will be initialised to (0, 0) + * const b = new THREE.Vector2( ); + * + * const d = a.distanceTo( b ); + * ``` + */ +class Vector2 { + + /** + * Constructs a new 2D vector. + * + * @param {number} [x=0] - The x value of this vector. + * @param {number} [y=0] - The y value of this vector. + */ + constructor( x = 0, y = 0 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + Vector2.prototype.isVector2 = true; + + /** + * The x value of this vector. + * + * @type {number} + */ + this.x = x; + + /** + * The y value of this vector. + * + * @type {number} + */ + this.y = y; + + } + + /** + * Alias for {@link Vector2#x}. + * + * @type {number} + */ + get width() { + + return this.x; + + } + + set width( value ) { + + this.x = value; + + } + + /** + * Alias for {@link Vector2#y}. + * + * @type {number} + */ + get height() { + + return this.y; + + } + + set height( value ) { + + this.y = value; + + } + + /** + * Sets the vector components. + * + * @param {number} x - The value of the x component. + * @param {number} y - The value of the y component. + * @return {Vector2} A reference to this vector. + */ + set( x, y ) { + + this.x = x; + this.y = y; + + return this; + + } + + /** + * Sets the vector components to the same value. + * + * @param {number} scalar - The value to set for all vector components. + * @return {Vector2} A reference to this vector. + */ + setScalar( scalar ) { + + this.x = scalar; + this.y = scalar; + + return this; + + } + + /** + * Sets the vector's x component to the given value + * + * @param {number} x - The value to set. + * @return {Vector2} A reference to this vector. + */ + setX( x ) { + + this.x = x; + + return this; + + } + + /** + * Sets the vector's y component to the given value + * + * @param {number} y - The value to set. + * @return {Vector2} A reference to this vector. + */ + setY( y ) { + + this.y = y; + + return this; + + } + + /** + * Allows to set a vector component with an index. + * + * @param {number} index - The component index. `0` equals to x, `1` equals to y. + * @param {number} value - The value to set. + * @return {Vector2} A reference to this vector. + */ + setComponent( index, value ) { + + switch ( index ) { + + case 0: this.x = value; break; + case 1: this.y = value; break; + default: throw new Error( 'index is out of range: ' + index ); + + } + + return this; + + } + + /** + * Returns the value of the vector component which matches the given index. + * + * @param {number} index - The component index. `0` equals to x, `1` equals to y. + * @return {number} A vector component value. + */ + getComponent( index ) { + + switch ( index ) { + + case 0: return this.x; + case 1: return this.y; + default: throw new Error( 'index is out of range: ' + index ); + + } + + } + + /** + * Returns a new vector with copied values from this instance. + * + * @return {Vector2} A clone of this instance. + */ + clone() { + + return new this.constructor( this.x, this.y ); + + } + + /** + * Copies the values of the given vector to this instance. + * + * @param {Vector2} v - The vector to copy. + * @return {Vector2} A reference to this vector. + */ + copy( v ) { + + this.x = v.x; + this.y = v.y; + + return this; + + } + + /** + * Adds the given vector to this instance. + * + * @param {Vector2} v - The vector to add. + * @return {Vector2} A reference to this vector. + */ + add( v ) { + + this.x += v.x; + this.y += v.y; + + return this; + + } + + /** + * Adds the given scalar value to all components of this instance. + * + * @param {number} s - The scalar to add. + * @return {Vector2} A reference to this vector. + */ + addScalar( s ) { + + this.x += s; + this.y += s; + + return this; + + } + + /** + * Adds the given vectors and stores the result in this instance. + * + * @param {Vector2} a - The first vector. + * @param {Vector2} b - The second vector. + * @return {Vector2} A reference to this vector. + */ + addVectors( a, b ) { + + this.x = a.x + b.x; + this.y = a.y + b.y; + + return this; + + } + + /** + * Adds the given vector scaled by the given factor to this instance. + * + * @param {Vector2} v - The vector. + * @param {number} s - The factor that scales `v`. + * @return {Vector2} A reference to this vector. + */ + addScaledVector( v, s ) { + + this.x += v.x * s; + this.y += v.y * s; + + return this; + + } + + /** + * Subtracts the given vector from this instance. + * + * @param {Vector2} v - The vector to subtract. + * @return {Vector2} A reference to this vector. + */ + sub( v ) { + + this.x -= v.x; + this.y -= v.y; + + return this; + + } + + /** + * Subtracts the given scalar value from all components of this instance. + * + * @param {number} s - The scalar to subtract. + * @return {Vector2} A reference to this vector. + */ + subScalar( s ) { + + this.x -= s; + this.y -= s; + + return this; + + } + + /** + * Subtracts the given vectors and stores the result in this instance. + * + * @param {Vector2} a - The first vector. + * @param {Vector2} b - The second vector. + * @return {Vector2} A reference to this vector. + */ + subVectors( a, b ) { + + this.x = a.x - b.x; + this.y = a.y - b.y; + + return this; + + } + + /** + * Multiplies the given vector with this instance. + * + * @param {Vector2} v - The vector to multiply. + * @return {Vector2} A reference to this vector. + */ + multiply( v ) { + + this.x *= v.x; + this.y *= v.y; + + return this; + + } + + /** + * Multiplies the given scalar value with all components of this instance. + * + * @param {number} scalar - The scalar to multiply. + * @return {Vector2} A reference to this vector. + */ + multiplyScalar( scalar ) { + + this.x *= scalar; + this.y *= scalar; + + return this; + + } + + /** + * Divides this instance by the given vector. + * + * @param {Vector2} v - The vector to divide. + * @return {Vector2} A reference to this vector. + */ + divide( v ) { + + this.x /= v.x; + this.y /= v.y; + + return this; + + } + + /** + * Divides this vector by the given scalar. + * + * @param {number} scalar - The scalar to divide. + * @return {Vector2} A reference to this vector. + */ + divideScalar( scalar ) { + + return this.multiplyScalar( 1 / scalar ); + + } + + /** + * Multiplies this vector (with an implicit 1 as the 3rd component) by + * the given 3x3 matrix. + * + * @param {Matrix3} m - The matrix to apply. + * @return {Vector2} A reference to this vector. + */ + applyMatrix3( m ) { + + const x = this.x, y = this.y; + const e = m.elements; + + this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ]; + this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ]; + + return this; + + } + + /** + * If this vector's x or y value is greater than the given vector's x or y + * value, replace that value with the corresponding min value. + * + * @param {Vector2} v - The vector. + * @return {Vector2} A reference to this vector. + */ + min( v ) { + + this.x = Math.min( this.x, v.x ); + this.y = Math.min( this.y, v.y ); + + return this; + + } + + /** + * If this vector's x or y value is less than the given vector's x or y + * value, replace that value with the corresponding max value. + * + * @param {Vector2} v - The vector. + * @return {Vector2} A reference to this vector. + */ + max( v ) { + + this.x = Math.max( this.x, v.x ); + this.y = Math.max( this.y, v.y ); + + return this; + + } + + /** + * If this vector's x or y value is greater than the max vector's x or y + * value, it is replaced by the corresponding value. + * If this vector's x or y value is less than the min vector's x or y value, + * it is replaced by the corresponding value. + * + * @param {Vector2} min - The minimum x and y values. + * @param {Vector2} max - The maximum x and y values in the desired range. + * @return {Vector2} A reference to this vector. + */ + clamp( min, max ) { + + // assumes min < max, componentwise + + this.x = clamp( this.x, min.x, max.x ); + this.y = clamp( this.y, min.y, max.y ); + + return this; + + } + + /** + * If this vector's x or y values are greater than the max value, they are + * replaced by the max value. + * If this vector's x or y values are less than the min value, they are + * replaced by the min value. + * + * @param {number} minVal - The minimum value the components will be clamped to. + * @param {number} maxVal - The maximum value the components will be clamped to. + * @return {Vector2} A reference to this vector. + */ + clampScalar( minVal, maxVal ) { + + this.x = clamp( this.x, minVal, maxVal ); + this.y = clamp( this.y, minVal, maxVal ); + + return this; + + } + + /** + * If this vector's length is greater than the max value, it is replaced by + * the max value. + * If this vector's length is less than the min value, it is replaced by the + * min value. + * + * @param {number} min - The minimum value the vector length will be clamped to. + * @param {number} max - The maximum value the vector length will be clamped to. + * @return {Vector2} A reference to this vector. + */ + clampLength( min, max ) { + + const length = this.length(); + + return this.divideScalar( length || 1 ).multiplyScalar( clamp( length, min, max ) ); + + } + + /** + * The components of this vector are rounded down to the nearest integer value. + * + * @return {Vector2} A reference to this vector. + */ + floor() { + + this.x = Math.floor( this.x ); + this.y = Math.floor( this.y ); + + return this; + + } + + /** + * The components of this vector are rounded up to the nearest integer value. + * + * @return {Vector2} A reference to this vector. + */ + ceil() { + + this.x = Math.ceil( this.x ); + this.y = Math.ceil( this.y ); + + return this; + + } + + /** + * The components of this vector are rounded to the nearest integer value + * + * @return {Vector2} A reference to this vector. + */ + round() { + + this.x = Math.round( this.x ); + this.y = Math.round( this.y ); + + return this; + + } + + /** + * The components of this vector are rounded towards zero (up if negative, + * down if positive) to an integer value. + * + * @return {Vector2} A reference to this vector. + */ + roundToZero() { + + this.x = Math.trunc( this.x ); + this.y = Math.trunc( this.y ); + + return this; + + } + + /** + * Inverts this vector - i.e. sets x = -x and y = -y. + * + * @return {Vector2} A reference to this vector. + */ + negate() { + + this.x = - this.x; + this.y = - this.y; + + return this; + + } + + /** + * Calculates the dot product of the given vector with this instance. + * + * @param {Vector2} v - The vector to compute the dot product with. + * @return {number} The result of the dot product. + */ + dot( v ) { + + return this.x * v.x + this.y * v.y; + + } + + /** + * Calculates the cross product of the given vector with this instance. + * + * @param {Vector2} v - The vector to compute the cross product with. + * @return {number} The result of the cross product. + */ + cross( v ) { + + return this.x * v.y - this.y * v.x; + + } + + /** + * Computes the square of the Euclidean length (straight-line length) from + * (0, 0) to (x, y). If you are comparing the lengths of vectors, you should + * compare the length squared instead as it is slightly more efficient to calculate. + * + * @return {number} The square length of this vector. + */ + lengthSq() { + + return this.x * this.x + this.y * this.y; + + } + + /** + * Computes the Euclidean length (straight-line length) from (0, 0) to (x, y). + * + * @return {number} The length of this vector. + */ + length() { + + return Math.sqrt( this.x * this.x + this.y * this.y ); + + } + + /** + * Computes the Manhattan length of this vector. + * + * @return {number} The length of this vector. + */ + manhattanLength() { + + return Math.abs( this.x ) + Math.abs( this.y ); + + } + + /** + * Converts this vector to a unit vector - that is, sets it equal to a vector + * with the same direction as this one, but with a vector length of `1`. + * + * @return {Vector2} A reference to this vector. + */ + normalize() { + + return this.divideScalar( this.length() || 1 ); + + } + + /** + * Computes the angle in radians of this vector with respect to the positive x-axis. + * + * @return {number} The angle in radians. + */ + angle() { + + const angle = Math.atan2( - this.y, - this.x ) + Math.PI; + + return angle; + + } + + /** + * Returns the angle between the given vector and this instance in radians. + * + * @param {Vector2} v - The vector to compute the angle with. + * @return {number} The angle in radians. + */ + angleTo( v ) { + + const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); + + if ( denominator === 0 ) return Math.PI / 2; + + const theta = this.dot( v ) / denominator; + + // clamp, to handle numerical problems + + return Math.acos( clamp( theta, - 1, 1 ) ); + + } + + /** + * Computes the distance from the given vector to this instance. + * + * @param {Vector2} v - The vector to compute the distance to. + * @return {number} The distance. + */ + distanceTo( v ) { + + return Math.sqrt( this.distanceToSquared( v ) ); + + } + + /** + * Computes the squared distance from the given vector to this instance. + * If you are just comparing the distance with another distance, you should compare + * the distance squared instead as it is slightly more efficient to calculate. + * + * @param {Vector2} v - The vector to compute the squared distance to. + * @return {number} The squared distance. + */ + distanceToSquared( v ) { + + const dx = this.x - v.x, dy = this.y - v.y; + return dx * dx + dy * dy; + + } + + /** + * Computes the Manhattan distance from the given vector to this instance. + * + * @param {Vector2} v - The vector to compute the Manhattan distance to. + * @return {number} The Manhattan distance. + */ + manhattanDistanceTo( v ) { + + return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ); + + } + + /** + * Sets this vector to a vector with the same direction as this one, but + * with the specified length. + * + * @param {number} length - The new length of this vector. + * @return {Vector2} A reference to this vector. + */ + setLength( length ) { + + return this.normalize().multiplyScalar( length ); + + } + + /** + * Linearly interpolates between the given vector and this instance, where + * alpha is the percent distance along the line - alpha = 0 will be this + * vector, and alpha = 1 will be the given one. + * + * @param {Vector2} v - The vector to interpolate towards. + * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. + * @return {Vector2} A reference to this vector. + */ + lerp( v, alpha ) { + + this.x += ( v.x - this.x ) * alpha; + this.y += ( v.y - this.y ) * alpha; + + return this; + + } + + /** + * Linearly interpolates between the given vectors, where alpha is the percent + * distance along the line - alpha = 0 will be first vector, and alpha = 1 will + * be the second one. The result is stored in this instance. + * + * @param {Vector2} v1 - The first vector. + * @param {Vector2} v2 - The second vector. + * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. + * @return {Vector2} A reference to this vector. + */ + lerpVectors( v1, v2, alpha ) { + + this.x = v1.x + ( v2.x - v1.x ) * alpha; + this.y = v1.y + ( v2.y - v1.y ) * alpha; + + return this; + + } + + /** + * Returns `true` if this vector is equal with the given one. + * + * @param {Vector2} v - The vector to test for equality. + * @return {boolean} Whether this vector is equal with the given one. + */ + equals( v ) { + + return ( ( v.x === this.x ) && ( v.y === this.y ) ); + + } + + /** + * Sets this vector's x value to be `array[ offset ]` and y + * value to be `array[ offset + 1 ]`. + * + * @param {Array} array - An array holding the vector component values. + * @param {number} [offset=0] - The offset into the array. + * @return {Vector2} A reference to this vector. + */ + fromArray( array, offset = 0 ) { + + this.x = array[ offset ]; + this.y = array[ offset + 1 ]; + + return this; + + } + + /** + * Writes the components of this vector to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the vector components. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The vector components. + */ + toArray( array = [], offset = 0 ) { + + array[ offset ] = this.x; + array[ offset + 1 ] = this.y; + + return array; + + } + + /** + * Sets the components of this vector from the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute holding vector data. + * @param {number} index - The index into the attribute. + * @return {Vector2} A reference to this vector. + */ + fromBufferAttribute( attribute, index ) { + + this.x = attribute.getX( index ); + this.y = attribute.getY( index ); + + return this; + + } + + /** + * Rotates this vector around the given center by the given angle. + * + * @param {Vector2} center - The point around which to rotate. + * @param {number} angle - The angle to rotate, in radians. + * @return {Vector2} A reference to this vector. + */ + rotateAround( center, angle ) { + + const c = Math.cos( angle ), s = Math.sin( angle ); + + const x = this.x - center.x; + const y = this.y - center.y; + + this.x = x * c - y * s + center.x; + this.y = x * s + y * c + center.y; + + return this; + + } + + /** + * Sets each component of this vector to a pseudo-random value between `0` and + * `1`, excluding `1`. + * + * @return {Vector2} A reference to this vector. + */ + random() { + + this.x = Math.random(); + this.y = Math.random(); + + return this; + + } + + *[ Symbol.iterator ]() { + + yield this.x; + yield this.y; + + } + +} + +/** + * Class for representing a Quaternion. Quaternions are used in three.js to represent rotations. + * + * Iterating through a vector instance will yield its components `(x, y, z, w)` in + * the corresponding order. + * + * Note that three.js expects Quaternions to be normalized. + * ```js + * const quaternion = new THREE.Quaternion(); + * quaternion.setFromAxisAngle( new THREE.Vector3( 0, 1, 0 ), Math.PI / 2 ); + * + * const vector = new THREE.Vector3( 1, 0, 0 ); + * vector.applyQuaternion( quaternion ); + * ``` + */ +class Quaternion { + + /** + * Constructs a new quaternion. + * + * @param {number} [x=0] - The x value of this quaternion. + * @param {number} [y=0] - The y value of this quaternion. + * @param {number} [z=0] - The z value of this quaternion. + * @param {number} [w=1] - The w value of this quaternion. + */ + constructor( x = 0, y = 0, z = 0, w = 1 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isQuaternion = true; + + this._x = x; + this._y = y; + this._z = z; + this._w = w; + + } + + /** + * Interpolates between two quaternions via SLERP. This implementation assumes the + * quaternion data are managed in flat arrays. + * + * @param {Array} dst - The destination array. + * @param {number} dstOffset - An offset into the destination array. + * @param {Array} src0 - The source array of the first quaternion. + * @param {number} srcOffset0 - An offset into the first source array. + * @param {Array} src1 - The source array of the second quaternion. + * @param {number} srcOffset1 - An offset into the second source array. + * @param {number} t - The interpolation factor in the range `[0,1]`. + * @see {@link Quaternion#slerp} + */ + static slerpFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) { + + // fuzz-free, array-based Quaternion SLERP operation + + let x0 = src0[ srcOffset0 + 0 ], + y0 = src0[ srcOffset0 + 1 ], + z0 = src0[ srcOffset0 + 2 ], + w0 = src0[ srcOffset0 + 3 ]; + + const x1 = src1[ srcOffset1 + 0 ], + y1 = src1[ srcOffset1 + 1 ], + z1 = src1[ srcOffset1 + 2 ], + w1 = src1[ srcOffset1 + 3 ]; + + if ( t === 0 ) { + + dst[ dstOffset + 0 ] = x0; + dst[ dstOffset + 1 ] = y0; + dst[ dstOffset + 2 ] = z0; + dst[ dstOffset + 3 ] = w0; + return; + + } + + if ( t === 1 ) { + + dst[ dstOffset + 0 ] = x1; + dst[ dstOffset + 1 ] = y1; + dst[ dstOffset + 2 ] = z1; + dst[ dstOffset + 3 ] = w1; + return; + + } + + if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) { + + let s = 1 - t; + const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, + dir = ( cos >= 0 ? 1 : - 1 ), + sqrSin = 1 - cos * cos; + + // Skip the Slerp for tiny steps to avoid numeric problems: + if ( sqrSin > Number.EPSILON ) { + + const sin = Math.sqrt( sqrSin ), + len = Math.atan2( sin, cos * dir ); + + s = Math.sin( s * len ) / sin; + t = Math.sin( t * len ) / sin; + + } + + const tDir = t * dir; + + x0 = x0 * s + x1 * tDir; + y0 = y0 * s + y1 * tDir; + z0 = z0 * s + z1 * tDir; + w0 = w0 * s + w1 * tDir; + + // Normalize in case we just did a lerp: + if ( s === 1 - t ) { + + const f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 ); + + x0 *= f; + y0 *= f; + z0 *= f; + w0 *= f; + + } + + } + + dst[ dstOffset ] = x0; + dst[ dstOffset + 1 ] = y0; + dst[ dstOffset + 2 ] = z0; + dst[ dstOffset + 3 ] = w0; + + } + + /** + * Multiplies two quaternions. This implementation assumes the quaternion data are managed + * in flat arrays. + * + * @param {Array} dst - The destination array. + * @param {number} dstOffset - An offset into the destination array. + * @param {Array} src0 - The source array of the first quaternion. + * @param {number} srcOffset0 - An offset into the first source array. + * @param {Array} src1 - The source array of the second quaternion. + * @param {number} srcOffset1 - An offset into the second source array. + * @return {Array} The destination array. + * @see {@link Quaternion#multiplyQuaternions}. + */ + static multiplyQuaternionsFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) { + + const x0 = src0[ srcOffset0 ]; + const y0 = src0[ srcOffset0 + 1 ]; + const z0 = src0[ srcOffset0 + 2 ]; + const w0 = src0[ srcOffset0 + 3 ]; + + const x1 = src1[ srcOffset1 ]; + const y1 = src1[ srcOffset1 + 1 ]; + const z1 = src1[ srcOffset1 + 2 ]; + const w1 = src1[ srcOffset1 + 3 ]; + + dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; + dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; + dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; + dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; + + return dst; + + } + + /** + * The x value of this quaternion. + * + * @type {number} + * @default 0 + */ + get x() { + + return this._x; + + } + + set x( value ) { + + this._x = value; + this._onChangeCallback(); + + } + + /** + * The y value of this quaternion. + * + * @type {number} + * @default 0 + */ + get y() { + + return this._y; + + } + + set y( value ) { + + this._y = value; + this._onChangeCallback(); + + } + + /** + * The z value of this quaternion. + * + * @type {number} + * @default 0 + */ + get z() { + + return this._z; + + } + + set z( value ) { + + this._z = value; + this._onChangeCallback(); + + } + + /** + * The w value of this quaternion. + * + * @type {number} + * @default 1 + */ + get w() { + + return this._w; + + } + + set w( value ) { + + this._w = value; + this._onChangeCallback(); + + } + + /** + * Sets the quaternion components. + * + * @param {number} x - The x value of this quaternion. + * @param {number} y - The y value of this quaternion. + * @param {number} z - The z value of this quaternion. + * @param {number} w - The w value of this quaternion. + * @return {Quaternion} A reference to this quaternion. + */ + set( x, y, z, w ) { + + this._x = x; + this._y = y; + this._z = z; + this._w = w; + + this._onChangeCallback(); + + return this; + + } + + /** + * Returns a new quaternion with copied values from this instance. + * + * @return {Quaternion} A clone of this instance. + */ + clone() { + + return new this.constructor( this._x, this._y, this._z, this._w ); + + } + + /** + * Copies the values of the given quaternion to this instance. + * + * @param {Quaternion} quaternion - The quaternion to copy. + * @return {Quaternion} A reference to this quaternion. + */ + copy( quaternion ) { + + this._x = quaternion.x; + this._y = quaternion.y; + this._z = quaternion.z; + this._w = quaternion.w; + + this._onChangeCallback(); + + return this; + + } + + /** + * Sets this quaternion from the rotation specified by the given + * Euler angles. + * + * @param {Euler} euler - The Euler angles. + * @param {boolean} [update=true] - Whether the internal `onChange` callback should be executed or not. + * @return {Quaternion} A reference to this quaternion. + */ + setFromEuler( euler, update = true ) { + + const x = euler._x, y = euler._y, z = euler._z, order = euler._order; + + // http://www.mathworks.com/matlabcentral/fileexchange/ + // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ + // content/SpinCalc.m + + const cos = Math.cos; + const sin = Math.sin; + + const c1 = cos( x / 2 ); + const c2 = cos( y / 2 ); + const c3 = cos( z / 2 ); + + const s1 = sin( x / 2 ); + const s2 = sin( y / 2 ); + const s3 = sin( z / 2 ); + + switch ( order ) { + + case 'XYZ': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'YXZ': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + case 'ZXY': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'ZYX': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + case 'YZX': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'XZY': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + default: + console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order ); + + } + + if ( update === true ) this._onChangeCallback(); + + return this; + + } + + /** + * Sets this quaternion from the given axis and angle. + * + * @param {Vector3} axis - The normalized axis. + * @param {number} angle - The angle in radians. + * @return {Quaternion} A reference to this quaternion. + */ + setFromAxisAngle( axis, angle ) { + + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm + + const halfAngle = angle / 2, s = Math.sin( halfAngle ); + + this._x = axis.x * s; + this._y = axis.y * s; + this._z = axis.z * s; + this._w = Math.cos( halfAngle ); + + this._onChangeCallback(); + + return this; + + } + + /** + * Sets this quaternion from the given rotation matrix. + * + * @param {Matrix4} m - A 4x4 matrix of which the upper 3x3 of matrix is a pure rotation matrix (i.e. unscaled). + * @return {Quaternion} A reference to this quaternion. + */ + setFromRotationMatrix( m ) { + + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm + + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + + const te = m.elements, + + m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], + m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], + m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], + + trace = m11 + m22 + m33; + + if ( trace > 0 ) { + + const s = 0.5 / Math.sqrt( trace + 1.0 ); + + this._w = 0.25 / s; + this._x = ( m32 - m23 ) * s; + this._y = ( m13 - m31 ) * s; + this._z = ( m21 - m12 ) * s; + + } else if ( m11 > m22 && m11 > m33 ) { + + const s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); + + this._w = ( m32 - m23 ) / s; + this._x = 0.25 * s; + this._y = ( m12 + m21 ) / s; + this._z = ( m13 + m31 ) / s; + + } else if ( m22 > m33 ) { + + const s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); + + this._w = ( m13 - m31 ) / s; + this._x = ( m12 + m21 ) / s; + this._y = 0.25 * s; + this._z = ( m23 + m32 ) / s; + + } else { + + const s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); + + this._w = ( m21 - m12 ) / s; + this._x = ( m13 + m31 ) / s; + this._y = ( m23 + m32 ) / s; + this._z = 0.25 * s; + + } + + this._onChangeCallback(); + + return this; + + } + + /** + * Sets this quaternion to the rotation required to rotate the direction vector + * `vFrom` to the direction vector `vTo`. + * + * @param {Vector3} vFrom - The first (normalized) direction vector. + * @param {Vector3} vTo - The second (normalized) direction vector. + * @return {Quaternion} A reference to this quaternion. + */ + setFromUnitVectors( vFrom, vTo ) { + + // assumes direction vectors vFrom and vTo are normalized + + let r = vFrom.dot( vTo ) + 1; + + if ( r < Number.EPSILON ) { + + // vFrom and vTo point in opposite directions + + r = 0; + + if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { + + this._x = - vFrom.y; + this._y = vFrom.x; + this._z = 0; + this._w = r; + + } else { + + this._x = 0; + this._y = - vFrom.z; + this._z = vFrom.y; + this._w = r; + + } + + } else { + + // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 + + this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; + this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; + this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; + this._w = r; + + } + + return this.normalize(); + + } + + /** + * Returns the angle between this quaternion and the given one in radians. + * + * @param {Quaternion} q - The quaternion to compute the angle with. + * @return {number} The angle in radians. + */ + angleTo( q ) { + + return 2 * Math.acos( Math.abs( clamp( this.dot( q ), - 1, 1 ) ) ); + + } + + /** + * Rotates this quaternion by a given angular step to the given quaternion. + * The method ensures that the final quaternion will not overshoot `q`. + * + * @param {Quaternion} q - The target quaternion. + * @param {number} step - The angular step in radians. + * @return {Quaternion} A reference to this quaternion. + */ + rotateTowards( q, step ) { + + const angle = this.angleTo( q ); + + if ( angle === 0 ) return this; + + const t = Math.min( 1, step / angle ); + + this.slerp( q, t ); + + return this; + + } + + /** + * Sets this quaternion to the identity quaternion; that is, to the + * quaternion that represents "no rotation". + * + * @return {Quaternion} A reference to this quaternion. + */ + identity() { + + return this.set( 0, 0, 0, 1 ); + + } + + /** + * Inverts this quaternion via {@link Quaternion#conjugate}. The + * quaternion is assumed to have unit length. + * + * @return {Quaternion} A reference to this quaternion. + */ + invert() { + + return this.conjugate(); + + } + + /** + * Returns the rotational conjugate of this quaternion. The conjugate of a + * quaternion represents the same rotation in the opposite direction about + * the rotational axis. + * + * @return {Quaternion} A reference to this quaternion. + */ + conjugate() { + + this._x *= - 1; + this._y *= - 1; + this._z *= - 1; + + this._onChangeCallback(); + + return this; + + } + + /** + * Calculates the dot product of this quaternion and the given one. + * + * @param {Quaternion} v - The quaternion to compute the dot product with. + * @return {number} The result of the dot product. + */ + dot( v ) { + + return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; + + } + + /** + * Computes the squared Euclidean length (straight-line length) of this quaternion, + * considered as a 4 dimensional vector. This can be useful if you are comparing the + * lengths of two quaternions, as this is a slightly more efficient calculation than + * {@link Quaternion#length}. + * + * @return {number} The squared Euclidean length. + */ + lengthSq() { + + return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; + + } + + /** + * Computes the Euclidean length (straight-line length) of this quaternion, + * considered as a 4 dimensional vector. + * + * @return {number} The Euclidean length. + */ + length() { + + return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); + + } + + /** + * Normalizes this quaternion - that is, calculated the quaternion that performs + * the same rotation as this one, but has a length equal to `1`. + * + * @return {Quaternion} A reference to this quaternion. + */ + normalize() { + + let l = this.length(); + + if ( l === 0 ) { + + this._x = 0; + this._y = 0; + this._z = 0; + this._w = 1; + + } else { + + l = 1 / l; + + this._x = this._x * l; + this._y = this._y * l; + this._z = this._z * l; + this._w = this._w * l; + + } + + this._onChangeCallback(); + + return this; + + } + + /** + * Multiplies this quaternion by the given one. + * + * @param {Quaternion} q - The quaternion. + * @return {Quaternion} A reference to this quaternion. + */ + multiply( q ) { + + return this.multiplyQuaternions( this, q ); + + } + + /** + * Pre-multiplies this quaternion by the given one. + * + * @param {Quaternion} q - The quaternion. + * @return {Quaternion} A reference to this quaternion. + */ + premultiply( q ) { + + return this.multiplyQuaternions( q, this ); + + } + + /** + * Multiplies the given quaternions and stores the result in this instance. + * + * @param {Quaternion} a - The first quaternion. + * @param {Quaternion} b - The second quaternion. + * @return {Quaternion} A reference to this quaternion. + */ + multiplyQuaternions( a, b ) { + + // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm + + const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; + const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; + + this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; + this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; + this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; + this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; + + this._onChangeCallback(); + + return this; + + } + + /** + * Performs a spherical linear interpolation between quaternions. + * + * @param {Quaternion} qb - The target quaternion. + * @param {number} t - The interpolation factor in the closed interval `[0, 1]`. + * @return {Quaternion} A reference to this quaternion. + */ + slerp( qb, t ) { + + if ( t === 0 ) return this; + if ( t === 1 ) return this.copy( qb ); + + const x = this._x, y = this._y, z = this._z, w = this._w; + + // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ + + let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; + + if ( cosHalfTheta < 0 ) { + + this._w = - qb._w; + this._x = - qb._x; + this._y = - qb._y; + this._z = - qb._z; + + cosHalfTheta = - cosHalfTheta; + + } else { + + this.copy( qb ); + + } + + if ( cosHalfTheta >= 1.0 ) { + + this._w = w; + this._x = x; + this._y = y; + this._z = z; + + return this; + + } + + const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta; + + if ( sqrSinHalfTheta <= Number.EPSILON ) { + + const s = 1 - t; + this._w = s * w + t * this._w; + this._x = s * x + t * this._x; + this._y = s * y + t * this._y; + this._z = s * z + t * this._z; + + this.normalize(); // normalize calls _onChangeCallback() + + return this; + + } + + const sinHalfTheta = Math.sqrt( sqrSinHalfTheta ); + const halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); + const ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, + ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; + + this._w = ( w * ratioA + this._w * ratioB ); + this._x = ( x * ratioA + this._x * ratioB ); + this._y = ( y * ratioA + this._y * ratioB ); + this._z = ( z * ratioA + this._z * ratioB ); + + this._onChangeCallback(); + + return this; + + } + + /** + * Performs a spherical linear interpolation between the given quaternions + * and stores the result in this quaternion. + * + * @param {Quaternion} qa - The source quaternion. + * @param {Quaternion} qb - The target quaternion. + * @param {number} t - The interpolation factor in the closed interval `[0, 1]`. + * @return {Quaternion} A reference to this quaternion. + */ + slerpQuaternions( qa, qb, t ) { + + return this.copy( qa ).slerp( qb, t ); + + } + + /** + * Sets this quaternion to a uniformly random, normalized quaternion. + * + * @return {Quaternion} A reference to this quaternion. + */ + random() { + + // Ken Shoemake + // Uniform random rotations + // D. Kirk, editor, Graphics Gems III, pages 124-132. Academic Press, New York, 1992. + + const theta1 = 2 * Math.PI * Math.random(); + const theta2 = 2 * Math.PI * Math.random(); + + const x0 = Math.random(); + const r1 = Math.sqrt( 1 - x0 ); + const r2 = Math.sqrt( x0 ); + + return this.set( + r1 * Math.sin( theta1 ), + r1 * Math.cos( theta1 ), + r2 * Math.sin( theta2 ), + r2 * Math.cos( theta2 ), + ); + + } + + /** + * Returns `true` if this quaternion is equal with the given one. + * + * @param {Quaternion} quaternion - The quaternion to test for equality. + * @return {boolean} Whether this quaternion is equal with the given one. + */ + equals( quaternion ) { + + return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); + + } + + /** + * Sets this quaternion's components from the given array. + * + * @param {Array} array - An array holding the quaternion component values. + * @param {number} [offset=0] - The offset into the array. + * @return {Quaternion} A reference to this quaternion. + */ + fromArray( array, offset = 0 ) { + + this._x = array[ offset ]; + this._y = array[ offset + 1 ]; + this._z = array[ offset + 2 ]; + this._w = array[ offset + 3 ]; + + this._onChangeCallback(); + + return this; + + } + + /** + * Writes the components of this quaternion to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the quaternion components. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The quaternion components. + */ + toArray( array = [], offset = 0 ) { + + array[ offset ] = this._x; + array[ offset + 1 ] = this._y; + array[ offset + 2 ] = this._z; + array[ offset + 3 ] = this._w; + + return array; + + } + + /** + * Sets the components of this quaternion from the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute holding quaternion data. + * @param {number} index - The index into the attribute. + * @return {Quaternion} A reference to this quaternion. + */ + fromBufferAttribute( attribute, index ) { + + this._x = attribute.getX( index ); + this._y = attribute.getY( index ); + this._z = attribute.getZ( index ); + this._w = attribute.getW( index ); + + this._onChangeCallback(); + + return this; + + } + + /** + * This methods defines the serialization result of this class. Returns the + * numerical elements of this quaternion in an array of format `[x, y, z, w]`. + * + * @return {Array} The serialized quaternion. + */ + toJSON() { + + return this.toArray(); + + } + + _onChange( callback ) { + + this._onChangeCallback = callback; + + return this; + + } + + _onChangeCallback() {} + + *[ Symbol.iterator ]() { + + yield this._x; + yield this._y; + yield this._z; + yield this._w; + + } + +} + +/** + * Class representing a 3D vector. A 3D vector is an ordered triplet of numbers + * (labeled x, y and z), which can be used to represent a number of things, such as: + * + * - A point in 3D space. + * - A direction and length in 3D space. In three.js the length will + * always be the Euclidean distance(straight-line distance) from `(0, 0, 0)` to `(x, y, z)` + * and the direction is also measured from `(0, 0, 0)` towards `(x, y, z)`. + * - Any arbitrary ordered triplet of numbers. + * + * There are other things a 3D vector can be used to represent, such as + * momentum vectors and so on, however these are the most + * common uses in three.js. + * + * Iterating through a vector instance will yield its components `(x, y, z)` in + * the corresponding order. + * ```js + * const a = new THREE.Vector3( 0, 1, 0 ); + * + * //no arguments; will be initialised to (0, 0, 0) + * const b = new THREE.Vector3( ); + * + * const d = a.distanceTo( b ); + * ``` + */ +class Vector3 { + + /** + * Constructs a new 3D vector. + * + * @param {number} [x=0] - The x value of this vector. + * @param {number} [y=0] - The y value of this vector. + * @param {number} [z=0] - The z value of this vector. + */ + constructor( x = 0, y = 0, z = 0 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + Vector3.prototype.isVector3 = true; + + /** + * The x value of this vector. + * + * @type {number} + */ + this.x = x; + + /** + * The y value of this vector. + * + * @type {number} + */ + this.y = y; + + /** + * The z value of this vector. + * + * @type {number} + */ + this.z = z; + + } + + /** + * Sets the vector components. + * + * @param {number} x - The value of the x component. + * @param {number} y - The value of the y component. + * @param {number} z - The value of the z component. + * @return {Vector3} A reference to this vector. + */ + set( x, y, z ) { + + if ( z === undefined ) z = this.z; // sprite.scale.set(x,y) + + this.x = x; + this.y = y; + this.z = z; + + return this; + + } + + /** + * Sets the vector components to the same value. + * + * @param {number} scalar - The value to set for all vector components. + * @return {Vector3} A reference to this vector. + */ + setScalar( scalar ) { + + this.x = scalar; + this.y = scalar; + this.z = scalar; + + return this; + + } + + /** + * Sets the vector's x component to the given value + * + * @param {number} x - The value to set. + * @return {Vector3} A reference to this vector. + */ + setX( x ) { + + this.x = x; + + return this; + + } + + /** + * Sets the vector's y component to the given value + * + * @param {number} y - The value to set. + * @return {Vector3} A reference to this vector. + */ + setY( y ) { + + this.y = y; + + return this; + + } + + /** + * Sets the vector's z component to the given value + * + * @param {number} z - The value to set. + * @return {Vector3} A reference to this vector. + */ + setZ( z ) { + + this.z = z; + + return this; + + } + + /** + * Allows to set a vector component with an index. + * + * @param {number} index - The component index. `0` equals to x, `1` equals to y, `2` equals to z. + * @param {number} value - The value to set. + * @return {Vector3} A reference to this vector. + */ + setComponent( index, value ) { + + switch ( index ) { + + case 0: this.x = value; break; + case 1: this.y = value; break; + case 2: this.z = value; break; + default: throw new Error( 'index is out of range: ' + index ); + + } + + return this; + + } + + /** + * Returns the value of the vector component which matches the given index. + * + * @param {number} index - The component index. `0` equals to x, `1` equals to y, `2` equals to z. + * @return {number} A vector component value. + */ + getComponent( index ) { + + switch ( index ) { + + case 0: return this.x; + case 1: return this.y; + case 2: return this.z; + default: throw new Error( 'index is out of range: ' + index ); + + } + + } + + /** + * Returns a new vector with copied values from this instance. + * + * @return {Vector3} A clone of this instance. + */ + clone() { + + return new this.constructor( this.x, this.y, this.z ); + + } + + /** + * Copies the values of the given vector to this instance. + * + * @param {Vector3} v - The vector to copy. + * @return {Vector3} A reference to this vector. + */ + copy( v ) { + + this.x = v.x; + this.y = v.y; + this.z = v.z; + + return this; + + } + + /** + * Adds the given vector to this instance. + * + * @param {Vector3} v - The vector to add. + * @return {Vector3} A reference to this vector. + */ + add( v ) { + + this.x += v.x; + this.y += v.y; + this.z += v.z; + + return this; + + } + + /** + * Adds the given scalar value to all components of this instance. + * + * @param {number} s - The scalar to add. + * @return {Vector3} A reference to this vector. + */ + addScalar( s ) { + + this.x += s; + this.y += s; + this.z += s; + + return this; + + } + + /** + * Adds the given vectors and stores the result in this instance. + * + * @param {Vector3} a - The first vector. + * @param {Vector3} b - The second vector. + * @return {Vector3} A reference to this vector. + */ + addVectors( a, b ) { + + this.x = a.x + b.x; + this.y = a.y + b.y; + this.z = a.z + b.z; + + return this; + + } + + /** + * Adds the given vector scaled by the given factor to this instance. + * + * @param {Vector3|Vector4} v - The vector. + * @param {number} s - The factor that scales `v`. + * @return {Vector3} A reference to this vector. + */ + addScaledVector( v, s ) { + + this.x += v.x * s; + this.y += v.y * s; + this.z += v.z * s; + + return this; + + } + + /** + * Subtracts the given vector from this instance. + * + * @param {Vector3} v - The vector to subtract. + * @return {Vector3} A reference to this vector. + */ + sub( v ) { + + this.x -= v.x; + this.y -= v.y; + this.z -= v.z; + + return this; + + } + + /** + * Subtracts the given scalar value from all components of this instance. + * + * @param {number} s - The scalar to subtract. + * @return {Vector3} A reference to this vector. + */ + subScalar( s ) { + + this.x -= s; + this.y -= s; + this.z -= s; + + return this; + + } + + /** + * Subtracts the given vectors and stores the result in this instance. + * + * @param {Vector3} a - The first vector. + * @param {Vector3} b - The second vector. + * @return {Vector3} A reference to this vector. + */ + subVectors( a, b ) { + + this.x = a.x - b.x; + this.y = a.y - b.y; + this.z = a.z - b.z; + + return this; + + } + + /** + * Multiplies the given vector with this instance. + * + * @param {Vector3} v - The vector to multiply. + * @return {Vector3} A reference to this vector. + */ + multiply( v ) { + + this.x *= v.x; + this.y *= v.y; + this.z *= v.z; + + return this; + + } + + /** + * Multiplies the given scalar value with all components of this instance. + * + * @param {number} scalar - The scalar to multiply. + * @return {Vector3} A reference to this vector. + */ + multiplyScalar( scalar ) { + + this.x *= scalar; + this.y *= scalar; + this.z *= scalar; + + return this; + + } + + /** + * Multiplies the given vectors and stores the result in this instance. + * + * @param {Vector3} a - The first vector. + * @param {Vector3} b - The second vector. + * @return {Vector3} A reference to this vector. + */ + multiplyVectors( a, b ) { + + this.x = a.x * b.x; + this.y = a.y * b.y; + this.z = a.z * b.z; + + return this; + + } + + /** + * Applies the given Euler rotation to this vector. + * + * @param {Euler} euler - The Euler angles. + * @return {Vector3} A reference to this vector. + */ + applyEuler( euler ) { + + return this.applyQuaternion( _quaternion$4.setFromEuler( euler ) ); + + } + + /** + * Applies a rotation specified by an axis and an angle to this vector. + * + * @param {Vector3} axis - A normalized vector representing the rotation axis. + * @param {number} angle - The angle in radians. + * @return {Vector3} A reference to this vector. + */ + applyAxisAngle( axis, angle ) { + + return this.applyQuaternion( _quaternion$4.setFromAxisAngle( axis, angle ) ); + + } + + /** + * Multiplies this vector with the given 3x3 matrix. + * + * @param {Matrix3} m - The 3x3 matrix. + * @return {Vector3} A reference to this vector. + */ + applyMatrix3( m ) { + + const x = this.x, y = this.y, z = this.z; + const e = m.elements; + + this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; + this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; + this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; + + return this; + + } + + /** + * Multiplies this vector by the given normal matrix and normalizes + * the result. + * + * @param {Matrix3} m - The normal matrix. + * @return {Vector3} A reference to this vector. + */ + applyNormalMatrix( m ) { + + return this.applyMatrix3( m ).normalize(); + + } + + /** + * Multiplies this vector (with an implicit 1 in the 4th dimension) by m, and + * divides by perspective. + * + * @param {Matrix4} m - The matrix to apply. + * @return {Vector3} A reference to this vector. + */ + applyMatrix4( m ) { + + const x = this.x, y = this.y, z = this.z; + const e = m.elements; + + const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); + + this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w; + this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w; + this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w; + + return this; + + } + + /** + * Applies the given Quaternion to this vector. + * + * @param {Quaternion} q - The Quaternion. + * @return {Vector3} A reference to this vector. + */ + applyQuaternion( q ) { + + // quaternion q is assumed to have unit length + + const vx = this.x, vy = this.y, vz = this.z; + const qx = q.x, qy = q.y, qz = q.z, qw = q.w; + + // t = 2 * cross( q.xyz, v ); + const tx = 2 * ( qy * vz - qz * vy ); + const ty = 2 * ( qz * vx - qx * vz ); + const tz = 2 * ( qx * vy - qy * vx ); + + // v + q.w * t + cross( q.xyz, t ); + this.x = vx + qw * tx + qy * tz - qz * ty; + this.y = vy + qw * ty + qz * tx - qx * tz; + this.z = vz + qw * tz + qx * ty - qy * tx; + + return this; + + } + + /** + * Projects this vector from world space into the camera's normalized + * device coordinate (NDC) space. + * + * @param {Camera} camera - The camera. + * @return {Vector3} A reference to this vector. + */ + project( camera ) { + + return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix ); + + } + + /** + * Unprojects this vector from the camera's normalized device coordinate (NDC) + * space into world space. + * + * @param {Camera} camera - The camera. + * @return {Vector3} A reference to this vector. + */ + unproject( camera ) { + + return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld ); + + } + + /** + * Transforms the direction of this vector by a matrix (the upper left 3 x 3 + * subset of the given 4x4 matrix and then normalizes the result. + * + * @param {Matrix4} m - The matrix. + * @return {Vector3} A reference to this vector. + */ + transformDirection( m ) { + + // input: THREE.Matrix4 affine matrix + // vector interpreted as a direction + + const x = this.x, y = this.y, z = this.z; + const e = m.elements; + + this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; + this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; + this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; + + return this.normalize(); + + } + + /** + * Divides this instance by the given vector. + * + * @param {Vector3} v - The vector to divide. + * @return {Vector3} A reference to this vector. + */ + divide( v ) { + + this.x /= v.x; + this.y /= v.y; + this.z /= v.z; + + return this; + + } + + /** + * Divides this vector by the given scalar. + * + * @param {number} scalar - The scalar to divide. + * @return {Vector3} A reference to this vector. + */ + divideScalar( scalar ) { + + return this.multiplyScalar( 1 / scalar ); + + } + + /** + * If this vector's x, y or z value is greater than the given vector's x, y or z + * value, replace that value with the corresponding min value. + * + * @param {Vector3} v - The vector. + * @return {Vector3} A reference to this vector. + */ + min( v ) { + + this.x = Math.min( this.x, v.x ); + this.y = Math.min( this.y, v.y ); + this.z = Math.min( this.z, v.z ); + + return this; + + } + + /** + * If this vector's x, y or z value is less than the given vector's x, y or z + * value, replace that value with the corresponding max value. + * + * @param {Vector3} v - The vector. + * @return {Vector3} A reference to this vector. + */ + max( v ) { + + this.x = Math.max( this.x, v.x ); + this.y = Math.max( this.y, v.y ); + this.z = Math.max( this.z, v.z ); + + return this; + + } + + /** + * If this vector's x, y or z value is greater than the max vector's x, y or z + * value, it is replaced by the corresponding value. + * If this vector's x, y or z value is less than the min vector's x, y or z value, + * it is replaced by the corresponding value. + * + * @param {Vector3} min - The minimum x, y and z values. + * @param {Vector3} max - The maximum x, y and z values in the desired range. + * @return {Vector3} A reference to this vector. + */ + clamp( min, max ) { + + // assumes min < max, componentwise + + this.x = clamp( this.x, min.x, max.x ); + this.y = clamp( this.y, min.y, max.y ); + this.z = clamp( this.z, min.z, max.z ); + + return this; + + } + + /** + * If this vector's x, y or z values are greater than the max value, they are + * replaced by the max value. + * If this vector's x, y or z values are less than the min value, they are + * replaced by the min value. + * + * @param {number} minVal - The minimum value the components will be clamped to. + * @param {number} maxVal - The maximum value the components will be clamped to. + * @return {Vector3} A reference to this vector. + */ + clampScalar( minVal, maxVal ) { + + this.x = clamp( this.x, minVal, maxVal ); + this.y = clamp( this.y, minVal, maxVal ); + this.z = clamp( this.z, minVal, maxVal ); + + return this; + + } + + /** + * If this vector's length is greater than the max value, it is replaced by + * the max value. + * If this vector's length is less than the min value, it is replaced by the + * min value. + * + * @param {number} min - The minimum value the vector length will be clamped to. + * @param {number} max - The maximum value the vector length will be clamped to. + * @return {Vector3} A reference to this vector. + */ + clampLength( min, max ) { + + const length = this.length(); + + return this.divideScalar( length || 1 ).multiplyScalar( clamp( length, min, max ) ); + + } + + /** + * The components of this vector are rounded down to the nearest integer value. + * + * @return {Vector3} A reference to this vector. + */ + floor() { + + this.x = Math.floor( this.x ); + this.y = Math.floor( this.y ); + this.z = Math.floor( this.z ); + + return this; + + } + + /** + * The components of this vector are rounded up to the nearest integer value. + * + * @return {Vector3} A reference to this vector. + */ + ceil() { + + this.x = Math.ceil( this.x ); + this.y = Math.ceil( this.y ); + this.z = Math.ceil( this.z ); + + return this; + + } + + /** + * The components of this vector are rounded to the nearest integer value + * + * @return {Vector3} A reference to this vector. + */ + round() { + + this.x = Math.round( this.x ); + this.y = Math.round( this.y ); + this.z = Math.round( this.z ); + + return this; + + } + + /** + * The components of this vector are rounded towards zero (up if negative, + * down if positive) to an integer value. + * + * @return {Vector3} A reference to this vector. + */ + roundToZero() { + + this.x = Math.trunc( this.x ); + this.y = Math.trunc( this.y ); + this.z = Math.trunc( this.z ); + + return this; + + } + + /** + * Inverts this vector - i.e. sets x = -x, y = -y and z = -z. + * + * @return {Vector3} A reference to this vector. + */ + negate() { + + this.x = - this.x; + this.y = - this.y; + this.z = - this.z; + + return this; + + } + + /** + * Calculates the dot product of the given vector with this instance. + * + * @param {Vector3} v - The vector to compute the dot product with. + * @return {number} The result of the dot product. + */ + dot( v ) { + + return this.x * v.x + this.y * v.y + this.z * v.z; + + } + + // TODO lengthSquared? + + /** + * Computes the square of the Euclidean length (straight-line length) from + * (0, 0, 0) to (x, y, z). If you are comparing the lengths of vectors, you should + * compare the length squared instead as it is slightly more efficient to calculate. + * + * @return {number} The square length of this vector. + */ + lengthSq() { + + return this.x * this.x + this.y * this.y + this.z * this.z; + + } + + /** + * Computes the Euclidean length (straight-line length) from (0, 0, 0) to (x, y, z). + * + * @return {number} The length of this vector. + */ + length() { + + return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); + + } + + /** + * Computes the Manhattan length of this vector. + * + * @return {number} The length of this vector. + */ + manhattanLength() { + + return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); + + } + + /** + * Converts this vector to a unit vector - that is, sets it equal to a vector + * with the same direction as this one, but with a vector length of `1`. + * + * @return {Vector3} A reference to this vector. + */ + normalize() { + + return this.divideScalar( this.length() || 1 ); + + } + + /** + * Sets this vector to a vector with the same direction as this one, but + * with the specified length. + * + * @param {number} length - The new length of this vector. + * @return {Vector3} A reference to this vector. + */ + setLength( length ) { + + return this.normalize().multiplyScalar( length ); + + } + + /** + * Linearly interpolates between the given vector and this instance, where + * alpha is the percent distance along the line - alpha = 0 will be this + * vector, and alpha = 1 will be the given one. + * + * @param {Vector3} v - The vector to interpolate towards. + * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. + * @return {Vector3} A reference to this vector. + */ + lerp( v, alpha ) { + + this.x += ( v.x - this.x ) * alpha; + this.y += ( v.y - this.y ) * alpha; + this.z += ( v.z - this.z ) * alpha; + + return this; + + } + + /** + * Linearly interpolates between the given vectors, where alpha is the percent + * distance along the line - alpha = 0 will be first vector, and alpha = 1 will + * be the second one. The result is stored in this instance. + * + * @param {Vector3} v1 - The first vector. + * @param {Vector3} v2 - The second vector. + * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. + * @return {Vector3} A reference to this vector. + */ + lerpVectors( v1, v2, alpha ) { + + this.x = v1.x + ( v2.x - v1.x ) * alpha; + this.y = v1.y + ( v2.y - v1.y ) * alpha; + this.z = v1.z + ( v2.z - v1.z ) * alpha; + + return this; + + } + + /** + * Calculates the cross product of the given vector with this instance. + * + * @param {Vector3} v - The vector to compute the cross product with. + * @return {Vector3} The result of the cross product. + */ + cross( v ) { + + return this.crossVectors( this, v ); + + } + + /** + * Calculates the cross product of the given vectors and stores the result + * in this instance. + * + * @param {Vector3} a - The first vector. + * @param {Vector3} b - The second vector. + * @return {Vector3} A reference to this vector. + */ + crossVectors( a, b ) { + + const ax = a.x, ay = a.y, az = a.z; + const bx = b.x, by = b.y, bz = b.z; + + this.x = ay * bz - az * by; + this.y = az * bx - ax * bz; + this.z = ax * by - ay * bx; + + return this; + + } + + /** + * Projects this vector onto the given one. + * + * @param {Vector3} v - The vector to project to. + * @return {Vector3} A reference to this vector. + */ + projectOnVector( v ) { + + const denominator = v.lengthSq(); + + if ( denominator === 0 ) return this.set( 0, 0, 0 ); + + const scalar = v.dot( this ) / denominator; + + return this.copy( v ).multiplyScalar( scalar ); + + } + + /** + * Projects this vector onto a plane by subtracting this + * vector projected onto the plane's normal from this vector. + * + * @param {Vector3} planeNormal - The plane normal. + * @return {Vector3} A reference to this vector. + */ + projectOnPlane( planeNormal ) { + + _vector$c.copy( this ).projectOnVector( planeNormal ); + + return this.sub( _vector$c ); + + } + + /** + * Reflects this vector off a plane orthogonal to the given normal vector. + * + * @param {Vector3} normal - The (normalized) normal vector. + * @return {Vector3} A reference to this vector. + */ + reflect( normal ) { + + return this.sub( _vector$c.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); + + } + /** + * Returns the angle between the given vector and this instance in radians. + * + * @param {Vector3} v - The vector to compute the angle with. + * @return {number} The angle in radians. + */ + angleTo( v ) { + + const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); + + if ( denominator === 0 ) return Math.PI / 2; + + const theta = this.dot( v ) / denominator; + + // clamp, to handle numerical problems + + return Math.acos( clamp( theta, - 1, 1 ) ); + + } + + /** + * Computes the distance from the given vector to this instance. + * + * @param {Vector3} v - The vector to compute the distance to. + * @return {number} The distance. + */ + distanceTo( v ) { + + return Math.sqrt( this.distanceToSquared( v ) ); + + } + + /** + * Computes the squared distance from the given vector to this instance. + * If you are just comparing the distance with another distance, you should compare + * the distance squared instead as it is slightly more efficient to calculate. + * + * @param {Vector3} v - The vector to compute the squared distance to. + * @return {number} The squared distance. + */ + distanceToSquared( v ) { + + const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; + + return dx * dx + dy * dy + dz * dz; + + } + + /** + * Computes the Manhattan distance from the given vector to this instance. + * + * @param {Vector3} v - The vector to compute the Manhattan distance to. + * @return {number} The Manhattan distance. + */ + manhattanDistanceTo( v ) { + + return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z ); + + } + + /** + * Sets the vector components from the given spherical coordinates. + * + * @param {Spherical} s - The spherical coordinates. + * @return {Vector3} A reference to this vector. + */ + setFromSpherical( s ) { + + return this.setFromSphericalCoords( s.radius, s.phi, s.theta ); + + } + + /** + * Sets the vector components from the given spherical coordinates. + * + * @param {number} radius - The radius. + * @param {number} phi - The phi angle in radians. + * @param {number} theta - The theta angle in radians. + * @return {Vector3} A reference to this vector. + */ + setFromSphericalCoords( radius, phi, theta ) { + + const sinPhiRadius = Math.sin( phi ) * radius; + + this.x = sinPhiRadius * Math.sin( theta ); + this.y = Math.cos( phi ) * radius; + this.z = sinPhiRadius * Math.cos( theta ); + + return this; + + } + + /** + * Sets the vector components from the given cylindrical coordinates. + * + * @param {Cylindrical} c - The cylindrical coordinates. + * @return {Vector3} A reference to this vector. + */ + setFromCylindrical( c ) { + + return this.setFromCylindricalCoords( c.radius, c.theta, c.y ); + + } + + /** + * Sets the vector components from the given cylindrical coordinates. + * + * @param {number} radius - The radius. + * @param {number} theta - The theta angle in radians. + * @param {number} y - The y value. + * @return {Vector3} A reference to this vector. + */ + setFromCylindricalCoords( radius, theta, y ) { + + this.x = radius * Math.sin( theta ); + this.y = y; + this.z = radius * Math.cos( theta ); + + return this; + + } + + /** + * Sets the vector components to the position elements of the + * given transformation matrix. + * + * @param {Matrix4} m - The 4x4 matrix. + * @return {Vector3} A reference to this vector. + */ + setFromMatrixPosition( m ) { + + const e = m.elements; + + this.x = e[ 12 ]; + this.y = e[ 13 ]; + this.z = e[ 14 ]; + + return this; + + } + + /** + * Sets the vector components to the scale elements of the + * given transformation matrix. + * + * @param {Matrix4} m - The 4x4 matrix. + * @return {Vector3} A reference to this vector. + */ + setFromMatrixScale( m ) { + + const sx = this.setFromMatrixColumn( m, 0 ).length(); + const sy = this.setFromMatrixColumn( m, 1 ).length(); + const sz = this.setFromMatrixColumn( m, 2 ).length(); + + this.x = sx; + this.y = sy; + this.z = sz; + + return this; + + } + + /** + * Sets the vector components from the specified matrix column. + * + * @param {Matrix4} m - The 4x4 matrix. + * @param {number} index - The column index. + * @return {Vector3} A reference to this vector. + */ + setFromMatrixColumn( m, index ) { + + return this.fromArray( m.elements, index * 4 ); + + } + + /** + * Sets the vector components from the specified matrix column. + * + * @param {Matrix3} m - The 3x3 matrix. + * @param {number} index - The column index. + * @return {Vector3} A reference to this vector. + */ + setFromMatrix3Column( m, index ) { + + return this.fromArray( m.elements, index * 3 ); + + } + + /** + * Sets the vector components from the given Euler angles. + * + * @param {Euler} e - The Euler angles to set. + * @return {Vector3} A reference to this vector. + */ + setFromEuler( e ) { + + this.x = e._x; + this.y = e._y; + this.z = e._z; + + return this; + + } + + /** + * Sets the vector components from the RGB components of the + * given color. + * + * @param {Color} c - The color to set. + * @return {Vector3} A reference to this vector. + */ + setFromColor( c ) { + + this.x = c.r; + this.y = c.g; + this.z = c.b; + + return this; + + } + + /** + * Returns `true` if this vector is equal with the given one. + * + * @param {Vector3} v - The vector to test for equality. + * @return {boolean} Whether this vector is equal with the given one. + */ + equals( v ) { + + return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); + + } + + /** + * Sets this vector's x value to be `array[ offset ]`, y value to be `array[ offset + 1 ]` + * and z value to be `array[ offset + 2 ]`. + * + * @param {Array} array - An array holding the vector component values. + * @param {number} [offset=0] - The offset into the array. + * @return {Vector3} A reference to this vector. + */ + fromArray( array, offset = 0 ) { + + this.x = array[ offset ]; + this.y = array[ offset + 1 ]; + this.z = array[ offset + 2 ]; + + return this; + + } + + /** + * Writes the components of this vector to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the vector components. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The vector components. + */ + toArray( array = [], offset = 0 ) { + + array[ offset ] = this.x; + array[ offset + 1 ] = this.y; + array[ offset + 2 ] = this.z; + + return array; + + } + + /** + * Sets the components of this vector from the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute holding vector data. + * @param {number} index - The index into the attribute. + * @return {Vector3} A reference to this vector. + */ + fromBufferAttribute( attribute, index ) { + + this.x = attribute.getX( index ); + this.y = attribute.getY( index ); + this.z = attribute.getZ( index ); + + return this; + + } + + /** + * Sets each component of this vector to a pseudo-random value between `0` and + * `1`, excluding `1`. + * + * @return {Vector3} A reference to this vector. + */ + random() { + + this.x = Math.random(); + this.y = Math.random(); + this.z = Math.random(); + + return this; + + } + + /** + * Sets this vector to a uniformly random point on a unit sphere. + * + * @return {Vector3} A reference to this vector. + */ + randomDirection() { + + // https://mathworld.wolfram.com/SpherePointPicking.html + + const theta = Math.random() * Math.PI * 2; + const u = Math.random() * 2 - 1; + const c = Math.sqrt( 1 - u * u ); + + this.x = c * Math.cos( theta ); + this.y = u; + this.z = c * Math.sin( theta ); + + return this; + + } + + *[ Symbol.iterator ]() { + + yield this.x; + yield this.y; + yield this.z; + + } + +} + +const _vector$c = /*@__PURE__*/ new Vector3(); +const _quaternion$4 = /*@__PURE__*/ new Quaternion(); + +/** + * Represents a 3x3 matrix. + * + * A Note on Row-Major and Column-Major Ordering: + * + * The constructor and {@link Matrix3#set} method take arguments in + * [row-major]{@link https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order} + * order, while internally they are stored in the {@link Matrix3#elements} array in column-major order. + * This means that calling: + * ```js + * const m = new THREE.Matrix(); + * m.set( 11, 12, 13, + * 21, 22, 23, + * 31, 32, 33 ); + * ``` + * will result in the elements array containing: + * ```js + * m.elements = [ 11, 21, 31, + * 12, 22, 32, + * 13, 23, 33 ]; + * ``` + * and internally all calculations are performed using column-major ordering. + * However, as the actual ordering makes no difference mathematically and + * most people are used to thinking about matrices in row-major order, the + * three.js documentation shows matrices in row-major order. Just bear in + * mind that if you are reading the source code, you'll have to take the + * transpose of any matrices outlined here to make sense of the calculations. + */ +class Matrix3 { + + /** + * Constructs a new 3x3 matrix. The arguments are supposed to be + * in row-major order. If no arguments are provided, the constructor + * initializes the matrix as an identity matrix. + * + * @param {number} [n11] - 1-1 matrix element. + * @param {number} [n12] - 1-2 matrix element. + * @param {number} [n13] - 1-3 matrix element. + * @param {number} [n21] - 2-1 matrix element. + * @param {number} [n22] - 2-2 matrix element. + * @param {number} [n23] - 2-3 matrix element. + * @param {number} [n31] - 3-1 matrix element. + * @param {number} [n32] - 3-2 matrix element. + * @param {number} [n33] - 3-3 matrix element. + */ + constructor( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + Matrix3.prototype.isMatrix3 = true; + + /** + * A column-major list of matrix values. + * + * @type {Array} + */ + this.elements = [ + + 1, 0, 0, + 0, 1, 0, + 0, 0, 1 + + ]; + + if ( n11 !== undefined ) { + + this.set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ); + + } + + } + + /** + * Sets the elements of the matrix.The arguments are supposed to be + * in row-major order. + * + * @param {number} [n11] - 1-1 matrix element. + * @param {number} [n12] - 1-2 matrix element. + * @param {number} [n13] - 1-3 matrix element. + * @param {number} [n21] - 2-1 matrix element. + * @param {number} [n22] - 2-2 matrix element. + * @param {number} [n23] - 2-3 matrix element. + * @param {number} [n31] - 3-1 matrix element. + * @param {number} [n32] - 3-2 matrix element. + * @param {number} [n33] - 3-3 matrix element. + * @return {Matrix3} A reference to this matrix. + */ + set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { + + const te = this.elements; + + te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31; + te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32; + te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33; + + return this; + + } + + /** + * Sets this matrix to the 3x3 identity matrix. + * + * @return {Matrix3} A reference to this matrix. + */ + identity() { + + this.set( + + 1, 0, 0, + 0, 1, 0, + 0, 0, 1 + + ); + + return this; + + } + + /** + * Copies the values of the given matrix to this instance. + * + * @param {Matrix3} m - The matrix to copy. + * @return {Matrix3} A reference to this matrix. + */ + copy( m ) { + + const te = this.elements; + const me = m.elements; + + te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; + te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; + te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; + + return this; + + } + + /** + * Extracts the basis of this matrix into the three axis vectors provided. + * + * @param {Vector3} xAxis - The basis's x axis. + * @param {Vector3} yAxis - The basis's y axis. + * @param {Vector3} zAxis - The basis's z axis. + * @return {Matrix3} A reference to this matrix. + */ + extractBasis( xAxis, yAxis, zAxis ) { + + xAxis.setFromMatrix3Column( this, 0 ); + yAxis.setFromMatrix3Column( this, 1 ); + zAxis.setFromMatrix3Column( this, 2 ); + + return this; + + } + + /** + * Set this matrix to the upper 3x3 matrix of the given 4x4 matrix. + * + * @param {Matrix4} m - The 4x4 matrix. + * @return {Matrix3} A reference to this matrix. + */ + setFromMatrix4( m ) { + + const me = m.elements; + + this.set( + + me[ 0 ], me[ 4 ], me[ 8 ], + me[ 1 ], me[ 5 ], me[ 9 ], + me[ 2 ], me[ 6 ], me[ 10 ] + + ); + + return this; + + } + + /** + * Post-multiplies this matrix by the given 3x3 matrix. + * + * @param {Matrix3} m - The matrix to multiply with. + * @return {Matrix3} A reference to this matrix. + */ + multiply( m ) { + + return this.multiplyMatrices( this, m ); + + } + + /** + * Pre-multiplies this matrix by the given 3x3 matrix. + * + * @param {Matrix3} m - The matrix to multiply with. + * @return {Matrix3} A reference to this matrix. + */ + premultiply( m ) { + + return this.multiplyMatrices( m, this ); + + } + + /** + * Multiples the given 3x3 matrices and stores the result + * in this matrix. + * + * @param {Matrix3} a - The first matrix. + * @param {Matrix3} b - The second matrix. + * @return {Matrix3} A reference to this matrix. + */ + multiplyMatrices( a, b ) { + + const ae = a.elements; + const be = b.elements; + const te = this.elements; + + const a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ]; + const a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ]; + const a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ]; + + const b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ]; + const b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ]; + const b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ]; + + te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31; + te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32; + te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33; + + te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31; + te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32; + te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33; + + te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31; + te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32; + te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33; + + return this; + + } + + /** + * Multiplies every component of the matrix by the given scalar. + * + * @param {number} s - The scalar. + * @return {Matrix3} A reference to this matrix. + */ + multiplyScalar( s ) { + + const te = this.elements; + + te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; + te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; + te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; + + return this; + + } + + /** + * Computes and returns the determinant of this matrix. + * + * @return {number} The determinant. + */ + determinant() { + + const te = this.elements; + + const a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], + d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], + g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; + + return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; + + } + + /** + * Inverts this matrix, using the [analytic method]{@link https://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution}. + * You can not invert with a determinant of zero. If you attempt this, the method produces + * a zero matrix instead. + * + * @return {Matrix3} A reference to this matrix. + */ + invert() { + + const te = this.elements, + + n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], + n12 = te[ 3 ], n22 = te[ 4 ], n32 = te[ 5 ], + n13 = te[ 6 ], n23 = te[ 7 ], n33 = te[ 8 ], + + t11 = n33 * n22 - n32 * n23, + t12 = n32 * n13 - n33 * n12, + t13 = n23 * n12 - n22 * n13, + + det = n11 * t11 + n21 * t12 + n31 * t13; + + if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 ); + + const detInv = 1 / det; + + te[ 0 ] = t11 * detInv; + te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv; + te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv; + + te[ 3 ] = t12 * detInv; + te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv; + te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv; + + te[ 6 ] = t13 * detInv; + te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv; + te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv; + + return this; + + } + + /** + * Transposes this matrix in place. + * + * @return {Matrix3} A reference to this matrix. + */ + transpose() { + + let tmp; + const m = this.elements; + + tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; + tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; + tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; + + return this; + + } + + /** + * Computes the normal matrix which is the inverse transpose of the upper + * left 3x3 portion of the given 4x4 matrix. + * + * @param {Matrix4} matrix4 - The 4x4 matrix. + * @return {Matrix3} A reference to this matrix. + */ + getNormalMatrix( matrix4 ) { + + return this.setFromMatrix4( matrix4 ).invert().transpose(); + + } + + /** + * Transposes this matrix into the supplied array, and returns itself unchanged. + * + * @param {Array} r - An array to store the transposed matrix elements. + * @return {Matrix3} A reference to this matrix. + */ + transposeIntoArray( r ) { + + const m = this.elements; + + r[ 0 ] = m[ 0 ]; + r[ 1 ] = m[ 3 ]; + r[ 2 ] = m[ 6 ]; + r[ 3 ] = m[ 1 ]; + r[ 4 ] = m[ 4 ]; + r[ 5 ] = m[ 7 ]; + r[ 6 ] = m[ 2 ]; + r[ 7 ] = m[ 5 ]; + r[ 8 ] = m[ 8 ]; + + return this; + + } + + /** + * Sets the UV transform matrix from offset, repeat, rotation, and center. + * + * @param {number} tx - Offset x. + * @param {number} ty - Offset y. + * @param {number} sx - Repeat x. + * @param {number} sy - Repeat y. + * @param {number} rotation - Rotation, in radians. Positive values rotate counterclockwise. + * @param {number} cx - Center x of rotation. + * @param {number} cy - Center y of rotation + * @return {Matrix3} A reference to this matrix. + */ + setUvTransform( tx, ty, sx, sy, rotation, cx, cy ) { + + const c = Math.cos( rotation ); + const s = Math.sin( rotation ); + + this.set( + sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx, + - sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty, + 0, 0, 1 + ); + + return this; + + } + + /** + * Scales this matrix with the given scalar values. + * + * @param {number} sx - The amount to scale in the X axis. + * @param {number} sy - The amount to scale in the Y axis. + * @return {Matrix3} A reference to this matrix. + */ + scale( sx, sy ) { + + this.premultiply( _m3.makeScale( sx, sy ) ); + + return this; + + } + + /** + * Rotates this matrix by the given angle. + * + * @param {number} theta - The rotation in radians. + * @return {Matrix3} A reference to this matrix. + */ + rotate( theta ) { + + this.premultiply( _m3.makeRotation( - theta ) ); + + return this; + + } + + /** + * Translates this matrix by the given scalar values. + * + * @param {number} tx - The amount to translate in the X axis. + * @param {number} ty - The amount to translate in the Y axis. + * @return {Matrix3} A reference to this matrix. + */ + translate( tx, ty ) { + + this.premultiply( _m3.makeTranslation( tx, ty ) ); + + return this; + + } + + // for 2D Transforms + + /** + * Sets this matrix as a 2D translation transform. + * + * @param {number|Vector2} x - The amount to translate in the X axis or alternatively a translation vector. + * @param {number} y - The amount to translate in the Y axis. + * @return {Matrix3} A reference to this matrix. + */ + makeTranslation( x, y ) { + + if ( x.isVector2 ) { + + this.set( + + 1, 0, x.x, + 0, 1, x.y, + 0, 0, 1 + + ); + + } else { + + this.set( + + 1, 0, x, + 0, 1, y, + 0, 0, 1 + + ); + + } + + return this; + + } + + /** + * Sets this matrix as a 2D rotational transformation. + * + * @param {number} theta - The rotation in radians. + * @return {Matrix3} A reference to this matrix. + */ + makeRotation( theta ) { + + // counterclockwise + + const c = Math.cos( theta ); + const s = Math.sin( theta ); + + this.set( + + c, - s, 0, + s, c, 0, + 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix as a 2D scale transform. + * + * @param {number} x - The amount to scale in the X axis. + * @param {number} y - The amount to scale in the Y axis. + * @return {Matrix3} A reference to this matrix. + */ + makeScale( x, y ) { + + this.set( + + x, 0, 0, + 0, y, 0, + 0, 0, 1 + + ); + + return this; + + } + + /** + * Returns `true` if this matrix is equal with the given one. + * + * @param {Matrix3} matrix - The matrix to test for equality. + * @return {boolean} Whether this matrix is equal with the given one. + */ + equals( matrix ) { + + const te = this.elements; + const me = matrix.elements; + + for ( let i = 0; i < 9; i ++ ) { + + if ( te[ i ] !== me[ i ] ) return false; + + } + + return true; + + } + + /** + * Sets the elements of the matrix from the given array. + * + * @param {Array} array - The matrix elements in column-major order. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Matrix3} A reference to this matrix. + */ + fromArray( array, offset = 0 ) { + + for ( let i = 0; i < 9; i ++ ) { + + this.elements[ i ] = array[ i + offset ]; + + } + + return this; + + } + + /** + * Writes the elements of this matrix to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the matrix elements in column-major order. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The matrix elements in column-major order. + */ + toArray( array = [], offset = 0 ) { + + const te = this.elements; + + array[ offset ] = te[ 0 ]; + array[ offset + 1 ] = te[ 1 ]; + array[ offset + 2 ] = te[ 2 ]; + + array[ offset + 3 ] = te[ 3 ]; + array[ offset + 4 ] = te[ 4 ]; + array[ offset + 5 ] = te[ 5 ]; + + array[ offset + 6 ] = te[ 6 ]; + array[ offset + 7 ] = te[ 7 ]; + array[ offset + 8 ] = te[ 8 ]; + + return array; + + } + + /** + * Returns a matrix with copied values from this instance. + * + * @return {Matrix3} A clone of this instance. + */ + clone() { + + return new this.constructor().fromArray( this.elements ); + + } + +} + +const _m3 = /*@__PURE__*/ new Matrix3(); + +function arrayNeedsUint32( array ) { + + // assumes larger values usually on last + + for ( let i = array.length - 1; i >= 0; -- i ) { + + if ( array[ i ] >= 65535 ) return true; // account for PRIMITIVE_RESTART_FIXED_INDEX, #24565 + + } + + return false; + +} + +const TYPED_ARRAYS = { + Int8Array: Int8Array, + Uint8Array: Uint8Array, + Uint8ClampedArray: Uint8ClampedArray, + Int16Array: Int16Array, + Uint16Array: Uint16Array, + Int32Array: Int32Array, + Uint32Array: Uint32Array, + Float32Array: Float32Array, + Float64Array: Float64Array +}; + +function getTypedArray( type, buffer ) { + + return new TYPED_ARRAYS[ type ]( buffer ); + +} + +function createElementNS( name ) { + + return document.createElementNS( 'http://www.w3.org/1999/xhtml', name ); + +} + +function createCanvasElement() { + + const canvas = createElementNS( 'canvas' ); + canvas.style.display = 'block'; + return canvas; + +} + +const _cache = {}; + +function warnOnce( message ) { + + if ( message in _cache ) return; + + _cache[ message ] = true; + + console.warn( message ); + +} + +function probeAsync( gl, sync, interval ) { + + return new Promise( function ( resolve, reject ) { + + function probe() { + + switch ( gl.clientWaitSync( sync, gl.SYNC_FLUSH_COMMANDS_BIT, 0 ) ) { + + case gl.WAIT_FAILED: + reject(); + break; + + case gl.TIMEOUT_EXPIRED: + setTimeout( probe, interval ); + break; + + default: + resolve(); + + } + + } + + setTimeout( probe, interval ); + + } ); + +} + +function toNormalizedProjectionMatrix( projectionMatrix ) { + + const m = projectionMatrix.elements; + + // Convert [-1, 1] to [0, 1] projection matrix + m[ 2 ] = 0.5 * m[ 2 ] + 0.5 * m[ 3 ]; + m[ 6 ] = 0.5 * m[ 6 ] + 0.5 * m[ 7 ]; + m[ 10 ] = 0.5 * m[ 10 ] + 0.5 * m[ 11 ]; + m[ 14 ] = 0.5 * m[ 14 ] + 0.5 * m[ 15 ]; + +} + +function toReversedProjectionMatrix( projectionMatrix ) { + + const m = projectionMatrix.elements; + const isPerspectiveMatrix = m[ 11 ] === - 1; + + // Reverse [0, 1] projection matrix + if ( isPerspectiveMatrix ) { + + m[ 10 ] = - m[ 10 ] - 1; + m[ 14 ] = - m[ 14 ]; + + } else { + + m[ 10 ] = - m[ 10 ]; + m[ 14 ] = - m[ 14 ] + 1; + + } + +} + +const LINEAR_REC709_TO_XYZ = /*@__PURE__*/ new Matrix3().set( + 0.4123908, 0.3575843, 0.1804808, + 0.2126390, 0.7151687, 0.0721923, + 0.0193308, 0.1191948, 0.9505322 +); + +const XYZ_TO_LINEAR_REC709 = /*@__PURE__*/ new Matrix3().set( + 3.2409699, - 1.5373832, - 0.4986108, + - 0.9692436, 1.8759675, 0.0415551, + 0.0556301, - 0.203977, 1.0569715 +); + +function createColorManagement() { + + const ColorManagement = { + + enabled: true, + + workingColorSpace: LinearSRGBColorSpace, + + /** + * Implementations of supported color spaces. + * + * Required: + * - primaries: chromaticity coordinates [ rx ry gx gy bx by ] + * - whitePoint: reference white [ x y ] + * - transfer: transfer function (pre-defined) + * - toXYZ: Matrix3 RGB to XYZ transform + * - fromXYZ: Matrix3 XYZ to RGB transform + * - luminanceCoefficients: RGB luminance coefficients + * + * Optional: + * - outputColorSpaceConfig: { drawingBufferColorSpace: ColorSpace } + * - workingColorSpaceConfig: { unpackColorSpace: ColorSpace } + * + * Reference: + * - https://www.russellcottrell.com/photo/matrixCalculator.htm + */ + spaces: {}, + + convert: function ( color, sourceColorSpace, targetColorSpace ) { + + if ( this.enabled === false || sourceColorSpace === targetColorSpace || ! sourceColorSpace || ! targetColorSpace ) { + + return color; + + } + + if ( this.spaces[ sourceColorSpace ].transfer === SRGBTransfer ) { + + color.r = SRGBToLinear( color.r ); + color.g = SRGBToLinear( color.g ); + color.b = SRGBToLinear( color.b ); + + } + + if ( this.spaces[ sourceColorSpace ].primaries !== this.spaces[ targetColorSpace ].primaries ) { + + color.applyMatrix3( this.spaces[ sourceColorSpace ].toXYZ ); + color.applyMatrix3( this.spaces[ targetColorSpace ].fromXYZ ); + + } + + if ( this.spaces[ targetColorSpace ].transfer === SRGBTransfer ) { + + color.r = LinearToSRGB( color.r ); + color.g = LinearToSRGB( color.g ); + color.b = LinearToSRGB( color.b ); + + } + + return color; + + }, + + workingToColorSpace: function ( color, targetColorSpace ) { + + return this.convert( color, this.workingColorSpace, targetColorSpace ); + + }, + + colorSpaceToWorking: function ( color, sourceColorSpace ) { + + return this.convert( color, sourceColorSpace, this.workingColorSpace ); + + }, + + getPrimaries: function ( colorSpace ) { + + return this.spaces[ colorSpace ].primaries; + + }, + + getTransfer: function ( colorSpace ) { + + if ( colorSpace === NoColorSpace ) return LinearTransfer; + + return this.spaces[ colorSpace ].transfer; + + }, + + getLuminanceCoefficients: function ( target, colorSpace = this.workingColorSpace ) { + + return target.fromArray( this.spaces[ colorSpace ].luminanceCoefficients ); + + }, + + define: function ( colorSpaces ) { + + Object.assign( this.spaces, colorSpaces ); + + }, + + // Internal APIs + + _getMatrix: function ( targetMatrix, sourceColorSpace, targetColorSpace ) { + + return targetMatrix + .copy( this.spaces[ sourceColorSpace ].toXYZ ) + .multiply( this.spaces[ targetColorSpace ].fromXYZ ); + + }, + + _getDrawingBufferColorSpace: function ( colorSpace ) { + + return this.spaces[ colorSpace ].outputColorSpaceConfig.drawingBufferColorSpace; + + }, + + _getUnpackColorSpace: function ( colorSpace = this.workingColorSpace ) { + + return this.spaces[ colorSpace ].workingColorSpaceConfig.unpackColorSpace; + + }, + + // Deprecated + + fromWorkingColorSpace: function ( color, targetColorSpace ) { + + warnOnce( 'THREE.ColorManagement: .fromWorkingColorSpace() has been renamed to .workingToColorSpace().' ); // @deprecated, r177 + + return ColorManagement.workingToColorSpace( color, targetColorSpace ); + + }, + + toWorkingColorSpace: function ( color, sourceColorSpace ) { + + warnOnce( 'THREE.ColorManagement: .toWorkingColorSpace() has been renamed to .colorSpaceToWorking().' ); // @deprecated, r177 + + return ColorManagement.colorSpaceToWorking( color, sourceColorSpace ); + + }, + + }; + + /****************************************************************************** + * sRGB definitions + */ + + const REC709_PRIMARIES = [ 0.640, 0.330, 0.300, 0.600, 0.150, 0.060 ]; + const REC709_LUMINANCE_COEFFICIENTS = [ 0.2126, 0.7152, 0.0722 ]; + const D65 = [ 0.3127, 0.3290 ]; + + ColorManagement.define( { + + [ LinearSRGBColorSpace ]: { + primaries: REC709_PRIMARIES, + whitePoint: D65, + transfer: LinearTransfer, + toXYZ: LINEAR_REC709_TO_XYZ, + fromXYZ: XYZ_TO_LINEAR_REC709, + luminanceCoefficients: REC709_LUMINANCE_COEFFICIENTS, + workingColorSpaceConfig: { unpackColorSpace: SRGBColorSpace }, + outputColorSpaceConfig: { drawingBufferColorSpace: SRGBColorSpace } + }, + + [ SRGBColorSpace ]: { + primaries: REC709_PRIMARIES, + whitePoint: D65, + transfer: SRGBTransfer, + toXYZ: LINEAR_REC709_TO_XYZ, + fromXYZ: XYZ_TO_LINEAR_REC709, + luminanceCoefficients: REC709_LUMINANCE_COEFFICIENTS, + outputColorSpaceConfig: { drawingBufferColorSpace: SRGBColorSpace } + }, + + } ); + + return ColorManagement; + +} + +const ColorManagement = /*@__PURE__*/ createColorManagement(); + +function SRGBToLinear( c ) { + + return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 ); + +} + +function LinearToSRGB( c ) { + + return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055; + +} + +let _canvas; + +/** + * A class containing utility functions for images. + * + * @hideconstructor + */ +class ImageUtils { + + /** + * Returns a data URI containing a representation of the given image. + * + * @param {(HTMLImageElement|HTMLCanvasElement)} image - The image object. + * @param {string} [type='image/png'] - Indicates the image format. + * @return {string} The data URI. + */ + static getDataURL( image, type = 'image/png' ) { + + if ( /^data:/i.test( image.src ) ) { + + return image.src; + + } + + if ( typeof HTMLCanvasElement === 'undefined' ) { + + return image.src; + + } + + let canvas; + + if ( image instanceof HTMLCanvasElement ) { + + canvas = image; + + } else { + + if ( _canvas === undefined ) _canvas = createElementNS( 'canvas' ); + + _canvas.width = image.width; + _canvas.height = image.height; + + const context = _canvas.getContext( '2d' ); + + if ( image instanceof ImageData ) { + + context.putImageData( image, 0, 0 ); + + } else { + + context.drawImage( image, 0, 0, image.width, image.height ); + + } + + canvas = _canvas; + + } + + return canvas.toDataURL( type ); + + } + + /** + * Converts the given sRGB image data to linear color space. + * + * @param {(HTMLImageElement|HTMLCanvasElement|ImageBitmap|Object)} image - The image object. + * @return {HTMLCanvasElement|Object} The converted image. + */ + static sRGBToLinear( image ) { + + if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || + ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || + ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { + + const canvas = createElementNS( 'canvas' ); + + canvas.width = image.width; + canvas.height = image.height; + + const context = canvas.getContext( '2d' ); + context.drawImage( image, 0, 0, image.width, image.height ); + + const imageData = context.getImageData( 0, 0, image.width, image.height ); + const data = imageData.data; + + for ( let i = 0; i < data.length; i ++ ) { + + data[ i ] = SRGBToLinear( data[ i ] / 255 ) * 255; + + } + + context.putImageData( imageData, 0, 0 ); + + return canvas; + + } else if ( image.data ) { + + const data = image.data.slice( 0 ); + + for ( let i = 0; i < data.length; i ++ ) { + + if ( data instanceof Uint8Array || data instanceof Uint8ClampedArray ) { + + data[ i ] = Math.floor( SRGBToLinear( data[ i ] / 255 ) * 255 ); + + } else { + + // assuming float + + data[ i ] = SRGBToLinear( data[ i ] ); + + } + + } + + return { + data: data, + width: image.width, + height: image.height + }; + + } else { + + console.warn( 'THREE.ImageUtils.sRGBToLinear(): Unsupported image type. No color space conversion applied.' ); + return image; + + } + + } + +} + +let _sourceId = 0; + +/** + * Represents the data source of a texture. + * + * The main purpose of this class is to decouple the data definition from the texture + * definition so the same data can be used with multiple texture instances. + */ +class Source { + + /** + * Constructs a new video texture. + * + * @param {any} [data=null] - The data definition of a texture. + */ + constructor( data = null ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSource = true; + + /** + * The ID of the source. + * + * @name Source#id + * @type {number} + * @readonly + */ + Object.defineProperty( this, 'id', { value: _sourceId ++ } ); + + /** + * The UUID of the source. + * + * @type {string} + * @readonly + */ + this.uuid = generateUUID(); + + /** + * The data definition of a texture. + * + * @type {any} + */ + this.data = data; + + /** + * This property is only relevant when {@link Source#needsUpdate} is set to `true` and + * provides more control on how texture data should be processed. When `dataReady` is set + * to `false`, the engine performs the memory allocation (if necessary) but does not transfer + * the data into the GPU memory. + * + * @type {boolean} + * @default true + */ + this.dataReady = true; + + /** + * This starts at `0` and counts how many times {@link Source#needsUpdate} is set to `true`. + * + * @type {number} + * @readonly + * @default 0 + */ + this.version = 0; + + } + + getSize( target ) { + + const data = this.data; + + if ( data instanceof HTMLVideoElement ) { + + target.set( data.videoWidth, data.videoHeight ); + + } else if ( data !== null ) { + + target.set( data.width, data.height, data.depth || 0 ); + + } else { + + target.set( 0, 0, 0 ); + + } + + return target; + + } + + /** + * When the property is set to `true`, the engine allocates the memory + * for the texture (if necessary) and triggers the actual texture upload + * to the GPU next time the source is used. + * + * @type {boolean} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + if ( value === true ) this.version ++; + + } + + /** + * Serializes the source into JSON. + * + * @param {?(Object|string)} meta - An optional value holding meta information about the serialization. + * @return {Object} A JSON object representing the serialized source. + * @see {@link ObjectLoader#parse} + */ + toJSON( meta ) { + + const isRootObject = ( meta === undefined || typeof meta === 'string' ); + + if ( ! isRootObject && meta.images[ this.uuid ] !== undefined ) { + + return meta.images[ this.uuid ]; + + } + + const output = { + uuid: this.uuid, + url: '' + }; + + const data = this.data; + + if ( data !== null ) { + + let url; + + if ( Array.isArray( data ) ) { + + // cube texture + + url = []; + + for ( let i = 0, l = data.length; i < l; i ++ ) { + + if ( data[ i ].isDataTexture ) { + + url.push( serializeImage( data[ i ].image ) ); + + } else { + + url.push( serializeImage( data[ i ] ) ); + + } + + } + + } else { + + // texture + + url = serializeImage( data ); + + } + + output.url = url; + + } + + if ( ! isRootObject ) { + + meta.images[ this.uuid ] = output; + + } + + return output; + + } + +} + +function serializeImage( image ) { + + if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || + ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || + ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { + + // default images + + return ImageUtils.getDataURL( image ); + + } else { + + if ( image.data ) { + + // images of DataTexture + + return { + data: Array.from( image.data ), + width: image.width, + height: image.height, + type: image.data.constructor.name + }; + + } else { + + console.warn( 'THREE.Texture: Unable to serialize Texture.' ); + return {}; + + } + + } + +} + +let _textureId = 0; + +const _tempVec3 = /*@__PURE__*/ new Vector3(); + +/** + * Base class for all textures. + * + * Note: After the initial use of a texture, its dimensions, format, and type + * cannot be changed. Instead, call {@link Texture#dispose} on the texture and instantiate a new one. + * + * @augments EventDispatcher + */ +class Texture extends EventDispatcher { + + /** + * Constructs a new texture. + * + * @param {?Object} [image=Texture.DEFAULT_IMAGE] - The image holding the texture data. + * @param {number} [mapping=Texture.DEFAULT_MAPPING] - The texture mapping. + * @param {number} [wrapS=ClampToEdgeWrapping] - The wrapS value. + * @param {number} [wrapT=ClampToEdgeWrapping] - The wrapT value. + * @param {number} [magFilter=LinearFilter] - The mag filter value. + * @param {number} [minFilter=LinearMipmapLinearFilter] - The min filter value. + * @param {number} [format=RGBAFormat] - The texture format. + * @param {number} [type=UnsignedByteType] - The texture type. + * @param {number} [anisotropy=Texture.DEFAULT_ANISOTROPY] - The anisotropy value. + * @param {string} [colorSpace=NoColorSpace] - The color space. + */ + constructor( image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = Texture.DEFAULT_ANISOTROPY, colorSpace = NoColorSpace ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isTexture = true; + + /** + * The ID of the texture. + * + * @name Texture#id + * @type {number} + * @readonly + */ + Object.defineProperty( this, 'id', { value: _textureId ++ } ); + + /** + * The UUID of the material. + * + * @type {string} + * @readonly + */ + this.uuid = generateUUID(); + + /** + * The name of the material. + * + * @type {string} + */ + this.name = ''; + + /** + * The data definition of a texture. A reference to the data source can be + * shared across textures. This is often useful in context of spritesheets + * where multiple textures render the same data but with different texture + * transformations. + * + * @type {Source} + */ + this.source = new Source( image ); + + /** + * An array holding user-defined mipmaps. + * + * @type {Array} + */ + this.mipmaps = []; + + /** + * How the texture is applied to the object. The value `UVMapping` + * is the default, where texture or uv coordinates are used to apply the map. + * + * @type {(UVMapping|CubeReflectionMapping|CubeRefractionMapping|EquirectangularReflectionMapping|EquirectangularRefractionMapping|CubeUVReflectionMapping)} + * @default UVMapping + */ + this.mapping = mapping; + + /** + * Lets you select the uv attribute to map the texture to. `0` for `uv`, + * `1` for `uv1`, `2` for `uv2` and `3` for `uv3`. + * + * @type {number} + * @default 0 + */ + this.channel = 0; + + /** + * This defines how the texture is wrapped horizontally and corresponds to + * *U* in UV mapping. + * + * @type {(RepeatWrapping|ClampToEdgeWrapping|MirroredRepeatWrapping)} + * @default ClampToEdgeWrapping + */ + this.wrapS = wrapS; + + /** + * This defines how the texture is wrapped horizontally and corresponds to + * *V* in UV mapping. + * + * @type {(RepeatWrapping|ClampToEdgeWrapping|MirroredRepeatWrapping)} + * @default ClampToEdgeWrapping + */ + this.wrapT = wrapT; + + /** + * How the texture is sampled when a texel covers more than one pixel. + * + * @type {(NearestFilter|NearestMipmapNearestFilter|NearestMipmapLinearFilter|LinearFilter|LinearMipmapNearestFilter|LinearMipmapLinearFilter)} + * @default LinearFilter + */ + this.magFilter = magFilter; + + /** + * How the texture is sampled when a texel covers less than one pixel. + * + * @type {(NearestFilter|NearestMipmapNearestFilter|NearestMipmapLinearFilter|LinearFilter|LinearMipmapNearestFilter|LinearMipmapLinearFilter)} + * @default LinearMipmapLinearFilter + */ + this.minFilter = minFilter; + + /** + * The number of samples taken along the axis through the pixel that has the + * highest density of texels. By default, this value is `1`. A higher value + * gives a less blurry result than a basic mipmap, at the cost of more + * texture samples being used. + * + * @type {number} + * @default 0 + */ + this.anisotropy = anisotropy; + + /** + * The format of the texture. + * + * @type {number} + * @default RGBAFormat + */ + this.format = format; + + /** + * The default internal format is derived from {@link Texture#format} and {@link Texture#type} and + * defines how the texture data is going to be stored on the GPU. + * + * This property allows to overwrite the default format. + * + * @type {?string} + * @default null + */ + this.internalFormat = null; + + /** + * The data type of the texture. + * + * @type {number} + * @default UnsignedByteType + */ + this.type = type; + + /** + * How much a single repetition of the texture is offset from the beginning, + * in each direction U and V. Typical range is `0.0` to `1.0`. + * + * @type {Vector2} + * @default (0,0) + */ + this.offset = new Vector2( 0, 0 ); + + /** + * How many times the texture is repeated across the surface, in each + * direction U and V. If repeat is set greater than `1` in either direction, + * the corresponding wrap parameter should also be set to `RepeatWrapping` + * or `MirroredRepeatWrapping` to achieve the desired tiling effect. + * + * @type {Vector2} + * @default (1,1) + */ + this.repeat = new Vector2( 1, 1 ); + + /** + * The point around which rotation occurs. A value of `(0.5, 0.5)` corresponds + * to the center of the texture. Default is `(0, 0)`, the lower left. + * + * @type {Vector2} + * @default (0,0) + */ + this.center = new Vector2( 0, 0 ); + + /** + * How much the texture is rotated around the center point, in radians. + * Positive values are counter-clockwise. + * + * @type {number} + * @default 0 + */ + this.rotation = 0; + + /** + * Whether to update the texture's uv-transformation {@link Texture#matrix} + * from the properties {@link Texture#offset}, {@link Texture#repeat}, + * {@link Texture#rotation}, and {@link Texture#center}. + * + * Set this to `false` if you are specifying the uv-transform matrix directly. + * + * @type {boolean} + * @default true + */ + this.matrixAutoUpdate = true; + + /** + * The uv-transformation matrix of the texture. + * + * @type {Matrix3} + */ + this.matrix = new Matrix3(); + + /** + * Whether to generate mipmaps (if possible) for a texture. + * + * Set this to `false` if you are creating mipmaps manually. + * + * @type {boolean} + * @default true + */ + this.generateMipmaps = true; + + /** + * If set to `true`, the alpha channel, if present, is multiplied into the + * color channels when the texture is uploaded to the GPU. + * + * Note that this property has no effect when using `ImageBitmap`. You need to + * configure premultiply alpha on bitmap creation instead. + * + * @type {boolean} + * @default false + */ + this.premultiplyAlpha = false; + + /** + * If set to `true`, the texture is flipped along the vertical axis when + * uploaded to the GPU. + * + * Note that this property has no effect when using `ImageBitmap`. You need to + * configure the flip on bitmap creation instead. + * + * @type {boolean} + * @default true + */ + this.flipY = true; + + /** + * Specifies the alignment requirements for the start of each pixel row in memory. + * The allowable values are `1` (byte-alignment), `2` (rows aligned to even-numbered bytes), + * `4` (word-alignment), and `8` (rows start on double-word boundaries). + * + * @type {number} + * @default 4 + */ + this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) + + /** + * Textures containing color data should be annotated with `SRGBColorSpace` or `LinearSRGBColorSpace`. + * + * @type {string} + * @default NoColorSpace + */ + this.colorSpace = colorSpace; + + /** + * An object that can be used to store custom data about the texture. It + * should not hold references to functions as these will not be cloned. + * + * @type {Object} + */ + this.userData = {}; + + /** + * This can be used to only update a subregion or specific rows of the texture (for example, just the + * first 3 rows). Use the `addUpdateRange()` function to add ranges to this array. + * + * @type {Array} + */ + this.updateRanges = []; + + /** + * This starts at `0` and counts how many times {@link Texture#needsUpdate} is set to `true`. + * + * @type {number} + * @readonly + * @default 0 + */ + this.version = 0; + + /** + * A callback function, called when the texture is updated (e.g., when + * {@link Texture#needsUpdate} has been set to true and then the texture is used). + * + * @type {?Function} + * @default null + */ + this.onUpdate = null; + + /** + * An optional back reference to the textures render target. + * + * @type {?(RenderTarget|WebGLRenderTarget)} + * @default null + */ + this.renderTarget = null; + + /** + * Indicates whether a texture belongs to a render target or not. + * + * @type {boolean} + * @readonly + * @default false + */ + this.isRenderTargetTexture = false; + + /** + * Indicates if a texture should be handled like a texture array. + * + * @type {boolean} + * @readonly + * @default false + */ + this.isArrayTexture = image && image.depth && image.depth > 1 ? true : false; + + /** + * Indicates whether this texture should be processed by `PMREMGenerator` or not + * (only relevant for render target textures). + * + * @type {number} + * @readonly + * @default 0 + */ + this.pmremVersion = 0; + + } + + /** + * The width of the texture in pixels. + */ + get width() { + + return this.source.getSize( _tempVec3 ).x; + + } + + /** + * The height of the texture in pixels. + */ + get height() { + + return this.source.getSize( _tempVec3 ).y; + + } + + /** + * The depth of the texture in pixels. + */ + get depth() { + + return this.source.getSize( _tempVec3 ).z; + + } + + /** + * The image object holding the texture data. + * + * @type {?Object} + */ + get image() { + + return this.source.data; + + } + + set image( value = null ) { + + this.source.data = value; + + } + + /** + * Updates the texture transformation matrix from the from the properties {@link Texture#offset}, + * {@link Texture#repeat}, {@link Texture#rotation}, and {@link Texture#center}. + */ + updateMatrix() { + + this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y ); + + } + + /** + * Adds a range of data in the data texture to be updated on the GPU. + * + * @param {number} start - Position at which to start update. + * @param {number} count - The number of components to update. + */ + addUpdateRange( start, count ) { + + this.updateRanges.push( { start, count } ); + + } + + /** + * Clears the update ranges. + */ + clearUpdateRanges() { + + this.updateRanges.length = 0; + + } + + /** + * Returns a new texture with copied values from this instance. + * + * @return {Texture} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + + /** + * Copies the values of the given texture to this instance. + * + * @param {Texture} source - The texture to copy. + * @return {Texture} A reference to this instance. + */ + copy( source ) { + + this.name = source.name; + + this.source = source.source; + this.mipmaps = source.mipmaps.slice( 0 ); + + this.mapping = source.mapping; + this.channel = source.channel; + + this.wrapS = source.wrapS; + this.wrapT = source.wrapT; + + this.magFilter = source.magFilter; + this.minFilter = source.minFilter; + + this.anisotropy = source.anisotropy; + + this.format = source.format; + this.internalFormat = source.internalFormat; + this.type = source.type; + + this.offset.copy( source.offset ); + this.repeat.copy( source.repeat ); + this.center.copy( source.center ); + this.rotation = source.rotation; + + this.matrixAutoUpdate = source.matrixAutoUpdate; + this.matrix.copy( source.matrix ); + + this.generateMipmaps = source.generateMipmaps; + this.premultiplyAlpha = source.premultiplyAlpha; + this.flipY = source.flipY; + this.unpackAlignment = source.unpackAlignment; + this.colorSpace = source.colorSpace; + + this.renderTarget = source.renderTarget; + this.isRenderTargetTexture = source.isRenderTargetTexture; + this.isArrayTexture = source.isArrayTexture; + + this.userData = JSON.parse( JSON.stringify( source.userData ) ); + + this.needsUpdate = true; + + return this; + + } + + /** + * Sets this texture's properties based on `values`. + * @param {Object} values - A container with texture parameters. + */ + setValues( values ) { + + for ( const key in values ) { + + const newValue = values[ key ]; + + if ( newValue === undefined ) { + + console.warn( `THREE.Texture.setValues(): parameter '${ key }' has value of undefined.` ); + continue; + + } + + const currentValue = this[ key ]; + + if ( currentValue === undefined ) { + + console.warn( `THREE.Texture.setValues(): property '${ key }' does not exist.` ); + continue; + + } + + if ( ( currentValue && newValue ) && ( currentValue.isVector2 && newValue.isVector2 ) ) { + + currentValue.copy( newValue ); + + } else if ( ( currentValue && newValue ) && ( currentValue.isVector3 && newValue.isVector3 ) ) { + + currentValue.copy( newValue ); + + } else if ( ( currentValue && newValue ) && ( currentValue.isMatrix3 && newValue.isMatrix3 ) ) { + + currentValue.copy( newValue ); + + } else { + + this[ key ] = newValue; + + } + + } + + } + + /** + * Serializes the texture into JSON. + * + * @param {?(Object|string)} meta - An optional value holding meta information about the serialization. + * @return {Object} A JSON object representing the serialized texture. + * @see {@link ObjectLoader#parse} + */ + toJSON( meta ) { + + const isRootObject = ( meta === undefined || typeof meta === 'string' ); + + if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) { + + return meta.textures[ this.uuid ]; + + } + + const output = { + + metadata: { + version: 4.7, + type: 'Texture', + generator: 'Texture.toJSON' + }, + + uuid: this.uuid, + name: this.name, + + image: this.source.toJSON( meta ).uuid, + + mapping: this.mapping, + channel: this.channel, + + repeat: [ this.repeat.x, this.repeat.y ], + offset: [ this.offset.x, this.offset.y ], + center: [ this.center.x, this.center.y ], + rotation: this.rotation, + + wrap: [ this.wrapS, this.wrapT ], + + format: this.format, + internalFormat: this.internalFormat, + type: this.type, + colorSpace: this.colorSpace, + + minFilter: this.minFilter, + magFilter: this.magFilter, + anisotropy: this.anisotropy, + + flipY: this.flipY, + + generateMipmaps: this.generateMipmaps, + premultiplyAlpha: this.premultiplyAlpha, + unpackAlignment: this.unpackAlignment + + }; + + if ( Object.keys( this.userData ).length > 0 ) output.userData = this.userData; + + if ( ! isRootObject ) { + + meta.textures[ this.uuid ] = output; + + } + + return output; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + * + * @fires Texture#dispose + */ + dispose() { + + /** + * Fires when the texture has been disposed of. + * + * @event Texture#dispose + * @type {Object} + */ + this.dispatchEvent( { type: 'dispose' } ); + + } + + /** + * Transforms the given uv vector with the textures uv transformation matrix. + * + * @param {Vector2} uv - The uv vector. + * @return {Vector2} The transformed uv vector. + */ + transformUv( uv ) { + + if ( this.mapping !== UVMapping ) return uv; + + uv.applyMatrix3( this.matrix ); + + if ( uv.x < 0 || uv.x > 1 ) { + + switch ( this.wrapS ) { + + case RepeatWrapping: + + uv.x = uv.x - Math.floor( uv.x ); + break; + + case ClampToEdgeWrapping: + + uv.x = uv.x < 0 ? 0 : 1; + break; + + case MirroredRepeatWrapping: + + if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) { + + uv.x = Math.ceil( uv.x ) - uv.x; + + } else { + + uv.x = uv.x - Math.floor( uv.x ); + + } + + break; + + } + + } + + if ( uv.y < 0 || uv.y > 1 ) { + + switch ( this.wrapT ) { + + case RepeatWrapping: + + uv.y = uv.y - Math.floor( uv.y ); + break; + + case ClampToEdgeWrapping: + + uv.y = uv.y < 0 ? 0 : 1; + break; + + case MirroredRepeatWrapping: + + if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) { + + uv.y = Math.ceil( uv.y ) - uv.y; + + } else { + + uv.y = uv.y - Math.floor( uv.y ); + + } + + break; + + } + + } + + if ( this.flipY ) { + + uv.y = 1 - uv.y; + + } + + return uv; + + } + + /** + * Setting this property to `true` indicates the engine the texture + * must be updated in the next render. This triggers a texture upload + * to the GPU and ensures correct texture parameter configuration. + * + * @type {boolean} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + if ( value === true ) { + + this.version ++; + this.source.needsUpdate = true; + + } + + } + + /** + * Setting this property to `true` indicates the engine the PMREM + * must be regenerated. + * + * @type {boolean} + * @default false + * @param {boolean} value + */ + set needsPMREMUpdate( value ) { + + if ( value === true ) { + + this.pmremVersion ++; + + } + + } + +} + +/** + * The default image for all textures. + * + * @static + * @type {?Image} + * @default null + */ +Texture.DEFAULT_IMAGE = null; + +/** + * The default mapping for all textures. + * + * @static + * @type {number} + * @default UVMapping + */ +Texture.DEFAULT_MAPPING = UVMapping; + +/** + * The default anisotropy value for all textures. + * + * @static + * @type {number} + * @default 1 + */ +Texture.DEFAULT_ANISOTROPY = 1; + +/** + * Class representing a 4D vector. A 4D vector is an ordered quadruplet of numbers + * (labeled x, y, z and w), which can be used to represent a number of things, such as: + * + * - A point in 4D space. + * - A direction and length in 4D space. In three.js the length will + * always be the Euclidean distance(straight-line distance) from `(0, 0, 0, 0)` to `(x, y, z, w)` + * and the direction is also measured from `(0, 0, 0, 0)` towards `(x, y, z, w)`. + * - Any arbitrary ordered quadruplet of numbers. + * + * There are other things a 4D vector can be used to represent, however these + * are the most common uses in *three.js*. + * + * Iterating through a vector instance will yield its components `(x, y, z, w)` in + * the corresponding order. + * ```js + * const a = new THREE.Vector4( 0, 1, 0, 0 ); + * + * //no arguments; will be initialised to (0, 0, 0, 1) + * const b = new THREE.Vector4( ); + * + * const d = a.dot( b ); + * ``` + */ +class Vector4 { + + /** + * Constructs a new 4D vector. + * + * @param {number} [x=0] - The x value of this vector. + * @param {number} [y=0] - The y value of this vector. + * @param {number} [z=0] - The z value of this vector. + * @param {number} [w=1] - The w value of this vector. + */ + constructor( x = 0, y = 0, z = 0, w = 1 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + Vector4.prototype.isVector4 = true; + + /** + * The x value of this vector. + * + * @type {number} + */ + this.x = x; + + /** + * The y value of this vector. + * + * @type {number} + */ + this.y = y; + + /** + * The z value of this vector. + * + * @type {number} + */ + this.z = z; + + /** + * The w value of this vector. + * + * @type {number} + */ + this.w = w; + + } + + /** + * Alias for {@link Vector4#z}. + * + * @type {number} + */ + get width() { + + return this.z; + + } + + set width( value ) { + + this.z = value; + + } + + /** + * Alias for {@link Vector4#w}. + * + * @type {number} + */ + get height() { + + return this.w; + + } + + set height( value ) { + + this.w = value; + + } + + /** + * Sets the vector components. + * + * @param {number} x - The value of the x component. + * @param {number} y - The value of the y component. + * @param {number} z - The value of the z component. + * @param {number} w - The value of the w component. + * @return {Vector4} A reference to this vector. + */ + set( x, y, z, w ) { + + this.x = x; + this.y = y; + this.z = z; + this.w = w; + + return this; + + } + + /** + * Sets the vector components to the same value. + * + * @param {number} scalar - The value to set for all vector components. + * @return {Vector4} A reference to this vector. + */ + setScalar( scalar ) { + + this.x = scalar; + this.y = scalar; + this.z = scalar; + this.w = scalar; + + return this; + + } + + /** + * Sets the vector's x component to the given value + * + * @param {number} x - The value to set. + * @return {Vector4} A reference to this vector. + */ + setX( x ) { + + this.x = x; + + return this; + + } + + /** + * Sets the vector's y component to the given value + * + * @param {number} y - The value to set. + * @return {Vector4} A reference to this vector. + */ + setY( y ) { + + this.y = y; + + return this; + + } + + /** + * Sets the vector's z component to the given value + * + * @param {number} z - The value to set. + * @return {Vector4} A reference to this vector. + */ + setZ( z ) { + + this.z = z; + + return this; + + } + + /** + * Sets the vector's w component to the given value + * + * @param {number} w - The value to set. + * @return {Vector4} A reference to this vector. + */ + setW( w ) { + + this.w = w; + + return this; + + } + + /** + * Allows to set a vector component with an index. + * + * @param {number} index - The component index. `0` equals to x, `1` equals to y, + * `2` equals to z, `3` equals to w. + * @param {number} value - The value to set. + * @return {Vector4} A reference to this vector. + */ + setComponent( index, value ) { + + switch ( index ) { + + case 0: this.x = value; break; + case 1: this.y = value; break; + case 2: this.z = value; break; + case 3: this.w = value; break; + default: throw new Error( 'index is out of range: ' + index ); + + } + + return this; + + } + + /** + * Returns the value of the vector component which matches the given index. + * + * @param {number} index - The component index. `0` equals to x, `1` equals to y, + * `2` equals to z, `3` equals to w. + * @return {number} A vector component value. + */ + getComponent( index ) { + + switch ( index ) { + + case 0: return this.x; + case 1: return this.y; + case 2: return this.z; + case 3: return this.w; + default: throw new Error( 'index is out of range: ' + index ); + + } + + } + + /** + * Returns a new vector with copied values from this instance. + * + * @return {Vector4} A clone of this instance. + */ + clone() { + + return new this.constructor( this.x, this.y, this.z, this.w ); + + } + + /** + * Copies the values of the given vector to this instance. + * + * @param {Vector3|Vector4} v - The vector to copy. + * @return {Vector4} A reference to this vector. + */ + copy( v ) { + + this.x = v.x; + this.y = v.y; + this.z = v.z; + this.w = ( v.w !== undefined ) ? v.w : 1; + + return this; + + } + + /** + * Adds the given vector to this instance. + * + * @param {Vector4} v - The vector to add. + * @return {Vector4} A reference to this vector. + */ + add( v ) { + + this.x += v.x; + this.y += v.y; + this.z += v.z; + this.w += v.w; + + return this; + + } + + /** + * Adds the given scalar value to all components of this instance. + * + * @param {number} s - The scalar to add. + * @return {Vector4} A reference to this vector. + */ + addScalar( s ) { + + this.x += s; + this.y += s; + this.z += s; + this.w += s; + + return this; + + } + + /** + * Adds the given vectors and stores the result in this instance. + * + * @param {Vector4} a - The first vector. + * @param {Vector4} b - The second vector. + * @return {Vector4} A reference to this vector. + */ + addVectors( a, b ) { + + this.x = a.x + b.x; + this.y = a.y + b.y; + this.z = a.z + b.z; + this.w = a.w + b.w; + + return this; + + } + + /** + * Adds the given vector scaled by the given factor to this instance. + * + * @param {Vector4} v - The vector. + * @param {number} s - The factor that scales `v`. + * @return {Vector4} A reference to this vector. + */ + addScaledVector( v, s ) { + + this.x += v.x * s; + this.y += v.y * s; + this.z += v.z * s; + this.w += v.w * s; + + return this; + + } + + /** + * Subtracts the given vector from this instance. + * + * @param {Vector4} v - The vector to subtract. + * @return {Vector4} A reference to this vector. + */ + sub( v ) { + + this.x -= v.x; + this.y -= v.y; + this.z -= v.z; + this.w -= v.w; + + return this; + + } + + /** + * Subtracts the given scalar value from all components of this instance. + * + * @param {number} s - The scalar to subtract. + * @return {Vector4} A reference to this vector. + */ + subScalar( s ) { + + this.x -= s; + this.y -= s; + this.z -= s; + this.w -= s; + + return this; + + } + + /** + * Subtracts the given vectors and stores the result in this instance. + * + * @param {Vector4} a - The first vector. + * @param {Vector4} b - The second vector. + * @return {Vector4} A reference to this vector. + */ + subVectors( a, b ) { + + this.x = a.x - b.x; + this.y = a.y - b.y; + this.z = a.z - b.z; + this.w = a.w - b.w; + + return this; + + } + + /** + * Multiplies the given vector with this instance. + * + * @param {Vector4} v - The vector to multiply. + * @return {Vector4} A reference to this vector. + */ + multiply( v ) { + + this.x *= v.x; + this.y *= v.y; + this.z *= v.z; + this.w *= v.w; + + return this; + + } + + /** + * Multiplies the given scalar value with all components of this instance. + * + * @param {number} scalar - The scalar to multiply. + * @return {Vector4} A reference to this vector. + */ + multiplyScalar( scalar ) { + + this.x *= scalar; + this.y *= scalar; + this.z *= scalar; + this.w *= scalar; + + return this; + + } + + /** + * Multiplies this vector with the given 4x4 matrix. + * + * @param {Matrix4} m - The 4x4 matrix. + * @return {Vector4} A reference to this vector. + */ + applyMatrix4( m ) { + + const x = this.x, y = this.y, z = this.z, w = this.w; + const e = m.elements; + + this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; + this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; + this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; + this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; + + return this; + + } + + /** + * Divides this instance by the given vector. + * + * @param {Vector4} v - The vector to divide. + * @return {Vector4} A reference to this vector. + */ + divide( v ) { + + this.x /= v.x; + this.y /= v.y; + this.z /= v.z; + this.w /= v.w; + + return this; + + } + + /** + * Divides this vector by the given scalar. + * + * @param {number} scalar - The scalar to divide. + * @return {Vector4} A reference to this vector. + */ + divideScalar( scalar ) { + + return this.multiplyScalar( 1 / scalar ); + + } + + /** + * Sets the x, y and z components of this + * vector to the quaternion's axis and w to the angle. + * + * @param {Quaternion} q - The Quaternion to set. + * @return {Vector4} A reference to this vector. + */ + setAxisAngleFromQuaternion( q ) { + + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm + + // q is assumed to be normalized + + this.w = 2 * Math.acos( q.w ); + + const s = Math.sqrt( 1 - q.w * q.w ); + + if ( s < 0.0001 ) { + + this.x = 1; + this.y = 0; + this.z = 0; + + } else { + + this.x = q.x / s; + this.y = q.y / s; + this.z = q.z / s; + + } + + return this; + + } + + /** + * Sets the x, y and z components of this + * vector to the axis of rotation and w to the angle. + * + * @param {Matrix4} m - A 4x4 matrix of which the upper left 3x3 matrix is a pure rotation matrix. + * @return {Vector4} A reference to this vector. + */ + setAxisAngleFromRotationMatrix( m ) { + + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm + + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + + let angle, x, y, z; // variables for result + const epsilon = 0.01, // margin to allow for rounding errors + epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees + + te = m.elements, + + m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], + m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], + m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; + + if ( ( Math.abs( m12 - m21 ) < epsilon ) && + ( Math.abs( m13 - m31 ) < epsilon ) && + ( Math.abs( m23 - m32 ) < epsilon ) ) { + + // singularity found + // first check for identity matrix which must have +1 for all terms + // in leading diagonal and zero in other terms + + if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && + ( Math.abs( m13 + m31 ) < epsilon2 ) && + ( Math.abs( m23 + m32 ) < epsilon2 ) && + ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { + + // this singularity is identity matrix so angle = 0 + + this.set( 1, 0, 0, 0 ); + + return this; // zero angle, arbitrary axis + + } + + // otherwise this singularity is angle = 180 + + angle = Math.PI; + + const xx = ( m11 + 1 ) / 2; + const yy = ( m22 + 1 ) / 2; + const zz = ( m33 + 1 ) / 2; + const xy = ( m12 + m21 ) / 4; + const xz = ( m13 + m31 ) / 4; + const yz = ( m23 + m32 ) / 4; + + if ( ( xx > yy ) && ( xx > zz ) ) { + + // m11 is the largest diagonal term + + if ( xx < epsilon ) { + + x = 0; + y = 0.707106781; + z = 0.707106781; + + } else { + + x = Math.sqrt( xx ); + y = xy / x; + z = xz / x; + + } + + } else if ( yy > zz ) { + + // m22 is the largest diagonal term + + if ( yy < epsilon ) { + + x = 0.707106781; + y = 0; + z = 0.707106781; + + } else { + + y = Math.sqrt( yy ); + x = xy / y; + z = yz / y; + + } + + } else { + + // m33 is the largest diagonal term so base result on this + + if ( zz < epsilon ) { + + x = 0.707106781; + y = 0.707106781; + z = 0; + + } else { + + z = Math.sqrt( zz ); + x = xz / z; + y = yz / z; + + } + + } + + this.set( x, y, z, angle ); + + return this; // return 180 deg rotation + + } + + // as we have reached here there are no singularities so we can handle normally + + let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + + ( m13 - m31 ) * ( m13 - m31 ) + + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize + + if ( Math.abs( s ) < 0.001 ) s = 1; + + // prevent divide by zero, should not happen if matrix is orthogonal and should be + // caught by singularity test above, but I've left it in just in case + + this.x = ( m32 - m23 ) / s; + this.y = ( m13 - m31 ) / s; + this.z = ( m21 - m12 ) / s; + this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); + + return this; + + } + + /** + * Sets the vector components to the position elements of the + * given transformation matrix. + * + * @param {Matrix4} m - The 4x4 matrix. + * @return {Vector4} A reference to this vector. + */ + setFromMatrixPosition( m ) { + + const e = m.elements; + + this.x = e[ 12 ]; + this.y = e[ 13 ]; + this.z = e[ 14 ]; + this.w = e[ 15 ]; + + return this; + + } + + /** + * If this vector's x, y, z or w value is greater than the given vector's x, y, z or w + * value, replace that value with the corresponding min value. + * + * @param {Vector4} v - The vector. + * @return {Vector4} A reference to this vector. + */ + min( v ) { + + this.x = Math.min( this.x, v.x ); + this.y = Math.min( this.y, v.y ); + this.z = Math.min( this.z, v.z ); + this.w = Math.min( this.w, v.w ); + + return this; + + } + + /** + * If this vector's x, y, z or w value is less than the given vector's x, y, z or w + * value, replace that value with the corresponding max value. + * + * @param {Vector4} v - The vector. + * @return {Vector4} A reference to this vector. + */ + max( v ) { + + this.x = Math.max( this.x, v.x ); + this.y = Math.max( this.y, v.y ); + this.z = Math.max( this.z, v.z ); + this.w = Math.max( this.w, v.w ); + + return this; + + } + + /** + * If this vector's x, y, z or w value is greater than the max vector's x, y, z or w + * value, it is replaced by the corresponding value. + * If this vector's x, y, z or w value is less than the min vector's x, y, z or w value, + * it is replaced by the corresponding value. + * + * @param {Vector4} min - The minimum x, y and z values. + * @param {Vector4} max - The maximum x, y and z values in the desired range. + * @return {Vector4} A reference to this vector. + */ + clamp( min, max ) { + + // assumes min < max, componentwise + + this.x = clamp( this.x, min.x, max.x ); + this.y = clamp( this.y, min.y, max.y ); + this.z = clamp( this.z, min.z, max.z ); + this.w = clamp( this.w, min.w, max.w ); + + return this; + + } + + /** + * If this vector's x, y, z or w values are greater than the max value, they are + * replaced by the max value. + * If this vector's x, y, z or w values are less than the min value, they are + * replaced by the min value. + * + * @param {number} minVal - The minimum value the components will be clamped to. + * @param {number} maxVal - The maximum value the components will be clamped to. + * @return {Vector4} A reference to this vector. + */ + clampScalar( minVal, maxVal ) { + + this.x = clamp( this.x, minVal, maxVal ); + this.y = clamp( this.y, minVal, maxVal ); + this.z = clamp( this.z, minVal, maxVal ); + this.w = clamp( this.w, minVal, maxVal ); + + return this; + + } + + /** + * If this vector's length is greater than the max value, it is replaced by + * the max value. + * If this vector's length is less than the min value, it is replaced by the + * min value. + * + * @param {number} min - The minimum value the vector length will be clamped to. + * @param {number} max - The maximum value the vector length will be clamped to. + * @return {Vector4} A reference to this vector. + */ + clampLength( min, max ) { + + const length = this.length(); + + return this.divideScalar( length || 1 ).multiplyScalar( clamp( length, min, max ) ); + + } + + /** + * The components of this vector are rounded down to the nearest integer value. + * + * @return {Vector4} A reference to this vector. + */ + floor() { + + this.x = Math.floor( this.x ); + this.y = Math.floor( this.y ); + this.z = Math.floor( this.z ); + this.w = Math.floor( this.w ); + + return this; + + } + + /** + * The components of this vector are rounded up to the nearest integer value. + * + * @return {Vector4} A reference to this vector. + */ + ceil() { + + this.x = Math.ceil( this.x ); + this.y = Math.ceil( this.y ); + this.z = Math.ceil( this.z ); + this.w = Math.ceil( this.w ); + + return this; + + } + + /** + * The components of this vector are rounded to the nearest integer value + * + * @return {Vector4} A reference to this vector. + */ + round() { + + this.x = Math.round( this.x ); + this.y = Math.round( this.y ); + this.z = Math.round( this.z ); + this.w = Math.round( this.w ); + + return this; + + } + + /** + * The components of this vector are rounded towards zero (up if negative, + * down if positive) to an integer value. + * + * @return {Vector4} A reference to this vector. + */ + roundToZero() { + + this.x = Math.trunc( this.x ); + this.y = Math.trunc( this.y ); + this.z = Math.trunc( this.z ); + this.w = Math.trunc( this.w ); + + return this; + + } + + /** + * Inverts this vector - i.e. sets x = -x, y = -y, z = -z, w = -w. + * + * @return {Vector4} A reference to this vector. + */ + negate() { + + this.x = - this.x; + this.y = - this.y; + this.z = - this.z; + this.w = - this.w; + + return this; + + } + + /** + * Calculates the dot product of the given vector with this instance. + * + * @param {Vector4} v - The vector to compute the dot product with. + * @return {number} The result of the dot product. + */ + dot( v ) { + + return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; + + } + + /** + * Computes the square of the Euclidean length (straight-line length) from + * (0, 0, 0, 0) to (x, y, z, w). If you are comparing the lengths of vectors, you should + * compare the length squared instead as it is slightly more efficient to calculate. + * + * @return {number} The square length of this vector. + */ + lengthSq() { + + return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; + + } + + /** + * Computes the Euclidean length (straight-line length) from (0, 0, 0, 0) to (x, y, z, w). + * + * @return {number} The length of this vector. + */ + length() { + + return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); + + } + + /** + * Computes the Manhattan length of this vector. + * + * @return {number} The length of this vector. + */ + manhattanLength() { + + return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); + + } + + /** + * Converts this vector to a unit vector - that is, sets it equal to a vector + * with the same direction as this one, but with a vector length of `1`. + * + * @return {Vector4} A reference to this vector. + */ + normalize() { + + return this.divideScalar( this.length() || 1 ); + + } + + /** + * Sets this vector to a vector with the same direction as this one, but + * with the specified length. + * + * @param {number} length - The new length of this vector. + * @return {Vector4} A reference to this vector. + */ + setLength( length ) { + + return this.normalize().multiplyScalar( length ); + + } + + /** + * Linearly interpolates between the given vector and this instance, where + * alpha is the percent distance along the line - alpha = 0 will be this + * vector, and alpha = 1 will be the given one. + * + * @param {Vector4} v - The vector to interpolate towards. + * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. + * @return {Vector4} A reference to this vector. + */ + lerp( v, alpha ) { + + this.x += ( v.x - this.x ) * alpha; + this.y += ( v.y - this.y ) * alpha; + this.z += ( v.z - this.z ) * alpha; + this.w += ( v.w - this.w ) * alpha; + + return this; + + } + + /** + * Linearly interpolates between the given vectors, where alpha is the percent + * distance along the line - alpha = 0 will be first vector, and alpha = 1 will + * be the second one. The result is stored in this instance. + * + * @param {Vector4} v1 - The first vector. + * @param {Vector4} v2 - The second vector. + * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. + * @return {Vector4} A reference to this vector. + */ + lerpVectors( v1, v2, alpha ) { + + this.x = v1.x + ( v2.x - v1.x ) * alpha; + this.y = v1.y + ( v2.y - v1.y ) * alpha; + this.z = v1.z + ( v2.z - v1.z ) * alpha; + this.w = v1.w + ( v2.w - v1.w ) * alpha; + + return this; + + } + + /** + * Returns `true` if this vector is equal with the given one. + * + * @param {Vector4} v - The vector to test for equality. + * @return {boolean} Whether this vector is equal with the given one. + */ + equals( v ) { + + return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); + + } + + /** + * Sets this vector's x value to be `array[ offset ]`, y value to be `array[ offset + 1 ]`, + * z value to be `array[ offset + 2 ]`, w value to be `array[ offset + 3 ]`. + * + * @param {Array} array - An array holding the vector component values. + * @param {number} [offset=0] - The offset into the array. + * @return {Vector4} A reference to this vector. + */ + fromArray( array, offset = 0 ) { + + this.x = array[ offset ]; + this.y = array[ offset + 1 ]; + this.z = array[ offset + 2 ]; + this.w = array[ offset + 3 ]; + + return this; + + } + + /** + * Writes the components of this vector to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the vector components. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The vector components. + */ + toArray( array = [], offset = 0 ) { + + array[ offset ] = this.x; + array[ offset + 1 ] = this.y; + array[ offset + 2 ] = this.z; + array[ offset + 3 ] = this.w; + + return array; + + } + + /** + * Sets the components of this vector from the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute holding vector data. + * @param {number} index - The index into the attribute. + * @return {Vector4} A reference to this vector. + */ + fromBufferAttribute( attribute, index ) { + + this.x = attribute.getX( index ); + this.y = attribute.getY( index ); + this.z = attribute.getZ( index ); + this.w = attribute.getW( index ); + + return this; + + } + + /** + * Sets each component of this vector to a pseudo-random value between `0` and + * `1`, excluding `1`. + * + * @return {Vector4} A reference to this vector. + */ + random() { + + this.x = Math.random(); + this.y = Math.random(); + this.z = Math.random(); + this.w = Math.random(); + + return this; + + } + + *[ Symbol.iterator ]() { + + yield this.x; + yield this.y; + yield this.z; + yield this.w; + + } + +} + +/** + * A render target is a buffer where the video card draws pixels for a scene + * that is being rendered in the background. It is used in different effects, + * such as applying postprocessing to a rendered image before displaying it + * on the screen. + * + * @augments EventDispatcher + */ +class RenderTarget extends EventDispatcher { + + /** + * Render target options. + * + * @typedef {Object} RenderTarget~Options + * @property {boolean} [generateMipmaps=false] - Whether to generate mipmaps or not. + * @property {number} [magFilter=LinearFilter] - The mag filter. + * @property {number} [minFilter=LinearFilter] - The min filter. + * @property {number} [format=RGBAFormat] - The texture format. + * @property {number} [type=UnsignedByteType] - The texture type. + * @property {?string} [internalFormat=null] - The texture's internal format. + * @property {number} [wrapS=ClampToEdgeWrapping] - The texture's uv wrapping mode. + * @property {number} [wrapT=ClampToEdgeWrapping] - The texture's uv wrapping mode. + * @property {number} [anisotropy=1] - The texture's anisotropy value. + * @property {string} [colorSpace=NoColorSpace] - The texture's color space. + * @property {boolean} [depthBuffer=true] - Whether to allocate a depth buffer or not. + * @property {boolean} [stencilBuffer=false] - Whether to allocate a stencil buffer or not. + * @property {boolean} [resolveDepthBuffer=true] - Whether to resolve the depth buffer or not. + * @property {boolean} [resolveStencilBuffer=true] - Whether to resolve the stencil buffer or not. + * @property {?Texture} [depthTexture=null] - Reference to a depth texture. + * @property {number} [samples=0] - The MSAA samples count. + * @property {number} [count=1] - Defines the number of color attachments . Must be at least `1`. + * @property {number} [depth=1] - The texture depth. + * @property {boolean} [multiview=false] - Whether this target is used for multiview rendering. + */ + + /** + * Constructs a new render target. + * + * @param {number} [width=1] - The width of the render target. + * @param {number} [height=1] - The height of the render target. + * @param {RenderTarget~Options} [options] - The configuration object. + */ + constructor( width = 1, height = 1, options = {} ) { + + super(); + + options = Object.assign( { + generateMipmaps: false, + internalFormat: null, + minFilter: LinearFilter, + depthBuffer: true, + stencilBuffer: false, + resolveDepthBuffer: true, + resolveStencilBuffer: true, + depthTexture: null, + samples: 0, + count: 1, + depth: 1, + multiview: false + }, options ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isRenderTarget = true; + + /** + * The width of the render target. + * + * @type {number} + * @default 1 + */ + this.width = width; + + /** + * The height of the render target. + * + * @type {number} + * @default 1 + */ + this.height = height; + + /** + * The depth of the render target. + * + * @type {number} + * @default 1 + */ + this.depth = options.depth; + + /** + * A rectangular area inside the render target's viewport. Fragments that are + * outside the area will be discarded. + * + * @type {Vector4} + * @default (0,0,width,height) + */ + this.scissor = new Vector4( 0, 0, width, height ); + + /** + * Indicates whether the scissor test should be enabled when rendering into + * this render target or not. + * + * @type {boolean} + * @default false + */ + this.scissorTest = false; + + /** + * A rectangular area representing the render target's viewport. + * + * @type {Vector4} + * @default (0,0,width,height) + */ + this.viewport = new Vector4( 0, 0, width, height ); + + const image = { width: width, height: height, depth: options.depth }; + + const texture = new Texture( image ); + + /** + * An array of textures. Each color attachment is represented as a separate texture. + * Has at least a single entry for the default color attachment. + * + * @type {Array} + */ + this.textures = []; + + const count = options.count; + for ( let i = 0; i < count; i ++ ) { + + this.textures[ i ] = texture.clone(); + this.textures[ i ].isRenderTargetTexture = true; + this.textures[ i ].renderTarget = this; + + } + + this._setTextureOptions( options ); + + /** + * Whether to allocate a depth buffer or not. + * + * @type {boolean} + * @default true + */ + this.depthBuffer = options.depthBuffer; + + /** + * Whether to allocate a stencil buffer or not. + * + * @type {boolean} + * @default false + */ + this.stencilBuffer = options.stencilBuffer; + + /** + * Whether to resolve the depth buffer or not. + * + * @type {boolean} + * @default true + */ + this.resolveDepthBuffer = options.resolveDepthBuffer; + + /** + * Whether to resolve the stencil buffer or not. + * + * @type {boolean} + * @default true + */ + this.resolveStencilBuffer = options.resolveStencilBuffer; + + this._depthTexture = null; + this.depthTexture = options.depthTexture; + + /** + * The number of MSAA samples. + * + * A value of `0` disables MSAA. + * + * @type {number} + * @default 0 + */ + this.samples = options.samples; + + /** + * Whether to this target is used in multiview rendering. + * + * @type {boolean} + * @default false + */ + this.multiview = options.multiview; + + } + + _setTextureOptions( options = {} ) { + + const values = { + minFilter: LinearFilter, + generateMipmaps: false, + flipY: false, + internalFormat: null + }; + + if ( options.mapping !== undefined ) values.mapping = options.mapping; + if ( options.wrapS !== undefined ) values.wrapS = options.wrapS; + if ( options.wrapT !== undefined ) values.wrapT = options.wrapT; + if ( options.wrapR !== undefined ) values.wrapR = options.wrapR; + if ( options.magFilter !== undefined ) values.magFilter = options.magFilter; + if ( options.minFilter !== undefined ) values.minFilter = options.minFilter; + if ( options.format !== undefined ) values.format = options.format; + if ( options.type !== undefined ) values.type = options.type; + if ( options.anisotropy !== undefined ) values.anisotropy = options.anisotropy; + if ( options.colorSpace !== undefined ) values.colorSpace = options.colorSpace; + if ( options.flipY !== undefined ) values.flipY = options.flipY; + if ( options.generateMipmaps !== undefined ) values.generateMipmaps = options.generateMipmaps; + if ( options.internalFormat !== undefined ) values.internalFormat = options.internalFormat; + + for ( let i = 0; i < this.textures.length; i ++ ) { + + const texture = this.textures[ i ]; + texture.setValues( values ); + + } + + } + + /** + * The texture representing the default color attachment. + * + * @type {Texture} + */ + get texture() { + + return this.textures[ 0 ]; + + } + + set texture( value ) { + + this.textures[ 0 ] = value; + + } + + set depthTexture( current ) { + + if ( this._depthTexture !== null ) this._depthTexture.renderTarget = null; + if ( current !== null ) current.renderTarget = this; + + this._depthTexture = current; + + } + + /** + * Instead of saving the depth in a renderbuffer, a texture + * can be used instead which is useful for further processing + * e.g. in context of post-processing. + * + * @type {?DepthTexture} + * @default null + */ + get depthTexture() { + + return this._depthTexture; + + } + + /** + * Sets the size of this render target. + * + * @param {number} width - The width. + * @param {number} height - The height. + * @param {number} [depth=1] - The depth. + */ + setSize( width, height, depth = 1 ) { + + if ( this.width !== width || this.height !== height || this.depth !== depth ) { + + this.width = width; + this.height = height; + this.depth = depth; + + for ( let i = 0, il = this.textures.length; i < il; i ++ ) { + + this.textures[ i ].image.width = width; + this.textures[ i ].image.height = height; + this.textures[ i ].image.depth = depth; + this.textures[ i ].isArrayTexture = this.textures[ i ].image.depth > 1; + + } + + this.dispose(); + + } + + this.viewport.set( 0, 0, width, height ); + this.scissor.set( 0, 0, width, height ); + + } + + /** + * Returns a new render target with copied values from this instance. + * + * @return {RenderTarget} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + + /** + * Copies the settings of the given render target. This is a structural copy so + * no resources are shared between render targets after the copy. That includes + * all MRT textures and the depth texture. + * + * @param {RenderTarget} source - The render target to copy. + * @return {RenderTarget} A reference to this instance. + */ + copy( source ) { + + this.width = source.width; + this.height = source.height; + this.depth = source.depth; + + this.scissor.copy( source.scissor ); + this.scissorTest = source.scissorTest; + + this.viewport.copy( source.viewport ); + + this.textures.length = 0; + + for ( let i = 0, il = source.textures.length; i < il; i ++ ) { + + this.textures[ i ] = source.textures[ i ].clone(); + this.textures[ i ].isRenderTargetTexture = true; + this.textures[ i ].renderTarget = this; + + // ensure image object is not shared, see #20328 + + const image = Object.assign( {}, source.textures[ i ].image ); + this.textures[ i ].source = new Source( image ); + + } + + this.depthBuffer = source.depthBuffer; + this.stencilBuffer = source.stencilBuffer; + + this.resolveDepthBuffer = source.resolveDepthBuffer; + this.resolveStencilBuffer = source.resolveStencilBuffer; + + if ( source.depthTexture !== null ) this.depthTexture = source.depthTexture.clone(); + + this.samples = source.samples; + + return this; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + * + * @fires RenderTarget#dispose + */ + dispose() { + + this.dispatchEvent( { type: 'dispose' } ); + + } + +} + +/** + * A render target used in context of {@link WebGLRenderer}. + * + * @augments RenderTarget + */ +class WebGLRenderTarget extends RenderTarget { + + /** + * Constructs a new 3D render target. + * + * @param {number} [width=1] - The width of the render target. + * @param {number} [height=1] - The height of the render target. + * @param {RenderTarget~Options} [options] - The configuration object. + */ + constructor( width = 1, height = 1, options = {} ) { + + super( width, height, options ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWebGLRenderTarget = true; + + } + +} + +/** + * Creates an array of textures directly from raw buffer data. + * + * @augments Texture + */ +class DataArrayTexture extends Texture { + + /** + * Constructs a new data array texture. + * + * @param {?TypedArray} [data=null] - The buffer data. + * @param {number} [width=1] - The width of the texture. + * @param {number} [height=1] - The height of the texture. + * @param {number} [depth=1] - The depth of the texture. + */ + constructor( data = null, width = 1, height = 1, depth = 1 ) { + + super( null ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isDataArrayTexture = true; + + /** + * The image definition of a data texture. + * + * @type {{data:TypedArray,width:number,height:number,depth:number}} + */ + this.image = { data, width, height, depth }; + + /** + * How the texture is sampled when a texel covers more than one pixel. + * + * Overwritten and set to `NearestFilter` by default. + * + * @type {(NearestFilter|NearestMipmapNearestFilter|NearestMipmapLinearFilter|LinearFilter|LinearMipmapNearestFilter|LinearMipmapLinearFilter)} + * @default NearestFilter + */ + this.magFilter = NearestFilter; + + /** + * How the texture is sampled when a texel covers less than one pixel. + * + * Overwritten and set to `NearestFilter` by default. + * + * @type {(NearestFilter|NearestMipmapNearestFilter|NearestMipmapLinearFilter|LinearFilter|LinearMipmapNearestFilter|LinearMipmapLinearFilter)} + * @default NearestFilter + */ + this.minFilter = NearestFilter; + + /** + * This defines how the texture is wrapped in the depth and corresponds to + * *W* in UVW mapping. + * + * @type {(RepeatWrapping|ClampToEdgeWrapping|MirroredRepeatWrapping)} + * @default ClampToEdgeWrapping + */ + this.wrapR = ClampToEdgeWrapping; + + /** + * Whether to generate mipmaps (if possible) for a texture. + * + * Overwritten and set to `false` by default. + * + * @type {boolean} + * @default false + */ + this.generateMipmaps = false; + + /** + * If set to `true`, the texture is flipped along the vertical axis when + * uploaded to the GPU. + * + * Overwritten and set to `false` by default. + * + * @type {boolean} + * @default false + */ + this.flipY = false; + + /** + * Specifies the alignment requirements for the start of each pixel row in memory. + * + * Overwritten and set to `1` by default. + * + * @type {boolean} + * @default 1 + */ + this.unpackAlignment = 1; + + /** + * A set of all layers which need to be updated in the texture. + * + * @type {Set} + */ + this.layerUpdates = new Set(); + + } + + /** + * Describes that a specific layer of the texture needs to be updated. + * Normally when {@link Texture#needsUpdate} is set to `true`, the + * entire data texture array is sent to the GPU. Marking specific + * layers will only transmit subsets of all mipmaps associated with a + * specific depth in the array which is often much more performant. + * + * @param {number} layerIndex - The layer index that should be updated. + */ + addLayerUpdate( layerIndex ) { + + this.layerUpdates.add( layerIndex ); + + } + + /** + * Resets the layer updates registry. + */ + clearLayerUpdates() { + + this.layerUpdates.clear(); + + } + +} + +/** + * An array render target used in context of {@link WebGLRenderer}. + * + * @augments WebGLRenderTarget + */ +class WebGLArrayRenderTarget extends WebGLRenderTarget { + + /** + * Constructs a new array render target. + * + * @param {number} [width=1] - The width of the render target. + * @param {number} [height=1] - The height of the render target. + * @param {number} [depth=1] - The height of the render target. + * @param {RenderTarget~Options} [options] - The configuration object. + */ + constructor( width = 1, height = 1, depth = 1, options = {} ) { + + super( width, height, options ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWebGLArrayRenderTarget = true; + + this.depth = depth; + + /** + * Overwritten with a different texture type. + * + * @type {DataArrayTexture} + */ + this.texture = new DataArrayTexture( null, width, height, depth ); + this._setTextureOptions( options ); + + this.texture.isRenderTargetTexture = true; + + } + +} + +/** + * Creates a three-dimensional texture from raw data, with parameters to + * divide it into width, height, and depth. + * + * @augments Texture + */ +class Data3DTexture extends Texture { + + /** + * Constructs a new data array texture. + * + * @param {?TypedArray} [data=null] - The buffer data. + * @param {number} [width=1] - The width of the texture. + * @param {number} [height=1] - The height of the texture. + * @param {number} [depth=1] - The depth of the texture. + */ + constructor( data = null, width = 1, height = 1, depth = 1 ) { + + // We're going to add .setXXX() methods for setting properties later. + // Users can still set in Data3DTexture directly. + // + // const texture = new THREE.Data3DTexture( data, width, height, depth ); + // texture.anisotropy = 16; + // + // See #14839 + + super( null ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isData3DTexture = true; + + /** + * The image definition of a data texture. + * + * @type {{data:TypedArray,width:number,height:number,depth:number}} + */ + this.image = { data, width, height, depth }; + + /** + * How the texture is sampled when a texel covers more than one pixel. + * + * Overwritten and set to `NearestFilter` by default. + * + * @type {(NearestFilter|NearestMipmapNearestFilter|NearestMipmapLinearFilter|LinearFilter|LinearMipmapNearestFilter|LinearMipmapLinearFilter)} + * @default NearestFilter + */ + this.magFilter = NearestFilter; + + /** + * How the texture is sampled when a texel covers less than one pixel. + * + * Overwritten and set to `NearestFilter` by default. + * + * @type {(NearestFilter|NearestMipmapNearestFilter|NearestMipmapLinearFilter|LinearFilter|LinearMipmapNearestFilter|LinearMipmapLinearFilter)} + * @default NearestFilter + */ + this.minFilter = NearestFilter; + + /** + * This defines how the texture is wrapped in the depth and corresponds to + * *W* in UVW mapping. + * + * @type {(RepeatWrapping|ClampToEdgeWrapping|MirroredRepeatWrapping)} + * @default ClampToEdgeWrapping + */ + this.wrapR = ClampToEdgeWrapping; + + /** + * Whether to generate mipmaps (if possible) for a texture. + * + * Overwritten and set to `false` by default. + * + * @type {boolean} + * @default false + */ + this.generateMipmaps = false; + + /** + * If set to `true`, the texture is flipped along the vertical axis when + * uploaded to the GPU. + * + * Overwritten and set to `false` by default. + * + * @type {boolean} + * @default false + */ + this.flipY = false; + + /** + * Specifies the alignment requirements for the start of each pixel row in memory. + * + * Overwritten and set to `1` by default. + * + * @type {boolean} + * @default 1 + */ + this.unpackAlignment = 1; + + } + +} + +/** + * A 3D render target used in context of {@link WebGLRenderer}. + * + * @augments WebGLRenderTarget + */ +class WebGL3DRenderTarget extends WebGLRenderTarget { + + /** + * Constructs a new 3D render target. + * + * @param {number} [width=1] - The width of the render target. + * @param {number} [height=1] - The height of the render target. + * @param {number} [depth=1] - The height of the render target. + * @param {RenderTarget~Options} [options] - The configuration object. + */ + constructor( width = 1, height = 1, depth = 1, options = {} ) { + + super( width, height, options ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWebGL3DRenderTarget = true; + + this.depth = depth; + + /** + * Overwritten with a different texture type. + * + * @type {Data3DTexture} + */ + this.texture = new Data3DTexture( null, width, height, depth ); + this._setTextureOptions( options ); + + this.texture.isRenderTargetTexture = true; + + } + +} + +/** + * Represents an axis-aligned bounding box (AABB) in 3D space. + */ +class Box3 { + + /** + * Constructs a new bounding box. + * + * @param {Vector3} [min=(Infinity,Infinity,Infinity)] - A vector representing the lower boundary of the box. + * @param {Vector3} [max=(-Infinity,-Infinity,-Infinity)] - A vector representing the upper boundary of the box. + */ + constructor( min = new Vector3( + Infinity, + Infinity, + Infinity ), max = new Vector3( - Infinity, - Infinity, - Infinity ) ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBox3 = true; + + /** + * The lower boundary of the box. + * + * @type {Vector3} + */ + this.min = min; + + /** + * The upper boundary of the box. + * + * @type {Vector3} + */ + this.max = max; + + } + + /** + * Sets the lower and upper boundaries of this box. + * Please note that this method only copies the values from the given objects. + * + * @param {Vector3} min - The lower boundary of the box. + * @param {Vector3} max - The upper boundary of the box. + * @return {Box3} A reference to this bounding box. + */ + set( min, max ) { + + this.min.copy( min ); + this.max.copy( max ); + + return this; + + } + + /** + * Sets the upper and lower bounds of this box so it encloses the position data + * in the given array. + * + * @param {Array} array - An array holding 3D position data. + * @return {Box3} A reference to this bounding box. + */ + setFromArray( array ) { + + this.makeEmpty(); + + for ( let i = 0, il = array.length; i < il; i += 3 ) { + + this.expandByPoint( _vector$b.fromArray( array, i ) ); + + } + + return this; + + } + + /** + * Sets the upper and lower bounds of this box so it encloses the position data + * in the given buffer attribute. + * + * @param {BufferAttribute} attribute - A buffer attribute holding 3D position data. + * @return {Box3} A reference to this bounding box. + */ + setFromBufferAttribute( attribute ) { + + this.makeEmpty(); + + for ( let i = 0, il = attribute.count; i < il; i ++ ) { + + this.expandByPoint( _vector$b.fromBufferAttribute( attribute, i ) ); + + } + + return this; + + } + + /** + * Sets the upper and lower bounds of this box so it encloses the position data + * in the given array. + * + * @param {Array} points - An array holding 3D position data as instances of {@link Vector3}. + * @return {Box3} A reference to this bounding box. + */ + setFromPoints( points ) { + + this.makeEmpty(); + + for ( let i = 0, il = points.length; i < il; i ++ ) { + + this.expandByPoint( points[ i ] ); + + } + + return this; + + } + + /** + * Centers this box on the given center vector and sets this box's width, height and + * depth to the given size values. + * + * @param {Vector3} center - The center of the box. + * @param {Vector3} size - The x, y and z dimensions of the box. + * @return {Box3} A reference to this bounding box. + */ + setFromCenterAndSize( center, size ) { + + const halfSize = _vector$b.copy( size ).multiplyScalar( 0.5 ); + + this.min.copy( center ).sub( halfSize ); + this.max.copy( center ).add( halfSize ); + + return this; + + } + + /** + * Computes the world-axis-aligned bounding box for the given 3D object + * (including its children), accounting for the object's, and children's, + * world transforms. The function may result in a larger box than strictly necessary. + * + * @param {Object3D} object - The 3D object to compute the bounding box for. + * @param {boolean} [precise=false] - If set to `true`, the method computes the smallest + * world-axis-aligned bounding box at the expense of more computation. + * @return {Box3} A reference to this bounding box. + */ + setFromObject( object, precise = false ) { + + this.makeEmpty(); + + return this.expandByObject( object, precise ); + + } + + /** + * Returns a new box with copied values from this instance. + * + * @return {Box3} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + + /** + * Copies the values of the given box to this instance. + * + * @param {Box3} box - The box to copy. + * @return {Box3} A reference to this bounding box. + */ + copy( box ) { + + this.min.copy( box.min ); + this.max.copy( box.max ); + + return this; + + } + + /** + * Makes this box empty which means in encloses a zero space in 3D. + * + * @return {Box3} A reference to this bounding box. + */ + makeEmpty() { + + this.min.x = this.min.y = this.min.z = + Infinity; + this.max.x = this.max.y = this.max.z = - Infinity; + + return this; + + } + + /** + * Returns true if this box includes zero points within its bounds. + * Note that a box with equal lower and upper bounds still includes one + * point, the one both bounds share. + * + * @return {boolean} Whether this box is empty or not. + */ + isEmpty() { + + // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes + + return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); + + } + + /** + * Returns the center point of this box. + * + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The center point. + */ + getCenter( target ) { + + return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); + + } + + /** + * Returns the dimensions of this box. + * + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The size. + */ + getSize( target ) { + + return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min ); + + } + + /** + * Expands the boundaries of this box to include the given point. + * + * @param {Vector3} point - The point that should be included by the bounding box. + * @return {Box3} A reference to this bounding box. + */ + expandByPoint( point ) { + + this.min.min( point ); + this.max.max( point ); + + return this; + + } + + /** + * Expands this box equilaterally by the given vector. The width of this + * box will be expanded by the x component of the vector in both + * directions. The height of this box will be expanded by the y component of + * the vector in both directions. The depth of this box will be + * expanded by the z component of the vector in both directions. + * + * @param {Vector3} vector - The vector that should expand the bounding box. + * @return {Box3} A reference to this bounding box. + */ + expandByVector( vector ) { + + this.min.sub( vector ); + this.max.add( vector ); + + return this; + + } + + /** + * Expands each dimension of the box by the given scalar. If negative, the + * dimensions of the box will be contracted. + * + * @param {number} scalar - The scalar value that should expand the bounding box. + * @return {Box3} A reference to this bounding box. + */ + expandByScalar( scalar ) { + + this.min.addScalar( - scalar ); + this.max.addScalar( scalar ); + + return this; + + } + + /** + * Expands the boundaries of this box to include the given 3D object and + * its children, accounting for the object's, and children's, world + * transforms. The function may result in a larger box than strictly + * necessary (unless the precise parameter is set to true). + * + * @param {Object3D} object - The 3D object that should expand the bounding box. + * @param {boolean} precise - If set to `true`, the method expands the bounding box + * as little as necessary at the expense of more computation. + * @return {Box3} A reference to this bounding box. + */ + expandByObject( object, precise = false ) { + + // Computes the world-axis-aligned bounding box of an object (including its children), + // accounting for both the object's, and children's, world transforms + + object.updateWorldMatrix( false, false ); + + const geometry = object.geometry; + + if ( geometry !== undefined ) { + + const positionAttribute = geometry.getAttribute( 'position' ); + + // precise AABB computation based on vertex data requires at least a position attribute. + // instancing isn't supported so far and uses the normal (conservative) code path. + + if ( precise === true && positionAttribute !== undefined && object.isInstancedMesh !== true ) { + + for ( let i = 0, l = positionAttribute.count; i < l; i ++ ) { + + if ( object.isMesh === true ) { + + object.getVertexPosition( i, _vector$b ); + + } else { + + _vector$b.fromBufferAttribute( positionAttribute, i ); + + } + + _vector$b.applyMatrix4( object.matrixWorld ); + this.expandByPoint( _vector$b ); + + } + + } else { + + if ( object.boundingBox !== undefined ) { + + // object-level bounding box + + if ( object.boundingBox === null ) { + + object.computeBoundingBox(); + + } + + _box$4.copy( object.boundingBox ); + + + } else { + + // geometry-level bounding box + + if ( geometry.boundingBox === null ) { + + geometry.computeBoundingBox(); + + } + + _box$4.copy( geometry.boundingBox ); + + } + + _box$4.applyMatrix4( object.matrixWorld ); + + this.union( _box$4 ); + + } + + } + + const children = object.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + this.expandByObject( children[ i ], precise ); + + } + + return this; + + } + + /** + * Returns `true` if the given point lies within or on the boundaries of this box. + * + * @param {Vector3} point - The point to test. + * @return {boolean} Whether the bounding box contains the given point or not. + */ + containsPoint( point ) { + + return point.x >= this.min.x && point.x <= this.max.x && + point.y >= this.min.y && point.y <= this.max.y && + point.z >= this.min.z && point.z <= this.max.z; + + } + + /** + * Returns `true` if this bounding box includes the entirety of the given bounding box. + * If this box and the given one are identical, this function also returns `true`. + * + * @param {Box3} box - The bounding box to test. + * @return {boolean} Whether the bounding box contains the given bounding box or not. + */ + containsBox( box ) { + + return this.min.x <= box.min.x && box.max.x <= this.max.x && + this.min.y <= box.min.y && box.max.y <= this.max.y && + this.min.z <= box.min.z && box.max.z <= this.max.z; + + } + + /** + * Returns a point as a proportion of this box's width, height and depth. + * + * @param {Vector3} point - A point in 3D space. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} A point as a proportion of this box's width, height and depth. + */ + getParameter( point, target ) { + + // This can potentially have a divide by zero if the box + // has a size dimension of 0. + + return target.set( + ( point.x - this.min.x ) / ( this.max.x - this.min.x ), + ( point.y - this.min.y ) / ( this.max.y - this.min.y ), + ( point.z - this.min.z ) / ( this.max.z - this.min.z ) + ); + + } + + /** + * Returns `true` if the given bounding box intersects with this bounding box. + * + * @param {Box3} box - The bounding box to test. + * @return {boolean} Whether the given bounding box intersects with this bounding box. + */ + intersectsBox( box ) { + + // using 6 splitting planes to rule out intersections. + return box.max.x >= this.min.x && box.min.x <= this.max.x && + box.max.y >= this.min.y && box.min.y <= this.max.y && + box.max.z >= this.min.z && box.min.z <= this.max.z; + + } + + /** + * Returns `true` if the given bounding sphere intersects with this bounding box. + * + * @param {Sphere} sphere - The bounding sphere to test. + * @return {boolean} Whether the given bounding sphere intersects with this bounding box. + */ + intersectsSphere( sphere ) { + + // Find the point on the AABB closest to the sphere center. + this.clampPoint( sphere.center, _vector$b ); + + // If that point is inside the sphere, the AABB and sphere intersect. + return _vector$b.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); + + } + + /** + * Returns `true` if the given plane intersects with this bounding box. + * + * @param {Plane} plane - The plane to test. + * @return {boolean} Whether the given plane intersects with this bounding box. + */ + intersectsPlane( plane ) { + + // We compute the minimum and maximum dot product values. If those values + // are on the same side (back or front) of the plane, then there is no intersection. + + let min, max; + + if ( plane.normal.x > 0 ) { + + min = plane.normal.x * this.min.x; + max = plane.normal.x * this.max.x; + + } else { + + min = plane.normal.x * this.max.x; + max = plane.normal.x * this.min.x; + + } + + if ( plane.normal.y > 0 ) { + + min += plane.normal.y * this.min.y; + max += plane.normal.y * this.max.y; + + } else { + + min += plane.normal.y * this.max.y; + max += plane.normal.y * this.min.y; + + } + + if ( plane.normal.z > 0 ) { + + min += plane.normal.z * this.min.z; + max += plane.normal.z * this.max.z; + + } else { + + min += plane.normal.z * this.max.z; + max += plane.normal.z * this.min.z; + + } + + return ( min <= - plane.constant && max >= - plane.constant ); + + } + + /** + * Returns `true` if the given triangle intersects with this bounding box. + * + * @param {Triangle} triangle - The triangle to test. + * @return {boolean} Whether the given triangle intersects with this bounding box. + */ + intersectsTriangle( triangle ) { + + if ( this.isEmpty() ) { + + return false; + + } + + // compute box center and extents + this.getCenter( _center ); + _extents.subVectors( this.max, _center ); + + // translate triangle to aabb origin + _v0$2.subVectors( triangle.a, _center ); + _v1$7.subVectors( triangle.b, _center ); + _v2$4.subVectors( triangle.c, _center ); + + // compute edge vectors for triangle + _f0.subVectors( _v1$7, _v0$2 ); + _f1.subVectors( _v2$4, _v1$7 ); + _f2.subVectors( _v0$2, _v2$4 ); + + // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb + // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation + // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) + let axes = [ + 0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y, + _f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x, + - _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0 + ]; + if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$4, _extents ) ) { + + return false; + + } + + // test 3 face normals from the aabb + axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; + if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$4, _extents ) ) { + + return false; + + } + + // finally testing the face normal of the triangle + // use already existing triangle edge vectors here + _triangleNormal.crossVectors( _f0, _f1 ); + axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ]; + + return satForAxes( axes, _v0$2, _v1$7, _v2$4, _extents ); + + } + + /** + * Clamps the given point within the bounds of this box. + * + * @param {Vector3} point - The point to clamp. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The clamped point. + */ + clampPoint( point, target ) { + + return target.copy( point ).clamp( this.min, this.max ); + + } + + /** + * Returns the euclidean distance from any edge of this box to the specified point. If + * the given point lies inside of this box, the distance will be `0`. + * + * @param {Vector3} point - The point to compute the distance to. + * @return {number} The euclidean distance. + */ + distanceToPoint( point ) { + + return this.clampPoint( point, _vector$b ).distanceTo( point ); + + } + + /** + * Returns a bounding sphere that encloses this bounding box. + * + * @param {Sphere} target - The target sphere that is used to store the method's result. + * @return {Sphere} The bounding sphere that encloses this bounding box. + */ + getBoundingSphere( target ) { + + if ( this.isEmpty() ) { + + target.makeEmpty(); + + } else { + + this.getCenter( target.center ); + + target.radius = this.getSize( _vector$b ).length() * 0.5; + + } + + return target; + + } + + /** + * Computes the intersection of this bounding box and the given one, setting the upper + * bound of this box to the lesser of the two boxes' upper bounds and the + * lower bound of this box to the greater of the two boxes' lower bounds. If + * there's no overlap, makes this box empty. + * + * @param {Box3} box - The bounding box to intersect with. + * @return {Box3} A reference to this bounding box. + */ + intersect( box ) { + + this.min.max( box.min ); + this.max.min( box.max ); + + // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. + if ( this.isEmpty() ) this.makeEmpty(); + + return this; + + } + + /** + * Computes the union of this box and another and the given one, setting the upper + * bound of this box to the greater of the two boxes' upper bounds and the + * lower bound of this box to the lesser of the two boxes' lower bounds. + * + * @param {Box3} box - The bounding box that will be unioned with this instance. + * @return {Box3} A reference to this bounding box. + */ + union( box ) { + + this.min.min( box.min ); + this.max.max( box.max ); + + return this; + + } + + /** + * Transforms this bounding box by the given 4x4 transformation matrix. + * + * @param {Matrix4} matrix - The transformation matrix. + * @return {Box3} A reference to this bounding box. + */ + applyMatrix4( matrix ) { + + // transform of empty box is an empty box. + if ( this.isEmpty() ) return this; + + // NOTE: I am using a binary pattern to specify all 2^3 combinations below + _points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 + _points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 + _points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 + _points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 + _points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 + _points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 + _points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 + _points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 + + this.setFromPoints( _points ); + + return this; + + } + + /** + * Adds the given offset to both the upper and lower bounds of this bounding box, + * effectively moving it in 3D space. + * + * @param {Vector3} offset - The offset that should be used to translate the bounding box. + * @return {Box3} A reference to this bounding box. + */ + translate( offset ) { + + this.min.add( offset ); + this.max.add( offset ); + + return this; + + } + + /** + * Returns `true` if this bounding box is equal with the given one. + * + * @param {Box3} box - The box to test for equality. + * @return {boolean} Whether this bounding box is equal with the given one. + */ + equals( box ) { + + return box.min.equals( this.min ) && box.max.equals( this.max ); + + } + + /** + * Returns a serialized structure of the bounding box. + * + * @return {Object} Serialized structure with fields representing the object state. + */ + toJSON() { + + return { + min: this.min.toArray(), + max: this.max.toArray() + }; + + } + + /** + * Returns a serialized structure of the bounding box. + * + * @param {Object} json - The serialized json to set the box from. + * @return {Box3} A reference to this bounding box. + */ + fromJSON( json ) { + + this.min.fromArray( json.min ); + this.max.fromArray( json.max ); + return this; + + } + +} + +const _points = [ + /*@__PURE__*/ new Vector3(), + /*@__PURE__*/ new Vector3(), + /*@__PURE__*/ new Vector3(), + /*@__PURE__*/ new Vector3(), + /*@__PURE__*/ new Vector3(), + /*@__PURE__*/ new Vector3(), + /*@__PURE__*/ new Vector3(), + /*@__PURE__*/ new Vector3() +]; + +const _vector$b = /*@__PURE__*/ new Vector3(); + +const _box$4 = /*@__PURE__*/ new Box3(); + +// triangle centered vertices + +const _v0$2 = /*@__PURE__*/ new Vector3(); +const _v1$7 = /*@__PURE__*/ new Vector3(); +const _v2$4 = /*@__PURE__*/ new Vector3(); + +// triangle edge vectors + +const _f0 = /*@__PURE__*/ new Vector3(); +const _f1 = /*@__PURE__*/ new Vector3(); +const _f2 = /*@__PURE__*/ new Vector3(); + +const _center = /*@__PURE__*/ new Vector3(); +const _extents = /*@__PURE__*/ new Vector3(); +const _triangleNormal = /*@__PURE__*/ new Vector3(); +const _testAxis = /*@__PURE__*/ new Vector3(); + +function satForAxes( axes, v0, v1, v2, extents ) { + + for ( let i = 0, j = axes.length - 3; i <= j; i += 3 ) { + + _testAxis.fromArray( axes, i ); + // project the aabb onto the separating axis + const r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z ); + // project all 3 vertices of the triangle onto the separating axis + const p0 = v0.dot( _testAxis ); + const p1 = v1.dot( _testAxis ); + const p2 = v2.dot( _testAxis ); + // actual test, basically see if either of the most extreme of the triangle points intersects r + if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) { + + // points of the projected triangle are outside the projected half-length of the aabb + // the axis is separating and we can exit + return false; + + } + + } + + return true; + +} + +const _box$3 = /*@__PURE__*/ new Box3(); +const _v1$6 = /*@__PURE__*/ new Vector3(); +const _v2$3 = /*@__PURE__*/ new Vector3(); + +/** + * An analytical 3D sphere defined by a center and radius. This class is mainly + * used as a Bounding Sphere for 3D objects. + */ +class Sphere { + + /** + * Constructs a new sphere. + * + * @param {Vector3} [center=(0,0,0)] - The center of the sphere + * @param {number} [radius=-1] - The radius of the sphere. + */ + constructor( center = new Vector3(), radius = - 1 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSphere = true; + + /** + * The center of the sphere + * + * @type {Vector3} + */ + this.center = center; + + /** + * The radius of the sphere. + * + * @type {number} + */ + this.radius = radius; + + } + + /** + * Sets the sphere's components by copying the given values. + * + * @param {Vector3} center - The center. + * @param {number} radius - The radius. + * @return {Sphere} A reference to this sphere. + */ + set( center, radius ) { + + this.center.copy( center ); + this.radius = radius; + + return this; + + } + + /** + * Computes the minimum bounding sphere for list of points. + * If the optional center point is given, it is used as the sphere's + * center. Otherwise, the center of the axis-aligned bounding box + * encompassing the points is calculated. + * + * @param {Array} points - A list of points in 3D space. + * @param {Vector3} [optionalCenter] - The center of the sphere. + * @return {Sphere} A reference to this sphere. + */ + setFromPoints( points, optionalCenter ) { + + const center = this.center; + + if ( optionalCenter !== undefined ) { + + center.copy( optionalCenter ); + + } else { + + _box$3.setFromPoints( points ).getCenter( center ); + + } + + let maxRadiusSq = 0; + + for ( let i = 0, il = points.length; i < il; i ++ ) { + + maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) ); + + } + + this.radius = Math.sqrt( maxRadiusSq ); + + return this; + + } + + /** + * Copies the values of the given sphere to this instance. + * + * @param {Sphere} sphere - The sphere to copy. + * @return {Sphere} A reference to this sphere. + */ + copy( sphere ) { + + this.center.copy( sphere.center ); + this.radius = sphere.radius; + + return this; + + } + + /** + * Returns `true` if the sphere is empty (the radius set to a negative number). + * + * Spheres with a radius of `0` contain only their center point and are not + * considered to be empty. + * + * @return {boolean} Whether this sphere is empty or not. + */ + isEmpty() { + + return ( this.radius < 0 ); + + } + + /** + * Makes this sphere empty which means in encloses a zero space in 3D. + * + * @return {Sphere} A reference to this sphere. + */ + makeEmpty() { + + this.center.set( 0, 0, 0 ); + this.radius = - 1; + + return this; + + } + + /** + * Returns `true` if this sphere contains the given point inclusive of + * the surface of the sphere. + * + * @param {Vector3} point - The point to check. + * @return {boolean} Whether this sphere contains the given point or not. + */ + containsPoint( point ) { + + return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) ); + + } + + /** + * Returns the closest distance from the boundary of the sphere to the + * given point. If the sphere contains the point, the distance will + * be negative. + * + * @param {Vector3} point - The point to compute the distance to. + * @return {number} The distance to the point. + */ + distanceToPoint( point ) { + + return ( point.distanceTo( this.center ) - this.radius ); + + } + + /** + * Returns `true` if this sphere intersects with the given one. + * + * @param {Sphere} sphere - The sphere to test. + * @return {boolean} Whether this sphere intersects with the given one or not. + */ + intersectsSphere( sphere ) { + + const radiusSum = this.radius + sphere.radius; + + return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum ); + + } + + /** + * Returns `true` if this sphere intersects with the given box. + * + * @param {Box3} box - The box to test. + * @return {boolean} Whether this sphere intersects with the given box or not. + */ + intersectsBox( box ) { + + return box.intersectsSphere( this ); + + } + + /** + * Returns `true` if this sphere intersects with the given plane. + * + * @param {Plane} plane - The plane to test. + * @return {boolean} Whether this sphere intersects with the given plane or not. + */ + intersectsPlane( plane ) { + + return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius; + + } + + /** + * Clamps a point within the sphere. If the point is outside the sphere, it + * will clamp it to the closest point on the edge of the sphere. Points + * already inside the sphere will not be affected. + * + * @param {Vector3} point - The plane to clamp. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The clamped point. + */ + clampPoint( point, target ) { + + const deltaLengthSq = this.center.distanceToSquared( point ); + + target.copy( point ); + + if ( deltaLengthSq > ( this.radius * this.radius ) ) { + + target.sub( this.center ).normalize(); + target.multiplyScalar( this.radius ).add( this.center ); + + } + + return target; + + } + + /** + * Returns a bounding box that encloses this sphere. + * + * @param {Box3} target - The target box that is used to store the method's result. + * @return {Box3} The bounding box that encloses this sphere. + */ + getBoundingBox( target ) { + + if ( this.isEmpty() ) { + + // Empty sphere produces empty bounding box + target.makeEmpty(); + return target; + + } + + target.set( this.center, this.center ); + target.expandByScalar( this.radius ); + + return target; + + } + + /** + * Transforms this sphere with the given 4x4 transformation matrix. + * + * @param {Matrix4} matrix - The transformation matrix. + * @return {Sphere} A reference to this sphere. + */ + applyMatrix4( matrix ) { + + this.center.applyMatrix4( matrix ); + this.radius = this.radius * matrix.getMaxScaleOnAxis(); + + return this; + + } + + /** + * Translates the sphere's center by the given offset. + * + * @param {Vector3} offset - The offset. + * @return {Sphere} A reference to this sphere. + */ + translate( offset ) { + + this.center.add( offset ); + + return this; + + } + + /** + * Expands the boundaries of this sphere to include the given point. + * + * @param {Vector3} point - The point to include. + * @return {Sphere} A reference to this sphere. + */ + expandByPoint( point ) { + + if ( this.isEmpty() ) { + + this.center.copy( point ); + + this.radius = 0; + + return this; + + } + + _v1$6.subVectors( point, this.center ); + + const lengthSq = _v1$6.lengthSq(); + + if ( lengthSq > ( this.radius * this.radius ) ) { + + // calculate the minimal sphere + + const length = Math.sqrt( lengthSq ); + + const delta = ( length - this.radius ) * 0.5; + + this.center.addScaledVector( _v1$6, delta / length ); + + this.radius += delta; + + } + + return this; + + } + + /** + * Expands this sphere to enclose both the original sphere and the given sphere. + * + * @param {Sphere} sphere - The sphere to include. + * @return {Sphere} A reference to this sphere. + */ + union( sphere ) { + + if ( sphere.isEmpty() ) { + + return this; + + } + + if ( this.isEmpty() ) { + + this.copy( sphere ); + + return this; + + } + + if ( this.center.equals( sphere.center ) === true ) { + + this.radius = Math.max( this.radius, sphere.radius ); + + } else { + + _v2$3.subVectors( sphere.center, this.center ).setLength( sphere.radius ); + + this.expandByPoint( _v1$6.copy( sphere.center ).add( _v2$3 ) ); + + this.expandByPoint( _v1$6.copy( sphere.center ).sub( _v2$3 ) ); + + } + + return this; + + } + + /** + * Returns `true` if this sphere is equal with the given one. + * + * @param {Sphere} sphere - The sphere to test for equality. + * @return {boolean} Whether this bounding sphere is equal with the given one. + */ + equals( sphere ) { + + return sphere.center.equals( this.center ) && ( sphere.radius === this.radius ); + + } + + /** + * Returns a new sphere with copied values from this instance. + * + * @return {Sphere} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + + /** + * Returns a serialized structure of the bounding sphere. + * + * @return {Object} Serialized structure with fields representing the object state. + */ + toJSON() { + + return { + radius: this.radius, + center: this.center.toArray() + }; + + } + + /** + * Returns a serialized structure of the bounding sphere. + * + * @param {Object} json - The serialized json to set the sphere from. + * @return {Box3} A reference to this bounding sphere. + */ + fromJSON( json ) { + + this.radius = json.radius; + this.center.fromArray( json.center ); + return this; + + } + +} + +const _vector$a = /*@__PURE__*/ new Vector3(); +const _segCenter = /*@__PURE__*/ new Vector3(); +const _segDir = /*@__PURE__*/ new Vector3(); +const _diff = /*@__PURE__*/ new Vector3(); + +const _edge1 = /*@__PURE__*/ new Vector3(); +const _edge2 = /*@__PURE__*/ new Vector3(); +const _normal$1 = /*@__PURE__*/ new Vector3(); + +/** + * A ray that emits from an origin in a certain direction. The class is used by + * {@link Raycaster} to assist with raycasting. Raycasting is used for + * mouse picking (working out what objects in the 3D space the mouse is over) + * amongst other things. + */ +class Ray { + + /** + * Constructs a new ray. + * + * @param {Vector3} [origin=(0,0,0)] - The origin of the ray. + * @param {Vector3} [direction=(0,0,-1)] - The (normalized) direction of the ray. + */ + constructor( origin = new Vector3(), direction = new Vector3( 0, 0, - 1 ) ) { + + /** + * The origin of the ray. + * + * @type {Vector3} + */ + this.origin = origin; + + /** + * The (normalized) direction of the ray. + * + * @type {Vector3} + */ + this.direction = direction; + + } + + /** + * Sets the ray's components by copying the given values. + * + * @param {Vector3} origin - The origin. + * @param {Vector3} direction - The direction. + * @return {Ray} A reference to this ray. + */ + set( origin, direction ) { + + this.origin.copy( origin ); + this.direction.copy( direction ); + + return this; + + } + + /** + * Copies the values of the given ray to this instance. + * + * @param {Ray} ray - The ray to copy. + * @return {Ray} A reference to this ray. + */ + copy( ray ) { + + this.origin.copy( ray.origin ); + this.direction.copy( ray.direction ); + + return this; + + } + + /** + * Returns a vector that is located at a given distance along this ray. + * + * @param {number} t - The distance along the ray to retrieve a position for. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} A position on the ray. + */ + at( t, target ) { + + return target.copy( this.origin ).addScaledVector( this.direction, t ); + + } + + /** + * Adjusts the direction of the ray to point at the given vector in world space. + * + * @param {Vector3} v - The target position. + * @return {Ray} A reference to this ray. + */ + lookAt( v ) { + + this.direction.copy( v ).sub( this.origin ).normalize(); + + return this; + + } + + /** + * Shift the origin of this ray along its direction by the given distance. + * + * @param {number} t - The distance along the ray to interpolate. + * @return {Ray} A reference to this ray. + */ + recast( t ) { + + this.origin.copy( this.at( t, _vector$a ) ); + + return this; + + } + + /** + * Returns the point along this ray that is closest to the given point. + * + * @param {Vector3} point - A point in 3D space to get the closet location on the ray for. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The closest point on this ray. + */ + closestPointToPoint( point, target ) { + + target.subVectors( point, this.origin ); + + const directionDistance = target.dot( this.direction ); + + if ( directionDistance < 0 ) { + + return target.copy( this.origin ); + + } + + return target.copy( this.origin ).addScaledVector( this.direction, directionDistance ); + + } + + /** + * Returns the distance of the closest approach between this ray and the given point. + * + * @param {Vector3} point - A point in 3D space to compute the distance to. + * @return {number} The distance. + */ + distanceToPoint( point ) { + + return Math.sqrt( this.distanceSqToPoint( point ) ); + + } + + /** + * Returns the squared distance of the closest approach between this ray and the given point. + * + * @param {Vector3} point - A point in 3D space to compute the distance to. + * @return {number} The squared distance. + */ + distanceSqToPoint( point ) { + + const directionDistance = _vector$a.subVectors( point, this.origin ).dot( this.direction ); + + // point behind the ray + + if ( directionDistance < 0 ) { + + return this.origin.distanceToSquared( point ); + + } + + _vector$a.copy( this.origin ).addScaledVector( this.direction, directionDistance ); + + return _vector$a.distanceToSquared( point ); + + } + + /** + * Returns the squared distance between this ray and the given line segment. + * + * @param {Vector3} v0 - The start point of the line segment. + * @param {Vector3} v1 - The end point of the line segment. + * @param {Vector3} [optionalPointOnRay] - When provided, it receives the point on this ray that is closest to the segment. + * @param {Vector3} [optionalPointOnSegment] - When provided, it receives the point on the line segment that is closest to this ray. + * @return {number} The squared distance. + */ + distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) { + + // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteDistRaySegment.h + // It returns the min distance between the ray and the segment + // defined by v0 and v1 + // It can also set two optional targets : + // - The closest point on the ray + // - The closest point on the segment + + _segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 ); + _segDir.copy( v1 ).sub( v0 ).normalize(); + _diff.copy( this.origin ).sub( _segCenter ); + + const segExtent = v0.distanceTo( v1 ) * 0.5; + const a01 = - this.direction.dot( _segDir ); + const b0 = _diff.dot( this.direction ); + const b1 = - _diff.dot( _segDir ); + const c = _diff.lengthSq(); + const det = Math.abs( 1 - a01 * a01 ); + let s0, s1, sqrDist, extDet; + + if ( det > 0 ) { + + // The ray and segment are not parallel. + + s0 = a01 * b1 - b0; + s1 = a01 * b0 - b1; + extDet = segExtent * det; + + if ( s0 >= 0 ) { + + if ( s1 >= - extDet ) { + + if ( s1 <= extDet ) { + + // region 0 + // Minimum at interior points of ray and segment. + + const invDet = 1 / det; + s0 *= invDet; + s1 *= invDet; + sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c; + + } else { + + // region 1 + + s1 = segExtent; + s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); + sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; + + } + + } else { + + // region 5 + + s1 = - segExtent; + s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); + sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; + + } + + } else { + + if ( s1 <= - extDet ) { + + // region 4 + + s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) ); + s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); + sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; + + } else if ( s1 <= extDet ) { + + // region 3 + + s0 = 0; + s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent ); + sqrDist = s1 * ( s1 + 2 * b1 ) + c; + + } else { + + // region 2 + + s0 = Math.max( 0, - ( a01 * segExtent + b0 ) ); + s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); + sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; + + } + + } + + } else { + + // Ray and segment are parallel. + + s1 = ( a01 > 0 ) ? - segExtent : segExtent; + s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); + sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; + + } + + if ( optionalPointOnRay ) { + + optionalPointOnRay.copy( this.origin ).addScaledVector( this.direction, s0 ); + + } + + if ( optionalPointOnSegment ) { + + optionalPointOnSegment.copy( _segCenter ).addScaledVector( _segDir, s1 ); + + } + + return sqrDist; + + } + + /** + * Intersects this ray with the given sphere, returning the intersection + * point or `null` if there is no intersection. + * + * @param {Sphere} sphere - The sphere to intersect. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {?Vector3} The intersection point. + */ + intersectSphere( sphere, target ) { + + _vector$a.subVectors( sphere.center, this.origin ); + const tca = _vector$a.dot( this.direction ); + const d2 = _vector$a.dot( _vector$a ) - tca * tca; + const radius2 = sphere.radius * sphere.radius; + + if ( d2 > radius2 ) return null; + + const thc = Math.sqrt( radius2 - d2 ); + + // t0 = first intersect point - entrance on front of sphere + const t0 = tca - thc; + + // t1 = second intersect point - exit point on back of sphere + const t1 = tca + thc; + + // test to see if t1 is behind the ray - if so, return null + if ( t1 < 0 ) return null; + + // test to see if t0 is behind the ray: + // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, + // in order to always return an intersect point that is in front of the ray. + if ( t0 < 0 ) return this.at( t1, target ); + + // else t0 is in front of the ray, so return the first collision point scaled by t0 + return this.at( t0, target ); + + } + + /** + * Returns `true` if this ray intersects with the given sphere. + * + * @param {Sphere} sphere - The sphere to intersect. + * @return {boolean} Whether this ray intersects with the given sphere or not. + */ + intersectsSphere( sphere ) { + + return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius ); + + } + + /** + * Computes the distance from the ray's origin to the given plane. Returns `null` if the ray + * does not intersect with the plane. + * + * @param {Plane} plane - The plane to compute the distance to. + * @return {?number} Whether this ray intersects with the given sphere or not. + */ + distanceToPlane( plane ) { + + const denominator = plane.normal.dot( this.direction ); + + if ( denominator === 0 ) { + + // line is coplanar, return origin + if ( plane.distanceToPoint( this.origin ) === 0 ) { + + return 0; + + } + + // Null is preferable to undefined since undefined means.... it is undefined + + return null; + + } + + const t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator; + + // Return if the ray never intersects the plane + + return t >= 0 ? t : null; + + } + + /** + * Intersects this ray with the given plane, returning the intersection + * point or `null` if there is no intersection. + * + * @param {Plane} plane - The plane to intersect. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {?Vector3} The intersection point. + */ + intersectPlane( plane, target ) { + + const t = this.distanceToPlane( plane ); + + if ( t === null ) { + + return null; + + } + + return this.at( t, target ); + + } + + /** + * Returns `true` if this ray intersects with the given plane. + * + * @param {Plane} plane - The plane to intersect. + * @return {boolean} Whether this ray intersects with the given plane or not. + */ + intersectsPlane( plane ) { + + // check if the ray lies on the plane first + + const distToPoint = plane.distanceToPoint( this.origin ); + + if ( distToPoint === 0 ) { + + return true; + + } + + const denominator = plane.normal.dot( this.direction ); + + if ( denominator * distToPoint < 0 ) { + + return true; + + } + + // ray origin is behind the plane (and is pointing behind it) + + return false; + + } + + /** + * Intersects this ray with the given bounding box, returning the intersection + * point or `null` if there is no intersection. + * + * @param {Box3} box - The box to intersect. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {?Vector3} The intersection point. + */ + intersectBox( box, target ) { + + let tmin, tmax, tymin, tymax, tzmin, tzmax; + + const invdirx = 1 / this.direction.x, + invdiry = 1 / this.direction.y, + invdirz = 1 / this.direction.z; + + const origin = this.origin; + + if ( invdirx >= 0 ) { + + tmin = ( box.min.x - origin.x ) * invdirx; + tmax = ( box.max.x - origin.x ) * invdirx; + + } else { + + tmin = ( box.max.x - origin.x ) * invdirx; + tmax = ( box.min.x - origin.x ) * invdirx; + + } + + if ( invdiry >= 0 ) { + + tymin = ( box.min.y - origin.y ) * invdiry; + tymax = ( box.max.y - origin.y ) * invdiry; + + } else { + + tymin = ( box.max.y - origin.y ) * invdiry; + tymax = ( box.min.y - origin.y ) * invdiry; + + } + + if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null; + + if ( tymin > tmin || isNaN( tmin ) ) tmin = tymin; + + if ( tymax < tmax || isNaN( tmax ) ) tmax = tymax; + + if ( invdirz >= 0 ) { + + tzmin = ( box.min.z - origin.z ) * invdirz; + tzmax = ( box.max.z - origin.z ) * invdirz; + + } else { + + tzmin = ( box.max.z - origin.z ) * invdirz; + tzmax = ( box.min.z - origin.z ) * invdirz; + + } + + if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null; + + if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin; + + if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax; + + //return point closest to the ray (positive side) + + if ( tmax < 0 ) return null; + + return this.at( tmin >= 0 ? tmin : tmax, target ); + + } + + /** + * Returns `true` if this ray intersects with the given box. + * + * @param {Box3} box - The box to intersect. + * @return {boolean} Whether this ray intersects with the given box or not. + */ + intersectsBox( box ) { + + return this.intersectBox( box, _vector$a ) !== null; + + } + + /** + * Intersects this ray with the given triangle, returning the intersection + * point or `null` if there is no intersection. + * + * @param {Vector3} a - The first vertex of the triangle. + * @param {Vector3} b - The second vertex of the triangle. + * @param {Vector3} c - The third vertex of the triangle. + * @param {boolean} backfaceCulling - Whether to use backface culling or not. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {?Vector3} The intersection point. + */ + intersectTriangle( a, b, c, backfaceCulling, target ) { + + // Compute the offset origin, edges, and normal. + + // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h + + _edge1.subVectors( b, a ); + _edge2.subVectors( c, a ); + _normal$1.crossVectors( _edge1, _edge2 ); + + // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, + // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by + // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) + // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) + // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) + let DdN = this.direction.dot( _normal$1 ); + let sign; + + if ( DdN > 0 ) { + + if ( backfaceCulling ) return null; + sign = 1; + + } else if ( DdN < 0 ) { + + sign = - 1; + DdN = - DdN; + + } else { + + return null; + + } + + _diff.subVectors( this.origin, a ); + const DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff, _edge2 ) ); + + // b1 < 0, no intersection + if ( DdQxE2 < 0 ) { + + return null; + + } + + const DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff ) ); + + // b2 < 0, no intersection + if ( DdE1xQ < 0 ) { + + return null; + + } + + // b1+b2 > 1, no intersection + if ( DdQxE2 + DdE1xQ > DdN ) { + + return null; + + } + + // Line intersects triangle, check if ray does. + const QdN = - sign * _diff.dot( _normal$1 ); + + // t < 0, no intersection + if ( QdN < 0 ) { + + return null; + + } + + // Ray intersects triangle. + return this.at( QdN / DdN, target ); + + } + + /** + * Transforms this ray with the given 4x4 transformation matrix. + * + * @param {Matrix4} matrix4 - The transformation matrix. + * @return {Ray} A reference to this ray. + */ + applyMatrix4( matrix4 ) { + + this.origin.applyMatrix4( matrix4 ); + this.direction.transformDirection( matrix4 ); + + return this; + + } + + /** + * Returns `true` if this ray is equal with the given one. + * + * @param {Ray} ray - The ray to test for equality. + * @return {boolean} Whether this ray is equal with the given one. + */ + equals( ray ) { + + return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction ); + + } + + /** + * Returns a new ray with copied values from this instance. + * + * @return {Ray} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + +} + +/** + * Represents a 4x4 matrix. + * + * The most common use of a 4x4 matrix in 3D computer graphics is as a transformation matrix. + * For an introduction to transformation matrices as used in WebGL, check out [this tutorial]{@link https://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices} + * + * This allows a 3D vector representing a point in 3D space to undergo + * transformations such as translation, rotation, shear, scale, reflection, + * orthogonal or perspective projection and so on, by being multiplied by the + * matrix. This is known as `applying` the matrix to the vector. + * + * A Note on Row-Major and Column-Major Ordering: + * + * The constructor and {@link Matrix3#set} method take arguments in + * [row-major]{@link https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order} + * order, while internally they are stored in the {@link Matrix3#elements} array in column-major order. + * This means that calling: + * ```js + * const m = new THREE.Matrix4(); + * m.set( 11, 12, 13, 14, + * 21, 22, 23, 24, + * 31, 32, 33, 34, + * 41, 42, 43, 44 ); + * ``` + * will result in the elements array containing: + * ```js + * m.elements = [ 11, 21, 31, 41, + * 12, 22, 32, 42, + * 13, 23, 33, 43, + * 14, 24, 34, 44 ]; + * ``` + * and internally all calculations are performed using column-major ordering. + * However, as the actual ordering makes no difference mathematically and + * most people are used to thinking about matrices in row-major order, the + * three.js documentation shows matrices in row-major order. Just bear in + * mind that if you are reading the source code, you'll have to take the + * transpose of any matrices outlined here to make sense of the calculations. + */ +class Matrix4 { + + /** + * Constructs a new 4x4 matrix. The arguments are supposed to be + * in row-major order. If no arguments are provided, the constructor + * initializes the matrix as an identity matrix. + * + * @param {number} [n11] - 1-1 matrix element. + * @param {number} [n12] - 1-2 matrix element. + * @param {number} [n13] - 1-3 matrix element. + * @param {number} [n14] - 1-4 matrix element. + * @param {number} [n21] - 2-1 matrix element. + * @param {number} [n22] - 2-2 matrix element. + * @param {number} [n23] - 2-3 matrix element. + * @param {number} [n24] - 2-4 matrix element. + * @param {number} [n31] - 3-1 matrix element. + * @param {number} [n32] - 3-2 matrix element. + * @param {number} [n33] - 3-3 matrix element. + * @param {number} [n34] - 3-4 matrix element. + * @param {number} [n41] - 4-1 matrix element. + * @param {number} [n42] - 4-2 matrix element. + * @param {number} [n43] - 4-3 matrix element. + * @param {number} [n44] - 4-4 matrix element. + */ + constructor( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + Matrix4.prototype.isMatrix4 = true; + + /** + * A column-major list of matrix values. + * + * @type {Array} + */ + this.elements = [ + + 1, 0, 0, 0, + 0, 1, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 + + ]; + + if ( n11 !== undefined ) { + + this.set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ); + + } + + } + + /** + * Sets the elements of the matrix.The arguments are supposed to be + * in row-major order. + * + * @param {number} [n11] - 1-1 matrix element. + * @param {number} [n12] - 1-2 matrix element. + * @param {number} [n13] - 1-3 matrix element. + * @param {number} [n14] - 1-4 matrix element. + * @param {number} [n21] - 2-1 matrix element. + * @param {number} [n22] - 2-2 matrix element. + * @param {number} [n23] - 2-3 matrix element. + * @param {number} [n24] - 2-4 matrix element. + * @param {number} [n31] - 3-1 matrix element. + * @param {number} [n32] - 3-2 matrix element. + * @param {number} [n33] - 3-3 matrix element. + * @param {number} [n34] - 3-4 matrix element. + * @param {number} [n41] - 4-1 matrix element. + * @param {number} [n42] - 4-2 matrix element. + * @param {number} [n43] - 4-3 matrix element. + * @param {number} [n44] - 4-4 matrix element. + * @return {Matrix4} A reference to this matrix. + */ + set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { + + const te = this.elements; + + te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; + te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; + te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; + te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; + + return this; + + } + + /** + * Sets this matrix to the 4x4 identity matrix. + * + * @return {Matrix4} A reference to this matrix. + */ + identity() { + + this.set( + + 1, 0, 0, 0, + 0, 1, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Returns a matrix with copied values from this instance. + * + * @return {Matrix4} A clone of this instance. + */ + clone() { + + return new Matrix4().fromArray( this.elements ); + + } + + /** + * Copies the values of the given matrix to this instance. + * + * @param {Matrix4} m - The matrix to copy. + * @return {Matrix4} A reference to this matrix. + */ + copy( m ) { + + const te = this.elements; + const me = m.elements; + + te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; + te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; + te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ]; + te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ]; + + return this; + + } + + /** + * Copies the translation component of the given matrix + * into this matrix's translation component. + * + * @param {Matrix4} m - The matrix to copy the translation component. + * @return {Matrix4} A reference to this matrix. + */ + copyPosition( m ) { + + const te = this.elements, me = m.elements; + + te[ 12 ] = me[ 12 ]; + te[ 13 ] = me[ 13 ]; + te[ 14 ] = me[ 14 ]; + + return this; + + } + + /** + * Set the upper 3x3 elements of this matrix to the values of given 3x3 matrix. + * + * @param {Matrix3} m - The 3x3 matrix. + * @return {Matrix4} A reference to this matrix. + */ + setFromMatrix3( m ) { + + const me = m.elements; + + this.set( + + me[ 0 ], me[ 3 ], me[ 6 ], 0, + me[ 1 ], me[ 4 ], me[ 7 ], 0, + me[ 2 ], me[ 5 ], me[ 8 ], 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Extracts the basis of this matrix into the three axis vectors provided. + * + * @param {Vector3} xAxis - The basis's x axis. + * @param {Vector3} yAxis - The basis's y axis. + * @param {Vector3} zAxis - The basis's z axis. + * @return {Matrix4} A reference to this matrix. + */ + extractBasis( xAxis, yAxis, zAxis ) { + + xAxis.setFromMatrixColumn( this, 0 ); + yAxis.setFromMatrixColumn( this, 1 ); + zAxis.setFromMatrixColumn( this, 2 ); + + return this; + + } + + /** + * Sets the given basis vectors to this matrix. + * + * @param {Vector3} xAxis - The basis's x axis. + * @param {Vector3} yAxis - The basis's y axis. + * @param {Vector3} zAxis - The basis's z axis. + * @return {Matrix4} A reference to this matrix. + */ + makeBasis( xAxis, yAxis, zAxis ) { + + this.set( + xAxis.x, yAxis.x, zAxis.x, 0, + xAxis.y, yAxis.y, zAxis.y, 0, + xAxis.z, yAxis.z, zAxis.z, 0, + 0, 0, 0, 1 + ); + + return this; + + } + + /** + * Extracts the rotation component of the given matrix + * into this matrix's rotation component. + * + * Note: This method does not support reflection matrices. + * + * @param {Matrix4} m - The matrix. + * @return {Matrix4} A reference to this matrix. + */ + extractRotation( m ) { + + const te = this.elements; + const me = m.elements; + + const scaleX = 1 / _v1$5.setFromMatrixColumn( m, 0 ).length(); + const scaleY = 1 / _v1$5.setFromMatrixColumn( m, 1 ).length(); + const scaleZ = 1 / _v1$5.setFromMatrixColumn( m, 2 ).length(); + + te[ 0 ] = me[ 0 ] * scaleX; + te[ 1 ] = me[ 1 ] * scaleX; + te[ 2 ] = me[ 2 ] * scaleX; + te[ 3 ] = 0; + + te[ 4 ] = me[ 4 ] * scaleY; + te[ 5 ] = me[ 5 ] * scaleY; + te[ 6 ] = me[ 6 ] * scaleY; + te[ 7 ] = 0; + + te[ 8 ] = me[ 8 ] * scaleZ; + te[ 9 ] = me[ 9 ] * scaleZ; + te[ 10 ] = me[ 10 ] * scaleZ; + te[ 11 ] = 0; + + te[ 12 ] = 0; + te[ 13 ] = 0; + te[ 14 ] = 0; + te[ 15 ] = 1; + + return this; + + } + + /** + * Sets the rotation component (the upper left 3x3 matrix) of this matrix to + * the rotation specified by the given Euler angles. The rest of + * the matrix is set to the identity. Depending on the {@link Euler#order}, + * there are six possible outcomes. See [this page]{@link https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix} + * for a complete list. + * + * @param {Euler} euler - The Euler angles. + * @return {Matrix4} A reference to this matrix. + */ + makeRotationFromEuler( euler ) { + + const te = this.elements; + + const x = euler.x, y = euler.y, z = euler.z; + const a = Math.cos( x ), b = Math.sin( x ); + const c = Math.cos( y ), d = Math.sin( y ); + const e = Math.cos( z ), f = Math.sin( z ); + + if ( euler.order === 'XYZ' ) { + + const ae = a * e, af = a * f, be = b * e, bf = b * f; + + te[ 0 ] = c * e; + te[ 4 ] = - c * f; + te[ 8 ] = d; + + te[ 1 ] = af + be * d; + te[ 5 ] = ae - bf * d; + te[ 9 ] = - b * c; + + te[ 2 ] = bf - ae * d; + te[ 6 ] = be + af * d; + te[ 10 ] = a * c; + + } else if ( euler.order === 'YXZ' ) { + + const ce = c * e, cf = c * f, de = d * e, df = d * f; + + te[ 0 ] = ce + df * b; + te[ 4 ] = de * b - cf; + te[ 8 ] = a * d; + + te[ 1 ] = a * f; + te[ 5 ] = a * e; + te[ 9 ] = - b; + + te[ 2 ] = cf * b - de; + te[ 6 ] = df + ce * b; + te[ 10 ] = a * c; + + } else if ( euler.order === 'ZXY' ) { + + const ce = c * e, cf = c * f, de = d * e, df = d * f; + + te[ 0 ] = ce - df * b; + te[ 4 ] = - a * f; + te[ 8 ] = de + cf * b; + + te[ 1 ] = cf + de * b; + te[ 5 ] = a * e; + te[ 9 ] = df - ce * b; + + te[ 2 ] = - a * d; + te[ 6 ] = b; + te[ 10 ] = a * c; + + } else if ( euler.order === 'ZYX' ) { + + const ae = a * e, af = a * f, be = b * e, bf = b * f; + + te[ 0 ] = c * e; + te[ 4 ] = be * d - af; + te[ 8 ] = ae * d + bf; + + te[ 1 ] = c * f; + te[ 5 ] = bf * d + ae; + te[ 9 ] = af * d - be; + + te[ 2 ] = - d; + te[ 6 ] = b * c; + te[ 10 ] = a * c; + + } else if ( euler.order === 'YZX' ) { + + const ac = a * c, ad = a * d, bc = b * c, bd = b * d; + + te[ 0 ] = c * e; + te[ 4 ] = bd - ac * f; + te[ 8 ] = bc * f + ad; + + te[ 1 ] = f; + te[ 5 ] = a * e; + te[ 9 ] = - b * e; + + te[ 2 ] = - d * e; + te[ 6 ] = ad * f + bc; + te[ 10 ] = ac - bd * f; + + } else if ( euler.order === 'XZY' ) { + + const ac = a * c, ad = a * d, bc = b * c, bd = b * d; + + te[ 0 ] = c * e; + te[ 4 ] = - f; + te[ 8 ] = d * e; + + te[ 1 ] = ac * f + bd; + te[ 5 ] = a * e; + te[ 9 ] = ad * f - bc; + + te[ 2 ] = bc * f - ad; + te[ 6 ] = b * e; + te[ 10 ] = bd * f + ac; + + } + + // bottom row + te[ 3 ] = 0; + te[ 7 ] = 0; + te[ 11 ] = 0; + + // last column + te[ 12 ] = 0; + te[ 13 ] = 0; + te[ 14 ] = 0; + te[ 15 ] = 1; + + return this; + + } + + /** + * Sets the rotation component of this matrix to the rotation specified by + * the given Quaternion as outlined [here]{@link https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion} + * The rest of the matrix is set to the identity. + * + * @param {Quaternion} q - The Quaternion. + * @return {Matrix4} A reference to this matrix. + */ + makeRotationFromQuaternion( q ) { + + return this.compose( _zero, q, _one ); + + } + + /** + * Sets the rotation component of the transformation matrix, looking from `eye` towards + * `target`, and oriented by the up-direction. + * + * @param {Vector3} eye - The eye vector. + * @param {Vector3} target - The target vector. + * @param {Vector3} up - The up vector. + * @return {Matrix4} A reference to this matrix. + */ + lookAt( eye, target, up ) { + + const te = this.elements; + + _z.subVectors( eye, target ); + + if ( _z.lengthSq() === 0 ) { + + // eye and target are in the same position + + _z.z = 1; + + } + + _z.normalize(); + _x.crossVectors( up, _z ); + + if ( _x.lengthSq() === 0 ) { + + // up and z are parallel + + if ( Math.abs( up.z ) === 1 ) { + + _z.x += 0.0001; + + } else { + + _z.z += 0.0001; + + } + + _z.normalize(); + _x.crossVectors( up, _z ); + + } + + _x.normalize(); + _y.crossVectors( _z, _x ); + + te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x; + te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y; + te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z; + + return this; + + } + + /** + * Post-multiplies this matrix by the given 4x4 matrix. + * + * @param {Matrix4} m - The matrix to multiply with. + * @return {Matrix4} A reference to this matrix. + */ + multiply( m ) { + + return this.multiplyMatrices( this, m ); + + } + + /** + * Pre-multiplies this matrix by the given 4x4 matrix. + * + * @param {Matrix4} m - The matrix to multiply with. + * @return {Matrix4} A reference to this matrix. + */ + premultiply( m ) { + + return this.multiplyMatrices( m, this ); + + } + + /** + * Multiples the given 4x4 matrices and stores the result + * in this matrix. + * + * @param {Matrix4} a - The first matrix. + * @param {Matrix4} b - The second matrix. + * @return {Matrix4} A reference to this matrix. + */ + multiplyMatrices( a, b ) { + + const ae = a.elements; + const be = b.elements; + const te = this.elements; + + const a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; + const a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; + const a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; + const a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; + + const b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; + const b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; + const b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; + const b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; + + te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; + te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; + te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; + te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; + + te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; + te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; + te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; + te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; + + te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; + te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; + te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; + te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; + + te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; + te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; + te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; + te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; + + return this; + + } + + /** + * Multiplies every component of the matrix by the given scalar. + * + * @param {number} s - The scalar. + * @return {Matrix4} A reference to this matrix. + */ + multiplyScalar( s ) { + + const te = this.elements; + + te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; + te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; + te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; + te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; + + return this; + + } + + /** + * Computes and returns the determinant of this matrix. + * + * Based on the method outlined [here]{@link http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.html}. + * + * @return {number} The determinant. + */ + determinant() { + + const te = this.elements; + + const n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; + const n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; + const n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; + const n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; + + //TODO: make this more efficient + + return ( + n41 * ( + + n14 * n23 * n32 + - n13 * n24 * n32 + - n14 * n22 * n33 + + n12 * n24 * n33 + + n13 * n22 * n34 + - n12 * n23 * n34 + ) + + n42 * ( + + n11 * n23 * n34 + - n11 * n24 * n33 + + n14 * n21 * n33 + - n13 * n21 * n34 + + n13 * n24 * n31 + - n14 * n23 * n31 + ) + + n43 * ( + + n11 * n24 * n32 + - n11 * n22 * n34 + - n14 * n21 * n32 + + n12 * n21 * n34 + + n14 * n22 * n31 + - n12 * n24 * n31 + ) + + n44 * ( + - n13 * n22 * n31 + - n11 * n23 * n32 + + n11 * n22 * n33 + + n13 * n21 * n32 + - n12 * n21 * n33 + + n12 * n23 * n31 + ) + + ); + + } + + /** + * Transposes this matrix in place. + * + * @return {Matrix4} A reference to this matrix. + */ + transpose() { + + const te = this.elements; + let tmp; + + tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; + tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; + tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; + + tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; + tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; + tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; + + return this; + + } + + /** + * Sets the position component for this matrix from the given vector, + * without affecting the rest of the matrix. + * + * @param {number|Vector3} x - The x component of the vector or alternatively the vector object. + * @param {number} y - The y component of the vector. + * @param {number} z - The z component of the vector. + * @return {Matrix4} A reference to this matrix. + */ + setPosition( x, y, z ) { + + const te = this.elements; + + if ( x.isVector3 ) { + + te[ 12 ] = x.x; + te[ 13 ] = x.y; + te[ 14 ] = x.z; + + } else { + + te[ 12 ] = x; + te[ 13 ] = y; + te[ 14 ] = z; + + } + + return this; + + } + + /** + * Inverts this matrix, using the [analytic method]{@link https://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution}. + * You can not invert with a determinant of zero. If you attempt this, the method produces + * a zero matrix instead. + * + * @return {Matrix4} A reference to this matrix. + */ + invert() { + + // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm + const te = this.elements, + + n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n41 = te[ 3 ], + n12 = te[ 4 ], n22 = te[ 5 ], n32 = te[ 6 ], n42 = te[ 7 ], + n13 = te[ 8 ], n23 = te[ 9 ], n33 = te[ 10 ], n43 = te[ 11 ], + n14 = te[ 12 ], n24 = te[ 13 ], n34 = te[ 14 ], n44 = te[ 15 ], + + t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, + t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, + t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, + t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; + + const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; + + if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ); + + const detInv = 1 / det; + + te[ 0 ] = t11 * detInv; + te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv; + te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv; + te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv; + + te[ 4 ] = t12 * detInv; + te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv; + te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv; + te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv; + + te[ 8 ] = t13 * detInv; + te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv; + te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv; + te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv; + + te[ 12 ] = t14 * detInv; + te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv; + te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv; + te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv; + + return this; + + } + + /** + * Multiplies the columns of this matrix by the given vector. + * + * @param {Vector3} v - The scale vector. + * @return {Matrix4} A reference to this matrix. + */ + scale( v ) { + + const te = this.elements; + const x = v.x, y = v.y, z = v.z; + + te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; + te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; + te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; + te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; + + return this; + + } + + /** + * Gets the maximum scale value of the three axes. + * + * @return {number} The maximum scale. + */ + getMaxScaleOnAxis() { + + const te = this.elements; + + const scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; + const scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; + const scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; + + return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) ); + + } + + /** + * Sets this matrix as a translation transform from the given vector. + * + * @param {number|Vector3} x - The amount to translate in the X axis or alternatively a translation vector. + * @param {number} y - The amount to translate in the Y axis. + * @param {number} z - The amount to translate in the z axis. + * @return {Matrix4} A reference to this matrix. + */ + makeTranslation( x, y, z ) { + + if ( x.isVector3 ) { + + this.set( + + 1, 0, 0, x.x, + 0, 1, 0, x.y, + 0, 0, 1, x.z, + 0, 0, 0, 1 + + ); + + } else { + + this.set( + + 1, 0, 0, x, + 0, 1, 0, y, + 0, 0, 1, z, + 0, 0, 0, 1 + + ); + + } + + return this; + + } + + /** + * Sets this matrix as a rotational transformation around the X axis by + * the given angle. + * + * @param {number} theta - The rotation in radians. + * @return {Matrix4} A reference to this matrix. + */ + makeRotationX( theta ) { + + const c = Math.cos( theta ), s = Math.sin( theta ); + + this.set( + + 1, 0, 0, 0, + 0, c, - s, 0, + 0, s, c, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix as a rotational transformation around the Y axis by + * the given angle. + * + * @param {number} theta - The rotation in radians. + * @return {Matrix4} A reference to this matrix. + */ + makeRotationY( theta ) { + + const c = Math.cos( theta ), s = Math.sin( theta ); + + this.set( + + c, 0, s, 0, + 0, 1, 0, 0, + - s, 0, c, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix as a rotational transformation around the Z axis by + * the given angle. + * + * @param {number} theta - The rotation in radians. + * @return {Matrix4} A reference to this matrix. + */ + makeRotationZ( theta ) { + + const c = Math.cos( theta ), s = Math.sin( theta ); + + this.set( + + c, - s, 0, 0, + s, c, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix as a rotational transformation around the given axis by + * the given angle. + * + * This is a somewhat controversial but mathematically sound alternative to + * rotating via Quaternions. See the discussion [here]{@link https://www.gamedev.net/articles/programming/math-and-physics/do-we-really-need-quaternions-r1199}. + * + * @param {Vector3} axis - The normalized rotation axis. + * @param {number} angle - The rotation in radians. + * @return {Matrix4} A reference to this matrix. + */ + makeRotationAxis( axis, angle ) { + + // Based on http://www.gamedev.net/reference/articles/article1199.asp + + const c = Math.cos( angle ); + const s = Math.sin( angle ); + const t = 1 - c; + const x = axis.x, y = axis.y, z = axis.z; + const tx = t * x, ty = t * y; + + this.set( + + tx * x + c, tx * y - s * z, tx * z + s * y, 0, + tx * y + s * z, ty * y + c, ty * z - s * x, 0, + tx * z - s * y, ty * z + s * x, t * z * z + c, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix as a scale transformation. + * + * @param {number} x - The amount to scale in the X axis. + * @param {number} y - The amount to scale in the Y axis. + * @param {number} z - The amount to scale in the Z axis. + * @return {Matrix4} A reference to this matrix. + */ + makeScale( x, y, z ) { + + this.set( + + x, 0, 0, 0, + 0, y, 0, 0, + 0, 0, z, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix as a shear transformation. + * + * @param {number} xy - The amount to shear X by Y. + * @param {number} xz - The amount to shear X by Z. + * @param {number} yx - The amount to shear Y by X. + * @param {number} yz - The amount to shear Y by Z. + * @param {number} zx - The amount to shear Z by X. + * @param {number} zy - The amount to shear Z by Y. + * @return {Matrix4} A reference to this matrix. + */ + makeShear( xy, xz, yx, yz, zx, zy ) { + + this.set( + + 1, yx, zx, 0, + xy, 1, zy, 0, + xz, yz, 1, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix to the transformation composed of the given position, + * rotation (Quaternion) and scale. + * + * @param {Vector3} position - The position vector. + * @param {Quaternion} quaternion - The rotation as a Quaternion. + * @param {Vector3} scale - The scale vector. + * @return {Matrix4} A reference to this matrix. + */ + compose( position, quaternion, scale ) { + + const te = this.elements; + + const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w; + const x2 = x + x, y2 = y + y, z2 = z + z; + const xx = x * x2, xy = x * y2, xz = x * z2; + const yy = y * y2, yz = y * z2, zz = z * z2; + const wx = w * x2, wy = w * y2, wz = w * z2; + + const sx = scale.x, sy = scale.y, sz = scale.z; + + te[ 0 ] = ( 1 - ( yy + zz ) ) * sx; + te[ 1 ] = ( xy + wz ) * sx; + te[ 2 ] = ( xz - wy ) * sx; + te[ 3 ] = 0; + + te[ 4 ] = ( xy - wz ) * sy; + te[ 5 ] = ( 1 - ( xx + zz ) ) * sy; + te[ 6 ] = ( yz + wx ) * sy; + te[ 7 ] = 0; + + te[ 8 ] = ( xz + wy ) * sz; + te[ 9 ] = ( yz - wx ) * sz; + te[ 10 ] = ( 1 - ( xx + yy ) ) * sz; + te[ 11 ] = 0; + + te[ 12 ] = position.x; + te[ 13 ] = position.y; + te[ 14 ] = position.z; + te[ 15 ] = 1; + + return this; + + } + + /** + * Decomposes this matrix into its position, rotation and scale components + * and provides the result in the given objects. + * + * Note: Not all matrices are decomposable in this way. For example, if an + * object has a non-uniformly scaled parent, then the object's world matrix + * may not be decomposable, and this method may not be appropriate. + * + * @param {Vector3} position - The position vector. + * @param {Quaternion} quaternion - The rotation as a Quaternion. + * @param {Vector3} scale - The scale vector. + * @return {Matrix4} A reference to this matrix. + */ + decompose( position, quaternion, scale ) { + + const te = this.elements; + + let sx = _v1$5.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); + const sy = _v1$5.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); + const sz = _v1$5.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); + + // if determine is negative, we need to invert one scale + const det = this.determinant(); + if ( det < 0 ) sx = - sx; + + position.x = te[ 12 ]; + position.y = te[ 13 ]; + position.z = te[ 14 ]; + + // scale the rotation part + _m1$2.copy( this ); + + const invSX = 1 / sx; + const invSY = 1 / sy; + const invSZ = 1 / sz; + + _m1$2.elements[ 0 ] *= invSX; + _m1$2.elements[ 1 ] *= invSX; + _m1$2.elements[ 2 ] *= invSX; + + _m1$2.elements[ 4 ] *= invSY; + _m1$2.elements[ 5 ] *= invSY; + _m1$2.elements[ 6 ] *= invSY; + + _m1$2.elements[ 8 ] *= invSZ; + _m1$2.elements[ 9 ] *= invSZ; + _m1$2.elements[ 10 ] *= invSZ; + + quaternion.setFromRotationMatrix( _m1$2 ); + + scale.x = sx; + scale.y = sy; + scale.z = sz; + + return this; + + } + + /** + * Creates a perspective projection matrix. This is used internally by + * {@link PerspectiveCamera#updateProjectionMatrix}. + + * @param {number} left - Left boundary of the viewing frustum at the near plane. + * @param {number} right - Right boundary of the viewing frustum at the near plane. + * @param {number} top - Top boundary of the viewing frustum at the near plane. + * @param {number} bottom - Bottom boundary of the viewing frustum at the near plane. + * @param {number} near - The distance from the camera to the near plane. + * @param {number} far - The distance from the camera to the far plane. + * @param {(WebGLCoordinateSystem|WebGPUCoordinateSystem)} [coordinateSystem=WebGLCoordinateSystem] - The coordinate system. + * @return {Matrix4} A reference to this matrix. + */ + makePerspective( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem ) { + + const te = this.elements; + const x = 2 * near / ( right - left ); + const y = 2 * near / ( top - bottom ); + + const a = ( right + left ) / ( right - left ); + const b = ( top + bottom ) / ( top - bottom ); + + let c, d; + + if ( coordinateSystem === WebGLCoordinateSystem ) { + + c = - ( far + near ) / ( far - near ); + d = ( - 2 * far * near ) / ( far - near ); + + } else if ( coordinateSystem === WebGPUCoordinateSystem ) { + + c = - far / ( far - near ); + d = ( - far * near ) / ( far - near ); + + } else { + + throw new Error( 'THREE.Matrix4.makePerspective(): Invalid coordinate system: ' + coordinateSystem ); + + } + + te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; + te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; + te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; + te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0; + + return this; + + } + + /** + * Creates a orthographic projection matrix. This is used internally by + * {@link OrthographicCamera#updateProjectionMatrix}. + + * @param {number} left - Left boundary of the viewing frustum at the near plane. + * @param {number} right - Right boundary of the viewing frustum at the near plane. + * @param {number} top - Top boundary of the viewing frustum at the near plane. + * @param {number} bottom - Bottom boundary of the viewing frustum at the near plane. + * @param {number} near - The distance from the camera to the near plane. + * @param {number} far - The distance from the camera to the far plane. + * @param {(WebGLCoordinateSystem|WebGPUCoordinateSystem)} [coordinateSystem=WebGLCoordinateSystem] - The coordinate system. + * @return {Matrix4} A reference to this matrix. + */ + makeOrthographic( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem ) { + + const te = this.elements; + const w = 1.0 / ( right - left ); + const h = 1.0 / ( top - bottom ); + const p = 1.0 / ( far - near ); + + const x = ( right + left ) * w; + const y = ( top + bottom ) * h; + + let z, zInv; + + if ( coordinateSystem === WebGLCoordinateSystem ) { + + z = ( far + near ) * p; + zInv = - 2 * p; + + } else if ( coordinateSystem === WebGPUCoordinateSystem ) { + + z = near * p; + zInv = - 1 * p; + + } else { + + throw new Error( 'THREE.Matrix4.makeOrthographic(): Invalid coordinate system: ' + coordinateSystem ); + + } + + te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; + te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y; + te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = zInv; te[ 14 ] = - z; + te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; + + return this; + + } + + /** + * Returns `true` if this matrix is equal with the given one. + * + * @param {Matrix4} matrix - The matrix to test for equality. + * @return {boolean} Whether this matrix is equal with the given one. + */ + equals( matrix ) { + + const te = this.elements; + const me = matrix.elements; + + for ( let i = 0; i < 16; i ++ ) { + + if ( te[ i ] !== me[ i ] ) return false; + + } + + return true; + + } + + /** + * Sets the elements of the matrix from the given array. + * + * @param {Array} array - The matrix elements in column-major order. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Matrix4} A reference to this matrix. + */ + fromArray( array, offset = 0 ) { + + for ( let i = 0; i < 16; i ++ ) { + + this.elements[ i ] = array[ i + offset ]; + + } + + return this; + + } + + /** + * Writes the elements of this matrix to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the matrix elements in column-major order. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The matrix elements in column-major order. + */ + toArray( array = [], offset = 0 ) { + + const te = this.elements; + + array[ offset ] = te[ 0 ]; + array[ offset + 1 ] = te[ 1 ]; + array[ offset + 2 ] = te[ 2 ]; + array[ offset + 3 ] = te[ 3 ]; + + array[ offset + 4 ] = te[ 4 ]; + array[ offset + 5 ] = te[ 5 ]; + array[ offset + 6 ] = te[ 6 ]; + array[ offset + 7 ] = te[ 7 ]; + + array[ offset + 8 ] = te[ 8 ]; + array[ offset + 9 ] = te[ 9 ]; + array[ offset + 10 ] = te[ 10 ]; + array[ offset + 11 ] = te[ 11 ]; + + array[ offset + 12 ] = te[ 12 ]; + array[ offset + 13 ] = te[ 13 ]; + array[ offset + 14 ] = te[ 14 ]; + array[ offset + 15 ] = te[ 15 ]; + + return array; + + } + +} + +const _v1$5 = /*@__PURE__*/ new Vector3(); +const _m1$2 = /*@__PURE__*/ new Matrix4(); +const _zero = /*@__PURE__*/ new Vector3( 0, 0, 0 ); +const _one = /*@__PURE__*/ new Vector3( 1, 1, 1 ); +const _x = /*@__PURE__*/ new Vector3(); +const _y = /*@__PURE__*/ new Vector3(); +const _z = /*@__PURE__*/ new Vector3(); + +const _matrix$2 = /*@__PURE__*/ new Matrix4(); +const _quaternion$3 = /*@__PURE__*/ new Quaternion(); + +/** + * A class representing Euler angles. + * + * Euler angles describe a rotational transformation by rotating an object on + * its various axes in specified amounts per axis, and a specified axis + * order. + * + * Iterating through an instance will yield its components (x, y, z, + * order) in the corresponding order. + * + * ```js + * const a = new THREE.Euler( 0, 1, 1.57, 'XYZ' ); + * const b = new THREE.Vector3( 1, 0, 1 ); + * b.applyEuler(a); + * ``` + */ +class Euler { + + /** + * Constructs a new euler instance. + * + * @param {number} [x=0] - The angle of the x axis in radians. + * @param {number} [y=0] - The angle of the y axis in radians. + * @param {number} [z=0] - The angle of the z axis in radians. + * @param {string} [order=Euler.DEFAULT_ORDER] - A string representing the order that the rotations are applied. + */ + constructor( x = 0, y = 0, z = 0, order = Euler.DEFAULT_ORDER ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isEuler = true; + + this._x = x; + this._y = y; + this._z = z; + this._order = order; + + } + + /** + * The angle of the x axis in radians. + * + * @type {number} + * @default 0 + */ + get x() { + + return this._x; + + } + + set x( value ) { + + this._x = value; + this._onChangeCallback(); + + } + + /** + * The angle of the y axis in radians. + * + * @type {number} + * @default 0 + */ + get y() { + + return this._y; + + } + + set y( value ) { + + this._y = value; + this._onChangeCallback(); + + } + + /** + * The angle of the z axis in radians. + * + * @type {number} + * @default 0 + */ + get z() { + + return this._z; + + } + + set z( value ) { + + this._z = value; + this._onChangeCallback(); + + } + + /** + * A string representing the order that the rotations are applied. + * + * @type {string} + * @default 'XYZ' + */ + get order() { + + return this._order; + + } + + set order( value ) { + + this._order = value; + this._onChangeCallback(); + + } + + /** + * Sets the Euler components. + * + * @param {number} x - The angle of the x axis in radians. + * @param {number} y - The angle of the y axis in radians. + * @param {number} z - The angle of the z axis in radians. + * @param {string} [order] - A string representing the order that the rotations are applied. + * @return {Euler} A reference to this Euler instance. + */ + set( x, y, z, order = this._order ) { + + this._x = x; + this._y = y; + this._z = z; + this._order = order; + + this._onChangeCallback(); + + return this; + + } + + /** + * Returns a new Euler instance with copied values from this instance. + * + * @return {Euler} A clone of this instance. + */ + clone() { + + return new this.constructor( this._x, this._y, this._z, this._order ); + + } + + /** + * Copies the values of the given Euler instance to this instance. + * + * @param {Euler} euler - The Euler instance to copy. + * @return {Euler} A reference to this Euler instance. + */ + copy( euler ) { + + this._x = euler._x; + this._y = euler._y; + this._z = euler._z; + this._order = euler._order; + + this._onChangeCallback(); + + return this; + + } + + /** + * Sets the angles of this Euler instance from a pure rotation matrix. + * + * @param {Matrix4} m - A 4x4 matrix of which the upper 3x3 of matrix is a pure rotation matrix (i.e. unscaled). + * @param {string} [order] - A string representing the order that the rotations are applied. + * @param {boolean} [update=true] - Whether the internal `onChange` callback should be executed or not. + * @return {Euler} A reference to this Euler instance. + */ + setFromRotationMatrix( m, order = this._order, update = true ) { + + const te = m.elements; + const m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; + const m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; + const m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; + + switch ( order ) { + + case 'XYZ': + + this._y = Math.asin( clamp( m13, - 1, 1 ) ); + + if ( Math.abs( m13 ) < 0.9999999 ) { + + this._x = Math.atan2( - m23, m33 ); + this._z = Math.atan2( - m12, m11 ); + + } else { + + this._x = Math.atan2( m32, m22 ); + this._z = 0; + + } + + break; + + case 'YXZ': + + this._x = Math.asin( - clamp( m23, - 1, 1 ) ); + + if ( Math.abs( m23 ) < 0.9999999 ) { + + this._y = Math.atan2( m13, m33 ); + this._z = Math.atan2( m21, m22 ); + + } else { + + this._y = Math.atan2( - m31, m11 ); + this._z = 0; + + } + + break; + + case 'ZXY': + + this._x = Math.asin( clamp( m32, - 1, 1 ) ); + + if ( Math.abs( m32 ) < 0.9999999 ) { + + this._y = Math.atan2( - m31, m33 ); + this._z = Math.atan2( - m12, m22 ); + + } else { + + this._y = 0; + this._z = Math.atan2( m21, m11 ); + + } + + break; + + case 'ZYX': + + this._y = Math.asin( - clamp( m31, - 1, 1 ) ); + + if ( Math.abs( m31 ) < 0.9999999 ) { + + this._x = Math.atan2( m32, m33 ); + this._z = Math.atan2( m21, m11 ); + + } else { + + this._x = 0; + this._z = Math.atan2( - m12, m22 ); + + } + + break; + + case 'YZX': + + this._z = Math.asin( clamp( m21, - 1, 1 ) ); + + if ( Math.abs( m21 ) < 0.9999999 ) { + + this._x = Math.atan2( - m23, m22 ); + this._y = Math.atan2( - m31, m11 ); + + } else { + + this._x = 0; + this._y = Math.atan2( m13, m33 ); + + } + + break; + + case 'XZY': + + this._z = Math.asin( - clamp( m12, - 1, 1 ) ); + + if ( Math.abs( m12 ) < 0.9999999 ) { + + this._x = Math.atan2( m32, m22 ); + this._y = Math.atan2( m13, m11 ); + + } else { + + this._x = Math.atan2( - m23, m33 ); + this._y = 0; + + } + + break; + + default: + + console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order ); + + } + + this._order = order; + + if ( update === true ) this._onChangeCallback(); + + return this; + + } + + /** + * Sets the angles of this Euler instance from a normalized quaternion. + * + * @param {Quaternion} q - A normalized Quaternion. + * @param {string} [order] - A string representing the order that the rotations are applied. + * @param {boolean} [update=true] - Whether the internal `onChange` callback should be executed or not. + * @return {Euler} A reference to this Euler instance. + */ + setFromQuaternion( q, order, update ) { + + _matrix$2.makeRotationFromQuaternion( q ); + + return this.setFromRotationMatrix( _matrix$2, order, update ); + + } + + /** + * Sets the angles of this Euler instance from the given vector. + * + * @param {Vector3} v - The vector. + * @param {string} [order] - A string representing the order that the rotations are applied. + * @return {Euler} A reference to this Euler instance. + */ + setFromVector3( v, order = this._order ) { + + return this.set( v.x, v.y, v.z, order ); + + } + + /** + * Resets the euler angle with a new order by creating a quaternion from this + * euler angle and then setting this euler angle with the quaternion and the + * new order. + * + * Warning: This discards revolution information. + * + * @param {string} [newOrder] - A string representing the new order that the rotations are applied. + * @return {Euler} A reference to this Euler instance. + */ + reorder( newOrder ) { + + _quaternion$3.setFromEuler( this ); + + return this.setFromQuaternion( _quaternion$3, newOrder ); + + } + + /** + * Returns `true` if this Euler instance is equal with the given one. + * + * @param {Euler} euler - The Euler instance to test for equality. + * @return {boolean} Whether this Euler instance is equal with the given one. + */ + equals( euler ) { + + return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); + + } + + /** + * Sets this Euler instance's components to values from the given array. The first three + * entries of the array are assign to the x,y and z components. An optional fourth entry + * defines the Euler order. + * + * @param {Array} array - An array holding the Euler component values. + * @return {Euler} A reference to this Euler instance. + */ + fromArray( array ) { + + this._x = array[ 0 ]; + this._y = array[ 1 ]; + this._z = array[ 2 ]; + if ( array[ 3 ] !== undefined ) this._order = array[ 3 ]; + + this._onChangeCallback(); + + return this; + + } + + /** + * Writes the components of this Euler instance to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the Euler components. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The Euler components. + */ + toArray( array = [], offset = 0 ) { + + array[ offset ] = this._x; + array[ offset + 1 ] = this._y; + array[ offset + 2 ] = this._z; + array[ offset + 3 ] = this._order; + + return array; + + } + + _onChange( callback ) { + + this._onChangeCallback = callback; + + return this; + + } + + _onChangeCallback() {} + + *[ Symbol.iterator ]() { + + yield this._x; + yield this._y; + yield this._z; + yield this._order; + + } + +} + +/** + * The default Euler angle order. + * + * @static + * @type {string} + * @default 'XYZ' + */ +Euler.DEFAULT_ORDER = 'XYZ'; + +/** + * A layers object assigns an 3D object to 1 or more of 32 + * layers numbered `0` to `31` - internally the layers are stored as a + * bit mask], and by default all 3D objects are a member of layer `0`. + * + * This can be used to control visibility - an object must share a layer with + * a camera to be visible when that camera's view is + * rendered. + * + * All classes that inherit from {@link Object3D} have an `layers` property which + * is an instance of this class. + */ +class Layers { + + /** + * Constructs a new layers instance, with membership + * initially set to layer `0`. + */ + constructor() { + + /** + * A bit mask storing which of the 32 layers this layers object is currently + * a member of. + * + * @type {number} + */ + this.mask = 1 | 0; + + } + + /** + * Sets membership to the given layer, and remove membership all other layers. + * + * @param {number} layer - The layer to set. + */ + set( layer ) { + + this.mask = ( 1 << layer | 0 ) >>> 0; + + } + + /** + * Adds membership of the given layer. + * + * @param {number} layer - The layer to enable. + */ + enable( layer ) { + + this.mask |= 1 << layer | 0; + + } + + /** + * Adds membership to all layers. + */ + enableAll() { + + this.mask = 0xffffffff | 0; + + } + + /** + * Toggles the membership of the given layer. + * + * @param {number} layer - The layer to toggle. + */ + toggle( layer ) { + + this.mask ^= 1 << layer | 0; + + } + + /** + * Removes membership of the given layer. + * + * @param {number} layer - The layer to enable. + */ + disable( layer ) { + + this.mask &= ~ ( 1 << layer | 0 ); + + } + + /** + * Removes the membership from all layers. + */ + disableAll() { + + this.mask = 0; + + } + + /** + * Returns `true` if this and the given layers object have at least one + * layer in common. + * + * @param {Layers} layers - The layers to test. + * @return {boolean } Whether this and the given layers object have at least one layer in common or not. + */ + test( layers ) { + + return ( this.mask & layers.mask ) !== 0; + + } + + /** + * Returns `true` if the given layer is enabled. + * + * @param {number} layer - The layer to test. + * @return {boolean } Whether the given layer is enabled or not. + */ + isEnabled( layer ) { + + return ( this.mask & ( 1 << layer | 0 ) ) !== 0; + + } + +} + +let _object3DId = 0; + +const _v1$4 = /*@__PURE__*/ new Vector3(); +const _q1 = /*@__PURE__*/ new Quaternion(); +const _m1$1 = /*@__PURE__*/ new Matrix4(); +const _target = /*@__PURE__*/ new Vector3(); + +const _position$3 = /*@__PURE__*/ new Vector3(); +const _scale$2 = /*@__PURE__*/ new Vector3(); +const _quaternion$2 = /*@__PURE__*/ new Quaternion(); + +const _xAxis = /*@__PURE__*/ new Vector3( 1, 0, 0 ); +const _yAxis = /*@__PURE__*/ new Vector3( 0, 1, 0 ); +const _zAxis = /*@__PURE__*/ new Vector3( 0, 0, 1 ); + +/** + * Fires when the object has been added to its parent object. + * + * @event Object3D#added + * @type {Object} + */ +const _addedEvent = { type: 'added' }; + +/** + * Fires when the object has been removed from its parent object. + * + * @event Object3D#removed + * @type {Object} + */ +const _removedEvent = { type: 'removed' }; + +/** + * Fires when a new child object has been added. + * + * @event Object3D#childadded + * @type {Object} + */ +const _childaddedEvent = { type: 'childadded', child: null }; + +/** + * Fires when a new child object has been added. + * + * @event Object3D#childremoved + * @type {Object} + */ +const _childremovedEvent = { type: 'childremoved', child: null }; + +/** + * This is the base class for most objects in three.js and provides a set of + * properties and methods for manipulating objects in 3D space. + * + * @augments EventDispatcher + */ +class Object3D extends EventDispatcher { + + /** + * Constructs a new 3D object. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isObject3D = true; + + /** + * The ID of the 3D object. + * + * @name Object3D#id + * @type {number} + * @readonly + */ + Object.defineProperty( this, 'id', { value: _object3DId ++ } ); + + /** + * The UUID of the 3D object. + * + * @type {string} + * @readonly + */ + this.uuid = generateUUID(); + + /** + * The name of the 3D object. + * + * @type {string} + */ + this.name = ''; + + /** + * The type property is used for detecting the object type + * in context of serialization/deserialization. + * + * @type {string} + * @readonly + */ + this.type = 'Object3D'; + + /** + * A reference to the parent object. + * + * @type {?Object3D} + * @default null + */ + this.parent = null; + + /** + * An array holding the child 3D objects of this instance. + * + * @type {Array} + */ + this.children = []; + + /** + * Defines the `up` direction of the 3D object which influences + * the orientation via methods like {@link Object3D#lookAt}. + * + * The default values for all 3D objects is defined by `Object3D.DEFAULT_UP`. + * + * @type {Vector3} + */ + this.up = Object3D.DEFAULT_UP.clone(); + + const position = new Vector3(); + const rotation = new Euler(); + const quaternion = new Quaternion(); + const scale = new Vector3( 1, 1, 1 ); + + function onRotationChange() { + + quaternion.setFromEuler( rotation, false ); + + } + + function onQuaternionChange() { + + rotation.setFromQuaternion( quaternion, undefined, false ); + + } + + rotation._onChange( onRotationChange ); + quaternion._onChange( onQuaternionChange ); + + Object.defineProperties( this, { + /** + * Represents the object's local position. + * + * @name Object3D#position + * @type {Vector3} + * @default (0,0,0) + */ + position: { + configurable: true, + enumerable: true, + value: position + }, + /** + * Represents the object's local rotation as Euler angles, in radians. + * + * @name Object3D#rotation + * @type {Euler} + * @default (0,0,0) + */ + rotation: { + configurable: true, + enumerable: true, + value: rotation + }, + /** + * Represents the object's local rotation as Quaternions. + * + * @name Object3D#quaternion + * @type {Quaternion} + */ + quaternion: { + configurable: true, + enumerable: true, + value: quaternion + }, + /** + * Represents the object's local scale. + * + * @name Object3D#scale + * @type {Vector3} + * @default (1,1,1) + */ + scale: { + configurable: true, + enumerable: true, + value: scale + }, + /** + * Represents the object's model-view matrix. + * + * @name Object3D#modelViewMatrix + * @type {Matrix4} + */ + modelViewMatrix: { + value: new Matrix4() + }, + /** + * Represents the object's normal matrix. + * + * @name Object3D#normalMatrix + * @type {Matrix3} + */ + normalMatrix: { + value: new Matrix3() + } + } ); + + /** + * Represents the object's transformation matrix in local space. + * + * @type {Matrix4} + */ + this.matrix = new Matrix4(); + + /** + * Represents the object's transformation matrix in world space. + * If the 3D object has no parent, then it's identical to the local transformation matrix + * + * @type {Matrix4} + */ + this.matrixWorld = new Matrix4(); + + /** + * When set to `true`, the engine automatically computes the local matrix from position, + * rotation and scale every frame. + * + * The default values for all 3D objects is defined by `Object3D.DEFAULT_MATRIX_AUTO_UPDATE`. + * + * @type {boolean} + * @default true + */ + this.matrixAutoUpdate = Object3D.DEFAULT_MATRIX_AUTO_UPDATE; + + /** + * When set to `true`, the engine automatically computes the world matrix from the current local + * matrix and the object's transformation hierarchy. + * + * The default values for all 3D objects is defined by `Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE`. + * + * @type {boolean} + * @default true + */ + this.matrixWorldAutoUpdate = Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE; // checked by the renderer + + /** + * When set to `true`, it calculates the world matrix in that frame and resets this property + * to `false`. + * + * @type {boolean} + * @default false + */ + this.matrixWorldNeedsUpdate = false; + + /** + * The layer membership of the 3D object. The 3D object is only visible if it has + * at least one layer in common with the camera in use. This property can also be + * used to filter out unwanted objects in ray-intersection tests when using {@link Raycaster}. + * + * @type {Layers} + */ + this.layers = new Layers(); + + /** + * When set to `true`, the 3D object gets rendered. + * + * @type {boolean} + * @default true + */ + this.visible = true; + + /** + * When set to `true`, the 3D object gets rendered into shadow maps. + * + * @type {boolean} + * @default false + */ + this.castShadow = false; + + /** + * When set to `true`, the 3D object is affected by shadows in the scene. + * + * @type {boolean} + * @default false + */ + this.receiveShadow = false; + + /** + * When set to `true`, the 3D object is honored by view frustum culling. + * + * @type {boolean} + * @default true + */ + this.frustumCulled = true; + + /** + * This value allows the default rendering order of scene graph objects to be + * overridden although opaque and transparent objects remain sorted independently. + * When this property is set for an instance of {@link Group},all descendants + * objects will be sorted and rendered together. Sorting is from lowest to highest + * render order. + * + * @type {number} + * @default 0 + */ + this.renderOrder = 0; + + /** + * An array holding the animation clips of the 3D object. + * + * @type {Array} + */ + this.animations = []; + + /** + * Custom depth material to be used when rendering to the depth map. Can only be used + * in context of meshes. When shadow-casting with a {@link DirectionalLight} or {@link SpotLight}, + * if you are modifying vertex positions in the vertex shader you must specify a custom depth + * material for proper shadows. + * + * Only relevant in context of {@link WebGLRenderer}. + * + * @type {(Material|undefined)} + * @default undefined + */ + this.customDepthMaterial = undefined; + + /** + * Same as {@link Object3D#customDepthMaterial}, but used with {@link PointLight}. + * + * Only relevant in context of {@link WebGLRenderer}. + * + * @type {(Material|undefined)} + * @default undefined + */ + this.customDistanceMaterial = undefined; + + /** + * An object that can be used to store custom data about the 3D object. It + * should not hold references to functions as these will not be cloned. + * + * @type {Object} + */ + this.userData = {}; + + } + + /** + * A callback that is executed immediately before a 3D object is rendered to a shadow map. + * + * @param {Renderer|WebGLRenderer} renderer - The renderer. + * @param {Object3D} object - The 3D object. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {Camera} shadowCamera - The shadow camera. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} depthMaterial - The depth material. + * @param {Object} group - The geometry group data. + */ + onBeforeShadow( /* renderer, object, camera, shadowCamera, geometry, depthMaterial, group */ ) {} + + /** + * A callback that is executed immediately after a 3D object is rendered to a shadow map. + * + * @param {Renderer|WebGLRenderer} renderer - The renderer. + * @param {Object3D} object - The 3D object. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {Camera} shadowCamera - The shadow camera. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} depthMaterial - The depth material. + * @param {Object} group - The geometry group data. + */ + onAfterShadow( /* renderer, object, camera, shadowCamera, geometry, depthMaterial, group */ ) {} + + /** + * A callback that is executed immediately before a 3D object is rendered. + * + * @param {Renderer|WebGLRenderer} renderer - The renderer. + * @param {Object3D} object - The 3D object. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} material - The 3D object's material. + * @param {Object} group - The geometry group data. + */ + onBeforeRender( /* renderer, scene, camera, geometry, material, group */ ) {} + + /** + * A callback that is executed immediately after a 3D object is rendered. + * + * @param {Renderer|WebGLRenderer} renderer - The renderer. + * @param {Object3D} object - The 3D object. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} material - The 3D object's material. + * @param {Object} group - The geometry group data. + */ + onAfterRender( /* renderer, scene, camera, geometry, material, group */ ) {} + + /** + * Applies the given transformation matrix to the object and updates the object's position, + * rotation and scale. + * + * @param {Matrix4} matrix - The transformation matrix. + */ + applyMatrix4( matrix ) { + + if ( this.matrixAutoUpdate ) this.updateMatrix(); + + this.matrix.premultiply( matrix ); + + this.matrix.decompose( this.position, this.quaternion, this.scale ); + + } + + /** + * Applies a rotation represented by given the quaternion to the 3D object. + * + * @param {Quaternion} q - The quaternion. + * @return {Object3D} A reference to this instance. + */ + applyQuaternion( q ) { + + this.quaternion.premultiply( q ); + + return this; + + } + + /** + * Sets the given rotation represented as an axis/angle couple to the 3D object. + * + * @param {Vector3} axis - The (normalized) axis vector. + * @param {number} angle - The angle in radians. + */ + setRotationFromAxisAngle( axis, angle ) { + + // assumes axis is normalized + + this.quaternion.setFromAxisAngle( axis, angle ); + + } + + /** + * Sets the given rotation represented as Euler angles to the 3D object. + * + * @param {Euler} euler - The Euler angles. + */ + setRotationFromEuler( euler ) { + + this.quaternion.setFromEuler( euler, true ); + + } + + /** + * Sets the given rotation represented as rotation matrix to the 3D object. + * + * @param {Matrix4} m - Although a 4x4 matrix is expected, the upper 3x3 portion must be + * a pure rotation matrix (i.e, unscaled). + */ + setRotationFromMatrix( m ) { + + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + + this.quaternion.setFromRotationMatrix( m ); + + } + + /** + * Sets the given rotation represented as a Quaternion to the 3D object. + * + * @param {Quaternion} q - The Quaternion + */ + setRotationFromQuaternion( q ) { + + // assumes q is normalized + + this.quaternion.copy( q ); + + } + + /** + * Rotates the 3D object along an axis in local space. + * + * @param {Vector3} axis - The (normalized) axis vector. + * @param {number} angle - The angle in radians. + * @return {Object3D} A reference to this instance. + */ + rotateOnAxis( axis, angle ) { + + // rotate object on axis in object space + // axis is assumed to be normalized + + _q1.setFromAxisAngle( axis, angle ); + + this.quaternion.multiply( _q1 ); + + return this; + + } + + /** + * Rotates the 3D object along an axis in world space. + * + * @param {Vector3} axis - The (normalized) axis vector. + * @param {number} angle - The angle in radians. + * @return {Object3D} A reference to this instance. + */ + rotateOnWorldAxis( axis, angle ) { + + // rotate object on axis in world space + // axis is assumed to be normalized + // method assumes no rotated parent + + _q1.setFromAxisAngle( axis, angle ); + + this.quaternion.premultiply( _q1 ); + + return this; + + } + + /** + * Rotates the 3D object around its X axis in local space. + * + * @param {number} angle - The angle in radians. + * @return {Object3D} A reference to this instance. + */ + rotateX( angle ) { + + return this.rotateOnAxis( _xAxis, angle ); + + } + + /** + * Rotates the 3D object around its Y axis in local space. + * + * @param {number} angle - The angle in radians. + * @return {Object3D} A reference to this instance. + */ + rotateY( angle ) { + + return this.rotateOnAxis( _yAxis, angle ); + + } + + /** + * Rotates the 3D object around its Z axis in local space. + * + * @param {number} angle - The angle in radians. + * @return {Object3D} A reference to this instance. + */ + rotateZ( angle ) { + + return this.rotateOnAxis( _zAxis, angle ); + + } + + /** + * Translate the 3D object by a distance along the given axis in local space. + * + * @param {Vector3} axis - The (normalized) axis vector. + * @param {number} distance - The distance in world units. + * @return {Object3D} A reference to this instance. + */ + translateOnAxis( axis, distance ) { + + // translate object by distance along axis in object space + // axis is assumed to be normalized + + _v1$4.copy( axis ).applyQuaternion( this.quaternion ); + + this.position.add( _v1$4.multiplyScalar( distance ) ); + + return this; + + } + + /** + * Translate the 3D object by a distance along its X-axis in local space. + * + * @param {number} distance - The distance in world units. + * @return {Object3D} A reference to this instance. + */ + translateX( distance ) { + + return this.translateOnAxis( _xAxis, distance ); + + } + + /** + * Translate the 3D object by a distance along its Y-axis in local space. + * + * @param {number} distance - The distance in world units. + * @return {Object3D} A reference to this instance. + */ + translateY( distance ) { + + return this.translateOnAxis( _yAxis, distance ); + + } + + /** + * Translate the 3D object by a distance along its Z-axis in local space. + * + * @param {number} distance - The distance in world units. + * @return {Object3D} A reference to this instance. + */ + translateZ( distance ) { + + return this.translateOnAxis( _zAxis, distance ); + + } + + /** + * Converts the given vector from this 3D object's local space to world space. + * + * @param {Vector3} vector - The vector to convert. + * @return {Vector3} The converted vector. + */ + localToWorld( vector ) { + + this.updateWorldMatrix( true, false ); + + return vector.applyMatrix4( this.matrixWorld ); + + } + + /** + * Converts the given vector from this 3D object's word space to local space. + * + * @param {Vector3} vector - The vector to convert. + * @return {Vector3} The converted vector. + */ + worldToLocal( vector ) { + + this.updateWorldMatrix( true, false ); + + return vector.applyMatrix4( _m1$1.copy( this.matrixWorld ).invert() ); + + } + + /** + * Rotates the object to face a point in world space. + * + * This method does not support objects having non-uniformly-scaled parent(s). + * + * @param {number|Vector3} x - The x coordinate in world space. Alternatively, a vector representing a position in world space + * @param {number} [y] - The y coordinate in world space. + * @param {number} [z] - The z coordinate in world space. + */ + lookAt( x, y, z ) { + + // This method does not support objects having non-uniformly-scaled parent(s) + + if ( x.isVector3 ) { + + _target.copy( x ); + + } else { + + _target.set( x, y, z ); + + } + + const parent = this.parent; + + this.updateWorldMatrix( true, false ); + + _position$3.setFromMatrixPosition( this.matrixWorld ); + + if ( this.isCamera || this.isLight ) { + + _m1$1.lookAt( _position$3, _target, this.up ); + + } else { + + _m1$1.lookAt( _target, _position$3, this.up ); + + } + + this.quaternion.setFromRotationMatrix( _m1$1 ); + + if ( parent ) { + + _m1$1.extractRotation( parent.matrixWorld ); + _q1.setFromRotationMatrix( _m1$1 ); + this.quaternion.premultiply( _q1.invert() ); + + } + + } + + /** + * Adds the given 3D object as a child to this 3D object. An arbitrary number of + * objects may be added. Any current parent on an object passed in here will be + * removed, since an object can have at most one parent. + * + * @fires Object3D#added + * @fires Object3D#childadded + * @param {Object3D} object - The 3D object to add. + * @return {Object3D} A reference to this instance. + */ + add( object ) { + + if ( arguments.length > 1 ) { + + for ( let i = 0; i < arguments.length; i ++ ) { + + this.add( arguments[ i ] ); + + } + + return this; + + } + + if ( object === this ) { + + console.error( 'THREE.Object3D.add: object can\'t be added as a child of itself.', object ); + return this; + + } + + if ( object && object.isObject3D ) { + + object.removeFromParent(); + object.parent = this; + this.children.push( object ); + + object.dispatchEvent( _addedEvent ); + + _childaddedEvent.child = object; + this.dispatchEvent( _childaddedEvent ); + _childaddedEvent.child = null; + + } else { + + console.error( 'THREE.Object3D.add: object not an instance of THREE.Object3D.', object ); + + } + + return this; + + } + + /** + * Removes the given 3D object as child from this 3D object. + * An arbitrary number of objects may be removed. + * + * @fires Object3D#removed + * @fires Object3D#childremoved + * @param {Object3D} object - The 3D object to remove. + * @return {Object3D} A reference to this instance. + */ + remove( object ) { + + if ( arguments.length > 1 ) { + + for ( let i = 0; i < arguments.length; i ++ ) { + + this.remove( arguments[ i ] ); + + } + + return this; + + } + + const index = this.children.indexOf( object ); + + if ( index !== - 1 ) { + + object.parent = null; + this.children.splice( index, 1 ); + + object.dispatchEvent( _removedEvent ); + + _childremovedEvent.child = object; + this.dispatchEvent( _childremovedEvent ); + _childremovedEvent.child = null; + + } + + return this; + + } + + /** + * Removes this 3D object from its current parent. + * + * @fires Object3D#removed + * @fires Object3D#childremoved + * @return {Object3D} A reference to this instance. + */ + removeFromParent() { + + const parent = this.parent; + + if ( parent !== null ) { + + parent.remove( this ); + + } + + return this; + + } + + /** + * Removes all child objects. + * + * @fires Object3D#removed + * @fires Object3D#childremoved + * @return {Object3D} A reference to this instance. + */ + clear() { + + return this.remove( ... this.children ); + + } + + /** + * Adds the given 3D object as a child of this 3D object, while maintaining the object's world + * transform. This method does not support scene graphs having non-uniformly-scaled nodes(s). + * + * @fires Object3D#added + * @fires Object3D#childadded + * @param {Object3D} object - The 3D object to attach. + * @return {Object3D} A reference to this instance. + */ + attach( object ) { + + // adds object as a child of this, while maintaining the object's world transform + + // Note: This method does not support scene graphs having non-uniformly-scaled nodes(s) + + this.updateWorldMatrix( true, false ); + + _m1$1.copy( this.matrixWorld ).invert(); + + if ( object.parent !== null ) { + + object.parent.updateWorldMatrix( true, false ); + + _m1$1.multiply( object.parent.matrixWorld ); + + } + + object.applyMatrix4( _m1$1 ); + + object.removeFromParent(); + object.parent = this; + this.children.push( object ); + + object.updateWorldMatrix( false, true ); + + object.dispatchEvent( _addedEvent ); + + _childaddedEvent.child = object; + this.dispatchEvent( _childaddedEvent ); + _childaddedEvent.child = null; + + return this; + + } + + /** + * Searches through the 3D object and its children, starting with the 3D object + * itself, and returns the first with a matching ID. + * + * @param {number} id - The id. + * @return {Object3D|undefined} The found 3D object. Returns `undefined` if no 3D object has been found. + */ + getObjectById( id ) { + + return this.getObjectByProperty( 'id', id ); + + } + + /** + * Searches through the 3D object and its children, starting with the 3D object + * itself, and returns the first with a matching name. + * + * @param {string} name - The name. + * @return {Object3D|undefined} The found 3D object. Returns `undefined` if no 3D object has been found. + */ + getObjectByName( name ) { + + return this.getObjectByProperty( 'name', name ); + + } + + /** + * Searches through the 3D object and its children, starting with the 3D object + * itself, and returns the first with a matching property value. + * + * @param {string} name - The name of the property. + * @param {any} value - The value. + * @return {Object3D|undefined} The found 3D object. Returns `undefined` if no 3D object has been found. + */ + getObjectByProperty( name, value ) { + + if ( this[ name ] === value ) return this; + + for ( let i = 0, l = this.children.length; i < l; i ++ ) { + + const child = this.children[ i ]; + const object = child.getObjectByProperty( name, value ); + + if ( object !== undefined ) { + + return object; + + } + + } + + return undefined; + + } + + /** + * Searches through the 3D object and its children, starting with the 3D object + * itself, and returns all 3D objects with a matching property value. + * + * @param {string} name - The name of the property. + * @param {any} value - The value. + * @param {Array} result - The method stores the result in this array. + * @return {Array} The found 3D objects. + */ + getObjectsByProperty( name, value, result = [] ) { + + if ( this[ name ] === value ) result.push( this ); + + const children = this.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + children[ i ].getObjectsByProperty( name, value, result ); + + } + + return result; + + } + + /** + * Returns a vector representing the position of the 3D object in world space. + * + * @param {Vector3} target - The target vector the result is stored to. + * @return {Vector3} The 3D object's position in world space. + */ + getWorldPosition( target ) { + + this.updateWorldMatrix( true, false ); + + return target.setFromMatrixPosition( this.matrixWorld ); + + } + + /** + * Returns a Quaternion representing the position of the 3D object in world space. + * + * @param {Quaternion} target - The target Quaternion the result is stored to. + * @return {Quaternion} The 3D object's rotation in world space. + */ + getWorldQuaternion( target ) { + + this.updateWorldMatrix( true, false ); + + this.matrixWorld.decompose( _position$3, target, _scale$2 ); + + return target; + + } + + /** + * Returns a vector representing the scale of the 3D object in world space. + * + * @param {Vector3} target - The target vector the result is stored to. + * @return {Vector3} The 3D object's scale in world space. + */ + getWorldScale( target ) { + + this.updateWorldMatrix( true, false ); + + this.matrixWorld.decompose( _position$3, _quaternion$2, target ); + + return target; + + } + + /** + * Returns a vector representing the ("look") direction of the 3D object in world space. + * + * @param {Vector3} target - The target vector the result is stored to. + * @return {Vector3} The 3D object's direction in world space. + */ + getWorldDirection( target ) { + + this.updateWorldMatrix( true, false ); + + const e = this.matrixWorld.elements; + + return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize(); + + } + + /** + * Abstract method to get intersections between a casted ray and this + * 3D object. Renderable 3D objects such as {@link Mesh}, {@link Line} or {@link Points} + * implement this method in order to use raycasting. + * + * @abstract + * @param {Raycaster} raycaster - The raycaster. + * @param {Array} intersects - An array holding the result of the method. + */ + raycast( /* raycaster, intersects */ ) {} + + /** + * Executes the callback on this 3D object and all descendants. + * + * Note: Modifying the scene graph inside the callback is discouraged. + * + * @param {Function} callback - A callback function that allows to process the current 3D object. + */ + traverse( callback ) { + + callback( this ); + + const children = this.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + children[ i ].traverse( callback ); + + } + + } + + /** + * Like {@link Object3D#traverse}, but the callback will only be executed for visible 3D objects. + * Descendants of invisible 3D objects are not traversed. + * + * Note: Modifying the scene graph inside the callback is discouraged. + * + * @param {Function} callback - A callback function that allows to process the current 3D object. + */ + traverseVisible( callback ) { + + if ( this.visible === false ) return; + + callback( this ); + + const children = this.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + children[ i ].traverseVisible( callback ); + + } + + } + + /** + * Like {@link Object3D#traverse}, but the callback will only be executed for all ancestors. + * + * Note: Modifying the scene graph inside the callback is discouraged. + * + * @param {Function} callback - A callback function that allows to process the current 3D object. + */ + traverseAncestors( callback ) { + + const parent = this.parent; + + if ( parent !== null ) { + + callback( parent ); + + parent.traverseAncestors( callback ); + + } + + } + + /** + * Updates the transformation matrix in local space by computing it from the current + * position, rotation and scale values. + */ + updateMatrix() { + + this.matrix.compose( this.position, this.quaternion, this.scale ); + + this.matrixWorldNeedsUpdate = true; + + } + + /** + * Updates the transformation matrix in world space of this 3D objects and its descendants. + * + * To ensure correct results, this method also recomputes the 3D object's transformation matrix in + * local space. The computation of the local and world matrix can be controlled with the + * {@link Object3D#matrixAutoUpdate} and {@link Object3D#matrixWorldAutoUpdate} flags which are both + * `true` by default. Set these flags to `false` if you need more control over the update matrix process. + * + * @param {boolean} [force=false] - When set to `true`, a recomputation of world matrices is forced even + * when {@link Object3D#matrixWorldAutoUpdate} is set to `false`. + */ + updateMatrixWorld( force ) { + + if ( this.matrixAutoUpdate ) this.updateMatrix(); + + if ( this.matrixWorldNeedsUpdate || force ) { + + if ( this.matrixWorldAutoUpdate === true ) { + + if ( this.parent === null ) { + + this.matrixWorld.copy( this.matrix ); + + } else { + + this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); + + } + + } + + this.matrixWorldNeedsUpdate = false; + + force = true; + + } + + // make sure descendants are updated if required + + const children = this.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + const child = children[ i ]; + + child.updateMatrixWorld( force ); + + } + + } + + /** + * An alternative version of {@link Object3D#updateMatrixWorld} with more control over the + * update of ancestor and descendant nodes. + * + * @param {boolean} [updateParents=false] Whether ancestor nodes should be updated or not. + * @param {boolean} [updateChildren=false] Whether descendant nodes should be updated or not. + */ + updateWorldMatrix( updateParents, updateChildren ) { + + const parent = this.parent; + + if ( updateParents === true && parent !== null ) { + + parent.updateWorldMatrix( true, false ); + + } + + if ( this.matrixAutoUpdate ) this.updateMatrix(); + + if ( this.matrixWorldAutoUpdate === true ) { + + if ( this.parent === null ) { + + this.matrixWorld.copy( this.matrix ); + + } else { + + this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); + + } + + } + + // make sure descendants are updated + + if ( updateChildren === true ) { + + const children = this.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + const child = children[ i ]; + + child.updateWorldMatrix( false, true ); + + } + + } + + } + + /** + * Serializes the 3D object into JSON. + * + * @param {?(Object|string)} meta - An optional value holding meta information about the serialization. + * @return {Object} A JSON object representing the serialized 3D object. + * @see {@link ObjectLoader#parse} + */ + toJSON( meta ) { + + // meta is a string when called from JSON.stringify + const isRootObject = ( meta === undefined || typeof meta === 'string' ); + + const output = {}; + + // meta is a hash used to collect geometries, materials. + // not providing it implies that this is the root object + // being serialized. + if ( isRootObject ) { + + // initialize meta obj + meta = { + geometries: {}, + materials: {}, + textures: {}, + images: {}, + shapes: {}, + skeletons: {}, + animations: {}, + nodes: {} + }; + + output.metadata = { + version: 4.7, + type: 'Object', + generator: 'Object3D.toJSON' + }; + + } + + // standard Object3D serialization + + const object = {}; + + object.uuid = this.uuid; + object.type = this.type; + + if ( this.name !== '' ) object.name = this.name; + if ( this.castShadow === true ) object.castShadow = true; + if ( this.receiveShadow === true ) object.receiveShadow = true; + if ( this.visible === false ) object.visible = false; + if ( this.frustumCulled === false ) object.frustumCulled = false; + if ( this.renderOrder !== 0 ) object.renderOrder = this.renderOrder; + if ( Object.keys( this.userData ).length > 0 ) object.userData = this.userData; + + object.layers = this.layers.mask; + object.matrix = this.matrix.toArray(); + object.up = this.up.toArray(); + + if ( this.matrixAutoUpdate === false ) object.matrixAutoUpdate = false; + + // object specific properties + + if ( this.isInstancedMesh ) { + + object.type = 'InstancedMesh'; + object.count = this.count; + object.instanceMatrix = this.instanceMatrix.toJSON(); + if ( this.instanceColor !== null ) object.instanceColor = this.instanceColor.toJSON(); + + } + + if ( this.isBatchedMesh ) { + + object.type = 'BatchedMesh'; + object.perObjectFrustumCulled = this.perObjectFrustumCulled; + object.sortObjects = this.sortObjects; + + object.drawRanges = this._drawRanges; + object.reservedRanges = this._reservedRanges; + + object.geometryInfo = this._geometryInfo.map( info => ( { + ...info, + boundingBox: info.boundingBox ? info.boundingBox.toJSON() : undefined, + boundingSphere: info.boundingSphere ? info.boundingSphere.toJSON() : undefined + } ) ); + object.instanceInfo = this._instanceInfo.map( info => ( { ...info } ) ); + + object.availableInstanceIds = this._availableInstanceIds.slice(); + object.availableGeometryIds = this._availableGeometryIds.slice(); + + object.nextIndexStart = this._nextIndexStart; + object.nextVertexStart = this._nextVertexStart; + object.geometryCount = this._geometryCount; + + object.maxInstanceCount = this._maxInstanceCount; + object.maxVertexCount = this._maxVertexCount; + object.maxIndexCount = this._maxIndexCount; + + object.geometryInitialized = this._geometryInitialized; + + object.matricesTexture = this._matricesTexture.toJSON( meta ); + + object.indirectTexture = this._indirectTexture.toJSON( meta ); + + if ( this._colorsTexture !== null ) { + + object.colorsTexture = this._colorsTexture.toJSON( meta ); + + } + + if ( this.boundingSphere !== null ) { + + object.boundingSphere = this.boundingSphere.toJSON(); + + } + + if ( this.boundingBox !== null ) { + + object.boundingBox = this.boundingBox.toJSON(); + + } + + } + + // + + function serialize( library, element ) { + + if ( library[ element.uuid ] === undefined ) { + + library[ element.uuid ] = element.toJSON( meta ); + + } + + return element.uuid; + + } + + if ( this.isScene ) { + + if ( this.background ) { + + if ( this.background.isColor ) { + + object.background = this.background.toJSON(); + + } else if ( this.background.isTexture ) { + + object.background = this.background.toJSON( meta ).uuid; + + } + + } + + if ( this.environment && this.environment.isTexture && this.environment.isRenderTargetTexture !== true ) { + + object.environment = this.environment.toJSON( meta ).uuid; + + } + + } else if ( this.isMesh || this.isLine || this.isPoints ) { + + object.geometry = serialize( meta.geometries, this.geometry ); + + const parameters = this.geometry.parameters; + + if ( parameters !== undefined && parameters.shapes !== undefined ) { + + const shapes = parameters.shapes; + + if ( Array.isArray( shapes ) ) { + + for ( let i = 0, l = shapes.length; i < l; i ++ ) { + + const shape = shapes[ i ]; + + serialize( meta.shapes, shape ); + + } + + } else { + + serialize( meta.shapes, shapes ); + + } + + } + + } + + if ( this.isSkinnedMesh ) { + + object.bindMode = this.bindMode; + object.bindMatrix = this.bindMatrix.toArray(); + + if ( this.skeleton !== undefined ) { + + serialize( meta.skeletons, this.skeleton ); + + object.skeleton = this.skeleton.uuid; + + } + + } + + if ( this.material !== undefined ) { + + if ( Array.isArray( this.material ) ) { + + const uuids = []; + + for ( let i = 0, l = this.material.length; i < l; i ++ ) { + + uuids.push( serialize( meta.materials, this.material[ i ] ) ); + + } + + object.material = uuids; + + } else { + + object.material = serialize( meta.materials, this.material ); + + } + + } + + // + + if ( this.children.length > 0 ) { + + object.children = []; + + for ( let i = 0; i < this.children.length; i ++ ) { + + object.children.push( this.children[ i ].toJSON( meta ).object ); + + } + + } + + // + + if ( this.animations.length > 0 ) { + + object.animations = []; + + for ( let i = 0; i < this.animations.length; i ++ ) { + + const animation = this.animations[ i ]; + + object.animations.push( serialize( meta.animations, animation ) ); + + } + + } + + if ( isRootObject ) { + + const geometries = extractFromCache( meta.geometries ); + const materials = extractFromCache( meta.materials ); + const textures = extractFromCache( meta.textures ); + const images = extractFromCache( meta.images ); + const shapes = extractFromCache( meta.shapes ); + const skeletons = extractFromCache( meta.skeletons ); + const animations = extractFromCache( meta.animations ); + const nodes = extractFromCache( meta.nodes ); + + if ( geometries.length > 0 ) output.geometries = geometries; + if ( materials.length > 0 ) output.materials = materials; + if ( textures.length > 0 ) output.textures = textures; + if ( images.length > 0 ) output.images = images; + if ( shapes.length > 0 ) output.shapes = shapes; + if ( skeletons.length > 0 ) output.skeletons = skeletons; + if ( animations.length > 0 ) output.animations = animations; + if ( nodes.length > 0 ) output.nodes = nodes; + + } + + output.object = object; + + return output; + + // extract data from the cache hash + // remove metadata on each item + // and return as array + function extractFromCache( cache ) { + + const values = []; + for ( const key in cache ) { + + const data = cache[ key ]; + delete data.metadata; + values.push( data ); + + } + + return values; + + } + + } + + /** + * Returns a new 3D object with copied values from this instance. + * + * @param {boolean} [recursive=true] - When set to `true`, descendants of the 3D object are also cloned. + * @return {Object3D} A clone of this instance. + */ + clone( recursive ) { + + return new this.constructor().copy( this, recursive ); + + } + + /** + * Copies the values of the given 3D object to this instance. + * + * @param {Object3D} source - The 3D object to copy. + * @param {boolean} [recursive=true] - When set to `true`, descendants of the 3D object are cloned. + * @return {Object3D} A reference to this instance. + */ + copy( source, recursive = true ) { + + this.name = source.name; + + this.up.copy( source.up ); + + this.position.copy( source.position ); + this.rotation.order = source.rotation.order; + this.quaternion.copy( source.quaternion ); + this.scale.copy( source.scale ); + + this.matrix.copy( source.matrix ); + this.matrixWorld.copy( source.matrixWorld ); + + this.matrixAutoUpdate = source.matrixAutoUpdate; + + this.matrixWorldAutoUpdate = source.matrixWorldAutoUpdate; + this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; + + this.layers.mask = source.layers.mask; + this.visible = source.visible; + + this.castShadow = source.castShadow; + this.receiveShadow = source.receiveShadow; + + this.frustumCulled = source.frustumCulled; + this.renderOrder = source.renderOrder; + + this.animations = source.animations.slice(); + + this.userData = JSON.parse( JSON.stringify( source.userData ) ); + + if ( recursive === true ) { + + for ( let i = 0; i < source.children.length; i ++ ) { + + const child = source.children[ i ]; + this.add( child.clone() ); + + } + + } + + return this; + + } + +} + +/** + * The default up direction for objects, also used as the default + * position for {@link DirectionalLight} and {@link HemisphereLight}. + * + * @static + * @type {Vector3} + * @default (0,1,0) + */ +Object3D.DEFAULT_UP = /*@__PURE__*/ new Vector3( 0, 1, 0 ); + +/** + * The default setting for {@link Object3D#matrixAutoUpdate} for + * newly created 3D objects. + * + * @static + * @type {boolean} + * @default true + */ +Object3D.DEFAULT_MATRIX_AUTO_UPDATE = true; + +/** + * The default setting for {@link Object3D#matrixWorldAutoUpdate} for + * newly created 3D objects. + * + * @static + * @type {boolean} + * @default true + */ +Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE = true; + +const _v0$1 = /*@__PURE__*/ new Vector3(); +const _v1$3 = /*@__PURE__*/ new Vector3(); +const _v2$2 = /*@__PURE__*/ new Vector3(); +const _v3$2 = /*@__PURE__*/ new Vector3(); + +const _vab = /*@__PURE__*/ new Vector3(); +const _vac = /*@__PURE__*/ new Vector3(); +const _vbc = /*@__PURE__*/ new Vector3(); +const _vap = /*@__PURE__*/ new Vector3(); +const _vbp = /*@__PURE__*/ new Vector3(); +const _vcp = /*@__PURE__*/ new Vector3(); + +const _v40 = /*@__PURE__*/ new Vector4(); +const _v41 = /*@__PURE__*/ new Vector4(); +const _v42 = /*@__PURE__*/ new Vector4(); + +/** + * A geometric triangle as defined by three vectors representing its three corners. + */ +class Triangle { + + /** + * Constructs a new triangle. + * + * @param {Vector3} [a=(0,0,0)] - The first corner of the triangle. + * @param {Vector3} [b=(0,0,0)] - The second corner of the triangle. + * @param {Vector3} [c=(0,0,0)] - The third corner of the triangle. + */ + constructor( a = new Vector3(), b = new Vector3(), c = new Vector3() ) { + + /** + * The first corner of the triangle. + * + * @type {Vector3} + */ + this.a = a; + + /** + * The second corner of the triangle. + * + * @type {Vector3} + */ + this.b = b; + + /** + * The third corner of the triangle. + * + * @type {Vector3} + */ + this.c = c; + + } + + /** + * Computes the normal vector of a triangle. + * + * @param {Vector3} a - The first corner of the triangle. + * @param {Vector3} b - The second corner of the triangle. + * @param {Vector3} c - The third corner of the triangle. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The triangle's normal. + */ + static getNormal( a, b, c, target ) { + + target.subVectors( c, b ); + _v0$1.subVectors( a, b ); + target.cross( _v0$1 ); + + const targetLengthSq = target.lengthSq(); + if ( targetLengthSq > 0 ) { + + return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) ); + + } + + return target.set( 0, 0, 0 ); + + } + + /** + * Computes a barycentric coordinates from the given vector. + * Returns `null` if the triangle is degenerate. + * + * @param {Vector3} point - A point in 3D space. + * @param {Vector3} a - The first corner of the triangle. + * @param {Vector3} b - The second corner of the triangle. + * @param {Vector3} c - The third corner of the triangle. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {?Vector3} The barycentric coordinates for the given point + */ + static getBarycoord( point, a, b, c, target ) { + + // based on: http://www.blackpawn.com/texts/pointinpoly/default.html + + _v0$1.subVectors( c, a ); + _v1$3.subVectors( b, a ); + _v2$2.subVectors( point, a ); + + const dot00 = _v0$1.dot( _v0$1 ); + const dot01 = _v0$1.dot( _v1$3 ); + const dot02 = _v0$1.dot( _v2$2 ); + const dot11 = _v1$3.dot( _v1$3 ); + const dot12 = _v1$3.dot( _v2$2 ); + + const denom = ( dot00 * dot11 - dot01 * dot01 ); + + // collinear or singular triangle + if ( denom === 0 ) { + + target.set( 0, 0, 0 ); + return null; + + } + + const invDenom = 1 / denom; + const u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; + const v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; + + // barycentric coordinates must always sum to 1 + return target.set( 1 - u - v, v, u ); + + } + + /** + * Returns `true` if the given point, when projected onto the plane of the + * triangle, lies within the triangle. + * + * @param {Vector3} point - The point in 3D space to test. + * @param {Vector3} a - The first corner of the triangle. + * @param {Vector3} b - The second corner of the triangle. + * @param {Vector3} c - The third corner of the triangle. + * @return {boolean} Whether the given point, when projected onto the plane of the + * triangle, lies within the triangle or not. + */ + static containsPoint( point, a, b, c ) { + + // if the triangle is degenerate then we can't contain a point + if ( this.getBarycoord( point, a, b, c, _v3$2 ) === null ) { + + return false; + + } + + return ( _v3$2.x >= 0 ) && ( _v3$2.y >= 0 ) && ( ( _v3$2.x + _v3$2.y ) <= 1 ); + + } + + /** + * Computes the value barycentrically interpolated for the given point on the + * triangle. Returns `null` if the triangle is degenerate. + * + * @param {Vector3} point - Position of interpolated point. + * @param {Vector3} p1 - The first corner of the triangle. + * @param {Vector3} p2 - The second corner of the triangle. + * @param {Vector3} p3 - The third corner of the triangle. + * @param {Vector3} v1 - Value to interpolate of first vertex. + * @param {Vector3} v2 - Value to interpolate of second vertex. + * @param {Vector3} v3 - Value to interpolate of third vertex. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {?Vector3} The interpolated value. + */ + static getInterpolation( point, p1, p2, p3, v1, v2, v3, target ) { + + if ( this.getBarycoord( point, p1, p2, p3, _v3$2 ) === null ) { + + target.x = 0; + target.y = 0; + if ( 'z' in target ) target.z = 0; + if ( 'w' in target ) target.w = 0; + return null; + + } + + target.setScalar( 0 ); + target.addScaledVector( v1, _v3$2.x ); + target.addScaledVector( v2, _v3$2.y ); + target.addScaledVector( v3, _v3$2.z ); + + return target; + + } + + /** + * Computes the value barycentrically interpolated for the given attribute and indices. + * + * @param {BufferAttribute} attr - The attribute to interpolate. + * @param {number} i1 - Index of first vertex. + * @param {number} i2 - Index of second vertex. + * @param {number} i3 - Index of third vertex. + * @param {Vector3} barycoord - The barycoordinate value to use to interpolate. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The interpolated attribute value. + */ + static getInterpolatedAttribute( attr, i1, i2, i3, barycoord, target ) { + + _v40.setScalar( 0 ); + _v41.setScalar( 0 ); + _v42.setScalar( 0 ); + + _v40.fromBufferAttribute( attr, i1 ); + _v41.fromBufferAttribute( attr, i2 ); + _v42.fromBufferAttribute( attr, i3 ); + + target.setScalar( 0 ); + target.addScaledVector( _v40, barycoord.x ); + target.addScaledVector( _v41, barycoord.y ); + target.addScaledVector( _v42, barycoord.z ); + + return target; + + } + + /** + * Returns `true` if the triangle is oriented towards the given direction. + * + * @param {Vector3} a - The first corner of the triangle. + * @param {Vector3} b - The second corner of the triangle. + * @param {Vector3} c - The third corner of the triangle. + * @param {Vector3} direction - The (normalized) direction vector. + * @return {boolean} Whether the triangle is oriented towards the given direction or not. + */ + static isFrontFacing( a, b, c, direction ) { + + _v0$1.subVectors( c, b ); + _v1$3.subVectors( a, b ); + + // strictly front facing + return ( _v0$1.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false; + + } + + /** + * Sets the triangle's vertices by copying the given values. + * + * @param {Vector3} a - The first corner of the triangle. + * @param {Vector3} b - The second corner of the triangle. + * @param {Vector3} c - The third corner of the triangle. + * @return {Triangle} A reference to this triangle. + */ + set( a, b, c ) { + + this.a.copy( a ); + this.b.copy( b ); + this.c.copy( c ); + + return this; + + } + + /** + * Sets the triangle's vertices by copying the given array values. + * + * @param {Array} points - An array with 3D points. + * @param {number} i0 - The array index representing the first corner of the triangle. + * @param {number} i1 - The array index representing the second corner of the triangle. + * @param {number} i2 - The array index representing the third corner of the triangle. + * @return {Triangle} A reference to this triangle. + */ + setFromPointsAndIndices( points, i0, i1, i2 ) { + + this.a.copy( points[ i0 ] ); + this.b.copy( points[ i1 ] ); + this.c.copy( points[ i2 ] ); + + return this; + + } + + /** + * Sets the triangle's vertices by copying the given attribute values. + * + * @param {BufferAttribute} attribute - A buffer attribute with 3D points data. + * @param {number} i0 - The attribute index representing the first corner of the triangle. + * @param {number} i1 - The attribute index representing the second corner of the triangle. + * @param {number} i2 - The attribute index representing the third corner of the triangle. + * @return {Triangle} A reference to this triangle. + */ + setFromAttributeAndIndices( attribute, i0, i1, i2 ) { + + this.a.fromBufferAttribute( attribute, i0 ); + this.b.fromBufferAttribute( attribute, i1 ); + this.c.fromBufferAttribute( attribute, i2 ); + + return this; + + } + + /** + * Returns a new triangle with copied values from this instance. + * + * @return {Triangle} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + + /** + * Copies the values of the given triangle to this instance. + * + * @param {Triangle} triangle - The triangle to copy. + * @return {Triangle} A reference to this triangle. + */ + copy( triangle ) { + + this.a.copy( triangle.a ); + this.b.copy( triangle.b ); + this.c.copy( triangle.c ); + + return this; + + } + + /** + * Computes the area of the triangle. + * + * @return {number} The triangle's area. + */ + getArea() { + + _v0$1.subVectors( this.c, this.b ); + _v1$3.subVectors( this.a, this.b ); + + return _v0$1.cross( _v1$3 ).length() * 0.5; + + } + + /** + * Computes the midpoint of the triangle. + * + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The triangle's midpoint. + */ + getMidpoint( target ) { + + return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 ); + + } + + /** + * Computes the normal of the triangle. + * + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The triangle's normal. + */ + getNormal( target ) { + + return Triangle.getNormal( this.a, this.b, this.c, target ); + + } + + /** + * Computes a plane the triangle lies within. + * + * @param {Plane} target - The target vector that is used to store the method's result. + * @return {Plane} The plane the triangle lies within. + */ + getPlane( target ) { + + return target.setFromCoplanarPoints( this.a, this.b, this.c ); + + } + + /** + * Computes a barycentric coordinates from the given vector. + * Returns `null` if the triangle is degenerate. + * + * @param {Vector3} point - A point in 3D space. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {?Vector3} The barycentric coordinates for the given point + */ + getBarycoord( point, target ) { + + return Triangle.getBarycoord( point, this.a, this.b, this.c, target ); + + } + + /** + * Computes the value barycentrically interpolated for the given point on the + * triangle. Returns `null` if the triangle is degenerate. + * + * @param {Vector3} point - Position of interpolated point. + * @param {Vector3} v1 - Value to interpolate of first vertex. + * @param {Vector3} v2 - Value to interpolate of second vertex. + * @param {Vector3} v3 - Value to interpolate of third vertex. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {?Vector3} The interpolated value. + */ + getInterpolation( point, v1, v2, v3, target ) { + + return Triangle.getInterpolation( point, this.a, this.b, this.c, v1, v2, v3, target ); + + } + + /** + * Returns `true` if the given point, when projected onto the plane of the + * triangle, lies within the triangle. + * + * @param {Vector3} point - The point in 3D space to test. + * @return {boolean} Whether the given point, when projected onto the plane of the + * triangle, lies within the triangle or not. + */ + containsPoint( point ) { + + return Triangle.containsPoint( point, this.a, this.b, this.c ); + + } + + /** + * Returns `true` if the triangle is oriented towards the given direction. + * + * @param {Vector3} direction - The (normalized) direction vector. + * @return {boolean} Whether the triangle is oriented towards the given direction or not. + */ + isFrontFacing( direction ) { + + return Triangle.isFrontFacing( this.a, this.b, this.c, direction ); + + } + + /** + * Returns `true` if this triangle intersects with the given box. + * + * @param {Box3} box - The box to intersect. + * @return {boolean} Whether this triangle intersects with the given box or not. + */ + intersectsBox( box ) { + + return box.intersectsTriangle( this ); + + } + + /** + * Returns the closest point on the triangle to the given point. + * + * @param {Vector3} p - The point to compute the closest point for. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The closest point on the triangle. + */ + closestPointToPoint( p, target ) { + + const a = this.a, b = this.b, c = this.c; + let v, w; + + // algorithm thanks to Real-Time Collision Detection by Christer Ericson, + // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., + // under the accompanying license; see chapter 5.1.5 for detailed explanation. + // basically, we're distinguishing which of the voronoi regions of the triangle + // the point lies in with the minimum amount of redundant computation. + + _vab.subVectors( b, a ); + _vac.subVectors( c, a ); + _vap.subVectors( p, a ); + const d1 = _vab.dot( _vap ); + const d2 = _vac.dot( _vap ); + if ( d1 <= 0 && d2 <= 0 ) { + + // vertex region of A; barycentric coords (1, 0, 0) + return target.copy( a ); + + } + + _vbp.subVectors( p, b ); + const d3 = _vab.dot( _vbp ); + const d4 = _vac.dot( _vbp ); + if ( d3 >= 0 && d4 <= d3 ) { + + // vertex region of B; barycentric coords (0, 1, 0) + return target.copy( b ); + + } + + const vc = d1 * d4 - d3 * d2; + if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) { + + v = d1 / ( d1 - d3 ); + // edge region of AB; barycentric coords (1-v, v, 0) + return target.copy( a ).addScaledVector( _vab, v ); + + } + + _vcp.subVectors( p, c ); + const d5 = _vab.dot( _vcp ); + const d6 = _vac.dot( _vcp ); + if ( d6 >= 0 && d5 <= d6 ) { + + // vertex region of C; barycentric coords (0, 0, 1) + return target.copy( c ); + + } + + const vb = d5 * d2 - d1 * d6; + if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) { + + w = d2 / ( d2 - d6 ); + // edge region of AC; barycentric coords (1-w, 0, w) + return target.copy( a ).addScaledVector( _vac, w ); + + } + + const va = d3 * d6 - d5 * d4; + if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) { + + _vbc.subVectors( c, b ); + w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) ); + // edge region of BC; barycentric coords (0, 1-w, w) + return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC + + } + + // face region + const denom = 1 / ( va + vb + vc ); + // u = va * denom + v = vb * denom; + w = vc * denom; + + return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w ); + + } + + /** + * Returns `true` if this triangle is equal with the given one. + * + * @param {Triangle} triangle - The triangle to test for equality. + * @return {boolean} Whether this triangle is equal with the given one. + */ + equals( triangle ) { + + return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c ); + + } + +} + +const _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, + 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, + 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, + 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, + 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, + 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, + 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, + 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, + 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, + 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, + 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, + 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, + 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, + 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, + 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, + 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, + 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, + 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, + 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, + 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, + 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, + 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, + 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, + 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; + +const _hslA = { h: 0, s: 0, l: 0 }; +const _hslB = { h: 0, s: 0, l: 0 }; + +function hue2rgb( p, q, t ) { + + if ( t < 0 ) t += 1; + if ( t > 1 ) t -= 1; + if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t; + if ( t < 1 / 2 ) return q; + if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t ); + return p; + +} + +/** + * A Color instance is represented by RGB components in the linear working + * color space, which defaults to `LinearSRGBColorSpace`. Inputs + * conventionally using `SRGBColorSpace` (such as hexadecimals and CSS + * strings) are converted to the working color space automatically. + * + * ```js + * // converted automatically from SRGBColorSpace to LinearSRGBColorSpace + * const color = new THREE.Color().setHex( 0x112233 ); + * ``` + * Source color spaces may be specified explicitly, to ensure correct conversions. + * ```js + * // assumed already LinearSRGBColorSpace; no conversion + * const color = new THREE.Color().setRGB( 0.5, 0.5, 0.5 ); + * + * // converted explicitly from SRGBColorSpace to LinearSRGBColorSpace + * const color = new THREE.Color().setRGB( 0.5, 0.5, 0.5, SRGBColorSpace ); + * ``` + * If THREE.ColorManagement is disabled, no conversions occur. For details, + * see Color management. Iterating through a Color instance will yield + * its components (r, g, b) in the corresponding order. A Color can be initialised + * in any of the following ways: + * ```js + * //empty constructor - will default white + * const color1 = new THREE.Color(); + * + * //Hexadecimal color (recommended) + * const color2 = new THREE.Color( 0xff0000 ); + * + * //RGB string + * const color3 = new THREE.Color("rgb(255, 0, 0)"); + * const color4 = new THREE.Color("rgb(100%, 0%, 0%)"); + * + * //X11 color name - all 140 color names are supported. + * //Note the lack of CamelCase in the name + * const color5 = new THREE.Color( 'skyblue' ); + * //HSL string + * const color6 = new THREE.Color("hsl(0, 100%, 50%)"); + * + * //Separate RGB values between 0 and 1 + * const color7 = new THREE.Color( 1, 0, 0 ); + * ``` + */ +class Color { + + /** + * Constructs a new color. + * + * Note that standard method of specifying color in three.js is with a hexadecimal triplet, + * and that method is used throughout the rest of the documentation. + * + * @param {(number|string|Color)} [r] - The red component of the color. If `g` and `b` are + * not provided, it can be hexadecimal triplet, a CSS-style string or another `Color` instance. + * @param {number} [g] - The green component. + * @param {number} [b] - The blue component. + */ + constructor( r, g, b ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isColor = true; + + /** + * The red component. + * + * @type {number} + * @default 1 + */ + this.r = 1; + + /** + * The green component. + * + * @type {number} + * @default 1 + */ + this.g = 1; + + /** + * The blue component. + * + * @type {number} + * @default 1 + */ + this.b = 1; + + return this.set( r, g, b ); + + } + + /** + * Sets the colors's components from the given values. + * + * @param {(number|string|Color)} [r] - The red component of the color. If `g` and `b` are + * not provided, it can be hexadecimal triplet, a CSS-style string or another `Color` instance. + * @param {number} [g] - The green component. + * @param {number} [b] - The blue component. + * @return {Color} A reference to this color. + */ + set( r, g, b ) { + + if ( g === undefined && b === undefined ) { + + // r is THREE.Color, hex or string + + const value = r; + + if ( value && value.isColor ) { + + this.copy( value ); + + } else if ( typeof value === 'number' ) { + + this.setHex( value ); + + } else if ( typeof value === 'string' ) { + + this.setStyle( value ); + + } + + } else { + + this.setRGB( r, g, b ); + + } + + return this; + + } + + /** + * Sets the colors's components to the given scalar value. + * + * @param {number} scalar - The scalar value. + * @return {Color} A reference to this color. + */ + setScalar( scalar ) { + + this.r = scalar; + this.g = scalar; + this.b = scalar; + + return this; + + } + + /** + * Sets this color from a hexadecimal value. + * + * @param {number} hex - The hexadecimal value. + * @param {string} [colorSpace=SRGBColorSpace] - The color space. + * @return {Color} A reference to this color. + */ + setHex( hex, colorSpace = SRGBColorSpace ) { + + hex = Math.floor( hex ); + + this.r = ( hex >> 16 & 255 ) / 255; + this.g = ( hex >> 8 & 255 ) / 255; + this.b = ( hex & 255 ) / 255; + + ColorManagement.colorSpaceToWorking( this, colorSpace ); + + return this; + + } + + /** + * Sets this color from RGB values. + * + * @param {number} r - Red channel value between `0.0` and `1.0`. + * @param {number} g - Green channel value between `0.0` and `1.0`. + * @param {number} b - Blue channel value between `0.0` and `1.0`. + * @param {string} [colorSpace=ColorManagement.workingColorSpace] - The color space. + * @return {Color} A reference to this color. + */ + setRGB( r, g, b, colorSpace = ColorManagement.workingColorSpace ) { + + this.r = r; + this.g = g; + this.b = b; + + ColorManagement.colorSpaceToWorking( this, colorSpace ); + + return this; + + } + + /** + * Sets this color from RGB values. + * + * @param {number} h - Hue value between `0.0` and `1.0`. + * @param {number} s - Saturation value between `0.0` and `1.0`. + * @param {number} l - Lightness value between `0.0` and `1.0`. + * @param {string} [colorSpace=ColorManagement.workingColorSpace] - The color space. + * @return {Color} A reference to this color. + */ + setHSL( h, s, l, colorSpace = ColorManagement.workingColorSpace ) { + + // h,s,l ranges are in 0.0 - 1.0 + h = euclideanModulo( h, 1 ); + s = clamp( s, 0, 1 ); + l = clamp( l, 0, 1 ); + + if ( s === 0 ) { + + this.r = this.g = this.b = l; + + } else { + + const p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); + const q = ( 2 * l ) - p; + + this.r = hue2rgb( q, p, h + 1 / 3 ); + this.g = hue2rgb( q, p, h ); + this.b = hue2rgb( q, p, h - 1 / 3 ); + + } + + ColorManagement.colorSpaceToWorking( this, colorSpace ); + + return this; + + } + + /** + * Sets this color from a CSS-style string. For example, `rgb(250, 0,0)`, + * `rgb(100%, 0%, 0%)`, `hsl(0, 100%, 50%)`, `#ff0000`, `#f00`, or `red` ( or + * any [X11 color name]{@link https://en.wikipedia.org/wiki/X11_color_names#Color_name_chart} - + * all 140 color names are supported). + * + * @param {string} style - Color as a CSS-style string. + * @param {string} [colorSpace=SRGBColorSpace] - The color space. + * @return {Color} A reference to this color. + */ + setStyle( style, colorSpace = SRGBColorSpace ) { + + function handleAlpha( string ) { + + if ( string === undefined ) return; + + if ( parseFloat( string ) < 1 ) { + + console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' ); + + } + + } + + + let m; + + if ( m = /^(\w+)\(([^\)]*)\)/.exec( style ) ) { + + // rgb / hsl + + let color; + const name = m[ 1 ]; + const components = m[ 2 ]; + + switch ( name ) { + + case 'rgb': + case 'rgba': + + if ( color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { + + // rgb(255,0,0) rgba(255,0,0,0.5) + + handleAlpha( color[ 4 ] ); + + return this.setRGB( + Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255, + Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255, + Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255, + colorSpace + ); + + } + + if ( color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { + + // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) + + handleAlpha( color[ 4 ] ); + + return this.setRGB( + Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100, + Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100, + Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100, + colorSpace + ); + + } + + break; + + case 'hsl': + case 'hsla': + + if ( color = /^\s*(\d*\.?\d+)\s*,\s*(\d*\.?\d+)\%\s*,\s*(\d*\.?\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { + + // hsl(120,50%,50%) hsla(120,50%,50%,0.5) + + handleAlpha( color[ 4 ] ); + + return this.setHSL( + parseFloat( color[ 1 ] ) / 360, + parseFloat( color[ 2 ] ) / 100, + parseFloat( color[ 3 ] ) / 100, + colorSpace + ); + + } + + break; + + default: + + console.warn( 'THREE.Color: Unknown color model ' + style ); + + } + + } else if ( m = /^\#([A-Fa-f\d]+)$/.exec( style ) ) { + + // hex color + + const hex = m[ 1 ]; + const size = hex.length; + + if ( size === 3 ) { + + // #ff0 + return this.setRGB( + parseInt( hex.charAt( 0 ), 16 ) / 15, + parseInt( hex.charAt( 1 ), 16 ) / 15, + parseInt( hex.charAt( 2 ), 16 ) / 15, + colorSpace + ); + + } else if ( size === 6 ) { + + // #ff0000 + return this.setHex( parseInt( hex, 16 ), colorSpace ); + + } else { + + console.warn( 'THREE.Color: Invalid hex color ' + style ); + + } + + } else if ( style && style.length > 0 ) { + + return this.setColorName( style, colorSpace ); + + } + + return this; + + } + + /** + * Sets this color from a color name. Faster than {@link Color#setStyle} if + * you don't need the other CSS-style formats. + * + * For convenience, the list of names is exposed in `Color.NAMES` as a hash. + * ```js + * Color.NAMES.aliceblue // returns 0xF0F8FF + * ``` + * + * @param {string} style - The color name. + * @param {string} [colorSpace=SRGBColorSpace] - The color space. + * @return {Color} A reference to this color. + */ + setColorName( style, colorSpace = SRGBColorSpace ) { + + // color keywords + const hex = _colorKeywords[ style.toLowerCase() ]; + + if ( hex !== undefined ) { + + // red + this.setHex( hex, colorSpace ); + + } else { + + // unknown color + console.warn( 'THREE.Color: Unknown color ' + style ); + + } + + return this; + + } + + /** + * Returns a new color with copied values from this instance. + * + * @return {Color} A clone of this instance. + */ + clone() { + + return new this.constructor( this.r, this.g, this.b ); + + } + + /** + * Copies the values of the given color to this instance. + * + * @param {Color} color - The color to copy. + * @return {Color} A reference to this color. + */ + copy( color ) { + + this.r = color.r; + this.g = color.g; + this.b = color.b; + + return this; + + } + + /** + * Copies the given color into this color, and then converts this color from + * `SRGBColorSpace` to `LinearSRGBColorSpace`. + * + * @param {Color} color - The color to copy/convert. + * @return {Color} A reference to this color. + */ + copySRGBToLinear( color ) { + + this.r = SRGBToLinear( color.r ); + this.g = SRGBToLinear( color.g ); + this.b = SRGBToLinear( color.b ); + + return this; + + } + + /** + * Copies the given color into this color, and then converts this color from + * `LinearSRGBColorSpace` to `SRGBColorSpace`. + * + * @param {Color} color - The color to copy/convert. + * @return {Color} A reference to this color. + */ + copyLinearToSRGB( color ) { + + this.r = LinearToSRGB( color.r ); + this.g = LinearToSRGB( color.g ); + this.b = LinearToSRGB( color.b ); + + return this; + + } + + /** + * Converts this color from `SRGBColorSpace` to `LinearSRGBColorSpace`. + * + * @return {Color} A reference to this color. + */ + convertSRGBToLinear() { + + this.copySRGBToLinear( this ); + + return this; + + } + + /** + * Converts this color from `LinearSRGBColorSpace` to `SRGBColorSpace`. + * + * @return {Color} A reference to this color. + */ + convertLinearToSRGB() { + + this.copyLinearToSRGB( this ); + + return this; + + } + + /** + * Returns the hexadecimal value of this color. + * + * @param {string} [colorSpace=SRGBColorSpace] - The color space. + * @return {number} The hexadecimal value. + */ + getHex( colorSpace = SRGBColorSpace ) { + + ColorManagement.workingToColorSpace( _color.copy( this ), colorSpace ); + + return Math.round( clamp( _color.r * 255, 0, 255 ) ) * 65536 + Math.round( clamp( _color.g * 255, 0, 255 ) ) * 256 + Math.round( clamp( _color.b * 255, 0, 255 ) ); + + } + + /** + * Returns the hexadecimal value of this color as a string (for example, 'FFFFFF'). + * + * @param {string} [colorSpace=SRGBColorSpace] - The color space. + * @return {string} The hexadecimal value as a string. + */ + getHexString( colorSpace = SRGBColorSpace ) { + + return ( '000000' + this.getHex( colorSpace ).toString( 16 ) ).slice( - 6 ); + + } + + /** + * Converts the colors RGB values into the HSL format and stores them into the + * given target object. + * + * @param {{h:number,s:number,l:number}} target - The target object that is used to store the method's result. + * @param {string} [colorSpace=ColorManagement.workingColorSpace] - The color space. + * @return {{h:number,s:number,l:number}} The HSL representation of this color. + */ + getHSL( target, colorSpace = ColorManagement.workingColorSpace ) { + + // h,s,l ranges are in 0.0 - 1.0 + + ColorManagement.workingToColorSpace( _color.copy( this ), colorSpace ); + + const r = _color.r, g = _color.g, b = _color.b; + + const max = Math.max( r, g, b ); + const min = Math.min( r, g, b ); + + let hue, saturation; + const lightness = ( min + max ) / 2.0; + + if ( min === max ) { + + hue = 0; + saturation = 0; + + } else { + + const delta = max - min; + + saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min ); + + switch ( max ) { + + case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; + case g: hue = ( b - r ) / delta + 2; break; + case b: hue = ( r - g ) / delta + 4; break; + + } + + hue /= 6; + + } + + target.h = hue; + target.s = saturation; + target.l = lightness; + + return target; + + } + + /** + * Returns the RGB values of this color and stores them into the given target object. + * + * @param {Color} target - The target color that is used to store the method's result. + * @param {string} [colorSpace=ColorManagement.workingColorSpace] - The color space. + * @return {Color} The RGB representation of this color. + */ + getRGB( target, colorSpace = ColorManagement.workingColorSpace ) { + + ColorManagement.workingToColorSpace( _color.copy( this ), colorSpace ); + + target.r = _color.r; + target.g = _color.g; + target.b = _color.b; + + return target; + + } + + /** + * Returns the value of this color as a CSS style string. Example: `rgb(255,0,0)`. + * + * @param {string} [colorSpace=SRGBColorSpace] - The color space. + * @return {string} The CSS representation of this color. + */ + getStyle( colorSpace = SRGBColorSpace ) { + + ColorManagement.workingToColorSpace( _color.copy( this ), colorSpace ); + + const r = _color.r, g = _color.g, b = _color.b; + + if ( colorSpace !== SRGBColorSpace ) { + + // Requires CSS Color Module Level 4 (https://www.w3.org/TR/css-color-4/). + return `color(${ colorSpace } ${ r.toFixed( 3 ) } ${ g.toFixed( 3 ) } ${ b.toFixed( 3 ) })`; + + } + + return `rgb(${ Math.round( r * 255 ) },${ Math.round( g * 255 ) },${ Math.round( b * 255 ) })`; + + } + + /** + * Adds the given HSL values to this color's values. + * Internally, this converts the color's RGB values to HSL, adds HSL + * and then converts the color back to RGB. + * + * @param {number} h - Hue value between `0.0` and `1.0`. + * @param {number} s - Saturation value between `0.0` and `1.0`. + * @param {number} l - Lightness value between `0.0` and `1.0`. + * @return {Color} A reference to this color. + */ + offsetHSL( h, s, l ) { + + this.getHSL( _hslA ); + + return this.setHSL( _hslA.h + h, _hslA.s + s, _hslA.l + l ); + + } + + /** + * Adds the RGB values of the given color to the RGB values of this color. + * + * @param {Color} color - The color to add. + * @return {Color} A reference to this color. + */ + add( color ) { + + this.r += color.r; + this.g += color.g; + this.b += color.b; + + return this; + + } + + /** + * Adds the RGB values of the given colors and stores the result in this instance. + * + * @param {Color} color1 - The first color. + * @param {Color} color2 - The second color. + * @return {Color} A reference to this color. + */ + addColors( color1, color2 ) { + + this.r = color1.r + color2.r; + this.g = color1.g + color2.g; + this.b = color1.b + color2.b; + + return this; + + } + + /** + * Adds the given scalar value to the RGB values of this color. + * + * @param {number} s - The scalar to add. + * @return {Color} A reference to this color. + */ + addScalar( s ) { + + this.r += s; + this.g += s; + this.b += s; + + return this; + + } + + /** + * Subtracts the RGB values of the given color from the RGB values of this color. + * + * @param {Color} color - The color to subtract. + * @return {Color} A reference to this color. + */ + sub( color ) { + + this.r = Math.max( 0, this.r - color.r ); + this.g = Math.max( 0, this.g - color.g ); + this.b = Math.max( 0, this.b - color.b ); + + return this; + + } + + /** + * Multiplies the RGB values of the given color with the RGB values of this color. + * + * @param {Color} color - The color to multiply. + * @return {Color} A reference to this color. + */ + multiply( color ) { + + this.r *= color.r; + this.g *= color.g; + this.b *= color.b; + + return this; + + } + + /** + * Multiplies the given scalar value with the RGB values of this color. + * + * @param {number} s - The scalar to multiply. + * @return {Color} A reference to this color. + */ + multiplyScalar( s ) { + + this.r *= s; + this.g *= s; + this.b *= s; + + return this; + + } + + /** + * Linearly interpolates this color's RGB values toward the RGB values of the + * given color. The alpha argument can be thought of as the ratio between + * the two colors, where `0.0` is this color and `1.0` is the first argument. + * + * @param {Color} color - The color to converge on. + * @param {number} alpha - The interpolation factor in the closed interval `[0,1]`. + * @return {Color} A reference to this color. + */ + lerp( color, alpha ) { + + this.r += ( color.r - this.r ) * alpha; + this.g += ( color.g - this.g ) * alpha; + this.b += ( color.b - this.b ) * alpha; + + return this; + + } + + /** + * Linearly interpolates between the given colors and stores the result in this instance. + * The alpha argument can be thought of as the ratio between the two colors, where `0.0` + * is the first and `1.0` is the second color. + * + * @param {Color} color1 - The first color. + * @param {Color} color2 - The second color. + * @param {number} alpha - The interpolation factor in the closed interval `[0,1]`. + * @return {Color} A reference to this color. + */ + lerpColors( color1, color2, alpha ) { + + this.r = color1.r + ( color2.r - color1.r ) * alpha; + this.g = color1.g + ( color2.g - color1.g ) * alpha; + this.b = color1.b + ( color2.b - color1.b ) * alpha; + + return this; + + } + + /** + * Linearly interpolates this color's HSL values toward the HSL values of the + * given color. It differs from {@link Color#lerp} by not interpolating straight + * from one color to the other, but instead going through all the hues in between + * those two colors. The alpha argument can be thought of as the ratio between + * the two colors, where 0.0 is this color and 1.0 is the first argument. + * + * @param {Color} color - The color to converge on. + * @param {number} alpha - The interpolation factor in the closed interval `[0,1]`. + * @return {Color} A reference to this color. + */ + lerpHSL( color, alpha ) { + + this.getHSL( _hslA ); + color.getHSL( _hslB ); + + const h = lerp( _hslA.h, _hslB.h, alpha ); + const s = lerp( _hslA.s, _hslB.s, alpha ); + const l = lerp( _hslA.l, _hslB.l, alpha ); + + this.setHSL( h, s, l ); + + return this; + + } + + /** + * Sets the color's RGB components from the given 3D vector. + * + * @param {Vector3} v - The vector to set. + * @return {Color} A reference to this color. + */ + setFromVector3( v ) { + + this.r = v.x; + this.g = v.y; + this.b = v.z; + + return this; + + } + + /** + * Transforms this color with the given 3x3 matrix. + * + * @param {Matrix3} m - The matrix. + * @return {Color} A reference to this color. + */ + applyMatrix3( m ) { + + const r = this.r, g = this.g, b = this.b; + const e = m.elements; + + this.r = e[ 0 ] * r + e[ 3 ] * g + e[ 6 ] * b; + this.g = e[ 1 ] * r + e[ 4 ] * g + e[ 7 ] * b; + this.b = e[ 2 ] * r + e[ 5 ] * g + e[ 8 ] * b; + + return this; + + } + + /** + * Returns `true` if this color is equal with the given one. + * + * @param {Color} c - The color to test for equality. + * @return {boolean} Whether this bounding color is equal with the given one. + */ + equals( c ) { + + return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b ); + + } + + /** + * Sets this color's RGB components from the given array. + * + * @param {Array} array - An array holding the RGB values. + * @param {number} [offset=0] - The offset into the array. + * @return {Color} A reference to this color. + */ + fromArray( array, offset = 0 ) { + + this.r = array[ offset ]; + this.g = array[ offset + 1 ]; + this.b = array[ offset + 2 ]; + + return this; + + } + + /** + * Writes the RGB components of this color to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the color components. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The color components. + */ + toArray( array = [], offset = 0 ) { + + array[ offset ] = this.r; + array[ offset + 1 ] = this.g; + array[ offset + 2 ] = this.b; + + return array; + + } + + /** + * Sets the components of this color from the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute holding color data. + * @param {number} index - The index into the attribute. + * @return {Color} A reference to this color. + */ + fromBufferAttribute( attribute, index ) { + + this.r = attribute.getX( index ); + this.g = attribute.getY( index ); + this.b = attribute.getZ( index ); + + return this; + + } + + /** + * This methods defines the serialization result of this class. Returns the color + * as a hexadecimal value. + * + * @return {number} The hexadecimal value. + */ + toJSON() { + + return this.getHex(); + + } + + *[ Symbol.iterator ]() { + + yield this.r; + yield this.g; + yield this.b; + + } + +} + +const _color = /*@__PURE__*/ new Color(); + +/** + * A dictionary with X11 color names. + * + * Note that multiple words such as Dark Orange become the string 'darkorange'. + * + * @static + * @type {Object} + */ +Color.NAMES = _colorKeywords; + +let _materialId = 0; + +/** + * Abstract base class for materials. + * + * Materials define the appearance of renderable 3D objects. + * + * @abstract + * @augments EventDispatcher + */ +class Material extends EventDispatcher { + + /** + * Constructs a new material. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMaterial = true; + + /** + * The ID of the material. + * + * @name Material#id + * @type {number} + * @readonly + */ + Object.defineProperty( this, 'id', { value: _materialId ++ } ); + + /** + * The UUID of the material. + * + * @type {string} + * @readonly + */ + this.uuid = generateUUID(); + + /** + * The name of the material. + * + * @type {string} + */ + this.name = ''; + + /** + * The type property is used for detecting the object type + * in context of serialization/deserialization. + * + * @type {string} + * @readonly + */ + this.type = 'Material'; + + /** + * Defines the blending type of the material. + * + * It must be set to `CustomBlending` if custom blending properties like + * {@link Material#blendSrc}, {@link Material#blendDst} or {@link Material#blendEquation} + * should have any effect. + * + * @type {(NoBlending|NormalBlending|AdditiveBlending|SubtractiveBlending|MultiplyBlending|CustomBlending)} + * @default NormalBlending + */ + this.blending = NormalBlending; + + /** + * Defines which side of faces will be rendered - front, back or both. + * + * @type {(FrontSide|BackSide|DoubleSide)} + * @default FrontSide + */ + this.side = FrontSide; + + /** + * If set to `true`, vertex colors should be used. + * + * The engine supports RGB and RGBA vertex colors depending on whether a three (RGB) or + * four (RGBA) component color buffer attribute is used. + * + * @type {boolean} + * @default false + */ + this.vertexColors = false; + + /** + * Defines how transparent the material is. + * A value of `0.0` indicates fully transparent, `1.0` is fully opaque. + * + * If the {@link Material#transparent} is not set to `true`, + * the material will remain fully opaque and this value will only affect its color. + * + * @type {number} + * @default 1 + */ + this.opacity = 1; + + /** + * Defines whether this material is transparent. This has an effect on + * rendering as transparent objects need special treatment and are rendered + * after non-transparent objects. + * + * When set to true, the extent to which the material is transparent is + * controlled by {@link Material#opacity}. + * + * @type {boolean} + * @default false + */ + this.transparent = false; + + /** + * Enables alpha hashed transparency, an alternative to {@link Material#transparent} or + * {@link Material#alphaTest}. The material will not be rendered if opacity is lower than + * a random threshold. Randomization introduces some grain or noise, but approximates alpha + * blending without the associated problems of sorting. Using TAA can reduce the resulting noise. + * + * @type {boolean} + * @default false + */ + this.alphaHash = false; + + /** + * Defines the blending source factor. + * + * @type {(ZeroFactor|OneFactor|SrcColorFactor|OneMinusSrcColorFactor|SrcAlphaFactor|OneMinusSrcAlphaFactor|DstAlphaFactor|OneMinusDstAlphaFactor|DstColorFactor|OneMinusDstColorFactor|SrcAlphaSaturateFactor|ConstantColorFactor|OneMinusConstantColorFactor|ConstantAlphaFactor|OneMinusConstantAlphaFactor)} + * @default SrcAlphaFactor + */ + this.blendSrc = SrcAlphaFactor; + + /** + * Defines the blending destination factor. + * + * @type {(ZeroFactor|OneFactor|SrcColorFactor|OneMinusSrcColorFactor|SrcAlphaFactor|OneMinusSrcAlphaFactor|DstAlphaFactor|OneMinusDstAlphaFactor|DstColorFactor|OneMinusDstColorFactor|SrcAlphaSaturateFactor|ConstantColorFactor|OneMinusConstantColorFactor|ConstantAlphaFactor|OneMinusConstantAlphaFactor)} + * @default OneMinusSrcAlphaFactor + */ + this.blendDst = OneMinusSrcAlphaFactor; + + /** + * Defines the blending equation. + * + * @type {(AddEquation|SubtractEquation|ReverseSubtractEquation|MinEquation|MaxEquation)} + * @default AddEquation + */ + this.blendEquation = AddEquation; + + /** + * Defines the blending source alpha factor. + * + * @type {?(ZeroFactor|OneFactor|SrcColorFactor|OneMinusSrcColorFactor|SrcAlphaFactor|OneMinusSrcAlphaFactor|DstAlphaFactor|OneMinusDstAlphaFactor|DstColorFactor|OneMinusDstColorFactor|SrcAlphaSaturateFactor|ConstantColorFactor|OneMinusConstantColorFactor|ConstantAlphaFactor|OneMinusConstantAlphaFactor)} + * @default null + */ + this.blendSrcAlpha = null; + + /** + * Defines the blending destination alpha factor. + * + * @type {?(ZeroFactor|OneFactor|SrcColorFactor|OneMinusSrcColorFactor|SrcAlphaFactor|OneMinusSrcAlphaFactor|DstAlphaFactor|OneMinusDstAlphaFactor|DstColorFactor|OneMinusDstColorFactor|SrcAlphaSaturateFactor|ConstantColorFactor|OneMinusConstantColorFactor|ConstantAlphaFactor|OneMinusConstantAlphaFactor)} + * @default null + */ + this.blendDstAlpha = null; + + /** + * Defines the blending equation of the alpha channel. + * + * @type {?(AddEquation|SubtractEquation|ReverseSubtractEquation|MinEquation|MaxEquation)} + * @default null + */ + this.blendEquationAlpha = null; + + /** + * Represents the RGB values of the constant blend color. + * + * This property has only an effect when using custom blending with `ConstantColor` or `OneMinusConstantColor`. + * + * @type {Color} + * @default (0,0,0) + */ + this.blendColor = new Color( 0, 0, 0 ); + + /** + * Represents the alpha value of the constant blend color. + * + * This property has only an effect when using custom blending with `ConstantAlpha` or `OneMinusConstantAlpha`. + * + * @type {number} + * @default 0 + */ + this.blendAlpha = 0; + + /** + * Defines the depth function. + * + * @type {(NeverDepth|AlwaysDepth|LessDepth|LessEqualDepth|EqualDepth|GreaterEqualDepth|GreaterDepth|NotEqualDepth)} + * @default LessEqualDepth + */ + this.depthFunc = LessEqualDepth; + + /** + * Whether to have depth test enabled when rendering this material. + * When the depth test is disabled, the depth write will also be implicitly disabled. + * + * @type {boolean} + * @default true + */ + this.depthTest = true; + + /** + * Whether rendering this material has any effect on the depth buffer. + * + * When drawing 2D overlays it can be useful to disable the depth writing in + * order to layer several things together without creating z-index artifacts. + * + * @type {boolean} + * @default true + */ + this.depthWrite = true; + + /** + * The bit mask to use when writing to the stencil buffer. + * + * @type {number} + * @default 0xff + */ + this.stencilWriteMask = 0xff; + + /** + * The stencil comparison function to use. + * + * @type {NeverStencilFunc|LessStencilFunc|EqualStencilFunc|LessEqualStencilFunc|GreaterStencilFunc|NotEqualStencilFunc|GreaterEqualStencilFunc|AlwaysStencilFunc} + * @default AlwaysStencilFunc + */ + this.stencilFunc = AlwaysStencilFunc; + + /** + * The value to use when performing stencil comparisons or stencil operations. + * + * @type {number} + * @default 0 + */ + this.stencilRef = 0; + + /** + * The bit mask to use when comparing against the stencil buffer. + * + * @type {number} + * @default 0xff + */ + this.stencilFuncMask = 0xff; + + /** + * Which stencil operation to perform when the comparison function returns `false`. + * + * @type {ZeroStencilOp|KeepStencilOp|ReplaceStencilOp|IncrementStencilOp|DecrementStencilOp|IncrementWrapStencilOp|DecrementWrapStencilOp|InvertStencilOp} + * @default KeepStencilOp + */ + this.stencilFail = KeepStencilOp; + + /** + * Which stencil operation to perform when the comparison function returns + * `true` but the depth test fails. + * + * @type {ZeroStencilOp|KeepStencilOp|ReplaceStencilOp|IncrementStencilOp|DecrementStencilOp|IncrementWrapStencilOp|DecrementWrapStencilOp|InvertStencilOp} + * @default KeepStencilOp + */ + this.stencilZFail = KeepStencilOp; + + /** + * Which stencil operation to perform when the comparison function returns + * `true` and the depth test passes. + * + * @type {ZeroStencilOp|KeepStencilOp|ReplaceStencilOp|IncrementStencilOp|DecrementStencilOp|IncrementWrapStencilOp|DecrementWrapStencilOp|InvertStencilOp} + * @default KeepStencilOp + */ + this.stencilZPass = KeepStencilOp; + + /** + * Whether stencil operations are performed against the stencil buffer. In + * order to perform writes or comparisons against the stencil buffer this + * value must be `true`. + * + * @type {boolean} + * @default false + */ + this.stencilWrite = false; + + /** + * User-defined clipping planes specified as THREE.Plane objects in world + * space. These planes apply to the objects this material is attached to. + * Points in space whose signed distance to the plane is negative are clipped + * (not rendered). This requires {@link WebGLRenderer#localClippingEnabled} to + * be `true`. + * + * @type {?Array} + * @default null + */ + this.clippingPlanes = null; + + /** + * Changes the behavior of clipping planes so that only their intersection is + * clipped, rather than their union. + * + * @type {boolean} + * @default false + */ + this.clipIntersection = false; + + /** + * Defines whether to clip shadows according to the clipping planes specified + * on this material. + * + * @type {boolean} + * @default false + */ + this.clipShadows = false; + + /** + * Defines which side of faces cast shadows. If `null`, the side casting shadows + * is determined as follows: + * + * - When {@link Material#side} is set to `FrontSide`, the back side cast shadows. + * - When {@link Material#side} is set to `BackSide`, the front side cast shadows. + * - When {@link Material#side} is set to `DoubleSide`, both sides cast shadows. + * + * @type {?(FrontSide|BackSide|DoubleSide)} + * @default null + */ + this.shadowSide = null; + + /** + * Whether to render the material's color. + * + * This can be used in conjunction with {@link Object3D#renderOder} to create invisible + * objects that occlude other objects. + * + * @type {boolean} + * @default true + */ + this.colorWrite = true; + + /** + * Override the renderer's default precision for this material. + * + * @type {?('highp'|'mediump'|'lowp')} + * @default null + */ + this.precision = null; + + /** + * Whether to use polygon offset or not. When enabled, each fragment's depth value will + * be offset after it is interpolated from the depth values of the appropriate vertices. + * The offset is added before the depth test is performed and before the value is written + * into the depth buffer. + * + * Can be useful for rendering hidden-line images, for applying decals to surfaces, and for + * rendering solids with highlighted edges. + * + * @type {boolean} + * @default false + */ + this.polygonOffset = false; + + /** + * Specifies a scale factor that is used to create a variable depth offset for each polygon. + * + * @type {number} + * @default 0 + */ + this.polygonOffsetFactor = 0; + + /** + * Is multiplied by an implementation-specific value to create a constant depth offset. + * + * @type {number} + * @default 0 + */ + this.polygonOffsetUnits = 0; + + /** + * Whether to apply dithering to the color to remove the appearance of banding. + * + * @type {boolean} + * @default false + */ + this.dithering = false; + + /** + * Whether alpha to coverage should be enabled or not. Can only be used with MSAA-enabled contexts + * (meaning when the renderer was created with *antialias* parameter set to `true`). Enabling this + * will smooth aliasing on clip plane edges and alphaTest-clipped edges. + * + * @type {boolean} + * @default false + */ + this.alphaToCoverage = false; + + /** + * Whether to premultiply the alpha (transparency) value. + * + * @type {boolean} + * @default false + */ + this.premultipliedAlpha = false; + + /** + * Whether double-sided, transparent objects should be rendered with a single pass or not. + * + * The engine renders double-sided, transparent objects with two draw calls (back faces first, + * then front faces) to mitigate transparency artifacts. There are scenarios however where this + * approach produces no quality gains but still doubles draw calls e.g. when rendering flat + * vegetation like grass sprites. In these cases, set the `forceSinglePass` flag to `true` to + * disable the two pass rendering to avoid performance issues. + * + * @type {boolean} + * @default false + */ + this.forceSinglePass = false; + + /** + * Whether it's possible to override the material with {@link Scene#overrideMaterial} or not. + * + * @type {boolean} + * @default true + */ + this.allowOverride = true; + + /** + * Defines whether 3D objects using this material are visible. + * + * @type {boolean} + * @default true + */ + this.visible = true; + + /** + * Defines whether this material is tone mapped according to the renderer's tone mapping setting. + * + * It is ignored when rendering to a render target or using post processing or when using + * `WebGPURenderer`. In all these cases, all materials are honored by tone mapping. + * + * @type {boolean} + * @default true + */ + this.toneMapped = true; + + /** + * An object that can be used to store custom data about the Material. It + * should not hold references to functions as these will not be cloned. + * + * @type {Object} + */ + this.userData = {}; + + /** + * This starts at `0` and counts how many times {@link Material#needsUpdate} is set to `true`. + * + * @type {number} + * @readonly + * @default 0 + */ + this.version = 0; + + this._alphaTest = 0; + + } + + /** + * Sets the alpha value to be used when running an alpha test. The material + * will not be rendered if the opacity is lower than this value. + * + * @type {number} + * @readonly + * @default 0 + */ + get alphaTest() { + + return this._alphaTest; + + } + + set alphaTest( value ) { + + if ( this._alphaTest > 0 !== value > 0 ) { + + this.version ++; + + } + + this._alphaTest = value; + + } + + /** + * An optional callback that is executed immediately before the material is used to render a 3D object. + * + * This method can only be used when rendering with {@link WebGLRenderer}. + * + * @param {WebGLRenderer} renderer - The renderer. + * @param {Scene} scene - The scene. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Object3D} object - The 3D object. + * @param {Object} group - The geometry group data. + */ + onBeforeRender( /* renderer, scene, camera, geometry, object, group */ ) {} + + /** + * An optional callback that is executed immediately before the shader + * program is compiled. This function is called with the shader source code + * as a parameter. Useful for the modification of built-in materials. + * + * This method can only be used when rendering with {@link WebGLRenderer}. The + * recommended approach when customizing materials is to use `WebGPURenderer` with the new + * Node Material system and [TSL]{@link https://github.com/mrdoob/three.js/wiki/Three.js-Shading-Language}. + * + * @param {{vertexShader:string,fragmentShader:string,uniforms:Object}} shaderobject - The object holds the uniforms and the vertex and fragment shader source. + * @param {WebGLRenderer} renderer - A reference to the renderer. + */ + onBeforeCompile( /* shaderobject, renderer */ ) {} + + /** + * In case {@link Material#onBeforeCompile} is used, this callback can be used to identify + * values of settings used in `onBeforeCompile()`, so three.js can reuse a cached + * shader or recompile the shader for this material as needed. + * + * This method can only be used when rendering with {@link WebGLRenderer}. + * + * @return {string} The custom program cache key. + */ + customProgramCacheKey() { + + return this.onBeforeCompile.toString(); + + } + + /** + * This method can be used to set default values from parameter objects. + * It is a generic implementation so it can be used with different types + * of materials. + * + * @param {Object} [values] - The material values to set. + */ + setValues( values ) { + + if ( values === undefined ) return; + + for ( const key in values ) { + + const newValue = values[ key ]; + + if ( newValue === undefined ) { + + console.warn( `THREE.Material: parameter '${ key }' has value of undefined.` ); + continue; + + } + + const currentValue = this[ key ]; + + if ( currentValue === undefined ) { + + console.warn( `THREE.Material: '${ key }' is not a property of THREE.${ this.type }.` ); + continue; + + } + + if ( currentValue && currentValue.isColor ) { + + currentValue.set( newValue ); + + } else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) { + + currentValue.copy( newValue ); + + } else { + + this[ key ] = newValue; + + } + + } + + } + + /** + * Serializes the material into JSON. + * + * @param {?(Object|string)} meta - An optional value holding meta information about the serialization. + * @return {Object} A JSON object representing the serialized material. + * @see {@link ObjectLoader#parse} + */ + toJSON( meta ) { + + const isRootObject = ( meta === undefined || typeof meta === 'string' ); + + if ( isRootObject ) { + + meta = { + textures: {}, + images: {} + }; + + } + + const data = { + metadata: { + version: 4.7, + type: 'Material', + generator: 'Material.toJSON' + } + }; + + // standard Material serialization + data.uuid = this.uuid; + data.type = this.type; + + if ( this.name !== '' ) data.name = this.name; + + if ( this.color && this.color.isColor ) data.color = this.color.getHex(); + + if ( this.roughness !== undefined ) data.roughness = this.roughness; + if ( this.metalness !== undefined ) data.metalness = this.metalness; + + if ( this.sheen !== undefined ) data.sheen = this.sheen; + if ( this.sheenColor && this.sheenColor.isColor ) data.sheenColor = this.sheenColor.getHex(); + if ( this.sheenRoughness !== undefined ) data.sheenRoughness = this.sheenRoughness; + if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex(); + if ( this.emissiveIntensity !== undefined && this.emissiveIntensity !== 1 ) data.emissiveIntensity = this.emissiveIntensity; + + if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex(); + if ( this.specularIntensity !== undefined ) data.specularIntensity = this.specularIntensity; + if ( this.specularColor && this.specularColor.isColor ) data.specularColor = this.specularColor.getHex(); + if ( this.shininess !== undefined ) data.shininess = this.shininess; + if ( this.clearcoat !== undefined ) data.clearcoat = this.clearcoat; + if ( this.clearcoatRoughness !== undefined ) data.clearcoatRoughness = this.clearcoatRoughness; + + if ( this.clearcoatMap && this.clearcoatMap.isTexture ) { + + data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid; + + } + + if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) { + + data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid; + + } + + if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) { + + data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid; + data.clearcoatNormalScale = this.clearcoatNormalScale.toArray(); + + } + + if ( this.dispersion !== undefined ) data.dispersion = this.dispersion; + + if ( this.iridescence !== undefined ) data.iridescence = this.iridescence; + if ( this.iridescenceIOR !== undefined ) data.iridescenceIOR = this.iridescenceIOR; + if ( this.iridescenceThicknessRange !== undefined ) data.iridescenceThicknessRange = this.iridescenceThicknessRange; + + if ( this.iridescenceMap && this.iridescenceMap.isTexture ) { + + data.iridescenceMap = this.iridescenceMap.toJSON( meta ).uuid; + + } + + if ( this.iridescenceThicknessMap && this.iridescenceThicknessMap.isTexture ) { + + data.iridescenceThicknessMap = this.iridescenceThicknessMap.toJSON( meta ).uuid; + + } + + if ( this.anisotropy !== undefined ) data.anisotropy = this.anisotropy; + if ( this.anisotropyRotation !== undefined ) data.anisotropyRotation = this.anisotropyRotation; + + if ( this.anisotropyMap && this.anisotropyMap.isTexture ) { + + data.anisotropyMap = this.anisotropyMap.toJSON( meta ).uuid; + + } + + if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid; + if ( this.matcap && this.matcap.isTexture ) data.matcap = this.matcap.toJSON( meta ).uuid; + if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid; + + if ( this.lightMap && this.lightMap.isTexture ) { + + data.lightMap = this.lightMap.toJSON( meta ).uuid; + data.lightMapIntensity = this.lightMapIntensity; + + } + + if ( this.aoMap && this.aoMap.isTexture ) { + + data.aoMap = this.aoMap.toJSON( meta ).uuid; + data.aoMapIntensity = this.aoMapIntensity; + + } + + if ( this.bumpMap && this.bumpMap.isTexture ) { + + data.bumpMap = this.bumpMap.toJSON( meta ).uuid; + data.bumpScale = this.bumpScale; + + } + + if ( this.normalMap && this.normalMap.isTexture ) { + + data.normalMap = this.normalMap.toJSON( meta ).uuid; + data.normalMapType = this.normalMapType; + data.normalScale = this.normalScale.toArray(); + + } + + if ( this.displacementMap && this.displacementMap.isTexture ) { + + data.displacementMap = this.displacementMap.toJSON( meta ).uuid; + data.displacementScale = this.displacementScale; + data.displacementBias = this.displacementBias; + + } + + if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; + if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid; + + if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; + if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid; + if ( this.specularIntensityMap && this.specularIntensityMap.isTexture ) data.specularIntensityMap = this.specularIntensityMap.toJSON( meta ).uuid; + if ( this.specularColorMap && this.specularColorMap.isTexture ) data.specularColorMap = this.specularColorMap.toJSON( meta ).uuid; + + if ( this.envMap && this.envMap.isTexture ) { + + data.envMap = this.envMap.toJSON( meta ).uuid; + + if ( this.combine !== undefined ) data.combine = this.combine; + + } + + if ( this.envMapRotation !== undefined ) data.envMapRotation = this.envMapRotation.toArray(); + if ( this.envMapIntensity !== undefined ) data.envMapIntensity = this.envMapIntensity; + if ( this.reflectivity !== undefined ) data.reflectivity = this.reflectivity; + if ( this.refractionRatio !== undefined ) data.refractionRatio = this.refractionRatio; + + if ( this.gradientMap && this.gradientMap.isTexture ) { + + data.gradientMap = this.gradientMap.toJSON( meta ).uuid; + + } + + if ( this.transmission !== undefined ) data.transmission = this.transmission; + if ( this.transmissionMap && this.transmissionMap.isTexture ) data.transmissionMap = this.transmissionMap.toJSON( meta ).uuid; + if ( this.thickness !== undefined ) data.thickness = this.thickness; + if ( this.thicknessMap && this.thicknessMap.isTexture ) data.thicknessMap = this.thicknessMap.toJSON( meta ).uuid; + if ( this.attenuationDistance !== undefined && this.attenuationDistance !== Infinity ) data.attenuationDistance = this.attenuationDistance; + if ( this.attenuationColor !== undefined ) data.attenuationColor = this.attenuationColor.getHex(); + + if ( this.size !== undefined ) data.size = this.size; + if ( this.shadowSide !== null ) data.shadowSide = this.shadowSide; + if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation; + + if ( this.blending !== NormalBlending ) data.blending = this.blending; + if ( this.side !== FrontSide ) data.side = this.side; + if ( this.vertexColors === true ) data.vertexColors = true; + + if ( this.opacity < 1 ) data.opacity = this.opacity; + if ( this.transparent === true ) data.transparent = true; + + if ( this.blendSrc !== SrcAlphaFactor ) data.blendSrc = this.blendSrc; + if ( this.blendDst !== OneMinusSrcAlphaFactor ) data.blendDst = this.blendDst; + if ( this.blendEquation !== AddEquation ) data.blendEquation = this.blendEquation; + if ( this.blendSrcAlpha !== null ) data.blendSrcAlpha = this.blendSrcAlpha; + if ( this.blendDstAlpha !== null ) data.blendDstAlpha = this.blendDstAlpha; + if ( this.blendEquationAlpha !== null ) data.blendEquationAlpha = this.blendEquationAlpha; + if ( this.blendColor && this.blendColor.isColor ) data.blendColor = this.blendColor.getHex(); + if ( this.blendAlpha !== 0 ) data.blendAlpha = this.blendAlpha; + + if ( this.depthFunc !== LessEqualDepth ) data.depthFunc = this.depthFunc; + if ( this.depthTest === false ) data.depthTest = this.depthTest; + if ( this.depthWrite === false ) data.depthWrite = this.depthWrite; + if ( this.colorWrite === false ) data.colorWrite = this.colorWrite; + + if ( this.stencilWriteMask !== 0xff ) data.stencilWriteMask = this.stencilWriteMask; + if ( this.stencilFunc !== AlwaysStencilFunc ) data.stencilFunc = this.stencilFunc; + if ( this.stencilRef !== 0 ) data.stencilRef = this.stencilRef; + if ( this.stencilFuncMask !== 0xff ) data.stencilFuncMask = this.stencilFuncMask; + if ( this.stencilFail !== KeepStencilOp ) data.stencilFail = this.stencilFail; + if ( this.stencilZFail !== KeepStencilOp ) data.stencilZFail = this.stencilZFail; + if ( this.stencilZPass !== KeepStencilOp ) data.stencilZPass = this.stencilZPass; + if ( this.stencilWrite === true ) data.stencilWrite = this.stencilWrite; + + // rotation (SpriteMaterial) + if ( this.rotation !== undefined && this.rotation !== 0 ) data.rotation = this.rotation; + + if ( this.polygonOffset === true ) data.polygonOffset = true; + if ( this.polygonOffsetFactor !== 0 ) data.polygonOffsetFactor = this.polygonOffsetFactor; + if ( this.polygonOffsetUnits !== 0 ) data.polygonOffsetUnits = this.polygonOffsetUnits; + + if ( this.linewidth !== undefined && this.linewidth !== 1 ) data.linewidth = this.linewidth; + if ( this.dashSize !== undefined ) data.dashSize = this.dashSize; + if ( this.gapSize !== undefined ) data.gapSize = this.gapSize; + if ( this.scale !== undefined ) data.scale = this.scale; + + if ( this.dithering === true ) data.dithering = true; + + if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest; + if ( this.alphaHash === true ) data.alphaHash = true; + if ( this.alphaToCoverage === true ) data.alphaToCoverage = true; + if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = true; + if ( this.forceSinglePass === true ) data.forceSinglePass = true; + + if ( this.wireframe === true ) data.wireframe = true; + if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth; + if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap; + if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin; + + if ( this.flatShading === true ) data.flatShading = true; + + if ( this.visible === false ) data.visible = false; + + if ( this.toneMapped === false ) data.toneMapped = false; + + if ( this.fog === false ) data.fog = false; + + if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData; + + // TODO: Copied from Object3D.toJSON + + function extractFromCache( cache ) { + + const values = []; + + for ( const key in cache ) { + + const data = cache[ key ]; + delete data.metadata; + values.push( data ); + + } + + return values; + + } + + if ( isRootObject ) { + + const textures = extractFromCache( meta.textures ); + const images = extractFromCache( meta.images ); + + if ( textures.length > 0 ) data.textures = textures; + if ( images.length > 0 ) data.images = images; + + } + + return data; + + } + + /** + * Returns a new material with copied values from this instance. + * + * @return {Material} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + + /** + * Copies the values of the given material to this instance. + * + * @param {Material} source - The material to copy. + * @return {Material} A reference to this instance. + */ + copy( source ) { + + this.name = source.name; + + this.blending = source.blending; + this.side = source.side; + this.vertexColors = source.vertexColors; + + this.opacity = source.opacity; + this.transparent = source.transparent; + + this.blendSrc = source.blendSrc; + this.blendDst = source.blendDst; + this.blendEquation = source.blendEquation; + this.blendSrcAlpha = source.blendSrcAlpha; + this.blendDstAlpha = source.blendDstAlpha; + this.blendEquationAlpha = source.blendEquationAlpha; + this.blendColor.copy( source.blendColor ); + this.blendAlpha = source.blendAlpha; + + this.depthFunc = source.depthFunc; + this.depthTest = source.depthTest; + this.depthWrite = source.depthWrite; + + this.stencilWriteMask = source.stencilWriteMask; + this.stencilFunc = source.stencilFunc; + this.stencilRef = source.stencilRef; + this.stencilFuncMask = source.stencilFuncMask; + this.stencilFail = source.stencilFail; + this.stencilZFail = source.stencilZFail; + this.stencilZPass = source.stencilZPass; + this.stencilWrite = source.stencilWrite; + + const srcPlanes = source.clippingPlanes; + let dstPlanes = null; + + if ( srcPlanes !== null ) { + + const n = srcPlanes.length; + dstPlanes = new Array( n ); + + for ( let i = 0; i !== n; ++ i ) { + + dstPlanes[ i ] = srcPlanes[ i ].clone(); + + } + + } + + this.clippingPlanes = dstPlanes; + this.clipIntersection = source.clipIntersection; + this.clipShadows = source.clipShadows; + + this.shadowSide = source.shadowSide; + + this.colorWrite = source.colorWrite; + + this.precision = source.precision; + + this.polygonOffset = source.polygonOffset; + this.polygonOffsetFactor = source.polygonOffsetFactor; + this.polygonOffsetUnits = source.polygonOffsetUnits; + + this.dithering = source.dithering; + + this.alphaTest = source.alphaTest; + this.alphaHash = source.alphaHash; + this.alphaToCoverage = source.alphaToCoverage; + this.premultipliedAlpha = source.premultipliedAlpha; + this.forceSinglePass = source.forceSinglePass; + + this.visible = source.visible; + + this.toneMapped = source.toneMapped; + + this.userData = JSON.parse( JSON.stringify( source.userData ) ); + + return this; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + * + * @fires Material#dispose + */ + dispose() { + + /** + * Fires when the material has been disposed of. + * + * @event Material#dispose + * @type {Object} + */ + this.dispatchEvent( { type: 'dispose' } ); + + } + + /** + * Setting this property to `true` indicates the engine the material + * needs to be recompiled. + * + * @type {boolean} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + if ( value === true ) this.version ++; + + } + +} + +/** + * A material for drawing geometries in a simple shaded (flat or wireframe) way. + * + * This material is not affected by lights. + * + * @augments Material + */ +class MeshBasicMaterial extends Material { + + /** + * Constructs a new mesh basic material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshBasicMaterial = true; + + this.type = 'MeshBasicMaterial'; + + /** + * Color of the material. + * + * @type {Color} + * @default (1,1,1) + */ + this.color = new Color( 0xffffff ); // emissive + + /** + * The color map. May optionally include an alpha channel, typically combined + * with {@link Material#transparent} or {@link Material#alphaTest}. The texture map + * color is modulated by the diffuse `color`. + * + * @type {?Texture} + * @default null + */ + this.map = null; + + /** + * The light map. Requires a second set of UVs. + * + * @type {?Texture} + * @default null + */ + this.lightMap = null; + + /** + * Intensity of the baked light. + * + * @type {number} + * @default 1 + */ + this.lightMapIntensity = 1.0; + + /** + * The red channel of this texture is used as the ambient occlusion map. + * Requires a second set of UVs. + * + * @type {?Texture} + * @default null + */ + this.aoMap = null; + + /** + * Intensity of the ambient occlusion effect. Range is `[0,1]`, where `0` + * disables ambient occlusion. Where intensity is `1` and the AO map's + * red channel is also `1`, ambient light is fully occluded on a surface. + * + * @type {number} + * @default 1 + */ + this.aoMapIntensity = 1.0; + + /** + * Specular map used by the material. + * + * @type {?Texture} + * @default null + */ + this.specularMap = null; + + /** + * The alpha map is a grayscale texture that controls the opacity across the + * surface (black: fully transparent; white: fully opaque). + * + * Only the color of the texture is used, ignoring the alpha channel if one + * exists. For RGB and RGBA textures, the renderer will use the green channel + * when sampling this texture due to the extra bit of precision provided for + * green in DXT-compressed and uncompressed RGB 565 formats. Luminance-only and + * luminance/alpha textures will also still work as expected. + * + * @type {?Texture} + * @default null + */ + this.alphaMap = null; + + /** + * The environment map. + * + * @type {?Texture} + * @default null + */ + this.envMap = null; + + /** + * The rotation of the environment map in radians. + * + * @type {Euler} + * @default (0,0,0) + */ + this.envMapRotation = new Euler(); + + /** + * How to combine the result of the surface's color with the environment map, if any. + * + * When set to `MixOperation`, the {@link MeshBasicMaterial#reflectivity} is used to + * blend between the two colors. + * + * @type {(MultiplyOperation|MixOperation|AddOperation)} + * @default MultiplyOperation + */ + this.combine = MultiplyOperation; + + /** + * How much the environment map affects the surface. + * The valid range is between `0` (no reflections) and `1` (full reflections). + * + * @type {number} + * @default 1 + */ + this.reflectivity = 1; + + /** + * The index of refraction (IOR) of air (approximately 1) divided by the + * index of refraction of the material. It is used with environment mapping + * modes {@link CubeRefractionMapping} and {@link EquirectangularRefractionMapping}. + * The refraction ratio should not exceed `1`. + * + * @type {number} + * @default 0.98 + */ + this.refractionRatio = 0.98; + + /** + * Renders the geometry as a wireframe. + * + * @type {boolean} + * @default false + */ + this.wireframe = false; + + /** + * Controls the thickness of the wireframe. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {number} + * @default 1 + */ + this.wireframeLinewidth = 1; + + /** + * Defines appearance of wireframe ends. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {('round'|'bevel'|'miter')} + * @default 'round' + */ + this.wireframeLinecap = 'round'; + + /** + * Defines appearance of wireframe joints. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {('round'|'bevel'|'miter')} + * @default 'round' + */ + this.wireframeLinejoin = 'round'; + + /** + * Whether the material is affected by fog or not. + * + * @type {boolean} + * @default true + */ + this.fog = true; + + this.setValues( parameters ); + + } + + copy( source ) { + + super.copy( source ); + + this.color.copy( source.color ); + + this.map = source.map; + + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + + this.specularMap = source.specularMap; + + this.alphaMap = source.alphaMap; + + this.envMap = source.envMap; + this.envMapRotation.copy( source.envMapRotation ); + this.combine = source.combine; + this.reflectivity = source.reflectivity; + this.refractionRatio = source.refractionRatio; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + + this.fog = source.fog; + + return this; + + } + +} + +// Fast Half Float Conversions, http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf + +const _tables = /*@__PURE__*/ _generateTables(); + +function _generateTables() { + + // float32 to float16 helpers + + const buffer = new ArrayBuffer( 4 ); + const floatView = new Float32Array( buffer ); + const uint32View = new Uint32Array( buffer ); + + const baseTable = new Uint32Array( 512 ); + const shiftTable = new Uint32Array( 512 ); + + for ( let i = 0; i < 256; ++ i ) { + + const e = i - 127; + + // very small number (0, -0) + + if ( e < - 27 ) { + + baseTable[ i ] = 0x0000; + baseTable[ i | 0x100 ] = 0x8000; + shiftTable[ i ] = 24; + shiftTable[ i | 0x100 ] = 24; + + // small number (denorm) + + } else if ( e < - 14 ) { + + baseTable[ i ] = 0x0400 >> ( - e - 14 ); + baseTable[ i | 0x100 ] = ( 0x0400 >> ( - e - 14 ) ) | 0x8000; + shiftTable[ i ] = - e - 1; + shiftTable[ i | 0x100 ] = - e - 1; + + // normal number + + } else if ( e <= 15 ) { + + baseTable[ i ] = ( e + 15 ) << 10; + baseTable[ i | 0x100 ] = ( ( e + 15 ) << 10 ) | 0x8000; + shiftTable[ i ] = 13; + shiftTable[ i | 0x100 ] = 13; + + // large number (Infinity, -Infinity) + + } else if ( e < 128 ) { + + baseTable[ i ] = 0x7c00; + baseTable[ i | 0x100 ] = 0xfc00; + shiftTable[ i ] = 24; + shiftTable[ i | 0x100 ] = 24; + + // stay (NaN, Infinity, -Infinity) + + } else { + + baseTable[ i ] = 0x7c00; + baseTable[ i | 0x100 ] = 0xfc00; + shiftTable[ i ] = 13; + shiftTable[ i | 0x100 ] = 13; + + } + + } + + // float16 to float32 helpers + + const mantissaTable = new Uint32Array( 2048 ); + const exponentTable = new Uint32Array( 64 ); + const offsetTable = new Uint32Array( 64 ); + + for ( let i = 1; i < 1024; ++ i ) { + + let m = i << 13; // zero pad mantissa bits + let e = 0; // zero exponent + + // normalized + while ( ( m & 0x00800000 ) === 0 ) { + + m <<= 1; + e -= 0x00800000; // decrement exponent + + } + + m &= - 8388609; // clear leading 1 bit + e += 0x38800000; // adjust bias + + mantissaTable[ i ] = m | e; + + } + + for ( let i = 1024; i < 2048; ++ i ) { + + mantissaTable[ i ] = 0x38000000 + ( ( i - 1024 ) << 13 ); + + } + + for ( let i = 1; i < 31; ++ i ) { + + exponentTable[ i ] = i << 23; + + } + + exponentTable[ 31 ] = 0x47800000; + exponentTable[ 32 ] = 0x80000000; + + for ( let i = 33; i < 63; ++ i ) { + + exponentTable[ i ] = 0x80000000 + ( ( i - 32 ) << 23 ); + + } + + exponentTable[ 63 ] = 0xc7800000; + + for ( let i = 1; i < 64; ++ i ) { + + if ( i !== 32 ) { + + offsetTable[ i ] = 1024; + + } + + } + + return { + floatView: floatView, + uint32View: uint32View, + baseTable: baseTable, + shiftTable: shiftTable, + mantissaTable: mantissaTable, + exponentTable: exponentTable, + offsetTable: offsetTable + }; + +} + +/** + * Returns a half precision floating point value (FP16) from the given single + * precision floating point value (FP32). + * + * @param {number} val - A single precision floating point value. + * @return {number} The FP16 value. + */ +function toHalfFloat( val ) { + + if ( Math.abs( val ) > 65504 ) console.warn( 'THREE.DataUtils.toHalfFloat(): Value out of range.' ); + + val = clamp( val, - 65504, 65504 ); + + _tables.floatView[ 0 ] = val; + const f = _tables.uint32View[ 0 ]; + const e = ( f >> 23 ) & 0x1ff; + return _tables.baseTable[ e ] + ( ( f & 0x007fffff ) >> _tables.shiftTable[ e ] ); + +} + +/** + * Returns a single precision floating point value (FP32) from the given half + * precision floating point value (FP16). + * + * @param {number} val - A half precision floating point value. + * @return {number} The FP32 value. + */ +function fromHalfFloat( val ) { + + const m = val >> 10; + _tables.uint32View[ 0 ] = _tables.mantissaTable[ _tables.offsetTable[ m ] + ( val & 0x3ff ) ] + _tables.exponentTable[ m ]; + return _tables.floatView[ 0 ]; + +} + +/** + * A class containing utility functions for data. + * + * @hideconstructor + */ +class DataUtils { + + /** + * Returns a half precision floating point value (FP16) from the given single + * precision floating point value (FP32). + * + * @param {number} val - A single precision floating point value. + * @return {number} The FP16 value. + */ + static toHalfFloat( val ) { + + return toHalfFloat( val ); + + } + + /** + * Returns a single precision floating point value (FP32) from the given half + * precision floating point value (FP16). + * + * @param {number} val - A half precision floating point value. + * @return {number} The FP32 value. + */ + static fromHalfFloat( val ) { + + return fromHalfFloat( val ); + + } + +} + +const _vector$9 = /*@__PURE__*/ new Vector3(); +const _vector2$1 = /*@__PURE__*/ new Vector2(); + +let _id$2 = 0; + +/** + * This class stores data for an attribute (such as vertex positions, face + * indices, normals, colors, UVs, and any custom attributes ) associated with + * a geometry, which allows for more efficient passing of data to the GPU. + * + * When working with vector-like data, the `fromBufferAttribute( attribute, index )` + * helper methods on vector and color class might be helpful. E.g. {@link Vector3#fromBufferAttribute}. + */ +class BufferAttribute { + + /** + * Constructs a new buffer attribute. + * + * @param {TypedArray} array - The array holding the attribute data. + * @param {number} itemSize - The item size. + * @param {boolean} [normalized=false] - Whether the data are normalized or not. + */ + constructor( array, itemSize, normalized = false ) { + + if ( Array.isArray( array ) ) { + + throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); + + } + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBufferAttribute = true; + + /** + * The ID of the buffer attribute. + * + * @name BufferAttribute#id + * @type {number} + * @readonly + */ + Object.defineProperty( this, 'id', { value: _id$2 ++ } ); + + /** + * The name of the buffer attribute. + * + * @type {string} + */ + this.name = ''; + + /** + * The array holding the attribute data. It should have `itemSize * numVertices` + * elements, where `numVertices` is the number of vertices in the associated geometry. + * + * @type {TypedArray} + */ + this.array = array; + + /** + * The number of values of the array that should be associated with a particular vertex. + * For instance, if this attribute is storing a 3-component vector (such as a position, + * normal, or color), then the value should be `3`. + * + * @type {number} + */ + this.itemSize = itemSize; + + /** + * Represents the number of items this buffer attribute stores. It is internally computed + * by dividing the `array` length by the `itemSize`. + * + * @type {number} + * @readonly + */ + this.count = array !== undefined ? array.length / itemSize : 0; + + /** + * Applies to integer data only. Indicates how the underlying data in the buffer maps to + * the values in the GLSL code. For instance, if `array` is an instance of `UInt16Array`, + * and `normalized` is `true`, the values `0 -+65535` in the array data will be mapped to + * `0.0f - +1.0f` in the GLSL attribute. If `normalized` is `false`, the values will be converted + * to floats unmodified, i.e. `65535` becomes `65535.0f`. + * + * @type {boolean} + */ + this.normalized = normalized; + + /** + * Defines the intended usage pattern of the data store for optimization purposes. + * + * Note: After the initial use of a buffer, its usage cannot be changed. Instead, + * instantiate a new one and set the desired usage before the next render. + * + * @type {(StaticDrawUsage|DynamicDrawUsage|StreamDrawUsage|StaticReadUsage|DynamicReadUsage|StreamReadUsage|StaticCopyUsage|DynamicCopyUsage|StreamCopyUsage)} + * @default StaticDrawUsage + */ + this.usage = StaticDrawUsage; + + /** + * This can be used to only update some components of stored vectors (for example, just the + * component related to color). Use the `addUpdateRange()` function to add ranges to this array. + * + * @type {Array} + */ + this.updateRanges = []; + + /** + * Configures the bound GPU type for use in shaders. + * + * Note: this only has an effect for integer arrays and is not configurable for float arrays. + * For lower precision float types, use `Float16BufferAttribute`. + * + * @type {(FloatType|IntType)} + * @default FloatType + */ + this.gpuType = FloatType; + + /** + * A version number, incremented every time the `needsUpdate` is set to `true`. + * + * @type {number} + */ + this.version = 0; + + } + + /** + * A callback function that is executed after the renderer has transferred the attribute + * array data to the GPU. + */ + onUploadCallback() {} + + /** + * Flag to indicate that this attribute has changed and should be re-sent to + * the GPU. Set this to `true` when you modify the value of the array. + * + * @type {number} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + if ( value === true ) this.version ++; + + } + + /** + * Sets the usage of this buffer attribute. + * + * @param {(StaticDrawUsage|DynamicDrawUsage|StreamDrawUsage|StaticReadUsage|DynamicReadUsage|StreamReadUsage|StaticCopyUsage|DynamicCopyUsage|StreamCopyUsage)} value - The usage to set. + * @return {BufferAttribute} A reference to this buffer attribute. + */ + setUsage( value ) { + + this.usage = value; + + return this; + + } + + /** + * Adds a range of data in the data array to be updated on the GPU. + * + * @param {number} start - Position at which to start update. + * @param {number} count - The number of components to update. + */ + addUpdateRange( start, count ) { + + this.updateRanges.push( { start, count } ); + + } + + /** + * Clears the update ranges. + */ + clearUpdateRanges() { + + this.updateRanges.length = 0; + + } + + /** + * Copies the values of the given buffer attribute to this instance. + * + * @param {BufferAttribute} source - The buffer attribute to copy. + * @return {BufferAttribute} A reference to this instance. + */ + copy( source ) { + + this.name = source.name; + this.array = new source.array.constructor( source.array ); + this.itemSize = source.itemSize; + this.count = source.count; + this.normalized = source.normalized; + + this.usage = source.usage; + this.gpuType = source.gpuType; + + return this; + + } + + /** + * Copies a vector from the given buffer attribute to this one. The start + * and destination position in the attribute buffers are represented by the + * given indices. + * + * @param {number} index1 - The destination index into this buffer attribute. + * @param {BufferAttribute} attribute - The buffer attribute to copy from. + * @param {number} index2 - The source index into the given buffer attribute. + * @return {BufferAttribute} A reference to this instance. + */ + copyAt( index1, attribute, index2 ) { + + index1 *= this.itemSize; + index2 *= attribute.itemSize; + + for ( let i = 0, l = this.itemSize; i < l; i ++ ) { + + this.array[ index1 + i ] = attribute.array[ index2 + i ]; + + } + + return this; + + } + + /** + * Copies the given array data into this buffer attribute. + * + * @param {(TypedArray|Array)} array - The array to copy. + * @return {BufferAttribute} A reference to this instance. + */ + copyArray( array ) { + + this.array.set( array ); + + return this; + + } + + /** + * Applies the given 3x3 matrix to the given attribute. Works with + * item size `2` and `3`. + * + * @param {Matrix3} m - The matrix to apply. + * @return {BufferAttribute} A reference to this instance. + */ + applyMatrix3( m ) { + + if ( this.itemSize === 2 ) { + + for ( let i = 0, l = this.count; i < l; i ++ ) { + + _vector2$1.fromBufferAttribute( this, i ); + _vector2$1.applyMatrix3( m ); + + this.setXY( i, _vector2$1.x, _vector2$1.y ); + + } + + } else if ( this.itemSize === 3 ) { + + for ( let i = 0, l = this.count; i < l; i ++ ) { + + _vector$9.fromBufferAttribute( this, i ); + _vector$9.applyMatrix3( m ); + + this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); + + } + + } + + return this; + + } + + /** + * Applies the given 4x4 matrix to the given attribute. Only works with + * item size `3`. + * + * @param {Matrix4} m - The matrix to apply. + * @return {BufferAttribute} A reference to this instance. + */ + applyMatrix4( m ) { + + for ( let i = 0, l = this.count; i < l; i ++ ) { + + _vector$9.fromBufferAttribute( this, i ); + + _vector$9.applyMatrix4( m ); + + this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); + + } + + return this; + + } + + /** + * Applies the given 3x3 normal matrix to the given attribute. Only works with + * item size `3`. + * + * @param {Matrix3} m - The normal matrix to apply. + * @return {BufferAttribute} A reference to this instance. + */ + applyNormalMatrix( m ) { + + for ( let i = 0, l = this.count; i < l; i ++ ) { + + _vector$9.fromBufferAttribute( this, i ); + + _vector$9.applyNormalMatrix( m ); + + this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); + + } + + return this; + + } + + /** + * Applies the given 4x4 matrix to the given attribute. Only works with + * item size `3` and with direction vectors. + * + * @param {Matrix4} m - The matrix to apply. + * @return {BufferAttribute} A reference to this instance. + */ + transformDirection( m ) { + + for ( let i = 0, l = this.count; i < l; i ++ ) { + + _vector$9.fromBufferAttribute( this, i ); + + _vector$9.transformDirection( m ); + + this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); + + } + + return this; + + } + + /** + * Sets the given array data in the buffer attribute. + * + * @param {(TypedArray|Array)} value - The array data to set. + * @param {number} [offset=0] - The offset in this buffer attribute's array. + * @return {BufferAttribute} A reference to this instance. + */ + set( value, offset = 0 ) { + + // Matching BufferAttribute constructor, do not normalize the array. + this.array.set( value, offset ); + + return this; + + } + + /** + * Returns the given component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} component - The component index. + * @return {number} The returned value. + */ + getComponent( index, component ) { + + let value = this.array[ index * this.itemSize + component ]; + + if ( this.normalized ) value = denormalize( value, this.array ); + + return value; + + } + + /** + * Sets the given value to the given component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} component - The component index. + * @param {number} value - The value to set. + * @return {BufferAttribute} A reference to this instance. + */ + setComponent( index, component, value ) { + + if ( this.normalized ) value = normalize( value, this.array ); + + this.array[ index * this.itemSize + component ] = value; + + return this; + + } + + /** + * Returns the x component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @return {number} The x component. + */ + getX( index ) { + + let x = this.array[ index * this.itemSize ]; + + if ( this.normalized ) x = denormalize( x, this.array ); + + return x; + + } + + /** + * Sets the x component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} x - The value to set. + * @return {BufferAttribute} A reference to this instance. + */ + setX( index, x ) { + + if ( this.normalized ) x = normalize( x, this.array ); + + this.array[ index * this.itemSize ] = x; + + return this; + + } + + /** + * Returns the y component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @return {number} The y component. + */ + getY( index ) { + + let y = this.array[ index * this.itemSize + 1 ]; + + if ( this.normalized ) y = denormalize( y, this.array ); + + return y; + + } + + /** + * Sets the y component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} y - The value to set. + * @return {BufferAttribute} A reference to this instance. + */ + setY( index, y ) { + + if ( this.normalized ) y = normalize( y, this.array ); + + this.array[ index * this.itemSize + 1 ] = y; + + return this; + + } + + /** + * Returns the z component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @return {number} The z component. + */ + getZ( index ) { + + let z = this.array[ index * this.itemSize + 2 ]; + + if ( this.normalized ) z = denormalize( z, this.array ); + + return z; + + } + + /** + * Sets the z component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} z - The value to set. + * @return {BufferAttribute} A reference to this instance. + */ + setZ( index, z ) { + + if ( this.normalized ) z = normalize( z, this.array ); + + this.array[ index * this.itemSize + 2 ] = z; + + return this; + + } + + /** + * Returns the w component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @return {number} The w component. + */ + getW( index ) { + + let w = this.array[ index * this.itemSize + 3 ]; + + if ( this.normalized ) w = denormalize( w, this.array ); + + return w; + + } + + /** + * Sets the w component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} w - The value to set. + * @return {BufferAttribute} A reference to this instance. + */ + setW( index, w ) { + + if ( this.normalized ) w = normalize( w, this.array ); + + this.array[ index * this.itemSize + 3 ] = w; + + return this; + + } + + /** + * Sets the x and y component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} x - The value for the x component to set. + * @param {number} y - The value for the y component to set. + * @return {BufferAttribute} A reference to this instance. + */ + setXY( index, x, y ) { + + index *= this.itemSize; + + if ( this.normalized ) { + + x = normalize( x, this.array ); + y = normalize( y, this.array ); + + } + + this.array[ index + 0 ] = x; + this.array[ index + 1 ] = y; + + return this; + + } + + /** + * Sets the x, y and z component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} x - The value for the x component to set. + * @param {number} y - The value for the y component to set. + * @param {number} z - The value for the z component to set. + * @return {BufferAttribute} A reference to this instance. + */ + setXYZ( index, x, y, z ) { + + index *= this.itemSize; + + if ( this.normalized ) { + + x = normalize( x, this.array ); + y = normalize( y, this.array ); + z = normalize( z, this.array ); + + } + + this.array[ index + 0 ] = x; + this.array[ index + 1 ] = y; + this.array[ index + 2 ] = z; + + return this; + + } + + /** + * Sets the x, y, z and w component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} x - The value for the x component to set. + * @param {number} y - The value for the y component to set. + * @param {number} z - The value for the z component to set. + * @param {number} w - The value for the w component to set. + * @return {BufferAttribute} A reference to this instance. + */ + setXYZW( index, x, y, z, w ) { + + index *= this.itemSize; + + if ( this.normalized ) { + + x = normalize( x, this.array ); + y = normalize( y, this.array ); + z = normalize( z, this.array ); + w = normalize( w, this.array ); + + } + + this.array[ index + 0 ] = x; + this.array[ index + 1 ] = y; + this.array[ index + 2 ] = z; + this.array[ index + 3 ] = w; + + return this; + + } + + /** + * Sets the given callback function that is executed after the Renderer has transferred + * the attribute array data to the GPU. Can be used to perform clean-up operations after + * the upload when attribute data are not needed anymore on the CPU side. + * + * @param {Function} callback - The `onUpload()` callback. + * @return {BufferAttribute} A reference to this instance. + */ + onUpload( callback ) { + + this.onUploadCallback = callback; + + return this; + + } + + /** + * Returns a new buffer attribute with copied values from this instance. + * + * @return {BufferAttribute} A clone of this instance. + */ + clone() { + + return new this.constructor( this.array, this.itemSize ).copy( this ); + + } + + /** + * Serializes the buffer attribute into JSON. + * + * @return {Object} A JSON object representing the serialized buffer attribute. + */ + toJSON() { + + const data = { + itemSize: this.itemSize, + type: this.array.constructor.name, + array: Array.from( this.array ), + normalized: this.normalized + }; + + if ( this.name !== '' ) data.name = this.name; + if ( this.usage !== StaticDrawUsage ) data.usage = this.usage; + + return data; + + } + +} + +/** + * Convenient class that can be used when creating a `Int8` buffer attribute with + * a plain `Array` instance. + * + * @augments BufferAttribute + */ +class Int8BufferAttribute extends BufferAttribute { + + /** + * Constructs a new buffer attribute. + * + * @param {(Array|Int8Array)} array - The array holding the attribute data. + * @param {number} itemSize - The item size. + * @param {boolean} [normalized=false] - Whether the data are normalized or not. + */ + constructor( array, itemSize, normalized ) { + + super( new Int8Array( array ), itemSize, normalized ); + + } + +} + +/** + * Convenient class that can be used when creating a `UInt8` buffer attribute with + * a plain `Array` instance. + * + * @augments BufferAttribute + */ +class Uint8BufferAttribute extends BufferAttribute { + + /** + * Constructs a new buffer attribute. + * + * @param {(Array|Uint8Array)} array - The array holding the attribute data. + * @param {number} itemSize - The item size. + * @param {boolean} [normalized=false] - Whether the data are normalized or not. + */ + constructor( array, itemSize, normalized ) { + + super( new Uint8Array( array ), itemSize, normalized ); + + } + +} + +/** + * Convenient class that can be used when creating a `UInt8Clamped` buffer attribute with + * a plain `Array` instance. + * + * @augments BufferAttribute + */ +class Uint8ClampedBufferAttribute extends BufferAttribute { + + /** + * Constructs a new buffer attribute. + * + * @param {(Array|Uint8ClampedArray)} array - The array holding the attribute data. + * @param {number} itemSize - The item size. + * @param {boolean} [normalized=false] - Whether the data are normalized or not. + */ + constructor( array, itemSize, normalized ) { + + super( new Uint8ClampedArray( array ), itemSize, normalized ); + + } + +} + +/** + * Convenient class that can be used when creating a `Int16` buffer attribute with + * a plain `Array` instance. + * + * @augments BufferAttribute + */ +class Int16BufferAttribute extends BufferAttribute { + + /** + * Constructs a new buffer attribute. + * + * @param {(Array|Int16Array)} array - The array holding the attribute data. + * @param {number} itemSize - The item size. + * @param {boolean} [normalized=false] - Whether the data are normalized or not. + */ + constructor( array, itemSize, normalized ) { + + super( new Int16Array( array ), itemSize, normalized ); + + } + +} + +/** + * Convenient class that can be used when creating a `UInt16` buffer attribute with + * a plain `Array` instance. + * + * @augments BufferAttribute + */ +class Uint16BufferAttribute extends BufferAttribute { + + /** + * Constructs a new buffer attribute. + * + * @param {(Array|Uint16Array)} array - The array holding the attribute data. + * @param {number} itemSize - The item size. + * @param {boolean} [normalized=false] - Whether the data are normalized or not. + */ + constructor( array, itemSize, normalized ) { + + super( new Uint16Array( array ), itemSize, normalized ); + + } + +} + +/** + * Convenient class that can be used when creating a `Int32` buffer attribute with + * a plain `Array` instance. + * + * @augments BufferAttribute + */ +class Int32BufferAttribute extends BufferAttribute { + + /** + * Constructs a new buffer attribute. + * + * @param {(Array|Int32Array)} array - The array holding the attribute data. + * @param {number} itemSize - The item size. + * @param {boolean} [normalized=false] - Whether the data are normalized or not. + */ + constructor( array, itemSize, normalized ) { + + super( new Int32Array( array ), itemSize, normalized ); + + } + +} + +/** + * Convenient class that can be used when creating a `UInt32` buffer attribute with + * a plain `Array` instance. + * + * @augments BufferAttribute + */ +class Uint32BufferAttribute extends BufferAttribute { + + /** + * Constructs a new buffer attribute. + * + * @param {(Array|Uint32Array)} array - The array holding the attribute data. + * @param {number} itemSize - The item size. + * @param {boolean} [normalized=false] - Whether the data are normalized or not. + */ + constructor( array, itemSize, normalized ) { + + super( new Uint32Array( array ), itemSize, normalized ); + + } + +} + +/** + * Convenient class that can be used when creating a `Float16` buffer attribute with + * a plain `Array` instance. + * + * This class automatically converts to and from FP16 since `Float16Array` is not + * natively supported in JavaScript. + * + * @augments BufferAttribute + */ +class Float16BufferAttribute extends BufferAttribute { + + /** + * Constructs a new buffer attribute. + * + * @param {(Array|Uint16Array)} array - The array holding the attribute data. + * @param {number} itemSize - The item size. + * @param {boolean} [normalized=false] - Whether the data are normalized or not. + */ + constructor( array, itemSize, normalized ) { + + super( new Uint16Array( array ), itemSize, normalized ); + + this.isFloat16BufferAttribute = true; + + } + + getX( index ) { + + let x = fromHalfFloat( this.array[ index * this.itemSize ] ); + + if ( this.normalized ) x = denormalize( x, this.array ); + + return x; + + } + + setX( index, x ) { + + if ( this.normalized ) x = normalize( x, this.array ); + + this.array[ index * this.itemSize ] = toHalfFloat( x ); + + return this; + + } + + getY( index ) { + + let y = fromHalfFloat( this.array[ index * this.itemSize + 1 ] ); + + if ( this.normalized ) y = denormalize( y, this.array ); + + return y; + + } + + setY( index, y ) { + + if ( this.normalized ) y = normalize( y, this.array ); + + this.array[ index * this.itemSize + 1 ] = toHalfFloat( y ); + + return this; + + } + + getZ( index ) { + + let z = fromHalfFloat( this.array[ index * this.itemSize + 2 ] ); + + if ( this.normalized ) z = denormalize( z, this.array ); + + return z; + + } + + setZ( index, z ) { + + if ( this.normalized ) z = normalize( z, this.array ); + + this.array[ index * this.itemSize + 2 ] = toHalfFloat( z ); + + return this; + + } + + getW( index ) { + + let w = fromHalfFloat( this.array[ index * this.itemSize + 3 ] ); + + if ( this.normalized ) w = denormalize( w, this.array ); + + return w; + + } + + setW( index, w ) { + + if ( this.normalized ) w = normalize( w, this.array ); + + this.array[ index * this.itemSize + 3 ] = toHalfFloat( w ); + + return this; + + } + + setXY( index, x, y ) { + + index *= this.itemSize; + + if ( this.normalized ) { + + x = normalize( x, this.array ); + y = normalize( y, this.array ); + + } + + this.array[ index + 0 ] = toHalfFloat( x ); + this.array[ index + 1 ] = toHalfFloat( y ); + + return this; + + } + + setXYZ( index, x, y, z ) { + + index *= this.itemSize; + + if ( this.normalized ) { + + x = normalize( x, this.array ); + y = normalize( y, this.array ); + z = normalize( z, this.array ); + + } + + this.array[ index + 0 ] = toHalfFloat( x ); + this.array[ index + 1 ] = toHalfFloat( y ); + this.array[ index + 2 ] = toHalfFloat( z ); + + return this; + + } + + setXYZW( index, x, y, z, w ) { + + index *= this.itemSize; + + if ( this.normalized ) { + + x = normalize( x, this.array ); + y = normalize( y, this.array ); + z = normalize( z, this.array ); + w = normalize( w, this.array ); + + } + + this.array[ index + 0 ] = toHalfFloat( x ); + this.array[ index + 1 ] = toHalfFloat( y ); + this.array[ index + 2 ] = toHalfFloat( z ); + this.array[ index + 3 ] = toHalfFloat( w ); + + return this; + + } + +} + +/** + * Convenient class that can be used when creating a `Float32` buffer attribute with + * a plain `Array` instance. + * + * @augments BufferAttribute + */ +class Float32BufferAttribute extends BufferAttribute { + + /** + * Constructs a new buffer attribute. + * + * @param {(Array|Float32Array)} array - The array holding the attribute data. + * @param {number} itemSize - The item size. + * @param {boolean} [normalized=false] - Whether the data are normalized or not. + */ + constructor( array, itemSize, normalized ) { + + super( new Float32Array( array ), itemSize, normalized ); + + } + +} + +let _id$1 = 0; + +const _m1 = /*@__PURE__*/ new Matrix4(); +const _obj = /*@__PURE__*/ new Object3D(); +const _offset = /*@__PURE__*/ new Vector3(); +const _box$2 = /*@__PURE__*/ new Box3(); +const _boxMorphTargets = /*@__PURE__*/ new Box3(); +const _vector$8 = /*@__PURE__*/ new Vector3(); + +/** + * A representation of mesh, line, or point geometry. Includes vertex + * positions, face indices, normals, colors, UVs, and custom attributes + * within buffers, reducing the cost of passing all this data to the GPU. + * + * ```js + * const geometry = new THREE.BufferGeometry(); + * // create a simple square shape. We duplicate the top left and bottom right + * // vertices because each vertex needs to appear once per triangle. + * const vertices = new Float32Array( [ + * -1.0, -1.0, 1.0, // v0 + * 1.0, -1.0, 1.0, // v1 + * 1.0, 1.0, 1.0, // v2 + * + * 1.0, 1.0, 1.0, // v3 + * -1.0, 1.0, 1.0, // v4 + * -1.0, -1.0, 1.0 // v5 + * ] ); + * // itemSize = 3 because there are 3 values (components) per vertex + * geometry.setAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); + * const material = new THREE.MeshBasicMaterial( { color: 0xff0000 } ); + * const mesh = new THREE.Mesh( geometry, material ); + * ``` + * + * @augments EventDispatcher + */ +class BufferGeometry extends EventDispatcher { + + /** + * Constructs a new geometry. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBufferGeometry = true; + + /** + * The ID of the geometry. + * + * @name BufferGeometry#id + * @type {number} + * @readonly + */ + Object.defineProperty( this, 'id', { value: _id$1 ++ } ); + + /** + * The UUID of the geometry. + * + * @type {string} + * @readonly + */ + this.uuid = generateUUID(); + + /** + * The name of the geometry. + * + * @type {string} + */ + this.name = ''; + this.type = 'BufferGeometry'; + + /** + * Allows for vertices to be re-used across multiple triangles; this is + * called using "indexed triangles". Each triangle is associated with the + * indices of three vertices. This attribute therefore stores the index of + * each vertex for each triangular face. If this attribute is not set, the + * renderer assumes that each three contiguous positions represent a single triangle. + * + * @type {?BufferAttribute} + * @default null + */ + this.index = null; + + /** + * A (storage) buffer attribute which was generated with a compute shader and + * now defines indirect draw calls. + * + * Can only be used with {@link WebGPURenderer} and a WebGPU backend. + * + * @type {?BufferAttribute} + * @default null + */ + this.indirect = null; + + /** + * This dictionary has as id the name of the attribute to be set and as value + * the buffer attribute to set it to. Rather than accessing this property directly, + * use `setAttribute()` and `getAttribute()` to access attributes of this geometry. + * + * @type {Object} + */ + this.attributes = {}; + + /** + * This dictionary holds the morph targets of the geometry. + * + * Note: Once the geometry has been rendered, the morph attribute data cannot + * be changed. You will have to call `dispose()?, and create a new geometry instance. + * + * @type {Object} + */ + this.morphAttributes = {}; + + /** + * Used to control the morph target behavior; when set to `true`, the morph + * target data is treated as relative offsets, rather than as absolute + * positions/normals. + * + * @type {boolean} + * @default false + */ + this.morphTargetsRelative = false; + + /** + * Split the geometry into groups, each of which will be rendered in a + * separate draw call. This allows an array of materials to be used with the geometry. + * + * Use `addGroup()` and `clearGroups()` to edit groups, rather than modifying this array directly. + * + * Every vertex and index must belong to exactly one group — groups must not share vertices or + * indices, and must not leave vertices or indices unused. + * + * @type {Array} + */ + this.groups = []; + + /** + * Bounding box for the geometry which can be calculated with `computeBoundingBox()`. + * + * @type {Box3} + * @default null + */ + this.boundingBox = null; + + /** + * Bounding sphere for the geometry which can be calculated with `computeBoundingSphere()`. + * + * @type {Sphere} + * @default null + */ + this.boundingSphere = null; + + /** + * Determines the part of the geometry to render. This should not be set directly, + * instead use `setDrawRange()`. + * + * @type {{start:number,count:number}} + */ + this.drawRange = { start: 0, count: Infinity }; + + /** + * An object that can be used to store custom data about the geometry. + * It should not hold references to functions as these will not be cloned. + * + * @type {Object} + */ + this.userData = {}; + + } + + /** + * Returns the index of this geometry. + * + * @return {?BufferAttribute} The index. Returns `null` if no index is defined. + */ + getIndex() { + + return this.index; + + } + + /** + * Sets the given index to this geometry. + * + * @param {Array|BufferAttribute} index - The index to set. + * @return {BufferGeometry} A reference to this instance. + */ + setIndex( index ) { + + if ( Array.isArray( index ) ) { + + this.index = new ( arrayNeedsUint32( index ) ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 ); + + } else { + + this.index = index; + + } + + return this; + + } + + /** + * Sets the given indirect attribute to this geometry. + * + * @param {BufferAttribute} indirect - The attribute holding indirect draw calls. + * @return {BufferGeometry} A reference to this instance. + */ + setIndirect( indirect ) { + + this.indirect = indirect; + + return this; + + } + + /** + * Returns the indirect attribute of this geometry. + * + * @return {?BufferAttribute} The indirect attribute. Returns `null` if no indirect attribute is defined. + */ + getIndirect() { + + return this.indirect; + + } + + /** + * Returns the buffer attribute for the given name. + * + * @param {string} name - The attribute name. + * @return {BufferAttribute|InterleavedBufferAttribute|undefined} The buffer attribute. + * Returns `undefined` if not attribute has been found. + */ + getAttribute( name ) { + + return this.attributes[ name ]; + + } + + /** + * Sets the given attribute for the given name. + * + * @param {string} name - The attribute name. + * @param {BufferAttribute|InterleavedBufferAttribute} attribute - The attribute to set. + * @return {BufferGeometry} A reference to this instance. + */ + setAttribute( name, attribute ) { + + this.attributes[ name ] = attribute; + + return this; + + } + + /** + * Deletes the attribute for the given name. + * + * @param {string} name - The attribute name to delete. + * @return {BufferGeometry} A reference to this instance. + */ + deleteAttribute( name ) { + + delete this.attributes[ name ]; + + return this; + + } + + /** + * Returns `true` if this geometry has an attribute for the given name. + * + * @param {string} name - The attribute name. + * @return {boolean} Whether this geometry has an attribute for the given name or not. + */ + hasAttribute( name ) { + + return this.attributes[ name ] !== undefined; + + } + + /** + * Adds a group to this geometry. + * + * @param {number} start - The first element in this draw call. That is the first + * vertex for non-indexed geometry, otherwise the first triangle index. + * @param {number} count - Specifies how many vertices (or indices) are part of this group. + * @param {number} [materialIndex=0] - The material array index to use. + */ + addGroup( start, count, materialIndex = 0 ) { + + this.groups.push( { + + start: start, + count: count, + materialIndex: materialIndex + + } ); + + } + + /** + * Clears all groups. + */ + clearGroups() { + + this.groups = []; + + } + + /** + * Sets the draw range for this geometry. + * + * @param {number} start - The first vertex for non-indexed geometry, otherwise the first triangle index. + * @param {number} count - For non-indexed BufferGeometry, `count` is the number of vertices to render. + * For indexed BufferGeometry, `count` is the number of indices to render. + */ + setDrawRange( start, count ) { + + this.drawRange.start = start; + this.drawRange.count = count; + + } + + /** + * Applies the given 4x4 transformation matrix to the geometry. + * + * @param {Matrix4} matrix - The matrix to apply. + * @return {BufferGeometry} A reference to this instance. + */ + applyMatrix4( matrix ) { + + const position = this.attributes.position; + + if ( position !== undefined ) { + + position.applyMatrix4( matrix ); + + position.needsUpdate = true; + + } + + const normal = this.attributes.normal; + + if ( normal !== undefined ) { + + const normalMatrix = new Matrix3().getNormalMatrix( matrix ); + + normal.applyNormalMatrix( normalMatrix ); + + normal.needsUpdate = true; + + } + + const tangent = this.attributes.tangent; + + if ( tangent !== undefined ) { + + tangent.transformDirection( matrix ); + + tangent.needsUpdate = true; + + } + + if ( this.boundingBox !== null ) { + + this.computeBoundingBox(); + + } + + if ( this.boundingSphere !== null ) { + + this.computeBoundingSphere(); + + } + + return this; + + } + + /** + * Applies the rotation represented by the Quaternion to the geometry. + * + * @param {Quaternion} q - The Quaternion to apply. + * @return {BufferGeometry} A reference to this instance. + */ + applyQuaternion( q ) { + + _m1.makeRotationFromQuaternion( q ); + + this.applyMatrix4( _m1 ); + + return this; + + } + + /** + * Rotates the geometry about the X axis. This is typically done as a one time + * operation, and not during a loop. Use {@link Object3D#rotation} for typical + * real-time mesh rotation. + * + * @param {number} angle - The angle in radians. + * @return {BufferGeometry} A reference to this instance. + */ + rotateX( angle ) { + + // rotate geometry around world x-axis + + _m1.makeRotationX( angle ); + + this.applyMatrix4( _m1 ); + + return this; + + } + + /** + * Rotates the geometry about the Y axis. This is typically done as a one time + * operation, and not during a loop. Use {@link Object3D#rotation} for typical + * real-time mesh rotation. + * + * @param {number} angle - The angle in radians. + * @return {BufferGeometry} A reference to this instance. + */ + rotateY( angle ) { + + // rotate geometry around world y-axis + + _m1.makeRotationY( angle ); + + this.applyMatrix4( _m1 ); + + return this; + + } + + /** + * Rotates the geometry about the Z axis. This is typically done as a one time + * operation, and not during a loop. Use {@link Object3D#rotation} for typical + * real-time mesh rotation. + * + * @param {number} angle - The angle in radians. + * @return {BufferGeometry} A reference to this instance. + */ + rotateZ( angle ) { + + // rotate geometry around world z-axis + + _m1.makeRotationZ( angle ); + + this.applyMatrix4( _m1 ); + + return this; + + } + + /** + * Translates the geometry. This is typically done as a one time + * operation, and not during a loop. Use {@link Object3D#position} for typical + * real-time mesh rotation. + * + * @param {number} x - The x offset. + * @param {number} y - The y offset. + * @param {number} z - The z offset. + * @return {BufferGeometry} A reference to this instance. + */ + translate( x, y, z ) { + + // translate geometry + + _m1.makeTranslation( x, y, z ); + + this.applyMatrix4( _m1 ); + + return this; + + } + + /** + * Scales the geometry. This is typically done as a one time + * operation, and not during a loop. Use {@link Object3D#scale} for typical + * real-time mesh rotation. + * + * @param {number} x - The x scale. + * @param {number} y - The y scale. + * @param {number} z - The z scale. + * @return {BufferGeometry} A reference to this instance. + */ + scale( x, y, z ) { + + // scale geometry + + _m1.makeScale( x, y, z ); + + this.applyMatrix4( _m1 ); + + return this; + + } + + /** + * Rotates the geometry to face a point in 3D space. This is typically done as a one time + * operation, and not during a loop. Use {@link Object3D#lookAt} for typical + * real-time mesh rotation. + * + * @param {Vector3} vector - The target point. + * @return {BufferGeometry} A reference to this instance. + */ + lookAt( vector ) { + + _obj.lookAt( vector ); + + _obj.updateMatrix(); + + this.applyMatrix4( _obj.matrix ); + + return this; + + } + + /** + * Center the geometry based on its bounding box. + * + * @return {BufferGeometry} A reference to this instance. + */ + center() { + + this.computeBoundingBox(); + + this.boundingBox.getCenter( _offset ).negate(); + + this.translate( _offset.x, _offset.y, _offset.z ); + + return this; + + } + + /** + * Defines a geometry by creating a `position` attribute based on the given array of points. The array + * can hold 2D or 3D vectors. When using two-dimensional data, the `z` coordinate for all vertices is + * set to `0`. + * + * If the method is used with an existing `position` attribute, the vertex data are overwritten with the + * data from the array. The length of the array must match the vertex count. + * + * @param {Array|Array} points - The points. + * @return {BufferGeometry} A reference to this instance. + */ + setFromPoints( points ) { + + const positionAttribute = this.getAttribute( 'position' ); + + if ( positionAttribute === undefined ) { + + const position = []; + + for ( let i = 0, l = points.length; i < l; i ++ ) { + + const point = points[ i ]; + position.push( point.x, point.y, point.z || 0 ); + + } + + this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) ); + + } else { + + const l = Math.min( points.length, positionAttribute.count ); // make sure data do not exceed buffer size + + for ( let i = 0; i < l; i ++ ) { + + const point = points[ i ]; + positionAttribute.setXYZ( i, point.x, point.y, point.z || 0 ); + + } + + if ( points.length > positionAttribute.count ) { + + console.warn( 'THREE.BufferGeometry: Buffer size too small for points data. Use .dispose() and create a new geometry.' ); + + } + + positionAttribute.needsUpdate = true; + + } + + return this; + + } + + /** + * Computes the bounding box of the geometry, and updates the `boundingBox` member. + * The bounding box is not computed by the engine; it must be computed by your app. + * You may need to recompute the bounding box if the geometry vertices are modified. + */ + computeBoundingBox() { + + if ( this.boundingBox === null ) { + + this.boundingBox = new Box3(); + + } + + const position = this.attributes.position; + const morphAttributesPosition = this.morphAttributes.position; + + if ( position && position.isGLBufferAttribute ) { + + console.error( 'THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box.', this ); + + this.boundingBox.set( + new Vector3( - Infinity, - Infinity, - Infinity ), + new Vector3( + Infinity, + Infinity, + Infinity ) + ); + + return; + + } + + if ( position !== undefined ) { + + this.boundingBox.setFromBufferAttribute( position ); + + // process morph attributes if present + + if ( morphAttributesPosition ) { + + for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { + + const morphAttribute = morphAttributesPosition[ i ]; + _box$2.setFromBufferAttribute( morphAttribute ); + + if ( this.morphTargetsRelative ) { + + _vector$8.addVectors( this.boundingBox.min, _box$2.min ); + this.boundingBox.expandByPoint( _vector$8 ); + + _vector$8.addVectors( this.boundingBox.max, _box$2.max ); + this.boundingBox.expandByPoint( _vector$8 ); + + } else { + + this.boundingBox.expandByPoint( _box$2.min ); + this.boundingBox.expandByPoint( _box$2.max ); + + } + + } + + } + + } else { + + this.boundingBox.makeEmpty(); + + } + + if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) { + + console.error( 'THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this ); + + } + + } + + /** + * Computes the bounding sphere of the geometry, and updates the `boundingSphere` member. + * The engine automatically computes the bounding sphere when it is needed, e.g., for ray casting or view frustum culling. + * You may need to recompute the bounding sphere if the geometry vertices are modified. + */ + computeBoundingSphere() { + + if ( this.boundingSphere === null ) { + + this.boundingSphere = new Sphere(); + + } + + const position = this.attributes.position; + const morphAttributesPosition = this.morphAttributes.position; + + if ( position && position.isGLBufferAttribute ) { + + console.error( 'THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere.', this ); + + this.boundingSphere.set( new Vector3(), Infinity ); + + return; + + } + + if ( position ) { + + // first, find the center of the bounding sphere + + const center = this.boundingSphere.center; + + _box$2.setFromBufferAttribute( position ); + + // process morph attributes if present + + if ( morphAttributesPosition ) { + + for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { + + const morphAttribute = morphAttributesPosition[ i ]; + _boxMorphTargets.setFromBufferAttribute( morphAttribute ); + + if ( this.morphTargetsRelative ) { + + _vector$8.addVectors( _box$2.min, _boxMorphTargets.min ); + _box$2.expandByPoint( _vector$8 ); + + _vector$8.addVectors( _box$2.max, _boxMorphTargets.max ); + _box$2.expandByPoint( _vector$8 ); + + } else { + + _box$2.expandByPoint( _boxMorphTargets.min ); + _box$2.expandByPoint( _boxMorphTargets.max ); + + } + + } + + } + + _box$2.getCenter( center ); + + // second, try to find a boundingSphere with a radius smaller than the + // boundingSphere of the boundingBox: sqrt(3) smaller in the best case + + let maxRadiusSq = 0; + + for ( let i = 0, il = position.count; i < il; i ++ ) { + + _vector$8.fromBufferAttribute( position, i ); + + maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) ); + + } + + // process morph attributes if present + + if ( morphAttributesPosition ) { + + for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { + + const morphAttribute = morphAttributesPosition[ i ]; + const morphTargetsRelative = this.morphTargetsRelative; + + for ( let j = 0, jl = morphAttribute.count; j < jl; j ++ ) { + + _vector$8.fromBufferAttribute( morphAttribute, j ); + + if ( morphTargetsRelative ) { + + _offset.fromBufferAttribute( position, j ); + _vector$8.add( _offset ); + + } + + maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) ); + + } + + } + + } + + this.boundingSphere.radius = Math.sqrt( maxRadiusSq ); + + if ( isNaN( this.boundingSphere.radius ) ) { + + console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this ); + + } + + } + + } + + /** + * Calculates and adds a tangent attribute to this geometry. + * + * The computation is only supported for indexed geometries and if position, normal, and uv attributes + * are defined. When using a tangent space normal map, prefer the MikkTSpace algorithm provided by + * {@link BufferGeometryUtils#computeMikkTSpaceTangents} instead. + */ + computeTangents() { + + const index = this.index; + const attributes = this.attributes; + + // based on http://www.terathon.com/code/tangent.html + // (per vertex tangents) + + if ( index === null || + attributes.position === undefined || + attributes.normal === undefined || + attributes.uv === undefined ) { + + console.error( 'THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)' ); + return; + + } + + const positionAttribute = attributes.position; + const normalAttribute = attributes.normal; + const uvAttribute = attributes.uv; + + if ( this.hasAttribute( 'tangent' ) === false ) { + + this.setAttribute( 'tangent', new BufferAttribute( new Float32Array( 4 * positionAttribute.count ), 4 ) ); + + } + + const tangentAttribute = this.getAttribute( 'tangent' ); + + const tan1 = [], tan2 = []; + + for ( let i = 0; i < positionAttribute.count; i ++ ) { + + tan1[ i ] = new Vector3(); + tan2[ i ] = new Vector3(); + + } + + const vA = new Vector3(), + vB = new Vector3(), + vC = new Vector3(), + + uvA = new Vector2(), + uvB = new Vector2(), + uvC = new Vector2(), + + sdir = new Vector3(), + tdir = new Vector3(); + + function handleTriangle( a, b, c ) { + + vA.fromBufferAttribute( positionAttribute, a ); + vB.fromBufferAttribute( positionAttribute, b ); + vC.fromBufferAttribute( positionAttribute, c ); + + uvA.fromBufferAttribute( uvAttribute, a ); + uvB.fromBufferAttribute( uvAttribute, b ); + uvC.fromBufferAttribute( uvAttribute, c ); + + vB.sub( vA ); + vC.sub( vA ); + + uvB.sub( uvA ); + uvC.sub( uvA ); + + const r = 1.0 / ( uvB.x * uvC.y - uvC.x * uvB.y ); + + // silently ignore degenerate uv triangles having coincident or colinear vertices + + if ( ! isFinite( r ) ) return; + + sdir.copy( vB ).multiplyScalar( uvC.y ).addScaledVector( vC, - uvB.y ).multiplyScalar( r ); + tdir.copy( vC ).multiplyScalar( uvB.x ).addScaledVector( vB, - uvC.x ).multiplyScalar( r ); + + tan1[ a ].add( sdir ); + tan1[ b ].add( sdir ); + tan1[ c ].add( sdir ); + + tan2[ a ].add( tdir ); + tan2[ b ].add( tdir ); + tan2[ c ].add( tdir ); + + } + + let groups = this.groups; + + if ( groups.length === 0 ) { + + groups = [ { + start: 0, + count: index.count + } ]; + + } + + for ( let i = 0, il = groups.length; i < il; ++ i ) { + + const group = groups[ i ]; + + const start = group.start; + const count = group.count; + + for ( let j = start, jl = start + count; j < jl; j += 3 ) { + + handleTriangle( + index.getX( j + 0 ), + index.getX( j + 1 ), + index.getX( j + 2 ) + ); + + } + + } + + const tmp = new Vector3(), tmp2 = new Vector3(); + const n = new Vector3(), n2 = new Vector3(); + + function handleVertex( v ) { + + n.fromBufferAttribute( normalAttribute, v ); + n2.copy( n ); + + const t = tan1[ v ]; + + // Gram-Schmidt orthogonalize + + tmp.copy( t ); + tmp.sub( n.multiplyScalar( n.dot( t ) ) ).normalize(); + + // Calculate handedness + + tmp2.crossVectors( n2, t ); + const test = tmp2.dot( tan2[ v ] ); + const w = ( test < 0.0 ) ? - 1 : 1.0; + + tangentAttribute.setXYZW( v, tmp.x, tmp.y, tmp.z, w ); + + } + + for ( let i = 0, il = groups.length; i < il; ++ i ) { + + const group = groups[ i ]; + + const start = group.start; + const count = group.count; + + for ( let j = start, jl = start + count; j < jl; j += 3 ) { + + handleVertex( index.getX( j + 0 ) ); + handleVertex( index.getX( j + 1 ) ); + handleVertex( index.getX( j + 2 ) ); + + } + + } + + } + + /** + * Computes vertex normals for the given vertex data. For indexed geometries, the method sets + * each vertex normal to be the average of the face normals of the faces that share that vertex. + * For non-indexed geometries, vertices are not shared, and the method sets each vertex normal + * to be the same as the face normal. + */ + computeVertexNormals() { + + const index = this.index; + const positionAttribute = this.getAttribute( 'position' ); + + if ( positionAttribute !== undefined ) { + + let normalAttribute = this.getAttribute( 'normal' ); + + if ( normalAttribute === undefined ) { + + normalAttribute = new BufferAttribute( new Float32Array( positionAttribute.count * 3 ), 3 ); + this.setAttribute( 'normal', normalAttribute ); + + } else { + + // reset existing normals to zero + + for ( let i = 0, il = normalAttribute.count; i < il; i ++ ) { + + normalAttribute.setXYZ( i, 0, 0, 0 ); + + } + + } + + const pA = new Vector3(), pB = new Vector3(), pC = new Vector3(); + const nA = new Vector3(), nB = new Vector3(), nC = new Vector3(); + const cb = new Vector3(), ab = new Vector3(); + + // indexed elements + + if ( index ) { + + for ( let i = 0, il = index.count; i < il; i += 3 ) { + + const vA = index.getX( i + 0 ); + const vB = index.getX( i + 1 ); + const vC = index.getX( i + 2 ); + + pA.fromBufferAttribute( positionAttribute, vA ); + pB.fromBufferAttribute( positionAttribute, vB ); + pC.fromBufferAttribute( positionAttribute, vC ); + + cb.subVectors( pC, pB ); + ab.subVectors( pA, pB ); + cb.cross( ab ); + + nA.fromBufferAttribute( normalAttribute, vA ); + nB.fromBufferAttribute( normalAttribute, vB ); + nC.fromBufferAttribute( normalAttribute, vC ); + + nA.add( cb ); + nB.add( cb ); + nC.add( cb ); + + normalAttribute.setXYZ( vA, nA.x, nA.y, nA.z ); + normalAttribute.setXYZ( vB, nB.x, nB.y, nB.z ); + normalAttribute.setXYZ( vC, nC.x, nC.y, nC.z ); + + } + + } else { + + // non-indexed elements (unconnected triangle soup) + + for ( let i = 0, il = positionAttribute.count; i < il; i += 3 ) { + + pA.fromBufferAttribute( positionAttribute, i + 0 ); + pB.fromBufferAttribute( positionAttribute, i + 1 ); + pC.fromBufferAttribute( positionAttribute, i + 2 ); + + cb.subVectors( pC, pB ); + ab.subVectors( pA, pB ); + cb.cross( ab ); + + normalAttribute.setXYZ( i + 0, cb.x, cb.y, cb.z ); + normalAttribute.setXYZ( i + 1, cb.x, cb.y, cb.z ); + normalAttribute.setXYZ( i + 2, cb.x, cb.y, cb.z ); + + } + + } + + this.normalizeNormals(); + + normalAttribute.needsUpdate = true; + + } + + } + + /** + * Ensures every normal vector in a geometry will have a magnitude of `1`. This will + * correct lighting on the geometry surfaces. + */ + normalizeNormals() { + + const normals = this.attributes.normal; + + for ( let i = 0, il = normals.count; i < il; i ++ ) { + + _vector$8.fromBufferAttribute( normals, i ); + + _vector$8.normalize(); + + normals.setXYZ( i, _vector$8.x, _vector$8.y, _vector$8.z ); + + } + + } + + /** + * Return a new non-index version of this indexed geometry. If the geometry + * is already non-indexed, the method is a NOOP. + * + * @return {BufferGeometry} The non-indexed version of this indexed geometry. + */ + toNonIndexed() { + + function convertBufferAttribute( attribute, indices ) { + + const array = attribute.array; + const itemSize = attribute.itemSize; + const normalized = attribute.normalized; + + const array2 = new array.constructor( indices.length * itemSize ); + + let index = 0, index2 = 0; + + for ( let i = 0, l = indices.length; i < l; i ++ ) { + + if ( attribute.isInterleavedBufferAttribute ) { + + index = indices[ i ] * attribute.data.stride + attribute.offset; + + } else { + + index = indices[ i ] * itemSize; + + } + + for ( let j = 0; j < itemSize; j ++ ) { + + array2[ index2 ++ ] = array[ index ++ ]; + + } + + } + + return new BufferAttribute( array2, itemSize, normalized ); + + } + + // + + if ( this.index === null ) { + + console.warn( 'THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.' ); + return this; + + } + + const geometry2 = new BufferGeometry(); + + const indices = this.index.array; + const attributes = this.attributes; + + // attributes + + for ( const name in attributes ) { + + const attribute = attributes[ name ]; + + const newAttribute = convertBufferAttribute( attribute, indices ); + + geometry2.setAttribute( name, newAttribute ); + + } + + // morph attributes + + const morphAttributes = this.morphAttributes; + + for ( const name in morphAttributes ) { + + const morphArray = []; + const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes + + for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) { + + const attribute = morphAttribute[ i ]; + + const newAttribute = convertBufferAttribute( attribute, indices ); + + morphArray.push( newAttribute ); + + } + + geometry2.morphAttributes[ name ] = morphArray; + + } + + geometry2.morphTargetsRelative = this.morphTargetsRelative; + + // groups + + const groups = this.groups; + + for ( let i = 0, l = groups.length; i < l; i ++ ) { + + const group = groups[ i ]; + geometry2.addGroup( group.start, group.count, group.materialIndex ); + + } + + return geometry2; + + } + + /** + * Serializes the geometry into JSON. + * + * @return {Object} A JSON object representing the serialized geometry. + */ + toJSON() { + + const data = { + metadata: { + version: 4.7, + type: 'BufferGeometry', + generator: 'BufferGeometry.toJSON' + } + }; + + // standard BufferGeometry serialization + + data.uuid = this.uuid; + data.type = this.type; + if ( this.name !== '' ) data.name = this.name; + if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData; + + if ( this.parameters !== undefined ) { + + const parameters = this.parameters; + + for ( const key in parameters ) { + + if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ]; + + } + + return data; + + } + + // for simplicity the code assumes attributes are not shared across geometries, see #15811 + + data.data = { attributes: {} }; + + const index = this.index; + + if ( index !== null ) { + + data.data.index = { + type: index.array.constructor.name, + array: Array.prototype.slice.call( index.array ) + }; + + } + + const attributes = this.attributes; + + for ( const key in attributes ) { + + const attribute = attributes[ key ]; + + data.data.attributes[ key ] = attribute.toJSON( data.data ); + + } + + const morphAttributes = {}; + let hasMorphAttributes = false; + + for ( const key in this.morphAttributes ) { + + const attributeArray = this.morphAttributes[ key ]; + + const array = []; + + for ( let i = 0, il = attributeArray.length; i < il; i ++ ) { + + const attribute = attributeArray[ i ]; + + array.push( attribute.toJSON( data.data ) ); + + } + + if ( array.length > 0 ) { + + morphAttributes[ key ] = array; + + hasMorphAttributes = true; + + } + + } + + if ( hasMorphAttributes ) { + + data.data.morphAttributes = morphAttributes; + data.data.morphTargetsRelative = this.morphTargetsRelative; + + } + + const groups = this.groups; + + if ( groups.length > 0 ) { + + data.data.groups = JSON.parse( JSON.stringify( groups ) ); + + } + + const boundingSphere = this.boundingSphere; + + if ( boundingSphere !== null ) { + + data.data.boundingSphere = boundingSphere.toJSON(); + + } + + return data; + + } + + /** + * Returns a new geometry with copied values from this instance. + * + * @return {BufferGeometry} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + + /** + * Copies the values of the given geometry to this instance. + * + * @param {BufferGeometry} source - The geometry to copy. + * @return {BufferGeometry} A reference to this instance. + */ + copy( source ) { + + // reset + + this.index = null; + this.attributes = {}; + this.morphAttributes = {}; + this.groups = []; + this.boundingBox = null; + this.boundingSphere = null; + + // used for storing cloned, shared data + + const data = {}; + + // name + + this.name = source.name; + + // index + + const index = source.index; + + if ( index !== null ) { + + this.setIndex( index.clone() ); + + } + + // attributes + + const attributes = source.attributes; + + for ( const name in attributes ) { + + const attribute = attributes[ name ]; + this.setAttribute( name, attribute.clone( data ) ); + + } + + // morph attributes + + const morphAttributes = source.morphAttributes; + + for ( const name in morphAttributes ) { + + const array = []; + const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes + + for ( let i = 0, l = morphAttribute.length; i < l; i ++ ) { + + array.push( morphAttribute[ i ].clone( data ) ); + + } + + this.morphAttributes[ name ] = array; + + } + + this.morphTargetsRelative = source.morphTargetsRelative; + + // groups + + const groups = source.groups; + + for ( let i = 0, l = groups.length; i < l; i ++ ) { + + const group = groups[ i ]; + this.addGroup( group.start, group.count, group.materialIndex ); + + } + + // bounding box + + const boundingBox = source.boundingBox; + + if ( boundingBox !== null ) { + + this.boundingBox = boundingBox.clone(); + + } + + // bounding sphere + + const boundingSphere = source.boundingSphere; + + if ( boundingSphere !== null ) { + + this.boundingSphere = boundingSphere.clone(); + + } + + // draw range + + this.drawRange.start = source.drawRange.start; + this.drawRange.count = source.drawRange.count; + + // user data + + this.userData = source.userData; + + return this; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + * + * @fires BufferGeometry#dispose + */ + dispose() { + + this.dispatchEvent( { type: 'dispose' } ); + + } + +} + +const _inverseMatrix$3 = /*@__PURE__*/ new Matrix4(); +const _ray$3 = /*@__PURE__*/ new Ray(); +const _sphere$6 = /*@__PURE__*/ new Sphere(); +const _sphereHitAt = /*@__PURE__*/ new Vector3(); + +const _vA$1 = /*@__PURE__*/ new Vector3(); +const _vB$1 = /*@__PURE__*/ new Vector3(); +const _vC$1 = /*@__PURE__*/ new Vector3(); + +const _tempA = /*@__PURE__*/ new Vector3(); +const _morphA = /*@__PURE__*/ new Vector3(); + +const _intersectionPoint = /*@__PURE__*/ new Vector3(); +const _intersectionPointWorld = /*@__PURE__*/ new Vector3(); + +/** + * Class representing triangular polygon mesh based objects. + * + * ```js + * const geometry = new THREE.BoxGeometry( 1, 1, 1 ); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00 } ); + * const mesh = new THREE.Mesh( geometry, material ); + * scene.add( mesh ); + * ``` + * + * @augments Object3D + */ +class Mesh extends Object3D { + + /** + * Constructs a new mesh. + * + * @param {BufferGeometry} [geometry] - The mesh geometry. + * @param {Material|Array} [material] - The mesh material. + */ + constructor( geometry = new BufferGeometry(), material = new MeshBasicMaterial() ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMesh = true; + + this.type = 'Mesh'; + + /** + * The mesh geometry. + * + * @type {BufferGeometry} + */ + this.geometry = geometry; + + /** + * The mesh material. + * + * @type {Material|Array} + * @default MeshBasicMaterial + */ + this.material = material; + + /** + * A dictionary representing the morph targets in the geometry. The key is the + * morph targets name, the value its attribute index. This member is `undefined` + * by default and only set when morph targets are detected in the geometry. + * + * @type {Object|undefined} + * @default undefined + */ + this.morphTargetDictionary = undefined; + + /** + * An array of weights typically in the range `[0,1]` that specify how much of the morph + * is applied. This member is `undefined` by default and only set when morph targets are + * detected in the geometry. + * + * @type {Array|undefined} + * @default undefined + */ + this.morphTargetInfluences = undefined; + + /** + * The number of instances of this mesh. + * Can only be used with {@link WebGPURenderer}. + * + * @type {number} + * @default 1 + */ + this.count = 1; + + this.updateMorphTargets(); + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + if ( source.morphTargetInfluences !== undefined ) { + + this.morphTargetInfluences = source.morphTargetInfluences.slice(); + + } + + if ( source.morphTargetDictionary !== undefined ) { + + this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary ); + + } + + this.material = Array.isArray( source.material ) ? source.material.slice() : source.material; + this.geometry = source.geometry; + + return this; + + } + + /** + * Sets the values of {@link Mesh#morphTargetDictionary} and {@link Mesh#morphTargetInfluences} + * to make sure existing morph targets can influence this 3D object. + */ + updateMorphTargets() { + + const geometry = this.geometry; + + const morphAttributes = geometry.morphAttributes; + const keys = Object.keys( morphAttributes ); + + if ( keys.length > 0 ) { + + const morphAttribute = morphAttributes[ keys[ 0 ] ]; + + if ( morphAttribute !== undefined ) { + + this.morphTargetInfluences = []; + this.morphTargetDictionary = {}; + + for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { + + const name = morphAttribute[ m ].name || String( m ); + + this.morphTargetInfluences.push( 0 ); + this.morphTargetDictionary[ name ] = m; + + } + + } + + } + + } + + /** + * Returns the local-space position of the vertex at the given index, taking into + * account the current animation state of both morph targets and skinning. + * + * @param {number} index - The vertex index. + * @param {Vector3} target - The target object that is used to store the method's result. + * @return {Vector3} The vertex position in local space. + */ + getVertexPosition( index, target ) { + + const geometry = this.geometry; + const position = geometry.attributes.position; + const morphPosition = geometry.morphAttributes.position; + const morphTargetsRelative = geometry.morphTargetsRelative; + + target.fromBufferAttribute( position, index ); + + const morphInfluences = this.morphTargetInfluences; + + if ( morphPosition && morphInfluences ) { + + _morphA.set( 0, 0, 0 ); + + for ( let i = 0, il = morphPosition.length; i < il; i ++ ) { + + const influence = morphInfluences[ i ]; + const morphAttribute = morphPosition[ i ]; + + if ( influence === 0 ) continue; + + _tempA.fromBufferAttribute( morphAttribute, index ); + + if ( morphTargetsRelative ) { + + _morphA.addScaledVector( _tempA, influence ); + + } else { + + _morphA.addScaledVector( _tempA.sub( target ), influence ); + + } + + } + + target.add( _morphA ); + + } + + return target; + + } + + /** + * Computes intersection points between a casted ray and this line. + * + * @param {Raycaster} raycaster - The raycaster. + * @param {Array} intersects - The target array that holds the intersection points. + */ + raycast( raycaster, intersects ) { + + const geometry = this.geometry; + const material = this.material; + const matrixWorld = this.matrixWorld; + + if ( material === undefined ) return; + + // test with bounding sphere in world space + + if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); + + _sphere$6.copy( geometry.boundingSphere ); + _sphere$6.applyMatrix4( matrixWorld ); + + // check distance from ray origin to bounding sphere + + _ray$3.copy( raycaster.ray ).recast( raycaster.near ); + + if ( _sphere$6.containsPoint( _ray$3.origin ) === false ) { + + if ( _ray$3.intersectSphere( _sphere$6, _sphereHitAt ) === null ) return; + + if ( _ray$3.origin.distanceToSquared( _sphereHitAt ) > ( raycaster.far - raycaster.near ) ** 2 ) return; + + } + + // convert ray to local space of mesh + + _inverseMatrix$3.copy( matrixWorld ).invert(); + _ray$3.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$3 ); + + // test with bounding box in local space + + if ( geometry.boundingBox !== null ) { + + if ( _ray$3.intersectsBox( geometry.boundingBox ) === false ) return; + + } + + // test for intersections with geometry + + this._computeIntersections( raycaster, intersects, _ray$3 ); + + } + + _computeIntersections( raycaster, intersects, rayLocalSpace ) { + + let intersection; + + const geometry = this.geometry; + const material = this.material; + + const index = geometry.index; + const position = geometry.attributes.position; + const uv = geometry.attributes.uv; + const uv1 = geometry.attributes.uv1; + const normal = geometry.attributes.normal; + const groups = geometry.groups; + const drawRange = geometry.drawRange; + + if ( index !== null ) { + + // indexed buffer geometry + + if ( Array.isArray( material ) ) { + + for ( let i = 0, il = groups.length; i < il; i ++ ) { + + const group = groups[ i ]; + const groupMaterial = material[ group.materialIndex ]; + + const start = Math.max( group.start, drawRange.start ); + const end = Math.min( index.count, Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ) ); + + for ( let j = start, jl = end; j < jl; j += 3 ) { + + const a = index.getX( j ); + const b = index.getX( j + 1 ); + const c = index.getX( j + 2 ); + + intersection = checkGeometryIntersection( this, groupMaterial, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c ); + + if ( intersection ) { + + intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics + intersection.face.materialIndex = group.materialIndex; + intersects.push( intersection ); + + } + + } + + } + + } else { + + const start = Math.max( 0, drawRange.start ); + const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); + + for ( let i = start, il = end; i < il; i += 3 ) { + + const a = index.getX( i ); + const b = index.getX( i + 1 ); + const c = index.getX( i + 2 ); + + intersection = checkGeometryIntersection( this, material, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c ); + + if ( intersection ) { + + intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics + intersects.push( intersection ); + + } + + } + + } + + } else if ( position !== undefined ) { + + // non-indexed buffer geometry + + if ( Array.isArray( material ) ) { + + for ( let i = 0, il = groups.length; i < il; i ++ ) { + + const group = groups[ i ]; + const groupMaterial = material[ group.materialIndex ]; + + const start = Math.max( group.start, drawRange.start ); + const end = Math.min( position.count, Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ) ); + + for ( let j = start, jl = end; j < jl; j += 3 ) { + + const a = j; + const b = j + 1; + const c = j + 2; + + intersection = checkGeometryIntersection( this, groupMaterial, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c ); + + if ( intersection ) { + + intersection.faceIndex = Math.floor( j / 3 ); // triangle number in non-indexed buffer semantics + intersection.face.materialIndex = group.materialIndex; + intersects.push( intersection ); + + } + + } + + } + + } else { + + const start = Math.max( 0, drawRange.start ); + const end = Math.min( position.count, ( drawRange.start + drawRange.count ) ); + + for ( let i = start, il = end; i < il; i += 3 ) { + + const a = i; + const b = i + 1; + const c = i + 2; + + intersection = checkGeometryIntersection( this, material, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c ); + + if ( intersection ) { + + intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics + intersects.push( intersection ); + + } + + } + + } + + } + + } + +} + +function checkIntersection$1( object, material, raycaster, ray, pA, pB, pC, point ) { + + let intersect; + + if ( material.side === BackSide ) { + + intersect = ray.intersectTriangle( pC, pB, pA, true, point ); + + } else { + + intersect = ray.intersectTriangle( pA, pB, pC, ( material.side === FrontSide ), point ); + + } + + if ( intersect === null ) return null; + + _intersectionPointWorld.copy( point ); + _intersectionPointWorld.applyMatrix4( object.matrixWorld ); + + const distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld ); + + if ( distance < raycaster.near || distance > raycaster.far ) return null; + + return { + distance: distance, + point: _intersectionPointWorld.clone(), + object: object + }; + +} + +function checkGeometryIntersection( object, material, raycaster, ray, uv, uv1, normal, a, b, c ) { + + object.getVertexPosition( a, _vA$1 ); + object.getVertexPosition( b, _vB$1 ); + object.getVertexPosition( c, _vC$1 ); + + const intersection = checkIntersection$1( object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint ); + + if ( intersection ) { + + const barycoord = new Vector3(); + Triangle.getBarycoord( _intersectionPoint, _vA$1, _vB$1, _vC$1, barycoord ); + + if ( uv ) { + + intersection.uv = Triangle.getInterpolatedAttribute( uv, a, b, c, barycoord, new Vector2() ); + + } + + if ( uv1 ) { + + intersection.uv1 = Triangle.getInterpolatedAttribute( uv1, a, b, c, barycoord, new Vector2() ); + + } + + if ( normal ) { + + intersection.normal = Triangle.getInterpolatedAttribute( normal, a, b, c, barycoord, new Vector3() ); + + if ( intersection.normal.dot( ray.direction ) > 0 ) { + + intersection.normal.multiplyScalar( - 1 ); + + } + + } + + const face = { + a: a, + b: b, + c: c, + normal: new Vector3(), + materialIndex: 0 + }; + + Triangle.getNormal( _vA$1, _vB$1, _vC$1, face.normal ); + + intersection.face = face; + intersection.barycoord = barycoord; + + } + + return intersection; + +} + +/** + * A geometry class for a rectangular cuboid with a given width, height, and depth. + * On creation, the cuboid is centred on the origin, with each edge parallel to one + * of the axes. + * + * ```js + * const geometry = new THREE.BoxGeometry( 1, 1, 1 ); + * const material = new THREE.MeshBasicMaterial( { color: 0x00ff00 } ); + * const cube = new THREE.Mesh( geometry, material ); + * scene.add( cube ); + * ``` + * + * @augments BufferGeometry + */ +class BoxGeometry extends BufferGeometry { + + /** + * Constructs a new box geometry. + * + * @param {number} [width=1] - The width. That is, the length of the edges parallel to the X axis. + * @param {number} [height=1] - The height. That is, the length of the edges parallel to the Y axis. + * @param {number} [depth=1] - The depth. That is, the length of the edges parallel to the Z axis. + * @param {number} [widthSegments=1] - Number of segmented rectangular faces along the width of the sides. + * @param {number} [heightSegments=1] - Number of segmented rectangular faces along the height of the sides. + * @param {number} [depthSegments=1] - Number of segmented rectangular faces along the depth of the sides. + */ + constructor( width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1 ) { + + super(); + + this.type = 'BoxGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + width: width, + height: height, + depth: depth, + widthSegments: widthSegments, + heightSegments: heightSegments, + depthSegments: depthSegments + }; + + const scope = this; + + // segments + + widthSegments = Math.floor( widthSegments ); + heightSegments = Math.floor( heightSegments ); + depthSegments = Math.floor( depthSegments ); + + // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; + + // helper variables + + let numberOfVertices = 0; + let groupStart = 0; + + // build each side of the box geometry + + buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px + buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx + buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py + buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny + buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz + buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) { + + const segmentWidth = width / gridX; + const segmentHeight = height / gridY; + + const widthHalf = width / 2; + const heightHalf = height / 2; + const depthHalf = depth / 2; + + const gridX1 = gridX + 1; + const gridY1 = gridY + 1; + + let vertexCounter = 0; + let groupCount = 0; + + const vector = new Vector3(); + + // generate vertices, normals and uvs + + for ( let iy = 0; iy < gridY1; iy ++ ) { + + const y = iy * segmentHeight - heightHalf; + + for ( let ix = 0; ix < gridX1; ix ++ ) { + + const x = ix * segmentWidth - widthHalf; + + // set values to correct vector component + + vector[ u ] = x * udir; + vector[ v ] = y * vdir; + vector[ w ] = depthHalf; + + // now apply vector to vertex buffer + + vertices.push( vector.x, vector.y, vector.z ); + + // set values to correct vector component + + vector[ u ] = 0; + vector[ v ] = 0; + vector[ w ] = depth > 0 ? 1 : - 1; + + // now apply vector to normal buffer + + normals.push( vector.x, vector.y, vector.z ); + + // uvs + + uvs.push( ix / gridX ); + uvs.push( 1 - ( iy / gridY ) ); + + // counters + + vertexCounter += 1; + + } + + } + + // indices + + // 1. you need three indices to draw a single face + // 2. a single segment consists of two faces + // 3. so we need to generate six (2*3) indices per segment + + for ( let iy = 0; iy < gridY; iy ++ ) { + + for ( let ix = 0; ix < gridX; ix ++ ) { + + const a = numberOfVertices + ix + gridX1 * iy; + const b = numberOfVertices + ix + gridX1 * ( iy + 1 ); + const c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 ); + const d = numberOfVertices + ( ix + 1 ) + gridX1 * iy; + + // faces + + indices.push( a, b, d ); + indices.push( b, c, d ); + + // increase counter + + groupCount += 6; + + } + + } + + // add a group to the geometry. this will ensure multi material support + + scope.addGroup( groupStart, groupCount, materialIndex ); + + // calculate new start value for groups + + groupStart += groupCount; + + // update total number of vertices + + numberOfVertices += vertexCounter; + + } + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {BoxGeometry} A new instance. + */ + static fromJSON( data ) { + + return new BoxGeometry( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments ); + + } + +} + +// Uniform Utilities + +function cloneUniforms( src ) { + + const dst = {}; + + for ( const u in src ) { + + dst[ u ] = {}; + + for ( const p in src[ u ] ) { + + const property = src[ u ][ p ]; + + if ( property && ( property.isColor || + property.isMatrix3 || property.isMatrix4 || + property.isVector2 || property.isVector3 || property.isVector4 || + property.isTexture || property.isQuaternion ) ) { + + if ( property.isRenderTargetTexture ) { + + console.warn( 'UniformsUtils: Textures of render targets cannot be cloned via cloneUniforms() or mergeUniforms().' ); + dst[ u ][ p ] = null; + + } else { + + dst[ u ][ p ] = property.clone(); + + } + + } else if ( Array.isArray( property ) ) { + + dst[ u ][ p ] = property.slice(); + + } else { + + dst[ u ][ p ] = property; + + } + + } + + } + + return dst; + +} + +function mergeUniforms( uniforms ) { + + const merged = {}; + + for ( let u = 0; u < uniforms.length; u ++ ) { + + const tmp = cloneUniforms( uniforms[ u ] ); + + for ( const p in tmp ) { + + merged[ p ] = tmp[ p ]; + + } + + } + + return merged; + +} + +function cloneUniformsGroups( src ) { + + const dst = []; + + for ( let u = 0; u < src.length; u ++ ) { + + dst.push( src[ u ].clone() ); + + } + + return dst; + +} + +function getUnlitUniformColorSpace( renderer ) { + + const currentRenderTarget = renderer.getRenderTarget(); + + if ( currentRenderTarget === null ) { + + // https://github.com/mrdoob/three.js/pull/23937#issuecomment-1111067398 + return renderer.outputColorSpace; + + } + + // https://github.com/mrdoob/three.js/issues/27868 + if ( currentRenderTarget.isXRRenderTarget === true ) { + + return currentRenderTarget.texture.colorSpace; + + } + + return ColorManagement.workingColorSpace; + +} + +// Legacy + +const UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms }; + +var default_vertex = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}'; + +var default_fragment = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}'; + +/** + * A material rendered with custom shaders. A shader is a small program written in GLSL. + * that runs on the GPU. You may want to use a custom shader if you need to implement an + * effect not included with any of the built-in materials. + * + * There are the following notes to bear in mind when using a `ShaderMaterial`: + * + * - `ShaderMaterial` can only be used with {@link WebGLRenderer}. + * - Built in attributes and uniforms are passed to the shaders along with your code. If + * you don't want that, use {@link RawShaderMaterial} instead. + * - You can use the directive `#pragma unroll_loop_start` and `#pragma unroll_loop_end` + * in order to unroll a `for` loop in GLSL by the shader preprocessor. The directive has + * to be placed right above the loop. The loop formatting has to correspond to a defined standard. + * - The loop has to be [normalized]{@link https://en.wikipedia.org/wiki/Normalized_loop}. + * - The loop variable has to be *i*. + * - The value `UNROLLED_LOOP_INDEX` will be replaced with the explicitly + * value of *i* for the given iteration and can be used in preprocessor + * statements. + * + * ```js + * const material = new THREE.ShaderMaterial( { + * uniforms: { + * time: { value: 1.0 }, + * resolution: { value: new THREE.Vector2() } + * }, + * vertexShader: document.getElementById( 'vertexShader' ).textContent, + * fragmentShader: document.getElementById( 'fragmentShader' ).textContent + * } ); + * ``` + * + * @augments Material + */ +class ShaderMaterial extends Material { + + /** + * Constructs a new shader material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isShaderMaterial = true; + + this.type = 'ShaderMaterial'; + + /** + * Defines custom constants using `#define` directives within the GLSL code + * for both the vertex shader and the fragment shader; each key/value pair + * yields another directive. + * ```js + * defines: { + * FOO: 15, + * BAR: true + * } + * ``` + * Yields the lines: + * ``` + * #define FOO 15 + * #define BAR true + * ``` + * + * @type {Object} + */ + this.defines = {}; + + /** + * An object of the form: + * ```js + * { + * "uniform1": { value: 1.0 }, + * "uniform2": { value: 2 } + * } + * ``` + * specifying the uniforms to be passed to the shader code; keys are uniform + * names, values are definitions of the form + * ``` + * { + * value: 1.0 + * } + * ``` + * where `value` is the value of the uniform. Names must match the name of + * the uniform, as defined in the GLSL code. Note that uniforms are refreshed + * on every frame, so updating the value of the uniform will immediately + * update the value available to the GLSL code. + * + * @type {Object} + */ + this.uniforms = {}; + + /** + * An array holding uniforms groups for configuring UBOs. + * + * @type {Array} + */ + this.uniformsGroups = []; + + /** + * Vertex shader GLSL code. This is the actual code for the shader. + * + * @type {string} + */ + this.vertexShader = default_vertex; + + /** + * Fragment shader GLSL code. This is the actual code for the shader. + * + * @type {string} + */ + this.fragmentShader = default_fragment; + + /** + * Controls line thickness or lines. + * + * WebGL and WebGPU ignore this setting and always render line primitives with a + * width of one pixel. + * + * @type {number} + * @default 1 + */ + this.linewidth = 1; + + /** + * Renders the geometry as a wireframe. + * + * @type {boolean} + * @default false + */ + this.wireframe = false; + + /** + * Controls the thickness of the wireframe. + * + * WebGL and WebGPU ignore this property and always render + * 1 pixel wide lines. + * + * @type {number} + * @default 1 + */ + this.wireframeLinewidth = 1; + + /** + * Define whether the material color is affected by global fog settings; `true` + * to pass fog uniforms to the shader. + * + * @type {boolean} + * @default false + */ + this.fog = false; + + /** + * Defines whether this material uses lighting; `true` to pass uniform data + * related to lighting to this shader. + * + * @type {boolean} + * @default false + */ + this.lights = false; + + /** + * Defines whether this material supports clipping; `true` to let the renderer + * pass the clippingPlanes uniform. + * + * @type {boolean} + * @default false + */ + this.clipping = false; + + /** + * Overwritten and set to `true` by default. + * + * @type {boolean} + * @default true + */ + this.forceSinglePass = true; + + /** + * This object allows to enable certain WebGL 2 extensions. + * + * - clipCullDistance: set to `true` to use vertex shader clipping + * - multiDraw: set to `true` to use vertex shader multi_draw / enable gl_DrawID + * + * @type {{clipCullDistance:false,multiDraw:false}} + */ + this.extensions = { + clipCullDistance: false, // set to use vertex shader clipping + multiDraw: false // set to use vertex shader multi_draw / enable gl_DrawID + }; + + /** + * When the rendered geometry doesn't include these attributes but the + * material does, these default values will be passed to the shaders. This + * avoids errors when buffer data is missing. + * + * - color: [ 1, 1, 1 ] + * - uv: [ 0, 0 ] + * - uv1: [ 0, 0 ] + * + * @type {Object} + */ + this.defaultAttributeValues = { + 'color': [ 1, 1, 1 ], + 'uv': [ 0, 0 ], + 'uv1': [ 0, 0 ] + }; + + /** + * If set, this calls [gl.bindAttribLocation]{@link https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/bindAttribLocation} + * to bind a generic vertex index to an attribute variable. + * + * @type {string|undefined} + * @default undefined + */ + this.index0AttributeName = undefined; + + /** + * Can be used to force a uniform update while changing uniforms in + * {@link Object3D#onBeforeRender}. + * + * @type {boolean} + * @default false + */ + this.uniformsNeedUpdate = false; + + /** + * Defines the GLSL version of custom shader code. + * + * @type {?(GLSL1|GLSL3)} + * @default null + */ + this.glslVersion = null; + + if ( parameters !== undefined ) { + + this.setValues( parameters ); + + } + + } + + copy( source ) { + + super.copy( source ); + + this.fragmentShader = source.fragmentShader; + this.vertexShader = source.vertexShader; + + this.uniforms = cloneUniforms( source.uniforms ); + this.uniformsGroups = cloneUniformsGroups( source.uniformsGroups ); + + this.defines = Object.assign( {}, source.defines ); + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + + this.fog = source.fog; + this.lights = source.lights; + this.clipping = source.clipping; + + this.extensions = Object.assign( {}, source.extensions ); + + this.glslVersion = source.glslVersion; + + return this; + + } + + toJSON( meta ) { + + const data = super.toJSON( meta ); + + data.glslVersion = this.glslVersion; + data.uniforms = {}; + + for ( const name in this.uniforms ) { + + const uniform = this.uniforms[ name ]; + const value = uniform.value; + + if ( value && value.isTexture ) { + + data.uniforms[ name ] = { + type: 't', + value: value.toJSON( meta ).uuid + }; + + } else if ( value && value.isColor ) { + + data.uniforms[ name ] = { + type: 'c', + value: value.getHex() + }; + + } else if ( value && value.isVector2 ) { + + data.uniforms[ name ] = { + type: 'v2', + value: value.toArray() + }; + + } else if ( value && value.isVector3 ) { + + data.uniforms[ name ] = { + type: 'v3', + value: value.toArray() + }; + + } else if ( value && value.isVector4 ) { + + data.uniforms[ name ] = { + type: 'v4', + value: value.toArray() + }; + + } else if ( value && value.isMatrix3 ) { + + data.uniforms[ name ] = { + type: 'm3', + value: value.toArray() + }; + + } else if ( value && value.isMatrix4 ) { + + data.uniforms[ name ] = { + type: 'm4', + value: value.toArray() + }; + + } else { + + data.uniforms[ name ] = { + value: value + }; + + // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far + + } + + } + + if ( Object.keys( this.defines ).length > 0 ) data.defines = this.defines; + + data.vertexShader = this.vertexShader; + data.fragmentShader = this.fragmentShader; + + data.lights = this.lights; + data.clipping = this.clipping; + + const extensions = {}; + + for ( const key in this.extensions ) { + + if ( this.extensions[ key ] === true ) extensions[ key ] = true; + + } + + if ( Object.keys( extensions ).length > 0 ) data.extensions = extensions; + + return data; + + } + +} + +/** + * Abstract base class for cameras. This class should always be inherited + * when you build a new camera. + * + * @abstract + * @augments Object3D + */ +class Camera extends Object3D { + + /** + * Constructs a new camera. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCamera = true; + + this.type = 'Camera'; + + /** + * The inverse of the camera's world matrix. + * + * @type {Matrix4} + */ + this.matrixWorldInverse = new Matrix4(); + + /** + * The camera's projection matrix. + * + * @type {Matrix4} + */ + this.projectionMatrix = new Matrix4(); + + /** + * The inverse of the camera's projection matrix. + * + * @type {Matrix4} + */ + this.projectionMatrixInverse = new Matrix4(); + + /** + * The coordinate system in which the camera is used. + * + * @type {(WebGLCoordinateSystem|WebGPUCoordinateSystem)} + */ + this.coordinateSystem = WebGLCoordinateSystem; + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.matrixWorldInverse.copy( source.matrixWorldInverse ); + + this.projectionMatrix.copy( source.projectionMatrix ); + this.projectionMatrixInverse.copy( source.projectionMatrixInverse ); + + this.coordinateSystem = source.coordinateSystem; + + return this; + + } + + /** + * Returns a vector representing the ("look") direction of the 3D object in world space. + * + * This method is overwritten since cameras have a different forward vector compared to other + * 3D objects. A camera looks down its local, negative z-axis by default. + * + * @param {Vector3} target - The target vector the result is stored to. + * @return {Vector3} The 3D object's direction in world space. + */ + getWorldDirection( target ) { + + return super.getWorldDirection( target ).negate(); + + } + + updateMatrixWorld( force ) { + + super.updateMatrixWorld( force ); + + this.matrixWorldInverse.copy( this.matrixWorld ).invert(); + + } + + updateWorldMatrix( updateParents, updateChildren ) { + + super.updateWorldMatrix( updateParents, updateChildren ); + + this.matrixWorldInverse.copy( this.matrixWorld ).invert(); + + } + + clone() { + + return new this.constructor().copy( this ); + + } + +} + +const _v3$1 = /*@__PURE__*/ new Vector3(); +const _minTarget = /*@__PURE__*/ new Vector2(); +const _maxTarget = /*@__PURE__*/ new Vector2(); + +/** + * Camera that uses [perspective projection]{@link https://en.wikipedia.org/wiki/Perspective_(graphical)}. + * + * This projection mode is designed to mimic the way the human eye sees. It + * is the most common projection mode used for rendering a 3D scene. + * + * ```js + * const camera = new THREE.PerspectiveCamera( 45, width / height, 1, 1000 ); + * scene.add( camera ); + * ``` + * + * @augments Camera + */ +class PerspectiveCamera extends Camera { + + /** + * Constructs a new perspective camera. + * + * @param {number} [fov=50] - The vertical field of view. + * @param {number} [aspect=1] - The aspect ratio. + * @param {number} [near=0.1] - The camera's near plane. + * @param {number} [far=2000] - The camera's far plane. + */ + constructor( fov = 50, aspect = 1, near = 0.1, far = 2000 ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPerspectiveCamera = true; + + this.type = 'PerspectiveCamera'; + + /** + * The vertical field of view, from bottom to top of view, + * in degrees. + * + * @type {number} + * @default 50 + */ + this.fov = fov; + + /** + * The zoom factor of the camera. + * + * @type {number} + * @default 1 + */ + this.zoom = 1; + + /** + * The camera's near plane. The valid range is greater than `0` + * and less than the current value of {@link PerspectiveCamera#far}. + * + * Note that, unlike for the {@link OrthographicCamera}, `0` is not a + * valid value for a perspective camera's near plane. + * + * @type {number} + * @default 0.1 + */ + this.near = near; + + /** + * The camera's far plane. Must be greater than the + * current value of {@link PerspectiveCamera#near}. + * + * @type {number} + * @default 2000 + */ + this.far = far; + + /** + * Object distance used for stereoscopy and depth-of-field effects. This + * parameter does not influence the projection matrix unless a + * {@link StereoCamera} is being used. + * + * @type {number} + * @default 10 + */ + this.focus = 10; + + /** + * The aspect ratio, usually the canvas width / canvas height. + * + * @type {number} + * @default 1 + */ + this.aspect = aspect; + + /** + * Represents the frustum window specification. This property should not be edited + * directly but via {@link PerspectiveCamera#setViewOffset} and {@link PerspectiveCamera#clearViewOffset}. + * + * @type {?Object} + * @default null + */ + this.view = null; + + /** + * Film size used for the larger axis. Default is `35` (millimeters). This + * parameter does not influence the projection matrix unless {@link PerspectiveCamera#filmOffset} + * is set to a nonzero value. + * + * @type {number} + * @default 35 + */ + this.filmGauge = 35; + + /** + * Horizontal off-center offset in the same unit as {@link PerspectiveCamera#filmGauge}. + * + * @type {number} + * @default 0 + */ + this.filmOffset = 0; + + this.updateProjectionMatrix(); + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.fov = source.fov; + this.zoom = source.zoom; + + this.near = source.near; + this.far = source.far; + this.focus = source.focus; + + this.aspect = source.aspect; + this.view = source.view === null ? null : Object.assign( {}, source.view ); + + this.filmGauge = source.filmGauge; + this.filmOffset = source.filmOffset; + + return this; + + } + + /** + * Sets the FOV by focal length in respect to the current {@link PerspectiveCamera#filmGauge}. + * + * The default film gauge is 35, so that the focal length can be specified for + * a 35mm (full frame) camera. + * + * @param {number} focalLength - Values for focal length and film gauge must have the same unit. + */ + setFocalLength( focalLength ) { + + /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */ + const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; + + this.fov = RAD2DEG * 2 * Math.atan( vExtentSlope ); + this.updateProjectionMatrix(); + + } + + /** + * Returns the focal length from the current {@link PerspectiveCamera#fov} and + * {@link PerspectiveCamera#filmGauge}. + * + * @return {number} The computed focal length. + */ + getFocalLength() { + + const vExtentSlope = Math.tan( DEG2RAD * 0.5 * this.fov ); + + return 0.5 * this.getFilmHeight() / vExtentSlope; + + } + + /** + * Returns the current vertical field of view angle in degrees considering {@link PerspectiveCamera#zoom}. + * + * @return {number} The effective FOV. + */ + getEffectiveFOV() { + + return RAD2DEG * 2 * Math.atan( + Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom ); + + } + + /** + * Returns the width of the image on the film. If {@link PerspectiveCamera#aspect} is greater than or + * equal to one (landscape format), the result equals {@link PerspectiveCamera#filmGauge}. + * + * @return {number} The film width. + */ + getFilmWidth() { + + // film not completely covered in portrait format (aspect < 1) + return this.filmGauge * Math.min( this.aspect, 1 ); + + } + + /** + * Returns the height of the image on the film. If {@link PerspectiveCamera#aspect} is greater than or + * equal to one (landscape format), the result equals {@link PerspectiveCamera#filmGauge}. + * + * @return {number} The film width. + */ + getFilmHeight() { + + // film not completely covered in landscape format (aspect > 1) + return this.filmGauge / Math.max( this.aspect, 1 ); + + } + + /** + * Computes the 2D bounds of the camera's viewable rectangle at a given distance along the viewing direction. + * Sets `minTarget` and `maxTarget` to the coordinates of the lower-left and upper-right corners of the view rectangle. + * + * @param {number} distance - The viewing distance. + * @param {Vector2} minTarget - The lower-left corner of the view rectangle is written into this vector. + * @param {Vector2} maxTarget - The upper-right corner of the view rectangle is written into this vector. + */ + getViewBounds( distance, minTarget, maxTarget ) { + + _v3$1.set( - 1, - 1, 0.5 ).applyMatrix4( this.projectionMatrixInverse ); + + minTarget.set( _v3$1.x, _v3$1.y ).multiplyScalar( - distance / _v3$1.z ); + + _v3$1.set( 1, 1, 0.5 ).applyMatrix4( this.projectionMatrixInverse ); + + maxTarget.set( _v3$1.x, _v3$1.y ).multiplyScalar( - distance / _v3$1.z ); + + } + + /** + * Computes the width and height of the camera's viewable rectangle at a given distance along the viewing direction. + * + * @param {number} distance - The viewing distance. + * @param {Vector2} target - The target vector that is used to store result where x is width and y is height. + * @returns {Vector2} The view size. + */ + getViewSize( distance, target ) { + + this.getViewBounds( distance, _minTarget, _maxTarget ); + + return target.subVectors( _maxTarget, _minTarget ); + + } + + /** + * Sets an offset in a larger frustum. This is useful for multi-window or + * multi-monitor/multi-machine setups. + * + * For example, if you have 3x2 monitors and each monitor is 1920x1080 and + * the monitors are in grid like this + *``` + * +---+---+---+ + * | A | B | C | + * +---+---+---+ + * | D | E | F | + * +---+---+---+ + *``` + * then for each monitor you would call it like this: + *```js + * const w = 1920; + * const h = 1080; + * const fullWidth = w * 3; + * const fullHeight = h * 2; + * + * // --A-- + * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); + * // --B-- + * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); + * // --C-- + * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); + * // --D-- + * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); + * // --E-- + * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); + * // --F-- + * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); + * ``` + * + * Note there is no reason monitors have to be the same size or in a grid. + * + * @param {number} fullWidth - The full width of multiview setup. + * @param {number} fullHeight - The full height of multiview setup. + * @param {number} x - The horizontal offset of the subcamera. + * @param {number} y - The vertical offset of the subcamera. + * @param {number} width - The width of subcamera. + * @param {number} height - The height of subcamera. + */ + setViewOffset( fullWidth, fullHeight, x, y, width, height ) { + + this.aspect = fullWidth / fullHeight; + + if ( this.view === null ) { + + this.view = { + enabled: true, + fullWidth: 1, + fullHeight: 1, + offsetX: 0, + offsetY: 0, + width: 1, + height: 1 + }; + + } + + this.view.enabled = true; + this.view.fullWidth = fullWidth; + this.view.fullHeight = fullHeight; + this.view.offsetX = x; + this.view.offsetY = y; + this.view.width = width; + this.view.height = height; + + this.updateProjectionMatrix(); + + } + + /** + * Removes the view offset from the projection matrix. + */ + clearViewOffset() { + + if ( this.view !== null ) { + + this.view.enabled = false; + + } + + this.updateProjectionMatrix(); + + } + + /** + * Updates the camera's projection matrix. Must be called after any change of + * camera properties. + */ + updateProjectionMatrix() { + + const near = this.near; + let top = near * Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom; + let height = 2 * top; + let width = this.aspect * height; + let left = - 0.5 * width; + const view = this.view; + + if ( this.view !== null && this.view.enabled ) { + + const fullWidth = view.fullWidth, + fullHeight = view.fullHeight; + + left += view.offsetX * width / fullWidth; + top -= view.offsetY * height / fullHeight; + width *= view.width / fullWidth; + height *= view.height / fullHeight; + + } + + const skew = this.filmOffset; + if ( skew !== 0 ) left += near * skew / this.getFilmWidth(); + + this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far, this.coordinateSystem ); + + this.projectionMatrixInverse.copy( this.projectionMatrix ).invert(); + + } + + toJSON( meta ) { + + const data = super.toJSON( meta ); + + data.object.fov = this.fov; + data.object.zoom = this.zoom; + + data.object.near = this.near; + data.object.far = this.far; + data.object.focus = this.focus; + + data.object.aspect = this.aspect; + + if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); + + data.object.filmGauge = this.filmGauge; + data.object.filmOffset = this.filmOffset; + + return data; + + } + +} + +const fov = - 90; // negative fov is not an error +const aspect = 1; + +/** + * A special type of camera that is positioned in 3D space to render its surroundings into a + * cube render target. The render target can then be used as an environment map for rendering + * realtime reflections in your scene. + * + * ```js + * // Create cube render target + * const cubeRenderTarget = new THREE.WebGLCubeRenderTarget( 256, { generateMipmaps: true, minFilter: THREE.LinearMipmapLinearFilter } ); + * + * // Create cube camera + * const cubeCamera = new THREE.CubeCamera( 1, 100000, cubeRenderTarget ); + * scene.add( cubeCamera ); + * + * // Create car + * const chromeMaterial = new THREE.MeshLambertMaterial( { color: 0xffffff, envMap: cubeRenderTarget.texture } ); + * const car = new THREE.Mesh( carGeometry, chromeMaterial ); + * scene.add( car ); + * + * // Update the render target cube + * car.visible = false; + * cubeCamera.position.copy( car.position ); + * cubeCamera.update( renderer, scene ); + * + * // Render the scene + * car.visible = true; + * renderer.render( scene, camera ); + * ``` + * + * @augments Object3D + */ +class CubeCamera extends Object3D { + + /** + * Constructs a new cube camera. + * + * @param {number} near - The camera's near plane. + * @param {number} far - The camera's far plane. + * @param {WebGLCubeRenderTarget} renderTarget - The cube render target. + */ + constructor( near, far, renderTarget ) { + + super(); + + this.type = 'CubeCamera'; + + /** + * A reference to the cube render target. + * + * @type {WebGLCubeRenderTarget} + */ + this.renderTarget = renderTarget; + + /** + * The current active coordinate system. + * + * @type {?(WebGLCoordinateSystem|WebGPUCoordinateSystem)} + * @default null + */ + this.coordinateSystem = null; + + /** + * The current active mipmap level + * + * @type {number} + * @default 0 + */ + this.activeMipmapLevel = 0; + + const cameraPX = new PerspectiveCamera( fov, aspect, near, far ); + cameraPX.layers = this.layers; + this.add( cameraPX ); + + const cameraNX = new PerspectiveCamera( fov, aspect, near, far ); + cameraNX.layers = this.layers; + this.add( cameraNX ); + + const cameraPY = new PerspectiveCamera( fov, aspect, near, far ); + cameraPY.layers = this.layers; + this.add( cameraPY ); + + const cameraNY = new PerspectiveCamera( fov, aspect, near, far ); + cameraNY.layers = this.layers; + this.add( cameraNY ); + + const cameraPZ = new PerspectiveCamera( fov, aspect, near, far ); + cameraPZ.layers = this.layers; + this.add( cameraPZ ); + + const cameraNZ = new PerspectiveCamera( fov, aspect, near, far ); + cameraNZ.layers = this.layers; + this.add( cameraNZ ); + + } + + /** + * Must be called when the coordinate system of the cube camera is changed. + */ + updateCoordinateSystem() { + + const coordinateSystem = this.coordinateSystem; + + const cameras = this.children.concat(); + + const [ cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ ] = cameras; + + for ( const camera of cameras ) this.remove( camera ); + + if ( coordinateSystem === WebGLCoordinateSystem ) { + + cameraPX.up.set( 0, 1, 0 ); + cameraPX.lookAt( 1, 0, 0 ); + + cameraNX.up.set( 0, 1, 0 ); + cameraNX.lookAt( - 1, 0, 0 ); + + cameraPY.up.set( 0, 0, - 1 ); + cameraPY.lookAt( 0, 1, 0 ); + + cameraNY.up.set( 0, 0, 1 ); + cameraNY.lookAt( 0, - 1, 0 ); + + cameraPZ.up.set( 0, 1, 0 ); + cameraPZ.lookAt( 0, 0, 1 ); + + cameraNZ.up.set( 0, 1, 0 ); + cameraNZ.lookAt( 0, 0, - 1 ); + + } else if ( coordinateSystem === WebGPUCoordinateSystem ) { + + cameraPX.up.set( 0, - 1, 0 ); + cameraPX.lookAt( - 1, 0, 0 ); + + cameraNX.up.set( 0, - 1, 0 ); + cameraNX.lookAt( 1, 0, 0 ); + + cameraPY.up.set( 0, 0, 1 ); + cameraPY.lookAt( 0, 1, 0 ); + + cameraNY.up.set( 0, 0, - 1 ); + cameraNY.lookAt( 0, - 1, 0 ); + + cameraPZ.up.set( 0, - 1, 0 ); + cameraPZ.lookAt( 0, 0, 1 ); + + cameraNZ.up.set( 0, - 1, 0 ); + cameraNZ.lookAt( 0, 0, - 1 ); + + } else { + + throw new Error( 'THREE.CubeCamera.updateCoordinateSystem(): Invalid coordinate system: ' + coordinateSystem ); + + } + + for ( const camera of cameras ) { + + this.add( camera ); + + camera.updateMatrixWorld(); + + } + + } + + /** + * Calling this method will render the given scene with the given renderer + * into the cube render target of the camera. + * + * @param {(Renderer|WebGLRenderer)} renderer - The renderer. + * @param {Scene} scene - The scene to render. + */ + update( renderer, scene ) { + + if ( this.parent === null ) this.updateMatrixWorld(); + + const { renderTarget, activeMipmapLevel } = this; + + if ( this.coordinateSystem !== renderer.coordinateSystem ) { + + this.coordinateSystem = renderer.coordinateSystem; + + this.updateCoordinateSystem(); + + } + + const [ cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ ] = this.children; + + const currentRenderTarget = renderer.getRenderTarget(); + const currentActiveCubeFace = renderer.getActiveCubeFace(); + const currentActiveMipmapLevel = renderer.getActiveMipmapLevel(); + + const currentXrEnabled = renderer.xr.enabled; + + renderer.xr.enabled = false; + + const generateMipmaps = renderTarget.texture.generateMipmaps; + + renderTarget.texture.generateMipmaps = false; + + renderer.setRenderTarget( renderTarget, 0, activeMipmapLevel ); + renderer.render( scene, cameraPX ); + + renderer.setRenderTarget( renderTarget, 1, activeMipmapLevel ); + renderer.render( scene, cameraNX ); + + renderer.setRenderTarget( renderTarget, 2, activeMipmapLevel ); + renderer.render( scene, cameraPY ); + + renderer.setRenderTarget( renderTarget, 3, activeMipmapLevel ); + renderer.render( scene, cameraNY ); + + renderer.setRenderTarget( renderTarget, 4, activeMipmapLevel ); + renderer.render( scene, cameraPZ ); + + // mipmaps are generated during the last call of render() + // at this point, all sides of the cube render target are defined + + renderTarget.texture.generateMipmaps = generateMipmaps; + + renderer.setRenderTarget( renderTarget, 5, activeMipmapLevel ); + renderer.render( scene, cameraNZ ); + + renderer.setRenderTarget( currentRenderTarget, currentActiveCubeFace, currentActiveMipmapLevel ); + + renderer.xr.enabled = currentXrEnabled; + + renderTarget.texture.needsPMREMUpdate = true; + + } + +} + +/** + * Creates a cube texture made up of six images. + * + * ```js + * const loader = new THREE.CubeTextureLoader(); + * loader.setPath( 'textures/cube/pisa/' ); + * + * const textureCube = loader.load( [ + * 'px.png', 'nx.png', 'py.png', 'ny.png', 'pz.png', 'nz.png' + * ] ); + * + * const material = new THREE.MeshBasicMaterial( { color: 0xffffff, envMap: textureCube } ); + * ``` + * + * @augments Texture + */ +class CubeTexture extends Texture { + + /** + * Constructs a new cube texture. + * + * @param {Array} [images=[]] - An array holding a image for each side of a cube. + * @param {number} [mapping=CubeReflectionMapping] - The texture mapping. + * @param {number} [wrapS=ClampToEdgeWrapping] - The wrapS value. + * @param {number} [wrapT=ClampToEdgeWrapping] - The wrapT value. + * @param {number} [magFilter=LinearFilter] - The mag filter value. + * @param {number} [minFilter=LinearMipmapLinearFilter] - The min filter value. + * @param {number} [format=RGBAFormat] - The texture format. + * @param {number} [type=UnsignedByteType] - The texture type. + * @param {number} [anisotropy=Texture.DEFAULT_ANISOTROPY] - The anisotropy value. + * @param {string} [colorSpace=NoColorSpace] - The color space value. + */ + constructor( images = [], mapping = CubeReflectionMapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace ) { + + super( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCubeTexture = true; + + /** + * If set to `true`, the texture is flipped along the vertical axis when + * uploaded to the GPU. + * + * Overwritten and set to `false` by default. + * + * @type {boolean} + * @default false + */ + this.flipY = false; + + } + + /** + * Alias for {@link CubeTexture#image}. + * + * @type {Array} + */ + get images() { + + return this.image; + + } + + set images( value ) { + + this.image = value; + + } + +} + +/** + * A cube render target used in context of {@link WebGLRenderer}. + * + * @augments WebGLRenderTarget + */ +class WebGLCubeRenderTarget extends WebGLRenderTarget { + + /** + * Constructs a new cube render target. + * + * @param {number} [size=1] - The size of the render target. + * @param {RenderTarget~Options} [options] - The configuration object. + */ + constructor( size = 1, options = {} ) { + + super( size, size, options ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWebGLCubeRenderTarget = true; + + const image = { width: size, height: size, depth: 1 }; + const images = [ image, image, image, image, image, image ]; + + /** + * Overwritten with a different texture type. + * + * @type {DataArrayTexture} + */ + this.texture = new CubeTexture( images ); + this._setTextureOptions( options ); + + // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js) + // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words, + // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly. + + // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped + // and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture + // as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures). + + this.texture.isRenderTargetTexture = true; + + } + + /** + * Converts the given equirectangular texture to a cube map. + * + * @param {WebGLRenderer} renderer - The renderer. + * @param {Texture} texture - The equirectangular texture. + * @return {WebGLCubeRenderTarget} A reference to this cube render target. + */ + fromEquirectangularTexture( renderer, texture ) { + + this.texture.type = texture.type; + this.texture.colorSpace = texture.colorSpace; + + this.texture.generateMipmaps = texture.generateMipmaps; + this.texture.minFilter = texture.minFilter; + this.texture.magFilter = texture.magFilter; + + const shader = { + + uniforms: { + tEquirect: { value: null }, + }, + + vertexShader: /* glsl */` + + varying vec3 vWorldDirection; + + vec3 transformDirection( in vec3 dir, in mat4 matrix ) { + + return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); + + } + + void main() { + + vWorldDirection = transformDirection( position, modelMatrix ); + + #include + #include + + } + `, + + fragmentShader: /* glsl */` + + uniform sampler2D tEquirect; + + varying vec3 vWorldDirection; + + #include + + void main() { + + vec3 direction = normalize( vWorldDirection ); + + vec2 sampleUV = equirectUv( direction ); + + gl_FragColor = texture2D( tEquirect, sampleUV ); + + } + ` + }; + + const geometry = new BoxGeometry( 5, 5, 5 ); + + const material = new ShaderMaterial( { + + name: 'CubemapFromEquirect', + + uniforms: cloneUniforms( shader.uniforms ), + vertexShader: shader.vertexShader, + fragmentShader: shader.fragmentShader, + side: BackSide, + blending: NoBlending + + } ); + + material.uniforms.tEquirect.value = texture; + + const mesh = new Mesh( geometry, material ); + + const currentMinFilter = texture.minFilter; + + // Avoid blurred poles + if ( texture.minFilter === LinearMipmapLinearFilter ) texture.minFilter = LinearFilter; + + const camera = new CubeCamera( 1, 10, this ); + camera.update( renderer, mesh ); + + texture.minFilter = currentMinFilter; + + mesh.geometry.dispose(); + mesh.material.dispose(); + + return this; + + } + + /** + * Clears this cube render target. + * + * @param {WebGLRenderer} renderer - The renderer. + * @param {boolean} [color=true] - Whether the color buffer should be cleared or not. + * @param {boolean} [depth=true] - Whether the depth buffer should be cleared or not. + * @param {boolean} [stencil=true] - Whether the stencil buffer should be cleared or not. + */ + clear( renderer, color = true, depth = true, stencil = true ) { + + const currentRenderTarget = renderer.getRenderTarget(); + + for ( let i = 0; i < 6; i ++ ) { + + renderer.setRenderTarget( this, i ); + + renderer.clear( color, depth, stencil ); + + } + + renderer.setRenderTarget( currentRenderTarget ); + + } + +} + +/** + * This is almost identical to an {@link Object3D}. Its purpose is to + * make working with groups of objects syntactically clearer. + * + * ```js + * // Create a group and add the two cubes. + * // These cubes can now be rotated / scaled etc as a group. + * const group = new THREE.Group(); + * + * group.add( meshA ); + * group.add( meshB ); + * + * scene.add( group ); + * ``` + * + * @augments Object3D + */ +class Group extends Object3D { + + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isGroup = true; + + this.type = 'Group'; + + } + +} + +const _moveEvent = { type: 'move' }; + +/** + * Class for representing a XR controller with its + * different coordinate systems. + * + * @private + */ +class WebXRController { + + /** + * Constructs a new XR controller. + */ + constructor() { + + /** + * A group representing the target ray space + * of the XR controller. + * + * @private + * @type {?Group} + * @default null + */ + this._targetRay = null; + + /** + * A group representing the grip space + * of the XR controller. + * + * @private + * @type {?Group} + * @default null + */ + this._grip = null; + + /** + * A group representing the hand space + * of the XR controller. + * + * @private + * @type {?Group} + * @default null + */ + this._hand = null; + + } + + /** + * Returns a group representing the hand space of the XR controller. + * + * @return {Group} A group representing the hand space of the XR controller. + */ + getHandSpace() { + + if ( this._hand === null ) { + + this._hand = new Group(); + this._hand.matrixAutoUpdate = false; + this._hand.visible = false; + + this._hand.joints = {}; + this._hand.inputState = { pinching: false }; + + } + + return this._hand; + + } + + /** + * Returns a group representing the target ray space of the XR controller. + * + * @return {Group} A group representing the target ray space of the XR controller. + */ + getTargetRaySpace() { + + if ( this._targetRay === null ) { + + this._targetRay = new Group(); + this._targetRay.matrixAutoUpdate = false; + this._targetRay.visible = false; + this._targetRay.hasLinearVelocity = false; + this._targetRay.linearVelocity = new Vector3(); + this._targetRay.hasAngularVelocity = false; + this._targetRay.angularVelocity = new Vector3(); + + } + + return this._targetRay; + + } + + /** + * Returns a group representing the grip space of the XR controller. + * + * @return {Group} A group representing the grip space of the XR controller. + */ + getGripSpace() { + + if ( this._grip === null ) { + + this._grip = new Group(); + this._grip.matrixAutoUpdate = false; + this._grip.visible = false; + this._grip.hasLinearVelocity = false; + this._grip.linearVelocity = new Vector3(); + this._grip.hasAngularVelocity = false; + this._grip.angularVelocity = new Vector3(); + + } + + return this._grip; + + } + + /** + * Dispatches the given event to the groups representing + * the different coordinate spaces of the XR controller. + * + * @param {Object} event - The event to dispatch. + * @return {WebXRController} A reference to this instance. + */ + dispatchEvent( event ) { + + if ( this._targetRay !== null ) { + + this._targetRay.dispatchEvent( event ); + + } + + if ( this._grip !== null ) { + + this._grip.dispatchEvent( event ); + + } + + if ( this._hand !== null ) { + + this._hand.dispatchEvent( event ); + + } + + return this; + + } + + /** + * Connects the controller with the given XR input source. + * + * @param {XRInputSource} inputSource - The input source. + * @return {WebXRController} A reference to this instance. + */ + connect( inputSource ) { + + if ( inputSource && inputSource.hand ) { + + const hand = this._hand; + + if ( hand ) { + + for ( const inputjoint of inputSource.hand.values() ) { + + // Initialize hand with joints when connected + this._getHandJoint( hand, inputjoint ); + + } + + } + + } + + this.dispatchEvent( { type: 'connected', data: inputSource } ); + + return this; + + } + + /** + * Disconnects the controller from the given XR input source. + * + * @param {XRInputSource} inputSource - The input source. + * @return {WebXRController} A reference to this instance. + */ + disconnect( inputSource ) { + + this.dispatchEvent( { type: 'disconnected', data: inputSource } ); + + if ( this._targetRay !== null ) { + + this._targetRay.visible = false; + + } + + if ( this._grip !== null ) { + + this._grip.visible = false; + + } + + if ( this._hand !== null ) { + + this._hand.visible = false; + + } + + return this; + + } + + /** + * Updates the controller with the given input source, XR frame and reference space. + * This updates the transformations of the groups that represent the different + * coordinate systems of the controller. + * + * @param {XRInputSource} inputSource - The input source. + * @param {XRFrame} frame - The XR frame. + * @param {XRReferenceSpace} referenceSpace - The reference space. + * @return {WebXRController} A reference to this instance. + */ + update( inputSource, frame, referenceSpace ) { + + let inputPose = null; + let gripPose = null; + let handPose = null; + + const targetRay = this._targetRay; + const grip = this._grip; + const hand = this._hand; + + if ( inputSource && frame.session.visibilityState !== 'visible-blurred' ) { + + if ( hand && inputSource.hand ) { + + handPose = true; + + for ( const inputjoint of inputSource.hand.values() ) { + + // Update the joints groups with the XRJoint poses + const jointPose = frame.getJointPose( inputjoint, referenceSpace ); + + // The transform of this joint will be updated with the joint pose on each frame + const joint = this._getHandJoint( hand, inputjoint ); + + if ( jointPose !== null ) { + + joint.matrix.fromArray( jointPose.transform.matrix ); + joint.matrix.decompose( joint.position, joint.rotation, joint.scale ); + joint.matrixWorldNeedsUpdate = true; + joint.jointRadius = jointPose.radius; + + } + + joint.visible = jointPose !== null; + + } + + // Custom events + + // Check pinchz + const indexTip = hand.joints[ 'index-finger-tip' ]; + const thumbTip = hand.joints[ 'thumb-tip' ]; + const distance = indexTip.position.distanceTo( thumbTip.position ); + + const distanceToPinch = 0.02; + const threshold = 0.005; + + if ( hand.inputState.pinching && distance > distanceToPinch + threshold ) { + + hand.inputState.pinching = false; + this.dispatchEvent( { + type: 'pinchend', + handedness: inputSource.handedness, + target: this + } ); + + } else if ( ! hand.inputState.pinching && distance <= distanceToPinch - threshold ) { + + hand.inputState.pinching = true; + this.dispatchEvent( { + type: 'pinchstart', + handedness: inputSource.handedness, + target: this + } ); + + } + + } else { + + if ( grip !== null && inputSource.gripSpace ) { + + gripPose = frame.getPose( inputSource.gripSpace, referenceSpace ); + + if ( gripPose !== null ) { + + grip.matrix.fromArray( gripPose.transform.matrix ); + grip.matrix.decompose( grip.position, grip.rotation, grip.scale ); + grip.matrixWorldNeedsUpdate = true; + + if ( gripPose.linearVelocity ) { + + grip.hasLinearVelocity = true; + grip.linearVelocity.copy( gripPose.linearVelocity ); + + } else { + + grip.hasLinearVelocity = false; + + } + + if ( gripPose.angularVelocity ) { + + grip.hasAngularVelocity = true; + grip.angularVelocity.copy( gripPose.angularVelocity ); + + } else { + + grip.hasAngularVelocity = false; + + } + + } + + } + + } + + if ( targetRay !== null ) { + + inputPose = frame.getPose( inputSource.targetRaySpace, referenceSpace ); + + // Some runtimes (namely Vive Cosmos with Vive OpenXR Runtime) have only grip space and ray space is equal to it + if ( inputPose === null && gripPose !== null ) { + + inputPose = gripPose; + + } + + if ( inputPose !== null ) { + + targetRay.matrix.fromArray( inputPose.transform.matrix ); + targetRay.matrix.decompose( targetRay.position, targetRay.rotation, targetRay.scale ); + targetRay.matrixWorldNeedsUpdate = true; + + if ( inputPose.linearVelocity ) { + + targetRay.hasLinearVelocity = true; + targetRay.linearVelocity.copy( inputPose.linearVelocity ); + + } else { + + targetRay.hasLinearVelocity = false; + + } + + if ( inputPose.angularVelocity ) { + + targetRay.hasAngularVelocity = true; + targetRay.angularVelocity.copy( inputPose.angularVelocity ); + + } else { + + targetRay.hasAngularVelocity = false; + + } + + this.dispatchEvent( _moveEvent ); + + } + + } + + + } + + if ( targetRay !== null ) { + + targetRay.visible = ( inputPose !== null ); + + } + + if ( grip !== null ) { + + grip.visible = ( gripPose !== null ); + + } + + if ( hand !== null ) { + + hand.visible = ( handPose !== null ); + + } + + return this; + + } + + /** + * Returns a group representing the hand joint for the given input joint. + * + * @private + * @param {Group} hand - The group representing the hand space. + * @param {XRJointSpace} inputjoint - The hand joint data. + * @return {Group} A group representing the hand joint for the given input joint. + */ + _getHandJoint( hand, inputjoint ) { + + if ( hand.joints[ inputjoint.jointName ] === undefined ) { + + const joint = new Group(); + joint.matrixAutoUpdate = false; + joint.visible = false; + hand.joints[ inputjoint.jointName ] = joint; + + hand.add( joint ); + + } + + return hand.joints[ inputjoint.jointName ]; + + } + +} + +/** + * This class can be used to define an exponential squared fog, + * which gives a clear view near the camera and a faster than exponentially + * densening fog farther from the camera. + * + * ```js + * const scene = new THREE.Scene(); + * scene.fog = new THREE.FogExp2( 0xcccccc, 0.002 ); + * ``` + */ +class FogExp2 { + + /** + * Constructs a new fog. + * + * @param {number|Color} color - The fog's color. + * @param {number} [density=0.00025] - Defines how fast the fog will grow dense. + */ + constructor( color, density = 0.00025 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isFogExp2 = true; + + /** + * The name of the fog. + * + * @type {string} + */ + this.name = ''; + + /** + * The fog's color. + * + * @type {Color} + */ + this.color = new Color( color ); + + /** + * Defines how fast the fog will grow dense. + * + * @type {number} + * @default 0.00025 + */ + this.density = density; + + } + + /** + * Returns a new fog with copied values from this instance. + * + * @return {FogExp2} A clone of this instance. + */ + clone() { + + return new FogExp2( this.color, this.density ); + + } + + /** + * Serializes the fog into JSON. + * + * @param {?(Object|string)} meta - An optional value holding meta information about the serialization. + * @return {Object} A JSON object representing the serialized fog + */ + toJSON( /* meta */ ) { + + return { + type: 'FogExp2', + name: this.name, + color: this.color.getHex(), + density: this.density + }; + + } + +} + +/** + * This class can be used to define a linear fog that grows linearly denser + * with the distance. + * + * ```js + * const scene = new THREE.Scene(); + * scene.fog = new THREE.Fog( 0xcccccc, 10, 15 ); + * ``` + */ +class Fog { + + /** + * Constructs a new fog. + * + * @param {number|Color} color - The fog's color. + * @param {number} [near=1] - The minimum distance to start applying fog. + * @param {number} [far=1000] - The maximum distance at which fog stops being calculated and applied. + */ + constructor( color, near = 1, far = 1000 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isFog = true; + + /** + * The name of the fog. + * + * @type {string} + */ + this.name = ''; + + /** + * The fog's color. + * + * @type {Color} + */ + this.color = new Color( color ); + + /** + * The minimum distance to start applying fog. Objects that are less than + * `near` units from the active camera won't be affected by fog. + * + * @type {number} + * @default 1 + */ + this.near = near; + + /** + * The maximum distance at which fog stops being calculated and applied. + * Objects that are more than `far` units away from the active camera won't + * be affected by fog. + * + * @type {number} + * @default 1000 + */ + this.far = far; + + } + + /** + * Returns a new fog with copied values from this instance. + * + * @return {Fog} A clone of this instance. + */ + clone() { + + return new Fog( this.color, this.near, this.far ); + + } + + /** + * Serializes the fog into JSON. + * + * @param {?(Object|string)} meta - An optional value holding meta information about the serialization. + * @return {Object} A JSON object representing the serialized fog + */ + toJSON( /* meta */ ) { + + return { + type: 'Fog', + name: this.name, + color: this.color.getHex(), + near: this.near, + far: this.far + }; + + } + +} + +/** + * Scenes allow you to set up what is to be rendered and where by three.js. + * This is where you place 3D objects like meshes, lines or lights. + * + * @augments Object3D + */ +class Scene extends Object3D { + + /** + * Constructs a new scene. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isScene = true; + + this.type = 'Scene'; + + /** + * Defines the background of the scene. Valid inputs are: + * + * - A color for defining a uniform colored background. + * - A texture for defining a (flat) textured background. + * - Cube textures or equirectangular textures for defining a skybox. + * + * @type {?(Color|Texture)} + * @default null + */ + this.background = null; + + /** + * Sets the environment map for all physical materials in the scene. However, + * it's not possible to overwrite an existing texture assigned to the `envMap` + * material property. + * + * @type {?Texture} + * @default null + */ + this.environment = null; + + /** + * A fog instance defining the type of fog that affects everything + * rendered in the scene. + * + * @type {?(Fog|FogExp2)} + * @default null + */ + this.fog = null; + + /** + * Sets the blurriness of the background. Only influences environment maps + * assigned to {@link Scene#background}. Valid input is a float between `0` + * and `1`. + * + * @type {number} + * @default 0 + */ + this.backgroundBlurriness = 0; + + /** + * Attenuates the color of the background. Only applies to background textures. + * + * @type {number} + * @default 1 + */ + this.backgroundIntensity = 1; + + /** + * The rotation of the background in radians. Only influences environment maps + * assigned to {@link Scene#background}. + * + * @type {Euler} + * @default (0,0,0) + */ + this.backgroundRotation = new Euler(); + + /** + * Attenuates the color of the environment. Only influences environment maps + * assigned to {@link Scene#environment}. + * + * @type {number} + * @default 1 + */ + this.environmentIntensity = 1; + + /** + * The rotation of the environment map in radians. Only influences physical materials + * in the scene when {@link Scene#environment} is used. + * + * @type {Euler} + * @default (0,0,0) + */ + this.environmentRotation = new Euler(); + + /** + * Forces everything in the scene to be rendered with the defined material. It is possible + * to exclude materials from override by setting {@link Material#allowOverride} to `false`. + * + * @type {?Material} + * @default null + */ + this.overrideMaterial = null; + + if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { + + __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); + + } + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + if ( source.background !== null ) this.background = source.background.clone(); + if ( source.environment !== null ) this.environment = source.environment.clone(); + if ( source.fog !== null ) this.fog = source.fog.clone(); + + this.backgroundBlurriness = source.backgroundBlurriness; + this.backgroundIntensity = source.backgroundIntensity; + this.backgroundRotation.copy( source.backgroundRotation ); + + this.environmentIntensity = source.environmentIntensity; + this.environmentRotation.copy( source.environmentRotation ); + + if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone(); + + this.matrixAutoUpdate = source.matrixAutoUpdate; + + return this; + + } + + toJSON( meta ) { + + const data = super.toJSON( meta ); + + if ( this.fog !== null ) data.object.fog = this.fog.toJSON(); + + if ( this.backgroundBlurriness > 0 ) data.object.backgroundBlurriness = this.backgroundBlurriness; + if ( this.backgroundIntensity !== 1 ) data.object.backgroundIntensity = this.backgroundIntensity; + data.object.backgroundRotation = this.backgroundRotation.toArray(); + + if ( this.environmentIntensity !== 1 ) data.object.environmentIntensity = this.environmentIntensity; + data.object.environmentRotation = this.environmentRotation.toArray(); + + return data; + + } + +} + +/** + * "Interleaved" means that multiple attributes, possibly of different types, + * (e.g., position, normal, uv, color) are packed into a single array buffer. + * + * An introduction into interleaved arrays can be found here: [Interleaved array basics]{@link https://blog.tojicode.com/2011/05/interleaved-array-basics.html} + */ +class InterleavedBuffer { + + /** + * Constructs a new interleaved buffer. + * + * @param {TypedArray} array - A typed array with a shared buffer storing attribute data. + * @param {number} stride - The number of typed-array elements per vertex. + */ + constructor( array, stride ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isInterleavedBuffer = true; + + /** + * A typed array with a shared buffer storing attribute data. + * + * @type {TypedArray} + */ + this.array = array; + + /** + * The number of typed-array elements per vertex. + * + * @type {number} + */ + this.stride = stride; + + /** + * The total number of elements in the array + * + * @type {number} + * @readonly + */ + this.count = array !== undefined ? array.length / stride : 0; + + /** + * Defines the intended usage pattern of the data store for optimization purposes. + * + * Note: After the initial use of a buffer, its usage cannot be changed. Instead, + * instantiate a new one and set the desired usage before the next render. + * + * @type {(StaticDrawUsage|DynamicDrawUsage|StreamDrawUsage|StaticReadUsage|DynamicReadUsage|StreamReadUsage|StaticCopyUsage|DynamicCopyUsage|StreamCopyUsage)} + * @default StaticDrawUsage + */ + this.usage = StaticDrawUsage; + + /** + * This can be used to only update some components of stored vectors (for example, just the + * component related to color). Use the `addUpdateRange()` function to add ranges to this array. + * + * @type {Array} + */ + this.updateRanges = []; + + /** + * A version number, incremented every time the `needsUpdate` is set to `true`. + * + * @type {number} + */ + this.version = 0; + + /** + * The UUID of the interleaved buffer. + * + * @type {string} + * @readonly + */ + this.uuid = generateUUID(); + + } + + /** + * A callback function that is executed after the renderer has transferred the attribute array + * data to the GPU. + */ + onUploadCallback() {} + + /** + * Flag to indicate that this attribute has changed and should be re-sent to + * the GPU. Set this to `true` when you modify the value of the array. + * + * @type {number} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + if ( value === true ) this.version ++; + + } + + /** + * Sets the usage of this interleaved buffer. + * + * @param {(StaticDrawUsage|DynamicDrawUsage|StreamDrawUsage|StaticReadUsage|DynamicReadUsage|StreamReadUsage|StaticCopyUsage|DynamicCopyUsage|StreamCopyUsage)} value - The usage to set. + * @return {InterleavedBuffer} A reference to this interleaved buffer. + */ + setUsage( value ) { + + this.usage = value; + + return this; + + } + + /** + * Adds a range of data in the data array to be updated on the GPU. + * + * @param {number} start - Position at which to start update. + * @param {number} count - The number of components to update. + */ + addUpdateRange( start, count ) { + + this.updateRanges.push( { start, count } ); + + } + + /** + * Clears the update ranges. + */ + clearUpdateRanges() { + + this.updateRanges.length = 0; + + } + + /** + * Copies the values of the given interleaved buffer to this instance. + * + * @param {InterleavedBuffer} source - The interleaved buffer to copy. + * @return {InterleavedBuffer} A reference to this instance. + */ + copy( source ) { + + this.array = new source.array.constructor( source.array ); + this.count = source.count; + this.stride = source.stride; + this.usage = source.usage; + + return this; + + } + + /** + * Copies a vector from the given interleaved buffer to this one. The start + * and destination position in the attribute buffers are represented by the + * given indices. + * + * @param {number} index1 - The destination index into this interleaved buffer. + * @param {InterleavedBuffer} interleavedBuffer - The interleaved buffer to copy from. + * @param {number} index2 - The source index into the given interleaved buffer. + * @return {InterleavedBuffer} A reference to this instance. + */ + copyAt( index1, interleavedBuffer, index2 ) { + + index1 *= this.stride; + index2 *= interleavedBuffer.stride; + + for ( let i = 0, l = this.stride; i < l; i ++ ) { + + this.array[ index1 + i ] = interleavedBuffer.array[ index2 + i ]; + + } + + return this; + + } + + /** + * Sets the given array data in the interleaved buffer. + * + * @param {(TypedArray|Array)} value - The array data to set. + * @param {number} [offset=0] - The offset in this interleaved buffer's array. + * @return {InterleavedBuffer} A reference to this instance. + */ + set( value, offset = 0 ) { + + this.array.set( value, offset ); + + return this; + + } + + /** + * Returns a new interleaved buffer with copied values from this instance. + * + * @param {Object} [data] - An object with shared array buffers that allows to retain shared structures. + * @return {InterleavedBuffer} A clone of this instance. + */ + clone( data ) { + + if ( data.arrayBuffers === undefined ) { + + data.arrayBuffers = {}; + + } + + if ( this.array.buffer._uuid === undefined ) { + + this.array.buffer._uuid = generateUUID(); + + } + + if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) { + + data.arrayBuffers[ this.array.buffer._uuid ] = this.array.slice( 0 ).buffer; + + } + + const array = new this.array.constructor( data.arrayBuffers[ this.array.buffer._uuid ] ); + + const ib = new this.constructor( array, this.stride ); + ib.setUsage( this.usage ); + + return ib; + + } + + /** + * Sets the given callback function that is executed after the Renderer has transferred + * the array data to the GPU. Can be used to perform clean-up operations after + * the upload when data are not needed anymore on the CPU side. + * + * @param {Function} callback - The `onUpload()` callback. + * @return {InterleavedBuffer} A reference to this instance. + */ + onUpload( callback ) { + + this.onUploadCallback = callback; + + return this; + + } + + /** + * Serializes the interleaved buffer into JSON. + * + * @param {Object} [data] - An optional value holding meta information about the serialization. + * @return {Object} A JSON object representing the serialized interleaved buffer. + */ + toJSON( data ) { + + if ( data.arrayBuffers === undefined ) { + + data.arrayBuffers = {}; + + } + + // generate UUID for array buffer if necessary + + if ( this.array.buffer._uuid === undefined ) { + + this.array.buffer._uuid = generateUUID(); + + } + + if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) { + + data.arrayBuffers[ this.array.buffer._uuid ] = Array.from( new Uint32Array( this.array.buffer ) ); + + } + + // + + return { + uuid: this.uuid, + buffer: this.array.buffer._uuid, + type: this.array.constructor.name, + stride: this.stride + }; + + } + +} + +const _vector$7 = /*@__PURE__*/ new Vector3(); + +/** + * An alternative version of a buffer attribute with interleaved data. Interleaved + * attributes share a common interleaved data storage ({@link InterleavedBuffer}) and refer with + * different offsets into the buffer. + */ +class InterleavedBufferAttribute { + + /** + * Constructs a new interleaved buffer attribute. + * + * @param {InterleavedBuffer} interleavedBuffer - The buffer holding the interleaved data. + * @param {number} itemSize - The item size. + * @param {number} offset - The attribute offset into the buffer. + * @param {boolean} [normalized=false] - Whether the data are normalized or not. + */ + constructor( interleavedBuffer, itemSize, offset, normalized = false ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isInterleavedBufferAttribute = true; + + /** + * The name of the buffer attribute. + * + * @type {string} + */ + this.name = ''; + + /** + * The buffer holding the interleaved data. + * + * @type {InterleavedBuffer} + */ + this.data = interleavedBuffer; + + /** + * The item size, see {@link BufferAttribute#itemSize}. + * + * @type {number} + */ + this.itemSize = itemSize; + + /** + * The attribute offset into the buffer. + * + * @type {number} + */ + this.offset = offset; + + /** + * Whether the data are normalized or not, see {@link BufferAttribute#normalized} + * + * @type {InterleavedBuffer} + */ + this.normalized = normalized; + + } + + /** + * The item count of this buffer attribute. + * + * @type {number} + * @readonly + */ + get count() { + + return this.data.count; + + } + + /** + * The array holding the interleaved buffer attribute data. + * + * @type {TypedArray} + */ + get array() { + + return this.data.array; + + } + + /** + * Flag to indicate that this attribute has changed and should be re-sent to + * the GPU. Set this to `true` when you modify the value of the array. + * + * @type {number} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + this.data.needsUpdate = value; + + } + + /** + * Applies the given 4x4 matrix to the given attribute. Only works with + * item size `3`. + * + * @param {Matrix4} m - The matrix to apply. + * @return {InterleavedBufferAttribute} A reference to this instance. + */ + applyMatrix4( m ) { + + for ( let i = 0, l = this.data.count; i < l; i ++ ) { + + _vector$7.fromBufferAttribute( this, i ); + + _vector$7.applyMatrix4( m ); + + this.setXYZ( i, _vector$7.x, _vector$7.y, _vector$7.z ); + + } + + return this; + + } + + /** + * Applies the given 3x3 normal matrix to the given attribute. Only works with + * item size `3`. + * + * @param {Matrix3} m - The normal matrix to apply. + * @return {InterleavedBufferAttribute} A reference to this instance. + */ + applyNormalMatrix( m ) { + + for ( let i = 0, l = this.count; i < l; i ++ ) { + + _vector$7.fromBufferAttribute( this, i ); + + _vector$7.applyNormalMatrix( m ); + + this.setXYZ( i, _vector$7.x, _vector$7.y, _vector$7.z ); + + } + + return this; + + } + + /** + * Applies the given 4x4 matrix to the given attribute. Only works with + * item size `3` and with direction vectors. + * + * @param {Matrix4} m - The matrix to apply. + * @return {InterleavedBufferAttribute} A reference to this instance. + */ + transformDirection( m ) { + + for ( let i = 0, l = this.count; i < l; i ++ ) { + + _vector$7.fromBufferAttribute( this, i ); + + _vector$7.transformDirection( m ); + + this.setXYZ( i, _vector$7.x, _vector$7.y, _vector$7.z ); + + } + + return this; + + } + + /** + * Returns the given component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} component - The component index. + * @return {number} The returned value. + */ + getComponent( index, component ) { + + let value = this.array[ index * this.data.stride + this.offset + component ]; + + if ( this.normalized ) value = denormalize( value, this.array ); + + return value; + + } + + /** + * Sets the given value to the given component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} component - The component index. + * @param {number} value - The value to set. + * @return {InterleavedBufferAttribute} A reference to this instance. + */ + setComponent( index, component, value ) { + + if ( this.normalized ) value = normalize( value, this.array ); + + this.data.array[ index * this.data.stride + this.offset + component ] = value; + + return this; + + } + + /** + * Sets the x component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} x - The value to set. + * @return {InterleavedBufferAttribute} A reference to this instance. + */ + setX( index, x ) { + + if ( this.normalized ) x = normalize( x, this.array ); + + this.data.array[ index * this.data.stride + this.offset ] = x; + + return this; + + } + + /** + * Sets the y component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} y - The value to set. + * @return {InterleavedBufferAttribute} A reference to this instance. + */ + setY( index, y ) { + + if ( this.normalized ) y = normalize( y, this.array ); + + this.data.array[ index * this.data.stride + this.offset + 1 ] = y; + + return this; + + } + + /** + * Sets the z component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} z - The value to set. + * @return {InterleavedBufferAttribute} A reference to this instance. + */ + setZ( index, z ) { + + if ( this.normalized ) z = normalize( z, this.array ); + + this.data.array[ index * this.data.stride + this.offset + 2 ] = z; + + return this; + + } + + /** + * Sets the w component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} w - The value to set. + * @return {InterleavedBufferAttribute} A reference to this instance. + */ + setW( index, w ) { + + if ( this.normalized ) w = normalize( w, this.array ); + + this.data.array[ index * this.data.stride + this.offset + 3 ] = w; + + return this; + + } + + /** + * Returns the x component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @return {number} The x component. + */ + getX( index ) { + + let x = this.data.array[ index * this.data.stride + this.offset ]; + + if ( this.normalized ) x = denormalize( x, this.array ); + + return x; + + } + + /** + * Returns the y component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @return {number} The y component. + */ + getY( index ) { + + let y = this.data.array[ index * this.data.stride + this.offset + 1 ]; + + if ( this.normalized ) y = denormalize( y, this.array ); + + return y; + + } + + /** + * Returns the z component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @return {number} The z component. + */ + getZ( index ) { + + let z = this.data.array[ index * this.data.stride + this.offset + 2 ]; + + if ( this.normalized ) z = denormalize( z, this.array ); + + return z; + + } + + /** + * Returns the w component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @return {number} The w component. + */ + getW( index ) { + + let w = this.data.array[ index * this.data.stride + this.offset + 3 ]; + + if ( this.normalized ) w = denormalize( w, this.array ); + + return w; + + } + + /** + * Sets the x and y component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} x - The value for the x component to set. + * @param {number} y - The value for the y component to set. + * @return {InterleavedBufferAttribute} A reference to this instance. + */ + setXY( index, x, y ) { + + index = index * this.data.stride + this.offset; + + if ( this.normalized ) { + + x = normalize( x, this.array ); + y = normalize( y, this.array ); + + } + + this.data.array[ index + 0 ] = x; + this.data.array[ index + 1 ] = y; + + return this; + + } + + /** + * Sets the x, y and z component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} x - The value for the x component to set. + * @param {number} y - The value for the y component to set. + * @param {number} z - The value for the z component to set. + * @return {InterleavedBufferAttribute} A reference to this instance. + */ + setXYZ( index, x, y, z ) { + + index = index * this.data.stride + this.offset; + + if ( this.normalized ) { + + x = normalize( x, this.array ); + y = normalize( y, this.array ); + z = normalize( z, this.array ); + + } + + this.data.array[ index + 0 ] = x; + this.data.array[ index + 1 ] = y; + this.data.array[ index + 2 ] = z; + + return this; + + } + + /** + * Sets the x, y, z and w component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} x - The value for the x component to set. + * @param {number} y - The value for the y component to set. + * @param {number} z - The value for the z component to set. + * @param {number} w - The value for the w component to set. + * @return {InterleavedBufferAttribute} A reference to this instance. + */ + setXYZW( index, x, y, z, w ) { + + index = index * this.data.stride + this.offset; + + if ( this.normalized ) { + + x = normalize( x, this.array ); + y = normalize( y, this.array ); + z = normalize( z, this.array ); + w = normalize( w, this.array ); + + } + + this.data.array[ index + 0 ] = x; + this.data.array[ index + 1 ] = y; + this.data.array[ index + 2 ] = z; + this.data.array[ index + 3 ] = w; + + return this; + + } + + /** + * Returns a new buffer attribute with copied values from this instance. + * + * If no parameter is provided, cloning an interleaved buffer attribute will de-interleave buffer data. + * + * @param {Object} [data] - An object with interleaved buffers that allows to retain the interleaved property. + * @return {BufferAttribute|InterleavedBufferAttribute} A clone of this instance. + */ + clone( data ) { + + if ( data === undefined ) { + + console.log( 'THREE.InterleavedBufferAttribute.clone(): Cloning an interleaved buffer attribute will de-interleave buffer data.' ); + + const array = []; + + for ( let i = 0; i < this.count; i ++ ) { + + const index = i * this.data.stride + this.offset; + + for ( let j = 0; j < this.itemSize; j ++ ) { + + array.push( this.data.array[ index + j ] ); + + } + + } + + return new BufferAttribute( new this.array.constructor( array ), this.itemSize, this.normalized ); + + } else { + + if ( data.interleavedBuffers === undefined ) { + + data.interleavedBuffers = {}; + + } + + if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) { + + data.interleavedBuffers[ this.data.uuid ] = this.data.clone( data ); + + } + + return new InterleavedBufferAttribute( data.interleavedBuffers[ this.data.uuid ], this.itemSize, this.offset, this.normalized ); + + } + + } + + /** + * Serializes the buffer attribute into JSON. + * + * If no parameter is provided, cloning an interleaved buffer attribute will de-interleave buffer data. + * + * @param {Object} [data] - An optional value holding meta information about the serialization. + * @return {Object} A JSON object representing the serialized buffer attribute. + */ + toJSON( data ) { + + if ( data === undefined ) { + + console.log( 'THREE.InterleavedBufferAttribute.toJSON(): Serializing an interleaved buffer attribute will de-interleave buffer data.' ); + + const array = []; + + for ( let i = 0; i < this.count; i ++ ) { + + const index = i * this.data.stride + this.offset; + + for ( let j = 0; j < this.itemSize; j ++ ) { + + array.push( this.data.array[ index + j ] ); + + } + + } + + // de-interleave data and save it as an ordinary buffer attribute for now + + return { + itemSize: this.itemSize, + type: this.array.constructor.name, + array: array, + normalized: this.normalized + }; + + } else { + + // save as true interleaved attribute + + if ( data.interleavedBuffers === undefined ) { + + data.interleavedBuffers = {}; + + } + + if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) { + + data.interleavedBuffers[ this.data.uuid ] = this.data.toJSON( data ); + + } + + return { + isInterleavedBufferAttribute: true, + itemSize: this.itemSize, + data: this.data.uuid, + offset: this.offset, + normalized: this.normalized + }; + + } + + } + +} + +/** + * A material for rendering instances of {@link Sprite}. + * + * ```js + * const map = new THREE.TextureLoader().load( 'textures/sprite.png' ); + * const material = new THREE.SpriteMaterial( { map: map, color: 0xffffff } ); + * + * const sprite = new THREE.Sprite( material ); + * sprite.scale.set(200, 200, 1) + * scene.add( sprite ); + * ``` + * + * @augments Material + */ +class SpriteMaterial extends Material { + + /** + * Constructs a new sprite material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSpriteMaterial = true; + + this.type = 'SpriteMaterial'; + + /** + * Color of the material. + * + * @type {Color} + * @default (1,1,1) + */ + this.color = new Color( 0xffffff ); + + /** + * The color map. May optionally include an alpha channel, typically combined + * with {@link Material#transparent} or {@link Material#alphaTest}. The texture map + * color is modulated by the diffuse `color`. + * + * @type {?Texture} + * @default null + */ + this.map = null; + + /** + * The alpha map is a grayscale texture that controls the opacity across the + * surface (black: fully transparent; white: fully opaque). + * + * Only the color of the texture is used, ignoring the alpha channel if one + * exists. For RGB and RGBA textures, the renderer will use the green channel + * when sampling this texture due to the extra bit of precision provided for + * green in DXT-compressed and uncompressed RGB 565 formats. Luminance-only and + * luminance/alpha textures will also still work as expected. + * + * @type {?Texture} + * @default null + */ + this.alphaMap = null; + + /** + * The rotation of the sprite in radians. + * + * @type {number} + * @default 0 + */ + this.rotation = 0; + + /** + * Specifies whether size of the sprite is attenuated by the camera depth (perspective camera only). + * + * @type {boolean} + * @default true + */ + this.sizeAttenuation = true; + + /** + * Overwritten since sprite materials are transparent + * by default. + * + * @type {boolean} + * @default true + */ + this.transparent = true; + + /** + * Whether the material is affected by fog or not. + * + * @type {boolean} + * @default true + */ + this.fog = true; + + this.setValues( parameters ); + + } + + copy( source ) { + + super.copy( source ); + + this.color.copy( source.color ); + + this.map = source.map; + + this.alphaMap = source.alphaMap; + + this.rotation = source.rotation; + + this.sizeAttenuation = source.sizeAttenuation; + + this.fog = source.fog; + + return this; + + } + +} + +let _geometry; + +const _intersectPoint = /*@__PURE__*/ new Vector3(); +const _worldScale = /*@__PURE__*/ new Vector3(); +const _mvPosition = /*@__PURE__*/ new Vector3(); + +const _alignedPosition = /*@__PURE__*/ new Vector2(); +const _rotatedPosition = /*@__PURE__*/ new Vector2(); +const _viewWorldMatrix = /*@__PURE__*/ new Matrix4(); + +const _vA = /*@__PURE__*/ new Vector3(); +const _vB = /*@__PURE__*/ new Vector3(); +const _vC = /*@__PURE__*/ new Vector3(); + +const _uvA = /*@__PURE__*/ new Vector2(); +const _uvB = /*@__PURE__*/ new Vector2(); +const _uvC = /*@__PURE__*/ new Vector2(); + +/** + * A sprite is a plane that always faces towards the camera, generally with a + * partially transparent texture applied. + * + * Sprites do not cast shadows, setting {@link Object3D#castShadow} to `true` will + * have no effect. + * + * ```js + * const map = new THREE.TextureLoader().load( 'sprite.png' ); + * const material = new THREE.SpriteMaterial( { map: map } ); + * + * const sprite = new THREE.Sprite( material ); + * scene.add( sprite ); + * ``` + * + * @augments Object3D + */ +class Sprite extends Object3D { + + /** + * Constructs a new sprite. + * + * @param {SpriteMaterial} [material] - The sprite material. + */ + constructor( material = new SpriteMaterial() ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSprite = true; + + this.type = 'Sprite'; + + if ( _geometry === undefined ) { + + _geometry = new BufferGeometry(); + + const float32Array = new Float32Array( [ + - 0.5, - 0.5, 0, 0, 0, + 0.5, - 0.5, 0, 1, 0, + 0.5, 0.5, 0, 1, 1, + - 0.5, 0.5, 0, 0, 1 + ] ); + + const interleavedBuffer = new InterleavedBuffer( float32Array, 5 ); + + _geometry.setIndex( [ 0, 1, 2, 0, 2, 3 ] ); + _geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) ); + _geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) ); + + } + + /** + * The sprite geometry. + * + * @type {BufferGeometry} + */ + this.geometry = _geometry; + + /** + * The sprite material. + * + * @type {SpriteMaterial} + */ + this.material = material; + + /** + * The sprite's anchor point, and the point around which the sprite rotates. + * A value of `(0.5, 0.5)` corresponds to the midpoint of the sprite. A value + * of `(0, 0)` corresponds to the lower left corner of the sprite. + * + * @type {Vector2} + * @default (0.5,0.5) + */ + this.center = new Vector2( 0.5, 0.5 ); + + /** + * The number of instances of this sprite. + * Can only be used with {@link WebGPURenderer}. + * + * @type {number} + * @default 1 + */ + this.count = 1; + + } + + /** + * Computes intersection points between a casted ray and this sprite. + * + * @param {Raycaster} raycaster - The raycaster. + * @param {Array} intersects - The target array that holds the intersection points. + */ + raycast( raycaster, intersects ) { + + if ( raycaster.camera === null ) { + + console.error( 'THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.' ); + + } + + _worldScale.setFromMatrixScale( this.matrixWorld ); + + _viewWorldMatrix.copy( raycaster.camera.matrixWorld ); + this.modelViewMatrix.multiplyMatrices( raycaster.camera.matrixWorldInverse, this.matrixWorld ); + + _mvPosition.setFromMatrixPosition( this.modelViewMatrix ); + + if ( raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false ) { + + _worldScale.multiplyScalar( - _mvPosition.z ); + + } + + const rotation = this.material.rotation; + let sin, cos; + + if ( rotation !== 0 ) { + + cos = Math.cos( rotation ); + sin = Math.sin( rotation ); + + } + + const center = this.center; + + transformVertex( _vA.set( - 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); + transformVertex( _vB.set( 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); + transformVertex( _vC.set( 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); + + _uvA.set( 0, 0 ); + _uvB.set( 1, 0 ); + _uvC.set( 1, 1 ); + + // check first triangle + let intersect = raycaster.ray.intersectTriangle( _vA, _vB, _vC, false, _intersectPoint ); + + if ( intersect === null ) { + + // check second triangle + transformVertex( _vB.set( - 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); + _uvB.set( 0, 1 ); + + intersect = raycaster.ray.intersectTriangle( _vA, _vC, _vB, false, _intersectPoint ); + if ( intersect === null ) { + + return; + + } + + } + + const distance = raycaster.ray.origin.distanceTo( _intersectPoint ); + + if ( distance < raycaster.near || distance > raycaster.far ) return; + + intersects.push( { + + distance: distance, + point: _intersectPoint.clone(), + uv: Triangle.getInterpolation( _intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() ), + face: null, + object: this + + } ); + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + if ( source.center !== undefined ) this.center.copy( source.center ); + + this.material = source.material; + + return this; + + } + +} + +function transformVertex( vertexPosition, mvPosition, center, scale, sin, cos ) { + + // compute position in camera space + _alignedPosition.subVectors( vertexPosition, center ).addScalar( 0.5 ).multiply( scale ); + + // to check if rotation is not zero + if ( sin !== undefined ) { + + _rotatedPosition.x = ( cos * _alignedPosition.x ) - ( sin * _alignedPosition.y ); + _rotatedPosition.y = ( sin * _alignedPosition.x ) + ( cos * _alignedPosition.y ); + + } else { + + _rotatedPosition.copy( _alignedPosition ); + + } + + + vertexPosition.copy( mvPosition ); + vertexPosition.x += _rotatedPosition.x; + vertexPosition.y += _rotatedPosition.y; + + // transform to world space + vertexPosition.applyMatrix4( _viewWorldMatrix ); + +} + +const _v1$2 = /*@__PURE__*/ new Vector3(); +const _v2$1 = /*@__PURE__*/ new Vector3(); + +/** + * A component for providing a basic Level of Detail (LOD) mechanism. + * + * Every LOD level is associated with an object, and rendering can be switched + * between them at the distances specified. Typically you would create, say, + * three meshes, one for far away (low detail), one for mid range (medium + * detail) and one for close up (high detail). + * + * ```js + * const lod = new THREE.LOD(); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00 } ); + * + * //Create spheres with 3 levels of detail and create new LOD levels for them + * for( let i = 0; i < 3; i++ ) { + * + * const geometry = new THREE.IcosahedronGeometry( 10, 3 - i ); + * const mesh = new THREE.Mesh( geometry, material ); + * lod.addLevel( mesh, i * 75 ); + * + * } + * + * scene.add( lod ); + * ``` + * + * @augments Object3D + */ +class LOD extends Object3D { + + /** + * Constructs a new LOD. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLOD = true; + + /** + * The current LOD index. + * + * @private + * @type {number} + * @default 0 + */ + this._currentLevel = 0; + + this.type = 'LOD'; + + Object.defineProperties( this, { + /** + * This array holds the LOD levels. + * + * @name LOD#levels + * @type {Array<{object:Object3D,distance:number,hysteresis:number}>} + */ + levels: { + enumerable: true, + value: [] + } + } ); + + /** + * Whether the LOD object is updated automatically by the renderer per frame + * or not. If set to `false`, you have to call {@link LOD#update} in the + * render loop by yourself. + * + * @type {boolean} + * @default true + */ + this.autoUpdate = true; + + } + + copy( source ) { + + super.copy( source, false ); + + const levels = source.levels; + + for ( let i = 0, l = levels.length; i < l; i ++ ) { + + const level = levels[ i ]; + + this.addLevel( level.object.clone(), level.distance, level.hysteresis ); + + } + + this.autoUpdate = source.autoUpdate; + + return this; + + } + + /** + * Adds a mesh that will display at a certain distance and greater. Typically + * the further away the distance, the lower the detail on the mesh. + * + * @param {Object3D} object - The 3D object to display at this level. + * @param {number} [distance=0] - The distance at which to display this level of detail. + * @param {number} [hysteresis=0] - Threshold used to avoid flickering at LOD boundaries, as a fraction of distance. + * @return {LOD} A reference to this instance. + */ + addLevel( object, distance = 0, hysteresis = 0 ) { + + distance = Math.abs( distance ); + + const levels = this.levels; + + let l; + + for ( l = 0; l < levels.length; l ++ ) { + + if ( distance < levels[ l ].distance ) { + + break; + + } + + } + + levels.splice( l, 0, { distance: distance, hysteresis: hysteresis, object: object } ); + + this.add( object ); + + return this; + + } + + /** + * Removes an existing level, based on the distance from the camera. + * Returns `true` when the level has been removed. Otherwise `false`. + * + * @param {number} distance - Distance of the level to remove. + * @return {boolean} Whether the level has been removed or not. + */ + removeLevel( distance ) { + + const levels = this.levels; + + for ( let i = 0; i < levels.length; i ++ ) { + + if ( levels[ i ].distance === distance ) { + + const removedElements = levels.splice( i, 1 ); + this.remove( removedElements[ 0 ].object ); + + return true; + + } + + } + + return false; + + } + + /** + * Returns the currently active LOD level index. + * + * @return {number} The current active LOD level index. + */ + getCurrentLevel() { + + return this._currentLevel; + + } + + /** + * Returns a reference to the first 3D object that is greater than + * the given distance. + * + * @param {number} distance - The LOD distance. + * @return {Object3D|null} The found 3D object. `null` if no 3D object has been found. + */ + getObjectForDistance( distance ) { + + const levels = this.levels; + + if ( levels.length > 0 ) { + + let i, l; + + for ( i = 1, l = levels.length; i < l; i ++ ) { + + let levelDistance = levels[ i ].distance; + + if ( levels[ i ].object.visible ) { + + levelDistance -= levelDistance * levels[ i ].hysteresis; + + } + + if ( distance < levelDistance ) { + + break; + + } + + } + + return levels[ i - 1 ].object; + + } + + return null; + + } + + /** + * Computes intersection points between a casted ray and this LOD. + * + * @param {Raycaster} raycaster - The raycaster. + * @param {Array} intersects - The target array that holds the intersection points. + */ + raycast( raycaster, intersects ) { + + const levels = this.levels; + + if ( levels.length > 0 ) { + + _v1$2.setFromMatrixPosition( this.matrixWorld ); + + const distance = raycaster.ray.origin.distanceTo( _v1$2 ); + + this.getObjectForDistance( distance ).raycast( raycaster, intersects ); + + } + + } + + /** + * Updates the LOD by computing which LOD level should be visible according + * to the current distance of the given camera. + * + * @param {Camera} camera - The camera the scene is rendered with. + */ + update( camera ) { + + const levels = this.levels; + + if ( levels.length > 1 ) { + + _v1$2.setFromMatrixPosition( camera.matrixWorld ); + _v2$1.setFromMatrixPosition( this.matrixWorld ); + + const distance = _v1$2.distanceTo( _v2$1 ) / camera.zoom; + + levels[ 0 ].object.visible = true; + + let i, l; + + for ( i = 1, l = levels.length; i < l; i ++ ) { + + let levelDistance = levels[ i ].distance; + + if ( levels[ i ].object.visible ) { + + levelDistance -= levelDistance * levels[ i ].hysteresis; + + } + + if ( distance >= levelDistance ) { + + levels[ i - 1 ].object.visible = false; + levels[ i ].object.visible = true; + + } else { + + break; + + } + + } + + this._currentLevel = i - 1; + + for ( ; i < l; i ++ ) { + + levels[ i ].object.visible = false; + + } + + } + + } + + toJSON( meta ) { + + const data = super.toJSON( meta ); + + if ( this.autoUpdate === false ) data.object.autoUpdate = false; + + data.object.levels = []; + + const levels = this.levels; + + for ( let i = 0, l = levels.length; i < l; i ++ ) { + + const level = levels[ i ]; + + data.object.levels.push( { + object: level.object.uuid, + distance: level.distance, + hysteresis: level.hysteresis + } ); + + } + + return data; + + } + +} + +const _basePosition = /*@__PURE__*/ new Vector3(); + +const _skinIndex = /*@__PURE__*/ new Vector4(); +const _skinWeight = /*@__PURE__*/ new Vector4(); + +const _vector3 = /*@__PURE__*/ new Vector3(); +const _matrix4 = /*@__PURE__*/ new Matrix4(); +const _vertex = /*@__PURE__*/ new Vector3(); + +const _sphere$5 = /*@__PURE__*/ new Sphere(); +const _inverseMatrix$2 = /*@__PURE__*/ new Matrix4(); +const _ray$2 = /*@__PURE__*/ new Ray(); + +/** + * A mesh that has a {@link Skeleton} that can then be used to animate the + * vertices of the geometry with skinning/skeleton animation. + * + * Next to a valid skeleton, the skinned mesh requires skin indices and weights + * as buffer attributes in its geometry. These attribute define which bones affect a single + * vertex to a certain extend. + * + * Typically skinned meshes are not created manually but loaders like {@link GLTFLoader} + * or {@link FBXLoader } import respective models. + * + * @augments Mesh + */ +class SkinnedMesh extends Mesh { + + /** + * Constructs a new skinned mesh. + * + * @param {BufferGeometry} [geometry] - The mesh geometry. + * @param {Material|Array} [material] - The mesh material. + */ + constructor( geometry, material ) { + + super( geometry, material ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSkinnedMesh = true; + + this.type = 'SkinnedMesh'; + + /** + * `AttachedBindMode` means the skinned mesh shares the same world space as the skeleton. + * This is not true when using `DetachedBindMode` which is useful when sharing a skeleton + * across multiple skinned meshes. + * + * @type {(AttachedBindMode|DetachedBindMode)} + * @default AttachedBindMode + */ + this.bindMode = AttachedBindMode; + + /** + * The base matrix that is used for the bound bone transforms. + * + * @type {Matrix4} + */ + this.bindMatrix = new Matrix4(); + + /** + * The base matrix that is used for resetting the bound bone transforms. + * + * @type {Matrix4} + */ + this.bindMatrixInverse = new Matrix4(); + + /** + * The bounding box of the skinned mesh. Can be computed via {@link SkinnedMesh#computeBoundingBox}. + * + * @type {?Box3} + * @default null + */ + this.boundingBox = null; + + /** + * The bounding sphere of the skinned mesh. Can be computed via {@link SkinnedMesh#computeBoundingSphere}. + * + * @type {?Sphere} + * @default null + */ + this.boundingSphere = null; + + } + + /** + * Computes the bounding box of the skinned mesh, and updates {@link SkinnedMesh#boundingBox}. + * The bounding box is not automatically computed by the engine; this method must be called by your app. + * If the skinned mesh is animated, the bounding box should be recomputed per frame in order to reflect + * the current animation state. + */ + computeBoundingBox() { + + const geometry = this.geometry; + + if ( this.boundingBox === null ) { + + this.boundingBox = new Box3(); + + } + + this.boundingBox.makeEmpty(); + + const positionAttribute = geometry.getAttribute( 'position' ); + + for ( let i = 0; i < positionAttribute.count; i ++ ) { + + this.getVertexPosition( i, _vertex ); + this.boundingBox.expandByPoint( _vertex ); + + } + + } + + /** + * Computes the bounding sphere of the skinned mesh, and updates {@link SkinnedMesh#boundingSphere}. + * The bounding sphere is automatically computed by the engine once when it is needed, e.g., for ray casting + * and view frustum culling. If the skinned mesh is animated, the bounding sphere should be recomputed + * per frame in order to reflect the current animation state. + */ + computeBoundingSphere() { + + const geometry = this.geometry; + + if ( this.boundingSphere === null ) { + + this.boundingSphere = new Sphere(); + + } + + this.boundingSphere.makeEmpty(); + + const positionAttribute = geometry.getAttribute( 'position' ); + + for ( let i = 0; i < positionAttribute.count; i ++ ) { + + this.getVertexPosition( i, _vertex ); + this.boundingSphere.expandByPoint( _vertex ); + + } + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.bindMode = source.bindMode; + this.bindMatrix.copy( source.bindMatrix ); + this.bindMatrixInverse.copy( source.bindMatrixInverse ); + + this.skeleton = source.skeleton; + + if ( source.boundingBox !== null ) this.boundingBox = source.boundingBox.clone(); + if ( source.boundingSphere !== null ) this.boundingSphere = source.boundingSphere.clone(); + + return this; + + } + + raycast( raycaster, intersects ) { + + const material = this.material; + const matrixWorld = this.matrixWorld; + + if ( material === undefined ) return; + + // test with bounding sphere in world space + + if ( this.boundingSphere === null ) this.computeBoundingSphere(); + + _sphere$5.copy( this.boundingSphere ); + _sphere$5.applyMatrix4( matrixWorld ); + + if ( raycaster.ray.intersectsSphere( _sphere$5 ) === false ) return; + + // convert ray to local space of skinned mesh + + _inverseMatrix$2.copy( matrixWorld ).invert(); + _ray$2.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$2 ); + + // test with bounding box in local space + + if ( this.boundingBox !== null ) { + + if ( _ray$2.intersectsBox( this.boundingBox ) === false ) return; + + } + + // test for intersections with geometry + + this._computeIntersections( raycaster, intersects, _ray$2 ); + + } + + getVertexPosition( index, target ) { + + super.getVertexPosition( index, target ); + + this.applyBoneTransform( index, target ); + + return target; + + } + + /** + * Binds the given skeleton to the skinned mesh. + * + * @param {Skeleton} skeleton - The skeleton to bind. + * @param {Matrix4} [bindMatrix] - The bind matrix. If no bind matrix is provided, + * the skinned mesh's world matrix will be used instead. + */ + bind( skeleton, bindMatrix ) { + + this.skeleton = skeleton; + + if ( bindMatrix === undefined ) { + + this.updateMatrixWorld( true ); + + this.skeleton.calculateInverses(); + + bindMatrix = this.matrixWorld; + + } + + this.bindMatrix.copy( bindMatrix ); + this.bindMatrixInverse.copy( bindMatrix ).invert(); + + } + + /** + * This method sets the skinned mesh in the rest pose). + */ + pose() { + + this.skeleton.pose(); + + } + + /** + * Normalizes the skin weights which are defined as a buffer attribute + * in the skinned mesh's geometry. + */ + normalizeSkinWeights() { + + const vector = new Vector4(); + + const skinWeight = this.geometry.attributes.skinWeight; + + for ( let i = 0, l = skinWeight.count; i < l; i ++ ) { + + vector.fromBufferAttribute( skinWeight, i ); + + const scale = 1.0 / vector.manhattanLength(); + + if ( scale !== Infinity ) { + + vector.multiplyScalar( scale ); + + } else { + + vector.set( 1, 0, 0, 0 ); // do something reasonable + + } + + skinWeight.setXYZW( i, vector.x, vector.y, vector.z, vector.w ); + + } + + } + + updateMatrixWorld( force ) { + + super.updateMatrixWorld( force ); + + if ( this.bindMode === AttachedBindMode ) { + + this.bindMatrixInverse.copy( this.matrixWorld ).invert(); + + } else if ( this.bindMode === DetachedBindMode ) { + + this.bindMatrixInverse.copy( this.bindMatrix ).invert(); + + } else { + + console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode ); + + } + + } + + /** + * Applies the bone transform associated with the given index to the given + * vertex position. Returns the updated vector. + * + * @param {number} index - The vertex index. + * @param {Vector3} target - The target object that is used to store the method's result. + * the skinned mesh's world matrix will be used instead. + * @return {Vector3} The updated vertex position. + */ + applyBoneTransform( index, target ) { + + const skeleton = this.skeleton; + const geometry = this.geometry; + + _skinIndex.fromBufferAttribute( geometry.attributes.skinIndex, index ); + _skinWeight.fromBufferAttribute( geometry.attributes.skinWeight, index ); + + _basePosition.copy( target ).applyMatrix4( this.bindMatrix ); + + target.set( 0, 0, 0 ); + + for ( let i = 0; i < 4; i ++ ) { + + const weight = _skinWeight.getComponent( i ); + + if ( weight !== 0 ) { + + const boneIndex = _skinIndex.getComponent( i ); + + _matrix4.multiplyMatrices( skeleton.bones[ boneIndex ].matrixWorld, skeleton.boneInverses[ boneIndex ] ); + + target.addScaledVector( _vector3.copy( _basePosition ).applyMatrix4( _matrix4 ), weight ); + + } + + } + + return target.applyMatrix4( this.bindMatrixInverse ); + + } + +} + +/** + * A bone which is part of a {@link Skeleton}. The skeleton in turn is used by + * the {@link SkinnedMesh}. + * + * ```js + * const root = new THREE.Bone(); + * const child = new THREE.Bone(); + * + * root.add( child ); + * child.position.y = 5; + * ``` + * + * @augments Object3D + */ +class Bone extends Object3D { + + /** + * Constructs a new bone. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBone = true; + + this.type = 'Bone'; + + } + +} + +/** + * Creates a texture directly from raw buffer data. + * + * The interpretation of the data depends on type and format: If the type is + * `UnsignedByteType`, a `Uint8Array` will be useful for addressing the + * texel data. If the format is `RGBAFormat`, data needs four values for + * one texel; Red, Green, Blue and Alpha (typically the opacity). + * + * @augments Texture + */ +class DataTexture extends Texture { + + /** + * Constructs a new data texture. + * + * @param {?TypedArray} [data=null] - The buffer data. + * @param {number} [width=1] - The width of the texture. + * @param {number} [height=1] - The height of the texture. + * @param {number} [format=RGBAFormat] - The texture format. + * @param {number} [type=UnsignedByteType] - The texture type. + * @param {number} [mapping=Texture.DEFAULT_MAPPING] - The texture mapping. + * @param {number} [wrapS=ClampToEdgeWrapping] - The wrapS value. + * @param {number} [wrapT=ClampToEdgeWrapping] - The wrapT value. + * @param {number} [magFilter=NearestFilter] - The mag filter value. + * @param {number} [minFilter=NearestFilter] - The min filter value. + * @param {number} [anisotropy=Texture.DEFAULT_ANISOTROPY] - The anisotropy value. + * @param {string} [colorSpace=NoColorSpace] - The color space. + */ + constructor( data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, colorSpace ) { + + super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isDataTexture = true; + + /** + * The image definition of a data texture. + * + * @type {{data:TypedArray,width:number,height:number}} + */ + this.image = { data: data, width: width, height: height }; + + /** + * Whether to generate mipmaps (if possible) for a texture. + * + * Overwritten and set to `false` by default. + * + * @type {boolean} + * @default false + */ + this.generateMipmaps = false; + + /** + * If set to `true`, the texture is flipped along the vertical axis when + * uploaded to the GPU. + * + * Overwritten and set to `false` by default. + * + * @type {boolean} + * @default false + */ + this.flipY = false; + + /** + * Specifies the alignment requirements for the start of each pixel row in memory. + * + * Overwritten and set to `1` by default. + * + * @type {boolean} + * @default 1 + */ + this.unpackAlignment = 1; + + } + +} + +const _offsetMatrix = /*@__PURE__*/ new Matrix4(); +const _identityMatrix = /*@__PURE__*/ new Matrix4(); + +/** + * Class for representing the armatures in `three.js`. The skeleton + * is defined by a hierarchy of bones. + * + * ```js + * const bones = []; + * + * const shoulder = new THREE.Bone(); + * const elbow = new THREE.Bone(); + * const hand = new THREE.Bone(); + * + * shoulder.add( elbow ); + * elbow.add( hand ); + * + * bones.push( shoulder , elbow, hand); + * + * shoulder.position.y = -5; + * elbow.position.y = 0; + * hand.position.y = 5; + * + * const armSkeleton = new THREE.Skeleton( bones ); + * ``` + */ +class Skeleton { + + /** + * Constructs a new skeleton. + * + * @param {Array} [bones] - An array of bones. + * @param {Array} [boneInverses] - An array of bone inverse matrices. + * If not provided, these matrices will be computed automatically via {@link Skeleton#calculateInverses}. + */ + constructor( bones = [], boneInverses = [] ) { + + this.uuid = generateUUID(); + + /** + * An array of bones defining the skeleton. + * + * @type {Array} + */ + this.bones = bones.slice( 0 ); + + /** + * An array of bone inverse matrices. + * + * @type {Array} + */ + this.boneInverses = boneInverses; + + /** + * An array buffer holding the bone data. + * Input data for {@link Skeleton#boneTexture}. + * + * @type {?Float32Array} + * @default null + */ + this.boneMatrices = null; + + /** + * A texture holding the bone data for use + * in the vertex shader. + * + * @type {?DataTexture} + * @default null + */ + this.boneTexture = null; + + this.init(); + + } + + /** + * Initializes the skeleton. This method gets automatically called by the constructor + * but depending on how the skeleton is created it might be necessary to call this method + * manually. + */ + init() { + + const bones = this.bones; + const boneInverses = this.boneInverses; + + this.boneMatrices = new Float32Array( bones.length * 16 ); + + // calculate inverse bone matrices if necessary + + if ( boneInverses.length === 0 ) { + + this.calculateInverses(); + + } else { + + // handle special case + + if ( bones.length !== boneInverses.length ) { + + console.warn( 'THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.' ); + + this.boneInverses = []; + + for ( let i = 0, il = this.bones.length; i < il; i ++ ) { + + this.boneInverses.push( new Matrix4() ); + + } + + } + + } + + } + + /** + * Computes the bone inverse matrices. This method resets {@link Skeleton#boneInverses} + * and fills it with new matrices. + */ + calculateInverses() { + + this.boneInverses.length = 0; + + for ( let i = 0, il = this.bones.length; i < il; i ++ ) { + + const inverse = new Matrix4(); + + if ( this.bones[ i ] ) { + + inverse.copy( this.bones[ i ].matrixWorld ).invert(); + + } + + this.boneInverses.push( inverse ); + + } + + } + + /** + * Resets the skeleton to the base pose. + */ + pose() { + + // recover the bind-time world matrices + + for ( let i = 0, il = this.bones.length; i < il; i ++ ) { + + const bone = this.bones[ i ]; + + if ( bone ) { + + bone.matrixWorld.copy( this.boneInverses[ i ] ).invert(); + + } + + } + + // compute the local matrices, positions, rotations and scales + + for ( let i = 0, il = this.bones.length; i < il; i ++ ) { + + const bone = this.bones[ i ]; + + if ( bone ) { + + if ( bone.parent && bone.parent.isBone ) { + + bone.matrix.copy( bone.parent.matrixWorld ).invert(); + bone.matrix.multiply( bone.matrixWorld ); + + } else { + + bone.matrix.copy( bone.matrixWorld ); + + } + + bone.matrix.decompose( bone.position, bone.quaternion, bone.scale ); + + } + + } + + } + + /** + * Resets the skeleton to the base pose. + */ + update() { + + const bones = this.bones; + const boneInverses = this.boneInverses; + const boneMatrices = this.boneMatrices; + const boneTexture = this.boneTexture; + + // flatten bone matrices to array + + for ( let i = 0, il = bones.length; i < il; i ++ ) { + + // compute the offset between the current and the original transform + + const matrix = bones[ i ] ? bones[ i ].matrixWorld : _identityMatrix; + + _offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] ); + _offsetMatrix.toArray( boneMatrices, i * 16 ); + + } + + if ( boneTexture !== null ) { + + boneTexture.needsUpdate = true; + + } + + } + + /** + * Returns a new skeleton with copied values from this instance. + * + * @return {Skeleton} A clone of this instance. + */ + clone() { + + return new Skeleton( this.bones, this.boneInverses ); + + } + + /** + * Computes a data texture for passing bone data to the vertex shader. + * + * @return {Skeleton} A reference of this instance. + */ + computeBoneTexture() { + + // layout (1 matrix = 4 pixels) + // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) + // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) + // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) + // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) + // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) + + let size = Math.sqrt( this.bones.length * 4 ); // 4 pixels needed for 1 matrix + size = Math.ceil( size / 4 ) * 4; + size = Math.max( size, 4 ); + + const boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel + boneMatrices.set( this.boneMatrices ); // copy current values + + const boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType ); + boneTexture.needsUpdate = true; + + this.boneMatrices = boneMatrices; + this.boneTexture = boneTexture; + + return this; + + } + + /** + * Searches through the skeleton's bone array and returns the first with a + * matching name. + * + * @param {string} name - The name of the bone. + * @return {Bone|undefined} The found bone. `undefined` if no bone has been found. + */ + getBoneByName( name ) { + + for ( let i = 0, il = this.bones.length; i < il; i ++ ) { + + const bone = this.bones[ i ]; + + if ( bone.name === name ) { + + return bone; + + } + + } + + return undefined; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose( ) { + + if ( this.boneTexture !== null ) { + + this.boneTexture.dispose(); + + this.boneTexture = null; + + } + + } + + /** + * Setups the skeleton by the given JSON and bones. + * + * @param {Object} json - The skeleton as serialized JSON. + * @param {Object} bones - An array of bones. + * @return {Skeleton} A reference of this instance. + */ + fromJSON( json, bones ) { + + this.uuid = json.uuid; + + for ( let i = 0, l = json.bones.length; i < l; i ++ ) { + + const uuid = json.bones[ i ]; + let bone = bones[ uuid ]; + + if ( bone === undefined ) { + + console.warn( 'THREE.Skeleton: No bone found with UUID:', uuid ); + bone = new Bone(); + + } + + this.bones.push( bone ); + this.boneInverses.push( new Matrix4().fromArray( json.boneInverses[ i ] ) ); + + } + + this.init(); + + return this; + + } + + /** + * Serializes the skeleton into JSON. + * + * @return {Object} A JSON object representing the serialized skeleton. + * @see {@link ObjectLoader#parse} + */ + toJSON() { + + const data = { + metadata: { + version: 4.7, + type: 'Skeleton', + generator: 'Skeleton.toJSON' + }, + bones: [], + boneInverses: [] + }; + + data.uuid = this.uuid; + + const bones = this.bones; + const boneInverses = this.boneInverses; + + for ( let i = 0, l = bones.length; i < l; i ++ ) { + + const bone = bones[ i ]; + data.bones.push( bone.uuid ); + + const boneInverse = boneInverses[ i ]; + data.boneInverses.push( boneInverse.toArray() ); + + } + + return data; + + } + +} + +/** + * An instanced version of a buffer attribute. + * + * @augments BufferAttribute + */ +class InstancedBufferAttribute extends BufferAttribute { + + /** + * Constructs a new instanced buffer attribute. + * + * @param {TypedArray} array - The array holding the attribute data. + * @param {number} itemSize - The item size. + * @param {boolean} [normalized=false] - Whether the data are normalized or not. + * @param {number} [meshPerAttribute=1] - How often a value of this buffer attribute should be repeated. + */ + constructor( array, itemSize, normalized, meshPerAttribute = 1 ) { + + super( array, itemSize, normalized ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isInstancedBufferAttribute = true; + + /** + * Defines how often a value of this buffer attribute should be repeated. A + * value of one means that each value of the instanced attribute is used for + * a single instance. A value of two means that each value is used for two + * consecutive instances (and so on). + * + * @type {number} + * @default 1 + */ + this.meshPerAttribute = meshPerAttribute; + + } + + copy( source ) { + + super.copy( source ); + + this.meshPerAttribute = source.meshPerAttribute; + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.meshPerAttribute = this.meshPerAttribute; + + data.isInstancedBufferAttribute = true; + + return data; + + } + +} + +const _instanceLocalMatrix = /*@__PURE__*/ new Matrix4(); +const _instanceWorldMatrix = /*@__PURE__*/ new Matrix4(); + +const _instanceIntersects = []; + +const _box3 = /*@__PURE__*/ new Box3(); +const _identity = /*@__PURE__*/ new Matrix4(); +const _mesh$1 = /*@__PURE__*/ new Mesh(); +const _sphere$4 = /*@__PURE__*/ new Sphere(); + +/** + * A special version of a mesh with instanced rendering support. Use + * this class if you have to render a large number of objects with the same + * geometry and material(s) but with different world transformations. The usage + * of 'InstancedMesh' will help you to reduce the number of draw calls and thus + * improve the overall rendering performance in your application. + * + * @augments Mesh + */ +class InstancedMesh extends Mesh { + + /** + * Constructs a new instanced mesh. + * + * @param {BufferGeometry} [geometry] - The mesh geometry. + * @param {Material|Array} [material] - The mesh material. + * @param {number} count - The number of instances. + */ + constructor( geometry, material, count ) { + + super( geometry, material ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isInstancedMesh = true; + + /** + * Represents the local transformation of all instances. You have to set its + * {@link BufferAttribute#needsUpdate} flag to true if you modify instanced data + * via {@link InstancedMesh#setMatrixAt}. + * + * @type {InstancedBufferAttribute} + */ + this.instanceMatrix = new InstancedBufferAttribute( new Float32Array( count * 16 ), 16 ); + + /** + * Represents the color of all instances. You have to set its + * {@link BufferAttribute#needsUpdate} flag to true if you modify instanced data + * via {@link InstancedMesh#setColorAt}. + * + * @type {?InstancedBufferAttribute} + * @default null + */ + this.instanceColor = null; + + /** + * Represents the morph target weights of all instances. You have to set its + * {@link Texture#needsUpdate} flag to true if you modify instanced data + * via {@link InstancedMesh#setMorphAt}. + * + * @type {?DataTexture} + * @default null + */ + this.morphTexture = null; + + /** + * The number of instances. + * + * @type {number} + */ + this.count = count; + + /** + * The bounding box of the instanced mesh. Can be computed via {@link InstancedMesh#computeBoundingBox}. + * + * @type {?Box3} + * @default null + */ + this.boundingBox = null; + + /** + * The bounding sphere of the instanced mesh. Can be computed via {@link InstancedMesh#computeBoundingSphere}. + * + * @type {?Sphere} + * @default null + */ + this.boundingSphere = null; + + for ( let i = 0; i < count; i ++ ) { + + this.setMatrixAt( i, _identity ); + + } + + } + + /** + * Computes the bounding box of the instanced mesh, and updates {@link InstancedMesh#boundingBox}. + * The bounding box is not automatically computed by the engine; this method must be called by your app. + * You may need to recompute the bounding box if an instance is transformed via {@link InstancedMesh#setMatrixAt}. + */ + computeBoundingBox() { + + const geometry = this.geometry; + const count = this.count; + + if ( this.boundingBox === null ) { + + this.boundingBox = new Box3(); + + } + + if ( geometry.boundingBox === null ) { + + geometry.computeBoundingBox(); + + } + + this.boundingBox.makeEmpty(); + + for ( let i = 0; i < count; i ++ ) { + + this.getMatrixAt( i, _instanceLocalMatrix ); + + _box3.copy( geometry.boundingBox ).applyMatrix4( _instanceLocalMatrix ); + + this.boundingBox.union( _box3 ); + + } + + } + + /** + * Computes the bounding sphere of the instanced mesh, and updates {@link InstancedMesh#boundingSphere} + * The engine automatically computes the bounding sphere when it is needed, e.g., for ray casting or view frustum culling. + * You may need to recompute the bounding sphere if an instance is transformed via {@link InstancedMesh#setMatrixAt}. + */ + computeBoundingSphere() { + + const geometry = this.geometry; + const count = this.count; + + if ( this.boundingSphere === null ) { + + this.boundingSphere = new Sphere(); + + } + + if ( geometry.boundingSphere === null ) { + + geometry.computeBoundingSphere(); + + } + + this.boundingSphere.makeEmpty(); + + for ( let i = 0; i < count; i ++ ) { + + this.getMatrixAt( i, _instanceLocalMatrix ); + + _sphere$4.copy( geometry.boundingSphere ).applyMatrix4( _instanceLocalMatrix ); + + this.boundingSphere.union( _sphere$4 ); + + } + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.instanceMatrix.copy( source.instanceMatrix ); + + if ( source.morphTexture !== null ) this.morphTexture = source.morphTexture.clone(); + if ( source.instanceColor !== null ) this.instanceColor = source.instanceColor.clone(); + + this.count = source.count; + + if ( source.boundingBox !== null ) this.boundingBox = source.boundingBox.clone(); + if ( source.boundingSphere !== null ) this.boundingSphere = source.boundingSphere.clone(); + + return this; + + } + + /** + * Gets the color of the defined instance. + * + * @param {number} index - The instance index. + * @param {Color} color - The target object that is used to store the method's result. + */ + getColorAt( index, color ) { + + color.fromArray( this.instanceColor.array, index * 3 ); + + } + + /** + * Gets the local transformation matrix of the defined instance. + * + * @param {number} index - The instance index. + * @param {Matrix4} matrix - The target object that is used to store the method's result. + */ + getMatrixAt( index, matrix ) { + + matrix.fromArray( this.instanceMatrix.array, index * 16 ); + + } + + /** + * Gets the morph target weights of the defined instance. + * + * @param {number} index - The instance index. + * @param {Mesh} object - The target object that is used to store the method's result. + */ + getMorphAt( index, object ) { + + const objectInfluences = object.morphTargetInfluences; + + const array = this.morphTexture.source.data.data; + + const len = objectInfluences.length + 1; // All influences + the baseInfluenceSum + + const dataIndex = index * len + 1; // Skip the baseInfluenceSum at the beginning + + for ( let i = 0; i < objectInfluences.length; i ++ ) { + + objectInfluences[ i ] = array[ dataIndex + i ]; + + } + + } + + raycast( raycaster, intersects ) { + + const matrixWorld = this.matrixWorld; + const raycastTimes = this.count; + + _mesh$1.geometry = this.geometry; + _mesh$1.material = this.material; + + if ( _mesh$1.material === undefined ) return; + + // test with bounding sphere first + + if ( this.boundingSphere === null ) this.computeBoundingSphere(); + + _sphere$4.copy( this.boundingSphere ); + _sphere$4.applyMatrix4( matrixWorld ); + + if ( raycaster.ray.intersectsSphere( _sphere$4 ) === false ) return; + + // now test each instance + + for ( let instanceId = 0; instanceId < raycastTimes; instanceId ++ ) { + + // calculate the world matrix for each instance + + this.getMatrixAt( instanceId, _instanceLocalMatrix ); + + _instanceWorldMatrix.multiplyMatrices( matrixWorld, _instanceLocalMatrix ); + + // the mesh represents this single instance + + _mesh$1.matrixWorld = _instanceWorldMatrix; + + _mesh$1.raycast( raycaster, _instanceIntersects ); + + // process the result of raycast + + for ( let i = 0, l = _instanceIntersects.length; i < l; i ++ ) { + + const intersect = _instanceIntersects[ i ]; + intersect.instanceId = instanceId; + intersect.object = this; + intersects.push( intersect ); + + } + + _instanceIntersects.length = 0; + + } + + } + + /** + * Sets the given color to the defined instance. Make sure you set the `needsUpdate` flag of + * {@link InstancedMesh#instanceColor} to `true` after updating all the colors. + * + * @param {number} index - The instance index. + * @param {Color} color - The instance color. + */ + setColorAt( index, color ) { + + if ( this.instanceColor === null ) { + + this.instanceColor = new InstancedBufferAttribute( new Float32Array( this.instanceMatrix.count * 3 ).fill( 1 ), 3 ); + + } + + color.toArray( this.instanceColor.array, index * 3 ); + + } + + /** + * Sets the given local transformation matrix to the defined instance. Make sure you set the `needsUpdate` flag of + * {@link InstancedMesh#instanceMatrix} to `true` after updating all the colors. + * + * @param {number} index - The instance index. + * @param {Matrix4} matrix - The local transformation. + */ + setMatrixAt( index, matrix ) { + + matrix.toArray( this.instanceMatrix.array, index * 16 ); + + } + + /** + * Sets the morph target weights to the defined instance. Make sure you set the `needsUpdate` flag of + * {@link InstancedMesh#morphTexture} to `true` after updating all the influences. + * + * @param {number} index - The instance index. + * @param {Mesh} object - A mesh which `morphTargetInfluences` property containing the morph target weights + * of a single instance. + */ + setMorphAt( index, object ) { + + const objectInfluences = object.morphTargetInfluences; + + const len = objectInfluences.length + 1; // morphBaseInfluence + all influences + + if ( this.morphTexture === null ) { + + this.morphTexture = new DataTexture( new Float32Array( len * this.count ), len, this.count, RedFormat, FloatType ); + + } + + const array = this.morphTexture.source.data.data; + + let morphInfluencesSum = 0; + + for ( let i = 0; i < objectInfluences.length; i ++ ) { + + morphInfluencesSum += objectInfluences[ i ]; + + } + + const morphBaseInfluence = this.geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; + + const dataIndex = len * index; + + array[ dataIndex ] = morphBaseInfluence; + + array.set( objectInfluences, dataIndex + 1 ); + + } + + updateMorphTargets() { + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + this.dispatchEvent( { type: 'dispose' } ); + + if ( this.morphTexture !== null ) { + + this.morphTexture.dispose(); + this.morphTexture = null; + + } + + } + +} + +const _vector1 = /*@__PURE__*/ new Vector3(); +const _vector2 = /*@__PURE__*/ new Vector3(); +const _normalMatrix = /*@__PURE__*/ new Matrix3(); + +/** + * A two dimensional surface that extends infinitely in 3D space, represented + * in [Hessian normal form]{@link http://mathworld.wolfram.com/HessianNormalForm.html} + * by a unit length normal vector and a constant. + */ +class Plane { + + /** + * Constructs a new plane. + * + * @param {Vector3} [normal=(1,0,0)] - A unit length vector defining the normal of the plane. + * @param {number} [constant=0] - The signed distance from the origin to the plane. + */ + constructor( normal = new Vector3( 1, 0, 0 ), constant = 0 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPlane = true; + + /** + * A unit length vector defining the normal of the plane. + * + * @type {Vector3} + */ + this.normal = normal; + + /** + * The signed distance from the origin to the plane. + * + * @type {number} + * @default 0 + */ + this.constant = constant; + + } + + /** + * Sets the plane components by copying the given values. + * + * @param {Vector3} normal - The normal. + * @param {number} constant - The constant. + * @return {Plane} A reference to this plane. + */ + set( normal, constant ) { + + this.normal.copy( normal ); + this.constant = constant; + + return this; + + } + + /** + * Sets the plane components by defining `x`, `y`, `z` as the + * plane normal and `w` as the constant. + * + * @param {number} x - The value for the normal's x component. + * @param {number} y - The value for the normal's y component. + * @param {number} z - The value for the normal's z component. + * @param {number} w - The constant value. + * @return {Plane} A reference to this plane. + */ + setComponents( x, y, z, w ) { + + this.normal.set( x, y, z ); + this.constant = w; + + return this; + + } + + /** + * Sets the plane from the given normal and coplanar point (that is a point + * that lies onto the plane). + * + * @param {Vector3} normal - The normal. + * @param {Vector3} point - A coplanar point. + * @return {Plane} A reference to this plane. + */ + setFromNormalAndCoplanarPoint( normal, point ) { + + this.normal.copy( normal ); + this.constant = - point.dot( this.normal ); + + return this; + + } + + /** + * Sets the plane from three coplanar points. The winding order is + * assumed to be counter-clockwise, and determines the direction of + * the plane normal. + * + * @param {Vector3} a - The first coplanar point. + * @param {Vector3} b - The second coplanar point. + * @param {Vector3} c - The third coplanar point. + * @return {Plane} A reference to this plane. + */ + setFromCoplanarPoints( a, b, c ) { + + const normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize(); + + // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? + + this.setFromNormalAndCoplanarPoint( normal, a ); + + return this; + + } + + /** + * Copies the values of the given plane to this instance. + * + * @param {Plane} plane - The plane to copy. + * @return {Plane} A reference to this plane. + */ + copy( plane ) { + + this.normal.copy( plane.normal ); + this.constant = plane.constant; + + return this; + + } + + /** + * Normalizes the plane normal and adjusts the constant accordingly. + * + * @return {Plane} A reference to this plane. + */ + normalize() { + + // Note: will lead to a divide by zero if the plane is invalid. + + const inverseNormalLength = 1.0 / this.normal.length(); + this.normal.multiplyScalar( inverseNormalLength ); + this.constant *= inverseNormalLength; + + return this; + + } + + /** + * Negates both the plane normal and the constant. + * + * @return {Plane} A reference to this plane. + */ + negate() { + + this.constant *= - 1; + this.normal.negate(); + + return this; + + } + + /** + * Returns the signed distance from the given point to this plane. + * + * @param {Vector3} point - The point to compute the distance for. + * @return {number} The signed distance. + */ + distanceToPoint( point ) { + + return this.normal.dot( point ) + this.constant; + + } + + /** + * Returns the signed distance from the given sphere to this plane. + * + * @param {Sphere} sphere - The sphere to compute the distance for. + * @return {number} The signed distance. + */ + distanceToSphere( sphere ) { + + return this.distanceToPoint( sphere.center ) - sphere.radius; + + } + + /** + * Projects a the given point onto the plane. + * + * @param {Vector3} point - The point to project. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The projected point on the plane. + */ + projectPoint( point, target ) { + + return target.copy( point ).addScaledVector( this.normal, - this.distanceToPoint( point ) ); + + } + + /** + * Returns the intersection point of the passed line and the plane. Returns + * `null` if the line does not intersect. Returns the line's starting point if + * the line is coplanar with the plane. + * + * @param {Line3} line - The line to compute the intersection for. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {?Vector3} The intersection point. + */ + intersectLine( line, target ) { + + const direction = line.delta( _vector1 ); + + const denominator = this.normal.dot( direction ); + + if ( denominator === 0 ) { + + // line is coplanar, return origin + if ( this.distanceToPoint( line.start ) === 0 ) { + + return target.copy( line.start ); + + } + + // Unsure if this is the correct method to handle this case. + return null; + + } + + const t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; + + if ( t < 0 || t > 1 ) { + + return null; + + } + + return target.copy( line.start ).addScaledVector( direction, t ); + + } + + /** + * Returns `true` if the given line segment intersects with (passes through) the plane. + * + * @param {Line3} line - The line to test. + * @return {boolean} Whether the given line segment intersects with the plane or not. + */ + intersectsLine( line ) { + + // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. + + const startSign = this.distanceToPoint( line.start ); + const endSign = this.distanceToPoint( line.end ); + + return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); + + } + + /** + * Returns `true` if the given bounding box intersects with the plane. + * + * @param {Box3} box - The bounding box to test. + * @return {boolean} Whether the given bounding box intersects with the plane or not. + */ + intersectsBox( box ) { + + return box.intersectsPlane( this ); + + } + + /** + * Returns `true` if the given bounding sphere intersects with the plane. + * + * @param {Sphere} sphere - The bounding sphere to test. + * @return {boolean} Whether the given bounding sphere intersects with the plane or not. + */ + intersectsSphere( sphere ) { + + return sphere.intersectsPlane( this ); + + } + + /** + * Returns a coplanar vector to the plane, by calculating the + * projection of the normal at the origin onto the plane. + * + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The coplanar point. + */ + coplanarPoint( target ) { + + return target.copy( this.normal ).multiplyScalar( - this.constant ); + + } + + /** + * Apply a 4x4 matrix to the plane. The matrix must be an affine, homogeneous transform. + * + * The optional normal matrix can be pre-computed like so: + * ```js + * const optionalNormalMatrix = new THREE.Matrix3().getNormalMatrix( matrix ); + * ``` + * + * @param {Matrix4} matrix - The transformation matrix. + * @param {Matrix4} [optionalNormalMatrix] - A pre-computed normal matrix. + * @return {Plane} A reference to this plane. + */ + applyMatrix4( matrix, optionalNormalMatrix ) { + + const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix ); + + const referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix ); + + const normal = this.normal.applyMatrix3( normalMatrix ).normalize(); + + this.constant = - referencePoint.dot( normal ); + + return this; + + } + + /** + * Translates the plane by the distance defined by the given offset vector. + * Note that this only affects the plane constant and will not affect the normal vector. + * + * @param {Vector3} offset - The offset vector. + * @return {Plane} A reference to this plane. + */ + translate( offset ) { + + this.constant -= offset.dot( this.normal ); + + return this; + + } + + /** + * Returns `true` if this plane is equal with the given one. + * + * @param {Plane} plane - The plane to test for equality. + * @return {boolean} Whether this plane is equal with the given one. + */ + equals( plane ) { + + return plane.normal.equals( this.normal ) && ( plane.constant === this.constant ); + + } + + /** + * Returns a new plane with copied values from this instance. + * + * @return {Plane} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + +} + +const _sphere$3 = /*@__PURE__*/ new Sphere(); +const _vector$6 = /*@__PURE__*/ new Vector3(); + +/** + * Frustums are used to determine what is inside the camera's field of view. + * They help speed up the rendering process - objects which lie outside a camera's + * frustum can safely be excluded from rendering. + * + * This class is mainly intended for use internally by a renderer. + */ +class Frustum { + + /** + * Constructs a new frustum. + * + * @param {Plane} [p0] - The first plane that encloses the frustum. + * @param {Plane} [p1] - The second plane that encloses the frustum. + * @param {Plane} [p2] - The third plane that encloses the frustum. + * @param {Plane} [p3] - The fourth plane that encloses the frustum. + * @param {Plane} [p4] - The fifth plane that encloses the frustum. + * @param {Plane} [p5] - The sixth plane that encloses the frustum. + */ + constructor( p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane() ) { + + /** + * This array holds the planes that enclose the frustum. + * + * @type {Array} + */ + this.planes = [ p0, p1, p2, p3, p4, p5 ]; + + } + + /** + * Sets the frustum planes by copying the given planes. + * + * @param {Plane} [p0] - The first plane that encloses the frustum. + * @param {Plane} [p1] - The second plane that encloses the frustum. + * @param {Plane} [p2] - The third plane that encloses the frustum. + * @param {Plane} [p3] - The fourth plane that encloses the frustum. + * @param {Plane} [p4] - The fifth plane that encloses the frustum. + * @param {Plane} [p5] - The sixth plane that encloses the frustum. + * @return {Frustum} A reference to this frustum. + */ + set( p0, p1, p2, p3, p4, p5 ) { + + const planes = this.planes; + + planes[ 0 ].copy( p0 ); + planes[ 1 ].copy( p1 ); + planes[ 2 ].copy( p2 ); + planes[ 3 ].copy( p3 ); + planes[ 4 ].copy( p4 ); + planes[ 5 ].copy( p5 ); + + return this; + + } + + /** + * Copies the values of the given frustum to this instance. + * + * @param {Frustum} frustum - The frustum to copy. + * @return {Frustum} A reference to this frustum. + */ + copy( frustum ) { + + const planes = this.planes; + + for ( let i = 0; i < 6; i ++ ) { + + planes[ i ].copy( frustum.planes[ i ] ); + + } + + return this; + + } + + /** + * Sets the frustum planes from the given projection matrix. + * + * @param {Matrix4} m - The projection matrix. + * @param {(WebGLCoordinateSystem|WebGPUCoordinateSystem)} coordinateSystem - The coordinate system. + * @return {Frustum} A reference to this frustum. + */ + setFromProjectionMatrix( m, coordinateSystem = WebGLCoordinateSystem ) { + + const planes = this.planes; + const me = m.elements; + const me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ]; + const me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ]; + const me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ]; + const me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ]; + + planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize(); + planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize(); + planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize(); + planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize(); + planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize(); + + if ( coordinateSystem === WebGLCoordinateSystem ) { + + planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize(); + + } else if ( coordinateSystem === WebGPUCoordinateSystem ) { + + planes[ 5 ].setComponents( me2, me6, me10, me14 ).normalize(); + + } else { + + throw new Error( 'THREE.Frustum.setFromProjectionMatrix(): Invalid coordinate system: ' + coordinateSystem ); + + } + + return this; + + } + + /** + * Returns `true` if the 3D object's bounding sphere is intersecting this frustum. + * + * Note that the 3D object must have a geometry so that the bounding sphere can be calculated. + * + * @param {Object3D} object - The 3D object to test. + * @return {boolean} Whether the 3D object's bounding sphere is intersecting this frustum or not. + */ + intersectsObject( object ) { + + if ( object.boundingSphere !== undefined ) { + + if ( object.boundingSphere === null ) object.computeBoundingSphere(); + + _sphere$3.copy( object.boundingSphere ).applyMatrix4( object.matrixWorld ); + + } else { + + const geometry = object.geometry; + + if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); + + _sphere$3.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld ); + + } + + return this.intersectsSphere( _sphere$3 ); + + } + + /** + * Returns `true` if the given sprite is intersecting this frustum. + * + * @param {Sprite} sprite - The sprite to test. + * @return {boolean} Whether the sprite is intersecting this frustum or not. + */ + intersectsSprite( sprite ) { + + _sphere$3.center.set( 0, 0, 0 ); + _sphere$3.radius = 0.7071067811865476; + _sphere$3.applyMatrix4( sprite.matrixWorld ); + + return this.intersectsSphere( _sphere$3 ); + + } + + /** + * Returns `true` if the given bounding sphere is intersecting this frustum. + * + * @param {Sphere} sphere - The bounding sphere to test. + * @return {boolean} Whether the bounding sphere is intersecting this frustum or not. + */ + intersectsSphere( sphere ) { + + const planes = this.planes; + const center = sphere.center; + const negRadius = - sphere.radius; + + for ( let i = 0; i < 6; i ++ ) { + + const distance = planes[ i ].distanceToPoint( center ); + + if ( distance < negRadius ) { + + return false; + + } + + } + + return true; + + } + + /** + * Returns `true` if the given bounding box is intersecting this frustum. + * + * @param {Box3} box - The bounding box to test. + * @return {boolean} Whether the bounding box is intersecting this frustum or not. + */ + intersectsBox( box ) { + + const planes = this.planes; + + for ( let i = 0; i < 6; i ++ ) { + + const plane = planes[ i ]; + + // corner at max distance + + _vector$6.x = plane.normal.x > 0 ? box.max.x : box.min.x; + _vector$6.y = plane.normal.y > 0 ? box.max.y : box.min.y; + _vector$6.z = plane.normal.z > 0 ? box.max.z : box.min.z; + + if ( plane.distanceToPoint( _vector$6 ) < 0 ) { + + return false; + + } + + } + + return true; + + } + + /** + * Returns `true` if the given point lies within the frustum. + * + * @param {Vector3} point - The point to test. + * @return {boolean} Whether the point lies within this frustum or not. + */ + containsPoint( point ) { + + const planes = this.planes; + + for ( let i = 0; i < 6; i ++ ) { + + if ( planes[ i ].distanceToPoint( point ) < 0 ) { + + return false; + + } + + } + + return true; + + } + + /** + * Returns a new frustum with copied values from this instance. + * + * @return {Frustum} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + +} + +const _projScreenMatrix$2 = /*@__PURE__*/ new Matrix4(); +const _frustum$1 = /*@__PURE__*/ new Frustum(); + +/** + * FrustumArray is used to determine if an object is visible in at least one camera + * from an array of cameras. This is particularly useful for multi-view renderers. +*/ +class FrustumArray { + + /** + * Constructs a new frustum array. + * + */ + constructor() { + + /** + * The coordinate system to use. + * + * @type {WebGLCoordinateSystem|WebGPUCoordinateSystem} + * @default WebGLCoordinateSystem + */ + this.coordinateSystem = WebGLCoordinateSystem; + + } + + /** + * Returns `true` if the 3D object's bounding sphere is intersecting any frustum + * from the camera array. + * + * @param {Object3D} object - The 3D object to test. + * @param {Object} cameraArray - An object with a cameras property containing an array of cameras. + * @return {boolean} Whether the 3D object is visible in any camera. + */ + intersectsObject( object, cameraArray ) { + + if ( ! cameraArray.isArrayCamera || cameraArray.cameras.length === 0 ) { + + return false; + + } + + for ( let i = 0; i < cameraArray.cameras.length; i ++ ) { + + const camera = cameraArray.cameras[ i ]; + + _projScreenMatrix$2.multiplyMatrices( + camera.projectionMatrix, + camera.matrixWorldInverse + ); + + _frustum$1.setFromProjectionMatrix( + _projScreenMatrix$2, + this.coordinateSystem + ); + + if ( _frustum$1.intersectsObject( object ) ) { + + return true; // Object is visible in at least one camera + + } + + } + + return false; // Not visible in any camera + + } + + /** + * Returns `true` if the given sprite is intersecting any frustum + * from the camera array. + * + * @param {Sprite} sprite - The sprite to test. + * @param {Object} cameraArray - An object with a cameras property containing an array of cameras. + * @return {boolean} Whether the sprite is visible in any camera. + */ + intersectsSprite( sprite, cameraArray ) { + + if ( ! cameraArray || ! cameraArray.cameras || cameraArray.cameras.length === 0 ) { + + return false; + + } + + for ( let i = 0; i < cameraArray.cameras.length; i ++ ) { + + const camera = cameraArray.cameras[ i ]; + + _projScreenMatrix$2.multiplyMatrices( + camera.projectionMatrix, + camera.matrixWorldInverse + ); + + _frustum$1.setFromProjectionMatrix( + _projScreenMatrix$2, + this.coordinateSystem + ); + + if ( _frustum$1.intersectsSprite( sprite ) ) { + + return true; // Sprite is visible in at least one camera + + } + + } + + return false; // Not visible in any camera + + } + + /** + * Returns `true` if the given bounding sphere is intersecting any frustum + * from the camera array. + * + * @param {Sphere} sphere - The bounding sphere to test. + * @param {Object} cameraArray - An object with a cameras property containing an array of cameras. + * @return {boolean} Whether the sphere is visible in any camera. + */ + intersectsSphere( sphere, cameraArray ) { + + if ( ! cameraArray || ! cameraArray.cameras || cameraArray.cameras.length === 0 ) { + + return false; + + } + + for ( let i = 0; i < cameraArray.cameras.length; i ++ ) { + + const camera = cameraArray.cameras[ i ]; + + _projScreenMatrix$2.multiplyMatrices( + camera.projectionMatrix, + camera.matrixWorldInverse + ); + + _frustum$1.setFromProjectionMatrix( + _projScreenMatrix$2, + this.coordinateSystem + ); + + if ( _frustum$1.intersectsSphere( sphere ) ) { + + return true; // Sphere is visible in at least one camera + + } + + } + + return false; // Not visible in any camera + + } + + /** + * Returns `true` if the given bounding box is intersecting any frustum + * from the camera array. + * + * @param {Box3} box - The bounding box to test. + * @param {Object} cameraArray - An object with a cameras property containing an array of cameras. + * @return {boolean} Whether the box is visible in any camera. + */ + intersectsBox( box, cameraArray ) { + + if ( ! cameraArray || ! cameraArray.cameras || cameraArray.cameras.length === 0 ) { + + return false; + + } + + for ( let i = 0; i < cameraArray.cameras.length; i ++ ) { + + const camera = cameraArray.cameras[ i ]; + + _projScreenMatrix$2.multiplyMatrices( + camera.projectionMatrix, + camera.matrixWorldInverse + ); + + _frustum$1.setFromProjectionMatrix( + _projScreenMatrix$2, + this.coordinateSystem + ); + + if ( _frustum$1.intersectsBox( box ) ) { + + return true; // Box is visible in at least one camera + + } + + } + + return false; // Not visible in any camera + + } + + /** + * Returns `true` if the given point lies within any frustum + * from the camera array. + * + * @param {Vector3} point - The point to test. + * @param {Object} cameraArray - An object with a cameras property containing an array of cameras. + * @return {boolean} Whether the point is visible in any camera. + */ + containsPoint( point, cameraArray ) { + + if ( ! cameraArray || ! cameraArray.cameras || cameraArray.cameras.length === 0 ) { + + return false; + + } + + for ( let i = 0; i < cameraArray.cameras.length; i ++ ) { + + const camera = cameraArray.cameras[ i ]; + + _projScreenMatrix$2.multiplyMatrices( + camera.projectionMatrix, + camera.matrixWorldInverse + ); + + _frustum$1.setFromProjectionMatrix( + _projScreenMatrix$2, + this.coordinateSystem + ); + + if ( _frustum$1.containsPoint( point ) ) { + + return true; // Point is visible in at least one camera + + } + + } + + return false; // Not visible in any camera + + } + + /** + * Returns a new frustum array with copied values from this instance. + * + * @return {FrustumArray} A clone of this instance. + */ + clone() { + + return new FrustumArray(); + + } + +} + +function ascIdSort( a, b ) { + + return a - b; + +} + +function sortOpaque( a, b ) { + + return a.z - b.z; + +} + +function sortTransparent( a, b ) { + + return b.z - a.z; + +} + +class MultiDrawRenderList { + + constructor() { + + this.index = 0; + this.pool = []; + this.list = []; + + } + + push( start, count, z, index ) { + + const pool = this.pool; + const list = this.list; + if ( this.index >= pool.length ) { + + pool.push( { + + start: - 1, + count: - 1, + z: - 1, + index: - 1, + + } ); + + } + + const item = pool[ this.index ]; + list.push( item ); + this.index ++; + + item.start = start; + item.count = count; + item.z = z; + item.index = index; + + } + + reset() { + + this.list.length = 0; + this.index = 0; + + } + +} + +const _matrix$1 = /*@__PURE__*/ new Matrix4(); +const _whiteColor = /*@__PURE__*/ new Color( 1, 1, 1 ); +const _frustum = /*@__PURE__*/ new Frustum(); +const _frustumArray = /*@__PURE__*/ new FrustumArray(); +const _box$1 = /*@__PURE__*/ new Box3(); +const _sphere$2 = /*@__PURE__*/ new Sphere(); +const _vector$5 = /*@__PURE__*/ new Vector3(); +const _forward$1 = /*@__PURE__*/ new Vector3(); +const _temp = /*@__PURE__*/ new Vector3(); +const _renderList = /*@__PURE__*/ new MultiDrawRenderList(); +const _mesh = /*@__PURE__*/ new Mesh(); +const _batchIntersects = []; + +// copies data from attribute "src" into "target" starting at "targetOffset" +function copyAttributeData( src, target, targetOffset = 0 ) { + + const itemSize = target.itemSize; + if ( src.isInterleavedBufferAttribute || src.array.constructor !== target.array.constructor ) { + + // use the component getters and setters if the array data cannot + // be copied directly + const vertexCount = src.count; + for ( let i = 0; i < vertexCount; i ++ ) { + + for ( let c = 0; c < itemSize; c ++ ) { + + target.setComponent( i + targetOffset, c, src.getComponent( i, c ) ); + + } + + } + + } else { + + // faster copy approach using typed array set function + target.array.set( src.array, targetOffset * itemSize ); + + } + + target.needsUpdate = true; + +} + +// safely copies array contents to a potentially smaller array +function copyArrayContents( src, target ) { + + if ( src.constructor !== target.constructor ) { + + // if arrays are of a different type (eg due to index size increasing) then data must be per-element copied + const len = Math.min( src.length, target.length ); + for ( let i = 0; i < len; i ++ ) { + + target[ i ] = src[ i ]; + + } + + } else { + + // if the arrays use the same data layout we can use a fast block copy + const len = Math.min( src.length, target.length ); + target.set( new src.constructor( src.buffer, 0, len ) ); + + } + +} + +/** + * A special version of a mesh with multi draw batch rendering support. Use + * this class if you have to render a large number of objects with the same + * material but with different geometries or world transformations. The usage of + * `BatchedMesh` will help you to reduce the number of draw calls and thus improve the overall + * rendering performance in your application. + * + * ```js + * const box = new THREE.BoxGeometry( 1, 1, 1 ); + * const sphere = new THREE.SphereGeometry( 1, 12, 12 ); + * const material = new THREE.MeshBasicMaterial( { color: 0x00ff00 } ); + * + * // initialize and add geometries into the batched mesh + * const batchedMesh = new BatchedMesh( 10, 5000, 10000, material ); + * const boxGeometryId = batchedMesh.addGeometry( box ); + * const sphereGeometryId = batchedMesh.addGeometry( sphere ); + * + * // create instances of those geometries + * const boxInstancedId1 = batchedMesh.addInstance( boxGeometryId ); + * const boxInstancedId2 = batchedMesh.addInstance( boxGeometryId ); + * + * const sphereInstancedId1 = batchedMesh.addInstance( sphereGeometryId ); + * const sphereInstancedId2 = batchedMesh.addInstance( sphereGeometryId ); + * + * // position the geometries + * batchedMesh.setMatrixAt( boxInstancedId1, boxMatrix1 ); + * batchedMesh.setMatrixAt( boxInstancedId2, boxMatrix2 ); + * + * batchedMesh.setMatrixAt( sphereInstancedId1, sphereMatrix1 ); + * batchedMesh.setMatrixAt( sphereInstancedId2, sphereMatrix2 ); + * + * scene.add( batchedMesh ); + * ``` + * + * @augments Mesh + */ +class BatchedMesh extends Mesh { + + /** + * Constructs a new batched mesh. + * + * @param {number} maxInstanceCount - The maximum number of individual instances planned to be added and rendered. + * @param {number} maxVertexCount - The maximum number of vertices to be used by all unique geometries. + * @param {number} [maxIndexCount=maxVertexCount*2] - The maximum number of indices to be used by all unique geometries + * @param {Material|Array} [material] - The mesh material. + */ + constructor( maxInstanceCount, maxVertexCount, maxIndexCount = maxVertexCount * 2, material ) { + + super( new BufferGeometry(), material ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBatchedMesh = true; + + /** + * When set ot `true`, the individual objects of a batch are frustum culled. + * + * @type {boolean} + * @default true + */ + this.perObjectFrustumCulled = true; + + /** + * When set to `true`, the individual objects of a batch are sorted to improve overdraw-related artifacts. + * If the material is marked as "transparent" objects are rendered back to front and if not then they are + * rendered front to back. + * + * @type {boolean} + * @default true + */ + this.sortObjects = true; + + /** + * The bounding box of the batched mesh. Can be computed via {@link BatchedMesh#computeBoundingBox}. + * + * @type {?Box3} + * @default null + */ + this.boundingBox = null; + + /** + * The bounding sphere of the batched mesh. Can be computed via {@link BatchedMesh#computeBoundingSphere}. + * + * @type {?Sphere} + * @default null + */ + this.boundingSphere = null; + + /** + * Takes a sort a function that is run before render. The function takes a list of instances to + * sort and a camera. The objects in the list include a "z" field to perform a depth-ordered + * sort with. + * + * @type {?Function} + * @default null + */ + this.customSort = null; + + // stores visible, active, and geometry id per instance and reserved buffer ranges for geometries + this._instanceInfo = []; + this._geometryInfo = []; + + // instance, geometry ids that have been set as inactive, and are available to be overwritten + this._availableInstanceIds = []; + this._availableGeometryIds = []; + + // used to track where the next point is that geometry should be inserted + this._nextIndexStart = 0; + this._nextVertexStart = 0; + this._geometryCount = 0; + + // flags + this._visibilityChanged = true; + this._geometryInitialized = false; + + // cached user options + this._maxInstanceCount = maxInstanceCount; + this._maxVertexCount = maxVertexCount; + this._maxIndexCount = maxIndexCount; + + // buffers for multi draw + this._multiDrawCounts = new Int32Array( maxInstanceCount ); + this._multiDrawStarts = new Int32Array( maxInstanceCount ); + this._multiDrawCount = 0; + this._multiDrawInstances = null; + + // Local matrix per geometry by using data texture + this._matricesTexture = null; + this._indirectTexture = null; + this._colorsTexture = null; + + this._initMatricesTexture(); + this._initIndirectTexture(); + + } + + /** + * The maximum number of individual instances that can be stored in the batch. + * + * @type {number} + * @readonly + */ + get maxInstanceCount() { + + return this._maxInstanceCount; + + } + + /** + * The instance count. + * + * @type {number} + * @readonly + */ + get instanceCount() { + + return this._instanceInfo.length - this._availableInstanceIds.length; + + } + + /** + * The number of unused vertices. + * + * @type {number} + * @readonly + */ + get unusedVertexCount() { + + return this._maxVertexCount - this._nextVertexStart; + + } + + /** + * The number of unused indices. + * + * @type {number} + * @readonly + */ + get unusedIndexCount() { + + return this._maxIndexCount - this._nextIndexStart; + + } + + _initMatricesTexture() { + + // layout (1 matrix = 4 pixels) + // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) + // with 8x8 pixel texture max 16 matrices * 4 pixels = (8 * 8) + // 16x16 pixel texture max 64 matrices * 4 pixels = (16 * 16) + // 32x32 pixel texture max 256 matrices * 4 pixels = (32 * 32) + // 64x64 pixel texture max 1024 matrices * 4 pixels = (64 * 64) + + let size = Math.sqrt( this._maxInstanceCount * 4 ); // 4 pixels needed for 1 matrix + size = Math.ceil( size / 4 ) * 4; + size = Math.max( size, 4 ); + + const matricesArray = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel + const matricesTexture = new DataTexture( matricesArray, size, size, RGBAFormat, FloatType ); + + this._matricesTexture = matricesTexture; + + } + + _initIndirectTexture() { + + let size = Math.sqrt( this._maxInstanceCount ); + size = Math.ceil( size ); + + const indirectArray = new Uint32Array( size * size ); + const indirectTexture = new DataTexture( indirectArray, size, size, RedIntegerFormat, UnsignedIntType ); + + this._indirectTexture = indirectTexture; + + } + + _initColorsTexture() { + + let size = Math.sqrt( this._maxInstanceCount ); + size = Math.ceil( size ); + + // 4 floats per RGBA pixel initialized to white + const colorsArray = new Float32Array( size * size * 4 ).fill( 1 ); + const colorsTexture = new DataTexture( colorsArray, size, size, RGBAFormat, FloatType ); + colorsTexture.colorSpace = ColorManagement.workingColorSpace; + + this._colorsTexture = colorsTexture; + + } + + _initializeGeometry( reference ) { + + const geometry = this.geometry; + const maxVertexCount = this._maxVertexCount; + const maxIndexCount = this._maxIndexCount; + if ( this._geometryInitialized === false ) { + + for ( const attributeName in reference.attributes ) { + + const srcAttribute = reference.getAttribute( attributeName ); + const { array, itemSize, normalized } = srcAttribute; + + const dstArray = new array.constructor( maxVertexCount * itemSize ); + const dstAttribute = new BufferAttribute( dstArray, itemSize, normalized ); + + geometry.setAttribute( attributeName, dstAttribute ); + + } + + if ( reference.getIndex() !== null ) { + + // Reserve last u16 index for primitive restart. + const indexArray = maxVertexCount > 65535 + ? new Uint32Array( maxIndexCount ) + : new Uint16Array( maxIndexCount ); + + geometry.setIndex( new BufferAttribute( indexArray, 1 ) ); + + } + + this._geometryInitialized = true; + + } + + } + + // Make sure the geometry is compatible with the existing combined geometry attributes + _validateGeometry( geometry ) { + + // check to ensure the geometries are using consistent attributes and indices + const batchGeometry = this.geometry; + if ( Boolean( geometry.getIndex() ) !== Boolean( batchGeometry.getIndex() ) ) { + + throw new Error( 'THREE.BatchedMesh: All geometries must consistently have "index".' ); + + } + + for ( const attributeName in batchGeometry.attributes ) { + + if ( ! geometry.hasAttribute( attributeName ) ) { + + throw new Error( `THREE.BatchedMesh: Added geometry missing "${ attributeName }". All geometries must have consistent attributes.` ); + + } + + const srcAttribute = geometry.getAttribute( attributeName ); + const dstAttribute = batchGeometry.getAttribute( attributeName ); + if ( srcAttribute.itemSize !== dstAttribute.itemSize || srcAttribute.normalized !== dstAttribute.normalized ) { + + throw new Error( 'THREE.BatchedMesh: All attributes must have a consistent itemSize and normalized value.' ); + + } + + } + + } + + /** + * Validates the instance defined by the given ID. + * + * @param {number} instanceId - The instance to validate. + */ + validateInstanceId( instanceId ) { + + const instanceInfo = this._instanceInfo; + if ( instanceId < 0 || instanceId >= instanceInfo.length || instanceInfo[ instanceId ].active === false ) { + + throw new Error( `THREE.BatchedMesh: Invalid instanceId ${instanceId}. Instance is either out of range or has been deleted.` ); + + } + + } + + /** + * Validates the geometry defined by the given ID. + * + * @param {number} geometryId - The geometry to validate. + */ + validateGeometryId( geometryId ) { + + const geometryInfoList = this._geometryInfo; + if ( geometryId < 0 || geometryId >= geometryInfoList.length || geometryInfoList[ geometryId ].active === false ) { + + throw new Error( `THREE.BatchedMesh: Invalid geometryId ${geometryId}. Geometry is either out of range or has been deleted.` ); + + } + + } + + /** + * Takes a sort a function that is run before render. The function takes a list of instances to + * sort and a camera. The objects in the list include a "z" field to perform a depth-ordered sort with. + * + * @param {Function} func - The custom sort function. + * @return {BatchedMesh} A reference to this batched mesh. + */ + setCustomSort( func ) { + + this.customSort = func; + return this; + + } + + /** + * Computes the bounding box, updating {@link BatchedMesh#boundingBox}. + * Bounding boxes aren't computed by default. They need to be explicitly computed, + * otherwise they are `null`. + */ + computeBoundingBox() { + + if ( this.boundingBox === null ) { + + this.boundingBox = new Box3(); + + } + + const boundingBox = this.boundingBox; + const instanceInfo = this._instanceInfo; + + boundingBox.makeEmpty(); + for ( let i = 0, l = instanceInfo.length; i < l; i ++ ) { + + if ( instanceInfo[ i ].active === false ) continue; + + const geometryId = instanceInfo[ i ].geometryIndex; + this.getMatrixAt( i, _matrix$1 ); + this.getBoundingBoxAt( geometryId, _box$1 ).applyMatrix4( _matrix$1 ); + boundingBox.union( _box$1 ); + + } + + } + + /** + * Computes the bounding sphere, updating {@link BatchedMesh#boundingSphere}. + * Bounding spheres aren't computed by default. They need to be explicitly computed, + * otherwise they are `null`. + */ + computeBoundingSphere() { + + if ( this.boundingSphere === null ) { + + this.boundingSphere = new Sphere(); + + } + + const boundingSphere = this.boundingSphere; + const instanceInfo = this._instanceInfo; + + boundingSphere.makeEmpty(); + for ( let i = 0, l = instanceInfo.length; i < l; i ++ ) { + + if ( instanceInfo[ i ].active === false ) continue; + + const geometryId = instanceInfo[ i ].geometryIndex; + this.getMatrixAt( i, _matrix$1 ); + this.getBoundingSphereAt( geometryId, _sphere$2 ).applyMatrix4( _matrix$1 ); + boundingSphere.union( _sphere$2 ); + + } + + } + + /** + * Adds a new instance to the batch using the geometry of the given ID and returns + * a new id referring to the new instance to be used by other functions. + * + * @param {number} geometryId - The ID of a previously added geometry via {@link BatchedMesh#addGeometry}. + * @return {number} The instance ID. + */ + addInstance( geometryId ) { + + const atCapacity = this._instanceInfo.length >= this.maxInstanceCount; + + // ensure we're not over geometry + if ( atCapacity && this._availableInstanceIds.length === 0 ) { + + throw new Error( 'THREE.BatchedMesh: Maximum item count reached.' ); + + } + + const instanceInfo = { + visible: true, + active: true, + geometryIndex: geometryId, + }; + + let drawId = null; + + // Prioritize using previously freed instance ids + if ( this._availableInstanceIds.length > 0 ) { + + this._availableInstanceIds.sort( ascIdSort ); + + drawId = this._availableInstanceIds.shift(); + this._instanceInfo[ drawId ] = instanceInfo; + + } else { + + drawId = this._instanceInfo.length; + this._instanceInfo.push( instanceInfo ); + + } + + const matricesTexture = this._matricesTexture; + _matrix$1.identity().toArray( matricesTexture.image.data, drawId * 16 ); + matricesTexture.needsUpdate = true; + + const colorsTexture = this._colorsTexture; + if ( colorsTexture ) { + + _whiteColor.toArray( colorsTexture.image.data, drawId * 4 ); + colorsTexture.needsUpdate = true; + + } + + this._visibilityChanged = true; + return drawId; + + } + + /** + * Adds the given geometry to the batch and returns the associated + * geometry id referring to it to be used in other functions. + * + * @param {BufferGeometry} geometry - The geometry to add. + * @param {number} [reservedVertexCount=-1] - Optional parameter specifying the amount of + * vertex buffer space to reserve for the added geometry. This is necessary if it is planned + * to set a new geometry at this index at a later time that is larger than the original geometry. + * Defaults to the length of the given geometry vertex buffer. + * @param {number} [reservedIndexCount=-1] - Optional parameter specifying the amount of index + * buffer space to reserve for the added geometry. This is necessary if it is planned to set a + * new geometry at this index at a later time that is larger than the original geometry. Defaults to + * the length of the given geometry index buffer. + * @return {number} The geometry ID. + */ + addGeometry( geometry, reservedVertexCount = - 1, reservedIndexCount = - 1 ) { + + this._initializeGeometry( geometry ); + + this._validateGeometry( geometry ); + + const geometryInfo = { + // geometry information + vertexStart: - 1, + vertexCount: - 1, + reservedVertexCount: - 1, + + indexStart: - 1, + indexCount: - 1, + reservedIndexCount: - 1, + + // draw range information + start: - 1, + count: - 1, + + // state + boundingBox: null, + boundingSphere: null, + active: true, + }; + + const geometryInfoList = this._geometryInfo; + geometryInfo.vertexStart = this._nextVertexStart; + geometryInfo.reservedVertexCount = reservedVertexCount === - 1 ? geometry.getAttribute( 'position' ).count : reservedVertexCount; + + const index = geometry.getIndex(); + const hasIndex = index !== null; + if ( hasIndex ) { + + geometryInfo.indexStart = this._nextIndexStart; + geometryInfo.reservedIndexCount = reservedIndexCount === - 1 ? index.count : reservedIndexCount; + + } + + if ( + geometryInfo.indexStart !== - 1 && + geometryInfo.indexStart + geometryInfo.reservedIndexCount > this._maxIndexCount || + geometryInfo.vertexStart + geometryInfo.reservedVertexCount > this._maxVertexCount + ) { + + throw new Error( 'THREE.BatchedMesh: Reserved space request exceeds the maximum buffer size.' ); + + } + + // update id + let geometryId; + if ( this._availableGeometryIds.length > 0 ) { + + this._availableGeometryIds.sort( ascIdSort ); + + geometryId = this._availableGeometryIds.shift(); + geometryInfoList[ geometryId ] = geometryInfo; + + + } else { + + geometryId = this._geometryCount; + this._geometryCount ++; + geometryInfoList.push( geometryInfo ); + + } + + // update the geometry + this.setGeometryAt( geometryId, geometry ); + + // increment the next geometry position + this._nextIndexStart = geometryInfo.indexStart + geometryInfo.reservedIndexCount; + this._nextVertexStart = geometryInfo.vertexStart + geometryInfo.reservedVertexCount; + + return geometryId; + + } + + /** + * Replaces the geometry at the given ID with the provided geometry. Throws an error if there + * is not enough space reserved for geometry. Calling this will change all instances that are + * rendering that geometry. + * + * @param {number} geometryId - The ID of the geometry that should be replaced with the given geometry. + * @param {BufferGeometry} geometry - The new geometry. + * @return {number} The geometry ID. + */ + setGeometryAt( geometryId, geometry ) { + + if ( geometryId >= this._geometryCount ) { + + throw new Error( 'THREE.BatchedMesh: Maximum geometry count reached.' ); + + } + + this._validateGeometry( geometry ); + + const batchGeometry = this.geometry; + const hasIndex = batchGeometry.getIndex() !== null; + const dstIndex = batchGeometry.getIndex(); + const srcIndex = geometry.getIndex(); + const geometryInfo = this._geometryInfo[ geometryId ]; + if ( + hasIndex && + srcIndex.count > geometryInfo.reservedIndexCount || + geometry.attributes.position.count > geometryInfo.reservedVertexCount + ) { + + throw new Error( 'THREE.BatchedMesh: Reserved space not large enough for provided geometry.' ); + + } + + // copy geometry buffer data over + const vertexStart = geometryInfo.vertexStart; + const reservedVertexCount = geometryInfo.reservedVertexCount; + geometryInfo.vertexCount = geometry.getAttribute( 'position' ).count; + + for ( const attributeName in batchGeometry.attributes ) { + + // copy attribute data + const srcAttribute = geometry.getAttribute( attributeName ); + const dstAttribute = batchGeometry.getAttribute( attributeName ); + copyAttributeData( srcAttribute, dstAttribute, vertexStart ); + + // fill the rest in with zeroes + const itemSize = srcAttribute.itemSize; + for ( let i = srcAttribute.count, l = reservedVertexCount; i < l; i ++ ) { + + const index = vertexStart + i; + for ( let c = 0; c < itemSize; c ++ ) { + + dstAttribute.setComponent( index, c, 0 ); + + } + + } + + dstAttribute.needsUpdate = true; + dstAttribute.addUpdateRange( vertexStart * itemSize, reservedVertexCount * itemSize ); + + } + + // copy index + if ( hasIndex ) { + + const indexStart = geometryInfo.indexStart; + const reservedIndexCount = geometryInfo.reservedIndexCount; + geometryInfo.indexCount = geometry.getIndex().count; + + // copy index data over + for ( let i = 0; i < srcIndex.count; i ++ ) { + + dstIndex.setX( indexStart + i, vertexStart + srcIndex.getX( i ) ); + + } + + // fill the rest in with zeroes + for ( let i = srcIndex.count, l = reservedIndexCount; i < l; i ++ ) { + + dstIndex.setX( indexStart + i, vertexStart ); + + } + + dstIndex.needsUpdate = true; + dstIndex.addUpdateRange( indexStart, geometryInfo.reservedIndexCount ); + + } + + // update the draw range + geometryInfo.start = hasIndex ? geometryInfo.indexStart : geometryInfo.vertexStart; + geometryInfo.count = hasIndex ? geometryInfo.indexCount : geometryInfo.vertexCount; + + // store the bounding boxes + geometryInfo.boundingBox = null; + if ( geometry.boundingBox !== null ) { + + geometryInfo.boundingBox = geometry.boundingBox.clone(); + + } + + geometryInfo.boundingSphere = null; + if ( geometry.boundingSphere !== null ) { + + geometryInfo.boundingSphere = geometry.boundingSphere.clone(); + + } + + this._visibilityChanged = true; + return geometryId; + + } + + /** + * Deletes the geometry defined by the given ID from this batch. Any instances referencing + * this geometry will also be removed as a side effect. + * + * @param {number} geometryId - The ID of the geometry to remove from the batch. + * @return {BatchedMesh} A reference to this batched mesh. + */ + deleteGeometry( geometryId ) { + + const geometryInfoList = this._geometryInfo; + if ( geometryId >= geometryInfoList.length || geometryInfoList[ geometryId ].active === false ) { + + return this; + + } + + // delete any instances associated with this geometry + const instanceInfo = this._instanceInfo; + for ( let i = 0, l = instanceInfo.length; i < l; i ++ ) { + + if ( instanceInfo[ i ].active && instanceInfo[ i ].geometryIndex === geometryId ) { + + this.deleteInstance( i ); + + } + + } + + geometryInfoList[ geometryId ].active = false; + this._availableGeometryIds.push( geometryId ); + this._visibilityChanged = true; + + return this; + + } + + /** + * Deletes an existing instance from the batch using the given ID. + * + * @param {number} instanceId - The ID of the instance to remove from the batch. + * @return {BatchedMesh} A reference to this batched mesh. + */ + deleteInstance( instanceId ) { + + this.validateInstanceId( instanceId ); + + this._instanceInfo[ instanceId ].active = false; + this._availableInstanceIds.push( instanceId ); + this._visibilityChanged = true; + + return this; + + } + + /** + * Repacks the sub geometries in [name] to remove any unused space remaining from + * previously deleted geometry, freeing up space to add new geometry. + * + * @param {number} instanceId - The ID of the instance to remove from the batch. + * @return {BatchedMesh} A reference to this batched mesh. + */ + optimize() { + + // track the next indices to copy data to + let nextVertexStart = 0; + let nextIndexStart = 0; + + // Iterate over all geometry ranges in order sorted from earliest in the geometry buffer to latest + // in the geometry buffer. Because draw range objects can be reused there is no guarantee of their order. + const geometryInfoList = this._geometryInfo; + const indices = geometryInfoList + .map( ( e, i ) => i ) + .sort( ( a, b ) => { + + return geometryInfoList[ a ].vertexStart - geometryInfoList[ b ].vertexStart; + + } ); + + const geometry = this.geometry; + for ( let i = 0, l = geometryInfoList.length; i < l; i ++ ) { + + // if a geometry range is inactive then don't copy anything + const index = indices[ i ]; + const geometryInfo = geometryInfoList[ index ]; + if ( geometryInfo.active === false ) { + + continue; + + } + + // if a geometry contains an index buffer then shift it, as well + if ( geometry.index !== null ) { + + if ( geometryInfo.indexStart !== nextIndexStart ) { + + const { indexStart, vertexStart, reservedIndexCount } = geometryInfo; + const index = geometry.index; + const array = index.array; + + // shift the index pointers based on how the vertex data will shift + // adjusting the index must happen first so the original vertex start value is available + const elementDelta = nextVertexStart - vertexStart; + for ( let j = indexStart; j < indexStart + reservedIndexCount; j ++ ) { + + array[ j ] = array[ j ] + elementDelta; + + } + + index.array.copyWithin( nextIndexStart, indexStart, indexStart + reservedIndexCount ); + index.addUpdateRange( nextIndexStart, reservedIndexCount ); + + geometryInfo.indexStart = nextIndexStart; + + } + + nextIndexStart += geometryInfo.reservedIndexCount; + + } + + // if a geometry needs to be moved then copy attribute data to overwrite unused space + if ( geometryInfo.vertexStart !== nextVertexStart ) { + + const { vertexStart, reservedVertexCount } = geometryInfo; + const attributes = geometry.attributes; + for ( const key in attributes ) { + + const attribute = attributes[ key ]; + const { array, itemSize } = attribute; + array.copyWithin( nextVertexStart * itemSize, vertexStart * itemSize, ( vertexStart + reservedVertexCount ) * itemSize ); + attribute.addUpdateRange( nextVertexStart * itemSize, reservedVertexCount * itemSize ); + + } + + geometryInfo.vertexStart = nextVertexStart; + + } + + nextVertexStart += geometryInfo.reservedVertexCount; + geometryInfo.start = geometry.index ? geometryInfo.indexStart : geometryInfo.vertexStart; + + // step the next geometry points to the shifted position + this._nextIndexStart = geometry.index ? geometryInfo.indexStart + geometryInfo.reservedIndexCount : 0; + this._nextVertexStart = geometryInfo.vertexStart + geometryInfo.reservedVertexCount; + + } + + return this; + + } + + /** + * Returns the bounding box for the given geometry. + * + * @param {number} geometryId - The ID of the geometry to return the bounding box for. + * @param {Box3} target - The target object that is used to store the method's result. + * @return {Box3|null} The geometry's bounding box. Returns `null` if no geometry has been found for the given ID. + */ + getBoundingBoxAt( geometryId, target ) { + + if ( geometryId >= this._geometryCount ) { + + return null; + + } + + // compute bounding box + const geometry = this.geometry; + const geometryInfo = this._geometryInfo[ geometryId ]; + if ( geometryInfo.boundingBox === null ) { + + const box = new Box3(); + const index = geometry.index; + const position = geometry.attributes.position; + for ( let i = geometryInfo.start, l = geometryInfo.start + geometryInfo.count; i < l; i ++ ) { + + let iv = i; + if ( index ) { + + iv = index.getX( iv ); + + } + + box.expandByPoint( _vector$5.fromBufferAttribute( position, iv ) ); + + } + + geometryInfo.boundingBox = box; + + } + + target.copy( geometryInfo.boundingBox ); + return target; + + } + + /** + * Returns the bounding sphere for the given geometry. + * + * @param {number} geometryId - The ID of the geometry to return the bounding sphere for. + * @param {Sphere} target - The target object that is used to store the method's result. + * @return {Sphere|null} The geometry's bounding sphere. Returns `null` if no geometry has been found for the given ID. + */ + getBoundingSphereAt( geometryId, target ) { + + if ( geometryId >= this._geometryCount ) { + + return null; + + } + + // compute bounding sphere + const geometry = this.geometry; + const geometryInfo = this._geometryInfo[ geometryId ]; + if ( geometryInfo.boundingSphere === null ) { + + const sphere = new Sphere(); + this.getBoundingBoxAt( geometryId, _box$1 ); + _box$1.getCenter( sphere.center ); + + const index = geometry.index; + const position = geometry.attributes.position; + + let maxRadiusSq = 0; + for ( let i = geometryInfo.start, l = geometryInfo.start + geometryInfo.count; i < l; i ++ ) { + + let iv = i; + if ( index ) { + + iv = index.getX( iv ); + + } + + _vector$5.fromBufferAttribute( position, iv ); + maxRadiusSq = Math.max( maxRadiusSq, sphere.center.distanceToSquared( _vector$5 ) ); + + } + + sphere.radius = Math.sqrt( maxRadiusSq ); + geometryInfo.boundingSphere = sphere; + + } + + target.copy( geometryInfo.boundingSphere ); + return target; + + } + + /** + * Sets the given local transformation matrix to the defined instance. + * Negatively scaled matrices are not supported. + * + * @param {number} instanceId - The ID of an instance to set the matrix of. + * @param {Matrix4} matrix - A 4x4 matrix representing the local transformation of a single instance. + * @return {BatchedMesh} A reference to this batched mesh. + */ + setMatrixAt( instanceId, matrix ) { + + this.validateInstanceId( instanceId ); + + const matricesTexture = this._matricesTexture; + const matricesArray = this._matricesTexture.image.data; + matrix.toArray( matricesArray, instanceId * 16 ); + matricesTexture.needsUpdate = true; + + return this; + + } + + /** + * Returns the local transformation matrix of the defined instance. + * + * @param {number} instanceId - The ID of an instance to get the matrix of. + * @param {Matrix4} matrix - The target object that is used to store the method's result. + * @return {Matrix4} The instance's local transformation matrix. + */ + getMatrixAt( instanceId, matrix ) { + + this.validateInstanceId( instanceId ); + return matrix.fromArray( this._matricesTexture.image.data, instanceId * 16 ); + + } + + /** + * Sets the given color to the defined instance. + * + * @param {number} instanceId - The ID of an instance to set the color of. + * @param {Color} color - The color to set the instance to. + * @return {BatchedMesh} A reference to this batched mesh. + */ + setColorAt( instanceId, color ) { + + this.validateInstanceId( instanceId ); + + if ( this._colorsTexture === null ) { + + this._initColorsTexture(); + + } + + color.toArray( this._colorsTexture.image.data, instanceId * 4 ); + this._colorsTexture.needsUpdate = true; + + return this; + + } + + /** + * Returns the color of the defined instance. + * + * @param {number} instanceId - The ID of an instance to get the color of. + * @param {Color} color - The target object that is used to store the method's result. + * @return {Color} The instance's color. + */ + getColorAt( instanceId, color ) { + + this.validateInstanceId( instanceId ); + return color.fromArray( this._colorsTexture.image.data, instanceId * 4 ); + + } + + /** + * Sets the visibility of the instance. + * + * @param {number} instanceId - The id of the instance to set the visibility of. + * @param {boolean} visible - Whether the instance is visible or not. + * @return {BatchedMesh} A reference to this batched mesh. + */ + setVisibleAt( instanceId, visible ) { + + this.validateInstanceId( instanceId ); + + if ( this._instanceInfo[ instanceId ].visible === visible ) { + + return this; + + } + + this._instanceInfo[ instanceId ].visible = visible; + this._visibilityChanged = true; + + return this; + + } + + /** + * Returns the visibility state of the defined instance. + * + * @param {number} instanceId - The ID of an instance to get the visibility state of. + * @return {boolean} Whether the instance is visible or not. + */ + getVisibleAt( instanceId ) { + + this.validateInstanceId( instanceId ); + + return this._instanceInfo[ instanceId ].visible; + + } + + /** + * Sets the geometry ID of the instance at the given index. + * + * @param {number} instanceId - The ID of the instance to set the geometry ID of. + * @param {number} geometryId - The geometry ID to be use by the instance. + * @return {BatchedMesh} A reference to this batched mesh. + */ + setGeometryIdAt( instanceId, geometryId ) { + + this.validateInstanceId( instanceId ); + this.validateGeometryId( geometryId ); + + this._instanceInfo[ instanceId ].geometryIndex = geometryId; + + return this; + + } + + /** + * Returns the geometry ID of the defined instance. + * + * @param {number} instanceId - The ID of an instance to get the geometry ID of. + * @return {number} The instance's geometry ID. + */ + getGeometryIdAt( instanceId ) { + + this.validateInstanceId( instanceId ); + + return this._instanceInfo[ instanceId ].geometryIndex; + + } + + /** + * Get the range representing the subset of triangles related to the attached geometry, + * indicating the starting offset and count, or `null` if invalid. + * + * @param {number} geometryId - The id of the geometry to get the range of. + * @param {Object} [target] - The target object that is used to store the method's result. + * @return {{ + * vertexStart:number,vertexCount:number,reservedVertexCount:number, + * indexStart:number,indexCount:number,reservedIndexCount:number, + * start:number,count:number + * }} The result object with range data. + */ + getGeometryRangeAt( geometryId, target = {} ) { + + this.validateGeometryId( geometryId ); + + const geometryInfo = this._geometryInfo[ geometryId ]; + target.vertexStart = geometryInfo.vertexStart; + target.vertexCount = geometryInfo.vertexCount; + target.reservedVertexCount = geometryInfo.reservedVertexCount; + + target.indexStart = geometryInfo.indexStart; + target.indexCount = geometryInfo.indexCount; + target.reservedIndexCount = geometryInfo.reservedIndexCount; + + target.start = geometryInfo.start; + target.count = geometryInfo.count; + + return target; + + } + + /** + * Resizes the necessary buffers to support the provided number of instances. + * If the provided arguments shrink the number of instances but there are not enough + * unused Ids at the end of the list then an error is thrown. + * + * @param {number} maxInstanceCount - The max number of individual instances that can be added and rendered by the batch. + */ + setInstanceCount( maxInstanceCount ) { + + // shrink the available instances as much as possible + const availableInstanceIds = this._availableInstanceIds; + const instanceInfo = this._instanceInfo; + availableInstanceIds.sort( ascIdSort ); + while ( availableInstanceIds[ availableInstanceIds.length - 1 ] === instanceInfo.length ) { + + instanceInfo.pop(); + availableInstanceIds.pop(); + + } + + // throw an error if it can't be shrunk to the desired size + if ( maxInstanceCount < instanceInfo.length ) { + + throw new Error( `BatchedMesh: Instance ids outside the range ${ maxInstanceCount } are being used. Cannot shrink instance count.` ); + + } + + // copy the multi draw counts + const multiDrawCounts = new Int32Array( maxInstanceCount ); + const multiDrawStarts = new Int32Array( maxInstanceCount ); + copyArrayContents( this._multiDrawCounts, multiDrawCounts ); + copyArrayContents( this._multiDrawStarts, multiDrawStarts ); + + this._multiDrawCounts = multiDrawCounts; + this._multiDrawStarts = multiDrawStarts; + this._maxInstanceCount = maxInstanceCount; + + // update texture data for instance sampling + const indirectTexture = this._indirectTexture; + const matricesTexture = this._matricesTexture; + const colorsTexture = this._colorsTexture; + + indirectTexture.dispose(); + this._initIndirectTexture(); + copyArrayContents( indirectTexture.image.data, this._indirectTexture.image.data ); + + matricesTexture.dispose(); + this._initMatricesTexture(); + copyArrayContents( matricesTexture.image.data, this._matricesTexture.image.data ); + + if ( colorsTexture ) { + + colorsTexture.dispose(); + this._initColorsTexture(); + copyArrayContents( colorsTexture.image.data, this._colorsTexture.image.data ); + + } + + } + + /** + * Resizes the available space in the batch's vertex and index buffer attributes to the provided sizes. + * If the provided arguments shrink the geometry buffers but there is not enough unused space at the + * end of the geometry attributes then an error is thrown. + * + * @param {number} maxVertexCount - The maximum number of vertices to be used by all unique geometries to resize to. + * @param {number} maxIndexCount - The maximum number of indices to be used by all unique geometries to resize to. + */ + setGeometrySize( maxVertexCount, maxIndexCount ) { + + // Check if we can shrink to the requested vertex attribute size + const validRanges = [ ...this._geometryInfo ].filter( info => info.active ); + const requiredVertexLength = Math.max( ...validRanges.map( range => range.vertexStart + range.reservedVertexCount ) ); + if ( requiredVertexLength > maxVertexCount ) { + + throw new Error( `BatchedMesh: Geometry vertex values are being used outside the range ${ maxIndexCount }. Cannot shrink further.` ); + + } + + // Check if we can shrink to the requested index attribute size + if ( this.geometry.index ) { + + const requiredIndexLength = Math.max( ...validRanges.map( range => range.indexStart + range.reservedIndexCount ) ); + if ( requiredIndexLength > maxIndexCount ) { + + throw new Error( `BatchedMesh: Geometry index values are being used outside the range ${ maxIndexCount }. Cannot shrink further.` ); + + } + + } + + // + + // dispose of the previous geometry + const oldGeometry = this.geometry; + oldGeometry.dispose(); + + // recreate the geometry needed based on the previous variant + this._maxVertexCount = maxVertexCount; + this._maxIndexCount = maxIndexCount; + + if ( this._geometryInitialized ) { + + this._geometryInitialized = false; + this.geometry = new BufferGeometry(); + this._initializeGeometry( oldGeometry ); + + } + + // copy data from the previous geometry + const geometry = this.geometry; + if ( oldGeometry.index ) { + + copyArrayContents( oldGeometry.index.array, geometry.index.array ); + + } + + for ( const key in oldGeometry.attributes ) { + + copyArrayContents( oldGeometry.attributes[ key ].array, geometry.attributes[ key ].array ); + + } + + } + + raycast( raycaster, intersects ) { + + const instanceInfo = this._instanceInfo; + const geometryInfoList = this._geometryInfo; + const matrixWorld = this.matrixWorld; + const batchGeometry = this.geometry; + + // iterate over each geometry + _mesh.material = this.material; + _mesh.geometry.index = batchGeometry.index; + _mesh.geometry.attributes = batchGeometry.attributes; + if ( _mesh.geometry.boundingBox === null ) { + + _mesh.geometry.boundingBox = new Box3(); + + } + + if ( _mesh.geometry.boundingSphere === null ) { + + _mesh.geometry.boundingSphere = new Sphere(); + + } + + for ( let i = 0, l = instanceInfo.length; i < l; i ++ ) { + + if ( ! instanceInfo[ i ].visible || ! instanceInfo[ i ].active ) { + + continue; + + } + + const geometryId = instanceInfo[ i ].geometryIndex; + const geometryInfo = geometryInfoList[ geometryId ]; + _mesh.geometry.setDrawRange( geometryInfo.start, geometryInfo.count ); + + // get the intersects + this.getMatrixAt( i, _mesh.matrixWorld ).premultiply( matrixWorld ); + this.getBoundingBoxAt( geometryId, _mesh.geometry.boundingBox ); + this.getBoundingSphereAt( geometryId, _mesh.geometry.boundingSphere ); + _mesh.raycast( raycaster, _batchIntersects ); + + // add batch id to the intersects + for ( let j = 0, l = _batchIntersects.length; j < l; j ++ ) { + + const intersect = _batchIntersects[ j ]; + intersect.object = this; + intersect.batchId = i; + intersects.push( intersect ); + + } + + _batchIntersects.length = 0; + + } + + _mesh.material = null; + _mesh.geometry.index = null; + _mesh.geometry.attributes = {}; + _mesh.geometry.setDrawRange( 0, Infinity ); + + } + + copy( source ) { + + super.copy( source ); + + this.geometry = source.geometry.clone(); + this.perObjectFrustumCulled = source.perObjectFrustumCulled; + this.sortObjects = source.sortObjects; + this.boundingBox = source.boundingBox !== null ? source.boundingBox.clone() : null; + this.boundingSphere = source.boundingSphere !== null ? source.boundingSphere.clone() : null; + + this._geometryInfo = source._geometryInfo.map( info => ( { + ...info, + + boundingBox: info.boundingBox !== null ? info.boundingBox.clone() : null, + boundingSphere: info.boundingSphere !== null ? info.boundingSphere.clone() : null, + } ) ); + this._instanceInfo = source._instanceInfo.map( info => ( { ...info } ) ); + + this._availableInstanceIds = source._availableInstanceIds.slice(); + this._availableGeometryIds = source._availableGeometryIds.slice(); + + this._nextIndexStart = source._nextIndexStart; + this._nextVertexStart = source._nextVertexStart; + this._geometryCount = source._geometryCount; + + this._maxInstanceCount = source._maxInstanceCount; + this._maxVertexCount = source._maxVertexCount; + this._maxIndexCount = source._maxIndexCount; + + this._geometryInitialized = source._geometryInitialized; + this._multiDrawCounts = source._multiDrawCounts.slice(); + this._multiDrawStarts = source._multiDrawStarts.slice(); + + this._indirectTexture = source._indirectTexture.clone(); + this._indirectTexture.image.data = this._indirectTexture.image.data.slice(); + + this._matricesTexture = source._matricesTexture.clone(); + this._matricesTexture.image.data = this._matricesTexture.image.data.slice(); + + if ( this._colorsTexture !== null ) { + + this._colorsTexture = source._colorsTexture.clone(); + this._colorsTexture.image.data = this._colorsTexture.image.data.slice(); + + } + + return this; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + // Assuming the geometry is not shared with other meshes + this.geometry.dispose(); + + this._matricesTexture.dispose(); + this._matricesTexture = null; + + this._indirectTexture.dispose(); + this._indirectTexture = null; + + if ( this._colorsTexture !== null ) { + + this._colorsTexture.dispose(); + this._colorsTexture = null; + + } + + } + + onBeforeRender( renderer, scene, camera, geometry, material/*, _group*/ ) { + + // if visibility has not changed and frustum culling and object sorting is not required + // then skip iterating over all items + if ( ! this._visibilityChanged && ! this.perObjectFrustumCulled && ! this.sortObjects ) { + + return; + + } + + // the indexed version of the multi draw function requires specifying the start + // offset in bytes. + const index = geometry.getIndex(); + const bytesPerElement = index === null ? 1 : index.array.BYTES_PER_ELEMENT; + + const instanceInfo = this._instanceInfo; + const multiDrawStarts = this._multiDrawStarts; + const multiDrawCounts = this._multiDrawCounts; + const geometryInfoList = this._geometryInfo; + const perObjectFrustumCulled = this.perObjectFrustumCulled; + const indirectTexture = this._indirectTexture; + const indirectArray = indirectTexture.image.data; + + const frustum = camera.isArrayCamera ? _frustumArray : _frustum; + // prepare the frustum in the local frame + if ( perObjectFrustumCulled && ! camera.isArrayCamera ) { + + _matrix$1 + .multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ) + .multiply( this.matrixWorld ); + _frustum.setFromProjectionMatrix( + _matrix$1, + renderer.coordinateSystem + ); + + } + + let multiDrawCount = 0; + if ( this.sortObjects ) { + + // get the camera position in the local frame + _matrix$1.copy( this.matrixWorld ).invert(); + _vector$5.setFromMatrixPosition( camera.matrixWorld ).applyMatrix4( _matrix$1 ); + _forward$1.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld ).transformDirection( _matrix$1 ); + + for ( let i = 0, l = instanceInfo.length; i < l; i ++ ) { + + if ( instanceInfo[ i ].visible && instanceInfo[ i ].active ) { + + const geometryId = instanceInfo[ i ].geometryIndex; + + // get the bounds in world space + this.getMatrixAt( i, _matrix$1 ); + this.getBoundingSphereAt( geometryId, _sphere$2 ).applyMatrix4( _matrix$1 ); + + // determine whether the batched geometry is within the frustum + let culled = false; + if ( perObjectFrustumCulled ) { + + culled = ! frustum.intersectsSphere( _sphere$2, camera ); + + } + + if ( ! culled ) { + + // get the distance from camera used for sorting + const geometryInfo = geometryInfoList[ geometryId ]; + const z = _temp.subVectors( _sphere$2.center, _vector$5 ).dot( _forward$1 ); + _renderList.push( geometryInfo.start, geometryInfo.count, z, i ); + + } + + } + + } + + // Sort the draw ranges and prep for rendering + const list = _renderList.list; + const customSort = this.customSort; + if ( customSort === null ) { + + list.sort( material.transparent ? sortTransparent : sortOpaque ); + + } else { + + customSort.call( this, list, camera ); + + } + + for ( let i = 0, l = list.length; i < l; i ++ ) { + + const item = list[ i ]; + multiDrawStarts[ multiDrawCount ] = item.start * bytesPerElement; + multiDrawCounts[ multiDrawCount ] = item.count; + indirectArray[ multiDrawCount ] = item.index; + multiDrawCount ++; + + } + + _renderList.reset(); + + } else { + + for ( let i = 0, l = instanceInfo.length; i < l; i ++ ) { + + if ( instanceInfo[ i ].visible && instanceInfo[ i ].active ) { + + const geometryId = instanceInfo[ i ].geometryIndex; + + // determine whether the batched geometry is within the frustum + let culled = false; + if ( perObjectFrustumCulled ) { + + // get the bounds in world space + this.getMatrixAt( i, _matrix$1 ); + this.getBoundingSphereAt( geometryId, _sphere$2 ).applyMatrix4( _matrix$1 ); + culled = ! frustum.intersectsSphere( _sphere$2, camera ); + + } + + if ( ! culled ) { + + const geometryInfo = geometryInfoList[ geometryId ]; + multiDrawStarts[ multiDrawCount ] = geometryInfo.start * bytesPerElement; + multiDrawCounts[ multiDrawCount ] = geometryInfo.count; + indirectArray[ multiDrawCount ] = i; + multiDrawCount ++; + + } + + } + + } + + } + + indirectTexture.needsUpdate = true; + this._multiDrawCount = multiDrawCount; + this._visibilityChanged = false; + + } + + onBeforeShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial/* , group */ ) { + + this.onBeforeRender( renderer, null, shadowCamera, geometry, depthMaterial ); + + } + +} + +/** + * A material for rendering line primitives. + * + * Materials define the appearance of renderable 3D objects. + * + * ```js + * const material = new THREE.LineBasicMaterial( { color: 0xffffff } ); + * ``` + * + * @augments Material + */ +class LineBasicMaterial extends Material { + + /** + * Constructs a new line basic material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLineBasicMaterial = true; + + this.type = 'LineBasicMaterial'; + + /** + * Color of the material. + * + * @type {Color} + * @default (1,1,1) + */ + this.color = new Color( 0xffffff ); + + /** + * Sets the color of the lines using data from a texture. The texture map + * color is modulated by the diffuse `color`. + * + * @type {?Texture} + * @default null + */ + this.map = null; + + /** + * Controls line thickness or lines. + * + * Can only be used with {@link SVGRenderer}. WebGL and WebGPU + * ignore this setting and always render line primitives with a + * width of one pixel. + * + * @type {number} + * @default 1 + */ + this.linewidth = 1; + + /** + * Defines appearance of line ends. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {('butt'|'round'|'square')} + * @default 'round' + */ + this.linecap = 'round'; + + /** + * Defines appearance of line joints. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {('round'|'bevel'|'miter')} + * @default 'round' + */ + this.linejoin = 'round'; + + /** + * Whether the material is affected by fog or not. + * + * @type {boolean} + * @default true + */ + this.fog = true; + + this.setValues( parameters ); + + } + + copy( source ) { + + super.copy( source ); + + this.color.copy( source.color ); + + this.map = source.map; + + this.linewidth = source.linewidth; + this.linecap = source.linecap; + this.linejoin = source.linejoin; + + this.fog = source.fog; + + return this; + + } + +} + +const _vStart = /*@__PURE__*/ new Vector3(); +const _vEnd = /*@__PURE__*/ new Vector3(); + +const _inverseMatrix$1 = /*@__PURE__*/ new Matrix4(); +const _ray$1 = /*@__PURE__*/ new Ray(); +const _sphere$1 = /*@__PURE__*/ new Sphere(); + +const _intersectPointOnRay = /*@__PURE__*/ new Vector3(); +const _intersectPointOnSegment = /*@__PURE__*/ new Vector3(); + +/** + * A continuous line. The line are rendered by connecting consecutive + * vertices with straight lines. + * + * ```js + * const material = new THREE.LineBasicMaterial( { color: 0x0000ff } ); + * + * const points = []; + * points.push( new THREE.Vector3( - 10, 0, 0 ) ); + * points.push( new THREE.Vector3( 0, 10, 0 ) ); + * points.push( new THREE.Vector3( 10, 0, 0 ) ); + * + * const geometry = new THREE.BufferGeometry().setFromPoints( points ); + * + * const line = new THREE.Line( geometry, material ); + * scene.add( line ); + * ``` + * + * @augments Object3D + */ +class Line extends Object3D { + + /** + * Constructs a new line. + * + * @param {BufferGeometry} [geometry] - The line geometry. + * @param {Material|Array} [material] - The line material. + */ + constructor( geometry = new BufferGeometry(), material = new LineBasicMaterial() ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLine = true; + + this.type = 'Line'; + + /** + * The line geometry. + * + * @type {BufferGeometry} + */ + this.geometry = geometry; + + /** + * The line material. + * + * @type {Material|Array} + * @default LineBasicMaterial + */ + this.material = material; + + /** + * A dictionary representing the morph targets in the geometry. The key is the + * morph targets name, the value its attribute index. This member is `undefined` + * by default and only set when morph targets are detected in the geometry. + * + * @type {Object|undefined} + * @default undefined + */ + this.morphTargetDictionary = undefined; + + /** + * An array of weights typically in the range `[0,1]` that specify how much of the morph + * is applied. This member is `undefined` by default and only set when morph targets are + * detected in the geometry. + * + * @type {Array|undefined} + * @default undefined + */ + this.morphTargetInfluences = undefined; + + this.updateMorphTargets(); + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.material = Array.isArray( source.material ) ? source.material.slice() : source.material; + this.geometry = source.geometry; + + return this; + + } + + /** + * Computes an array of distance values which are necessary for rendering dashed lines. + * For each vertex in the geometry, the method calculates the cumulative length from the + * current point to the very beginning of the line. + * + * @return {Line} A reference to this line. + */ + computeLineDistances() { + + const geometry = this.geometry; + + // we assume non-indexed geometry + + if ( geometry.index === null ) { + + const positionAttribute = geometry.attributes.position; + const lineDistances = [ 0 ]; + + for ( let i = 1, l = positionAttribute.count; i < l; i ++ ) { + + _vStart.fromBufferAttribute( positionAttribute, i - 1 ); + _vEnd.fromBufferAttribute( positionAttribute, i ); + + lineDistances[ i ] = lineDistances[ i - 1 ]; + lineDistances[ i ] += _vStart.distanceTo( _vEnd ); + + } + + geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) ); + + } else { + + console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ); + + } + + return this; + + } + + /** + * Computes intersection points between a casted ray and this line. + * + * @param {Raycaster} raycaster - The raycaster. + * @param {Array} intersects - The target array that holds the intersection points. + */ + raycast( raycaster, intersects ) { + + const geometry = this.geometry; + const matrixWorld = this.matrixWorld; + const threshold = raycaster.params.Line.threshold; + const drawRange = geometry.drawRange; + + // Checking boundingSphere distance to ray + + if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); + + _sphere$1.copy( geometry.boundingSphere ); + _sphere$1.applyMatrix4( matrixWorld ); + _sphere$1.radius += threshold; + + if ( raycaster.ray.intersectsSphere( _sphere$1 ) === false ) return; + + // + + _inverseMatrix$1.copy( matrixWorld ).invert(); + _ray$1.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$1 ); + + const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); + const localThresholdSq = localThreshold * localThreshold; + + const step = this.isLineSegments ? 2 : 1; + + const index = geometry.index; + const attributes = geometry.attributes; + const positionAttribute = attributes.position; + + if ( index !== null ) { + + const start = Math.max( 0, drawRange.start ); + const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); + + for ( let i = start, l = end - 1; i < l; i += step ) { + + const a = index.getX( i ); + const b = index.getX( i + 1 ); + + const intersect = checkIntersection( this, raycaster, _ray$1, localThresholdSq, a, b, i ); + + if ( intersect ) { + + intersects.push( intersect ); + + } + + } + + if ( this.isLineLoop ) { + + const a = index.getX( end - 1 ); + const b = index.getX( start ); + + const intersect = checkIntersection( this, raycaster, _ray$1, localThresholdSq, a, b, end - 1 ); + + if ( intersect ) { + + intersects.push( intersect ); + + } + + } + + } else { + + const start = Math.max( 0, drawRange.start ); + const end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) ); + + for ( let i = start, l = end - 1; i < l; i += step ) { + + const intersect = checkIntersection( this, raycaster, _ray$1, localThresholdSq, i, i + 1, i ); + + if ( intersect ) { + + intersects.push( intersect ); + + } + + } + + if ( this.isLineLoop ) { + + const intersect = checkIntersection( this, raycaster, _ray$1, localThresholdSq, end - 1, start, end - 1 ); + + if ( intersect ) { + + intersects.push( intersect ); + + } + + } + + } + + } + + /** + * Sets the values of {@link Line#morphTargetDictionary} and {@link Line#morphTargetInfluences} + * to make sure existing morph targets can influence this 3D object. + */ + updateMorphTargets() { + + const geometry = this.geometry; + + const morphAttributes = geometry.morphAttributes; + const keys = Object.keys( morphAttributes ); + + if ( keys.length > 0 ) { + + const morphAttribute = morphAttributes[ keys[ 0 ] ]; + + if ( morphAttribute !== undefined ) { + + this.morphTargetInfluences = []; + this.morphTargetDictionary = {}; + + for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { + + const name = morphAttribute[ m ].name || String( m ); + + this.morphTargetInfluences.push( 0 ); + this.morphTargetDictionary[ name ] = m; + + } + + } + + } + + } + +} + +function checkIntersection( object, raycaster, ray, thresholdSq, a, b, i ) { + + const positionAttribute = object.geometry.attributes.position; + + _vStart.fromBufferAttribute( positionAttribute, a ); + _vEnd.fromBufferAttribute( positionAttribute, b ); + + const distSq = ray.distanceSqToSegment( _vStart, _vEnd, _intersectPointOnRay, _intersectPointOnSegment ); + + if ( distSq > thresholdSq ) return; + + _intersectPointOnRay.applyMatrix4( object.matrixWorld ); // Move back to world space for distance calculation + + const distance = raycaster.ray.origin.distanceTo( _intersectPointOnRay ); + + if ( distance < raycaster.near || distance > raycaster.far ) return; + + return { + + distance: distance, + // What do we want? intersection point on the ray or on the segment?? + // point: raycaster.ray.at( distance ), + point: _intersectPointOnSegment.clone().applyMatrix4( object.matrixWorld ), + index: i, + face: null, + faceIndex: null, + barycoord: null, + object: object + + }; + +} + +const _start = /*@__PURE__*/ new Vector3(); +const _end = /*@__PURE__*/ new Vector3(); + +/** + * A series of lines drawn between pairs of vertices. + * + * @augments Line + */ +class LineSegments extends Line { + + /** + * Constructs a new line segments. + * + * @param {BufferGeometry} [geometry] - The line geometry. + * @param {Material|Array} [material] - The line material. + */ + constructor( geometry, material ) { + + super( geometry, material ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLineSegments = true; + + this.type = 'LineSegments'; + + } + + computeLineDistances() { + + const geometry = this.geometry; + + // we assume non-indexed geometry + + if ( geometry.index === null ) { + + const positionAttribute = geometry.attributes.position; + const lineDistances = []; + + for ( let i = 0, l = positionAttribute.count; i < l; i += 2 ) { + + _start.fromBufferAttribute( positionAttribute, i ); + _end.fromBufferAttribute( positionAttribute, i + 1 ); + + lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ]; + lineDistances[ i + 1 ] = lineDistances[ i ] + _start.distanceTo( _end ); + + } + + geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) ); + + } else { + + console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ); + + } + + return this; + + } + +} + +/** + * A continuous line. This is nearly the same as {@link Line} the only difference + * is that the last vertex is connected with the first vertex in order to close + * the line to form a loop. + * + * @augments Line + */ +class LineLoop extends Line { + + /** + * Constructs a new line loop. + * + * @param {BufferGeometry} [geometry] - The line geometry. + * @param {Material|Array} [material] - The line material. + */ + constructor( geometry, material ) { + + super( geometry, material ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLineLoop = true; + + this.type = 'LineLoop'; + + } + +} + +/** + * A material for rendering point primitives. + * + * Materials define the appearance of renderable 3D objects. + * + * ```js + * const vertices = []; + * + * for ( let i = 0; i < 10000; i ++ ) { + * const x = THREE.MathUtils.randFloatSpread( 2000 ); + * const y = THREE.MathUtils.randFloatSpread( 2000 ); + * const z = THREE.MathUtils.randFloatSpread( 2000 ); + * + * vertices.push( x, y, z ); + * } + * + * const geometry = new THREE.BufferGeometry(); + * geometry.setAttribute( 'position', new THREE.Float32BufferAttribute( vertices, 3 ) ); + * const material = new THREE.PointsMaterial( { color: 0x888888 } ); + * const points = new THREE.Points( geometry, material ); + * scene.add( points ); + * ``` + * + * @augments Material + */ +class PointsMaterial extends Material { + + /** + * Constructs a new points material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPointsMaterial = true; + + this.type = 'PointsMaterial'; + + /** + * Color of the material. + * + * @type {Color} + * @default (1,1,1) + */ + this.color = new Color( 0xffffff ); + + /** + * The color map. May optionally include an alpha channel, typically combined + * with {@link Material#transparent} or {@link Material#alphaTest}. The texture map + * color is modulated by the diffuse `color`. + * + * @type {?Texture} + * @default null + */ + this.map = null; + + /** + * The alpha map is a grayscale texture that controls the opacity across the + * surface (black: fully transparent; white: fully opaque). + * + * Only the color of the texture is used, ignoring the alpha channel if one + * exists. For RGB and RGBA textures, the renderer will use the green channel + * when sampling this texture due to the extra bit of precision provided for + * green in DXT-compressed and uncompressed RGB 565 formats. Luminance-only and + * luminance/alpha textures will also still work as expected. + * + * @type {?Texture} + * @default null + */ + this.alphaMap = null; + + /** + * Defines the size of the points in pixels. + * + * Might be capped if the value exceeds hardware dependent parameters like [gl.ALIASED_POINT_SIZE_RANGE]{@link https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/getParamete}. + * + * @type {number} + * @default 1 + */ + this.size = 1; + + /** + * Specifies whether size of individual points is attenuated by the camera depth (perspective camera only). + * + * @type {boolean} + * @default true + */ + this.sizeAttenuation = true; + + /** + * Whether the material is affected by fog or not. + * + * @type {boolean} + * @default true + */ + this.fog = true; + + this.setValues( parameters ); + + } + + copy( source ) { + + super.copy( source ); + + this.color.copy( source.color ); + + this.map = source.map; + + this.alphaMap = source.alphaMap; + + this.size = source.size; + this.sizeAttenuation = source.sizeAttenuation; + + this.fog = source.fog; + + return this; + + } + +} + +const _inverseMatrix = /*@__PURE__*/ new Matrix4(); +const _ray = /*@__PURE__*/ new Ray(); +const _sphere = /*@__PURE__*/ new Sphere(); +const _position$2 = /*@__PURE__*/ new Vector3(); + +/** + * A class for displaying points or point clouds. + * + * @augments Object3D + */ +class Points extends Object3D { + + /** + * Constructs a new point cloud. + * + * @param {BufferGeometry} [geometry] - The points geometry. + * @param {Material|Array} [material] - The points material. + */ + constructor( geometry = new BufferGeometry(), material = new PointsMaterial() ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPoints = true; + + this.type = 'Points'; + + /** + * The points geometry. + * + * @type {BufferGeometry} + */ + this.geometry = geometry; + + /** + * The line material. + * + * @type {Material|Array} + * @default PointsMaterial + */ + this.material = material; + + /** + * A dictionary representing the morph targets in the geometry. The key is the + * morph targets name, the value its attribute index. This member is `undefined` + * by default and only set when morph targets are detected in the geometry. + * + * @type {Object|undefined} + * @default undefined + */ + this.morphTargetDictionary = undefined; + + /** + * An array of weights typically in the range `[0,1]` that specify how much of the morph + * is applied. This member is `undefined` by default and only set when morph targets are + * detected in the geometry. + * + * @type {Array|undefined} + * @default undefined + */ + this.morphTargetInfluences = undefined; + + this.updateMorphTargets(); + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.material = Array.isArray( source.material ) ? source.material.slice() : source.material; + this.geometry = source.geometry; + + return this; + + } + + /** + * Computes intersection points between a casted ray and this point cloud. + * + * @param {Raycaster} raycaster - The raycaster. + * @param {Array} intersects - The target array that holds the intersection points. + */ + raycast( raycaster, intersects ) { + + const geometry = this.geometry; + const matrixWorld = this.matrixWorld; + const threshold = raycaster.params.Points.threshold; + const drawRange = geometry.drawRange; + + // Checking boundingSphere distance to ray + + if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); + + _sphere.copy( geometry.boundingSphere ); + _sphere.applyMatrix4( matrixWorld ); + _sphere.radius += threshold; + + if ( raycaster.ray.intersectsSphere( _sphere ) === false ) return; + + // + + _inverseMatrix.copy( matrixWorld ).invert(); + _ray.copy( raycaster.ray ).applyMatrix4( _inverseMatrix ); + + const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); + const localThresholdSq = localThreshold * localThreshold; + + const index = geometry.index; + const attributes = geometry.attributes; + const positionAttribute = attributes.position; + + if ( index !== null ) { + + const start = Math.max( 0, drawRange.start ); + const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); + + for ( let i = start, il = end; i < il; i ++ ) { + + const a = index.getX( i ); + + _position$2.fromBufferAttribute( positionAttribute, a ); + + testPoint( _position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this ); + + } + + } else { + + const start = Math.max( 0, drawRange.start ); + const end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) ); + + for ( let i = start, l = end; i < l; i ++ ) { + + _position$2.fromBufferAttribute( positionAttribute, i ); + + testPoint( _position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this ); + + } + + } + + } + + /** + * Sets the values of {@link Points#morphTargetDictionary} and {@link Points#morphTargetInfluences} + * to make sure existing morph targets can influence this 3D object. + */ + updateMorphTargets() { + + const geometry = this.geometry; + + const morphAttributes = geometry.morphAttributes; + const keys = Object.keys( morphAttributes ); + + if ( keys.length > 0 ) { + + const morphAttribute = morphAttributes[ keys[ 0 ] ]; + + if ( morphAttribute !== undefined ) { + + this.morphTargetInfluences = []; + this.morphTargetDictionary = {}; + + for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { + + const name = morphAttribute[ m ].name || String( m ); + + this.morphTargetInfluences.push( 0 ); + this.morphTargetDictionary[ name ] = m; + + } + + } + + } + + } + +} + +function testPoint( point, index, localThresholdSq, matrixWorld, raycaster, intersects, object ) { + + const rayPointDistanceSq = _ray.distanceSqToPoint( point ); + + if ( rayPointDistanceSq < localThresholdSq ) { + + const intersectPoint = new Vector3(); + + _ray.closestPointToPoint( point, intersectPoint ); + intersectPoint.applyMatrix4( matrixWorld ); + + const distance = raycaster.ray.origin.distanceTo( intersectPoint ); + + if ( distance < raycaster.near || distance > raycaster.far ) return; + + intersects.push( { + + distance: distance, + distanceToRay: Math.sqrt( rayPointDistanceSq ), + point: intersectPoint, + index: index, + face: null, + faceIndex: null, + barycoord: null, + object: object + + } ); + + } + +} + +/** + * A texture for use with a video. + * + * ```js + * // assuming you have created a HTML video element with id="video" + * const video = document.getElementById( 'video' ); + * const texture = new THREE.VideoTexture( video ); + * ``` + * + * Note: After the initial use of a texture, its dimensions, format, and type + * cannot be changed. Instead, call {@link Texture#dispose} on the texture and instantiate a new one. + * + * @augments Texture + */ +class VideoTexture extends Texture { + + /** + * Constructs a new video texture. + * + * @param {HTMLVideoElement} video - The video element to use as a data source for the texture. + * @param {number} [mapping=Texture.DEFAULT_MAPPING] - The texture mapping. + * @param {number} [wrapS=ClampToEdgeWrapping] - The wrapS value. + * @param {number} [wrapT=ClampToEdgeWrapping] - The wrapT value. + * @param {number} [magFilter=LinearFilter] - The mag filter value. + * @param {number} [minFilter=LinearFilter] - The min filter value. + * @param {number} [format=RGBAFormat] - The texture format. + * @param {number} [type=UnsignedByteType] - The texture type. + * @param {number} [anisotropy=Texture.DEFAULT_ANISOTROPY] - The anisotropy value. + */ + constructor( video, mapping, wrapS, wrapT, magFilter = LinearFilter, minFilter = LinearFilter, format, type, anisotropy ) { + + super( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVideoTexture = true; + + /** + * Whether to generate mipmaps (if possible) for a texture. + * + * Overwritten and set to `false` by default. + * + * @type {boolean} + * @default false + */ + this.generateMipmaps = false; + + const scope = this; + + function updateVideo() { + + scope.needsUpdate = true; + video.requestVideoFrameCallback( updateVideo ); + + } + + if ( 'requestVideoFrameCallback' in video ) { + + video.requestVideoFrameCallback( updateVideo ); + + } + + } + + clone() { + + return new this.constructor( this.image ).copy( this ); + + } + + /** + * This method is called automatically by the renderer and sets {@link Texture#needsUpdate} + * to `true` every time a new frame is available. + * + * Only relevant if `requestVideoFrameCallback` is not supported in the browser. + */ + update() { + + const video = this.image; + const hasVideoFrameCallback = 'requestVideoFrameCallback' in video; + + if ( hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA ) { + + this.needsUpdate = true; + + } + + } + +} + +/** + * This class can be used as an alternative way to define video data. Instead of using + * an instance of `HTMLVideoElement` like with `VideoTexture`, `VideoFrameTexture` expects each frame is + * defined manually via {@link VideoFrameTexture#setFrame}. A typical use case for this module is when + * video frames are decoded with the WebCodecs API. + * + * ```js + * const texture = new THREE.VideoFrameTexture(); + * texture.setFrame( frame ); + * ``` + * + * @augments VideoTexture + */ +class VideoFrameTexture extends VideoTexture { + + /** + * Constructs a new video frame texture. + * + * @param {number} [mapping=Texture.DEFAULT_MAPPING] - The texture mapping. + * @param {number} [wrapS=ClampToEdgeWrapping] - The wrapS value. + * @param {number} [wrapT=ClampToEdgeWrapping] - The wrapT value. + * @param {number} [magFilter=LinearFilter] - The mag filter value. + * @param {number} [minFilter=LinearFilter] - The min filter value. + * @param {number} [format=RGBAFormat] - The texture format. + * @param {number} [type=UnsignedByteType] - The texture type. + * @param {number} [anisotropy=Texture.DEFAULT_ANISOTROPY] - The anisotropy value. + */ + constructor( mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { + + super( {}, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVideoFrameTexture = true; + + } + + /** + * This method overwritten with an empty implementation since + * this type of texture is updated via `setFrame()`. + */ + update() {} + + clone() { + + return new this.constructor().copy( this ); // restoring Texture.clone() + + } + + /** + * Sets the current frame of the video. This will automatically update the texture + * so the data can be used for rendering. + * + * @param {VideoFrame} frame - The video frame. + */ + setFrame( frame ) { + + this.image = frame; + this.needsUpdate = true; + + } + +} + +/** + * This class can only be used in combination with `copyFramebufferToTexture()` methods + * of renderers. It extracts the contents of the current bound framebuffer and provides it + * as a texture for further usage. + * + * ```js + * const pixelRatio = window.devicePixelRatio; + * const textureSize = 128 * pixelRatio; + * + * const frameTexture = new FramebufferTexture( textureSize, textureSize ); + * + * // calculate start position for copying part of the frame data + * const vector = new Vector2(); + * vector.x = ( window.innerWidth * pixelRatio / 2 ) - ( textureSize / 2 ); + * vector.y = ( window.innerHeight * pixelRatio / 2 ) - ( textureSize / 2 ); + * + * renderer.render( scene, camera ); + * + * // copy part of the rendered frame into the framebuffer texture + * renderer.copyFramebufferToTexture( frameTexture, vector ); + * ``` + * + * @augments Texture + */ +class FramebufferTexture extends Texture { + + /** + * Constructs a new framebuffer texture. + * + * @param {number} width - The width of the texture. + * @param {number} height - The height of the texture. + */ + constructor( width, height ) { + + super( { width, height } ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isFramebufferTexture = true; + + /** + * How the texture is sampled when a texel covers more than one pixel. + * + * Overwritten and set to `NearestFilter` by default to disable filtering. + * + * @type {(NearestFilter|NearestMipmapNearestFilter|NearestMipmapLinearFilter|LinearFilter|LinearMipmapNearestFilter|LinearMipmapLinearFilter)} + * @default NearestFilter + */ + this.magFilter = NearestFilter; + + /** + * How the texture is sampled when a texel covers less than one pixel. + * + * Overwritten and set to `NearestFilter` by default to disable filtering. + * + * @type {(NearestFilter|NearestMipmapNearestFilter|NearestMipmapLinearFilter|LinearFilter|LinearMipmapNearestFilter|LinearMipmapLinearFilter)} + * @default NearestFilter + */ + this.minFilter = NearestFilter; + + /** + * Whether to generate mipmaps (if possible) for a texture. + * + * Overwritten and set to `false` by default. + * + * @type {boolean} + * @default false + */ + this.generateMipmaps = false; + + this.needsUpdate = true; + + } + +} + +/** + * Creates a texture based on data in compressed form. + * + * These texture are usually loaded with {@link CompressedTextureLoader}. + * + * @augments Texture + */ +class CompressedTexture extends Texture { + + /** + * Constructs a new compressed texture. + * + * @param {Array} mipmaps - This array holds for all mipmaps (including the bases mip) + * the data and dimensions. + * @param {number} width - The width of the texture. + * @param {number} height - The height of the texture. + * @param {number} [format=RGBAFormat] - The texture format. + * @param {number} [type=UnsignedByteType] - The texture type. + * @param {number} [mapping=Texture.DEFAULT_MAPPING] - The texture mapping. + * @param {number} [wrapS=ClampToEdgeWrapping] - The wrapS value. + * @param {number} [wrapT=ClampToEdgeWrapping] - The wrapT value. + * @param {number} [magFilter=LinearFilter] - The mag filter value. + * @param {number} [minFilter=LinearMipmapLinearFilter] - The min filter value. + * @param {number} [anisotropy=Texture.DEFAULT_ANISOTROPY] - The anisotropy value. + * @param {string} [colorSpace=NoColorSpace] - The color space. + */ + constructor( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, colorSpace ) { + + super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCompressedTexture = true; + + /** + * The image property of a compressed texture just defines its dimensions. + * + * @type {{width:number,height:number}} + */ + this.image = { width: width, height: height }; + + /** + * This array holds for all mipmaps (including the bases mip) the data and dimensions. + * + * @type {Array} + */ + this.mipmaps = mipmaps; + + /** + * If set to `true`, the texture is flipped along the vertical axis when + * uploaded to the GPU. + * + * Overwritten and set to `false` by default since it is not possible to + * flip compressed textures. + * + * @type {boolean} + * @default false + * @readonly + */ + this.flipY = false; + + /** + * Whether to generate mipmaps (if possible) for a texture. + * + * Overwritten and set to `false` by default since it is not + * possible to generate mipmaps for compressed data. Mipmaps + * must be embedded in the compressed texture file. + * + * @type {boolean} + * @default false + * @readonly + */ + this.generateMipmaps = false; + + } + +} + +/** + * Creates a texture 2D array based on data in compressed form. + * + * These texture are usually loaded with {@link CompressedTextureLoader}. + * + * @augments CompressedTexture + */ +class CompressedArrayTexture extends CompressedTexture { + + /** + * Constructs a new compressed array texture. + * + * @param {Array} mipmaps - This array holds for all mipmaps (including the bases mip) + * the data and dimensions. + * @param {number} width - The width of the texture. + * @param {number} height - The height of the texture. + * @param {number} depth - The depth of the texture. + * @param {number} [format=RGBAFormat] - The min filter value. + * @param {number} [type=UnsignedByteType] - The min filter value. + */ + constructor( mipmaps, width, height, depth, format, type ) { + + super( mipmaps, width, height, format, type ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCompressedArrayTexture = true; + + /** + * The image property of a compressed texture just defines its dimensions. + * + * @name CompressedArrayTexture#image + * @type {{width:number,height:number,depth:number}} + */ + this.image.depth = depth; + + /** + * This defines how the texture is wrapped in the depth and corresponds to + * *W* in UVW mapping. + * + * @type {(RepeatWrapping|ClampToEdgeWrapping|MirroredRepeatWrapping)} + * @default ClampToEdgeWrapping + */ + this.wrapR = ClampToEdgeWrapping; + + /** + * A set of all layers which need to be updated in the texture. + * + * @type {Set} + */ + this.layerUpdates = new Set(); + + } + + /** + * Describes that a specific layer of the texture needs to be updated. + * Normally when {@link Texture#needsUpdate} is set to `true`, the + * entire compressed texture array is sent to the GPU. Marking specific + * layers will only transmit subsets of all mipmaps associated with a + * specific depth in the array which is often much more performant. + * + * @param {number} layerIndex - The layer index that should be updated. + */ + addLayerUpdate( layerIndex ) { + + this.layerUpdates.add( layerIndex ); + + } + + /** + * Resets the layer updates registry. + */ + clearLayerUpdates() { + + this.layerUpdates.clear(); + + } + +} + +/** + * Creates a cube texture based on data in compressed form. + * + * These texture are usually loaded with {@link CompressedTextureLoader}. + * + * @augments CompressedTexture + */ +class CompressedCubeTexture extends CompressedTexture { + + /** + * Constructs a new compressed texture. + * + * @param {Array} images - An array of compressed textures. + * @param {number} [format=RGBAFormat] - The texture format. + * @param {number} [type=UnsignedByteType] - The texture type. + */ + constructor( images, format, type ) { + + super( undefined, images[ 0 ].width, images[ 0 ].height, format, type, CubeReflectionMapping ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCompressedCubeTexture = true; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCubeTexture = true; + + this.image = images; + + } + +} + +/** + * Creates a texture from a canvas element. + * + * This is almost the same as the base texture class, except that it sets {@link Texture#needsUpdate} + * to `true` immediately since a canvas can directly be used for rendering. + * + * @augments Texture + */ +class CanvasTexture extends Texture { + + /** + * Constructs a new texture. + * + * @param {HTMLCanvasElement} [canvas] - The HTML canvas element. + * @param {number} [mapping=Texture.DEFAULT_MAPPING] - The texture mapping. + * @param {number} [wrapS=ClampToEdgeWrapping] - The wrapS value. + * @param {number} [wrapT=ClampToEdgeWrapping] - The wrapT value. + * @param {number} [magFilter=LinearFilter] - The mag filter value. + * @param {number} [minFilter=LinearMipmapLinearFilter] - The min filter value. + * @param {number} [format=RGBAFormat] - The texture format. + * @param {number} [type=UnsignedByteType] - The texture type. + * @param {number} [anisotropy=Texture.DEFAULT_ANISOTROPY] - The anisotropy value. + */ + constructor( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { + + super( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCanvasTexture = true; + + this.needsUpdate = true; + + } + +} + +/** + * This class can be used to automatically save the depth information of a + * rendering into a texture. + * + * @augments Texture + */ +class DepthTexture extends Texture { + + /** + * Constructs a new depth texture. + * + * @param {number} width - The width of the texture. + * @param {number} height - The height of the texture. + * @param {number} [type=UnsignedIntType] - The texture type. + * @param {number} [mapping=Texture.DEFAULT_MAPPING] - The texture mapping. + * @param {number} [wrapS=ClampToEdgeWrapping] - The wrapS value. + * @param {number} [wrapT=ClampToEdgeWrapping] - The wrapT value. + * @param {number} [magFilter=LinearFilter] - The mag filter value. + * @param {number} [minFilter=LinearFilter] - The min filter value. + * @param {number} [anisotropy=Texture.DEFAULT_ANISOTROPY] - The anisotropy value. + * @param {number} [format=DepthFormat] - The texture format. + * @param {number} [depth=1] - The depth of the texture. + */ + constructor( width, height, type = UnsignedIntType, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, format = DepthFormat, depth = 1 ) { + + if ( format !== DepthFormat && format !== DepthStencilFormat ) { + + throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' ); + + } + + const image = { width: width, height: height, depth: depth }; + + super( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isDepthTexture = true; + + /** + * If set to `true`, the texture is flipped along the vertical axis when + * uploaded to the GPU. + * + * Overwritten and set to `false` by default. + * + * @type {boolean} + * @default false + */ + this.flipY = false; + + /** + * Whether to generate mipmaps (if possible) for a texture. + * + * Overwritten and set to `false` by default. + * + * @type {boolean} + * @default false + */ + this.generateMipmaps = false; + + /** + * Code corresponding to the depth compare function. + * + * @type {?(NeverCompare|LessCompare|EqualCompare|LessEqualCompare|GreaterCompare|NotEqualCompare|GreaterEqualCompare|AlwaysCompare)} + * @default null + */ + this.compareFunction = null; + + } + + + copy( source ) { + + super.copy( source ); + + this.source = new Source( Object.assign( {}, source.image ) ); // see #30540 + this.compareFunction = source.compareFunction; + + return this; + + } + + toJSON( meta ) { + + const data = super.toJSON( meta ); + + if ( this.compareFunction !== null ) data.compareFunction = this.compareFunction; + + return data; + + } + +} + +/** + * A geometry class for representing a capsule. + * + * ```js + * const geometry = new THREE.CapsuleGeometry( 1, 1, 4, 8, 1 ); + * const material = new THREE.MeshBasicMaterial( { color: 0x00ff00 } ); + * const capsule = new THREE.Mesh( geometry, material ); + * scene.add( capsule ); + * ``` + * + * @augments BufferGeometry + */ +class CapsuleGeometry extends BufferGeometry { + + /** + * Constructs a new capsule geometry. + * + * @param {number} [radius=1] - Radius of the capsule. + * @param {number} [height=1] - Height of the middle section. + * @param {number} [capSegments=4] - Number of curve segments used to build each cap. + * @param {number} [radialSegments=8] - Number of segmented faces around the circumference of the capsule. Must be an integer >= 3. + * @param {number} [heightSegments=1] - Number of rows of faces along the height of the middle section. Must be an integer >= 1. + */ + constructor( radius = 1, height = 1, capSegments = 4, radialSegments = 8, heightSegments = 1 ) { + + super(); + + this.type = 'CapsuleGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + radius: radius, + height: height, + capSegments: capSegments, + radialSegments: radialSegments, + heightSegments: heightSegments, + }; + + height = Math.max( 0, height ); + capSegments = Math.max( 1, Math.floor( capSegments ) ); + radialSegments = Math.max( 3, Math.floor( radialSegments ) ); + heightSegments = Math.max( 1, Math.floor( heightSegments ) ); + + // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; + + // helper variables + + const halfHeight = height / 2; + const capArcLength = ( Math.PI / 2 ) * radius; + const cylinderPartLength = height; + const totalArcLength = 2 * capArcLength + cylinderPartLength; + + const numVerticalSegments = capSegments * 2 + heightSegments; + const verticesPerRow = radialSegments + 1; + + const normal = new Vector3(); + const vertex = new Vector3(); + + // generate vertices, normals, and uvs + + for ( let iy = 0; iy <= numVerticalSegments; iy ++ ) { + + let currentArcLength = 0; + let profileY = 0; + let profileRadius = 0; + let normalYComponent = 0; + + if ( iy <= capSegments ) { + + // bottom cap + const segmentProgress = iy / capSegments; + const angle = ( segmentProgress * Math.PI ) / 2; + profileY = - halfHeight - radius * Math.cos( angle ); + profileRadius = radius * Math.sin( angle ); + normalYComponent = - radius * Math.cos( angle ); + currentArcLength = segmentProgress * capArcLength; + + } else if ( iy <= capSegments + heightSegments ) { + + // middle section + const segmentProgress = ( iy - capSegments ) / heightSegments; + profileY = - halfHeight + segmentProgress * height; + profileRadius = radius; + normalYComponent = 0; + currentArcLength = capArcLength + segmentProgress * cylinderPartLength; + + } else { + + // top cap + const segmentProgress = + ( iy - capSegments - heightSegments ) / capSegments; + const angle = ( segmentProgress * Math.PI ) / 2; + profileY = halfHeight + radius * Math.sin( angle ); + profileRadius = radius * Math.cos( angle ); + normalYComponent = radius * Math.sin( angle ); + currentArcLength = + capArcLength + cylinderPartLength + segmentProgress * capArcLength; + + } + + const v = Math.max( 0, Math.min( 1, currentArcLength / totalArcLength ) ); + + + // special case for the poles + + let uOffset = 0; + + if ( iy === 0 ) { + + uOffset = 0.5 / radialSegments; + + } else if ( iy === numVerticalSegments ) { + + uOffset = - 0.5 / radialSegments; + + } + + for ( let ix = 0; ix <= radialSegments; ix ++ ) { + + const u = ix / radialSegments; + const theta = u * Math.PI * 2; + + const sinTheta = Math.sin( theta ); + const cosTheta = Math.cos( theta ); + + // vertex + + vertex.x = - profileRadius * cosTheta; + vertex.y = profileY; + vertex.z = profileRadius * sinTheta; + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal + + normal.set( + - profileRadius * cosTheta, + normalYComponent, + profileRadius * sinTheta + ); + normal.normalize(); + normals.push( normal.x, normal.y, normal.z ); + + // uv + + uvs.push( u + uOffset, v ); + + } + + if ( iy > 0 ) { + + const prevIndexRow = ( iy - 1 ) * verticesPerRow; + for ( let ix = 0; ix < radialSegments; ix ++ ) { + + const i1 = prevIndexRow + ix; + const i2 = prevIndexRow + ix + 1; + const i3 = iy * verticesPerRow + ix; + const i4 = iy * verticesPerRow + ix + 1; + + indices.push( i1, i2, i3 ); + indices.push( i2, i4, i3 ); + + } + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {CapsuleGeometry} A new instance. + */ + static fromJSON( data ) { + + return new CapsuleGeometry( data.radius, data.height, data.capSegments, data.radialSegments, data.heightSegments ); + + } + +} + +/** + * A simple shape of Euclidean geometry. It is constructed from a + * number of triangular segments that are oriented around a central point and + * extend as far out as a given radius. It is built counter-clockwise from a + * start angle and a given central angle. It can also be used to create + * regular polygons, where the number of segments determines the number of + * sides. + * + * ```js + * const geometry = new THREE.CircleGeometry( 5, 32 ); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00 } ); + * const circle = new THREE.Mesh( geometry, material ); + * scene.add( circle ) + * ``` + * + * @augments BufferGeometry + */ +class CircleGeometry extends BufferGeometry { + + /** + * Constructs a new circle geometry. + * + * @param {number} [radius=1] - Radius of the circle. + * @param {number} [segments=32] - Number of segments (triangles), minimum = `3`. + * @param {number} [thetaStart=0] - Start angle for first segment in radians. + * @param {number} [thetaLength=Math.PI*2] - The central angle, often called theta, + * of the circular sector in radians. The default value results in a complete circle. + */ + constructor( radius = 1, segments = 32, thetaStart = 0, thetaLength = Math.PI * 2 ) { + + super(); + + this.type = 'CircleGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + radius: radius, + segments: segments, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + segments = Math.max( 3, segments ); + + // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; + + // helper variables + + const vertex = new Vector3(); + const uv = new Vector2(); + + // center point + + vertices.push( 0, 0, 0 ); + normals.push( 0, 0, 1 ); + uvs.push( 0.5, 0.5 ); + + for ( let s = 0, i = 3; s <= segments; s ++, i += 3 ) { + + const segment = thetaStart + s / segments * thetaLength; + + // vertex + + vertex.x = radius * Math.cos( segment ); + vertex.y = radius * Math.sin( segment ); + + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal + + normals.push( 0, 0, 1 ); + + // uvs + + uv.x = ( vertices[ i ] / radius + 1 ) / 2; + uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2; + + uvs.push( uv.x, uv.y ); + + } + + // indices + + for ( let i = 1; i <= segments; i ++ ) { + + indices.push( i, i + 1, 0 ); + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {CircleGeometry} A new instance. + */ + static fromJSON( data ) { + + return new CircleGeometry( data.radius, data.segments, data.thetaStart, data.thetaLength ); + + } + +} + +/** + * A geometry class for representing a cylinder. + * + * ```js + * const geometry = new THREE.CylinderGeometry( 5, 5, 20, 32 ); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00 } ); + * const cylinder = new THREE.Mesh( geometry, material ); + * scene.add( cylinder ); + * ``` + * + * @augments BufferGeometry + */ +class CylinderGeometry extends BufferGeometry { + + /** + * Constructs a new cylinder geometry. + * + * @param {number} [radiusTop=1] - Radius of the cylinder at the top. + * @param {number} [radiusBottom=1] - Radius of the cylinder at the bottom. + * @param {number} [height=1] - Height of the cylinder. + * @param {number} [radialSegments=32] - Number of segmented faces around the circumference of the cylinder. + * @param {number} [heightSegments=1] - Number of rows of faces along the height of the cylinder. + * @param {boolean} [openEnded=false] - Whether the base of the cylinder is open or capped. + * @param {number} [thetaStart=0] - Start angle for first segment, in radians. + * @param {number} [thetaLength=Math.PI*2] - The central angle, often called theta, of the circular sector, in radians. + * The default value results in a complete cylinder. + */ + constructor( radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 32, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2 ) { + + super(); + + this.type = 'CylinderGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + radiusTop: radiusTop, + radiusBottom: radiusBottom, + height: height, + radialSegments: radialSegments, + heightSegments: heightSegments, + openEnded: openEnded, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + const scope = this; + + radialSegments = Math.floor( radialSegments ); + heightSegments = Math.floor( heightSegments ); + + // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; + + // helper variables + + let index = 0; + const indexArray = []; + const halfHeight = height / 2; + let groupStart = 0; + + // generate geometry + + generateTorso(); + + if ( openEnded === false ) { + + if ( radiusTop > 0 ) generateCap( true ); + if ( radiusBottom > 0 ) generateCap( false ); + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + function generateTorso() { + + const normal = new Vector3(); + const vertex = new Vector3(); + + let groupCount = 0; + + // this will be used to calculate the normal + const slope = ( radiusBottom - radiusTop ) / height; + + // generate vertices, normals and uvs + + for ( let y = 0; y <= heightSegments; y ++ ) { + + const indexRow = []; + + const v = y / heightSegments; + + // calculate the radius of the current row + + const radius = v * ( radiusBottom - radiusTop ) + radiusTop; + + for ( let x = 0; x <= radialSegments; x ++ ) { + + const u = x / radialSegments; + + const theta = u * thetaLength + thetaStart; + + const sinTheta = Math.sin( theta ); + const cosTheta = Math.cos( theta ); + + // vertex + + vertex.x = radius * sinTheta; + vertex.y = - v * height + halfHeight; + vertex.z = radius * cosTheta; + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal + + normal.set( sinTheta, slope, cosTheta ).normalize(); + normals.push( normal.x, normal.y, normal.z ); + + // uv + + uvs.push( u, 1 - v ); + + // save index of vertex in respective row + + indexRow.push( index ++ ); + + } + + // now save vertices of the row in our index array + + indexArray.push( indexRow ); + + } + + // generate indices + + for ( let x = 0; x < radialSegments; x ++ ) { + + for ( let y = 0; y < heightSegments; y ++ ) { + + // we use the index array to access the correct indices + + const a = indexArray[ y ][ x ]; + const b = indexArray[ y + 1 ][ x ]; + const c = indexArray[ y + 1 ][ x + 1 ]; + const d = indexArray[ y ][ x + 1 ]; + + // faces + + if ( radiusTop > 0 || y !== 0 ) { + + indices.push( a, b, d ); + groupCount += 3; + + } + + if ( radiusBottom > 0 || y !== heightSegments - 1 ) { + + indices.push( b, c, d ); + groupCount += 3; + + } + + } + + } + + // add a group to the geometry. this will ensure multi material support + + scope.addGroup( groupStart, groupCount, 0 ); + + // calculate new start value for groups + + groupStart += groupCount; + + } + + function generateCap( top ) { + + // save the index of the first center vertex + const centerIndexStart = index; + + const uv = new Vector2(); + const vertex = new Vector3(); + + let groupCount = 0; + + const radius = ( top === true ) ? radiusTop : radiusBottom; + const sign = ( top === true ) ? 1 : - 1; + + // first we generate the center vertex data of the cap. + // because the geometry needs one set of uvs per face, + // we must generate a center vertex per face/segment + + for ( let x = 1; x <= radialSegments; x ++ ) { + + // vertex + + vertices.push( 0, halfHeight * sign, 0 ); + + // normal + + normals.push( 0, sign, 0 ); + + // uv + + uvs.push( 0.5, 0.5 ); + + // increase index + + index ++; + + } + + // save the index of the last center vertex + const centerIndexEnd = index; + + // now we generate the surrounding vertices, normals and uvs + + for ( let x = 0; x <= radialSegments; x ++ ) { + + const u = x / radialSegments; + const theta = u * thetaLength + thetaStart; + + const cosTheta = Math.cos( theta ); + const sinTheta = Math.sin( theta ); + + // vertex + + vertex.x = radius * sinTheta; + vertex.y = halfHeight * sign; + vertex.z = radius * cosTheta; + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal + + normals.push( 0, sign, 0 ); + + // uv + + uv.x = ( cosTheta * 0.5 ) + 0.5; + uv.y = ( sinTheta * 0.5 * sign ) + 0.5; + uvs.push( uv.x, uv.y ); + + // increase index + + index ++; + + } + + // generate indices + + for ( let x = 0; x < radialSegments; x ++ ) { + + const c = centerIndexStart + x; + const i = centerIndexEnd + x; + + if ( top === true ) { + + // face top + + indices.push( i, i + 1, c ); + + } else { + + // face bottom + + indices.push( i + 1, i, c ); + + } + + groupCount += 3; + + } + + // add a group to the geometry. this will ensure multi material support + + scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 ); + + // calculate new start value for groups + + groupStart += groupCount; + + } + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {CylinderGeometry} A new instance. + */ + static fromJSON( data ) { + + return new CylinderGeometry( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); + + } + +} + +/** + * A geometry class for representing a cone. + * + * ```js + * const geometry = new THREE.ConeGeometry( 5, 20, 32 ); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00 } ); + * const cone = new THREE.Mesh(geometry, material ); + * scene.add( cone ); + * ``` + * + * @augments CylinderGeometry + */ +class ConeGeometry extends CylinderGeometry { + + /** + * Constructs a new cone geometry. + * + * @param {number} [radius=1] - Radius of the cone base. + * @param {number} [height=1] - Height of the cone. + * @param {number} [radialSegments=32] - Number of segmented faces around the circumference of the cone. + * @param {number} [heightSegments=1] - Number of rows of faces along the height of the cone. + * @param {boolean} [openEnded=false] - Whether the base of the cone is open or capped. + * @param {number} [thetaStart=0] - Start angle for first segment, in radians. + * @param {number} [thetaLength=Math.PI*2] - The central angle, often called theta, of the circular sector, in radians. + * The default value results in a complete cone. + */ + constructor( radius = 1, height = 1, radialSegments = 32, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2 ) { + + super( 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); + + this.type = 'ConeGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + radius: radius, + height: height, + radialSegments: radialSegments, + heightSegments: heightSegments, + openEnded: openEnded, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {ConeGeometry} A new instance. + */ + static fromJSON( data ) { + + return new ConeGeometry( data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); + + } + +} + +/** + * A polyhedron is a solid in three dimensions with flat faces. This class + * will take an array of vertices, project them onto a sphere, and then + * divide them up to the desired level of detail. + * + * @augments BufferGeometry + */ +class PolyhedronGeometry extends BufferGeometry { + + /** + * Constructs a new polyhedron geometry. + * + * @param {Array} [vertices] - A flat array of vertices describing the base shape. + * @param {Array} [indices] - A flat array of indices describing the base shape. + * @param {number} [radius=1] - The radius of the shape. + * @param {number} [detail=0] - How many levels to subdivide the geometry. The more detail, the smoother the shape. + */ + constructor( vertices = [], indices = [], radius = 1, detail = 0 ) { + + super(); + + this.type = 'PolyhedronGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + vertices: vertices, + indices: indices, + radius: radius, + detail: detail + }; + + // default buffer data + + const vertexBuffer = []; + const uvBuffer = []; + + // the subdivision creates the vertex buffer data + + subdivide( detail ); + + // all vertices should lie on a conceptual sphere with a given radius + + applyRadius( radius ); + + // finally, create the uv data + + generateUVs(); + + // build non-indexed geometry + + this.setAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) ); + + if ( detail === 0 ) { + + this.computeVertexNormals(); // flat normals + + } else { + + this.normalizeNormals(); // smooth normals + + } + + // helper functions + + function subdivide( detail ) { + + const a = new Vector3(); + const b = new Vector3(); + const c = new Vector3(); + + // iterate over all faces and apply a subdivision with the given detail value + + for ( let i = 0; i < indices.length; i += 3 ) { + + // get the vertices of the face + + getVertexByIndex( indices[ i + 0 ], a ); + getVertexByIndex( indices[ i + 1 ], b ); + getVertexByIndex( indices[ i + 2 ], c ); + + // perform subdivision + + subdivideFace( a, b, c, detail ); + + } + + } + + function subdivideFace( a, b, c, detail ) { + + const cols = detail + 1; + + // we use this multidimensional array as a data structure for creating the subdivision + + const v = []; + + // construct all of the vertices for this subdivision + + for ( let i = 0; i <= cols; i ++ ) { + + v[ i ] = []; + + const aj = a.clone().lerp( c, i / cols ); + const bj = b.clone().lerp( c, i / cols ); + + const rows = cols - i; + + for ( let j = 0; j <= rows; j ++ ) { + + if ( j === 0 && i === cols ) { + + v[ i ][ j ] = aj; + + } else { + + v[ i ][ j ] = aj.clone().lerp( bj, j / rows ); + + } + + } + + } + + // construct all of the faces + + for ( let i = 0; i < cols; i ++ ) { + + for ( let j = 0; j < 2 * ( cols - i ) - 1; j ++ ) { + + const k = Math.floor( j / 2 ); + + if ( j % 2 === 0 ) { + + pushVertex( v[ i ][ k + 1 ] ); + pushVertex( v[ i + 1 ][ k ] ); + pushVertex( v[ i ][ k ] ); + + } else { + + pushVertex( v[ i ][ k + 1 ] ); + pushVertex( v[ i + 1 ][ k + 1 ] ); + pushVertex( v[ i + 1 ][ k ] ); + + } + + } + + } + + } + + function applyRadius( radius ) { + + const vertex = new Vector3(); + + // iterate over the entire buffer and apply the radius to each vertex + + for ( let i = 0; i < vertexBuffer.length; i += 3 ) { + + vertex.x = vertexBuffer[ i + 0 ]; + vertex.y = vertexBuffer[ i + 1 ]; + vertex.z = vertexBuffer[ i + 2 ]; + + vertex.normalize().multiplyScalar( radius ); + + vertexBuffer[ i + 0 ] = vertex.x; + vertexBuffer[ i + 1 ] = vertex.y; + vertexBuffer[ i + 2 ] = vertex.z; + + } + + } + + function generateUVs() { + + const vertex = new Vector3(); + + for ( let i = 0; i < vertexBuffer.length; i += 3 ) { + + vertex.x = vertexBuffer[ i + 0 ]; + vertex.y = vertexBuffer[ i + 1 ]; + vertex.z = vertexBuffer[ i + 2 ]; + + const u = azimuth( vertex ) / 2 / Math.PI + 0.5; + const v = inclination( vertex ) / Math.PI + 0.5; + uvBuffer.push( u, 1 - v ); + + } + + correctUVs(); + + correctSeam(); + + } + + function correctSeam() { + + // handle case when face straddles the seam, see #3269 + + for ( let i = 0; i < uvBuffer.length; i += 6 ) { + + // uv data of a single face + + const x0 = uvBuffer[ i + 0 ]; + const x1 = uvBuffer[ i + 2 ]; + const x2 = uvBuffer[ i + 4 ]; + + const max = Math.max( x0, x1, x2 ); + const min = Math.min( x0, x1, x2 ); + + // 0.9 is somewhat arbitrary + + if ( max > 0.9 && min < 0.1 ) { + + if ( x0 < 0.2 ) uvBuffer[ i + 0 ] += 1; + if ( x1 < 0.2 ) uvBuffer[ i + 2 ] += 1; + if ( x2 < 0.2 ) uvBuffer[ i + 4 ] += 1; + + } + + } + + } + + function pushVertex( vertex ) { + + vertexBuffer.push( vertex.x, vertex.y, vertex.z ); + + } + + function getVertexByIndex( index, vertex ) { + + const stride = index * 3; + + vertex.x = vertices[ stride + 0 ]; + vertex.y = vertices[ stride + 1 ]; + vertex.z = vertices[ stride + 2 ]; + + } + + function correctUVs() { + + const a = new Vector3(); + const b = new Vector3(); + const c = new Vector3(); + + const centroid = new Vector3(); + + const uvA = new Vector2(); + const uvB = new Vector2(); + const uvC = new Vector2(); + + for ( let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) { + + a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] ); + b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] ); + c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] ); + + uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] ); + uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] ); + uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] ); + + centroid.copy( a ).add( b ).add( c ).divideScalar( 3 ); + + const azi = azimuth( centroid ); + + correctUV( uvA, j + 0, a, azi ); + correctUV( uvB, j + 2, b, azi ); + correctUV( uvC, j + 4, c, azi ); + + } + + } + + function correctUV( uv, stride, vector, azimuth ) { + + if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) { + + uvBuffer[ stride ] = uv.x - 1; + + } + + if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) { + + uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5; + + } + + } + + // Angle around the Y axis, counter-clockwise when looking from above. + + function azimuth( vector ) { + + return Math.atan2( vector.z, - vector.x ); + + } + + + // Angle above the XZ plane. + + function inclination( vector ) { + + return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) ); + + } + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {PolyhedronGeometry} A new instance. + */ + static fromJSON( data ) { + + return new PolyhedronGeometry( data.vertices, data.indices, data.radius, data.details ); + + } + +} + +/** + * A geometry class for representing a dodecahedron. + * + * ```js + * const geometry = new THREE.DodecahedronGeometry(); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00 } ); + * const dodecahedron = new THREE.Mesh( geometry, material ); + * scene.add( dodecahedron ); + * ``` + * + * @augments PolyhedronGeometry + */ +class DodecahedronGeometry extends PolyhedronGeometry { + + /** + * Constructs a new dodecahedron geometry. + * + * @param {number} [radius=1] - Radius of the dodecahedron. + * @param {number} [detail=0] - Setting this to a value greater than `0` adds vertices making it no longer a dodecahedron. + */ + constructor( radius = 1, detail = 0 ) { + + const t = ( 1 + Math.sqrt( 5 ) ) / 2; + const r = 1 / t; + + const vertices = [ + + // (±1, ±1, ±1) + - 1, - 1, - 1, - 1, - 1, 1, + - 1, 1, - 1, - 1, 1, 1, + 1, - 1, - 1, 1, - 1, 1, + 1, 1, - 1, 1, 1, 1, + + // (0, ±1/φ, ±φ) + 0, - r, - t, 0, - r, t, + 0, r, - t, 0, r, t, + + // (±1/φ, ±φ, 0) + - r, - t, 0, - r, t, 0, + r, - t, 0, r, t, 0, + + // (±φ, 0, ±1/φ) + - t, 0, - r, t, 0, - r, + - t, 0, r, t, 0, r + ]; + + const indices = [ + 3, 11, 7, 3, 7, 15, 3, 15, 13, + 7, 19, 17, 7, 17, 6, 7, 6, 15, + 17, 4, 8, 17, 8, 10, 17, 10, 6, + 8, 0, 16, 8, 16, 2, 8, 2, 10, + 0, 12, 1, 0, 1, 18, 0, 18, 16, + 6, 10, 2, 6, 2, 13, 6, 13, 15, + 2, 16, 18, 2, 18, 3, 2, 3, 13, + 18, 1, 9, 18, 9, 11, 18, 11, 3, + 4, 14, 12, 4, 12, 0, 4, 0, 8, + 11, 9, 5, 11, 5, 19, 11, 19, 7, + 19, 5, 14, 19, 14, 4, 19, 4, 17, + 1, 12, 14, 1, 14, 5, 1, 5, 9 + ]; + + super( vertices, indices, radius, detail ); + + this.type = 'DodecahedronGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + radius: radius, + detail: detail + }; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {DodecahedronGeometry} A new instance. + */ + static fromJSON( data ) { + + return new DodecahedronGeometry( data.radius, data.detail ); + + } + +} + +const _v0 = /*@__PURE__*/ new Vector3(); +const _v1$1 = /*@__PURE__*/ new Vector3(); +const _normal = /*@__PURE__*/ new Vector3(); +const _triangle = /*@__PURE__*/ new Triangle(); + +/** + * Can be used as a helper object to view the edges of a geometry. + * + * ```js + * const geometry = new THREE.BoxGeometry(); + * const edges = new THREE.EdgesGeometry( geometry ); + * const line = new THREE.LineSegments( edges ); + * scene.add( line ); + * ``` + * + * Note: It is not yet possible to serialize/deserialize instances of this class. + * + * @augments BufferGeometry + */ +class EdgesGeometry extends BufferGeometry { + + /** + * Constructs a new edges geometry. + * + * @param {?BufferGeometry} [geometry=null] - The geometry. + * @param {number} [thresholdAngle=1] - An edge is only rendered if the angle (in degrees) + * between the face normals of the adjoining faces exceeds this value. + */ + constructor( geometry = null, thresholdAngle = 1 ) { + + super(); + + this.type = 'EdgesGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + geometry: geometry, + thresholdAngle: thresholdAngle + }; + + if ( geometry !== null ) { + + const precisionPoints = 4; + const precision = Math.pow( 10, precisionPoints ); + const thresholdDot = Math.cos( DEG2RAD * thresholdAngle ); + + const indexAttr = geometry.getIndex(); + const positionAttr = geometry.getAttribute( 'position' ); + const indexCount = indexAttr ? indexAttr.count : positionAttr.count; + + const indexArr = [ 0, 0, 0 ]; + const vertKeys = [ 'a', 'b', 'c' ]; + const hashes = new Array( 3 ); + + const edgeData = {}; + const vertices = []; + for ( let i = 0; i < indexCount; i += 3 ) { + + if ( indexAttr ) { + + indexArr[ 0 ] = indexAttr.getX( i ); + indexArr[ 1 ] = indexAttr.getX( i + 1 ); + indexArr[ 2 ] = indexAttr.getX( i + 2 ); + + } else { + + indexArr[ 0 ] = i; + indexArr[ 1 ] = i + 1; + indexArr[ 2 ] = i + 2; + + } + + const { a, b, c } = _triangle; + a.fromBufferAttribute( positionAttr, indexArr[ 0 ] ); + b.fromBufferAttribute( positionAttr, indexArr[ 1 ] ); + c.fromBufferAttribute( positionAttr, indexArr[ 2 ] ); + _triangle.getNormal( _normal ); + + // create hashes for the edge from the vertices + hashes[ 0 ] = `${ Math.round( a.x * precision ) },${ Math.round( a.y * precision ) },${ Math.round( a.z * precision ) }`; + hashes[ 1 ] = `${ Math.round( b.x * precision ) },${ Math.round( b.y * precision ) },${ Math.round( b.z * precision ) }`; + hashes[ 2 ] = `${ Math.round( c.x * precision ) },${ Math.round( c.y * precision ) },${ Math.round( c.z * precision ) }`; + + // skip degenerate triangles + if ( hashes[ 0 ] === hashes[ 1 ] || hashes[ 1 ] === hashes[ 2 ] || hashes[ 2 ] === hashes[ 0 ] ) { + + continue; + + } + + // iterate over every edge + for ( let j = 0; j < 3; j ++ ) { + + // get the first and next vertex making up the edge + const jNext = ( j + 1 ) % 3; + const vecHash0 = hashes[ j ]; + const vecHash1 = hashes[ jNext ]; + const v0 = _triangle[ vertKeys[ j ] ]; + const v1 = _triangle[ vertKeys[ jNext ] ]; + + const hash = `${ vecHash0 }_${ vecHash1 }`; + const reverseHash = `${ vecHash1 }_${ vecHash0 }`; + + if ( reverseHash in edgeData && edgeData[ reverseHash ] ) { + + // if we found a sibling edge add it into the vertex array if + // it meets the angle threshold and delete the edge from the map. + if ( _normal.dot( edgeData[ reverseHash ].normal ) <= thresholdDot ) { + + vertices.push( v0.x, v0.y, v0.z ); + vertices.push( v1.x, v1.y, v1.z ); + + } + + edgeData[ reverseHash ] = null; + + } else if ( ! ( hash in edgeData ) ) { + + // if we've already got an edge here then skip adding a new one + edgeData[ hash ] = { + + index0: indexArr[ j ], + index1: indexArr[ jNext ], + normal: _normal.clone(), + + }; + + } + + } + + } + + // iterate over all remaining, unmatched edges and add them to the vertex array + for ( const key in edgeData ) { + + if ( edgeData[ key ] ) { + + const { index0, index1 } = edgeData[ key ]; + _v0.fromBufferAttribute( positionAttr, index0 ); + _v1$1.fromBufferAttribute( positionAttr, index1 ); + + vertices.push( _v0.x, _v0.y, _v0.z ); + vertices.push( _v1$1.x, _v1$1.y, _v1$1.z ); + + } + + } + + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + + } + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + +} + +/** + * An abstract base class for creating an analytic curve object that contains methods + * for interpolation. + * + * @abstract + */ +class Curve { + + /** + * Constructs a new curve. + */ + constructor() { + + /** + * The type property is used for detecting the object type + * in context of serialization/deserialization. + * + * @type {string} + * @readonly + */ + this.type = 'Curve'; + + /** + * This value determines the amount of divisions when calculating the + * cumulative segment lengths of a curve via {@link Curve#getLengths}. To ensure + * precision when using methods like {@link Curve#getSpacedPoints}, it is + * recommended to increase the value of this property if the curve is very large. + * + * @type {number} + * @default 200 + */ + this.arcLengthDivisions = 200; + + /** + * Must be set to `true` if the curve parameters have changed. + * + * @type {boolean} + * @default false + */ + this.needsUpdate = false; + + /** + * An internal cache that holds precomputed curve length values. + * + * @private + * @type {?Array} + * @default null + */ + this.cacheArcLengths = null; + + } + + /** + * This method returns a vector in 2D or 3D space (depending on the curve definition) + * for the given interpolation factor. + * + * @abstract + * @param {number} t - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`. + * @param {(Vector2|Vector3)} [optionalTarget] - The optional target vector the result is written to. + * @return {(Vector2|Vector3)} The position on the curve. It can be a 2D or 3D vector depending on the curve definition. + */ + getPoint( /* t, optionalTarget */ ) { + + console.warn( 'THREE.Curve: .getPoint() not implemented.' ); + + } + + /** + * This method returns a vector in 2D or 3D space (depending on the curve definition) + * for the given interpolation factor. Unlike {@link Curve#getPoint}, this method honors the length + * of the curve which equidistant samples. + * + * @param {number} u - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`. + * @param {(Vector2|Vector3)} [optionalTarget] - The optional target vector the result is written to. + * @return {(Vector2|Vector3)} The position on the curve. It can be a 2D or 3D vector depending on the curve definition. + */ + getPointAt( u, optionalTarget ) { + + const t = this.getUtoTmapping( u ); + return this.getPoint( t, optionalTarget ); + + } + + /** + * This method samples the curve via {@link Curve#getPoint} and returns an array of points representing + * the curve shape. + * + * @param {number} [divisions=5] - The number of divisions. + * @return {Array<(Vector2|Vector3)>} An array holding the sampled curve values. The number of points is `divisions + 1`. + */ + getPoints( divisions = 5 ) { + + const points = []; + + for ( let d = 0; d <= divisions; d ++ ) { + + points.push( this.getPoint( d / divisions ) ); + + } + + return points; + + } + + // Get sequence of points using getPointAt( u ) + + /** + * This method samples the curve via {@link Curve#getPointAt} and returns an array of points representing + * the curve shape. Unlike {@link Curve#getPoints}, this method returns equi-spaced points across the entire + * curve. + * + * @param {number} [divisions=5] - The number of divisions. + * @return {Array<(Vector2|Vector3)>} An array holding the sampled curve values. The number of points is `divisions + 1`. + */ + getSpacedPoints( divisions = 5 ) { + + const points = []; + + for ( let d = 0; d <= divisions; d ++ ) { + + points.push( this.getPointAt( d / divisions ) ); + + } + + return points; + + } + + /** + * Returns the total arc length of the curve. + * + * @return {number} The length of the curve. + */ + getLength() { + + const lengths = this.getLengths(); + return lengths[ lengths.length - 1 ]; + + } + + /** + * Returns an array of cumulative segment lengths of the curve. + * + * @param {number} [divisions=this.arcLengthDivisions] - The number of divisions. + * @return {Array} An array holding the cumulative segment lengths. + */ + getLengths( divisions = this.arcLengthDivisions ) { + + if ( this.cacheArcLengths && + ( this.cacheArcLengths.length === divisions + 1 ) && + ! this.needsUpdate ) { + + return this.cacheArcLengths; + + } + + this.needsUpdate = false; + + const cache = []; + let current, last = this.getPoint( 0 ); + let sum = 0; + + cache.push( 0 ); + + for ( let p = 1; p <= divisions; p ++ ) { + + current = this.getPoint( p / divisions ); + sum += current.distanceTo( last ); + cache.push( sum ); + last = current; + + } + + this.cacheArcLengths = cache; + + return cache; // { sums: cache, sum: sum }; Sum is in the last element. + + } + + /** + * Update the cumulative segment distance cache. The method must be called + * every time curve parameters are changed. If an updated curve is part of a + * composed curve like {@link CurvePath}, this method must be called on the + * composed curve, too. + */ + updateArcLengths() { + + this.needsUpdate = true; + this.getLengths(); + + } + + /** + * Given an interpolation factor in the range `[0,1]`, this method returns an updated + * interpolation factor in the same range that can be ued to sample equidistant points + * from a curve. + * + * @param {number} u - The interpolation factor. + * @param {?number} distance - An optional distance on the curve. + * @return {number} The updated interpolation factor. + */ + getUtoTmapping( u, distance = null ) { + + const arcLengths = this.getLengths(); + + let i = 0; + const il = arcLengths.length; + + let targetArcLength; // The targeted u distance value to get + + if ( distance ) { + + targetArcLength = distance; + + } else { + + targetArcLength = u * arcLengths[ il - 1 ]; + + } + + // binary search for the index with largest value smaller than target u distance + + let low = 0, high = il - 1, comparison; + + while ( low <= high ) { + + i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats + + comparison = arcLengths[ i ] - targetArcLength; + + if ( comparison < 0 ) { + + low = i + 1; + + } else if ( comparison > 0 ) { + + high = i - 1; + + } else { + + high = i; + break; + + // DONE + + } + + } + + i = high; + + if ( arcLengths[ i ] === targetArcLength ) { + + return i / ( il - 1 ); + + } + + // we could get finer grain at lengths, or use simple interpolation between two points + + const lengthBefore = arcLengths[ i ]; + const lengthAfter = arcLengths[ i + 1 ]; + + const segmentLength = lengthAfter - lengthBefore; + + // determine where we are between the 'before' and 'after' points + + const segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; + + // add that fractional amount to t + + const t = ( i + segmentFraction ) / ( il - 1 ); + + return t; + + } + + /** + * Returns a unit vector tangent for the given interpolation factor. + * If the derived curve does not implement its tangent derivation, + * two points a small delta apart will be used to find its gradient + * which seems to give a reasonable approximation. + * + * @param {number} t - The interpolation factor. + * @param {(Vector2|Vector3)} [optionalTarget] - The optional target vector the result is written to. + * @return {(Vector2|Vector3)} The tangent vector. + */ + getTangent( t, optionalTarget ) { + + const delta = 0.0001; + let t1 = t - delta; + let t2 = t + delta; + + // Capping in case of danger + + if ( t1 < 0 ) t1 = 0; + if ( t2 > 1 ) t2 = 1; + + const pt1 = this.getPoint( t1 ); + const pt2 = this.getPoint( t2 ); + + const tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() ); + + tangent.copy( pt2 ).sub( pt1 ).normalize(); + + return tangent; + + } + + /** + * Same as {@link Curve#getTangent} but with equidistant samples. + * + * @param {number} u - The interpolation factor. + * @param {(Vector2|Vector3)} [optionalTarget] - The optional target vector the result is written to. + * @return {(Vector2|Vector3)} The tangent vector. + * @see {@link Curve#getPointAt} + */ + getTangentAt( u, optionalTarget ) { + + const t = this.getUtoTmapping( u ); + return this.getTangent( t, optionalTarget ); + + } + + /** + * Generates the Frenet Frames. Requires a curve definition in 3D space. Used + * in geometries like {@link TubeGeometry} or {@link ExtrudeGeometry}. + * + * @param {number} segments - The number of segments. + * @param {boolean} [closed=false] - Whether the curve is closed or not. + * @return {{tangents: Array, normals: Array, binormals: Array}} The Frenet Frames. + */ + computeFrenetFrames( segments, closed = false ) { + + // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf + + const normal = new Vector3(); + + const tangents = []; + const normals = []; + const binormals = []; + + const vec = new Vector3(); + const mat = new Matrix4(); + + // compute the tangent vectors for each segment on the curve + + for ( let i = 0; i <= segments; i ++ ) { + + const u = i / segments; + + tangents[ i ] = this.getTangentAt( u, new Vector3() ); + + } + + // select an initial normal vector perpendicular to the first tangent vector, + // and in the direction of the minimum tangent xyz component + + normals[ 0 ] = new Vector3(); + binormals[ 0 ] = new Vector3(); + let min = Number.MAX_VALUE; + const tx = Math.abs( tangents[ 0 ].x ); + const ty = Math.abs( tangents[ 0 ].y ); + const tz = Math.abs( tangents[ 0 ].z ); + + if ( tx <= min ) { + + min = tx; + normal.set( 1, 0, 0 ); + + } + + if ( ty <= min ) { + + min = ty; + normal.set( 0, 1, 0 ); + + } + + if ( tz <= min ) { + + normal.set( 0, 0, 1 ); + + } + + vec.crossVectors( tangents[ 0 ], normal ).normalize(); + + normals[ 0 ].crossVectors( tangents[ 0 ], vec ); + binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); + + + // compute the slowly-varying normal and binormal vectors for each segment on the curve + + for ( let i = 1; i <= segments; i ++ ) { + + normals[ i ] = normals[ i - 1 ].clone(); + + binormals[ i ] = binormals[ i - 1 ].clone(); + + vec.crossVectors( tangents[ i - 1 ], tangents[ i ] ); + + if ( vec.length() > Number.EPSILON ) { + + vec.normalize(); + + const theta = Math.acos( clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors + + normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); + + } + + binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); + + } + + // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same + + if ( closed === true ) { + + let theta = Math.acos( clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) ); + theta /= segments; + + if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) { + + theta = - theta; + + } + + for ( let i = 1; i <= segments; i ++ ) { + + // twist a little... + normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) ); + binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); + + } + + } + + return { + tangents: tangents, + normals: normals, + binormals: binormals + }; + + } + + /** + * Returns a new curve with copied values from this instance. + * + * @return {Curve} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + + /** + * Copies the values of the given curve to this instance. + * + * @param {Curve} source - The curve to copy. + * @return {Curve} A reference to this curve. + */ + copy( source ) { + + this.arcLengthDivisions = source.arcLengthDivisions; + + return this; + + } + + /** + * Serializes the curve into JSON. + * + * @return {Object} A JSON object representing the serialized curve. + * @see {@link ObjectLoader#parse} + */ + toJSON() { + + const data = { + metadata: { + version: 4.7, + type: 'Curve', + generator: 'Curve.toJSON' + } + }; + + data.arcLengthDivisions = this.arcLengthDivisions; + data.type = this.type; + + return data; + + } + + /** + * Deserializes the curve from the given JSON. + * + * @param {Object} json - The JSON holding the serialized curve. + * @return {Curve} A reference to this curve. + */ + fromJSON( json ) { + + this.arcLengthDivisions = json.arcLengthDivisions; + + return this; + + } + +} + +/** + * A curve representing an ellipse. + * + * ```js + * const curve = new THREE.EllipseCurve( + * 0, 0, + * 10, 10, + * 0, 2 * Math.PI, + * false, + * 0 + * ); + * + * const points = curve.getPoints( 50 ); + * const geometry = new THREE.BufferGeometry().setFromPoints( points ); + * + * const material = new THREE.LineBasicMaterial( { color: 0xff0000 } ); + * + * // Create the final object to add to the scene + * const ellipse = new THREE.Line( geometry, material ); + * ``` + * + * @augments Curve + */ +class EllipseCurve extends Curve { + + /** + * Constructs a new ellipse curve. + * + * @param {number} [aX=0] - The X center of the ellipse. + * @param {number} [aY=0] - The Y center of the ellipse. + * @param {number} [xRadius=1] - The radius of the ellipse in the x direction. + * @param {number} [yRadius=1] - The radius of the ellipse in the y direction. + * @param {number} [aStartAngle=0] - The start angle of the curve in radians starting from the positive X axis. + * @param {number} [aEndAngle=Math.PI*2] - The end angle of the curve in radians starting from the positive X axis. + * @param {boolean} [aClockwise=false] - Whether the ellipse is drawn clockwise or not. + * @param {number} [aRotation=0] - The rotation angle of the ellipse in radians, counterclockwise from the positive X axis. + */ + constructor( aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0 ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isEllipseCurve = true; + + this.type = 'EllipseCurve'; + + /** + * The X center of the ellipse. + * + * @type {number} + * @default 0 + */ + this.aX = aX; + + /** + * The Y center of the ellipse. + * + * @type {number} + * @default 0 + */ + this.aY = aY; + + /** + * The radius of the ellipse in the x direction. + * Setting the this value equal to the {@link EllipseCurve#yRadius} will result in a circle. + * + * @type {number} + * @default 1 + */ + this.xRadius = xRadius; + + /** + * The radius of the ellipse in the y direction. + * Setting the this value equal to the {@link EllipseCurve#xRadius} will result in a circle. + * + * @type {number} + * @default 1 + */ + this.yRadius = yRadius; + + /** + * The start angle of the curve in radians starting from the positive X axis. + * + * @type {number} + * @default 0 + */ + this.aStartAngle = aStartAngle; + + /** + * The end angle of the curve in radians starting from the positive X axis. + * + * @type {number} + * @default Math.PI*2 + */ + this.aEndAngle = aEndAngle; + + /** + * Whether the ellipse is drawn clockwise or not. + * + * @type {boolean} + * @default false + */ + this.aClockwise = aClockwise; + + /** + * The rotation angle of the ellipse in radians, counterclockwise from the positive X axis. + * + * @type {number} + * @default 0 + */ + this.aRotation = aRotation; + + } + + /** + * Returns a point on the curve. + * + * @param {number} t - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`. + * @param {Vector2} [optionalTarget] - The optional target vector the result is written to. + * @return {Vector2} The position on the curve. + */ + getPoint( t, optionalTarget = new Vector2() ) { + + const point = optionalTarget; + + const twoPi = Math.PI * 2; + let deltaAngle = this.aEndAngle - this.aStartAngle; + const samePoints = Math.abs( deltaAngle ) < Number.EPSILON; + + // ensures that deltaAngle is 0 .. 2 PI + while ( deltaAngle < 0 ) deltaAngle += twoPi; + while ( deltaAngle > twoPi ) deltaAngle -= twoPi; + + if ( deltaAngle < Number.EPSILON ) { + + if ( samePoints ) { + + deltaAngle = 0; + + } else { + + deltaAngle = twoPi; + + } + + } + + if ( this.aClockwise === true && ! samePoints ) { + + if ( deltaAngle === twoPi ) { + + deltaAngle = - twoPi; + + } else { + + deltaAngle = deltaAngle - twoPi; + + } + + } + + const angle = this.aStartAngle + t * deltaAngle; + let x = this.aX + this.xRadius * Math.cos( angle ); + let y = this.aY + this.yRadius * Math.sin( angle ); + + if ( this.aRotation !== 0 ) { + + const cos = Math.cos( this.aRotation ); + const sin = Math.sin( this.aRotation ); + + const tx = x - this.aX; + const ty = y - this.aY; + + // Rotate the point about the center of the ellipse. + x = tx * cos - ty * sin + this.aX; + y = tx * sin + ty * cos + this.aY; + + } + + return point.set( x, y ); + + } + + copy( source ) { + + super.copy( source ); + + this.aX = source.aX; + this.aY = source.aY; + + this.xRadius = source.xRadius; + this.yRadius = source.yRadius; + + this.aStartAngle = source.aStartAngle; + this.aEndAngle = source.aEndAngle; + + this.aClockwise = source.aClockwise; + + this.aRotation = source.aRotation; + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.aX = this.aX; + data.aY = this.aY; + + data.xRadius = this.xRadius; + data.yRadius = this.yRadius; + + data.aStartAngle = this.aStartAngle; + data.aEndAngle = this.aEndAngle; + + data.aClockwise = this.aClockwise; + + data.aRotation = this.aRotation; + + return data; + + } + + fromJSON( json ) { + + super.fromJSON( json ); + + this.aX = json.aX; + this.aY = json.aY; + + this.xRadius = json.xRadius; + this.yRadius = json.yRadius; + + this.aStartAngle = json.aStartAngle; + this.aEndAngle = json.aEndAngle; + + this.aClockwise = json.aClockwise; + + this.aRotation = json.aRotation; + + return this; + + } + +} + +/** + * A curve representing an arc. + * + * @augments EllipseCurve + */ +class ArcCurve extends EllipseCurve { + + /** + * Constructs a new arc curve. + * + * @param {number} [aX=0] - The X center of the ellipse. + * @param {number} [aY=0] - The Y center of the ellipse. + * @param {number} [aRadius=1] - The radius of the ellipse in the x direction. + * @param {number} [aStartAngle=0] - The start angle of the curve in radians starting from the positive X axis. + * @param {number} [aEndAngle=Math.PI*2] - The end angle of the curve in radians starting from the positive X axis. + * @param {boolean} [aClockwise=false] - Whether the ellipse is drawn clockwise or not. + */ + constructor( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { + + super( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isArcCurve = true; + + this.type = 'ArcCurve'; + + } + +} + +function CubicPoly() { + + /** + * Centripetal CatmullRom Curve - which is useful for avoiding + * cusps and self-intersections in non-uniform catmull rom curves. + * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf + * + * curve.type accepts centripetal(default), chordal and catmullrom + * curve.tension is used for catmullrom which defaults to 0.5 + */ + + /* + Based on an optimized c++ solution in + - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ + - http://ideone.com/NoEbVM + + This CubicPoly class could be used for reusing some variables and calculations, + but for three.js curve use, it could be possible inlined and flatten into a single function call + which can be placed in CurveUtils. + */ + + let c0 = 0, c1 = 0, c2 = 0, c3 = 0; + + /* + * Compute coefficients for a cubic polynomial + * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 + * such that + * p(0) = x0, p(1) = x1 + * and + * p'(0) = t0, p'(1) = t1. + */ + function init( x0, x1, t0, t1 ) { + + c0 = x0; + c1 = t0; + c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1; + c3 = 2 * x0 - 2 * x1 + t0 + t1; + + } + + return { + + initCatmullRom: function ( x0, x1, x2, x3, tension ) { + + init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) ); + + }, + + initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) { + + // compute tangents when parameterized in [t1,t2] + let t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1; + let t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2; + + // rescale tangents for parametrization in [0,1] + t1 *= dt1; + t2 *= dt1; + + init( x1, x2, t1, t2 ); + + }, + + calc: function ( t ) { + + const t2 = t * t; + const t3 = t2 * t; + return c0 + c1 * t + c2 * t2 + c3 * t3; + + } + + }; + +} + +// + +const tmp = /*@__PURE__*/ new Vector3(); +const px = /*@__PURE__*/ new CubicPoly(); +const py = /*@__PURE__*/ new CubicPoly(); +const pz = /*@__PURE__*/ new CubicPoly(); + +/** + * A curve representing a Catmull-Rom spline. + * + * ```js + * //Create a closed wavey loop + * const curve = new THREE.CatmullRomCurve3( [ + * new THREE.Vector3( -10, 0, 10 ), + * new THREE.Vector3( -5, 5, 5 ), + * new THREE.Vector3( 0, 0, 0 ), + * new THREE.Vector3( 5, -5, 5 ), + * new THREE.Vector3( 10, 0, 10 ) + * ] ); + * + * const points = curve.getPoints( 50 ); + * const geometry = new THREE.BufferGeometry().setFromPoints( points ); + * + * const material = new THREE.LineBasicMaterial( { color: 0xff0000 } ); + * + * // Create the final object to add to the scene + * const curveObject = new THREE.Line( geometry, material ); + * ``` + * + * @augments Curve + */ +class CatmullRomCurve3 extends Curve { + + /** + * Constructs a new Catmull-Rom curve. + * + * @param {Array} [points] - An array of 3D points defining the curve. + * @param {boolean} [closed=false] - Whether the curve is closed or not. + * @param {('centripetal'|'chordal'|'catmullrom')} [curveType='centripetal'] - The curve type. + * @param {number} [tension=0.5] - Tension of the curve. + */ + constructor( points = [], closed = false, curveType = 'centripetal', tension = 0.5 ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCatmullRomCurve3 = true; + + this.type = 'CatmullRomCurve3'; + + /** + * An array of 3D points defining the curve. + * + * @type {Array} + */ + this.points = points; + + /** + * Whether the curve is closed or not. + * + * @type {boolean} + * @default false + */ + this.closed = closed; + + /** + * The curve type. + * + * @type {('centripetal'|'chordal'|'catmullrom')} + * @default 'centripetal' + */ + this.curveType = curveType; + + /** + * Tension of the curve. + * + * @type {number} + * @default 0.5 + */ + this.tension = tension; + + } + + /** + * Returns a point on the curve. + * + * @param {number} t - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`. + * @param {Vector3} [optionalTarget] - The optional target vector the result is written to. + * @return {Vector3} The position on the curve. + */ + getPoint( t, optionalTarget = new Vector3() ) { + + const point = optionalTarget; + + const points = this.points; + const l = points.length; + + const p = ( l - ( this.closed ? 0 : 1 ) ) * t; + let intPoint = Math.floor( p ); + let weight = p - intPoint; + + if ( this.closed ) { + + intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / l ) + 1 ) * l; + + } else if ( weight === 0 && intPoint === l - 1 ) { + + intPoint = l - 2; + weight = 1; + + } + + let p0, p3; // 4 points (p1 & p2 defined below) + + if ( this.closed || intPoint > 0 ) { + + p0 = points[ ( intPoint - 1 ) % l ]; + + } else { + + // extrapolate first point + tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] ); + p0 = tmp; + + } + + const p1 = points[ intPoint % l ]; + const p2 = points[ ( intPoint + 1 ) % l ]; + + if ( this.closed || intPoint + 2 < l ) { + + p3 = points[ ( intPoint + 2 ) % l ]; + + } else { + + // extrapolate last point + tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] ); + p3 = tmp; + + } + + if ( this.curveType === 'centripetal' || this.curveType === 'chordal' ) { + + // init Centripetal / Chordal Catmull-Rom + const pow = this.curveType === 'chordal' ? 0.5 : 0.25; + let dt0 = Math.pow( p0.distanceToSquared( p1 ), pow ); + let dt1 = Math.pow( p1.distanceToSquared( p2 ), pow ); + let dt2 = Math.pow( p2.distanceToSquared( p3 ), pow ); + + // safety check for repeated points + if ( dt1 < 1e-4 ) dt1 = 1.0; + if ( dt0 < 1e-4 ) dt0 = dt1; + if ( dt2 < 1e-4 ) dt2 = dt1; + + px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 ); + py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 ); + pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 ); + + } else if ( this.curveType === 'catmullrom' ) { + + px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, this.tension ); + py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, this.tension ); + pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, this.tension ); + + } + + point.set( + px.calc( weight ), + py.calc( weight ), + pz.calc( weight ) + ); + + return point; + + } + + copy( source ) { + + super.copy( source ); + + this.points = []; + + for ( let i = 0, l = source.points.length; i < l; i ++ ) { + + const point = source.points[ i ]; + + this.points.push( point.clone() ); + + } + + this.closed = source.closed; + this.curveType = source.curveType; + this.tension = source.tension; + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.points = []; + + for ( let i = 0, l = this.points.length; i < l; i ++ ) { + + const point = this.points[ i ]; + data.points.push( point.toArray() ); + + } + + data.closed = this.closed; + data.curveType = this.curveType; + data.tension = this.tension; + + return data; + + } + + fromJSON( json ) { + + super.fromJSON( json ); + + this.points = []; + + for ( let i = 0, l = json.points.length; i < l; i ++ ) { + + const point = json.points[ i ]; + this.points.push( new Vector3().fromArray( point ) ); + + } + + this.closed = json.closed; + this.curveType = json.curveType; + this.tension = json.tension; + + return this; + + } + +} + +// Bezier Curves formulas obtained from: https://en.wikipedia.org/wiki/B%C3%A9zier_curve + +/** + * Computes a point on a Catmull-Rom spline. + * + * @param {number} t - The interpolation factor. + * @param {number} p0 - The first control point. + * @param {number} p1 - The second control point. + * @param {number} p2 - The third control point. + * @param {number} p3 - The fourth control point. + * @return {number} The calculated point on a Catmull-Rom spline. + */ +function CatmullRom( t, p0, p1, p2, p3 ) { + + const v0 = ( p2 - p0 ) * 0.5; + const v1 = ( p3 - p1 ) * 0.5; + const t2 = t * t; + const t3 = t * t2; + return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1; + +} + +// + +function QuadraticBezierP0( t, p ) { + + const k = 1 - t; + return k * k * p; + +} + +function QuadraticBezierP1( t, p ) { + + return 2 * ( 1 - t ) * t * p; + +} + +function QuadraticBezierP2( t, p ) { + + return t * t * p; + +} + +/** + * Computes a point on a Quadratic Bezier curve. + * + * @param {number} t - The interpolation factor. + * @param {number} p0 - The first control point. + * @param {number} p1 - The second control point. + * @param {number} p2 - The third control point. + * @return {number} The calculated point on a Quadratic Bezier curve. + */ +function QuadraticBezier( t, p0, p1, p2 ) { + + return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) + + QuadraticBezierP2( t, p2 ); + +} + +// + +function CubicBezierP0( t, p ) { + + const k = 1 - t; + return k * k * k * p; + +} + +function CubicBezierP1( t, p ) { + + const k = 1 - t; + return 3 * k * k * t * p; + +} + +function CubicBezierP2( t, p ) { + + return 3 * ( 1 - t ) * t * t * p; + +} + +function CubicBezierP3( t, p ) { + + return t * t * t * p; + +} + +/** + * Computes a point on a Cubic Bezier curve. + * + * @param {number} t - The interpolation factor. + * @param {number} p0 - The first control point. + * @param {number} p1 - The second control point. + * @param {number} p2 - The third control point. + * @param {number} p3 - The fourth control point. + * @return {number} The calculated point on a Cubic Bezier curve. + */ +function CubicBezier( t, p0, p1, p2, p3 ) { + + return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) + + CubicBezierP3( t, p3 ); + +} + +/** + * A curve representing a 2D Cubic Bezier curve. + * + * ```js + * const curve = new THREE.CubicBezierCurve( + * new THREE.Vector2( - 0, 0 ), + * new THREE.Vector2( - 5, 15 ), + * new THREE.Vector2( 20, 15 ), + * new THREE.Vector2( 10, 0 ) + * ); + * + * const points = curve.getPoints( 50 ); + * const geometry = new THREE.BufferGeometry().setFromPoints( points ); + * + * const material = new THREE.LineBasicMaterial( { color: 0xff0000 } ); + * + * // Create the final object to add to the scene + * const curveObject = new THREE.Line( geometry, material ); + * ``` + * + * @augments Curve + */ +class CubicBezierCurve extends Curve { + + /** + * Constructs a new Cubic Bezier curve. + * + * @param {Vector2} [v0] - The start point. + * @param {Vector2} [v1] - The first control point. + * @param {Vector2} [v2] - The second control point. + * @param {Vector2} [v3] - The end point. + */ + constructor( v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2() ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCubicBezierCurve = true; + + this.type = 'CubicBezierCurve'; + + /** + * The start point. + * + * @type {Vector2} + */ + this.v0 = v0; + + /** + * The first control point. + * + * @type {Vector2} + */ + this.v1 = v1; + + /** + * The second control point. + * + * @type {Vector2} + */ + this.v2 = v2; + + /** + * The end point. + * + * @type {Vector2} + */ + this.v3 = v3; + + } + + /** + * Returns a point on the curve. + * + * @param {number} t - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`. + * @param {Vector2} [optionalTarget] - The optional target vector the result is written to. + * @return {Vector2} The position on the curve. + */ + getPoint( t, optionalTarget = new Vector2() ) { + + const point = optionalTarget; + + const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; + + point.set( + CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), + CubicBezier( t, v0.y, v1.y, v2.y, v3.y ) + ); + + return point; + + } + + copy( source ) { + + super.copy( source ); + + this.v0.copy( source.v0 ); + this.v1.copy( source.v1 ); + this.v2.copy( source.v2 ); + this.v3.copy( source.v3 ); + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + data.v3 = this.v3.toArray(); + + return data; + + } + + fromJSON( json ) { + + super.fromJSON( json ); + + this.v0.fromArray( json.v0 ); + this.v1.fromArray( json.v1 ); + this.v2.fromArray( json.v2 ); + this.v3.fromArray( json.v3 ); + + return this; + + } + +} + +/** + * A curve representing a 3D Cubic Bezier curve. + * + * @augments Curve + */ +class CubicBezierCurve3 extends Curve { + + /** + * Constructs a new Cubic Bezier curve. + * + * @param {Vector3} [v0] - The start point. + * @param {Vector3} [v1] - The first control point. + * @param {Vector3} [v2] - The second control point. + * @param {Vector3} [v3] - The end point. + */ + constructor( v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3() ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCubicBezierCurve3 = true; + + this.type = 'CubicBezierCurve3'; + + /** + * The start point. + * + * @type {Vector3} + */ + this.v0 = v0; + + /** + * The first control point. + * + * @type {Vector3} + */ + this.v1 = v1; + + /** + * The second control point. + * + * @type {Vector3} + */ + this.v2 = v2; + + /** + * The end point. + * + * @type {Vector3} + */ + this.v3 = v3; + + } + + /** + * Returns a point on the curve. + * + * @param {number} t - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`. + * @param {Vector3} [optionalTarget] - The optional target vector the result is written to. + * @return {Vector3} The position on the curve. + */ + getPoint( t, optionalTarget = new Vector3() ) { + + const point = optionalTarget; + + const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; + + point.set( + CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), + CubicBezier( t, v0.y, v1.y, v2.y, v3.y ), + CubicBezier( t, v0.z, v1.z, v2.z, v3.z ) + ); + + return point; + + } + + copy( source ) { + + super.copy( source ); + + this.v0.copy( source.v0 ); + this.v1.copy( source.v1 ); + this.v2.copy( source.v2 ); + this.v3.copy( source.v3 ); + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + data.v3 = this.v3.toArray(); + + return data; + + } + + fromJSON( json ) { + + super.fromJSON( json ); + + this.v0.fromArray( json.v0 ); + this.v1.fromArray( json.v1 ); + this.v2.fromArray( json.v2 ); + this.v3.fromArray( json.v3 ); + + return this; + + } + +} + +/** + * A curve representing a 2D line segment. + * + * @augments Curve + */ +class LineCurve extends Curve { + + /** + * Constructs a new line curve. + * + * @param {Vector2} [v1] - The start point. + * @param {Vector2} [v2] - The end point. + */ + constructor( v1 = new Vector2(), v2 = new Vector2() ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLineCurve = true; + + this.type = 'LineCurve'; + + /** + * The start point. + * + * @type {Vector2} + */ + this.v1 = v1; + + /** + * The end point. + * + * @type {Vector2} + */ + this.v2 = v2; + + } + + /** + * Returns a point on the line. + * + * @param {number} t - A interpolation factor representing a position on the line. Must be in the range `[0,1]`. + * @param {Vector2} [optionalTarget] - The optional target vector the result is written to. + * @return {Vector2} The position on the line. + */ + getPoint( t, optionalTarget = new Vector2() ) { + + const point = optionalTarget; + + if ( t === 1 ) { + + point.copy( this.v2 ); + + } else { + + point.copy( this.v2 ).sub( this.v1 ); + point.multiplyScalar( t ).add( this.v1 ); + + } + + return point; + + } + + // Line curve is linear, so we can overwrite default getPointAt + getPointAt( u, optionalTarget ) { + + return this.getPoint( u, optionalTarget ); + + } + + getTangent( t, optionalTarget = new Vector2() ) { + + return optionalTarget.subVectors( this.v2, this.v1 ).normalize(); + + } + + getTangentAt( u, optionalTarget ) { + + return this.getTangent( u, optionalTarget ); + + } + + copy( source ) { + + super.copy( source ); + + this.v1.copy( source.v1 ); + this.v2.copy( source.v2 ); + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + + return data; + + } + + fromJSON( json ) { + + super.fromJSON( json ); + + this.v1.fromArray( json.v1 ); + this.v2.fromArray( json.v2 ); + + return this; + + } + +} + +/** + * A curve representing a 3D line segment. + * + * @augments Curve + */ +class LineCurve3 extends Curve { + + /** + * Constructs a new line curve. + * + * @param {Vector3} [v1] - The start point. + * @param {Vector3} [v2] - The end point. + */ + constructor( v1 = new Vector3(), v2 = new Vector3() ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLineCurve3 = true; + + this.type = 'LineCurve3'; + + /** + * The start point. + * + * @type {Vector3} + */ + this.v1 = v1; + + /** + * The end point. + * + * @type {Vector2} + */ + this.v2 = v2; + + } + + /** + * Returns a point on the line. + * + * @param {number} t - A interpolation factor representing a position on the line. Must be in the range `[0,1]`. + * @param {Vector3} [optionalTarget] - The optional target vector the result is written to. + * @return {Vector3} The position on the line. + */ + getPoint( t, optionalTarget = new Vector3() ) { + + const point = optionalTarget; + + if ( t === 1 ) { + + point.copy( this.v2 ); + + } else { + + point.copy( this.v2 ).sub( this.v1 ); + point.multiplyScalar( t ).add( this.v1 ); + + } + + return point; + + } + + // Line curve is linear, so we can overwrite default getPointAt + getPointAt( u, optionalTarget ) { + + return this.getPoint( u, optionalTarget ); + + } + + getTangent( t, optionalTarget = new Vector3() ) { + + return optionalTarget.subVectors( this.v2, this.v1 ).normalize(); + + } + + getTangentAt( u, optionalTarget ) { + + return this.getTangent( u, optionalTarget ); + + } + + copy( source ) { + + super.copy( source ); + + this.v1.copy( source.v1 ); + this.v2.copy( source.v2 ); + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + + return data; + + } + + fromJSON( json ) { + + super.fromJSON( json ); + + this.v1.fromArray( json.v1 ); + this.v2.fromArray( json.v2 ); + + return this; + + } + +} + +/** + * A curve representing a 2D Quadratic Bezier curve. + * + * ```js + * const curve = new THREE.QuadraticBezierCurve( + * new THREE.Vector2( - 10, 0 ), + * new THREE.Vector2( 20, 15 ), + * new THREE.Vector2( 10, 0 ) + * ) + * + * const points = curve.getPoints( 50 ); + * const geometry = new THREE.BufferGeometry().setFromPoints( points ); + * + * const material = new THREE.LineBasicMaterial( { color: 0xff0000 } ); + * + * // Create the final object to add to the scene + * const curveObject = new THREE.Line( geometry, material ); + * ``` + * + * @augments Curve + */ +class QuadraticBezierCurve extends Curve { + + /** + * Constructs a new Quadratic Bezier curve. + * + * @param {Vector2} [v0] - The start point. + * @param {Vector2} [v1] - The control point. + * @param {Vector2} [v2] - The end point. + */ + constructor( v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2() ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isQuadraticBezierCurve = true; + + this.type = 'QuadraticBezierCurve'; + + /** + * The start point. + * + * @type {Vector2} + */ + this.v0 = v0; + + /** + * The control point. + * + * @type {Vector2} + */ + this.v1 = v1; + + /** + * The end point. + * + * @type {Vector2} + */ + this.v2 = v2; + + } + + /** + * Returns a point on the curve. + * + * @param {number} t - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`. + * @param {Vector2} [optionalTarget] - The optional target vector the result is written to. + * @return {Vector2} The position on the curve. + */ + getPoint( t, optionalTarget = new Vector2() ) { + + const point = optionalTarget; + + const v0 = this.v0, v1 = this.v1, v2 = this.v2; + + point.set( + QuadraticBezier( t, v0.x, v1.x, v2.x ), + QuadraticBezier( t, v0.y, v1.y, v2.y ) + ); + + return point; + + } + + copy( source ) { + + super.copy( source ); + + this.v0.copy( source.v0 ); + this.v1.copy( source.v1 ); + this.v2.copy( source.v2 ); + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + + return data; + + } + + fromJSON( json ) { + + super.fromJSON( json ); + + this.v0.fromArray( json.v0 ); + this.v1.fromArray( json.v1 ); + this.v2.fromArray( json.v2 ); + + return this; + + } + +} + +/** + * A curve representing a 3D Quadratic Bezier curve. + * + * @augments Curve + */ +class QuadraticBezierCurve3 extends Curve { + + /** + * Constructs a new Quadratic Bezier curve. + * + * @param {Vector3} [v0] - The start point. + * @param {Vector3} [v1] - The control point. + * @param {Vector3} [v2] - The end point. + */ + constructor( v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3() ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isQuadraticBezierCurve3 = true; + + this.type = 'QuadraticBezierCurve3'; + + /** + * The start point. + * + * @type {Vector3} + */ + this.v0 = v0; + + /** + * The control point. + * + * @type {Vector3} + */ + this.v1 = v1; + + /** + * The end point. + * + * @type {Vector3} + */ + this.v2 = v2; + + } + + /** + * Returns a point on the curve. + * + * @param {number} t - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`. + * @param {Vector3} [optionalTarget] - The optional target vector the result is written to. + * @return {Vector3} The position on the curve. + */ + getPoint( t, optionalTarget = new Vector3() ) { + + const point = optionalTarget; + + const v0 = this.v0, v1 = this.v1, v2 = this.v2; + + point.set( + QuadraticBezier( t, v0.x, v1.x, v2.x ), + QuadraticBezier( t, v0.y, v1.y, v2.y ), + QuadraticBezier( t, v0.z, v1.z, v2.z ) + ); + + return point; + + } + + copy( source ) { + + super.copy( source ); + + this.v0.copy( source.v0 ); + this.v1.copy( source.v1 ); + this.v2.copy( source.v2 ); + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + + return data; + + } + + fromJSON( json ) { + + super.fromJSON( json ); + + this.v0.fromArray( json.v0 ); + this.v1.fromArray( json.v1 ); + this.v2.fromArray( json.v2 ); + + return this; + + } + +} + +/** + * A curve representing a 2D spline curve. + * + * ```js + * // Create a sine-like wave + * const curve = new THREE.SplineCurve( [ + * new THREE.Vector2( -10, 0 ), + * new THREE.Vector2( -5, 5 ), + * new THREE.Vector2( 0, 0 ), + * new THREE.Vector2( 5, -5 ), + * new THREE.Vector2( 10, 0 ) + * ] ); + * + * const points = curve.getPoints( 50 ); + * const geometry = new THREE.BufferGeometry().setFromPoints( points ); + * + * const material = new THREE.LineBasicMaterial( { color: 0xff0000 } ); + * + * // Create the final object to add to the scene + * const splineObject = new THREE.Line( geometry, material ); + * ``` + * + * @augments Curve + */ +class SplineCurve extends Curve { + + /** + * Constructs a new 2D spline curve. + * + * @param {Array} [points] - An array of 2D points defining the curve. + */ + constructor( points = [] ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSplineCurve = true; + + this.type = 'SplineCurve'; + + /** + * An array of 2D points defining the curve. + * + * @type {Array} + */ + this.points = points; + + } + + /** + * Returns a point on the curve. + * + * @param {number} t - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`. + * @param {Vector2} [optionalTarget] - The optional target vector the result is written to. + * @return {Vector2} The position on the curve. + */ + getPoint( t, optionalTarget = new Vector2() ) { + + const point = optionalTarget; + + const points = this.points; + const p = ( points.length - 1 ) * t; + + const intPoint = Math.floor( p ); + const weight = p - intPoint; + + const p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ]; + const p1 = points[ intPoint ]; + const p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; + const p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; + + point.set( + CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ), + CatmullRom( weight, p0.y, p1.y, p2.y, p3.y ) + ); + + return point; + + } + + copy( source ) { + + super.copy( source ); + + this.points = []; + + for ( let i = 0, l = source.points.length; i < l; i ++ ) { + + const point = source.points[ i ]; + + this.points.push( point.clone() ); + + } + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.points = []; + + for ( let i = 0, l = this.points.length; i < l; i ++ ) { + + const point = this.points[ i ]; + data.points.push( point.toArray() ); + + } + + return data; + + } + + fromJSON( json ) { + + super.fromJSON( json ); + + this.points = []; + + for ( let i = 0, l = json.points.length; i < l; i ++ ) { + + const point = json.points[ i ]; + this.points.push( new Vector2().fromArray( point ) ); + + } + + return this; + + } + +} + +var Curves = /*#__PURE__*/Object.freeze( { + __proto__: null, + ArcCurve: ArcCurve, + CatmullRomCurve3: CatmullRomCurve3, + CubicBezierCurve: CubicBezierCurve, + CubicBezierCurve3: CubicBezierCurve3, + EllipseCurve: EllipseCurve, + LineCurve: LineCurve, + LineCurve3: LineCurve3, + QuadraticBezierCurve: QuadraticBezierCurve, + QuadraticBezierCurve3: QuadraticBezierCurve3, + SplineCurve: SplineCurve +} ); + +/** + * A base class extending {@link Curve}. `CurvePath` is simply an + * array of connected curves, but retains the API of a curve. + * + * @augments Curve + */ +class CurvePath extends Curve { + + /** + * Constructs a new curve path. + */ + constructor() { + + super(); + + this.type = 'CurvePath'; + + /** + * An array of curves defining the + * path. + * + * @type {Array} + */ + this.curves = []; + + /** + * Whether the path should automatically be closed + * by a line curve. + * + * @type {boolean} + * @default false + */ + this.autoClose = false; + + } + + /** + * Adds a curve to this curve path. + * + * @param {Curve} curve - The curve to add. + */ + add( curve ) { + + this.curves.push( curve ); + + } + + /** + * Adds a line curve to close the path. + * + * @return {CurvePath} A reference to this curve path. + */ + closePath() { + + // Add a line curve if start and end of lines are not connected + const startPoint = this.curves[ 0 ].getPoint( 0 ); + const endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 ); + + if ( ! startPoint.equals( endPoint ) ) { + + const lineType = ( startPoint.isVector2 === true ) ? 'LineCurve' : 'LineCurve3'; + this.curves.push( new Curves[ lineType ]( endPoint, startPoint ) ); + + } + + return this; + + } + + /** + * This method returns a vector in 2D or 3D space (depending on the curve definitions) + * for the given interpolation factor. + * + * @param {number} t - A interpolation factor representing a position on the curve. Must be in the range `[0,1]`. + * @param {(Vector2|Vector3)} [optionalTarget] - The optional target vector the result is written to. + * @return {?(Vector2|Vector3)} The position on the curve. It can be a 2D or 3D vector depending on the curve definition. + */ + getPoint( t, optionalTarget ) { + + // To get accurate point with reference to + // entire path distance at time t, + // following has to be done: + + // 1. Length of each sub path have to be known + // 2. Locate and identify type of curve + // 3. Get t for the curve + // 4. Return curve.getPointAt(t') + + const d = t * this.getLength(); + const curveLengths = this.getCurveLengths(); + let i = 0; + + // To think about boundaries points. + + while ( i < curveLengths.length ) { + + if ( curveLengths[ i ] >= d ) { + + const diff = curveLengths[ i ] - d; + const curve = this.curves[ i ]; + + const segmentLength = curve.getLength(); + const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength; + + return curve.getPointAt( u, optionalTarget ); + + } + + i ++; + + } + + return null; + + // loop where sum != 0, sum > d , sum+1 } The curve lengths. + */ + getCurveLengths() { + + // Compute lengths and cache them + // We cannot overwrite getLengths() because UtoT mapping uses it. + // We use cache values if curves and cache array are same length + + if ( this.cacheLengths && this.cacheLengths.length === this.curves.length ) { + + return this.cacheLengths; + + } + + // Get length of sub-curve + // Push sums into cached array + + const lengths = []; + let sums = 0; + + for ( let i = 0, l = this.curves.length; i < l; i ++ ) { + + sums += this.curves[ i ].getLength(); + lengths.push( sums ); + + } + + this.cacheLengths = lengths; + + return lengths; + + } + + getSpacedPoints( divisions = 40 ) { + + const points = []; + + for ( let i = 0; i <= divisions; i ++ ) { + + points.push( this.getPoint( i / divisions ) ); + + } + + if ( this.autoClose ) { + + points.push( points[ 0 ] ); + + } + + return points; + + } + + getPoints( divisions = 12 ) { + + const points = []; + let last; + + for ( let i = 0, curves = this.curves; i < curves.length; i ++ ) { + + const curve = curves[ i ]; + const resolution = curve.isEllipseCurve ? divisions * 2 + : ( curve.isLineCurve || curve.isLineCurve3 ) ? 1 + : curve.isSplineCurve ? divisions * curve.points.length + : divisions; + + const pts = curve.getPoints( resolution ); + + for ( let j = 0; j < pts.length; j ++ ) { + + const point = pts[ j ]; + + if ( last && last.equals( point ) ) continue; // ensures no consecutive points are duplicates + + points.push( point ); + last = point; + + } + + } + + if ( this.autoClose && points.length > 1 && ! points[ points.length - 1 ].equals( points[ 0 ] ) ) { + + points.push( points[ 0 ] ); + + } + + return points; + + } + + copy( source ) { + + super.copy( source ); + + this.curves = []; + + for ( let i = 0, l = source.curves.length; i < l; i ++ ) { + + const curve = source.curves[ i ]; + + this.curves.push( curve.clone() ); + + } + + this.autoClose = source.autoClose; + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.autoClose = this.autoClose; + data.curves = []; + + for ( let i = 0, l = this.curves.length; i < l; i ++ ) { + + const curve = this.curves[ i ]; + data.curves.push( curve.toJSON() ); + + } + + return data; + + } + + fromJSON( json ) { + + super.fromJSON( json ); + + this.autoClose = json.autoClose; + this.curves = []; + + for ( let i = 0, l = json.curves.length; i < l; i ++ ) { + + const curve = json.curves[ i ]; + this.curves.push( new Curves[ curve.type ]().fromJSON( curve ) ); + + } + + return this; + + } + +} + +/** + * A 2D path representation. The class provides methods for creating paths + * and contours of 2D shapes similar to the 2D Canvas API. + * + * ```js + * const path = new THREE.Path(); + * + * path.lineTo( 0, 0.8 ); + * path.quadraticCurveTo( 0, 1, 0.2, 1 ); + * path.lineTo( 1, 1 ); + * + * const points = path.getPoints(); + * + * const geometry = new THREE.BufferGeometry().setFromPoints( points ); + * const material = new THREE.LineBasicMaterial( { color: 0xffffff } ); + * + * const line = new THREE.Line( geometry, material ); + * scene.add( line ); + * ``` + * + * @augments CurvePath + */ +class Path extends CurvePath { + + /** + * Constructs a new path. + * + * @param {Array} [points] - An array of 2D points defining the path. + */ + constructor( points ) { + + super(); + + this.type = 'Path'; + + /** + * The current offset of the path. Any new curve added will start here. + * + * @type {Vector2} + */ + this.currentPoint = new Vector2(); + + if ( points ) { + + this.setFromPoints( points ); + + } + + } + + /** + * Creates a path from the given list of points. The points are added + * to the path as instances of {@link LineCurve}. + * + * @param {Array} points - An array of 2D points. + * @return {Path} A reference to this path. + */ + setFromPoints( points ) { + + this.moveTo( points[ 0 ].x, points[ 0 ].y ); + + for ( let i = 1, l = points.length; i < l; i ++ ) { + + this.lineTo( points[ i ].x, points[ i ].y ); + + } + + return this; + + } + + /** + * Moves {@link Path#currentPoint} to the given point. + * + * @param {number} x - The x coordinate. + * @param {number} y - The y coordinate. + * @return {Path} A reference to this path. + */ + moveTo( x, y ) { + + this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying? + + return this; + + } + + /** + * Adds an instance of {@link LineCurve} to the path by connecting + * the current point with the given one. + * + * @param {number} x - The x coordinate of the end point. + * @param {number} y - The y coordinate of the end point. + * @return {Path} A reference to this path. + */ + lineTo( x, y ) { + + const curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) ); + this.curves.push( curve ); + + this.currentPoint.set( x, y ); + + return this; + + } + + /** + * Adds an instance of {@link QuadraticBezierCurve} to the path by connecting + * the current point with the given one. + * + * @param {number} aCPx - The x coordinate of the control point. + * @param {number} aCPy - The y coordinate of the control point. + * @param {number} aX - The x coordinate of the end point. + * @param {number} aY - The y coordinate of the end point. + * @return {Path} A reference to this path. + */ + quadraticCurveTo( aCPx, aCPy, aX, aY ) { + + const curve = new QuadraticBezierCurve( + this.currentPoint.clone(), + new Vector2( aCPx, aCPy ), + new Vector2( aX, aY ) + ); + + this.curves.push( curve ); + + this.currentPoint.set( aX, aY ); + + return this; + + } + + /** + * Adds an instance of {@link CubicBezierCurve} to the path by connecting + * the current point with the given one. + * + * @param {number} aCP1x - The x coordinate of the first control point. + * @param {number} aCP1y - The y coordinate of the first control point. + * @param {number} aCP2x - The x coordinate of the second control point. + * @param {number} aCP2y - The y coordinate of the second control point. + * @param {number} aX - The x coordinate of the end point. + * @param {number} aY - The y coordinate of the end point. + * @return {Path} A reference to this path. + */ + bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { + + const curve = new CubicBezierCurve( + this.currentPoint.clone(), + new Vector2( aCP1x, aCP1y ), + new Vector2( aCP2x, aCP2y ), + new Vector2( aX, aY ) + ); + + this.curves.push( curve ); + + this.currentPoint.set( aX, aY ); + + return this; + + } + + /** + * Adds an instance of {@link SplineCurve} to the path by connecting + * the current point with the given list of points. + * + * @param {Array} pts - An array of points in 2D space. + * @return {Path} A reference to this path. + */ + splineThru( pts ) { + + const npts = [ this.currentPoint.clone() ].concat( pts ); + + const curve = new SplineCurve( npts ); + this.curves.push( curve ); + + this.currentPoint.copy( pts[ pts.length - 1 ] ); + + return this; + + } + + /** + * Adds an arc as an instance of {@link EllipseCurve} to the path, positioned relative + * to the current point. + * + * @param {number} aX - The x coordinate of the center of the arc offsetted from the previous curve. + * @param {number} aY - The y coordinate of the center of the arc offsetted from the previous curve. + * @param {number} aRadius - The radius of the arc. + * @param {number} aStartAngle - The start angle in radians. + * @param {number} aEndAngle - The end angle in radians. + * @param {boolean} [aClockwise=false] - Whether to sweep the arc clockwise or not. + * @return {Path} A reference to this path. + */ + arc( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { + + const x0 = this.currentPoint.x; + const y0 = this.currentPoint.y; + + this.absarc( aX + x0, aY + y0, aRadius, + aStartAngle, aEndAngle, aClockwise ); + + return this; + + } + + /** + * Adds an absolutely positioned arc as an instance of {@link EllipseCurve} to the path. + * + * @param {number} aX - The x coordinate of the center of the arc. + * @param {number} aY - The y coordinate of the center of the arc. + * @param {number} aRadius - The radius of the arc. + * @param {number} aStartAngle - The start angle in radians. + * @param {number} aEndAngle - The end angle in radians. + * @param {boolean} [aClockwise=false] - Whether to sweep the arc clockwise or not. + * @return {Path} A reference to this path. + */ + absarc( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { + + this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); + + return this; + + } + + /** + * Adds an ellipse as an instance of {@link EllipseCurve} to the path, positioned relative + * to the current point + * + * @param {number} aX - The x coordinate of the center of the ellipse offsetted from the previous curve. + * @param {number} aY - The y coordinate of the center of the ellipse offsetted from the previous curve. + * @param {number} xRadius - The radius of the ellipse in the x axis. + * @param {number} yRadius - The radius of the ellipse in the y axis. + * @param {number} aStartAngle - The start angle in radians. + * @param {number} aEndAngle - The end angle in radians. + * @param {boolean} [aClockwise=false] - Whether to sweep the ellipse clockwise or not. + * @param {number} [aRotation=0] - The rotation angle of the ellipse in radians, counterclockwise from the positive X axis. + * @return {Path} A reference to this path. + */ + ellipse( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { + + const x0 = this.currentPoint.x; + const y0 = this.currentPoint.y; + + this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); + + return this; + + } + + /** + * Adds an absolutely positioned ellipse as an instance of {@link EllipseCurve} to the path. + * + * @param {number} aX - The x coordinate of the absolute center of the ellipse. + * @param {number} aY - The y coordinate of the absolute center of the ellipse. + * @param {number} xRadius - The radius of the ellipse in the x axis. + * @param {number} yRadius - The radius of the ellipse in the y axis. + * @param {number} aStartAngle - The start angle in radians. + * @param {number} aEndAngle - The end angle in radians. + * @param {boolean} [aClockwise=false] - Whether to sweep the ellipse clockwise or not. + * @param {number} [aRotation=0] - The rotation angle of the ellipse in radians, counterclockwise from the positive X axis. + * @return {Path} A reference to this path. + */ + absellipse( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { + + const curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); + + if ( this.curves.length > 0 ) { + + // if a previous curve is present, attempt to join + const firstPoint = curve.getPoint( 0 ); + + if ( ! firstPoint.equals( this.currentPoint ) ) { + + this.lineTo( firstPoint.x, firstPoint.y ); + + } + + } + + this.curves.push( curve ); + + const lastPoint = curve.getPoint( 1 ); + this.currentPoint.copy( lastPoint ); + + return this; + + } + + copy( source ) { + + super.copy( source ); + + this.currentPoint.copy( source.currentPoint ); + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.currentPoint = this.currentPoint.toArray(); + + return data; + + } + + fromJSON( json ) { + + super.fromJSON( json ); + + this.currentPoint.fromArray( json.currentPoint ); + + return this; + + } + +} + +/** + * Defines an arbitrary 2d shape plane using paths with optional holes. It + * can be used with {@link ExtrudeGeometry}, {@link ShapeGeometry}, to get + * points, or to get triangulated faces. + * + * ```js + * const heartShape = new THREE.Shape(); + * + * heartShape.moveTo( 25, 25 ); + * heartShape.bezierCurveTo( 25, 25, 20, 0, 0, 0 ); + * heartShape.bezierCurveTo( - 30, 0, - 30, 35, - 30, 35 ); + * heartShape.bezierCurveTo( - 30, 55, - 10, 77, 25, 95 ); + * heartShape.bezierCurveTo( 60, 77, 80, 55, 80, 35 ); + * heartShape.bezierCurveTo( 80, 35, 80, 0, 50, 0 ); + * heartShape.bezierCurveTo( 35, 0, 25, 25, 25, 25 ); + * + * const extrudeSettings = { + * depth: 8, + * bevelEnabled: true, + * bevelSegments: 2, + * steps: 2, + * bevelSize: 1, + * bevelThickness: 1 + * }; + * + * const geometry = new THREE.ExtrudeGeometry( heartShape, extrudeSettings ); + * const mesh = new THREE.Mesh( geometry, new THREE.MeshBasicMaterial() ); + * ``` + * + * @augments Path + */ +class Shape extends Path { + + /** + * Constructs a new shape. + * + * @param {Array} [points] - An array of 2D points defining the shape. + */ + constructor( points ) { + + super( points ); + + /** + * The UUID of the shape. + * + * @type {string} + * @readonly + */ + this.uuid = generateUUID(); + + this.type = 'Shape'; + + /** + * Defines the holes in the shape. Hole definitions must use the + * opposite winding order (CW/CCW) than the outer shape. + * + * @type {Array} + * @readonly + */ + this.holes = []; + + } + + /** + * Returns an array representing each contour of the holes + * as a list of 2D points. + * + * @param {number} divisions - The fineness of the result. + * @return {Array>} The holes as a series of 2D points. + */ + getPointsHoles( divisions ) { + + const holesPts = []; + + for ( let i = 0, l = this.holes.length; i < l; i ++ ) { + + holesPts[ i ] = this.holes[ i ].getPoints( divisions ); + + } + + return holesPts; + + } + + // get points of shape and holes (keypoints based on segments parameter) + + /** + * Returns an object that holds contour data for the shape and its holes as + * arrays of 2D points. + * + * @param {number} divisions - The fineness of the result. + * @return {{shape:Array,holes:Array>}} An object with contour data. + */ + extractPoints( divisions ) { + + return { + + shape: this.getPoints( divisions ), + holes: this.getPointsHoles( divisions ) + + }; + + } + + copy( source ) { + + super.copy( source ); + + this.holes = []; + + for ( let i = 0, l = source.holes.length; i < l; i ++ ) { + + const hole = source.holes[ i ]; + + this.holes.push( hole.clone() ); + + } + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.uuid = this.uuid; + data.holes = []; + + for ( let i = 0, l = this.holes.length; i < l; i ++ ) { + + const hole = this.holes[ i ]; + data.holes.push( hole.toJSON() ); + + } + + return data; + + } + + fromJSON( json ) { + + super.fromJSON( json ); + + this.uuid = json.uuid; + this.holes = []; + + for ( let i = 0, l = json.holes.length; i < l; i ++ ) { + + const hole = json.holes[ i ]; + this.holes.push( new Path().fromJSON( hole ) ); + + } + + return this; + + } + +} + +/* eslint-disable */ +// copy of mapbox/earcut version 3.0.1 +// https://github.com/mapbox/earcut/tree/v3.0.1 + +function earcut(data, holeIndices, dim = 2) { + + const hasHoles = holeIndices && holeIndices.length; + const outerLen = hasHoles ? holeIndices[0] * dim : data.length; + let outerNode = linkedList(data, 0, outerLen, dim, true); + const triangles = []; + + if (!outerNode || outerNode.next === outerNode.prev) return triangles; + + let minX, minY, invSize; + + if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); + + // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox + if (data.length > 80 * dim) { + minX = Infinity; + minY = Infinity; + let maxX = -Infinity; + let maxY = -Infinity; + + for (let i = dim; i < outerLen; i += dim) { + const x = data[i]; + const y = data[i + 1]; + if (x < minX) minX = x; + if (y < minY) minY = y; + if (x > maxX) maxX = x; + if (y > maxY) maxY = y; + } + + // minX, minY and invSize are later used to transform coords into integers for z-order calculation + invSize = Math.max(maxX - minX, maxY - minY); + invSize = invSize !== 0 ? 32767 / invSize : 0; + } + + earcutLinked(outerNode, triangles, dim, minX, minY, invSize, 0); + + return triangles; +} + +// create a circular doubly linked list from polygon points in the specified winding order +function linkedList(data, start, end, dim, clockwise) { + let last; + + if (clockwise === (signedArea(data, start, end, dim) > 0)) { + for (let i = start; i < end; i += dim) last = insertNode(i / dim | 0, data[i], data[i + 1], last); + } else { + for (let i = end - dim; i >= start; i -= dim) last = insertNode(i / dim | 0, data[i], data[i + 1], last); + } + + if (last && equals(last, last.next)) { + removeNode(last); + last = last.next; + } + + return last; +} + +// eliminate colinear or duplicate points +function filterPoints(start, end) { + if (!start) return start; + if (!end) end = start; + + let p = start, + again; + do { + again = false; + + if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) { + removeNode(p); + p = end = p.prev; + if (p === p.next) break; + again = true; + + } else { + p = p.next; + } + } while (again || p !== end); + + return end; +} + +// main ear slicing loop which triangulates a polygon (given as a linked list) +function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) { + if (!ear) return; + + // interlink polygon nodes in z-order + if (!pass && invSize) indexCurve(ear, minX, minY, invSize); + + let stop = ear; + + // iterate through ears, slicing them one by one + while (ear.prev !== ear.next) { + const prev = ear.prev; + const next = ear.next; + + if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) { + triangles.push(prev.i, ear.i, next.i); // cut off the triangle + + removeNode(ear); + + // skipping the next vertex leads to less sliver triangles + ear = next.next; + stop = next.next; + + continue; + } + + ear = next; + + // if we looped through the whole remaining polygon and can't find any more ears + if (ear === stop) { + // try filtering points and slicing again + if (!pass) { + earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); + + // if this didn't work, try curing all small self-intersections locally + } else if (pass === 1) { + ear = cureLocalIntersections(filterPoints(ear), triangles); + earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); + + // as a last resort, try splitting the remaining polygon into two + } else if (pass === 2) { + splitEarcut(ear, triangles, dim, minX, minY, invSize); + } + + break; + } + } +} + +// check whether a polygon node forms a valid ear with adjacent nodes +function isEar(ear) { + const a = ear.prev, + b = ear, + c = ear.next; + + if (area(a, b, c) >= 0) return false; // reflex, can't be an ear + + // now make sure we don't have other points inside the potential ear + const ax = a.x, bx = b.x, cx = c.x, ay = a.y, by = b.y, cy = c.y; + + // triangle bbox + const x0 = Math.min(ax, bx, cx), + y0 = Math.min(ay, by, cy), + x1 = Math.max(ax, bx, cx), + y1 = Math.max(ay, by, cy); + + let p = c.next; + while (p !== a) { + if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && + pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, p.x, p.y) && + area(p.prev, p, p.next) >= 0) return false; + p = p.next; + } + + return true; +} + +function isEarHashed(ear, minX, minY, invSize) { + const a = ear.prev, + b = ear, + c = ear.next; + + if (area(a, b, c) >= 0) return false; // reflex, can't be an ear + + const ax = a.x, bx = b.x, cx = c.x, ay = a.y, by = b.y, cy = c.y; + + // triangle bbox + const x0 = Math.min(ax, bx, cx), + y0 = Math.min(ay, by, cy), + x1 = Math.max(ax, bx, cx), + y1 = Math.max(ay, by, cy); + + // z-order range for the current triangle bbox; + const minZ = zOrder(x0, y0, minX, minY, invSize), + maxZ = zOrder(x1, y1, minX, minY, invSize); + + let p = ear.prevZ, + n = ear.nextZ; + + // look for points inside the triangle in both directions + while (p && p.z >= minZ && n && n.z <= maxZ) { + if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c && + pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; + p = p.prevZ; + + if (n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c && + pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; + n = n.nextZ; + } + + // look for remaining points in decreasing z-order + while (p && p.z >= minZ) { + if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c && + pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; + p = p.prevZ; + } + + // look for remaining points in increasing z-order + while (n && n.z <= maxZ) { + if (n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c && + pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; + n = n.nextZ; + } + + return true; +} + +// go through all polygon nodes and cure small local self-intersections +function cureLocalIntersections(start, triangles) { + let p = start; + do { + const a = p.prev, + b = p.next.next; + + if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) { + + triangles.push(a.i, p.i, b.i); + + // remove two nodes involved + removeNode(p); + removeNode(p.next); + + p = start = b; + } + p = p.next; + } while (p !== start); + + return filterPoints(p); +} + +// try splitting polygon into two and triangulate them independently +function splitEarcut(start, triangles, dim, minX, minY, invSize) { + // look for a valid diagonal that divides the polygon into two + let a = start; + do { + let b = a.next.next; + while (b !== a.prev) { + if (a.i !== b.i && isValidDiagonal(a, b)) { + // split the polygon in two by the diagonal + let c = splitPolygon(a, b); + + // filter colinear points around the cuts + a = filterPoints(a, a.next); + c = filterPoints(c, c.next); + + // run earcut on each half + earcutLinked(a, triangles, dim, minX, minY, invSize, 0); + earcutLinked(c, triangles, dim, minX, minY, invSize, 0); + return; + } + b = b.next; + } + a = a.next; + } while (a !== start); +} + +// link every hole into the outer loop, producing a single-ring polygon without holes +function eliminateHoles(data, holeIndices, outerNode, dim) { + const queue = []; + + for (let i = 0, len = holeIndices.length; i < len; i++) { + const start = holeIndices[i] * dim; + const end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; + const list = linkedList(data, start, end, dim, false); + if (list === list.next) list.steiner = true; + queue.push(getLeftmost(list)); + } + + queue.sort(compareXYSlope); + + // process holes from left to right + for (let i = 0; i < queue.length; i++) { + outerNode = eliminateHole(queue[i], outerNode); + } + + return outerNode; +} + +function compareXYSlope(a, b) { + let result = a.x - b.x; + // when the left-most point of 2 holes meet at a vertex, sort the holes counterclockwise so that when we find + // the bridge to the outer shell is always the point that they meet at. + if (result === 0) { + result = a.y - b.y; + if (result === 0) { + const aSlope = (a.next.y - a.y) / (a.next.x - a.x); + const bSlope = (b.next.y - b.y) / (b.next.x - b.x); + result = aSlope - bSlope; + } + } + return result; +} + +// find a bridge between vertices that connects hole with an outer ring and and link it +function eliminateHole(hole, outerNode) { + const bridge = findHoleBridge(hole, outerNode); + if (!bridge) { + return outerNode; + } + + const bridgeReverse = splitPolygon(bridge, hole); + + // filter collinear points around the cuts + filterPoints(bridgeReverse, bridgeReverse.next); + return filterPoints(bridge, bridge.next); +} + +// David Eberly's algorithm for finding a bridge between hole and outer polygon +function findHoleBridge(hole, outerNode) { + let p = outerNode; + const hx = hole.x; + const hy = hole.y; + let qx = -Infinity; + let m; + + // find a segment intersected by a ray from the hole's leftmost point to the left; + // segment's endpoint with lesser x will be potential connection point + // unless they intersect at a vertex, then choose the vertex + if (equals(hole, p)) return p; + do { + if (equals(hole, p.next)) return p.next; + else if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) { + const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y); + if (x <= hx && x > qx) { + qx = x; + m = p.x < p.next.x ? p : p.next; + if (x === hx) return m; // hole touches outer segment; pick leftmost endpoint + } + } + p = p.next; + } while (p !== outerNode); + + if (!m) return null; + + // look for points inside the triangle of hole point, segment intersection and endpoint; + // if there are no points found, we have a valid connection; + // otherwise choose the point of the minimum angle with the ray as connection point + + const stop = m; + const mx = m.x; + const my = m.y; + let tanMin = Infinity; + + p = m; + + do { + if (hx >= p.x && p.x >= mx && hx !== p.x && + pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) { + + const tan = Math.abs(hy - p.y) / (hx - p.x); // tangential + + if (locallyInside(p, hole) && + (tan < tanMin || (tan === tanMin && (p.x > m.x || (p.x === m.x && sectorContainsSector(m, p)))))) { + m = p; + tanMin = tan; + } + } + + p = p.next; + } while (p !== stop); + + return m; +} + +// whether sector in vertex m contains sector in vertex p in the same coordinates +function sectorContainsSector(m, p) { + return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0; +} + +// interlink polygon nodes in z-order +function indexCurve(start, minX, minY, invSize) { + let p = start; + do { + if (p.z === 0) p.z = zOrder(p.x, p.y, minX, minY, invSize); + p.prevZ = p.prev; + p.nextZ = p.next; + p = p.next; + } while (p !== start); + + p.prevZ.nextZ = null; + p.prevZ = null; + + sortLinked(p); +} + +// Simon Tatham's linked list merge sort algorithm +// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html +function sortLinked(list) { + let numMerges; + let inSize = 1; + + do { + let p = list; + let e; + list = null; + let tail = null; + numMerges = 0; + + while (p) { + numMerges++; + let q = p; + let pSize = 0; + for (let i = 0; i < inSize; i++) { + pSize++; + q = q.nextZ; + if (!q) break; + } + let qSize = inSize; + + while (pSize > 0 || (qSize > 0 && q)) { + + if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) { + e = p; + p = p.nextZ; + pSize--; + } else { + e = q; + q = q.nextZ; + qSize--; + } + + if (tail) tail.nextZ = e; + else list = e; + + e.prevZ = tail; + tail = e; + } + + p = q; + } + + tail.nextZ = null; + inSize *= 2; + + } while (numMerges > 1); + + return list; +} + +// z-order of a point given coords and inverse of the longer side of data bbox +function zOrder(x, y, minX, minY, invSize) { + // coords are transformed into non-negative 15-bit integer range + x = (x - minX) * invSize | 0; + y = (y - minY) * invSize | 0; + + x = (x | (x << 8)) & 0x00FF00FF; + x = (x | (x << 4)) & 0x0F0F0F0F; + x = (x | (x << 2)) & 0x33333333; + x = (x | (x << 1)) & 0x55555555; + + y = (y | (y << 8)) & 0x00FF00FF; + y = (y | (y << 4)) & 0x0F0F0F0F; + y = (y | (y << 2)) & 0x33333333; + y = (y | (y << 1)) & 0x55555555; + + return x | (y << 1); +} + +// find the leftmost node of a polygon ring +function getLeftmost(start) { + let p = start, + leftmost = start; + do { + if (p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y)) leftmost = p; + p = p.next; + } while (p !== start); + + return leftmost; +} + +// check if a point lies within a convex triangle +function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) { + return (cx - px) * (ay - py) >= (ax - px) * (cy - py) && + (ax - px) * (by - py) >= (bx - px) * (ay - py) && + (bx - px) * (cy - py) >= (cx - px) * (by - py); +} + +// check if a point lies within a convex triangle but false if its equal to the first point of the triangle +function pointInTriangleExceptFirst(ax, ay, bx, by, cx, cy, px, py) { + return !(ax === px && ay === py) && pointInTriangle(ax, ay, bx, by, cx, cy, px, py); +} + +// check if a diagonal between two polygon nodes is valid (lies in polygon interior) +function isValidDiagonal(a, b) { + return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && // dones't intersect other edges + (locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible + (area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors + equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case +} + +// signed area of a triangle +function area(p, q, r) { + return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); +} + +// check if two points are equal +function equals(p1, p2) { + return p1.x === p2.x && p1.y === p2.y; +} + +// check if two segments intersect +function intersects(p1, q1, p2, q2) { + const o1 = sign(area(p1, q1, p2)); + const o2 = sign(area(p1, q1, q2)); + const o3 = sign(area(p2, q2, p1)); + const o4 = sign(area(p2, q2, q1)); + + if (o1 !== o2 && o3 !== o4) return true; // general case + + if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1 + if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1 + if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2 + if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2 + + return false; +} + +// for collinear points p, q, r, check if point q lies on segment pr +function onSegment(p, q, r) { + return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y); +} + +function sign(num) { + return num > 0 ? 1 : num < 0 ? -1 : 0; +} + +// check if a polygon diagonal intersects any polygon segments +function intersectsPolygon(a, b) { + let p = a; + do { + if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && + intersects(p, p.next, a, b)) return true; + p = p.next; + } while (p !== a); + + return false; +} + +// check if a polygon diagonal is locally inside the polygon +function locallyInside(a, b) { + return area(a.prev, a, a.next) < 0 ? + area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : + area(a, b, a.prev) < 0 || area(a, a.next, b) < 0; +} + +// check if the middle point of a polygon diagonal is inside the polygon +function middleInside(a, b) { + let p = a; + let inside = false; + const px = (a.x + b.x) / 2; + const py = (a.y + b.y) / 2; + do { + if (((p.y > py) !== (p.next.y > py)) && p.next.y !== p.y && + (px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x)) + inside = !inside; + p = p.next; + } while (p !== a); + + return inside; +} + +// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; +// if one belongs to the outer ring and another to a hole, it merges it into a single ring +function splitPolygon(a, b) { + const a2 = createNode(a.i, a.x, a.y), + b2 = createNode(b.i, b.x, b.y), + an = a.next, + bp = b.prev; + + a.next = b; + b.prev = a; + + a2.next = an; + an.prev = a2; + + b2.next = a2; + a2.prev = b2; + + bp.next = b2; + b2.prev = bp; + + return b2; +} + +// create a node and optionally link it with previous one (in a circular doubly linked list) +function insertNode(i, x, y, last) { + const p = createNode(i, x, y); + + if (!last) { + p.prev = p; + p.next = p; + + } else { + p.next = last.next; + p.prev = last; + last.next.prev = p; + last.next = p; + } + return p; +} + +function removeNode(p) { + p.next.prev = p.prev; + p.prev.next = p.next; + + if (p.prevZ) p.prevZ.nextZ = p.nextZ; + if (p.nextZ) p.nextZ.prevZ = p.prevZ; +} + +function createNode(i, x, y) { + return { + i, // vertex index in coordinates array + x, y, // vertex coordinates + prev: null, // previous and next vertex nodes in a polygon ring + next: null, + z: 0, // z-order curve value + prevZ: null, // previous and next nodes in z-order + nextZ: null, + steiner: false // indicates whether this is a steiner point + }; +} + +function signedArea(data, start, end, dim) { + let sum = 0; + for (let i = start, j = end - dim; i < end; i += dim) { + sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]); + j = i; + } + return sum; +} + +class Earcut { + + /** + * Triangulates the given shape definition by returning an array of triangles. + * + * @param {Array} data - An array with 2D points. + * @param {Array} holeIndices - An array with indices defining holes. + * @param {number} [dim=2] - The number of coordinates per vertex in the input array. + * @return {Array} An array representing the triangulated faces. Each face is defined by three consecutive numbers + * representing vertex indices. + */ + static triangulate( data, holeIndices, dim = 2 ) { + + return earcut( data, holeIndices, dim ); + + } + +} + +/** + * A class containing utility functions for shapes. + * + * @hideconstructor + */ +class ShapeUtils { + + /** + * Calculate area of a ( 2D ) contour polygon. + * + * @param {Array} contour - An array of 2D points. + * @return {number} The area. + */ + static area( contour ) { + + const n = contour.length; + let a = 0.0; + + for ( let p = n - 1, q = 0; q < n; p = q ++ ) { + + a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y; + + } + + return a * 0.5; + + } + + /** + * Returns `true` if the given contour uses a clockwise winding order. + * + * @param {Array} pts - An array of 2D points defining a polygon. + * @return {boolean} Whether the given contour uses a clockwise winding order or not. + */ + static isClockWise( pts ) { + + return ShapeUtils.area( pts ) < 0; + + } + + /** + * Triangulates the given shape definition. + * + * @param {Array} contour - An array of 2D points defining the contour. + * @param {Array>} holes - An array that holds arrays of 2D points defining the holes. + * @return {Array>} An array that holds for each face definition an array with three indices. + */ + static triangulateShape( contour, holes ) { + + const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ] + const holeIndices = []; // array of hole indices + const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ] + + removeDupEndPts( contour ); + addContour( vertices, contour ); + + // + + let holeIndex = contour.length; + + holes.forEach( removeDupEndPts ); + + for ( let i = 0; i < holes.length; i ++ ) { + + holeIndices.push( holeIndex ); + holeIndex += holes[ i ].length; + addContour( vertices, holes[ i ] ); + + } + + // + + const triangles = Earcut.triangulate( vertices, holeIndices ); + + // + + for ( let i = 0; i < triangles.length; i += 3 ) { + + faces.push( triangles.slice( i, i + 3 ) ); + + } + + return faces; + + } + +} + +function removeDupEndPts( points ) { + + const l = points.length; + + if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) { + + points.pop(); + + } + +} + +function addContour( vertices, contour ) { + + for ( let i = 0; i < contour.length; i ++ ) { + + vertices.push( contour[ i ].x ); + vertices.push( contour[ i ].y ); + + } + +} + +/** + * Creates extruded geometry from a path shape. + * + * ```js + * const length = 12, width = 8; + * + * const shape = new THREE.Shape(); + * shape.moveTo( 0,0 ); + * shape.lineTo( 0, width ); + * shape.lineTo( length, width ); + * shape.lineTo( length, 0 ); + * shape.lineTo( 0, 0 ); + * + * const geometry = new THREE.ExtrudeGeometry( shape ); + * const material = new THREE.MeshBasicMaterial( { color: 0x00ff00 } ); + * const mesh = new THREE.Mesh( geometry, material ) ; + * scene.add( mesh ); + * ``` + * + * @augments BufferGeometry + */ +class ExtrudeGeometry extends BufferGeometry { + + /** + * Constructs a new extrude geometry. + * + * @param {Shape|Array} [shapes] - A shape or an array of shapes. + * @param {ExtrudeGeometry~Options} [options] - The extrude settings. + */ + constructor( shapes = new Shape( [ new Vector2( 0.5, 0.5 ), new Vector2( -0.5, 0.5 ), new Vector2( -0.5, -0.5 ), new Vector2( 0.5, -0.5 ) ] ), options = {} ) { + + super(); + + this.type = 'ExtrudeGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + shapes: shapes, + options: options + }; + + shapes = Array.isArray( shapes ) ? shapes : [ shapes ]; + + const scope = this; + + const verticesArray = []; + const uvArray = []; + + for ( let i = 0, l = shapes.length; i < l; i ++ ) { + + const shape = shapes[ i ]; + addShape( shape ); + + } + + // build geometry + + this.setAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) ); + + this.computeVertexNormals(); + + // functions + + function addShape( shape ) { + + const placeholder = []; + + // options + + const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; + const steps = options.steps !== undefined ? options.steps : 1; + const depth = options.depth !== undefined ? options.depth : 1; + + let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; + let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 0.2; + let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 0.1; + let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0; + let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; + + const extrudePath = options.extrudePath; + + const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; + + // + + let extrudePts, extrudeByPath = false; + let splineTube, binormal, normal, position2; + + if ( extrudePath ) { + + extrudePts = extrudePath.getSpacedPoints( steps ); + + extrudeByPath = true; + bevelEnabled = false; // bevels not supported for path extrusion + + // SETUP TNB variables + + // TODO1 - have a .isClosed in spline? + + splineTube = extrudePath.computeFrenetFrames( steps, false ); + + // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); + + binormal = new Vector3(); + normal = new Vector3(); + position2 = new Vector3(); + + } + + // Safeguards if bevels are not enabled + + if ( ! bevelEnabled ) { + + bevelSegments = 0; + bevelThickness = 0; + bevelSize = 0; + bevelOffset = 0; + + } + + // Variables initialization + + const shapePoints = shape.extractPoints( curveSegments ); + + let vertices = shapePoints.shape; + const holes = shapePoints.holes; + + const reverse = ! ShapeUtils.isClockWise( vertices ); + + if ( reverse ) { + + vertices = vertices.reverse(); + + // Maybe we should also check if holes are in the opposite direction, just to be safe ... + + for ( let h = 0, hl = holes.length; h < hl; h ++ ) { + + const ahole = holes[ h ]; + + if ( ShapeUtils.isClockWise( ahole ) ) { + + holes[ h ] = ahole.reverse(); + + } + + } + + } + + /**Merges index-adjacent points that are within a threshold distance of each other. Array is modified in-place. Threshold distance is empirical, and scaled based on the magnitude of point coordinates. + * @param {Array} points + */ + function mergeOverlappingPoints( points ) { + + const THRESHOLD = 1e-10; + const THRESHOLD_SQ = THRESHOLD * THRESHOLD; + let prevPos = points[ 0 ]; + for ( let i = 1; i <= points.length; i ++ ) { + + const currentIndex = i % points.length; + const currentPos = points[ currentIndex ]; + const dx = currentPos.x - prevPos.x; + const dy = currentPos.y - prevPos.y; + const distSq = dx * dx + dy * dy; + + const scalingFactorSqrt = Math.max( + Math.abs( currentPos.x ), + Math.abs( currentPos.y ), + Math.abs( prevPos.x ), + Math.abs( prevPos.y ) + ); + const thresholdSqScaled = THRESHOLD_SQ * scalingFactorSqrt * scalingFactorSqrt; + if ( distSq <= thresholdSqScaled ) { + + points.splice( currentIndex, 1 ); + i --; + continue; + + } + + prevPos = currentPos; + + } + + } + + mergeOverlappingPoints( vertices ); + holes.forEach( mergeOverlappingPoints ); + + const numHoles = holes.length; + + /* Vertices */ + + const contour = vertices; // vertices has all points but contour has only points of circumference + + for ( let h = 0; h < numHoles; h ++ ) { + + const ahole = holes[ h ]; + + vertices = vertices.concat( ahole ); + + } + + + function scalePt2( pt, vec, size ) { + + if ( ! vec ) console.error( 'THREE.ExtrudeGeometry: vec does not exist' ); + + return pt.clone().addScaledVector( vec, size ); + + } + + const vlen = vertices.length; + + + // Find directions for point movement + + + function getBevelVec( inPt, inPrev, inNext ) { + + // computes for inPt the corresponding point inPt' on a new contour + // shifted by 1 unit (length of normalized vector) to the left + // if we walk along contour clockwise, this new contour is outside the old one + // + // inPt' is the intersection of the two lines parallel to the two + // adjacent edges of inPt at a distance of 1 unit on the left side. + + let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt + + // good reading for geometry algorithms (here: line-line intersection) + // http://geomalgorithms.com/a05-_intersect-1.html + + const v_prev_x = inPt.x - inPrev.x, + v_prev_y = inPt.y - inPrev.y; + const v_next_x = inNext.x - inPt.x, + v_next_y = inNext.y - inPt.y; + + const v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y ); + + // check for collinear edges + const collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x ); + + if ( Math.abs( collinear0 ) > Number.EPSILON ) { + + // not collinear + + // length of vectors for normalizing + + const v_prev_len = Math.sqrt( v_prev_lensq ); + const v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y ); + + // shift adjacent points by unit vectors to the left + + const ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); + const ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len ); + + const ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); + const ptNextShift_y = ( inNext.y + v_next_x / v_next_len ); + + // scaling factor for v_prev to intersection point + + const sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - + ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / + ( v_prev_x * v_next_y - v_prev_y * v_next_x ); + + // vector from inPt to intersection point + + v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); + v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y ); + + // Don't normalize!, otherwise sharp corners become ugly + // but prevent crazy spikes + const v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ); + if ( v_trans_lensq <= 2 ) { + + return new Vector2( v_trans_x, v_trans_y ); + + } else { + + shrink_by = Math.sqrt( v_trans_lensq / 2 ); + + } + + } else { + + // handle special case of collinear edges + + let direction_eq = false; // assumes: opposite + + if ( v_prev_x > Number.EPSILON ) { + + if ( v_next_x > Number.EPSILON ) { + + direction_eq = true; + + } + + } else { + + if ( v_prev_x < - Number.EPSILON ) { + + if ( v_next_x < - Number.EPSILON ) { + + direction_eq = true; + + } + + } else { + + if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) { + + direction_eq = true; + + } + + } + + } + + if ( direction_eq ) { + + // console.log("Warning: lines are a straight sequence"); + v_trans_x = - v_prev_y; + v_trans_y = v_prev_x; + shrink_by = Math.sqrt( v_prev_lensq ); + + } else { + + // console.log("Warning: lines are a straight spike"); + v_trans_x = v_prev_x; + v_trans_y = v_prev_y; + shrink_by = Math.sqrt( v_prev_lensq / 2 ); + + } + + } + + return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by ); + + } + + + const contourMovements = []; + + for ( let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { + + if ( j === il ) j = 0; + if ( k === il ) k = 0; + + // (j)---(i)---(k) + // console.log('i,j,k', i, j , k) + + contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] ); + + } + + const holesMovements = []; + let oneHoleMovements, verticesMovements = contourMovements.concat(); + + for ( let h = 0, hl = numHoles; h < hl; h ++ ) { + + const ahole = holes[ h ]; + + oneHoleMovements = []; + + for ( let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { + + if ( j === il ) j = 0; + if ( k === il ) k = 0; + + // (j)---(i)---(k) + oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] ); + + } + + holesMovements.push( oneHoleMovements ); + verticesMovements = verticesMovements.concat( oneHoleMovements ); + + } + + let faces; + + if ( bevelSegments === 0 ) { + + faces = ShapeUtils.triangulateShape( contour, holes ); + + } else { + + const contractedContourVertices = []; + const expandedHoleVertices = []; + + // Loop bevelSegments, 1 for the front, 1 for the back + + for ( let b = 0; b < bevelSegments; b ++ ) { + + //for ( b = bevelSegments; b > 0; b -- ) { + + const t = b / bevelSegments; + const z = bevelThickness * Math.cos( t * Math.PI / 2 ); + const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset; + + // contract shape + + for ( let i = 0, il = contour.length; i < il; i ++ ) { + + const vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); + + v( vert.x, vert.y, - z ); + if ( t === 0 ) contractedContourVertices.push( vert ); + + } + + // expand holes + + for ( let h = 0, hl = numHoles; h < hl; h ++ ) { + + const ahole = holes[ h ]; + oneHoleMovements = holesMovements[ h ]; + const oneHoleVertices = []; + for ( let i = 0, il = ahole.length; i < il; i ++ ) { + + const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); + + v( vert.x, vert.y, - z ); + if ( t === 0 ) oneHoleVertices.push( vert ); + + } + + if ( t === 0 ) expandedHoleVertices.push( oneHoleVertices ); + + } + + } + + faces = ShapeUtils.triangulateShape( contractedContourVertices, expandedHoleVertices ); + + } + + const flen = faces.length; + + const bs = bevelSize + bevelOffset; + + // Back facing vertices + + for ( let i = 0; i < vlen; i ++ ) { + + const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; + + if ( ! extrudeByPath ) { + + v( vert.x, vert.y, 0 ); + + } else { + + // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); + + normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x ); + binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y ); + + position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal ); + + v( position2.x, position2.y, position2.z ); + + } + + } + + // Add stepped vertices... + // Including front facing vertices + + for ( let s = 1; s <= steps; s ++ ) { + + for ( let i = 0; i < vlen; i ++ ) { + + const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; + + if ( ! extrudeByPath ) { + + v( vert.x, vert.y, depth / steps * s ); + + } else { + + // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); + + normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x ); + binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y ); + + position2.copy( extrudePts[ s ] ).add( normal ).add( binormal ); + + v( position2.x, position2.y, position2.z ); + + } + + } + + } + + + // Add bevel segments planes + + //for ( b = 1; b <= bevelSegments; b ++ ) { + for ( let b = bevelSegments - 1; b >= 0; b -- ) { + + const t = b / bevelSegments; + const z = bevelThickness * Math.cos( t * Math.PI / 2 ); + const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset; + + // contract shape + + for ( let i = 0, il = contour.length; i < il; i ++ ) { + + const vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); + v( vert.x, vert.y, depth + z ); + + } + + // expand holes + + for ( let h = 0, hl = holes.length; h < hl; h ++ ) { + + const ahole = holes[ h ]; + oneHoleMovements = holesMovements[ h ]; + + for ( let i = 0, il = ahole.length; i < il; i ++ ) { + + const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); + + if ( ! extrudeByPath ) { + + v( vert.x, vert.y, depth + z ); + + } else { + + v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z ); + + } + + } + + } + + } + + /* Faces */ + + // Top and bottom faces + + buildLidFaces(); + + // Sides faces + + buildSideFaces(); + + + ///// Internal functions + + function buildLidFaces() { + + const start = verticesArray.length / 3; + + if ( bevelEnabled ) { + + let layer = 0; // steps + 1 + let offset = vlen * layer; + + // Bottom faces + + for ( let i = 0; i < flen; i ++ ) { + + const face = faces[ i ]; + f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset ); + + } + + layer = steps + bevelSegments * 2; + offset = vlen * layer; + + // Top faces + + for ( let i = 0; i < flen; i ++ ) { + + const face = faces[ i ]; + f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset ); + + } + + } else { + + // Bottom faces + + for ( let i = 0; i < flen; i ++ ) { + + const face = faces[ i ]; + f3( face[ 2 ], face[ 1 ], face[ 0 ] ); + + } + + // Top faces + + for ( let i = 0; i < flen; i ++ ) { + + const face = faces[ i ]; + f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps ); + + } + + } + + scope.addGroup( start, verticesArray.length / 3 - start, 0 ); + + } + + // Create faces for the z-sides of the shape + + function buildSideFaces() { + + const start = verticesArray.length / 3; + let layeroffset = 0; + sidewalls( contour, layeroffset ); + layeroffset += contour.length; + + for ( let h = 0, hl = holes.length; h < hl; h ++ ) { + + const ahole = holes[ h ]; + sidewalls( ahole, layeroffset ); + + //, true + layeroffset += ahole.length; + + } + + + scope.addGroup( start, verticesArray.length / 3 - start, 1 ); + + + } + + function sidewalls( contour, layeroffset ) { + + let i = contour.length; + + while ( -- i >= 0 ) { + + const j = i; + let k = i - 1; + if ( k < 0 ) k = contour.length - 1; + + //console.log('b', i,j, i-1, k,vertices.length); + + for ( let s = 0, sl = ( steps + bevelSegments * 2 ); s < sl; s ++ ) { + + const slen1 = vlen * s; + const slen2 = vlen * ( s + 1 ); + + const a = layeroffset + j + slen1, + b = layeroffset + k + slen1, + c = layeroffset + k + slen2, + d = layeroffset + j + slen2; + + f4( a, b, c, d ); + + } + + } + + } + + function v( x, y, z ) { + + placeholder.push( x ); + placeholder.push( y ); + placeholder.push( z ); + + } + + + function f3( a, b, c ) { + + addVertex( a ); + addVertex( b ); + addVertex( c ); + + const nextIndex = verticesArray.length / 3; + const uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); + + addUV( uvs[ 0 ] ); + addUV( uvs[ 1 ] ); + addUV( uvs[ 2 ] ); + + } + + function f4( a, b, c, d ) { + + addVertex( a ); + addVertex( b ); + addVertex( d ); + + addVertex( b ); + addVertex( c ); + addVertex( d ); + + + const nextIndex = verticesArray.length / 3; + const uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); + + addUV( uvs[ 0 ] ); + addUV( uvs[ 1 ] ); + addUV( uvs[ 3 ] ); + + addUV( uvs[ 1 ] ); + addUV( uvs[ 2 ] ); + addUV( uvs[ 3 ] ); + + } + + function addVertex( index ) { + + verticesArray.push( placeholder[ index * 3 + 0 ] ); + verticesArray.push( placeholder[ index * 3 + 1 ] ); + verticesArray.push( placeholder[ index * 3 + 2 ] ); + + } + + + function addUV( vector2 ) { + + uvArray.push( vector2.x ); + uvArray.push( vector2.y ); + + } + + } + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + const shapes = this.parameters.shapes; + const options = this.parameters.options; + + return toJSON$1( shapes, options, data ); + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @param {Array} shapes - An array of shapes. + * @return {ExtrudeGeometry} A new instance. + */ + static fromJSON( data, shapes ) { + + const geometryShapes = []; + + for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) { + + const shape = shapes[ data.shapes[ j ] ]; + + geometryShapes.push( shape ); + + } + + const extrudePath = data.options.extrudePath; + + if ( extrudePath !== undefined ) { + + data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath ); + + } + + return new ExtrudeGeometry( geometryShapes, data.options ); + + } + +} + +const WorldUVGenerator = { + + generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) { + + const a_x = vertices[ indexA * 3 ]; + const a_y = vertices[ indexA * 3 + 1 ]; + const b_x = vertices[ indexB * 3 ]; + const b_y = vertices[ indexB * 3 + 1 ]; + const c_x = vertices[ indexC * 3 ]; + const c_y = vertices[ indexC * 3 + 1 ]; + + return [ + new Vector2( a_x, a_y ), + new Vector2( b_x, b_y ), + new Vector2( c_x, c_y ) + ]; + + }, + + generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) { + + const a_x = vertices[ indexA * 3 ]; + const a_y = vertices[ indexA * 3 + 1 ]; + const a_z = vertices[ indexA * 3 + 2 ]; + const b_x = vertices[ indexB * 3 ]; + const b_y = vertices[ indexB * 3 + 1 ]; + const b_z = vertices[ indexB * 3 + 2 ]; + const c_x = vertices[ indexC * 3 ]; + const c_y = vertices[ indexC * 3 + 1 ]; + const c_z = vertices[ indexC * 3 + 2 ]; + const d_x = vertices[ indexD * 3 ]; + const d_y = vertices[ indexD * 3 + 1 ]; + const d_z = vertices[ indexD * 3 + 2 ]; + + if ( Math.abs( a_y - b_y ) < Math.abs( a_x - b_x ) ) { + + return [ + new Vector2( a_x, 1 - a_z ), + new Vector2( b_x, 1 - b_z ), + new Vector2( c_x, 1 - c_z ), + new Vector2( d_x, 1 - d_z ) + ]; + + } else { + + return [ + new Vector2( a_y, 1 - a_z ), + new Vector2( b_y, 1 - b_z ), + new Vector2( c_y, 1 - c_z ), + new Vector2( d_y, 1 - d_z ) + ]; + + } + + } + +}; + +function toJSON$1( shapes, options, data ) { + + data.shapes = []; + + if ( Array.isArray( shapes ) ) { + + for ( let i = 0, l = shapes.length; i < l; i ++ ) { + + const shape = shapes[ i ]; + + data.shapes.push( shape.uuid ); + + } + + } else { + + data.shapes.push( shapes.uuid ); + + } + + data.options = Object.assign( {}, options ); + + if ( options.extrudePath !== undefined ) data.options.extrudePath = options.extrudePath.toJSON(); + + return data; + +} + +/** + * A geometry class for representing an icosahedron. + * + * ```js + * const geometry = new THREE.IcosahedronGeometry(); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00 } ); + * const icosahedron = new THREE.Mesh( geometry, material ); + * scene.add( icosahedron ); + * ``` + * + * @augments PolyhedronGeometry + */ +class IcosahedronGeometry extends PolyhedronGeometry { + + /** + * Constructs a new icosahedron geometry. + * + * @param {number} [radius=1] - Radius of the icosahedron. + * @param {number} [detail=0] - Setting this to a value greater than `0` adds vertices making it no longer a icosahedron. + */ + constructor( radius = 1, detail = 0 ) { + + const t = ( 1 + Math.sqrt( 5 ) ) / 2; + + const vertices = [ + -1, t, 0, 1, t, 0, -1, - t, 0, 1, - t, 0, + 0, -1, t, 0, 1, t, 0, -1, - t, 0, 1, - t, + t, 0, -1, t, 0, 1, - t, 0, -1, - t, 0, 1 + ]; + + const indices = [ + 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, + 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, + 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, + 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 + ]; + + super( vertices, indices, radius, detail ); + + this.type = 'IcosahedronGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + radius: radius, + detail: detail + }; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {IcosahedronGeometry} A new instance. + */ + static fromJSON( data ) { + + return new IcosahedronGeometry( data.radius, data.detail ); + + } + +} + +/** + * Creates meshes with axial symmetry like vases. The lathe rotates around the Y axis. + * + * ```js + * const points = []; + * for ( let i = 0; i < 10; i ++ ) { + * points.push( new THREE.Vector2( Math.sin( i * 0.2 ) * 10 + 5, ( i - 5 ) * 2 ) ); + * } + * const geometry = new THREE.LatheGeometry( points ); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00 } ); + * const lathe = new THREE.Mesh( geometry, material ); + * scene.add( lathe ); + * ``` + * + * @augments BufferGeometry + */ +class LatheGeometry extends BufferGeometry { + + /** + * Constructs a new lathe geometry. + * + * @param {Array} [points] - An array of points in 2D space. The x-coordinate of each point + * must be greater than zero. + * @param {number} [segments=12] - The number of circumference segments to generate. + * @param {number} [phiStart=0] - The starting angle in radians. + * @param {number} [phiLength=Math.PI*2] - The radian (0 to 2PI) range of the lathed section 2PI is a + * closed lathe, less than 2PI is a portion. + */ + constructor( points = [ new Vector2( 0, -0.5 ), new Vector2( 0.5, 0 ), new Vector2( 0, 0.5 ) ], segments = 12, phiStart = 0, phiLength = Math.PI * 2 ) { + + super(); + + this.type = 'LatheGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + points: points, + segments: segments, + phiStart: phiStart, + phiLength: phiLength + }; + + segments = Math.floor( segments ); + + // clamp phiLength so it's in range of [ 0, 2PI ] + + phiLength = clamp( phiLength, 0, Math.PI * 2 ); + + // buffers + + const indices = []; + const vertices = []; + const uvs = []; + const initNormals = []; + const normals = []; + + // helper variables + + const inverseSegments = 1.0 / segments; + const vertex = new Vector3(); + const uv = new Vector2(); + const normal = new Vector3(); + const curNormal = new Vector3(); + const prevNormal = new Vector3(); + let dx = 0; + let dy = 0; + + // pre-compute normals for initial "meridian" + + for ( let j = 0; j <= ( points.length - 1 ); j ++ ) { + + switch ( j ) { + + case 0: // special handling for 1st vertex on path + + dx = points[ j + 1 ].x - points[ j ].x; + dy = points[ j + 1 ].y - points[ j ].y; + + normal.x = dy * 1.0; + normal.y = - dx; + normal.z = dy * 0.0; + + prevNormal.copy( normal ); + + normal.normalize(); + + initNormals.push( normal.x, normal.y, normal.z ); + + break; + + case ( points.length - 1 ): // special handling for last Vertex on path + + initNormals.push( prevNormal.x, prevNormal.y, prevNormal.z ); + + break; + + default: // default handling for all vertices in between + + dx = points[ j + 1 ].x - points[ j ].x; + dy = points[ j + 1 ].y - points[ j ].y; + + normal.x = dy * 1.0; + normal.y = - dx; + normal.z = dy * 0.0; + + curNormal.copy( normal ); + + normal.x += prevNormal.x; + normal.y += prevNormal.y; + normal.z += prevNormal.z; + + normal.normalize(); + + initNormals.push( normal.x, normal.y, normal.z ); + + prevNormal.copy( curNormal ); + + } + + } + + // generate vertices, uvs and normals + + for ( let i = 0; i <= segments; i ++ ) { + + const phi = phiStart + i * inverseSegments * phiLength; + + const sin = Math.sin( phi ); + const cos = Math.cos( phi ); + + for ( let j = 0; j <= ( points.length - 1 ); j ++ ) { + + // vertex + + vertex.x = points[ j ].x * sin; + vertex.y = points[ j ].y; + vertex.z = points[ j ].x * cos; + + vertices.push( vertex.x, vertex.y, vertex.z ); + + // uv + + uv.x = i / segments; + uv.y = j / ( points.length - 1 ); + + uvs.push( uv.x, uv.y ); + + // normal + + const x = initNormals[ 3 * j + 0 ] * sin; + const y = initNormals[ 3 * j + 1 ]; + const z = initNormals[ 3 * j + 0 ] * cos; + + normals.push( x, y, z ); + + } + + } + + // indices + + for ( let i = 0; i < segments; i ++ ) { + + for ( let j = 0; j < ( points.length - 1 ); j ++ ) { + + const base = j + i * points.length; + + const a = base; + const b = base + points.length; + const c = base + points.length + 1; + const d = base + 1; + + // faces + + indices.push( a, b, d ); + indices.push( c, d, b ); + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {LatheGeometry} A new instance. + */ + static fromJSON( data ) { + + return new LatheGeometry( data.points, data.segments, data.phiStart, data.phiLength ); + + } + +} + +/** + * A geometry class for representing an octahedron. + * + * ```js + * const geometry = new THREE.OctahedronGeometry(); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00 } ); + * const octahedron = new THREE.Mesh( geometry, material ); + * scene.add( octahedron ); + * ``` + * + * @augments PolyhedronGeometry + */ +class OctahedronGeometry extends PolyhedronGeometry { + + /** + * Constructs a new octahedron geometry. + * + * @param {number} [radius=1] - Radius of the octahedron. + * @param {number} [detail=0] - Setting this to a value greater than `0` adds vertices making it no longer a octahedron. + */ + constructor( radius = 1, detail = 0 ) { + + const vertices = [ + 1, 0, 0, -1, 0, 0, 0, 1, 0, + 0, -1, 0, 0, 0, 1, 0, 0, -1 + ]; + + const indices = [ + 0, 2, 4, 0, 4, 3, 0, 3, 5, + 0, 5, 2, 1, 2, 5, 1, 5, 3, + 1, 3, 4, 1, 4, 2 + ]; + + super( vertices, indices, radius, detail ); + + this.type = 'OctahedronGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + radius: radius, + detail: detail + }; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {OctahedronGeometry} A new instance. + */ + static fromJSON( data ) { + + return new OctahedronGeometry( data.radius, data.detail ); + + } + +} + +/** + * A geometry class for representing a plane. + * + * ```js + * const geometry = new THREE.PlaneGeometry( 1, 1 ); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00, side: THREE.DoubleSide } ); + * const plane = new THREE.Mesh( geometry, material ); + * scene.add( plane ); + * ``` + * + * @augments BufferGeometry + */ +class PlaneGeometry extends BufferGeometry { + + /** + * Constructs a new plane geometry. + * + * @param {number} [width=1] - The width along the X axis. + * @param {number} [height=1] - The height along the Y axis + * @param {number} [widthSegments=1] - The number of segments along the X axis. + * @param {number} [heightSegments=1] - The number of segments along the Y axis. + */ + constructor( width = 1, height = 1, widthSegments = 1, heightSegments = 1 ) { + + super(); + + this.type = 'PlaneGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + width: width, + height: height, + widthSegments: widthSegments, + heightSegments: heightSegments + }; + + const width_half = width / 2; + const height_half = height / 2; + + const gridX = Math.floor( widthSegments ); + const gridY = Math.floor( heightSegments ); + + const gridX1 = gridX + 1; + const gridY1 = gridY + 1; + + const segment_width = width / gridX; + const segment_height = height / gridY; + + // + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; + + for ( let iy = 0; iy < gridY1; iy ++ ) { + + const y = iy * segment_height - height_half; + + for ( let ix = 0; ix < gridX1; ix ++ ) { + + const x = ix * segment_width - width_half; + + vertices.push( x, - y, 0 ); + + normals.push( 0, 0, 1 ); + + uvs.push( ix / gridX ); + uvs.push( 1 - ( iy / gridY ) ); + + } + + } + + for ( let iy = 0; iy < gridY; iy ++ ) { + + for ( let ix = 0; ix < gridX; ix ++ ) { + + const a = ix + gridX1 * iy; + const b = ix + gridX1 * ( iy + 1 ); + const c = ( ix + 1 ) + gridX1 * ( iy + 1 ); + const d = ( ix + 1 ) + gridX1 * iy; + + indices.push( a, b, d ); + indices.push( b, c, d ); + + } + + } + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {PlaneGeometry} A new instance. + */ + static fromJSON( data ) { + + return new PlaneGeometry( data.width, data.height, data.widthSegments, data.heightSegments ); + + } + +} + +/** + * A class for generating a two-dimensional ring geometry. + * + * ```js + * const geometry = new THREE.RingGeometry( 1, 5, 32 ); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00, side: THREE.DoubleSide } ); + * const mesh = new THREE.Mesh( geometry, material ); + * scene.add( mesh ); + * ``` + * + * @augments BufferGeometry + */ +class RingGeometry extends BufferGeometry { + + /** + * Constructs a new ring geometry. + * + * @param {number} [innerRadius=0.5] - The inner radius of the ring. + * @param {number} [outerRadius=1] - The outer radius of the ring. + * @param {number} [thetaSegments=32] - Number of segments. A higher number means the ring will be more round. Minimum is `3`. + * @param {number} [phiSegments=1] - Number of segments per ring segment. Minimum is `1`. + * @param {number} [thetaStart=0] - Starting angle in radians. + * @param {number} [thetaLength=Math.PI*2] - Central angle in radians. + */ + constructor( innerRadius = 0.5, outerRadius = 1, thetaSegments = 32, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2 ) { + + super(); + + this.type = 'RingGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + innerRadius: innerRadius, + outerRadius: outerRadius, + thetaSegments: thetaSegments, + phiSegments: phiSegments, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + thetaSegments = Math.max( 3, thetaSegments ); + phiSegments = Math.max( 1, phiSegments ); + + // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; + + // some helper variables + + let radius = innerRadius; + const radiusStep = ( ( outerRadius - innerRadius ) / phiSegments ); + const vertex = new Vector3(); + const uv = new Vector2(); + + // generate vertices, normals and uvs + + for ( let j = 0; j <= phiSegments; j ++ ) { + + for ( let i = 0; i <= thetaSegments; i ++ ) { + + // values are generate from the inside of the ring to the outside + + const segment = thetaStart + i / thetaSegments * thetaLength; + + // vertex + + vertex.x = radius * Math.cos( segment ); + vertex.y = radius * Math.sin( segment ); + + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal + + normals.push( 0, 0, 1 ); + + // uv + + uv.x = ( vertex.x / outerRadius + 1 ) / 2; + uv.y = ( vertex.y / outerRadius + 1 ) / 2; + + uvs.push( uv.x, uv.y ); + + } + + // increase the radius for next row of vertices + + radius += radiusStep; + + } + + // indices + + for ( let j = 0; j < phiSegments; j ++ ) { + + const thetaSegmentLevel = j * ( thetaSegments + 1 ); + + for ( let i = 0; i < thetaSegments; i ++ ) { + + const segment = i + thetaSegmentLevel; + + const a = segment; + const b = segment + thetaSegments + 1; + const c = segment + thetaSegments + 2; + const d = segment + 1; + + // faces + + indices.push( a, b, d ); + indices.push( b, c, d ); + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {RingGeometry} A new instance. + */ + static fromJSON( data ) { + + return new RingGeometry( data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength ); + + } + +} + +/** + * Creates an one-sided polygonal geometry from one or more path shapes. + * + * ```js + * const arcShape = new THREE.Shape() + * .moveTo( 5, 1 ) + * .absarc( 1, 1, 4, 0, Math.PI * 2, false ); + * + * const geometry = new THREE.ShapeGeometry( arcShape ); + * const material = new THREE.MeshBasicMaterial( { color: 0x00ff00, side: THREE.DoubleSide } ); + * const mesh = new THREE.Mesh( geometry, material ) ; + * scene.add( mesh ); + * ``` + * + * @augments BufferGeometry + */ +class ShapeGeometry extends BufferGeometry { + + /** + * Constructs a new shape geometry. + * + * @param {Shape|Array} [shapes] - A shape or an array of shapes. + * @param {number} [curveSegments=12] - Number of segments per shape. + */ + constructor( shapes = new Shape( [ new Vector2( 0, 0.5 ), new Vector2( -0.5, -0.5 ), new Vector2( 0.5, -0.5 ) ] ), curveSegments = 12 ) { + + super(); + + this.type = 'ShapeGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + shapes: shapes, + curveSegments: curveSegments + }; + + // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; + + // helper variables + + let groupStart = 0; + let groupCount = 0; + + // allow single and array values for "shapes" parameter + + if ( Array.isArray( shapes ) === false ) { + + addShape( shapes ); + + } else { + + for ( let i = 0; i < shapes.length; i ++ ) { + + addShape( shapes[ i ] ); + + this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support + + groupStart += groupCount; + groupCount = 0; + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + + // helper functions + + function addShape( shape ) { + + const indexOffset = vertices.length / 3; + const points = shape.extractPoints( curveSegments ); + + let shapeVertices = points.shape; + const shapeHoles = points.holes; + + // check direction of vertices + + if ( ShapeUtils.isClockWise( shapeVertices ) === false ) { + + shapeVertices = shapeVertices.reverse(); + + } + + for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) { + + const shapeHole = shapeHoles[ i ]; + + if ( ShapeUtils.isClockWise( shapeHole ) === true ) { + + shapeHoles[ i ] = shapeHole.reverse(); + + } + + } + + const faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles ); + + // join vertices of inner and outer paths to a single array + + for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) { + + const shapeHole = shapeHoles[ i ]; + shapeVertices = shapeVertices.concat( shapeHole ); + + } + + // vertices, normals, uvs + + for ( let i = 0, l = shapeVertices.length; i < l; i ++ ) { + + const vertex = shapeVertices[ i ]; + + vertices.push( vertex.x, vertex.y, 0 ); + normals.push( 0, 0, 1 ); + uvs.push( vertex.x, vertex.y ); // world uvs + + } + + // indices + + for ( let i = 0, l = faces.length; i < l; i ++ ) { + + const face = faces[ i ]; + + const a = face[ 0 ] + indexOffset; + const b = face[ 1 ] + indexOffset; + const c = face[ 2 ] + indexOffset; + + indices.push( a, b, c ); + groupCount += 3; + + } + + } + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + const shapes = this.parameters.shapes; + + return toJSON( shapes, data ); + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @param {Array} shapes - An array of shapes. + * @return {ShapeGeometry} A new instance. + */ + static fromJSON( data, shapes ) { + + const geometryShapes = []; + + for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) { + + const shape = shapes[ data.shapes[ j ] ]; + + geometryShapes.push( shape ); + + } + + return new ShapeGeometry( geometryShapes, data.curveSegments ); + + } + +} + +function toJSON( shapes, data ) { + + data.shapes = []; + + if ( Array.isArray( shapes ) ) { + + for ( let i = 0, l = shapes.length; i < l; i ++ ) { + + const shape = shapes[ i ]; + + data.shapes.push( shape.uuid ); + + } + + } else { + + data.shapes.push( shapes.uuid ); + + } + + return data; + +} + +/** + * A class for generating a sphere geometry. + * + * ```js + * const geometry = new THREE.SphereGeometry( 15, 32, 16 ); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00 } ); + * const sphere = new THREE.Mesh( geometry, material ); + * scene.add( sphere ); + * ``` + * + * @augments BufferGeometry + */ +class SphereGeometry extends BufferGeometry { + + /** + * Constructs a new sphere geometry. + * + * @param {number} [radius=1] - The sphere radius. + * @param {number} [widthSegments=32] - The number of horizontal segments. Minimum value is `3`. + * @param {number} [heightSegments=16] - The number of vertical segments. Minimum value is `2`. + * @param {number} [phiStart=0] - The horizontal starting angle in radians. + * @param {number} [phiLength=Math.PI*2] - The horizontal sweep angle size. + * @param {number} [thetaStart=0] - The vertical starting angle in radians. + * @param {number} [thetaLength=Math.PI] - The vertical sweep angle size. + */ + constructor( radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI ) { + + super(); + + this.type = 'SphereGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + radius: radius, + widthSegments: widthSegments, + heightSegments: heightSegments, + phiStart: phiStart, + phiLength: phiLength, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + widthSegments = Math.max( 3, Math.floor( widthSegments ) ); + heightSegments = Math.max( 2, Math.floor( heightSegments ) ); + + const thetaEnd = Math.min( thetaStart + thetaLength, Math.PI ); + + let index = 0; + const grid = []; + + const vertex = new Vector3(); + const normal = new Vector3(); + + // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; + + // generate vertices, normals and uvs + + for ( let iy = 0; iy <= heightSegments; iy ++ ) { + + const verticesRow = []; + + const v = iy / heightSegments; + + // special case for the poles + + let uOffset = 0; + + if ( iy === 0 && thetaStart === 0 ) { + + uOffset = 0.5 / widthSegments; + + } else if ( iy === heightSegments && thetaEnd === Math.PI ) { + + uOffset = -0.5 / widthSegments; + + } + + for ( let ix = 0; ix <= widthSegments; ix ++ ) { + + const u = ix / widthSegments; + + // vertex + + vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); + vertex.y = radius * Math.cos( thetaStart + v * thetaLength ); + vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); + + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal + + normal.copy( vertex ).normalize(); + normals.push( normal.x, normal.y, normal.z ); + + // uv + + uvs.push( u + uOffset, 1 - v ); + + verticesRow.push( index ++ ); + + } + + grid.push( verticesRow ); + + } + + // indices + + for ( let iy = 0; iy < heightSegments; iy ++ ) { + + for ( let ix = 0; ix < widthSegments; ix ++ ) { + + const a = grid[ iy ][ ix + 1 ]; + const b = grid[ iy ][ ix ]; + const c = grid[ iy + 1 ][ ix ]; + const d = grid[ iy + 1 ][ ix + 1 ]; + + if ( iy !== 0 || thetaStart > 0 ) indices.push( a, b, d ); + if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( b, c, d ); + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {SphereGeometry} A new instance. + */ + static fromJSON( data ) { + + return new SphereGeometry( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength ); + + } + +} + +/** + * A geometry class for representing an tetrahedron. + * + * ```js + * const geometry = new THREE.TetrahedronGeometry(); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00 } ); + * const tetrahedron = new THREE.Mesh( geometry, material ); + * scene.add( tetrahedron ); + * ``` + * + * @augments PolyhedronGeometry + */ +class TetrahedronGeometry extends PolyhedronGeometry { + + /** + * Constructs a new tetrahedron geometry. + * + * @param {number} [radius=1] - Radius of the tetrahedron. + * @param {number} [detail=0] - Setting this to a value greater than `0` adds vertices making it no longer a tetrahedron. + */ + constructor( radius = 1, detail = 0 ) { + + const vertices = [ + 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1 + ]; + + const indices = [ + 2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1 + ]; + + super( vertices, indices, radius, detail ); + + this.type = 'TetrahedronGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + radius: radius, + detail: detail + }; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {TetrahedronGeometry} A new instance. + */ + static fromJSON( data ) { + + return new TetrahedronGeometry( data.radius, data.detail ); + + } + +} + +/** + * A geometry class for representing an torus. + * + * ```js + * const geometry = new THREE.TorusGeometry( 10, 3, 16, 100 ); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00 } ); + * const torus = new THREE.Mesh( geometry, material ); + * scene.add( torus ); + * ``` + * + * @augments BufferGeometry + */ +class TorusGeometry extends BufferGeometry { + + /** + * Constructs a new torus geometry. + * + * @param {number} [radius=1] - Radius of the torus, from the center of the torus to the center of the tube. + * @param {number} [tube=0.4] - Radius of the tube. Must be smaller than `radius`. + * @param {number} [radialSegments=12] - The number of radial segments. + * @param {number} [tubularSegments=48] - The number of tubular segments. + * @param {number} [arc=Math.PI*2] - Central angle in radians. + */ + constructor( radius = 1, tube = 0.4, radialSegments = 12, tubularSegments = 48, arc = Math.PI * 2 ) { + + super(); + + this.type = 'TorusGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + radius: radius, + tube: tube, + radialSegments: radialSegments, + tubularSegments: tubularSegments, + arc: arc + }; + + radialSegments = Math.floor( radialSegments ); + tubularSegments = Math.floor( tubularSegments ); + + // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; + + // helper variables + + const center = new Vector3(); + const vertex = new Vector3(); + const normal = new Vector3(); + + // generate vertices, normals and uvs + + for ( let j = 0; j <= radialSegments; j ++ ) { + + for ( let i = 0; i <= tubularSegments; i ++ ) { + + const u = i / tubularSegments * arc; + const v = j / radialSegments * Math.PI * 2; + + // vertex + + vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u ); + vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u ); + vertex.z = tube * Math.sin( v ); + + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal + + center.x = radius * Math.cos( u ); + center.y = radius * Math.sin( u ); + normal.subVectors( vertex, center ).normalize(); + + normals.push( normal.x, normal.y, normal.z ); + + // uv + + uvs.push( i / tubularSegments ); + uvs.push( j / radialSegments ); + + } + + } + + // generate indices + + for ( let j = 1; j <= radialSegments; j ++ ) { + + for ( let i = 1; i <= tubularSegments; i ++ ) { + + // indices + + const a = ( tubularSegments + 1 ) * j + i - 1; + const b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1; + const c = ( tubularSegments + 1 ) * ( j - 1 ) + i; + const d = ( tubularSegments + 1 ) * j + i; + + // faces + + indices.push( a, b, d ); + indices.push( b, c, d ); + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {TorusGeometry} A new instance. + */ + static fromJSON( data ) { + + return new TorusGeometry( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc ); + + } + +} + +/** + * Creates a torus knot, the particular shape of which is defined by a pair + * of coprime integers, p and q. If p and q are not coprime, the result will + * be a torus link. + * + * ```js + * const geometry = new THREE.TorusKnotGeometry( 10, 3, 100, 16 ); + * const material = new THREE.MeshBasicMaterial( { color: 0xffff00 } ); + * const torusKnot = new THREE.Mesh( geometry, material ); + * scene.add( torusKnot ); + * ``` + * + * @augments BufferGeometry + */ +class TorusKnotGeometry extends BufferGeometry { + + /** + * Constructs a new torus knot geometry. + * + * @param {number} [radius=1] - Radius of the torus knot. + * @param {number} [tube=0.4] - Radius of the tube. + * @param {number} [tubularSegments=64] - The number of tubular segments. + * @param {number} [radialSegments=8] - The number of radial segments. + * @param {number} [p=2] - This value determines, how many times the geometry winds around its axis of rotational symmetry. + * @param {number} [q=3] - This value determines, how many times the geometry winds around a circle in the interior of the torus. + */ + constructor( radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3 ) { + + super(); + + this.type = 'TorusKnotGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + radius: radius, + tube: tube, + tubularSegments: tubularSegments, + radialSegments: radialSegments, + p: p, + q: q + }; + + tubularSegments = Math.floor( tubularSegments ); + radialSegments = Math.floor( radialSegments ); + + // buffers + + const indices = []; + const vertices = []; + const normals = []; + const uvs = []; + + // helper variables + + const vertex = new Vector3(); + const normal = new Vector3(); + + const P1 = new Vector3(); + const P2 = new Vector3(); + + const B = new Vector3(); + const T = new Vector3(); + const N = new Vector3(); + + // generate vertices, normals and uvs + + for ( let i = 0; i <= tubularSegments; ++ i ) { + + // the radian "u" is used to calculate the position on the torus curve of the current tubular segment + + const u = i / tubularSegments * p * Math.PI * 2; + + // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. + // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions + + calculatePositionOnCurve( u, p, q, radius, P1 ); + calculatePositionOnCurve( u + 0.01, p, q, radius, P2 ); + + // calculate orthonormal basis + + T.subVectors( P2, P1 ); + N.addVectors( P2, P1 ); + B.crossVectors( T, N ); + N.crossVectors( B, T ); + + // normalize B, N. T can be ignored, we don't use it + + B.normalize(); + N.normalize(); + + for ( let j = 0; j <= radialSegments; ++ j ) { + + // now calculate the vertices. they are nothing more than an extrusion of the torus curve. + // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. + + const v = j / radialSegments * Math.PI * 2; + const cx = - tube * Math.cos( v ); + const cy = tube * Math.sin( v ); + + // now calculate the final vertex position. + // first we orient the extrusion with our basis vectors, then we add it to the current position on the curve + + vertex.x = P1.x + ( cx * N.x + cy * B.x ); + vertex.y = P1.y + ( cx * N.y + cy * B.y ); + vertex.z = P1.z + ( cx * N.z + cy * B.z ); + + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) + + normal.subVectors( vertex, P1 ).normalize(); + + normals.push( normal.x, normal.y, normal.z ); + + // uv + + uvs.push( i / tubularSegments ); + uvs.push( j / radialSegments ); + + } + + } + + // generate indices + + for ( let j = 1; j <= tubularSegments; j ++ ) { + + for ( let i = 1; i <= radialSegments; i ++ ) { + + // indices + + const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); + const b = ( radialSegments + 1 ) * j + ( i - 1 ); + const c = ( radialSegments + 1 ) * j + i; + const d = ( radialSegments + 1 ) * ( j - 1 ) + i; + + // faces + + indices.push( a, b, d ); + indices.push( b, c, d ); + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + // this function calculates the current position on the torus curve + + function calculatePositionOnCurve( u, p, q, radius, position ) { + + const cu = Math.cos( u ); + const su = Math.sin( u ); + const quOverP = q / p * u; + const cs = Math.cos( quOverP ); + + position.x = radius * ( 2 + cs ) * 0.5 * cu; + position.y = radius * ( 2 + cs ) * su * 0.5; + position.z = radius * Math.sin( quOverP ) * 0.5; + + } + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {TorusKnotGeometry} A new instance. + */ + static fromJSON( data ) { + + return new TorusKnotGeometry( data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q ); + + } + +} + +/** + * Creates a tube that extrudes along a 3D curve. + * + * ```js + * class CustomSinCurve extends THREE.Curve { + * + * getPoint( t, optionalTarget = new THREE.Vector3() ) { + * + * const tx = t * 3 - 1.5; + * const ty = Math.sin( 2 * Math.PI * t ); + * const tz = 0; + * + * return optionalTarget.set( tx, ty, tz ); + * } + * + * } + * + * const path = new CustomSinCurve( 10 ); + * const geometry = new THREE.TubeGeometry( path, 20, 2, 8, false ); + * const material = new THREE.MeshBasicMaterial( { color: 0x00ff00 } ); + * const mesh = new THREE.Mesh( geometry, material ); + * scene.add( mesh ); + * ``` + * + * @augments BufferGeometry + */ +class TubeGeometry extends BufferGeometry { + + /** + * Constructs a new tube geometry. + * + * @param {Curve} [path=QuadraticBezierCurve3] - A 3D curve defining the path of the tube. + * @param {number} [tubularSegments=64] - The number of segments that make up the tube. + * @param {number} [radius=1] -The radius of the tube. + * @param {number} [radialSegments=8] - The number of segments that make up the cross-section. + * @param {boolean} [closed=false] - Whether the tube is closed or not. + */ + constructor( path = new QuadraticBezierCurve3( new Vector3( -1, -1, 0 ), new Vector3( -1, 1, 0 ), new Vector3( 1, 1, 0 ) ), tubularSegments = 64, radius = 1, radialSegments = 8, closed = false ) { + + super(); + + this.type = 'TubeGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + path: path, + tubularSegments: tubularSegments, + radius: radius, + radialSegments: radialSegments, + closed: closed + }; + + const frames = path.computeFrenetFrames( tubularSegments, closed ); + + // expose internals + + this.tangents = frames.tangents; + this.normals = frames.normals; + this.binormals = frames.binormals; + + // helper variables + + const vertex = new Vector3(); + const normal = new Vector3(); + const uv = new Vector2(); + let P = new Vector3(); + + // buffer + + const vertices = []; + const normals = []; + const uvs = []; + const indices = []; + + // create buffer data + + generateBufferData(); + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + // functions + + function generateBufferData() { + + for ( let i = 0; i < tubularSegments; i ++ ) { + + generateSegment( i ); + + } + + // if the geometry is not closed, generate the last row of vertices and normals + // at the regular position on the given path + // + // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ) + + generateSegment( ( closed === false ) ? tubularSegments : 0 ); + + // uvs are generated in a separate function. + // this makes it easy compute correct values for closed geometries + + generateUVs(); + + // finally create faces + + generateIndices(); + + } + + function generateSegment( i ) { + + // we use getPointAt to sample evenly distributed points from the given path + + P = path.getPointAt( i / tubularSegments, P ); + + // retrieve corresponding normal and binormal + + const N = frames.normals[ i ]; + const B = frames.binormals[ i ]; + + // generate normals and vertices for the current segment + + for ( let j = 0; j <= radialSegments; j ++ ) { + + const v = j / radialSegments * Math.PI * 2; + + const sin = Math.sin( v ); + const cos = - Math.cos( v ); + + // normal + + normal.x = ( cos * N.x + sin * B.x ); + normal.y = ( cos * N.y + sin * B.y ); + normal.z = ( cos * N.z + sin * B.z ); + normal.normalize(); + + normals.push( normal.x, normal.y, normal.z ); + + // vertex + + vertex.x = P.x + radius * normal.x; + vertex.y = P.y + radius * normal.y; + vertex.z = P.z + radius * normal.z; + + vertices.push( vertex.x, vertex.y, vertex.z ); + + } + + } + + function generateIndices() { + + for ( let j = 1; j <= tubularSegments; j ++ ) { + + for ( let i = 1; i <= radialSegments; i ++ ) { + + const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); + const b = ( radialSegments + 1 ) * j + ( i - 1 ); + const c = ( radialSegments + 1 ) * j + i; + const d = ( radialSegments + 1 ) * ( j - 1 ) + i; + + // faces + + indices.push( a, b, d ); + indices.push( b, c, d ); + + } + + } + + } + + function generateUVs() { + + for ( let i = 0; i <= tubularSegments; i ++ ) { + + for ( let j = 0; j <= radialSegments; j ++ ) { + + uv.x = i / tubularSegments; + uv.y = j / radialSegments; + + uvs.push( uv.x, uv.y ); + + } + + } + + } + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.path = this.parameters.path.toJSON(); + + return data; + + } + + /** + * Factory method for creating an instance of this class from the given + * JSON object. + * + * @param {Object} data - A JSON object representing the serialized geometry. + * @return {TubeGeometry} A new instance. + */ + static fromJSON( data ) { + + // This only works for built-in curves (e.g. CatmullRomCurve3). + // User defined curves or instances of CurvePath will not be deserialized. + return new TubeGeometry( + new Curves[ data.path.type ]().fromJSON( data.path ), + data.tubularSegments, + data.radius, + data.radialSegments, + data.closed + ); + + } + +} + +/** + * Can be used as a helper object to visualize a geometry as a wireframe. + * + * ```js + * const geometry = new THREE.SphereGeometry(); + * + * const wireframe = new THREE.WireframeGeometry( geometry ); + * + * const line = new THREE.LineSegments( wireframe ); + * line.material.depthWrite = false; + * line.material.opacity = 0.25; + * line.material.transparent = true; + * + * scene.add( line ); + * ``` + * + * Note: It is not yet possible to serialize/deserialize instances of this class. + * + * @augments BufferGeometry + */ +class WireframeGeometry extends BufferGeometry { + + /** + * Constructs a new wireframe geometry. + * + * @param {?BufferGeometry} [geometry=null] - The geometry. + */ + constructor( geometry = null ) { + + super(); + + this.type = 'WireframeGeometry'; + + /** + * Holds the constructor parameters that have been + * used to generate the geometry. Any modification + * after instantiation does not change the geometry. + * + * @type {Object} + */ + this.parameters = { + geometry: geometry + }; + + if ( geometry !== null ) { + + // buffer + + const vertices = []; + const edges = new Set(); + + // helper variables + + const start = new Vector3(); + const end = new Vector3(); + + if ( geometry.index !== null ) { + + // indexed BufferGeometry + + const position = geometry.attributes.position; + const indices = geometry.index; + let groups = geometry.groups; + + if ( groups.length === 0 ) { + + groups = [ { start: 0, count: indices.count, materialIndex: 0 } ]; + + } + + // create a data structure that contains all edges without duplicates + + for ( let o = 0, ol = groups.length; o < ol; ++ o ) { + + const group = groups[ o ]; + + const groupStart = group.start; + const groupCount = group.count; + + for ( let i = groupStart, l = ( groupStart + groupCount ); i < l; i += 3 ) { + + for ( let j = 0; j < 3; j ++ ) { + + const index1 = indices.getX( i + j ); + const index2 = indices.getX( i + ( j + 1 ) % 3 ); + + start.fromBufferAttribute( position, index1 ); + end.fromBufferAttribute( position, index2 ); + + if ( isUniqueEdge( start, end, edges ) === true ) { + + vertices.push( start.x, start.y, start.z ); + vertices.push( end.x, end.y, end.z ); + + } + + } + + } + + } + + } else { + + // non-indexed BufferGeometry + + const position = geometry.attributes.position; + + for ( let i = 0, l = ( position.count / 3 ); i < l; i ++ ) { + + for ( let j = 0; j < 3; j ++ ) { + + // three edges per triangle, an edge is represented as (index1, index2) + // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0) + + const index1 = 3 * i + j; + const index2 = 3 * i + ( ( j + 1 ) % 3 ); + + start.fromBufferAttribute( position, index1 ); + end.fromBufferAttribute( position, index2 ); + + if ( isUniqueEdge( start, end, edges ) === true ) { + + vertices.push( start.x, start.y, start.z ); + vertices.push( end.x, end.y, end.z ); + + } + + } + + } + + } + + // build geometry + + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + + } + + } + + copy( source ) { + + super.copy( source ); + + this.parameters = Object.assign( {}, source.parameters ); + + return this; + + } + +} + +function isUniqueEdge( start, end, edges ) { + + const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}`; + const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}`; // coincident edge + + if ( edges.has( hash1 ) === true || edges.has( hash2 ) === true ) { + + return false; + + } else { + + edges.add( hash1 ); + edges.add( hash2 ); + return true; + + } + +} + +var Geometries = /*#__PURE__*/Object.freeze({ + __proto__: null, + BoxGeometry: BoxGeometry, + CapsuleGeometry: CapsuleGeometry, + CircleGeometry: CircleGeometry, + ConeGeometry: ConeGeometry, + CylinderGeometry: CylinderGeometry, + DodecahedronGeometry: DodecahedronGeometry, + EdgesGeometry: EdgesGeometry, + ExtrudeGeometry: ExtrudeGeometry, + IcosahedronGeometry: IcosahedronGeometry, + LatheGeometry: LatheGeometry, + OctahedronGeometry: OctahedronGeometry, + PlaneGeometry: PlaneGeometry, + PolyhedronGeometry: PolyhedronGeometry, + RingGeometry: RingGeometry, + ShapeGeometry: ShapeGeometry, + SphereGeometry: SphereGeometry, + TetrahedronGeometry: TetrahedronGeometry, + TorusGeometry: TorusGeometry, + TorusKnotGeometry: TorusKnotGeometry, + TubeGeometry: TubeGeometry, + WireframeGeometry: WireframeGeometry +}); + +/** + * This material can receive shadows, but otherwise is completely transparent. + * + * ```js + * const geometry = new THREE.PlaneGeometry( 2000, 2000 ); + * geometry.rotateX( - Math.PI / 2 ); + * + * const material = new THREE.ShadowMaterial(); + * material.opacity = 0.2; + * + * const plane = new THREE.Mesh( geometry, material ); + * plane.position.y = -200; + * plane.receiveShadow = true; + * scene.add( plane ); + * ``` + * + * @augments Material + */ +class ShadowMaterial extends Material { + + /** + * Constructs a new shadow material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isShadowMaterial = true; + + this.type = 'ShadowMaterial'; + + /** + * Color of the material. + * + * @type {Color} + * @default (0,0,0) + */ + this.color = new Color( 0x000000 ); + + /** + * Overwritten since shadow materials are transparent + * by default. + * + * @type {boolean} + * @default true + */ + this.transparent = true; + + /** + * Whether the material is affected by fog or not. + * + * @type {boolean} + * @default true + */ + this.fog = true; + + this.setValues( parameters ); + + } + + copy( source ) { + + super.copy( source ); + + this.color.copy( source.color ); + + this.fog = source.fog; + + return this; + + } + +} + +/** + * This class works just like {@link ShaderMaterial}, except that definitions + * of built-in uniforms and attributes are not automatically prepended to the + * GLSL shader code. + * + * `RawShaderMaterial` can only be used with {@link WebGLRenderer}. + * + * @augments ShaderMaterial + */ +class RawShaderMaterial extends ShaderMaterial { + + /** + * Constructs a new raw shader material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super( parameters ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isRawShaderMaterial = true; + + this.type = 'RawShaderMaterial'; + + } + +} + +/** + * A standard physically based material, using Metallic-Roughness workflow. + * + * Physically based rendering (PBR) has recently become the standard in many + * 3D applications, such as [Unity]{@link https://blogs.unity3d.com/2014/10/29/physically-based-shading-in-unity-5-a-primer/}, + * [Unreal]{@link https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/PhysicallyBased/} and + * [3D Studio Max]{@link http://area.autodesk.com/blogs/the-3ds-max-blog/what039s-new-for-rendering-in-3ds-max-2017}. + * + * This approach differs from older approaches in that instead of using + * approximations for the way in which light interacts with a surface, a + * physically correct model is used. The idea is that, instead of tweaking + * materials to look good under specific lighting, a material can be created + * that will react 'correctly' under all lighting scenarios. + * + * In practice this gives a more accurate and realistic looking result than + * the {@link MeshLambertMaterial} or {@link MeshPhongMaterial}, at the cost of + * being somewhat more computationally expensive. `MeshStandardMaterial` uses per-fragment + * shading. + * + * Note that for best results you should always specify an environment map when using this material. + * + * For a non-technical introduction to the concept of PBR and how to set up a + * PBR material, check out these articles by the people at [marmoset]{@link https://www.marmoset.co}: + * + * - [Basic Theory of Physically Based Rendering]{@link https://www.marmoset.co/posts/basic-theory-of-physically-based-rendering/} + * - [Physically Based Rendering and You Can Too]{@link https://www.marmoset.co/posts/physically-based-rendering-and-you-can-too/} + * + * Technical details of the approach used in three.js (and most other PBR systems) can be found is this + * [paper from Disney]{@link https://media.disneyanimation.com/uploads/production/publication_asset/48/asset/s2012_pbs_disney_brdf_notes_v3.pdf} + * (pdf), by Brent Burley. + * + * @augments Material + */ +class MeshStandardMaterial extends Material { + + /** + * Constructs a new mesh standard material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshStandardMaterial = true; + + this.type = 'MeshStandardMaterial'; + + this.defines = { 'STANDARD': '' }; + + /** + * Color of the material. + * + * @type {Color} + * @default (1,1,1) + */ + this.color = new Color( 0xffffff ); // diffuse + + /** + * How rough the material appears. `0.0` means a smooth mirror reflection, `1.0` + * means fully diffuse. If `roughnessMap` is also provided, + * both values are multiplied. + * + * @type {number} + * @default 1 + */ + this.roughness = 1.0; + + /** + * How much the material is like a metal. Non-metallic materials such as wood + * or stone use `0.0`, metallic use `1.0`, with nothing (usually) in between. + * A value between `0.0` and `1.0` could be used for a rusty metal look. + * If `metalnessMap` is also provided, both values are multiplied. + * + * @type {number} + * @default 0 + */ + this.metalness = 0.0; + + /** + * The color map. May optionally include an alpha channel, typically combined + * with {@link Material#transparent} or {@link Material#alphaTest}. The texture map + * color is modulated by the diffuse `color`. + * + * @type {?Texture} + * @default null + */ + this.map = null; + + /** + * The light map. Requires a second set of UVs. + * + * @type {?Texture} + * @default null + */ + this.lightMap = null; + + /** + * Intensity of the baked light. + * + * @type {number} + * @default 1 + */ + this.lightMapIntensity = 1.0; + + /** + * The red channel of this texture is used as the ambient occlusion map. + * Requires a second set of UVs. + * + * @type {?Texture} + * @default null + */ + this.aoMap = null; + + /** + * Intensity of the ambient occlusion effect. Range is `[0,1]`, where `0` + * disables ambient occlusion. Where intensity is `1` and the AO map's + * red channel is also `1`, ambient light is fully occluded on a surface. + * + * @type {number} + * @default 1 + */ + this.aoMapIntensity = 1.0; + + /** + * Emissive (light) color of the material, essentially a solid color + * unaffected by other lighting. + * + * @type {Color} + * @default (0,0,0) + */ + this.emissive = new Color( 0x000000 ); + + /** + * Intensity of the emissive light. Modulates the emissive color. + * + * @type {number} + * @default 1 + */ + this.emissiveIntensity = 1.0; + + /** + * Set emissive (glow) map. The emissive map color is modulated by the + * emissive color and the emissive intensity. If you have an emissive map, + * be sure to set the emissive color to something other than black. + * + * @type {?Texture} + * @default null + */ + this.emissiveMap = null; + + /** + * The texture to create a bump map. The black and white values map to the + * perceived depth in relation to the lights. Bump doesn't actually affect + * the geometry of the object, only the lighting. If a normal map is defined + * this will be ignored. + * + * @type {?Texture} + * @default null + */ + this.bumpMap = null; + + /** + * How much the bump map affects the material. Typical range is `[0,1]`. + * + * @type {number} + * @default 1 + */ + this.bumpScale = 1; + + /** + * The texture to create a normal map. The RGB values affect the surface + * normal for each pixel fragment and change the way the color is lit. Normal + * maps do not change the actual shape of the surface, only the lighting. In + * case the material has a normal map authored using the left handed + * convention, the `y` component of `normalScale` should be negated to compensate + * for the different handedness. + * + * @type {?Texture} + * @default null + */ + this.normalMap = null; + + /** + * The type of normal map. + * + * @type {(TangentSpaceNormalMap|ObjectSpaceNormalMap)} + * @default TangentSpaceNormalMap + */ + this.normalMapType = TangentSpaceNormalMap; + + /** + * How much the normal map affects the material. Typical value range is `[0,1]`. + * + * @type {Vector2} + * @default (1,1) + */ + this.normalScale = new Vector2( 1, 1 ); + + /** + * The displacement map affects the position of the mesh's vertices. Unlike + * other maps which only affect the light and shade of the material the + * displaced vertices can cast shadows, block other objects, and otherwise + * act as real geometry. The displacement texture is an image where the value + * of each pixel (white being the highest) is mapped against, and + * repositions, the vertices of the mesh. + * + * @type {?Texture} + * @default null + */ + this.displacementMap = null; + + /** + * How much the displacement map affects the mesh (where black is no + * displacement, and white is maximum displacement). Without a displacement + * map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementScale = 1; + + /** + * The offset of the displacement map's values on the mesh's vertices. + * The bias is added to the scaled sample of the displacement map. + * Without a displacement map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementBias = 0; + + /** + * The green channel of this texture is used to alter the roughness of the + * material. + * + * @type {?Texture} + * @default null + */ + this.roughnessMap = null; + + /** + * The blue channel of this texture is used to alter the metalness of the + * material. + * + * @type {?Texture} + * @default null + */ + this.metalnessMap = null; + + /** + * The alpha map is a grayscale texture that controls the opacity across the + * surface (black: fully transparent; white: fully opaque). + * + * Only the color of the texture is used, ignoring the alpha channel if one + * exists. For RGB and RGBA textures, the renderer will use the green channel + * when sampling this texture due to the extra bit of precision provided for + * green in DXT-compressed and uncompressed RGB 565 formats. Luminance-only and + * luminance/alpha textures will also still work as expected. + * + * @type {?Texture} + * @default null + */ + this.alphaMap = null; + + /** + * The environment map. To ensure a physically correct rendering, environment maps + * are internally pre-processed with {@link PMREMGenerator}. + * + * @type {?Texture} + * @default null + */ + this.envMap = null; + + /** + * The rotation of the environment map in radians. + * + * @type {Euler} + * @default (0,0,0) + */ + this.envMapRotation = new Euler(); + + /** + * Scales the effect of the environment map by multiplying its color. + * + * @type {number} + * @default 1 + */ + this.envMapIntensity = 1.0; + + /** + * Renders the geometry as a wireframe. + * + * @type {boolean} + * @default false + */ + this.wireframe = false; + + /** + * Controls the thickness of the wireframe. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {number} + * @default 1 + */ + this.wireframeLinewidth = 1; + + /** + * Defines appearance of wireframe ends. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {('round'|'bevel'|'miter')} + * @default 'round' + */ + this.wireframeLinecap = 'round'; + + /** + * Defines appearance of wireframe joints. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {('round'|'bevel'|'miter')} + * @default 'round' + */ + this.wireframeLinejoin = 'round'; + + /** + * Whether the material is rendered with flat shading or not. + * + * @type {boolean} + * @default false + */ + this.flatShading = false; + + /** + * Whether the material is affected by fog or not. + * + * @type {boolean} + * @default true + */ + this.fog = true; + + this.setValues( parameters ); + + } + + copy( source ) { + + super.copy( source ); + + this.defines = { 'STANDARD': '' }; + + this.color.copy( source.color ); + this.roughness = source.roughness; + this.metalness = source.metalness; + + this.map = source.map; + + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + + this.emissive.copy( source.emissive ); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy( source.normalScale ); + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + this.roughnessMap = source.roughnessMap; + + this.metalnessMap = source.metalnessMap; + + this.alphaMap = source.alphaMap; + + this.envMap = source.envMap; + this.envMapRotation.copy( source.envMapRotation ); + this.envMapIntensity = source.envMapIntensity; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + + this.flatShading = source.flatShading; + + this.fog = source.fog; + + return this; + + } + +} + +/** + * An extension of the {@link MeshStandardMaterial}, providing more advanced + * physically-based rendering properties: + * + * - Anisotropy: Ability to represent the anisotropic property of materials + * as observable with brushed metals. + * - Clearcoat: Some materials — like car paints, carbon fiber, and wet surfaces — require + * a clear, reflective layer on top of another layer that may be irregular or rough. + * Clearcoat approximates this effect, without the need for a separate transparent surface. + * - Iridescence: Allows to render the effect where hue varies depending on the viewing + * angle and illumination angle. This can be seen on soap bubbles, oil films, or on the + * wings of many insects. + * - Physically-based transparency: One limitation of {@link Material#opacity} is that highly + * transparent materials are less reflective. Physically-based transmission provides a more + * realistic option for thin, transparent surfaces like glass. + * - Advanced reflectivity: More flexible reflectivity for non-metallic materials. + * - Sheen: Can be used for representing cloth and fabric materials. + * + * As a result of these complex shading features, `MeshPhysicalMaterial` has a + * higher performance cost, per pixel, than other three.js materials. Most + * effects are disabled by default, and add cost as they are enabled. For + * best results, always specify an environment map when using this material. + * + * @augments MeshStandardMaterial + */ +class MeshPhysicalMaterial extends MeshStandardMaterial { + + /** + * Constructs a new mesh physical material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshPhysicalMaterial = true; + + this.defines = { + + 'STANDARD': '', + 'PHYSICAL': '' + + }; + + this.type = 'MeshPhysicalMaterial'; + + /** + * The rotation of the anisotropy in tangent, bitangent space, measured in radians + * counter-clockwise from the tangent. When `anisotropyMap` is present, this + * property provides additional rotation to the vectors in the texture. + * + * @type {number} + * @default 1 + */ + this.anisotropyRotation = 0; + + /** + * Red and green channels represent the anisotropy direction in `[-1, 1]` tangent, + * bitangent space, to be rotated by `anisotropyRotation`. The blue channel + * contains strength as `[0, 1]` to be multiplied by `anisotropy`. + * + * @type {?Texture} + * @default null + */ + this.anisotropyMap = null; + + /** + * The red channel of this texture is multiplied against `clearcoat`, + * for per-pixel control over a coating's intensity. + * + * @type {?Texture} + * @default null + */ + this.clearcoatMap = null; + + /** + * Roughness of the clear coat layer, from `0.0` to `1.0`. + * + * @type {number} + * @default 0 + */ + this.clearcoatRoughness = 0.0; + + /** + * The green channel of this texture is multiplied against + * `clearcoatRoughness`, for per-pixel control over a coating's roughness. + * + * @type {?Texture} + * @default null + */ + this.clearcoatRoughnessMap = null; + + /** + * How much `clearcoatNormalMap` affects the clear coat layer, from + * `(0,0)` to `(1,1)`. + * + * @type {Vector2} + * @default (1,1) + */ + this.clearcoatNormalScale = new Vector2( 1, 1 ); + + /** + * Can be used to enable independent normals for the clear coat layer. + * + * @type {?Texture} + * @default null + */ + this.clearcoatNormalMap = null; + + /** + * Index-of-refraction for non-metallic materials, from `1.0` to `2.333`. + * + * @type {number} + * @default 1.5 + */ + this.ior = 1.5; + + /** + * Degree of reflectivity, from `0.0` to `1.0`. Default is `0.5`, which + * corresponds to an index-of-refraction of `1.5`. + * + * This models the reflectivity of non-metallic materials. It has no effect + * when `metalness` is `1.0` + * + * @name MeshPhysicalMaterial#reflectivity + * @type {number} + * @default 0.5 + */ + Object.defineProperty( this, 'reflectivity', { + get: function () { + + return ( clamp( 2.5 * ( this.ior - 1 ) / ( this.ior + 1 ), 0, 1 ) ); + + }, + set: function ( reflectivity ) { + + this.ior = ( 1 + 0.4 * reflectivity ) / ( 1 - 0.4 * reflectivity ); + + } + } ); + + /** + * The red channel of this texture is multiplied against `iridescence`, for per-pixel + * control over iridescence. + * + * @type {?Texture} + * @default null + */ + this.iridescenceMap = null; + + /** + * Strength of the iridescence RGB color shift effect, represented by an index-of-refraction. + * Between `1.0` to `2.333`. + * + * @type {number} + * @default 1.3 + */ + this.iridescenceIOR = 1.3; + + /** + *Array of exactly 2 elements, specifying minimum and maximum thickness of the iridescence layer. + Thickness of iridescence layer has an equivalent effect of the one `thickness` has on `ior`. + * + * @type {Array} + * @default [100,400] + */ + this.iridescenceThicknessRange = [ 100, 400 ]; + + /** + * A texture that defines the thickness of the iridescence layer, stored in the green channel. + * Minimum and maximum values of thickness are defined by `iridescenceThicknessRange` array: + * - `0.0` in the green channel will result in thickness equal to first element of the array. + * - `1.0` in the green channel will result in thickness equal to second element of the array. + * - Values in-between will linearly interpolate between the elements of the array. + * + * @type {?Texture} + * @default null + */ + this.iridescenceThicknessMap = null; + + /** + * The sheen tint. + * + * @type {Color} + * @default (0,0,0) + */ + this.sheenColor = new Color( 0x000000 ); + + /** + * The RGB channels of this texture are multiplied against `sheenColor`, for per-pixel control + * over sheen tint. + * + * @type {?Texture} + * @default null + */ + this.sheenColorMap = null; + + /** + * Roughness of the sheen layer, from `0.0` to `1.0`. + * + * @type {number} + * @default 1 + */ + this.sheenRoughness = 1.0; + + /** + * The alpha channel of this texture is multiplied against `sheenRoughness`, for per-pixel control + * over sheen roughness. + * + * @type {?Texture} + * @default null + */ + this.sheenRoughnessMap = null; + + /** + * The red channel of this texture is multiplied against `transmission`, for per-pixel control over + * optical transparency. + * + * @type {?Texture} + * @default null + */ + this.transmissionMap = null; + + /** + * The thickness of the volume beneath the surface. The value is given in the + * coordinate space of the mesh. If the value is `0` the material is + * thin-walled. Otherwise the material is a volume boundary. + * + * @type {number} + * @default 0 + */ + this.thickness = 0; + + /** + * A texture that defines the thickness, stored in the green channel. This will + * be multiplied by `thickness`. + * + * @type {?Texture} + * @default null + */ + this.thicknessMap = null; + + /** + * Density of the medium given as the average distance that light travels in + * the medium before interacting with a particle. The value is given in world + * space units, and must be greater than zero. + * + * @type {number} + * @default Infinity + */ + this.attenuationDistance = Infinity; + + /** + * The color that white light turns into due to absorption when reaching the + * attenuation distance. + * + * @type {Color} + * @default (1,1,1) + */ + this.attenuationColor = new Color( 1, 1, 1 ); + + /** + * A float that scales the amount of specular reflection for non-metals only. + * When set to zero, the model is effectively Lambertian. From `0.0` to `1.0`. + * + * @type {number} + * @default 1 + */ + this.specularIntensity = 1.0; + + /** + * The alpha channel of this texture is multiplied against `specularIntensity`, + * for per-pixel control over specular intensity. + * + * @type {?Texture} + * @default null + */ + this.specularIntensityMap = null; + + /** + * Tints the specular reflection at normal incidence for non-metals only. + * + * @type {Color} + * @default (1,1,1) + */ + this.specularColor = new Color( 1, 1, 1 ); + + /** + * The RGB channels of this texture are multiplied against `specularColor`, + * for per-pixel control over specular color. + * + * @type {?Texture} + * @default null + */ + this.specularColorMap = null; + + this._anisotropy = 0; + this._clearcoat = 0; + this._dispersion = 0; + this._iridescence = 0; + this._sheen = 0.0; + this._transmission = 0; + + this.setValues( parameters ); + + } + + /** + * The anisotropy strength. + * + * @type {number} + * @default 0 + */ + get anisotropy() { + + return this._anisotropy; + + } + + set anisotropy( value ) { + + if ( this._anisotropy > 0 !== value > 0 ) { + + this.version ++; + + } + + this._anisotropy = value; + + } + + /** + * Represents the intensity of the clear coat layer, from `0.0` to `1.0`. Use + * clear coat related properties to enable multilayer materials that have a + * thin translucent layer over the base layer. + * + * @type {number} + * @default 0 + */ + get clearcoat() { + + return this._clearcoat; + + } + + set clearcoat( value ) { + + if ( this._clearcoat > 0 !== value > 0 ) { + + this.version ++; + + } + + this._clearcoat = value; + + } + /** + * The intensity of the iridescence layer, simulating RGB color shift based on the angle between + * the surface and the viewer, from `0.0` to `1.0`. + * + * @type {number} + * @default 0 + */ + get iridescence() { + + return this._iridescence; + + } + + set iridescence( value ) { + + if ( this._iridescence > 0 !== value > 0 ) { + + this.version ++; + + } + + this._iridescence = value; + + } + + /** + * Defines the strength of the angular separation of colors (chromatic aberration) transmitting + * through a relatively clear volume. Any value zero or larger is valid, the typical range of + * realistic values is `[0, 1]`. This property can be only be used with transmissive objects. + * + * @type {number} + * @default 0 + */ + get dispersion() { + + return this._dispersion; + + } + + set dispersion( value ) { + + if ( this._dispersion > 0 !== value > 0 ) { + + this.version ++; + + } + + this._dispersion = value; + + } + + /** + * The intensity of the sheen layer, from `0.0` to `1.0`. + * + * @type {number} + * @default 0 + */ + get sheen() { + + return this._sheen; + + } + + set sheen( value ) { + + if ( this._sheen > 0 !== value > 0 ) { + + this.version ++; + + } + + this._sheen = value; + + } + + /** + * Degree of transmission (or optical transparency), from `0.0` to `1.0`. + * + * Thin, transparent or semitransparent, plastic or glass materials remain + * largely reflective even if they are fully transmissive. The transmission + * property can be used to model these materials. + * + * When transmission is non-zero, `opacity` should be set to `1`. + * + * @type {number} + * @default 0 + */ + get transmission() { + + return this._transmission; + + } + + set transmission( value ) { + + if ( this._transmission > 0 !== value > 0 ) { + + this.version ++; + + } + + this._transmission = value; + + } + + copy( source ) { + + super.copy( source ); + + this.defines = { + + 'STANDARD': '', + 'PHYSICAL': '' + + }; + + this.anisotropy = source.anisotropy; + this.anisotropyRotation = source.anisotropyRotation; + this.anisotropyMap = source.anisotropyMap; + + this.clearcoat = source.clearcoat; + this.clearcoatMap = source.clearcoatMap; + this.clearcoatRoughness = source.clearcoatRoughness; + this.clearcoatRoughnessMap = source.clearcoatRoughnessMap; + this.clearcoatNormalMap = source.clearcoatNormalMap; + this.clearcoatNormalScale.copy( source.clearcoatNormalScale ); + + this.dispersion = source.dispersion; + this.ior = source.ior; + + this.iridescence = source.iridescence; + this.iridescenceMap = source.iridescenceMap; + this.iridescenceIOR = source.iridescenceIOR; + this.iridescenceThicknessRange = [ ...source.iridescenceThicknessRange ]; + this.iridescenceThicknessMap = source.iridescenceThicknessMap; + + this.sheen = source.sheen; + this.sheenColor.copy( source.sheenColor ); + this.sheenColorMap = source.sheenColorMap; + this.sheenRoughness = source.sheenRoughness; + this.sheenRoughnessMap = source.sheenRoughnessMap; + + this.transmission = source.transmission; + this.transmissionMap = source.transmissionMap; + + this.thickness = source.thickness; + this.thicknessMap = source.thicknessMap; + this.attenuationDistance = source.attenuationDistance; + this.attenuationColor.copy( source.attenuationColor ); + + this.specularIntensity = source.specularIntensity; + this.specularIntensityMap = source.specularIntensityMap; + this.specularColor.copy( source.specularColor ); + this.specularColorMap = source.specularColorMap; + + return this; + + } + +} + +/** + * A material for shiny surfaces with specular highlights. + * + * The material uses a non-physically based [Blinn-Phong]{@link https://en.wikipedia.org/wiki/Blinn-Phong_shading_model} + * model for calculating reflectance. Unlike the Lambertian model used in the + * {@link MeshLambertMaterial} this can simulate shiny surfaces with specular + * highlights (such as varnished wood). `MeshPhongMaterial` uses per-fragment shading. + * + * Performance will generally be greater when using this material over the + * {@link MeshStandardMaterial} or {@link MeshPhysicalMaterial}, at the cost of + * some graphical accuracy. + * + * @augments Material + */ +class MeshPhongMaterial extends Material { + + /** + * Constructs a new mesh phong material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshPhongMaterial = true; + + this.type = 'MeshPhongMaterial'; + + /** + * Color of the material. + * + * @type {Color} + * @default (1,1,1) + */ + this.color = new Color( 0xffffff ); // diffuse + + /** + * Specular color of the material. The default color is set to `0x111111` (very dark grey) + * + * This defines how shiny the material is and the color of its shine. + * + * @type {Color} + */ + this.specular = new Color( 0x111111 ); + + /** + * How shiny the specular highlight is; a higher value gives a sharper highlight. + * + * @type {number} + * @default 30 + */ + this.shininess = 30; + + /** + * The color map. May optionally include an alpha channel, typically combined + * with {@link Material#transparent} or {@link Material#alphaTest}. The texture map + * color is modulated by the diffuse `color`. + * + * @type {?Texture} + * @default null + */ + this.map = null; + + /** + * The light map. Requires a second set of UVs. + * + * @type {?Texture} + * @default null + */ + this.lightMap = null; + + /** + * Intensity of the baked light. + * + * @type {number} + * @default 1 + */ + this.lightMapIntensity = 1.0; + + /** + * The red channel of this texture is used as the ambient occlusion map. + * Requires a second set of UVs. + * + * @type {?Texture} + * @default null + */ + this.aoMap = null; + + /** + * Intensity of the ambient occlusion effect. Range is `[0,1]`, where `0` + * disables ambient occlusion. Where intensity is `1` and the AO map's + * red channel is also `1`, ambient light is fully occluded on a surface. + * + * @type {number} + * @default 1 + */ + this.aoMapIntensity = 1.0; + + /** + * Emissive (light) color of the material, essentially a solid color + * unaffected by other lighting. + * + * @type {Color} + * @default (0,0,0) + */ + this.emissive = new Color( 0x000000 ); + + /** + * Intensity of the emissive light. Modulates the emissive color. + * + * @type {number} + * @default 1 + */ + this.emissiveIntensity = 1.0; + + /** + * Set emissive (glow) map. The emissive map color is modulated by the + * emissive color and the emissive intensity. If you have an emissive map, + * be sure to set the emissive color to something other than black. + * + * @type {?Texture} + * @default null + */ + this.emissiveMap = null; + + /** + * The texture to create a bump map. The black and white values map to the + * perceived depth in relation to the lights. Bump doesn't actually affect + * the geometry of the object, only the lighting. If a normal map is defined + * this will be ignored. + * + * @type {?Texture} + * @default null + */ + this.bumpMap = null; + + /** + * How much the bump map affects the material. Typical range is `[0,1]`. + * + * @type {number} + * @default 1 + */ + this.bumpScale = 1; + + /** + * The texture to create a normal map. The RGB values affect the surface + * normal for each pixel fragment and change the way the color is lit. Normal + * maps do not change the actual shape of the surface, only the lighting. In + * case the material has a normal map authored using the left handed + * convention, the `y` component of `normalScale` should be negated to compensate + * for the different handedness. + * + * @type {?Texture} + * @default null + */ + this.normalMap = null; + + /** + * The type of normal map. + * + * @type {(TangentSpaceNormalMap|ObjectSpaceNormalMap)} + * @default TangentSpaceNormalMap + */ + this.normalMapType = TangentSpaceNormalMap; + + /** + * How much the normal map affects the material. Typical value range is `[0,1]`. + * + * @type {Vector2} + * @default (1,1) + */ + this.normalScale = new Vector2( 1, 1 ); + + /** + * The displacement map affects the position of the mesh's vertices. Unlike + * other maps which only affect the light and shade of the material the + * displaced vertices can cast shadows, block other objects, and otherwise + * act as real geometry. The displacement texture is an image where the value + * of each pixel (white being the highest) is mapped against, and + * repositions, the vertices of the mesh. + * + * @type {?Texture} + * @default null + */ + this.displacementMap = null; + + /** + * How much the displacement map affects the mesh (where black is no + * displacement, and white is maximum displacement). Without a displacement + * map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementScale = 1; + + /** + * The offset of the displacement map's values on the mesh's vertices. + * The bias is added to the scaled sample of the displacement map. + * Without a displacement map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementBias = 0; + + /** + * The specular map value affects both how much the specular surface + * highlight contributes and how much of the environment map affects the + * surface. + * + * @type {?Texture} + * @default null + */ + this.specularMap = null; + + /** + * The alpha map is a grayscale texture that controls the opacity across the + * surface (black: fully transparent; white: fully opaque). + * + * Only the color of the texture is used, ignoring the alpha channel if one + * exists. For RGB and RGBA textures, the renderer will use the green channel + * when sampling this texture due to the extra bit of precision provided for + * green in DXT-compressed and uncompressed RGB 565 formats. Luminance-only and + * luminance/alpha textures will also still work as expected. + * + * @type {?Texture} + * @default null + */ + this.alphaMap = null; + + /** + * The environment map. + * + * @type {?Texture} + * @default null + */ + this.envMap = null; + + /** + * The rotation of the environment map in radians. + * + * @type {Euler} + * @default (0,0,0) + */ + this.envMapRotation = new Euler(); + + /** + * How to combine the result of the surface's color with the environment map, if any. + * + * When set to `MixOperation`, the {@link MeshBasicMaterial#reflectivity} is used to + * blend between the two colors. + * + * @type {(MultiplyOperation|MixOperation|AddOperation)} + * @default MultiplyOperation + */ + this.combine = MultiplyOperation; + + /** + * How much the environment map affects the surface. + * The valid range is between `0` (no reflections) and `1` (full reflections). + * + * @type {number} + * @default 1 + */ + this.reflectivity = 1; + + /** + * The index of refraction (IOR) of air (approximately 1) divided by the + * index of refraction of the material. It is used with environment mapping + * modes {@link CubeRefractionMapping} and {@link EquirectangularRefractionMapping}. + * The refraction ratio should not exceed `1`. + * + * @type {number} + * @default 0.98 + */ + this.refractionRatio = 0.98; + + /** + * Renders the geometry as a wireframe. + * + * @type {boolean} + * @default false + */ + this.wireframe = false; + + /** + * Controls the thickness of the wireframe. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {number} + * @default 1 + */ + this.wireframeLinewidth = 1; + + /** + * Defines appearance of wireframe ends. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {('round'|'bevel'|'miter')} + * @default 'round' + */ + this.wireframeLinecap = 'round'; + + /** + * Defines appearance of wireframe joints. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {('round'|'bevel'|'miter')} + * @default 'round' + */ + this.wireframeLinejoin = 'round'; + + /** + * Whether the material is rendered with flat shading or not. + * + * @type {boolean} + * @default false + */ + this.flatShading = false; + + /** + * Whether the material is affected by fog or not. + * + * @type {boolean} + * @default true + */ + this.fog = true; + + this.setValues( parameters ); + + } + + copy( source ) { + + super.copy( source ); + + this.color.copy( source.color ); + this.specular.copy( source.specular ); + this.shininess = source.shininess; + + this.map = source.map; + + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + + this.emissive.copy( source.emissive ); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy( source.normalScale ); + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + this.specularMap = source.specularMap; + + this.alphaMap = source.alphaMap; + + this.envMap = source.envMap; + this.envMapRotation.copy( source.envMapRotation ); + this.combine = source.combine; + this.reflectivity = source.reflectivity; + this.refractionRatio = source.refractionRatio; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + + this.flatShading = source.flatShading; + + this.fog = source.fog; + + return this; + + } + +} + +/** + * A material implementing toon shading. + * + * @augments Material + */ +class MeshToonMaterial extends Material { + + /** + * Constructs a new mesh toon material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshToonMaterial = true; + + this.defines = { 'TOON': '' }; + + this.type = 'MeshToonMaterial'; + + /** + * Color of the material. + * + * @type {Color} + * @default (1,1,1) + */ + this.color = new Color( 0xffffff ); + + /** + * The color map. May optionally include an alpha channel, typically combined + * with {@link Material#transparent} or {@link Material#alphaTest}. The texture map + * color is modulated by the diffuse `color`. + * + * @type {?Texture} + * @default null + */ + this.map = null; + + /** + * Gradient map for toon shading. It's required to set + * {@link Texture#minFilter} and {@link Texture#magFilter} to {@linkNearestFilter} + * when using this type of texture. + * + * @type {?Texture} + * @default null + */ + this.gradientMap = null; + + /** + * The light map. Requires a second set of UVs. + * + * @type {?Texture} + * @default null + */ + this.lightMap = null; + + /** + * Intensity of the baked light. + * + * @type {number} + * @default 1 + */ + this.lightMapIntensity = 1.0; + + /** + * The red channel of this texture is used as the ambient occlusion map. + * Requires a second set of UVs. + * + * @type {?Texture} + * @default null + */ + this.aoMap = null; + + /** + * Intensity of the ambient occlusion effect. Range is `[0,1]`, where `0` + * disables ambient occlusion. Where intensity is `1` and the AO map's + * red channel is also `1`, ambient light is fully occluded on a surface. + * + * @type {number} + * @default 1 + */ + this.aoMapIntensity = 1.0; + + /** + * Emissive (light) color of the material, essentially a solid color + * unaffected by other lighting. + * + * @type {Color} + * @default (0,0,0) + */ + this.emissive = new Color( 0x000000 ); + + /** + * Intensity of the emissive light. Modulates the emissive color. + * + * @type {number} + * @default 1 + */ + this.emissiveIntensity = 1.0; + + /** + * Set emissive (glow) map. The emissive map color is modulated by the + * emissive color and the emissive intensity. If you have an emissive map, + * be sure to set the emissive color to something other than black. + * + * @type {?Texture} + * @default null + */ + this.emissiveMap = null; + + /** + * The texture to create a bump map. The black and white values map to the + * perceived depth in relation to the lights. Bump doesn't actually affect + * the geometry of the object, only the lighting. If a normal map is defined + * this will be ignored. + * + * @type {?Texture} + * @default null + */ + this.bumpMap = null; + + /** + * How much the bump map affects the material. Typical range is `[0,1]`. + * + * @type {number} + * @default 1 + */ + this.bumpScale = 1; + + /** + * The texture to create a normal map. The RGB values affect the surface + * normal for each pixel fragment and change the way the color is lit. Normal + * maps do not change the actual shape of the surface, only the lighting. In + * case the material has a normal map authored using the left handed + * convention, the `y` component of `normalScale` should be negated to compensate + * for the different handedness. + * + * @type {?Texture} + * @default null + */ + this.normalMap = null; + + /** + * The type of normal map. + * + * @type {(TangentSpaceNormalMap|ObjectSpaceNormalMap)} + * @default TangentSpaceNormalMap + */ + this.normalMapType = TangentSpaceNormalMap; + + /** + * How much the normal map affects the material. Typical value range is `[0,1]`. + * + * @type {Vector2} + * @default (1,1) + */ + this.normalScale = new Vector2( 1, 1 ); + + /** + * The displacement map affects the position of the mesh's vertices. Unlike + * other maps which only affect the light and shade of the material the + * displaced vertices can cast shadows, block other objects, and otherwise + * act as real geometry. The displacement texture is an image where the value + * of each pixel (white being the highest) is mapped against, and + * repositions, the vertices of the mesh. + * + * @type {?Texture} + * @default null + */ + this.displacementMap = null; + + /** + * How much the displacement map affects the mesh (where black is no + * displacement, and white is maximum displacement). Without a displacement + * map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementScale = 1; + + /** + * The offset of the displacement map's values on the mesh's vertices. + * The bias is added to the scaled sample of the displacement map. + * Without a displacement map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementBias = 0; + + /** + * The alpha map is a grayscale texture that controls the opacity across the + * surface (black: fully transparent; white: fully opaque). + * + * Only the color of the texture is used, ignoring the alpha channel if one + * exists. For RGB and RGBA textures, the renderer will use the green channel + * when sampling this texture due to the extra bit of precision provided for + * green in DXT-compressed and uncompressed RGB 565 formats. Luminance-only and + * luminance/alpha textures will also still work as expected. + * + * @type {?Texture} + * @default null + */ + this.alphaMap = null; + + /** + * Renders the geometry as a wireframe. + * + * @type {boolean} + * @default false + */ + this.wireframe = false; + + /** + * Controls the thickness of the wireframe. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {number} + * @default 1 + */ + this.wireframeLinewidth = 1; + + /** + * Defines appearance of wireframe ends. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {('round'|'bevel'|'miter')} + * @default 'round' + */ + this.wireframeLinecap = 'round'; + + /** + * Defines appearance of wireframe joints. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {('round'|'bevel'|'miter')} + * @default 'round' + */ + this.wireframeLinejoin = 'round'; + + /** + * Whether the material is affected by fog or not. + * + * @type {boolean} + * @default true + */ + this.fog = true; + + this.setValues( parameters ); + + } + + copy( source ) { + + super.copy( source ); + + this.color.copy( source.color ); + + this.map = source.map; + this.gradientMap = source.gradientMap; + + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + + this.emissive.copy( source.emissive ); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy( source.normalScale ); + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + this.alphaMap = source.alphaMap; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + + this.fog = source.fog; + + return this; + + } + +} + +/** + * A material that maps the normal vectors to RGB colors. + * + * @augments Material + */ +class MeshNormalMaterial extends Material { + + /** + * Constructs a new mesh normal material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshNormalMaterial = true; + + this.type = 'MeshNormalMaterial'; + + /** + * The texture to create a bump map. The black and white values map to the + * perceived depth in relation to the lights. Bump doesn't actually affect + * the geometry of the object, only the lighting. If a normal map is defined + * this will be ignored. + * + * @type {?Texture} + * @default null + */ + this.bumpMap = null; + + /** + * How much the bump map affects the material. Typical range is `[0,1]`. + * + * @type {number} + * @default 1 + */ + this.bumpScale = 1; + + /** + * The texture to create a normal map. The RGB values affect the surface + * normal for each pixel fragment and change the way the color is lit. Normal + * maps do not change the actual shape of the surface, only the lighting. In + * case the material has a normal map authored using the left handed + * convention, the `y` component of `normalScale` should be negated to compensate + * for the different handedness. + * + * @type {?Texture} + * @default null + */ + this.normalMap = null; + + /** + * The type of normal map. + * + * @type {(TangentSpaceNormalMap|ObjectSpaceNormalMap)} + * @default TangentSpaceNormalMap + */ + this.normalMapType = TangentSpaceNormalMap; + + /** + * How much the normal map affects the material. Typical value range is `[0,1]`. + * + * @type {Vector2} + * @default (1,1) + */ + this.normalScale = new Vector2( 1, 1 ); + + /** + * The displacement map affects the position of the mesh's vertices. Unlike + * other maps which only affect the light and shade of the material the + * displaced vertices can cast shadows, block other objects, and otherwise + * act as real geometry. The displacement texture is an image where the value + * of each pixel (white being the highest) is mapped against, and + * repositions, the vertices of the mesh. + * + * @type {?Texture} + * @default null + */ + this.displacementMap = null; + + /** + * How much the displacement map affects the mesh (where black is no + * displacement, and white is maximum displacement). Without a displacement + * map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementScale = 1; + + /** + * The offset of the displacement map's values on the mesh's vertices. + * The bias is added to the scaled sample of the displacement map. + * Without a displacement map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementBias = 0; + + /** + * Renders the geometry as a wireframe. + * + * @type {boolean} + * @default false + */ + this.wireframe = false; + + /** + * Controls the thickness of the wireframe. + * + * WebGL and WebGPU ignore this property and always render + * 1 pixel wide lines. + * + * @type {number} + * @default 1 + */ + this.wireframeLinewidth = 1; + + /** + * Whether the material is rendered with flat shading or not. + * + * @type {boolean} + * @default false + */ + this.flatShading = false; + + this.setValues( parameters ); + + } + + copy( source ) { + + super.copy( source ); + + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy( source.normalScale ); + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + + this.flatShading = source.flatShading; + + return this; + + } + +} + +/** + * A material for non-shiny surfaces, without specular highlights. + * + * The material uses a non-physically based [Lambertian]{@link https://en.wikipedia.org/wiki/Lambertian_reflectance} + * model for calculating reflectance. This can simulate some surfaces (such + * as untreated wood or stone) well, but cannot simulate shiny surfaces with + * specular highlights (such as varnished wood). `MeshLambertMaterial` uses per-fragment + * shading. + * + * Due to the simplicity of the reflectance and illumination models, + * performance will be greater when using this material over the + * {@link MeshPhongMaterial}, {@link MeshStandardMaterial} or + * {@link MeshPhysicalMaterial}, at the cost of some graphical accuracy. + * + * @augments Material + */ +class MeshLambertMaterial extends Material { + + /** + * Constructs a new mesh lambert material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshLambertMaterial = true; + + this.type = 'MeshLambertMaterial'; + + /** + * Color of the material. + * + * @type {Color} + * @default (1,1,1) + */ + this.color = new Color( 0xffffff ); // diffuse + + /** + * The color map. May optionally include an alpha channel, typically combined + * with {@link Material#transparent} or {@link Material#alphaTest}. The texture map + * color is modulated by the diffuse `color`. + * + * @type {?Texture} + * @default null + */ + this.map = null; + + /** + * The light map. Requires a second set of UVs. + * + * @type {?Texture} + * @default null + */ + this.lightMap = null; + + /** + * Intensity of the baked light. + * + * @type {number} + * @default 1 + */ + this.lightMapIntensity = 1.0; + + /** + * The red channel of this texture is used as the ambient occlusion map. + * Requires a second set of UVs. + * + * @type {?Texture} + * @default null + */ + this.aoMap = null; + + /** + * Intensity of the ambient occlusion effect. Range is `[0,1]`, where `0` + * disables ambient occlusion. Where intensity is `1` and the AO map's + * red channel is also `1`, ambient light is fully occluded on a surface. + * + * @type {number} + * @default 1 + */ + this.aoMapIntensity = 1.0; + + /** + * Emissive (light) color of the material, essentially a solid color + * unaffected by other lighting. + * + * @type {Color} + * @default (0,0,0) + */ + this.emissive = new Color( 0x000000 ); + + /** + * Intensity of the emissive light. Modulates the emissive color. + * + * @type {number} + * @default 1 + */ + this.emissiveIntensity = 1.0; + + /** + * Set emissive (glow) map. The emissive map color is modulated by the + * emissive color and the emissive intensity. If you have an emissive map, + * be sure to set the emissive color to something other than black. + * + * @type {?Texture} + * @default null + */ + this.emissiveMap = null; + + /** + * The texture to create a bump map. The black and white values map to the + * perceived depth in relation to the lights. Bump doesn't actually affect + * the geometry of the object, only the lighting. If a normal map is defined + * this will be ignored. + * + * @type {?Texture} + * @default null + */ + this.bumpMap = null; + + /** + * How much the bump map affects the material. Typical range is `[0,1]`. + * + * @type {number} + * @default 1 + */ + this.bumpScale = 1; + + /** + * The texture to create a normal map. The RGB values affect the surface + * normal for each pixel fragment and change the way the color is lit. Normal + * maps do not change the actual shape of the surface, only the lighting. In + * case the material has a normal map authored using the left handed + * convention, the `y` component of `normalScale` should be negated to compensate + * for the different handedness. + * + * @type {?Texture} + * @default null + */ + this.normalMap = null; + + /** + * The type of normal map. + * + * @type {(TangentSpaceNormalMap|ObjectSpaceNormalMap)} + * @default TangentSpaceNormalMap + */ + this.normalMapType = TangentSpaceNormalMap; + + /** + * How much the normal map affects the material. Typical value range is `[0,1]`. + * + * @type {Vector2} + * @default (1,1) + */ + this.normalScale = new Vector2( 1, 1 ); + + /** + * The displacement map affects the position of the mesh's vertices. Unlike + * other maps which only affect the light and shade of the material the + * displaced vertices can cast shadows, block other objects, and otherwise + * act as real geometry. The displacement texture is an image where the value + * of each pixel (white being the highest) is mapped against, and + * repositions, the vertices of the mesh. + * + * @type {?Texture} + * @default null + */ + this.displacementMap = null; + + /** + * How much the displacement map affects the mesh (where black is no + * displacement, and white is maximum displacement). Without a displacement + * map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementScale = 1; + + /** + * The offset of the displacement map's values on the mesh's vertices. + * The bias is added to the scaled sample of the displacement map. + * Without a displacement map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementBias = 0; + + /** + * Specular map used by the material. + * + * @type {?Texture} + * @default null + */ + this.specularMap = null; + + /** + * The alpha map is a grayscale texture that controls the opacity across the + * surface (black: fully transparent; white: fully opaque). + * + * Only the color of the texture is used, ignoring the alpha channel if one + * exists. For RGB and RGBA textures, the renderer will use the green channel + * when sampling this texture due to the extra bit of precision provided for + * green in DXT-compressed and uncompressed RGB 565 formats. Luminance-only and + * luminance/alpha textures will also still work as expected. + * + * @type {?Texture} + * @default null + */ + this.alphaMap = null; + + /** + * The environment map. + * + * @type {?Texture} + * @default null + */ + this.envMap = null; + + /** + * The rotation of the environment map in radians. + * + * @type {Euler} + * @default (0,0,0) + */ + this.envMapRotation = new Euler(); + + /** + * How to combine the result of the surface's color with the environment map, if any. + * + * When set to `MixOperation`, the {@link MeshBasicMaterial#reflectivity} is used to + * blend between the two colors. + * + * @type {(MultiplyOperation|MixOperation|AddOperation)} + * @default MultiplyOperation + */ + this.combine = MultiplyOperation; + + /** + * How much the environment map affects the surface. + * The valid range is between `0` (no reflections) and `1` (full reflections). + * + * @type {number} + * @default 1 + */ + this.reflectivity = 1; + + /** + * The index of refraction (IOR) of air (approximately 1) divided by the + * index of refraction of the material. It is used with environment mapping + * modes {@link CubeRefractionMapping} and {@link EquirectangularRefractionMapping}. + * The refraction ratio should not exceed `1`. + * + * @type {number} + * @default 0.98 + */ + this.refractionRatio = 0.98; + + /** + * Renders the geometry as a wireframe. + * + * @type {boolean} + * @default false + */ + this.wireframe = false; + + /** + * Controls the thickness of the wireframe. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {number} + * @default 1 + */ + this.wireframeLinewidth = 1; + + /** + * Defines appearance of wireframe ends. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {('round'|'bevel'|'miter')} + * @default 'round' + */ + this.wireframeLinecap = 'round'; + + /** + * Defines appearance of wireframe joints. + * + * Can only be used with {@link SVGRenderer}. + * + * @type {('round'|'bevel'|'miter')} + * @default 'round' + */ + this.wireframeLinejoin = 'round'; + + /** + * Whether the material is rendered with flat shading or not. + * + * @type {boolean} + * @default false + */ + this.flatShading = false; + + /** + * Whether the material is affected by fog or not. + * + * @type {boolean} + * @default true + */ + this.fog = true; + + this.setValues( parameters ); + + } + + copy( source ) { + + super.copy( source ); + + this.color.copy( source.color ); + + this.map = source.map; + + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + + this.emissive.copy( source.emissive ); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy( source.normalScale ); + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + this.specularMap = source.specularMap; + + this.alphaMap = source.alphaMap; + + this.envMap = source.envMap; + this.envMapRotation.copy( source.envMapRotation ); + this.combine = source.combine; + this.reflectivity = source.reflectivity; + this.refractionRatio = source.refractionRatio; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + + this.flatShading = source.flatShading; + + this.fog = source.fog; + + return this; + + } + +} + +/** + * A material for drawing geometry by depth. Depth is based off of the camera + * near and far plane. White is nearest, black is farthest. + * + * @augments Material + */ +class MeshDepthMaterial extends Material { + + /** + * Constructs a new mesh depth material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshDepthMaterial = true; + + this.type = 'MeshDepthMaterial'; + + /** + * Type for depth packing. + * + * @type {(BasicDepthPacking|RGBADepthPacking|RGBDepthPacking|RGDepthPacking)} + * @default BasicDepthPacking + */ + this.depthPacking = BasicDepthPacking; + + /** + * The color map. May optionally include an alpha channel, typically combined + * with {@link Material#transparent} or {@link Material#alphaTest}. + * + * @type {?Texture} + * @default null + */ + this.map = null; + + /** + * The alpha map is a grayscale texture that controls the opacity across the + * surface (black: fully transparent; white: fully opaque). + * + * Only the color of the texture is used, ignoring the alpha channel if one + * exists. For RGB and RGBA textures, the renderer will use the green channel + * when sampling this texture due to the extra bit of precision provided for + * green in DXT-compressed and uncompressed RGB 565 formats. Luminance-only and + * luminance/alpha textures will also still work as expected. + * + * @type {?Texture} + * @default null + */ + this.alphaMap = null; + + /** + * The displacement map affects the position of the mesh's vertices. Unlike + * other maps which only affect the light and shade of the material the + * displaced vertices can cast shadows, block other objects, and otherwise + * act as real geometry. The displacement texture is an image where the value + * of each pixel (white being the highest) is mapped against, and + * repositions, the vertices of the mesh. + * + * @type {?Texture} + * @default null + */ + this.displacementMap = null; + + /** + * How much the displacement map affects the mesh (where black is no + * displacement, and white is maximum displacement). Without a displacement + * map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementScale = 1; + + /** + * The offset of the displacement map's values on the mesh's vertices. + * The bias is added to the scaled sample of the displacement map. + * Without a displacement map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementBias = 0; + + /** + * Renders the geometry as a wireframe. + * + * @type {boolean} + * @default false + */ + this.wireframe = false; + + /** + * Controls the thickness of the wireframe. + * + * WebGL and WebGPU ignore this property and always render + * 1 pixel wide lines. + * + * @type {number} + * @default 1 + */ + this.wireframeLinewidth = 1; + + this.setValues( parameters ); + + } + + copy( source ) { + + super.copy( source ); + + this.depthPacking = source.depthPacking; + + this.map = source.map; + + this.alphaMap = source.alphaMap; + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + + return this; + + } + +} + +/** + * A material used internally for implementing shadow mapping with + * point lights. + * + * Can also be used to customize the shadow casting of an object by assigning + * an instance of `MeshDistanceMaterial` to {@link Object3D#customDistanceMaterial}. + * The following examples demonstrates this approach in order to ensure + * transparent parts of objects do no cast shadows. + * + * @augments Material + */ +class MeshDistanceMaterial extends Material { + + /** + * Constructs a new mesh distance material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshDistanceMaterial = true; + + this.type = 'MeshDistanceMaterial'; + + /** + * The color map. May optionally include an alpha channel, typically combined + * with {@link Material#transparent} or {@link Material#alphaTest}. + * + * @type {?Texture} + * @default null + */ + this.map = null; + + /** + * The alpha map is a grayscale texture that controls the opacity across the + * surface (black: fully transparent; white: fully opaque). + * + * Only the color of the texture is used, ignoring the alpha channel if one + * exists. For RGB and RGBA textures, the renderer will use the green channel + * when sampling this texture due to the extra bit of precision provided for + * green in DXT-compressed and uncompressed RGB 565 formats. Luminance-only and + * luminance/alpha textures will also still work as expected. + * + * @type {?Texture} + * @default null + */ + this.alphaMap = null; + + /** + * The displacement map affects the position of the mesh's vertices. Unlike + * other maps which only affect the light and shade of the material the + * displaced vertices can cast shadows, block other objects, and otherwise + * act as real geometry. The displacement texture is an image where the value + * of each pixel (white being the highest) is mapped against, and + * repositions, the vertices of the mesh. + * + * @type {?Texture} + * @default null + */ + this.displacementMap = null; + + /** + * How much the displacement map affects the mesh (where black is no + * displacement, and white is maximum displacement). Without a displacement + * map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementScale = 1; + + /** + * The offset of the displacement map's values on the mesh's vertices. + * The bias is added to the scaled sample of the displacement map. + * Without a displacement map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementBias = 0; + + this.setValues( parameters ); + + } + + copy( source ) { + + super.copy( source ); + + this.map = source.map; + + this.alphaMap = source.alphaMap; + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + return this; + + } + +} + +/** + * This material is defined by a MatCap (or Lit Sphere) texture, which encodes the + * material color and shading. + * + * `MeshMatcapMaterial` does not respond to lights since the matcap image file encodes + * baked lighting. It will cast a shadow onto an object that receives shadows + * (and shadow clipping works), but it will not self-shadow or receive + * shadows. + * + * @augments Material + */ +class MeshMatcapMaterial extends Material { + + /** + * Constructs a new mesh matcap material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshMatcapMaterial = true; + + this.defines = { 'MATCAP': '' }; + + this.type = 'MeshMatcapMaterial'; + + /** + * Color of the material. + * + * @type {Color} + * @default (1,1,1) + */ + this.color = new Color( 0xffffff ); // diffuse + + /** + * The matcap map. + * + * @type {?Texture} + * @default null + */ + this.matcap = null; + + /** + * The color map. May optionally include an alpha channel, typically combined + * with {@link Material#transparent} or {@link Material#alphaTest}. The texture map + * color is modulated by the diffuse `color`. + * + * @type {?Texture} + * @default null + */ + this.map = null; + + /** + * The texture to create a bump map. The black and white values map to the + * perceived depth in relation to the lights. Bump doesn't actually affect + * the geometry of the object, only the lighting. If a normal map is defined + * this will be ignored. + * + * @type {?Texture} + * @default null + */ + this.bumpMap = null; + + /** + * How much the bump map affects the material. Typical range is `[0,1]`. + * + * @type {number} + * @default 1 + */ + this.bumpScale = 1; + + /** + * The texture to create a normal map. The RGB values affect the surface + * normal for each pixel fragment and change the way the color is lit. Normal + * maps do not change the actual shape of the surface, only the lighting. In + * case the material has a normal map authored using the left handed + * convention, the `y` component of `normalScale` should be negated to compensate + * for the different handedness. + * + * @type {?Texture} + * @default null + */ + this.normalMap = null; + + /** + * The type of normal map. + * + * @type {(TangentSpaceNormalMap|ObjectSpaceNormalMap)} + * @default TangentSpaceNormalMap + */ + this.normalMapType = TangentSpaceNormalMap; + + /** + * How much the normal map affects the material. Typical value range is `[0,1]`. + * + * @type {Vector2} + * @default (1,1) + */ + this.normalScale = new Vector2( 1, 1 ); + + /** + * The displacement map affects the position of the mesh's vertices. Unlike + * other maps which only affect the light and shade of the material the + * displaced vertices can cast shadows, block other objects, and otherwise + * act as real geometry. The displacement texture is an image where the value + * of each pixel (white being the highest) is mapped against, and + * repositions, the vertices of the mesh. + * + * @type {?Texture} + * @default null + */ + this.displacementMap = null; + + /** + * How much the displacement map affects the mesh (where black is no + * displacement, and white is maximum displacement). Without a displacement + * map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementScale = 1; + + /** + * The offset of the displacement map's values on the mesh's vertices. + * The bias is added to the scaled sample of the displacement map. + * Without a displacement map set, this value is not applied. + * + * @type {number} + * @default 0 + */ + this.displacementBias = 0; + + /** + * The alpha map is a grayscale texture that controls the opacity across the + * surface (black: fully transparent; white: fully opaque). + * + * Only the color of the texture is used, ignoring the alpha channel if one + * exists. For RGB and RGBA textures, the renderer will use the green channel + * when sampling this texture due to the extra bit of precision provided for + * green in DXT-compressed and uncompressed RGB 565 formats. Luminance-only and + * luminance/alpha textures will also still work as expected. + * + * @type {?Texture} + * @default null + */ + this.alphaMap = null; + + /** + * Whether the material is rendered with flat shading or not. + * + * @type {boolean} + * @default false + */ + this.flatShading = false; + + /** + * Whether the material is affected by fog or not. + * + * @type {boolean} + * @default true + */ + this.fog = true; + + this.setValues( parameters ); + + } + + + copy( source ) { + + super.copy( source ); + + this.defines = { 'MATCAP': '' }; + + this.color.copy( source.color ); + + this.matcap = source.matcap; + + this.map = source.map; + + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy( source.normalScale ); + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + this.alphaMap = source.alphaMap; + + this.flatShading = source.flatShading; + + this.fog = source.fog; + + return this; + + } + +} + +/** + * A material for rendering line primitives. + * + * Materials define the appearance of renderable 3D objects. + * + * ```js + * const material = new THREE.LineDashedMaterial( { + * color: 0xffffff, + * scale: 1, + * dashSize: 3, + * gapSize: 1, + * } ); + * ``` + * + * @augments LineBasicMaterial + */ +class LineDashedMaterial extends LineBasicMaterial { + + /** + * Constructs a new line dashed material. + * + * @param {Object} [parameters] - An object with one or more properties + * defining the material's appearance. Any property of the material + * (including any property from inherited materials) can be passed + * in here. Color values can be passed any type of value accepted + * by {@link Color#set}. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLineDashedMaterial = true; + this.type = 'LineDashedMaterial'; + + /** + * The scale of the dashed part of a line. + * + * @type {number} + * @default 1 + */ + this.scale = 1; + + /** + * The size of the dash. This is both the gap with the stroke. + * + * @type {number} + * @default 3 + */ + this.dashSize = 3; + + /** + * The size of the gap. + * + * @type {number} + * @default 1 + */ + this.gapSize = 1; + + this.setValues( parameters ); + + } + + copy( source ) { + + super.copy( source ); + + this.scale = source.scale; + this.dashSize = source.dashSize; + this.gapSize = source.gapSize; + + return this; + + } + +} + +/** + * Converts an array to a specific type. + * + * @param {TypedArray|Array} array - The array to convert. + * @param {TypedArray.constructor} type - The constructor of a typed array that defines the new type. + * @return {TypedArray} The converted array. + */ +function convertArray( array, type ) { + + if ( ! array || array.constructor === type ) return array; + + if ( typeof type.BYTES_PER_ELEMENT === 'number' ) { + + return new type( array ); // create typed array + + } + + return Array.prototype.slice.call( array ); // create Array + +} + +/** + * Returns `true` if the given object is a typed array. + * + * @param {any} object - The object to check. + * @return {boolean} Whether the given object is a typed array. + */ +function isTypedArray( object ) { + + return ArrayBuffer.isView( object ) && ! ( object instanceof DataView ); + +} + +/** + * Returns an array by which times and values can be sorted. + * + * @param {Array} times - The keyframe time values. + * @return {Array} The array. + */ +function getKeyframeOrder( times ) { + + function compareTime( i, j ) { + + return times[ i ] - times[ j ]; + + } + + const n = times.length; + const result = new Array( n ); + for ( let i = 0; i !== n; ++ i ) result[ i ] = i; + + result.sort( compareTime ); + + return result; + +} + +/** + * Sorts the given array by the previously computed order via `getKeyframeOrder()`. + * + * @param {Array} values - The values to sort. + * @param {number} stride - The stride. + * @param {Array} order - The sort order. + * @return {Array} The sorted values. + */ +function sortedArray( values, stride, order ) { + + const nValues = values.length; + const result = new values.constructor( nValues ); + + for ( let i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) { + + const srcOffset = order[ i ] * stride; + + for ( let j = 0; j !== stride; ++ j ) { + + result[ dstOffset ++ ] = values[ srcOffset + j ]; + + } + + } + + return result; + +} + +/** + * Used for parsing AOS keyframe formats. + * + * @param {Array} jsonKeys - A list of JSON keyframes. + * @param {Array} times - This array will be filled with keyframe times by this function. + * @param {Array} values - This array will be filled with keyframe values by this function. + * @param {string} valuePropertyName - The name of the property to use. + */ +function flattenJSON( jsonKeys, times, values, valuePropertyName ) { + + let i = 1, key = jsonKeys[ 0 ]; + + while ( key !== undefined && key[ valuePropertyName ] === undefined ) { + + key = jsonKeys[ i ++ ]; + + } + + if ( key === undefined ) return; // no data + + let value = key[ valuePropertyName ]; + if ( value === undefined ) return; // no data + + if ( Array.isArray( value ) ) { + + do { + + value = key[ valuePropertyName ]; + + if ( value !== undefined ) { + + times.push( key.time ); + values.push( ...value ); // push all elements + + } + + key = jsonKeys[ i ++ ]; + + } while ( key !== undefined ); + + } else if ( value.toArray !== undefined ) { + + // ...assume THREE.Math-ish + + do { + + value = key[ valuePropertyName ]; + + if ( value !== undefined ) { + + times.push( key.time ); + value.toArray( values, values.length ); + + } + + key = jsonKeys[ i ++ ]; + + } while ( key !== undefined ); + + } else { + + // otherwise push as-is + + do { + + value = key[ valuePropertyName ]; + + if ( value !== undefined ) { + + times.push( key.time ); + values.push( value ); + + } + + key = jsonKeys[ i ++ ]; + + } while ( key !== undefined ); + + } + +} + +/** + * Creates a new clip, containing only the segment of the original clip between the given frames. + * + * @param {AnimationClip} sourceClip - The values to sort. + * @param {string} name - The name of the clip. + * @param {number} startFrame - The start frame. + * @param {number} endFrame - The end frame. + * @param {number} [fps=30] - The FPS. + * @return {AnimationClip} The new sub clip. + */ +function subclip( sourceClip, name, startFrame, endFrame, fps = 30 ) { + + const clip = sourceClip.clone(); + + clip.name = name; + + const tracks = []; + + for ( let i = 0; i < clip.tracks.length; ++ i ) { + + const track = clip.tracks[ i ]; + const valueSize = track.getValueSize(); + + const times = []; + const values = []; + + for ( let j = 0; j < track.times.length; ++ j ) { + + const frame = track.times[ j ] * fps; + + if ( frame < startFrame || frame >= endFrame ) continue; + + times.push( track.times[ j ] ); + + for ( let k = 0; k < valueSize; ++ k ) { + + values.push( track.values[ j * valueSize + k ] ); + + } + + } + + if ( times.length === 0 ) continue; + + track.times = convertArray( times, track.times.constructor ); + track.values = convertArray( values, track.values.constructor ); + + tracks.push( track ); + + } + + clip.tracks = tracks; + + // find minimum .times value across all tracks in the trimmed clip + + let minStartTime = Infinity; + + for ( let i = 0; i < clip.tracks.length; ++ i ) { + + if ( minStartTime > clip.tracks[ i ].times[ 0 ] ) { + + minStartTime = clip.tracks[ i ].times[ 0 ]; + + } + + } + + // shift all tracks such that clip begins at t=0 + + for ( let i = 0; i < clip.tracks.length; ++ i ) { + + clip.tracks[ i ].shift( -1 * minStartTime ); + + } + + clip.resetDuration(); + + return clip; + +} + +/** + * Converts the keyframes of the given animation clip to an additive format. + * + * @param {AnimationClip} targetClip - The clip to make additive. + * @param {number} [referenceFrame=0] - The reference frame. + * @param {AnimationClip} [referenceClip=targetClip] - The reference clip. + * @param {number} [fps=30] - The FPS. + * @return {AnimationClip} The updated clip which is now additive. + */ +function makeClipAdditive( targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30 ) { + + if ( fps <= 0 ) fps = 30; + + const numTracks = referenceClip.tracks.length; + const referenceTime = referenceFrame / fps; + + // Make each track's values relative to the values at the reference frame + for ( let i = 0; i < numTracks; ++ i ) { + + const referenceTrack = referenceClip.tracks[ i ]; + const referenceTrackType = referenceTrack.ValueTypeName; + + // Skip this track if it's non-numeric + if ( referenceTrackType === 'bool' || referenceTrackType === 'string' ) continue; + + // Find the track in the target clip whose name and type matches the reference track + const targetTrack = targetClip.tracks.find( function ( track ) { + + return track.name === referenceTrack.name + && track.ValueTypeName === referenceTrackType; + + } ); + + if ( targetTrack === undefined ) continue; + + let referenceOffset = 0; + const referenceValueSize = referenceTrack.getValueSize(); + + if ( referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) { + + referenceOffset = referenceValueSize / 3; + + } + + let targetOffset = 0; + const targetValueSize = targetTrack.getValueSize(); + + if ( targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) { + + targetOffset = targetValueSize / 3; + + } + + const lastIndex = referenceTrack.times.length - 1; + let referenceValue; + + // Find the value to subtract out of the track + if ( referenceTime <= referenceTrack.times[ 0 ] ) { + + // Reference frame is earlier than the first keyframe, so just use the first keyframe + const startIndex = referenceOffset; + const endIndex = referenceValueSize - referenceOffset; + referenceValue = referenceTrack.values.slice( startIndex, endIndex ); + + } else if ( referenceTime >= referenceTrack.times[ lastIndex ] ) { + + // Reference frame is after the last keyframe, so just use the last keyframe + const startIndex = lastIndex * referenceValueSize + referenceOffset; + const endIndex = startIndex + referenceValueSize - referenceOffset; + referenceValue = referenceTrack.values.slice( startIndex, endIndex ); + + } else { + + // Interpolate to the reference value + const interpolant = referenceTrack.createInterpolant(); + const startIndex = referenceOffset; + const endIndex = referenceValueSize - referenceOffset; + interpolant.evaluate( referenceTime ); + referenceValue = interpolant.resultBuffer.slice( startIndex, endIndex ); + + } + + // Conjugate the quaternion + if ( referenceTrackType === 'quaternion' ) { + + const referenceQuat = new Quaternion().fromArray( referenceValue ).normalize().conjugate(); + referenceQuat.toArray( referenceValue ); + + } + + // Subtract the reference value from all of the track values + + const numTimes = targetTrack.times.length; + for ( let j = 0; j < numTimes; ++ j ) { + + const valueStart = j * targetValueSize + targetOffset; + + if ( referenceTrackType === 'quaternion' ) { + + // Multiply the conjugate for quaternion track types + Quaternion.multiplyQuaternionsFlat( + targetTrack.values, + valueStart, + referenceValue, + 0, + targetTrack.values, + valueStart + ); + + } else { + + const valueEnd = targetValueSize - targetOffset * 2; + + // Subtract each value for all other numeric track types + for ( let k = 0; k < valueEnd; ++ k ) { + + targetTrack.values[ valueStart + k ] -= referenceValue[ k ]; + + } + + } + + } + + } + + targetClip.blendMode = AdditiveAnimationBlendMode; + + return targetClip; + +} + +/** + * A class with various methods to assist with animations. + * + * @hideconstructor + */ +class AnimationUtils { + + /** + * Converts an array to a specific type + * + * @static + * @param {TypedArray|Array} array - The array to convert. + * @param {TypedArray.constructor} type - The constructor of a type array. + * @return {TypedArray} The converted array + */ + static convertArray( array, type ) { + + return convertArray( array, type ); + + } + + /** + * Returns `true` if the given object is a typed array. + * + * @static + * @param {any} object - The object to check. + * @return {boolean} Whether the given object is a typed array. + */ + static isTypedArray( object ) { + + return isTypedArray( object ); + + } + + /** + * Returns an array by which times and values can be sorted. + * + * @static + * @param {Array} times - The keyframe time values. + * @return {Array} The array. + */ + static getKeyframeOrder( times ) { + + return getKeyframeOrder( times ); + + } + + /** + * Sorts the given array by the previously computed order via `getKeyframeOrder()`. + * + * @static + * @param {Array} values - The values to sort. + * @param {number} stride - The stride. + * @param {Array} order - The sort order. + * @return {Array} The sorted values. + */ + static sortedArray( values, stride, order ) { + + return sortedArray( values, stride, order ); + + } + + /** + * Used for parsing AOS keyframe formats. + * + * @static + * @param {Array} jsonKeys - A list of JSON keyframes. + * @param {Array} times - This array will be filled with keyframe times by this method. + * @param {Array} values - This array will be filled with keyframe values by this method. + * @param {string} valuePropertyName - The name of the property to use. + */ + static flattenJSON( jsonKeys, times, values, valuePropertyName ) { + + flattenJSON( jsonKeys, times, values, valuePropertyName ); + + } + + /** + * Creates a new clip, containing only the segment of the original clip between the given frames. + * + * @static + * @param {AnimationClip} sourceClip - The values to sort. + * @param {string} name - The name of the clip. + * @param {number} startFrame - The start frame. + * @param {number} endFrame - The end frame. + * @param {number} [fps=30] - The FPS. + * @return {AnimationClip} The new sub clip. + */ + static subclip( sourceClip, name, startFrame, endFrame, fps = 30 ) { + + return subclip( sourceClip, name, startFrame, endFrame, fps ); + + } + + /** + * Converts the keyframes of the given animation clip to an additive format. + * + * @static + * @param {AnimationClip} targetClip - The clip to make additive. + * @param {number} [referenceFrame=0] - The reference frame. + * @param {AnimationClip} [referenceClip=targetClip] - The reference clip. + * @param {number} [fps=30] - The FPS. + * @return {AnimationClip} The updated clip which is now additive. + */ + static makeClipAdditive( targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30 ) { + + return makeClipAdditive( targetClip, referenceFrame, referenceClip, fps ); + + } + +} + +/** + * Abstract base class of interpolants over parametric samples. + * + * The parameter domain is one dimensional, typically the time or a path + * along a curve defined by the data. + * + * The sample values can have any dimensionality and derived classes may + * apply special interpretations to the data. + * + * This class provides the interval seek in a Template Method, deferring + * the actual interpolation to derived classes. + * + * Time complexity is O(1) for linear access crossing at most two points + * and O(log N) for random access, where N is the number of positions. + * + * References: {@link http://www.oodesign.com/template-method-pattern.html} + * + * @abstract + */ +class Interpolant { + + /** + * Constructs a new interpolant. + * + * @param {TypedArray} parameterPositions - The parameter positions hold the interpolation factors. + * @param {TypedArray} sampleValues - The sample values. + * @param {number} sampleSize - The sample size + * @param {TypedArray} [resultBuffer] - The result buffer. + */ + constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { + + /** + * The parameter positions. + * + * @type {TypedArray} + */ + this.parameterPositions = parameterPositions; + + /** + * A cache index. + * + * @private + * @type {number} + * @default 0 + */ + this._cachedIndex = 0; + + /** + * The result buffer. + * + * @type {TypedArray} + */ + this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor( sampleSize ); + + /** + * The sample values. + * + * @type {TypedArray} + */ + this.sampleValues = sampleValues; + + /** + * The value size. + * + * @type {TypedArray} + */ + this.valueSize = sampleSize; + + /** + * The interpolation settings. + * + * @type {?Object} + * @default null + */ + this.settings = null; + + /** + * The default settings object. + * + * @type {Object} + */ + this.DefaultSettings_ = {}; + + } + + /** + * Evaluate the interpolant at position `t`. + * + * @param {number} t - The interpolation factor. + * @return {TypedArray} The result buffer. + */ + evaluate( t ) { + + const pp = this.parameterPositions; + let i1 = this._cachedIndex, + t1 = pp[ i1 ], + t0 = pp[ i1 - 1 ]; + + validate_interval: { + + seek: { + + let right; + + linear_scan: { + + //- See http://jsperf.com/comparison-to-undefined/3 + //- slower code: + //- + //- if ( t >= t1 || t1 === undefined ) { + forward_scan: if ( ! ( t < t1 ) ) { + + for ( let giveUpAt = i1 + 2; ; ) { + + if ( t1 === undefined ) { + + if ( t < t0 ) break forward_scan; + + // after end + + i1 = pp.length; + this._cachedIndex = i1; + return this.copySampleValue_( i1 - 1 ); + + } + + if ( i1 === giveUpAt ) break; // this loop + + t0 = t1; + t1 = pp[ ++ i1 ]; + + if ( t < t1 ) { + + // we have arrived at the sought interval + break seek; + + } + + } + + // prepare binary search on the right side of the index + right = pp.length; + break linear_scan; + + } + + //- slower code: + //- if ( t < t0 || t0 === undefined ) { + if ( ! ( t >= t0 ) ) { + + // looping? + + const t1global = pp[ 1 ]; + + if ( t < t1global ) { + + i1 = 2; // + 1, using the scan for the details + t0 = t1global; + + } + + // linear reverse scan + + for ( let giveUpAt = i1 - 2; ; ) { + + if ( t0 === undefined ) { + + // before start + + this._cachedIndex = 0; + return this.copySampleValue_( 0 ); + + } + + if ( i1 === giveUpAt ) break; // this loop + + t1 = t0; + t0 = pp[ -- i1 - 1 ]; + + if ( t >= t0 ) { + + // we have arrived at the sought interval + break seek; + + } + + } + + // prepare binary search on the left side of the index + right = i1; + i1 = 0; + break linear_scan; + + } + + // the interval is valid + + break validate_interval; + + } // linear scan + + // binary search + + while ( i1 < right ) { + + const mid = ( i1 + right ) >>> 1; + + if ( t < pp[ mid ] ) { + + right = mid; + + } else { + + i1 = mid + 1; + + } + + } + + t1 = pp[ i1 ]; + t0 = pp[ i1 - 1 ]; + + // check boundary cases, again + + if ( t0 === undefined ) { + + this._cachedIndex = 0; + return this.copySampleValue_( 0 ); + + } + + if ( t1 === undefined ) { + + i1 = pp.length; + this._cachedIndex = i1; + return this.copySampleValue_( i1 - 1 ); + + } + + } // seek + + this._cachedIndex = i1; + + this.intervalChanged_( i1, t0, t1 ); + + } // validate_interval + + return this.interpolate_( i1, t0, t, t1 ); + + } + + /** + * Returns the interpolation settings. + * + * @return {Object} The interpolation settings. + */ + getSettings_() { + + return this.settings || this.DefaultSettings_; + + } + + /** + * Copies a sample value to the result buffer. + * + * @param {number} index - An index into the sample value buffer. + * @return {TypedArray} The result buffer. + */ + copySampleValue_( index ) { + + // copies a sample value to the result buffer + + const result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + offset = index * stride; + + for ( let i = 0; i !== stride; ++ i ) { + + result[ i ] = values[ offset + i ]; + + } + + return result; + + } + + /** + * Copies a sample value to the result buffer. + * + * @abstract + * @param {number} i1 - An index into the sample value buffer. + * @param {number} t0 - The previous interpolation factor. + * @param {number} t - The current interpolation factor. + * @param {number} t1 - The next interpolation factor. + * @return {TypedArray} The result buffer. + */ + interpolate_( /* i1, t0, t, t1 */ ) { + + throw new Error( 'call to abstract method' ); + // implementations shall return this.resultBuffer + + } + + /** + * Optional method that is executed when the interval has changed. + * + * @param {number} i1 - An index into the sample value buffer. + * @param {number} t0 - The previous interpolation factor. + * @param {number} t - The current interpolation factor. + */ + intervalChanged_( /* i1, t0, t1 */ ) { + + // empty + + } + +} + +/** + * Fast and simple cubic spline interpolant. + * + * It was derived from a Hermitian construction setting the first derivative + * at each sample position to the linear slope between neighboring positions + * over their parameter interval. + * + * @augments Interpolant + */ +class CubicInterpolant extends Interpolant { + + /** + * Constructs a new cubic interpolant. + * + * @param {TypedArray} parameterPositions - The parameter positions hold the interpolation factors. + * @param {TypedArray} sampleValues - The sample values. + * @param {number} sampleSize - The sample size + * @param {TypedArray} [resultBuffer] - The result buffer. + */ + constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { + + super( parameterPositions, sampleValues, sampleSize, resultBuffer ); + + this._weightPrev = -0; + this._offsetPrev = -0; + this._weightNext = -0; + this._offsetNext = -0; + + this.DefaultSettings_ = { + + endingStart: ZeroCurvatureEnding, + endingEnd: ZeroCurvatureEnding + + }; + + } + + intervalChanged_( i1, t0, t1 ) { + + const pp = this.parameterPositions; + let iPrev = i1 - 2, + iNext = i1 + 1, + + tPrev = pp[ iPrev ], + tNext = pp[ iNext ]; + + if ( tPrev === undefined ) { + + switch ( this.getSettings_().endingStart ) { + + case ZeroSlopeEnding: + + // f'(t0) = 0 + iPrev = i1; + tPrev = 2 * t0 - t1; + + break; + + case WrapAroundEnding: + + // use the other end of the curve + iPrev = pp.length - 2; + tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ]; + + break; + + default: // ZeroCurvatureEnding + + // f''(t0) = 0 a.k.a. Natural Spline + iPrev = i1; + tPrev = t1; + + } + + } + + if ( tNext === undefined ) { + + switch ( this.getSettings_().endingEnd ) { + + case ZeroSlopeEnding: + + // f'(tN) = 0 + iNext = i1; + tNext = 2 * t1 - t0; + + break; + + case WrapAroundEnding: + + // use the other end of the curve + iNext = 1; + tNext = t1 + pp[ 1 ] - pp[ 0 ]; + + break; + + default: // ZeroCurvatureEnding + + // f''(tN) = 0, a.k.a. Natural Spline + iNext = i1 - 1; + tNext = t0; + + } + + } + + const halfDt = ( t1 - t0 ) * 0.5, + stride = this.valueSize; + + this._weightPrev = halfDt / ( t0 - tPrev ); + this._weightNext = halfDt / ( tNext - t1 ); + this._offsetPrev = iPrev * stride; + this._offsetNext = iNext * stride; + + } + + interpolate_( i1, t0, t, t1 ) { + + const result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + + o1 = i1 * stride, o0 = o1 - stride, + oP = this._offsetPrev, oN = this._offsetNext, + wP = this._weightPrev, wN = this._weightNext, + + p = ( t - t0 ) / ( t1 - t0 ), + pp = p * p, + ppp = pp * p; + + // evaluate polynomials + + const sP = - wP * ppp + 2 * wP * pp - wP * p; + const s0 = ( 1 + wP ) * ppp + ( -1.5 - 2 * wP ) * pp + ( -0.5 + wP ) * p + 1; + const s1 = ( -1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p; + const sN = wN * ppp - wN * pp; + + // combine data linearly + + for ( let i = 0; i !== stride; ++ i ) { + + result[ i ] = + sP * values[ oP + i ] + + s0 * values[ o0 + i ] + + s1 * values[ o1 + i ] + + sN * values[ oN + i ]; + + } + + return result; + + } + +} + +/** + * A basic linear interpolant. + * + * @augments Interpolant + */ +class LinearInterpolant extends Interpolant { + + /** + * Constructs a new linear interpolant. + * + * @param {TypedArray} parameterPositions - The parameter positions hold the interpolation factors. + * @param {TypedArray} sampleValues - The sample values. + * @param {number} sampleSize - The sample size + * @param {TypedArray} [resultBuffer] - The result buffer. + */ + constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { + + super( parameterPositions, sampleValues, sampleSize, resultBuffer ); + + } + + interpolate_( i1, t0, t, t1 ) { + + const result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + + offset1 = i1 * stride, + offset0 = offset1 - stride, + + weight1 = ( t - t0 ) / ( t1 - t0 ), + weight0 = 1 - weight1; + + for ( let i = 0; i !== stride; ++ i ) { + + result[ i ] = + values[ offset0 + i ] * weight0 + + values[ offset1 + i ] * weight1; + + } + + return result; + + } + +} + +/** + * Interpolant that evaluates to the sample value at the position preceding + * the parameter. + * + * @augments Interpolant + */ +class DiscreteInterpolant extends Interpolant { + + /** + * Constructs a new discrete interpolant. + * + * @param {TypedArray} parameterPositions - The parameter positions hold the interpolation factors. + * @param {TypedArray} sampleValues - The sample values. + * @param {number} sampleSize - The sample size + * @param {TypedArray} [resultBuffer] - The result buffer. + */ + constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { + + super( parameterPositions, sampleValues, sampleSize, resultBuffer ); + + } + + interpolate_( i1 /*, t0, t, t1 */ ) { + + return this.copySampleValue_( i1 - 1 ); + + } + +} + +/** + * Represents s a timed sequence of keyframes, which are composed of lists of + * times and related values, and which are used to animate a specific property + * of an object. + */ +class KeyframeTrack { + + /** + * Constructs a new keyframe track. + * + * @param {string} name - The keyframe track's name. + * @param {Array} times - A list of keyframe times. + * @param {Array} values - A list of keyframe values. + * @param {(InterpolateLinear|InterpolateDiscrete|InterpolateSmooth)} [interpolation] - The interpolation type. + */ + constructor( name, times, values, interpolation ) { + + if ( name === undefined ) throw new Error( 'THREE.KeyframeTrack: track name is undefined' ); + if ( times === undefined || times.length === 0 ) throw new Error( 'THREE.KeyframeTrack: no keyframes in track named ' + name ); + + /** + * The track's name can refer to morph targets or bones or + * possibly other values within an animated object. See {@link PropertyBinding#parseTrackName} + * for the forms of strings that can be parsed for property binding. + * + * @type {string} + */ + this.name = name; + + /** + * The keyframe times. + * + * @type {Float32Array} + */ + this.times = convertArray( times, this.TimeBufferType ); + + /** + * The keyframe values. + * + * @type {Float32Array} + */ + this.values = convertArray( values, this.ValueBufferType ); + + this.setInterpolation( interpolation || this.DefaultInterpolation ); + + } + + /** + * Converts the keyframe track to JSON. + * + * @static + * @param {KeyframeTrack} track - The keyframe track to serialize. + * @return {Object} The serialized keyframe track as JSON. + */ + static toJSON( track ) { + + const trackType = track.constructor; + + let json; + + // derived classes can define a static toJSON method + if ( trackType.toJSON !== this.toJSON ) { + + json = trackType.toJSON( track ); + + } else { + + // by default, we assume the data can be serialized as-is + json = { + + 'name': track.name, + 'times': convertArray( track.times, Array ), + 'values': convertArray( track.values, Array ) + + }; + + const interpolation = track.getInterpolation(); + + if ( interpolation !== track.DefaultInterpolation ) { + + json.interpolation = interpolation; + + } + + } + + json.type = track.ValueTypeName; // mandatory + + return json; + + } + + /** + * Factory method for creating a new discrete interpolant. + * + * @static + * @param {TypedArray} [result] - The result buffer. + * @return {DiscreteInterpolant} The new interpolant. + */ + InterpolantFactoryMethodDiscrete( result ) { + + return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result ); + + } + + /** + * Factory method for creating a new linear interpolant. + * + * @static + * @param {TypedArray} [result] - The result buffer. + * @return {LinearInterpolant} The new interpolant. + */ + InterpolantFactoryMethodLinear( result ) { + + return new LinearInterpolant( this.times, this.values, this.getValueSize(), result ); + + } + + /** + * Factory method for creating a new smooth interpolant. + * + * @static + * @param {TypedArray} [result] - The result buffer. + * @return {CubicInterpolant} The new interpolant. + */ + InterpolantFactoryMethodSmooth( result ) { + + return new CubicInterpolant( this.times, this.values, this.getValueSize(), result ); + + } + + /** + * Defines the interpolation factor method for this keyframe track. + * + * @param {(InterpolateLinear|InterpolateDiscrete|InterpolateSmooth)} interpolation - The interpolation type. + * @return {KeyframeTrack} A reference to this keyframe track. + */ + setInterpolation( interpolation ) { + + let factoryMethod; + + switch ( interpolation ) { + + case InterpolateDiscrete: + + factoryMethod = this.InterpolantFactoryMethodDiscrete; + + break; + + case InterpolateLinear: + + factoryMethod = this.InterpolantFactoryMethodLinear; + + break; + + case InterpolateSmooth: + + factoryMethod = this.InterpolantFactoryMethodSmooth; + + break; + + } + + if ( factoryMethod === undefined ) { + + const message = 'unsupported interpolation for ' + + this.ValueTypeName + ' keyframe track named ' + this.name; + + if ( this.createInterpolant === undefined ) { + + // fall back to default, unless the default itself is messed up + if ( interpolation !== this.DefaultInterpolation ) { + + this.setInterpolation( this.DefaultInterpolation ); + + } else { + + throw new Error( message ); // fatal, in this case + + } + + } + + console.warn( 'THREE.KeyframeTrack:', message ); + return this; + + } + + this.createInterpolant = factoryMethod; + + return this; + + } + + /** + * Returns the current interpolation type. + * + * @return {(InterpolateLinear|InterpolateDiscrete|InterpolateSmooth)} The interpolation type. + */ + getInterpolation() { + + switch ( this.createInterpolant ) { + + case this.InterpolantFactoryMethodDiscrete: + + return InterpolateDiscrete; + + case this.InterpolantFactoryMethodLinear: + + return InterpolateLinear; + + case this.InterpolantFactoryMethodSmooth: + + return InterpolateSmooth; + + } + + } + + /** + * Returns the value size. + * + * @return {number} The value size. + */ + getValueSize() { + + return this.values.length / this.times.length; + + } + + /** + * Moves all keyframes either forward or backward in time. + * + * @param {number} timeOffset - The offset to move the time values. + * @return {KeyframeTrack} A reference to this keyframe track. + */ + shift( timeOffset ) { + + if ( timeOffset !== 0.0 ) { + + const times = this.times; + + for ( let i = 0, n = times.length; i !== n; ++ i ) { + + times[ i ] += timeOffset; + + } + + } + + return this; + + } + + /** + * Scale all keyframe times by a factor (useful for frame - seconds conversions). + * + * @param {number} timeScale - The time scale. + * @return {KeyframeTrack} A reference to this keyframe track. + */ + scale( timeScale ) { + + if ( timeScale !== 1.0 ) { + + const times = this.times; + + for ( let i = 0, n = times.length; i !== n; ++ i ) { + + times[ i ] *= timeScale; + + } + + } + + return this; + + } + + /** + * Removes keyframes before and after animation without changing any values within the defined time range. + * + * Note: The method does not shift around keys to the start of the track time, because for interpolated + * keys this will change their values + * + * @param {number} startTime - The start time. + * @param {number} endTime - The end time. + * @return {KeyframeTrack} A reference to this keyframe track. + */ + trim( startTime, endTime ) { + + const times = this.times, + nKeys = times.length; + + let from = 0, + to = nKeys - 1; + + while ( from !== nKeys && times[ from ] < startTime ) { + + ++ from; + + } + + while ( to !== -1 && times[ to ] > endTime ) { + + -- to; + + } + + ++ to; // inclusive -> exclusive bound + + if ( from !== 0 || to !== nKeys ) { + + // empty tracks are forbidden, so keep at least one keyframe + if ( from >= to ) { + + to = Math.max( to, 1 ); + from = to - 1; + + } + + const stride = this.getValueSize(); + this.times = times.slice( from, to ); + this.values = this.values.slice( from * stride, to * stride ); + + } + + return this; + + } + + /** + * Performs minimal validation on the keyframe track. Returns `true` if the values + * are valid. + * + * @return {boolean} Whether the keyframes are valid or not. + */ + validate() { + + let valid = true; + + const valueSize = this.getValueSize(); + if ( valueSize - Math.floor( valueSize ) !== 0 ) { + + console.error( 'THREE.KeyframeTrack: Invalid value size in track.', this ); + valid = false; + + } + + const times = this.times, + values = this.values, + + nKeys = times.length; + + if ( nKeys === 0 ) { + + console.error( 'THREE.KeyframeTrack: Track is empty.', this ); + valid = false; + + } + + let prevTime = null; + + for ( let i = 0; i !== nKeys; i ++ ) { + + const currTime = times[ i ]; + + if ( typeof currTime === 'number' && isNaN( currTime ) ) { + + console.error( 'THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime ); + valid = false; + break; + + } + + if ( prevTime !== null && prevTime > currTime ) { + + console.error( 'THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime ); + valid = false; + break; + + } + + prevTime = currTime; + + } + + if ( values !== undefined ) { + + if ( isTypedArray( values ) ) { + + for ( let i = 0, n = values.length; i !== n; ++ i ) { + + const value = values[ i ]; + + if ( isNaN( value ) ) { + + console.error( 'THREE.KeyframeTrack: Value is not a valid number.', this, i, value ); + valid = false; + break; + + } + + } + + } + + } + + return valid; + + } + + /** + * Optimizes this keyframe track by removing equivalent sequential keys (which are + * common in morph target sequences). + * + * @return {AnimationClip} A reference to this animation clip. + */ + optimize() { + + // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) + + // times or values may be shared with other tracks, so overwriting is unsafe + const times = this.times.slice(), + values = this.values.slice(), + stride = this.getValueSize(), + + smoothInterpolation = this.getInterpolation() === InterpolateSmooth, + + lastIndex = times.length - 1; + + let writeIndex = 1; + + for ( let i = 1; i < lastIndex; ++ i ) { + + let keep = false; + + const time = times[ i ]; + const timeNext = times[ i + 1 ]; + + // remove adjacent keyframes scheduled at the same time + + if ( time !== timeNext && ( i !== 1 || time !== times[ 0 ] ) ) { + + if ( ! smoothInterpolation ) { + + // remove unnecessary keyframes same as their neighbors + + const offset = i * stride, + offsetP = offset - stride, + offsetN = offset + stride; + + for ( let j = 0; j !== stride; ++ j ) { + + const value = values[ offset + j ]; + + if ( value !== values[ offsetP + j ] || + value !== values[ offsetN + j ] ) { + + keep = true; + break; + + } + + } + + } else { + + keep = true; + + } + + } + + // in-place compaction + + if ( keep ) { + + if ( i !== writeIndex ) { + + times[ writeIndex ] = times[ i ]; + + const readOffset = i * stride, + writeOffset = writeIndex * stride; + + for ( let j = 0; j !== stride; ++ j ) { + + values[ writeOffset + j ] = values[ readOffset + j ]; + + } + + } + + ++ writeIndex; + + } + + } + + // flush last keyframe (compaction looks ahead) + + if ( lastIndex > 0 ) { + + times[ writeIndex ] = times[ lastIndex ]; + + for ( let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j ) { + + values[ writeOffset + j ] = values[ readOffset + j ]; + + } + + ++ writeIndex; + + } + + if ( writeIndex !== times.length ) { + + this.times = times.slice( 0, writeIndex ); + this.values = values.slice( 0, writeIndex * stride ); + + } else { + + this.times = times; + this.values = values; + + } + + return this; + + } + + /** + * Returns a new keyframe track with copied values from this instance. + * + * @return {KeyframeTrack} A clone of this instance. + */ + clone() { + + const times = this.times.slice(); + const values = this.values.slice(); + + const TypedKeyframeTrack = this.constructor; + const track = new TypedKeyframeTrack( this.name, times, values ); + + // Interpolant argument to constructor is not saved, so copy the factory method directly. + track.createInterpolant = this.createInterpolant; + + return track; + + } + +} + +/** + * The value type name. + * + * @type {String} + * @default '' + */ +KeyframeTrack.prototype.ValueTypeName = ''; + +/** + * The time buffer type of this keyframe track. + * + * @type {TypedArray|Array} + * @default Float32Array.constructor + */ +KeyframeTrack.prototype.TimeBufferType = Float32Array; + +/** + * The value buffer type of this keyframe track. + * + * @type {TypedArray|Array} + * @default Float32Array.constructor + */ +KeyframeTrack.prototype.ValueBufferType = Float32Array; + +/** + * The default interpolation type of this keyframe track. + * + * @type {(InterpolateLinear|InterpolateDiscrete|InterpolateSmooth)} + * @default InterpolateLinear + */ +KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear; + +/** + * A track for boolean keyframe values. + * + * @augments KeyframeTrack + */ +class BooleanKeyframeTrack extends KeyframeTrack { + + /** + * Constructs a new boolean keyframe track. + * + * This keyframe track type has no `interpolation` parameter because the + * interpolation is always discrete. + * + * @param {string} name - The keyframe track's name. + * @param {Array} times - A list of keyframe times. + * @param {Array} values - A list of keyframe values. + */ + constructor( name, times, values ) { + + super( name, times, values ); + + } + +} + +/** + * The value type name. + * + * @type {String} + * @default 'bool' + */ +BooleanKeyframeTrack.prototype.ValueTypeName = 'bool'; + +/** + * The value buffer type of this keyframe track. + * + * @type {TypedArray|Array} + * @default Array.constructor + */ +BooleanKeyframeTrack.prototype.ValueBufferType = Array; + +/** + * The default interpolation type of this keyframe track. + * + * @type {(InterpolateLinear|InterpolateDiscrete|InterpolateSmooth)} + * @default InterpolateDiscrete + */ +BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; +BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; +BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; + +/** + * A track for color keyframe values. + * + * @augments KeyframeTrack + */ +class ColorKeyframeTrack extends KeyframeTrack { + + /** + * Constructs a new color keyframe track. + * + * @param {string} name - The keyframe track's name. + * @param {Array} times - A list of keyframe times. + * @param {Array} values - A list of keyframe values. + * @param {(InterpolateLinear|InterpolateDiscrete|InterpolateSmooth)} [interpolation] - The interpolation type. + */ + constructor( name, times, values, interpolation ) { + + super( name, times, values, interpolation ); + + } + +} + +/** + * The value type name. + * + * @type {String} + * @default 'color' + */ +ColorKeyframeTrack.prototype.ValueTypeName = 'color'; + +/** + * A track for numeric keyframe values. + * + * @augments KeyframeTrack + */ +class NumberKeyframeTrack extends KeyframeTrack { + + /** + * Constructs a new number keyframe track. + * + * @param {string} name - The keyframe track's name. + * @param {Array} times - A list of keyframe times. + * @param {Array} values - A list of keyframe values. + * @param {(InterpolateLinear|InterpolateDiscrete|InterpolateSmooth)} [interpolation] - The interpolation type. + */ + constructor( name, times, values, interpolation ) { + + super( name, times, values, interpolation ); + + } + +} + +/** + * The value type name. + * + * @type {String} + * @default 'number' + */ +NumberKeyframeTrack.prototype.ValueTypeName = 'number'; + +/** + * Spherical linear unit quaternion interpolant. + * + * @augments Interpolant + */ +class QuaternionLinearInterpolant extends Interpolant { + + /** + * Constructs a new SLERP interpolant. + * + * @param {TypedArray} parameterPositions - The parameter positions hold the interpolation factors. + * @param {TypedArray} sampleValues - The sample values. + * @param {number} sampleSize - The sample size + * @param {TypedArray} [resultBuffer] - The result buffer. + */ + constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { + + super( parameterPositions, sampleValues, sampleSize, resultBuffer ); + + } + + interpolate_( i1, t0, t, t1 ) { + + const result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + + alpha = ( t - t0 ) / ( t1 - t0 ); + + let offset = i1 * stride; + + for ( let end = offset + stride; offset !== end; offset += 4 ) { + + Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha ); + + } + + return result; + + } + +} + +/** + * A track for Quaternion keyframe values. + * + * @augments KeyframeTrack + */ +class QuaternionKeyframeTrack extends KeyframeTrack { + + /** + * Constructs a new Quaternion keyframe track. + * + * @param {string} name - The keyframe track's name. + * @param {Array} times - A list of keyframe times. + * @param {Array} values - A list of keyframe values. + * @param {(InterpolateLinear|InterpolateDiscrete|InterpolateSmooth)} [interpolation] - The interpolation type. + */ + constructor( name, times, values, interpolation ) { + + super( name, times, values, interpolation ); + + } + + /** + * Overwritten so the method returns Quaternion based interpolant. + * + * @static + * @param {TypedArray} [result] - The result buffer. + * @return {QuaternionLinearInterpolant} The new interpolant. + */ + InterpolantFactoryMethodLinear( result ) { + + return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result ); + + } + +} + +/** + * The value type name. + * + * @type {String} + * @default 'quaternion' + */ +QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion'; +// ValueBufferType is inherited +// DefaultInterpolation is inherited; +QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; + +/** + * A track for string keyframe values. + * + * @augments KeyframeTrack + */ +class StringKeyframeTrack extends KeyframeTrack { + + /** + * Constructs a new string keyframe track. + * + * This keyframe track type has no `interpolation` parameter because the + * interpolation is always discrete. + * + * @param {string} name - The keyframe track's name. + * @param {Array} times - A list of keyframe times. + * @param {Array} values - A list of keyframe values. + */ + constructor( name, times, values ) { + + super( name, times, values ); + + } + +} + +/** + * The value type name. + * + * @type {String} + * @default 'string' + */ +StringKeyframeTrack.prototype.ValueTypeName = 'string'; + +/** + * The value buffer type of this keyframe track. + * + * @type {TypedArray|Array} + * @default Array.constructor + */ +StringKeyframeTrack.prototype.ValueBufferType = Array; + +/** + * The default interpolation type of this keyframe track. + * + * @type {(InterpolateLinear|InterpolateDiscrete|InterpolateSmooth)} + * @default InterpolateDiscrete + */ +StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; +StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; +StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; + +/** + * A track for vector keyframe values. + * + * @augments KeyframeTrack + */ +class VectorKeyframeTrack extends KeyframeTrack { + + /** + * Constructs a new vector keyframe track. + * + * @param {string} name - The keyframe track's name. + * @param {Array} times - A list of keyframe times. + * @param {Array} values - A list of keyframe values. + * @param {(InterpolateLinear|InterpolateDiscrete|InterpolateSmooth)} [interpolation] - The interpolation type. + */ + constructor( name, times, values, interpolation ) { + + super( name, times, values, interpolation ); + + } + +} + +/** + * The value type name. + * + * @type {String} + * @default 'vector' + */ +VectorKeyframeTrack.prototype.ValueTypeName = 'vector'; + +/** + * A reusable set of keyframe tracks which represent an animation. + */ +class AnimationClip { + + /** + * Constructs a new animation clip. + * + * Note: Instead of instantiating an AnimationClip directly with the constructor, you can + * use the static interface of this class for creating clips. In most cases though, animation clips + * will automatically be created by loaders when importing animated 3D assets. + * + * @param {string} [name=''] - The clip's name. + * @param {number} [duration=-1] - The clip's duration in seconds. If a negative value is passed, + * the duration will be calculated from the passed keyframes. + * @param {Array} tracks - An array of keyframe tracks. + * @param {(NormalAnimationBlendMode|AdditiveAnimationBlendMode)} [blendMode=NormalAnimationBlendMode] - Defines how the animation + * is blended/combined when two or more animations are simultaneously played. + */ + constructor( name = '', duration = -1, tracks = [], blendMode = NormalAnimationBlendMode ) { + + /** + * The clip's name. + * + * @type {string} + */ + this.name = name; + + /** + * An array of keyframe tracks. + * + * @type {Array} + */ + this.tracks = tracks; + + /** + * The clip's duration in seconds. + * + * @type {number} + */ + this.duration = duration; + + /** + * Defines how the animation is blended/combined when two or more animations + * are simultaneously played. + * + * @type {(NormalAnimationBlendMode|AdditiveAnimationBlendMode)} + */ + this.blendMode = blendMode; + + /** + * The UUID of the animation clip. + * + * @type {string} + * @readonly + */ + this.uuid = generateUUID(); + + // this means it should figure out its duration by scanning the tracks + if ( this.duration < 0 ) { + + this.resetDuration(); + + } + + } + + /** + * Factory method for creating an animation clip from the given JSON. + * + * @static + * @param {Object} json - The serialized animation clip. + * @return {AnimationClip} The new animation clip. + */ + static parse( json ) { + + const tracks = [], + jsonTracks = json.tracks, + frameTime = 1.0 / ( json.fps || 1.0 ); + + for ( let i = 0, n = jsonTracks.length; i !== n; ++ i ) { + + tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime ) ); + + } + + const clip = new this( json.name, json.duration, tracks, json.blendMode ); + clip.uuid = json.uuid; + + return clip; + + } + + /** + * Serializes the given animation clip into JSON. + * + * @static + * @param {AnimationClip} clip - The animation clip to serialize. + * @return {Object} The JSON object. + */ + static toJSON( clip ) { + + const tracks = [], + clipTracks = clip.tracks; + + const json = { + + 'name': clip.name, + 'duration': clip.duration, + 'tracks': tracks, + 'uuid': clip.uuid, + 'blendMode': clip.blendMode + + }; + + for ( let i = 0, n = clipTracks.length; i !== n; ++ i ) { + + tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) ); + + } + + return json; + + } + + /** + * Returns a new animation clip from the passed morph targets array of a + * geometry, taking a name and the number of frames per second. + * + * Note: The fps parameter is required, but the animation speed can be + * overridden via {@link AnimationAction#setDuration}. + * + * @static + * @param {string} name - The name of the animation clip. + * @param {Array} morphTargetSequence - A sequence of morph targets. + * @param {number} fps - The Frames-Per-Second value. + * @param {boolean} noLoop - Whether the clip should be no loop or not. + * @return {AnimationClip} The new animation clip. + */ + static CreateFromMorphTargetSequence( name, morphTargetSequence, fps, noLoop ) { + + const numMorphTargets = morphTargetSequence.length; + const tracks = []; + + for ( let i = 0; i < numMorphTargets; i ++ ) { + + let times = []; + let values = []; + + times.push( + ( i + numMorphTargets - 1 ) % numMorphTargets, + i, + ( i + 1 ) % numMorphTargets ); + + values.push( 0, 1, 0 ); + + const order = getKeyframeOrder( times ); + times = sortedArray( times, 1, order ); + values = sortedArray( values, 1, order ); + + // if there is a key at the first frame, duplicate it as the + // last frame as well for perfect loop. + if ( ! noLoop && times[ 0 ] === 0 ) { + + times.push( numMorphTargets ); + values.push( values[ 0 ] ); + + } + + tracks.push( + new NumberKeyframeTrack( + '.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']', + times, values + ).scale( 1.0 / fps ) ); + + } + + return new this( name, -1, tracks ); + + } + + /** + * Searches for an animation clip by name, taking as its first parameter + * either an array of clips, or a mesh or geometry that contains an + * array named "animations" property. + * + * @static + * @param {(Array|Object3D)} objectOrClipArray - The array or object to search through. + * @param {string} name - The name to search for. + * @return {?AnimationClip} The found animation clip. Returns `null` if no clip has been found. + */ + static findByName( objectOrClipArray, name ) { + + let clipArray = objectOrClipArray; + + if ( ! Array.isArray( objectOrClipArray ) ) { + + const o = objectOrClipArray; + clipArray = o.geometry && o.geometry.animations || o.animations; + + } + + for ( let i = 0; i < clipArray.length; i ++ ) { + + if ( clipArray[ i ].name === name ) { + + return clipArray[ i ]; + + } + + } + + return null; + + } + + /** + * Returns an array of new AnimationClips created from the morph target + * sequences of a geometry, trying to sort morph target names into + * animation-group-based patterns like "Walk_001, Walk_002, Run_001, Run_002...". + * + * See {@link MD2Loader#parse} as an example for how the method should be used. + * + * @static + * @param {Array} morphTargets - A sequence of morph targets. + * @param {number} fps - The Frames-Per-Second value. + * @param {boolean} noLoop - Whether the clip should be no loop or not. + * @return {Array} An array of new animation clips. + */ + static CreateClipsFromMorphTargetSequences( morphTargets, fps, noLoop ) { + + const animationToMorphTargets = {}; + + // tested with https://regex101.com/ on trick sequences + // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 + const pattern = /^([\w-]*?)([\d]+)$/; + + // sort morph target names into animation groups based + // patterns like Walk_001, Walk_002, Run_001, Run_002 + for ( let i = 0, il = morphTargets.length; i < il; i ++ ) { + + const morphTarget = morphTargets[ i ]; + const parts = morphTarget.name.match( pattern ); + + if ( parts && parts.length > 1 ) { + + const name = parts[ 1 ]; + + let animationMorphTargets = animationToMorphTargets[ name ]; + + if ( ! animationMorphTargets ) { + + animationToMorphTargets[ name ] = animationMorphTargets = []; + + } + + animationMorphTargets.push( morphTarget ); + + } + + } + + const clips = []; + + for ( const name in animationToMorphTargets ) { + + clips.push( this.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) ); + + } + + return clips; + + } + + /** + * Parses the `animation.hierarchy` format and returns a new animation clip. + * + * @static + * @deprecated since r175. + * @param {Object} animation - A serialized animation clip as JSON. + * @param {Array} bones - An array of bones. + * @return {?AnimationClip} The new animation clip. + */ + static parseAnimation( animation, bones ) { + + console.warn( 'THREE.AnimationClip: parseAnimation() is deprecated and will be removed with r185' ); + + if ( ! animation ) { + + console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' ); + return null; + + } + + const addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) { + + // only return track if there are actually keys. + if ( animationKeys.length !== 0 ) { + + const times = []; + const values = []; + + flattenJSON( animationKeys, times, values, propertyName ); + + // empty keys are filtered out, so check again + if ( times.length !== 0 ) { + + destTracks.push( new trackType( trackName, times, values ) ); + + } + + } + + }; + + const tracks = []; + + const clipName = animation.name || 'default'; + const fps = animation.fps || 30; + const blendMode = animation.blendMode; + + // automatic length determination in AnimationClip. + let duration = animation.length || -1; + + const hierarchyTracks = animation.hierarchy || []; + + for ( let h = 0; h < hierarchyTracks.length; h ++ ) { + + const animationKeys = hierarchyTracks[ h ].keys; + + // skip empty tracks + if ( ! animationKeys || animationKeys.length === 0 ) continue; + + // process morph targets + if ( animationKeys[ 0 ].morphTargets ) { + + // figure out all morph targets used in this track + const morphTargetNames = {}; + + let k; + + for ( k = 0; k < animationKeys.length; k ++ ) { + + if ( animationKeys[ k ].morphTargets ) { + + for ( let m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) { + + morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = -1; + + } + + } + + } + + // create a track for each morph target with all zero + // morphTargetInfluences except for the keys in which + // the morphTarget is named. + for ( const morphTargetName in morphTargetNames ) { + + const times = []; + const values = []; + + for ( let m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) { + + const animationKey = animationKeys[ k ]; + + times.push( animationKey.time ); + values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 ); + + } + + tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) ); + + } + + duration = morphTargetNames.length * fps; + + } else { + + // ...assume skeletal animation + + const boneName = '.bones[' + bones[ h ].name + ']'; + + addNonemptyTrack( + VectorKeyframeTrack, boneName + '.position', + animationKeys, 'pos', tracks ); + + addNonemptyTrack( + QuaternionKeyframeTrack, boneName + '.quaternion', + animationKeys, 'rot', tracks ); + + addNonemptyTrack( + VectorKeyframeTrack, boneName + '.scale', + animationKeys, 'scl', tracks ); + + } + + } + + if ( tracks.length === 0 ) { + + return null; + + } + + const clip = new this( clipName, duration, tracks, blendMode ); + + return clip; + + } + + /** + * Sets the duration of this clip to the duration of its longest keyframe track. + * + * @return {AnimationClip} A reference to this animation clip. + */ + resetDuration() { + + const tracks = this.tracks; + let duration = 0; + + for ( let i = 0, n = tracks.length; i !== n; ++ i ) { + + const track = this.tracks[ i ]; + + duration = Math.max( duration, track.times[ track.times.length - 1 ] ); + + } + + this.duration = duration; + + return this; + + } + + /** + * Trims all tracks to the clip's duration. + * + * @return {AnimationClip} A reference to this animation clip. + */ + trim() { + + for ( let i = 0; i < this.tracks.length; i ++ ) { + + this.tracks[ i ].trim( 0, this.duration ); + + } + + return this; + + } + + /** + * Performs minimal validation on each track in the clip. Returns `true` if all + * tracks are valid. + * + * @return {boolean} Whether the clip's keyframes are valid or not. + */ + validate() { + + let valid = true; + + for ( let i = 0; i < this.tracks.length; i ++ ) { + + valid = valid && this.tracks[ i ].validate(); + + } + + return valid; + + } + + /** + * Optimizes each track by removing equivalent sequential keys (which are + * common in morph target sequences). + * + * @return {AnimationClip} A reference to this animation clip. + */ + optimize() { + + for ( let i = 0; i < this.tracks.length; i ++ ) { + + this.tracks[ i ].optimize(); + + } + + return this; + + } + + /** + * Returns a new animation clip with copied values from this instance. + * + * @return {AnimationClip} A clone of this instance. + */ + clone() { + + const tracks = []; + + for ( let i = 0; i < this.tracks.length; i ++ ) { + + tracks.push( this.tracks[ i ].clone() ); + + } + + return new this.constructor( this.name, this.duration, tracks, this.blendMode ); + + } + + /** + * Serializes this animation clip into JSON. + * + * @return {Object} The JSON object. + */ + toJSON() { + + return this.constructor.toJSON( this ); + + } + +} + +function getTrackTypeForValueTypeName( typeName ) { + + switch ( typeName.toLowerCase() ) { + + case 'scalar': + case 'double': + case 'float': + case 'number': + case 'integer': + + return NumberKeyframeTrack; + + case 'vector': + case 'vector2': + case 'vector3': + case 'vector4': + + return VectorKeyframeTrack; + + case 'color': + + return ColorKeyframeTrack; + + case 'quaternion': + + return QuaternionKeyframeTrack; + + case 'bool': + case 'boolean': + + return BooleanKeyframeTrack; + + case 'string': + + return StringKeyframeTrack; + + } + + throw new Error( 'THREE.KeyframeTrack: Unsupported typeName: ' + typeName ); + +} + +function parseKeyframeTrack( json ) { + + if ( json.type === undefined ) { + + throw new Error( 'THREE.KeyframeTrack: track type undefined, can not parse' ); + + } + + const trackType = getTrackTypeForValueTypeName( json.type ); + + if ( json.times === undefined ) { + + const times = [], values = []; + + flattenJSON( json.keys, times, values, 'value' ); + + json.times = times; + json.values = values; + + } + + // derived classes can define a static parse method + if ( trackType.parse !== undefined ) { + + return trackType.parse( json ); + + } else { + + // by default, we assume a constructor compatible with the base + return new trackType( json.name, json.times, json.values, json.interpolation ); + + } + +} + +/** + * @class + * @classdesc A simple caching system, used internally by {@link FileLoader}. + * To enable caching across all loaders that use {@link FileLoader}, add `THREE.Cache.enabled = true.` once in your app. + * @hideconstructor + */ +const Cache = { + + /** + * Whether caching is enabled or not. + * + * @static + * @type {boolean} + * @default false + */ + enabled: false, + + /** + * A dictionary that holds cached files. + * + * @static + * @type {Object} + */ + files: {}, + + /** + * Adds a cache entry with a key to reference the file. If this key already + * holds a file, it is overwritten. + * + * @static + * @param {string} key - The key to reference the cached file. + * @param {Object} file - The file to be cached. + */ + add: function ( key, file ) { + + if ( this.enabled === false ) return; + + // console.log( 'THREE.Cache', 'Adding key:', key ); + + this.files[ key ] = file; + + }, + + /** + * Gets the cached value for the given key. + * + * @static + * @param {string} key - The key to reference the cached file. + * @return {Object|undefined} The cached file. If the key does not exist `undefined` is returned. + */ + get: function ( key ) { + + if ( this.enabled === false ) return; + + // console.log( 'THREE.Cache', 'Checking key:', key ); + + return this.files[ key ]; + + }, + + /** + * Removes the cached file associated with the given key. + * + * @static + * @param {string} key - The key to reference the cached file. + */ + remove: function ( key ) { + + delete this.files[ key ]; + + }, + + /** + * Remove all values from the cache. + * + * @static + */ + clear: function () { + + this.files = {}; + + } + +}; + +/** + * Handles and keeps track of loaded and pending data. A default global + * instance of this class is created and used by loaders if not supplied + * manually. + * + * In general that should be sufficient, however there are times when it can + * be useful to have separate loaders - for example if you want to show + * separate loading bars for objects and textures. + * + * ```js + * const manager = new THREE.LoadingManager(); + * manager.onLoad = () => console.log( 'Loading complete!' ); + * + * const loader1 = new OBJLoader( manager ); + * const loader2 = new ColladaLoader( manager ); + * ``` + */ +class LoadingManager { + + /** + * Constructs a new loading manager. + * + * @param {Function} [onLoad] - Executes when all items have been loaded. + * @param {Function} [onProgress] - Executes when single items have been loaded. + * @param {Function} [onError] - Executes when an error occurs. + */ + constructor( onLoad, onProgress, onError ) { + + const scope = this; + + let isLoading = false; + let itemsLoaded = 0; + let itemsTotal = 0; + let urlModifier = undefined; + const handlers = []; + + // Refer to #5689 for the reason why we don't set .onStart + // in the constructor + + /** + * Executes when an item starts loading. + * + * @type {Function|undefined} + * @default undefined + */ + this.onStart = undefined; + + /** + * Executes when all items have been loaded. + * + * @type {Function|undefined} + * @default undefined + */ + this.onLoad = onLoad; + + /** + * Executes when single items have been loaded. + * + * @type {Function|undefined} + * @default undefined + */ + this.onProgress = onProgress; + + /** + * Executes when an error occurs. + * + * @type {Function|undefined} + * @default undefined + */ + this.onError = onError; + + /** + * This should be called by any loader using the manager when the loader + * starts loading an item. + * + * @param {string} url - The URL to load. + */ + this.itemStart = function ( url ) { + + itemsTotal ++; + + if ( isLoading === false ) { + + if ( scope.onStart !== undefined ) { + + scope.onStart( url, itemsLoaded, itemsTotal ); + + } + + } + + isLoading = true; + + }; + + /** + * This should be called by any loader using the manager when the loader + * ended loading an item. + * + * @param {string} url - The URL of the loaded item. + */ + this.itemEnd = function ( url ) { + + itemsLoaded ++; + + if ( scope.onProgress !== undefined ) { + + scope.onProgress( url, itemsLoaded, itemsTotal ); + + } + + if ( itemsLoaded === itemsTotal ) { + + isLoading = false; + + if ( scope.onLoad !== undefined ) { + + scope.onLoad(); + + } + + } + + }; + + /** + * This should be called by any loader using the manager when the loader + * encounters an error when loading an item. + * + * @param {string} url - The URL of the item that produces an error. + */ + this.itemError = function ( url ) { + + if ( scope.onError !== undefined ) { + + scope.onError( url ); + + } + + }; + + /** + * Given a URL, uses the URL modifier callback (if any) and returns a + * resolved URL. If no URL modifier is set, returns the original URL. + * + * @param {string} url - The URL to load. + * @return {string} The resolved URL. + */ + this.resolveURL = function ( url ) { + + if ( urlModifier ) { + + return urlModifier( url ); + + } + + return url; + + }; + + /** + * If provided, the callback will be passed each resource URL before a + * request is sent. The callback may return the original URL, or a new URL to + * override loading behavior. This behavior can be used to load assets from + * .ZIP files, drag-and-drop APIs, and Data URIs. + * + * ```js + * const blobs = {'fish.gltf': blob1, 'diffuse.png': blob2, 'normal.png': blob3}; + * + * const manager = new THREE.LoadingManager(); + * + * // Initialize loading manager with URL callback. + * const objectURLs = []; + * manager.setURLModifier( ( url ) => { + * + * url = URL.createObjectURL( blobs[ url ] ); + * objectURLs.push( url ); + * return url; + * + * } ); + * + * // Load as usual, then revoke the blob URLs. + * const loader = new GLTFLoader( manager ); + * loader.load( 'fish.gltf', (gltf) => { + * + * scene.add( gltf.scene ); + * objectURLs.forEach( ( url ) => URL.revokeObjectURL( url ) ); + * + * } ); + * ``` + * + * @param {function(string):string} transform - URL modifier callback. Called with an URL and must return a resolved URL. + * @return {LoadingManager} A reference to this loading manager. + */ + this.setURLModifier = function ( transform ) { + + urlModifier = transform; + + return this; + + }; + + /** + * Registers a loader with the given regular expression. Can be used to + * define what loader should be used in order to load specific files. A + * typical use case is to overwrite the default loader for textures. + * + * ```js + * // add handler for TGA textures + * manager.addHandler( /\.tga$/i, new TGALoader() ); + * ``` + * + * @param {string} regex - A regular expression. + * @param {Loader} loader - A loader that should handle matched cases. + * @return {LoadingManager} A reference to this loading manager. + */ + this.addHandler = function ( regex, loader ) { + + handlers.push( regex, loader ); + + return this; + + }; + + /** + * Removes the loader for the given regular expression. + * + * @param {string} regex - A regular expression. + * @return {LoadingManager} A reference to this loading manager. + */ + this.removeHandler = function ( regex ) { + + const index = handlers.indexOf( regex ); + + if ( index !== -1 ) { + + handlers.splice( index, 2 ); + + } + + return this; + + }; + + /** + * Can be used to retrieve the registered loader for the given file path. + * + * @param {string} file - The file path. + * @return {?Loader} The registered loader. Returns `null` if no loader was found. + */ + this.getHandler = function ( file ) { + + for ( let i = 0, l = handlers.length; i < l; i += 2 ) { + + const regex = handlers[ i ]; + const loader = handlers[ i + 1 ]; + + if ( regex.global ) regex.lastIndex = 0; // see #17920 + + if ( regex.test( file ) ) { + + return loader; + + } + + } + + return null; + + }; + + } + +} + +/** + * The global default loading manager. + * + * @constant + * @type {LoadingManager} + */ +const DefaultLoadingManager = /*@__PURE__*/ new LoadingManager(); + +/** + * Abstract base class for loaders. + * + * @abstract + */ +class Loader { + + /** + * Constructs a new loader. + * + * @param {LoadingManager} [manager] - The loading manager. + */ + constructor( manager ) { + + /** + * The loading manager. + * + * @type {LoadingManager} + * @default DefaultLoadingManager + */ + this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; + + /** + * The crossOrigin string to implement CORS for loading the url from a + * different domain that allows CORS. + * + * @type {string} + * @default 'anonymous' + */ + this.crossOrigin = 'anonymous'; + + /** + * Whether the XMLHttpRequest uses credentials. + * + * @type {boolean} + * @default false + */ + this.withCredentials = false; + + /** + * The base path from which the asset will be loaded. + * + * @type {string} + */ + this.path = ''; + + /** + * The base path from which additional resources like textures will be loaded. + * + * @type {string} + */ + this.resourcePath = ''; + + /** + * The [request header]{@link https://developer.mozilla.org/en-US/docs/Glossary/Request_header} + * used in HTTP request. + * + * @type {Object} + */ + this.requestHeader = {}; + + } + + /** + * This method needs to be implemented by all concrete loaders. It holds the + * logic for loading assets from the backend. + * + * @param {string} url - The path/URL of the file to be loaded. + * @param {Function} onLoad - Executed when the loading process has been finished. + * @param {onProgressCallback} [onProgress] - Executed while the loading is in progress. + * @param {onErrorCallback} [onError] - Executed when errors occur. + */ + load( /* url, onLoad, onProgress, onError */ ) {} + + /** + * A async version of {@link Loader#load}. + * + * @param {string} url - The path/URL of the file to be loaded. + * @param {onProgressCallback} [onProgress] - Executed while the loading is in progress. + * @return {Promise} A Promise that resolves when the asset has been loaded. + */ + loadAsync( url, onProgress ) { + + const scope = this; + + return new Promise( function ( resolve, reject ) { + + scope.load( url, resolve, onProgress, reject ); + + } ); + + } + + /** + * This method needs to be implemented by all concrete loaders. It holds the + * logic for parsing the asset into three.js entities. + * + * @param {any} data - The data to parse. + */ + parse( /* data */ ) {} + + /** + * Sets the `crossOrigin` String to implement CORS for loading the URL + * from a different domain that allows CORS. + * + * @param {string} crossOrigin - The `crossOrigin` value. + * @return {Loader} A reference to this instance. + */ + setCrossOrigin( crossOrigin ) { + + this.crossOrigin = crossOrigin; + return this; + + } + + /** + * Whether the XMLHttpRequest uses credentials such as cookies, authorization + * headers or TLS client certificates, see [XMLHttpRequest.withCredentials]{@link https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/withCredentials}. + * + * Note: This setting has no effect if you are loading files locally or from the same domain. + * + * @param {boolean} value - The `withCredentials` value. + * @return {Loader} A reference to this instance. + */ + setWithCredentials( value ) { + + this.withCredentials = value; + return this; + + } + + /** + * Sets the base path for the asset. + * + * @param {string} path - The base path. + * @return {Loader} A reference to this instance. + */ + setPath( path ) { + + this.path = path; + return this; + + } + + /** + * Sets the base path for dependent resources like textures. + * + * @param {string} resourcePath - The resource path. + * @return {Loader} A reference to this instance. + */ + setResourcePath( resourcePath ) { + + this.resourcePath = resourcePath; + return this; + + } + + /** + * Sets the given request header. + * + * @param {Object} requestHeader - A [request header]{@link https://developer.mozilla.org/en-US/docs/Glossary/Request_header} + * for configuring the HTTP request. + * @return {Loader} A reference to this instance. + */ + setRequestHeader( requestHeader ) { + + this.requestHeader = requestHeader; + return this; + + } + +} + +/** + * Callback for onProgress in loaders. + * + * @callback onProgressCallback + * @param {ProgressEvent} event - An instance of `ProgressEvent` that represents the current loading status. + */ + +/** + * Callback for onError in loaders. + * + * @callback onErrorCallback + * @param {Error} error - The error which occurred during the loading process. + */ + +/** + * The default material name that is used by loaders + * when creating materials for loaded 3D objects. + * + * Note: Not all loaders might honor this setting. + * + * @static + * @type {string} + * @default '__DEFAULT' + */ +Loader.DEFAULT_MATERIAL_NAME = '__DEFAULT'; + +const loading = {}; + +class HttpError extends Error { + + constructor( message, response ) { + + super( message ); + this.response = response; + + } + +} + +/** + * A low level class for loading resources with the Fetch API, used internally by + * most loaders. It can also be used directly to load any file type that does + * not have a loader. + * + * This loader supports caching. If you want to use it, add `THREE.Cache.enabled = true;` + * once to your application. + * + * ```js + * const loader = new THREE.FileLoader(); + * const data = await loader.loadAsync( 'example.txt' ); + * ``` + * + * @augments Loader + */ +class FileLoader extends Loader { + + /** + * Constructs a new file loader. + * + * @param {LoadingManager} [manager] - The loading manager. + */ + constructor( manager ) { + + super( manager ); + + /** + * The expected mime type. + * + * @type {string} + */ + this.mimeType = ''; + + /** + * The expected response type. + * + * @type {('arraybuffer'|'blob'|'document'|'json'|'')} + * @default '' + */ + this.responseType = ''; + + } + + /** + * Starts loading from the given URL and pass the loaded response to the `onLoad()` callback. + * + * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. + * @param {function(any)} onLoad - Executed when the loading process has been finished. + * @param {onProgressCallback} [onProgress] - Executed while the loading is in progress. + * @param {onErrorCallback} [onError] - Executed when errors occur. + * @return {any|undefined} The cached resource if available. + */ + load( url, onLoad, onProgress, onError ) { + + if ( url === undefined ) url = ''; + + if ( this.path !== undefined ) url = this.path + url; + + url = this.manager.resolveURL( url ); + + const cached = Cache.get( url ); + + if ( cached !== undefined ) { + + this.manager.itemStart( url ); + + setTimeout( () => { + + if ( onLoad ) onLoad( cached ); + + this.manager.itemEnd( url ); + + }, 0 ); + + return cached; + + } + + // Check if request is duplicate + + if ( loading[ url ] !== undefined ) { + + loading[ url ].push( { + + onLoad: onLoad, + onProgress: onProgress, + onError: onError + + } ); + + return; + + } + + // Initialise array for duplicate requests + loading[ url ] = []; + + loading[ url ].push( { + onLoad: onLoad, + onProgress: onProgress, + onError: onError, + } ); + + // create request + const req = new Request( url, { + headers: new Headers( this.requestHeader ), + credentials: this.withCredentials ? 'include' : 'same-origin', + // An abort controller could be added within a future PR + } ); + + // record states ( avoid data race ) + const mimeType = this.mimeType; + const responseType = this.responseType; + + // start the fetch + fetch( req ) + .then( response => { + + if ( response.status === 200 || response.status === 0 ) { + + // Some browsers return HTTP Status 0 when using non-http protocol + // e.g. 'file://' or 'data://'. Handle as success. + + if ( response.status === 0 ) { + + console.warn( 'THREE.FileLoader: HTTP Status 0 received.' ); + + } + + // Workaround: Checking if response.body === undefined for Alipay browser #23548 + + if ( typeof ReadableStream === 'undefined' || response.body === undefined || response.body.getReader === undefined ) { + + return response; + + } + + const callbacks = loading[ url ]; + const reader = response.body.getReader(); + + // Nginx needs X-File-Size check + // https://serverfault.com/questions/482875/why-does-nginx-remove-content-length-header-for-chunked-content + const contentLength = response.headers.get( 'X-File-Size' ) || response.headers.get( 'Content-Length' ); + const total = contentLength ? parseInt( contentLength ) : 0; + const lengthComputable = total !== 0; + let loaded = 0; + + // periodically read data into the new stream tracking while download progress + const stream = new ReadableStream( { + start( controller ) { + + readData(); + + function readData() { + + reader.read().then( ( { done, value } ) => { + + if ( done ) { + + controller.close(); + + } else { + + loaded += value.byteLength; + + const event = new ProgressEvent( 'progress', { lengthComputable, loaded, total } ); + for ( let i = 0, il = callbacks.length; i < il; i ++ ) { + + const callback = callbacks[ i ]; + if ( callback.onProgress ) callback.onProgress( event ); + + } + + controller.enqueue( value ); + readData(); + + } + + }, ( e ) => { + + controller.error( e ); + + } ); + + } + + } + + } ); + + return new Response( stream ); + + } else { + + throw new HttpError( `fetch for "${response.url}" responded with ${response.status}: ${response.statusText}`, response ); + + } + + } ) + .then( response => { + + switch ( responseType ) { + + case 'arraybuffer': + + return response.arrayBuffer(); + + case 'blob': + + return response.blob(); + + case 'document': + + return response.text() + .then( text => { + + const parser = new DOMParser(); + return parser.parseFromString( text, mimeType ); + + } ); + + case 'json': + + return response.json(); + + default: + + if ( mimeType === '' ) { + + return response.text(); + + } else { + + // sniff encoding + const re = /charset="?([^;"\s]*)"?/i; + const exec = re.exec( mimeType ); + const label = exec && exec[ 1 ] ? exec[ 1 ].toLowerCase() : undefined; + const decoder = new TextDecoder( label ); + return response.arrayBuffer().then( ab => decoder.decode( ab ) ); + + } + + } + + } ) + .then( data => { + + // Add to cache only on HTTP success, so that we do not cache + // error response bodies as proper responses to requests. + Cache.add( url, data ); + + const callbacks = loading[ url ]; + delete loading[ url ]; + + for ( let i = 0, il = callbacks.length; i < il; i ++ ) { + + const callback = callbacks[ i ]; + if ( callback.onLoad ) callback.onLoad( data ); + + } + + } ) + .catch( err => { + + // Abort errors and other errors are handled the same + + const callbacks = loading[ url ]; + + if ( callbacks === undefined ) { + + // When onLoad was called and url was deleted in `loading` + this.manager.itemError( url ); + throw err; + + } + + delete loading[ url ]; + + for ( let i = 0, il = callbacks.length; i < il; i ++ ) { + + const callback = callbacks[ i ]; + if ( callback.onError ) callback.onError( err ); + + } + + this.manager.itemError( url ); + + } ) + .finally( () => { + + this.manager.itemEnd( url ); + + } ); + + this.manager.itemStart( url ); + + } + + /** + * Sets the expected response type. + * + * @param {('arraybuffer'|'blob'|'document'|'json'|'')} value - The response type. + * @return {FileLoader} A reference to this file loader. + */ + setResponseType( value ) { + + this.responseType = value; + return this; + + } + + /** + * Sets the expected mime type of the loaded file. + * + * @param {string} value - The mime type. + * @return {FileLoader} A reference to this file loader. + */ + setMimeType( value ) { + + this.mimeType = value; + return this; + + } + +} + +/** + * Class for loading animation clips in the JSON format. The files are internally + * loaded via {@link FileLoader}. + * + * ```js + * const loader = new THREE.AnimationLoader(); + * const animations = await loader.loadAsync( 'animations/animation.js' ); + * ``` + * + * @augments Loader + */ +class AnimationLoader extends Loader { + + /** + * Constructs a new animation loader. + * + * @param {LoadingManager} [manager] - The loading manager. + */ + constructor( manager ) { + + super( manager ); + + } + + /** + * Starts loading from the given URL and pass the loaded animations as an array + * holding instances of {@link AnimationClip} to the `onLoad()` callback. + * + * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. + * @param {function(Array)} onLoad - Executed when the loading process has been finished. + * @param {onProgressCallback} onProgress - Executed while the loading is in progress. + * @param {onErrorCallback} onError - Executed when errors occur. + */ + load( url, onLoad, onProgress, onError ) { + + const scope = this; + + const loader = new FileLoader( this.manager ); + loader.setPath( this.path ); + loader.setRequestHeader( this.requestHeader ); + loader.setWithCredentials( this.withCredentials ); + loader.load( url, function ( text ) { + + try { + + onLoad( scope.parse( JSON.parse( text ) ) ); + + } catch ( e ) { + + if ( onError ) { + + onError( e ); + + } else { + + console.error( e ); + + } + + scope.manager.itemError( url ); + + } + + }, onProgress, onError ); + + } + + /** + * Parses the given JSON object and returns an array of animation clips. + * + * @param {Object} json - The serialized animation clips. + * @return {Array} The parsed animation clips. + */ + parse( json ) { + + const animations = []; + + for ( let i = 0; i < json.length; i ++ ) { + + const clip = AnimationClip.parse( json[ i ] ); + + animations.push( clip ); + + } + + return animations; + + } + +} + +/** + * Abstract base class for loading compressed texture formats S3TC, ASTC or ETC. + * Textures are internally loaded via {@link FileLoader}. + * + * Derived classes have to implement the `parse()` method which holds the parsing + * for the respective format. + * + * @abstract + * @augments Loader + */ +class CompressedTextureLoader extends Loader { + + /** + * Constructs a new compressed texture loader. + * + * @param {LoadingManager} [manager] - The loading manager. + */ + constructor( manager ) { + + super( manager ); + + } + + /** + * Starts loading from the given URL and passes the loaded compressed texture + * to the `onLoad()` callback. The method also returns a new texture object which can + * directly be used for material creation. If you do it this way, the texture + * may pop up in your scene once the respective loading process is finished. + * + * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. + * @param {function(CompressedTexture)} onLoad - Executed when the loading process has been finished. + * @param {onProgressCallback} onProgress - Executed while the loading is in progress. + * @param {onErrorCallback} onError - Executed when errors occur. + * @return {CompressedTexture} The compressed texture. + */ + load( url, onLoad, onProgress, onError ) { + + const scope = this; + + const images = []; + + const texture = new CompressedTexture(); + + const loader = new FileLoader( this.manager ); + loader.setPath( this.path ); + loader.setResponseType( 'arraybuffer' ); + loader.setRequestHeader( this.requestHeader ); + loader.setWithCredentials( scope.withCredentials ); + + let loaded = 0; + + function loadTexture( i ) { + + loader.load( url[ i ], function ( buffer ) { + + const texDatas = scope.parse( buffer, true ); + + images[ i ] = { + width: texDatas.width, + height: texDatas.height, + format: texDatas.format, + mipmaps: texDatas.mipmaps + }; + + loaded += 1; + + if ( loaded === 6 ) { + + if ( texDatas.mipmapCount === 1 ) texture.minFilter = LinearFilter; + + texture.image = images; + texture.format = texDatas.format; + texture.needsUpdate = true; + + if ( onLoad ) onLoad( texture ); + + } + + }, onProgress, onError ); + + } + + if ( Array.isArray( url ) ) { + + for ( let i = 0, il = url.length; i < il; ++ i ) { + + loadTexture( i ); + + } + + } else { + + // compressed cubemap texture stored in a single DDS file + + loader.load( url, function ( buffer ) { + + const texDatas = scope.parse( buffer, true ); + + if ( texDatas.isCubemap ) { + + const faces = texDatas.mipmaps.length / texDatas.mipmapCount; + + for ( let f = 0; f < faces; f ++ ) { + + images[ f ] = { mipmaps: [] }; + + for ( let i = 0; i < texDatas.mipmapCount; i ++ ) { + + images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] ); + images[ f ].format = texDatas.format; + images[ f ].width = texDatas.width; + images[ f ].height = texDatas.height; + + } + + } + + texture.image = images; + + } else { + + texture.image.width = texDatas.width; + texture.image.height = texDatas.height; + texture.mipmaps = texDatas.mipmaps; + + } + + if ( texDatas.mipmapCount === 1 ) { + + texture.minFilter = LinearFilter; + + } + + texture.format = texDatas.format; + texture.needsUpdate = true; + + if ( onLoad ) onLoad( texture ); + + }, onProgress, onError ); + + } + + return texture; + + } + +} + +/** + * A loader for loading images. The class loads images with the HTML `Image` API. + * + * ```js + * const loader = new THREE.ImageLoader(); + * const image = await loader.loadAsync( 'image.png' ); + * ``` + * Please note that `ImageLoader` has dropped support for progress + * events in `r84`. For an `ImageLoader` that supports progress events, see + * [this thread]{@link https://github.com/mrdoob/three.js/issues/10439#issuecomment-275785639}. + * + * @augments Loader + */ +class ImageLoader extends Loader { + + /** + * Constructs a new image loader. + * + * @param {LoadingManager} [manager] - The loading manager. + */ + constructor( manager ) { + + super( manager ); + + } + + /** + * Starts loading from the given URL and passes the loaded image + * to the `onLoad()` callback. The method also returns a new `Image` object which can + * directly be used for texture creation. If you do it this way, the texture + * may pop up in your scene once the respective loading process is finished. + * + * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. + * @param {function(Image)} onLoad - Executed when the loading process has been finished. + * @param {onProgressCallback} onProgress - Unsupported in this loader. + * @param {onErrorCallback} onError - Executed when errors occur. + * @return {Image} The image. + */ + load( url, onLoad, onProgress, onError ) { + + if ( this.path !== undefined ) url = this.path + url; + + url = this.manager.resolveURL( url ); + + const scope = this; + + const cached = Cache.get( url ); + + if ( cached !== undefined ) { + + scope.manager.itemStart( url ); + + setTimeout( function () { + + if ( onLoad ) onLoad( cached ); + + scope.manager.itemEnd( url ); + + }, 0 ); + + return cached; + + } + + const image = createElementNS( 'img' ); + + function onImageLoad() { + + removeEventListeners(); + + Cache.add( url, this ); + + if ( onLoad ) onLoad( this ); + + scope.manager.itemEnd( url ); + + } + + function onImageError( event ) { + + removeEventListeners(); + + if ( onError ) onError( event ); + + scope.manager.itemError( url ); + scope.manager.itemEnd( url ); + + } + + function removeEventListeners() { + + image.removeEventListener( 'load', onImageLoad, false ); + image.removeEventListener( 'error', onImageError, false ); + + } + + image.addEventListener( 'load', onImageLoad, false ); + image.addEventListener( 'error', onImageError, false ); + + if ( url.slice( 0, 5 ) !== 'data:' ) { + + if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin; + + } + + scope.manager.itemStart( url ); + + image.src = url; + + return image; + + } + +} + +/** + * Class for loading cube textures. Images are internally loaded via {@link ImageLoader}. + * + * The loader returns an instance of {@link CubeTexture} and expects the cube map to + * be defined as six separate images representing the sides of a cube. Other cube map definitions + * like vertical and horizontal cross, column and row layouts are not supported. + * + * Note that, by convention, cube maps are specified in a coordinate system + * in which positive-x is to the right when looking up the positive-z axis -- + * in other words, using a left-handed coordinate system. Since three.js uses + * a right-handed coordinate system, environment maps used in three.js will + * have pos-x and neg-x swapped. + * + * The loaded cube texture is in sRGB color space. Meaning {@link Texture#colorSpace} + * is set to `SRGBColorSpace` by default. + * + * ```js + * const loader = new THREE.CubeTextureLoader().setPath( 'textures/cubeMaps/' ); + * const cubeTexture = await loader.loadAsync( [ + * 'px.png', 'nx.png', 'py.png', 'ny.png', 'pz.png', 'nz.png' + * ] ); + * scene.background = cubeTexture; + * ``` + * + * @augments Loader + */ +class CubeTextureLoader extends Loader { + + /** + * Constructs a new cube texture loader. + * + * @param {LoadingManager} [manager] - The loading manager. + */ + constructor( manager ) { + + super( manager ); + + } + + /** + * Starts loading from the given URL and pass the fully loaded cube texture + * to the `onLoad()` callback. The method also returns a new cube texture object which can + * directly be used for material creation. If you do it this way, the cube texture + * may pop up in your scene once the respective loading process is finished. + * + * @param {Array} urls - Array of 6 URLs to images, one for each side of the + * cube texture. The urls should be specified in the following order: pos-x, + * neg-x, pos-y, neg-y, pos-z, neg-z. An array of data URIs are allowed as well. + * @param {function(CubeTexture)} onLoad - Executed when the loading process has been finished. + * @param {onProgressCallback} onProgress - Unsupported in this loader. + * @param {onErrorCallback} onError - Executed when errors occur. + * @return {CubeTexture} The cube texture. + */ + load( urls, onLoad, onProgress, onError ) { + + const texture = new CubeTexture(); + texture.colorSpace = SRGBColorSpace; + + const loader = new ImageLoader( this.manager ); + loader.setCrossOrigin( this.crossOrigin ); + loader.setPath( this.path ); + + let loaded = 0; + + function loadTexture( i ) { + + loader.load( urls[ i ], function ( image ) { + + texture.images[ i ] = image; + + loaded ++; + + if ( loaded === 6 ) { + + texture.needsUpdate = true; + + if ( onLoad ) onLoad( texture ); + + } + + }, undefined, onError ); + + } + + for ( let i = 0; i < urls.length; ++ i ) { + + loadTexture( i ); + + } + + return texture; + + } + +} + +/** + * Abstract base class for loading binary texture formats RGBE, EXR or TGA. + * Textures are internally loaded via {@link FileLoader}. + * + * Derived classes have to implement the `parse()` method which holds the parsing + * for the respective format. + * + * @abstract + * @augments Loader + */ +class DataTextureLoader extends Loader { + + /** + * Constructs a new data texture loader. + * + * @param {LoadingManager} [manager] - The loading manager. + */ + constructor( manager ) { + + super( manager ); + + } + + /** + * Starts loading from the given URL and passes the loaded data texture + * to the `onLoad()` callback. The method also returns a new texture object which can + * directly be used for material creation. If you do it this way, the texture + * may pop up in your scene once the respective loading process is finished. + * + * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. + * @param {function(DataTexture)} onLoad - Executed when the loading process has been finished. + * @param {onProgressCallback} onProgress - Executed while the loading is in progress. + * @param {onErrorCallback} onError - Executed when errors occur. + * @return {DataTexture} The data texture. + */ + load( url, onLoad, onProgress, onError ) { + + const scope = this; + + const texture = new DataTexture(); + + const loader = new FileLoader( this.manager ); + loader.setResponseType( 'arraybuffer' ); + loader.setRequestHeader( this.requestHeader ); + loader.setPath( this.path ); + loader.setWithCredentials( scope.withCredentials ); + loader.load( url, function ( buffer ) { + + let texData; + + try { + + texData = scope.parse( buffer ); + + } catch ( error ) { + + if ( onError !== undefined ) { + + onError( error ); + + } else { + + console.error( error ); + return; + + } + + } + + if ( texData.image !== undefined ) { + + texture.image = texData.image; + + } else if ( texData.data !== undefined ) { + + texture.image.width = texData.width; + texture.image.height = texData.height; + texture.image.data = texData.data; + + } + + texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping; + texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping; + + texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter; + texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter; + + texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1; + + if ( texData.colorSpace !== undefined ) { + + texture.colorSpace = texData.colorSpace; + + } + + if ( texData.flipY !== undefined ) { + + texture.flipY = texData.flipY; + + } + + if ( texData.format !== undefined ) { + + texture.format = texData.format; + + } + + if ( texData.type !== undefined ) { + + texture.type = texData.type; + + } + + if ( texData.mipmaps !== undefined ) { + + texture.mipmaps = texData.mipmaps; + texture.minFilter = LinearMipmapLinearFilter; // presumably... + + } + + if ( texData.mipmapCount === 1 ) { + + texture.minFilter = LinearFilter; + + } + + if ( texData.generateMipmaps !== undefined ) { + + texture.generateMipmaps = texData.generateMipmaps; + + } + + texture.needsUpdate = true; + + if ( onLoad ) onLoad( texture, texData ); + + }, onProgress, onError ); + + + return texture; + + } + +} + +/** + * Class for loading textures. Images are internally + * loaded via {@link ImageLoader}. + * + * ```js + * const loader = new THREE.TextureLoader(); + * const texture = await loader.loadAsync( 'textures/land_ocean_ice_cloud_2048.jpg' ); + * + * const material = new THREE.MeshBasicMaterial( { map:texture } ); + * ``` + * Please note that `TextureLoader` has dropped support for progress + * events in `r84`. For a `TextureLoader` that supports progress events, see + * [this thread]{@link https://github.com/mrdoob/three.js/issues/10439#issuecomment-293260145}. + * + * @augments Loader + */ +class TextureLoader extends Loader { + + /** + * Constructs a new texture loader. + * + * @param {LoadingManager} [manager] - The loading manager. + */ + constructor( manager ) { + + super( manager ); + + } + + /** + * Starts loading from the given URL and pass the fully loaded texture + * to the `onLoad()` callback. The method also returns a new texture object which can + * directly be used for material creation. If you do it this way, the texture + * may pop up in your scene once the respective loading process is finished. + * + * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. + * @param {function(Texture)} onLoad - Executed when the loading process has been finished. + * @param {onProgressCallback} onProgress - Unsupported in this loader. + * @param {onErrorCallback} onError - Executed when errors occur. + * @return {Texture} The texture. + */ + load( url, onLoad, onProgress, onError ) { + + const texture = new Texture(); + + const loader = new ImageLoader( this.manager ); + loader.setCrossOrigin( this.crossOrigin ); + loader.setPath( this.path ); + + loader.load( url, function ( image ) { + + texture.image = image; + texture.needsUpdate = true; + + if ( onLoad !== undefined ) { + + onLoad( texture ); + + } + + }, onProgress, onError ); + + return texture; + + } + +} + +/** + * Abstract base class for lights - all other light types inherit the + * properties and methods described here. + * + * @abstract + * @augments Object3D + */ +class Light extends Object3D { + + /** + * Constructs a new light. + * + * @param {(number|Color|string)} [color=0xffffff] - The light's color. + * @param {number} [intensity=1] - The light's strength/intensity. + */ + constructor( color, intensity = 1 ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLight = true; + + this.type = 'Light'; + + /** + * The light's color. + * + * @type {Color} + */ + this.color = new Color( color ); + + /** + * The light's intensity. + * + * @type {number} + * @default 1 + */ + this.intensity = intensity; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + // Empty here in base class; some subclasses override. + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.color.copy( source.color ); + this.intensity = source.intensity; + + return this; + + } + + toJSON( meta ) { + + const data = super.toJSON( meta ); + + data.object.color = this.color.getHex(); + data.object.intensity = this.intensity; + + if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex(); + + if ( this.distance !== undefined ) data.object.distance = this.distance; + if ( this.angle !== undefined ) data.object.angle = this.angle; + if ( this.decay !== undefined ) data.object.decay = this.decay; + if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra; + + if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON(); + if ( this.target !== undefined ) data.object.target = this.target.uuid; + + return data; + + } + +} + +/** + * A light source positioned directly above the scene, with color fading from + * the sky color to the ground color. + * + * This light cannot be used to cast shadows. + * + * ```js + * const light = new THREE.HemisphereLight( 0xffffbb, 0x080820, 1 ); + * scene.add( light ); + * ``` + * + * @augments Light + */ +class HemisphereLight extends Light { + + /** + * Constructs a new hemisphere light. + * + * @param {(number|Color|string)} [skyColor=0xffffff] - The light's sky color. + * @param {(number|Color|string)} [groundColor=0xffffff] - The light's ground color. + * @param {number} [intensity=1] - The light's strength/intensity. + */ + constructor( skyColor, groundColor, intensity ) { + + super( skyColor, intensity ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isHemisphereLight = true; + + this.type = 'HemisphereLight'; + + this.position.copy( Object3D.DEFAULT_UP ); + this.updateMatrix(); + + /** + * The light's ground color. + * + * @type {Color} + */ + this.groundColor = new Color( groundColor ); + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.groundColor.copy( source.groundColor ); + + return this; + + } + +} + +const _projScreenMatrix$1 = /*@__PURE__*/ new Matrix4(); +const _lightPositionWorld$1 = /*@__PURE__*/ new Vector3(); +const _lookTarget$1 = /*@__PURE__*/ new Vector3(); + +/** + * Abstract base class for light shadow classes. These classes + * represent the shadow configuration for different light types. + * + * @abstract + */ +class LightShadow { + + /** + * Constructs a new light shadow. + * + * @param {Camera} camera - The light's view of the world. + */ + constructor( camera ) { + + /** + * The light's view of the world. + * + * @type {Camera} + */ + this.camera = camera; + + /** + * The intensity of the shadow. The default is `1`. + * Valid values are in the range `[0, 1]`. + * + * @type {number} + * @default 1 + */ + this.intensity = 1; + + /** + * Shadow map bias, how much to add or subtract from the normalized depth + * when deciding whether a surface is in shadow. + * + * The default is `0`. Very tiny adjustments here (in the order of `0.0001`) + * may help reduce artifacts in shadows. + * + * @type {number} + * @default 0 + */ + this.bias = 0; + + /** + * Defines how much the position used to query the shadow map is offset along + * the object normal. The default is `0`. Increasing this value can be used to + * reduce shadow acne especially in large scenes where light shines onto + * geometry at a shallow angle. The cost is that shadows may appear distorted. + * + * @type {number} + * @default 0 + */ + this.normalBias = 0; + + /** + * Setting this to values greater than 1 will blur the edges of the shadow. + * High values will cause unwanted banding effects in the shadows - a greater + * map size will allow for a higher value to be used here before these effects + * become visible. + * + * The property has no effect when the shadow map type is `PCFSoftShadowMap` and + * and it is recommended to increase softness by decreasing the shadow map size instead. + * + * The property has no effect when the shadow map type is `BasicShadowMap`. + * + * @type {number} + * @default 1 + */ + this.radius = 1; + + /** + * The amount of samples to use when blurring a VSM shadow map. + * + * @type {number} + * @default 8 + */ + this.blurSamples = 8; + + /** + * Defines the width and height of the shadow map. Higher values give better quality + * shadows at the cost of computation time. Values must be powers of two. + * + * @type {Vector2} + * @default (512,512) + */ + this.mapSize = new Vector2( 512, 512 ); + + /** + * The type of shadow texture. The default is `UnsignedByteType`. + * + * @type {number} + * @default UnsignedByteType + */ + this.mapType = UnsignedByteType; + + /** + * The depth map generated using the internal camera; a location beyond a + * pixel's depth is in shadow. Computed internally during rendering. + * + * @type {?RenderTarget} + * @default null + */ + this.map = null; + + /** + * The distribution map generated using the internal camera; an occlusion is + * calculated based on the distribution of depths. Computed internally during + * rendering. + * + * @type {?RenderTarget} + * @default null + */ + this.mapPass = null; + + /** + * Model to shadow camera space, to compute location and depth in shadow map. + * This is computed internally during rendering. + * + * @type {Matrix4} + */ + this.matrix = new Matrix4(); + + /** + * Enables automatic updates of the light's shadow. If you do not require dynamic + * lighting / shadows, you may set this to `false`. + * + * @type {boolean} + * @default true + */ + this.autoUpdate = true; + + /** + * When set to `true`, shadow maps will be updated in the next `render` call. + * If you have set {@link LightShadow#autoUpdate} to `false`, you will need to + * set this property to `true` and then make a render call to update the light's shadow. + * + * @type {boolean} + * @default false + */ + this.needsUpdate = false; + + this._frustum = new Frustum(); + this._frameExtents = new Vector2( 1, 1 ); + + this._viewportCount = 1; + + this._viewports = [ + + new Vector4( 0, 0, 1, 1 ) + + ]; + + } + + /** + * Used internally by the renderer to get the number of viewports that need + * to be rendered for this shadow. + * + * @return {number} The viewport count. + */ + getViewportCount() { + + return this._viewportCount; + + } + + /** + * Gets the shadow cameras frustum. Used internally by the renderer to cull objects. + * + * @return {Frustum} The shadow camera frustum. + */ + getFrustum() { + + return this._frustum; + + } + + /** + * Update the matrices for the camera and shadow, used internally by the renderer. + * + * @param {Light} light - The light for which the shadow is being rendered. + */ + updateMatrices( light ) { + + const shadowCamera = this.camera; + const shadowMatrix = this.matrix; + + _lightPositionWorld$1.setFromMatrixPosition( light.matrixWorld ); + shadowCamera.position.copy( _lightPositionWorld$1 ); + + _lookTarget$1.setFromMatrixPosition( light.target.matrixWorld ); + shadowCamera.lookAt( _lookTarget$1 ); + shadowCamera.updateMatrixWorld(); + + _projScreenMatrix$1.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); + this._frustum.setFromProjectionMatrix( _projScreenMatrix$1 ); + + shadowMatrix.set( + 0.5, 0.0, 0.0, 0.5, + 0.0, 0.5, 0.0, 0.5, + 0.0, 0.0, 0.5, 0.5, + 0.0, 0.0, 0.0, 1.0 + ); + + shadowMatrix.multiply( _projScreenMatrix$1 ); + + } + + /** + * Returns a viewport definition for the given viewport index. + * + * @param {number} viewportIndex - The viewport index. + * @return {Vector4} The viewport. + */ + getViewport( viewportIndex ) { + + return this._viewports[ viewportIndex ]; + + } + + /** + * Returns the frame extends. + * + * @return {Vector2} The frame extends. + */ + getFrameExtents() { + + return this._frameExtents; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + if ( this.map ) { + + this.map.dispose(); + + } + + if ( this.mapPass ) { + + this.mapPass.dispose(); + + } + + } + + /** + * Copies the values of the given light shadow instance to this instance. + * + * @param {LightShadow} source - The light shadow to copy. + * @return {LightShadow} A reference to this light shadow instance. + */ + copy( source ) { + + this.camera = source.camera.clone(); + + this.intensity = source.intensity; + + this.bias = source.bias; + this.radius = source.radius; + + this.autoUpdate = source.autoUpdate; + this.needsUpdate = source.needsUpdate; + this.normalBias = source.normalBias; + this.blurSamples = source.blurSamples; + + this.mapSize.copy( source.mapSize ); + + return this; + + } + + /** + * Returns a new light shadow instance with copied values from this instance. + * + * @return {LightShadow} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + + /** + * Serializes the light shadow into JSON. + * + * @return {Object} A JSON object representing the serialized light shadow. + * @see {@link ObjectLoader#parse} + */ + toJSON() { + + const object = {}; + + if ( this.intensity !== 1 ) object.intensity = this.intensity; + if ( this.bias !== 0 ) object.bias = this.bias; + if ( this.normalBias !== 0 ) object.normalBias = this.normalBias; + if ( this.radius !== 1 ) object.radius = this.radius; + if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray(); + + object.camera = this.camera.toJSON( false ).object; + delete object.camera.matrix; + + return object; + + } + +} + +/** + * Represents the shadow configuration of directional lights. + * + * @augments LightShadow + */ +class SpotLightShadow extends LightShadow { + + /** + * Constructs a new spot light shadow. + */ + constructor() { + + super( new PerspectiveCamera( 50, 1, 0.5, 500 ) ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSpotLightShadow = true; + + /** + * Used to focus the shadow camera. The camera's field of view is set as a + * percentage of the spotlight's field-of-view. Range is `[0, 1]`. + * + * @type {number} + * @default 1 + */ + this.focus = 1; + + /** + * Texture aspect ratio. + * + * @type {number} + * @default 1 + */ + this.aspect = 1; + + } + + updateMatrices( light ) { + + const camera = this.camera; + + const fov = RAD2DEG * 2 * light.angle * this.focus; + const aspect = ( this.mapSize.width / this.mapSize.height ) * this.aspect; + const far = light.distance || camera.far; + + if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) { + + camera.fov = fov; + camera.aspect = aspect; + camera.far = far; + camera.updateProjectionMatrix(); + + } + + super.updateMatrices( light ); + + } + + copy( source ) { + + super.copy( source ); + + this.focus = source.focus; + + return this; + + } + +} + +/** + * This light gets emitted from a single point in one direction, along a cone + * that increases in size the further from the light it gets. + * + * This light can cast shadows - see the {@link SpotLightShadow} for details. + * + * ```js + * // white spotlight shining from the side, modulated by a texture + * const spotLight = new THREE.SpotLight( 0xffffff ); + * spotLight.position.set( 100, 1000, 100 ); + * spotLight.map = new THREE.TextureLoader().load( url ); + * + * spotLight.castShadow = true; + * spotLight.shadow.mapSize.width = 1024; + * spotLight.shadow.mapSize.height = 1024; + * spotLight.shadow.camera.near = 500; + * spotLight.shadow.camera.far = 4000; + * spotLight.shadow.camera.fov = 30;s + * ``` + * + * @augments Light + */ +class SpotLight extends Light { + + /** + * Constructs a new spot light. + * + * @param {(number|Color|string)} [color=0xffffff] - The light's color. + * @param {number} [intensity=1] - The light's strength/intensity measured in candela (cd). + * @param {number} [distance=0] - Maximum range of the light. `0` means no limit. + * @param {number} [angle=Math.PI/3] - Maximum angle of light dispersion from its direction whose upper bound is `Math.PI/2`. + * @param {number} [penumbra=0] - Percent of the spotlight cone that is attenuated due to penumbra. Value range is `[0,1]`. + * @param {number} [decay=2] - The amount the light dims along the distance of the light. + */ + constructor( color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 2 ) { + + super( color, intensity ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSpotLight = true; + + this.type = 'SpotLight'; + + this.position.copy( Object3D.DEFAULT_UP ); + this.updateMatrix(); + + /** + * The spot light points from its position to the + * target's position. + * + * For the target's position to be changed to anything other + * than the default, it must be added to the scene. + * + * It is also possible to set the target to be another 3D object + * in the scene. The light will now track the target object. + * + * @type {Object3D} + */ + this.target = new Object3D(); + + /** + * Maximum range of the light. `0` means no limit. + * + * @type {number} + * @default 0 + */ + this.distance = distance; + + /** + * Maximum angle of light dispersion from its direction whose upper bound is `Math.PI/2`. + * + * @type {number} + * @default Math.PI/3 + */ + this.angle = angle; + + /** + * Percent of the spotlight cone that is attenuated due to penumbra. + * Value range is `[0,1]`. + * + * @type {number} + * @default 0 + */ + this.penumbra = penumbra; + + /** + * The amount the light dims along the distance of the light. In context of + * physically-correct rendering the default value should not be changed. + * + * @type {number} + * @default 2 + */ + this.decay = decay; + + /** + * A texture used to modulate the color of the light. The spot light + * color is mixed with the RGB value of this texture, with a ratio + * corresponding to its alpha value. The cookie-like masking effect is + * reproduced using pixel values (0, 0, 0, 1-cookie_value). + * + * *Warning*: This property is disabled if {@link Object3D#castShadow} is set to `false`. + * + * @type {?Texture} + * @default null + */ + this.map = null; + + /** + * This property holds the light's shadow configuration. + * + * @type {SpotLightShadow} + */ + this.shadow = new SpotLightShadow(); + + } + + /** + * The light's power. Power is the luminous power of the light measured in lumens (lm). + * Changing the power will also change the light's intensity. + * + * @type {number} + */ + get power() { + + // compute the light's luminous power (in lumens) from its intensity (in candela) + // by convention for a spotlight, luminous power (lm) = π * luminous intensity (cd) + return this.intensity * Math.PI; + + } + + set power( power ) { + + // set the light's intensity (in candela) from the desired luminous power (in lumens) + this.intensity = power / Math.PI; + + } + + dispose() { + + this.shadow.dispose(); + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.distance = source.distance; + this.angle = source.angle; + this.penumbra = source.penumbra; + this.decay = source.decay; + + this.target = source.target.clone(); + + this.shadow = source.shadow.clone(); + + return this; + + } + +} + +const _projScreenMatrix = /*@__PURE__*/ new Matrix4(); +const _lightPositionWorld = /*@__PURE__*/ new Vector3(); +const _lookTarget = /*@__PURE__*/ new Vector3(); + +/** + * Represents the shadow configuration of point lights. + * + * @augments LightShadow + */ +class PointLightShadow extends LightShadow { + + /** + * Constructs a new point light shadow. + */ + constructor() { + + super( new PerspectiveCamera( 90, 1, 0.5, 500 ) ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPointLightShadow = true; + + this._frameExtents = new Vector2( 4, 2 ); + + this._viewportCount = 6; + + this._viewports = [ + // These viewports map a cube-map onto a 2D texture with the + // following orientation: + // + // xzXZ + // y Y + // + // X - Positive x direction + // x - Negative x direction + // Y - Positive y direction + // y - Negative y direction + // Z - Positive z direction + // z - Negative z direction + + // positive X + new Vector4( 2, 1, 1, 1 ), + // negative X + new Vector4( 0, 1, 1, 1 ), + // positive Z + new Vector4( 3, 1, 1, 1 ), + // negative Z + new Vector4( 1, 1, 1, 1 ), + // positive Y + new Vector4( 3, 0, 1, 1 ), + // negative Y + new Vector4( 1, 0, 1, 1 ) + ]; + + this._cubeDirections = [ + new Vector3( 1, 0, 0 ), new Vector3( -1, 0, 0 ), new Vector3( 0, 0, 1 ), + new Vector3( 0, 0, -1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, -1, 0 ) + ]; + + this._cubeUps = [ + new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), + new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, -1 ) + ]; + + } + + /** + * Update the matrices for the camera and shadow, used internally by the renderer. + * + * @param {Light} light - The light for which the shadow is being rendered. + * @param {number} [viewportIndex=0] - The viewport index. + */ + updateMatrices( light, viewportIndex = 0 ) { + + const camera = this.camera; + const shadowMatrix = this.matrix; + + const far = light.distance || camera.far; + + if ( far !== camera.far ) { + + camera.far = far; + camera.updateProjectionMatrix(); + + } + + _lightPositionWorld.setFromMatrixPosition( light.matrixWorld ); + camera.position.copy( _lightPositionWorld ); + + _lookTarget.copy( camera.position ); + _lookTarget.add( this._cubeDirections[ viewportIndex ] ); + camera.up.copy( this._cubeUps[ viewportIndex ] ); + camera.lookAt( _lookTarget ); + camera.updateMatrixWorld(); + + shadowMatrix.makeTranslation( - _lightPositionWorld.x, - _lightPositionWorld.y, - _lightPositionWorld.z ); + + _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); + this._frustum.setFromProjectionMatrix( _projScreenMatrix ); + + } + +} + +/** + * A light that gets emitted from a single point in all directions. A common + * use case for this is to replicate the light emitted from a bare + * lightbulb. + * + * This light can cast shadows - see the {@link PointLightShadow} for details. + * + * ```js + * const light = new THREE.PointLight( 0xff0000, 1, 100 ); + * light.position.set( 50, 50, 50 ); + * scene.add( light ); + * ``` + * + * @augments Light + */ +class PointLight extends Light { + + /** + * Constructs a new point light. + * + * @param {(number|Color|string)} [color=0xffffff] - The light's color. + * @param {number} [intensity=1] - The light's strength/intensity measured in candela (cd). + * @param {number} [distance=0] - Maximum range of the light. `0` means no limit. + * @param {number} [decay=2] - The amount the light dims along the distance of the light. + */ + constructor( color, intensity, distance = 0, decay = 2 ) { + + super( color, intensity ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPointLight = true; + + this.type = 'PointLight'; + + /** + * When distance is zero, light will attenuate according to inverse-square + * law to infinite distance. When distance is non-zero, light will attenuate + * according to inverse-square law until near the distance cutoff, where it + * will then attenuate quickly and smoothly to 0. Inherently, cutoffs are not + * physically correct. + * + * @type {number} + * @default 0 + */ + this.distance = distance; + + /** + * The amount the light dims along the distance of the light. In context of + * physically-correct rendering the default value should not be changed. + * + * @type {number} + * @default 2 + */ + this.decay = decay; + + /** + * This property holds the light's shadow configuration. + * + * @type {PointLightShadow} + */ + this.shadow = new PointLightShadow(); + + } + + /** + * The light's power. Power is the luminous power of the light measured in lumens (lm). + * Changing the power will also change the light's intensity. + * + * @type {number} + */ + get power() { + + // compute the light's luminous power (in lumens) from its intensity (in candela) + // for an isotropic light source, luminous power (lm) = 4 π luminous intensity (cd) + return this.intensity * 4 * Math.PI; + + } + + set power( power ) { + + // set the light's intensity (in candela) from the desired luminous power (in lumens) + this.intensity = power / ( 4 * Math.PI ); + + } + + dispose() { + + this.shadow.dispose(); + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.distance = source.distance; + this.decay = source.decay; + + this.shadow = source.shadow.clone(); + + return this; + + } + +} + +/** + * Camera that uses [orthographic projection]{@link https://en.wikipedia.org/wiki/Orthographic_projection}. + * + * In this projection mode, an object's size in the rendered image stays + * constant regardless of its distance from the camera. This can be useful + * for rendering 2D scenes and UI elements, amongst other things. + * + * ```js + * const camera = new THREE.OrthographicCamera( width / - 2, width / 2, height / 2, height / - 2, 1, 1000 ); + * scene.add( camera ); + * ``` + * + * @augments Camera + */ +class OrthographicCamera extends Camera { + + /** + * Constructs a new orthographic camera. + * + * @param {number} [left=-1] - The left plane of the camera's frustum. + * @param {number} [right=1] - The right plane of the camera's frustum. + * @param {number} [top=1] - The top plane of the camera's frustum. + * @param {number} [bottom=-1] - The bottom plane of the camera's frustum. + * @param {number} [near=0.1] - The camera's near plane. + * @param {number} [far=2000] - The camera's far plane. + */ + constructor( left = -1, right = 1, top = 1, bottom = -1, near = 0.1, far = 2000 ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isOrthographicCamera = true; + + this.type = 'OrthographicCamera'; + + /** + * The zoom factor of the camera. + * + * @type {number} + * @default 1 + */ + this.zoom = 1; + + /** + * Represents the frustum window specification. This property should not be edited + * directly but via {@link PerspectiveCamera#setViewOffset} and {@link PerspectiveCamera#clearViewOffset}. + * + * @type {?Object} + * @default null + */ + this.view = null; + + /** + * The left plane of the camera's frustum. + * + * @type {number} + * @default -1 + */ + this.left = left; + + /** + * The right plane of the camera's frustum. + * + * @type {number} + * @default 1 + */ + this.right = right; + + /** + * The top plane of the camera's frustum. + * + * @type {number} + * @default 1 + */ + this.top = top; + + /** + * The bottom plane of the camera's frustum. + * + * @type {number} + * @default -1 + */ + this.bottom = bottom; + + /** + * The camera's near plane. The valid range is greater than `0` + * and less than the current value of {@link OrthographicCamera#far}. + * + * Note that, unlike for the {@link PerspectiveCamera}, `0` is a + * valid value for an orthographic camera's near plane. + * + * @type {number} + * @default 0.1 + */ + this.near = near; + + /** + * The camera's far plane. Must be greater than the + * current value of {@link OrthographicCamera#near}. + * + * @type {number} + * @default 2000 + */ + this.far = far; + + this.updateProjectionMatrix(); + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.left = source.left; + this.right = source.right; + this.top = source.top; + this.bottom = source.bottom; + this.near = source.near; + this.far = source.far; + + this.zoom = source.zoom; + this.view = source.view === null ? null : Object.assign( {}, source.view ); + + return this; + + } + + /** + * Sets an offset in a larger frustum. This is useful for multi-window or + * multi-monitor/multi-machine setups. + * + * @param {number} fullWidth - The full width of multiview setup. + * @param {number} fullHeight - The full height of multiview setup. + * @param {number} x - The horizontal offset of the subcamera. + * @param {number} y - The vertical offset of the subcamera. + * @param {number} width - The width of subcamera. + * @param {number} height - The height of subcamera. + * @see {@link PerspectiveCamera#setViewOffset} + */ + setViewOffset( fullWidth, fullHeight, x, y, width, height ) { + + if ( this.view === null ) { + + this.view = { + enabled: true, + fullWidth: 1, + fullHeight: 1, + offsetX: 0, + offsetY: 0, + width: 1, + height: 1 + }; + + } + + this.view.enabled = true; + this.view.fullWidth = fullWidth; + this.view.fullHeight = fullHeight; + this.view.offsetX = x; + this.view.offsetY = y; + this.view.width = width; + this.view.height = height; + + this.updateProjectionMatrix(); + + } + + /** + * Removes the view offset from the projection matrix. + */ + clearViewOffset() { + + if ( this.view !== null ) { + + this.view.enabled = false; + + } + + this.updateProjectionMatrix(); + + } + + /** + * Updates the camera's projection matrix. Must be called after any change of + * camera properties. + */ + updateProjectionMatrix() { + + const dx = ( this.right - this.left ) / ( 2 * this.zoom ); + const dy = ( this.top - this.bottom ) / ( 2 * this.zoom ); + const cx = ( this.right + this.left ) / 2; + const cy = ( this.top + this.bottom ) / 2; + + let left = cx - dx; + let right = cx + dx; + let top = cy + dy; + let bottom = cy - dy; + + if ( this.view !== null && this.view.enabled ) { + + const scaleW = ( this.right - this.left ) / this.view.fullWidth / this.zoom; + const scaleH = ( this.top - this.bottom ) / this.view.fullHeight / this.zoom; + + left += scaleW * this.view.offsetX; + right = left + scaleW * this.view.width; + top -= scaleH * this.view.offsetY; + bottom = top - scaleH * this.view.height; + + } + + this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far, this.coordinateSystem ); + + this.projectionMatrixInverse.copy( this.projectionMatrix ).invert(); + + } + + toJSON( meta ) { + + const data = super.toJSON( meta ); + + data.object.zoom = this.zoom; + data.object.left = this.left; + data.object.right = this.right; + data.object.top = this.top; + data.object.bottom = this.bottom; + data.object.near = this.near; + data.object.far = this.far; + + if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); + + return data; + + } + +} + +/** + * Represents the shadow configuration of directional lights. + * + * @augments LightShadow + */ +class DirectionalLightShadow extends LightShadow { + + /** + * Constructs a new directional light shadow. + */ + constructor() { + + super( new OrthographicCamera( -5, 5, 5, -5, 0.5, 500 ) ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isDirectionalLightShadow = true; + + } + +} + +/** + * A light that gets emitted in a specific direction. This light will behave + * as though it is infinitely far away and the rays produced from it are all + * parallel. The common use case for this is to simulate daylight; the sun is + * far enough away that its position can be considered to be infinite, and + * all light rays coming from it are parallel. + * + * A common point of confusion for directional lights is that setting the + * rotation has no effect. This is because three.js's DirectionalLight is the + * equivalent to what is often called a 'Target Direct Light' in other + * applications. + * + * This means that its direction is calculated as pointing from the light's + * {@link Object3D#position} to the {@link DirectionalLight#target} position + * (as opposed to a 'Free Direct Light' that just has a rotation + * component). + * + * This light can cast shadows - see the {@link DirectionalLightShadow} for details. + * + * ```js + * // White directional light at half intensity shining from the top. + * const directionalLight = new THREE.DirectionalLight( 0xffffff, 0.5 ); + * scene.add( directionalLight ); + * ``` + * + * @augments Light + */ +class DirectionalLight extends Light { + + /** + * Constructs a new directional light. + * + * @param {(number|Color|string)} [color=0xffffff] - The light's color. + * @param {number} [intensity=1] - The light's strength/intensity. + */ + constructor( color, intensity ) { + + super( color, intensity ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isDirectionalLight = true; + + this.type = 'DirectionalLight'; + + this.position.copy( Object3D.DEFAULT_UP ); + this.updateMatrix(); + + /** + * The directional light points from its position to the + * target's position. + * + * For the target's position to be changed to anything other + * than the default, it must be added to the scene. + * + * It is also possible to set the target to be another 3D object + * in the scene. The light will now track the target object. + * + * @type {Object3D} + */ + this.target = new Object3D(); + + /** + * This property holds the light's shadow configuration. + * + * @type {DirectionalLightShadow} + */ + this.shadow = new DirectionalLightShadow(); + + } + + dispose() { + + this.shadow.dispose(); + + } + + copy( source ) { + + super.copy( source ); + + this.target = source.target.clone(); + this.shadow = source.shadow.clone(); + + return this; + + } + +} + +/** + * This light globally illuminates all objects in the scene equally. + * + * It cannot be used to cast shadows as it does not have a direction. + * + * ```js + * const light = new THREE.AmbientLight( 0x404040 ); // soft white light + * scene.add( light ); + * ``` + * + * @augments Light + */ +class AmbientLight extends Light { + + /** + * Constructs a new ambient light. + * + * @param {(number|Color|string)} [color=0xffffff] - The light's color. + * @param {number} [intensity=1] - The light's strength/intensity. + */ + constructor( color, intensity ) { + + super( color, intensity ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isAmbientLight = true; + + this.type = 'AmbientLight'; + + } + +} + +/** + * This class emits light uniformly across the face a rectangular plane. + * This light type can be used to simulate light sources such as bright + * windows or strip lighting. + * + * Important Notes: + * + * - There is no shadow support. + * - Only PBR materials are supported. + * - You have to include `RectAreaLightUniformsLib` (`WebGLRenderer`) or `RectAreaLightTexturesLib` (`WebGPURenderer`) + * into your app and init the uniforms/textures. + * + * ```js + * RectAreaLightUniformsLib.init(); // only relevant for WebGLRenderer + * THREE.RectAreaLightNode.setLTC( RectAreaLightTexturesLib.init() ); // only relevant for WebGPURenderer + * + * const intensity = 1; const width = 10; const height = 10; + * const rectLight = new THREE.RectAreaLight( 0xffffff, intensity, width, height ); + * rectLight.position.set( 5, 5, 0 ); + * rectLight.lookAt( 0, 0, 0 ); + * scene.add( rectLight ) + * ``` + * + * @augments Light + */ +class RectAreaLight extends Light { + + /** + * Constructs a new area light. + * + * @param {(number|Color|string)} [color=0xffffff] - The light's color. + * @param {number} [intensity=1] - The light's strength/intensity. + * @param {number} [width=10] - The width of the light. + * @param {number} [height=10] - The height of the light. + */ + constructor( color, intensity, width = 10, height = 10 ) { + + super( color, intensity ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isRectAreaLight = true; + + this.type = 'RectAreaLight'; + + /** + * The width of the light. + * + * @type {number} + * @default 10 + */ + this.width = width; + + /** + * The height of the light. + * + * @type {number} + * @default 10 + */ + this.height = height; + + } + + /** + * The light's power. Power is the luminous power of the light measured in lumens (lm). + * Changing the power will also change the light's intensity. + * + * @type {number} + */ + get power() { + + // compute the light's luminous power (in lumens) from its intensity (in nits) + return this.intensity * this.width * this.height * Math.PI; + + } + + set power( power ) { + + // set the light's intensity (in nits) from the desired luminous power (in lumens) + this.intensity = power / ( this.width * this.height * Math.PI ); + + } + + copy( source ) { + + super.copy( source ); + + this.width = source.width; + this.height = source.height; + + return this; + + } + + toJSON( meta ) { + + const data = super.toJSON( meta ); + + data.object.width = this.width; + data.object.height = this.height; + + return data; + + } + +} + +/** + * Represents a third-order spherical harmonics (SH). Light probes use this class + * to encode lighting information. + * + * - Primary reference: {@link https://graphics.stanford.edu/papers/envmap/envmap.pdf} + * - Secondary reference: {@link https://www.ppsloan.org/publications/StupidSH36.pdf} + */ +class SphericalHarmonics3 { + + /** + * Constructs a new spherical harmonics. + */ + constructor() { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSphericalHarmonics3 = true; + + /** + * An array holding the (9) SH coefficients. + * + * @type {Array} + */ + this.coefficients = []; + + for ( let i = 0; i < 9; i ++ ) { + + this.coefficients.push( new Vector3() ); + + } + + } + + /** + * Sets the given SH coefficients to this instance by copying + * the values. + * + * @param {Array} coefficients - The SH coefficients. + * @return {SphericalHarmonics3} A reference to this spherical harmonics. + */ + set( coefficients ) { + + for ( let i = 0; i < 9; i ++ ) { + + this.coefficients[ i ].copy( coefficients[ i ] ); + + } + + return this; + + } + + /** + * Sets all SH coefficients to `0`. + * + * @return {SphericalHarmonics3} A reference to this spherical harmonics. + */ + zero() { + + for ( let i = 0; i < 9; i ++ ) { + + this.coefficients[ i ].set( 0, 0, 0 ); + + } + + return this; + + } + + /** + * Returns the radiance in the direction of the given normal. + * + * @param {Vector3} normal - The normal vector (assumed to be unit length) + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The radiance. + */ + getAt( normal, target ) { + + // normal is assumed to be unit length + + const x = normal.x, y = normal.y, z = normal.z; + + const coeff = this.coefficients; + + // band 0 + target.copy( coeff[ 0 ] ).multiplyScalar( 0.282095 ); + + // band 1 + target.addScaledVector( coeff[ 1 ], 0.488603 * y ); + target.addScaledVector( coeff[ 2 ], 0.488603 * z ); + target.addScaledVector( coeff[ 3 ], 0.488603 * x ); + + // band 2 + target.addScaledVector( coeff[ 4 ], 1.092548 * ( x * y ) ); + target.addScaledVector( coeff[ 5 ], 1.092548 * ( y * z ) ); + target.addScaledVector( coeff[ 6 ], 0.315392 * ( 3.0 * z * z - 1.0 ) ); + target.addScaledVector( coeff[ 7 ], 1.092548 * ( x * z ) ); + target.addScaledVector( coeff[ 8 ], 0.546274 * ( x * x - y * y ) ); + + return target; + + } + + /** + * Returns the irradiance (radiance convolved with cosine lobe) in the + * direction of the given normal. + * + * @param {Vector3} normal - The normal vector (assumed to be unit length) + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The irradiance. + */ + getIrradianceAt( normal, target ) { + + // normal is assumed to be unit length + + const x = normal.x, y = normal.y, z = normal.z; + + const coeff = this.coefficients; + + // band 0 + target.copy( coeff[ 0 ] ).multiplyScalar( 0.886227 ); // π * 0.282095 + + // band 1 + target.addScaledVector( coeff[ 1 ], 2.0 * 0.511664 * y ); // ( 2 * π / 3 ) * 0.488603 + target.addScaledVector( coeff[ 2 ], 2.0 * 0.511664 * z ); + target.addScaledVector( coeff[ 3 ], 2.0 * 0.511664 * x ); + + // band 2 + target.addScaledVector( coeff[ 4 ], 2.0 * 0.429043 * x * y ); // ( π / 4 ) * 1.092548 + target.addScaledVector( coeff[ 5 ], 2.0 * 0.429043 * y * z ); + target.addScaledVector( coeff[ 6 ], 0.743125 * z * z - 0.247708 ); // ( π / 4 ) * 0.315392 * 3 + target.addScaledVector( coeff[ 7 ], 2.0 * 0.429043 * x * z ); + target.addScaledVector( coeff[ 8 ], 0.429043 * ( x * x - y * y ) ); // ( π / 4 ) * 0.546274 + + return target; + + } + + /** + * Adds the given SH to this instance. + * + * @param {SphericalHarmonics3} sh - The SH to add. + * @return {SphericalHarmonics3} A reference to this spherical harmonics. + */ + add( sh ) { + + for ( let i = 0; i < 9; i ++ ) { + + this.coefficients[ i ].add( sh.coefficients[ i ] ); + + } + + return this; + + } + + /** + * A convenience method for performing {@link SphericalHarmonics3#add} and + * {@link SphericalHarmonics3#scale} at once. + * + * @param {SphericalHarmonics3} sh - The SH to add. + * @param {number} s - The scale factor. + * @return {SphericalHarmonics3} A reference to this spherical harmonics. + */ + addScaledSH( sh, s ) { + + for ( let i = 0; i < 9; i ++ ) { + + this.coefficients[ i ].addScaledVector( sh.coefficients[ i ], s ); + + } + + return this; + + } + + /** + * Scales this SH by the given scale factor. + * + * @param {number} s - The scale factor. + * @return {SphericalHarmonics3} A reference to this spherical harmonics. + */ + scale( s ) { + + for ( let i = 0; i < 9; i ++ ) { + + this.coefficients[ i ].multiplyScalar( s ); + + } + + return this; + + } + + /** + * Linear interpolates between the given SH and this instance by the given + * alpha factor. + * + * @param {SphericalHarmonics3} sh - The SH to interpolate with. + * @param {number} alpha - The alpha factor. + * @return {SphericalHarmonics3} A reference to this spherical harmonics. + */ + lerp( sh, alpha ) { + + for ( let i = 0; i < 9; i ++ ) { + + this.coefficients[ i ].lerp( sh.coefficients[ i ], alpha ); + + } + + return this; + + } + + /** + * Returns `true` if this spherical harmonics is equal with the given one. + * + * @param {SphericalHarmonics3} sh - The spherical harmonics to test for equality. + * @return {boolean} Whether this spherical harmonics is equal with the given one. + */ + equals( sh ) { + + for ( let i = 0; i < 9; i ++ ) { + + if ( ! this.coefficients[ i ].equals( sh.coefficients[ i ] ) ) { + + return false; + + } + + } + + return true; + + } + + /** + * Copies the values of the given spherical harmonics to this instance. + * + * @param {SphericalHarmonics3} sh - The spherical harmonics to copy. + * @return {SphericalHarmonics3} A reference to this spherical harmonics. + */ + copy( sh ) { + + return this.set( sh.coefficients ); + + } + + /** + * Returns a new spherical harmonics with copied values from this instance. + * + * @return {SphericalHarmonics3} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + + /** + * Sets the SH coefficients of this instance from the given array. + * + * @param {Array} array - An array holding the SH coefficients. + * @param {number} [offset=0] - The array offset where to start copying. + * @return {SphericalHarmonics3} A clone of this instance. + */ + fromArray( array, offset = 0 ) { + + const coefficients = this.coefficients; + + for ( let i = 0; i < 9; i ++ ) { + + coefficients[ i ].fromArray( array, offset + ( i * 3 ) ); + + } + + return this; + + } + + /** + * Returns an array with the SH coefficients, or copies them into the provided + * array. The coefficients are represented as numbers. + * + * @param {Array} [array=[]] - The target array. + * @param {number} [offset=0] - The array offset where to start copying. + * @return {Array} An array with flat SH coefficients. + */ + toArray( array = [], offset = 0 ) { + + const coefficients = this.coefficients; + + for ( let i = 0; i < 9; i ++ ) { + + coefficients[ i ].toArray( array, offset + ( i * 3 ) ); + + } + + return array; + + } + + /** + * Computes the SH basis for the given normal vector. + * + * @param {Vector3} normal - The normal. + * @param {Array} shBasis - The target array holding the SH basis. + */ + static getBasisAt( normal, shBasis ) { + + // normal is assumed to be unit length + + const x = normal.x, y = normal.y, z = normal.z; + + // band 0 + shBasis[ 0 ] = 0.282095; + + // band 1 + shBasis[ 1 ] = 0.488603 * y; + shBasis[ 2 ] = 0.488603 * z; + shBasis[ 3 ] = 0.488603 * x; + + // band 2 + shBasis[ 4 ] = 1.092548 * x * y; + shBasis[ 5 ] = 1.092548 * y * z; + shBasis[ 6 ] = 0.315392 * ( 3 * z * z - 1 ); + shBasis[ 7 ] = 1.092548 * x * z; + shBasis[ 8 ] = 0.546274 * ( x * x - y * y ); + + } + +} + +/** + * Light probes are an alternative way of adding light to a 3D scene. Unlike + * classical light sources (e.g. directional, point or spot lights), light + * probes do not emit light. Instead they store information about light + * passing through 3D space. During rendering, the light that hits a 3D + * object is approximated by using the data from the light probe. + * + * Light probes are usually created from (radiance) environment maps. The + * class {@link LightProbeGenerator} can be used to create light probes from + * cube textures or render targets. However, light estimation data could also + * be provided in other forms e.g. by WebXR. This enables the rendering of + * augmented reality content that reacts to real world lighting. + * + * The current probe implementation in three.js supports so-called diffuse + * light probes. This type of light probe is functionally equivalent to an + * irradiance environment map. + * + * @augments Light + */ +class LightProbe extends Light { + + /** + * Constructs a new light probe. + * + * @param {SphericalHarmonics3} sh - The spherical harmonics which represents encoded lighting information. + * @param {number} [intensity=1] - The light's strength/intensity. + */ + constructor( sh = new SphericalHarmonics3(), intensity = 1 ) { + + super( undefined, intensity ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLightProbe = true; + + /** + * A light probe uses spherical harmonics to encode lighting information. + * + * @type {SphericalHarmonics3} + */ + this.sh = sh; + + } + + copy( source ) { + + super.copy( source ); + + this.sh.copy( source.sh ); + + return this; + + } + + /** + * Deserializes the light prove from the given JSON. + * + * @param {Object} json - The JSON holding the serialized light probe. + * @return {LightProbe} A reference to this light probe. + */ + fromJSON( json ) { + + this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON(); + this.sh.fromArray( json.sh ); + + return this; + + } + + toJSON( meta ) { + + const data = super.toJSON( meta ); + + data.object.sh = this.sh.toArray(); + + return data; + + } + +} + +/** + * Class for loading geometries. The files are internally + * loaded via {@link FileLoader}. + * + * ```js + * const loader = new THREE.MaterialLoader(); + * const material = await loader.loadAsync( 'material.json' ); + * ``` + * This loader does not support node materials. Use {@link NodeMaterialLoader} instead. + * + * @augments Loader + */ +class MaterialLoader extends Loader { + + /** + * Constructs a new material loader. + * + * @param {LoadingManager} [manager] - The loading manager. + */ + constructor( manager ) { + + super( manager ); + + /** + * A dictionary holding textures used by the material. + * + * @type {Object} + */ + this.textures = {}; + + } + + /** + * Starts loading from the given URL and pass the loaded material to the `onLoad()` callback. + * + * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. + * @param {function(Material)} onLoad - Executed when the loading process has been finished. + * @param {onProgressCallback} onProgress - Executed while the loading is in progress. + * @param {onErrorCallback} onError - Executed when errors occur. + */ + load( url, onLoad, onProgress, onError ) { + + const scope = this; + + const loader = new FileLoader( scope.manager ); + loader.setPath( scope.path ); + loader.setRequestHeader( scope.requestHeader ); + loader.setWithCredentials( scope.withCredentials ); + loader.load( url, function ( text ) { + + try { + + onLoad( scope.parse( JSON.parse( text ) ) ); + + } catch ( e ) { + + if ( onError ) { + + onError( e ); + + } else { + + console.error( e ); + + } + + scope.manager.itemError( url ); + + } + + }, onProgress, onError ); + + } + + /** + * Parses the given JSON object and returns a material. + * + * @param {Object} json - The serialized material. + * @return {Material} The parsed material. + */ + parse( json ) { + + const textures = this.textures; + + function getTexture( name ) { + + if ( textures[ name ] === undefined ) { + + console.warn( 'THREE.MaterialLoader: Undefined texture', name ); + + } + + return textures[ name ]; + + } + + const material = this.createMaterialFromType( json.type ); + + if ( json.uuid !== undefined ) material.uuid = json.uuid; + if ( json.name !== undefined ) material.name = json.name; + if ( json.color !== undefined && material.color !== undefined ) material.color.setHex( json.color ); + if ( json.roughness !== undefined ) material.roughness = json.roughness; + if ( json.metalness !== undefined ) material.metalness = json.metalness; + if ( json.sheen !== undefined ) material.sheen = json.sheen; + if ( json.sheenColor !== undefined ) material.sheenColor = new Color().setHex( json.sheenColor ); + if ( json.sheenRoughness !== undefined ) material.sheenRoughness = json.sheenRoughness; + if ( json.emissive !== undefined && material.emissive !== undefined ) material.emissive.setHex( json.emissive ); + if ( json.specular !== undefined && material.specular !== undefined ) material.specular.setHex( json.specular ); + if ( json.specularIntensity !== undefined ) material.specularIntensity = json.specularIntensity; + if ( json.specularColor !== undefined && material.specularColor !== undefined ) material.specularColor.setHex( json.specularColor ); + if ( json.shininess !== undefined ) material.shininess = json.shininess; + if ( json.clearcoat !== undefined ) material.clearcoat = json.clearcoat; + if ( json.clearcoatRoughness !== undefined ) material.clearcoatRoughness = json.clearcoatRoughness; + if ( json.dispersion !== undefined ) material.dispersion = json.dispersion; + if ( json.iridescence !== undefined ) material.iridescence = json.iridescence; + if ( json.iridescenceIOR !== undefined ) material.iridescenceIOR = json.iridescenceIOR; + if ( json.iridescenceThicknessRange !== undefined ) material.iridescenceThicknessRange = json.iridescenceThicknessRange; + if ( json.transmission !== undefined ) material.transmission = json.transmission; + if ( json.thickness !== undefined ) material.thickness = json.thickness; + if ( json.attenuationDistance !== undefined ) material.attenuationDistance = json.attenuationDistance; + if ( json.attenuationColor !== undefined && material.attenuationColor !== undefined ) material.attenuationColor.setHex( json.attenuationColor ); + if ( json.anisotropy !== undefined ) material.anisotropy = json.anisotropy; + if ( json.anisotropyRotation !== undefined ) material.anisotropyRotation = json.anisotropyRotation; + if ( json.fog !== undefined ) material.fog = json.fog; + if ( json.flatShading !== undefined ) material.flatShading = json.flatShading; + if ( json.blending !== undefined ) material.blending = json.blending; + if ( json.combine !== undefined ) material.combine = json.combine; + if ( json.side !== undefined ) material.side = json.side; + if ( json.shadowSide !== undefined ) material.shadowSide = json.shadowSide; + if ( json.opacity !== undefined ) material.opacity = json.opacity; + if ( json.transparent !== undefined ) material.transparent = json.transparent; + if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest; + if ( json.alphaHash !== undefined ) material.alphaHash = json.alphaHash; + if ( json.depthFunc !== undefined ) material.depthFunc = json.depthFunc; + if ( json.depthTest !== undefined ) material.depthTest = json.depthTest; + if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite; + if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite; + if ( json.blendSrc !== undefined ) material.blendSrc = json.blendSrc; + if ( json.blendDst !== undefined ) material.blendDst = json.blendDst; + if ( json.blendEquation !== undefined ) material.blendEquation = json.blendEquation; + if ( json.blendSrcAlpha !== undefined ) material.blendSrcAlpha = json.blendSrcAlpha; + if ( json.blendDstAlpha !== undefined ) material.blendDstAlpha = json.blendDstAlpha; + if ( json.blendEquationAlpha !== undefined ) material.blendEquationAlpha = json.blendEquationAlpha; + if ( json.blendColor !== undefined && material.blendColor !== undefined ) material.blendColor.setHex( json.blendColor ); + if ( json.blendAlpha !== undefined ) material.blendAlpha = json.blendAlpha; + if ( json.stencilWriteMask !== undefined ) material.stencilWriteMask = json.stencilWriteMask; + if ( json.stencilFunc !== undefined ) material.stencilFunc = json.stencilFunc; + if ( json.stencilRef !== undefined ) material.stencilRef = json.stencilRef; + if ( json.stencilFuncMask !== undefined ) material.stencilFuncMask = json.stencilFuncMask; + if ( json.stencilFail !== undefined ) material.stencilFail = json.stencilFail; + if ( json.stencilZFail !== undefined ) material.stencilZFail = json.stencilZFail; + if ( json.stencilZPass !== undefined ) material.stencilZPass = json.stencilZPass; + if ( json.stencilWrite !== undefined ) material.stencilWrite = json.stencilWrite; + + if ( json.wireframe !== undefined ) material.wireframe = json.wireframe; + if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth; + if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap; + if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin; + + if ( json.rotation !== undefined ) material.rotation = json.rotation; + + if ( json.linewidth !== undefined ) material.linewidth = json.linewidth; + if ( json.dashSize !== undefined ) material.dashSize = json.dashSize; + if ( json.gapSize !== undefined ) material.gapSize = json.gapSize; + if ( json.scale !== undefined ) material.scale = json.scale; + + if ( json.polygonOffset !== undefined ) material.polygonOffset = json.polygonOffset; + if ( json.polygonOffsetFactor !== undefined ) material.polygonOffsetFactor = json.polygonOffsetFactor; + if ( json.polygonOffsetUnits !== undefined ) material.polygonOffsetUnits = json.polygonOffsetUnits; + + if ( json.dithering !== undefined ) material.dithering = json.dithering; + + if ( json.alphaToCoverage !== undefined ) material.alphaToCoverage = json.alphaToCoverage; + if ( json.premultipliedAlpha !== undefined ) material.premultipliedAlpha = json.premultipliedAlpha; + if ( json.forceSinglePass !== undefined ) material.forceSinglePass = json.forceSinglePass; + + if ( json.visible !== undefined ) material.visible = json.visible; + + if ( json.toneMapped !== undefined ) material.toneMapped = json.toneMapped; + + if ( json.userData !== undefined ) material.userData = json.userData; + + if ( json.vertexColors !== undefined ) { + + if ( typeof json.vertexColors === 'number' ) { + + material.vertexColors = ( json.vertexColors > 0 ) ? true : false; + + } else { + + material.vertexColors = json.vertexColors; + + } + + } + + // Shader Material + + if ( json.uniforms !== undefined ) { + + for ( const name in json.uniforms ) { + + const uniform = json.uniforms[ name ]; + + material.uniforms[ name ] = {}; + + switch ( uniform.type ) { + + case 't': + material.uniforms[ name ].value = getTexture( uniform.value ); + break; + + case 'c': + material.uniforms[ name ].value = new Color().setHex( uniform.value ); + break; + + case 'v2': + material.uniforms[ name ].value = new Vector2().fromArray( uniform.value ); + break; + + case 'v3': + material.uniforms[ name ].value = new Vector3().fromArray( uniform.value ); + break; + + case 'v4': + material.uniforms[ name ].value = new Vector4().fromArray( uniform.value ); + break; + + case 'm3': + material.uniforms[ name ].value = new Matrix3().fromArray( uniform.value ); + break; + + case 'm4': + material.uniforms[ name ].value = new Matrix4().fromArray( uniform.value ); + break; + + default: + material.uniforms[ name ].value = uniform.value; + + } + + } + + } + + if ( json.defines !== undefined ) material.defines = json.defines; + if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader; + if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader; + if ( json.glslVersion !== undefined ) material.glslVersion = json.glslVersion; + + if ( json.extensions !== undefined ) { + + for ( const key in json.extensions ) { + + material.extensions[ key ] = json.extensions[ key ]; + + } + + } + + if ( json.lights !== undefined ) material.lights = json.lights; + if ( json.clipping !== undefined ) material.clipping = json.clipping; + + // for PointsMaterial + + if ( json.size !== undefined ) material.size = json.size; + if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation; + + // maps + + if ( json.map !== undefined ) material.map = getTexture( json.map ); + if ( json.matcap !== undefined ) material.matcap = getTexture( json.matcap ); + + if ( json.alphaMap !== undefined ) material.alphaMap = getTexture( json.alphaMap ); + + if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap ); + if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale; + + if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap ); + if ( json.normalMapType !== undefined ) material.normalMapType = json.normalMapType; + if ( json.normalScale !== undefined ) { + + let normalScale = json.normalScale; + + if ( Array.isArray( normalScale ) === false ) { + + // Blender exporter used to export a scalar. See #7459 + + normalScale = [ normalScale, normalScale ]; + + } + + material.normalScale = new Vector2().fromArray( normalScale ); + + } + + if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap ); + if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale; + if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias; + + if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap ); + if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap ); + + if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap ); + if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity; + + if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap ); + if ( json.specularIntensityMap !== undefined ) material.specularIntensityMap = getTexture( json.specularIntensityMap ); + if ( json.specularColorMap !== undefined ) material.specularColorMap = getTexture( json.specularColorMap ); + + if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap ); + if ( json.envMapRotation !== undefined ) material.envMapRotation.fromArray( json.envMapRotation ); + if ( json.envMapIntensity !== undefined ) material.envMapIntensity = json.envMapIntensity; + + if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity; + if ( json.refractionRatio !== undefined ) material.refractionRatio = json.refractionRatio; + + if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap ); + if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity; + + if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap ); + if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity; + + if ( json.gradientMap !== undefined ) material.gradientMap = getTexture( json.gradientMap ); + + if ( json.clearcoatMap !== undefined ) material.clearcoatMap = getTexture( json.clearcoatMap ); + if ( json.clearcoatRoughnessMap !== undefined ) material.clearcoatRoughnessMap = getTexture( json.clearcoatRoughnessMap ); + if ( json.clearcoatNormalMap !== undefined ) material.clearcoatNormalMap = getTexture( json.clearcoatNormalMap ); + if ( json.clearcoatNormalScale !== undefined ) material.clearcoatNormalScale = new Vector2().fromArray( json.clearcoatNormalScale ); + + if ( json.iridescenceMap !== undefined ) material.iridescenceMap = getTexture( json.iridescenceMap ); + if ( json.iridescenceThicknessMap !== undefined ) material.iridescenceThicknessMap = getTexture( json.iridescenceThicknessMap ); + + if ( json.transmissionMap !== undefined ) material.transmissionMap = getTexture( json.transmissionMap ); + if ( json.thicknessMap !== undefined ) material.thicknessMap = getTexture( json.thicknessMap ); + + if ( json.anisotropyMap !== undefined ) material.anisotropyMap = getTexture( json.anisotropyMap ); + + if ( json.sheenColorMap !== undefined ) material.sheenColorMap = getTexture( json.sheenColorMap ); + if ( json.sheenRoughnessMap !== undefined ) material.sheenRoughnessMap = getTexture( json.sheenRoughnessMap ); + + return material; + + } + + /** + * Textures are not embedded in the material JSON so they have + * to be injected before the loading process starts. + * + * @param {Object} value - A dictionary holding textures for material properties. + * @return {MaterialLoader} A reference to this material loader. + */ + setTextures( value ) { + + this.textures = value; + return this; + + } + + /** + * Creates a material for the given type. + * + * @param {string} type - The material type. + * @return {Material} The new material. + */ + createMaterialFromType( type ) { + + return MaterialLoader.createMaterialFromType( type ); + + } + + /** + * Creates a material for the given type. + * + * @static + * @param {string} type - The material type. + * @return {Material} The new material. + */ + static createMaterialFromType( type ) { + + const materialLib = { + ShadowMaterial, + SpriteMaterial, + RawShaderMaterial, + ShaderMaterial, + PointsMaterial, + MeshPhysicalMaterial, + MeshStandardMaterial, + MeshPhongMaterial, + MeshToonMaterial, + MeshNormalMaterial, + MeshLambertMaterial, + MeshDepthMaterial, + MeshDistanceMaterial, + MeshBasicMaterial, + MeshMatcapMaterial, + LineDashedMaterial, + LineBasicMaterial, + Material + }; + + return new materialLib[ type ](); + + } + +} + +/** + * A class with loader utility functions. + */ +class LoaderUtils { + + /** + * Extracts the base URL from the given URL. + * + * @param {string} url -The URL to extract the base URL from. + * @return {string} The extracted base URL. + */ + static extractUrlBase( url ) { + + const index = url.lastIndexOf( '/' ); + + if ( index === -1 ) return './'; + + return url.slice( 0, index + 1 ); + + } + + /** + * Resolves relative URLs against the given path. Absolute paths, data urls, + * and blob URLs will be returned as is. Invalid URLs will return an empty + * string. + * + * @param {string} url -The URL to resolve. + * @param {string} path - The base path for relative URLs to be resolved against. + * @return {string} The resolved URL. + */ + static resolveURL( url, path ) { + + // Invalid URL + if ( typeof url !== 'string' || url === '' ) return ''; + + // Host Relative URL + if ( /^https?:\/\//i.test( path ) && /^\//.test( url ) ) { + + path = path.replace( /(^https?:\/\/[^\/]+).*/i, '$1' ); + + } + + // Absolute URL http://,https://,// + if ( /^(https?:)?\/\//i.test( url ) ) return url; + + // Data URI + if ( /^data:.*,.*$/i.test( url ) ) return url; + + // Blob URL + if ( /^blob:.*$/i.test( url ) ) return url; + + // Relative URL + return path + url; + + } + +} + +/** + * An instanced version of a geometry. + */ +class InstancedBufferGeometry extends BufferGeometry { + + /** + * Constructs a new instanced buffer geometry. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isInstancedBufferGeometry = true; + + this.type = 'InstancedBufferGeometry'; + + /** + * The instance count. + * + * @type {number} + * @default Infinity + */ + this.instanceCount = Infinity; + + } + + copy( source ) { + + super.copy( source ); + + this.instanceCount = source.instanceCount; + + return this; + + } + + toJSON() { + + const data = super.toJSON(); + + data.instanceCount = this.instanceCount; + + data.isInstancedBufferGeometry = true; + + return data; + + } + +} + +/** + * Class for loading geometries. The files are internally + * loaded via {@link FileLoader}. + * + * ```js + * const loader = new THREE.BufferGeometryLoader(); + * const geometry = await loader.loadAsync( 'models/json/pressure.json' ); + * + * const material = new THREE.MeshBasicMaterial( { color: 0xF5F5F5 } ); + * const object = new THREE.Mesh( geometry, material ); + * scene.add( object ); + * ``` + * + * @augments Loader + */ +class BufferGeometryLoader extends Loader { + + /** + * Constructs a new geometry loader. + * + * @param {LoadingManager} [manager] - The loading manager. + */ + constructor( manager ) { + + super( manager ); + + } + + /** + * Starts loading from the given URL and pass the loaded geometry to the `onLoad()` callback. + * + * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. + * @param {function(BufferGeometry)} onLoad - Executed when the loading process has been finished. + * @param {onProgressCallback} onProgress - Executed while the loading is in progress. + * @param {onErrorCallback} onError - Executed when errors occur. + */ + load( url, onLoad, onProgress, onError ) { + + const scope = this; + + const loader = new FileLoader( scope.manager ); + loader.setPath( scope.path ); + loader.setRequestHeader( scope.requestHeader ); + loader.setWithCredentials( scope.withCredentials ); + loader.load( url, function ( text ) { + + try { + + onLoad( scope.parse( JSON.parse( text ) ) ); + + } catch ( e ) { + + if ( onError ) { + + onError( e ); + + } else { + + console.error( e ); + + } + + scope.manager.itemError( url ); + + } + + }, onProgress, onError ); + + } + + /** + * Parses the given JSON object and returns a geometry. + * + * @param {Object} json - The serialized geometry. + * @return {BufferGeometry} The parsed geometry. + */ + parse( json ) { + + const interleavedBufferMap = {}; + const arrayBufferMap = {}; + + function getInterleavedBuffer( json, uuid ) { + + if ( interleavedBufferMap[ uuid ] !== undefined ) return interleavedBufferMap[ uuid ]; + + const interleavedBuffers = json.interleavedBuffers; + const interleavedBuffer = interleavedBuffers[ uuid ]; + + const buffer = getArrayBuffer( json, interleavedBuffer.buffer ); + + const array = getTypedArray( interleavedBuffer.type, buffer ); + const ib = new InterleavedBuffer( array, interleavedBuffer.stride ); + ib.uuid = interleavedBuffer.uuid; + + interleavedBufferMap[ uuid ] = ib; + + return ib; + + } + + function getArrayBuffer( json, uuid ) { + + if ( arrayBufferMap[ uuid ] !== undefined ) return arrayBufferMap[ uuid ]; + + const arrayBuffers = json.arrayBuffers; + const arrayBuffer = arrayBuffers[ uuid ]; + + const ab = new Uint32Array( arrayBuffer ).buffer; + + arrayBufferMap[ uuid ] = ab; + + return ab; + + } + + const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry(); + + const index = json.data.index; + + if ( index !== undefined ) { + + const typedArray = getTypedArray( index.type, index.array ); + geometry.setIndex( new BufferAttribute( typedArray, 1 ) ); + + } + + const attributes = json.data.attributes; + + for ( const key in attributes ) { + + const attribute = attributes[ key ]; + let bufferAttribute; + + if ( attribute.isInterleavedBufferAttribute ) { + + const interleavedBuffer = getInterleavedBuffer( json.data, attribute.data ); + bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized ); + + } else { + + const typedArray = getTypedArray( attribute.type, attribute.array ); + const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute; + bufferAttribute = new bufferAttributeConstr( typedArray, attribute.itemSize, attribute.normalized ); + + } + + if ( attribute.name !== undefined ) bufferAttribute.name = attribute.name; + if ( attribute.usage !== undefined ) bufferAttribute.setUsage( attribute.usage ); + + geometry.setAttribute( key, bufferAttribute ); + + } + + const morphAttributes = json.data.morphAttributes; + + if ( morphAttributes ) { + + for ( const key in morphAttributes ) { + + const attributeArray = morphAttributes[ key ]; + + const array = []; + + for ( let i = 0, il = attributeArray.length; i < il; i ++ ) { + + const attribute = attributeArray[ i ]; + let bufferAttribute; + + if ( attribute.isInterleavedBufferAttribute ) { + + const interleavedBuffer = getInterleavedBuffer( json.data, attribute.data ); + bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized ); + + } else { + + const typedArray = getTypedArray( attribute.type, attribute.array ); + bufferAttribute = new BufferAttribute( typedArray, attribute.itemSize, attribute.normalized ); + + } + + if ( attribute.name !== undefined ) bufferAttribute.name = attribute.name; + array.push( bufferAttribute ); + + } + + geometry.morphAttributes[ key ] = array; + + } + + } + + const morphTargetsRelative = json.data.morphTargetsRelative; + + if ( morphTargetsRelative ) { + + geometry.morphTargetsRelative = true; + + } + + const groups = json.data.groups || json.data.drawcalls || json.data.offsets; + + if ( groups !== undefined ) { + + for ( let i = 0, n = groups.length; i !== n; ++ i ) { + + const group = groups[ i ]; + + geometry.addGroup( group.start, group.count, group.materialIndex ); + + } + + } + + const boundingSphere = json.data.boundingSphere; + + if ( boundingSphere !== undefined ) { + + geometry.boundingSphere = new Sphere().fromJSON( boundingSphere ); + + } + + if ( json.name ) geometry.name = json.name; + if ( json.userData ) geometry.userData = json.userData; + + return geometry; + + } + +} + +/** + * A loader for loading a JSON resource in the [JSON Object/Scene format]{@link https://github.com/mrdoob/three.js/wiki/JSON-Object-Scene-format-4}. + * The files are internally loaded via {@link FileLoader}. + * + * ```js + * const loader = new THREE.ObjectLoader(); + * const obj = await loader.loadAsync( 'models/json/example.json' ); + * scene.add( obj ); + * + * // Alternatively, to parse a previously loaded JSON structure + * const object = await loader.parseAsync( a_json_object ); + * scene.add( object ); + * ``` + * + * @augments Loader + */ +class ObjectLoader extends Loader { + + /** + * Constructs a new object loader. + * + * @param {LoadingManager} [manager] - The loading manager. + */ + constructor( manager ) { + + super( manager ); + + } + + /** + * Starts loading from the given URL and pass the loaded 3D object to the `onLoad()` callback. + * + * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. + * @param {function(Object3D)} onLoad - Executed when the loading process has been finished. + * @param {onProgressCallback} onProgress - Executed while the loading is in progress. + * @param {onErrorCallback} onError - Executed when errors occur. + */ + load( url, onLoad, onProgress, onError ) { + + const scope = this; + + const path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path; + this.resourcePath = this.resourcePath || path; + + const loader = new FileLoader( this.manager ); + loader.setPath( this.path ); + loader.setRequestHeader( this.requestHeader ); + loader.setWithCredentials( this.withCredentials ); + loader.load( url, function ( text ) { + + let json = null; + + try { + + json = JSON.parse( text ); + + } catch ( error ) { + + if ( onError !== undefined ) onError( error ); + + console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message ); + + return; + + } + + const metadata = json.metadata; + + if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) { + + if ( onError !== undefined ) onError( new Error( 'THREE.ObjectLoader: Can\'t load ' + url ) ); + + console.error( 'THREE.ObjectLoader: Can\'t load ' + url ); + return; + + } + + scope.parse( json, onLoad ); + + }, onProgress, onError ); + + } + + /** + * Async version of {@link ObjectLoader#load}. + * + * @async + * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. + * @param {onProgressCallback} onProgress - Executed while the loading is in progress. + * @return {Promise} A Promise that resolves with the loaded 3D object. + */ + async loadAsync( url, onProgress ) { + + const scope = this; + + const path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path; + this.resourcePath = this.resourcePath || path; + + const loader = new FileLoader( this.manager ); + loader.setPath( this.path ); + loader.setRequestHeader( this.requestHeader ); + loader.setWithCredentials( this.withCredentials ); + + const text = await loader.loadAsync( url, onProgress ); + + const json = JSON.parse( text ); + + const metadata = json.metadata; + + if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) { + + throw new Error( 'THREE.ObjectLoader: Can\'t load ' + url ); + + } + + return await scope.parseAsync( json ); + + } + + /** + * Parses the given JSON. This is used internally by {@link ObjectLoader#load} + * but can also be used directly to parse a previously loaded JSON structure. + * + * @param {Object} json - The serialized 3D object. + * @param {onLoad} onLoad - Executed when all resources (e.g. textures) have been fully loaded. + * @return {Object3D} The parsed 3D object. + */ + parse( json, onLoad ) { + + const animations = this.parseAnimations( json.animations ); + const shapes = this.parseShapes( json.shapes ); + const geometries = this.parseGeometries( json.geometries, shapes ); + + const images = this.parseImages( json.images, function () { + + if ( onLoad !== undefined ) onLoad( object ); + + } ); + + const textures = this.parseTextures( json.textures, images ); + const materials = this.parseMaterials( json.materials, textures ); + + const object = this.parseObject( json.object, geometries, materials, textures, animations ); + const skeletons = this.parseSkeletons( json.skeletons, object ); + + this.bindSkeletons( object, skeletons ); + this.bindLightTargets( object ); + + // + + if ( onLoad !== undefined ) { + + let hasImages = false; + + for ( const uuid in images ) { + + if ( images[ uuid ].data instanceof HTMLImageElement ) { + + hasImages = true; + break; + + } + + } + + if ( hasImages === false ) onLoad( object ); + + } + + return object; + + } + + /** + * Async version of {@link ObjectLoader#parse}. + * + * @param {Object} json - The serialized 3D object. + * @return {Promise} A Promise that resolves with the parsed 3D object. + */ + async parseAsync( json ) { + + const animations = this.parseAnimations( json.animations ); + const shapes = this.parseShapes( json.shapes ); + const geometries = this.parseGeometries( json.geometries, shapes ); + + const images = await this.parseImagesAsync( json.images ); + + const textures = this.parseTextures( json.textures, images ); + const materials = this.parseMaterials( json.materials, textures ); + + const object = this.parseObject( json.object, geometries, materials, textures, animations ); + const skeletons = this.parseSkeletons( json.skeletons, object ); + + this.bindSkeletons( object, skeletons ); + this.bindLightTargets( object ); + + return object; + + } + + // internals + + parseShapes( json ) { + + const shapes = {}; + + if ( json !== undefined ) { + + for ( let i = 0, l = json.length; i < l; i ++ ) { + + const shape = new Shape().fromJSON( json[ i ] ); + + shapes[ shape.uuid ] = shape; + + } + + } + + return shapes; + + } + + parseSkeletons( json, object ) { + + const skeletons = {}; + const bones = {}; + + // generate bone lookup table + + object.traverse( function ( child ) { + + if ( child.isBone ) bones[ child.uuid ] = child; + + } ); + + // create skeletons + + if ( json !== undefined ) { + + for ( let i = 0, l = json.length; i < l; i ++ ) { + + const skeleton = new Skeleton().fromJSON( json[ i ], bones ); + + skeletons[ skeleton.uuid ] = skeleton; + + } + + } + + return skeletons; + + } + + parseGeometries( json, shapes ) { + + const geometries = {}; + + if ( json !== undefined ) { + + const bufferGeometryLoader = new BufferGeometryLoader(); + + for ( let i = 0, l = json.length; i < l; i ++ ) { + + let geometry; + const data = json[ i ]; + + switch ( data.type ) { + + case 'BufferGeometry': + case 'InstancedBufferGeometry': + + geometry = bufferGeometryLoader.parse( data ); + break; + + default: + + if ( data.type in Geometries ) { + + geometry = Geometries[ data.type ].fromJSON( data, shapes ); + + } else { + + console.warn( `THREE.ObjectLoader: Unsupported geometry type "${ data.type }"` ); + + } + + } + + geometry.uuid = data.uuid; + + if ( data.name !== undefined ) geometry.name = data.name; + if ( data.userData !== undefined ) geometry.userData = data.userData; + + geometries[ data.uuid ] = geometry; + + } + + } + + return geometries; + + } + + parseMaterials( json, textures ) { + + const cache = {}; // MultiMaterial + const materials = {}; + + if ( json !== undefined ) { + + const loader = new MaterialLoader(); + loader.setTextures( textures ); + + for ( let i = 0, l = json.length; i < l; i ++ ) { + + const data = json[ i ]; + + if ( cache[ data.uuid ] === undefined ) { + + cache[ data.uuid ] = loader.parse( data ); + + } + + materials[ data.uuid ] = cache[ data.uuid ]; + + } + + } + + return materials; + + } + + parseAnimations( json ) { + + const animations = {}; + + if ( json !== undefined ) { + + for ( let i = 0; i < json.length; i ++ ) { + + const data = json[ i ]; + + const clip = AnimationClip.parse( data ); + + animations[ clip.uuid ] = clip; + + } + + } + + return animations; + + } + + parseImages( json, onLoad ) { + + const scope = this; + const images = {}; + + let loader; + + function loadImage( url ) { + + scope.manager.itemStart( url ); + + return loader.load( url, function () { + + scope.manager.itemEnd( url ); + + }, undefined, function () { + + scope.manager.itemError( url ); + scope.manager.itemEnd( url ); + + } ); + + } + + function deserializeImage( image ) { + + if ( typeof image === 'string' ) { + + const url = image; + + const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( url ) ? url : scope.resourcePath + url; + + return loadImage( path ); + + } else { + + if ( image.data ) { + + return { + data: getTypedArray( image.type, image.data ), + width: image.width, + height: image.height + }; + + } else { + + return null; + + } + + } + + } + + if ( json !== undefined && json.length > 0 ) { + + const manager = new LoadingManager( onLoad ); + + loader = new ImageLoader( manager ); + loader.setCrossOrigin( this.crossOrigin ); + + for ( let i = 0, il = json.length; i < il; i ++ ) { + + const image = json[ i ]; + const url = image.url; + + if ( Array.isArray( url ) ) { + + // load array of images e.g CubeTexture + + const imageArray = []; + + for ( let j = 0, jl = url.length; j < jl; j ++ ) { + + const currentUrl = url[ j ]; + + const deserializedImage = deserializeImage( currentUrl ); + + if ( deserializedImage !== null ) { + + if ( deserializedImage instanceof HTMLImageElement ) { + + imageArray.push( deserializedImage ); + + } else { + + // special case: handle array of data textures for cube textures + + imageArray.push( new DataTexture( deserializedImage.data, deserializedImage.width, deserializedImage.height ) ); + + } + + } + + } + + images[ image.uuid ] = new Source( imageArray ); + + } else { + + // load single image + + const deserializedImage = deserializeImage( image.url ); + images[ image.uuid ] = new Source( deserializedImage ); + + + } + + } + + } + + return images; + + } + + async parseImagesAsync( json ) { + + const scope = this; + const images = {}; + + let loader; + + async function deserializeImage( image ) { + + if ( typeof image === 'string' ) { + + const url = image; + + const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( url ) ? url : scope.resourcePath + url; + + return await loader.loadAsync( path ); + + } else { + + if ( image.data ) { + + return { + data: getTypedArray( image.type, image.data ), + width: image.width, + height: image.height + }; + + } else { + + return null; + + } + + } + + } + + if ( json !== undefined && json.length > 0 ) { + + loader = new ImageLoader( this.manager ); + loader.setCrossOrigin( this.crossOrigin ); + + for ( let i = 0, il = json.length; i < il; i ++ ) { + + const image = json[ i ]; + const url = image.url; + + if ( Array.isArray( url ) ) { + + // load array of images e.g CubeTexture + + const imageArray = []; + + for ( let j = 0, jl = url.length; j < jl; j ++ ) { + + const currentUrl = url[ j ]; + + const deserializedImage = await deserializeImage( currentUrl ); + + if ( deserializedImage !== null ) { + + if ( deserializedImage instanceof HTMLImageElement ) { + + imageArray.push( deserializedImage ); + + } else { + + // special case: handle array of data textures for cube textures + + imageArray.push( new DataTexture( deserializedImage.data, deserializedImage.width, deserializedImage.height ) ); + + } + + } + + } + + images[ image.uuid ] = new Source( imageArray ); + + } else { + + // load single image + + const deserializedImage = await deserializeImage( image.url ); + images[ image.uuid ] = new Source( deserializedImage ); + + } + + } + + } + + return images; + + } + + parseTextures( json, images ) { + + function parseConstant( value, type ) { + + if ( typeof value === 'number' ) return value; + + console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value ); + + return type[ value ]; + + } + + const textures = {}; + + if ( json !== undefined ) { + + for ( let i = 0, l = json.length; i < l; i ++ ) { + + const data = json[ i ]; + + if ( data.image === undefined ) { + + console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid ); + + } + + if ( images[ data.image ] === undefined ) { + + console.warn( 'THREE.ObjectLoader: Undefined image', data.image ); + + } + + const source = images[ data.image ]; + const image = source.data; + + let texture; + + if ( Array.isArray( image ) ) { + + texture = new CubeTexture(); + + if ( image.length === 6 ) texture.needsUpdate = true; + + } else { + + if ( image && image.data ) { + + texture = new DataTexture(); + + } else { + + texture = new Texture(); + + } + + if ( image ) texture.needsUpdate = true; // textures can have undefined image data + + } + + texture.source = source; + + texture.uuid = data.uuid; + + if ( data.name !== undefined ) texture.name = data.name; + + if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING ); + if ( data.channel !== undefined ) texture.channel = data.channel; + + if ( data.offset !== undefined ) texture.offset.fromArray( data.offset ); + if ( data.repeat !== undefined ) texture.repeat.fromArray( data.repeat ); + if ( data.center !== undefined ) texture.center.fromArray( data.center ); + if ( data.rotation !== undefined ) texture.rotation = data.rotation; + + if ( data.wrap !== undefined ) { + + texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING ); + texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING ); + + } + + if ( data.format !== undefined ) texture.format = data.format; + if ( data.internalFormat !== undefined ) texture.internalFormat = data.internalFormat; + if ( data.type !== undefined ) texture.type = data.type; + if ( data.colorSpace !== undefined ) texture.colorSpace = data.colorSpace; + + if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER ); + if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER ); + if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy; + + if ( data.flipY !== undefined ) texture.flipY = data.flipY; + + if ( data.generateMipmaps !== undefined ) texture.generateMipmaps = data.generateMipmaps; + if ( data.premultiplyAlpha !== undefined ) texture.premultiplyAlpha = data.premultiplyAlpha; + if ( data.unpackAlignment !== undefined ) texture.unpackAlignment = data.unpackAlignment; + if ( data.compareFunction !== undefined ) texture.compareFunction = data.compareFunction; + + if ( data.userData !== undefined ) texture.userData = data.userData; + + textures[ data.uuid ] = texture; + + } + + } + + return textures; + + } + + parseObject( data, geometries, materials, textures, animations ) { + + let object; + + function getGeometry( name ) { + + if ( geometries[ name ] === undefined ) { + + console.warn( 'THREE.ObjectLoader: Undefined geometry', name ); + + } + + return geometries[ name ]; + + } + + function getMaterial( name ) { + + if ( name === undefined ) return undefined; + + if ( Array.isArray( name ) ) { + + const array = []; + + for ( let i = 0, l = name.length; i < l; i ++ ) { + + const uuid = name[ i ]; + + if ( materials[ uuid ] === undefined ) { + + console.warn( 'THREE.ObjectLoader: Undefined material', uuid ); + + } + + array.push( materials[ uuid ] ); + + } + + return array; + + } + + if ( materials[ name ] === undefined ) { + + console.warn( 'THREE.ObjectLoader: Undefined material', name ); + + } + + return materials[ name ]; + + } + + function getTexture( uuid ) { + + if ( textures[ uuid ] === undefined ) { + + console.warn( 'THREE.ObjectLoader: Undefined texture', uuid ); + + } + + return textures[ uuid ]; + + } + + let geometry, material; + + switch ( data.type ) { + + case 'Scene': + + object = new Scene(); + + if ( data.background !== undefined ) { + + if ( Number.isInteger( data.background ) ) { + + object.background = new Color( data.background ); + + } else { + + object.background = getTexture( data.background ); + + } + + } + + if ( data.environment !== undefined ) { + + object.environment = getTexture( data.environment ); + + } + + if ( data.fog !== undefined ) { + + if ( data.fog.type === 'Fog' ) { + + object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far ); + + } else if ( data.fog.type === 'FogExp2' ) { + + object.fog = new FogExp2( data.fog.color, data.fog.density ); + + } + + if ( data.fog.name !== '' ) { + + object.fog.name = data.fog.name; + + } + + } + + if ( data.backgroundBlurriness !== undefined ) object.backgroundBlurriness = data.backgroundBlurriness; + if ( data.backgroundIntensity !== undefined ) object.backgroundIntensity = data.backgroundIntensity; + if ( data.backgroundRotation !== undefined ) object.backgroundRotation.fromArray( data.backgroundRotation ); + + if ( data.environmentIntensity !== undefined ) object.environmentIntensity = data.environmentIntensity; + if ( data.environmentRotation !== undefined ) object.environmentRotation.fromArray( data.environmentRotation ); + + break; + + case 'PerspectiveCamera': + + object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far ); + + if ( data.focus !== undefined ) object.focus = data.focus; + if ( data.zoom !== undefined ) object.zoom = data.zoom; + if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge; + if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset; + if ( data.view !== undefined ) object.view = Object.assign( {}, data.view ); + + break; + + case 'OrthographicCamera': + + object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far ); + + if ( data.zoom !== undefined ) object.zoom = data.zoom; + if ( data.view !== undefined ) object.view = Object.assign( {}, data.view ); + + break; + + case 'AmbientLight': + + object = new AmbientLight( data.color, data.intensity ); + + break; + + case 'DirectionalLight': + + object = new DirectionalLight( data.color, data.intensity ); + object.target = data.target || ''; + + break; + + case 'PointLight': + + object = new PointLight( data.color, data.intensity, data.distance, data.decay ); + + break; + + case 'RectAreaLight': + + object = new RectAreaLight( data.color, data.intensity, data.width, data.height ); + + break; + + case 'SpotLight': + + object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay ); + object.target = data.target || ''; + + break; + + case 'HemisphereLight': + + object = new HemisphereLight( data.color, data.groundColor, data.intensity ); + + break; + + case 'LightProbe': + + object = new LightProbe().fromJSON( data ); + + break; + + case 'SkinnedMesh': + + geometry = getGeometry( data.geometry ); + material = getMaterial( data.material ); + + object = new SkinnedMesh( geometry, material ); + + if ( data.bindMode !== undefined ) object.bindMode = data.bindMode; + if ( data.bindMatrix !== undefined ) object.bindMatrix.fromArray( data.bindMatrix ); + if ( data.skeleton !== undefined ) object.skeleton = data.skeleton; + + break; + + case 'Mesh': + + geometry = getGeometry( data.geometry ); + material = getMaterial( data.material ); + + object = new Mesh( geometry, material ); + + break; + + case 'InstancedMesh': + + geometry = getGeometry( data.geometry ); + material = getMaterial( data.material ); + const count = data.count; + const instanceMatrix = data.instanceMatrix; + const instanceColor = data.instanceColor; + + object = new InstancedMesh( geometry, material, count ); + object.instanceMatrix = new InstancedBufferAttribute( new Float32Array( instanceMatrix.array ), 16 ); + if ( instanceColor !== undefined ) object.instanceColor = new InstancedBufferAttribute( new Float32Array( instanceColor.array ), instanceColor.itemSize ); + + break; + + case 'BatchedMesh': + + geometry = getGeometry( data.geometry ); + material = getMaterial( data.material ); + + object = new BatchedMesh( data.maxInstanceCount, data.maxVertexCount, data.maxIndexCount, material ); + object.geometry = geometry; + object.perObjectFrustumCulled = data.perObjectFrustumCulled; + object.sortObjects = data.sortObjects; + + object._drawRanges = data.drawRanges; + object._reservedRanges = data.reservedRanges; + + object._geometryInfo = data.geometryInfo.map( info => { + + let box = null; + let sphere = null; + if ( info.boundingBox !== undefined ) { + + box = new Box3().fromJSON( info.boundingBox ); + + } + + if ( info.boundingSphere !== undefined ) { + + sphere = new Sphere().fromJSON( info.boundingSphere ); + + } + + return { + ...info, + boundingBox: box, + boundingSphere: sphere + }; + + } ); + object._instanceInfo = data.instanceInfo; + + object._availableInstanceIds = data._availableInstanceIds; + object._availableGeometryIds = data._availableGeometryIds; + + object._nextIndexStart = data.nextIndexStart; + object._nextVertexStart = data.nextVertexStart; + object._geometryCount = data.geometryCount; + + object._maxInstanceCount = data.maxInstanceCount; + object._maxVertexCount = data.maxVertexCount; + object._maxIndexCount = data.maxIndexCount; + + object._geometryInitialized = data.geometryInitialized; + + object._matricesTexture = getTexture( data.matricesTexture.uuid ); + + object._indirectTexture = getTexture( data.indirectTexture.uuid ); + + if ( data.colorsTexture !== undefined ) { + + object._colorsTexture = getTexture( data.colorsTexture.uuid ); + + } + + if ( data.boundingSphere !== undefined ) { + + object.boundingSphere = new Sphere().fromJSON( data.boundingSphere ); + + } + + if ( data.boundingBox !== undefined ) { + + object.boundingBox = new Box3().fromJSON( data.boundingBox ); + + } + + break; + + case 'LOD': + + object = new LOD(); + + break; + + case 'Line': + + object = new Line( getGeometry( data.geometry ), getMaterial( data.material ) ); + + break; + + case 'LineLoop': + + object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) ); + + break; + + case 'LineSegments': + + object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) ); + + break; + + case 'PointCloud': + case 'Points': + + object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) ); + + break; + + case 'Sprite': + + object = new Sprite( getMaterial( data.material ) ); + + break; + + case 'Group': + + object = new Group(); + + break; + + case 'Bone': + + object = new Bone(); + + break; + + default: + + object = new Object3D(); + + } + + object.uuid = data.uuid; + + if ( data.name !== undefined ) object.name = data.name; + + if ( data.matrix !== undefined ) { + + object.matrix.fromArray( data.matrix ); + + if ( data.matrixAutoUpdate !== undefined ) object.matrixAutoUpdate = data.matrixAutoUpdate; + if ( object.matrixAutoUpdate ) object.matrix.decompose( object.position, object.quaternion, object.scale ); + + } else { + + if ( data.position !== undefined ) object.position.fromArray( data.position ); + if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation ); + if ( data.quaternion !== undefined ) object.quaternion.fromArray( data.quaternion ); + if ( data.scale !== undefined ) object.scale.fromArray( data.scale ); + + } + + if ( data.up !== undefined ) object.up.fromArray( data.up ); + + if ( data.castShadow !== undefined ) object.castShadow = data.castShadow; + if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow; + + if ( data.shadow ) { + + if ( data.shadow.intensity !== undefined ) object.shadow.intensity = data.shadow.intensity; + if ( data.shadow.bias !== undefined ) object.shadow.bias = data.shadow.bias; + if ( data.shadow.normalBias !== undefined ) object.shadow.normalBias = data.shadow.normalBias; + if ( data.shadow.radius !== undefined ) object.shadow.radius = data.shadow.radius; + if ( data.shadow.mapSize !== undefined ) object.shadow.mapSize.fromArray( data.shadow.mapSize ); + if ( data.shadow.camera !== undefined ) object.shadow.camera = this.parseObject( data.shadow.camera ); + + } + + if ( data.visible !== undefined ) object.visible = data.visible; + if ( data.frustumCulled !== undefined ) object.frustumCulled = data.frustumCulled; + if ( data.renderOrder !== undefined ) object.renderOrder = data.renderOrder; + if ( data.userData !== undefined ) object.userData = data.userData; + if ( data.layers !== undefined ) object.layers.mask = data.layers; + + if ( data.children !== undefined ) { + + const children = data.children; + + for ( let i = 0; i < children.length; i ++ ) { + + object.add( this.parseObject( children[ i ], geometries, materials, textures, animations ) ); + + } + + } + + if ( data.animations !== undefined ) { + + const objectAnimations = data.animations; + + for ( let i = 0; i < objectAnimations.length; i ++ ) { + + const uuid = objectAnimations[ i ]; + + object.animations.push( animations[ uuid ] ); + + } + + } + + if ( data.type === 'LOD' ) { + + if ( data.autoUpdate !== undefined ) object.autoUpdate = data.autoUpdate; + + const levels = data.levels; + + for ( let l = 0; l < levels.length; l ++ ) { + + const level = levels[ l ]; + const child = object.getObjectByProperty( 'uuid', level.object ); + + if ( child !== undefined ) { + + object.addLevel( child, level.distance, level.hysteresis ); + + } + + } + + } + + return object; + + } + + bindSkeletons( object, skeletons ) { + + if ( Object.keys( skeletons ).length === 0 ) return; + + object.traverse( function ( child ) { + + if ( child.isSkinnedMesh === true && child.skeleton !== undefined ) { + + const skeleton = skeletons[ child.skeleton ]; + + if ( skeleton === undefined ) { + + console.warn( 'THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton ); + + } else { + + child.bind( skeleton, child.bindMatrix ); + + } + + } + + } ); + + } + + bindLightTargets( object ) { + + object.traverse( function ( child ) { + + if ( child.isDirectionalLight || child.isSpotLight ) { + + const uuid = child.target; + + const target = object.getObjectByProperty( 'uuid', uuid ); + + if ( target !== undefined ) { + + child.target = target; + + } else { + + child.target = new Object3D(); + + } + + } + + } ); + + } + +} + +const TEXTURE_MAPPING = { + UVMapping: UVMapping, + CubeReflectionMapping: CubeReflectionMapping, + CubeRefractionMapping: CubeRefractionMapping, + EquirectangularReflectionMapping: EquirectangularReflectionMapping, + EquirectangularRefractionMapping: EquirectangularRefractionMapping, + CubeUVReflectionMapping: CubeUVReflectionMapping +}; + +const TEXTURE_WRAPPING = { + RepeatWrapping: RepeatWrapping, + ClampToEdgeWrapping: ClampToEdgeWrapping, + MirroredRepeatWrapping: MirroredRepeatWrapping +}; + +const TEXTURE_FILTER = { + NearestFilter: NearestFilter, + NearestMipmapNearestFilter: NearestMipmapNearestFilter, + NearestMipmapLinearFilter: NearestMipmapLinearFilter, + LinearFilter: LinearFilter, + LinearMipmapNearestFilter: LinearMipmapNearestFilter, + LinearMipmapLinearFilter: LinearMipmapLinearFilter +}; + +const _errorMap = new WeakMap(); + +/** + * A loader for loading images as an [ImageBitmap]{@link https://developer.mozilla.org/en-US/docs/Web/API/ImageBitmap}. + * An `ImageBitmap` provides an asynchronous and resource efficient pathway to prepare + * textures for rendering. + * + * Note that {@link Texture#flipY} and {@link Texture#premultiplyAlpha} are ignored with image bitmaps. + * They needs these configuration on bitmap creation unlike regular images need them on uploading to GPU. + * + * You need to set the equivalent options via {@link ImageBitmapLoader#setOptions} instead. + * + * Also note that unlike {@link FileLoader}, this loader avoids multiple concurrent requests to the same URL only if `Cache` is enabled. + * + * ```js + * const loader = new THREE.ImageBitmapLoader(); + * loader.setOptions( { imageOrientation: 'flipY' } ); // set options if needed + * const imageBitmap = await loader.loadAsync( 'image.png' ); + * + * const texture = new THREE.Texture( imageBitmap ); + * texture.needsUpdate = true; + * ``` + * + * @augments Loader + */ +class ImageBitmapLoader extends Loader { + + /** + * Constructs a new image bitmap loader. + * + * @param {LoadingManager} [manager] - The loading manager. + */ + constructor( manager ) { + + super( manager ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isImageBitmapLoader = true; + + if ( typeof createImageBitmap === 'undefined' ) { + + console.warn( 'THREE.ImageBitmapLoader: createImageBitmap() not supported.' ); + + } + + if ( typeof fetch === 'undefined' ) { + + console.warn( 'THREE.ImageBitmapLoader: fetch() not supported.' ); + + } + + /** + * Represents the loader options. + * + * @type {Object} + * @default {premultiplyAlpha:'none'} + */ + this.options = { premultiplyAlpha: 'none' }; + + } + + /** + * Sets the given loader options. The structure of the object must match the `options` parameter of + * [createImageBitmap]{@link https://developer.mozilla.org/en-US/docs/Web/API/Window/createImageBitmap}. + * + * @param {Object} options - The loader options to set. + * @return {ImageBitmapLoader} A reference to this image bitmap loader. + */ + setOptions( options ) { + + this.options = options; + + return this; + + } + + /** + * Starts loading from the given URL and pass the loaded image bitmap to the `onLoad()` callback. + * + * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. + * @param {function(ImageBitmap)} onLoad - Executed when the loading process has been finished. + * @param {onProgressCallback} onProgress - Unsupported in this loader. + * @param {onErrorCallback} onError - Executed when errors occur. + * @return {ImageBitmap|undefined} The image bitmap. + */ + load( url, onLoad, onProgress, onError ) { + + if ( url === undefined ) url = ''; + + if ( this.path !== undefined ) url = this.path + url; + + url = this.manager.resolveURL( url ); + + const scope = this; + + const cached = Cache.get( url ); + + if ( cached !== undefined ) { + + scope.manager.itemStart( url ); + + // If cached is a promise, wait for it to resolve + if ( cached.then ) { + + cached.then( imageBitmap => { + + // check if there is an error for the cached promise + + if ( _errorMap.has( cached ) === true ) { + + if ( onError ) onError( _errorMap.get( cached ) ); + + scope.manager.itemError( url ); + scope.manager.itemEnd( url ); + + } else { + + if ( onLoad ) onLoad( imageBitmap ); + + scope.manager.itemEnd( url ); + + return imageBitmap; + + } + + } ); + + return; + + } + + // If cached is not a promise (i.e., it's already an imageBitmap) + setTimeout( function () { + + if ( onLoad ) onLoad( cached ); + + scope.manager.itemEnd( url ); + + }, 0 ); + + return cached; + + } + + const fetchOptions = {}; + fetchOptions.credentials = ( this.crossOrigin === 'anonymous' ) ? 'same-origin' : 'include'; + fetchOptions.headers = this.requestHeader; + + const promise = fetch( url, fetchOptions ).then( function ( res ) { + + return res.blob(); + + } ).then( function ( blob ) { + + return createImageBitmap( blob, Object.assign( scope.options, { colorSpaceConversion: 'none' } ) ); + + } ).then( function ( imageBitmap ) { + + Cache.add( url, imageBitmap ); + + if ( onLoad ) onLoad( imageBitmap ); + + scope.manager.itemEnd( url ); + + return imageBitmap; + + } ).catch( function ( e ) { + + if ( onError ) onError( e ); + + _errorMap.set( promise, e ); + + Cache.remove( url ); + + scope.manager.itemError( url ); + scope.manager.itemEnd( url ); + + } ); + + Cache.add( url, promise ); + scope.manager.itemStart( url ); + + } + +} + +let _context; + +/** + * Manages the global audio context in the engine. + * + * @hideconstructor + */ +class AudioContext { + + /** + * Returns the global native audio context. + * + * @return {AudioContext} The native audio context. + */ + static getContext() { + + if ( _context === undefined ) { + + _context = new ( window.AudioContext || window.webkitAudioContext )(); + + } + + return _context; + + } + + /** + * Allows to set the global native audio context from outside. + * + * @param {AudioContext} value - The native context to set. + */ + static setContext( value ) { + + _context = value; + + } + +} + +/** + * Class for loading audio buffers. Audios are internally + * loaded via {@link FileLoader}. + * + * ```js + * const audioListener = new THREE.AudioListener(); + * const ambientSound = new THREE.Audio( audioListener ); + * + * const loader = new THREE.AudioLoader(); + * const audioBuffer = await loader.loadAsync( 'audio/ambient_ocean.ogg' ); + * + * ambientSound.setBuffer( audioBuffer ); + * ambientSound.play(); + * ``` + * + * @augments Loader + */ +class AudioLoader extends Loader { + + /** + * Constructs a new audio loader. + * + * @param {LoadingManager} [manager] - The loading manager. + */ + constructor( manager ) { + + super( manager ); + + } + + /** + * Starts loading from the given URL and passes the loaded audio buffer + * to the `onLoad()` callback. + * + * @param {string} url - The path/URL of the file to be loaded. This can also be a data URI. + * @param {function(AudioBuffer)} onLoad - Executed when the loading process has been finished. + * @param {onProgressCallback} onProgress - Executed while the loading is in progress. + * @param {onErrorCallback} onError - Executed when errors occur. + */ + load( url, onLoad, onProgress, onError ) { + + const scope = this; + + const loader = new FileLoader( this.manager ); + loader.setResponseType( 'arraybuffer' ); + loader.setPath( this.path ); + loader.setRequestHeader( this.requestHeader ); + loader.setWithCredentials( this.withCredentials ); + loader.load( url, function ( buffer ) { + + try { + + // Create a copy of the buffer. The `decodeAudioData` method + // detaches the buffer when complete, preventing reuse. + const bufferCopy = buffer.slice( 0 ); + + const context = AudioContext.getContext(); + context.decodeAudioData( bufferCopy, function ( audioBuffer ) { + + onLoad( audioBuffer ); + + } ).catch( handleError ); + + } catch ( e ) { + + handleError( e ); + + } + + }, onProgress, onError ); + + function handleError( e ) { + + if ( onError ) { + + onError( e ); + + } else { + + console.error( e ); + + } + + scope.manager.itemError( url ); + + } + + } + +} + +const _eyeRight = /*@__PURE__*/ new Matrix4(); +const _eyeLeft = /*@__PURE__*/ new Matrix4(); +const _projectionMatrix = /*@__PURE__*/ new Matrix4(); + +/** + * A special type of camera that uses two perspective cameras with + * stereoscopic projection. Can be used for rendering stereo effects + * like [3D Anaglyph]{@link https://en.wikipedia.org/wiki/Anaglyph_3D} or + * [Parallax Barrier]{@link https://en.wikipedia.org/wiki/parallax_barrier}. + */ +class StereoCamera { + + /** + * Constructs a new stereo camera. + */ + constructor() { + + /** + * The type property is used for detecting the object type + * in context of serialization/deserialization. + * + * @type {string} + * @readonly + */ + this.type = 'StereoCamera'; + + /** + * The aspect. + * + * @type {number} + * @default 1 + */ + this.aspect = 1; + + /** + * The eye separation which represents the distance + * between the left and right camera. + * + * @type {number} + * @default 0.064 + */ + this.eyeSep = 0.064; + + /** + * The camera representing the left eye. This is added to layer `1` so objects to be + * rendered by the left camera must also be added to this layer. + * + * @type {PerspectiveCamera} + */ + this.cameraL = new PerspectiveCamera(); + this.cameraL.layers.enable( 1 ); + this.cameraL.matrixAutoUpdate = false; + + /** + * The camera representing the right eye. This is added to layer `2` so objects to be + * rendered by the right camera must also be added to this layer. + * + * @type {PerspectiveCamera} + */ + this.cameraR = new PerspectiveCamera(); + this.cameraR.layers.enable( 2 ); + this.cameraR.matrixAutoUpdate = false; + + this._cache = { + focus: null, + fov: null, + aspect: null, + near: null, + far: null, + zoom: null, + eyeSep: null + }; + + } + + /** + * Updates the stereo camera based on the given perspective camera. + * + * @param {PerspectiveCamera} camera - The perspective camera. + */ + update( camera ) { + + const cache = this._cache; + + const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || + cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || + cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep; + + if ( needsUpdate ) { + + cache.focus = camera.focus; + cache.fov = camera.fov; + cache.aspect = camera.aspect * this.aspect; + cache.near = camera.near; + cache.far = camera.far; + cache.zoom = camera.zoom; + cache.eyeSep = this.eyeSep; + + // Off-axis stereoscopic effect based on + // http://paulbourke.net/stereographics/stereorender/ + + _projectionMatrix.copy( camera.projectionMatrix ); + const eyeSepHalf = cache.eyeSep / 2; + const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus; + const ymax = ( cache.near * Math.tan( DEG2RAD * cache.fov * 0.5 ) ) / cache.zoom; + let xmin, xmax; + + // translate xOffset + + _eyeLeft.elements[ 12 ] = - eyeSepHalf; + _eyeRight.elements[ 12 ] = eyeSepHalf; + + // for left eye + + xmin = - ymax * cache.aspect + eyeSepOnProjection; + xmax = ymax * cache.aspect + eyeSepOnProjection; + + _projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin ); + _projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); + + this.cameraL.projectionMatrix.copy( _projectionMatrix ); + + // for right eye + + xmin = - ymax * cache.aspect - eyeSepOnProjection; + xmax = ymax * cache.aspect - eyeSepOnProjection; + + _projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin ); + _projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); + + this.cameraR.projectionMatrix.copy( _projectionMatrix ); + + } + + this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeLeft ); + this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeRight ); + + } + +} + +/** + * This type of camera can be used in order to efficiently render a scene with a + * predefined set of cameras. This is an important performance aspect for + * rendering VR scenes. + * + * An instance of `ArrayCamera` always has an array of sub cameras. It's mandatory + * to define for each sub camera the `viewport` property which determines the + * part of the viewport that is rendered with this camera. + * + * @augments PerspectiveCamera + */ +class ArrayCamera extends PerspectiveCamera { + + /** + * Constructs a new array camera. + * + * @param {Array} [array=[]] - An array of perspective sub cameras. + */ + constructor( array = [] ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isArrayCamera = true; + + /** + * Whether this camera is used with multiview rendering or not. + * + * @type {boolean} + * @readonly + * @default false + */ + this.isMultiViewCamera = false; + + /** + * An array of perspective sub cameras. + * + * @type {Array} + */ + this.cameras = array; + + } + +} + +/** + * Class for keeping track of time. + */ +class Clock { + + /** + * Constructs a new clock. + * + * @param {boolean} [autoStart=true] - Whether to automatically start the clock when + * `getDelta()` is called for the first time. + */ + constructor( autoStart = true ) { + + /** + * If set to `true`, the clock starts automatically when `getDelta()` is called + * for the first time. + * + * @type {boolean} + * @default true + */ + this.autoStart = autoStart; + + /** + * Holds the time at which the clock's `start()` method was last called. + * + * @type {number} + * @default 0 + */ + this.startTime = 0; + + /** + * Holds the time at which the clock's `start()`, `getElapsedTime()` or + * `getDelta()` methods were last called. + * + * @type {number} + * @default 0 + */ + this.oldTime = 0; + + /** + * Keeps track of the total time that the clock has been running. + * + * @type {number} + * @default 0 + */ + this.elapsedTime = 0; + + /** + * Whether the clock is running or not. + * + * @type {boolean} + * @default true + */ + this.running = false; + + } + + /** + * Starts the clock. When `autoStart` is set to `true`, the method is automatically + * called by the class. + */ + start() { + + this.startTime = now(); + + this.oldTime = this.startTime; + this.elapsedTime = 0; + this.running = true; + + } + + /** + * Stops the clock. + */ + stop() { + + this.getElapsedTime(); + this.running = false; + this.autoStart = false; + + } + + /** + * Returns the elapsed time in seconds. + * + * @return {number} The elapsed time. + */ + getElapsedTime() { + + this.getDelta(); + return this.elapsedTime; + + } + + /** + * Returns the delta time in seconds. + * + * @return {number} The delta time. + */ + getDelta() { + + let diff = 0; + + if ( this.autoStart && ! this.running ) { + + this.start(); + return 0; + + } + + if ( this.running ) { + + const newTime = now(); + + diff = ( newTime - this.oldTime ) / 1000; + this.oldTime = newTime; + + this.elapsedTime += diff; + + } + + return diff; + + } + +} + +function now() { + + return performance.now(); + +} + +const _position$1 = /*@__PURE__*/ new Vector3(); +const _quaternion$1 = /*@__PURE__*/ new Quaternion(); +const _scale$1 = /*@__PURE__*/ new Vector3(); + +const _forward = /*@__PURE__*/ new Vector3(); +const _up = /*@__PURE__*/ new Vector3(); + +/** + * The class represents a virtual listener of the all positional and non-positional audio effects + * in the scene. A three.js application usually creates a single listener. It is a mandatory + * constructor parameter for audios entities like {@link Audio} and {@link PositionalAudio}. + * + * In most cases, the listener object is a child of the camera. So the 3D transformation of the + * camera represents the 3D transformation of the listener. + * + * @augments Object3D + */ +class AudioListener extends Object3D { + + /** + * Constructs a new audio listener. + */ + constructor() { + + super(); + + this.type = 'AudioListener'; + + /** + * The native audio context. + * + * @type {AudioContext} + * @readonly + */ + this.context = AudioContext.getContext(); + + /** + * The gain node used for volume control. + * + * @type {GainNode} + * @readonly + */ + this.gain = this.context.createGain(); + this.gain.connect( this.context.destination ); + + /** + * An optional filter. + * + * Defined via {@link AudioListener#setFilter}. + * + * @type {?AudioNode} + * @default null + * @readonly + */ + this.filter = null; + + /** + * Time delta values required for `linearRampToValueAtTime()` usage. + * + * @type {number} + * @default 0 + * @readonly + */ + this.timeDelta = 0; + + // private + + this._clock = new Clock(); + + } + + /** + * Returns the listener's input node. + * + * This method is used by other audio nodes to connect to this listener. + * + * @return {GainNode} The input node. + */ + getInput() { + + return this.gain; + + } + + /** + * Removes the current filter from this listener. + * + * @return {AudioListener} A reference to this listener. + */ + removeFilter() { + + if ( this.filter !== null ) { + + this.gain.disconnect( this.filter ); + this.filter.disconnect( this.context.destination ); + this.gain.connect( this.context.destination ); + this.filter = null; + + } + + return this; + + } + + /** + * Returns the current set filter. + * + * @return {?AudioNode} The filter. + */ + getFilter() { + + return this.filter; + + } + + /** + * Sets the given filter to this listener. + * + * @param {AudioNode} value - The filter to set. + * @return {AudioListener} A reference to this listener. + */ + setFilter( value ) { + + if ( this.filter !== null ) { + + this.gain.disconnect( this.filter ); + this.filter.disconnect( this.context.destination ); + + } else { + + this.gain.disconnect( this.context.destination ); + + } + + this.filter = value; + this.gain.connect( this.filter ); + this.filter.connect( this.context.destination ); + + return this; + + } + + /** + * Returns the applications master volume. + * + * @return {number} The master volume. + */ + getMasterVolume() { + + return this.gain.gain.value; + + } + + /** + * Sets the applications master volume. This volume setting affects + * all audio nodes in the scene. + * + * @param {number} value - The master volume to set. + * @return {AudioListener} A reference to this listener. + */ + setMasterVolume( value ) { + + this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 ); + + return this; + + } + + updateMatrixWorld( force ) { + + super.updateMatrixWorld( force ); + + const listener = this.context.listener; + + this.timeDelta = this._clock.getDelta(); + + this.matrixWorld.decompose( _position$1, _quaternion$1, _scale$1 ); + + // the initial forward and up directions must be orthogonal + _forward.set( 0, 0, -1 ).applyQuaternion( _quaternion$1 ); + _up.set( 0, 1, 0 ).applyQuaternion( _quaternion$1 ); + + if ( listener.positionX ) { + + // code path for Chrome (see #14393) + + const endTime = this.context.currentTime + this.timeDelta; + + listener.positionX.linearRampToValueAtTime( _position$1.x, endTime ); + listener.positionY.linearRampToValueAtTime( _position$1.y, endTime ); + listener.positionZ.linearRampToValueAtTime( _position$1.z, endTime ); + listener.forwardX.linearRampToValueAtTime( _forward.x, endTime ); + listener.forwardY.linearRampToValueAtTime( _forward.y, endTime ); + listener.forwardZ.linearRampToValueAtTime( _forward.z, endTime ); + listener.upX.linearRampToValueAtTime( _up.x, endTime ); + listener.upY.linearRampToValueAtTime( _up.y, endTime ); + listener.upZ.linearRampToValueAtTime( _up.z, endTime ); + + } else { + + listener.setPosition( _position$1.x, _position$1.y, _position$1.z ); + listener.setOrientation( _forward.x, _forward.y, _forward.z, _up.x, _up.y, _up.z ); + + } + + } + +} + +/** + * Represents a non-positional ( global ) audio object. + * + * This and related audio modules make use of the [Web Audio API]{@link https://www.w3.org/TR/webaudio-1.1/}. + * + * ```js + * // create an AudioListener and add it to the camera + * const listener = new THREE.AudioListener(); + * camera.add( listener ); + * + * // create a global audio source + * const sound = new THREE.Audio( listener ); + * + * // load a sound and set it as the Audio object's buffer + * const audioLoader = new THREE.AudioLoader(); + * audioLoader.load( 'sounds/ambient.ogg', function( buffer ) { + * sound.setBuffer( buffer ); + * sound.setLoop( true ); + * sound.setVolume( 0.5 ); + * sound.play(); + * }); + * ``` + * + * @augments Object3D + */ +class Audio extends Object3D { + + /** + * Constructs a new audio. + * + * @param {AudioListener} listener - The global audio listener. + */ + constructor( listener ) { + + super(); + + this.type = 'Audio'; + + /** + * The global audio listener. + * + * @type {AudioListener} + * @readonly + */ + this.listener = listener; + + /** + * The audio context. + * + * @type {AudioContext} + * @readonly + */ + this.context = listener.context; + + /** + * The gain node used for volume control. + * + * @type {GainNode} + * @readonly + */ + this.gain = this.context.createGain(); + this.gain.connect( listener.getInput() ); + + /** + * Whether to start playback automatically or not. + * + * @type {boolean} + * @default false + */ + this.autoplay = false; + + /** + * A reference to an audio buffer. + * + * Defined via {@link Audio#setBuffer}. + * + * @type {?AudioBuffer} + * @default null + * @readonly + */ + this.buffer = null; + + /** + * Modify pitch, measured in cents. +/- 100 is a semitone. + * +/- 1200 is an octave. + * + * Defined via {@link Audio#setDetune}. + * + * @type {number} + * @default 0 + * @readonly + */ + this.detune = 0; + + /** + * Whether the audio should loop or not. + * + * Defined via {@link Audio#setLoop}. + * + * @type {boolean} + * @default false + * @readonly + */ + this.loop = false; + + /** + * Defines where in the audio buffer the replay should + * start, in seconds. + * + * @type {number} + * @default 0 + */ + this.loopStart = 0; + + /** + * Defines where in the audio buffer the replay should + * stop, in seconds. + * + * @type {number} + * @default 0 + */ + this.loopEnd = 0; + + /** + * An offset to the time within the audio buffer the playback + * should begin, in seconds. + * + * @type {number} + * @default 0 + */ + this.offset = 0; + + /** + * Overrides the default duration of the audio. + * + * @type {undefined|number} + * @default undefined + */ + this.duration = undefined; + + /** + * The playback speed. + * + * Defined via {@link Audio#setPlaybackRate}. + * + * @type {number} + * @readonly + * @default 1 + */ + this.playbackRate = 1; + + /** + * Indicates whether the audio is playing or not. + * + * This flag will be automatically set when using {@link Audio#play}, + * {@link Audio#pause}, {@link Audio#stop}. + * + * @type {boolean} + * @readonly + * @default false + */ + this.isPlaying = false; + + /** + * Indicates whether the audio playback can be controlled + * with method like {@link Audio#play} or {@link Audio#pause}. + * + * This flag will be automatically set when audio sources are + * defined. + * + * @type {boolean} + * @readonly + * @default true + */ + this.hasPlaybackControl = true; + + /** + * Holds a reference to the current audio source. + * + * The property is automatically by one of the `set*()` methods. + * + * @type {?AudioNode} + * @readonly + * @default null + */ + this.source = null; + + /** + * Defines the source type. + * + * The property is automatically by one of the `set*()` methods. + * + * @type {('empty'|'audioNode'|'mediaNode'|'mediaStreamNode'|'buffer')} + * @readonly + * @default 'empty' + */ + this.sourceType = 'empty'; + + this._startedAt = 0; + this._progress = 0; + this._connected = false; + + /** + * Can be used to apply a variety of low-order filters to create + * more complex sound effects e.g. via `BiquadFilterNode`. + * + * The property is automatically set by {@link Audio#setFilters}. + * + * @type {Array} + * @readonly + */ + this.filters = []; + + } + + /** + * Returns the output audio node. + * + * @return {GainNode} The output node. + */ + getOutput() { + + return this.gain; + + } + + /** + * Sets the given audio node as the source of this instance. + * + * {@link Audio#sourceType} is set to `audioNode` and {@link Audio#hasPlaybackControl} to `false`. + * + * @param {AudioNode} audioNode - The audio node like an instance of `OscillatorNode`. + * @return {Audio} A reference to this instance. + */ + setNodeSource( audioNode ) { + + this.hasPlaybackControl = false; + this.sourceType = 'audioNode'; + this.source = audioNode; + this.connect(); + + return this; + + } + + /** + * Sets the given media element as the source of this instance. + * + * {@link Audio#sourceType} is set to `mediaNode` and {@link Audio#hasPlaybackControl} to `false`. + * + * @param {HTMLMediaElement} mediaElement - The media element. + * @return {Audio} A reference to this instance. + */ + setMediaElementSource( mediaElement ) { + + this.hasPlaybackControl = false; + this.sourceType = 'mediaNode'; + this.source = this.context.createMediaElementSource( mediaElement ); + this.connect(); + + return this; + + } + + /** + * Sets the given media stream as the source of this instance. + * + * {@link Audio#sourceType} is set to `mediaStreamNode` and {@link Audio#hasPlaybackControl} to `false`. + * + * @param {MediaStream} mediaStream - The media stream. + * @return {Audio} A reference to this instance. + */ + setMediaStreamSource( mediaStream ) { + + this.hasPlaybackControl = false; + this.sourceType = 'mediaStreamNode'; + this.source = this.context.createMediaStreamSource( mediaStream ); + this.connect(); + + return this; + + } + + /** + * Sets the given audio buffer as the source of this instance. + * + * {@link Audio#sourceType} is set to `buffer` and {@link Audio#hasPlaybackControl} to `true`. + * + * @param {AudioBuffer} audioBuffer - The audio buffer. + * @return {Audio} A reference to this instance. + */ + setBuffer( audioBuffer ) { + + this.buffer = audioBuffer; + this.sourceType = 'buffer'; + + if ( this.autoplay ) this.play(); + + return this; + + } + + /** + * Starts the playback of the audio. + * + * Can only be used with compatible audio sources that allow playback control. + * + * @param {number} [delay=0] - The delay, in seconds, at which the audio should start playing. + * @return {Audio|undefined} A reference to this instance. + */ + play( delay = 0 ) { + + if ( this.isPlaying === true ) { + + console.warn( 'THREE.Audio: Audio is already playing.' ); + return; + + } + + if ( this.hasPlaybackControl === false ) { + + console.warn( 'THREE.Audio: this Audio has no playback control.' ); + return; + + } + + this._startedAt = this.context.currentTime + delay; + + const source = this.context.createBufferSource(); + source.buffer = this.buffer; + source.loop = this.loop; + source.loopStart = this.loopStart; + source.loopEnd = this.loopEnd; + source.onended = this.onEnded.bind( this ); + source.start( this._startedAt, this._progress + this.offset, this.duration ); + + this.isPlaying = true; + + this.source = source; + + this.setDetune( this.detune ); + this.setPlaybackRate( this.playbackRate ); + + return this.connect(); + + } + + /** + * Pauses the playback of the audio. + * + * Can only be used with compatible audio sources that allow playback control. + * + * @return {Audio|undefined} A reference to this instance. + */ + pause() { + + if ( this.hasPlaybackControl === false ) { + + console.warn( 'THREE.Audio: this Audio has no playback control.' ); + return; + + } + + if ( this.isPlaying === true ) { + + // update current progress + + this._progress += Math.max( this.context.currentTime - this._startedAt, 0 ) * this.playbackRate; + + if ( this.loop === true ) { + + // ensure _progress does not exceed duration with looped audios + + this._progress = this._progress % ( this.duration || this.buffer.duration ); + + } + + this.source.stop(); + this.source.onended = null; + + this.isPlaying = false; + + } + + return this; + + } + + /** + * Stops the playback of the audio. + * + * Can only be used with compatible audio sources that allow playback control. + * + * @param {number} [delay=0] - The delay, in seconds, at which the audio should stop playing. + * @return {Audio|undefined} A reference to this instance. + */ + stop( delay = 0 ) { + + if ( this.hasPlaybackControl === false ) { + + console.warn( 'THREE.Audio: this Audio has no playback control.' ); + return; + + } + + this._progress = 0; + + if ( this.source !== null ) { + + this.source.stop( this.context.currentTime + delay ); + this.source.onended = null; + + } + + this.isPlaying = false; + + return this; + + } + + /** + * Connects to the audio source. This is used internally on + * initialisation and when setting / removing filters. + * + * @return {Audio} A reference to this instance. + */ + connect() { + + if ( this.filters.length > 0 ) { + + this.source.connect( this.filters[ 0 ] ); + + for ( let i = 1, l = this.filters.length; i < l; i ++ ) { + + this.filters[ i - 1 ].connect( this.filters[ i ] ); + + } + + this.filters[ this.filters.length - 1 ].connect( this.getOutput() ); + + } else { + + this.source.connect( this.getOutput() ); + + } + + this._connected = true; + + return this; + + } + + /** + * Disconnects to the audio source. This is used internally on + * initialisation and when setting / removing filters. + * + * @return {Audio|undefined} A reference to this instance. + */ + disconnect() { + + if ( this._connected === false ) { + + return; + + } + + if ( this.filters.length > 0 ) { + + this.source.disconnect( this.filters[ 0 ] ); + + for ( let i = 1, l = this.filters.length; i < l; i ++ ) { + + this.filters[ i - 1 ].disconnect( this.filters[ i ] ); + + } + + this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() ); + + } else { + + this.source.disconnect( this.getOutput() ); + + } + + this._connected = false; + + return this; + + } + + /** + * Returns the current set filters. + * + * @return {Array} The list of filters. + */ + getFilters() { + + return this.filters; + + } + + /** + * Sets an array of filters and connects them with the audio source. + * + * @param {Array} [value] - A list of filters. + * @return {Audio} A reference to this instance. + */ + setFilters( value ) { + + if ( ! value ) value = []; + + if ( this._connected === true ) { + + this.disconnect(); + this.filters = value.slice(); + this.connect(); + + } else { + + this.filters = value.slice(); + + } + + return this; + + } + + /** + * Defines the detuning of oscillation in cents. + * + * @param {number} value - The detuning of oscillation in cents. + * @return {Audio} A reference to this instance. + */ + setDetune( value ) { + + this.detune = value; + + if ( this.isPlaying === true && this.source.detune !== undefined ) { + + this.source.detune.setTargetAtTime( this.detune, this.context.currentTime, 0.01 ); + + } + + return this; + + } + + /** + * Returns the detuning of oscillation in cents. + * + * @return {number} The detuning of oscillation in cents. + */ + getDetune() { + + return this.detune; + + } + + /** + * Returns the first filter in the list of filters. + * + * @return {AudioNode|undefined} The first filter in the list of filters. + */ + getFilter() { + + return this.getFilters()[ 0 ]; + + } + + /** + * Applies a single filter node to the audio. + * + * @param {AudioNode} [filter] - The filter to set. + * @return {Audio} A reference to this instance. + */ + setFilter( filter ) { + + return this.setFilters( filter ? [ filter ] : [] ); + + } + + /** + * Sets the playback rate. + * + * Can only be used with compatible audio sources that allow playback control. + * + * @param {number} [value] - The playback rate to set. + * @return {Audio|undefined} A reference to this instance. + */ + setPlaybackRate( value ) { + + if ( this.hasPlaybackControl === false ) { + + console.warn( 'THREE.Audio: this Audio has no playback control.' ); + return; + + } + + this.playbackRate = value; + + if ( this.isPlaying === true ) { + + this.source.playbackRate.setTargetAtTime( this.playbackRate, this.context.currentTime, 0.01 ); + + } + + return this; + + } + + /** + * Returns the current playback rate. + + * @return {number} The playback rate. + */ + getPlaybackRate() { + + return this.playbackRate; + + } + + /** + * Automatically called when playback finished. + */ + onEnded() { + + this.isPlaying = false; + this._progress = 0; + + } + + /** + * Returns the loop flag. + * + * Can only be used with compatible audio sources that allow playback control. + * + * @return {boolean} Whether the audio should loop or not. + */ + getLoop() { + + if ( this.hasPlaybackControl === false ) { + + console.warn( 'THREE.Audio: this Audio has no playback control.' ); + return false; + + } + + return this.loop; + + } + + /** + * Sets the loop flag. + * + * Can only be used with compatible audio sources that allow playback control. + * + * @param {boolean} value - Whether the audio should loop or not. + * @return {Audio|undefined} A reference to this instance. + */ + setLoop( value ) { + + if ( this.hasPlaybackControl === false ) { + + console.warn( 'THREE.Audio: this Audio has no playback control.' ); + return; + + } + + this.loop = value; + + if ( this.isPlaying === true ) { + + this.source.loop = this.loop; + + } + + return this; + + } + + /** + * Sets the loop start value which defines where in the audio buffer the replay should + * start, in seconds. + * + * @param {number} value - The loop start value. + * @return {Audio} A reference to this instance. + */ + setLoopStart( value ) { + + this.loopStart = value; + + return this; + + } + + /** + * Sets the loop end value which defines where in the audio buffer the replay should + * stop, in seconds. + * + * @param {number} value - The loop end value. + * @return {Audio} A reference to this instance. + */ + setLoopEnd( value ) { + + this.loopEnd = value; + + return this; + + } + + /** + * Returns the volume. + * + * @return {number} The volume. + */ + getVolume() { + + return this.gain.gain.value; + + } + + /** + * Sets the volume. + * + * @param {number} value - The volume to set. + * @return {Audio} A reference to this instance. + */ + setVolume( value ) { + + this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 ); + + return this; + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + if ( source.sourceType !== 'buffer' ) { + + console.warn( 'THREE.Audio: Audio source type cannot be copied.' ); + + return this; + + } + + this.autoplay = source.autoplay; + + this.buffer = source.buffer; + this.detune = source.detune; + this.loop = source.loop; + this.loopStart = source.loopStart; + this.loopEnd = source.loopEnd; + this.offset = source.offset; + this.duration = source.duration; + this.playbackRate = source.playbackRate; + this.hasPlaybackControl = source.hasPlaybackControl; + this.sourceType = source.sourceType; + + this.filters = source.filters.slice(); + + return this; + + } + + clone( recursive ) { + + return new this.constructor( this.listener ).copy( this, recursive ); + + } + +} + +const _position = /*@__PURE__*/ new Vector3(); +const _quaternion = /*@__PURE__*/ new Quaternion(); +const _scale = /*@__PURE__*/ new Vector3(); +const _orientation = /*@__PURE__*/ new Vector3(); + +/** + * Represents a positional audio object. + * + * ```js + * // create an AudioListener and add it to the camera + * const listener = new THREE.AudioListener(); + * camera.add( listener ); + * + * // create the PositionalAudio object (passing in the listener) + * const sound = new THREE.PositionalAudio( listener ); + * + * // load a sound and set it as the PositionalAudio object's buffer + * const audioLoader = new THREE.AudioLoader(); + * audioLoader.load( 'sounds/song.ogg', function( buffer ) { + * sound.setBuffer( buffer ); + * sound.setRefDistance( 20 ); + * sound.play(); + * }); + * + * // create an object for the sound to play from + * const sphere = new THREE.SphereGeometry( 20, 32, 16 ); + * const material = new THREE.MeshPhongMaterial( { color: 0xff2200 } ); + * const mesh = new THREE.Mesh( sphere, material ); + * scene.add( mesh ); + * + * // finally add the sound to the mesh + * mesh.add( sound ); + * + * @augments Audio + */ +class PositionalAudio extends Audio { + + /** + * Constructs a positional audio. + * + * @param {AudioListener} listener - The global audio listener. + */ + constructor( listener ) { + + super( listener ); + + /** + * The panner node represents the location, direction, and behavior of an audio + * source in 3D space. + * + * @type {PannerNode} + * @readonly + */ + this.panner = this.context.createPanner(); + this.panner.panningModel = 'HRTF'; + this.panner.connect( this.gain ); + + } + + connect() { + + super.connect(); + + this.panner.connect( this.gain ); + + return this; + + } + + disconnect() { + + super.disconnect(); + + this.panner.disconnect( this.gain ); + + return this; + + } + + getOutput() { + + return this.panner; + + } + + /** + * Returns the current reference distance. + * + * @return {number} The reference distance. + */ + getRefDistance() { + + return this.panner.refDistance; + + } + + /** + * Defines the reference distance for reducing volume as the audio source moves + * further from the listener – i.e. the distance at which the volume reduction + * starts taking effect. + * + * @param {number} value - The reference distance to set. + * @return {PositionalAudio} A reference to this instance. + */ + setRefDistance( value ) { + + this.panner.refDistance = value; + + return this; + + } + + /** + * Returns the current rolloff factor. + * + * @return {number} The rolloff factor. + */ + getRolloffFactor() { + + return this.panner.rolloffFactor; + + } + + /** + * Defines how quickly the volume is reduced as the source moves away from the listener. + * + * @param {number} value - The rolloff factor. + * @return {PositionalAudio} A reference to this instance. + */ + setRolloffFactor( value ) { + + this.panner.rolloffFactor = value; + + return this; + + } + + /** + * Returns the current distance model. + * + * @return {('linear'|'inverse'|'exponential')} The distance model. + */ + getDistanceModel() { + + return this.panner.distanceModel; + + } + + /** + * Defines which algorithm to use to reduce the volume of the audio source + * as it moves away from the listener. + * + * Read [the spec]{@link https://www.w3.org/TR/webaudio-1.1/#enumdef-distancemodeltype} + * for more details. + * + * @param {('linear'|'inverse'|'exponential')} value - The distance model to set. + * @return {PositionalAudio} A reference to this instance. + */ + setDistanceModel( value ) { + + this.panner.distanceModel = value; + + return this; + + } + + /** + * Returns the current max distance. + * + * @return {number} The max distance. + */ + getMaxDistance() { + + return this.panner.maxDistance; + + } + + /** + * Defines the maximum distance between the audio source and the listener, + * after which the volume is not reduced any further. + * + * This value is used only by the `linear` distance model. + * + * @param {number} value - The max distance. + * @return {PositionalAudio} A reference to this instance. + */ + setMaxDistance( value ) { + + this.panner.maxDistance = value; + + return this; + + } + + /** + * Sets the directional cone in which the audio can be listened. + * + * @param {number} coneInnerAngle - An angle, in degrees, of a cone inside of which there will be no volume reduction. + * @param {number} coneOuterAngle - An angle, in degrees, of a cone outside of which the volume will be reduced by a constant value, defined by the `coneOuterGain` parameter. + * @param {number} coneOuterGain - The amount of volume reduction outside the cone defined by the `coneOuterAngle`. When set to `0`, no sound can be heard. + * @return {PositionalAudio} A reference to this instance. + */ + setDirectionalCone( coneInnerAngle, coneOuterAngle, coneOuterGain ) { + + this.panner.coneInnerAngle = coneInnerAngle; + this.panner.coneOuterAngle = coneOuterAngle; + this.panner.coneOuterGain = coneOuterGain; + + return this; + + } + + updateMatrixWorld( force ) { + + super.updateMatrixWorld( force ); + + if ( this.hasPlaybackControl === true && this.isPlaying === false ) return; + + this.matrixWorld.decompose( _position, _quaternion, _scale ); + + _orientation.set( 0, 0, 1 ).applyQuaternion( _quaternion ); + + const panner = this.panner; + + if ( panner.positionX ) { + + // code path for Chrome and Firefox (see #14393) + + const endTime = this.context.currentTime + this.listener.timeDelta; + + panner.positionX.linearRampToValueAtTime( _position.x, endTime ); + panner.positionY.linearRampToValueAtTime( _position.y, endTime ); + panner.positionZ.linearRampToValueAtTime( _position.z, endTime ); + panner.orientationX.linearRampToValueAtTime( _orientation.x, endTime ); + panner.orientationY.linearRampToValueAtTime( _orientation.y, endTime ); + panner.orientationZ.linearRampToValueAtTime( _orientation.z, endTime ); + + } else { + + panner.setPosition( _position.x, _position.y, _position.z ); + panner.setOrientation( _orientation.x, _orientation.y, _orientation.z ); + + } + + } + +} + +/** + * This class can be used to analyse audio data. + * + * ```js + * // create an AudioListener and add it to the camera + * const listener = new THREE.AudioListener(); + * camera.add( listener ); + * + * // create an Audio source + * const sound = new THREE.Audio( listener ); + * + * // load a sound and set it as the Audio object's buffer + * const audioLoader = new THREE.AudioLoader(); + * audioLoader.load( 'sounds/ambient.ogg', function( buffer ) { + * sound.setBuffer( buffer ); + * sound.setLoop(true); + * sound.setVolume(0.5); + * sound.play(); + * }); + * + * // create an AudioAnalyser, passing in the sound and desired fftSize + * const analyser = new THREE.AudioAnalyser( sound, 32 ); + * + * // get the average frequency of the sound + * const data = analyser.getAverageFrequency(); + * ``` + */ +class AudioAnalyser { + + /** + * Constructs a new audio analyzer. + * + * @param {Audio} audio - The audio to analyze. + * @param {number} [fftSize=2048] - The window size in samples that is used when performing a Fast Fourier Transform (FFT) to get frequency domain data. + */ + constructor( audio, fftSize = 2048 ) { + + /** + * The global audio listener. + * + * @type {AnalyserNode} + */ + this.analyser = audio.context.createAnalyser(); + this.analyser.fftSize = fftSize; + + /** + * Holds the analyzed data. + * + * @type {Uint8Array} + */ + this.data = new Uint8Array( this.analyser.frequencyBinCount ); + + audio.getOutput().connect( this.analyser ); + + } + + /** + * Returns an array with frequency data of the audio. + * + * Each item in the array represents the decibel value for a specific frequency. + * The frequencies are spread linearly from 0 to 1/2 of the sample rate. + * For example, for 48000 sample rate, the last item of the array will represent + * the decibel value for 24000 Hz. + * + * @return {Uint8Array} The frequency data. + */ + getFrequencyData() { + + this.analyser.getByteFrequencyData( this.data ); + + return this.data; + + } + + /** + * Returns the average of the frequencies returned by {@link AudioAnalyser#getFrequencyData}. + * + * @return {number} The average frequency. + */ + getAverageFrequency() { + + let value = 0; + const data = this.getFrequencyData(); + + for ( let i = 0; i < data.length; i ++ ) { + + value += data[ i ]; + + } + + return value / data.length; + + } + +} + +/** + * Buffered scene graph property that allows weighted accumulation; used internally. + */ +class PropertyMixer { + + /** + * Constructs a new property mixer. + * + * @param {PropertyBinding} binding - The property binding. + * @param {string} typeName - The keyframe track type name. + * @param {number} valueSize - The keyframe track value size. + */ + constructor( binding, typeName, valueSize ) { + + /** + * The property binding. + * + * @type {PropertyBinding} + */ + this.binding = binding; + + /** + * The keyframe track value size. + * + * @type {number} + */ + this.valueSize = valueSize; + + let mixFunction, + mixFunctionAdditive, + setIdentity; + + // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ] + // + // interpolators can use .buffer as their .result + // the data then goes to 'incoming' + // + // 'accu0' and 'accu1' are used frame-interleaved for + // the cumulative result and are compared to detect + // changes + // + // 'orig' stores the original state of the property + // + // 'add' is used for additive cumulative results + // + // 'work' is optional and is only present for quaternion types. It is used + // to store intermediate quaternion multiplication results + + switch ( typeName ) { + + case 'quaternion': + mixFunction = this._slerp; + mixFunctionAdditive = this._slerpAdditive; + setIdentity = this._setAdditiveIdentityQuaternion; + + this.buffer = new Float64Array( valueSize * 6 ); + this._workIndex = 5; + break; + + case 'string': + case 'bool': + mixFunction = this._select; + + // Use the regular mix function and for additive on these types, + // additive is not relevant for non-numeric types + mixFunctionAdditive = this._select; + + setIdentity = this._setAdditiveIdentityOther; + + this.buffer = new Array( valueSize * 5 ); + break; + + default: + mixFunction = this._lerp; + mixFunctionAdditive = this._lerpAdditive; + setIdentity = this._setAdditiveIdentityNumeric; + + this.buffer = new Float64Array( valueSize * 5 ); + + } + + this._mixBufferRegion = mixFunction; + this._mixBufferRegionAdditive = mixFunctionAdditive; + this._setIdentity = setIdentity; + this._origIndex = 3; + this._addIndex = 4; + + /** + * TODO + * + * @type {number} + * @default 0 + */ + this.cumulativeWeight = 0; + + /** + * TODO + * + * @type {number} + * @default 0 + */ + this.cumulativeWeightAdditive = 0; + + /** + * TODO + * + * @type {number} + * @default 0 + */ + this.useCount = 0; + + /** + * TODO + * + * @type {number} + * @default 0 + */ + this.referenceCount = 0; + + } + + /** + * Accumulates data in the `incoming` region into `accu`. + * + * @param {number} accuIndex - The accumulation index. + * @param {number} weight - The weight. + */ + accumulate( accuIndex, weight ) { + + // note: happily accumulating nothing when weight = 0, the caller knows + // the weight and shouldn't have made the call in the first place + + const buffer = this.buffer, + stride = this.valueSize, + offset = accuIndex * stride + stride; + + let currentWeight = this.cumulativeWeight; + + if ( currentWeight === 0 ) { + + // accuN := incoming * weight + + for ( let i = 0; i !== stride; ++ i ) { + + buffer[ offset + i ] = buffer[ i ]; + + } + + currentWeight = weight; + + } else { + + // accuN := accuN + incoming * weight + + currentWeight += weight; + const mix = weight / currentWeight; + this._mixBufferRegion( buffer, offset, 0, mix, stride ); + + } + + this.cumulativeWeight = currentWeight; + + } + + /** + * Accumulates data in the `incoming` region into `add`. + * + * @param {number} weight - The weight. + */ + accumulateAdditive( weight ) { + + const buffer = this.buffer, + stride = this.valueSize, + offset = stride * this._addIndex; + + if ( this.cumulativeWeightAdditive === 0 ) { + + // add = identity + + this._setIdentity(); + + } + + // add := add + incoming * weight + + this._mixBufferRegionAdditive( buffer, offset, 0, weight, stride ); + this.cumulativeWeightAdditive += weight; + + } + + /** + * Applies the state of `accu` to the binding when accus differ. + * + * @param {number} accuIndex - The accumulation index. + */ + apply( accuIndex ) { + + const stride = this.valueSize, + buffer = this.buffer, + offset = accuIndex * stride + stride, + + weight = this.cumulativeWeight, + weightAdditive = this.cumulativeWeightAdditive, + + binding = this.binding; + + this.cumulativeWeight = 0; + this.cumulativeWeightAdditive = 0; + + if ( weight < 1 ) { + + // accuN := accuN + original * ( 1 - cumulativeWeight ) + + const originalValueOffset = stride * this._origIndex; + + this._mixBufferRegion( + buffer, offset, originalValueOffset, 1 - weight, stride ); + + } + + if ( weightAdditive > 0 ) { + + // accuN := accuN + additive accuN + + this._mixBufferRegionAdditive( buffer, offset, this._addIndex * stride, 1, stride ); + + } + + for ( let i = stride, e = stride + stride; i !== e; ++ i ) { + + if ( buffer[ i ] !== buffer[ i + stride ] ) { + + // value has changed -> update scene graph + + binding.setValue( buffer, offset ); + break; + + } + + } + + } + + + /** + * Remembers the state of the bound property and copy it to both accus. + */ + saveOriginalState() { + + const binding = this.binding; + + const buffer = this.buffer, + stride = this.valueSize, + + originalValueOffset = stride * this._origIndex; + + binding.getValue( buffer, originalValueOffset ); + + // accu[0..1] := orig -- initially detect changes against the original + for ( let i = stride, e = originalValueOffset; i !== e; ++ i ) { + + buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ]; + + } + + // Add to identity for additive + this._setIdentity(); + + this.cumulativeWeight = 0; + this.cumulativeWeightAdditive = 0; + + } + + /** + * Applies the state previously taken via {@link PropertyMixer#saveOriginalState} to the binding. + */ + restoreOriginalState() { + + const originalValueOffset = this.valueSize * 3; + this.binding.setValue( this.buffer, originalValueOffset ); + + } + + // internals + + _setAdditiveIdentityNumeric() { + + const startIndex = this._addIndex * this.valueSize; + const endIndex = startIndex + this.valueSize; + + for ( let i = startIndex; i < endIndex; i ++ ) { + + this.buffer[ i ] = 0; + + } + + } + + _setAdditiveIdentityQuaternion() { + + this._setAdditiveIdentityNumeric(); + this.buffer[ this._addIndex * this.valueSize + 3 ] = 1; + + } + + _setAdditiveIdentityOther() { + + const startIndex = this._origIndex * this.valueSize; + const targetIndex = this._addIndex * this.valueSize; + + for ( let i = 0; i < this.valueSize; i ++ ) { + + this.buffer[ targetIndex + i ] = this.buffer[ startIndex + i ]; + + } + + } + + + // mix functions + + _select( buffer, dstOffset, srcOffset, t, stride ) { + + if ( t >= 0.5 ) { + + for ( let i = 0; i !== stride; ++ i ) { + + buffer[ dstOffset + i ] = buffer[ srcOffset + i ]; + + } + + } + + } + + _slerp( buffer, dstOffset, srcOffset, t ) { + + Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t ); + + } + + _slerpAdditive( buffer, dstOffset, srcOffset, t, stride ) { + + const workOffset = this._workIndex * stride; + + // Store result in intermediate buffer offset + Quaternion.multiplyQuaternionsFlat( buffer, workOffset, buffer, dstOffset, buffer, srcOffset ); + + // Slerp to the intermediate result + Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t ); + + } + + _lerp( buffer, dstOffset, srcOffset, t, stride ) { + + const s = 1 - t; + + for ( let i = 0; i !== stride; ++ i ) { + + const j = dstOffset + i; + + buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t; + + } + + } + + _lerpAdditive( buffer, dstOffset, srcOffset, t, stride ) { + + for ( let i = 0; i !== stride; ++ i ) { + + const j = dstOffset + i; + + buffer[ j ] = buffer[ j ] + buffer[ srcOffset + i ] * t; + + } + + } + +} + +// Characters [].:/ are reserved for track binding syntax. +const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/'; +const _reservedRe = new RegExp( '[' + _RESERVED_CHARS_RE + ']', 'g' ); + +// Attempts to allow node names from any language. ES5's `\w` regexp matches +// only latin characters, and the unicode \p{L} is not yet supported. So +// instead, we exclude reserved characters and match everything else. +const _wordChar = '[^' + _RESERVED_CHARS_RE + ']'; +const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace( '\\.', '' ) + ']'; + +// Parent directories, delimited by '/' or ':'. Currently unused, but must +// be matched to parse the rest of the track name. +const _directoryRe = /*@__PURE__*/ /((?:WC+[\/:])*)/.source.replace( 'WC', _wordChar ); + +// Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. +const _nodeRe = /*@__PURE__*/ /(WCOD+)?/.source.replace( 'WCOD', _wordCharOrDot ); + +// Object on target node, and accessor. May not contain reserved +// characters. Accessor may contain any character except closing bracket. +const _objectRe = /*@__PURE__*/ /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace( 'WC', _wordChar ); + +// Property and accessor. May not contain reserved characters. Accessor may +// contain any non-bracket characters. +const _propertyRe = /*@__PURE__*/ /\.(WC+)(?:\[(.+)\])?/.source.replace( 'WC', _wordChar ); + +const _trackRe = new RegExp( '' + + '^' + + _directoryRe + + _nodeRe + + _objectRe + + _propertyRe + + '$' +); + +const _supportedObjectNames = [ 'material', 'materials', 'bones', 'map' ]; + +class Composite { + + constructor( targetGroup, path, optionalParsedPath ) { + + const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path ); + + this._targetGroup = targetGroup; + this._bindings = targetGroup.subscribe_( path, parsedPath ); + + } + + getValue( array, offset ) { + + this.bind(); // bind all binding + + const firstValidIndex = this._targetGroup.nCachedObjects_, + binding = this._bindings[ firstValidIndex ]; + + // and only call .getValue on the first + if ( binding !== undefined ) binding.getValue( array, offset ); + + } + + setValue( array, offset ) { + + const bindings = this._bindings; + + for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { + + bindings[ i ].setValue( array, offset ); + + } + + } + + bind() { + + const bindings = this._bindings; + + for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { + + bindings[ i ].bind(); + + } + + } + + unbind() { + + const bindings = this._bindings; + + for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { + + bindings[ i ].unbind(); + + } + + } + +} + +// Note: This class uses a State pattern on a per-method basis: +// 'bind' sets 'this.getValue' / 'setValue' and shadows the +// prototype version of these methods with one that represents +// the bound state. When the property is not found, the methods +// become no-ops. + + +/** + * This holds a reference to a real property in the scene graph; used internally. + */ +class PropertyBinding { + + /** + * Constructs a new property binding. + * + * @param {Object} rootNode - The root node. + * @param {string} path - The path. + * @param {?Object} [parsedPath] - The parsed path. + */ + constructor( rootNode, path, parsedPath ) { + + /** + * The object path to the animated property. + * + * @type {string} + */ + this.path = path; + + /** + * An object holding information about the path. + * + * @type {Object} + */ + this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path ); + + /** + * The object owns the animated property. + * + * @type {?Object} + */ + this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ); + + /** + * The root node. + * + * @type {Object3D|Skeleton} + */ + this.rootNode = rootNode; + + // initial state of these methods that calls 'bind' + this.getValue = this._getValue_unbound; + this.setValue = this._setValue_unbound; + + } + + + /** + * Factory method for creating a property binding from the given parameters. + * + * @static + * @param {Object} root - The root node. + * @param {string} path - The path. + * @param {?Object} [parsedPath] - The parsed path. + * @return {PropertyBinding|Composite} The created property binding or composite. + */ + static create( root, path, parsedPath ) { + + if ( ! ( root && root.isAnimationObjectGroup ) ) { + + return new PropertyBinding( root, path, parsedPath ); + + } else { + + return new PropertyBinding.Composite( root, path, parsedPath ); + + } + + } + + /** + * Replaces spaces with underscores and removes unsupported characters from + * node names, to ensure compatibility with parseTrackName(). + * + * @param {string} name - Node name to be sanitized. + * @return {string} The sanitized node name. + */ + static sanitizeNodeName( name ) { + + return name.replace( /\s/g, '_' ).replace( _reservedRe, '' ); + + } + + /** + * Parses the given track name (an object path to an animated property) and + * returns an object with information about the path. Matches strings in the following forms: + * + * - nodeName.property + * - nodeName.property[accessor] + * - nodeName.material.property[accessor] + * - uuid.property[accessor] + * - uuid.objectName[objectIndex].propertyName[propertyIndex] + * - parentName/nodeName.property + * - parentName/parentName/nodeName.property[index] + * - .bone[Armature.DEF_cog].position + * - scene:helium_balloon_model:helium_balloon_model.position + * + * @static + * @param {string} trackName - The track name to parse. + * @return {Object} The parsed track name as an object. + */ + static parseTrackName( trackName ) { + + const matches = _trackRe.exec( trackName ); + + if ( matches === null ) { + + throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName ); + + } + + const results = { + // directoryName: matches[ 1 ], // (tschw) currently unused + nodeName: matches[ 2 ], + objectName: matches[ 3 ], + objectIndex: matches[ 4 ], + propertyName: matches[ 5 ], // required + propertyIndex: matches[ 6 ] + }; + + const lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' ); + + if ( lastDot !== undefined && lastDot !== -1 ) { + + const objectName = results.nodeName.substring( lastDot + 1 ); + + // Object names must be checked against an allowlist. Otherwise, there + // is no way to parse 'foo.bar.baz': 'baz' must be a property, but + // 'bar' could be the objectName, or part of a nodeName (which can + // include '.' characters). + if ( _supportedObjectNames.indexOf( objectName ) !== -1 ) { + + results.nodeName = results.nodeName.substring( 0, lastDot ); + results.objectName = objectName; + + } + + } + + if ( results.propertyName === null || results.propertyName.length === 0 ) { + + throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName ); + + } + + return results; + + } + + /** + * Searches for a node in the hierarchy of the given root object by the given + * node name. + * + * @static + * @param {Object} root - The root object. + * @param {string|number} nodeName - The name of the node. + * @return {?Object} The found node. Returns `null` if no object was found. + */ + static findNode( root, nodeName ) { + + if ( nodeName === undefined || nodeName === '' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid ) { + + return root; + + } + + // search into skeleton bones. + if ( root.skeleton ) { + + const bone = root.skeleton.getBoneByName( nodeName ); + + if ( bone !== undefined ) { + + return bone; + + } + + } + + // search into node subtree. + if ( root.children ) { + + const searchNodeSubtree = function ( children ) { + + for ( let i = 0; i < children.length; i ++ ) { + + const childNode = children[ i ]; + + if ( childNode.name === nodeName || childNode.uuid === nodeName ) { + + return childNode; + + } + + const result = searchNodeSubtree( childNode.children ); + + if ( result ) return result; + + } + + return null; + + }; + + const subTreeNode = searchNodeSubtree( root.children ); + + if ( subTreeNode ) { + + return subTreeNode; + + } + + } + + return null; + + } + + // these are used to "bind" a nonexistent property + _getValue_unavailable() {} + _setValue_unavailable() {} + + // Getters + + _getValue_direct( buffer, offset ) { + + buffer[ offset ] = this.targetObject[ this.propertyName ]; + + } + + _getValue_array( buffer, offset ) { + + const source = this.resolvedProperty; + + for ( let i = 0, n = source.length; i !== n; ++ i ) { + + buffer[ offset ++ ] = source[ i ]; + + } + + } + + _getValue_arrayElement( buffer, offset ) { + + buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ]; + + } + + _getValue_toArray( buffer, offset ) { + + this.resolvedProperty.toArray( buffer, offset ); + + } + + // Direct + + _setValue_direct( buffer, offset ) { + + this.targetObject[ this.propertyName ] = buffer[ offset ]; + + } + + _setValue_direct_setNeedsUpdate( buffer, offset ) { + + this.targetObject[ this.propertyName ] = buffer[ offset ]; + this.targetObject.needsUpdate = true; + + } + + _setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) { + + this.targetObject[ this.propertyName ] = buffer[ offset ]; + this.targetObject.matrixWorldNeedsUpdate = true; + + } + + // EntireArray + + _setValue_array( buffer, offset ) { + + const dest = this.resolvedProperty; + + for ( let i = 0, n = dest.length; i !== n; ++ i ) { + + dest[ i ] = buffer[ offset ++ ]; + + } + + } + + _setValue_array_setNeedsUpdate( buffer, offset ) { + + const dest = this.resolvedProperty; + + for ( let i = 0, n = dest.length; i !== n; ++ i ) { + + dest[ i ] = buffer[ offset ++ ]; + + } + + this.targetObject.needsUpdate = true; + + } + + _setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) { + + const dest = this.resolvedProperty; + + for ( let i = 0, n = dest.length; i !== n; ++ i ) { + + dest[ i ] = buffer[ offset ++ ]; + + } + + this.targetObject.matrixWorldNeedsUpdate = true; + + } + + // ArrayElement + + _setValue_arrayElement( buffer, offset ) { + + this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; + + } + + _setValue_arrayElement_setNeedsUpdate( buffer, offset ) { + + this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; + this.targetObject.needsUpdate = true; + + } + + _setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) { + + this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; + this.targetObject.matrixWorldNeedsUpdate = true; + + } + + // HasToFromArray + + _setValue_fromArray( buffer, offset ) { + + this.resolvedProperty.fromArray( buffer, offset ); + + } + + _setValue_fromArray_setNeedsUpdate( buffer, offset ) { + + this.resolvedProperty.fromArray( buffer, offset ); + this.targetObject.needsUpdate = true; + + } + + _setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) { + + this.resolvedProperty.fromArray( buffer, offset ); + this.targetObject.matrixWorldNeedsUpdate = true; + + } + + _getValue_unbound( targetArray, offset ) { + + this.bind(); + this.getValue( targetArray, offset ); + + } + + _setValue_unbound( sourceArray, offset ) { + + this.bind(); + this.setValue( sourceArray, offset ); + + } + + /** + * Creates a getter / setter pair for the property tracked by this binding. + */ + bind() { + + let targetObject = this.node; + const parsedPath = this.parsedPath; + + const objectName = parsedPath.objectName; + const propertyName = parsedPath.propertyName; + let propertyIndex = parsedPath.propertyIndex; + + if ( ! targetObject ) { + + targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ); + + this.node = targetObject; + + } + + // set fail state so we can just 'return' on error + this.getValue = this._getValue_unavailable; + this.setValue = this._setValue_unavailable; + + // ensure there is a value node + if ( ! targetObject ) { + + console.warn( 'THREE.PropertyBinding: No target node found for track: ' + this.path + '.' ); + return; + + } + + if ( objectName ) { + + let objectIndex = parsedPath.objectIndex; + + // special cases were we need to reach deeper into the hierarchy to get the face materials.... + switch ( objectName ) { + + case 'materials': + + if ( ! targetObject.material ) { + + console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this ); + return; + + } + + if ( ! targetObject.material.materials ) { + + console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this ); + return; + + } + + targetObject = targetObject.material.materials; + + break; + + case 'bones': + + if ( ! targetObject.skeleton ) { + + console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this ); + return; + + } + + // potential future optimization: skip this if propertyIndex is already an integer + // and convert the integer string to a true integer. + + targetObject = targetObject.skeleton.bones; + + // support resolving morphTarget names into indices. + for ( let i = 0; i < targetObject.length; i ++ ) { + + if ( targetObject[ i ].name === objectIndex ) { + + objectIndex = i; + break; + + } + + } + + break; + + case 'map': + + if ( 'map' in targetObject ) { + + targetObject = targetObject.map; + break; + + } + + if ( ! targetObject.material ) { + + console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this ); + return; + + } + + if ( ! targetObject.material.map ) { + + console.error( 'THREE.PropertyBinding: Can not bind to material.map as node.material does not have a map.', this ); + return; + + } + + targetObject = targetObject.material.map; + break; + + default: + + if ( targetObject[ objectName ] === undefined ) { + + console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this ); + return; + + } + + targetObject = targetObject[ objectName ]; + + } + + + if ( objectIndex !== undefined ) { + + if ( targetObject[ objectIndex ] === undefined ) { + + console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject ); + return; + + } + + targetObject = targetObject[ objectIndex ]; + + } + + } + + // resolve property + const nodeProperty = targetObject[ propertyName ]; + + if ( nodeProperty === undefined ) { + + const nodeName = parsedPath.nodeName; + + console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName + + '.' + propertyName + ' but it wasn\'t found.', targetObject ); + return; + + } + + // determine versioning scheme + let versioning = this.Versioning.None; + + this.targetObject = targetObject; + + if ( targetObject.isMaterial === true ) { + + versioning = this.Versioning.NeedsUpdate; + + } else if ( targetObject.isObject3D === true ) { + + versioning = this.Versioning.MatrixWorldNeedsUpdate; + + } + + // determine how the property gets bound + let bindingType = this.BindingType.Direct; + + if ( propertyIndex !== undefined ) { + + // access a sub element of the property array (only primitives are supported right now) + + if ( propertyName === 'morphTargetInfluences' ) { + + // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. + + // support resolving morphTarget names into indices. + if ( ! targetObject.geometry ) { + + console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this ); + return; + + } + + if ( ! targetObject.geometry.morphAttributes ) { + + console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this ); + return; + + } + + if ( targetObject.morphTargetDictionary[ propertyIndex ] !== undefined ) { + + propertyIndex = targetObject.morphTargetDictionary[ propertyIndex ]; + + } + + } + + bindingType = this.BindingType.ArrayElement; + + this.resolvedProperty = nodeProperty; + this.propertyIndex = propertyIndex; + + } else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) { + + // must use copy for Object3D.Euler/Quaternion + + bindingType = this.BindingType.HasFromToArray; + + this.resolvedProperty = nodeProperty; + + } else if ( Array.isArray( nodeProperty ) ) { + + bindingType = this.BindingType.EntireArray; + + this.resolvedProperty = nodeProperty; + + } else { + + this.propertyName = propertyName; + + } + + // select getter / setter + this.getValue = this.GetterByBindingType[ bindingType ]; + this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ]; + + } + + /** + * Unbinds the property. + */ + unbind() { + + this.node = null; + + // back to the prototype version of getValue / setValue + // note: avoiding to mutate the shape of 'this' via 'delete' + this.getValue = this._getValue_unbound; + this.setValue = this._setValue_unbound; + + } + +} + +PropertyBinding.Composite = Composite; + +PropertyBinding.prototype.BindingType = { + Direct: 0, + EntireArray: 1, + ArrayElement: 2, + HasFromToArray: 3 +}; + +PropertyBinding.prototype.Versioning = { + None: 0, + NeedsUpdate: 1, + MatrixWorldNeedsUpdate: 2 +}; + +PropertyBinding.prototype.GetterByBindingType = [ + + PropertyBinding.prototype._getValue_direct, + PropertyBinding.prototype._getValue_array, + PropertyBinding.prototype._getValue_arrayElement, + PropertyBinding.prototype._getValue_toArray, + +]; + +PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [ + + [ + // Direct + PropertyBinding.prototype._setValue_direct, + PropertyBinding.prototype._setValue_direct_setNeedsUpdate, + PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate, + + ], [ + + // EntireArray + + PropertyBinding.prototype._setValue_array, + PropertyBinding.prototype._setValue_array_setNeedsUpdate, + PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate, + + ], [ + + // ArrayElement + PropertyBinding.prototype._setValue_arrayElement, + PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, + PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate, + + ], [ + + // HasToFromArray + PropertyBinding.prototype._setValue_fromArray, + PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, + PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate, + + ] + +]; + +/** + * A group of objects that receives a shared animation state. + * + * Usage: + * + * - Add objects you would otherwise pass as 'root' to the + * constructor or the .clipAction method of AnimationMixer. + * - Instead pass this object as 'root'. + * - You can also add and remove objects later when the mixer is running. + * + * Note: + * + * - Objects of this class appear as one object to the mixer, + * so cache control of the individual objects must be done on the group. + * + * Limitation: + * + * - The animated properties must be compatible among the all objects in the group. + * - A single property can either be controlled through a target group or directly, but not both. + */ +class AnimationObjectGroup { + + /** + * Constructs a new animation group. + * + * @param {...Object3D} arguments - An arbitrary number of 3D objects that share the same animation state. + */ + constructor() { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isAnimationObjectGroup = true; + + /** + * The UUID of the 3D object. + * + * @type {string} + * @readonly + */ + this.uuid = generateUUID(); + + // cached objects followed by the active ones + this._objects = Array.prototype.slice.call( arguments ); + + this.nCachedObjects_ = 0; // threshold + // note: read by PropertyBinding.Composite + + const indices = {}; + this._indicesByUUID = indices; // for bookkeeping + + for ( let i = 0, n = arguments.length; i !== n; ++ i ) { + + indices[ arguments[ i ].uuid ] = i; + + } + + this._paths = []; // inside: string + this._parsedPaths = []; // inside: { we don't care, here } + this._bindings = []; // inside: Array< PropertyBinding > + this._bindingsIndicesByPath = {}; // inside: indices in these arrays + + const scope = this; + + this.stats = { + + objects: { + get total() { + + return scope._objects.length; + + }, + get inUse() { + + return this.total - scope.nCachedObjects_; + + } + }, + get bindingsPerObject() { + + return scope._bindings.length; + + } + + }; + + } + + /** + * Adds an arbitrary number of objects to this animation group. + * + * @param {...Object3D} arguments - The 3D objects to add. + */ + add() { + + const objects = this._objects, + indicesByUUID = this._indicesByUUID, + paths = this._paths, + parsedPaths = this._parsedPaths, + bindings = this._bindings, + nBindings = bindings.length; + + let knownObject = undefined, + nObjects = objects.length, + nCachedObjects = this.nCachedObjects_; + + for ( let i = 0, n = arguments.length; i !== n; ++ i ) { + + const object = arguments[ i ], + uuid = object.uuid; + let index = indicesByUUID[ uuid ]; + + if ( index === undefined ) { + + // unknown object -> add it to the ACTIVE region + + index = nObjects ++; + indicesByUUID[ uuid ] = index; + objects.push( object ); + + // accounting is done, now do the same for all bindings + + for ( let j = 0, m = nBindings; j !== m; ++ j ) { + + bindings[ j ].push( new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) ); + + } + + } else if ( index < nCachedObjects ) { + + knownObject = objects[ index ]; + + // move existing object to the ACTIVE region + + const firstActiveIndex = -- nCachedObjects, + lastCachedObject = objects[ firstActiveIndex ]; + + indicesByUUID[ lastCachedObject.uuid ] = index; + objects[ index ] = lastCachedObject; + + indicesByUUID[ uuid ] = firstActiveIndex; + objects[ firstActiveIndex ] = object; + + // accounting is done, now do the same for all bindings + + for ( let j = 0, m = nBindings; j !== m; ++ j ) { + + const bindingsForPath = bindings[ j ], + lastCached = bindingsForPath[ firstActiveIndex ]; + + let binding = bindingsForPath[ index ]; + + bindingsForPath[ index ] = lastCached; + + if ( binding === undefined ) { + + // since we do not bother to create new bindings + // for objects that are cached, the binding may + // or may not exist + + binding = new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ); + + } + + bindingsForPath[ firstActiveIndex ] = binding; + + } + + } else if ( objects[ index ] !== knownObject ) { + + console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' + + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.' ); + + } // else the object is already where we want it to be + + } // for arguments + + this.nCachedObjects_ = nCachedObjects; + + } + + /** + * Removes an arbitrary number of objects to this animation group + * + * @param {...Object3D} arguments - The 3D objects to remove. + */ + remove() { + + const objects = this._objects, + indicesByUUID = this._indicesByUUID, + bindings = this._bindings, + nBindings = bindings.length; + + let nCachedObjects = this.nCachedObjects_; + + for ( let i = 0, n = arguments.length; i !== n; ++ i ) { + + const object = arguments[ i ], + uuid = object.uuid, + index = indicesByUUID[ uuid ]; + + if ( index !== undefined && index >= nCachedObjects ) { + + // move existing object into the CACHED region + + const lastCachedIndex = nCachedObjects ++, + firstActiveObject = objects[ lastCachedIndex ]; + + indicesByUUID[ firstActiveObject.uuid ] = index; + objects[ index ] = firstActiveObject; + + indicesByUUID[ uuid ] = lastCachedIndex; + objects[ lastCachedIndex ] = object; + + // accounting is done, now do the same for all bindings + + for ( let j = 0, m = nBindings; j !== m; ++ j ) { + + const bindingsForPath = bindings[ j ], + firstActive = bindingsForPath[ lastCachedIndex ], + binding = bindingsForPath[ index ]; + + bindingsForPath[ index ] = firstActive; + bindingsForPath[ lastCachedIndex ] = binding; + + } + + } + + } // for arguments + + this.nCachedObjects_ = nCachedObjects; + + } + + /** + * Deallocates all memory resources for the passed 3D objects of this animation group. + * + * @param {...Object3D} arguments - The 3D objects to uncache. + */ + uncache() { + + const objects = this._objects, + indicesByUUID = this._indicesByUUID, + bindings = this._bindings, + nBindings = bindings.length; + + let nCachedObjects = this.nCachedObjects_, + nObjects = objects.length; + + for ( let i = 0, n = arguments.length; i !== n; ++ i ) { + + const object = arguments[ i ], + uuid = object.uuid, + index = indicesByUUID[ uuid ]; + + if ( index !== undefined ) { + + delete indicesByUUID[ uuid ]; + + if ( index < nCachedObjects ) { + + // object is cached, shrink the CACHED region + + const firstActiveIndex = -- nCachedObjects, + lastCachedObject = objects[ firstActiveIndex ], + lastIndex = -- nObjects, + lastObject = objects[ lastIndex ]; + + // last cached object takes this object's place + indicesByUUID[ lastCachedObject.uuid ] = index; + objects[ index ] = lastCachedObject; + + // last object goes to the activated slot and pop + indicesByUUID[ lastObject.uuid ] = firstActiveIndex; + objects[ firstActiveIndex ] = lastObject; + objects.pop(); + + // accounting is done, now do the same for all bindings + + for ( let j = 0, m = nBindings; j !== m; ++ j ) { + + const bindingsForPath = bindings[ j ], + lastCached = bindingsForPath[ firstActiveIndex ], + last = bindingsForPath[ lastIndex ]; + + bindingsForPath[ index ] = lastCached; + bindingsForPath[ firstActiveIndex ] = last; + bindingsForPath.pop(); + + } + + } else { + + // object is active, just swap with the last and pop + + const lastIndex = -- nObjects, + lastObject = objects[ lastIndex ]; + + if ( lastIndex > 0 ) { + + indicesByUUID[ lastObject.uuid ] = index; + + } + + objects[ index ] = lastObject; + objects.pop(); + + // accounting is done, now do the same for all bindings + + for ( let j = 0, m = nBindings; j !== m; ++ j ) { + + const bindingsForPath = bindings[ j ]; + + bindingsForPath[ index ] = bindingsForPath[ lastIndex ]; + bindingsForPath.pop(); + + } + + } // cached or active + + } // if object is known + + } // for arguments + + this.nCachedObjects_ = nCachedObjects; + + } + + // Internal interface used by befriended PropertyBinding.Composite: + + subscribe_( path, parsedPath ) { + + // returns an array of bindings for the given path that is changed + // according to the contained objects in the group + + const indicesByPath = this._bindingsIndicesByPath; + let index = indicesByPath[ path ]; + const bindings = this._bindings; + + if ( index !== undefined ) return bindings[ index ]; + + const paths = this._paths, + parsedPaths = this._parsedPaths, + objects = this._objects, + nObjects = objects.length, + nCachedObjects = this.nCachedObjects_, + bindingsForPath = new Array( nObjects ); + + index = bindings.length; + + indicesByPath[ path ] = index; + + paths.push( path ); + parsedPaths.push( parsedPath ); + bindings.push( bindingsForPath ); + + for ( let i = nCachedObjects, n = objects.length; i !== n; ++ i ) { + + const object = objects[ i ]; + bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath ); + + } + + return bindingsForPath; + + } + + unsubscribe_( path ) { + + // tells the group to forget about a property path and no longer + // update the array previously obtained with 'subscribe_' + + const indicesByPath = this._bindingsIndicesByPath, + index = indicesByPath[ path ]; + + if ( index !== undefined ) { + + const paths = this._paths, + parsedPaths = this._parsedPaths, + bindings = this._bindings, + lastBindingsIndex = bindings.length - 1, + lastBindings = bindings[ lastBindingsIndex ], + lastBindingsPath = path[ lastBindingsIndex ]; + + indicesByPath[ lastBindingsPath ] = index; + + bindings[ index ] = lastBindings; + bindings.pop(); + + parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ]; + parsedPaths.pop(); + + paths[ index ] = paths[ lastBindingsIndex ]; + paths.pop(); + + } + + } + +} + +/** + * An instance of `AnimationAction` schedules the playback of an animation which is + * stored in {@link AnimationClip}. + */ +class AnimationAction { + + /** + * Constructs a new animation action. + * + * @param {AnimationMixer} mixer - The mixer that is controlled by this action. + * @param {AnimationClip} clip - The animation clip that holds the actual keyframes. + * @param {?Object3D} [localRoot=null] - The root object on which this action is performed. + * @param {(NormalAnimationBlendMode|AdditiveAnimationBlendMode)} [blendMode] - The blend mode. + */ + constructor( mixer, clip, localRoot = null, blendMode = clip.blendMode ) { + + this._mixer = mixer; + this._clip = clip; + this._localRoot = localRoot; + + /** + * Defines how the animation is blended/combined when two or more animations + * are simultaneously played. + * + * @type {(NormalAnimationBlendMode|AdditiveAnimationBlendMode)} + */ + this.blendMode = blendMode; + + const tracks = clip.tracks, + nTracks = tracks.length, + interpolants = new Array( nTracks ); + + const interpolantSettings = { + endingStart: ZeroCurvatureEnding, + endingEnd: ZeroCurvatureEnding + }; + + for ( let i = 0; i !== nTracks; ++ i ) { + + const interpolant = tracks[ i ].createInterpolant( null ); + interpolants[ i ] = interpolant; + interpolant.settings = interpolantSettings; + + } + + this._interpolantSettings = interpolantSettings; + + this._interpolants = interpolants; // bound by the mixer + + // inside: PropertyMixer (managed by the mixer) + this._propertyBindings = new Array( nTracks ); + + this._cacheIndex = null; // for the memory manager + this._byClipCacheIndex = null; // for the memory manager + + this._timeScaleInterpolant = null; + this._weightInterpolant = null; + + /** + * The loop mode, set via {@link AnimationAction#setLoop}. + * + * @type {(LoopRepeat|LoopOnce|LoopPingPong)} + * @default LoopRepeat + */ + this.loop = LoopRepeat; + this._loopCount = -1; + + // global mixer time when the action is to be started + // it's set back to 'null' upon start of the action + this._startTime = null; + + /** + * The local time of this action (in seconds, starting with `0`). + * + * The value gets clamped or wrapped to `[0,clip.duration]` (according to the + * loop state). + * + * @type {number} + * @default Infinity + */ + this.time = 0; + + /** + * Scaling factor for the {@link AnimationAction#time}. A value of `0` causes the + * animation to pause. Negative values cause the animation to play backwards. + * + * @type {number} + * @default 1 + */ + this.timeScale = 1; + this._effectiveTimeScale = 1; + + /** + * The degree of influence of this action (in the interval `[0, 1]`). Values + * between `0` (no impact) and `1` (full impact) can be used to blend between + * several actions. + * + * @type {number} + * @default 1 + */ + this.weight = 1; + this._effectiveWeight = 1; + + /** + * The number of repetitions of the performed clip over the course of this action. + * Can be set via {@link AnimationAction#setLoop}. + * + * Setting this number has no effect if {@link AnimationAction#loop} is set to + * `THREE:LoopOnce`. + * + * @type {number} + * @default Infinity + */ + this.repetitions = Infinity; + + /** + * If set to `true`, the playback of the action is paused. + * + * @type {boolean} + * @default false + */ + this.paused = false; + + /** + * If set to `false`, the action is disabled so it has no impact. + * + * When the action is re-enabled, the animation continues from its current + * time (setting `enabled` to `false` doesn't reset the action). + * + * @type {boolean} + * @default true + */ + this.enabled = true; + + /** + * If set to true the animation will automatically be paused on its last frame. + * + * If set to false, {@link AnimationAction#enabled} will automatically be switched + * to `false` when the last loop of the action has finished, so that this action has + * no further impact. + * + * Note: This member has no impact if the action is interrupted (it + * has only an effect if its last loop has really finished). + * + * @type {boolean} + * @default false + */ + this.clampWhenFinished = false; + + /** + * Enables smooth interpolation without separate clips for start, loop and end. + * + * @type {boolean} + * @default true + */ + this.zeroSlopeAtStart = true; + + /** + * Enables smooth interpolation without separate clips for start, loop and end. + * + * @type {boolean} + * @default true + */ + this.zeroSlopeAtEnd = true; + + } + + /** + * Starts the playback of the animation. + * + * @return {AnimationAction} A reference to this animation action. + */ + play() { + + this._mixer._activateAction( this ); + + return this; + + } + + /** + * Stops the playback of the animation. + * + * @return {AnimationAction} A reference to this animation action. + */ + stop() { + + this._mixer._deactivateAction( this ); + + return this.reset(); + + } + + /** + * Resets the playback of the animation. + * + * @return {AnimationAction} A reference to this animation action. + */ + reset() { + + this.paused = false; + this.enabled = true; + + this.time = 0; // restart clip + this._loopCount = -1;// forget previous loops + this._startTime = null;// forget scheduling + + return this.stopFading().stopWarping(); + + } + + /** + * Returns `true` if the animation is running. + * + * @return {boolean} Whether the animation is running or not. + */ + isRunning() { + + return this.enabled && ! this.paused && this.timeScale !== 0 && + this._startTime === null && this._mixer._isActiveAction( this ); + + } + + /** + * Returns `true` when {@link AnimationAction#play} has been called. + * + * @return {boolean} Whether the animation is scheduled or not. + */ + isScheduled() { + + return this._mixer._isActiveAction( this ); + + } + + /** + * Defines the time when the animation should start. + * + * @param {number} time - The start time in seconds. + * @return {AnimationAction} A reference to this animation action. + */ + startAt( time ) { + + this._startTime = time; + + return this; + + } + + /** + * Configures the loop settings for this action. + * + * @param {(LoopRepeat|LoopOnce|LoopPingPong)} mode - The loop mode. + * @param {number} repetitions - The number of repetitions. + * @return {AnimationAction} A reference to this animation action. + */ + setLoop( mode, repetitions ) { + + this.loop = mode; + this.repetitions = repetitions; + + return this; + + } + + /** + * Sets the effective weight of this action. + * + * An action has no effect and thus an effective weight of zero when the + * action is disabled. + * + * @param {number} weight - The weight to set. + * @return {AnimationAction} A reference to this animation action. + */ + setEffectiveWeight( weight ) { + + this.weight = weight; + + // note: same logic as when updated at runtime + this._effectiveWeight = this.enabled ? weight : 0; + + return this.stopFading(); + + } + + /** + * Returns the effective weight of this action. + * + * @return {number} The effective weight. + */ + getEffectiveWeight() { + + return this._effectiveWeight; + + } + + /** + * Fades the animation in by increasing its weight gradually from `0` to `1`, + * within the passed time interval. + * + * @param {number} duration - The duration of the fade. + * @return {AnimationAction} A reference to this animation action. + */ + fadeIn( duration ) { + + return this._scheduleFading( duration, 0, 1 ); + + } + + /** + * Fades the animation out by decreasing its weight gradually from `1` to `0`, + * within the passed time interval. + * + * @param {number} duration - The duration of the fade. + * @return {AnimationAction} A reference to this animation action. + */ + fadeOut( duration ) { + + return this._scheduleFading( duration, 1, 0 ); + + } + + /** + * Causes this action to fade in and the given action to fade out, + * within the passed time interval. + * + * @param {AnimationAction} fadeOutAction - The animation action to fade out. + * @param {number} duration - The duration of the fade. + * @param {boolean} [warp=false] - Whether warping should be used or not. + * @return {AnimationAction} A reference to this animation action. + */ + crossFadeFrom( fadeOutAction, duration, warp = false ) { + + fadeOutAction.fadeOut( duration ); + this.fadeIn( duration ); + + if ( warp === true ) { + + const fadeInDuration = this._clip.duration, + fadeOutDuration = fadeOutAction._clip.duration, + + startEndRatio = fadeOutDuration / fadeInDuration, + endStartRatio = fadeInDuration / fadeOutDuration; + + fadeOutAction.warp( 1.0, startEndRatio, duration ); + this.warp( endStartRatio, 1.0, duration ); + + } + + return this; + + } + + /** + * Causes this action to fade out and the given action to fade in, + * within the passed time interval. + * + * @param {AnimationAction} fadeInAction - The animation action to fade in. + * @param {number} duration - The duration of the fade. + * @param {boolean} [warp=false] - Whether warping should be used or not. + * @return {AnimationAction} A reference to this animation action. + */ + crossFadeTo( fadeInAction, duration, warp = false ) { + + return fadeInAction.crossFadeFrom( this, duration, warp ); + + } + + /** + * Stops any fading which is applied to this action. + * + * @return {AnimationAction} A reference to this animation action. + */ + stopFading() { + + const weightInterpolant = this._weightInterpolant; + + if ( weightInterpolant !== null ) { + + this._weightInterpolant = null; + this._mixer._takeBackControlInterpolant( weightInterpolant ); + + } + + return this; + + } + + /** + * Sets the effective time scale of this action. + * + * An action has no effect and thus an effective time scale of zero when the + * action is paused. + * + * @param {number} timeScale - The time scale to set. + * @return {AnimationAction} A reference to this animation action. + */ + setEffectiveTimeScale( timeScale ) { + + this.timeScale = timeScale; + this._effectiveTimeScale = this.paused ? 0 : timeScale; + + return this.stopWarping(); + + } + + /** + * Returns the effective time scale of this action. + * + * @return {number} The effective time scale. + */ + getEffectiveTimeScale() { + + return this._effectiveTimeScale; + + } + + /** + * Sets the duration for a single loop of this action. + * + * @param {number} duration - The duration to set. + * @return {AnimationAction} A reference to this animation action. + */ + setDuration( duration ) { + + this.timeScale = this._clip.duration / duration; + + return this.stopWarping(); + + } + + /** + * Synchronizes this action with the passed other action. + * + * @param {AnimationAction} action - The action to sync with. + * @return {AnimationAction} A reference to this animation action. + */ + syncWith( action ) { + + this.time = action.time; + this.timeScale = action.timeScale; + + return this.stopWarping(); + + } + + /** + * Decelerates this animation's speed to `0` within the passed time interval. + * + * @param {number} duration - The duration. + * @return {AnimationAction} A reference to this animation action. + */ + halt( duration ) { + + return this.warp( this._effectiveTimeScale, 0, duration ); + + } + + /** + * Changes the playback speed, within the passed time interval, by modifying + * {@link AnimationAction#timeScale} gradually from `startTimeScale` to + * `endTimeScale`. + * + * @param {number} startTimeScale - The start time scale. + * @param {number} endTimeScale - The end time scale. + * @param {number} duration - The duration. + * @return {AnimationAction} A reference to this animation action. + */ + warp( startTimeScale, endTimeScale, duration ) { + + const mixer = this._mixer, + now = mixer.time, + timeScale = this.timeScale; + + let interpolant = this._timeScaleInterpolant; + + if ( interpolant === null ) { + + interpolant = mixer._lendControlInterpolant(); + this._timeScaleInterpolant = interpolant; + + } + + const times = interpolant.parameterPositions, + values = interpolant.sampleValues; + + times[ 0 ] = now; + times[ 1 ] = now + duration; + + values[ 0 ] = startTimeScale / timeScale; + values[ 1 ] = endTimeScale / timeScale; + + return this; + + } + + /** + * Stops any scheduled warping which is applied to this action. + * + * @return {AnimationAction} A reference to this animation action. + */ + stopWarping() { + + const timeScaleInterpolant = this._timeScaleInterpolant; + + if ( timeScaleInterpolant !== null ) { + + this._timeScaleInterpolant = null; + this._mixer._takeBackControlInterpolant( timeScaleInterpolant ); + + } + + return this; + + } + + /** + * Returns the animation mixer of this animation action. + * + * @return {AnimationMixer} The animation mixer. + */ + getMixer() { + + return this._mixer; + + } + + /** + * Returns the animation clip of this animation action. + * + * @return {AnimationClip} The animation clip. + */ + getClip() { + + return this._clip; + + } + + /** + * Returns the root object of this animation action. + * + * @return {Object3D} The root object. + */ + getRoot() { + + return this._localRoot || this._mixer._root; + + } + + // Interna + + _update( time, deltaTime, timeDirection, accuIndex ) { + + // called by the mixer + + if ( ! this.enabled ) { + + // call ._updateWeight() to update ._effectiveWeight + + this._updateWeight( time ); + return; + + } + + const startTime = this._startTime; + + if ( startTime !== null ) { + + // check for scheduled start of action + + const timeRunning = ( time - startTime ) * timeDirection; + if ( timeRunning < 0 || timeDirection === 0 ) { + + deltaTime = 0; + + } else { + + + this._startTime = null; // unschedule + deltaTime = timeDirection * timeRunning; + + } + + } + + // apply time scale and advance time + + deltaTime *= this._updateTimeScale( time ); + const clipTime = this._updateTime( deltaTime ); + + // note: _updateTime may disable the action resulting in + // an effective weight of 0 + + const weight = this._updateWeight( time ); + + if ( weight > 0 ) { + + const interpolants = this._interpolants; + const propertyMixers = this._propertyBindings; + + switch ( this.blendMode ) { + + case AdditiveAnimationBlendMode: + + for ( let j = 0, m = interpolants.length; j !== m; ++ j ) { + + interpolants[ j ].evaluate( clipTime ); + propertyMixers[ j ].accumulateAdditive( weight ); + + } + + break; + + case NormalAnimationBlendMode: + default: + + for ( let j = 0, m = interpolants.length; j !== m; ++ j ) { + + interpolants[ j ].evaluate( clipTime ); + propertyMixers[ j ].accumulate( accuIndex, weight ); + + } + + } + + } + + } + + _updateWeight( time ) { + + let weight = 0; + + if ( this.enabled ) { + + weight = this.weight; + const interpolant = this._weightInterpolant; + + if ( interpolant !== null ) { + + const interpolantValue = interpolant.evaluate( time )[ 0 ]; + + weight *= interpolantValue; + + if ( time > interpolant.parameterPositions[ 1 ] ) { + + this.stopFading(); + + if ( interpolantValue === 0 ) { + + // faded out, disable + this.enabled = false; + + } + + } + + } + + } + + this._effectiveWeight = weight; + return weight; + + } + + _updateTimeScale( time ) { + + let timeScale = 0; + + if ( ! this.paused ) { + + timeScale = this.timeScale; + + const interpolant = this._timeScaleInterpolant; + + if ( interpolant !== null ) { + + const interpolantValue = interpolant.evaluate( time )[ 0 ]; + + timeScale *= interpolantValue; + + if ( time > interpolant.parameterPositions[ 1 ] ) { + + this.stopWarping(); + + if ( timeScale === 0 ) { + + // motion has halted, pause + this.paused = true; + + } else { + + // warp done - apply final time scale + this.timeScale = timeScale; + + } + + } + + } + + } + + this._effectiveTimeScale = timeScale; + return timeScale; + + } + + _updateTime( deltaTime ) { + + const duration = this._clip.duration; + const loop = this.loop; + + let time = this.time + deltaTime; + let loopCount = this._loopCount; + + const pingPong = ( loop === LoopPingPong ); + + if ( deltaTime === 0 ) { + + if ( loopCount === -1 ) return time; + + return ( pingPong && ( loopCount & 1 ) === 1 ) ? duration - time : time; + + } + + if ( loop === LoopOnce ) { + + if ( loopCount === -1 ) { + + // just started + + this._loopCount = 0; + this._setEndings( true, true, false ); + + } + + handle_stop: { + + if ( time >= duration ) { + + time = duration; + + } else if ( time < 0 ) { + + time = 0; + + } else { + + this.time = time; + + break handle_stop; + + } + + if ( this.clampWhenFinished ) this.paused = true; + else this.enabled = false; + + this.time = time; + + this._mixer.dispatchEvent( { + type: 'finished', action: this, + direction: deltaTime < 0 ? -1 : 1 + } ); + + } + + } else { // repetitive Repeat or PingPong + + if ( loopCount === -1 ) { + + // just started + + if ( deltaTime >= 0 ) { + + loopCount = 0; + + this._setEndings( true, this.repetitions === 0, pingPong ); + + } else { + + // when looping in reverse direction, the initial + // transition through zero counts as a repetition, + // so leave loopCount at -1 + + this._setEndings( this.repetitions === 0, true, pingPong ); + + } + + } + + if ( time >= duration || time < 0 ) { + + // wrap around + + const loopDelta = Math.floor( time / duration ); // signed + time -= duration * loopDelta; + + loopCount += Math.abs( loopDelta ); + + const pending = this.repetitions - loopCount; + + if ( pending <= 0 ) { + + // have to stop (switch state, clamp time, fire event) + + if ( this.clampWhenFinished ) this.paused = true; + else this.enabled = false; + + time = deltaTime > 0 ? duration : 0; + + this.time = time; + + this._mixer.dispatchEvent( { + type: 'finished', action: this, + direction: deltaTime > 0 ? 1 : -1 + } ); + + } else { + + // keep running + + if ( pending === 1 ) { + + // entering the last round + + const atStart = deltaTime < 0; + this._setEndings( atStart, ! atStart, pingPong ); + + } else { + + this._setEndings( false, false, pingPong ); + + } + + this._loopCount = loopCount; + + this.time = time; + + this._mixer.dispatchEvent( { + type: 'loop', action: this, loopDelta: loopDelta + } ); + + } + + } else { + + this.time = time; + + } + + if ( pingPong && ( loopCount & 1 ) === 1 ) { + + // invert time for the "pong round" + + return duration - time; + + } + + } + + return time; + + } + + _setEndings( atStart, atEnd, pingPong ) { + + const settings = this._interpolantSettings; + + if ( pingPong ) { + + settings.endingStart = ZeroSlopeEnding; + settings.endingEnd = ZeroSlopeEnding; + + } else { + + // assuming for LoopOnce atStart == atEnd == true + + if ( atStart ) { + + settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding; + + } else { + + settings.endingStart = WrapAroundEnding; + + } + + if ( atEnd ) { + + settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding; + + } else { + + settings.endingEnd = WrapAroundEnding; + + } + + } + + } + + _scheduleFading( duration, weightNow, weightThen ) { + + const mixer = this._mixer, now = mixer.time; + let interpolant = this._weightInterpolant; + + if ( interpolant === null ) { + + interpolant = mixer._lendControlInterpolant(); + this._weightInterpolant = interpolant; + + } + + const times = interpolant.parameterPositions, + values = interpolant.sampleValues; + + times[ 0 ] = now; + values[ 0 ] = weightNow; + times[ 1 ] = now + duration; + values[ 1 ] = weightThen; + + return this; + + } + +} + +const _controlInterpolantsResultBuffer = new Float32Array( 1 ); + +/** + * `AnimationMixer` is a player for animations on a particular object in + * the scene. When multiple objects in the scene are animated independently, + * one `AnimationMixer` may be used for each object. + */ +class AnimationMixer extends EventDispatcher { + + /** + * Constructs a new animation mixer. + * + * @param {Object3D} root - The object whose animations shall be played by this mixer. + */ + constructor( root ) { + + super(); + + this._root = root; + this._initMemoryManager(); + this._accuIndex = 0; + + /** + * The global mixer time (in seconds; starting with `0` on the mixer's creation). + * + * @type {number} + * @default 0 + */ + this.time = 0; + + /** + * A scaling factor for the global time. + * + * Note: Setting this member to `0` and later back to `1` is a + * possibility to pause/unpause all actions that are controlled by this + * mixer. + * + * @type {number} + * @default 1 + */ + this.timeScale = 1.0; + + } + + _bindAction( action, prototypeAction ) { + + const root = action._localRoot || this._root, + tracks = action._clip.tracks, + nTracks = tracks.length, + bindings = action._propertyBindings, + interpolants = action._interpolants, + rootUuid = root.uuid, + bindingsByRoot = this._bindingsByRootAndName; + + let bindingsByName = bindingsByRoot[ rootUuid ]; + + if ( bindingsByName === undefined ) { + + bindingsByName = {}; + bindingsByRoot[ rootUuid ] = bindingsByName; + + } + + for ( let i = 0; i !== nTracks; ++ i ) { + + const track = tracks[ i ], + trackName = track.name; + + let binding = bindingsByName[ trackName ]; + + if ( binding !== undefined ) { + + ++ binding.referenceCount; + bindings[ i ] = binding; + + } else { + + binding = bindings[ i ]; + + if ( binding !== undefined ) { + + // existing binding, make sure the cache knows + + if ( binding._cacheIndex === null ) { + + ++ binding.referenceCount; + this._addInactiveBinding( binding, rootUuid, trackName ); + + } + + continue; + + } + + const path = prototypeAction && prototypeAction. + _propertyBindings[ i ].binding.parsedPath; + + binding = new PropertyMixer( + PropertyBinding.create( root, trackName, path ), + track.ValueTypeName, track.getValueSize() ); + + ++ binding.referenceCount; + this._addInactiveBinding( binding, rootUuid, trackName ); + + bindings[ i ] = binding; + + } + + interpolants[ i ].resultBuffer = binding.buffer; + + } + + } + + _activateAction( action ) { + + if ( ! this._isActiveAction( action ) ) { + + if ( action._cacheIndex === null ) { + + // this action has been forgotten by the cache, but the user + // appears to be still using it -> rebind + + const rootUuid = ( action._localRoot || this._root ).uuid, + clipUuid = action._clip.uuid, + actionsForClip = this._actionsByClip[ clipUuid ]; + + this._bindAction( action, + actionsForClip && actionsForClip.knownActions[ 0 ] ); + + this._addInactiveAction( action, clipUuid, rootUuid ); + + } + + const bindings = action._propertyBindings; + + // increment reference counts / sort out state + for ( let i = 0, n = bindings.length; i !== n; ++ i ) { + + const binding = bindings[ i ]; + + if ( binding.useCount ++ === 0 ) { + + this._lendBinding( binding ); + binding.saveOriginalState(); + + } + + } + + this._lendAction( action ); + + } + + } + + _deactivateAction( action ) { + + if ( this._isActiveAction( action ) ) { + + const bindings = action._propertyBindings; + + // decrement reference counts / sort out state + for ( let i = 0, n = bindings.length; i !== n; ++ i ) { + + const binding = bindings[ i ]; + + if ( -- binding.useCount === 0 ) { + + binding.restoreOriginalState(); + this._takeBackBinding( binding ); + + } + + } + + this._takeBackAction( action ); + + } + + } + + // Memory manager + + _initMemoryManager() { + + this._actions = []; // 'nActiveActions' followed by inactive ones + this._nActiveActions = 0; + + this._actionsByClip = {}; + // inside: + // { + // knownActions: Array< AnimationAction > - used as prototypes + // actionByRoot: AnimationAction - lookup + // } + + + this._bindings = []; // 'nActiveBindings' followed by inactive ones + this._nActiveBindings = 0; + + this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer > + + + this._controlInterpolants = []; // same game as above + this._nActiveControlInterpolants = 0; + + const scope = this; + + this.stats = { + + actions: { + get total() { + + return scope._actions.length; + + }, + get inUse() { + + return scope._nActiveActions; + + } + }, + bindings: { + get total() { + + return scope._bindings.length; + + }, + get inUse() { + + return scope._nActiveBindings; + + } + }, + controlInterpolants: { + get total() { + + return scope._controlInterpolants.length; + + }, + get inUse() { + + return scope._nActiveControlInterpolants; + + } + } + + }; + + } + + // Memory management for AnimationAction objects + + _isActiveAction( action ) { + + const index = action._cacheIndex; + return index !== null && index < this._nActiveActions; + + } + + _addInactiveAction( action, clipUuid, rootUuid ) { + + const actions = this._actions, + actionsByClip = this._actionsByClip; + + let actionsForClip = actionsByClip[ clipUuid ]; + + if ( actionsForClip === undefined ) { + + actionsForClip = { + + knownActions: [ action ], + actionByRoot: {} + + }; + + action._byClipCacheIndex = 0; + + actionsByClip[ clipUuid ] = actionsForClip; + + } else { + + const knownActions = actionsForClip.knownActions; + + action._byClipCacheIndex = knownActions.length; + knownActions.push( action ); + + } + + action._cacheIndex = actions.length; + actions.push( action ); + + actionsForClip.actionByRoot[ rootUuid ] = action; + + } + + _removeInactiveAction( action ) { + + const actions = this._actions, + lastInactiveAction = actions[ actions.length - 1 ], + cacheIndex = action._cacheIndex; + + lastInactiveAction._cacheIndex = cacheIndex; + actions[ cacheIndex ] = lastInactiveAction; + actions.pop(); + + action._cacheIndex = null; + + + const clipUuid = action._clip.uuid, + actionsByClip = this._actionsByClip, + actionsForClip = actionsByClip[ clipUuid ], + knownActionsForClip = actionsForClip.knownActions, + + lastKnownAction = + knownActionsForClip[ knownActionsForClip.length - 1 ], + + byClipCacheIndex = action._byClipCacheIndex; + + lastKnownAction._byClipCacheIndex = byClipCacheIndex; + knownActionsForClip[ byClipCacheIndex ] = lastKnownAction; + knownActionsForClip.pop(); + + action._byClipCacheIndex = null; + + + const actionByRoot = actionsForClip.actionByRoot, + rootUuid = ( action._localRoot || this._root ).uuid; + + delete actionByRoot[ rootUuid ]; + + if ( knownActionsForClip.length === 0 ) { + + delete actionsByClip[ clipUuid ]; + + } + + this._removeInactiveBindingsForAction( action ); + + } + + _removeInactiveBindingsForAction( action ) { + + const bindings = action._propertyBindings; + + for ( let i = 0, n = bindings.length; i !== n; ++ i ) { + + const binding = bindings[ i ]; + + if ( -- binding.referenceCount === 0 ) { + + this._removeInactiveBinding( binding ); + + } + + } + + } + + _lendAction( action ) { + + // [ active actions | inactive actions ] + // [ active actions >| inactive actions ] + // s a + // <-swap-> + // a s + + const actions = this._actions, + prevIndex = action._cacheIndex, + + lastActiveIndex = this._nActiveActions ++, + + firstInactiveAction = actions[ lastActiveIndex ]; + + action._cacheIndex = lastActiveIndex; + actions[ lastActiveIndex ] = action; + + firstInactiveAction._cacheIndex = prevIndex; + actions[ prevIndex ] = firstInactiveAction; + + } + + _takeBackAction( action ) { + + // [ active actions | inactive actions ] + // [ active actions |< inactive actions ] + // a s + // <-swap-> + // s a + + const actions = this._actions, + prevIndex = action._cacheIndex, + + firstInactiveIndex = -- this._nActiveActions, + + lastActiveAction = actions[ firstInactiveIndex ]; + + action._cacheIndex = firstInactiveIndex; + actions[ firstInactiveIndex ] = action; + + lastActiveAction._cacheIndex = prevIndex; + actions[ prevIndex ] = lastActiveAction; + + } + + // Memory management for PropertyMixer objects + + _addInactiveBinding( binding, rootUuid, trackName ) { + + const bindingsByRoot = this._bindingsByRootAndName, + bindings = this._bindings; + + let bindingByName = bindingsByRoot[ rootUuid ]; + + if ( bindingByName === undefined ) { + + bindingByName = {}; + bindingsByRoot[ rootUuid ] = bindingByName; + + } + + bindingByName[ trackName ] = binding; + + binding._cacheIndex = bindings.length; + bindings.push( binding ); + + } + + _removeInactiveBinding( binding ) { + + const bindings = this._bindings, + propBinding = binding.binding, + rootUuid = propBinding.rootNode.uuid, + trackName = propBinding.path, + bindingsByRoot = this._bindingsByRootAndName, + bindingByName = bindingsByRoot[ rootUuid ], + + lastInactiveBinding = bindings[ bindings.length - 1 ], + cacheIndex = binding._cacheIndex; + + lastInactiveBinding._cacheIndex = cacheIndex; + bindings[ cacheIndex ] = lastInactiveBinding; + bindings.pop(); + + delete bindingByName[ trackName ]; + + if ( Object.keys( bindingByName ).length === 0 ) { + + delete bindingsByRoot[ rootUuid ]; + + } + + } + + _lendBinding( binding ) { + + const bindings = this._bindings, + prevIndex = binding._cacheIndex, + + lastActiveIndex = this._nActiveBindings ++, + + firstInactiveBinding = bindings[ lastActiveIndex ]; + + binding._cacheIndex = lastActiveIndex; + bindings[ lastActiveIndex ] = binding; + + firstInactiveBinding._cacheIndex = prevIndex; + bindings[ prevIndex ] = firstInactiveBinding; + + } + + _takeBackBinding( binding ) { + + const bindings = this._bindings, + prevIndex = binding._cacheIndex, + + firstInactiveIndex = -- this._nActiveBindings, + + lastActiveBinding = bindings[ firstInactiveIndex ]; + + binding._cacheIndex = firstInactiveIndex; + bindings[ firstInactiveIndex ] = binding; + + lastActiveBinding._cacheIndex = prevIndex; + bindings[ prevIndex ] = lastActiveBinding; + + } + + + // Memory management of Interpolants for weight and time scale + + _lendControlInterpolant() { + + const interpolants = this._controlInterpolants, + lastActiveIndex = this._nActiveControlInterpolants ++; + + let interpolant = interpolants[ lastActiveIndex ]; + + if ( interpolant === undefined ) { + + interpolant = new LinearInterpolant( + new Float32Array( 2 ), new Float32Array( 2 ), + 1, _controlInterpolantsResultBuffer ); + + interpolant.__cacheIndex = lastActiveIndex; + interpolants[ lastActiveIndex ] = interpolant; + + } + + return interpolant; + + } + + _takeBackControlInterpolant( interpolant ) { + + const interpolants = this._controlInterpolants, + prevIndex = interpolant.__cacheIndex, + + firstInactiveIndex = -- this._nActiveControlInterpolants, + + lastActiveInterpolant = interpolants[ firstInactiveIndex ]; + + interpolant.__cacheIndex = firstInactiveIndex; + interpolants[ firstInactiveIndex ] = interpolant; + + lastActiveInterpolant.__cacheIndex = prevIndex; + interpolants[ prevIndex ] = lastActiveInterpolant; + + } + + /** + * Returns an instance of {@link AnimationAction} for the passed clip. + * + * If an action fitting the clip and root parameters doesn't yet exist, it + * will be created by this method. Calling this method several times with the + * same clip and root parameters always returns the same action. + * + * @param {AnimationClip|string} clip - An animation clip or alternatively the name of the animation clip. + * @param {Object3D} [optionalRoot] - An alternative root object. + * @param {(NormalAnimationBlendMode|AdditiveAnimationBlendMode)} [blendMode] - The blend mode. + * @return {?AnimationAction} The animation action. + */ + clipAction( clip, optionalRoot, blendMode ) { + + const root = optionalRoot || this._root, + rootUuid = root.uuid; + + let clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip; + + const clipUuid = clipObject !== null ? clipObject.uuid : clip; + + const actionsForClip = this._actionsByClip[ clipUuid ]; + let prototypeAction = null; + + if ( blendMode === undefined ) { + + if ( clipObject !== null ) { + + blendMode = clipObject.blendMode; + + } else { + + blendMode = NormalAnimationBlendMode; + + } + + } + + if ( actionsForClip !== undefined ) { + + const existingAction = actionsForClip.actionByRoot[ rootUuid ]; + + if ( existingAction !== undefined && existingAction.blendMode === blendMode ) { + + return existingAction; + + } + + // we know the clip, so we don't have to parse all + // the bindings again but can just copy + prototypeAction = actionsForClip.knownActions[ 0 ]; + + // also, take the clip from the prototype action + if ( clipObject === null ) + clipObject = prototypeAction._clip; + + } + + // clip must be known when specified via string + if ( clipObject === null ) return null; + + // allocate all resources required to run it + const newAction = new AnimationAction( this, clipObject, optionalRoot, blendMode ); + + this._bindAction( newAction, prototypeAction ); + + // and make the action known to the memory manager + this._addInactiveAction( newAction, clipUuid, rootUuid ); + + return newAction; + + } + + /** + * Returns an existing animation action for the passed clip. + * + * @param {AnimationClip|string} clip - An animation clip or alternatively the name of the animation clip. + * @param {Object3D} [optionalRoot] - An alternative root object. + * @return {?AnimationAction} The animation action. Returns `null` if no action was found. + */ + existingAction( clip, optionalRoot ) { + + const root = optionalRoot || this._root, + rootUuid = root.uuid, + + clipObject = typeof clip === 'string' ? + AnimationClip.findByName( root, clip ) : clip, + + clipUuid = clipObject ? clipObject.uuid : clip, + + actionsForClip = this._actionsByClip[ clipUuid ]; + + if ( actionsForClip !== undefined ) { + + return actionsForClip.actionByRoot[ rootUuid ] || null; + + } + + return null; + + } + + /** + * Deactivates all previously scheduled actions on this mixer. + * + * @return {AnimationMixer} A reference to thi animation mixer. + */ + stopAllAction() { + + const actions = this._actions, + nActions = this._nActiveActions; + + for ( let i = nActions - 1; i >= 0; -- i ) { + + actions[ i ].stop(); + + } + + return this; + + } + + /** + * Advances the global mixer time and updates the animation. + * + * This is usually done in the render loop by passing the delta + * time from {@link Clock} or {@link Timer}. + * + * @param {number} deltaTime - The delta time in seconds. + * @return {AnimationMixer} A reference to thi animation mixer. + */ + update( deltaTime ) { + + deltaTime *= this.timeScale; + + const actions = this._actions, + nActions = this._nActiveActions, + + time = this.time += deltaTime, + timeDirection = Math.sign( deltaTime ), + + accuIndex = this._accuIndex ^= 1; + + // run active actions + + for ( let i = 0; i !== nActions; ++ i ) { + + const action = actions[ i ]; + + action._update( time, deltaTime, timeDirection, accuIndex ); + + } + + // update scene graph + + const bindings = this._bindings, + nBindings = this._nActiveBindings; + + for ( let i = 0; i !== nBindings; ++ i ) { + + bindings[ i ].apply( accuIndex ); + + } + + return this; + + } + + /** + * Sets the global mixer to a specific time and updates the animation accordingly. + * + * This is useful when you need to jump to an exact time in an animation. The + * input parameter will be scaled by {@link AnimationMixer#timeScale} + * + * @param {number} time - The time to set in seconds. + * @return {AnimationMixer} A reference to thi animation mixer. + */ + setTime( time ) { + + this.time = 0; // Zero out time attribute for AnimationMixer object; + for ( let i = 0; i < this._actions.length; i ++ ) { + + this._actions[ i ].time = 0; // Zero out time attribute for all associated AnimationAction objects. + + } + + return this.update( time ); // Update used to set exact time. Returns "this" AnimationMixer object. + + } + + /** + * Returns this mixer's root object. + * + * @return {Object3D} The mixer's root object. + */ + getRoot() { + + return this._root; + + } + + /** + * Deallocates all memory resources for a clip. Before using this method make + * sure to call {@link AnimationAction#stop} for all related actions. + * + * @param {AnimationClip} clip - The clip to uncache. + */ + uncacheClip( clip ) { + + const actions = this._actions, + clipUuid = clip.uuid, + actionsByClip = this._actionsByClip, + actionsForClip = actionsByClip[ clipUuid ]; + + if ( actionsForClip !== undefined ) { + + // note: just calling _removeInactiveAction would mess up the + // iteration state and also require updating the state we can + // just throw away + + const actionsToRemove = actionsForClip.knownActions; + + for ( let i = 0, n = actionsToRemove.length; i !== n; ++ i ) { + + const action = actionsToRemove[ i ]; + + this._deactivateAction( action ); + + const cacheIndex = action._cacheIndex, + lastInactiveAction = actions[ actions.length - 1 ]; + + action._cacheIndex = null; + action._byClipCacheIndex = null; + + lastInactiveAction._cacheIndex = cacheIndex; + actions[ cacheIndex ] = lastInactiveAction; + actions.pop(); + + this._removeInactiveBindingsForAction( action ); + + } + + delete actionsByClip[ clipUuid ]; + + } + + } + + /** + * Deallocates all memory resources for a root object. Before using this + * method make sure to call {@link AnimationAction#stop} for all related + * actions or alternatively {@link AnimationMixer#stopAllAction} when the + * mixer operates on a single root. + * + * @param {Object3D} root - The root object to uncache. + */ + uncacheRoot( root ) { + + const rootUuid = root.uuid, + actionsByClip = this._actionsByClip; + + for ( const clipUuid in actionsByClip ) { + + const actionByRoot = actionsByClip[ clipUuid ].actionByRoot, + action = actionByRoot[ rootUuid ]; + + if ( action !== undefined ) { + + this._deactivateAction( action ); + this._removeInactiveAction( action ); + + } + + } + + const bindingsByRoot = this._bindingsByRootAndName, + bindingByName = bindingsByRoot[ rootUuid ]; + + if ( bindingByName !== undefined ) { + + for ( const trackName in bindingByName ) { + + const binding = bindingByName[ trackName ]; + binding.restoreOriginalState(); + this._removeInactiveBinding( binding ); + + } + + } + + } + + /** + * Deallocates all memory resources for an action. The action is identified by the + * given clip and an optional root object. Before using this method make + * sure to call {@link AnimationAction#stop} to deactivate the action. + * + * @param {AnimationClip|string} clip - An animation clip or alternatively the name of the animation clip. + * @param {Object3D} [optionalRoot] - An alternative root object. + */ + uncacheAction( clip, optionalRoot ) { + + const action = this.existingAction( clip, optionalRoot ); + + if ( action !== null ) { + + this._deactivateAction( action ); + this._removeInactiveAction( action ); + + } + + } + +} + +/** + * Represents a 3D render target. + * + * @augments RenderTarget + */ +class RenderTarget3D extends RenderTarget { + + /** + * Constructs a new 3D render target. + * + * @param {number} [width=1] - The width of the render target. + * @param {number} [height=1] - The height of the render target. + * @param {number} [depth=1] - The height of the render target. + * @param {RenderTarget~Options} [options] - The configuration object. + */ + constructor( width = 1, height = 1, depth = 1, options = {} ) { + + super( width, height, options ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isRenderTarget3D = true; + + this.depth = depth; + + /** + * Overwritten with a different texture type. + * + * @type {Data3DTexture} + */ + this.texture = new Data3DTexture( null, width, height, depth ); + this._setTextureOptions( options ); + + this.texture.isRenderTargetTexture = true; + + } + +} + +/** + * Represents a uniform which is a global shader variable. They are passed to shader programs. + * + * When declaring a uniform of a {@link ShaderMaterial}, it is declared by value or by object. + * ```js + * uniforms: { + * time: { value: 1.0 }, + * resolution: new Uniform( new Vector2() ) + * }; + * ``` + * Since this class can only be used in context of {@link ShaderMaterial}, it is only supported + * in {@link WebGLRenderer}. + */ +class Uniform { + + /** + * Constructs a new uniform. + * + * @param {any} value - The uniform value. + */ + constructor( value ) { + + /** + * The uniform value. + * + * @type {any} + */ + this.value = value; + + } + + /** + * Returns a new uniform with copied values from this instance. + * If the value has a `clone()` method, the value is cloned as well. + * + * @return {Uniform} A clone of this instance. + */ + clone() { + + return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() ); + + } + +} + +let _id = 0; + +/** + * A class for managing multiple uniforms in a single group. The renderer will process + * such a definition as a single UBO. + * + * Since this class can only be used in context of {@link ShaderMaterial}, it is only supported + * in {@link WebGLRenderer}. + * + * @augments EventDispatcher + */ +class UniformsGroup extends EventDispatcher { + + /** + * Constructs a new uniforms group. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isUniformsGroup = true; + + /** + * The ID of the 3D object. + * + * @name UniformsGroup#id + * @type {number} + * @readonly + */ + Object.defineProperty( this, 'id', { value: _id ++ } ); + + /** + * The name of the uniforms group. + * + * @type {string} + */ + this.name = ''; + + /** + * The buffer usage. + * + * @type {(StaticDrawUsage|DynamicDrawUsage|StreamDrawUsage|StaticReadUsage|DynamicReadUsage|StreamReadUsage|StaticCopyUsage|DynamicCopyUsage|StreamCopyUsage)} + * @default StaticDrawUsage + */ + this.usage = StaticDrawUsage; + + /** + * An array holding the uniforms. + * + * @type {Array} + */ + this.uniforms = []; + + } + + /** + * Adds the given uniform to this uniforms group. + * + * @param {Uniform} uniform - The uniform to add. + * @return {UniformsGroup} A reference to this uniforms group. + */ + add( uniform ) { + + this.uniforms.push( uniform ); + + return this; + + } + + /** + * Removes the given uniform from this uniforms group. + * + * @param {Uniform} uniform - The uniform to remove. + * @return {UniformsGroup} A reference to this uniforms group. + */ + remove( uniform ) { + + const index = this.uniforms.indexOf( uniform ); + + if ( index !== -1 ) this.uniforms.splice( index, 1 ); + + return this; + + } + + /** + * Sets the name of this uniforms group. + * + * @param {string} name - The name to set. + * @return {UniformsGroup} A reference to this uniforms group. + */ + setName( name ) { + + this.name = name; + + return this; + + } + + /** + * Sets the usage of this uniforms group. + * + * @param {(StaticDrawUsage|DynamicDrawUsage|StreamDrawUsage|StaticReadUsage|DynamicReadUsage|StreamReadUsage|StaticCopyUsage|DynamicCopyUsage|StreamCopyUsage)} value - The usage to set. + * @return {UniformsGroup} A reference to this uniforms group. + */ + setUsage( value ) { + + this.usage = value; + + return this; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + * + * @fires Texture#dispose + */ + dispose() { + + this.dispatchEvent( { type: 'dispose' } ); + + } + + /** + * Copies the values of the given uniforms group to this instance. + * + * @param {UniformsGroup} source - The uniforms group to copy. + * @return {UniformsGroup} A reference to this uniforms group. + */ + copy( source ) { + + this.name = source.name; + this.usage = source.usage; + + const uniformsSource = source.uniforms; + + this.uniforms.length = 0; + + for ( let i = 0, l = uniformsSource.length; i < l; i ++ ) { + + const uniforms = Array.isArray( uniformsSource[ i ] ) ? uniformsSource[ i ] : [ uniformsSource[ i ] ]; + + for ( let j = 0; j < uniforms.length; j ++ ) { + + this.uniforms.push( uniforms[ j ].clone() ); + + } + + } + + return this; + + } + + /** + * Returns a new uniforms group with copied values from this instance. + * + * @return {UniformsGroup} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + +} + +/** + * An instanced version of an interleaved buffer. + * + * @augments InterleavedBuffer + */ +class InstancedInterleavedBuffer extends InterleavedBuffer { + + /** + * Constructs a new instanced interleaved buffer. + * + * @param {TypedArray} array - A typed array with a shared buffer storing attribute data. + * @param {number} stride - The number of typed-array elements per vertex. + * @param {number} [meshPerAttribute=1] - Defines how often a value of this interleaved buffer should be repeated. + */ + constructor( array, stride, meshPerAttribute = 1 ) { + + super( array, stride ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isInstancedInterleavedBuffer = true; + + /** + * Defines how often a value of this buffer attribute should be repeated, + * see {@link InstancedBufferAttribute#meshPerAttribute}. + * + * @type {number} + * @default 1 + */ + this.meshPerAttribute = meshPerAttribute; + + } + + copy( source ) { + + super.copy( source ); + + this.meshPerAttribute = source.meshPerAttribute; + + return this; + + } + + clone( data ) { + + const ib = super.clone( data ); + + ib.meshPerAttribute = this.meshPerAttribute; + + return ib; + + } + + toJSON( data ) { + + const json = super.toJSON( data ); + + json.isInstancedInterleavedBuffer = true; + json.meshPerAttribute = this.meshPerAttribute; + + return json; + + } + +} + +/** + * An alternative version of a buffer attribute with more control over the VBO. + * + * The renderer does not construct a VBO for this kind of attribute. Instead, it uses + * whatever VBO is passed in constructor and can later be altered via the `buffer` property. + * + * The most common use case for this class is when some kind of GPGPU calculation interferes + * or even produces the VBOs in question. + * + * Notice that this class can only be used with {@link WebGLRenderer}. + */ +class GLBufferAttribute { + + /** + * Constructs a new GL buffer attribute. + * + * @param {WebGLBuffer} buffer - The native WebGL buffer. + * @param {number} type - The native data type (e.g. `gl.FLOAT`). + * @param {number} itemSize - The item size. + * @param {number} elementSize - The corresponding size (in bytes) for the given `type` parameter. + * @param {number} count - The expected number of vertices in VBO. + */ + constructor( buffer, type, itemSize, elementSize, count ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isGLBufferAttribute = true; + + /** + * The name of the buffer attribute. + * + * @type {string} + */ + this.name = ''; + + /** + * The native WebGL buffer. + * + * @type {WebGLBuffer} + */ + this.buffer = buffer; + + /** + * The native data type. + * + * @type {number} + */ + this.type = type; + + /** + * The item size, see {@link BufferAttribute#itemSize}. + * + * @type {number} + */ + this.itemSize = itemSize; + + /** + * The corresponding size (in bytes) for the given `type` parameter. + * + * @type {number} + */ + this.elementSize = elementSize; + + /** + * The expected number of vertices in VBO. + * + * @type {number} + */ + this.count = count; + + /** + * A version number, incremented every time the `needsUpdate` is set to `true`. + * + * @type {number} + */ + this.version = 0; + + } + + /** + * Flag to indicate that this attribute has changed and should be re-sent to + * the GPU. Set this to `true` when you modify the value of the array. + * + * @type {number} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + if ( value === true ) this.version ++; + + } + + /** + * Sets the given native WebGL buffer. + * + * @param {WebGLBuffer} buffer - The buffer to set. + * @return {BufferAttribute} A reference to this instance. + */ + setBuffer( buffer ) { + + this.buffer = buffer; + + return this; + + } + + /** + * Sets the given native data type and element size. + * + * @param {number} type - The native data type (e.g. `gl.FLOAT`). + * @param {number} elementSize - The corresponding size (in bytes) for the given `type` parameter. + * @return {BufferAttribute} A reference to this instance. + */ + setType( type, elementSize ) { + + this.type = type; + this.elementSize = elementSize; + + return this; + + } + + /** + * Sets the item size. + * + * @param {number} itemSize - The item size. + * @return {BufferAttribute} A reference to this instance. + */ + setItemSize( itemSize ) { + + this.itemSize = itemSize; + + return this; + + } + + /** + * Sets the count (the expected number of vertices in VBO). + * + * @param {number} count - The count. + * @return {BufferAttribute} A reference to this instance. + */ + setCount( count ) { + + this.count = count; + + return this; + + } + +} + +const _matrix = /*@__PURE__*/ new Matrix4(); + +/** + * This class is designed to assist with raycasting. Raycasting is used for + * mouse picking (working out what objects in the 3d space the mouse is over) + * amongst other things. + */ +class Raycaster { + + /** + * Constructs a new raycaster. + * + * @param {Vector3} origin - The origin vector where the ray casts from. + * @param {Vector3} direction - The (normalized) direction vector that gives direction to the ray. + * @param {number} [near=0] - All results returned are further away than near. Near can't be negative. + * @param {number} [far=Infinity] - All results returned are closer than far. Far can't be lower than near. + */ + constructor( origin, direction, near = 0, far = Infinity ) { + + /** + * The ray used for raycasting. + * + * @type {Ray} + */ + this.ray = new Ray( origin, direction ); + + /** + * All results returned are further away than near. Near can't be negative. + * + * @type {number} + * @default 0 + */ + this.near = near; + + /** + * All results returned are further away than near. Near can't be negative. + * + * @type {number} + * @default Infinity + */ + this.far = far; + + /** + * The camera to use when raycasting against view-dependent objects such as + * billboarded objects like sprites. This field can be set manually or + * is set when calling `setFromCamera()`. + * + * @type {?Camera} + * @default null + */ + this.camera = null; + + /** + * Allows to selectively ignore 3D objects when performing intersection tests. + * The following code example ensures that only 3D objects on layer `1` will be + * honored by raycaster. + * ```js + * raycaster.layers.set( 1 ); + * object.layers.enable( 1 ); + * ``` + * + * @type {Layers} + */ + this.layers = new Layers(); + + + /** + * A parameter object that configures the raycasting. It has the structure: + * + * ``` + * { + * Mesh: {}, + * Line: { threshold: 1 }, + * LOD: {}, + * Points: { threshold: 1 }, + * Sprite: {} + * } + * ``` + * Where `threshold` is the precision of the raycaster when intersecting objects, in world units. + * + * @type {Object} + */ + this.params = { + Mesh: {}, + Line: { threshold: 1 }, + LOD: {}, + Points: { threshold: 1 }, + Sprite: {} + }; + + } + + /** + * Updates the ray with a new origin and direction by copying the values from the arguments. + * + * @param {Vector3} origin - The origin vector where the ray casts from. + * @param {Vector3} direction - The (normalized) direction vector that gives direction to the ray. + */ + set( origin, direction ) { + + // direction is assumed to be normalized (for accurate distance calculations) + + this.ray.set( origin, direction ); + + } + + /** + * Uses the given coordinates and camera to compute a new origin and direction for the internal ray. + * + * @param {Vector2} coords - 2D coordinates of the mouse, in normalized device coordinates (NDC). + * X and Y components should be between `-1` and `1`. + * @param {Camera} camera - The camera from which the ray should originate. + */ + setFromCamera( coords, camera ) { + + if ( camera.isPerspectiveCamera ) { + + this.ray.origin.setFromMatrixPosition( camera.matrixWorld ); + this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize(); + this.camera = camera; + + } else if ( camera.isOrthographicCamera ) { + + this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera + this.ray.direction.set( 0, 0, -1 ).transformDirection( camera.matrixWorld ); + this.camera = camera; + + } else { + + console.error( 'THREE.Raycaster: Unsupported camera type: ' + camera.type ); + + } + + } + + /** + * Uses the given WebXR controller to compute a new origin and direction for the internal ray. + * + * @param {WebXRController} controller - The controller to copy the position and direction from. + * @return {Raycaster} A reference to this raycaster. + */ + setFromXRController( controller ) { + + _matrix.identity().extractRotation( controller.matrixWorld ); + + this.ray.origin.setFromMatrixPosition( controller.matrixWorld ); + this.ray.direction.set( 0, 0, -1 ).applyMatrix4( _matrix ); + + return this; + + } + + /** + * The intersection point of a raycaster intersection test. + * @typedef {Object} Raycaster~Intersection + * @property {number} distance - The distance from the ray's origin to the intersection point. + * @property {number} distanceToRay - Some 3D objects e.g. {@link Points} provide the distance of the + * intersection to the nearest point on the ray. For other objects it will be `undefined`. + * @property {Vector3} point - The intersection point, in world coordinates. + * @property {Object} face - The face that has been intersected. + * @property {number} faceIndex - The face index. + * @property {Object3D} object - The 3D object that has been intersected. + * @property {Vector2} uv - U,V coordinates at point of intersection. + * @property {Vector2} uv1 - Second set of U,V coordinates at point of intersection. + * @property {Vector3} uv1 - Interpolated normal vector at point of intersection. + * @property {number} instanceId - The index number of the instance where the ray + * intersects the {@link InstancedMesh}. + */ + + /** + * Checks all intersection between the ray and the object with or without the + * descendants. Intersections are returned sorted by distance, closest first. + * + * `Raycaster` delegates to the `raycast()` method of the passed 3D object, when + * evaluating whether the ray intersects the object or not. This allows meshes to respond + * differently to ray casting than lines or points. + * + * Note that for meshes, faces must be pointed towards the origin of the ray in order + * to be detected; intersections of the ray passing through the back of a face will not + * be detected. To raycast against both faces of an object, you'll want to set {@link Material#side} + * to `THREE.DoubleSide`. + * + * @param {Object3D} object - The 3D object to check for intersection with the ray. + * @param {boolean} [recursive=true] - If set to `true`, it also checks all descendants. + * Otherwise it only checks intersection with the object. + * @param {Array} [intersects=[]] The target array that holds the result of the method. + * @return {Array} An array holding the intersection points. + */ + intersectObject( object, recursive = true, intersects = [] ) { + + intersect( object, this, intersects, recursive ); + + intersects.sort( ascSort ); + + return intersects; + + } + + /** + * Checks all intersection between the ray and the objects with or without + * the descendants. Intersections are returned sorted by distance, closest first. + * + * @param {Array} objects - The 3D objects to check for intersection with the ray. + * @param {boolean} [recursive=true] - If set to `true`, it also checks all descendants. + * Otherwise it only checks intersection with the object. + * @param {Array} [intersects=[]] The target array that holds the result of the method. + * @return {Array} An array holding the intersection points. + */ + intersectObjects( objects, recursive = true, intersects = [] ) { + + for ( let i = 0, l = objects.length; i < l; i ++ ) { + + intersect( objects[ i ], this, intersects, recursive ); + + } + + intersects.sort( ascSort ); + + return intersects; + + } + +} + +function ascSort( a, b ) { + + return a.distance - b.distance; + +} + +function intersect( object, raycaster, intersects, recursive ) { + + let propagate = true; + + if ( object.layers.test( raycaster.layers ) ) { + + const result = object.raycast( raycaster, intersects ); + + if ( result === false ) propagate = false; + + } + + if ( propagate === true && recursive === true ) { + + const children = object.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + intersect( children[ i ], raycaster, intersects, true ); + + } + + } + +} + +/** + * This class can be used to represent points in 3D space as + * [Spherical coordinates]{@link https://en.wikipedia.org/wiki/Spherical_coordinate_system}. + */ +class Spherical { + + /** + * Constructs a new spherical. + * + * @param {number} [radius=1] - The radius, or the Euclidean distance (straight-line distance) from the point to the origin. + * @param {number} [phi=0] - The polar angle in radians from the y (up) axis. + * @param {number} [theta=0] - The equator/azimuthal angle in radians around the y (up) axis. + */ + constructor( radius = 1, phi = 0, theta = 0 ) { + + /** + * The radius, or the Euclidean distance (straight-line distance) from the point to the origin. + * + * @type {number} + * @default 1 + */ + this.radius = radius; + + /** + * The polar angle in radians from the y (up) axis. + * + * @type {number} + * @default 0 + */ + this.phi = phi; + + /** + * The equator/azimuthal angle in radians around the y (up) axis. + * + * @type {number} + * @default 0 + */ + this.theta = theta; + + } + + /** + * Sets the spherical components by copying the given values. + * + * @param {number} radius - The radius. + * @param {number} phi - The polar angle. + * @param {number} theta - The azimuthal angle. + * @return {Spherical} A reference to this spherical. + */ + set( radius, phi, theta ) { + + this.radius = radius; + this.phi = phi; + this.theta = theta; + + return this; + + } + + /** + * Copies the values of the given spherical to this instance. + * + * @param {Spherical} other - The spherical to copy. + * @return {Spherical} A reference to this spherical. + */ + copy( other ) { + + this.radius = other.radius; + this.phi = other.phi; + this.theta = other.theta; + + return this; + + } + + /** + * Restricts the polar angle [page:.phi phi] to be between `0.000001` and pi - + * `0.000001`. + * + * @return {Spherical} A reference to this spherical. + */ + makeSafe() { + + const EPS = 0.000001; + this.phi = clamp( this.phi, EPS, Math.PI - EPS ); + + return this; + + } + + /** + * Sets the spherical components from the given vector which is assumed to hold + * Cartesian coordinates. + * + * @param {Vector3} v - The vector to set. + * @return {Spherical} A reference to this spherical. + */ + setFromVector3( v ) { + + return this.setFromCartesianCoords( v.x, v.y, v.z ); + + } + + /** + * Sets the spherical components from the given Cartesian coordinates. + * + * @param {number} x - The x value. + * @param {number} y - The x value. + * @param {number} z - The x value. + * @return {Spherical} A reference to this spherical. + */ + setFromCartesianCoords( x, y, z ) { + + this.radius = Math.sqrt( x * x + y * y + z * z ); + + if ( this.radius === 0 ) { + + this.theta = 0; + this.phi = 0; + + } else { + + this.theta = Math.atan2( x, z ); + this.phi = Math.acos( clamp( y / this.radius, -1, 1 ) ); + + } + + return this; + + } + + /** + * Returns a new spherical with copied values from this instance. + * + * @return {Spherical} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + +} + +/** + * This class can be used to represent points in 3D space as + * [Cylindrical coordinates]{@link https://en.wikipedia.org/wiki/Cylindrical_coordinate_system}. + */ +class Cylindrical { + + /** + * Constructs a new cylindrical. + * + * @param {number} [radius=1] - The distance from the origin to a point in the x-z plane. + * @param {number} [theta=0] - A counterclockwise angle in the x-z plane measured in radians from the positive z-axis. + * @param {number} [y=0] - The height above the x-z plane. + */ + constructor( radius = 1, theta = 0, y = 0 ) { + + /** + * The distance from the origin to a point in the x-z plane. + * + * @type {number} + * @default 1 + */ + this.radius = radius; + + /** + * A counterclockwise angle in the x-z plane measured in radians from the positive z-axis. + * + * @type {number} + * @default 0 + */ + this.theta = theta; + + /** + * The height above the x-z plane. + * + * @type {number} + * @default 0 + */ + this.y = y; + + } + + /** + * Sets the cylindrical components by copying the given values. + * + * @param {number} radius - The radius. + * @param {number} theta - The theta angle. + * @param {number} y - The height value. + * @return {Cylindrical} A reference to this cylindrical. + */ + set( radius, theta, y ) { + + this.radius = radius; + this.theta = theta; + this.y = y; + + return this; + + } + + /** + * Copies the values of the given cylindrical to this instance. + * + * @param {Cylindrical} other - The cylindrical to copy. + * @return {Cylindrical} A reference to this cylindrical. + */ + copy( other ) { + + this.radius = other.radius; + this.theta = other.theta; + this.y = other.y; + + return this; + + } + + /** + * Sets the cylindrical components from the given vector which is assumed to hold + * Cartesian coordinates. + * + * @param {Vector3} v - The vector to set. + * @return {Cylindrical} A reference to this cylindrical. + */ + setFromVector3( v ) { + + return this.setFromCartesianCoords( v.x, v.y, v.z ); + + } + + /** + * Sets the cylindrical components from the given Cartesian coordinates. + * + * @param {number} x - The x value. + * @param {number} y - The x value. + * @param {number} z - The x value. + * @return {Cylindrical} A reference to this cylindrical. + */ + setFromCartesianCoords( x, y, z ) { + + this.radius = Math.sqrt( x * x + z * z ); + this.theta = Math.atan2( x, z ); + this.y = y; + + return this; + + } + + /** + * Returns a new cylindrical with copied values from this instance. + * + * @return {Cylindrical} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + +} + +/** + * Represents a 2x2 matrix. + * + * A Note on Row-Major and Column-Major Ordering: + * + * The constructor and {@link Matrix2#set} method take arguments in + * [row-major]{@link https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order} + * order, while internally they are stored in the {@link Matrix2#elements} array in column-major order. + * This means that calling: + * ```js + * const m = new THREE.Matrix2(); + * m.set( 11, 12, + * 21, 22 ); + * ``` + * will result in the elements array containing: + * ```js + * m.elements = [ 11, 21, + * 12, 22 ]; + * ``` + * and internally all calculations are performed using column-major ordering. + * However, as the actual ordering makes no difference mathematically and + * most people are used to thinking about matrices in row-major order, the + * three.js documentation shows matrices in row-major order. Just bear in + * mind that if you are reading the source code, you'll have to take the + * transpose of any matrices outlined here to make sense of the calculations. + */ +class Matrix2 { + + /** + * Constructs a new 2x2 matrix. The arguments are supposed to be + * in row-major order. If no arguments are provided, the constructor + * initializes the matrix as an identity matrix. + * + * @param {number} [n11] - 1-1 matrix element. + * @param {number} [n12] - 1-2 matrix element. + * @param {number} [n21] - 2-1 matrix element. + * @param {number} [n22] - 2-2 matrix element. + */ + constructor( n11, n12, n21, n22 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + Matrix2.prototype.isMatrix2 = true; + + /** + * A column-major list of matrix values. + * + * @type {Array} + */ + this.elements = [ + 1, 0, + 0, 1, + ]; + + if ( n11 !== undefined ) { + + this.set( n11, n12, n21, n22 ); + + } + + } + + /** + * Sets this matrix to the 2x2 identity matrix. + * + * @return {Matrix2} A reference to this matrix. + */ + identity() { + + this.set( + 1, 0, + 0, 1, + ); + + return this; + + } + + /** + * Sets the elements of the matrix from the given array. + * + * @param {Array} array - The matrix elements in column-major order. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Matrix2} A reference to this matrix. + */ + fromArray( array, offset = 0 ) { + + for ( let i = 0; i < 4; i ++ ) { + + this.elements[ i ] = array[ i + offset ]; + + } + + return this; + + } + + /** + * Sets the elements of the matrix.The arguments are supposed to be + * in row-major order. + * + * @param {number} n11 - 1-1 matrix element. + * @param {number} n12 - 1-2 matrix element. + * @param {number} n21 - 2-1 matrix element. + * @param {number} n22 - 2-2 matrix element. + * @return {Matrix2} A reference to this matrix. + */ + set( n11, n12, n21, n22 ) { + + const te = this.elements; + + te[ 0 ] = n11; te[ 2 ] = n12; + te[ 1 ] = n21; te[ 3 ] = n22; + + return this; + + } + +} + +const _vector$4 = /*@__PURE__*/ new Vector2(); + +/** + * Represents an axis-aligned bounding box (AABB) in 2D space. + */ +class Box2 { + + /** + * Constructs a new bounding box. + * + * @param {Vector2} [min=(Infinity,Infinity)] - A vector representing the lower boundary of the box. + * @param {Vector2} [max=(-Infinity,-Infinity)] - A vector representing the upper boundary of the box. + */ + constructor( min = new Vector2( + Infinity, + Infinity ), max = new Vector2( - Infinity, - Infinity ) ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBox2 = true; + + /** + * The lower boundary of the box. + * + * @type {Vector2} + */ + this.min = min; + + /** + * The upper boundary of the box. + * + * @type {Vector2} + */ + this.max = max; + + } + + /** + * Sets the lower and upper boundaries of this box. + * Please note that this method only copies the values from the given objects. + * + * @param {Vector2} min - The lower boundary of the box. + * @param {Vector2} max - The upper boundary of the box. + * @return {Box2} A reference to this bounding box. + */ + set( min, max ) { + + this.min.copy( min ); + this.max.copy( max ); + + return this; + + } + + /** + * Sets the upper and lower bounds of this box so it encloses the position data + * in the given array. + * + * @param {Array} points - An array holding 2D position data as instances of {@link Vector2}. + * @return {Box2} A reference to this bounding box. + */ + setFromPoints( points ) { + + this.makeEmpty(); + + for ( let i = 0, il = points.length; i < il; i ++ ) { + + this.expandByPoint( points[ i ] ); + + } + + return this; + + } + + /** + * Centers this box on the given center vector and sets this box's width, height and + * depth to the given size values. + * + * @param {Vector2} center - The center of the box. + * @param {Vector2} size - The x and y dimensions of the box. + * @return {Box2} A reference to this bounding box. + */ + setFromCenterAndSize( center, size ) { + + const halfSize = _vector$4.copy( size ).multiplyScalar( 0.5 ); + this.min.copy( center ).sub( halfSize ); + this.max.copy( center ).add( halfSize ); + + return this; + + } + + /** + * Returns a new box with copied values from this instance. + * + * @return {Box2} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + + /** + * Copies the values of the given box to this instance. + * + * @param {Box2} box - The box to copy. + * @return {Box2} A reference to this bounding box. + */ + copy( box ) { + + this.min.copy( box.min ); + this.max.copy( box.max ); + + return this; + + } + + /** + * Makes this box empty which means in encloses a zero space in 2D. + * + * @return {Box2} A reference to this bounding box. + */ + makeEmpty() { + + this.min.x = this.min.y = + Infinity; + this.max.x = this.max.y = - Infinity; + + return this; + + } + + /** + * Returns true if this box includes zero points within its bounds. + * Note that a box with equal lower and upper bounds still includes one + * point, the one both bounds share. + * + * @return {boolean} Whether this box is empty or not. + */ + isEmpty() { + + // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes + + return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ); + + } + + /** + * Returns the center point of this box. + * + * @param {Vector2} target - The target vector that is used to store the method's result. + * @return {Vector2} The center point. + */ + getCenter( target ) { + + return this.isEmpty() ? target.set( 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); + + } + + /** + * Returns the dimensions of this box. + * + * @param {Vector2} target - The target vector that is used to store the method's result. + * @return {Vector2} The size. + */ + getSize( target ) { + + return this.isEmpty() ? target.set( 0, 0 ) : target.subVectors( this.max, this.min ); + + } + + /** + * Expands the boundaries of this box to include the given point. + * + * @param {Vector2} point - The point that should be included by the bounding box. + * @return {Box2} A reference to this bounding box. + */ + expandByPoint( point ) { + + this.min.min( point ); + this.max.max( point ); + + return this; + + } + + /** + * Expands this box equilaterally by the given vector. The width of this + * box will be expanded by the x component of the vector in both + * directions. The height of this box will be expanded by the y component of + * the vector in both directions. + * + * @param {Vector2} vector - The vector that should expand the bounding box. + * @return {Box2} A reference to this bounding box. + */ + expandByVector( vector ) { + + this.min.sub( vector ); + this.max.add( vector ); + + return this; + + } + + /** + * Expands each dimension of the box by the given scalar. If negative, the + * dimensions of the box will be contracted. + * + * @param {number} scalar - The scalar value that should expand the bounding box. + * @return {Box2} A reference to this bounding box. + */ + expandByScalar( scalar ) { + + this.min.addScalar( - scalar ); + this.max.addScalar( scalar ); + + return this; + + } + + /** + * Returns `true` if the given point lies within or on the boundaries of this box. + * + * @param {Vector2} point - The point to test. + * @return {boolean} Whether the bounding box contains the given point or not. + */ + containsPoint( point ) { + + return point.x >= this.min.x && point.x <= this.max.x && + point.y >= this.min.y && point.y <= this.max.y; + + } + + /** + * Returns `true` if this bounding box includes the entirety of the given bounding box. + * If this box and the given one are identical, this function also returns `true`. + * + * @param {Box2} box - The bounding box to test. + * @return {boolean} Whether the bounding box contains the given bounding box or not. + */ + containsBox( box ) { + + return this.min.x <= box.min.x && box.max.x <= this.max.x && + this.min.y <= box.min.y && box.max.y <= this.max.y; + + } + + /** + * Returns a point as a proportion of this box's width and height. + * + * @param {Vector2} point - A point in 2D space. + * @param {Vector2} target - The target vector that is used to store the method's result. + * @return {Vector2} A point as a proportion of this box's width and height. + */ + getParameter( point, target ) { + + // This can potentially have a divide by zero if the box + // has a size dimension of 0. + + return target.set( + ( point.x - this.min.x ) / ( this.max.x - this.min.x ), + ( point.y - this.min.y ) / ( this.max.y - this.min.y ) + ); + + } + + /** + * Returns `true` if the given bounding box intersects with this bounding box. + * + * @param {Box2} box - The bounding box to test. + * @return {boolean} Whether the given bounding box intersects with this bounding box. + */ + intersectsBox( box ) { + + // using 4 splitting planes to rule out intersections + + return box.max.x >= this.min.x && box.min.x <= this.max.x && + box.max.y >= this.min.y && box.min.y <= this.max.y; + + } + + /** + * Clamps the given point within the bounds of this box. + * + * @param {Vector2} point - The point to clamp. + * @param {Vector2} target - The target vector that is used to store the method's result. + * @return {Vector2} The clamped point. + */ + clampPoint( point, target ) { + + return target.copy( point ).clamp( this.min, this.max ); + + } + + /** + * Returns the euclidean distance from any edge of this box to the specified point. If + * the given point lies inside of this box, the distance will be `0`. + * + * @param {Vector2} point - The point to compute the distance to. + * @return {number} The euclidean distance. + */ + distanceToPoint( point ) { + + return this.clampPoint( point, _vector$4 ).distanceTo( point ); + + } + + /** + * Computes the intersection of this bounding box and the given one, setting the upper + * bound of this box to the lesser of the two boxes' upper bounds and the + * lower bound of this box to the greater of the two boxes' lower bounds. If + * there's no overlap, makes this box empty. + * + * @param {Box2} box - The bounding box to intersect with. + * @return {Box2} A reference to this bounding box. + */ + intersect( box ) { + + this.min.max( box.min ); + this.max.min( box.max ); + + if ( this.isEmpty() ) this.makeEmpty(); + + return this; + + } + + /** + * Computes the union of this box and another and the given one, setting the upper + * bound of this box to the greater of the two boxes' upper bounds and the + * lower bound of this box to the lesser of the two boxes' lower bounds. + * + * @param {Box2} box - The bounding box that will be unioned with this instance. + * @return {Box2} A reference to this bounding box. + */ + union( box ) { + + this.min.min( box.min ); + this.max.max( box.max ); + + return this; + + } + + /** + * Adds the given offset to both the upper and lower bounds of this bounding box, + * effectively moving it in 2D space. + * + * @param {Vector2} offset - The offset that should be used to translate the bounding box. + * @return {Box2} A reference to this bounding box. + */ + translate( offset ) { + + this.min.add( offset ); + this.max.add( offset ); + + return this; + + } + + /** + * Returns `true` if this bounding box is equal with the given one. + * + * @param {Box2} box - The box to test for equality. + * @return {boolean} Whether this bounding box is equal with the given one. + */ + equals( box ) { + + return box.min.equals( this.min ) && box.max.equals( this.max ); + + } + +} + +const _startP = /*@__PURE__*/ new Vector3(); +const _startEnd = /*@__PURE__*/ new Vector3(); + +/** + * An analytical line segment in 3D space represented by a start and end point. + */ +class Line3 { + + /** + * Constructs a new line segment. + * + * @param {Vector3} [start=(0,0,0)] - Start of the line segment. + * @param {Vector3} [end=(0,0,0)] - End of the line segment. + */ + constructor( start = new Vector3(), end = new Vector3() ) { + + /** + * Start of the line segment. + * + * @type {Vector3} + */ + this.start = start; + + /** + * End of the line segment. + * + * @type {Vector3} + */ + this.end = end; + + } + + /** + * Sets the start and end values by copying the given vectors. + * + * @param {Vector3} start - The start point. + * @param {Vector3} end - The end point. + * @return {Line3} A reference to this line segment. + */ + set( start, end ) { + + this.start.copy( start ); + this.end.copy( end ); + + return this; + + } + + /** + * Copies the values of the given line segment to this instance. + * + * @param {Line3} line - The line segment to copy. + * @return {Line3} A reference to this line segment. + */ + copy( line ) { + + this.start.copy( line.start ); + this.end.copy( line.end ); + + return this; + + } + + /** + * Returns the center of the line segment. + * + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The center point. + */ + getCenter( target ) { + + return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 ); + + } + + /** + * Returns the delta vector of the line segment's start and end point. + * + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The delta vector. + */ + delta( target ) { + + return target.subVectors( this.end, this.start ); + + } + + /** + * Returns the squared Euclidean distance between the line' start and end point. + * + * @return {number} The squared Euclidean distance. + */ + distanceSq() { + + return this.start.distanceToSquared( this.end ); + + } + + /** + * Returns the Euclidean distance between the line' start and end point. + * + * @return {number} The Euclidean distance. + */ + distance() { + + return this.start.distanceTo( this.end ); + + } + + /** + * Returns a vector at a certain position along the line segment. + * + * @param {number} t - A value between `[0,1]` to represent a position along the line segment. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The delta vector. + */ + at( t, target ) { + + return this.delta( target ).multiplyScalar( t ).add( this.start ); + + } + + /** + * Returns a point parameter based on the closest point as projected on the line segment. + * + * @param {Vector3} point - The point for which to return a point parameter. + * @param {boolean} clampToLine - Whether to clamp the result to the range `[0,1]` or not. + * @return {number} The point parameter. + */ + closestPointToPointParameter( point, clampToLine ) { + + _startP.subVectors( point, this.start ); + _startEnd.subVectors( this.end, this.start ); + + const startEnd2 = _startEnd.dot( _startEnd ); + const startEnd_startP = _startEnd.dot( _startP ); + + let t = startEnd_startP / startEnd2; + + if ( clampToLine ) { + + t = clamp( t, 0, 1 ); + + } + + return t; + + } + + /** + * Returns the closets point on the line for a given point. + * + * @param {Vector3} point - The point to compute the closest point on the line for. + * @param {boolean} clampToLine - Whether to clamp the result to the range `[0,1]` or not. + * @param {Vector3} target - The target vector that is used to store the method's result. + * @return {Vector3} The closest point on the line. + */ + closestPointToPoint( point, clampToLine, target ) { + + const t = this.closestPointToPointParameter( point, clampToLine ); + + return this.delta( target ).multiplyScalar( t ).add( this.start ); + + } + + /** + * Applies a 4x4 transformation matrix to this line segment. + * + * @param {Matrix4} matrix - The transformation matrix. + * @return {Line3} A reference to this line segment. + */ + applyMatrix4( matrix ) { + + this.start.applyMatrix4( matrix ); + this.end.applyMatrix4( matrix ); + + return this; + + } + + /** + * Returns `true` if this line segment is equal with the given one. + * + * @param {Line3} line - The line segment to test for equality. + * @return {boolean} Whether this line segment is equal with the given one. + */ + equals( line ) { + + return line.start.equals( this.start ) && line.end.equals( this.end ); + + } + + /** + * Returns a new line segment with copied values from this instance. + * + * @return {Line3} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + +} + +const _vector$3 = /*@__PURE__*/ new Vector3(); + +/** + * This displays a cone shaped helper object for a {@link SpotLight}. + * + * ```js + * const spotLight = new THREE.SpotLight( 0xffffff ); + * spotLight.position.set( 10, 10, 10 ); + * scene.add( spotLight ); + * + * const spotLightHelper = new THREE.SpotLightHelper( spotLight ); + * scene.add( spotLightHelper ); + * ``` + * + * @augments Object3D + */ +class SpotLightHelper extends Object3D { + + /** + * Constructs a new spot light helper. + * + * @param {HemisphereLight} light - The light to be visualized. + * @param {number|Color|string} [color] - The helper's color. If not set, the helper will take + * the color of the light. + */ + constructor( light, color ) { + + super(); + + /** + * The light being visualized. + * + * @type {SpotLight} + */ + this.light = light; + + this.matrixAutoUpdate = false; + + /** + * The color parameter passed in the constructor. + * If not set, the helper will take the color of the light. + * + * @type {number|Color|string} + */ + this.color = color; + + this.type = 'SpotLightHelper'; + + const geometry = new BufferGeometry(); + + const positions = [ + 0, 0, 0, 0, 0, 1, + 0, 0, 0, 1, 0, 1, + 0, 0, 0, -1, 0, 1, + 0, 0, 0, 0, 1, 1, + 0, 0, 0, 0, -1, 1 + ]; + + for ( let i = 0, j = 1, l = 32; i < l; i ++, j ++ ) { + + const p1 = ( i / l ) * Math.PI * 2; + const p2 = ( j / l ) * Math.PI * 2; + + positions.push( + Math.cos( p1 ), Math.sin( p1 ), 1, + Math.cos( p2 ), Math.sin( p2 ), 1 + ); + + } + + geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); + + const material = new LineBasicMaterial( { fog: false, toneMapped: false } ); + + this.cone = new LineSegments( geometry, material ); + this.add( this.cone ); + + this.update(); + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + this.cone.geometry.dispose(); + this.cone.material.dispose(); + + } + + /** + * Updates the helper to match the position and direction of the + * light being visualized. + */ + update() { + + this.light.updateWorldMatrix( true, false ); + this.light.target.updateWorldMatrix( true, false ); + + // update the local matrix based on the parent and light target transforms + if ( this.parent ) { + + this.parent.updateWorldMatrix( true ); + + this.matrix + .copy( this.parent.matrixWorld ) + .invert() + .multiply( this.light.matrixWorld ); + + } else { + + this.matrix.copy( this.light.matrixWorld ); + + } + + this.matrixWorld.copy( this.light.matrixWorld ); + + const coneLength = this.light.distance ? this.light.distance : 1000; + const coneWidth = coneLength * Math.tan( this.light.angle ); + + this.cone.scale.set( coneWidth, coneWidth, coneLength ); + + _vector$3.setFromMatrixPosition( this.light.target.matrixWorld ); + + this.cone.lookAt( _vector$3 ); + + if ( this.color !== undefined ) { + + this.cone.material.color.set( this.color ); + + } else { + + this.cone.material.color.copy( this.light.color ); + + } + + } + +} + +const _vector$2 = /*@__PURE__*/ new Vector3(); +const _boneMatrix = /*@__PURE__*/ new Matrix4(); +const _matrixWorldInv = /*@__PURE__*/ new Matrix4(); + +/** + * A helper object to assist with visualizing a {@link Skeleton}. + * + * ```js + * const helper = new THREE.SkeletonHelper( skinnedMesh ); + * scene.add( helper ); + * ``` + * + * @augments LineSegments + */ +class SkeletonHelper extends LineSegments { + + /** + * Constructs a new hemisphere light helper. + * + * @param {Object3D} object - Usually an instance of {@link SkinnedMesh}. However, any 3D object + * can be used if it represents a hierarchy of bones (see {@link Bone}). + */ + constructor( object ) { + + const bones = getBoneList( object ); + + const geometry = new BufferGeometry(); + + const vertices = []; + const colors = []; + + const color1 = new Color( 0, 0, 1 ); + const color2 = new Color( 0, 1, 0 ); + + for ( let i = 0; i < bones.length; i ++ ) { + + const bone = bones[ i ]; + + if ( bone.parent && bone.parent.isBone ) { + + vertices.push( 0, 0, 0 ); + vertices.push( 0, 0, 0 ); + colors.push( color1.r, color1.g, color1.b ); + colors.push( color2.r, color2.g, color2.b ); + + } + + } + + geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); + + const material = new LineBasicMaterial( { vertexColors: true, depthTest: false, depthWrite: false, toneMapped: false, transparent: true } ); + + super( geometry, material ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSkeletonHelper = true; + + this.type = 'SkeletonHelper'; + + /** + * The object being visualized. + * + * @type {Object3D} + */ + this.root = object; + + /** + * The list of bones that the helper visualizes. + * + * @type {Array} + */ + this.bones = bones; + + this.matrix = object.matrixWorld; + this.matrixAutoUpdate = false; + + } + + updateMatrixWorld( force ) { + + const bones = this.bones; + + const geometry = this.geometry; + const position = geometry.getAttribute( 'position' ); + + _matrixWorldInv.copy( this.root.matrixWorld ).invert(); + + for ( let i = 0, j = 0; i < bones.length; i ++ ) { + + const bone = bones[ i ]; + + if ( bone.parent && bone.parent.isBone ) { + + _boneMatrix.multiplyMatrices( _matrixWorldInv, bone.matrixWorld ); + _vector$2.setFromMatrixPosition( _boneMatrix ); + position.setXYZ( j, _vector$2.x, _vector$2.y, _vector$2.z ); + + _boneMatrix.multiplyMatrices( _matrixWorldInv, bone.parent.matrixWorld ); + _vector$2.setFromMatrixPosition( _boneMatrix ); + position.setXYZ( j + 1, _vector$2.x, _vector$2.y, _vector$2.z ); + + j += 2; + + } + + } + + geometry.getAttribute( 'position' ).needsUpdate = true; + + super.updateMatrixWorld( force ); + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + this.geometry.dispose(); + this.material.dispose(); + + } + +} + + +function getBoneList( object ) { + + const boneList = []; + + if ( object.isBone === true ) { + + boneList.push( object ); + + } + + for ( let i = 0; i < object.children.length; i ++ ) { + + boneList.push( ...getBoneList( object.children[ i ] ) ); + + } + + return boneList; + +} + +/** + * This displays a helper object consisting of a spherical mesh for + * visualizing an instance of {@link PointLight}. + * + * ```js + * const pointLight = new THREE.PointLight( 0xff0000, 1, 100 ); + * pointLight.position.set( 10, 10, 10 ); + * scene.add( pointLight ); + * + * const sphereSize = 1; + * const pointLightHelper = new THREE.PointLightHelper( pointLight, sphereSize ); + * scene.add( pointLightHelper ); + * ``` + * + * @augments Mesh + */ +class PointLightHelper extends Mesh { + + /** + * Constructs a new point light helper. + * + * @param {PointLight} light - The light to be visualized. + * @param {number} [sphereSize=1] - The size of the sphere helper. + * @param {number|Color|string} [color] - The helper's color. If not set, the helper will take + * the color of the light. + */ + constructor( light, sphereSize, color ) { + + const geometry = new SphereGeometry( sphereSize, 4, 2 ); + const material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } ); + + super( geometry, material ); + + /** + * The light being visualized. + * + * @type {HemisphereLight} + */ + this.light = light; + + /** + * The color parameter passed in the constructor. + * If not set, the helper will take the color of the light. + * + * @type {number|Color|string} + */ + this.color = color; + + this.type = 'PointLightHelper'; + + this.matrix = this.light.matrixWorld; + this.matrixAutoUpdate = false; + + this.update(); + + + /* + // TODO: delete this comment? + const distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 ); + const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); + + this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); + this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); + + const d = light.distance; + + if ( d === 0.0 ) { + + this.lightDistance.visible = false; + + } else { + + this.lightDistance.scale.set( d, d, d ); + + } + + this.add( this.lightDistance ); + */ + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + this.geometry.dispose(); + this.material.dispose(); + + } + + /** + * Updates the helper to match the position of the + * light being visualized. + */ + update() { + + this.light.updateWorldMatrix( true, false ); + + if ( this.color !== undefined ) { + + this.material.color.set( this.color ); + + } else { + + this.material.color.copy( this.light.color ); + + } + + /* + const d = this.light.distance; + + if ( d === 0.0 ) { + + this.lightDistance.visible = false; + + } else { + + this.lightDistance.visible = true; + this.lightDistance.scale.set( d, d, d ); + + } + */ + + } + +} + +const _vector$1 = /*@__PURE__*/ new Vector3(); +const _color1 = /*@__PURE__*/ new Color(); +const _color2 = /*@__PURE__*/ new Color(); + +/** + * Creates a visual aid consisting of a spherical mesh for a + * given {@link HemisphereLight}. + * + * ```js + * const light = new THREE.HemisphereLight( 0xffffbb, 0x080820, 1 ); + * const helper = new THREE.HemisphereLightHelper( light, 5 ); + * scene.add( helper ); + * ``` + * + * @augments Object3D + */ +class HemisphereLightHelper extends Object3D { + + /** + * Constructs a new hemisphere light helper. + * + * @param {HemisphereLight} light - The light to be visualized. + * @param {number} [size=1] - The size of the mesh used to visualize the light. + * @param {number|Color|string} [color] - The helper's color. If not set, the helper will take + * the color of the light. + */ + constructor( light, size, color ) { + + super(); + + /** + * The light being visualized. + * + * @type {HemisphereLight} + */ + this.light = light; + + this.matrix = light.matrixWorld; + this.matrixAutoUpdate = false; + + /** + * The color parameter passed in the constructor. + * If not set, the helper will take the color of the light. + * + * @type {number|Color|string} + */ + this.color = color; + + this.type = 'HemisphereLightHelper'; + + const geometry = new OctahedronGeometry( size ); + geometry.rotateY( Math.PI * 0.5 ); + + this.material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } ); + if ( this.color === undefined ) this.material.vertexColors = true; + + const position = geometry.getAttribute( 'position' ); + const colors = new Float32Array( position.count * 3 ); + + geometry.setAttribute( 'color', new BufferAttribute( colors, 3 ) ); + + this.add( new Mesh( geometry, this.material ) ); + + this.update(); + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + this.children[ 0 ].geometry.dispose(); + this.children[ 0 ].material.dispose(); + + } + + /** + * Updates the helper to match the position and direction of the + * light being visualized. + */ + update() { + + const mesh = this.children[ 0 ]; + + if ( this.color !== undefined ) { + + this.material.color.set( this.color ); + + } else { + + const colors = mesh.geometry.getAttribute( 'color' ); + + _color1.copy( this.light.color ); + _color2.copy( this.light.groundColor ); + + for ( let i = 0, l = colors.count; i < l; i ++ ) { + + const color = ( i < ( l / 2 ) ) ? _color1 : _color2; + + colors.setXYZ( i, color.r, color.g, color.b ); + + } + + colors.needsUpdate = true; + + } + + this.light.updateWorldMatrix( true, false ); + + mesh.lookAt( _vector$1.setFromMatrixPosition( this.light.matrixWorld ).negate() ); + + } + +} + +/** + * The helper is an object to define grids. Grids are two-dimensional + * arrays of lines. + * + * ```js + * const size = 10; + * const divisions = 10; + * + * const gridHelper = new THREE.GridHelper( size, divisions ); + * scene.add( gridHelper ); + * ``` + * + * @augments LineSegments + */ +class GridHelper extends LineSegments { + + /** + * Constructs a new grid helper. + * + * @param {number} [size=10] - The size of the grid. + * @param {number} [divisions=10] - The number of divisions across the grid. + * @param {number|Color|string} [color1=0x444444] - The color of the center line. + * @param {number|Color|string} [color2=0x888888] - The color of the lines of the grid. + */ + constructor( size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888 ) { + + color1 = new Color( color1 ); + color2 = new Color( color2 ); + + const center = divisions / 2; + const step = size / divisions; + const halfSize = size / 2; + + const vertices = [], colors = []; + + for ( let i = 0, j = 0, k = - halfSize; i <= divisions; i ++, k += step ) { + + vertices.push( - halfSize, 0, k, halfSize, 0, k ); + vertices.push( k, 0, - halfSize, k, 0, halfSize ); + + const color = i === center ? color1 : color2; + + color.toArray( colors, j ); j += 3; + color.toArray( colors, j ); j += 3; + color.toArray( colors, j ); j += 3; + color.toArray( colors, j ); j += 3; + + } + + const geometry = new BufferGeometry(); + geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); + + const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); + + super( geometry, material ); + + this.type = 'GridHelper'; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + this.geometry.dispose(); + this.material.dispose(); + + } + +} + +/** + * This helper is an object to define polar grids. Grids are + * two-dimensional arrays of lines. + * + * ```js + * const radius = 10; + * const sectors = 16; + * const rings = 8; + * const divisions = 64; + * + * const helper = new THREE.PolarGridHelper( radius, sectors, rings, divisions ); + * scene.add( helper ); + * ``` + * + * @augments LineSegments + */ +class PolarGridHelper extends LineSegments { + + /** + * Constructs a new polar grid helper. + * + * @param {number} [radius=10] - The radius of the polar grid. This can be any positive number. + * @param {number} [sectors=16] - The number of sectors the grid will be divided into. This can be any positive integer. + * @param {number} [rings=16] - The number of rings. This can be any positive integer. + * @param {number} [divisions=64] - The number of line segments used for each circle. This can be any positive integer. + * @param {number|Color|string} [color1=0x444444] - The first color used for grid elements. + * @param {number|Color|string} [color2=0x888888] - The second color used for grid elements. + */ + constructor( radius = 10, sectors = 16, rings = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888 ) { + + color1 = new Color( color1 ); + color2 = new Color( color2 ); + + const vertices = []; + const colors = []; + + // create the sectors + + if ( sectors > 1 ) { + + for ( let i = 0; i < sectors; i ++ ) { + + const v = ( i / sectors ) * ( Math.PI * 2 ); + + const x = Math.sin( v ) * radius; + const z = Math.cos( v ) * radius; + + vertices.push( 0, 0, 0 ); + vertices.push( x, 0, z ); + + const color = ( i & 1 ) ? color1 : color2; + + colors.push( color.r, color.g, color.b ); + colors.push( color.r, color.g, color.b ); + + } + + } + + // create the rings + + for ( let i = 0; i < rings; i ++ ) { + + const color = ( i & 1 ) ? color1 : color2; + + const r = radius - ( radius / rings * i ); + + for ( let j = 0; j < divisions; j ++ ) { + + // first vertex + + let v = ( j / divisions ) * ( Math.PI * 2 ); + + let x = Math.sin( v ) * r; + let z = Math.cos( v ) * r; + + vertices.push( x, 0, z ); + colors.push( color.r, color.g, color.b ); + + // second vertex + + v = ( ( j + 1 ) / divisions ) * ( Math.PI * 2 ); + + x = Math.sin( v ) * r; + z = Math.cos( v ) * r; + + vertices.push( x, 0, z ); + colors.push( color.r, color.g, color.b ); + + } + + } + + const geometry = new BufferGeometry(); + geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); + + const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); + + super( geometry, material ); + + this.type = 'PolarGridHelper'; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + this.geometry.dispose(); + this.material.dispose(); + + } + +} + +const _v1 = /*@__PURE__*/ new Vector3(); +const _v2 = /*@__PURE__*/ new Vector3(); +const _v3 = /*@__PURE__*/ new Vector3(); + +/** + * Helper object to assist with visualizing a {@link DirectionalLight}'s + * effect on the scene. This consists of plane and a line representing the + * light's position and direction. + * + * ```js + * const light = new THREE.DirectionalLight( 0xFFFFFF ); + * scene.add( light ); + * + * const helper = new THREE.DirectionalLightHelper( light, 5 ); + * scene.add( helper ); + * ``` + * + * @augments Object3D + */ +class DirectionalLightHelper extends Object3D { + + /** + * Constructs a new directional light helper. + * + * @param {DirectionalLight} light - The light to be visualized. + * @param {number} [size=1] - The dimensions of the plane. + * @param {number|Color|string} [color] - The helper's color. If not set, the helper will take + * the color of the light. + */ + constructor( light, size, color ) { + + super(); + + /** + * The light being visualized. + * + * @type {DirectionalLight} + */ + this.light = light; + + this.matrix = light.matrixWorld; + this.matrixAutoUpdate = false; + + /** + * The color parameter passed in the constructor. + * If not set, the helper will take the color of the light. + * + * @type {number|Color|string} + */ + this.color = color; + + this.type = 'DirectionalLightHelper'; + + if ( size === undefined ) size = 1; + + let geometry = new BufferGeometry(); + geometry.setAttribute( 'position', new Float32BufferAttribute( [ + - size, size, 0, + size, size, 0, + size, - size, 0, + - size, - size, 0, + - size, size, 0 + ], 3 ) ); + + const material = new LineBasicMaterial( { fog: false, toneMapped: false } ); + + /** + * Contains the line showing the location of the directional light. + * + * @type {Line} + */ + this.lightPlane = new Line( geometry, material ); + this.add( this.lightPlane ); + + geometry = new BufferGeometry(); + geometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 0, 1 ], 3 ) ); + + /** + * Represents the target line of the directional light. + * + * @type {Line} + */ + this.targetLine = new Line( geometry, material ); + this.add( this.targetLine ); + + this.update(); + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + this.lightPlane.geometry.dispose(); + this.lightPlane.material.dispose(); + this.targetLine.geometry.dispose(); + this.targetLine.material.dispose(); + + } + + /** + * Updates the helper to match the position and direction of the + * light being visualized. + */ + update() { + + this.light.updateWorldMatrix( true, false ); + this.light.target.updateWorldMatrix( true, false ); + + _v1.setFromMatrixPosition( this.light.matrixWorld ); + _v2.setFromMatrixPosition( this.light.target.matrixWorld ); + _v3.subVectors( _v2, _v1 ); + + this.lightPlane.lookAt( _v2 ); + + if ( this.color !== undefined ) { + + this.lightPlane.material.color.set( this.color ); + this.targetLine.material.color.set( this.color ); + + } else { + + this.lightPlane.material.color.copy( this.light.color ); + this.targetLine.material.color.copy( this.light.color ); + + } + + this.targetLine.lookAt( _v2 ); + this.targetLine.scale.z = _v3.length(); + + } + +} + +const _vector = /*@__PURE__*/ new Vector3(); +const _camera = /*@__PURE__*/ new Camera(); + +/** + * This helps with visualizing what a camera contains in its frustum. It + * visualizes the frustum of a camera using a line segments. + * + * Based on frustum visualization in [lightgl.js shadowmap example]{@link https://github.com/evanw/lightgl.js/blob/master/tests/shadowmap.html}. + * + * `CameraHelper` must be a child of the scene. + * + * ```js + * const camera = new THREE.PerspectiveCamera( 75, window.innerWidth / window.innerHeight, 0.1, 1000 ); + * const helper = new THREE.CameraHelper( camera ); + * scene.add( helper ); + * ``` + * + * @augments LineSegments + */ +class CameraHelper extends LineSegments { + + /** + * Constructs a new arrow helper. + * + * @param {Camera} camera - The camera to visualize. + */ + constructor( camera ) { + + const geometry = new BufferGeometry(); + const material = new LineBasicMaterial( { color: 0xffffff, vertexColors: true, toneMapped: false } ); + + const vertices = []; + const colors = []; + + const pointMap = {}; + + // near + + addLine( 'n1', 'n2' ); + addLine( 'n2', 'n4' ); + addLine( 'n4', 'n3' ); + addLine( 'n3', 'n1' ); + + // far + + addLine( 'f1', 'f2' ); + addLine( 'f2', 'f4' ); + addLine( 'f4', 'f3' ); + addLine( 'f3', 'f1' ); + + // sides + + addLine( 'n1', 'f1' ); + addLine( 'n2', 'f2' ); + addLine( 'n3', 'f3' ); + addLine( 'n4', 'f4' ); + + // cone + + addLine( 'p', 'n1' ); + addLine( 'p', 'n2' ); + addLine( 'p', 'n3' ); + addLine( 'p', 'n4' ); + + // up + + addLine( 'u1', 'u2' ); + addLine( 'u2', 'u3' ); + addLine( 'u3', 'u1' ); + + // target + + addLine( 'c', 't' ); + addLine( 'p', 'c' ); + + // cross + + addLine( 'cn1', 'cn2' ); + addLine( 'cn3', 'cn4' ); + + addLine( 'cf1', 'cf2' ); + addLine( 'cf3', 'cf4' ); + + function addLine( a, b ) { + + addPoint( a ); + addPoint( b ); + + } + + function addPoint( id ) { + + vertices.push( 0, 0, 0 ); + colors.push( 0, 0, 0 ); + + if ( pointMap[ id ] === undefined ) { + + pointMap[ id ] = []; + + } + + pointMap[ id ].push( ( vertices.length / 3 ) - 1 ); + + } + + geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); + + super( geometry, material ); + + this.type = 'CameraHelper'; + + /** + * The camera being visualized. + * + * @type {Camera} + */ + this.camera = camera; + if ( this.camera.updateProjectionMatrix ) this.camera.updateProjectionMatrix(); + + this.matrix = camera.matrixWorld; + this.matrixAutoUpdate = false; + + /** + * This contains the points used to visualize the camera. + * + * @type {Object>} + */ + this.pointMap = pointMap; + + this.update(); + + // colors + + const colorFrustum = new Color( 0xffaa00 ); + const colorCone = new Color( 0xff0000 ); + const colorUp = new Color( 0x00aaff ); + const colorTarget = new Color( 0xffffff ); + const colorCross = new Color( 0x333333 ); + + this.setColors( colorFrustum, colorCone, colorUp, colorTarget, colorCross ); + + } + + /** + * Defines the colors of the helper. + * + * @param {Color} frustum - The frustum line color. + * @param {Color} cone - The cone line color. + * @param {Color} up - The up line color. + * @param {Color} target - The target line color. + * @param {Color} cross - The cross line color. + */ + setColors( frustum, cone, up, target, cross ) { + + const geometry = this.geometry; + + const colorAttribute = geometry.getAttribute( 'color' ); + + // near + + colorAttribute.setXYZ( 0, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 1, frustum.r, frustum.g, frustum.b ); // n1, n2 + colorAttribute.setXYZ( 2, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 3, frustum.r, frustum.g, frustum.b ); // n2, n4 + colorAttribute.setXYZ( 4, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 5, frustum.r, frustum.g, frustum.b ); // n4, n3 + colorAttribute.setXYZ( 6, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 7, frustum.r, frustum.g, frustum.b ); // n3, n1 + + // far + + colorAttribute.setXYZ( 8, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 9, frustum.r, frustum.g, frustum.b ); // f1, f2 + colorAttribute.setXYZ( 10, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 11, frustum.r, frustum.g, frustum.b ); // f2, f4 + colorAttribute.setXYZ( 12, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 13, frustum.r, frustum.g, frustum.b ); // f4, f3 + colorAttribute.setXYZ( 14, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 15, frustum.r, frustum.g, frustum.b ); // f3, f1 + + // sides + + colorAttribute.setXYZ( 16, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 17, frustum.r, frustum.g, frustum.b ); // n1, f1 + colorAttribute.setXYZ( 18, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 19, frustum.r, frustum.g, frustum.b ); // n2, f2 + colorAttribute.setXYZ( 20, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 21, frustum.r, frustum.g, frustum.b ); // n3, f3 + colorAttribute.setXYZ( 22, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 23, frustum.r, frustum.g, frustum.b ); // n4, f4 + + // cone + + colorAttribute.setXYZ( 24, cone.r, cone.g, cone.b ); colorAttribute.setXYZ( 25, cone.r, cone.g, cone.b ); // p, n1 + colorAttribute.setXYZ( 26, cone.r, cone.g, cone.b ); colorAttribute.setXYZ( 27, cone.r, cone.g, cone.b ); // p, n2 + colorAttribute.setXYZ( 28, cone.r, cone.g, cone.b ); colorAttribute.setXYZ( 29, cone.r, cone.g, cone.b ); // p, n3 + colorAttribute.setXYZ( 30, cone.r, cone.g, cone.b ); colorAttribute.setXYZ( 31, cone.r, cone.g, cone.b ); // p, n4 + + // up + + colorAttribute.setXYZ( 32, up.r, up.g, up.b ); colorAttribute.setXYZ( 33, up.r, up.g, up.b ); // u1, u2 + colorAttribute.setXYZ( 34, up.r, up.g, up.b ); colorAttribute.setXYZ( 35, up.r, up.g, up.b ); // u2, u3 + colorAttribute.setXYZ( 36, up.r, up.g, up.b ); colorAttribute.setXYZ( 37, up.r, up.g, up.b ); // u3, u1 + + // target + + colorAttribute.setXYZ( 38, target.r, target.g, target.b ); colorAttribute.setXYZ( 39, target.r, target.g, target.b ); // c, t + colorAttribute.setXYZ( 40, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 41, cross.r, cross.g, cross.b ); // p, c + + // cross + + colorAttribute.setXYZ( 42, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 43, cross.r, cross.g, cross.b ); // cn1, cn2 + colorAttribute.setXYZ( 44, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 45, cross.r, cross.g, cross.b ); // cn3, cn4 + + colorAttribute.setXYZ( 46, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 47, cross.r, cross.g, cross.b ); // cf1, cf2 + colorAttribute.setXYZ( 48, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 49, cross.r, cross.g, cross.b ); // cf3, cf4 + + colorAttribute.needsUpdate = true; + + } + + /** + * Updates the helper based on the projection matrix of the camera. + */ + update() { + + const geometry = this.geometry; + const pointMap = this.pointMap; + + const w = 1, h = 1; + + // we need just camera projection matrix inverse + // world matrix must be identity + + _camera.projectionMatrixInverse.copy( this.camera.projectionMatrixInverse ); + + // Adjust z values based on coordinate system + const nearZ = this.camera.coordinateSystem === WebGLCoordinateSystem ? -1 : 0; + + // center / target + setPoint( 'c', pointMap, geometry, _camera, 0, 0, nearZ ); + setPoint( 't', pointMap, geometry, _camera, 0, 0, 1 ); + + // near + + setPoint( 'n1', pointMap, geometry, _camera, -1, -1, nearZ ); + setPoint( 'n2', pointMap, geometry, _camera, w, -1, nearZ ); + setPoint( 'n3', pointMap, geometry, _camera, -1, h, nearZ ); + setPoint( 'n4', pointMap, geometry, _camera, w, h, nearZ ); + + // far + + setPoint( 'f1', pointMap, geometry, _camera, -1, -1, 1 ); + setPoint( 'f2', pointMap, geometry, _camera, w, -1, 1 ); + setPoint( 'f3', pointMap, geometry, _camera, -1, h, 1 ); + setPoint( 'f4', pointMap, geometry, _camera, w, h, 1 ); + + // up + + setPoint( 'u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, nearZ ); + setPoint( 'u2', pointMap, geometry, _camera, -1 * 0.7, h * 1.1, nearZ ); + setPoint( 'u3', pointMap, geometry, _camera, 0, h * 2, nearZ ); + + // cross + + setPoint( 'cf1', pointMap, geometry, _camera, -1, 0, 1 ); + setPoint( 'cf2', pointMap, geometry, _camera, w, 0, 1 ); + setPoint( 'cf3', pointMap, geometry, _camera, 0, -1, 1 ); + setPoint( 'cf4', pointMap, geometry, _camera, 0, h, 1 ); + + setPoint( 'cn1', pointMap, geometry, _camera, -1, 0, nearZ ); + setPoint( 'cn2', pointMap, geometry, _camera, w, 0, nearZ ); + setPoint( 'cn3', pointMap, geometry, _camera, 0, -1, nearZ ); + setPoint( 'cn4', pointMap, geometry, _camera, 0, h, nearZ ); + + geometry.getAttribute( 'position' ).needsUpdate = true; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + this.geometry.dispose(); + this.material.dispose(); + + } + +} + + +function setPoint( point, pointMap, geometry, camera, x, y, z ) { + + _vector.set( x, y, z ).unproject( camera ); + + const points = pointMap[ point ]; + + if ( points !== undefined ) { + + const position = geometry.getAttribute( 'position' ); + + for ( let i = 0, l = points.length; i < l; i ++ ) { + + position.setXYZ( points[ i ], _vector.x, _vector.y, _vector.z ); + + } + + } + +} + +const _box = /*@__PURE__*/ new Box3(); + +/** + * Helper object to graphically show the world-axis-aligned bounding box + * around an object. The actual bounding box is handled with {@link Box3}, + * this is just a visual helper for debugging. It can be automatically + * resized with {@link BoxHelper#update} when the object it's created from + * is transformed. Note that the object must have a geometry for this to work, + * so it won't work with sprites. + * + * ```js + * const sphere = new THREE.SphereGeometry(); + * const object = new THREE.Mesh( sphere, new THREE.MeshBasicMaterial( 0xff0000 ) ); + * const box = new THREE.BoxHelper( object, 0xffff00 ); + * scene.add( box ); + * ``` + * + * @augments LineSegments + */ +class BoxHelper extends LineSegments { + + /** + * Constructs a new box helper. + * + * @param {Object3D} [object] - The 3D object to show the world-axis-aligned bounding box. + * @param {number|Color|string} [color=0xffff00] - The box's color. + */ + constructor( object, color = 0xffff00 ) { + + const indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); + const positions = new Float32Array( 8 * 3 ); + + const geometry = new BufferGeometry(); + geometry.setIndex( new BufferAttribute( indices, 1 ) ); + geometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) ); + + super( geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); + + /** + * The 3D object being visualized. + * + * @type {Object3D} + */ + this.object = object; + this.type = 'BoxHelper'; + + this.matrixAutoUpdate = false; + + this.update(); + + } + + /** + * Updates the helper's geometry to match the dimensions of the object, + * including any children. + */ + update() { + + if ( this.object !== undefined ) { + + _box.setFromObject( this.object ); + + } + + if ( _box.isEmpty() ) return; + + const min = _box.min; + const max = _box.max; + + /* + 5____4 + 1/___0/| + | 6__|_7 + 2/___3/ + + 0: max.x, max.y, max.z + 1: min.x, max.y, max.z + 2: min.x, min.y, max.z + 3: max.x, min.y, max.z + 4: max.x, max.y, min.z + 5: min.x, max.y, min.z + 6: min.x, min.y, min.z + 7: max.x, min.y, min.z + */ + + const position = this.geometry.attributes.position; + const array = position.array; + + array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z; + array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z; + array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z; + array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z; + array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z; + array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z; + array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z; + array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z; + + position.needsUpdate = true; + + this.geometry.computeBoundingSphere(); + + } + + /** + * Updates the wireframe box for the passed object. + * + * @param {Object3D} object - The 3D object to create the helper for. + * @return {BoxHelper} A reference to this instance. + */ + setFromObject( object ) { + + this.object = object; + this.update(); + + return this; + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.object = source.object; + + return this; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + this.geometry.dispose(); + this.material.dispose(); + + } + +} + +/** + * A helper object to visualize an instance of {@link Box3}. + * + * ```js + * const box = new THREE.Box3(); + * box.setFromCenterAndSize( new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 2, 1, 3 ) ); + * + * const helper = new THREE.Box3Helper( box, 0xffff00 ); + * scene.add( helper ) + * ``` + * + * @augments LineSegments + */ +class Box3Helper extends LineSegments { + + /** + * Constructs a new box3 helper. + * + * @param {Box3} box - The box to visualize. + * @param {number|Color|string} [color=0xffff00] - The box's color. + */ + constructor( box, color = 0xffff00 ) { + + const indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); + + const positions = [ 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1 ]; + + const geometry = new BufferGeometry(); + + geometry.setIndex( new BufferAttribute( indices, 1 ) ); + + geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); + + super( geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); + + /** + * The box being visualized. + * + * @type {Box3} + */ + this.box = box; + + this.type = 'Box3Helper'; + + this.geometry.computeBoundingSphere(); + + } + + updateMatrixWorld( force ) { + + const box = this.box; + + if ( box.isEmpty() ) return; + + box.getCenter( this.position ); + + box.getSize( this.scale ); + + this.scale.multiplyScalar( 0.5 ); + + super.updateMatrixWorld( force ); + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + this.geometry.dispose(); + this.material.dispose(); + + } + +} + +/** + * A helper object to visualize an instance of {@link Plane}. + * + * ```js + * const plane = new THREE.Plane( new THREE.Vector3( 1, 1, 0.2 ), 3 ); + * const helper = new THREE.PlaneHelper( plane, 1, 0xffff00 ); + * scene.add( helper ); + * ``` + * + * @augments Line + */ +class PlaneHelper extends Line { + + /** + * Constructs a new plane helper. + * + * @param {Plane} plane - The plane to be visualized. + * @param {number} [size=1] - The side length of plane helper. + * @param {number|Color|string} [hex=0xffff00] - The helper's color. + */ + constructor( plane, size = 1, hex = 0xffff00 ) { + + const color = hex; + + const positions = [ 1, -1, 0, -1, 1, 0, -1, -1, 0, 1, 1, 0, -1, 1, 0, -1, -1, 0, 1, -1, 0, 1, 1, 0 ]; + + const geometry = new BufferGeometry(); + geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); + geometry.computeBoundingSphere(); + + super( geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); + + this.type = 'PlaneHelper'; + + /** + * The plane being visualized. + * + * @type {Plane} + */ + this.plane = plane; + + /** + * The side length of plane helper. + * + * @type {number} + * @default 1 + */ + this.size = size; + + const positions2 = [ 1, 1, 0, -1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, -1, 0 ]; + + const geometry2 = new BufferGeometry(); + geometry2.setAttribute( 'position', new Float32BufferAttribute( positions2, 3 ) ); + geometry2.computeBoundingSphere(); + + this.add( new Mesh( geometry2, new MeshBasicMaterial( { color: color, opacity: 0.2, transparent: true, depthWrite: false, toneMapped: false } ) ) ); + + } + + updateMatrixWorld( force ) { + + this.position.set( 0, 0, 0 ); + + this.scale.set( 0.5 * this.size, 0.5 * this.size, 1 ); + + this.lookAt( this.plane.normal ); + + this.translateZ( - this.plane.constant ); + + super.updateMatrixWorld( force ); + + } + + /** + * Updates the helper to match the position and direction of the + * light being visualized. + */ + dispose() { + + this.geometry.dispose(); + this.material.dispose(); + this.children[ 0 ].geometry.dispose(); + this.children[ 0 ].material.dispose(); + + } + +} + +const _axis = /*@__PURE__*/ new Vector3(); +let _lineGeometry, _coneGeometry; + +/** + * An 3D arrow object for visualizing directions. + * + * ```js + * const dir = new THREE.Vector3( 1, 2, 0 ); + * + * //normalize the direction vector (convert to vector of length 1) + * dir.normalize(); + * + * const origin = new THREE.Vector3( 0, 0, 0 ); + * const length = 1; + * const hex = 0xffff00; + * + * const arrowHelper = new THREE.ArrowHelper( dir, origin, length, hex ); + * scene.add( arrowHelper ); + * ``` + * + * @augments Object3D + */ +class ArrowHelper extends Object3D { + + /** + * Constructs a new arrow helper. + * + * @param {Vector3} [dir=(0, 0, 1)] - The (normalized) direction vector. + * @param {Vector3} [origin=(0, 0, 0)] - Point at which the arrow starts. + * @param {number} [length=1] - Length of the arrow in world units. + * @param {(number|Color|string)} [color=0xffff00] - Color of the arrow. + * @param {number} [headLength=length*0.2] - The length of the head of the arrow. + * @param {number} [headWidth=headLength*0.2] - The width of the head of the arrow. + */ + constructor( dir = new Vector3( 0, 0, 1 ), origin = new Vector3( 0, 0, 0 ), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2 ) { + + super(); + + this.type = 'ArrowHelper'; + + if ( _lineGeometry === undefined ) { + + _lineGeometry = new BufferGeometry(); + _lineGeometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 1, 0 ], 3 ) ); + + _coneGeometry = new ConeGeometry( 0.5, 1, 5, 1 ); + _coneGeometry.translate( 0, -0.5, 0 ); + + } + + this.position.copy( origin ); + + /** + * The line part of the arrow helper. + * + * @type {Line} + */ + this.line = new Line( _lineGeometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); + this.line.matrixAutoUpdate = false; + this.add( this.line ); + + /** + * The cone part of the arrow helper. + * + * @type {Mesh} + */ + this.cone = new Mesh( _coneGeometry, new MeshBasicMaterial( { color: color, toneMapped: false } ) ); + this.cone.matrixAutoUpdate = false; + this.add( this.cone ); + + this.setDirection( dir ); + this.setLength( length, headLength, headWidth ); + + } + + /** + * Sets the direction of the helper. + * + * @param {Vector3} dir - The normalized direction vector. + */ + setDirection( dir ) { + + // dir is assumed to be normalized + + if ( dir.y > 0.99999 ) { + + this.quaternion.set( 0, 0, 0, 1 ); + + } else if ( dir.y < -0.99999 ) { + + this.quaternion.set( 1, 0, 0, 0 ); + + } else { + + _axis.set( dir.z, 0, - dir.x ).normalize(); + + const radians = Math.acos( dir.y ); + + this.quaternion.setFromAxisAngle( _axis, radians ); + + } + + } + + /** + * Sets the length of the helper. + * + * @param {number} length - Length of the arrow in world units. + * @param {number} [headLength=length*0.2] - The length of the head of the arrow. + * @param {number} [headWidth=headLength*0.2] - The width of the head of the arrow. + */ + setLength( length, headLength = length * 0.2, headWidth = headLength * 0.2 ) { + + this.line.scale.set( 1, Math.max( 0.0001, length - headLength ), 1 ); // see #17458 + this.line.updateMatrix(); + + this.cone.scale.set( headWidth, headLength, headWidth ); + this.cone.position.y = length; + this.cone.updateMatrix(); + + } + + /** + * Sets the color of the helper. + * + * @param {number|Color|string} color - The color to set. + */ + setColor( color ) { + + this.line.material.color.set( color ); + this.cone.material.color.set( color ); + + } + + copy( source ) { + + super.copy( source, false ); + + this.line.copy( source.line ); + this.cone.copy( source.cone ); + + return this; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + this.line.geometry.dispose(); + this.line.material.dispose(); + this.cone.geometry.dispose(); + this.cone.material.dispose(); + + } + +} + +/** + * An axis object to visualize the 3 axes in a simple way. + * The X axis is red. The Y axis is green. The Z axis is blue. + * + * ```js + * const axesHelper = new THREE.AxesHelper( 5 ); + * scene.add( axesHelper ); + * ``` + * + * @augments LineSegments + */ +class AxesHelper extends LineSegments { + + /** + * Constructs a new axes helper. + * + * @param {number} [size=1] - Size of the lines representing the axes. + */ + constructor( size = 1 ) { + + const vertices = [ + 0, 0, 0, size, 0, 0, + 0, 0, 0, 0, size, 0, + 0, 0, 0, 0, 0, size + ]; + + const colors = [ + 1, 0, 0, 1, 0.6, 0, + 0, 1, 0, 0.6, 1, 0, + 0, 0, 1, 0, 0.6, 1 + ]; + + const geometry = new BufferGeometry(); + geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); + + const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); + + super( geometry, material ); + + this.type = 'AxesHelper'; + + } + + /** + * Defines the colors of the axes helper. + * + * @param {number|Color|string} xAxisColor - The color for the x axis. + * @param {number|Color|string} yAxisColor - The color for the y axis. + * @param {number|Color|string} zAxisColor - The color for the z axis. + * @return {AxesHelper} A reference to this axes helper. + */ + setColors( xAxisColor, yAxisColor, zAxisColor ) { + + const color = new Color(); + const array = this.geometry.attributes.color.array; + + color.set( xAxisColor ); + color.toArray( array, 0 ); + color.toArray( array, 3 ); + + color.set( yAxisColor ); + color.toArray( array, 6 ); + color.toArray( array, 9 ); + + color.set( zAxisColor ); + color.toArray( array, 12 ); + color.toArray( array, 15 ); + + this.geometry.attributes.color.needsUpdate = true; + + return this; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + dispose() { + + this.geometry.dispose(); + this.material.dispose(); + + } + +} + +/** + * This class is used to convert a series of paths to an array of + * shapes. It is specifically used in context of fonts and SVG. + */ +class ShapePath { + + /** + * Constructs a new shape path. + */ + constructor() { + + this.type = 'ShapePath'; + + /** + * The color of the shape. + * + * @type {Color} + */ + this.color = new Color(); + + /** + * The paths that have been generated for this shape. + * + * @type {Array} + * @default null + */ + this.subPaths = []; + + /** + * The current path that is being generated. + * + * @type {?Path} + * @default null + */ + this.currentPath = null; + + } + + /** + * Creates a new path and moves it current point to the given one. + * + * @param {number} x - The x coordinate. + * @param {number} y - The y coordinate. + * @return {ShapePath} A reference to this shape path. + */ + moveTo( x, y ) { + + this.currentPath = new Path(); + this.subPaths.push( this.currentPath ); + this.currentPath.moveTo( x, y ); + + return this; + + } + + /** + * Adds an instance of {@link LineCurve} to the path by connecting + * the current point with the given one. + * + * @param {number} x - The x coordinate of the end point. + * @param {number} y - The y coordinate of the end point. + * @return {ShapePath} A reference to this shape path. + */ + lineTo( x, y ) { + + this.currentPath.lineTo( x, y ); + + return this; + + } + + /** + * Adds an instance of {@link QuadraticBezierCurve} to the path by connecting + * the current point with the given one. + * + * @param {number} aCPx - The x coordinate of the control point. + * @param {number} aCPy - The y coordinate of the control point. + * @param {number} aX - The x coordinate of the end point. + * @param {number} aY - The y coordinate of the end point. + * @return {ShapePath} A reference to this shape path. + */ + quadraticCurveTo( aCPx, aCPy, aX, aY ) { + + this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY ); + + return this; + + } + + /** + * Adds an instance of {@link CubicBezierCurve} to the path by connecting + * the current point with the given one. + * + * @param {number} aCP1x - The x coordinate of the first control point. + * @param {number} aCP1y - The y coordinate of the first control point. + * @param {number} aCP2x - The x coordinate of the second control point. + * @param {number} aCP2y - The y coordinate of the second control point. + * @param {number} aX - The x coordinate of the end point. + * @param {number} aY - The y coordinate of the end point. + * @return {ShapePath} A reference to this shape path. + */ + bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { + + this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ); + + return this; + + } + + /** + * Adds an instance of {@link SplineCurve} to the path by connecting + * the current point with the given list of points. + * + * @param {Array} pts - An array of points in 2D space. + * @return {ShapePath} A reference to this shape path. + */ + splineThru( pts ) { + + this.currentPath.splineThru( pts ); + + return this; + + } + + /** + * Converts the paths into an array of shapes. + * + * @param {boolean} isCCW - By default solid shapes are defined clockwise (CW) and holes are defined counterclockwise (CCW). + * If this flag is set to `true`, then those are flipped. + * @return {Array} An array of shapes. + */ + toShapes( isCCW ) { + + function toShapesNoHoles( inSubpaths ) { + + const shapes = []; + + for ( let i = 0, l = inSubpaths.length; i < l; i ++ ) { + + const tmpPath = inSubpaths[ i ]; + + const tmpShape = new Shape(); + tmpShape.curves = tmpPath.curves; + + shapes.push( tmpShape ); + + } + + return shapes; + + } + + function isPointInsidePolygon( inPt, inPolygon ) { + + const polyLen = inPolygon.length; + + // inPt on polygon contour => immediate success or + // toggling of inside/outside at every single! intersection point of an edge + // with the horizontal line through inPt, left of inPt + // not counting lowerY endpoints of edges and whole edges on that line + let inside = false; + for ( let p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) { + + let edgeLowPt = inPolygon[ p ]; + let edgeHighPt = inPolygon[ q ]; + + let edgeDx = edgeHighPt.x - edgeLowPt.x; + let edgeDy = edgeHighPt.y - edgeLowPt.y; + + if ( Math.abs( edgeDy ) > Number.EPSILON ) { + + // not parallel + if ( edgeDy < 0 ) { + + edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx; + edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy; + + } + + if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) continue; + + if ( inPt.y === edgeLowPt.y ) { + + if ( inPt.x === edgeLowPt.x ) return true; // inPt is on contour ? + // continue; // no intersection or edgeLowPt => doesn't count !!! + + } else { + + const perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y ); + if ( perpEdge === 0 ) return true; // inPt is on contour ? + if ( perpEdge < 0 ) continue; + inside = ! inside; // true intersection left of inPt + + } + + } else { + + // parallel or collinear + if ( inPt.y !== edgeLowPt.y ) continue; // parallel + // edge lies on the same horizontal line as inPt + if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) || + ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) return true; // inPt: Point on contour ! + // continue; + + } + + } + + return inside; + + } + + const isClockWise = ShapeUtils.isClockWise; + + const subPaths = this.subPaths; + if ( subPaths.length === 0 ) return []; + + let solid, tmpPath, tmpShape; + const shapes = []; + + if ( subPaths.length === 1 ) { + + tmpPath = subPaths[ 0 ]; + tmpShape = new Shape(); + tmpShape.curves = tmpPath.curves; + shapes.push( tmpShape ); + return shapes; + + } + + let holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() ); + holesFirst = isCCW ? ! holesFirst : holesFirst; + + // console.log("Holes first", holesFirst); + + const betterShapeHoles = []; + const newShapes = []; + let newShapeHoles = []; + let mainIdx = 0; + let tmpPoints; + + newShapes[ mainIdx ] = undefined; + newShapeHoles[ mainIdx ] = []; + + for ( let i = 0, l = subPaths.length; i < l; i ++ ) { + + tmpPath = subPaths[ i ]; + tmpPoints = tmpPath.getPoints(); + solid = isClockWise( tmpPoints ); + solid = isCCW ? ! solid : solid; + + if ( solid ) { + + if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) mainIdx ++; + + newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints }; + newShapes[ mainIdx ].s.curves = tmpPath.curves; + + if ( holesFirst ) mainIdx ++; + newShapeHoles[ mainIdx ] = []; + + //console.log('cw', i); + + } else { + + newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } ); + + //console.log('ccw', i); + + } + + } + + // only Holes? -> probably all Shapes with wrong orientation + if ( ! newShapes[ 0 ] ) return toShapesNoHoles( subPaths ); + + + if ( newShapes.length > 1 ) { + + let ambiguous = false; + let toChange = 0; + + for ( let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { + + betterShapeHoles[ sIdx ] = []; + + } + + for ( let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { + + const sho = newShapeHoles[ sIdx ]; + + for ( let hIdx = 0; hIdx < sho.length; hIdx ++ ) { + + const ho = sho[ hIdx ]; + let hole_unassigned = true; + + for ( let s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) { + + if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) { + + if ( sIdx !== s2Idx ) toChange ++; + + if ( hole_unassigned ) { + + hole_unassigned = false; + betterShapeHoles[ s2Idx ].push( ho ); + + } else { + + ambiguous = true; + + } + + } + + } + + if ( hole_unassigned ) { + + betterShapeHoles[ sIdx ].push( ho ); + + } + + } + + } + + if ( toChange > 0 && ambiguous === false ) { + + newShapeHoles = betterShapeHoles; + + } + + } + + let tmpHoles; + + for ( let i = 0, il = newShapes.length; i < il; i ++ ) { + + tmpShape = newShapes[ i ].s; + shapes.push( tmpShape ); + tmpHoles = newShapeHoles[ i ]; + + for ( let j = 0, jl = tmpHoles.length; j < jl; j ++ ) { + + tmpShape.holes.push( tmpHoles[ j ].h ); + + } + + } + + //console.log("shape", shapes); + + return shapes; + + } + +} + +/** + * Abstract base class for controls. + * + * @abstract + * @augments EventDispatcher + */ +class Controls extends EventDispatcher { + + /** + * Constructs a new controls instance. + * + * @param {Object3D} object - The object that is managed by the controls. + * @param {?HTMLDOMElement} domElement - The HTML element used for event listeners. + */ + constructor( object, domElement = null ) { + + super(); + + /** + * The object that is managed by the controls. + * + * @type {Object3D} + */ + this.object = object; + + /** + * The HTML element used for event listeners. + * + * @type {?HTMLDOMElement} + * @default null + */ + this.domElement = domElement; + + /** + * Whether the controls responds to user input or not. + * + * @type {boolean} + * @default true + */ + this.enabled = true; + + /** + * The internal state of the controls. + * + * @type {number} + * @default -1 + */ + this.state = -1; + + /** + * This object defines the keyboard input of the controls. + * + * @type {Object} + */ + this.keys = {}; + + /** + * This object defines what type of actions are assigned to the available mouse buttons. + * It depends on the control implementation what kind of mouse buttons and actions are supported. + * + * @type {{LEFT: ?number, MIDDLE: ?number, RIGHT: ?number}} + */ + this.mouseButtons = { LEFT: null, MIDDLE: null, RIGHT: null }; + + /** + * This object defines what type of actions are assigned to what kind of touch interaction. + * It depends on the control implementation what kind of touch interaction and actions are supported. + * + * @type {{ONE: ?number, TWO: ?number}} + */ + this.touches = { ONE: null, TWO: null }; + + } + + /** + * Connects the controls to the DOM. This method has so called "side effects" since + * it adds the module's event listeners to the DOM. + * + * @param {HTMLDOMElement} element - The DOM element to connect to. + */ + connect( element ) { + + if ( element === undefined ) { + + console.warn( 'THREE.Controls: connect() now requires an element.' ); // @deprecated, the warning can be removed with r185 + return; + + } + + if ( this.domElement !== null ) this.disconnect(); + + this.domElement = element; + + } + + /** + * Disconnects the controls from the DOM. + */ + disconnect() {} + + /** + * Call this method if you no longer want use to the controls. It frees all internal + * resources and removes all event listeners. + */ + dispose() {} + + /** + * Controls should implement this method if they have to update their internal state + * per simulation step. + * + * @param {number} [delta] - The time delta in seconds. + */ + update( /* delta */ ) {} + +} + +/** + * Scales the texture as large as possible within its surface without cropping + * or stretching the texture. The method preserves the original aspect ratio of + * the texture. Akin to CSS `object-fit: contain` + * + * @param {Texture} texture - The texture. + * @param {number} aspect - The texture's aspect ratio. + * @return {Texture} The updated texture. + */ +function contain( texture, aspect ) { + + const imageAspect = ( texture.image && texture.image.width ) ? texture.image.width / texture.image.height : 1; + + if ( imageAspect > aspect ) { + + texture.repeat.x = 1; + texture.repeat.y = imageAspect / aspect; + + texture.offset.x = 0; + texture.offset.y = ( 1 - texture.repeat.y ) / 2; + + } else { + + texture.repeat.x = aspect / imageAspect; + texture.repeat.y = 1; + + texture.offset.x = ( 1 - texture.repeat.x ) / 2; + texture.offset.y = 0; + + } + + return texture; + +} + +/** + * Scales the texture to the smallest possible size to fill the surface, leaving + * no empty space. The method preserves the original aspect ratio of the texture. + * Akin to CSS `object-fit: cover`. + * + * @param {Texture} texture - The texture. + * @param {number} aspect - The texture's aspect ratio. + * @return {Texture} The updated texture. + */ +function cover( texture, aspect ) { + + const imageAspect = ( texture.image && texture.image.width ) ? texture.image.width / texture.image.height : 1; + + if ( imageAspect > aspect ) { + + texture.repeat.x = aspect / imageAspect; + texture.repeat.y = 1; + + texture.offset.x = ( 1 - texture.repeat.x ) / 2; + texture.offset.y = 0; + + } else { + + texture.repeat.x = 1; + texture.repeat.y = imageAspect / aspect; + + texture.offset.x = 0; + texture.offset.y = ( 1 - texture.repeat.y ) / 2; + + } + + return texture; + +} + +/** + * Configures the texture to the default transformation. Akin to CSS `object-fit: fill`. + * + * @param {Texture} texture - The texture. + * @return {Texture} The updated texture. + */ +function fill( texture ) { + + texture.repeat.x = 1; + texture.repeat.y = 1; + + texture.offset.x = 0; + texture.offset.y = 0; + + return texture; + +} + +/** + * Determines how many bytes must be used to represent the texture. + * + * @param {number} width - The width of the texture. + * @param {number} height - The height of the texture. + * @param {number} format - The texture's format. + * @param {number} type - The texture's type. + * @return {number} The byte length. + */ +function getByteLength( width, height, format, type ) { + + const typeByteLength = getTextureTypeByteLength( type ); + + switch ( format ) { + + // https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glTexImage2D.xhtml + case AlphaFormat: + return width * height; + case RedFormat: + return ( ( width * height ) / typeByteLength.components ) * typeByteLength.byteLength; + case RedIntegerFormat: + return ( ( width * height ) / typeByteLength.components ) * typeByteLength.byteLength; + case RGFormat: + return ( ( width * height * 2 ) / typeByteLength.components ) * typeByteLength.byteLength; + case RGIntegerFormat: + return ( ( width * height * 2 ) / typeByteLength.components ) * typeByteLength.byteLength; + case RGBFormat: + return ( ( width * height * 3 ) / typeByteLength.components ) * typeByteLength.byteLength; + case RGBAFormat: + return ( ( width * height * 4 ) / typeByteLength.components ) * typeByteLength.byteLength; + case RGBAIntegerFormat: + return ( ( width * height * 4 ) / typeByteLength.components ) * typeByteLength.byteLength; + + // https://registry.khronos.org/webgl/extensions/WEBGL_compressed_texture_s3tc_srgb/ + case RGB_S3TC_DXT1_Format: + case RGBA_S3TC_DXT1_Format: + return Math.floor( ( width + 3 ) / 4 ) * Math.floor( ( height + 3 ) / 4 ) * 8; + case RGBA_S3TC_DXT3_Format: + case RGBA_S3TC_DXT5_Format: + return Math.floor( ( width + 3 ) / 4 ) * Math.floor( ( height + 3 ) / 4 ) * 16; + + // https://registry.khronos.org/webgl/extensions/WEBGL_compressed_texture_pvrtc/ + case RGB_PVRTC_2BPPV1_Format: + case RGBA_PVRTC_2BPPV1_Format: + return ( Math.max( width, 16 ) * Math.max( height, 8 ) ) / 4; + case RGB_PVRTC_4BPPV1_Format: + case RGBA_PVRTC_4BPPV1_Format: + return ( Math.max( width, 8 ) * Math.max( height, 8 ) ) / 2; + + // https://registry.khronos.org/webgl/extensions/WEBGL_compressed_texture_etc/ + case RGB_ETC1_Format: + case RGB_ETC2_Format: + return Math.floor( ( width + 3 ) / 4 ) * Math.floor( ( height + 3 ) / 4 ) * 8; + case RGBA_ETC2_EAC_Format: + return Math.floor( ( width + 3 ) / 4 ) * Math.floor( ( height + 3 ) / 4 ) * 16; + + // https://registry.khronos.org/webgl/extensions/WEBGL_compressed_texture_astc/ + case RGBA_ASTC_4x4_Format: + return Math.floor( ( width + 3 ) / 4 ) * Math.floor( ( height + 3 ) / 4 ) * 16; + case RGBA_ASTC_5x4_Format: + return Math.floor( ( width + 4 ) / 5 ) * Math.floor( ( height + 3 ) / 4 ) * 16; + case RGBA_ASTC_5x5_Format: + return Math.floor( ( width + 4 ) / 5 ) * Math.floor( ( height + 4 ) / 5 ) * 16; + case RGBA_ASTC_6x5_Format: + return Math.floor( ( width + 5 ) / 6 ) * Math.floor( ( height + 4 ) / 5 ) * 16; + case RGBA_ASTC_6x6_Format: + return Math.floor( ( width + 5 ) / 6 ) * Math.floor( ( height + 5 ) / 6 ) * 16; + case RGBA_ASTC_8x5_Format: + return Math.floor( ( width + 7 ) / 8 ) * Math.floor( ( height + 4 ) / 5 ) * 16; + case RGBA_ASTC_8x6_Format: + return Math.floor( ( width + 7 ) / 8 ) * Math.floor( ( height + 5 ) / 6 ) * 16; + case RGBA_ASTC_8x8_Format: + return Math.floor( ( width + 7 ) / 8 ) * Math.floor( ( height + 7 ) / 8 ) * 16; + case RGBA_ASTC_10x5_Format: + return Math.floor( ( width + 9 ) / 10 ) * Math.floor( ( height + 4 ) / 5 ) * 16; + case RGBA_ASTC_10x6_Format: + return Math.floor( ( width + 9 ) / 10 ) * Math.floor( ( height + 5 ) / 6 ) * 16; + case RGBA_ASTC_10x8_Format: + return Math.floor( ( width + 9 ) / 10 ) * Math.floor( ( height + 7 ) / 8 ) * 16; + case RGBA_ASTC_10x10_Format: + return Math.floor( ( width + 9 ) / 10 ) * Math.floor( ( height + 9 ) / 10 ) * 16; + case RGBA_ASTC_12x10_Format: + return Math.floor( ( width + 11 ) / 12 ) * Math.floor( ( height + 9 ) / 10 ) * 16; + case RGBA_ASTC_12x12_Format: + return Math.floor( ( width + 11 ) / 12 ) * Math.floor( ( height + 11 ) / 12 ) * 16; + + // https://registry.khronos.org/webgl/extensions/EXT_texture_compression_bptc/ + case RGBA_BPTC_Format: + case RGB_BPTC_SIGNED_Format: + case RGB_BPTC_UNSIGNED_Format: + return Math.ceil( width / 4 ) * Math.ceil( height / 4 ) * 16; + + // https://registry.khronos.org/webgl/extensions/EXT_texture_compression_rgtc/ + case RED_RGTC1_Format: + case SIGNED_RED_RGTC1_Format: + return Math.ceil( width / 4 ) * Math.ceil( height / 4 ) * 8; + case RED_GREEN_RGTC2_Format: + case SIGNED_RED_GREEN_RGTC2_Format: + return Math.ceil( width / 4 ) * Math.ceil( height / 4 ) * 16; + + } + + throw new Error( + `Unable to determine texture byte length for ${format} format.`, + ); + +} + +function getTextureTypeByteLength( type ) { + + switch ( type ) { + + case UnsignedByteType: + case ByteType: + return { byteLength: 1, components: 1 }; + case UnsignedShortType: + case ShortType: + case HalfFloatType: + return { byteLength: 2, components: 1 }; + case UnsignedShort4444Type: + case UnsignedShort5551Type: + return { byteLength: 2, components: 4 }; + case UnsignedIntType: + case IntType: + case FloatType: + return { byteLength: 4, components: 1 }; + case UnsignedInt5999Type: + return { byteLength: 4, components: 3 }; + + } + + throw new Error( `Unknown texture type ${type}.` ); + +} + +/** + * A class containing utility functions for textures. + * + * @hideconstructor + */ +class TextureUtils { + + /** + * Scales the texture as large as possible within its surface without cropping + * or stretching the texture. The method preserves the original aspect ratio of + * the texture. Akin to CSS `object-fit: contain` + * + * @param {Texture} texture - The texture. + * @param {number} aspect - The texture's aspect ratio. + * @return {Texture} The updated texture. + */ + static contain( texture, aspect ) { + + return contain( texture, aspect ); + + } + + /** + * Scales the texture to the smallest possible size to fill the surface, leaving + * no empty space. The method preserves the original aspect ratio of the texture. + * Akin to CSS `object-fit: cover`. + * + * @param {Texture} texture - The texture. + * @param {number} aspect - The texture's aspect ratio. + * @return {Texture} The updated texture. + */ + static cover( texture, aspect ) { + + return cover( texture, aspect ); + + } + + /** + * Configures the texture to the default transformation. Akin to CSS `object-fit: fill`. + * + * @param {Texture} texture - The texture. + * @return {Texture} The updated texture. + */ + static fill( texture ) { + + return fill( texture ); + + } + + /** + * Determines how many bytes must be used to represent the texture. + * + * @param {number} width - The width of the texture. + * @param {number} height - The height of the texture. + * @param {number} format - The texture's format. + * @param {number} type - The texture's type. + * @return {number} The byte length. + */ + static getByteLength( width, height, format, type ) { + + return getByteLength( width, height, format, type ); + + } + +} + +if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { + + __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'register', { detail: { + revision: REVISION, + } } ) ); + +} + +if ( typeof window !== 'undefined' ) { + + if ( window.__THREE__ ) { + + console.warn( 'WARNING: Multiple instances of Three.js being imported.' ); + + } else { + + window.__THREE__ = REVISION; + + } + +} + +export { ACESFilmicToneMapping, AddEquation, AddOperation, AdditiveAnimationBlendMode, AdditiveBlending, AgXToneMapping, AlphaFormat, AlwaysCompare, AlwaysDepth, AlwaysStencilFunc, AmbientLight, AnimationAction, AnimationClip, AnimationLoader, AnimationMixer, AnimationObjectGroup, AnimationUtils, ArcCurve, ArrayCamera, ArrowHelper, AttachedBindMode, Audio, AudioAnalyser, AudioContext, AudioListener, AudioLoader, AxesHelper, BackSide, BasicDepthPacking, BasicShadowMap, BatchedMesh, Bone, BooleanKeyframeTrack, Box2, Box3, Box3Helper, BoxGeometry, BoxHelper, BufferAttribute, BufferGeometry, BufferGeometryLoader, ByteType, Cache, Camera, CameraHelper, CanvasTexture, CapsuleGeometry, CatmullRomCurve3, CineonToneMapping, CircleGeometry, ClampToEdgeWrapping, Clock, Color, ColorKeyframeTrack, ColorManagement, CompressedArrayTexture, CompressedCubeTexture, CompressedTexture, CompressedTextureLoader, ConeGeometry, ConstantAlphaFactor, ConstantColorFactor, Controls, CubeCamera, CubeReflectionMapping, CubeRefractionMapping, CubeTexture, CubeTextureLoader, CubeUVReflectionMapping, CubicBezierCurve, CubicBezierCurve3, CubicInterpolant, CullFaceBack, CullFaceFront, CullFaceFrontBack, CullFaceNone, Curve, CurvePath, CustomBlending, CustomToneMapping, CylinderGeometry, Cylindrical, Data3DTexture, DataArrayTexture, DataTexture, DataTextureLoader, DataUtils, DecrementStencilOp, DecrementWrapStencilOp, DefaultLoadingManager, DepthFormat, DepthStencilFormat, DepthTexture, DetachedBindMode, DirectionalLight, DirectionalLightHelper, DiscreteInterpolant, DodecahedronGeometry, DoubleSide, DstAlphaFactor, DstColorFactor, DynamicCopyUsage, DynamicDrawUsage, DynamicReadUsage, EdgesGeometry, EllipseCurve, EqualCompare, EqualDepth, EqualStencilFunc, EquirectangularReflectionMapping, EquirectangularRefractionMapping, Euler, EventDispatcher, ExtrudeGeometry, FileLoader, Float16BufferAttribute, Float32BufferAttribute, FloatType, Fog, FogExp2, FramebufferTexture, FrontSide, Frustum, FrustumArray, GLBufferAttribute, GLSL1, GLSL3, GreaterCompare, GreaterDepth, GreaterEqualCompare, GreaterEqualDepth, GreaterEqualStencilFunc, GreaterStencilFunc, GridHelper, Group, HalfFloatType, HemisphereLight, HemisphereLightHelper, IcosahedronGeometry, ImageBitmapLoader, ImageLoader, ImageUtils, IncrementStencilOp, IncrementWrapStencilOp, InstancedBufferAttribute, InstancedBufferGeometry, InstancedInterleavedBuffer, InstancedMesh, Int16BufferAttribute, Int32BufferAttribute, Int8BufferAttribute, IntType, InterleavedBuffer, InterleavedBufferAttribute, Interpolant, InterpolateDiscrete, InterpolateLinear, InterpolateSmooth, InterpolationSamplingMode, InterpolationSamplingType, InvertStencilOp, KeepStencilOp, KeyframeTrack, LOD, LatheGeometry, Layers, LessCompare, LessDepth, LessEqualCompare, LessEqualDepth, LessEqualStencilFunc, LessStencilFunc, Light, LightProbe, Line, Line3, LineBasicMaterial, LineCurve, LineCurve3, LineDashedMaterial, LineLoop, LineSegments, LinearFilter, LinearInterpolant, LinearMipMapLinearFilter, LinearMipMapNearestFilter, LinearMipmapLinearFilter, LinearMipmapNearestFilter, LinearSRGBColorSpace, LinearToneMapping, LinearTransfer, Loader, LoaderUtils, LoadingManager, LoopOnce, LoopPingPong, LoopRepeat, MOUSE, Material, MaterialLoader, MathUtils, Matrix2, Matrix3, Matrix4, MaxEquation, Mesh, MeshBasicMaterial, MeshDepthMaterial, MeshDistanceMaterial, MeshLambertMaterial, MeshMatcapMaterial, MeshNormalMaterial, MeshPhongMaterial, MeshPhysicalMaterial, MeshStandardMaterial, MeshToonMaterial, MinEquation, MirroredRepeatWrapping, MixOperation, MultiplyBlending, MultiplyOperation, NearestFilter, NearestMipMapLinearFilter, NearestMipMapNearestFilter, NearestMipmapLinearFilter, NearestMipmapNearestFilter, NeutralToneMapping, NeverCompare, NeverDepth, NeverStencilFunc, NoBlending, NoColorSpace, NoToneMapping, NormalAnimationBlendMode, NormalBlending, NotEqualCompare, NotEqualDepth, NotEqualStencilFunc, NumberKeyframeTrack, Object3D, ObjectLoader, ObjectSpaceNormalMap, OctahedronGeometry, OneFactor, OneMinusConstantAlphaFactor, OneMinusConstantColorFactor, OneMinusDstAlphaFactor, OneMinusDstColorFactor, OneMinusSrcAlphaFactor, OneMinusSrcColorFactor, OrthographicCamera, PCFShadowMap, PCFSoftShadowMap, Path, PerspectiveCamera, Plane, PlaneGeometry, PlaneHelper, PointLight, PointLightHelper, Points, PointsMaterial, PolarGridHelper, PolyhedronGeometry, PositionalAudio, PropertyBinding, PropertyMixer, QuadraticBezierCurve, QuadraticBezierCurve3, Quaternion, QuaternionKeyframeTrack, QuaternionLinearInterpolant, RAD2DEG, RED_GREEN_RGTC2_Format, RED_RGTC1_Format, REVISION, RGBADepthPacking, RGBAFormat, RGBAIntegerFormat, RGBA_ASTC_10x10_Format, RGBA_ASTC_10x5_Format, RGBA_ASTC_10x6_Format, RGBA_ASTC_10x8_Format, RGBA_ASTC_12x10_Format, RGBA_ASTC_12x12_Format, RGBA_ASTC_4x4_Format, RGBA_ASTC_5x4_Format, RGBA_ASTC_5x5_Format, RGBA_ASTC_6x5_Format, RGBA_ASTC_6x6_Format, RGBA_ASTC_8x5_Format, RGBA_ASTC_8x6_Format, RGBA_ASTC_8x8_Format, RGBA_BPTC_Format, RGBA_ETC2_EAC_Format, RGBA_PVRTC_2BPPV1_Format, RGBA_PVRTC_4BPPV1_Format, RGBA_S3TC_DXT1_Format, RGBA_S3TC_DXT3_Format, RGBA_S3TC_DXT5_Format, RGBDepthPacking, RGBFormat, RGBIntegerFormat, RGB_BPTC_SIGNED_Format, RGB_BPTC_UNSIGNED_Format, RGB_ETC1_Format, RGB_ETC2_Format, RGB_PVRTC_2BPPV1_Format, RGB_PVRTC_4BPPV1_Format, RGB_S3TC_DXT1_Format, RGDepthPacking, RGFormat, RGIntegerFormat, RawShaderMaterial, Ray, Raycaster, RectAreaLight, RedFormat, RedIntegerFormat, ReinhardToneMapping, RenderTarget, RenderTarget3D, RepeatWrapping, ReplaceStencilOp, ReverseSubtractEquation, RingGeometry, SIGNED_RED_GREEN_RGTC2_Format, SIGNED_RED_RGTC1_Format, SRGBColorSpace, SRGBTransfer, Scene, ShaderMaterial, ShadowMaterial, Shape, ShapeGeometry, ShapePath, ShapeUtils, ShortType, Skeleton, SkeletonHelper, SkinnedMesh, Source, Sphere, SphereGeometry, Spherical, SphericalHarmonics3, SplineCurve, SpotLight, SpotLightHelper, Sprite, SpriteMaterial, SrcAlphaFactor, SrcAlphaSaturateFactor, SrcColorFactor, StaticCopyUsage, StaticDrawUsage, StaticReadUsage, StereoCamera, StreamCopyUsage, StreamDrawUsage, StreamReadUsage, StringKeyframeTrack, SubtractEquation, SubtractiveBlending, TOUCH, TangentSpaceNormalMap, TetrahedronGeometry, Texture, TextureLoader, TextureUtils, TimestampQuery, TorusGeometry, TorusKnotGeometry, Triangle, TriangleFanDrawMode, TriangleStripDrawMode, TrianglesDrawMode, TubeGeometry, UVMapping, Uint16BufferAttribute, Uint32BufferAttribute, Uint8BufferAttribute, Uint8ClampedBufferAttribute, Uniform, UniformsGroup, UniformsUtils, UnsignedByteType, UnsignedInt248Type, UnsignedInt5999Type, UnsignedIntType, UnsignedShort4444Type, UnsignedShort5551Type, UnsignedShortType, VSMShadowMap, Vector2, Vector3, Vector4, VectorKeyframeTrack, VideoFrameTexture, VideoTexture, WebGL3DRenderTarget, WebGLArrayRenderTarget, WebGLCoordinateSystem, WebGLCubeRenderTarget, WebGLRenderTarget, WebGPUCoordinateSystem, WebXRController, WireframeGeometry, WrapAroundEnding, ZeroCurvatureEnding, ZeroFactor, ZeroSlopeEnding, ZeroStencilOp, arrayNeedsUint32, cloneUniforms, createCanvasElement, createElementNS, getByteLength, getUnlitUniformColorSpace, mergeUniforms, probeAsync, toNormalizedProjectionMatrix, toReversedProjectionMatrix, warnOnce }; diff --git a/devtools/panel/build/three.module.js b/devtools/panel/build/three.module.js new file mode 100644 index 00000000000000..ed9963ee09020e --- /dev/null +++ b/devtools/panel/build/three.module.js @@ -0,0 +1,18130 @@ +/** + * @license + * Copyright 2010-2025 Three.js Authors + * SPDX-License-Identifier: MIT + */ +import { Matrix3, Vector2, Color, mergeUniforms, Vector3, CubeUVReflectionMapping, Mesh, BoxGeometry, ShaderMaterial, BackSide, cloneUniforms, Euler, Matrix4, ColorManagement, SRGBTransfer, PlaneGeometry, FrontSide, getUnlitUniformColorSpace, IntType, HalfFloatType, UnsignedByteType, FloatType, RGBAFormat, Plane, EquirectangularReflectionMapping, EquirectangularRefractionMapping, WebGLCubeRenderTarget, CubeReflectionMapping, CubeRefractionMapping, OrthographicCamera, PerspectiveCamera, NoToneMapping, MeshBasicMaterial, NoBlending, WebGLRenderTarget, BufferGeometry, BufferAttribute, LinearSRGBColorSpace, LinearFilter, warnOnce, Uint32BufferAttribute, Uint16BufferAttribute, arrayNeedsUint32, Vector4, DataArrayTexture, CubeTexture, Data3DTexture, LessEqualCompare, DepthTexture, Texture, GLSL3, PCFShadowMap, PCFSoftShadowMap, VSMShadowMap, CustomToneMapping, NeutralToneMapping, AgXToneMapping, ACESFilmicToneMapping, CineonToneMapping, ReinhardToneMapping, LinearToneMapping, LinearTransfer, AddOperation, MixOperation, MultiplyOperation, UniformsUtils, DoubleSide, NormalBlending, TangentSpaceNormalMap, ObjectSpaceNormalMap, Layers, Frustum, MeshDepthMaterial, RGBADepthPacking, MeshDistanceMaterial, NearestFilter, LessEqualDepth, ReverseSubtractEquation, SubtractEquation, AddEquation, OneMinusConstantAlphaFactor, ConstantAlphaFactor, OneMinusConstantColorFactor, ConstantColorFactor, OneMinusDstAlphaFactor, OneMinusDstColorFactor, OneMinusSrcAlphaFactor, OneMinusSrcColorFactor, DstAlphaFactor, DstColorFactor, SrcAlphaSaturateFactor, SrcAlphaFactor, SrcColorFactor, OneFactor, ZeroFactor, NotEqualDepth, GreaterDepth, GreaterEqualDepth, EqualDepth, LessDepth, AlwaysDepth, NeverDepth, CullFaceNone, CullFaceBack, CullFaceFront, CustomBlending, MultiplyBlending, SubtractiveBlending, AdditiveBlending, MinEquation, MaxEquation, MirroredRepeatWrapping, ClampToEdgeWrapping, RepeatWrapping, LinearMipmapLinearFilter, LinearMipmapNearestFilter, NearestMipmapLinearFilter, NearestMipmapNearestFilter, NotEqualCompare, GreaterCompare, GreaterEqualCompare, EqualCompare, LessCompare, AlwaysCompare, NeverCompare, NoColorSpace, DepthStencilFormat, getByteLength, DepthFormat, UnsignedIntType, UnsignedInt248Type, UnsignedShortType, createElementNS, UnsignedShort4444Type, UnsignedShort5551Type, UnsignedInt5999Type, ByteType, ShortType, AlphaFormat, RGBFormat, RedFormat, RedIntegerFormat, RGFormat, RGIntegerFormat, RGBAIntegerFormat, RGB_S3TC_DXT1_Format, RGBA_S3TC_DXT1_Format, RGBA_S3TC_DXT3_Format, RGBA_S3TC_DXT5_Format, RGB_PVRTC_4BPPV1_Format, RGB_PVRTC_2BPPV1_Format, RGBA_PVRTC_4BPPV1_Format, RGBA_PVRTC_2BPPV1_Format, RGB_ETC1_Format, RGB_ETC2_Format, RGBA_ETC2_EAC_Format, RGBA_ASTC_4x4_Format, RGBA_ASTC_5x4_Format, RGBA_ASTC_5x5_Format, RGBA_ASTC_6x5_Format, RGBA_ASTC_6x6_Format, RGBA_ASTC_8x5_Format, RGBA_ASTC_8x6_Format, RGBA_ASTC_8x8_Format, RGBA_ASTC_10x5_Format, RGBA_ASTC_10x6_Format, RGBA_ASTC_10x8_Format, RGBA_ASTC_10x10_Format, RGBA_ASTC_12x10_Format, RGBA_ASTC_12x12_Format, RGBA_BPTC_Format, RGB_BPTC_SIGNED_Format, RGB_BPTC_UNSIGNED_Format, RED_RGTC1_Format, SIGNED_RED_RGTC1_Format, RED_GREEN_RGTC2_Format, SIGNED_RED_GREEN_RGTC2_Format, EventDispatcher, ArrayCamera, WebXRController, RAD2DEG, createCanvasElement, SRGBColorSpace, REVISION, toNormalizedProjectionMatrix, toReversedProjectionMatrix, probeAsync, WebGLCoordinateSystem } from './three.core.js'; +export { AdditiveAnimationBlendMode, AlwaysStencilFunc, AmbientLight, AnimationAction, AnimationClip, AnimationLoader, AnimationMixer, AnimationObjectGroup, AnimationUtils, ArcCurve, ArrowHelper, AttachedBindMode, Audio, AudioAnalyser, AudioContext, AudioListener, AudioLoader, AxesHelper, BasicDepthPacking, BasicShadowMap, BatchedMesh, Bone, BooleanKeyframeTrack, Box2, Box3, Box3Helper, BoxHelper, BufferGeometryLoader, Cache, Camera, CameraHelper, CanvasTexture, CapsuleGeometry, CatmullRomCurve3, CircleGeometry, Clock, ColorKeyframeTrack, CompressedArrayTexture, CompressedCubeTexture, CompressedTexture, CompressedTextureLoader, ConeGeometry, Controls, CubeCamera, CubeTextureLoader, CubicBezierCurve, CubicBezierCurve3, CubicInterpolant, CullFaceFrontBack, Curve, CurvePath, CylinderGeometry, Cylindrical, DataTexture, DataTextureLoader, DataUtils, DecrementStencilOp, DecrementWrapStencilOp, DefaultLoadingManager, DetachedBindMode, DirectionalLight, DirectionalLightHelper, DiscreteInterpolant, DodecahedronGeometry, DynamicCopyUsage, DynamicDrawUsage, DynamicReadUsage, EdgesGeometry, EllipseCurve, EqualStencilFunc, ExtrudeGeometry, FileLoader, Float16BufferAttribute, Float32BufferAttribute, Fog, FogExp2, FramebufferTexture, FrustumArray, GLBufferAttribute, GLSL1, GreaterEqualStencilFunc, GreaterStencilFunc, GridHelper, Group, HemisphereLight, HemisphereLightHelper, IcosahedronGeometry, ImageBitmapLoader, ImageLoader, ImageUtils, IncrementStencilOp, IncrementWrapStencilOp, InstancedBufferAttribute, InstancedBufferGeometry, InstancedInterleavedBuffer, InstancedMesh, Int16BufferAttribute, Int32BufferAttribute, Int8BufferAttribute, InterleavedBuffer, InterleavedBufferAttribute, Interpolant, InterpolateDiscrete, InterpolateLinear, InterpolateSmooth, InterpolationSamplingMode, InterpolationSamplingType, InvertStencilOp, KeepStencilOp, KeyframeTrack, LOD, LatheGeometry, LessEqualStencilFunc, LessStencilFunc, Light, LightProbe, Line, Line3, LineBasicMaterial, LineCurve, LineCurve3, LineDashedMaterial, LineLoop, LineSegments, LinearInterpolant, LinearMipMapLinearFilter, LinearMipMapNearestFilter, Loader, LoaderUtils, LoadingManager, LoopOnce, LoopPingPong, LoopRepeat, MOUSE, Material, MaterialLoader, MathUtils, Matrix2, MeshLambertMaterial, MeshMatcapMaterial, MeshNormalMaterial, MeshPhongMaterial, MeshPhysicalMaterial, MeshStandardMaterial, MeshToonMaterial, NearestMipMapLinearFilter, NearestMipMapNearestFilter, NeverStencilFunc, NormalAnimationBlendMode, NotEqualStencilFunc, NumberKeyframeTrack, Object3D, ObjectLoader, OctahedronGeometry, Path, PlaneHelper, PointLight, PointLightHelper, Points, PointsMaterial, PolarGridHelper, PolyhedronGeometry, PositionalAudio, PropertyBinding, PropertyMixer, QuadraticBezierCurve, QuadraticBezierCurve3, Quaternion, QuaternionKeyframeTrack, QuaternionLinearInterpolant, RGBDepthPacking, RGBIntegerFormat, RGDepthPacking, RawShaderMaterial, Ray, Raycaster, RectAreaLight, RenderTarget, RenderTarget3D, ReplaceStencilOp, RingGeometry, Scene, ShadowMaterial, Shape, ShapeGeometry, ShapePath, ShapeUtils, Skeleton, SkeletonHelper, SkinnedMesh, Source, Sphere, SphereGeometry, Spherical, SphericalHarmonics3, SplineCurve, SpotLight, SpotLightHelper, Sprite, SpriteMaterial, StaticCopyUsage, StaticDrawUsage, StaticReadUsage, StereoCamera, StreamCopyUsage, StreamDrawUsage, StreamReadUsage, StringKeyframeTrack, TOUCH, TetrahedronGeometry, TextureLoader, TextureUtils, TimestampQuery, TorusGeometry, TorusKnotGeometry, Triangle, TriangleFanDrawMode, TriangleStripDrawMode, TrianglesDrawMode, TubeGeometry, UVMapping, Uint8BufferAttribute, Uint8ClampedBufferAttribute, Uniform, UniformsGroup, VectorKeyframeTrack, VideoFrameTexture, VideoTexture, WebGL3DRenderTarget, WebGLArrayRenderTarget, WebGPUCoordinateSystem, WireframeGeometry, WrapAroundEnding, ZeroCurvatureEnding, ZeroSlopeEnding, ZeroStencilOp } from './three.core.js'; + +function WebGLAnimation() { + + let context = null; + let isAnimating = false; + let animationLoop = null; + let requestId = null; + + function onAnimationFrame( time, frame ) { + + animationLoop( time, frame ); + + requestId = context.requestAnimationFrame( onAnimationFrame ); + + } + + return { + + start: function () { + + if ( isAnimating === true ) return; + if ( animationLoop === null ) return; + + requestId = context.requestAnimationFrame( onAnimationFrame ); + + isAnimating = true; + + }, + + stop: function () { + + context.cancelAnimationFrame( requestId ); + + isAnimating = false; + + }, + + setAnimationLoop: function ( callback ) { + + animationLoop = callback; + + }, + + setContext: function ( value ) { + + context = value; + + } + + }; + +} + +function WebGLAttributes( gl ) { + + const buffers = new WeakMap(); + + function createBuffer( attribute, bufferType ) { + + const array = attribute.array; + const usage = attribute.usage; + const size = array.byteLength; + + const buffer = gl.createBuffer(); + + gl.bindBuffer( bufferType, buffer ); + gl.bufferData( bufferType, array, usage ); + + attribute.onUploadCallback(); + + let type; + + if ( array instanceof Float32Array ) { + + type = gl.FLOAT; + + } else if ( array instanceof Uint16Array ) { + + if ( attribute.isFloat16BufferAttribute ) { + + type = gl.HALF_FLOAT; + + } else { + + type = gl.UNSIGNED_SHORT; + + } + + } else if ( array instanceof Int16Array ) { + + type = gl.SHORT; + + } else if ( array instanceof Uint32Array ) { + + type = gl.UNSIGNED_INT; + + } else if ( array instanceof Int32Array ) { + + type = gl.INT; + + } else if ( array instanceof Int8Array ) { + + type = gl.BYTE; + + } else if ( array instanceof Uint8Array ) { + + type = gl.UNSIGNED_BYTE; + + } else if ( array instanceof Uint8ClampedArray ) { + + type = gl.UNSIGNED_BYTE; + + } else { + + throw new Error( 'THREE.WebGLAttributes: Unsupported buffer data format: ' + array ); + + } + + return { + buffer: buffer, + type: type, + bytesPerElement: array.BYTES_PER_ELEMENT, + version: attribute.version, + size: size + }; + + } + + function updateBuffer( buffer, attribute, bufferType ) { + + const array = attribute.array; + const updateRanges = attribute.updateRanges; + + gl.bindBuffer( bufferType, buffer ); + + if ( updateRanges.length === 0 ) { + + // Not using update ranges + gl.bufferSubData( bufferType, 0, array ); + + } else { + + // Before applying update ranges, we merge any adjacent / overlapping + // ranges to reduce load on `gl.bufferSubData`. Empirically, this has led + // to performance improvements for applications which make heavy use of + // update ranges. Likely due to GPU command overhead. + // + // Note that to reduce garbage collection between frames, we merge the + // update ranges in-place. This is safe because this method will clear the + // update ranges once updated. + + updateRanges.sort( ( a, b ) => a.start - b.start ); + + // To merge the update ranges in-place, we work from left to right in the + // existing updateRanges array, merging ranges. This may result in a final + // array which is smaller than the original. This index tracks the last + // index representing a merged range, any data after this index can be + // trimmed once the merge algorithm is completed. + let mergeIndex = 0; + + for ( let i = 1; i < updateRanges.length; i ++ ) { + + const previousRange = updateRanges[ mergeIndex ]; + const range = updateRanges[ i ]; + + // We add one here to merge adjacent ranges. This is safe because ranges + // operate over positive integers. + if ( range.start <= previousRange.start + previousRange.count + 1 ) { + + previousRange.count = Math.max( + previousRange.count, + range.start + range.count - previousRange.start + ); + + } else { + + ++ mergeIndex; + updateRanges[ mergeIndex ] = range; + + } + + } + + // Trim the array to only contain the merged ranges. + updateRanges.length = mergeIndex + 1; + + for ( let i = 0, l = updateRanges.length; i < l; i ++ ) { + + const range = updateRanges[ i ]; + + gl.bufferSubData( bufferType, range.start * array.BYTES_PER_ELEMENT, + array, range.start, range.count ); + + } + + attribute.clearUpdateRanges(); + + } + + attribute.onUploadCallback(); + + } + + // + + function get( attribute ) { + + if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; + + return buffers.get( attribute ); + + } + + function remove( attribute ) { + + if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; + + const data = buffers.get( attribute ); + + if ( data ) { + + gl.deleteBuffer( data.buffer ); + + buffers.delete( attribute ); + + } + + } + + function update( attribute, bufferType ) { + + if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; + + if ( attribute.isGLBufferAttribute ) { + + const cached = buffers.get( attribute ); + + if ( ! cached || cached.version < attribute.version ) { + + buffers.set( attribute, { + buffer: attribute.buffer, + type: attribute.type, + bytesPerElement: attribute.elementSize, + version: attribute.version + } ); + + } + + return; + + } + + const data = buffers.get( attribute ); + + if ( data === undefined ) { + + buffers.set( attribute, createBuffer( attribute, bufferType ) ); + + } else if ( data.version < attribute.version ) { + + if ( data.size !== attribute.array.byteLength ) { + + throw new Error( 'THREE.WebGLAttributes: The size of the buffer attribute\'s array buffer does not match the original size. Resizing buffer attributes is not supported.' ); + + } + + updateBuffer( data.buffer, attribute, bufferType ); + + data.version = attribute.version; + + } + + } + + return { + + get: get, + remove: remove, + update: update + + }; + +} + +var alphahash_fragment = '#ifdef USE_ALPHAHASH\n\tif ( diffuseColor.a < getAlphaHashThreshold( vPosition ) ) discard;\n#endif'; + +var alphahash_pars_fragment = '#ifdef USE_ALPHAHASH\n\tconst float ALPHA_HASH_SCALE = 0.05;\n\tfloat hash2D( vec2 value ) {\n\t\treturn fract( 1.0e4 * sin( 17.0 * value.x + 0.1 * value.y ) * ( 0.1 + abs( sin( 13.0 * value.y + value.x ) ) ) );\n\t}\n\tfloat hash3D( vec3 value ) {\n\t\treturn hash2D( vec2( hash2D( value.xy ), value.z ) );\n\t}\n\tfloat getAlphaHashThreshold( vec3 position ) {\n\t\tfloat maxDeriv = max(\n\t\t\tlength( dFdx( position.xyz ) ),\n\t\t\tlength( dFdy( position.xyz ) )\n\t\t);\n\t\tfloat pixScale = 1.0 / ( ALPHA_HASH_SCALE * maxDeriv );\n\t\tvec2 pixScales = vec2(\n\t\t\texp2( floor( log2( pixScale ) ) ),\n\t\t\texp2( ceil( log2( pixScale ) ) )\n\t\t);\n\t\tvec2 alpha = vec2(\n\t\t\thash3D( floor( pixScales.x * position.xyz ) ),\n\t\t\thash3D( floor( pixScales.y * position.xyz ) )\n\t\t);\n\t\tfloat lerpFactor = fract( log2( pixScale ) );\n\t\tfloat x = ( 1.0 - lerpFactor ) * alpha.x + lerpFactor * alpha.y;\n\t\tfloat a = min( lerpFactor, 1.0 - lerpFactor );\n\t\tvec3 cases = vec3(\n\t\t\tx * x / ( 2.0 * a * ( 1.0 - a ) ),\n\t\t\t( x - 0.5 * a ) / ( 1.0 - a ),\n\t\t\t1.0 - ( ( 1.0 - x ) * ( 1.0 - x ) / ( 2.0 * a * ( 1.0 - a ) ) )\n\t\t);\n\t\tfloat threshold = ( x < ( 1.0 - a ) )\n\t\t\t? ( ( x < a ) ? cases.x : cases.y )\n\t\t\t: cases.z;\n\t\treturn clamp( threshold , 1.0e-6, 1.0 );\n\t}\n#endif'; + +var alphamap_fragment = '#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vAlphaMapUv ).g;\n#endif'; + +var alphamap_pars_fragment = '#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif'; + +var alphatest_fragment = '#ifdef USE_ALPHATEST\n\t#ifdef ALPHA_TO_COVERAGE\n\tdiffuseColor.a = smoothstep( alphaTest, alphaTest + fwidth( diffuseColor.a ), diffuseColor.a );\n\tif ( diffuseColor.a == 0.0 ) discard;\n\t#else\n\tif ( diffuseColor.a < alphaTest ) discard;\n\t#endif\n#endif'; + +var alphatest_pars_fragment = '#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif'; + +var aomap_fragment = '#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vAoMapUv ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_CLEARCOAT ) \n\t\tclearcoatSpecularIndirect *= ambientOcclusion;\n\t#endif\n\t#if defined( USE_SHEEN ) \n\t\tsheenSpecularIndirect *= ambientOcclusion;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometryNormal, geometryViewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif'; + +var aomap_pars_fragment = '#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif'; + +var batching_pars_vertex = '#ifdef USE_BATCHING\n\t#if ! defined( GL_ANGLE_multi_draw )\n\t#define gl_DrawID _gl_DrawID\n\tuniform int _gl_DrawID;\n\t#endif\n\tuniform highp sampler2D batchingTexture;\n\tuniform highp usampler2D batchingIdTexture;\n\tmat4 getBatchingMatrix( const in float i ) {\n\t\tint size = textureSize( batchingTexture, 0 ).x;\n\t\tint j = int( i ) * 4;\n\t\tint x = j % size;\n\t\tint y = j / size;\n\t\tvec4 v1 = texelFetch( batchingTexture, ivec2( x, y ), 0 );\n\t\tvec4 v2 = texelFetch( batchingTexture, ivec2( x + 1, y ), 0 );\n\t\tvec4 v3 = texelFetch( batchingTexture, ivec2( x + 2, y ), 0 );\n\t\tvec4 v4 = texelFetch( batchingTexture, ivec2( x + 3, y ), 0 );\n\t\treturn mat4( v1, v2, v3, v4 );\n\t}\n\tfloat getIndirectIndex( const in int i ) {\n\t\tint size = textureSize( batchingIdTexture, 0 ).x;\n\t\tint x = i % size;\n\t\tint y = i / size;\n\t\treturn float( texelFetch( batchingIdTexture, ivec2( x, y ), 0 ).r );\n\t}\n#endif\n#ifdef USE_BATCHING_COLOR\n\tuniform sampler2D batchingColorTexture;\n\tvec3 getBatchingColor( const in float i ) {\n\t\tint size = textureSize( batchingColorTexture, 0 ).x;\n\t\tint j = int( i );\n\t\tint x = j % size;\n\t\tint y = j / size;\n\t\treturn texelFetch( batchingColorTexture, ivec2( x, y ), 0 ).rgb;\n\t}\n#endif'; + +var batching_vertex = '#ifdef USE_BATCHING\n\tmat4 batchingMatrix = getBatchingMatrix( getIndirectIndex( gl_DrawID ) );\n#endif'; + +var begin_vertex = 'vec3 transformed = vec3( position );\n#ifdef USE_ALPHAHASH\n\tvPosition = vec3( position );\n#endif'; + +var beginnormal_vertex = 'vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif'; + +var bsdfs = 'float G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n} // validated'; + +var iridescence_fragment = '#ifdef USE_IRIDESCENCE\n\tconst mat3 XYZ_TO_REC709 = mat3(\n\t\t 3.2404542, -0.9692660, 0.0556434,\n\t\t-1.5371385, 1.8760108, -0.2040259,\n\t\t-0.4985314, 0.0415560, 1.0572252\n\t);\n\tvec3 Fresnel0ToIor( vec3 fresnel0 ) {\n\t\tvec3 sqrtF0 = sqrt( fresnel0 );\n\t\treturn ( vec3( 1.0 ) + sqrtF0 ) / ( vec3( 1.0 ) - sqrtF0 );\n\t}\n\tvec3 IorToFresnel0( vec3 transmittedIor, float incidentIor ) {\n\t\treturn pow2( ( transmittedIor - vec3( incidentIor ) ) / ( transmittedIor + vec3( incidentIor ) ) );\n\t}\n\tfloat IorToFresnel0( float transmittedIor, float incidentIor ) {\n\t\treturn pow2( ( transmittedIor - incidentIor ) / ( transmittedIor + incidentIor ));\n\t}\n\tvec3 evalSensitivity( float OPD, vec3 shift ) {\n\t\tfloat phase = 2.0 * PI * OPD * 1.0e-9;\n\t\tvec3 val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 );\n\t\tvec3 pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 );\n\t\tvec3 var = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 );\n\t\tvec3 xyz = val * sqrt( 2.0 * PI * var ) * cos( pos * phase + shift ) * exp( - pow2( phase ) * var );\n\t\txyz.x += 9.7470e-14 * sqrt( 2.0 * PI * 4.5282e+09 ) * cos( 2.2399e+06 * phase + shift[ 0 ] ) * exp( - 4.5282e+09 * pow2( phase ) );\n\t\txyz /= 1.0685e-7;\n\t\tvec3 rgb = XYZ_TO_REC709 * xyz;\n\t\treturn rgb;\n\t}\n\tvec3 evalIridescence( float outsideIOR, float eta2, float cosTheta1, float thinFilmThickness, vec3 baseF0 ) {\n\t\tvec3 I;\n\t\tfloat iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) );\n\t\tfloat sinTheta2Sq = pow2( outsideIOR / iridescenceIOR ) * ( 1.0 - pow2( cosTheta1 ) );\n\t\tfloat cosTheta2Sq = 1.0 - sinTheta2Sq;\n\t\tif ( cosTheta2Sq < 0.0 ) {\n\t\t\treturn vec3( 1.0 );\n\t\t}\n\t\tfloat cosTheta2 = sqrt( cosTheta2Sq );\n\t\tfloat R0 = IorToFresnel0( iridescenceIOR, outsideIOR );\n\t\tfloat R12 = F_Schlick( R0, 1.0, cosTheta1 );\n\t\tfloat T121 = 1.0 - R12;\n\t\tfloat phi12 = 0.0;\n\t\tif ( iridescenceIOR < outsideIOR ) phi12 = PI;\n\t\tfloat phi21 = PI - phi12;\n\t\tvec3 baseIOR = Fresnel0ToIor( clamp( baseF0, 0.0, 0.9999 ) );\t\tvec3 R1 = IorToFresnel0( baseIOR, iridescenceIOR );\n\t\tvec3 R23 = F_Schlick( R1, 1.0, cosTheta2 );\n\t\tvec3 phi23 = vec3( 0.0 );\n\t\tif ( baseIOR[ 0 ] < iridescenceIOR ) phi23[ 0 ] = PI;\n\t\tif ( baseIOR[ 1 ] < iridescenceIOR ) phi23[ 1 ] = PI;\n\t\tif ( baseIOR[ 2 ] < iridescenceIOR ) phi23[ 2 ] = PI;\n\t\tfloat OPD = 2.0 * iridescenceIOR * thinFilmThickness * cosTheta2;\n\t\tvec3 phi = vec3( phi21 ) + phi23;\n\t\tvec3 R123 = clamp( R12 * R23, 1e-5, 0.9999 );\n\t\tvec3 r123 = sqrt( R123 );\n\t\tvec3 Rs = pow2( T121 ) * R23 / ( vec3( 1.0 ) - R123 );\n\t\tvec3 C0 = R12 + Rs;\n\t\tI = C0;\n\t\tvec3 Cm = Rs - T121;\n\t\tfor ( int m = 1; m <= 2; ++ m ) {\n\t\t\tCm *= r123;\n\t\t\tvec3 Sm = 2.0 * evalSensitivity( float( m ) * OPD, float( m ) * phi );\n\t\t\tI += Cm * Sm;\n\t\t}\n\t\treturn max( I, vec3( 0.0 ) );\n\t}\n#endif'; + +var bumpmap_pars_fragment = '#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vBumpMapUv );\n\t\tvec2 dSTdy = dFdy( vBumpMapUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vBumpMapUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = normalize( dFdx( surf_pos.xyz ) );\n\t\tvec3 vSigmaY = normalize( dFdy( surf_pos.xyz ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif'; + +var clipping_planes_fragment = '#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#ifdef ALPHA_TO_COVERAGE\n\t\tfloat distanceToPlane, distanceGradient;\n\t\tfloat clipOpacity = 1.0;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tdistanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;\n\t\t\tdistanceGradient = fwidth( distanceToPlane ) / 2.0;\n\t\t\tclipOpacity *= smoothstep( - distanceGradient, distanceGradient, distanceToPlane );\n\t\t\tif ( clipOpacity == 0.0 ) discard;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\t\tfloat unionClipOpacity = 1.0;\n\t\t\t#pragma unroll_loop_start\n\t\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\t\tplane = clippingPlanes[ i ];\n\t\t\t\tdistanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;\n\t\t\t\tdistanceGradient = fwidth( distanceToPlane ) / 2.0;\n\t\t\t\tunionClipOpacity *= 1.0 - smoothstep( - distanceGradient, distanceGradient, distanceToPlane );\n\t\t\t}\n\t\t\t#pragma unroll_loop_end\n\t\t\tclipOpacity *= 1.0 - unionClipOpacity;\n\t\t#endif\n\t\tdiffuseColor.a *= clipOpacity;\n\t\tif ( diffuseColor.a == 0.0 ) discard;\n\t#else\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\t\tbool clipped = true;\n\t\t\t#pragma unroll_loop_start\n\t\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\t\tplane = clippingPlanes[ i ];\n\t\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t\t}\n\t\t\t#pragma unroll_loop_end\n\t\t\tif ( clipped ) discard;\n\t\t#endif\n\t#endif\n#endif'; + +var clipping_planes_pars_fragment = '#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif'; + +var clipping_planes_pars_vertex = '#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif'; + +var clipping_planes_vertex = '#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif'; + +var color_fragment = '#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif'; + +var color_pars_fragment = '#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif'; + +var color_pars_vertex = '#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) || defined( USE_BATCHING_COLOR )\n\tvarying vec3 vColor;\n#endif'; + +var color_vertex = '#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) || defined( USE_BATCHING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif\n#ifdef USE_BATCHING_COLOR\n\tvec3 batchingColor = getBatchingColor( getIndirectIndex( gl_DrawID ) );\n\tvColor.xyz *= batchingColor.xyz;\n#endif'; + +var common = '#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nvec3 pow2( const in vec3 x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 v ) { return dot( v, vec3( 0.3333333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\n#ifdef USE_ALPHAHASH\n\tvarying vec3 vPosition;\n#endif\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}\nvec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat F_Schlick( const in float f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n} // validated'; + +var cube_uv_reflection_fragment = '#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\thighp vec2 uv = getUV( direction, face ) * ( faceSize - 2.0 ) + 1.0;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tuv.x += filterInt * 3.0 * cubeUV_minTileSize;\n\t\tuv.y += 4.0 * ( exp2( CUBEUV_MAX_MIP ) - faceSize );\n\t\tuv.x *= CUBEUV_TEXEL_WIDTH;\n\t\tuv.y *= CUBEUV_TEXEL_HEIGHT;\n\t\t#ifdef texture2DGradEXT\n\t\t\treturn texture2DGradEXT( envMap, uv, vec2( 0.0 ), vec2( 0.0 ) ).rgb;\n\t\t#else\n\t\t\treturn texture2D( envMap, uv ).rgb;\n\t\t#endif\n\t}\n\t#define cubeUV_r0 1.0\n\t#define cubeUV_m0 - 2.0\n\t#define cubeUV_r1 0.8\n\t#define cubeUV_m1 - 1.0\n\t#define cubeUV_r4 0.4\n\t#define cubeUV_m4 2.0\n\t#define cubeUV_r5 0.305\n\t#define cubeUV_m5 3.0\n\t#define cubeUV_r6 0.21\n\t#define cubeUV_m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= cubeUV_r1 ) {\n\t\t\tmip = ( cubeUV_r0 - roughness ) * ( cubeUV_m1 - cubeUV_m0 ) / ( cubeUV_r0 - cubeUV_r1 ) + cubeUV_m0;\n\t\t} else if ( roughness >= cubeUV_r4 ) {\n\t\t\tmip = ( cubeUV_r1 - roughness ) * ( cubeUV_m4 - cubeUV_m1 ) / ( cubeUV_r1 - cubeUV_r4 ) + cubeUV_m1;\n\t\t} else if ( roughness >= cubeUV_r5 ) {\n\t\t\tmip = ( cubeUV_r4 - roughness ) * ( cubeUV_m5 - cubeUV_m4 ) / ( cubeUV_r4 - cubeUV_r5 ) + cubeUV_m4;\n\t\t} else if ( roughness >= cubeUV_r6 ) {\n\t\t\tmip = ( cubeUV_r5 - roughness ) * ( cubeUV_m6 - cubeUV_m5 ) / ( cubeUV_r5 - cubeUV_r6 ) + cubeUV_m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), cubeUV_m0, CUBEUV_MAX_MIP );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif'; + +var defaultnormal_vertex = 'vec3 transformedNormal = objectNormal;\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = objectTangent;\n#endif\n#ifdef USE_BATCHING\n\tmat3 bm = mat3( batchingMatrix );\n\ttransformedNormal /= vec3( dot( bm[ 0 ], bm[ 0 ] ), dot( bm[ 1 ], bm[ 1 ] ), dot( bm[ 2 ], bm[ 2 ] ) );\n\ttransformedNormal = bm * transformedNormal;\n\t#ifdef USE_TANGENT\n\t\ttransformedTangent = bm * transformedTangent;\n\t#endif\n#endif\n#ifdef USE_INSTANCING\n\tmat3 im = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( im[ 0 ], im[ 0 ] ), dot( im[ 1 ], im[ 1 ] ), dot( im[ 2 ], im[ 2 ] ) );\n\ttransformedNormal = im * transformedNormal;\n\t#ifdef USE_TANGENT\n\t\ttransformedTangent = im * transformedTangent;\n\t#endif\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\ttransformedTangent = ( modelViewMatrix * vec4( transformedTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif'; + +var displacementmap_pars_vertex = '#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif'; + +var displacementmap_vertex = '#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vDisplacementMapUv ).x * displacementScale + displacementBias );\n#endif'; + +var emissivemap_fragment = '#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vEmissiveMapUv );\n\t#ifdef DECODE_VIDEO_TEXTURE_EMISSIVE\n\t\temissiveColor = sRGBTransferEOTF( emissiveColor );\n\t#endif\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif'; + +var emissivemap_pars_fragment = '#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif'; + +var colorspace_fragment = 'gl_FragColor = linearToOutputTexel( gl_FragColor );'; + +var colorspace_pars_fragment = 'vec4 LinearTransferOETF( in vec4 value ) {\n\treturn value;\n}\nvec4 sRGBTransferEOTF( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 sRGBTransferOETF( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}'; + +var envmap_fragment = '#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, envMapRotation * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif'; + +var envmap_common_pars_fragment = '#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform mat3 envMapRotation;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif'; + +var envmap_pars_fragment = '#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif'; + +var envmap_pars_vertex = '#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif'; + +var envmap_vertex = '#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif'; + +var fog_vertex = '#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif'; + +var fog_pars_vertex = '#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif'; + +var fog_fragment = '#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif'; + +var fog_pars_fragment = '#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif'; + +var gradientmap_pars_fragment = '#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn vec3( texture2D( gradientMap, coord ).r );\n\t#else\n\t\tvec2 fw = fwidth( coord ) * 0.5;\n\t\treturn mix( vec3( 0.7 ), vec3( 1.0 ), smoothstep( 0.7 - fw.x, 0.7 + fw.x, coord.x ) );\n\t#endif\n}'; + +var lightmap_pars_fragment = '#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif'; + +var lights_lambert_fragment = 'LambertMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularStrength = specularStrength;'; + +var lights_lambert_pars_fragment = 'varying vec3 vViewPosition;\nstruct LambertMaterial {\n\tvec3 diffuseColor;\n\tfloat specularStrength;\n};\nvoid RE_Direct_Lambert( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Lambert( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Lambert\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Lambert'; + +var lights_pars_begin = 'uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\n#if defined( USE_LIGHT_PROBES )\n\tuniform vec3 lightProbe[ 9 ];\n#endif\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif ( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in vec3 geometryPosition, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometryPosition;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in vec3 geometryPosition, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometryPosition;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif'; + +var envmap_physical_pars_fragment = '#ifdef USE_ENVMAP\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#ifdef ENVMAP_TYPE_CUBE_UV\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, envMapRotation * worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#ifdef ENVMAP_TYPE_CUBE_UV\n\t\t\tvec3 reflectVec = reflect( - viewDir, normal );\n\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, envMapRotation * reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\t#ifdef USE_ANISOTROPY\n\t\tvec3 getIBLAnisotropyRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in vec3 bitangent, const in float anisotropy ) {\n\t\t\t#ifdef ENVMAP_TYPE_CUBE_UV\n\t\t\t\tvec3 bentNormal = cross( bitangent, viewDir );\n\t\t\t\tbentNormal = normalize( cross( bentNormal, bitangent ) );\n\t\t\t\tbentNormal = normalize( mix( bentNormal, normal, pow2( pow2( 1.0 - anisotropy * ( 1.0 - roughness ) ) ) ) );\n\t\t\t\treturn getIBLRadiance( viewDir, bentNormal, roughness );\n\t\t\t#else\n\t\t\t\treturn vec3( 0.0 );\n\t\t\t#endif\n\t\t}\n\t#endif\n#endif'; + +var lights_toon_fragment = 'ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;'; + +var lights_toon_pars_fragment = 'varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometryNormal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon'; + +var lights_phong_fragment = 'BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;'; + +var lights_phong_pars_fragment = 'varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometryViewDir, geometryNormal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong'; + +var lights_physical_fragment = 'PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( nonPerturbedNormal ) ), abs( dFdy( nonPerturbedNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\tmaterial.ior = ior;\n\t#ifdef USE_SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularColorFactor = specularColor;\n\t\t#ifdef USE_SPECULAR_COLORMAP\n\t\t\tspecularColorFactor *= texture2D( specularColorMap, vSpecularColorMapUv ).rgb;\n\t\t#endif\n\t\t#ifdef USE_SPECULAR_INTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vSpecularIntensityMapUv ).a;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularColorFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( material.ior - 1.0 ) / ( material.ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vClearcoatMapUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vClearcoatRoughnessMapUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_DISPERSION\n\tmaterial.dispersion = dispersion;\n#endif\n#ifdef USE_IRIDESCENCE\n\tmaterial.iridescence = iridescence;\n\tmaterial.iridescenceIOR = iridescenceIOR;\n\t#ifdef USE_IRIDESCENCEMAP\n\t\tmaterial.iridescence *= texture2D( iridescenceMap, vIridescenceMapUv ).r;\n\t#endif\n\t#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\t\tmaterial.iridescenceThickness = (iridescenceThicknessMaximum - iridescenceThicknessMinimum) * texture2D( iridescenceThicknessMap, vIridescenceThicknessMapUv ).g + iridescenceThicknessMinimum;\n\t#else\n\t\tmaterial.iridescenceThickness = iridescenceThicknessMaximum;\n\t#endif\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheenColor;\n\t#ifdef USE_SHEEN_COLORMAP\n\t\tmaterial.sheenColor *= texture2D( sheenColorMap, vSheenColorMapUv ).rgb;\n\t#endif\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n\t#ifdef USE_SHEEN_ROUGHNESSMAP\n\t\tmaterial.sheenRoughness *= texture2D( sheenRoughnessMap, vSheenRoughnessMapUv ).a;\n\t#endif\n#endif\n#ifdef USE_ANISOTROPY\n\t#ifdef USE_ANISOTROPYMAP\n\t\tmat2 anisotropyMat = mat2( anisotropyVector.x, anisotropyVector.y, - anisotropyVector.y, anisotropyVector.x );\n\t\tvec3 anisotropyPolar = texture2D( anisotropyMap, vAnisotropyMapUv ).rgb;\n\t\tvec2 anisotropyV = anisotropyMat * normalize( 2.0 * anisotropyPolar.rg - vec2( 1.0 ) ) * anisotropyPolar.b;\n\t#else\n\t\tvec2 anisotropyV = anisotropyVector;\n\t#endif\n\tmaterial.anisotropy = length( anisotropyV );\n\tif( material.anisotropy == 0.0 ) {\n\t\tanisotropyV = vec2( 1.0, 0.0 );\n\t} else {\n\t\tanisotropyV /= material.anisotropy;\n\t\tmaterial.anisotropy = saturate( material.anisotropy );\n\t}\n\tmaterial.alphaT = mix( pow2( material.roughness ), 1.0, pow2( material.anisotropy ) );\n\tmaterial.anisotropyT = tbn[ 0 ] * anisotropyV.x + tbn[ 1 ] * anisotropyV.y;\n\tmaterial.anisotropyB = tbn[ 1 ] * anisotropyV.x - tbn[ 0 ] * anisotropyV.y;\n#endif'; + +var lights_physical_pars_fragment = 'struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\tfloat dispersion;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_IRIDESCENCE\n\t\tfloat iridescence;\n\t\tfloat iridescenceIOR;\n\t\tfloat iridescenceThickness;\n\t\tvec3 iridescenceFresnel;\n\t\tvec3 iridescenceF0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenColor;\n\t\tfloat sheenRoughness;\n\t#endif\n\t#ifdef IOR\n\t\tfloat ior;\n\t#endif\n\t#ifdef USE_TRANSMISSION\n\t\tfloat transmission;\n\t\tfloat transmissionAlpha;\n\t\tfloat thickness;\n\t\tfloat attenuationDistance;\n\t\tvec3 attenuationColor;\n\t#endif\n\t#ifdef USE_ANISOTROPY\n\t\tfloat anisotropy;\n\t\tfloat alphaT;\n\t\tvec3 anisotropyT;\n\t\tvec3 anisotropyB;\n\t#endif\n};\nvec3 clearcoatSpecularDirect = vec3( 0.0 );\nvec3 clearcoatSpecularIndirect = vec3( 0.0 );\nvec3 sheenSpecularDirect = vec3( 0.0 );\nvec3 sheenSpecularIndirect = vec3(0.0 );\nvec3 Schlick_to_F0( const in vec3 f, const in float f90, const in float dotVH ) {\n float x = clamp( 1.0 - dotVH, 0.0, 1.0 );\n float x2 = x * x;\n float x5 = clamp( x * x2 * x2, 0.0, 0.9999 );\n return ( f - vec3( f90 ) * x5 ) / ( 1.0 - x5 );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\n#ifdef USE_ANISOTROPY\n\tfloat V_GGX_SmithCorrelated_Anisotropic( const in float alphaT, const in float alphaB, const in float dotTV, const in float dotBV, const in float dotTL, const in float dotBL, const in float dotNV, const in float dotNL ) {\n\t\tfloat gv = dotNL * length( vec3( alphaT * dotTV, alphaB * dotBV, dotNV ) );\n\t\tfloat gl = dotNV * length( vec3( alphaT * dotTL, alphaB * dotBL, dotNL ) );\n\t\tfloat v = 0.5 / ( gv + gl );\n\t\treturn saturate(v);\n\t}\n\tfloat D_GGX_Anisotropic( const in float alphaT, const in float alphaB, const in float dotNH, const in float dotTH, const in float dotBH ) {\n\t\tfloat a2 = alphaT * alphaB;\n\t\thighp vec3 v = vec3( alphaB * dotTH, alphaT * dotBH, a2 * dotNH );\n\t\thighp float v2 = dot( v, v );\n\t\tfloat w2 = a2 / v2;\n\t\treturn RECIPROCAL_PI * a2 * pow2 ( w2 );\n\t}\n#endif\n#ifdef USE_CLEARCOAT\n\tvec3 BRDF_GGX_Clearcoat( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material) {\n\t\tvec3 f0 = material.clearcoatF0;\n\t\tfloat f90 = material.clearcoatF90;\n\t\tfloat roughness = material.clearcoatRoughness;\n\t\tfloat alpha = pow2( roughness );\n\t\tvec3 halfDir = normalize( lightDir + viewDir );\n\t\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\t\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\t\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\t\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\t\tvec3 F = F_Schlick( f0, f90, dotVH );\n\t\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\t\tfloat D = D_GGX( alpha, dotNH );\n\t\treturn F * ( V * D );\n\t}\n#endif\nvec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material ) {\n\tvec3 f0 = material.specularColor;\n\tfloat f90 = material.specularF90;\n\tfloat roughness = material.roughness;\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\t#ifdef USE_IRIDESCENCE\n\t\tF = mix( F, material.iridescenceFresnel, material.iridescence );\n\t#endif\n\t#ifdef USE_ANISOTROPY\n\t\tfloat dotTL = dot( material.anisotropyT, lightDir );\n\t\tfloat dotTV = dot( material.anisotropyT, viewDir );\n\t\tfloat dotTH = dot( material.anisotropyT, halfDir );\n\t\tfloat dotBL = dot( material.anisotropyB, lightDir );\n\t\tfloat dotBV = dot( material.anisotropyB, viewDir );\n\t\tfloat dotBH = dot( material.anisotropyB, halfDir );\n\t\tfloat V = V_GGX_SmithCorrelated_Anisotropic( material.alphaT, alpha, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL );\n\t\tfloat D = D_GGX_Anisotropic( material.alphaT, alpha, dotNH, dotTH, dotBH );\n\t#else\n\t\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\t\tfloat D = D_GGX( alpha, dotNH );\n\t#endif\n\treturn F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenColor * ( D * V );\n}\n#endif\nfloat IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat r2 = roughness * roughness;\n\tfloat a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95;\n\tfloat b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72;\n\tfloat DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) );\n\treturn saturate( DG * RECIPROCAL_PI );\n}\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\n#ifdef USE_IRIDESCENCE\nvoid computeMultiscatteringIridescence( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float iridescence, const in vec3 iridescenceF0, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#else\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#endif\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\t#ifdef USE_IRIDESCENCE\n\t\tvec3 Fr = mix( specularColor, iridescenceF0, iridescence );\n\t#else\n\t\tvec3 Fr = specularColor;\n\t#endif\n\tvec3 FssEss = Fr * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = Fr + ( 1.0 - Fr ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometryNormal;\n\t\tvec3 viewDir = geometryViewDir;\n\t\tvec3 position = geometryPosition;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometryClearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecularDirect += ccIrradiance * BRDF_GGX_Clearcoat( directLight.direction, geometryViewDir, geometryClearcoatNormal, material );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecularDirect += irradiance * BRDF_Sheen( directLight.direction, geometryViewDir, geometryNormal, material.sheenColor, material.sheenRoughness );\n\t#endif\n\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometryViewDir, geometryNormal, material );\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecularIndirect += clearcoatRadiance * EnvironmentBRDF( geometryClearcoatNormal, geometryViewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecularIndirect += irradiance * material.sheenColor * IBLSheenBRDF( geometryNormal, geometryViewDir, material.sheenRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\t#ifdef USE_IRIDESCENCE\n\t\tcomputeMultiscatteringIridescence( geometryNormal, geometryViewDir, material.specularColor, material.specularF90, material.iridescence, material.iridescenceFresnel, material.roughness, singleScattering, multiScattering );\n\t#else\n\t\tcomputeMultiscattering( geometryNormal, geometryViewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\t#endif\n\tvec3 totalScattering = singleScattering + multiScattering;\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - max( max( totalScattering.r, totalScattering.g ), totalScattering.b ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}'; + +var lights_fragment_begin = '\nvec3 geometryPosition = - vViewPosition;\nvec3 geometryNormal = normal;\nvec3 geometryViewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\nvec3 geometryClearcoatNormal = vec3( 0.0 );\n#ifdef USE_CLEARCOAT\n\tgeometryClearcoatNormal = clearcoatNormal;\n#endif\n#ifdef USE_IRIDESCENCE\n\tfloat dotNVi = saturate( dot( normal, geometryViewDir ) );\n\tif ( material.iridescenceThickness == 0.0 ) {\n\t\tmaterial.iridescence = 0.0;\n\t} else {\n\t\tmaterial.iridescence = saturate( material.iridescence );\n\t}\n\tif ( material.iridescence > 0.0 ) {\n\t\tmaterial.iridescenceFresnel = evalIridescence( 1.0, material.iridescenceIOR, dotNVi, material.iridescenceThickness, material.specularColor );\n\t\tmaterial.iridescenceF0 = Schlick_to_F0( material.iridescenceFresnel, 1.0, dotNVi );\n\t}\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometryPosition, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= ( directLight.visible && receiveShadow ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowIntensity, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\tvec4 spotColor;\n\tvec3 spotLightCoord;\n\tbool inSpotLightMap;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometryPosition, directLight );\n\t\t#if ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )\n\t\t#define SPOT_LIGHT_MAP_INDEX UNROLLED_LOOP_INDEX\n\t\t#elif ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\t#define SPOT_LIGHT_MAP_INDEX NUM_SPOT_LIGHT_MAPS\n\t\t#else\n\t\t#define SPOT_LIGHT_MAP_INDEX ( UNROLLED_LOOP_INDEX - NUM_SPOT_LIGHT_SHADOWS + NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )\n\t\t#endif\n\t\t#if ( SPOT_LIGHT_MAP_INDEX < NUM_SPOT_LIGHT_MAPS )\n\t\t\tspotLightCoord = vSpotLightCoord[ i ].xyz / vSpotLightCoord[ i ].w;\n\t\t\tinSpotLightMap = all( lessThan( abs( spotLightCoord * 2. - 1. ), vec3( 1.0 ) ) );\n\t\t\tspotColor = texture2D( spotLightMap[ SPOT_LIGHT_MAP_INDEX ], spotLightCoord.xy );\n\t\t\tdirectLight.color = inSpotLightMap ? directLight.color * spotColor.rgb : directLight.color;\n\t\t#endif\n\t\t#undef SPOT_LIGHT_MAP_INDEX\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowIntensity, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowIntensity, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\t#if defined( USE_LIGHT_PROBES )\n\t\tirradiance += getLightProbeIrradiance( lightProbe, geometryNormal );\n\t#endif\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometryNormal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif'; + +var lights_fragment_maps = '#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vLightMapUv );\n\t\tvec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometryNormal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\t#ifdef USE_ANISOTROPY\n\t\tradiance += getIBLAnisotropyRadiance( geometryViewDir, geometryNormal, material.roughness, material.anisotropyB, material.anisotropy );\n\t#else\n\t\tradiance += getIBLRadiance( geometryViewDir, geometryNormal, material.roughness );\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometryViewDir, geometryClearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif'; + +var lights_fragment_end = '#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n#endif'; + +var logdepthbuf_fragment = '#if defined( USE_LOGDEPTHBUF )\n\tgl_FragDepth = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif'; + +var logdepthbuf_pars_fragment = '#if defined( USE_LOGDEPTHBUF )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif'; + +var logdepthbuf_pars_vertex = '#ifdef USE_LOGDEPTHBUF\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif'; + +var logdepthbuf_vertex = '#ifdef USE_LOGDEPTHBUF\n\tvFragDepth = 1.0 + gl_Position.w;\n\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n#endif'; + +var map_fragment = '#ifdef USE_MAP\n\tvec4 sampledDiffuseColor = texture2D( map, vMapUv );\n\t#ifdef DECODE_VIDEO_TEXTURE\n\t\tsampledDiffuseColor = sRGBTransferEOTF( sampledDiffuseColor );\n\t#endif\n\tdiffuseColor *= sampledDiffuseColor;\n#endif'; + +var map_pars_fragment = '#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif'; + +var map_particle_fragment = '#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\t#if defined( USE_POINTS_UV )\n\t\tvec2 uv = vUv;\n\t#else\n\t\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n\t#endif\n#endif\n#ifdef USE_MAP\n\tdiffuseColor *= texture2D( map, uv );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif'; + +var map_particle_pars_fragment = '#if defined( USE_POINTS_UV )\n\tvarying vec2 vUv;\n#else\n\t#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\t\tuniform mat3 uvTransform;\n\t#endif\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif'; + +var metalnessmap_fragment = 'float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vMetalnessMapUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif'; + +var metalnessmap_pars_fragment = '#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif'; + +var morphinstance_vertex = '#ifdef USE_INSTANCING_MORPH\n\tfloat morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\tfloat morphTargetBaseInfluence = texelFetch( morphTexture, ivec2( 0, gl_InstanceID ), 0 ).r;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\tmorphTargetInfluences[i] = texelFetch( morphTexture, ivec2( i + 1, gl_InstanceID ), 0 ).r;\n\t}\n#endif'; + +var morphcolor_vertex = '#if defined( USE_MORPHCOLORS )\n\tvColor *= morphTargetBaseInfluence;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t#if defined( USE_COLOR_ALPHA )\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ) * morphTargetInfluences[ i ];\n\t\t#elif defined( USE_COLOR )\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ).rgb * morphTargetInfluences[ i ];\n\t\t#endif\n\t}\n#endif'; + +var morphnormal_vertex = '#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\tif ( morphTargetInfluences[ i ] != 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1 ).xyz * morphTargetInfluences[ i ];\n\t}\n#endif'; + +var morphtarget_pars_vertex = '#ifdef USE_MORPHTARGETS\n\t#ifndef USE_INSTANCING_MORPH\n\t\tuniform float morphTargetBaseInfluence;\n\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t#endif\n\tuniform sampler2DArray morphTargetsTexture;\n\tuniform ivec2 morphTargetsTextureSize;\n\tvec4 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset ) {\n\t\tint texelIndex = vertexIndex * MORPHTARGETS_TEXTURE_STRIDE + offset;\n\t\tint y = texelIndex / morphTargetsTextureSize.x;\n\t\tint x = texelIndex - y * morphTargetsTextureSize.x;\n\t\tivec3 morphUV = ivec3( x, y, morphTargetIndex );\n\t\treturn texelFetch( morphTargetsTexture, morphUV, 0 );\n\t}\n#endif'; + +var morphtarget_vertex = '#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\tif ( morphTargetInfluences[ i ] != 0.0 ) transformed += getMorph( gl_VertexID, i, 0 ).xyz * morphTargetInfluences[ i ];\n\t}\n#endif'; + +var normal_fragment_begin = 'float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = dFdx( vViewPosition );\n\tvec3 fdy = dFdy( vViewPosition );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal *= faceDirection;\n\t#endif\n#endif\n#if defined( USE_NORMALMAP_TANGENTSPACE ) || defined( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY )\n\t#ifdef USE_TANGENT\n\t\tmat3 tbn = mat3( normalize( vTangent ), normalize( vBitangent ), normal );\n\t#else\n\t\tmat3 tbn = getTangentFrame( - vViewPosition, normal,\n\t\t#if defined( USE_NORMALMAP )\n\t\t\tvNormalMapUv\n\t\t#elif defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tvClearcoatNormalMapUv\n\t\t#else\n\t\t\tvUv\n\t\t#endif\n\t\t);\n\t#endif\n\t#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )\n\t\ttbn[0] *= faceDirection;\n\t\ttbn[1] *= faceDirection;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\t#ifdef USE_TANGENT\n\t\tmat3 tbn2 = mat3( normalize( vTangent ), normalize( vBitangent ), normal );\n\t#else\n\t\tmat3 tbn2 = getTangentFrame( - vViewPosition, normal, vClearcoatNormalMapUv );\n\t#endif\n\t#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )\n\t\ttbn2[0] *= faceDirection;\n\t\ttbn2[1] *= faceDirection;\n\t#endif\n#endif\nvec3 nonPerturbedNormal = normal;'; + +var normal_fragment_maps = '#ifdef USE_NORMALMAP_OBJECTSPACE\n\tnormal = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( USE_NORMALMAP_TANGENTSPACE )\n\tvec3 mapN = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\tnormal = normalize( tbn * mapN );\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif'; + +var normal_pars_fragment = '#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif'; + +var normal_pars_vertex = '#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif'; + +var normal_vertex = '#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif'; + +var normalmap_pars_fragment = '#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef USE_NORMALMAP_OBJECTSPACE\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( USE_NORMALMAP_TANGENTSPACE ) || defined ( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY ) )\n\tmat3 getTangentFrame( vec3 eye_pos, vec3 surf_norm, vec2 uv ) {\n\t\tvec3 q0 = dFdx( eye_pos.xyz );\n\t\tvec3 q1 = dFdy( eye_pos.xyz );\n\t\tvec2 st0 = dFdx( uv.st );\n\t\tvec2 st1 = dFdy( uv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : inversesqrt( det );\n\t\treturn mat3( T * scale, B * scale, N );\n\t}\n#endif'; + +var clearcoat_normal_fragment_begin = '#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = nonPerturbedNormal;\n#endif'; + +var clearcoat_normal_fragment_maps = '#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vClearcoatNormalMapUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\tclearcoatNormal = normalize( tbn2 * clearcoatMapN );\n#endif'; + +var clearcoat_pars_fragment = '#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif'; + +var iridescence_pars_fragment = '#ifdef USE_IRIDESCENCEMAP\n\tuniform sampler2D iridescenceMap;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tuniform sampler2D iridescenceThicknessMap;\n#endif'; + +var opaque_fragment = '#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= material.transmissionAlpha;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );'; + +var packing = 'vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;const float ShiftRight8 = 1. / 256.;\nconst float Inv255 = 1. / 255.;\nconst vec4 PackFactors = vec4( 1.0, 256.0, 256.0 * 256.0, 256.0 * 256.0 * 256.0 );\nconst vec2 UnpackFactors2 = vec2( UnpackDownscale, 1.0 / PackFactors.g );\nconst vec3 UnpackFactors3 = vec3( UnpackDownscale / PackFactors.rg, 1.0 / PackFactors.b );\nconst vec4 UnpackFactors4 = vec4( UnpackDownscale / PackFactors.rgb, 1.0 / PackFactors.a );\nvec4 packDepthToRGBA( const in float v ) {\n\tif( v <= 0.0 )\n\t\treturn vec4( 0., 0., 0., 0. );\n\tif( v >= 1.0 )\n\t\treturn vec4( 1., 1., 1., 1. );\n\tfloat vuf;\n\tfloat af = modf( v * PackFactors.a, vuf );\n\tfloat bf = modf( vuf * ShiftRight8, vuf );\n\tfloat gf = modf( vuf * ShiftRight8, vuf );\n\treturn vec4( vuf * Inv255, gf * PackUpscale, bf * PackUpscale, af );\n}\nvec3 packDepthToRGB( const in float v ) {\n\tif( v <= 0.0 )\n\t\treturn vec3( 0., 0., 0. );\n\tif( v >= 1.0 )\n\t\treturn vec3( 1., 1., 1. );\n\tfloat vuf;\n\tfloat bf = modf( v * PackFactors.b, vuf );\n\tfloat gf = modf( vuf * ShiftRight8, vuf );\n\treturn vec3( vuf * Inv255, gf * PackUpscale, bf );\n}\nvec2 packDepthToRG( const in float v ) {\n\tif( v <= 0.0 )\n\t\treturn vec2( 0., 0. );\n\tif( v >= 1.0 )\n\t\treturn vec2( 1., 1. );\n\tfloat vuf;\n\tfloat gf = modf( v * 256., vuf );\n\treturn vec2( vuf * Inv255, gf );\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors4 );\n}\nfloat unpackRGBToDepth( const in vec3 v ) {\n\treturn dot( v, UnpackFactors3 );\n}\nfloat unpackRGToDepth( const in vec2 v ) {\n\treturn v.r * UnpackFactors2.r + v.g * UnpackFactors2.g;\n}\nvec4 pack2HalfToRGBA( const in vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( const in vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float depth, const in float near, const in float far ) {\n\treturn depth * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float depth, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * depth - far );\n}'; + +var premultiplied_alpha_fragment = '#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif'; + +var project_vertex = 'vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_BATCHING\n\tmvPosition = batchingMatrix * mvPosition;\n#endif\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;'; + +var dithering_fragment = '#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif'; + +var dithering_pars_fragment = '#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif'; + +var roughnessmap_fragment = 'float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vRoughnessMapUv );\n\troughnessFactor *= texelRoughness.g;\n#endif'; + +var roughnessmap_pars_fragment = '#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif'; + +var shadowmap_pars_fragment = '#if NUM_SPOT_LIGHT_COORDS > 0\n\tvarying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];\n#endif\n#if NUM_SPOT_LIGHT_MAPS > 0\n\tuniform sampler2D spotLightMap[ NUM_SPOT_LIGHT_MAPS ];\n#endif\n#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowIntensity, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbool inFrustum = shadowCoord.x >= 0.0 && shadowCoord.x <= 1.0 && shadowCoord.y >= 0.0 && shadowCoord.y <= 1.0;\n\t\tbool frustumTest = inFrustum && shadowCoord.z <= 1.0;\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn mix( 1.0, shadow, shadowIntensity );\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowIntensity, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tfloat shadow = 1.0;\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\t\n\t\tfloat lightToPositionLength = length( lightToPosition );\n\t\tif ( lightToPositionLength - shadowCameraFar <= 0.0 && lightToPositionLength - shadowCameraNear >= 0.0 ) {\n\t\t\tfloat dp = ( lightToPositionLength - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\t\tdp += shadowBias;\n\t\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\t\tshadow = (\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t\t) * ( 1.0 / 9.0 );\n\t\t\t#else\n\t\t\t\tshadow = texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t\t#endif\n\t\t}\n\t\treturn mix( 1.0, shadow, shadowIntensity );\n\t}\n#endif'; + +var shadowmap_pars_vertex = '#if NUM_SPOT_LIGHT_COORDS > 0\n\tuniform mat4 spotLightMatrix[ NUM_SPOT_LIGHT_COORDS ];\n\tvarying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];\n#endif\n#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif'; + +var shadowmap_vertex = '#if ( defined( USE_SHADOWMAP ) && ( NUM_DIR_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0 ) ) || ( NUM_SPOT_LIGHT_COORDS > 0 )\n\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\tvec4 shadowWorldPosition;\n#endif\n#if defined( USE_SHADOWMAP )\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if NUM_SPOT_LIGHT_COORDS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_COORDS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition;\n\t\t#if ( defined( USE_SHADOWMAP ) && UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\t\tshadowWorldPosition.xyz += shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias;\n\t\t#endif\n\t\tvSpotLightCoord[ i ] = spotLightMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n#endif'; + +var shadowmask_pars_fragment = 'float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowIntensity, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowIntensity, spotLight.shadowBias, spotLight.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowIntensity, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}'; + +var skinbase_vertex = '#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif'; + +var skinning_pars_vertex = '#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\tuniform highp sampler2D boneTexture;\n\tmat4 getBoneMatrix( const in float i ) {\n\t\tint size = textureSize( boneTexture, 0 ).x;\n\t\tint j = int( i ) * 4;\n\t\tint x = j % size;\n\t\tint y = j / size;\n\t\tvec4 v1 = texelFetch( boneTexture, ivec2( x, y ), 0 );\n\t\tvec4 v2 = texelFetch( boneTexture, ivec2( x + 1, y ), 0 );\n\t\tvec4 v3 = texelFetch( boneTexture, ivec2( x + 2, y ), 0 );\n\t\tvec4 v4 = texelFetch( boneTexture, ivec2( x + 3, y ), 0 );\n\t\treturn mat4( v1, v2, v3, v4 );\n\t}\n#endif'; + +var skinning_vertex = '#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif'; + +var skinnormal_vertex = '#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif'; + +var specularmap_fragment = 'float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vSpecularMapUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif'; + +var specularmap_pars_fragment = '#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif'; + +var tonemapping_fragment = '#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif'; + +var tonemapping_pars_fragment = '#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn saturate( toneMappingExposure * color );\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 CineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nconst mat3 LINEAR_REC2020_TO_LINEAR_SRGB = mat3(\n\tvec3( 1.6605, - 0.1246, - 0.0182 ),\n\tvec3( - 0.5876, 1.1329, - 0.1006 ),\n\tvec3( - 0.0728, - 0.0083, 1.1187 )\n);\nconst mat3 LINEAR_SRGB_TO_LINEAR_REC2020 = mat3(\n\tvec3( 0.6274, 0.0691, 0.0164 ),\n\tvec3( 0.3293, 0.9195, 0.0880 ),\n\tvec3( 0.0433, 0.0113, 0.8956 )\n);\nvec3 agxDefaultContrastApprox( vec3 x ) {\n\tvec3 x2 = x * x;\n\tvec3 x4 = x2 * x2;\n\treturn + 15.5 * x4 * x2\n\t\t- 40.14 * x4 * x\n\t\t+ 31.96 * x4\n\t\t- 6.868 * x2 * x\n\t\t+ 0.4298 * x2\n\t\t+ 0.1191 * x\n\t\t- 0.00232;\n}\nvec3 AgXToneMapping( vec3 color ) {\n\tconst mat3 AgXInsetMatrix = mat3(\n\t\tvec3( 0.856627153315983, 0.137318972929847, 0.11189821299995 ),\n\t\tvec3( 0.0951212405381588, 0.761241990602591, 0.0767994186031903 ),\n\t\tvec3( 0.0482516061458583, 0.101439036467562, 0.811302368396859 )\n\t);\n\tconst mat3 AgXOutsetMatrix = mat3(\n\t\tvec3( 1.1271005818144368, - 0.1413297634984383, - 0.14132976349843826 ),\n\t\tvec3( - 0.11060664309660323, 1.157823702216272, - 0.11060664309660294 ),\n\t\tvec3( - 0.016493938717834573, - 0.016493938717834257, 1.2519364065950405 )\n\t);\n\tconst float AgxMinEv = - 12.47393;\tconst float AgxMaxEv = 4.026069;\n\tcolor *= toneMappingExposure;\n\tcolor = LINEAR_SRGB_TO_LINEAR_REC2020 * color;\n\tcolor = AgXInsetMatrix * color;\n\tcolor = max( color, 1e-10 );\tcolor = log2( color );\n\tcolor = ( color - AgxMinEv ) / ( AgxMaxEv - AgxMinEv );\n\tcolor = clamp( color, 0.0, 1.0 );\n\tcolor = agxDefaultContrastApprox( color );\n\tcolor = AgXOutsetMatrix * color;\n\tcolor = pow( max( vec3( 0.0 ), color ), vec3( 2.2 ) );\n\tcolor = LINEAR_REC2020_TO_LINEAR_SRGB * color;\n\tcolor = clamp( color, 0.0, 1.0 );\n\treturn color;\n}\nvec3 NeutralToneMapping( vec3 color ) {\n\tconst float StartCompression = 0.8 - 0.04;\n\tconst float Desaturation = 0.15;\n\tcolor *= toneMappingExposure;\n\tfloat x = min( color.r, min( color.g, color.b ) );\n\tfloat offset = x < 0.08 ? x - 6.25 * x * x : 0.04;\n\tcolor -= offset;\n\tfloat peak = max( color.r, max( color.g, color.b ) );\n\tif ( peak < StartCompression ) return color;\n\tfloat d = 1. - StartCompression;\n\tfloat newPeak = 1. - d * d / ( peak + d - StartCompression );\n\tcolor *= newPeak / peak;\n\tfloat g = 1. - 1. / ( Desaturation * ( peak - newPeak ) + 1. );\n\treturn mix( color, vec3( newPeak ), g );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }'; + +var transmission_fragment = '#ifdef USE_TRANSMISSION\n\tmaterial.transmission = transmission;\n\tmaterial.transmissionAlpha = 1.0;\n\tmaterial.thickness = thickness;\n\tmaterial.attenuationDistance = attenuationDistance;\n\tmaterial.attenuationColor = attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tmaterial.transmission *= texture2D( transmissionMap, vTransmissionMapUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tmaterial.thickness *= texture2D( thicknessMap, vThicknessMapUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmitted = getIBLVolumeRefraction(\n\t\tn, v, material.roughness, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, material.dispersion, material.ior, material.thickness,\n\t\tmaterial.attenuationColor, material.attenuationDistance );\n\tmaterial.transmissionAlpha = mix( material.transmissionAlpha, transmitted.a, material.transmission );\n\ttotalDiffuse = mix( totalDiffuse, transmitted.rgb, material.transmission );\n#endif'; + +var transmission_pars_fragment = '#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tfloat w0( float a ) {\n\t\treturn ( 1.0 / 6.0 ) * ( a * ( a * ( - a + 3.0 ) - 3.0 ) + 1.0 );\n\t}\n\tfloat w1( float a ) {\n\t\treturn ( 1.0 / 6.0 ) * ( a * a * ( 3.0 * a - 6.0 ) + 4.0 );\n\t}\n\tfloat w2( float a ){\n\t\treturn ( 1.0 / 6.0 ) * ( a * ( a * ( - 3.0 * a + 3.0 ) + 3.0 ) + 1.0 );\n\t}\n\tfloat w3( float a ) {\n\t\treturn ( 1.0 / 6.0 ) * ( a * a * a );\n\t}\n\tfloat g0( float a ) {\n\t\treturn w0( a ) + w1( a );\n\t}\n\tfloat g1( float a ) {\n\t\treturn w2( a ) + w3( a );\n\t}\n\tfloat h0( float a ) {\n\t\treturn - 1.0 + w1( a ) / ( w0( a ) + w1( a ) );\n\t}\n\tfloat h1( float a ) {\n\t\treturn 1.0 + w3( a ) / ( w2( a ) + w3( a ) );\n\t}\n\tvec4 bicubic( sampler2D tex, vec2 uv, vec4 texelSize, float lod ) {\n\t\tuv = uv * texelSize.zw + 0.5;\n\t\tvec2 iuv = floor( uv );\n\t\tvec2 fuv = fract( uv );\n\t\tfloat g0x = g0( fuv.x );\n\t\tfloat g1x = g1( fuv.x );\n\t\tfloat h0x = h0( fuv.x );\n\t\tfloat h1x = h1( fuv.x );\n\t\tfloat h0y = h0( fuv.y );\n\t\tfloat h1y = h1( fuv.y );\n\t\tvec2 p0 = ( vec2( iuv.x + h0x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;\n\t\tvec2 p1 = ( vec2( iuv.x + h1x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;\n\t\tvec2 p2 = ( vec2( iuv.x + h0x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;\n\t\tvec2 p3 = ( vec2( iuv.x + h1x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;\n\t\treturn g0( fuv.y ) * ( g0x * textureLod( tex, p0, lod ) + g1x * textureLod( tex, p1, lod ) ) +\n\t\t\tg1( fuv.y ) * ( g0x * textureLod( tex, p2, lod ) + g1x * textureLod( tex, p3, lod ) );\n\t}\n\tvec4 textureBicubic( sampler2D sampler, vec2 uv, float lod ) {\n\t\tvec2 fLodSize = vec2( textureSize( sampler, int( lod ) ) );\n\t\tvec2 cLodSize = vec2( textureSize( sampler, int( lod + 1.0 ) ) );\n\t\tvec2 fLodSizeInv = 1.0 / fLodSize;\n\t\tvec2 cLodSizeInv = 1.0 / cLodSize;\n\t\tvec4 fSample = bicubic( sampler, uv, vec4( fLodSizeInv, fLodSize ), floor( lod ) );\n\t\tvec4 cSample = bicubic( sampler, uv, vec4( cLodSizeInv, cLodSize ), ceil( lod ) );\n\t\treturn mix( fSample, cSample, fract( lod ) );\n\t}\n\tvec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( const in float roughness, const in float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) {\n\t\tfloat lod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\treturn textureBicubic( transmissionSamplerMap, fragCoord.xy, lod );\n\t}\n\tvec3 volumeAttenuation( const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) {\n\t\tif ( isinf( attenuationDistance ) ) {\n\t\t\treturn vec3( 1.0 );\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor,\n\t\tconst in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix,\n\t\tconst in mat4 viewMatrix, const in mat4 projMatrix, const in float dispersion, const in float ior, const in float thickness,\n\t\tconst in vec3 attenuationColor, const in float attenuationDistance ) {\n\t\tvec4 transmittedLight;\n\t\tvec3 transmittance;\n\t\t#ifdef USE_DISPERSION\n\t\t\tfloat halfSpread = ( ior - 1.0 ) * 0.025 * dispersion;\n\t\t\tvec3 iors = vec3( ior - halfSpread, ior, ior + halfSpread );\n\t\t\tfor ( int i = 0; i < 3; i ++ ) {\n\t\t\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, iors[ i ], modelMatrix );\n\t\t\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\t\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\t\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\t\t\trefractionCoords += 1.0;\n\t\t\t\trefractionCoords /= 2.0;\n\t\t\t\tvec4 transmissionSample = getTransmissionSample( refractionCoords, roughness, iors[ i ] );\n\t\t\t\ttransmittedLight[ i ] = transmissionSample[ i ];\n\t\t\t\ttransmittedLight.a += transmissionSample.a;\n\t\t\t\ttransmittance[ i ] = diffuseColor[ i ] * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance )[ i ];\n\t\t\t}\n\t\t\ttransmittedLight.a /= 3.0;\n\t\t#else\n\t\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\t\trefractionCoords += 1.0;\n\t\t\trefractionCoords /= 2.0;\n\t\t\ttransmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\t\ttransmittance = diffuseColor * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\t#endif\n\t\tvec3 attenuatedColor = transmittance * transmittedLight.rgb;\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\tfloat transmittanceFactor = ( transmittance.r + transmittance.g + transmittance.b ) / 3.0;\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor, 1.0 - ( 1.0 - transmittedLight.a ) * transmittanceFactor );\n\t}\n#endif'; + +var uv_pars_fragment = '#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n\tvarying vec2 vUv;\n#endif\n#ifdef USE_MAP\n\tvarying vec2 vMapUv;\n#endif\n#ifdef USE_ALPHAMAP\n\tvarying vec2 vAlphaMapUv;\n#endif\n#ifdef USE_LIGHTMAP\n\tvarying vec2 vLightMapUv;\n#endif\n#ifdef USE_AOMAP\n\tvarying vec2 vAoMapUv;\n#endif\n#ifdef USE_BUMPMAP\n\tvarying vec2 vBumpMapUv;\n#endif\n#ifdef USE_NORMALMAP\n\tvarying vec2 vNormalMapUv;\n#endif\n#ifdef USE_EMISSIVEMAP\n\tvarying vec2 vEmissiveMapUv;\n#endif\n#ifdef USE_METALNESSMAP\n\tvarying vec2 vMetalnessMapUv;\n#endif\n#ifdef USE_ROUGHNESSMAP\n\tvarying vec2 vRoughnessMapUv;\n#endif\n#ifdef USE_ANISOTROPYMAP\n\tvarying vec2 vAnisotropyMapUv;\n#endif\n#ifdef USE_CLEARCOATMAP\n\tvarying vec2 vClearcoatMapUv;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tvarying vec2 vClearcoatNormalMapUv;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tvarying vec2 vClearcoatRoughnessMapUv;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n\tvarying vec2 vIridescenceMapUv;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tvarying vec2 vIridescenceThicknessMapUv;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n\tvarying vec2 vSheenColorMapUv;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n\tvarying vec2 vSheenRoughnessMapUv;\n#endif\n#ifdef USE_SPECULARMAP\n\tvarying vec2 vSpecularMapUv;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n\tvarying vec2 vSpecularColorMapUv;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n\tvarying vec2 vSpecularIntensityMapUv;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n\tuniform mat3 transmissionMapTransform;\n\tvarying vec2 vTransmissionMapUv;\n#endif\n#ifdef USE_THICKNESSMAP\n\tuniform mat3 thicknessMapTransform;\n\tvarying vec2 vThicknessMapUv;\n#endif'; + +var uv_pars_vertex = '#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n\tvarying vec2 vUv;\n#endif\n#ifdef USE_MAP\n\tuniform mat3 mapTransform;\n\tvarying vec2 vMapUv;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform mat3 alphaMapTransform;\n\tvarying vec2 vAlphaMapUv;\n#endif\n#ifdef USE_LIGHTMAP\n\tuniform mat3 lightMapTransform;\n\tvarying vec2 vLightMapUv;\n#endif\n#ifdef USE_AOMAP\n\tuniform mat3 aoMapTransform;\n\tvarying vec2 vAoMapUv;\n#endif\n#ifdef USE_BUMPMAP\n\tuniform mat3 bumpMapTransform;\n\tvarying vec2 vBumpMapUv;\n#endif\n#ifdef USE_NORMALMAP\n\tuniform mat3 normalMapTransform;\n\tvarying vec2 vNormalMapUv;\n#endif\n#ifdef USE_DISPLACEMENTMAP\n\tuniform mat3 displacementMapTransform;\n\tvarying vec2 vDisplacementMapUv;\n#endif\n#ifdef USE_EMISSIVEMAP\n\tuniform mat3 emissiveMapTransform;\n\tvarying vec2 vEmissiveMapUv;\n#endif\n#ifdef USE_METALNESSMAP\n\tuniform mat3 metalnessMapTransform;\n\tvarying vec2 vMetalnessMapUv;\n#endif\n#ifdef USE_ROUGHNESSMAP\n\tuniform mat3 roughnessMapTransform;\n\tvarying vec2 vRoughnessMapUv;\n#endif\n#ifdef USE_ANISOTROPYMAP\n\tuniform mat3 anisotropyMapTransform;\n\tvarying vec2 vAnisotropyMapUv;\n#endif\n#ifdef USE_CLEARCOATMAP\n\tuniform mat3 clearcoatMapTransform;\n\tvarying vec2 vClearcoatMapUv;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform mat3 clearcoatNormalMapTransform;\n\tvarying vec2 vClearcoatNormalMapUv;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform mat3 clearcoatRoughnessMapTransform;\n\tvarying vec2 vClearcoatRoughnessMapUv;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n\tuniform mat3 sheenColorMapTransform;\n\tvarying vec2 vSheenColorMapUv;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n\tuniform mat3 sheenRoughnessMapTransform;\n\tvarying vec2 vSheenRoughnessMapUv;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n\tuniform mat3 iridescenceMapTransform;\n\tvarying vec2 vIridescenceMapUv;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tuniform mat3 iridescenceThicknessMapTransform;\n\tvarying vec2 vIridescenceThicknessMapUv;\n#endif\n#ifdef USE_SPECULARMAP\n\tuniform mat3 specularMapTransform;\n\tvarying vec2 vSpecularMapUv;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n\tuniform mat3 specularColorMapTransform;\n\tvarying vec2 vSpecularColorMapUv;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n\tuniform mat3 specularIntensityMapTransform;\n\tvarying vec2 vSpecularIntensityMapUv;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n\tuniform mat3 transmissionMapTransform;\n\tvarying vec2 vTransmissionMapUv;\n#endif\n#ifdef USE_THICKNESSMAP\n\tuniform mat3 thicknessMapTransform;\n\tvarying vec2 vThicknessMapUv;\n#endif'; + +var uv_vertex = '#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n\tvUv = vec3( uv, 1 ).xy;\n#endif\n#ifdef USE_MAP\n\tvMapUv = ( mapTransform * vec3( MAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ALPHAMAP\n\tvAlphaMapUv = ( alphaMapTransform * vec3( ALPHAMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_LIGHTMAP\n\tvLightMapUv = ( lightMapTransform * vec3( LIGHTMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_AOMAP\n\tvAoMapUv = ( aoMapTransform * vec3( AOMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_BUMPMAP\n\tvBumpMapUv = ( bumpMapTransform * vec3( BUMPMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_NORMALMAP\n\tvNormalMapUv = ( normalMapTransform * vec3( NORMALMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_DISPLACEMENTMAP\n\tvDisplacementMapUv = ( displacementMapTransform * vec3( DISPLACEMENTMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_EMISSIVEMAP\n\tvEmissiveMapUv = ( emissiveMapTransform * vec3( EMISSIVEMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_METALNESSMAP\n\tvMetalnessMapUv = ( metalnessMapTransform * vec3( METALNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ROUGHNESSMAP\n\tvRoughnessMapUv = ( roughnessMapTransform * vec3( ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ANISOTROPYMAP\n\tvAnisotropyMapUv = ( anisotropyMapTransform * vec3( ANISOTROPYMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOATMAP\n\tvClearcoatMapUv = ( clearcoatMapTransform * vec3( CLEARCOATMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tvClearcoatNormalMapUv = ( clearcoatNormalMapTransform * vec3( CLEARCOAT_NORMALMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tvClearcoatRoughnessMapUv = ( clearcoatRoughnessMapTransform * vec3( CLEARCOAT_ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n\tvIridescenceMapUv = ( iridescenceMapTransform * vec3( IRIDESCENCEMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tvIridescenceThicknessMapUv = ( iridescenceThicknessMapTransform * vec3( IRIDESCENCE_THICKNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n\tvSheenColorMapUv = ( sheenColorMapTransform * vec3( SHEEN_COLORMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n\tvSheenRoughnessMapUv = ( sheenRoughnessMapTransform * vec3( SHEEN_ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULARMAP\n\tvSpecularMapUv = ( specularMapTransform * vec3( SPECULARMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n\tvSpecularColorMapUv = ( specularColorMapTransform * vec3( SPECULAR_COLORMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n\tvSpecularIntensityMapUv = ( specularIntensityMapTransform * vec3( SPECULAR_INTENSITYMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n\tvTransmissionMapUv = ( transmissionMapTransform * vec3( TRANSMISSIONMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_THICKNESSMAP\n\tvThicknessMapUv = ( thicknessMapTransform * vec3( THICKNESSMAP_UV, 1 ) ).xy;\n#endif'; + +var worldpos_vertex = '#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION ) || NUM_SPOT_LIGHT_COORDS > 0\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_BATCHING\n\t\tworldPosition = batchingMatrix * worldPosition;\n\t#endif\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif'; + +const vertex$h = 'varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}'; + +const fragment$h = 'uniform sampler2D t2D;\nuniform float backgroundIntensity;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\t#ifdef DECODE_VIDEO_TEXTURE\n\t\ttexColor = vec4( mix( pow( texColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), texColor.rgb * 0.0773993808, vec3( lessThanEqual( texColor.rgb, vec3( 0.04045 ) ) ) ), texColor.w );\n\t#endif\n\ttexColor.rgb *= backgroundIntensity;\n\tgl_FragColor = texColor;\n\t#include \n\t#include \n}'; + +const vertex$g = 'varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}'; + +const fragment$g = '#ifdef ENVMAP_TYPE_CUBE\n\tuniform samplerCube envMap;\n#elif defined( ENVMAP_TYPE_CUBE_UV )\n\tuniform sampler2D envMap;\n#endif\nuniform float flipEnvMap;\nuniform float backgroundBlurriness;\nuniform float backgroundIntensity;\nuniform mat3 backgroundRotation;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 texColor = textureCube( envMap, backgroundRotation * vec3( flipEnvMap * vWorldDirection.x, vWorldDirection.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 texColor = textureCubeUV( envMap, backgroundRotation * vWorldDirection, backgroundBlurriness );\n\t#else\n\t\tvec4 texColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\t#endif\n\ttexColor.rgb *= backgroundIntensity;\n\tgl_FragColor = texColor;\n\t#include \n\t#include \n}'; + +const vertex$f = 'varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}'; + +const fragment$f = 'uniform samplerCube tCube;\nuniform float tFlip;\nuniform float opacity;\nvarying vec3 vWorldDirection;\nvoid main() {\n\tvec4 texColor = textureCube( tCube, vec3( tFlip * vWorldDirection.x, vWorldDirection.yz ) );\n\tgl_FragColor = texColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}'; + +const vertex$e = '#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}'; + +const fragment$e = '#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#elif DEPTH_PACKING == 3202\n\t\tgl_FragColor = vec4( packDepthToRGB( fragCoordZ ), 1.0 );\n\t#elif DEPTH_PACKING == 3203\n\t\tgl_FragColor = vec4( packDepthToRG( fragCoordZ ), 0.0, 1.0 );\n\t#endif\n}'; + +const vertex$d = '#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}'; + +const fragment$d = '#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}'; + +const vertex$c = 'varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}'; + +const fragment$c = 'uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\n\t#include \n\t#include \n}'; + +const vertex$b = 'uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const fragment$b = 'uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const vertex$a = '#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const fragment$a = 'uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vLightMapUv );\n\t\treflectedLight.indirectDiffuse += lightMapTexel.rgb * lightMapIntensity * RECIPROCAL_PI;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const vertex$9 = '#define LAMBERT\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const fragment$9 = '#define LAMBERT\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const vertex$8 = '#define MATCAP\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}'; + +const fragment$8 = '#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t#else\n\t\tvec4 matcapColor = vec4( vec3( mix( 0.2, 0.8, uv.y ) ), 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const vertex$7 = '#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}'; + +const fragment$7 = '#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( 0.0, 0.0, 0.0, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), diffuseColor.a );\n\t#ifdef OPAQUE\n\t\tgl_FragColor.a = 1.0;\n\t#endif\n}'; + +const vertex$6 = '#define PHONG\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const fragment$6 = '#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const vertex$5 = '#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}'; + +const fragment$5 = '#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define USE_SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef USE_SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULAR_COLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n\t#ifdef USE_SPECULAR_INTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_DISPERSION\n\tuniform float dispersion;\n#endif\n#ifdef USE_IRIDESCENCE\n\tuniform float iridescence;\n\tuniform float iridescenceIOR;\n\tuniform float iridescenceThicknessMinimum;\n\tuniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEEN_COLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEEN_ROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\n#ifdef USE_ANISOTROPY\n\tuniform vec2 anisotropyVector;\n\t#ifdef USE_ANISOTROPYMAP\n\t\tuniform sampler2D anisotropyMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include \n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecularDirect + sheenSpecularIndirect;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometryClearcoatNormal, geometryViewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + ( clearcoatSpecularDirect + clearcoatSpecularIndirect ) * material.clearcoat;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const vertex$4 = '#define TOON\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}'; + +const fragment$4 = '#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const vertex$3 = 'uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \n#ifdef USE_POINTS_UV\n\tvarying vec2 vUv;\n\tuniform mat3 uvTransform;\n#endif\nvoid main() {\n\t#ifdef USE_POINTS_UV\n\t\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const fragment$3 = 'uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const vertex$2 = '#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const fragment$2 = 'uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}'; + +const vertex$1 = 'uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix[ 3 ];\n\tvec2 scale = vec2( length( modelMatrix[ 0 ].xyz ), length( modelMatrix[ 1 ].xyz ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}'; + +const fragment$1 = 'uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n}'; + +const ShaderChunk = { + alphahash_fragment: alphahash_fragment, + alphahash_pars_fragment: alphahash_pars_fragment, + alphamap_fragment: alphamap_fragment, + alphamap_pars_fragment: alphamap_pars_fragment, + alphatest_fragment: alphatest_fragment, + alphatest_pars_fragment: alphatest_pars_fragment, + aomap_fragment: aomap_fragment, + aomap_pars_fragment: aomap_pars_fragment, + batching_pars_vertex: batching_pars_vertex, + batching_vertex: batching_vertex, + begin_vertex: begin_vertex, + beginnormal_vertex: beginnormal_vertex, + bsdfs: bsdfs, + iridescence_fragment: iridescence_fragment, + bumpmap_pars_fragment: bumpmap_pars_fragment, + clipping_planes_fragment: clipping_planes_fragment, + clipping_planes_pars_fragment: clipping_planes_pars_fragment, + clipping_planes_pars_vertex: clipping_planes_pars_vertex, + clipping_planes_vertex: clipping_planes_vertex, + color_fragment: color_fragment, + color_pars_fragment: color_pars_fragment, + color_pars_vertex: color_pars_vertex, + color_vertex: color_vertex, + common: common, + cube_uv_reflection_fragment: cube_uv_reflection_fragment, + defaultnormal_vertex: defaultnormal_vertex, + displacementmap_pars_vertex: displacementmap_pars_vertex, + displacementmap_vertex: displacementmap_vertex, + emissivemap_fragment: emissivemap_fragment, + emissivemap_pars_fragment: emissivemap_pars_fragment, + colorspace_fragment: colorspace_fragment, + colorspace_pars_fragment: colorspace_pars_fragment, + envmap_fragment: envmap_fragment, + envmap_common_pars_fragment: envmap_common_pars_fragment, + envmap_pars_fragment: envmap_pars_fragment, + envmap_pars_vertex: envmap_pars_vertex, + envmap_physical_pars_fragment: envmap_physical_pars_fragment, + envmap_vertex: envmap_vertex, + fog_vertex: fog_vertex, + fog_pars_vertex: fog_pars_vertex, + fog_fragment: fog_fragment, + fog_pars_fragment: fog_pars_fragment, + gradientmap_pars_fragment: gradientmap_pars_fragment, + lightmap_pars_fragment: lightmap_pars_fragment, + lights_lambert_fragment: lights_lambert_fragment, + lights_lambert_pars_fragment: lights_lambert_pars_fragment, + lights_pars_begin: lights_pars_begin, + lights_toon_fragment: lights_toon_fragment, + lights_toon_pars_fragment: lights_toon_pars_fragment, + lights_phong_fragment: lights_phong_fragment, + lights_phong_pars_fragment: lights_phong_pars_fragment, + lights_physical_fragment: lights_physical_fragment, + lights_physical_pars_fragment: lights_physical_pars_fragment, + lights_fragment_begin: lights_fragment_begin, + lights_fragment_maps: lights_fragment_maps, + lights_fragment_end: lights_fragment_end, + logdepthbuf_fragment: logdepthbuf_fragment, + logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, + logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, + logdepthbuf_vertex: logdepthbuf_vertex, + map_fragment: map_fragment, + map_pars_fragment: map_pars_fragment, + map_particle_fragment: map_particle_fragment, + map_particle_pars_fragment: map_particle_pars_fragment, + metalnessmap_fragment: metalnessmap_fragment, + metalnessmap_pars_fragment: metalnessmap_pars_fragment, + morphinstance_vertex: morphinstance_vertex, + morphcolor_vertex: morphcolor_vertex, + morphnormal_vertex: morphnormal_vertex, + morphtarget_pars_vertex: morphtarget_pars_vertex, + morphtarget_vertex: morphtarget_vertex, + normal_fragment_begin: normal_fragment_begin, + normal_fragment_maps: normal_fragment_maps, + normal_pars_fragment: normal_pars_fragment, + normal_pars_vertex: normal_pars_vertex, + normal_vertex: normal_vertex, + normalmap_pars_fragment: normalmap_pars_fragment, + clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin, + clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps, + clearcoat_pars_fragment: clearcoat_pars_fragment, + iridescence_pars_fragment: iridescence_pars_fragment, + opaque_fragment: opaque_fragment, + packing: packing, + premultiplied_alpha_fragment: premultiplied_alpha_fragment, + project_vertex: project_vertex, + dithering_fragment: dithering_fragment, + dithering_pars_fragment: dithering_pars_fragment, + roughnessmap_fragment: roughnessmap_fragment, + roughnessmap_pars_fragment: roughnessmap_pars_fragment, + shadowmap_pars_fragment: shadowmap_pars_fragment, + shadowmap_pars_vertex: shadowmap_pars_vertex, + shadowmap_vertex: shadowmap_vertex, + shadowmask_pars_fragment: shadowmask_pars_fragment, + skinbase_vertex: skinbase_vertex, + skinning_pars_vertex: skinning_pars_vertex, + skinning_vertex: skinning_vertex, + skinnormal_vertex: skinnormal_vertex, + specularmap_fragment: specularmap_fragment, + specularmap_pars_fragment: specularmap_pars_fragment, + tonemapping_fragment: tonemapping_fragment, + tonemapping_pars_fragment: tonemapping_pars_fragment, + transmission_fragment: transmission_fragment, + transmission_pars_fragment: transmission_pars_fragment, + uv_pars_fragment: uv_pars_fragment, + uv_pars_vertex: uv_pars_vertex, + uv_vertex: uv_vertex, + worldpos_vertex: worldpos_vertex, + + background_vert: vertex$h, + background_frag: fragment$h, + backgroundCube_vert: vertex$g, + backgroundCube_frag: fragment$g, + cube_vert: vertex$f, + cube_frag: fragment$f, + depth_vert: vertex$e, + depth_frag: fragment$e, + distanceRGBA_vert: vertex$d, + distanceRGBA_frag: fragment$d, + equirect_vert: vertex$c, + equirect_frag: fragment$c, + linedashed_vert: vertex$b, + linedashed_frag: fragment$b, + meshbasic_vert: vertex$a, + meshbasic_frag: fragment$a, + meshlambert_vert: vertex$9, + meshlambert_frag: fragment$9, + meshmatcap_vert: vertex$8, + meshmatcap_frag: fragment$8, + meshnormal_vert: vertex$7, + meshnormal_frag: fragment$7, + meshphong_vert: vertex$6, + meshphong_frag: fragment$6, + meshphysical_vert: vertex$5, + meshphysical_frag: fragment$5, + meshtoon_vert: vertex$4, + meshtoon_frag: fragment$4, + points_vert: vertex$3, + points_frag: fragment$3, + shadow_vert: vertex$2, + shadow_frag: fragment$2, + sprite_vert: vertex$1, + sprite_frag: fragment$1 +}; + +// Uniforms library for shared webgl shaders +const UniformsLib = { + + common: { + + diffuse: { value: /*@__PURE__*/ new Color( 0xffffff ) }, + opacity: { value: 1.0 }, + + map: { value: null }, + mapTransform: { value: /*@__PURE__*/ new Matrix3() }, + + alphaMap: { value: null }, + alphaMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + + alphaTest: { value: 0 } + + }, + + specularmap: { + + specularMap: { value: null }, + specularMapTransform: { value: /*@__PURE__*/ new Matrix3() } + + }, + + envmap: { + + envMap: { value: null }, + envMapRotation: { value: /*@__PURE__*/ new Matrix3() }, + flipEnvMap: { value: - 1 }, + reflectivity: { value: 1.0 }, // basic, lambert, phong + ior: { value: 1.5 }, // physical + refractionRatio: { value: 0.98 }, // basic, lambert, phong + + }, + + aomap: { + + aoMap: { value: null }, + aoMapIntensity: { value: 1 }, + aoMapTransform: { value: /*@__PURE__*/ new Matrix3() } + + }, + + lightmap: { + + lightMap: { value: null }, + lightMapIntensity: { value: 1 }, + lightMapTransform: { value: /*@__PURE__*/ new Matrix3() } + + }, + + bumpmap: { + + bumpMap: { value: null }, + bumpMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + bumpScale: { value: 1 } + + }, + + normalmap: { + + normalMap: { value: null }, + normalMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + normalScale: { value: /*@__PURE__*/ new Vector2( 1, 1 ) } + + }, + + displacementmap: { + + displacementMap: { value: null }, + displacementMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + displacementScale: { value: 1 }, + displacementBias: { value: 0 } + + }, + + emissivemap: { + + emissiveMap: { value: null }, + emissiveMapTransform: { value: /*@__PURE__*/ new Matrix3() } + + }, + + metalnessmap: { + + metalnessMap: { value: null }, + metalnessMapTransform: { value: /*@__PURE__*/ new Matrix3() } + + }, + + roughnessmap: { + + roughnessMap: { value: null }, + roughnessMapTransform: { value: /*@__PURE__*/ new Matrix3() } + + }, + + gradientmap: { + + gradientMap: { value: null } + + }, + + fog: { + + fogDensity: { value: 0.00025 }, + fogNear: { value: 1 }, + fogFar: { value: 2000 }, + fogColor: { value: /*@__PURE__*/ new Color( 0xffffff ) } + + }, + + lights: { + + ambientLightColor: { value: [] }, + + lightProbe: { value: [] }, + + directionalLights: { value: [], properties: { + direction: {}, + color: {} + } }, + + directionalLightShadows: { value: [], properties: { + shadowIntensity: 1, + shadowBias: {}, + shadowNormalBias: {}, + shadowRadius: {}, + shadowMapSize: {} + } }, + + directionalShadowMap: { value: [] }, + directionalShadowMatrix: { value: [] }, + + spotLights: { value: [], properties: { + color: {}, + position: {}, + direction: {}, + distance: {}, + coneCos: {}, + penumbraCos: {}, + decay: {} + } }, + + spotLightShadows: { value: [], properties: { + shadowIntensity: 1, + shadowBias: {}, + shadowNormalBias: {}, + shadowRadius: {}, + shadowMapSize: {} + } }, + + spotLightMap: { value: [] }, + spotShadowMap: { value: [] }, + spotLightMatrix: { value: [] }, + + pointLights: { value: [], properties: { + color: {}, + position: {}, + decay: {}, + distance: {} + } }, + + pointLightShadows: { value: [], properties: { + shadowIntensity: 1, + shadowBias: {}, + shadowNormalBias: {}, + shadowRadius: {}, + shadowMapSize: {}, + shadowCameraNear: {}, + shadowCameraFar: {} + } }, + + pointShadowMap: { value: [] }, + pointShadowMatrix: { value: [] }, + + hemisphereLights: { value: [], properties: { + direction: {}, + skyColor: {}, + groundColor: {} + } }, + + // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src + rectAreaLights: { value: [], properties: { + color: {}, + position: {}, + width: {}, + height: {} + } }, + + ltc_1: { value: null }, + ltc_2: { value: null } + + }, + + points: { + + diffuse: { value: /*@__PURE__*/ new Color( 0xffffff ) }, + opacity: { value: 1.0 }, + size: { value: 1.0 }, + scale: { value: 1.0 }, + map: { value: null }, + alphaMap: { value: null }, + alphaMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + alphaTest: { value: 0 }, + uvTransform: { value: /*@__PURE__*/ new Matrix3() } + + }, + + sprite: { + + diffuse: { value: /*@__PURE__*/ new Color( 0xffffff ) }, + opacity: { value: 1.0 }, + center: { value: /*@__PURE__*/ new Vector2( 0.5, 0.5 ) }, + rotation: { value: 0.0 }, + map: { value: null }, + mapTransform: { value: /*@__PURE__*/ new Matrix3() }, + alphaMap: { value: null }, + alphaMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + alphaTest: { value: 0 } + + } + +}; + +const ShaderLib = { + + basic: { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + UniformsLib.common, + UniformsLib.specularmap, + UniformsLib.envmap, + UniformsLib.aomap, + UniformsLib.lightmap, + UniformsLib.fog + ] ), + + vertexShader: ShaderChunk.meshbasic_vert, + fragmentShader: ShaderChunk.meshbasic_frag + + }, + + lambert: { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + UniformsLib.common, + UniformsLib.specularmap, + UniformsLib.envmap, + UniformsLib.aomap, + UniformsLib.lightmap, + UniformsLib.emissivemap, + UniformsLib.bumpmap, + UniformsLib.normalmap, + UniformsLib.displacementmap, + UniformsLib.fog, + UniformsLib.lights, + { + emissive: { value: /*@__PURE__*/ new Color( 0x000000 ) } + } + ] ), + + vertexShader: ShaderChunk.meshlambert_vert, + fragmentShader: ShaderChunk.meshlambert_frag + + }, + + phong: { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + UniformsLib.common, + UniformsLib.specularmap, + UniformsLib.envmap, + UniformsLib.aomap, + UniformsLib.lightmap, + UniformsLib.emissivemap, + UniformsLib.bumpmap, + UniformsLib.normalmap, + UniformsLib.displacementmap, + UniformsLib.fog, + UniformsLib.lights, + { + emissive: { value: /*@__PURE__*/ new Color( 0x000000 ) }, + specular: { value: /*@__PURE__*/ new Color( 0x111111 ) }, + shininess: { value: 30 } + } + ] ), + + vertexShader: ShaderChunk.meshphong_vert, + fragmentShader: ShaderChunk.meshphong_frag + + }, + + standard: { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + UniformsLib.common, + UniformsLib.envmap, + UniformsLib.aomap, + UniformsLib.lightmap, + UniformsLib.emissivemap, + UniformsLib.bumpmap, + UniformsLib.normalmap, + UniformsLib.displacementmap, + UniformsLib.roughnessmap, + UniformsLib.metalnessmap, + UniformsLib.fog, + UniformsLib.lights, + { + emissive: { value: /*@__PURE__*/ new Color( 0x000000 ) }, + roughness: { value: 1.0 }, + metalness: { value: 0.0 }, + envMapIntensity: { value: 1 } + } + ] ), + + vertexShader: ShaderChunk.meshphysical_vert, + fragmentShader: ShaderChunk.meshphysical_frag + + }, + + toon: { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + UniformsLib.common, + UniformsLib.aomap, + UniformsLib.lightmap, + UniformsLib.emissivemap, + UniformsLib.bumpmap, + UniformsLib.normalmap, + UniformsLib.displacementmap, + UniformsLib.gradientmap, + UniformsLib.fog, + UniformsLib.lights, + { + emissive: { value: /*@__PURE__*/ new Color( 0x000000 ) } + } + ] ), + + vertexShader: ShaderChunk.meshtoon_vert, + fragmentShader: ShaderChunk.meshtoon_frag + + }, + + matcap: { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + UniformsLib.common, + UniformsLib.bumpmap, + UniformsLib.normalmap, + UniformsLib.displacementmap, + UniformsLib.fog, + { + matcap: { value: null } + } + ] ), + + vertexShader: ShaderChunk.meshmatcap_vert, + fragmentShader: ShaderChunk.meshmatcap_frag + + }, + + points: { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + UniformsLib.points, + UniformsLib.fog + ] ), + + vertexShader: ShaderChunk.points_vert, + fragmentShader: ShaderChunk.points_frag + + }, + + dashed: { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + UniformsLib.common, + UniformsLib.fog, + { + scale: { value: 1 }, + dashSize: { value: 1 }, + totalSize: { value: 2 } + } + ] ), + + vertexShader: ShaderChunk.linedashed_vert, + fragmentShader: ShaderChunk.linedashed_frag + + }, + + depth: { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + UniformsLib.common, + UniformsLib.displacementmap + ] ), + + vertexShader: ShaderChunk.depth_vert, + fragmentShader: ShaderChunk.depth_frag + + }, + + normal: { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + UniformsLib.common, + UniformsLib.bumpmap, + UniformsLib.normalmap, + UniformsLib.displacementmap, + { + opacity: { value: 1.0 } + } + ] ), + + vertexShader: ShaderChunk.meshnormal_vert, + fragmentShader: ShaderChunk.meshnormal_frag + + }, + + sprite: { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + UniformsLib.sprite, + UniformsLib.fog + ] ), + + vertexShader: ShaderChunk.sprite_vert, + fragmentShader: ShaderChunk.sprite_frag + + }, + + background: { + + uniforms: { + uvTransform: { value: /*@__PURE__*/ new Matrix3() }, + t2D: { value: null }, + backgroundIntensity: { value: 1 } + }, + + vertexShader: ShaderChunk.background_vert, + fragmentShader: ShaderChunk.background_frag + + }, + + backgroundCube: { + + uniforms: { + envMap: { value: null }, + flipEnvMap: { value: - 1 }, + backgroundBlurriness: { value: 0 }, + backgroundIntensity: { value: 1 }, + backgroundRotation: { value: /*@__PURE__*/ new Matrix3() } + }, + + vertexShader: ShaderChunk.backgroundCube_vert, + fragmentShader: ShaderChunk.backgroundCube_frag + + }, + + cube: { + + uniforms: { + tCube: { value: null }, + tFlip: { value: - 1 }, + opacity: { value: 1.0 } + }, + + vertexShader: ShaderChunk.cube_vert, + fragmentShader: ShaderChunk.cube_frag + + }, + + equirect: { + + uniforms: { + tEquirect: { value: null }, + }, + + vertexShader: ShaderChunk.equirect_vert, + fragmentShader: ShaderChunk.equirect_frag + + }, + + distanceRGBA: { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + UniformsLib.common, + UniformsLib.displacementmap, + { + referencePosition: { value: /*@__PURE__*/ new Vector3() }, + nearDistance: { value: 1 }, + farDistance: { value: 1000 } + } + ] ), + + vertexShader: ShaderChunk.distanceRGBA_vert, + fragmentShader: ShaderChunk.distanceRGBA_frag + + }, + + shadow: { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + UniformsLib.lights, + UniformsLib.fog, + { + color: { value: /*@__PURE__*/ new Color( 0x00000 ) }, + opacity: { value: 1.0 } + }, + ] ), + + vertexShader: ShaderChunk.shadow_vert, + fragmentShader: ShaderChunk.shadow_frag + + } + +}; + +ShaderLib.physical = { + + uniforms: /*@__PURE__*/ mergeUniforms( [ + ShaderLib.standard.uniforms, + { + clearcoat: { value: 0 }, + clearcoatMap: { value: null }, + clearcoatMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + clearcoatNormalMap: { value: null }, + clearcoatNormalMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + clearcoatNormalScale: { value: /*@__PURE__*/ new Vector2( 1, 1 ) }, + clearcoatRoughness: { value: 0 }, + clearcoatRoughnessMap: { value: null }, + clearcoatRoughnessMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + dispersion: { value: 0 }, + iridescence: { value: 0 }, + iridescenceMap: { value: null }, + iridescenceMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + iridescenceIOR: { value: 1.3 }, + iridescenceThicknessMinimum: { value: 100 }, + iridescenceThicknessMaximum: { value: 400 }, + iridescenceThicknessMap: { value: null }, + iridescenceThicknessMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + sheen: { value: 0 }, + sheenColor: { value: /*@__PURE__*/ new Color( 0x000000 ) }, + sheenColorMap: { value: null }, + sheenColorMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + sheenRoughness: { value: 1 }, + sheenRoughnessMap: { value: null }, + sheenRoughnessMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + transmission: { value: 0 }, + transmissionMap: { value: null }, + transmissionMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + transmissionSamplerSize: { value: /*@__PURE__*/ new Vector2() }, + transmissionSamplerMap: { value: null }, + thickness: { value: 0 }, + thicknessMap: { value: null }, + thicknessMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + attenuationDistance: { value: 0 }, + attenuationColor: { value: /*@__PURE__*/ new Color( 0x000000 ) }, + specularColor: { value: /*@__PURE__*/ new Color( 1, 1, 1 ) }, + specularColorMap: { value: null }, + specularColorMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + specularIntensity: { value: 1 }, + specularIntensityMap: { value: null }, + specularIntensityMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + anisotropyVector: { value: /*@__PURE__*/ new Vector2() }, + anisotropyMap: { value: null }, + anisotropyMapTransform: { value: /*@__PURE__*/ new Matrix3() }, + } + ] ), + + vertexShader: ShaderChunk.meshphysical_vert, + fragmentShader: ShaderChunk.meshphysical_frag + +}; + +const _rgb = { r: 0, b: 0, g: 0 }; +const _e1$1 = /*@__PURE__*/ new Euler(); +const _m1$1 = /*@__PURE__*/ new Matrix4(); + +function WebGLBackground( renderer, cubemaps, cubeuvmaps, state, objects, alpha, premultipliedAlpha ) { + + const clearColor = new Color( 0x000000 ); + let clearAlpha = alpha === true ? 0 : 1; + + let planeMesh; + let boxMesh; + + let currentBackground = null; + let currentBackgroundVersion = 0; + let currentTonemapping = null; + + function getBackground( scene ) { + + let background = scene.isScene === true ? scene.background : null; + + if ( background && background.isTexture ) { + + const usePMREM = scene.backgroundBlurriness > 0; // use PMREM if the user wants to blur the background + background = ( usePMREM ? cubeuvmaps : cubemaps ).get( background ); + + } + + return background; + + } + + function render( scene ) { + + let forceClear = false; + const background = getBackground( scene ); + + if ( background === null ) { + + setClear( clearColor, clearAlpha ); + + } else if ( background && background.isColor ) { + + setClear( background, 1 ); + forceClear = true; + + } + + const environmentBlendMode = renderer.xr.getEnvironmentBlendMode(); + + if ( environmentBlendMode === 'additive' ) { + + state.buffers.color.setClear( 0, 0, 0, 1, premultipliedAlpha ); + + } else if ( environmentBlendMode === 'alpha-blend' ) { + + state.buffers.color.setClear( 0, 0, 0, 0, premultipliedAlpha ); + + } + + if ( renderer.autoClear || forceClear ) { + + // buffers might not be writable which is required to ensure a correct clear + + state.buffers.depth.setTest( true ); + state.buffers.depth.setMask( true ); + state.buffers.color.setMask( true ); + + renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil ); + + } + + } + + function addToRenderList( renderList, scene ) { + + const background = getBackground( scene ); + + if ( background && ( background.isCubeTexture || background.mapping === CubeUVReflectionMapping ) ) { + + if ( boxMesh === undefined ) { + + boxMesh = new Mesh( + new BoxGeometry( 1, 1, 1 ), + new ShaderMaterial( { + name: 'BackgroundCubeMaterial', + uniforms: cloneUniforms( ShaderLib.backgroundCube.uniforms ), + vertexShader: ShaderLib.backgroundCube.vertexShader, + fragmentShader: ShaderLib.backgroundCube.fragmentShader, + side: BackSide, + depthTest: false, + depthWrite: false, + fog: false, + allowOverride: false + } ) + ); + + boxMesh.geometry.deleteAttribute( 'normal' ); + boxMesh.geometry.deleteAttribute( 'uv' ); + + boxMesh.onBeforeRender = function ( renderer, scene, camera ) { + + this.matrixWorld.copyPosition( camera.matrixWorld ); + + }; + + // add "envMap" material property so the renderer can evaluate it like for built-in materials + Object.defineProperty( boxMesh.material, 'envMap', { + + get: function () { + + return this.uniforms.envMap.value; + + } + + } ); + + objects.update( boxMesh ); + + } + + _e1$1.copy( scene.backgroundRotation ); + + // accommodate left-handed frame + _e1$1.x *= - 1; _e1$1.y *= - 1; _e1$1.z *= - 1; + + if ( background.isCubeTexture && background.isRenderTargetTexture === false ) { + + // environment maps which are not cube render targets or PMREMs follow a different convention + _e1$1.y *= - 1; + _e1$1.z *= - 1; + + } + + boxMesh.material.uniforms.envMap.value = background; + boxMesh.material.uniforms.flipEnvMap.value = ( background.isCubeTexture && background.isRenderTargetTexture === false ) ? - 1 : 1; + boxMesh.material.uniforms.backgroundBlurriness.value = scene.backgroundBlurriness; + boxMesh.material.uniforms.backgroundIntensity.value = scene.backgroundIntensity; + boxMesh.material.uniforms.backgroundRotation.value.setFromMatrix4( _m1$1.makeRotationFromEuler( _e1$1 ) ); + boxMesh.material.toneMapped = ColorManagement.getTransfer( background.colorSpace ) !== SRGBTransfer; + + if ( currentBackground !== background || + currentBackgroundVersion !== background.version || + currentTonemapping !== renderer.toneMapping ) { + + boxMesh.material.needsUpdate = true; + + currentBackground = background; + currentBackgroundVersion = background.version; + currentTonemapping = renderer.toneMapping; + + } + + boxMesh.layers.enableAll(); + + // push to the pre-sorted opaque render list + renderList.unshift( boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null ); + + } else if ( background && background.isTexture ) { + + if ( planeMesh === undefined ) { + + planeMesh = new Mesh( + new PlaneGeometry( 2, 2 ), + new ShaderMaterial( { + name: 'BackgroundMaterial', + uniforms: cloneUniforms( ShaderLib.background.uniforms ), + vertexShader: ShaderLib.background.vertexShader, + fragmentShader: ShaderLib.background.fragmentShader, + side: FrontSide, + depthTest: false, + depthWrite: false, + fog: false, + allowOverride: false + } ) + ); + + planeMesh.geometry.deleteAttribute( 'normal' ); + + // add "map" material property so the renderer can evaluate it like for built-in materials + Object.defineProperty( planeMesh.material, 'map', { + + get: function () { + + return this.uniforms.t2D.value; + + } + + } ); + + objects.update( planeMesh ); + + } + + planeMesh.material.uniforms.t2D.value = background; + planeMesh.material.uniforms.backgroundIntensity.value = scene.backgroundIntensity; + planeMesh.material.toneMapped = ColorManagement.getTransfer( background.colorSpace ) !== SRGBTransfer; + + if ( background.matrixAutoUpdate === true ) { + + background.updateMatrix(); + + } + + planeMesh.material.uniforms.uvTransform.value.copy( background.matrix ); + + if ( currentBackground !== background || + currentBackgroundVersion !== background.version || + currentTonemapping !== renderer.toneMapping ) { + + planeMesh.material.needsUpdate = true; + + currentBackground = background; + currentBackgroundVersion = background.version; + currentTonemapping = renderer.toneMapping; + + } + + planeMesh.layers.enableAll(); + + // push to the pre-sorted opaque render list + renderList.unshift( planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null ); + + } + + } + + function setClear( color, alpha ) { + + color.getRGB( _rgb, getUnlitUniformColorSpace( renderer ) ); + + state.buffers.color.setClear( _rgb.r, _rgb.g, _rgb.b, alpha, premultipliedAlpha ); + + } + + function dispose() { + + if ( boxMesh !== undefined ) { + + boxMesh.geometry.dispose(); + boxMesh.material.dispose(); + + boxMesh = undefined; + + } + + if ( planeMesh !== undefined ) { + + planeMesh.geometry.dispose(); + planeMesh.material.dispose(); + + planeMesh = undefined; + + } + + } + + return { + + getClearColor: function () { + + return clearColor; + + }, + setClearColor: function ( color, alpha = 1 ) { + + clearColor.set( color ); + clearAlpha = alpha; + setClear( clearColor, clearAlpha ); + + }, + getClearAlpha: function () { + + return clearAlpha; + + }, + setClearAlpha: function ( alpha ) { + + clearAlpha = alpha; + setClear( clearColor, clearAlpha ); + + }, + render: render, + addToRenderList: addToRenderList, + dispose: dispose + + }; + +} + +function WebGLBindingStates( gl, attributes ) { + + const maxVertexAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); + + const bindingStates = {}; + + const defaultState = createBindingState( null ); + let currentState = defaultState; + let forceUpdate = false; + + function setup( object, material, program, geometry, index ) { + + let updateBuffers = false; + + const state = getBindingState( geometry, program, material ); + + if ( currentState !== state ) { + + currentState = state; + bindVertexArrayObject( currentState.object ); + + } + + updateBuffers = needsUpdate( object, geometry, program, index ); + + if ( updateBuffers ) saveCache( object, geometry, program, index ); + + if ( index !== null ) { + + attributes.update( index, gl.ELEMENT_ARRAY_BUFFER ); + + } + + if ( updateBuffers || forceUpdate ) { + + forceUpdate = false; + + setupVertexAttributes( object, material, program, geometry ); + + if ( index !== null ) { + + gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, attributes.get( index ).buffer ); + + } + + } + + } + + function createVertexArrayObject() { + + return gl.createVertexArray(); + + } + + function bindVertexArrayObject( vao ) { + + return gl.bindVertexArray( vao ); + + } + + function deleteVertexArrayObject( vao ) { + + return gl.deleteVertexArray( vao ); + + } + + function getBindingState( geometry, program, material ) { + + const wireframe = ( material.wireframe === true ); + + let programMap = bindingStates[ geometry.id ]; + + if ( programMap === undefined ) { + + programMap = {}; + bindingStates[ geometry.id ] = programMap; + + } + + let stateMap = programMap[ program.id ]; + + if ( stateMap === undefined ) { + + stateMap = {}; + programMap[ program.id ] = stateMap; + + } + + let state = stateMap[ wireframe ]; + + if ( state === undefined ) { + + state = createBindingState( createVertexArrayObject() ); + stateMap[ wireframe ] = state; + + } + + return state; + + } + + function createBindingState( vao ) { + + const newAttributes = []; + const enabledAttributes = []; + const attributeDivisors = []; + + for ( let i = 0; i < maxVertexAttributes; i ++ ) { + + newAttributes[ i ] = 0; + enabledAttributes[ i ] = 0; + attributeDivisors[ i ] = 0; + + } + + return { + + // for backward compatibility on non-VAO support browser + geometry: null, + program: null, + wireframe: false, + + newAttributes: newAttributes, + enabledAttributes: enabledAttributes, + attributeDivisors: attributeDivisors, + object: vao, + attributes: {}, + index: null + + }; + + } + + function needsUpdate( object, geometry, program, index ) { + + const cachedAttributes = currentState.attributes; + const geometryAttributes = geometry.attributes; + + let attributesNum = 0; + + const programAttributes = program.getAttributes(); + + for ( const name in programAttributes ) { + + const programAttribute = programAttributes[ name ]; + + if ( programAttribute.location >= 0 ) { + + const cachedAttribute = cachedAttributes[ name ]; + let geometryAttribute = geometryAttributes[ name ]; + + if ( geometryAttribute === undefined ) { + + if ( name === 'instanceMatrix' && object.instanceMatrix ) geometryAttribute = object.instanceMatrix; + if ( name === 'instanceColor' && object.instanceColor ) geometryAttribute = object.instanceColor; + + } + + if ( cachedAttribute === undefined ) return true; + + if ( cachedAttribute.attribute !== geometryAttribute ) return true; + + if ( geometryAttribute && cachedAttribute.data !== geometryAttribute.data ) return true; + + attributesNum ++; + + } + + } + + if ( currentState.attributesNum !== attributesNum ) return true; + + if ( currentState.index !== index ) return true; + + return false; + + } + + function saveCache( object, geometry, program, index ) { + + const cache = {}; + const attributes = geometry.attributes; + let attributesNum = 0; + + const programAttributes = program.getAttributes(); + + for ( const name in programAttributes ) { + + const programAttribute = programAttributes[ name ]; + + if ( programAttribute.location >= 0 ) { + + let attribute = attributes[ name ]; + + if ( attribute === undefined ) { + + if ( name === 'instanceMatrix' && object.instanceMatrix ) attribute = object.instanceMatrix; + if ( name === 'instanceColor' && object.instanceColor ) attribute = object.instanceColor; + + } + + const data = {}; + data.attribute = attribute; + + if ( attribute && attribute.data ) { + + data.data = attribute.data; + + } + + cache[ name ] = data; + + attributesNum ++; + + } + + } + + currentState.attributes = cache; + currentState.attributesNum = attributesNum; + + currentState.index = index; + + } + + function initAttributes() { + + const newAttributes = currentState.newAttributes; + + for ( let i = 0, il = newAttributes.length; i < il; i ++ ) { + + newAttributes[ i ] = 0; + + } + + } + + function enableAttribute( attribute ) { + + enableAttributeAndDivisor( attribute, 0 ); + + } + + function enableAttributeAndDivisor( attribute, meshPerAttribute ) { + + const newAttributes = currentState.newAttributes; + const enabledAttributes = currentState.enabledAttributes; + const attributeDivisors = currentState.attributeDivisors; + + newAttributes[ attribute ] = 1; + + if ( enabledAttributes[ attribute ] === 0 ) { + + gl.enableVertexAttribArray( attribute ); + enabledAttributes[ attribute ] = 1; + + } + + if ( attributeDivisors[ attribute ] !== meshPerAttribute ) { + + gl.vertexAttribDivisor( attribute, meshPerAttribute ); + attributeDivisors[ attribute ] = meshPerAttribute; + + } + + } + + function disableUnusedAttributes() { + + const newAttributes = currentState.newAttributes; + const enabledAttributes = currentState.enabledAttributes; + + for ( let i = 0, il = enabledAttributes.length; i < il; i ++ ) { + + if ( enabledAttributes[ i ] !== newAttributes[ i ] ) { + + gl.disableVertexAttribArray( i ); + enabledAttributes[ i ] = 0; + + } + + } + + } + + function vertexAttribPointer( index, size, type, normalized, stride, offset, integer ) { + + if ( integer === true ) { + + gl.vertexAttribIPointer( index, size, type, stride, offset ); + + } else { + + gl.vertexAttribPointer( index, size, type, normalized, stride, offset ); + + } + + } + + function setupVertexAttributes( object, material, program, geometry ) { + + initAttributes(); + + const geometryAttributes = geometry.attributes; + + const programAttributes = program.getAttributes(); + + const materialDefaultAttributeValues = material.defaultAttributeValues; + + for ( const name in programAttributes ) { + + const programAttribute = programAttributes[ name ]; + + if ( programAttribute.location >= 0 ) { + + let geometryAttribute = geometryAttributes[ name ]; + + if ( geometryAttribute === undefined ) { + + if ( name === 'instanceMatrix' && object.instanceMatrix ) geometryAttribute = object.instanceMatrix; + if ( name === 'instanceColor' && object.instanceColor ) geometryAttribute = object.instanceColor; + + } + + if ( geometryAttribute !== undefined ) { + + const normalized = geometryAttribute.normalized; + const size = geometryAttribute.itemSize; + + const attribute = attributes.get( geometryAttribute ); + + // TODO Attribute may not be available on context restore + + if ( attribute === undefined ) continue; + + const buffer = attribute.buffer; + const type = attribute.type; + const bytesPerElement = attribute.bytesPerElement; + + // check for integer attributes + + const integer = ( type === gl.INT || type === gl.UNSIGNED_INT || geometryAttribute.gpuType === IntType ); + + if ( geometryAttribute.isInterleavedBufferAttribute ) { + + const data = geometryAttribute.data; + const stride = data.stride; + const offset = geometryAttribute.offset; + + if ( data.isInstancedInterleavedBuffer ) { + + for ( let i = 0; i < programAttribute.locationSize; i ++ ) { + + enableAttributeAndDivisor( programAttribute.location + i, data.meshPerAttribute ); + + } + + if ( object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined ) { + + geometry._maxInstanceCount = data.meshPerAttribute * data.count; + + } + + } else { + + for ( let i = 0; i < programAttribute.locationSize; i ++ ) { + + enableAttribute( programAttribute.location + i ); + + } + + } + + gl.bindBuffer( gl.ARRAY_BUFFER, buffer ); + + for ( let i = 0; i < programAttribute.locationSize; i ++ ) { + + vertexAttribPointer( + programAttribute.location + i, + size / programAttribute.locationSize, + type, + normalized, + stride * bytesPerElement, + ( offset + ( size / programAttribute.locationSize ) * i ) * bytesPerElement, + integer + ); + + } + + } else { + + if ( geometryAttribute.isInstancedBufferAttribute ) { + + for ( let i = 0; i < programAttribute.locationSize; i ++ ) { + + enableAttributeAndDivisor( programAttribute.location + i, geometryAttribute.meshPerAttribute ); + + } + + if ( object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined ) { + + geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; + + } + + } else { + + for ( let i = 0; i < programAttribute.locationSize; i ++ ) { + + enableAttribute( programAttribute.location + i ); + + } + + } + + gl.bindBuffer( gl.ARRAY_BUFFER, buffer ); + + for ( let i = 0; i < programAttribute.locationSize; i ++ ) { + + vertexAttribPointer( + programAttribute.location + i, + size / programAttribute.locationSize, + type, + normalized, + size * bytesPerElement, + ( size / programAttribute.locationSize ) * i * bytesPerElement, + integer + ); + + } + + } + + } else if ( materialDefaultAttributeValues !== undefined ) { + + const value = materialDefaultAttributeValues[ name ]; + + if ( value !== undefined ) { + + switch ( value.length ) { + + case 2: + gl.vertexAttrib2fv( programAttribute.location, value ); + break; + + case 3: + gl.vertexAttrib3fv( programAttribute.location, value ); + break; + + case 4: + gl.vertexAttrib4fv( programAttribute.location, value ); + break; + + default: + gl.vertexAttrib1fv( programAttribute.location, value ); + + } + + } + + } + + } + + } + + disableUnusedAttributes(); + + } + + function dispose() { + + reset(); + + for ( const geometryId in bindingStates ) { + + const programMap = bindingStates[ geometryId ]; + + for ( const programId in programMap ) { + + const stateMap = programMap[ programId ]; + + for ( const wireframe in stateMap ) { + + deleteVertexArrayObject( stateMap[ wireframe ].object ); + + delete stateMap[ wireframe ]; + + } + + delete programMap[ programId ]; + + } + + delete bindingStates[ geometryId ]; + + } + + } + + function releaseStatesOfGeometry( geometry ) { + + if ( bindingStates[ geometry.id ] === undefined ) return; + + const programMap = bindingStates[ geometry.id ]; + + for ( const programId in programMap ) { + + const stateMap = programMap[ programId ]; + + for ( const wireframe in stateMap ) { + + deleteVertexArrayObject( stateMap[ wireframe ].object ); + + delete stateMap[ wireframe ]; + + } + + delete programMap[ programId ]; + + } + + delete bindingStates[ geometry.id ]; + + } + + function releaseStatesOfProgram( program ) { + + for ( const geometryId in bindingStates ) { + + const programMap = bindingStates[ geometryId ]; + + if ( programMap[ program.id ] === undefined ) continue; + + const stateMap = programMap[ program.id ]; + + for ( const wireframe in stateMap ) { + + deleteVertexArrayObject( stateMap[ wireframe ].object ); + + delete stateMap[ wireframe ]; + + } + + delete programMap[ program.id ]; + + } + + } + + function reset() { + + resetDefaultState(); + forceUpdate = true; + + if ( currentState === defaultState ) return; + + currentState = defaultState; + bindVertexArrayObject( currentState.object ); + + } + + // for backward-compatibility + + function resetDefaultState() { + + defaultState.geometry = null; + defaultState.program = null; + defaultState.wireframe = false; + + } + + return { + + setup: setup, + reset: reset, + resetDefaultState: resetDefaultState, + dispose: dispose, + releaseStatesOfGeometry: releaseStatesOfGeometry, + releaseStatesOfProgram: releaseStatesOfProgram, + + initAttributes: initAttributes, + enableAttribute: enableAttribute, + disableUnusedAttributes: disableUnusedAttributes + + }; + +} + +function WebGLBufferRenderer( gl, extensions, info ) { + + let mode; + + function setMode( value ) { + + mode = value; + + } + + function render( start, count ) { + + gl.drawArrays( mode, start, count ); + + info.update( count, mode, 1 ); + + } + + function renderInstances( start, count, primcount ) { + + if ( primcount === 0 ) return; + + gl.drawArraysInstanced( mode, start, count, primcount ); + + info.update( count, mode, primcount ); + + } + + function renderMultiDraw( starts, counts, drawCount ) { + + if ( drawCount === 0 ) return; + + const extension = extensions.get( 'WEBGL_multi_draw' ); + extension.multiDrawArraysWEBGL( mode, starts, 0, counts, 0, drawCount ); + + let elementCount = 0; + for ( let i = 0; i < drawCount; i ++ ) { + + elementCount += counts[ i ]; + + } + + info.update( elementCount, mode, 1 ); + + } + + function renderMultiDrawInstances( starts, counts, drawCount, primcount ) { + + if ( drawCount === 0 ) return; + + const extension = extensions.get( 'WEBGL_multi_draw' ); + + if ( extension === null ) { + + for ( let i = 0; i < starts.length; i ++ ) { + + renderInstances( starts[ i ], counts[ i ], primcount[ i ] ); + + } + + } else { + + extension.multiDrawArraysInstancedWEBGL( mode, starts, 0, counts, 0, primcount, 0, drawCount ); + + let elementCount = 0; + for ( let i = 0; i < drawCount; i ++ ) { + + elementCount += counts[ i ] * primcount[ i ]; + + } + + info.update( elementCount, mode, 1 ); + + } + + } + + // + + this.setMode = setMode; + this.render = render; + this.renderInstances = renderInstances; + this.renderMultiDraw = renderMultiDraw; + this.renderMultiDrawInstances = renderMultiDrawInstances; + +} + +function WebGLCapabilities( gl, extensions, parameters, utils ) { + + let maxAnisotropy; + + function getMaxAnisotropy() { + + if ( maxAnisotropy !== undefined ) return maxAnisotropy; + + if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { + + const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); + + maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT ); + + } else { + + maxAnisotropy = 0; + + } + + return maxAnisotropy; + + } + + function textureFormatReadable( textureFormat ) { + + if ( textureFormat !== RGBAFormat && utils.convert( textureFormat ) !== gl.getParameter( gl.IMPLEMENTATION_COLOR_READ_FORMAT ) ) { + + return false; + + } + + return true; + + } + + function textureTypeReadable( textureType ) { + + const halfFloatSupportedByExt = ( textureType === HalfFloatType ) && ( extensions.has( 'EXT_color_buffer_half_float' ) || extensions.has( 'EXT_color_buffer_float' ) ); + + if ( textureType !== UnsignedByteType && utils.convert( textureType ) !== gl.getParameter( gl.IMPLEMENTATION_COLOR_READ_TYPE ) && // Edge and Chrome Mac < 52 (#9513) + textureType !== FloatType && ! halfFloatSupportedByExt ) { + + return false; + + } + + return true; + + } + + function getMaxPrecision( precision ) { + + if ( precision === 'highp' ) { + + if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 && + gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) { + + return 'highp'; + + } + + precision = 'mediump'; + + } + + if ( precision === 'mediump' ) { + + if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 && + gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) { + + return 'mediump'; + + } + + } + + return 'lowp'; + + } + + let precision = parameters.precision !== undefined ? parameters.precision : 'highp'; + const maxPrecision = getMaxPrecision( precision ); + + if ( maxPrecision !== precision ) { + + console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' ); + precision = maxPrecision; + + } + + const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true; + const reverseDepthBuffer = parameters.reverseDepthBuffer === true && extensions.has( 'EXT_clip_control' ); + + const maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS ); + const maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ); + const maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE ); + const maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE ); + + const maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); + const maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS ); + const maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS ); + const maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS ); + + const vertexTextures = maxVertexTextures > 0; + + const maxSamples = gl.getParameter( gl.MAX_SAMPLES ); + + return { + + isWebGL2: true, // keeping this for backwards compatibility + + getMaxAnisotropy: getMaxAnisotropy, + getMaxPrecision: getMaxPrecision, + + textureFormatReadable: textureFormatReadable, + textureTypeReadable: textureTypeReadable, + + precision: precision, + logarithmicDepthBuffer: logarithmicDepthBuffer, + reverseDepthBuffer: reverseDepthBuffer, + + maxTextures: maxTextures, + maxVertexTextures: maxVertexTextures, + maxTextureSize: maxTextureSize, + maxCubemapSize: maxCubemapSize, + + maxAttributes: maxAttributes, + maxVertexUniforms: maxVertexUniforms, + maxVaryings: maxVaryings, + maxFragmentUniforms: maxFragmentUniforms, + + vertexTextures: vertexTextures, + + maxSamples: maxSamples + + }; + +} + +function WebGLClipping( properties ) { + + const scope = this; + + let globalState = null, + numGlobalPlanes = 0, + localClippingEnabled = false, + renderingShadows = false; + + const plane = new Plane(), + viewNormalMatrix = new Matrix3(), + + uniform = { value: null, needsUpdate: false }; + + this.uniform = uniform; + this.numPlanes = 0; + this.numIntersection = 0; + + this.init = function ( planes, enableLocalClipping ) { + + const enabled = + planes.length !== 0 || + enableLocalClipping || + // enable state of previous frame - the clipping code has to + // run another frame in order to reset the state: + numGlobalPlanes !== 0 || + localClippingEnabled; + + localClippingEnabled = enableLocalClipping; + + numGlobalPlanes = planes.length; + + return enabled; + + }; + + this.beginShadows = function () { + + renderingShadows = true; + projectPlanes( null ); + + }; + + this.endShadows = function () { + + renderingShadows = false; + + }; + + this.setGlobalState = function ( planes, camera ) { + + globalState = projectPlanes( planes, camera, 0 ); + + }; + + this.setState = function ( material, camera, useCache ) { + + const planes = material.clippingPlanes, + clipIntersection = material.clipIntersection, + clipShadows = material.clipShadows; + + const materialProperties = properties.get( material ); + + if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) { + + // there's no local clipping + + if ( renderingShadows ) { + + // there's no global clipping + + projectPlanes( null ); + + } else { + + resetGlobalState(); + + } + + } else { + + const nGlobal = renderingShadows ? 0 : numGlobalPlanes, + lGlobal = nGlobal * 4; + + let dstArray = materialProperties.clippingState || null; + + uniform.value = dstArray; // ensure unique state + + dstArray = projectPlanes( planes, camera, lGlobal, useCache ); + + for ( let i = 0; i !== lGlobal; ++ i ) { + + dstArray[ i ] = globalState[ i ]; + + } + + materialProperties.clippingState = dstArray; + this.numIntersection = clipIntersection ? this.numPlanes : 0; + this.numPlanes += nGlobal; + + } + + + }; + + function resetGlobalState() { + + if ( uniform.value !== globalState ) { + + uniform.value = globalState; + uniform.needsUpdate = numGlobalPlanes > 0; + + } + + scope.numPlanes = numGlobalPlanes; + scope.numIntersection = 0; + + } + + function projectPlanes( planes, camera, dstOffset, skipTransform ) { + + const nPlanes = planes !== null ? planes.length : 0; + let dstArray = null; + + if ( nPlanes !== 0 ) { + + dstArray = uniform.value; + + if ( skipTransform !== true || dstArray === null ) { + + const flatSize = dstOffset + nPlanes * 4, + viewMatrix = camera.matrixWorldInverse; + + viewNormalMatrix.getNormalMatrix( viewMatrix ); + + if ( dstArray === null || dstArray.length < flatSize ) { + + dstArray = new Float32Array( flatSize ); + + } + + for ( let i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) { + + plane.copy( planes[ i ] ).applyMatrix4( viewMatrix, viewNormalMatrix ); + + plane.normal.toArray( dstArray, i4 ); + dstArray[ i4 + 3 ] = plane.constant; + + } + + } + + uniform.value = dstArray; + uniform.needsUpdate = true; + + } + + scope.numPlanes = nPlanes; + scope.numIntersection = 0; + + return dstArray; + + } + +} + +function WebGLCubeMaps( renderer ) { + + let cubemaps = new WeakMap(); + + function mapTextureMapping( texture, mapping ) { + + if ( mapping === EquirectangularReflectionMapping ) { + + texture.mapping = CubeReflectionMapping; + + } else if ( mapping === EquirectangularRefractionMapping ) { + + texture.mapping = CubeRefractionMapping; + + } + + return texture; + + } + + function get( texture ) { + + if ( texture && texture.isTexture ) { + + const mapping = texture.mapping; + + if ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ) { + + if ( cubemaps.has( texture ) ) { + + const cubemap = cubemaps.get( texture ).texture; + return mapTextureMapping( cubemap, texture.mapping ); + + } else { + + const image = texture.image; + + if ( image && image.height > 0 ) { + + const renderTarget = new WebGLCubeRenderTarget( image.height ); + renderTarget.fromEquirectangularTexture( renderer, texture ); + cubemaps.set( texture, renderTarget ); + + texture.addEventListener( 'dispose', onTextureDispose ); + + return mapTextureMapping( renderTarget.texture, texture.mapping ); + + } else { + + // image not yet ready. try the conversion next frame + + return null; + + } + + } + + } + + } + + return texture; + + } + + function onTextureDispose( event ) { + + const texture = event.target; + + texture.removeEventListener( 'dispose', onTextureDispose ); + + const cubemap = cubemaps.get( texture ); + + if ( cubemap !== undefined ) { + + cubemaps.delete( texture ); + cubemap.dispose(); + + } + + } + + function dispose() { + + cubemaps = new WeakMap(); + + } + + return { + get: get, + dispose: dispose + }; + +} + +const LOD_MIN = 4; + +// The standard deviations (radians) associated with the extra mips. These are +// chosen to approximate a Trowbridge-Reitz distribution function times the +// geometric shadowing function. These sigma values squared must match the +// variance #defines in cube_uv_reflection_fragment.glsl.js. +const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ]; + +// The maximum length of the blur for loop. Smaller sigmas will use fewer +// samples and exit early, but not recompile the shader. +const MAX_SAMPLES = 20; + +const _flatCamera = /*@__PURE__*/ new OrthographicCamera(); +const _clearColor = /*@__PURE__*/ new Color(); +let _oldTarget = null; +let _oldActiveCubeFace = 0; +let _oldActiveMipmapLevel = 0; +let _oldXrEnabled = false; + +// Golden Ratio +const PHI = ( 1 + Math.sqrt( 5 ) ) / 2; +const INV_PHI = 1 / PHI; + +// Vertices of a dodecahedron (except the opposites, which represent the +// same axis), used as axis directions evenly spread on a sphere. +const _axisDirections = [ + /*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ), + /*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ), + /*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ), + /*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ), + /*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ), + /*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ), + /*@__PURE__*/ new Vector3( - 1, 1, - 1 ), + /*@__PURE__*/ new Vector3( 1, 1, - 1 ), + /*@__PURE__*/ new Vector3( - 1, 1, 1 ), + /*@__PURE__*/ new Vector3( 1, 1, 1 ) ]; + +const _origin = /*@__PURE__*/ new Vector3(); + +/** + * This class generates a Prefiltered, Mipmapped Radiance Environment Map + * (PMREM) from a cubeMap environment texture. This allows different levels of + * blur to be quickly accessed based on material roughness. It is packed into a + * special CubeUV format that allows us to perform custom interpolation so that + * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap + * chain, it only goes down to the LOD_MIN level (above), and then creates extra + * even more filtered 'mips' at the same LOD_MIN resolution, associated with + * higher roughness levels. In this way we maintain resolution to smoothly + * interpolate diffuse lighting while limiting sampling computation. + * + * Paper: Fast, Accurate Image-Based Lighting: + * {@link https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view} +*/ +class PMREMGenerator { + + /** + * Constructs a new PMREM generator. + * + * @param {WebGLRenderer} renderer - The renderer. + */ + constructor( renderer ) { + + this._renderer = renderer; + this._pingPongRenderTarget = null; + + this._lodMax = 0; + this._cubeSize = 0; + this._lodPlanes = []; + this._sizeLods = []; + this._sigmas = []; + + this._blurMaterial = null; + this._cubemapMaterial = null; + this._equirectMaterial = null; + + this._compileMaterial( this._blurMaterial ); + + } + + /** + * Generates a PMREM from a supplied Scene, which can be faster than using an + * image if networking bandwidth is low. Optional sigma specifies a blur radius + * in radians to be applied to the scene before PMREM generation. Optional near + * and far planes ensure the scene is rendered in its entirety. + * + * @param {Scene} scene - The scene to be captured. + * @param {number} [sigma=0] - The blur radius in radians. + * @param {number} [near=0.1] - The near plane distance. + * @param {number} [far=100] - The far plane distance. + * @param {Object} [options={}] - The configuration options. + * @param {number} [options.size=256] - The texture size of the PMREM. + * @param {Vector3} [options.renderTarget=origin] - The position of the internal cube camera that renders the scene. + * @return {WebGLRenderTarget} The resulting PMREM. + */ + fromScene( scene, sigma = 0, near = 0.1, far = 100, options = {} ) { + + const { + size = 256, + position = _origin, + } = options; + + _oldTarget = this._renderer.getRenderTarget(); + _oldActiveCubeFace = this._renderer.getActiveCubeFace(); + _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); + _oldXrEnabled = this._renderer.xr.enabled; + + this._renderer.xr.enabled = false; + + this._setSize( size ); + + const cubeUVRenderTarget = this._allocateTargets(); + cubeUVRenderTarget.depthBuffer = true; + + this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget, position ); + + if ( sigma > 0 ) { + + this._blur( cubeUVRenderTarget, 0, 0, sigma ); + + } + + this._applyPMREM( cubeUVRenderTarget ); + this._cleanup( cubeUVRenderTarget ); + + return cubeUVRenderTarget; + + } + + /** + * Generates a PMREM from an equirectangular texture, which can be either LDR + * or HDR. The ideal input image size is 1k (1024 x 512), + * as this matches best with the 256 x 256 cubemap output. + * + * @param {Texture} equirectangular - The equirectangular texture to be converted. + * @param {?WebGLRenderTarget} [renderTarget=null] - The render target to use. + * @return {WebGLRenderTarget} The resulting PMREM. + */ + fromEquirectangular( equirectangular, renderTarget = null ) { + + return this._fromTexture( equirectangular, renderTarget ); + + } + + /** + * Generates a PMREM from an cubemap texture, which can be either LDR + * or HDR. The ideal input cube size is 256 x 256, + * as this matches best with the 256 x 256 cubemap output. + * + * @param {Texture} cubemap - The cubemap texture to be converted. + * @param {?WebGLRenderTarget} [renderTarget=null] - The render target to use. + * @return {WebGLRenderTarget} The resulting PMREM. + */ + fromCubemap( cubemap, renderTarget = null ) { + + return this._fromTexture( cubemap, renderTarget ); + + } + + /** + * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during + * your texture's network fetch for increased concurrency. + */ + compileCubemapShader() { + + if ( this._cubemapMaterial === null ) { + + this._cubemapMaterial = _getCubemapMaterial(); + this._compileMaterial( this._cubemapMaterial ); + + } + + } + + /** + * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during + * your texture's network fetch for increased concurrency. + */ + compileEquirectangularShader() { + + if ( this._equirectMaterial === null ) { + + this._equirectMaterial = _getEquirectMaterial(); + this._compileMaterial( this._equirectMaterial ); + + } + + } + + /** + * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, + * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on + * one of them will cause any others to also become unusable. + */ + dispose() { + + this._dispose(); + + if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose(); + if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose(); + + } + + // private interface + + _setSize( cubeSize ) { + + this._lodMax = Math.floor( Math.log2( cubeSize ) ); + this._cubeSize = Math.pow( 2, this._lodMax ); + + } + + _dispose() { + + if ( this._blurMaterial !== null ) this._blurMaterial.dispose(); + + if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose(); + + for ( let i = 0; i < this._lodPlanes.length; i ++ ) { + + this._lodPlanes[ i ].dispose(); + + } + + } + + _cleanup( outputTarget ) { + + this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel ); + this._renderer.xr.enabled = _oldXrEnabled; + + outputTarget.scissorTest = false; + _setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height ); + + } + + _fromTexture( texture, renderTarget ) { + + if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) { + + this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) ); + + } else { // Equirectangular + + this._setSize( texture.image.width / 4 ); + + } + + _oldTarget = this._renderer.getRenderTarget(); + _oldActiveCubeFace = this._renderer.getActiveCubeFace(); + _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); + _oldXrEnabled = this._renderer.xr.enabled; + + this._renderer.xr.enabled = false; + + const cubeUVRenderTarget = renderTarget || this._allocateTargets(); + this._textureToCubeUV( texture, cubeUVRenderTarget ); + this._applyPMREM( cubeUVRenderTarget ); + this._cleanup( cubeUVRenderTarget ); + + return cubeUVRenderTarget; + + } + + _allocateTargets() { + + const width = 3 * Math.max( this._cubeSize, 16 * 7 ); + const height = 4 * this._cubeSize; + + const params = { + magFilter: LinearFilter, + minFilter: LinearFilter, + generateMipmaps: false, + type: HalfFloatType, + format: RGBAFormat, + colorSpace: LinearSRGBColorSpace, + depthBuffer: false + }; + + const cubeUVRenderTarget = _createRenderTarget( width, height, params ); + + if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) { + + if ( this._pingPongRenderTarget !== null ) { + + this._dispose(); + + } + + this._pingPongRenderTarget = _createRenderTarget( width, height, params ); + + const { _lodMax } = this; + ( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas } = _createPlanes( _lodMax ) ); + + this._blurMaterial = _getBlurShader( _lodMax, width, height ); + + } + + return cubeUVRenderTarget; + + } + + _compileMaterial( material ) { + + const tmpMesh = new Mesh( this._lodPlanes[ 0 ], material ); + this._renderer.compile( tmpMesh, _flatCamera ); + + } + + _sceneToCubeUV( scene, near, far, cubeUVRenderTarget, position ) { + + const fov = 90; + const aspect = 1; + const cubeCamera = new PerspectiveCamera( fov, aspect, near, far ); + const upSign = [ 1, - 1, 1, 1, 1, 1 ]; + const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ]; + const renderer = this._renderer; + + const originalAutoClear = renderer.autoClear; + const toneMapping = renderer.toneMapping; + renderer.getClearColor( _clearColor ); + + renderer.toneMapping = NoToneMapping; + renderer.autoClear = false; + + const backgroundMaterial = new MeshBasicMaterial( { + name: 'PMREM.Background', + side: BackSide, + depthWrite: false, + depthTest: false, + } ); + + const backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial ); + + let useSolidColor = false; + const background = scene.background; + + if ( background ) { + + if ( background.isColor ) { + + backgroundMaterial.color.copy( background ); + scene.background = null; + useSolidColor = true; + + } + + } else { + + backgroundMaterial.color.copy( _clearColor ); + useSolidColor = true; + + } + + for ( let i = 0; i < 6; i ++ ) { + + const col = i % 3; + + if ( col === 0 ) { + + cubeCamera.up.set( 0, upSign[ i ], 0 ); + cubeCamera.position.set( position.x, position.y, position.z ); + cubeCamera.lookAt( position.x + forwardSign[ i ], position.y, position.z ); + + } else if ( col === 1 ) { + + cubeCamera.up.set( 0, 0, upSign[ i ] ); + cubeCamera.position.set( position.x, position.y, position.z ); + cubeCamera.lookAt( position.x, position.y + forwardSign[ i ], position.z ); + + + } else { + + cubeCamera.up.set( 0, upSign[ i ], 0 ); + cubeCamera.position.set( position.x, position.y, position.z ); + cubeCamera.lookAt( position.x, position.y, position.z + forwardSign[ i ] ); + + } + + const size = this._cubeSize; + + _setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size ); + + renderer.setRenderTarget( cubeUVRenderTarget ); + + if ( useSolidColor ) { + + renderer.render( backgroundBox, cubeCamera ); + + } + + renderer.render( scene, cubeCamera ); + + } + + backgroundBox.geometry.dispose(); + backgroundBox.material.dispose(); + + renderer.toneMapping = toneMapping; + renderer.autoClear = originalAutoClear; + scene.background = background; + + } + + _textureToCubeUV( texture, cubeUVRenderTarget ) { + + const renderer = this._renderer; + + const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ); + + if ( isCubeTexture ) { + + if ( this._cubemapMaterial === null ) { + + this._cubemapMaterial = _getCubemapMaterial(); + + } + + this._cubemapMaterial.uniforms.flipEnvMap.value = ( texture.isRenderTargetTexture === false ) ? - 1 : 1; + + } else { + + if ( this._equirectMaterial === null ) { + + this._equirectMaterial = _getEquirectMaterial(); + + } + + } + + const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial; + const mesh = new Mesh( this._lodPlanes[ 0 ], material ); + + const uniforms = material.uniforms; + + uniforms[ 'envMap' ].value = texture; + + const size = this._cubeSize; + + _setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size ); + + renderer.setRenderTarget( cubeUVRenderTarget ); + renderer.render( mesh, _flatCamera ); + + } + + _applyPMREM( cubeUVRenderTarget ) { + + const renderer = this._renderer; + const autoClear = renderer.autoClear; + renderer.autoClear = false; + const n = this._lodPlanes.length; + + for ( let i = 1; i < n; i ++ ) { + + const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] ); + + const poleAxis = _axisDirections[ ( n - i - 1 ) % _axisDirections.length ]; + + this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis ); + + } + + renderer.autoClear = autoClear; + + } + + /** + * This is a two-pass Gaussian blur for a cubemap. Normally this is done + * vertically and horizontally, but this breaks down on a cube. Here we apply + * the blur latitudinally (around the poles), and then longitudinally (towards + * the poles) to approximate the orthogonally-separable blur. It is least + * accurate at the poles, but still does a decent job. + * + * @private + * @param {WebGLRenderTarget} cubeUVRenderTarget + * @param {number} lodIn + * @param {number} lodOut + * @param {number} sigma + * @param {Vector3} [poleAxis] + */ + _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) { + + const pingPongRenderTarget = this._pingPongRenderTarget; + + this._halfBlur( + cubeUVRenderTarget, + pingPongRenderTarget, + lodIn, + lodOut, + sigma, + 'latitudinal', + poleAxis ); + + this._halfBlur( + pingPongRenderTarget, + cubeUVRenderTarget, + lodOut, + lodOut, + sigma, + 'longitudinal', + poleAxis ); + + } + + _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) { + + const renderer = this._renderer; + const blurMaterial = this._blurMaterial; + + if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) { + + console.error( + 'blur direction must be either latitudinal or longitudinal!' ); + + } + + // Number of standard deviations at which to cut off the discrete approximation. + const STANDARD_DEVIATIONS = 3; + + const blurMesh = new Mesh( this._lodPlanes[ lodOut ], blurMaterial ); + const blurUniforms = blurMaterial.uniforms; + + const pixels = this._sizeLods[ lodIn ] - 1; + const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 ); + const sigmaPixels = sigmaRadians / radiansPerPixel; + const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES; + + if ( samples > MAX_SAMPLES ) { + + console.warn( `sigmaRadians, ${ + sigmaRadians}, is too large and will clip, as it requested ${ + samples} samples when the maximum is set to ${MAX_SAMPLES}` ); + + } + + const weights = []; + let sum = 0; + + for ( let i = 0; i < MAX_SAMPLES; ++ i ) { + + const x = i / sigmaPixels; + const weight = Math.exp( - x * x / 2 ); + weights.push( weight ); + + if ( i === 0 ) { + + sum += weight; + + } else if ( i < samples ) { + + sum += 2 * weight; + + } + + } + + for ( let i = 0; i < weights.length; i ++ ) { + + weights[ i ] = weights[ i ] / sum; + + } + + blurUniforms[ 'envMap' ].value = targetIn.texture; + blurUniforms[ 'samples' ].value = samples; + blurUniforms[ 'weights' ].value = weights; + blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal'; + + if ( poleAxis ) { + + blurUniforms[ 'poleAxis' ].value = poleAxis; + + } + + const { _lodMax } = this; + blurUniforms[ 'dTheta' ].value = radiansPerPixel; + blurUniforms[ 'mipInt' ].value = _lodMax - lodIn; + + const outputSize = this._sizeLods[ lodOut ]; + const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 ); + const y = 4 * ( this._cubeSize - outputSize ); + + _setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize ); + renderer.setRenderTarget( targetOut ); + renderer.render( blurMesh, _flatCamera ); + + } + +} + + + +function _createPlanes( lodMax ) { + + const lodPlanes = []; + const sizeLods = []; + const sigmas = []; + + let lod = lodMax; + + const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; + + for ( let i = 0; i < totalLods; i ++ ) { + + const sizeLod = Math.pow( 2, lod ); + sizeLods.push( sizeLod ); + let sigma = 1.0 / sizeLod; + + if ( i > lodMax - LOD_MIN ) { + + sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ]; + + } else if ( i === 0 ) { + + sigma = 0; + + } + + sigmas.push( sigma ); + + const texelSize = 1.0 / ( sizeLod - 2 ); + const min = - texelSize; + const max = 1 + texelSize; + const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ]; + + const cubeFaces = 6; + const vertices = 6; + const positionSize = 3; + const uvSize = 2; + const faceIndexSize = 1; + + const position = new Float32Array( positionSize * vertices * cubeFaces ); + const uv = new Float32Array( uvSize * vertices * cubeFaces ); + const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces ); + + for ( let face = 0; face < cubeFaces; face ++ ) { + + const x = ( face % 3 ) * 2 / 3 - 1; + const y = face > 2 ? 0 : - 1; + const coordinates = [ + x, y, 0, + x + 2 / 3, y, 0, + x + 2 / 3, y + 1, 0, + x, y, 0, + x + 2 / 3, y + 1, 0, + x, y + 1, 0 + ]; + position.set( coordinates, positionSize * vertices * face ); + uv.set( uv1, uvSize * vertices * face ); + const fill = [ face, face, face, face, face, face ]; + faceIndex.set( fill, faceIndexSize * vertices * face ); + + } + + const planes = new BufferGeometry(); + planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) ); + planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) ); + planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) ); + lodPlanes.push( planes ); + + if ( lod > LOD_MIN ) { + + lod --; + + } + + } + + return { lodPlanes, sizeLods, sigmas }; + +} + +function _createRenderTarget( width, height, params ) { + + const cubeUVRenderTarget = new WebGLRenderTarget( width, height, params ); + cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; + cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; + cubeUVRenderTarget.scissorTest = true; + return cubeUVRenderTarget; + +} + +function _setViewport( target, x, y, width, height ) { + + target.viewport.set( x, y, width, height ); + target.scissor.set( x, y, width, height ); + +} + +function _getBlurShader( lodMax, width, height ) { + + const weights = new Float32Array( MAX_SAMPLES ); + const poleAxis = new Vector3( 0, 1, 0 ); + const shaderMaterial = new ShaderMaterial( { + + name: 'SphericalGaussianBlur', + + defines: { + 'n': MAX_SAMPLES, + 'CUBEUV_TEXEL_WIDTH': 1.0 / width, + 'CUBEUV_TEXEL_HEIGHT': 1.0 / height, + 'CUBEUV_MAX_MIP': `${lodMax}.0`, + }, + + uniforms: { + 'envMap': { value: null }, + 'samples': { value: 1 }, + 'weights': { value: weights }, + 'latitudinal': { value: false }, + 'dTheta': { value: 0 }, + 'mipInt': { value: 0 }, + 'poleAxis': { value: poleAxis } + }, + + vertexShader: _getCommonVertexShader(), + + fragmentShader: /* glsl */` + + precision mediump float; + precision mediump int; + + varying vec3 vOutputDirection; + + uniform sampler2D envMap; + uniform int samples; + uniform float weights[ n ]; + uniform bool latitudinal; + uniform float dTheta; + uniform float mipInt; + uniform vec3 poleAxis; + + #define ENVMAP_TYPE_CUBE_UV + #include + + vec3 getSample( float theta, vec3 axis ) { + + float cosTheta = cos( theta ); + // Rodrigues' axis-angle rotation + vec3 sampleDirection = vOutputDirection * cosTheta + + cross( axis, vOutputDirection ) * sin( theta ) + + axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta ); + + return bilinearCubeUV( envMap, sampleDirection, mipInt ); + + } + + void main() { + + vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection ); + + if ( all( equal( axis, vec3( 0.0 ) ) ) ) { + + axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x ); + + } + + axis = normalize( axis ); + + gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); + gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis ); + + for ( int i = 1; i < n; i++ ) { + + if ( i >= samples ) { + + break; + + } + + float theta = dTheta * float( i ); + gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis ); + gl_FragColor.rgb += weights[ i ] * getSample( theta, axis ); + + } + + } + `, + + blending: NoBlending, + depthTest: false, + depthWrite: false + + } ); + + return shaderMaterial; + +} + +function _getEquirectMaterial() { + + return new ShaderMaterial( { + + name: 'EquirectangularToCubeUV', + + uniforms: { + 'envMap': { value: null } + }, + + vertexShader: _getCommonVertexShader(), + + fragmentShader: /* glsl */` + + precision mediump float; + precision mediump int; + + varying vec3 vOutputDirection; + + uniform sampler2D envMap; + + #include + + void main() { + + vec3 outputDirection = normalize( vOutputDirection ); + vec2 uv = equirectUv( outputDirection ); + + gl_FragColor = vec4( texture2D ( envMap, uv ).rgb, 1.0 ); + + } + `, + + blending: NoBlending, + depthTest: false, + depthWrite: false + + } ); + +} + +function _getCubemapMaterial() { + + return new ShaderMaterial( { + + name: 'CubemapToCubeUV', + + uniforms: { + 'envMap': { value: null }, + 'flipEnvMap': { value: - 1 } + }, + + vertexShader: _getCommonVertexShader(), + + fragmentShader: /* glsl */` + + precision mediump float; + precision mediump int; + + uniform float flipEnvMap; + + varying vec3 vOutputDirection; + + uniform samplerCube envMap; + + void main() { + + gl_FragColor = textureCube( envMap, vec3( flipEnvMap * vOutputDirection.x, vOutputDirection.yz ) ); + + } + `, + + blending: NoBlending, + depthTest: false, + depthWrite: false + + } ); + +} + +function _getCommonVertexShader() { + + return /* glsl */` + + precision mediump float; + precision mediump int; + + attribute float faceIndex; + + varying vec3 vOutputDirection; + + // RH coordinate system; PMREM face-indexing convention + vec3 getDirection( vec2 uv, float face ) { + + uv = 2.0 * uv - 1.0; + + vec3 direction = vec3( uv, 1.0 ); + + if ( face == 0.0 ) { + + direction = direction.zyx; // ( 1, v, u ) pos x + + } else if ( face == 1.0 ) { + + direction = direction.xzy; + direction.xz *= -1.0; // ( -u, 1, -v ) pos y + + } else if ( face == 2.0 ) { + + direction.x *= -1.0; // ( -u, v, 1 ) pos z + + } else if ( face == 3.0 ) { + + direction = direction.zyx; + direction.xz *= -1.0; // ( -1, v, -u ) neg x + + } else if ( face == 4.0 ) { + + direction = direction.xzy; + direction.xy *= -1.0; // ( -u, -1, v ) neg y + + } else if ( face == 5.0 ) { + + direction.z *= -1.0; // ( u, v, -1 ) neg z + + } + + return direction; + + } + + void main() { + + vOutputDirection = getDirection( uv, faceIndex ); + gl_Position = vec4( position, 1.0 ); + + } + `; + +} + +function WebGLCubeUVMaps( renderer ) { + + let cubeUVmaps = new WeakMap(); + + let pmremGenerator = null; + + function get( texture ) { + + if ( texture && texture.isTexture ) { + + const mapping = texture.mapping; + + const isEquirectMap = ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ); + const isCubeMap = ( mapping === CubeReflectionMapping || mapping === CubeRefractionMapping ); + + // equirect/cube map to cubeUV conversion + + if ( isEquirectMap || isCubeMap ) { + + let renderTarget = cubeUVmaps.get( texture ); + + const currentPMREMVersion = renderTarget !== undefined ? renderTarget.texture.pmremVersion : 0; + + if ( texture.isRenderTargetTexture && texture.pmremVersion !== currentPMREMVersion ) { + + if ( pmremGenerator === null ) pmremGenerator = new PMREMGenerator( renderer ); + + renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular( texture, renderTarget ) : pmremGenerator.fromCubemap( texture, renderTarget ); + renderTarget.texture.pmremVersion = texture.pmremVersion; + + cubeUVmaps.set( texture, renderTarget ); + + return renderTarget.texture; + + } else { + + if ( renderTarget !== undefined ) { + + return renderTarget.texture; + + } else { + + const image = texture.image; + + if ( ( isEquirectMap && image && image.height > 0 ) || ( isCubeMap && image && isCubeTextureComplete( image ) ) ) { + + if ( pmremGenerator === null ) pmremGenerator = new PMREMGenerator( renderer ); + + renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular( texture ) : pmremGenerator.fromCubemap( texture ); + renderTarget.texture.pmremVersion = texture.pmremVersion; + + cubeUVmaps.set( texture, renderTarget ); + + texture.addEventListener( 'dispose', onTextureDispose ); + + return renderTarget.texture; + + } else { + + // image not yet ready. try the conversion next frame + + return null; + + } + + } + + } + + } + + } + + return texture; + + } + + function isCubeTextureComplete( image ) { + + let count = 0; + const length = 6; + + for ( let i = 0; i < length; i ++ ) { + + if ( image[ i ] !== undefined ) count ++; + + } + + return count === length; + + + } + + function onTextureDispose( event ) { + + const texture = event.target; + + texture.removeEventListener( 'dispose', onTextureDispose ); + + const cubemapUV = cubeUVmaps.get( texture ); + + if ( cubemapUV !== undefined ) { + + cubeUVmaps.delete( texture ); + cubemapUV.dispose(); + + } + + } + + function dispose() { + + cubeUVmaps = new WeakMap(); + + if ( pmremGenerator !== null ) { + + pmremGenerator.dispose(); + pmremGenerator = null; + + } + + } + + return { + get: get, + dispose: dispose + }; + +} + +function WebGLExtensions( gl ) { + + const extensions = {}; + + function getExtension( name ) { + + if ( extensions[ name ] !== undefined ) { + + return extensions[ name ]; + + } + + let extension; + + switch ( name ) { + + case 'WEBGL_depth_texture': + extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' ); + break; + + case 'EXT_texture_filter_anisotropic': + extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); + break; + + case 'WEBGL_compressed_texture_s3tc': + extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' ); + break; + + case 'WEBGL_compressed_texture_pvrtc': + extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' ); + break; + + default: + extension = gl.getExtension( name ); + + } + + extensions[ name ] = extension; + + return extension; + + } + + return { + + has: function ( name ) { + + return getExtension( name ) !== null; + + }, + + init: function () { + + getExtension( 'EXT_color_buffer_float' ); + getExtension( 'WEBGL_clip_cull_distance' ); + getExtension( 'OES_texture_float_linear' ); + getExtension( 'EXT_color_buffer_half_float' ); + getExtension( 'WEBGL_multisampled_render_to_texture' ); + getExtension( 'WEBGL_render_shared_exponent' ); + + }, + + get: function ( name ) { + + const extension = getExtension( name ); + + if ( extension === null ) { + + warnOnce( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' ); + + } + + return extension; + + } + + }; + +} + +function WebGLGeometries( gl, attributes, info, bindingStates ) { + + const geometries = {}; + const wireframeAttributes = new WeakMap(); + + function onGeometryDispose( event ) { + + const geometry = event.target; + + if ( geometry.index !== null ) { + + attributes.remove( geometry.index ); + + } + + for ( const name in geometry.attributes ) { + + attributes.remove( geometry.attributes[ name ] ); + + } + + geometry.removeEventListener( 'dispose', onGeometryDispose ); + + delete geometries[ geometry.id ]; + + const attribute = wireframeAttributes.get( geometry ); + + if ( attribute ) { + + attributes.remove( attribute ); + wireframeAttributes.delete( geometry ); + + } + + bindingStates.releaseStatesOfGeometry( geometry ); + + if ( geometry.isInstancedBufferGeometry === true ) { + + delete geometry._maxInstanceCount; + + } + + // + + info.memory.geometries --; + + } + + function get( object, geometry ) { + + if ( geometries[ geometry.id ] === true ) return geometry; + + geometry.addEventListener( 'dispose', onGeometryDispose ); + + geometries[ geometry.id ] = true; + + info.memory.geometries ++; + + return geometry; + + } + + function update( geometry ) { + + const geometryAttributes = geometry.attributes; + + // Updating index buffer in VAO now. See WebGLBindingStates. + + for ( const name in geometryAttributes ) { + + attributes.update( geometryAttributes[ name ], gl.ARRAY_BUFFER ); + + } + + } + + function updateWireframeAttribute( geometry ) { + + const indices = []; + + const geometryIndex = geometry.index; + const geometryPosition = geometry.attributes.position; + let version = 0; + + if ( geometryIndex !== null ) { + + const array = geometryIndex.array; + version = geometryIndex.version; + + for ( let i = 0, l = array.length; i < l; i += 3 ) { + + const a = array[ i + 0 ]; + const b = array[ i + 1 ]; + const c = array[ i + 2 ]; + + indices.push( a, b, b, c, c, a ); + + } + + } else if ( geometryPosition !== undefined ) { + + const array = geometryPosition.array; + version = geometryPosition.version; + + for ( let i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) { + + const a = i + 0; + const b = i + 1; + const c = i + 2; + + indices.push( a, b, b, c, c, a ); + + } + + } else { + + return; + + } + + const attribute = new ( arrayNeedsUint32( indices ) ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 ); + attribute.version = version; + + // Updating index buffer in VAO now. See WebGLBindingStates + + // + + const previousAttribute = wireframeAttributes.get( geometry ); + + if ( previousAttribute ) attributes.remove( previousAttribute ); + + // + + wireframeAttributes.set( geometry, attribute ); + + } + + function getWireframeAttribute( geometry ) { + + const currentAttribute = wireframeAttributes.get( geometry ); + + if ( currentAttribute ) { + + const geometryIndex = geometry.index; + + if ( geometryIndex !== null ) { + + // if the attribute is obsolete, create a new one + + if ( currentAttribute.version < geometryIndex.version ) { + + updateWireframeAttribute( geometry ); + + } + + } + + } else { + + updateWireframeAttribute( geometry ); + + } + + return wireframeAttributes.get( geometry ); + + } + + return { + + get: get, + update: update, + + getWireframeAttribute: getWireframeAttribute + + }; + +} + +function WebGLIndexedBufferRenderer( gl, extensions, info ) { + + let mode; + + function setMode( value ) { + + mode = value; + + } + + let type, bytesPerElement; + + function setIndex( value ) { + + type = value.type; + bytesPerElement = value.bytesPerElement; + + } + + function render( start, count ) { + + gl.drawElements( mode, count, type, start * bytesPerElement ); + + info.update( count, mode, 1 ); + + } + + function renderInstances( start, count, primcount ) { + + if ( primcount === 0 ) return; + + gl.drawElementsInstanced( mode, count, type, start * bytesPerElement, primcount ); + + info.update( count, mode, primcount ); + + } + + function renderMultiDraw( starts, counts, drawCount ) { + + if ( drawCount === 0 ) return; + + const extension = extensions.get( 'WEBGL_multi_draw' ); + extension.multiDrawElementsWEBGL( mode, counts, 0, type, starts, 0, drawCount ); + + let elementCount = 0; + for ( let i = 0; i < drawCount; i ++ ) { + + elementCount += counts[ i ]; + + } + + info.update( elementCount, mode, 1 ); + + + } + + function renderMultiDrawInstances( starts, counts, drawCount, primcount ) { + + if ( drawCount === 0 ) return; + + const extension = extensions.get( 'WEBGL_multi_draw' ); + + if ( extension === null ) { + + for ( let i = 0; i < starts.length; i ++ ) { + + renderInstances( starts[ i ] / bytesPerElement, counts[ i ], primcount[ i ] ); + + } + + } else { + + extension.multiDrawElementsInstancedWEBGL( mode, counts, 0, type, starts, 0, primcount, 0, drawCount ); + + let elementCount = 0; + for ( let i = 0; i < drawCount; i ++ ) { + + elementCount += counts[ i ] * primcount[ i ]; + + } + + info.update( elementCount, mode, 1 ); + + } + + } + + // + + this.setMode = setMode; + this.setIndex = setIndex; + this.render = render; + this.renderInstances = renderInstances; + this.renderMultiDraw = renderMultiDraw; + this.renderMultiDrawInstances = renderMultiDrawInstances; + +} + +function WebGLInfo( gl ) { + + const memory = { + geometries: 0, + textures: 0 + }; + + const render = { + frame: 0, + calls: 0, + triangles: 0, + points: 0, + lines: 0 + }; + + function update( count, mode, instanceCount ) { + + render.calls ++; + + switch ( mode ) { + + case gl.TRIANGLES: + render.triangles += instanceCount * ( count / 3 ); + break; + + case gl.LINES: + render.lines += instanceCount * ( count / 2 ); + break; + + case gl.LINE_STRIP: + render.lines += instanceCount * ( count - 1 ); + break; + + case gl.LINE_LOOP: + render.lines += instanceCount * count; + break; + + case gl.POINTS: + render.points += instanceCount * count; + break; + + default: + console.error( 'THREE.WebGLInfo: Unknown draw mode:', mode ); + break; + + } + + } + + function reset() { + + render.calls = 0; + render.triangles = 0; + render.points = 0; + render.lines = 0; + + } + + return { + memory: memory, + render: render, + programs: null, + autoReset: true, + reset: reset, + update: update + }; + +} + +function WebGLMorphtargets( gl, capabilities, textures ) { + + const morphTextures = new WeakMap(); + const morph = new Vector4(); + + function update( object, geometry, program ) { + + const objectInfluences = object.morphTargetInfluences; + + // the following encodes morph targets into an array of data textures. Each layer represents a single morph target. + + const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; + const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; + + let entry = morphTextures.get( geometry ); + + if ( entry === undefined || entry.count !== morphTargetsCount ) { + + if ( entry !== undefined ) entry.texture.dispose(); + + const hasMorphPosition = geometry.morphAttributes.position !== undefined; + const hasMorphNormals = geometry.morphAttributes.normal !== undefined; + const hasMorphColors = geometry.morphAttributes.color !== undefined; + + const morphTargets = geometry.morphAttributes.position || []; + const morphNormals = geometry.morphAttributes.normal || []; + const morphColors = geometry.morphAttributes.color || []; + + let vertexDataCount = 0; + + if ( hasMorphPosition === true ) vertexDataCount = 1; + if ( hasMorphNormals === true ) vertexDataCount = 2; + if ( hasMorphColors === true ) vertexDataCount = 3; + + let width = geometry.attributes.position.count * vertexDataCount; + let height = 1; + + if ( width > capabilities.maxTextureSize ) { + + height = Math.ceil( width / capabilities.maxTextureSize ); + width = capabilities.maxTextureSize; + + } + + const buffer = new Float32Array( width * height * 4 * morphTargetsCount ); + + const texture = new DataArrayTexture( buffer, width, height, morphTargetsCount ); + texture.type = FloatType; + texture.needsUpdate = true; + + // fill buffer + + const vertexDataStride = vertexDataCount * 4; + + for ( let i = 0; i < morphTargetsCount; i ++ ) { + + const morphTarget = morphTargets[ i ]; + const morphNormal = morphNormals[ i ]; + const morphColor = morphColors[ i ]; + + const offset = width * height * 4 * i; + + for ( let j = 0; j < morphTarget.count; j ++ ) { + + const stride = j * vertexDataStride; + + if ( hasMorphPosition === true ) { + + morph.fromBufferAttribute( morphTarget, j ); + + buffer[ offset + stride + 0 ] = morph.x; + buffer[ offset + stride + 1 ] = morph.y; + buffer[ offset + stride + 2 ] = morph.z; + buffer[ offset + stride + 3 ] = 0; + + } + + if ( hasMorphNormals === true ) { + + morph.fromBufferAttribute( morphNormal, j ); + + buffer[ offset + stride + 4 ] = morph.x; + buffer[ offset + stride + 5 ] = morph.y; + buffer[ offset + stride + 6 ] = morph.z; + buffer[ offset + stride + 7 ] = 0; + + } + + if ( hasMorphColors === true ) { + + morph.fromBufferAttribute( morphColor, j ); + + buffer[ offset + stride + 8 ] = morph.x; + buffer[ offset + stride + 9 ] = morph.y; + buffer[ offset + stride + 10 ] = morph.z; + buffer[ offset + stride + 11 ] = ( morphColor.itemSize === 4 ) ? morph.w : 1; + + } + + } + + } + + entry = { + count: morphTargetsCount, + texture: texture, + size: new Vector2( width, height ) + }; + + morphTextures.set( geometry, entry ); + + function disposeTexture() { + + texture.dispose(); + + morphTextures.delete( geometry ); + + geometry.removeEventListener( 'dispose', disposeTexture ); + + } + + geometry.addEventListener( 'dispose', disposeTexture ); + + } + + // + if ( object.isInstancedMesh === true && object.morphTexture !== null ) { + + program.getUniforms().setValue( gl, 'morphTexture', object.morphTexture, textures ); + + } else { + + let morphInfluencesSum = 0; + + for ( let i = 0; i < objectInfluences.length; i ++ ) { + + morphInfluencesSum += objectInfluences[ i ]; + + } + + const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; + + + program.getUniforms().setValue( gl, 'morphTargetBaseInfluence', morphBaseInfluence ); + program.getUniforms().setValue( gl, 'morphTargetInfluences', objectInfluences ); + + } + + program.getUniforms().setValue( gl, 'morphTargetsTexture', entry.texture, textures ); + program.getUniforms().setValue( gl, 'morphTargetsTextureSize', entry.size ); + + } + + return { + + update: update + + }; + +} + +function WebGLObjects( gl, geometries, attributes, info ) { + + let updateMap = new WeakMap(); + + function update( object ) { + + const frame = info.render.frame; + + const geometry = object.geometry; + const buffergeometry = geometries.get( object, geometry ); + + // Update once per frame + + if ( updateMap.get( buffergeometry ) !== frame ) { + + geometries.update( buffergeometry ); + + updateMap.set( buffergeometry, frame ); + + } + + if ( object.isInstancedMesh ) { + + if ( object.hasEventListener( 'dispose', onInstancedMeshDispose ) === false ) { + + object.addEventListener( 'dispose', onInstancedMeshDispose ); + + } + + if ( updateMap.get( object ) !== frame ) { + + attributes.update( object.instanceMatrix, gl.ARRAY_BUFFER ); + + if ( object.instanceColor !== null ) { + + attributes.update( object.instanceColor, gl.ARRAY_BUFFER ); + + } + + updateMap.set( object, frame ); + + } + + } + + if ( object.isSkinnedMesh ) { + + const skeleton = object.skeleton; + + if ( updateMap.get( skeleton ) !== frame ) { + + skeleton.update(); + + updateMap.set( skeleton, frame ); + + } + + } + + return buffergeometry; + + } + + function dispose() { + + updateMap = new WeakMap(); + + } + + function onInstancedMeshDispose( event ) { + + const instancedMesh = event.target; + + instancedMesh.removeEventListener( 'dispose', onInstancedMeshDispose ); + + attributes.remove( instancedMesh.instanceMatrix ); + + if ( instancedMesh.instanceColor !== null ) attributes.remove( instancedMesh.instanceColor ); + + } + + return { + + update: update, + dispose: dispose + + }; + +} + +/** + * Uniforms of a program. + * Those form a tree structure with a special top-level container for the root, + * which you get by calling 'new WebGLUniforms( gl, program )'. + * + * + * Properties of inner nodes including the top-level container: + * + * .seq - array of nested uniforms + * .map - nested uniforms by name + * + * + * Methods of all nodes except the top-level container: + * + * .setValue( gl, value, [textures] ) + * + * uploads a uniform value(s) + * the 'textures' parameter is needed for sampler uniforms + * + * + * Static methods of the top-level container (textures factorizations): + * + * .upload( gl, seq, values, textures ) + * + * sets uniforms in 'seq' to 'values[id].value' + * + * .seqWithValue( seq, values ) : filteredSeq + * + * filters 'seq' entries with corresponding entry in values + * + * + * Methods of the top-level container (textures factorizations): + * + * .setValue( gl, name, value, textures ) + * + * sets uniform with name 'name' to 'value' + * + * .setOptional( gl, obj, prop ) + * + * like .set for an optional property of the object + * + */ + + +const emptyTexture = /*@__PURE__*/ new Texture(); + +const emptyShadowTexture = /*@__PURE__*/ new DepthTexture( 1, 1 ); + +const emptyArrayTexture = /*@__PURE__*/ new DataArrayTexture(); +const empty3dTexture = /*@__PURE__*/ new Data3DTexture(); +const emptyCubeTexture = /*@__PURE__*/ new CubeTexture(); + +// --- Utilities --- + +// Array Caches (provide typed arrays for temporary by size) + +const arrayCacheF32 = []; +const arrayCacheI32 = []; + +// Float32Array caches used for uploading Matrix uniforms + +const mat4array = new Float32Array( 16 ); +const mat3array = new Float32Array( 9 ); +const mat2array = new Float32Array( 4 ); + +// Flattening for arrays of vectors and matrices + +function flatten( array, nBlocks, blockSize ) { + + const firstElem = array[ 0 ]; + + if ( firstElem <= 0 || firstElem > 0 ) return array; + // unoptimized: ! isNaN( firstElem ) + // see http://jacksondunstan.com/articles/983 + + const n = nBlocks * blockSize; + let r = arrayCacheF32[ n ]; + + if ( r === undefined ) { + + r = new Float32Array( n ); + arrayCacheF32[ n ] = r; + + } + + if ( nBlocks !== 0 ) { + + firstElem.toArray( r, 0 ); + + for ( let i = 1, offset = 0; i !== nBlocks; ++ i ) { + + offset += blockSize; + array[ i ].toArray( r, offset ); + + } + + } + + return r; + +} + +function arraysEqual( a, b ) { + + if ( a.length !== b.length ) return false; + + for ( let i = 0, l = a.length; i < l; i ++ ) { + + if ( a[ i ] !== b[ i ] ) return false; + + } + + return true; + +} + +function copyArray( a, b ) { + + for ( let i = 0, l = b.length; i < l; i ++ ) { + + a[ i ] = b[ i ]; + + } + +} + +// Texture unit allocation + +function allocTexUnits( textures, n ) { + + let r = arrayCacheI32[ n ]; + + if ( r === undefined ) { + + r = new Int32Array( n ); + arrayCacheI32[ n ] = r; + + } + + for ( let i = 0; i !== n; ++ i ) { + + r[ i ] = textures.allocateTextureUnit(); + + } + + return r; + +} + +// --- Setters --- + +// Note: Defining these methods externally, because they come in a bunch +// and this way their names minify. + +// Single scalar + +function setValueV1f( gl, v ) { + + const cache = this.cache; + + if ( cache[ 0 ] === v ) return; + + gl.uniform1f( this.addr, v ); + + cache[ 0 ] = v; + +} + +// Single float vector (from flat array or THREE.VectorN) + +function setValueV2f( gl, v ) { + + const cache = this.cache; + + if ( v.x !== undefined ) { + + if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) { + + gl.uniform2f( this.addr, v.x, v.y ); + + cache[ 0 ] = v.x; + cache[ 1 ] = v.y; + + } + + } else { + + if ( arraysEqual( cache, v ) ) return; + + gl.uniform2fv( this.addr, v ); + + copyArray( cache, v ); + + } + +} + +function setValueV3f( gl, v ) { + + const cache = this.cache; + + if ( v.x !== undefined ) { + + if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) { + + gl.uniform3f( this.addr, v.x, v.y, v.z ); + + cache[ 0 ] = v.x; + cache[ 1 ] = v.y; + cache[ 2 ] = v.z; + + } + + } else if ( v.r !== undefined ) { + + if ( cache[ 0 ] !== v.r || cache[ 1 ] !== v.g || cache[ 2 ] !== v.b ) { + + gl.uniform3f( this.addr, v.r, v.g, v.b ); + + cache[ 0 ] = v.r; + cache[ 1 ] = v.g; + cache[ 2 ] = v.b; + + } + + } else { + + if ( arraysEqual( cache, v ) ) return; + + gl.uniform3fv( this.addr, v ); + + copyArray( cache, v ); + + } + +} + +function setValueV4f( gl, v ) { + + const cache = this.cache; + + if ( v.x !== undefined ) { + + if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) { + + gl.uniform4f( this.addr, v.x, v.y, v.z, v.w ); + + cache[ 0 ] = v.x; + cache[ 1 ] = v.y; + cache[ 2 ] = v.z; + cache[ 3 ] = v.w; + + } + + } else { + + if ( arraysEqual( cache, v ) ) return; + + gl.uniform4fv( this.addr, v ); + + copyArray( cache, v ); + + } + +} + +// Single matrix (from flat array or THREE.MatrixN) + +function setValueM2( gl, v ) { + + const cache = this.cache; + const elements = v.elements; + + if ( elements === undefined ) { + + if ( arraysEqual( cache, v ) ) return; + + gl.uniformMatrix2fv( this.addr, false, v ); + + copyArray( cache, v ); + + } else { + + if ( arraysEqual( cache, elements ) ) return; + + mat2array.set( elements ); + + gl.uniformMatrix2fv( this.addr, false, mat2array ); + + copyArray( cache, elements ); + + } + +} + +function setValueM3( gl, v ) { + + const cache = this.cache; + const elements = v.elements; + + if ( elements === undefined ) { + + if ( arraysEqual( cache, v ) ) return; + + gl.uniformMatrix3fv( this.addr, false, v ); + + copyArray( cache, v ); + + } else { + + if ( arraysEqual( cache, elements ) ) return; + + mat3array.set( elements ); + + gl.uniformMatrix3fv( this.addr, false, mat3array ); + + copyArray( cache, elements ); + + } + +} + +function setValueM4( gl, v ) { + + const cache = this.cache; + const elements = v.elements; + + if ( elements === undefined ) { + + if ( arraysEqual( cache, v ) ) return; + + gl.uniformMatrix4fv( this.addr, false, v ); + + copyArray( cache, v ); + + } else { + + if ( arraysEqual( cache, elements ) ) return; + + mat4array.set( elements ); + + gl.uniformMatrix4fv( this.addr, false, mat4array ); + + copyArray( cache, elements ); + + } + +} + +// Single integer / boolean + +function setValueV1i( gl, v ) { + + const cache = this.cache; + + if ( cache[ 0 ] === v ) return; + + gl.uniform1i( this.addr, v ); + + cache[ 0 ] = v; + +} + +// Single integer / boolean vector (from flat array or THREE.VectorN) + +function setValueV2i( gl, v ) { + + const cache = this.cache; + + if ( v.x !== undefined ) { + + if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) { + + gl.uniform2i( this.addr, v.x, v.y ); + + cache[ 0 ] = v.x; + cache[ 1 ] = v.y; + + } + + } else { + + if ( arraysEqual( cache, v ) ) return; + + gl.uniform2iv( this.addr, v ); + + copyArray( cache, v ); + + } + +} + +function setValueV3i( gl, v ) { + + const cache = this.cache; + + if ( v.x !== undefined ) { + + if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) { + + gl.uniform3i( this.addr, v.x, v.y, v.z ); + + cache[ 0 ] = v.x; + cache[ 1 ] = v.y; + cache[ 2 ] = v.z; + + } + + } else { + + if ( arraysEqual( cache, v ) ) return; + + gl.uniform3iv( this.addr, v ); + + copyArray( cache, v ); + + } + +} + +function setValueV4i( gl, v ) { + + const cache = this.cache; + + if ( v.x !== undefined ) { + + if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) { + + gl.uniform4i( this.addr, v.x, v.y, v.z, v.w ); + + cache[ 0 ] = v.x; + cache[ 1 ] = v.y; + cache[ 2 ] = v.z; + cache[ 3 ] = v.w; + + } + + } else { + + if ( arraysEqual( cache, v ) ) return; + + gl.uniform4iv( this.addr, v ); + + copyArray( cache, v ); + + } + +} + +// Single unsigned integer + +function setValueV1ui( gl, v ) { + + const cache = this.cache; + + if ( cache[ 0 ] === v ) return; + + gl.uniform1ui( this.addr, v ); + + cache[ 0 ] = v; + +} + +// Single unsigned integer vector (from flat array or THREE.VectorN) + +function setValueV2ui( gl, v ) { + + const cache = this.cache; + + if ( v.x !== undefined ) { + + if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) { + + gl.uniform2ui( this.addr, v.x, v.y ); + + cache[ 0 ] = v.x; + cache[ 1 ] = v.y; + + } + + } else { + + if ( arraysEqual( cache, v ) ) return; + + gl.uniform2uiv( this.addr, v ); + + copyArray( cache, v ); + + } + +} + +function setValueV3ui( gl, v ) { + + const cache = this.cache; + + if ( v.x !== undefined ) { + + if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) { + + gl.uniform3ui( this.addr, v.x, v.y, v.z ); + + cache[ 0 ] = v.x; + cache[ 1 ] = v.y; + cache[ 2 ] = v.z; + + } + + } else { + + if ( arraysEqual( cache, v ) ) return; + + gl.uniform3uiv( this.addr, v ); + + copyArray( cache, v ); + + } + +} + +function setValueV4ui( gl, v ) { + + const cache = this.cache; + + if ( v.x !== undefined ) { + + if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) { + + gl.uniform4ui( this.addr, v.x, v.y, v.z, v.w ); + + cache[ 0 ] = v.x; + cache[ 1 ] = v.y; + cache[ 2 ] = v.z; + cache[ 3 ] = v.w; + + } + + } else { + + if ( arraysEqual( cache, v ) ) return; + + gl.uniform4uiv( this.addr, v ); + + copyArray( cache, v ); + + } + +} + + +// Single texture (2D / Cube) + +function setValueT1( gl, v, textures ) { + + const cache = this.cache; + const unit = textures.allocateTextureUnit(); + + if ( cache[ 0 ] !== unit ) { + + gl.uniform1i( this.addr, unit ); + cache[ 0 ] = unit; + + } + + let emptyTexture2D; + + if ( this.type === gl.SAMPLER_2D_SHADOW ) { + + emptyShadowTexture.compareFunction = LessEqualCompare; // #28670 + emptyTexture2D = emptyShadowTexture; + + } else { + + emptyTexture2D = emptyTexture; + + } + + textures.setTexture2D( v || emptyTexture2D, unit ); + +} + +function setValueT3D1( gl, v, textures ) { + + const cache = this.cache; + const unit = textures.allocateTextureUnit(); + + if ( cache[ 0 ] !== unit ) { + + gl.uniform1i( this.addr, unit ); + cache[ 0 ] = unit; + + } + + textures.setTexture3D( v || empty3dTexture, unit ); + +} + +function setValueT6( gl, v, textures ) { + + const cache = this.cache; + const unit = textures.allocateTextureUnit(); + + if ( cache[ 0 ] !== unit ) { + + gl.uniform1i( this.addr, unit ); + cache[ 0 ] = unit; + + } + + textures.setTextureCube( v || emptyCubeTexture, unit ); + +} + +function setValueT2DArray1( gl, v, textures ) { + + const cache = this.cache; + const unit = textures.allocateTextureUnit(); + + if ( cache[ 0 ] !== unit ) { + + gl.uniform1i( this.addr, unit ); + cache[ 0 ] = unit; + + } + + textures.setTexture2DArray( v || emptyArrayTexture, unit ); + +} + +// Helper to pick the right setter for the singular case + +function getSingularSetter( type ) { + + switch ( type ) { + + case 0x1406: return setValueV1f; // FLOAT + case 0x8b50: return setValueV2f; // _VEC2 + case 0x8b51: return setValueV3f; // _VEC3 + case 0x8b52: return setValueV4f; // _VEC4 + + case 0x8b5a: return setValueM2; // _MAT2 + case 0x8b5b: return setValueM3; // _MAT3 + case 0x8b5c: return setValueM4; // _MAT4 + + case 0x1404: case 0x8b56: return setValueV1i; // INT, BOOL + case 0x8b53: case 0x8b57: return setValueV2i; // _VEC2 + case 0x8b54: case 0x8b58: return setValueV3i; // _VEC3 + case 0x8b55: case 0x8b59: return setValueV4i; // _VEC4 + + case 0x1405: return setValueV1ui; // UINT + case 0x8dc6: return setValueV2ui; // _VEC2 + case 0x8dc7: return setValueV3ui; // _VEC3 + case 0x8dc8: return setValueV4ui; // _VEC4 + + case 0x8b5e: // SAMPLER_2D + case 0x8d66: // SAMPLER_EXTERNAL_OES + case 0x8dca: // INT_SAMPLER_2D + case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D + case 0x8b62: // SAMPLER_2D_SHADOW + return setValueT1; + + case 0x8b5f: // SAMPLER_3D + case 0x8dcb: // INT_SAMPLER_3D + case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D + return setValueT3D1; + + case 0x8b60: // SAMPLER_CUBE + case 0x8dcc: // INT_SAMPLER_CUBE + case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE + case 0x8dc5: // SAMPLER_CUBE_SHADOW + return setValueT6; + + case 0x8dc1: // SAMPLER_2D_ARRAY + case 0x8dcf: // INT_SAMPLER_2D_ARRAY + case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY + case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW + return setValueT2DArray1; + + } + +} + + +// Array of scalars + +function setValueV1fArray( gl, v ) { + + gl.uniform1fv( this.addr, v ); + +} + +// Array of vectors (from flat array or array of THREE.VectorN) + +function setValueV2fArray( gl, v ) { + + const data = flatten( v, this.size, 2 ); + + gl.uniform2fv( this.addr, data ); + +} + +function setValueV3fArray( gl, v ) { + + const data = flatten( v, this.size, 3 ); + + gl.uniform3fv( this.addr, data ); + +} + +function setValueV4fArray( gl, v ) { + + const data = flatten( v, this.size, 4 ); + + gl.uniform4fv( this.addr, data ); + +} + +// Array of matrices (from flat array or array of THREE.MatrixN) + +function setValueM2Array( gl, v ) { + + const data = flatten( v, this.size, 4 ); + + gl.uniformMatrix2fv( this.addr, false, data ); + +} + +function setValueM3Array( gl, v ) { + + const data = flatten( v, this.size, 9 ); + + gl.uniformMatrix3fv( this.addr, false, data ); + +} + +function setValueM4Array( gl, v ) { + + const data = flatten( v, this.size, 16 ); + + gl.uniformMatrix4fv( this.addr, false, data ); + +} + +// Array of integer / boolean + +function setValueV1iArray( gl, v ) { + + gl.uniform1iv( this.addr, v ); + +} + +// Array of integer / boolean vectors (from flat array) + +function setValueV2iArray( gl, v ) { + + gl.uniform2iv( this.addr, v ); + +} + +function setValueV3iArray( gl, v ) { + + gl.uniform3iv( this.addr, v ); + +} + +function setValueV4iArray( gl, v ) { + + gl.uniform4iv( this.addr, v ); + +} + +// Array of unsigned integer + +function setValueV1uiArray( gl, v ) { + + gl.uniform1uiv( this.addr, v ); + +} + +// Array of unsigned integer vectors (from flat array) + +function setValueV2uiArray( gl, v ) { + + gl.uniform2uiv( this.addr, v ); + +} + +function setValueV3uiArray( gl, v ) { + + gl.uniform3uiv( this.addr, v ); + +} + +function setValueV4uiArray( gl, v ) { + + gl.uniform4uiv( this.addr, v ); + +} + + +// Array of textures (2D / 3D / Cube / 2DArray) + +function setValueT1Array( gl, v, textures ) { + + const cache = this.cache; + + const n = v.length; + + const units = allocTexUnits( textures, n ); + + if ( ! arraysEqual( cache, units ) ) { + + gl.uniform1iv( this.addr, units ); + + copyArray( cache, units ); + + } + + for ( let i = 0; i !== n; ++ i ) { + + textures.setTexture2D( v[ i ] || emptyTexture, units[ i ] ); + + } + +} + +function setValueT3DArray( gl, v, textures ) { + + const cache = this.cache; + + const n = v.length; + + const units = allocTexUnits( textures, n ); + + if ( ! arraysEqual( cache, units ) ) { + + gl.uniform1iv( this.addr, units ); + + copyArray( cache, units ); + + } + + for ( let i = 0; i !== n; ++ i ) { + + textures.setTexture3D( v[ i ] || empty3dTexture, units[ i ] ); + + } + +} + +function setValueT6Array( gl, v, textures ) { + + const cache = this.cache; + + const n = v.length; + + const units = allocTexUnits( textures, n ); + + if ( ! arraysEqual( cache, units ) ) { + + gl.uniform1iv( this.addr, units ); + + copyArray( cache, units ); + + } + + for ( let i = 0; i !== n; ++ i ) { + + textures.setTextureCube( v[ i ] || emptyCubeTexture, units[ i ] ); + + } + +} + +function setValueT2DArrayArray( gl, v, textures ) { + + const cache = this.cache; + + const n = v.length; + + const units = allocTexUnits( textures, n ); + + if ( ! arraysEqual( cache, units ) ) { + + gl.uniform1iv( this.addr, units ); + + copyArray( cache, units ); + + } + + for ( let i = 0; i !== n; ++ i ) { + + textures.setTexture2DArray( v[ i ] || emptyArrayTexture, units[ i ] ); + + } + +} + + +// Helper to pick the right setter for a pure (bottom-level) array + +function getPureArraySetter( type ) { + + switch ( type ) { + + case 0x1406: return setValueV1fArray; // FLOAT + case 0x8b50: return setValueV2fArray; // _VEC2 + case 0x8b51: return setValueV3fArray; // _VEC3 + case 0x8b52: return setValueV4fArray; // _VEC4 + + case 0x8b5a: return setValueM2Array; // _MAT2 + case 0x8b5b: return setValueM3Array; // _MAT3 + case 0x8b5c: return setValueM4Array; // _MAT4 + + case 0x1404: case 0x8b56: return setValueV1iArray; // INT, BOOL + case 0x8b53: case 0x8b57: return setValueV2iArray; // _VEC2 + case 0x8b54: case 0x8b58: return setValueV3iArray; // _VEC3 + case 0x8b55: case 0x8b59: return setValueV4iArray; // _VEC4 + + case 0x1405: return setValueV1uiArray; // UINT + case 0x8dc6: return setValueV2uiArray; // _VEC2 + case 0x8dc7: return setValueV3uiArray; // _VEC3 + case 0x8dc8: return setValueV4uiArray; // _VEC4 + + case 0x8b5e: // SAMPLER_2D + case 0x8d66: // SAMPLER_EXTERNAL_OES + case 0x8dca: // INT_SAMPLER_2D + case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D + case 0x8b62: // SAMPLER_2D_SHADOW + return setValueT1Array; + + case 0x8b5f: // SAMPLER_3D + case 0x8dcb: // INT_SAMPLER_3D + case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D + return setValueT3DArray; + + case 0x8b60: // SAMPLER_CUBE + case 0x8dcc: // INT_SAMPLER_CUBE + case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE + case 0x8dc5: // SAMPLER_CUBE_SHADOW + return setValueT6Array; + + case 0x8dc1: // SAMPLER_2D_ARRAY + case 0x8dcf: // INT_SAMPLER_2D_ARRAY + case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY + case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW + return setValueT2DArrayArray; + + } + +} + +// --- Uniform Classes --- + +class SingleUniform { + + constructor( id, activeInfo, addr ) { + + this.id = id; + this.addr = addr; + this.cache = []; + this.type = activeInfo.type; + this.setValue = getSingularSetter( activeInfo.type ); + + // this.path = activeInfo.name; // DEBUG + + } + +} + +class PureArrayUniform { + + constructor( id, activeInfo, addr ) { + + this.id = id; + this.addr = addr; + this.cache = []; + this.type = activeInfo.type; + this.size = activeInfo.size; + this.setValue = getPureArraySetter( activeInfo.type ); + + // this.path = activeInfo.name; // DEBUG + + } + +} + +class StructuredUniform { + + constructor( id ) { + + this.id = id; + + this.seq = []; + this.map = {}; + + } + + setValue( gl, value, textures ) { + + const seq = this.seq; + + for ( let i = 0, n = seq.length; i !== n; ++ i ) { + + const u = seq[ i ]; + u.setValue( gl, value[ u.id ], textures ); + + } + + } + +} + +// --- Top-level --- + +// Parser - builds up the property tree from the path strings + +const RePathPart = /(\w+)(\])?(\[|\.)?/g; + +// extracts +// - the identifier (member name or array index) +// - followed by an optional right bracket (found when array index) +// - followed by an optional left bracket or dot (type of subscript) +// +// Note: These portions can be read in a non-overlapping fashion and +// allow straightforward parsing of the hierarchy that WebGL encodes +// in the uniform names. + +function addUniform( container, uniformObject ) { + + container.seq.push( uniformObject ); + container.map[ uniformObject.id ] = uniformObject; + +} + +function parseUniform( activeInfo, addr, container ) { + + const path = activeInfo.name, + pathLength = path.length; + + // reset RegExp object, because of the early exit of a previous run + RePathPart.lastIndex = 0; + + while ( true ) { + + const match = RePathPart.exec( path ), + matchEnd = RePathPart.lastIndex; + + let id = match[ 1 ]; + const idIsIndex = match[ 2 ] === ']', + subscript = match[ 3 ]; + + if ( idIsIndex ) id = id | 0; // convert to integer + + if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) { + + // bare name or "pure" bottom-level array "[0]" suffix + + addUniform( container, subscript === undefined ? + new SingleUniform( id, activeInfo, addr ) : + new PureArrayUniform( id, activeInfo, addr ) ); + + break; + + } else { + + // step into inner node / create it in case it doesn't exist + + const map = container.map; + let next = map[ id ]; + + if ( next === undefined ) { + + next = new StructuredUniform( id ); + addUniform( container, next ); + + } + + container = next; + + } + + } + +} + +// Root Container + +class WebGLUniforms { + + constructor( gl, program ) { + + this.seq = []; + this.map = {}; + + const n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS ); + + for ( let i = 0; i < n; ++ i ) { + + const info = gl.getActiveUniform( program, i ), + addr = gl.getUniformLocation( program, info.name ); + + parseUniform( info, addr, this ); + + } + + } + + setValue( gl, name, value, textures ) { + + const u = this.map[ name ]; + + if ( u !== undefined ) u.setValue( gl, value, textures ); + + } + + setOptional( gl, object, name ) { + + const v = object[ name ]; + + if ( v !== undefined ) this.setValue( gl, name, v ); + + } + + static upload( gl, seq, values, textures ) { + + for ( let i = 0, n = seq.length; i !== n; ++ i ) { + + const u = seq[ i ], + v = values[ u.id ]; + + if ( v.needsUpdate !== false ) { + + // note: always updating when .needsUpdate is undefined + u.setValue( gl, v.value, textures ); + + } + + } + + } + + static seqWithValue( seq, values ) { + + const r = []; + + for ( let i = 0, n = seq.length; i !== n; ++ i ) { + + const u = seq[ i ]; + if ( u.id in values ) r.push( u ); + + } + + return r; + + } + +} + +function WebGLShader( gl, type, string ) { + + const shader = gl.createShader( type ); + + gl.shaderSource( shader, string ); + gl.compileShader( shader ); + + return shader; + +} + +// From https://www.khronos.org/registry/webgl/extensions/KHR_parallel_shader_compile/ +const COMPLETION_STATUS_KHR = 0x91B1; + +let programIdCount = 0; + +function handleSource( string, errorLine ) { + + const lines = string.split( '\n' ); + const lines2 = []; + + const from = Math.max( errorLine - 6, 0 ); + const to = Math.min( errorLine + 6, lines.length ); + + for ( let i = from; i < to; i ++ ) { + + const line = i + 1; + lines2.push( `${line === errorLine ? '>' : ' '} ${line}: ${lines[ i ]}` ); + + } + + return lines2.join( '\n' ); + +} + +const _m0 = /*@__PURE__*/ new Matrix3(); + +function getEncodingComponents( colorSpace ) { + + ColorManagement._getMatrix( _m0, ColorManagement.workingColorSpace, colorSpace ); + + const encodingMatrix = `mat3( ${ _m0.elements.map( ( v ) => v.toFixed( 4 ) ) } )`; + + switch ( ColorManagement.getTransfer( colorSpace ) ) { + + case LinearTransfer: + return [ encodingMatrix, 'LinearTransferOETF' ]; + + case SRGBTransfer: + return [ encodingMatrix, 'sRGBTransferOETF' ]; + + default: + console.warn( 'THREE.WebGLProgram: Unsupported color space: ', colorSpace ); + return [ encodingMatrix, 'LinearTransferOETF' ]; + + } + +} + +function getShaderErrors( gl, shader, type ) { + + const status = gl.getShaderParameter( shader, gl.COMPILE_STATUS ); + const errors = gl.getShaderInfoLog( shader ).trim(); + + if ( status && errors === '' ) return ''; + + const errorMatches = /ERROR: 0:(\d+)/.exec( errors ); + if ( errorMatches ) { + + // --enable-privileged-webgl-extension + // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); + + const errorLine = parseInt( errorMatches[ 1 ] ); + return type.toUpperCase() + '\n\n' + errors + '\n\n' + handleSource( gl.getShaderSource( shader ), errorLine ); + + } else { + + return errors; + + } + +} + +function getTexelEncodingFunction( functionName, colorSpace ) { + + const components = getEncodingComponents( colorSpace ); + + return [ + + `vec4 ${functionName}( vec4 value ) {`, + + ` return ${components[ 1 ]}( vec4( value.rgb * ${components[ 0 ]}, value.a ) );`, + + '}', + + ].join( '\n' ); + +} + +function getToneMappingFunction( functionName, toneMapping ) { + + let toneMappingName; + + switch ( toneMapping ) { + + case LinearToneMapping: + toneMappingName = 'Linear'; + break; + + case ReinhardToneMapping: + toneMappingName = 'Reinhard'; + break; + + case CineonToneMapping: + toneMappingName = 'Cineon'; + break; + + case ACESFilmicToneMapping: + toneMappingName = 'ACESFilmic'; + break; + + case AgXToneMapping: + toneMappingName = 'AgX'; + break; + + case NeutralToneMapping: + toneMappingName = 'Neutral'; + break; + + case CustomToneMapping: + toneMappingName = 'Custom'; + break; + + default: + console.warn( 'THREE.WebGLProgram: Unsupported toneMapping:', toneMapping ); + toneMappingName = 'Linear'; + + } + + return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }'; + +} + +const _v0 = /*@__PURE__*/ new Vector3(); + +function getLuminanceFunction() { + + ColorManagement.getLuminanceCoefficients( _v0 ); + + const r = _v0.x.toFixed( 4 ); + const g = _v0.y.toFixed( 4 ); + const b = _v0.z.toFixed( 4 ); + + return [ + + 'float luminance( const in vec3 rgb ) {', + + ` const vec3 weights = vec3( ${ r }, ${ g }, ${ b } );`, + + ' return dot( weights, rgb );', + + '}' + + ].join( '\n' ); + +} + +function generateVertexExtensions( parameters ) { + + const chunks = [ + parameters.extensionClipCullDistance ? '#extension GL_ANGLE_clip_cull_distance : require' : '', + parameters.extensionMultiDraw ? '#extension GL_ANGLE_multi_draw : require' : '', + ]; + + return chunks.filter( filterEmptyLine ).join( '\n' ); + +} + +function generateDefines( defines ) { + + const chunks = []; + + for ( const name in defines ) { + + const value = defines[ name ]; + + if ( value === false ) continue; + + chunks.push( '#define ' + name + ' ' + value ); + + } + + return chunks.join( '\n' ); + +} + +function fetchAttributeLocations( gl, program ) { + + const attributes = {}; + + const n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES ); + + for ( let i = 0; i < n; i ++ ) { + + const info = gl.getActiveAttrib( program, i ); + const name = info.name; + + let locationSize = 1; + if ( info.type === gl.FLOAT_MAT2 ) locationSize = 2; + if ( info.type === gl.FLOAT_MAT3 ) locationSize = 3; + if ( info.type === gl.FLOAT_MAT4 ) locationSize = 4; + + // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i ); + + attributes[ name ] = { + type: info.type, + location: gl.getAttribLocation( program, name ), + locationSize: locationSize + }; + + } + + return attributes; + +} + +function filterEmptyLine( string ) { + + return string !== ''; + +} + +function replaceLightNums( string, parameters ) { + + const numSpotLightCoords = parameters.numSpotLightShadows + parameters.numSpotLightMaps - parameters.numSpotLightShadowsWithMaps; + + return string + .replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights ) + .replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights ) + .replace( /NUM_SPOT_LIGHT_MAPS/g, parameters.numSpotLightMaps ) + .replace( /NUM_SPOT_LIGHT_COORDS/g, numSpotLightCoords ) + .replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights ) + .replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights ) + .replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights ) + .replace( /NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows ) + .replace( /NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS/g, parameters.numSpotLightShadowsWithMaps ) + .replace( /NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows ) + .replace( /NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows ); + +} + +function replaceClippingPlaneNums( string, parameters ) { + + return string + .replace( /NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes ) + .replace( /UNION_CLIPPING_PLANES/g, ( parameters.numClippingPlanes - parameters.numClipIntersection ) ); + +} + +// Resolve Includes + +const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm; + +function resolveIncludes( string ) { + + return string.replace( includePattern, includeReplacer ); + +} + +const shaderChunkMap = new Map(); + +function includeReplacer( match, include ) { + + let string = ShaderChunk[ include ]; + + if ( string === undefined ) { + + const newInclude = shaderChunkMap.get( include ); + + if ( newInclude !== undefined ) { + + string = ShaderChunk[ newInclude ]; + console.warn( 'THREE.WebGLRenderer: Shader chunk "%s" has been deprecated. Use "%s" instead.', include, newInclude ); + + } else { + + throw new Error( 'Can not resolve #include <' + include + '>' ); + + } + + } + + return resolveIncludes( string ); + +} + +// Unroll Loops + +const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g; + +function unrollLoops( string ) { + + return string.replace( unrollLoopPattern, loopReplacer ); + +} + +function loopReplacer( match, start, end, snippet ) { + + let string = ''; + + for ( let i = parseInt( start ); i < parseInt( end ); i ++ ) { + + string += snippet + .replace( /\[\s*i\s*\]/g, '[ ' + i + ' ]' ) + .replace( /UNROLLED_LOOP_INDEX/g, i ); + + } + + return string; + +} + +// + +function generatePrecision( parameters ) { + + let precisionstring = `precision ${parameters.precision} float; + precision ${parameters.precision} int; + precision ${parameters.precision} sampler2D; + precision ${parameters.precision} samplerCube; + precision ${parameters.precision} sampler3D; + precision ${parameters.precision} sampler2DArray; + precision ${parameters.precision} sampler2DShadow; + precision ${parameters.precision} samplerCubeShadow; + precision ${parameters.precision} sampler2DArrayShadow; + precision ${parameters.precision} isampler2D; + precision ${parameters.precision} isampler3D; + precision ${parameters.precision} isamplerCube; + precision ${parameters.precision} isampler2DArray; + precision ${parameters.precision} usampler2D; + precision ${parameters.precision} usampler3D; + precision ${parameters.precision} usamplerCube; + precision ${parameters.precision} usampler2DArray; + `; + + if ( parameters.precision === 'highp' ) { + + precisionstring += '\n#define HIGH_PRECISION'; + + } else if ( parameters.precision === 'mediump' ) { + + precisionstring += '\n#define MEDIUM_PRECISION'; + + } else if ( parameters.precision === 'lowp' ) { + + precisionstring += '\n#define LOW_PRECISION'; + + } + + return precisionstring; + +} + +function generateShadowMapTypeDefine( parameters ) { + + let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; + + if ( parameters.shadowMapType === PCFShadowMap ) { + + shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; + + } else if ( parameters.shadowMapType === PCFSoftShadowMap ) { + + shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; + + } else if ( parameters.shadowMapType === VSMShadowMap ) { + + shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM'; + + } + + return shadowMapTypeDefine; + +} + +function generateEnvMapTypeDefine( parameters ) { + + let envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; + + if ( parameters.envMap ) { + + switch ( parameters.envMapMode ) { + + case CubeReflectionMapping: + case CubeRefractionMapping: + envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; + break; + + case CubeUVReflectionMapping: + envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; + break; + + } + + } + + return envMapTypeDefine; + +} + +function generateEnvMapModeDefine( parameters ) { + + let envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; + + if ( parameters.envMap ) { + + switch ( parameters.envMapMode ) { + + case CubeRefractionMapping: + + envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; + break; + + } + + } + + return envMapModeDefine; + +} + +function generateEnvMapBlendingDefine( parameters ) { + + let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE'; + + if ( parameters.envMap ) { + + switch ( parameters.combine ) { + + case MultiplyOperation: + envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; + break; + + case MixOperation: + envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; + break; + + case AddOperation: + envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; + break; + + } + + } + + return envMapBlendingDefine; + +} + +function generateCubeUVSize( parameters ) { + + const imageHeight = parameters.envMapCubeUVHeight; + + if ( imageHeight === null ) return null; + + const maxMip = Math.log2( imageHeight ) - 2; + + const texelHeight = 1.0 / imageHeight; + + const texelWidth = 1.0 / ( 3 * Math.max( Math.pow( 2, maxMip ), 7 * 16 ) ); + + return { texelWidth, texelHeight, maxMip }; + +} + +function WebGLProgram( renderer, cacheKey, parameters, bindingStates ) { + + // TODO Send this event to Three.js DevTools + // console.log( 'WebGLProgram', cacheKey ); + + const gl = renderer.getContext(); + + const defines = parameters.defines; + + let vertexShader = parameters.vertexShader; + let fragmentShader = parameters.fragmentShader; + + const shadowMapTypeDefine = generateShadowMapTypeDefine( parameters ); + const envMapTypeDefine = generateEnvMapTypeDefine( parameters ); + const envMapModeDefine = generateEnvMapModeDefine( parameters ); + const envMapBlendingDefine = generateEnvMapBlendingDefine( parameters ); + const envMapCubeUVSize = generateCubeUVSize( parameters ); + + const customVertexExtensions = generateVertexExtensions( parameters ); + + const customDefines = generateDefines( defines ); + + const program = gl.createProgram(); + + let prefixVertex, prefixFragment; + let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : ''; + + if ( parameters.isRawShaderMaterial ) { + + prefixVertex = [ + + '#define SHADER_TYPE ' + parameters.shaderType, + '#define SHADER_NAME ' + parameters.shaderName, + + customDefines + + ].filter( filterEmptyLine ).join( '\n' ); + + if ( prefixVertex.length > 0 ) { + + prefixVertex += '\n'; + + } + + prefixFragment = [ + + '#define SHADER_TYPE ' + parameters.shaderType, + '#define SHADER_NAME ' + parameters.shaderName, + + customDefines + + ].filter( filterEmptyLine ).join( '\n' ); + + if ( prefixFragment.length > 0 ) { + + prefixFragment += '\n'; + + } + + } else { + + prefixVertex = [ + + generatePrecision( parameters ), + + '#define SHADER_TYPE ' + parameters.shaderType, + '#define SHADER_NAME ' + parameters.shaderName, + + customDefines, + + parameters.extensionClipCullDistance ? '#define USE_CLIP_DISTANCE' : '', + parameters.batching ? '#define USE_BATCHING' : '', + parameters.batchingColor ? '#define USE_BATCHING_COLOR' : '', + parameters.instancing ? '#define USE_INSTANCING' : '', + parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', + parameters.instancingMorph ? '#define USE_INSTANCING_MORPH' : '', + + parameters.useFog && parameters.fog ? '#define USE_FOG' : '', + parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', + + parameters.map ? '#define USE_MAP' : '', + parameters.envMap ? '#define USE_ENVMAP' : '', + parameters.envMap ? '#define ' + envMapModeDefine : '', + parameters.lightMap ? '#define USE_LIGHTMAP' : '', + parameters.aoMap ? '#define USE_AOMAP' : '', + parameters.bumpMap ? '#define USE_BUMPMAP' : '', + parameters.normalMap ? '#define USE_NORMALMAP' : '', + parameters.normalMapObjectSpace ? '#define USE_NORMALMAP_OBJECTSPACE' : '', + parameters.normalMapTangentSpace ? '#define USE_NORMALMAP_TANGENTSPACE' : '', + parameters.displacementMap ? '#define USE_DISPLACEMENTMAP' : '', + parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', + + parameters.anisotropy ? '#define USE_ANISOTROPY' : '', + parameters.anisotropyMap ? '#define USE_ANISOTROPYMAP' : '', + + parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', + parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', + parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', + + parameters.iridescenceMap ? '#define USE_IRIDESCENCEMAP' : '', + parameters.iridescenceThicknessMap ? '#define USE_IRIDESCENCE_THICKNESSMAP' : '', + + parameters.specularMap ? '#define USE_SPECULARMAP' : '', + parameters.specularColorMap ? '#define USE_SPECULAR_COLORMAP' : '', + parameters.specularIntensityMap ? '#define USE_SPECULAR_INTENSITYMAP' : '', + + parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', + parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', + parameters.alphaMap ? '#define USE_ALPHAMAP' : '', + parameters.alphaHash ? '#define USE_ALPHAHASH' : '', + + parameters.transmission ? '#define USE_TRANSMISSION' : '', + parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', + parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', + + parameters.sheenColorMap ? '#define USE_SHEEN_COLORMAP' : '', + parameters.sheenRoughnessMap ? '#define USE_SHEEN_ROUGHNESSMAP' : '', + + // + + parameters.mapUv ? '#define MAP_UV ' + parameters.mapUv : '', + parameters.alphaMapUv ? '#define ALPHAMAP_UV ' + parameters.alphaMapUv : '', + parameters.lightMapUv ? '#define LIGHTMAP_UV ' + parameters.lightMapUv : '', + parameters.aoMapUv ? '#define AOMAP_UV ' + parameters.aoMapUv : '', + parameters.emissiveMapUv ? '#define EMISSIVEMAP_UV ' + parameters.emissiveMapUv : '', + parameters.bumpMapUv ? '#define BUMPMAP_UV ' + parameters.bumpMapUv : '', + parameters.normalMapUv ? '#define NORMALMAP_UV ' + parameters.normalMapUv : '', + parameters.displacementMapUv ? '#define DISPLACEMENTMAP_UV ' + parameters.displacementMapUv : '', + + parameters.metalnessMapUv ? '#define METALNESSMAP_UV ' + parameters.metalnessMapUv : '', + parameters.roughnessMapUv ? '#define ROUGHNESSMAP_UV ' + parameters.roughnessMapUv : '', + + parameters.anisotropyMapUv ? '#define ANISOTROPYMAP_UV ' + parameters.anisotropyMapUv : '', + + parameters.clearcoatMapUv ? '#define CLEARCOATMAP_UV ' + parameters.clearcoatMapUv : '', + parameters.clearcoatNormalMapUv ? '#define CLEARCOAT_NORMALMAP_UV ' + parameters.clearcoatNormalMapUv : '', + parameters.clearcoatRoughnessMapUv ? '#define CLEARCOAT_ROUGHNESSMAP_UV ' + parameters.clearcoatRoughnessMapUv : '', + + parameters.iridescenceMapUv ? '#define IRIDESCENCEMAP_UV ' + parameters.iridescenceMapUv : '', + parameters.iridescenceThicknessMapUv ? '#define IRIDESCENCE_THICKNESSMAP_UV ' + parameters.iridescenceThicknessMapUv : '', + + parameters.sheenColorMapUv ? '#define SHEEN_COLORMAP_UV ' + parameters.sheenColorMapUv : '', + parameters.sheenRoughnessMapUv ? '#define SHEEN_ROUGHNESSMAP_UV ' + parameters.sheenRoughnessMapUv : '', + + parameters.specularMapUv ? '#define SPECULARMAP_UV ' + parameters.specularMapUv : '', + parameters.specularColorMapUv ? '#define SPECULAR_COLORMAP_UV ' + parameters.specularColorMapUv : '', + parameters.specularIntensityMapUv ? '#define SPECULAR_INTENSITYMAP_UV ' + parameters.specularIntensityMapUv : '', + + parameters.transmissionMapUv ? '#define TRANSMISSIONMAP_UV ' + parameters.transmissionMapUv : '', + parameters.thicknessMapUv ? '#define THICKNESSMAP_UV ' + parameters.thicknessMapUv : '', + + // + + parameters.vertexTangents && parameters.flatShading === false ? '#define USE_TANGENT' : '', + parameters.vertexColors ? '#define USE_COLOR' : '', + parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', + parameters.vertexUv1s ? '#define USE_UV1' : '', + parameters.vertexUv2s ? '#define USE_UV2' : '', + parameters.vertexUv3s ? '#define USE_UV3' : '', + + parameters.pointsUvs ? '#define USE_POINTS_UV' : '', + + parameters.flatShading ? '#define FLAT_SHADED' : '', + + parameters.skinning ? '#define USE_SKINNING' : '', + + parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', + parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', + ( parameters.morphColors ) ? '#define USE_MORPHCOLORS' : '', + ( parameters.morphTargetsCount > 0 ) ? '#define MORPHTARGETS_TEXTURE_STRIDE ' + parameters.morphTextureStride : '', + ( parameters.morphTargetsCount > 0 ) ? '#define MORPHTARGETS_COUNT ' + parameters.morphTargetsCount : '', + parameters.doubleSided ? '#define DOUBLE_SIDED' : '', + parameters.flipSided ? '#define FLIP_SIDED' : '', + + parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', + parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', + + parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', + + parameters.numLightProbes > 0 ? '#define USE_LIGHT_PROBES' : '', + + parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', + parameters.reverseDepthBuffer ? '#define USE_REVERSEDEPTHBUF' : '', + + 'uniform mat4 modelMatrix;', + 'uniform mat4 modelViewMatrix;', + 'uniform mat4 projectionMatrix;', + 'uniform mat4 viewMatrix;', + 'uniform mat3 normalMatrix;', + 'uniform vec3 cameraPosition;', + 'uniform bool isOrthographic;', + + '#ifdef USE_INSTANCING', + + ' attribute mat4 instanceMatrix;', + + '#endif', + + '#ifdef USE_INSTANCING_COLOR', + + ' attribute vec3 instanceColor;', + + '#endif', + + '#ifdef USE_INSTANCING_MORPH', + + ' uniform sampler2D morphTexture;', + + '#endif', + + 'attribute vec3 position;', + 'attribute vec3 normal;', + 'attribute vec2 uv;', + + '#ifdef USE_UV1', + + ' attribute vec2 uv1;', + + '#endif', + + '#ifdef USE_UV2', + + ' attribute vec2 uv2;', + + '#endif', + + '#ifdef USE_UV3', + + ' attribute vec2 uv3;', + + '#endif', + + '#ifdef USE_TANGENT', + + ' attribute vec4 tangent;', + + '#endif', + + '#if defined( USE_COLOR_ALPHA )', + + ' attribute vec4 color;', + + '#elif defined( USE_COLOR )', + + ' attribute vec3 color;', + + '#endif', + + '#ifdef USE_SKINNING', + + ' attribute vec4 skinIndex;', + ' attribute vec4 skinWeight;', + + '#endif', + + '\n' + + ].filter( filterEmptyLine ).join( '\n' ); + + prefixFragment = [ + + generatePrecision( parameters ), + + '#define SHADER_TYPE ' + parameters.shaderType, + '#define SHADER_NAME ' + parameters.shaderName, + + customDefines, + + parameters.useFog && parameters.fog ? '#define USE_FOG' : '', + parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', + + parameters.alphaToCoverage ? '#define ALPHA_TO_COVERAGE' : '', + parameters.map ? '#define USE_MAP' : '', + parameters.matcap ? '#define USE_MATCAP' : '', + parameters.envMap ? '#define USE_ENVMAP' : '', + parameters.envMap ? '#define ' + envMapTypeDefine : '', + parameters.envMap ? '#define ' + envMapModeDefine : '', + parameters.envMap ? '#define ' + envMapBlendingDefine : '', + envMapCubeUVSize ? '#define CUBEUV_TEXEL_WIDTH ' + envMapCubeUVSize.texelWidth : '', + envMapCubeUVSize ? '#define CUBEUV_TEXEL_HEIGHT ' + envMapCubeUVSize.texelHeight : '', + envMapCubeUVSize ? '#define CUBEUV_MAX_MIP ' + envMapCubeUVSize.maxMip + '.0' : '', + parameters.lightMap ? '#define USE_LIGHTMAP' : '', + parameters.aoMap ? '#define USE_AOMAP' : '', + parameters.bumpMap ? '#define USE_BUMPMAP' : '', + parameters.normalMap ? '#define USE_NORMALMAP' : '', + parameters.normalMapObjectSpace ? '#define USE_NORMALMAP_OBJECTSPACE' : '', + parameters.normalMapTangentSpace ? '#define USE_NORMALMAP_TANGENTSPACE' : '', + parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', + + parameters.anisotropy ? '#define USE_ANISOTROPY' : '', + parameters.anisotropyMap ? '#define USE_ANISOTROPYMAP' : '', + + parameters.clearcoat ? '#define USE_CLEARCOAT' : '', + parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', + parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', + parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', + + parameters.dispersion ? '#define USE_DISPERSION' : '', + + parameters.iridescence ? '#define USE_IRIDESCENCE' : '', + parameters.iridescenceMap ? '#define USE_IRIDESCENCEMAP' : '', + parameters.iridescenceThicknessMap ? '#define USE_IRIDESCENCE_THICKNESSMAP' : '', + + parameters.specularMap ? '#define USE_SPECULARMAP' : '', + parameters.specularColorMap ? '#define USE_SPECULAR_COLORMAP' : '', + parameters.specularIntensityMap ? '#define USE_SPECULAR_INTENSITYMAP' : '', + + parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', + parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', + + parameters.alphaMap ? '#define USE_ALPHAMAP' : '', + parameters.alphaTest ? '#define USE_ALPHATEST' : '', + parameters.alphaHash ? '#define USE_ALPHAHASH' : '', + + parameters.sheen ? '#define USE_SHEEN' : '', + parameters.sheenColorMap ? '#define USE_SHEEN_COLORMAP' : '', + parameters.sheenRoughnessMap ? '#define USE_SHEEN_ROUGHNESSMAP' : '', + + parameters.transmission ? '#define USE_TRANSMISSION' : '', + parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', + parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', + + parameters.vertexTangents && parameters.flatShading === false ? '#define USE_TANGENT' : '', + parameters.vertexColors || parameters.instancingColor || parameters.batchingColor ? '#define USE_COLOR' : '', + parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', + parameters.vertexUv1s ? '#define USE_UV1' : '', + parameters.vertexUv2s ? '#define USE_UV2' : '', + parameters.vertexUv3s ? '#define USE_UV3' : '', + + parameters.pointsUvs ? '#define USE_POINTS_UV' : '', + + parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', + + parameters.flatShading ? '#define FLAT_SHADED' : '', + + parameters.doubleSided ? '#define DOUBLE_SIDED' : '', + parameters.flipSided ? '#define FLIP_SIDED' : '', + + parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', + parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', + + parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', + + parameters.numLightProbes > 0 ? '#define USE_LIGHT_PROBES' : '', + + parameters.decodeVideoTexture ? '#define DECODE_VIDEO_TEXTURE' : '', + parameters.decodeVideoTextureEmissive ? '#define DECODE_VIDEO_TEXTURE_EMISSIVE' : '', + + parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', + parameters.reverseDepthBuffer ? '#define USE_REVERSEDEPTHBUF' : '', + + 'uniform mat4 viewMatrix;', + 'uniform vec3 cameraPosition;', + 'uniform bool isOrthographic;', + + ( parameters.toneMapping !== NoToneMapping ) ? '#define TONE_MAPPING' : '', + ( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below + ( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( 'toneMapping', parameters.toneMapping ) : '', + + parameters.dithering ? '#define DITHERING' : '', + parameters.opaque ? '#define OPAQUE' : '', + + ShaderChunk[ 'colorspace_pars_fragment' ], // this code is required here because it is used by the various encoding/decoding function defined below + getTexelEncodingFunction( 'linearToOutputTexel', parameters.outputColorSpace ), + getLuminanceFunction(), + + parameters.useDepthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', + + '\n' + + ].filter( filterEmptyLine ).join( '\n' ); + + } + + vertexShader = resolveIncludes( vertexShader ); + vertexShader = replaceLightNums( vertexShader, parameters ); + vertexShader = replaceClippingPlaneNums( vertexShader, parameters ); + + fragmentShader = resolveIncludes( fragmentShader ); + fragmentShader = replaceLightNums( fragmentShader, parameters ); + fragmentShader = replaceClippingPlaneNums( fragmentShader, parameters ); + + vertexShader = unrollLoops( vertexShader ); + fragmentShader = unrollLoops( fragmentShader ); + + if ( parameters.isRawShaderMaterial !== true ) { + + // GLSL 3.0 conversion for built-in materials and ShaderMaterial + + versionString = '#version 300 es\n'; + + prefixVertex = [ + customVertexExtensions, + '#define attribute in', + '#define varying out', + '#define texture2D texture' + ].join( '\n' ) + '\n' + prefixVertex; + + prefixFragment = [ + '#define varying in', + ( parameters.glslVersion === GLSL3 ) ? '' : 'layout(location = 0) out highp vec4 pc_fragColor;', + ( parameters.glslVersion === GLSL3 ) ? '' : '#define gl_FragColor pc_fragColor', + '#define gl_FragDepthEXT gl_FragDepth', + '#define texture2D texture', + '#define textureCube texture', + '#define texture2DProj textureProj', + '#define texture2DLodEXT textureLod', + '#define texture2DProjLodEXT textureProjLod', + '#define textureCubeLodEXT textureLod', + '#define texture2DGradEXT textureGrad', + '#define texture2DProjGradEXT textureProjGrad', + '#define textureCubeGradEXT textureGrad' + ].join( '\n' ) + '\n' + prefixFragment; + + } + + const vertexGlsl = versionString + prefixVertex + vertexShader; + const fragmentGlsl = versionString + prefixFragment + fragmentShader; + + // console.log( '*VERTEX*', vertexGlsl ); + // console.log( '*FRAGMENT*', fragmentGlsl ); + + const glVertexShader = WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl ); + const glFragmentShader = WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl ); + + gl.attachShader( program, glVertexShader ); + gl.attachShader( program, glFragmentShader ); + + // Force a particular attribute to index 0. + + if ( parameters.index0AttributeName !== undefined ) { + + gl.bindAttribLocation( program, 0, parameters.index0AttributeName ); + + } else if ( parameters.morphTargets === true ) { + + // programs with morphTargets displace position out of attribute 0 + gl.bindAttribLocation( program, 0, 'position' ); + + } + + gl.linkProgram( program ); + + function onFirstUse( self ) { + + // check for link errors + if ( renderer.debug.checkShaderErrors ) { + + const programLog = gl.getProgramInfoLog( program ).trim(); + const vertexLog = gl.getShaderInfoLog( glVertexShader ).trim(); + const fragmentLog = gl.getShaderInfoLog( glFragmentShader ).trim(); + + let runnable = true; + let haveDiagnostics = true; + + if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) { + + runnable = false; + + if ( typeof renderer.debug.onShaderError === 'function' ) { + + renderer.debug.onShaderError( gl, program, glVertexShader, glFragmentShader ); + + } else { + + // default error reporting + + const vertexErrors = getShaderErrors( gl, glVertexShader, 'vertex' ); + const fragmentErrors = getShaderErrors( gl, glFragmentShader, 'fragment' ); + + console.error( + 'THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + + 'VALIDATE_STATUS ' + gl.getProgramParameter( program, gl.VALIDATE_STATUS ) + '\n\n' + + 'Material Name: ' + self.name + '\n' + + 'Material Type: ' + self.type + '\n\n' + + 'Program Info Log: ' + programLog + '\n' + + vertexErrors + '\n' + + fragmentErrors + ); + + } + + } else if ( programLog !== '' ) { + + console.warn( 'THREE.WebGLProgram: Program Info Log:', programLog ); + + } else if ( vertexLog === '' || fragmentLog === '' ) { + + haveDiagnostics = false; + + } + + if ( haveDiagnostics ) { + + self.diagnostics = { + + runnable: runnable, + + programLog: programLog, + + vertexShader: { + + log: vertexLog, + prefix: prefixVertex + + }, + + fragmentShader: { + + log: fragmentLog, + prefix: prefixFragment + + } + + }; + + } + + } + + // Clean up + + // Crashes in iOS9 and iOS10. #18402 + // gl.detachShader( program, glVertexShader ); + // gl.detachShader( program, glFragmentShader ); + + gl.deleteShader( glVertexShader ); + gl.deleteShader( glFragmentShader ); + + cachedUniforms = new WebGLUniforms( gl, program ); + cachedAttributes = fetchAttributeLocations( gl, program ); + + } + + // set up caching for uniform locations + + let cachedUniforms; + + this.getUniforms = function () { + + if ( cachedUniforms === undefined ) { + + // Populates cachedUniforms and cachedAttributes + onFirstUse( this ); + + } + + return cachedUniforms; + + }; + + // set up caching for attribute locations + + let cachedAttributes; + + this.getAttributes = function () { + + if ( cachedAttributes === undefined ) { + + // Populates cachedAttributes and cachedUniforms + onFirstUse( this ); + + } + + return cachedAttributes; + + }; + + // indicate when the program is ready to be used. if the KHR_parallel_shader_compile extension isn't supported, + // flag the program as ready immediately. It may cause a stall when it's first used. + + let programReady = ( parameters.rendererExtensionParallelShaderCompile === false ); + + this.isReady = function () { + + if ( programReady === false ) { + + programReady = gl.getProgramParameter( program, COMPLETION_STATUS_KHR ); + + } + + return programReady; + + }; + + // free resource + + this.destroy = function () { + + bindingStates.releaseStatesOfProgram( this ); + + gl.deleteProgram( program ); + this.program = undefined; + + }; + + // + + this.type = parameters.shaderType; + this.name = parameters.shaderName; + this.id = programIdCount ++; + this.cacheKey = cacheKey; + this.usedTimes = 1; + this.program = program; + this.vertexShader = glVertexShader; + this.fragmentShader = glFragmentShader; + + return this; + +} + +let _id = 0; + +class WebGLShaderCache { + + constructor() { + + this.shaderCache = new Map(); + this.materialCache = new Map(); + + } + + update( material ) { + + const vertexShader = material.vertexShader; + const fragmentShader = material.fragmentShader; + + const vertexShaderStage = this._getShaderStage( vertexShader ); + const fragmentShaderStage = this._getShaderStage( fragmentShader ); + + const materialShaders = this._getShaderCacheForMaterial( material ); + + if ( materialShaders.has( vertexShaderStage ) === false ) { + + materialShaders.add( vertexShaderStage ); + vertexShaderStage.usedTimes ++; + + } + + if ( materialShaders.has( fragmentShaderStage ) === false ) { + + materialShaders.add( fragmentShaderStage ); + fragmentShaderStage.usedTimes ++; + + } + + return this; + + } + + remove( material ) { + + const materialShaders = this.materialCache.get( material ); + + for ( const shaderStage of materialShaders ) { + + shaderStage.usedTimes --; + + if ( shaderStage.usedTimes === 0 ) this.shaderCache.delete( shaderStage.code ); + + } + + this.materialCache.delete( material ); + + return this; + + } + + getVertexShaderID( material ) { + + return this._getShaderStage( material.vertexShader ).id; + + } + + getFragmentShaderID( material ) { + + return this._getShaderStage( material.fragmentShader ).id; + + } + + dispose() { + + this.shaderCache.clear(); + this.materialCache.clear(); + + } + + _getShaderCacheForMaterial( material ) { + + const cache = this.materialCache; + let set = cache.get( material ); + + if ( set === undefined ) { + + set = new Set(); + cache.set( material, set ); + + } + + return set; + + } + + _getShaderStage( code ) { + + const cache = this.shaderCache; + let stage = cache.get( code ); + + if ( stage === undefined ) { + + stage = new WebGLShaderStage( code ); + cache.set( code, stage ); + + } + + return stage; + + } + +} + +class WebGLShaderStage { + + constructor( code ) { + + this.id = _id ++; + + this.code = code; + this.usedTimes = 0; + + } + +} + +function WebGLPrograms( renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping ) { + + const _programLayers = new Layers(); + const _customShaders = new WebGLShaderCache(); + const _activeChannels = new Set(); + const programs = []; + + const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer; + const SUPPORTS_VERTEX_TEXTURES = capabilities.vertexTextures; + + let precision = capabilities.precision; + + const shaderIDs = { + MeshDepthMaterial: 'depth', + MeshDistanceMaterial: 'distanceRGBA', + MeshNormalMaterial: 'normal', + MeshBasicMaterial: 'basic', + MeshLambertMaterial: 'lambert', + MeshPhongMaterial: 'phong', + MeshToonMaterial: 'toon', + MeshStandardMaterial: 'physical', + MeshPhysicalMaterial: 'physical', + MeshMatcapMaterial: 'matcap', + LineBasicMaterial: 'basic', + LineDashedMaterial: 'dashed', + PointsMaterial: 'points', + ShadowMaterial: 'shadow', + SpriteMaterial: 'sprite' + }; + + function getChannel( value ) { + + _activeChannels.add( value ); + + if ( value === 0 ) return 'uv'; + + return `uv${ value }`; + + } + + function getParameters( material, lights, shadows, scene, object ) { + + const fog = scene.fog; + const geometry = object.geometry; + const environment = material.isMeshStandardMaterial ? scene.environment : null; + + const envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || environment ); + const envMapCubeUVHeight = ( !! envMap ) && ( envMap.mapping === CubeUVReflectionMapping ) ? envMap.image.height : null; + + const shaderID = shaderIDs[ material.type ]; + + // heuristics to create shader parameters according to lights in the scene + // (not to blow over maxLights budget) + + if ( material.precision !== null ) { + + precision = capabilities.getMaxPrecision( material.precision ); + + if ( precision !== material.precision ) { + + console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' ); + + } + + } + + // + + const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; + const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; + + let morphTextureStride = 0; + + if ( geometry.morphAttributes.position !== undefined ) morphTextureStride = 1; + if ( geometry.morphAttributes.normal !== undefined ) morphTextureStride = 2; + if ( geometry.morphAttributes.color !== undefined ) morphTextureStride = 3; + + // + + let vertexShader, fragmentShader; + let customVertexShaderID, customFragmentShaderID; + + if ( shaderID ) { + + const shader = ShaderLib[ shaderID ]; + + vertexShader = shader.vertexShader; + fragmentShader = shader.fragmentShader; + + } else { + + vertexShader = material.vertexShader; + fragmentShader = material.fragmentShader; + + _customShaders.update( material ); + + customVertexShaderID = _customShaders.getVertexShaderID( material ); + customFragmentShaderID = _customShaders.getFragmentShaderID( material ); + + } + + const currentRenderTarget = renderer.getRenderTarget(); + const reverseDepthBuffer = renderer.state.buffers.depth.getReversed(); + + const IS_INSTANCEDMESH = object.isInstancedMesh === true; + const IS_BATCHEDMESH = object.isBatchedMesh === true; + + const HAS_MAP = !! material.map; + const HAS_MATCAP = !! material.matcap; + const HAS_ENVMAP = !! envMap; + const HAS_AOMAP = !! material.aoMap; + const HAS_LIGHTMAP = !! material.lightMap; + const HAS_BUMPMAP = !! material.bumpMap; + const HAS_NORMALMAP = !! material.normalMap; + const HAS_DISPLACEMENTMAP = !! material.displacementMap; + const HAS_EMISSIVEMAP = !! material.emissiveMap; + + const HAS_METALNESSMAP = !! material.metalnessMap; + const HAS_ROUGHNESSMAP = !! material.roughnessMap; + + const HAS_ANISOTROPY = material.anisotropy > 0; + const HAS_CLEARCOAT = material.clearcoat > 0; + const HAS_DISPERSION = material.dispersion > 0; + const HAS_IRIDESCENCE = material.iridescence > 0; + const HAS_SHEEN = material.sheen > 0; + const HAS_TRANSMISSION = material.transmission > 0; + + const HAS_ANISOTROPYMAP = HAS_ANISOTROPY && !! material.anisotropyMap; + + const HAS_CLEARCOATMAP = HAS_CLEARCOAT && !! material.clearcoatMap; + const HAS_CLEARCOAT_NORMALMAP = HAS_CLEARCOAT && !! material.clearcoatNormalMap; + const HAS_CLEARCOAT_ROUGHNESSMAP = HAS_CLEARCOAT && !! material.clearcoatRoughnessMap; + + const HAS_IRIDESCENCEMAP = HAS_IRIDESCENCE && !! material.iridescenceMap; + const HAS_IRIDESCENCE_THICKNESSMAP = HAS_IRIDESCENCE && !! material.iridescenceThicknessMap; + + const HAS_SHEEN_COLORMAP = HAS_SHEEN && !! material.sheenColorMap; + const HAS_SHEEN_ROUGHNESSMAP = HAS_SHEEN && !! material.sheenRoughnessMap; + + const HAS_SPECULARMAP = !! material.specularMap; + const HAS_SPECULAR_COLORMAP = !! material.specularColorMap; + const HAS_SPECULAR_INTENSITYMAP = !! material.specularIntensityMap; + + const HAS_TRANSMISSIONMAP = HAS_TRANSMISSION && !! material.transmissionMap; + const HAS_THICKNESSMAP = HAS_TRANSMISSION && !! material.thicknessMap; + + const HAS_GRADIENTMAP = !! material.gradientMap; + + const HAS_ALPHAMAP = !! material.alphaMap; + + const HAS_ALPHATEST = material.alphaTest > 0; + + const HAS_ALPHAHASH = !! material.alphaHash; + + const HAS_EXTENSIONS = !! material.extensions; + + let toneMapping = NoToneMapping; + + if ( material.toneMapped ) { + + if ( currentRenderTarget === null || currentRenderTarget.isXRRenderTarget === true ) { + + toneMapping = renderer.toneMapping; + + } + + } + + const parameters = { + + shaderID: shaderID, + shaderType: material.type, + shaderName: material.name, + + vertexShader: vertexShader, + fragmentShader: fragmentShader, + defines: material.defines, + + customVertexShaderID: customVertexShaderID, + customFragmentShaderID: customFragmentShaderID, + + isRawShaderMaterial: material.isRawShaderMaterial === true, + glslVersion: material.glslVersion, + + precision: precision, + + batching: IS_BATCHEDMESH, + batchingColor: IS_BATCHEDMESH && object._colorsTexture !== null, + instancing: IS_INSTANCEDMESH, + instancingColor: IS_INSTANCEDMESH && object.instanceColor !== null, + instancingMorph: IS_INSTANCEDMESH && object.morphTexture !== null, + + supportsVertexTextures: SUPPORTS_VERTEX_TEXTURES, + outputColorSpace: ( currentRenderTarget === null ) ? renderer.outputColorSpace : ( currentRenderTarget.isXRRenderTarget === true ? currentRenderTarget.texture.colorSpace : LinearSRGBColorSpace ), + alphaToCoverage: !! material.alphaToCoverage, + + map: HAS_MAP, + matcap: HAS_MATCAP, + envMap: HAS_ENVMAP, + envMapMode: HAS_ENVMAP && envMap.mapping, + envMapCubeUVHeight: envMapCubeUVHeight, + aoMap: HAS_AOMAP, + lightMap: HAS_LIGHTMAP, + bumpMap: HAS_BUMPMAP, + normalMap: HAS_NORMALMAP, + displacementMap: SUPPORTS_VERTEX_TEXTURES && HAS_DISPLACEMENTMAP, + emissiveMap: HAS_EMISSIVEMAP, + + normalMapObjectSpace: HAS_NORMALMAP && material.normalMapType === ObjectSpaceNormalMap, + normalMapTangentSpace: HAS_NORMALMAP && material.normalMapType === TangentSpaceNormalMap, + + metalnessMap: HAS_METALNESSMAP, + roughnessMap: HAS_ROUGHNESSMAP, + + anisotropy: HAS_ANISOTROPY, + anisotropyMap: HAS_ANISOTROPYMAP, + + clearcoat: HAS_CLEARCOAT, + clearcoatMap: HAS_CLEARCOATMAP, + clearcoatNormalMap: HAS_CLEARCOAT_NORMALMAP, + clearcoatRoughnessMap: HAS_CLEARCOAT_ROUGHNESSMAP, + + dispersion: HAS_DISPERSION, + + iridescence: HAS_IRIDESCENCE, + iridescenceMap: HAS_IRIDESCENCEMAP, + iridescenceThicknessMap: HAS_IRIDESCENCE_THICKNESSMAP, + + sheen: HAS_SHEEN, + sheenColorMap: HAS_SHEEN_COLORMAP, + sheenRoughnessMap: HAS_SHEEN_ROUGHNESSMAP, + + specularMap: HAS_SPECULARMAP, + specularColorMap: HAS_SPECULAR_COLORMAP, + specularIntensityMap: HAS_SPECULAR_INTENSITYMAP, + + transmission: HAS_TRANSMISSION, + transmissionMap: HAS_TRANSMISSIONMAP, + thicknessMap: HAS_THICKNESSMAP, + + gradientMap: HAS_GRADIENTMAP, + + opaque: material.transparent === false && material.blending === NormalBlending && material.alphaToCoverage === false, + + alphaMap: HAS_ALPHAMAP, + alphaTest: HAS_ALPHATEST, + alphaHash: HAS_ALPHAHASH, + + combine: material.combine, + + // + + mapUv: HAS_MAP && getChannel( material.map.channel ), + aoMapUv: HAS_AOMAP && getChannel( material.aoMap.channel ), + lightMapUv: HAS_LIGHTMAP && getChannel( material.lightMap.channel ), + bumpMapUv: HAS_BUMPMAP && getChannel( material.bumpMap.channel ), + normalMapUv: HAS_NORMALMAP && getChannel( material.normalMap.channel ), + displacementMapUv: HAS_DISPLACEMENTMAP && getChannel( material.displacementMap.channel ), + emissiveMapUv: HAS_EMISSIVEMAP && getChannel( material.emissiveMap.channel ), + + metalnessMapUv: HAS_METALNESSMAP && getChannel( material.metalnessMap.channel ), + roughnessMapUv: HAS_ROUGHNESSMAP && getChannel( material.roughnessMap.channel ), + + anisotropyMapUv: HAS_ANISOTROPYMAP && getChannel( material.anisotropyMap.channel ), + + clearcoatMapUv: HAS_CLEARCOATMAP && getChannel( material.clearcoatMap.channel ), + clearcoatNormalMapUv: HAS_CLEARCOAT_NORMALMAP && getChannel( material.clearcoatNormalMap.channel ), + clearcoatRoughnessMapUv: HAS_CLEARCOAT_ROUGHNESSMAP && getChannel( material.clearcoatRoughnessMap.channel ), + + iridescenceMapUv: HAS_IRIDESCENCEMAP && getChannel( material.iridescenceMap.channel ), + iridescenceThicknessMapUv: HAS_IRIDESCENCE_THICKNESSMAP && getChannel( material.iridescenceThicknessMap.channel ), + + sheenColorMapUv: HAS_SHEEN_COLORMAP && getChannel( material.sheenColorMap.channel ), + sheenRoughnessMapUv: HAS_SHEEN_ROUGHNESSMAP && getChannel( material.sheenRoughnessMap.channel ), + + specularMapUv: HAS_SPECULARMAP && getChannel( material.specularMap.channel ), + specularColorMapUv: HAS_SPECULAR_COLORMAP && getChannel( material.specularColorMap.channel ), + specularIntensityMapUv: HAS_SPECULAR_INTENSITYMAP && getChannel( material.specularIntensityMap.channel ), + + transmissionMapUv: HAS_TRANSMISSIONMAP && getChannel( material.transmissionMap.channel ), + thicknessMapUv: HAS_THICKNESSMAP && getChannel( material.thicknessMap.channel ), + + alphaMapUv: HAS_ALPHAMAP && getChannel( material.alphaMap.channel ), + + // + + vertexTangents: !! geometry.attributes.tangent && ( HAS_NORMALMAP || HAS_ANISOTROPY ), + vertexColors: material.vertexColors, + vertexAlphas: material.vertexColors === true && !! geometry.attributes.color && geometry.attributes.color.itemSize === 4, + + pointsUvs: object.isPoints === true && !! geometry.attributes.uv && ( HAS_MAP || HAS_ALPHAMAP ), + + fog: !! fog, + useFog: material.fog === true, + fogExp2: ( !! fog && fog.isFogExp2 ), + + flatShading: material.flatShading === true, + + sizeAttenuation: material.sizeAttenuation === true, + logarithmicDepthBuffer: logarithmicDepthBuffer, + reverseDepthBuffer: reverseDepthBuffer, + + skinning: object.isSkinnedMesh === true, + + morphTargets: geometry.morphAttributes.position !== undefined, + morphNormals: geometry.morphAttributes.normal !== undefined, + morphColors: geometry.morphAttributes.color !== undefined, + morphTargetsCount: morphTargetsCount, + morphTextureStride: morphTextureStride, + + numDirLights: lights.directional.length, + numPointLights: lights.point.length, + numSpotLights: lights.spot.length, + numSpotLightMaps: lights.spotLightMap.length, + numRectAreaLights: lights.rectArea.length, + numHemiLights: lights.hemi.length, + + numDirLightShadows: lights.directionalShadowMap.length, + numPointLightShadows: lights.pointShadowMap.length, + numSpotLightShadows: lights.spotShadowMap.length, + numSpotLightShadowsWithMaps: lights.numSpotLightShadowsWithMaps, + + numLightProbes: lights.numLightProbes, + + numClippingPlanes: clipping.numPlanes, + numClipIntersection: clipping.numIntersection, + + dithering: material.dithering, + + shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0, + shadowMapType: renderer.shadowMap.type, + + toneMapping: toneMapping, + + decodeVideoTexture: HAS_MAP && ( material.map.isVideoTexture === true ) && ( ColorManagement.getTransfer( material.map.colorSpace ) === SRGBTransfer ), + decodeVideoTextureEmissive: HAS_EMISSIVEMAP && ( material.emissiveMap.isVideoTexture === true ) && ( ColorManagement.getTransfer( material.emissiveMap.colorSpace ) === SRGBTransfer ), + + premultipliedAlpha: material.premultipliedAlpha, + + doubleSided: material.side === DoubleSide, + flipSided: material.side === BackSide, + + useDepthPacking: material.depthPacking >= 0, + depthPacking: material.depthPacking || 0, + + index0AttributeName: material.index0AttributeName, + + extensionClipCullDistance: HAS_EXTENSIONS && material.extensions.clipCullDistance === true && extensions.has( 'WEBGL_clip_cull_distance' ), + extensionMultiDraw: ( HAS_EXTENSIONS && material.extensions.multiDraw === true || IS_BATCHEDMESH ) && extensions.has( 'WEBGL_multi_draw' ), + + rendererExtensionParallelShaderCompile: extensions.has( 'KHR_parallel_shader_compile' ), + + customProgramCacheKey: material.customProgramCacheKey() + + }; + + // the usage of getChannel() determines the active texture channels for this shader + + parameters.vertexUv1s = _activeChannels.has( 1 ); + parameters.vertexUv2s = _activeChannels.has( 2 ); + parameters.vertexUv3s = _activeChannels.has( 3 ); + + _activeChannels.clear(); + + return parameters; + + } + + function getProgramCacheKey( parameters ) { + + const array = []; + + if ( parameters.shaderID ) { + + array.push( parameters.shaderID ); + + } else { + + array.push( parameters.customVertexShaderID ); + array.push( parameters.customFragmentShaderID ); + + } + + if ( parameters.defines !== undefined ) { + + for ( const name in parameters.defines ) { + + array.push( name ); + array.push( parameters.defines[ name ] ); + + } + + } + + if ( parameters.isRawShaderMaterial === false ) { + + getProgramCacheKeyParameters( array, parameters ); + getProgramCacheKeyBooleans( array, parameters ); + array.push( renderer.outputColorSpace ); + + } + + array.push( parameters.customProgramCacheKey ); + + return array.join(); + + } + + function getProgramCacheKeyParameters( array, parameters ) { + + array.push( parameters.precision ); + array.push( parameters.outputColorSpace ); + array.push( parameters.envMapMode ); + array.push( parameters.envMapCubeUVHeight ); + array.push( parameters.mapUv ); + array.push( parameters.alphaMapUv ); + array.push( parameters.lightMapUv ); + array.push( parameters.aoMapUv ); + array.push( parameters.bumpMapUv ); + array.push( parameters.normalMapUv ); + array.push( parameters.displacementMapUv ); + array.push( parameters.emissiveMapUv ); + array.push( parameters.metalnessMapUv ); + array.push( parameters.roughnessMapUv ); + array.push( parameters.anisotropyMapUv ); + array.push( parameters.clearcoatMapUv ); + array.push( parameters.clearcoatNormalMapUv ); + array.push( parameters.clearcoatRoughnessMapUv ); + array.push( parameters.iridescenceMapUv ); + array.push( parameters.iridescenceThicknessMapUv ); + array.push( parameters.sheenColorMapUv ); + array.push( parameters.sheenRoughnessMapUv ); + array.push( parameters.specularMapUv ); + array.push( parameters.specularColorMapUv ); + array.push( parameters.specularIntensityMapUv ); + array.push( parameters.transmissionMapUv ); + array.push( parameters.thicknessMapUv ); + array.push( parameters.combine ); + array.push( parameters.fogExp2 ); + array.push( parameters.sizeAttenuation ); + array.push( parameters.morphTargetsCount ); + array.push( parameters.morphAttributeCount ); + array.push( parameters.numDirLights ); + array.push( parameters.numPointLights ); + array.push( parameters.numSpotLights ); + array.push( parameters.numSpotLightMaps ); + array.push( parameters.numHemiLights ); + array.push( parameters.numRectAreaLights ); + array.push( parameters.numDirLightShadows ); + array.push( parameters.numPointLightShadows ); + array.push( parameters.numSpotLightShadows ); + array.push( parameters.numSpotLightShadowsWithMaps ); + array.push( parameters.numLightProbes ); + array.push( parameters.shadowMapType ); + array.push( parameters.toneMapping ); + array.push( parameters.numClippingPlanes ); + array.push( parameters.numClipIntersection ); + array.push( parameters.depthPacking ); + + } + + function getProgramCacheKeyBooleans( array, parameters ) { + + _programLayers.disableAll(); + + if ( parameters.supportsVertexTextures ) + _programLayers.enable( 0 ); + if ( parameters.instancing ) + _programLayers.enable( 1 ); + if ( parameters.instancingColor ) + _programLayers.enable( 2 ); + if ( parameters.instancingMorph ) + _programLayers.enable( 3 ); + if ( parameters.matcap ) + _programLayers.enable( 4 ); + if ( parameters.envMap ) + _programLayers.enable( 5 ); + if ( parameters.normalMapObjectSpace ) + _programLayers.enable( 6 ); + if ( parameters.normalMapTangentSpace ) + _programLayers.enable( 7 ); + if ( parameters.clearcoat ) + _programLayers.enable( 8 ); + if ( parameters.iridescence ) + _programLayers.enable( 9 ); + if ( parameters.alphaTest ) + _programLayers.enable( 10 ); + if ( parameters.vertexColors ) + _programLayers.enable( 11 ); + if ( parameters.vertexAlphas ) + _programLayers.enable( 12 ); + if ( parameters.vertexUv1s ) + _programLayers.enable( 13 ); + if ( parameters.vertexUv2s ) + _programLayers.enable( 14 ); + if ( parameters.vertexUv3s ) + _programLayers.enable( 15 ); + if ( parameters.vertexTangents ) + _programLayers.enable( 16 ); + if ( parameters.anisotropy ) + _programLayers.enable( 17 ); + if ( parameters.alphaHash ) + _programLayers.enable( 18 ); + if ( parameters.batching ) + _programLayers.enable( 19 ); + if ( parameters.dispersion ) + _programLayers.enable( 20 ); + if ( parameters.batchingColor ) + _programLayers.enable( 21 ); + + array.push( _programLayers.mask ); + _programLayers.disableAll(); + + if ( parameters.fog ) + _programLayers.enable( 0 ); + if ( parameters.useFog ) + _programLayers.enable( 1 ); + if ( parameters.flatShading ) + _programLayers.enable( 2 ); + if ( parameters.logarithmicDepthBuffer ) + _programLayers.enable( 3 ); + if ( parameters.reverseDepthBuffer ) + _programLayers.enable( 4 ); + if ( parameters.skinning ) + _programLayers.enable( 5 ); + if ( parameters.morphTargets ) + _programLayers.enable( 6 ); + if ( parameters.morphNormals ) + _programLayers.enable( 7 ); + if ( parameters.morphColors ) + _programLayers.enable( 8 ); + if ( parameters.premultipliedAlpha ) + _programLayers.enable( 9 ); + if ( parameters.shadowMapEnabled ) + _programLayers.enable( 10 ); + if ( parameters.doubleSided ) + _programLayers.enable( 11 ); + if ( parameters.flipSided ) + _programLayers.enable( 12 ); + if ( parameters.useDepthPacking ) + _programLayers.enable( 13 ); + if ( parameters.dithering ) + _programLayers.enable( 14 ); + if ( parameters.transmission ) + _programLayers.enable( 15 ); + if ( parameters.sheen ) + _programLayers.enable( 16 ); + if ( parameters.opaque ) + _programLayers.enable( 17 ); + if ( parameters.pointsUvs ) + _programLayers.enable( 18 ); + if ( parameters.decodeVideoTexture ) + _programLayers.enable( 19 ); + if ( parameters.decodeVideoTextureEmissive ) + _programLayers.enable( 20 ); + if ( parameters.alphaToCoverage ) + _programLayers.enable( 21 ); + + array.push( _programLayers.mask ); + + } + + function getUniforms( material ) { + + const shaderID = shaderIDs[ material.type ]; + let uniforms; + + if ( shaderID ) { + + const shader = ShaderLib[ shaderID ]; + uniforms = UniformsUtils.clone( shader.uniforms ); + + } else { + + uniforms = material.uniforms; + + } + + return uniforms; + + } + + function acquireProgram( parameters, cacheKey ) { + + let program; + + // Check if code has been already compiled + for ( let p = 0, pl = programs.length; p < pl; p ++ ) { + + const preexistingProgram = programs[ p ]; + + if ( preexistingProgram.cacheKey === cacheKey ) { + + program = preexistingProgram; + ++ program.usedTimes; + + break; + + } + + } + + if ( program === undefined ) { + + program = new WebGLProgram( renderer, cacheKey, parameters, bindingStates ); + programs.push( program ); + + } + + return program; + + } + + function releaseProgram( program ) { + + if ( -- program.usedTimes === 0 ) { + + // Remove from unordered set + const i = programs.indexOf( program ); + programs[ i ] = programs[ programs.length - 1 ]; + programs.pop(); + + // Free WebGL resources + program.destroy(); + + } + + } + + function releaseShaderCache( material ) { + + _customShaders.remove( material ); + + } + + function dispose() { + + _customShaders.dispose(); + + } + + return { + getParameters: getParameters, + getProgramCacheKey: getProgramCacheKey, + getUniforms: getUniforms, + acquireProgram: acquireProgram, + releaseProgram: releaseProgram, + releaseShaderCache: releaseShaderCache, + // Exposed for resource monitoring & error feedback via renderer.info: + programs: programs, + dispose: dispose + }; + +} + +function WebGLProperties() { + + let properties = new WeakMap(); + + function has( object ) { + + return properties.has( object ); + + } + + function get( object ) { + + let map = properties.get( object ); + + if ( map === undefined ) { + + map = {}; + properties.set( object, map ); + + } + + return map; + + } + + function remove( object ) { + + properties.delete( object ); + + } + + function update( object, key, value ) { + + properties.get( object )[ key ] = value; + + } + + function dispose() { + + properties = new WeakMap(); + + } + + return { + has: has, + get: get, + remove: remove, + update: update, + dispose: dispose + }; + +} + +function painterSortStable( a, b ) { + + if ( a.groupOrder !== b.groupOrder ) { + + return a.groupOrder - b.groupOrder; + + } else if ( a.renderOrder !== b.renderOrder ) { + + return a.renderOrder - b.renderOrder; + + } else if ( a.material.id !== b.material.id ) { + + return a.material.id - b.material.id; + + } else if ( a.z !== b.z ) { + + return a.z - b.z; + + } else { + + return a.id - b.id; + + } + +} + +function reversePainterSortStable( a, b ) { + + if ( a.groupOrder !== b.groupOrder ) { + + return a.groupOrder - b.groupOrder; + + } else if ( a.renderOrder !== b.renderOrder ) { + + return a.renderOrder - b.renderOrder; + + } else if ( a.z !== b.z ) { + + return b.z - a.z; + + } else { + + return a.id - b.id; + + } + +} + + +function WebGLRenderList() { + + const renderItems = []; + let renderItemsIndex = 0; + + const opaque = []; + const transmissive = []; + const transparent = []; + + function init() { + + renderItemsIndex = 0; + + opaque.length = 0; + transmissive.length = 0; + transparent.length = 0; + + } + + function getNextRenderItem( object, geometry, material, groupOrder, z, group ) { + + let renderItem = renderItems[ renderItemsIndex ]; + + if ( renderItem === undefined ) { + + renderItem = { + id: object.id, + object: object, + geometry: geometry, + material: material, + groupOrder: groupOrder, + renderOrder: object.renderOrder, + z: z, + group: group + }; + + renderItems[ renderItemsIndex ] = renderItem; + + } else { + + renderItem.id = object.id; + renderItem.object = object; + renderItem.geometry = geometry; + renderItem.material = material; + renderItem.groupOrder = groupOrder; + renderItem.renderOrder = object.renderOrder; + renderItem.z = z; + renderItem.group = group; + + } + + renderItemsIndex ++; + + return renderItem; + + } + + function push( object, geometry, material, groupOrder, z, group ) { + + const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); + + if ( material.transmission > 0.0 ) { + + transmissive.push( renderItem ); + + } else if ( material.transparent === true ) { + + transparent.push( renderItem ); + + } else { + + opaque.push( renderItem ); + + } + + } + + function unshift( object, geometry, material, groupOrder, z, group ) { + + const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); + + if ( material.transmission > 0.0 ) { + + transmissive.unshift( renderItem ); + + } else if ( material.transparent === true ) { + + transparent.unshift( renderItem ); + + } else { + + opaque.unshift( renderItem ); + + } + + } + + function sort( customOpaqueSort, customTransparentSort ) { + + if ( opaque.length > 1 ) opaque.sort( customOpaqueSort || painterSortStable ); + if ( transmissive.length > 1 ) transmissive.sort( customTransparentSort || reversePainterSortStable ); + if ( transparent.length > 1 ) transparent.sort( customTransparentSort || reversePainterSortStable ); + + } + + function finish() { + + // Clear references from inactive renderItems in the list + + for ( let i = renderItemsIndex, il = renderItems.length; i < il; i ++ ) { + + const renderItem = renderItems[ i ]; + + if ( renderItem.id === null ) break; + + renderItem.id = null; + renderItem.object = null; + renderItem.geometry = null; + renderItem.material = null; + renderItem.group = null; + + } + + } + + return { + + opaque: opaque, + transmissive: transmissive, + transparent: transparent, + + init: init, + push: push, + unshift: unshift, + finish: finish, + + sort: sort + }; + +} + +function WebGLRenderLists() { + + let lists = new WeakMap(); + + function get( scene, renderCallDepth ) { + + const listArray = lists.get( scene ); + let list; + + if ( listArray === undefined ) { + + list = new WebGLRenderList(); + lists.set( scene, [ list ] ); + + } else { + + if ( renderCallDepth >= listArray.length ) { + + list = new WebGLRenderList(); + listArray.push( list ); + + } else { + + list = listArray[ renderCallDepth ]; + + } + + } + + return list; + + } + + function dispose() { + + lists = new WeakMap(); + + } + + return { + get: get, + dispose: dispose + }; + +} + +function UniformsCache() { + + const lights = {}; + + return { + + get: function ( light ) { + + if ( lights[ light.id ] !== undefined ) { + + return lights[ light.id ]; + + } + + let uniforms; + + switch ( light.type ) { + + case 'DirectionalLight': + uniforms = { + direction: new Vector3(), + color: new Color() + }; + break; + + case 'SpotLight': + uniforms = { + position: new Vector3(), + direction: new Vector3(), + color: new Color(), + distance: 0, + coneCos: 0, + penumbraCos: 0, + decay: 0 + }; + break; + + case 'PointLight': + uniforms = { + position: new Vector3(), + color: new Color(), + distance: 0, + decay: 0 + }; + break; + + case 'HemisphereLight': + uniforms = { + direction: new Vector3(), + skyColor: new Color(), + groundColor: new Color() + }; + break; + + case 'RectAreaLight': + uniforms = { + color: new Color(), + position: new Vector3(), + halfWidth: new Vector3(), + halfHeight: new Vector3() + }; + break; + + } + + lights[ light.id ] = uniforms; + + return uniforms; + + } + + }; + +} + +function ShadowUniformsCache() { + + const lights = {}; + + return { + + get: function ( light ) { + + if ( lights[ light.id ] !== undefined ) { + + return lights[ light.id ]; + + } + + let uniforms; + + switch ( light.type ) { + + case 'DirectionalLight': + uniforms = { + shadowIntensity: 1, + shadowBias: 0, + shadowNormalBias: 0, + shadowRadius: 1, + shadowMapSize: new Vector2() + }; + break; + + case 'SpotLight': + uniforms = { + shadowIntensity: 1, + shadowBias: 0, + shadowNormalBias: 0, + shadowRadius: 1, + shadowMapSize: new Vector2() + }; + break; + + case 'PointLight': + uniforms = { + shadowIntensity: 1, + shadowBias: 0, + shadowNormalBias: 0, + shadowRadius: 1, + shadowMapSize: new Vector2(), + shadowCameraNear: 1, + shadowCameraFar: 1000 + }; + break; + + // TODO (abelnation): set RectAreaLight shadow uniforms + + } + + lights[ light.id ] = uniforms; + + return uniforms; + + } + + }; + +} + + + +let nextVersion = 0; + +function shadowCastingAndTexturingLightsFirst( lightA, lightB ) { + + return ( lightB.castShadow ? 2 : 0 ) - ( lightA.castShadow ? 2 : 0 ) + ( lightB.map ? 1 : 0 ) - ( lightA.map ? 1 : 0 ); + +} + +function WebGLLights( extensions ) { + + const cache = new UniformsCache(); + + const shadowCache = ShadowUniformsCache(); + + const state = { + + version: 0, + + hash: { + directionalLength: - 1, + pointLength: - 1, + spotLength: - 1, + rectAreaLength: - 1, + hemiLength: - 1, + + numDirectionalShadows: - 1, + numPointShadows: - 1, + numSpotShadows: - 1, + numSpotMaps: - 1, + + numLightProbes: - 1 + }, + + ambient: [ 0, 0, 0 ], + probe: [], + directional: [], + directionalShadow: [], + directionalShadowMap: [], + directionalShadowMatrix: [], + spot: [], + spotLightMap: [], + spotShadow: [], + spotShadowMap: [], + spotLightMatrix: [], + rectArea: [], + rectAreaLTC1: null, + rectAreaLTC2: null, + point: [], + pointShadow: [], + pointShadowMap: [], + pointShadowMatrix: [], + hemi: [], + numSpotLightShadowsWithMaps: 0, + numLightProbes: 0 + + }; + + for ( let i = 0; i < 9; i ++ ) state.probe.push( new Vector3() ); + + const vector3 = new Vector3(); + const matrix4 = new Matrix4(); + const matrix42 = new Matrix4(); + + function setup( lights ) { + + let r = 0, g = 0, b = 0; + + for ( let i = 0; i < 9; i ++ ) state.probe[ i ].set( 0, 0, 0 ); + + let directionalLength = 0; + let pointLength = 0; + let spotLength = 0; + let rectAreaLength = 0; + let hemiLength = 0; + + let numDirectionalShadows = 0; + let numPointShadows = 0; + let numSpotShadows = 0; + let numSpotMaps = 0; + let numSpotShadowsWithMaps = 0; + + let numLightProbes = 0; + + // ordering : [shadow casting + map texturing, map texturing, shadow casting, none ] + lights.sort( shadowCastingAndTexturingLightsFirst ); + + for ( let i = 0, l = lights.length; i < l; i ++ ) { + + const light = lights[ i ]; + + const color = light.color; + const intensity = light.intensity; + const distance = light.distance; + + const shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null; + + if ( light.isAmbientLight ) { + + r += color.r * intensity; + g += color.g * intensity; + b += color.b * intensity; + + } else if ( light.isLightProbe ) { + + for ( let j = 0; j < 9; j ++ ) { + + state.probe[ j ].addScaledVector( light.sh.coefficients[ j ], intensity ); + + } + + numLightProbes ++; + + } else if ( light.isDirectionalLight ) { + + const uniforms = cache.get( light ); + + uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); + + if ( light.castShadow ) { + + const shadow = light.shadow; + + const shadowUniforms = shadowCache.get( light ); + + shadowUniforms.shadowIntensity = shadow.intensity; + shadowUniforms.shadowBias = shadow.bias; + shadowUniforms.shadowNormalBias = shadow.normalBias; + shadowUniforms.shadowRadius = shadow.radius; + shadowUniforms.shadowMapSize = shadow.mapSize; + + state.directionalShadow[ directionalLength ] = shadowUniforms; + state.directionalShadowMap[ directionalLength ] = shadowMap; + state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix; + + numDirectionalShadows ++; + + } + + state.directional[ directionalLength ] = uniforms; + + directionalLength ++; + + } else if ( light.isSpotLight ) { + + const uniforms = cache.get( light ); + + uniforms.position.setFromMatrixPosition( light.matrixWorld ); + + uniforms.color.copy( color ).multiplyScalar( intensity ); + uniforms.distance = distance; + + uniforms.coneCos = Math.cos( light.angle ); + uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) ); + uniforms.decay = light.decay; + + state.spot[ spotLength ] = uniforms; + + const shadow = light.shadow; + + if ( light.map ) { + + state.spotLightMap[ numSpotMaps ] = light.map; + numSpotMaps ++; + + // make sure the lightMatrix is up to date + // TODO : do it if required only + shadow.updateMatrices( light ); + + if ( light.castShadow ) numSpotShadowsWithMaps ++; + + } + + state.spotLightMatrix[ spotLength ] = shadow.matrix; + + if ( light.castShadow ) { + + const shadowUniforms = shadowCache.get( light ); + + shadowUniforms.shadowIntensity = shadow.intensity; + shadowUniforms.shadowBias = shadow.bias; + shadowUniforms.shadowNormalBias = shadow.normalBias; + shadowUniforms.shadowRadius = shadow.radius; + shadowUniforms.shadowMapSize = shadow.mapSize; + + state.spotShadow[ spotLength ] = shadowUniforms; + state.spotShadowMap[ spotLength ] = shadowMap; + + numSpotShadows ++; + + } + + spotLength ++; + + } else if ( light.isRectAreaLight ) { + + const uniforms = cache.get( light ); + + uniforms.color.copy( color ).multiplyScalar( intensity ); + + uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); + uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 ); + + state.rectArea[ rectAreaLength ] = uniforms; + + rectAreaLength ++; + + } else if ( light.isPointLight ) { + + const uniforms = cache.get( light ); + + uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); + uniforms.distance = light.distance; + uniforms.decay = light.decay; + + if ( light.castShadow ) { + + const shadow = light.shadow; + + const shadowUniforms = shadowCache.get( light ); + + shadowUniforms.shadowIntensity = shadow.intensity; + shadowUniforms.shadowBias = shadow.bias; + shadowUniforms.shadowNormalBias = shadow.normalBias; + shadowUniforms.shadowRadius = shadow.radius; + shadowUniforms.shadowMapSize = shadow.mapSize; + shadowUniforms.shadowCameraNear = shadow.camera.near; + shadowUniforms.shadowCameraFar = shadow.camera.far; + + state.pointShadow[ pointLength ] = shadowUniforms; + state.pointShadowMap[ pointLength ] = shadowMap; + state.pointShadowMatrix[ pointLength ] = light.shadow.matrix; + + numPointShadows ++; + + } + + state.point[ pointLength ] = uniforms; + + pointLength ++; + + } else if ( light.isHemisphereLight ) { + + const uniforms = cache.get( light ); + + uniforms.skyColor.copy( light.color ).multiplyScalar( intensity ); + uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity ); + + state.hemi[ hemiLength ] = uniforms; + + hemiLength ++; + + } + + } + + if ( rectAreaLength > 0 ) { + + if ( extensions.has( 'OES_texture_float_linear' ) === true ) { + + state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; + state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; + + } else { + + state.rectAreaLTC1 = UniformsLib.LTC_HALF_1; + state.rectAreaLTC2 = UniformsLib.LTC_HALF_2; + + } + + } + + state.ambient[ 0 ] = r; + state.ambient[ 1 ] = g; + state.ambient[ 2 ] = b; + + const hash = state.hash; + + if ( hash.directionalLength !== directionalLength || + hash.pointLength !== pointLength || + hash.spotLength !== spotLength || + hash.rectAreaLength !== rectAreaLength || + hash.hemiLength !== hemiLength || + hash.numDirectionalShadows !== numDirectionalShadows || + hash.numPointShadows !== numPointShadows || + hash.numSpotShadows !== numSpotShadows || + hash.numSpotMaps !== numSpotMaps || + hash.numLightProbes !== numLightProbes ) { + + state.directional.length = directionalLength; + state.spot.length = spotLength; + state.rectArea.length = rectAreaLength; + state.point.length = pointLength; + state.hemi.length = hemiLength; + + state.directionalShadow.length = numDirectionalShadows; + state.directionalShadowMap.length = numDirectionalShadows; + state.pointShadow.length = numPointShadows; + state.pointShadowMap.length = numPointShadows; + state.spotShadow.length = numSpotShadows; + state.spotShadowMap.length = numSpotShadows; + state.directionalShadowMatrix.length = numDirectionalShadows; + state.pointShadowMatrix.length = numPointShadows; + state.spotLightMatrix.length = numSpotShadows + numSpotMaps - numSpotShadowsWithMaps; + state.spotLightMap.length = numSpotMaps; + state.numSpotLightShadowsWithMaps = numSpotShadowsWithMaps; + state.numLightProbes = numLightProbes; + + hash.directionalLength = directionalLength; + hash.pointLength = pointLength; + hash.spotLength = spotLength; + hash.rectAreaLength = rectAreaLength; + hash.hemiLength = hemiLength; + + hash.numDirectionalShadows = numDirectionalShadows; + hash.numPointShadows = numPointShadows; + hash.numSpotShadows = numSpotShadows; + hash.numSpotMaps = numSpotMaps; + + hash.numLightProbes = numLightProbes; + + state.version = nextVersion ++; + + } + + } + + function setupView( lights, camera ) { + + let directionalLength = 0; + let pointLength = 0; + let spotLength = 0; + let rectAreaLength = 0; + let hemiLength = 0; + + const viewMatrix = camera.matrixWorldInverse; + + for ( let i = 0, l = lights.length; i < l; i ++ ) { + + const light = lights[ i ]; + + if ( light.isDirectionalLight ) { + + const uniforms = state.directional[ directionalLength ]; + + uniforms.direction.setFromMatrixPosition( light.matrixWorld ); + vector3.setFromMatrixPosition( light.target.matrixWorld ); + uniforms.direction.sub( vector3 ); + uniforms.direction.transformDirection( viewMatrix ); + + directionalLength ++; + + } else if ( light.isSpotLight ) { + + const uniforms = state.spot[ spotLength ]; + + uniforms.position.setFromMatrixPosition( light.matrixWorld ); + uniforms.position.applyMatrix4( viewMatrix ); + + uniforms.direction.setFromMatrixPosition( light.matrixWorld ); + vector3.setFromMatrixPosition( light.target.matrixWorld ); + uniforms.direction.sub( vector3 ); + uniforms.direction.transformDirection( viewMatrix ); + + spotLength ++; + + } else if ( light.isRectAreaLight ) { + + const uniforms = state.rectArea[ rectAreaLength ]; + + uniforms.position.setFromMatrixPosition( light.matrixWorld ); + uniforms.position.applyMatrix4( viewMatrix ); + + // extract local rotation of light to derive width/height half vectors + matrix42.identity(); + matrix4.copy( light.matrixWorld ); + matrix4.premultiply( viewMatrix ); + matrix42.extractRotation( matrix4 ); + + uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); + uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 ); + + uniforms.halfWidth.applyMatrix4( matrix42 ); + uniforms.halfHeight.applyMatrix4( matrix42 ); + + rectAreaLength ++; + + } else if ( light.isPointLight ) { + + const uniforms = state.point[ pointLength ]; + + uniforms.position.setFromMatrixPosition( light.matrixWorld ); + uniforms.position.applyMatrix4( viewMatrix ); + + pointLength ++; + + } else if ( light.isHemisphereLight ) { + + const uniforms = state.hemi[ hemiLength ]; + + uniforms.direction.setFromMatrixPosition( light.matrixWorld ); + uniforms.direction.transformDirection( viewMatrix ); + + hemiLength ++; + + } + + } + + } + + return { + setup: setup, + setupView: setupView, + state: state + }; + +} + +function WebGLRenderState( extensions ) { + + const lights = new WebGLLights( extensions ); + + const lightsArray = []; + const shadowsArray = []; + + function init( camera ) { + + state.camera = camera; + + lightsArray.length = 0; + shadowsArray.length = 0; + + } + + function pushLight( light ) { + + lightsArray.push( light ); + + } + + function pushShadow( shadowLight ) { + + shadowsArray.push( shadowLight ); + + } + + function setupLights() { + + lights.setup( lightsArray ); + + } + + function setupLightsView( camera ) { + + lights.setupView( lightsArray, camera ); + + } + + const state = { + lightsArray: lightsArray, + shadowsArray: shadowsArray, + + camera: null, + + lights: lights, + + transmissionRenderTarget: {} + }; + + return { + init: init, + state: state, + setupLights: setupLights, + setupLightsView: setupLightsView, + + pushLight: pushLight, + pushShadow: pushShadow + }; + +} + +function WebGLRenderStates( extensions ) { + + let renderStates = new WeakMap(); + + function get( scene, renderCallDepth = 0 ) { + + const renderStateArray = renderStates.get( scene ); + let renderState; + + if ( renderStateArray === undefined ) { + + renderState = new WebGLRenderState( extensions ); + renderStates.set( scene, [ renderState ] ); + + } else { + + if ( renderCallDepth >= renderStateArray.length ) { + + renderState = new WebGLRenderState( extensions ); + renderStateArray.push( renderState ); + + } else { + + renderState = renderStateArray[ renderCallDepth ]; + + } + + } + + return renderState; + + } + + function dispose() { + + renderStates = new WeakMap(); + + } + + return { + get: get, + dispose: dispose + }; + +} + +const vertex = 'void main() {\n\tgl_Position = vec4( position, 1.0 );\n}'; + +const fragment = 'uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include \nvoid main() {\n\tconst float samples = float( VSM_SAMPLES );\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}'; + +function WebGLShadowMap( renderer, objects, capabilities ) { + + let _frustum = new Frustum(); + + const _shadowMapSize = new Vector2(), + _viewportSize = new Vector2(), + + _viewport = new Vector4(), + + _depthMaterial = new MeshDepthMaterial( { depthPacking: RGBADepthPacking } ), + _distanceMaterial = new MeshDistanceMaterial(), + + _materialCache = {}, + + _maxTextureSize = capabilities.maxTextureSize; + + const shadowSide = { [ FrontSide ]: BackSide, [ BackSide ]: FrontSide, [ DoubleSide ]: DoubleSide }; + + const shadowMaterialVertical = new ShaderMaterial( { + defines: { + VSM_SAMPLES: 8 + }, + uniforms: { + shadow_pass: { value: null }, + resolution: { value: new Vector2() }, + radius: { value: 4.0 } + }, + + vertexShader: vertex, + fragmentShader: fragment + + } ); + + const shadowMaterialHorizontal = shadowMaterialVertical.clone(); + shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1; + + const fullScreenTri = new BufferGeometry(); + fullScreenTri.setAttribute( + 'position', + new BufferAttribute( + new Float32Array( [ - 1, - 1, 0.5, 3, - 1, 0.5, - 1, 3, 0.5 ] ), + 3 + ) + ); + + const fullScreenMesh = new Mesh( fullScreenTri, shadowMaterialVertical ); + + const scope = this; + + this.enabled = false; + + this.autoUpdate = true; + this.needsUpdate = false; + + this.type = PCFShadowMap; + let _previousType = this.type; + + this.render = function ( lights, scene, camera ) { + + if ( scope.enabled === false ) return; + if ( scope.autoUpdate === false && scope.needsUpdate === false ) return; + + if ( lights.length === 0 ) return; + + const currentRenderTarget = renderer.getRenderTarget(); + const activeCubeFace = renderer.getActiveCubeFace(); + const activeMipmapLevel = renderer.getActiveMipmapLevel(); + + const _state = renderer.state; + + // Set GL state for depth map. + _state.setBlending( NoBlending ); + _state.buffers.color.setClear( 1, 1, 1, 1 ); + _state.buffers.depth.setTest( true ); + _state.setScissorTest( false ); + + // check for shadow map type changes + + const toVSM = ( _previousType !== VSMShadowMap && this.type === VSMShadowMap ); + const fromVSM = ( _previousType === VSMShadowMap && this.type !== VSMShadowMap ); + + // render depth map + + for ( let i = 0, il = lights.length; i < il; i ++ ) { + + const light = lights[ i ]; + const shadow = light.shadow; + + if ( shadow === undefined ) { + + console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' ); + continue; + + } + + if ( shadow.autoUpdate === false && shadow.needsUpdate === false ) continue; + + _shadowMapSize.copy( shadow.mapSize ); + + const shadowFrameExtents = shadow.getFrameExtents(); + + _shadowMapSize.multiply( shadowFrameExtents ); + + _viewportSize.copy( shadow.mapSize ); + + if ( _shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize ) { + + if ( _shadowMapSize.x > _maxTextureSize ) { + + _viewportSize.x = Math.floor( _maxTextureSize / shadowFrameExtents.x ); + _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x; + shadow.mapSize.x = _viewportSize.x; + + } + + if ( _shadowMapSize.y > _maxTextureSize ) { + + _viewportSize.y = Math.floor( _maxTextureSize / shadowFrameExtents.y ); + _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y; + shadow.mapSize.y = _viewportSize.y; + + } + + } + + if ( shadow.map === null || toVSM === true || fromVSM === true ) { + + const pars = ( this.type !== VSMShadowMap ) ? { minFilter: NearestFilter, magFilter: NearestFilter } : {}; + + if ( shadow.map !== null ) { + + shadow.map.dispose(); + + } + + shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); + shadow.map.texture.name = light.name + '.shadowMap'; + + shadow.camera.updateProjectionMatrix(); + + } + + renderer.setRenderTarget( shadow.map ); + renderer.clear(); + + const viewportCount = shadow.getViewportCount(); + + for ( let vp = 0; vp < viewportCount; vp ++ ) { + + const viewport = shadow.getViewport( vp ); + + _viewport.set( + _viewportSize.x * viewport.x, + _viewportSize.y * viewport.y, + _viewportSize.x * viewport.z, + _viewportSize.y * viewport.w + ); + + _state.viewport( _viewport ); + + shadow.updateMatrices( light, vp ); + + _frustum = shadow.getFrustum(); + + renderObject( scene, camera, shadow.camera, light, this.type ); + + } + + // do blur pass for VSM + + if ( shadow.isPointLightShadow !== true && this.type === VSMShadowMap ) { + + VSMPass( shadow, camera ); + + } + + shadow.needsUpdate = false; + + } + + _previousType = this.type; + + scope.needsUpdate = false; + + renderer.setRenderTarget( currentRenderTarget, activeCubeFace, activeMipmapLevel ); + + }; + + function VSMPass( shadow, camera ) { + + const geometry = objects.update( fullScreenMesh ); + + if ( shadowMaterialVertical.defines.VSM_SAMPLES !== shadow.blurSamples ) { + + shadowMaterialVertical.defines.VSM_SAMPLES = shadow.blurSamples; + shadowMaterialHorizontal.defines.VSM_SAMPLES = shadow.blurSamples; + + shadowMaterialVertical.needsUpdate = true; + shadowMaterialHorizontal.needsUpdate = true; + + } + + if ( shadow.mapPass === null ) { + + shadow.mapPass = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y ); + + } + + // vertical pass + + shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture; + shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize; + shadowMaterialVertical.uniforms.radius.value = shadow.radius; + renderer.setRenderTarget( shadow.mapPass ); + renderer.clear(); + renderer.renderBufferDirect( camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null ); + + // horizontal pass + + shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture; + shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize; + shadowMaterialHorizontal.uniforms.radius.value = shadow.radius; + renderer.setRenderTarget( shadow.map ); + renderer.clear(); + renderer.renderBufferDirect( camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null ); + + } + + function getDepthMaterial( object, material, light, type ) { + + let result = null; + + const customMaterial = ( light.isPointLight === true ) ? object.customDistanceMaterial : object.customDepthMaterial; + + if ( customMaterial !== undefined ) { + + result = customMaterial; + + } else { + + result = ( light.isPointLight === true ) ? _distanceMaterial : _depthMaterial; + + if ( ( renderer.localClippingEnabled && material.clipShadows === true && Array.isArray( material.clippingPlanes ) && material.clippingPlanes.length !== 0 ) || + ( material.displacementMap && material.displacementScale !== 0 ) || + ( material.alphaMap && material.alphaTest > 0 ) || + ( material.map && material.alphaTest > 0 ) || + ( material.alphaToCoverage === true ) ) { + + // in this case we need a unique material instance reflecting the + // appropriate state + + const keyA = result.uuid, keyB = material.uuid; + + let materialsForVariant = _materialCache[ keyA ]; + + if ( materialsForVariant === undefined ) { + + materialsForVariant = {}; + _materialCache[ keyA ] = materialsForVariant; + + } + + let cachedMaterial = materialsForVariant[ keyB ]; + + if ( cachedMaterial === undefined ) { + + cachedMaterial = result.clone(); + materialsForVariant[ keyB ] = cachedMaterial; + material.addEventListener( 'dispose', onMaterialDispose ); + + } + + result = cachedMaterial; + + } + + } + + result.visible = material.visible; + result.wireframe = material.wireframe; + + if ( type === VSMShadowMap ) { + + result.side = ( material.shadowSide !== null ) ? material.shadowSide : material.side; + + } else { + + result.side = ( material.shadowSide !== null ) ? material.shadowSide : shadowSide[ material.side ]; + + } + + result.alphaMap = material.alphaMap; + result.alphaTest = ( material.alphaToCoverage === true ) ? 0.5 : material.alphaTest; // approximate alphaToCoverage by using a fixed alphaTest value + result.map = material.map; + + result.clipShadows = material.clipShadows; + result.clippingPlanes = material.clippingPlanes; + result.clipIntersection = material.clipIntersection; + + result.displacementMap = material.displacementMap; + result.displacementScale = material.displacementScale; + result.displacementBias = material.displacementBias; + + result.wireframeLinewidth = material.wireframeLinewidth; + result.linewidth = material.linewidth; + + if ( light.isPointLight === true && result.isMeshDistanceMaterial === true ) { + + const materialProperties = renderer.properties.get( result ); + materialProperties.light = light; + + } + + return result; + + } + + function renderObject( object, camera, shadowCamera, light, type ) { + + if ( object.visible === false ) return; + + const visible = object.layers.test( camera.layers ); + + if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) { + + if ( ( object.castShadow || ( object.receiveShadow && type === VSMShadowMap ) ) && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) { + + object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ); + + const geometry = objects.update( object ); + const material = object.material; + + if ( Array.isArray( material ) ) { + + const groups = geometry.groups; + + for ( let k = 0, kl = groups.length; k < kl; k ++ ) { + + const group = groups[ k ]; + const groupMaterial = material[ group.materialIndex ]; + + if ( groupMaterial && groupMaterial.visible ) { + + const depthMaterial = getDepthMaterial( object, groupMaterial, light, type ); + + object.onBeforeShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial, group ); + + renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group ); + + object.onAfterShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial, group ); + + } + + } + + } else if ( material.visible ) { + + const depthMaterial = getDepthMaterial( object, material, light, type ); + + object.onBeforeShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial, null ); + + renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null ); + + object.onAfterShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial, null ); + + } + + } + + } + + const children = object.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + renderObject( children[ i ], camera, shadowCamera, light, type ); + + } + + } + + function onMaterialDispose( event ) { + + const material = event.target; + + material.removeEventListener( 'dispose', onMaterialDispose ); + + // make sure to remove the unique distance/depth materials used for shadow map rendering + + for ( const id in _materialCache ) { + + const cache = _materialCache[ id ]; + + const uuid = event.target.uuid; + + if ( uuid in cache ) { + + const shadowMaterial = cache[ uuid ]; + shadowMaterial.dispose(); + delete cache[ uuid ]; + + } + + } + + } + +} + +const reversedFuncs = { + [ NeverDepth ]: AlwaysDepth, + [ LessDepth ]: GreaterDepth, + [ EqualDepth ]: NotEqualDepth, + [ LessEqualDepth ]: GreaterEqualDepth, + + [ AlwaysDepth ]: NeverDepth, + [ GreaterDepth ]: LessDepth, + [ NotEqualDepth ]: EqualDepth, + [ GreaterEqualDepth ]: LessEqualDepth, +}; + +function WebGLState( gl, extensions ) { + + function ColorBuffer() { + + let locked = false; + + const color = new Vector4(); + let currentColorMask = null; + const currentColorClear = new Vector4( 0, 0, 0, 0 ); + + return { + + setMask: function ( colorMask ) { + + if ( currentColorMask !== colorMask && ! locked ) { + + gl.colorMask( colorMask, colorMask, colorMask, colorMask ); + currentColorMask = colorMask; + + } + + }, + + setLocked: function ( lock ) { + + locked = lock; + + }, + + setClear: function ( r, g, b, a, premultipliedAlpha ) { + + if ( premultipliedAlpha === true ) { + + r *= a; g *= a; b *= a; + + } + + color.set( r, g, b, a ); + + if ( currentColorClear.equals( color ) === false ) { + + gl.clearColor( r, g, b, a ); + currentColorClear.copy( color ); + + } + + }, + + reset: function () { + + locked = false; + + currentColorMask = null; + currentColorClear.set( - 1, 0, 0, 0 ); // set to invalid state + + } + + }; + + } + + function DepthBuffer() { + + let locked = false; + + let currentReversed = false; + let currentDepthMask = null; + let currentDepthFunc = null; + let currentDepthClear = null; + + return { + + setReversed: function ( reversed ) { + + if ( currentReversed !== reversed ) { + + const ext = extensions.get( 'EXT_clip_control' ); + + if ( reversed ) { + + ext.clipControlEXT( ext.LOWER_LEFT_EXT, ext.ZERO_TO_ONE_EXT ); + + } else { + + ext.clipControlEXT( ext.LOWER_LEFT_EXT, ext.NEGATIVE_ONE_TO_ONE_EXT ); + + } + + currentReversed = reversed; + + const oldDepth = currentDepthClear; + currentDepthClear = null; + this.setClear( oldDepth ); + + } + + }, + + getReversed: function () { + + return currentReversed; + + }, + + setTest: function ( depthTest ) { + + if ( depthTest ) { + + enable( gl.DEPTH_TEST ); + + } else { + + disable( gl.DEPTH_TEST ); + + } + + }, + + setMask: function ( depthMask ) { + + if ( currentDepthMask !== depthMask && ! locked ) { + + gl.depthMask( depthMask ); + currentDepthMask = depthMask; + + } + + }, + + setFunc: function ( depthFunc ) { + + if ( currentReversed ) depthFunc = reversedFuncs[ depthFunc ]; + + if ( currentDepthFunc !== depthFunc ) { + + switch ( depthFunc ) { + + case NeverDepth: + + gl.depthFunc( gl.NEVER ); + break; + + case AlwaysDepth: + + gl.depthFunc( gl.ALWAYS ); + break; + + case LessDepth: + + gl.depthFunc( gl.LESS ); + break; + + case LessEqualDepth: + + gl.depthFunc( gl.LEQUAL ); + break; + + case EqualDepth: + + gl.depthFunc( gl.EQUAL ); + break; + + case GreaterEqualDepth: + + gl.depthFunc( gl.GEQUAL ); + break; + + case GreaterDepth: + + gl.depthFunc( gl.GREATER ); + break; + + case NotEqualDepth: + + gl.depthFunc( gl.NOTEQUAL ); + break; + + default: + + gl.depthFunc( gl.LEQUAL ); + + } + + currentDepthFunc = depthFunc; + + } + + }, + + setLocked: function ( lock ) { + + locked = lock; + + }, + + setClear: function ( depth ) { + + if ( currentDepthClear !== depth ) { + + if ( currentReversed ) { + + depth = 1 - depth; + + } + + gl.clearDepth( depth ); + currentDepthClear = depth; + + } + + }, + + reset: function () { + + locked = false; + + currentDepthMask = null; + currentDepthFunc = null; + currentDepthClear = null; + currentReversed = false; + + } + + }; + + } + + function StencilBuffer() { + + let locked = false; + + let currentStencilMask = null; + let currentStencilFunc = null; + let currentStencilRef = null; + let currentStencilFuncMask = null; + let currentStencilFail = null; + let currentStencilZFail = null; + let currentStencilZPass = null; + let currentStencilClear = null; + + return { + + setTest: function ( stencilTest ) { + + if ( ! locked ) { + + if ( stencilTest ) { + + enable( gl.STENCIL_TEST ); + + } else { + + disable( gl.STENCIL_TEST ); + + } + + } + + }, + + setMask: function ( stencilMask ) { + + if ( currentStencilMask !== stencilMask && ! locked ) { + + gl.stencilMask( stencilMask ); + currentStencilMask = stencilMask; + + } + + }, + + setFunc: function ( stencilFunc, stencilRef, stencilMask ) { + + if ( currentStencilFunc !== stencilFunc || + currentStencilRef !== stencilRef || + currentStencilFuncMask !== stencilMask ) { + + gl.stencilFunc( stencilFunc, stencilRef, stencilMask ); + + currentStencilFunc = stencilFunc; + currentStencilRef = stencilRef; + currentStencilFuncMask = stencilMask; + + } + + }, + + setOp: function ( stencilFail, stencilZFail, stencilZPass ) { + + if ( currentStencilFail !== stencilFail || + currentStencilZFail !== stencilZFail || + currentStencilZPass !== stencilZPass ) { + + gl.stencilOp( stencilFail, stencilZFail, stencilZPass ); + + currentStencilFail = stencilFail; + currentStencilZFail = stencilZFail; + currentStencilZPass = stencilZPass; + + } + + }, + + setLocked: function ( lock ) { + + locked = lock; + + }, + + setClear: function ( stencil ) { + + if ( currentStencilClear !== stencil ) { + + gl.clearStencil( stencil ); + currentStencilClear = stencil; + + } + + }, + + reset: function () { + + locked = false; + + currentStencilMask = null; + currentStencilFunc = null; + currentStencilRef = null; + currentStencilFuncMask = null; + currentStencilFail = null; + currentStencilZFail = null; + currentStencilZPass = null; + currentStencilClear = null; + + } + + }; + + } + + // + + const colorBuffer = new ColorBuffer(); + const depthBuffer = new DepthBuffer(); + const stencilBuffer = new StencilBuffer(); + + const uboBindings = new WeakMap(); + const uboProgramMap = new WeakMap(); + + let enabledCapabilities = {}; + + let currentBoundFramebuffers = {}; + let currentDrawbuffers = new WeakMap(); + let defaultDrawbuffers = []; + + let currentProgram = null; + + let currentBlendingEnabled = false; + let currentBlending = null; + let currentBlendEquation = null; + let currentBlendSrc = null; + let currentBlendDst = null; + let currentBlendEquationAlpha = null; + let currentBlendSrcAlpha = null; + let currentBlendDstAlpha = null; + let currentBlendColor = new Color( 0, 0, 0 ); + let currentBlendAlpha = 0; + let currentPremultipledAlpha = false; + + let currentFlipSided = null; + let currentCullFace = null; + + let currentLineWidth = null; + + let currentPolygonOffsetFactor = null; + let currentPolygonOffsetUnits = null; + + const maxTextures = gl.getParameter( gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS ); + + let lineWidthAvailable = false; + let version = 0; + const glVersion = gl.getParameter( gl.VERSION ); + + if ( glVersion.indexOf( 'WebGL' ) !== - 1 ) { + + version = parseFloat( /^WebGL (\d)/.exec( glVersion )[ 1 ] ); + lineWidthAvailable = ( version >= 1.0 ); + + } else if ( glVersion.indexOf( 'OpenGL ES' ) !== - 1 ) { + + version = parseFloat( /^OpenGL ES (\d)/.exec( glVersion )[ 1 ] ); + lineWidthAvailable = ( version >= 2.0 ); + + } + + let currentTextureSlot = null; + let currentBoundTextures = {}; + + const scissorParam = gl.getParameter( gl.SCISSOR_BOX ); + const viewportParam = gl.getParameter( gl.VIEWPORT ); + + const currentScissor = new Vector4().fromArray( scissorParam ); + const currentViewport = new Vector4().fromArray( viewportParam ); + + function createTexture( type, target, count, dimensions ) { + + const data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4. + const texture = gl.createTexture(); + + gl.bindTexture( type, texture ); + gl.texParameteri( type, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); + gl.texParameteri( type, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); + + for ( let i = 0; i < count; i ++ ) { + + if ( type === gl.TEXTURE_3D || type === gl.TEXTURE_2D_ARRAY ) { + + gl.texImage3D( target, 0, gl.RGBA, 1, 1, dimensions, 0, gl.RGBA, gl.UNSIGNED_BYTE, data ); + + } else { + + gl.texImage2D( target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data ); + + } + + } + + return texture; + + } + + const emptyTextures = {}; + emptyTextures[ gl.TEXTURE_2D ] = createTexture( gl.TEXTURE_2D, gl.TEXTURE_2D, 1 ); + emptyTextures[ gl.TEXTURE_CUBE_MAP ] = createTexture( gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6 ); + emptyTextures[ gl.TEXTURE_2D_ARRAY ] = createTexture( gl.TEXTURE_2D_ARRAY, gl.TEXTURE_2D_ARRAY, 1, 1 ); + emptyTextures[ gl.TEXTURE_3D ] = createTexture( gl.TEXTURE_3D, gl.TEXTURE_3D, 1, 1 ); + + // init + + colorBuffer.setClear( 0, 0, 0, 1 ); + depthBuffer.setClear( 1 ); + stencilBuffer.setClear( 0 ); + + enable( gl.DEPTH_TEST ); + depthBuffer.setFunc( LessEqualDepth ); + + setFlipSided( false ); + setCullFace( CullFaceBack ); + enable( gl.CULL_FACE ); + + setBlending( NoBlending ); + + // + + function enable( id ) { + + if ( enabledCapabilities[ id ] !== true ) { + + gl.enable( id ); + enabledCapabilities[ id ] = true; + + } + + } + + function disable( id ) { + + if ( enabledCapabilities[ id ] !== false ) { + + gl.disable( id ); + enabledCapabilities[ id ] = false; + + } + + } + + function bindFramebuffer( target, framebuffer ) { + + if ( currentBoundFramebuffers[ target ] !== framebuffer ) { + + gl.bindFramebuffer( target, framebuffer ); + + currentBoundFramebuffers[ target ] = framebuffer; + + // gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER + + if ( target === gl.DRAW_FRAMEBUFFER ) { + + currentBoundFramebuffers[ gl.FRAMEBUFFER ] = framebuffer; + + } + + if ( target === gl.FRAMEBUFFER ) { + + currentBoundFramebuffers[ gl.DRAW_FRAMEBUFFER ] = framebuffer; + + } + + return true; + + } + + return false; + + } + + function drawBuffers( renderTarget, framebuffer ) { + + let drawBuffers = defaultDrawbuffers; + + let needsUpdate = false; + + if ( renderTarget ) { + + drawBuffers = currentDrawbuffers.get( framebuffer ); + + if ( drawBuffers === undefined ) { + + drawBuffers = []; + currentDrawbuffers.set( framebuffer, drawBuffers ); + + } + + const textures = renderTarget.textures; + + if ( drawBuffers.length !== textures.length || drawBuffers[ 0 ] !== gl.COLOR_ATTACHMENT0 ) { + + for ( let i = 0, il = textures.length; i < il; i ++ ) { + + drawBuffers[ i ] = gl.COLOR_ATTACHMENT0 + i; + + } + + drawBuffers.length = textures.length; + + needsUpdate = true; + + } + + } else { + + if ( drawBuffers[ 0 ] !== gl.BACK ) { + + drawBuffers[ 0 ] = gl.BACK; + + needsUpdate = true; + + } + + } + + if ( needsUpdate ) { + + gl.drawBuffers( drawBuffers ); + + } + + } + + function useProgram( program ) { + + if ( currentProgram !== program ) { + + gl.useProgram( program ); + + currentProgram = program; + + return true; + + } + + return false; + + } + + const equationToGL = { + [ AddEquation ]: gl.FUNC_ADD, + [ SubtractEquation ]: gl.FUNC_SUBTRACT, + [ ReverseSubtractEquation ]: gl.FUNC_REVERSE_SUBTRACT + }; + + equationToGL[ MinEquation ] = gl.MIN; + equationToGL[ MaxEquation ] = gl.MAX; + + const factorToGL = { + [ ZeroFactor ]: gl.ZERO, + [ OneFactor ]: gl.ONE, + [ SrcColorFactor ]: gl.SRC_COLOR, + [ SrcAlphaFactor ]: gl.SRC_ALPHA, + [ SrcAlphaSaturateFactor ]: gl.SRC_ALPHA_SATURATE, + [ DstColorFactor ]: gl.DST_COLOR, + [ DstAlphaFactor ]: gl.DST_ALPHA, + [ OneMinusSrcColorFactor ]: gl.ONE_MINUS_SRC_COLOR, + [ OneMinusSrcAlphaFactor ]: gl.ONE_MINUS_SRC_ALPHA, + [ OneMinusDstColorFactor ]: gl.ONE_MINUS_DST_COLOR, + [ OneMinusDstAlphaFactor ]: gl.ONE_MINUS_DST_ALPHA, + [ ConstantColorFactor ]: gl.CONSTANT_COLOR, + [ OneMinusConstantColorFactor ]: gl.ONE_MINUS_CONSTANT_COLOR, + [ ConstantAlphaFactor ]: gl.CONSTANT_ALPHA, + [ OneMinusConstantAlphaFactor ]: gl.ONE_MINUS_CONSTANT_ALPHA + }; + + function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, blendColor, blendAlpha, premultipliedAlpha ) { + + if ( blending === NoBlending ) { + + if ( currentBlendingEnabled === true ) { + + disable( gl.BLEND ); + currentBlendingEnabled = false; + + } + + return; + + } + + if ( currentBlendingEnabled === false ) { + + enable( gl.BLEND ); + currentBlendingEnabled = true; + + } + + if ( blending !== CustomBlending ) { + + if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) { + + if ( currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation ) { + + gl.blendEquation( gl.FUNC_ADD ); + + currentBlendEquation = AddEquation; + currentBlendEquationAlpha = AddEquation; + + } + + if ( premultipliedAlpha ) { + + switch ( blending ) { + + case NormalBlending: + gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); + break; + + case AdditiveBlending: + gl.blendFunc( gl.ONE, gl.ONE ); + break; + + case SubtractiveBlending: + gl.blendFuncSeparate( gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE ); + break; + + case MultiplyBlending: + gl.blendFuncSeparate( gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA ); + break; + + default: + console.error( 'THREE.WebGLState: Invalid blending: ', blending ); + break; + + } + + } else { + + switch ( blending ) { + + case NormalBlending: + gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); + break; + + case AdditiveBlending: + gl.blendFunc( gl.SRC_ALPHA, gl.ONE ); + break; + + case SubtractiveBlending: + gl.blendFuncSeparate( gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE ); + break; + + case MultiplyBlending: + gl.blendFunc( gl.ZERO, gl.SRC_COLOR ); + break; + + default: + console.error( 'THREE.WebGLState: Invalid blending: ', blending ); + break; + + } + + } + + currentBlendSrc = null; + currentBlendDst = null; + currentBlendSrcAlpha = null; + currentBlendDstAlpha = null; + currentBlendColor.set( 0, 0, 0 ); + currentBlendAlpha = 0; + + currentBlending = blending; + currentPremultipledAlpha = premultipliedAlpha; + + } + + return; + + } + + // custom blending + + blendEquationAlpha = blendEquationAlpha || blendEquation; + blendSrcAlpha = blendSrcAlpha || blendSrc; + blendDstAlpha = blendDstAlpha || blendDst; + + if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) { + + gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] ); + + currentBlendEquation = blendEquation; + currentBlendEquationAlpha = blendEquationAlpha; + + } + + if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) { + + gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] ); + + currentBlendSrc = blendSrc; + currentBlendDst = blendDst; + currentBlendSrcAlpha = blendSrcAlpha; + currentBlendDstAlpha = blendDstAlpha; + + } + + if ( blendColor.equals( currentBlendColor ) === false || blendAlpha !== currentBlendAlpha ) { + + gl.blendColor( blendColor.r, blendColor.g, blendColor.b, blendAlpha ); + + currentBlendColor.copy( blendColor ); + currentBlendAlpha = blendAlpha; + + } + + currentBlending = blending; + currentPremultipledAlpha = false; + + } + + function setMaterial( material, frontFaceCW ) { + + material.side === DoubleSide + ? disable( gl.CULL_FACE ) + : enable( gl.CULL_FACE ); + + let flipSided = ( material.side === BackSide ); + if ( frontFaceCW ) flipSided = ! flipSided; + + setFlipSided( flipSided ); + + ( material.blending === NormalBlending && material.transparent === false ) + ? setBlending( NoBlending ) + : setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.blendColor, material.blendAlpha, material.premultipliedAlpha ); + + depthBuffer.setFunc( material.depthFunc ); + depthBuffer.setTest( material.depthTest ); + depthBuffer.setMask( material.depthWrite ); + colorBuffer.setMask( material.colorWrite ); + + const stencilWrite = material.stencilWrite; + stencilBuffer.setTest( stencilWrite ); + if ( stencilWrite ) { + + stencilBuffer.setMask( material.stencilWriteMask ); + stencilBuffer.setFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask ); + stencilBuffer.setOp( material.stencilFail, material.stencilZFail, material.stencilZPass ); + + } + + setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); + + material.alphaToCoverage === true + ? enable( gl.SAMPLE_ALPHA_TO_COVERAGE ) + : disable( gl.SAMPLE_ALPHA_TO_COVERAGE ); + + } + + // + + function setFlipSided( flipSided ) { + + if ( currentFlipSided !== flipSided ) { + + if ( flipSided ) { + + gl.frontFace( gl.CW ); + + } else { + + gl.frontFace( gl.CCW ); + + } + + currentFlipSided = flipSided; + + } + + } + + function setCullFace( cullFace ) { + + if ( cullFace !== CullFaceNone ) { + + enable( gl.CULL_FACE ); + + if ( cullFace !== currentCullFace ) { + + if ( cullFace === CullFaceBack ) { + + gl.cullFace( gl.BACK ); + + } else if ( cullFace === CullFaceFront ) { + + gl.cullFace( gl.FRONT ); + + } else { + + gl.cullFace( gl.FRONT_AND_BACK ); + + } + + } + + } else { + + disable( gl.CULL_FACE ); + + } + + currentCullFace = cullFace; + + } + + function setLineWidth( width ) { + + if ( width !== currentLineWidth ) { + + if ( lineWidthAvailable ) gl.lineWidth( width ); + + currentLineWidth = width; + + } + + } + + function setPolygonOffset( polygonOffset, factor, units ) { + + if ( polygonOffset ) { + + enable( gl.POLYGON_OFFSET_FILL ); + + if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) { + + gl.polygonOffset( factor, units ); + + currentPolygonOffsetFactor = factor; + currentPolygonOffsetUnits = units; + + } + + } else { + + disable( gl.POLYGON_OFFSET_FILL ); + + } + + } + + function setScissorTest( scissorTest ) { + + if ( scissorTest ) { + + enable( gl.SCISSOR_TEST ); + + } else { + + disable( gl.SCISSOR_TEST ); + + } + + } + + // texture + + function activeTexture( webglSlot ) { + + if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1; + + if ( currentTextureSlot !== webglSlot ) { + + gl.activeTexture( webglSlot ); + currentTextureSlot = webglSlot; + + } + + } + + function bindTexture( webglType, webglTexture, webglSlot ) { + + if ( webglSlot === undefined ) { + + if ( currentTextureSlot === null ) { + + webglSlot = gl.TEXTURE0 + maxTextures - 1; + + } else { + + webglSlot = currentTextureSlot; + + } + + } + + let boundTexture = currentBoundTextures[ webglSlot ]; + + if ( boundTexture === undefined ) { + + boundTexture = { type: undefined, texture: undefined }; + currentBoundTextures[ webglSlot ] = boundTexture; + + } + + if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) { + + if ( currentTextureSlot !== webglSlot ) { + + gl.activeTexture( webglSlot ); + currentTextureSlot = webglSlot; + + } + + gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] ); + + boundTexture.type = webglType; + boundTexture.texture = webglTexture; + + } + + } + + function unbindTexture() { + + const boundTexture = currentBoundTextures[ currentTextureSlot ]; + + if ( boundTexture !== undefined && boundTexture.type !== undefined ) { + + gl.bindTexture( boundTexture.type, null ); + + boundTexture.type = undefined; + boundTexture.texture = undefined; + + } + + } + + function compressedTexImage2D() { + + try { + + gl.compressedTexImage2D( ...arguments ); + + } catch ( error ) { + + console.error( 'THREE.WebGLState:', error ); + + } + + } + + function compressedTexImage3D() { + + try { + + gl.compressedTexImage3D( ...arguments ); + + } catch ( error ) { + + console.error( 'THREE.WebGLState:', error ); + + } + + } + + function texSubImage2D() { + + try { + + gl.texSubImage2D( ...arguments ); + + } catch ( error ) { + + console.error( 'THREE.WebGLState:', error ); + + } + + } + + function texSubImage3D() { + + try { + + gl.texSubImage3D( ...arguments ); + + } catch ( error ) { + + console.error( 'THREE.WebGLState:', error ); + + } + + } + + function compressedTexSubImage2D() { + + try { + + gl.compressedTexSubImage2D( ...arguments ); + + } catch ( error ) { + + console.error( 'THREE.WebGLState:', error ); + + } + + } + + function compressedTexSubImage3D() { + + try { + + gl.compressedTexSubImage3D( ...arguments ); + + } catch ( error ) { + + console.error( 'THREE.WebGLState:', error ); + + } + + } + + function texStorage2D() { + + try { + + gl.texStorage2D( ...arguments ); + + } catch ( error ) { + + console.error( 'THREE.WebGLState:', error ); + + } + + } + + function texStorage3D() { + + try { + + gl.texStorage3D( ...arguments ); + + } catch ( error ) { + + console.error( 'THREE.WebGLState:', error ); + + } + + } + + function texImage2D() { + + try { + + gl.texImage2D( ...arguments ); + + } catch ( error ) { + + console.error( 'THREE.WebGLState:', error ); + + } + + } + + function texImage3D() { + + try { + + gl.texImage3D( ...arguments ); + + } catch ( error ) { + + console.error( 'THREE.WebGLState:', error ); + + } + + } + + // + + function scissor( scissor ) { + + if ( currentScissor.equals( scissor ) === false ) { + + gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); + currentScissor.copy( scissor ); + + } + + } + + function viewport( viewport ) { + + if ( currentViewport.equals( viewport ) === false ) { + + gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); + currentViewport.copy( viewport ); + + } + + } + + function updateUBOMapping( uniformsGroup, program ) { + + let mapping = uboProgramMap.get( program ); + + if ( mapping === undefined ) { + + mapping = new WeakMap(); + + uboProgramMap.set( program, mapping ); + + } + + let blockIndex = mapping.get( uniformsGroup ); + + if ( blockIndex === undefined ) { + + blockIndex = gl.getUniformBlockIndex( program, uniformsGroup.name ); + + mapping.set( uniformsGroup, blockIndex ); + + } + + } + + function uniformBlockBinding( uniformsGroup, program ) { + + const mapping = uboProgramMap.get( program ); + const blockIndex = mapping.get( uniformsGroup ); + + if ( uboBindings.get( program ) !== blockIndex ) { + + // bind shader specific block index to global block point + gl.uniformBlockBinding( program, blockIndex, uniformsGroup.__bindingPointIndex ); + + uboBindings.set( program, blockIndex ); + + } + + } + + // + + function reset() { + + // reset state + + gl.disable( gl.BLEND ); + gl.disable( gl.CULL_FACE ); + gl.disable( gl.DEPTH_TEST ); + gl.disable( gl.POLYGON_OFFSET_FILL ); + gl.disable( gl.SCISSOR_TEST ); + gl.disable( gl.STENCIL_TEST ); + gl.disable( gl.SAMPLE_ALPHA_TO_COVERAGE ); + + gl.blendEquation( gl.FUNC_ADD ); + gl.blendFunc( gl.ONE, gl.ZERO ); + gl.blendFuncSeparate( gl.ONE, gl.ZERO, gl.ONE, gl.ZERO ); + gl.blendColor( 0, 0, 0, 0 ); + + gl.colorMask( true, true, true, true ); + gl.clearColor( 0, 0, 0, 0 ); + + gl.depthMask( true ); + gl.depthFunc( gl.LESS ); + + depthBuffer.setReversed( false ); + + gl.clearDepth( 1 ); + + gl.stencilMask( 0xffffffff ); + gl.stencilFunc( gl.ALWAYS, 0, 0xffffffff ); + gl.stencilOp( gl.KEEP, gl.KEEP, gl.KEEP ); + gl.clearStencil( 0 ); + + gl.cullFace( gl.BACK ); + gl.frontFace( gl.CCW ); + + gl.polygonOffset( 0, 0 ); + + gl.activeTexture( gl.TEXTURE0 ); + + gl.bindFramebuffer( gl.FRAMEBUFFER, null ); + gl.bindFramebuffer( gl.DRAW_FRAMEBUFFER, null ); + gl.bindFramebuffer( gl.READ_FRAMEBUFFER, null ); + + gl.useProgram( null ); + + gl.lineWidth( 1 ); + + gl.scissor( 0, 0, gl.canvas.width, gl.canvas.height ); + gl.viewport( 0, 0, gl.canvas.width, gl.canvas.height ); + + // reset internals + + enabledCapabilities = {}; + + currentTextureSlot = null; + currentBoundTextures = {}; + + currentBoundFramebuffers = {}; + currentDrawbuffers = new WeakMap(); + defaultDrawbuffers = []; + + currentProgram = null; + + currentBlendingEnabled = false; + currentBlending = null; + currentBlendEquation = null; + currentBlendSrc = null; + currentBlendDst = null; + currentBlendEquationAlpha = null; + currentBlendSrcAlpha = null; + currentBlendDstAlpha = null; + currentBlendColor = new Color( 0, 0, 0 ); + currentBlendAlpha = 0; + currentPremultipledAlpha = false; + + currentFlipSided = null; + currentCullFace = null; + + currentLineWidth = null; + + currentPolygonOffsetFactor = null; + currentPolygonOffsetUnits = null; + + currentScissor.set( 0, 0, gl.canvas.width, gl.canvas.height ); + currentViewport.set( 0, 0, gl.canvas.width, gl.canvas.height ); + + colorBuffer.reset(); + depthBuffer.reset(); + stencilBuffer.reset(); + + } + + return { + + buffers: { + color: colorBuffer, + depth: depthBuffer, + stencil: stencilBuffer + }, + + enable: enable, + disable: disable, + + bindFramebuffer: bindFramebuffer, + drawBuffers: drawBuffers, + + useProgram: useProgram, + + setBlending: setBlending, + setMaterial: setMaterial, + + setFlipSided: setFlipSided, + setCullFace: setCullFace, + + setLineWidth: setLineWidth, + setPolygonOffset: setPolygonOffset, + + setScissorTest: setScissorTest, + + activeTexture: activeTexture, + bindTexture: bindTexture, + unbindTexture: unbindTexture, + compressedTexImage2D: compressedTexImage2D, + compressedTexImage3D: compressedTexImage3D, + texImage2D: texImage2D, + texImage3D: texImage3D, + + updateUBOMapping: updateUBOMapping, + uniformBlockBinding: uniformBlockBinding, + + texStorage2D: texStorage2D, + texStorage3D: texStorage3D, + texSubImage2D: texSubImage2D, + texSubImage3D: texSubImage3D, + compressedTexSubImage2D: compressedTexSubImage2D, + compressedTexSubImage3D: compressedTexSubImage3D, + + scissor: scissor, + viewport: viewport, + + reset: reset + + }; + +} + +function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ) { + + const multisampledRTTExt = extensions.has( 'WEBGL_multisampled_render_to_texture' ) ? extensions.get( 'WEBGL_multisampled_render_to_texture' ) : null; + const supportsInvalidateFramebuffer = typeof navigator === 'undefined' ? false : /OculusBrowser/g.test( navigator.userAgent ); + + const _imageDimensions = new Vector2(); + const _videoTextures = new WeakMap(); + let _canvas; + + const _sources = new WeakMap(); // maps WebglTexture objects to instances of Source + + // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas, + // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")! + // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d). + + let useOffscreenCanvas = false; + + try { + + useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' + // eslint-disable-next-line compat/compat + && ( new OffscreenCanvas( 1, 1 ).getContext( '2d' ) ) !== null; + + } catch ( err ) { + + // Ignore any errors + + } + + function createCanvas( width, height ) { + + // Use OffscreenCanvas when available. Specially needed in web workers + + return useOffscreenCanvas ? + // eslint-disable-next-line compat/compat + new OffscreenCanvas( width, height ) : createElementNS( 'canvas' ); + + } + + function resizeImage( image, needsNewCanvas, maxSize ) { + + let scale = 1; + + const dimensions = getDimensions( image ); + + // handle case if texture exceeds max size + + if ( dimensions.width > maxSize || dimensions.height > maxSize ) { + + scale = maxSize / Math.max( dimensions.width, dimensions.height ); + + } + + // only perform resize if necessary + + if ( scale < 1 ) { + + // only perform resize for certain image types + + if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || + ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || + ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) || + ( typeof VideoFrame !== 'undefined' && image instanceof VideoFrame ) ) { + + const width = Math.floor( scale * dimensions.width ); + const height = Math.floor( scale * dimensions.height ); + + if ( _canvas === undefined ) _canvas = createCanvas( width, height ); + + // cube textures can't reuse the same canvas + + const canvas = needsNewCanvas ? createCanvas( width, height ) : _canvas; + + canvas.width = width; + canvas.height = height; + + const context = canvas.getContext( '2d' ); + context.drawImage( image, 0, 0, width, height ); + + console.warn( 'THREE.WebGLRenderer: Texture has been resized from (' + dimensions.width + 'x' + dimensions.height + ') to (' + width + 'x' + height + ').' ); + + return canvas; + + } else { + + if ( 'data' in image ) { + + console.warn( 'THREE.WebGLRenderer: Image in DataTexture is too big (' + dimensions.width + 'x' + dimensions.height + ').' ); + + } + + return image; + + } + + } + + return image; + + } + + function textureNeedsGenerateMipmaps( texture ) { + + return texture.generateMipmaps; + + } + + function generateMipmap( target ) { + + _gl.generateMipmap( target ); + + } + + function getTargetType( texture ) { + + if ( texture.isWebGLCubeRenderTarget ) return _gl.TEXTURE_CUBE_MAP; + if ( texture.isWebGL3DRenderTarget ) return _gl.TEXTURE_3D; + if ( texture.isWebGLArrayRenderTarget || texture.isCompressedArrayTexture ) return _gl.TEXTURE_2D_ARRAY; + return _gl.TEXTURE_2D; + + } + + function getInternalFormat( internalFormatName, glFormat, glType, colorSpace, forceLinearTransfer = false ) { + + if ( internalFormatName !== null ) { + + if ( _gl[ internalFormatName ] !== undefined ) return _gl[ internalFormatName ]; + + console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' ); + + } + + let internalFormat = glFormat; + + if ( glFormat === _gl.RED ) { + + if ( glType === _gl.FLOAT ) internalFormat = _gl.R32F; + if ( glType === _gl.HALF_FLOAT ) internalFormat = _gl.R16F; + if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.R8; + + } + + if ( glFormat === _gl.RED_INTEGER ) { + + if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.R8UI; + if ( glType === _gl.UNSIGNED_SHORT ) internalFormat = _gl.R16UI; + if ( glType === _gl.UNSIGNED_INT ) internalFormat = _gl.R32UI; + if ( glType === _gl.BYTE ) internalFormat = _gl.R8I; + if ( glType === _gl.SHORT ) internalFormat = _gl.R16I; + if ( glType === _gl.INT ) internalFormat = _gl.R32I; + + } + + if ( glFormat === _gl.RG ) { + + if ( glType === _gl.FLOAT ) internalFormat = _gl.RG32F; + if ( glType === _gl.HALF_FLOAT ) internalFormat = _gl.RG16F; + if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.RG8; + + } + + if ( glFormat === _gl.RG_INTEGER ) { + + if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.RG8UI; + if ( glType === _gl.UNSIGNED_SHORT ) internalFormat = _gl.RG16UI; + if ( glType === _gl.UNSIGNED_INT ) internalFormat = _gl.RG32UI; + if ( glType === _gl.BYTE ) internalFormat = _gl.RG8I; + if ( glType === _gl.SHORT ) internalFormat = _gl.RG16I; + if ( glType === _gl.INT ) internalFormat = _gl.RG32I; + + } + + if ( glFormat === _gl.RGB_INTEGER ) { + + if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.RGB8UI; + if ( glType === _gl.UNSIGNED_SHORT ) internalFormat = _gl.RGB16UI; + if ( glType === _gl.UNSIGNED_INT ) internalFormat = _gl.RGB32UI; + if ( glType === _gl.BYTE ) internalFormat = _gl.RGB8I; + if ( glType === _gl.SHORT ) internalFormat = _gl.RGB16I; + if ( glType === _gl.INT ) internalFormat = _gl.RGB32I; + + } + + if ( glFormat === _gl.RGBA_INTEGER ) { + + if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.RGBA8UI; + if ( glType === _gl.UNSIGNED_SHORT ) internalFormat = _gl.RGBA16UI; + if ( glType === _gl.UNSIGNED_INT ) internalFormat = _gl.RGBA32UI; + if ( glType === _gl.BYTE ) internalFormat = _gl.RGBA8I; + if ( glType === _gl.SHORT ) internalFormat = _gl.RGBA16I; + if ( glType === _gl.INT ) internalFormat = _gl.RGBA32I; + + } + + if ( glFormat === _gl.RGB ) { + + if ( glType === _gl.UNSIGNED_INT_5_9_9_9_REV ) internalFormat = _gl.RGB9_E5; + + } + + if ( glFormat === _gl.RGBA ) { + + const transfer = forceLinearTransfer ? LinearTransfer : ColorManagement.getTransfer( colorSpace ); + + if ( glType === _gl.FLOAT ) internalFormat = _gl.RGBA32F; + if ( glType === _gl.HALF_FLOAT ) internalFormat = _gl.RGBA16F; + if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = ( transfer === SRGBTransfer ) ? _gl.SRGB8_ALPHA8 : _gl.RGBA8; + if ( glType === _gl.UNSIGNED_SHORT_4_4_4_4 ) internalFormat = _gl.RGBA4; + if ( glType === _gl.UNSIGNED_SHORT_5_5_5_1 ) internalFormat = _gl.RGB5_A1; + + } + + if ( internalFormat === _gl.R16F || internalFormat === _gl.R32F || + internalFormat === _gl.RG16F || internalFormat === _gl.RG32F || + internalFormat === _gl.RGBA16F || internalFormat === _gl.RGBA32F ) { + + extensions.get( 'EXT_color_buffer_float' ); + + } + + return internalFormat; + + } + + function getInternalDepthFormat( useStencil, depthType ) { + + let glInternalFormat; + if ( useStencil ) { + + if ( depthType === null || depthType === UnsignedIntType || depthType === UnsignedInt248Type ) { + + glInternalFormat = _gl.DEPTH24_STENCIL8; + + } else if ( depthType === FloatType ) { + + glInternalFormat = _gl.DEPTH32F_STENCIL8; + + } else if ( depthType === UnsignedShortType ) { + + glInternalFormat = _gl.DEPTH24_STENCIL8; + console.warn( 'DepthTexture: 16 bit depth attachment is not supported with stencil. Using 24-bit attachment.' ); + + } + + } else { + + if ( depthType === null || depthType === UnsignedIntType || depthType === UnsignedInt248Type ) { + + glInternalFormat = _gl.DEPTH_COMPONENT24; + + } else if ( depthType === FloatType ) { + + glInternalFormat = _gl.DEPTH_COMPONENT32F; + + } else if ( depthType === UnsignedShortType ) { + + glInternalFormat = _gl.DEPTH_COMPONENT16; + + } + + } + + return glInternalFormat; + + } + + function getMipLevels( texture, image ) { + + if ( textureNeedsGenerateMipmaps( texture ) === true || ( texture.isFramebufferTexture && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) ) { + + return Math.log2( Math.max( image.width, image.height ) ) + 1; + + } else if ( texture.mipmaps !== undefined && texture.mipmaps.length > 0 ) { + + // user-defined mipmaps + + return texture.mipmaps.length; + + } else if ( texture.isCompressedTexture && Array.isArray( texture.image ) ) { + + return image.mipmaps.length; + + } else { + + // texture without mipmaps (only base level) + + return 1; + + } + + } + + // + + function onTextureDispose( event ) { + + const texture = event.target; + + texture.removeEventListener( 'dispose', onTextureDispose ); + + deallocateTexture( texture ); + + if ( texture.isVideoTexture ) { + + _videoTextures.delete( texture ); + + } + + } + + function onRenderTargetDispose( event ) { + + const renderTarget = event.target; + + renderTarget.removeEventListener( 'dispose', onRenderTargetDispose ); + + deallocateRenderTarget( renderTarget ); + + } + + // + + function deallocateTexture( texture ) { + + const textureProperties = properties.get( texture ); + + if ( textureProperties.__webglInit === undefined ) return; + + // check if it's necessary to remove the WebGLTexture object + + const source = texture.source; + const webglTextures = _sources.get( source ); + + if ( webglTextures ) { + + const webglTexture = webglTextures[ textureProperties.__cacheKey ]; + webglTexture.usedTimes --; + + // the WebGLTexture object is not used anymore, remove it + + if ( webglTexture.usedTimes === 0 ) { + + deleteTexture( texture ); + + } + + // remove the weak map entry if no WebGLTexture uses the source anymore + + if ( Object.keys( webglTextures ).length === 0 ) { + + _sources.delete( source ); + + } + + } + + properties.remove( texture ); + + } + + function deleteTexture( texture ) { + + const textureProperties = properties.get( texture ); + _gl.deleteTexture( textureProperties.__webglTexture ); + + const source = texture.source; + const webglTextures = _sources.get( source ); + delete webglTextures[ textureProperties.__cacheKey ]; + + info.memory.textures --; + + } + + function deallocateRenderTarget( renderTarget ) { + + const renderTargetProperties = properties.get( renderTarget ); + + if ( renderTarget.depthTexture ) { + + renderTarget.depthTexture.dispose(); + + properties.remove( renderTarget.depthTexture ); + + } + + if ( renderTarget.isWebGLCubeRenderTarget ) { + + for ( let i = 0; i < 6; i ++ ) { + + if ( Array.isArray( renderTargetProperties.__webglFramebuffer[ i ] ) ) { + + for ( let level = 0; level < renderTargetProperties.__webglFramebuffer[ i ].length; level ++ ) _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ][ level ] ); + + } else { + + _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] ); + + } + + if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] ); + + } + + } else { + + if ( Array.isArray( renderTargetProperties.__webglFramebuffer ) ) { + + for ( let level = 0; level < renderTargetProperties.__webglFramebuffer.length; level ++ ) _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ level ] ); + + } else { + + _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer ); + + } + + if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer ); + if ( renderTargetProperties.__webglMultisampledFramebuffer ) _gl.deleteFramebuffer( renderTargetProperties.__webglMultisampledFramebuffer ); + + if ( renderTargetProperties.__webglColorRenderbuffer ) { + + for ( let i = 0; i < renderTargetProperties.__webglColorRenderbuffer.length; i ++ ) { + + if ( renderTargetProperties.__webglColorRenderbuffer[ i ] ) _gl.deleteRenderbuffer( renderTargetProperties.__webglColorRenderbuffer[ i ] ); + + } + + } + + if ( renderTargetProperties.__webglDepthRenderbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthRenderbuffer ); + + } + + const textures = renderTarget.textures; + + for ( let i = 0, il = textures.length; i < il; i ++ ) { + + const attachmentProperties = properties.get( textures[ i ] ); + + if ( attachmentProperties.__webglTexture ) { + + _gl.deleteTexture( attachmentProperties.__webglTexture ); + + info.memory.textures --; + + } + + properties.remove( textures[ i ] ); + + } + + properties.remove( renderTarget ); + + } + + // + + let textureUnits = 0; + + function resetTextureUnits() { + + textureUnits = 0; + + } + + function allocateTextureUnit() { + + const textureUnit = textureUnits; + + if ( textureUnit >= capabilities.maxTextures ) { + + console.warn( 'THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures ); + + } + + textureUnits += 1; + + return textureUnit; + + } + + function getTextureCacheKey( texture ) { + + const array = []; + + array.push( texture.wrapS ); + array.push( texture.wrapT ); + array.push( texture.wrapR || 0 ); + array.push( texture.magFilter ); + array.push( texture.minFilter ); + array.push( texture.anisotropy ); + array.push( texture.internalFormat ); + array.push( texture.format ); + array.push( texture.type ); + array.push( texture.generateMipmaps ); + array.push( texture.premultiplyAlpha ); + array.push( texture.flipY ); + array.push( texture.unpackAlignment ); + array.push( texture.colorSpace ); + + return array.join(); + + } + + // + + function setTexture2D( texture, slot ) { + + const textureProperties = properties.get( texture ); + + if ( texture.isVideoTexture ) updateVideoTexture( texture ); + + if ( texture.isRenderTargetTexture === false && texture.version > 0 && textureProperties.__version !== texture.version ) { + + const image = texture.image; + + if ( image === null ) { + + console.warn( 'THREE.WebGLRenderer: Texture marked for update but no image data found.' ); + + } else if ( image.complete === false ) { + + console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete' ); + + } else { + + uploadTexture( textureProperties, texture, slot ); + return; + + } + + } + + state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); + + } + + function setTexture2DArray( texture, slot ) { + + const textureProperties = properties.get( texture ); + + if ( texture.version > 0 && textureProperties.__version !== texture.version ) { + + uploadTexture( textureProperties, texture, slot ); + return; + + } + + state.bindTexture( _gl.TEXTURE_2D_ARRAY, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); + + } + + function setTexture3D( texture, slot ) { + + const textureProperties = properties.get( texture ); + + if ( texture.version > 0 && textureProperties.__version !== texture.version ) { + + uploadTexture( textureProperties, texture, slot ); + return; + + } + + state.bindTexture( _gl.TEXTURE_3D, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); + + } + + function setTextureCube( texture, slot ) { + + const textureProperties = properties.get( texture ); + + if ( texture.version > 0 && textureProperties.__version !== texture.version ) { + + uploadCubeTexture( textureProperties, texture, slot ); + return; + + } + + state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); + + } + + const wrappingToGL = { + [ RepeatWrapping ]: _gl.REPEAT, + [ ClampToEdgeWrapping ]: _gl.CLAMP_TO_EDGE, + [ MirroredRepeatWrapping ]: _gl.MIRRORED_REPEAT + }; + + const filterToGL = { + [ NearestFilter ]: _gl.NEAREST, + [ NearestMipmapNearestFilter ]: _gl.NEAREST_MIPMAP_NEAREST, + [ NearestMipmapLinearFilter ]: _gl.NEAREST_MIPMAP_LINEAR, + + [ LinearFilter ]: _gl.LINEAR, + [ LinearMipmapNearestFilter ]: _gl.LINEAR_MIPMAP_NEAREST, + [ LinearMipmapLinearFilter ]: _gl.LINEAR_MIPMAP_LINEAR + }; + + const compareToGL = { + [ NeverCompare ]: _gl.NEVER, + [ AlwaysCompare ]: _gl.ALWAYS, + [ LessCompare ]: _gl.LESS, + [ LessEqualCompare ]: _gl.LEQUAL, + [ EqualCompare ]: _gl.EQUAL, + [ GreaterEqualCompare ]: _gl.GEQUAL, + [ GreaterCompare ]: _gl.GREATER, + [ NotEqualCompare ]: _gl.NOTEQUAL + }; + + function setTextureParameters( textureType, texture ) { + + if ( texture.type === FloatType && extensions.has( 'OES_texture_float_linear' ) === false && + ( texture.magFilter === LinearFilter || texture.magFilter === LinearMipmapNearestFilter || texture.magFilter === NearestMipmapLinearFilter || texture.magFilter === LinearMipmapLinearFilter || + texture.minFilter === LinearFilter || texture.minFilter === LinearMipmapNearestFilter || texture.minFilter === NearestMipmapLinearFilter || texture.minFilter === LinearMipmapLinearFilter ) ) { + + console.warn( 'THREE.WebGLRenderer: Unable to use linear filtering with floating point textures. OES_texture_float_linear not supported on this device.' ); + + } + + _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, wrappingToGL[ texture.wrapS ] ); + _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, wrappingToGL[ texture.wrapT ] ); + + if ( textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY ) { + + _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_R, wrappingToGL[ texture.wrapR ] ); + + } + + _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterToGL[ texture.magFilter ] ); + _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterToGL[ texture.minFilter ] ); + + if ( texture.compareFunction ) { + + _gl.texParameteri( textureType, _gl.TEXTURE_COMPARE_MODE, _gl.COMPARE_REF_TO_TEXTURE ); + _gl.texParameteri( textureType, _gl.TEXTURE_COMPARE_FUNC, compareToGL[ texture.compareFunction ] ); + + } + + if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { + + if ( texture.magFilter === NearestFilter ) return; + if ( texture.minFilter !== NearestMipmapLinearFilter && texture.minFilter !== LinearMipmapLinearFilter ) return; + if ( texture.type === FloatType && extensions.has( 'OES_texture_float_linear' ) === false ) return; // verify extension + + if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) { + + const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); + _gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) ); + properties.get( texture ).__currentAnisotropy = texture.anisotropy; + + } + + } + + } + + function initTexture( textureProperties, texture ) { + + let forceUpload = false; + + if ( textureProperties.__webglInit === undefined ) { + + textureProperties.__webglInit = true; + + texture.addEventListener( 'dispose', onTextureDispose ); + + } + + // create Source <-> WebGLTextures mapping if necessary + + const source = texture.source; + let webglTextures = _sources.get( source ); + + if ( webglTextures === undefined ) { + + webglTextures = {}; + _sources.set( source, webglTextures ); + + } + + // check if there is already a WebGLTexture object for the given texture parameters + + const textureCacheKey = getTextureCacheKey( texture ); + + if ( textureCacheKey !== textureProperties.__cacheKey ) { + + // if not, create a new instance of WebGLTexture + + if ( webglTextures[ textureCacheKey ] === undefined ) { + + // create new entry + + webglTextures[ textureCacheKey ] = { + texture: _gl.createTexture(), + usedTimes: 0 + }; + + info.memory.textures ++; + + // when a new instance of WebGLTexture was created, a texture upload is required + // even if the image contents are identical + + forceUpload = true; + + } + + webglTextures[ textureCacheKey ].usedTimes ++; + + // every time the texture cache key changes, it's necessary to check if an instance of + // WebGLTexture can be deleted in order to avoid a memory leak. + + const webglTexture = webglTextures[ textureProperties.__cacheKey ]; + + if ( webglTexture !== undefined ) { + + webglTextures[ textureProperties.__cacheKey ].usedTimes --; + + if ( webglTexture.usedTimes === 0 ) { + + deleteTexture( texture ); + + } + + } + + // store references to cache key and WebGLTexture object + + textureProperties.__cacheKey = textureCacheKey; + textureProperties.__webglTexture = webglTextures[ textureCacheKey ].texture; + + } + + return forceUpload; + + } + + function getRow( index, rowLength, componentStride ) { + + return Math.floor( Math.floor( index / componentStride ) / rowLength ); + + } + + function updateTexture( texture, image, glFormat, glType ) { + + const componentStride = 4; // only RGBA supported + + const updateRanges = texture.updateRanges; + + if ( updateRanges.length === 0 ) { + + state.texSubImage2D( _gl.TEXTURE_2D, 0, 0, 0, image.width, image.height, glFormat, glType, image.data ); + + } else { + + // Before applying update ranges, we merge any adjacent / overlapping + // ranges to reduce load on `gl.texSubImage2D`. Empirically, this has led + // to performance improvements for applications which make heavy use of + // update ranges. Likely due to GPU command overhead. + // + // Note that to reduce garbage collection between frames, we merge the + // update ranges in-place. This is safe because this method will clear the + // update ranges once updated. + + updateRanges.sort( ( a, b ) => a.start - b.start ); + + // To merge the update ranges in-place, we work from left to right in the + // existing updateRanges array, merging ranges. This may result in a final + // array which is smaller than the original. This index tracks the last + // index representing a merged range, any data after this index can be + // trimmed once the merge algorithm is completed. + let mergeIndex = 0; + + for ( let i = 1; i < updateRanges.length; i ++ ) { + + const previousRange = updateRanges[ mergeIndex ]; + const range = updateRanges[ i ]; + + // Only merge if in the same row and overlapping/adjacent + const previousEnd = previousRange.start + previousRange.count; + const currentRow = getRow( range.start, image.width, componentStride ); + const previousRow = getRow( previousRange.start, image.width, componentStride ); + + // We add one here to merge adjacent ranges. This is safe because ranges + // operate over positive integers. + if ( + range.start <= previousEnd + 1 && + currentRow === previousRow && + getRow( range.start + range.count - 1, image.width, componentStride ) === currentRow // ensure range doesn't spill + ) { + + previousRange.count = Math.max( + previousRange.count, + range.start + range.count - previousRange.start + ); + + } else { + + ++ mergeIndex; + updateRanges[ mergeIndex ] = range; + + } + + + } + + // Trim the array to only contain the merged ranges. + updateRanges.length = mergeIndex + 1; + + const currentUnpackRowLen = _gl.getParameter( _gl.UNPACK_ROW_LENGTH ); + const currentUnpackSkipPixels = _gl.getParameter( _gl.UNPACK_SKIP_PIXELS ); + const currentUnpackSkipRows = _gl.getParameter( _gl.UNPACK_SKIP_ROWS ); + + _gl.pixelStorei( _gl.UNPACK_ROW_LENGTH, image.width ); + + for ( let i = 0, l = updateRanges.length; i < l; i ++ ) { + + const range = updateRanges[ i ]; + + const pixelStart = Math.floor( range.start / componentStride ); + const pixelCount = Math.ceil( range.count / componentStride ); + + const x = pixelStart % image.width; + const y = Math.floor( pixelStart / image.width ); + + // Assumes update ranges refer to contiguous memory + const width = pixelCount; + const height = 1; + + _gl.pixelStorei( _gl.UNPACK_SKIP_PIXELS, x ); + _gl.pixelStorei( _gl.UNPACK_SKIP_ROWS, y ); + + state.texSubImage2D( _gl.TEXTURE_2D, 0, x, y, width, height, glFormat, glType, image.data ); + + } + + texture.clearUpdateRanges(); + + _gl.pixelStorei( _gl.UNPACK_ROW_LENGTH, currentUnpackRowLen ); + _gl.pixelStorei( _gl.UNPACK_SKIP_PIXELS, currentUnpackSkipPixels ); + _gl.pixelStorei( _gl.UNPACK_SKIP_ROWS, currentUnpackSkipRows ); + + } + + } + + function uploadTexture( textureProperties, texture, slot ) { + + let textureType = _gl.TEXTURE_2D; + + if ( texture.isDataArrayTexture || texture.isCompressedArrayTexture ) textureType = _gl.TEXTURE_2D_ARRAY; + if ( texture.isData3DTexture ) textureType = _gl.TEXTURE_3D; + + const forceUpload = initTexture( textureProperties, texture ); + const source = texture.source; + + state.bindTexture( textureType, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); + + const sourceProperties = properties.get( source ); + + if ( source.version !== sourceProperties.__version || forceUpload === true ) { + + state.activeTexture( _gl.TEXTURE0 + slot ); + + const workingPrimaries = ColorManagement.getPrimaries( ColorManagement.workingColorSpace ); + const texturePrimaries = texture.colorSpace === NoColorSpace ? null : ColorManagement.getPrimaries( texture.colorSpace ); + const unpackConversion = texture.colorSpace === NoColorSpace || workingPrimaries === texturePrimaries ? _gl.NONE : _gl.BROWSER_DEFAULT_WEBGL; + + _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); + _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); + _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment ); + _gl.pixelStorei( _gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, unpackConversion ); + + let image = resizeImage( texture.image, false, capabilities.maxTextureSize ); + image = verifyColorSpace( texture, image ); + + const glFormat = utils.convert( texture.format, texture.colorSpace ); + + const glType = utils.convert( texture.type ); + let glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace, texture.isVideoTexture ); + + setTextureParameters( textureType, texture ); + + let mipmap; + const mipmaps = texture.mipmaps; + + const useTexStorage = ( texture.isVideoTexture !== true ); + const allocateMemory = ( sourceProperties.__version === undefined ) || ( forceUpload === true ); + const dataReady = source.dataReady; + const levels = getMipLevels( texture, image ); + + if ( texture.isDepthTexture ) { + + glInternalFormat = getInternalDepthFormat( texture.format === DepthStencilFormat, texture.type ); + + // + + if ( allocateMemory ) { + + if ( useTexStorage ) { + + state.texStorage2D( _gl.TEXTURE_2D, 1, glInternalFormat, image.width, image.height ); + + } else { + + state.texImage2D( _gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null ); + + } + + } + + } else if ( texture.isDataTexture ) { + + // use manually created mipmaps if available + // if there are no manual mipmaps + // set 0 level mipmap and then use GL to generate other mipmap levels + + if ( mipmaps.length > 0 ) { + + if ( useTexStorage && allocateMemory ) { + + state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, mipmaps[ 0 ].width, mipmaps[ 0 ].height ); + + } + + for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { + + mipmap = mipmaps[ i ]; + + if ( useTexStorage ) { + + if ( dataReady ) { + + state.texSubImage2D( _gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data ); + + } + + } else { + + state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); + + } + + } + + texture.generateMipmaps = false; + + } else { + + if ( useTexStorage ) { + + if ( allocateMemory ) { + + state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, image.width, image.height ); + + } + + if ( dataReady ) { + + updateTexture( texture, image, glFormat, glType ); + + } + + } else { + + state.texImage2D( _gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data ); + + } + + } + + } else if ( texture.isCompressedTexture ) { + + if ( texture.isCompressedArrayTexture ) { + + if ( useTexStorage && allocateMemory ) { + + state.texStorage3D( _gl.TEXTURE_2D_ARRAY, levels, glInternalFormat, mipmaps[ 0 ].width, mipmaps[ 0 ].height, image.depth ); + + } + + for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { + + mipmap = mipmaps[ i ]; + + if ( texture.format !== RGBAFormat ) { + + if ( glFormat !== null ) { + + if ( useTexStorage ) { + + if ( dataReady ) { + + if ( texture.layerUpdates.size > 0 ) { + + const layerByteLength = getByteLength( mipmap.width, mipmap.height, texture.format, texture.type ); + + for ( const layerIndex of texture.layerUpdates ) { + + const layerData = mipmap.data.subarray( + layerIndex * layerByteLength / mipmap.data.BYTES_PER_ELEMENT, + ( layerIndex + 1 ) * layerByteLength / mipmap.data.BYTES_PER_ELEMENT + ); + state.compressedTexSubImage3D( _gl.TEXTURE_2D_ARRAY, i, 0, 0, layerIndex, mipmap.width, mipmap.height, 1, glFormat, layerData ); + + } + + texture.clearLayerUpdates(); + + } else { + + state.compressedTexSubImage3D( _gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, mipmap.data ); + + } + + } + + } else { + + state.compressedTexImage3D( _gl.TEXTURE_2D_ARRAY, i, glInternalFormat, mipmap.width, mipmap.height, image.depth, 0, mipmap.data, 0, 0 ); + + } + + } else { + + console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' ); + + } + + } else { + + if ( useTexStorage ) { + + if ( dataReady ) { + + state.texSubImage3D( _gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, glType, mipmap.data ); + + } + + } else { + + state.texImage3D( _gl.TEXTURE_2D_ARRAY, i, glInternalFormat, mipmap.width, mipmap.height, image.depth, 0, glFormat, glType, mipmap.data ); + + } + + } + + } + + } else { + + if ( useTexStorage && allocateMemory ) { + + state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, mipmaps[ 0 ].width, mipmaps[ 0 ].height ); + + } + + for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { + + mipmap = mipmaps[ i ]; + + if ( texture.format !== RGBAFormat ) { + + if ( glFormat !== null ) { + + if ( useTexStorage ) { + + if ( dataReady ) { + + state.compressedTexSubImage2D( _gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data ); + + } + + } else { + + state.compressedTexImage2D( _gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); + + } + + } else { + + console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' ); + + } + + } else { + + if ( useTexStorage ) { + + if ( dataReady ) { + + state.texSubImage2D( _gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data ); + + } + + } else { + + state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); + + } + + } + + } + + } + + } else if ( texture.isDataArrayTexture ) { + + if ( useTexStorage ) { + + if ( allocateMemory ) { + + state.texStorage3D( _gl.TEXTURE_2D_ARRAY, levels, glInternalFormat, image.width, image.height, image.depth ); + + } + + if ( dataReady ) { + + if ( texture.layerUpdates.size > 0 ) { + + const layerByteLength = getByteLength( image.width, image.height, texture.format, texture.type ); + + for ( const layerIndex of texture.layerUpdates ) { + + const layerData = image.data.subarray( + layerIndex * layerByteLength / image.data.BYTES_PER_ELEMENT, + ( layerIndex + 1 ) * layerByteLength / image.data.BYTES_PER_ELEMENT + ); + state.texSubImage3D( _gl.TEXTURE_2D_ARRAY, 0, 0, 0, layerIndex, image.width, image.height, 1, glFormat, glType, layerData ); + + } + + texture.clearLayerUpdates(); + + } else { + + state.texSubImage3D( _gl.TEXTURE_2D_ARRAY, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data ); + + } + + } + + } else { + + state.texImage3D( _gl.TEXTURE_2D_ARRAY, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); + + } + + } else if ( texture.isData3DTexture ) { + + if ( useTexStorage ) { + + if ( allocateMemory ) { + + state.texStorage3D( _gl.TEXTURE_3D, levels, glInternalFormat, image.width, image.height, image.depth ); + + } + + if ( dataReady ) { + + state.texSubImage3D( _gl.TEXTURE_3D, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data ); + + } + + } else { + + state.texImage3D( _gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); + + } + + } else if ( texture.isFramebufferTexture ) { + + if ( allocateMemory ) { + + if ( useTexStorage ) { + + state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, image.width, image.height ); + + } else { + + let width = image.width, height = image.height; + + for ( let i = 0; i < levels; i ++ ) { + + state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, width, height, 0, glFormat, glType, null ); + + width >>= 1; + height >>= 1; + + } + + } + + } + + } else { + + // regular Texture (image, video, canvas) + + // use manually created mipmaps if available + // if there are no manual mipmaps + // set 0 level mipmap and then use GL to generate other mipmap levels + + if ( mipmaps.length > 0 ) { + + if ( useTexStorage && allocateMemory ) { + + const dimensions = getDimensions( mipmaps[ 0 ] ); + + state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, dimensions.width, dimensions.height ); + + } + + for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { + + mipmap = mipmaps[ i ]; + + if ( useTexStorage ) { + + if ( dataReady ) { + + state.texSubImage2D( _gl.TEXTURE_2D, i, 0, 0, glFormat, glType, mipmap ); + + } + + } else { + + state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap ); + + } + + } + + texture.generateMipmaps = false; + + } else { + + if ( useTexStorage ) { + + if ( allocateMemory ) { + + const dimensions = getDimensions( image ); + + state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, dimensions.width, dimensions.height ); + + } + + if ( dataReady ) { + + state.texSubImage2D( _gl.TEXTURE_2D, 0, 0, 0, glFormat, glType, image ); + + } + + } else { + + state.texImage2D( _gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image ); + + } + + } + + } + + if ( textureNeedsGenerateMipmaps( texture ) ) { + + generateMipmap( textureType ); + + } + + sourceProperties.__version = source.version; + + if ( texture.onUpdate ) texture.onUpdate( texture ); + + } + + textureProperties.__version = texture.version; + + } + + function uploadCubeTexture( textureProperties, texture, slot ) { + + if ( texture.image.length !== 6 ) return; + + const forceUpload = initTexture( textureProperties, texture ); + const source = texture.source; + + state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); + + const sourceProperties = properties.get( source ); + + if ( source.version !== sourceProperties.__version || forceUpload === true ) { + + state.activeTexture( _gl.TEXTURE0 + slot ); + + const workingPrimaries = ColorManagement.getPrimaries( ColorManagement.workingColorSpace ); + const texturePrimaries = texture.colorSpace === NoColorSpace ? null : ColorManagement.getPrimaries( texture.colorSpace ); + const unpackConversion = texture.colorSpace === NoColorSpace || workingPrimaries === texturePrimaries ? _gl.NONE : _gl.BROWSER_DEFAULT_WEBGL; + + _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); + _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); + _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment ); + _gl.pixelStorei( _gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, unpackConversion ); + + const isCompressed = ( texture.isCompressedTexture || texture.image[ 0 ].isCompressedTexture ); + const isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture ); + + const cubeImage = []; + + for ( let i = 0; i < 6; i ++ ) { + + if ( ! isCompressed && ! isDataTexture ) { + + cubeImage[ i ] = resizeImage( texture.image[ i ], true, capabilities.maxCubemapSize ); + + } else { + + cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ]; + + } + + cubeImage[ i ] = verifyColorSpace( texture, cubeImage[ i ] ); + + } + + const image = cubeImage[ 0 ], + glFormat = utils.convert( texture.format, texture.colorSpace ), + glType = utils.convert( texture.type ), + glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace ); + + const useTexStorage = ( texture.isVideoTexture !== true ); + const allocateMemory = ( sourceProperties.__version === undefined ) || ( forceUpload === true ); + const dataReady = source.dataReady; + let levels = getMipLevels( texture, image ); + + setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture ); + + let mipmaps; + + if ( isCompressed ) { + + if ( useTexStorage && allocateMemory ) { + + state.texStorage2D( _gl.TEXTURE_CUBE_MAP, levels, glInternalFormat, image.width, image.height ); + + } + + for ( let i = 0; i < 6; i ++ ) { + + mipmaps = cubeImage[ i ].mipmaps; + + for ( let j = 0; j < mipmaps.length; j ++ ) { + + const mipmap = mipmaps[ j ]; + + if ( texture.format !== RGBAFormat ) { + + if ( glFormat !== null ) { + + if ( useTexStorage ) { + + if ( dataReady ) { + + state.compressedTexSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data ); + + } + + } else { + + state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); + + } + + } else { + + console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' ); + + } + + } else { + + if ( useTexStorage ) { + + if ( dataReady ) { + + state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data ); + + } + + } else { + + state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); + + } + + } + + } + + } + + } else { + + mipmaps = texture.mipmaps; + + if ( useTexStorage && allocateMemory ) { + + // TODO: Uniformly handle mipmap definitions + // Normal textures and compressed cube textures define base level + mips with their mipmap array + // Uncompressed cube textures use their mipmap array only for mips (no base level) + + if ( mipmaps.length > 0 ) levels ++; + + const dimensions = getDimensions( cubeImage[ 0 ] ); + + state.texStorage2D( _gl.TEXTURE_CUBE_MAP, levels, glInternalFormat, dimensions.width, dimensions.height ); + + } + + for ( let i = 0; i < 6; i ++ ) { + + if ( isDataTexture ) { + + if ( useTexStorage ) { + + if ( dataReady ) { + + state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, cubeImage[ i ].width, cubeImage[ i ].height, glFormat, glType, cubeImage[ i ].data ); + + } + + } else { + + state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data ); + + } + + for ( let j = 0; j < mipmaps.length; j ++ ) { + + const mipmap = mipmaps[ j ]; + const mipmapImage = mipmap.image[ i ].image; + + if ( useTexStorage ) { + + if ( dataReady ) { + + state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, 0, 0, mipmapImage.width, mipmapImage.height, glFormat, glType, mipmapImage.data ); + + } + + } else { + + state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data ); + + } + + } + + } else { + + if ( useTexStorage ) { + + if ( dataReady ) { + + state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, glFormat, glType, cubeImage[ i ] ); + + } + + } else { + + state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[ i ] ); + + } + + for ( let j = 0; j < mipmaps.length; j ++ ) { + + const mipmap = mipmaps[ j ]; + + if ( useTexStorage ) { + + if ( dataReady ) { + + state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, 0, 0, glFormat, glType, mipmap.image[ i ] ); + + } + + } else { + + state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[ i ] ); + + } + + } + + } + + } + + } + + if ( textureNeedsGenerateMipmaps( texture ) ) { + + // We assume images for cube map have the same size. + generateMipmap( _gl.TEXTURE_CUBE_MAP ); + + } + + sourceProperties.__version = source.version; + + if ( texture.onUpdate ) texture.onUpdate( texture ); + + } + + textureProperties.__version = texture.version; + + } + + // Render targets + + // Setup storage for target texture and bind it to correct framebuffer + function setupFrameBufferTexture( framebuffer, renderTarget, texture, attachment, textureTarget, level ) { + + const glFormat = utils.convert( texture.format, texture.colorSpace ); + const glType = utils.convert( texture.type ); + const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace ); + const renderTargetProperties = properties.get( renderTarget ); + const textureProperties = properties.get( texture ); + + textureProperties.__renderTarget = renderTarget; + + if ( ! renderTargetProperties.__hasExternalTextures ) { + + const width = Math.max( 1, renderTarget.width >> level ); + const height = Math.max( 1, renderTarget.height >> level ); + + if ( textureTarget === _gl.TEXTURE_3D || textureTarget === _gl.TEXTURE_2D_ARRAY ) { + + state.texImage3D( textureTarget, level, glInternalFormat, width, height, renderTarget.depth, 0, glFormat, glType, null ); + + } else { + + state.texImage2D( textureTarget, level, glInternalFormat, width, height, 0, glFormat, glType, null ); + + } + + } + + state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); + + if ( useMultisampledRTT( renderTarget ) ) { + + multisampledRTTExt.framebufferTexture2DMultisampleEXT( _gl.FRAMEBUFFER, attachment, textureTarget, textureProperties.__webglTexture, 0, getRenderTargetSamples( renderTarget ) ); + + } else if ( textureTarget === _gl.TEXTURE_2D || ( textureTarget >= _gl.TEXTURE_CUBE_MAP_POSITIVE_X && textureTarget <= _gl.TEXTURE_CUBE_MAP_NEGATIVE_Z ) ) { // see #24753 + + _gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, textureProperties.__webglTexture, level ); + + } + + state.bindFramebuffer( _gl.FRAMEBUFFER, null ); + + } + + // Setup storage for internal depth/stencil buffers and bind to correct framebuffer + function setupRenderBufferStorage( renderbuffer, renderTarget, isMultisample ) { + + _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); + + if ( renderTarget.depthBuffer ) { + + // retrieve the depth attachment types + const depthTexture = renderTarget.depthTexture; + const depthType = depthTexture && depthTexture.isDepthTexture ? depthTexture.type : null; + const glInternalFormat = getInternalDepthFormat( renderTarget.stencilBuffer, depthType ); + const glAttachmentType = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; + + // set up the attachment + const samples = getRenderTargetSamples( renderTarget ); + const isUseMultisampledRTT = useMultisampledRTT( renderTarget ); + if ( isUseMultisampledRTT ) { + + multisampledRTTExt.renderbufferStorageMultisampleEXT( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); + + } else if ( isMultisample ) { + + _gl.renderbufferStorageMultisample( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); + + } else { + + _gl.renderbufferStorage( _gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height ); + + } + + _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, glAttachmentType, _gl.RENDERBUFFER, renderbuffer ); + + } else { + + const textures = renderTarget.textures; + + for ( let i = 0; i < textures.length; i ++ ) { + + const texture = textures[ i ]; + + const glFormat = utils.convert( texture.format, texture.colorSpace ); + const glType = utils.convert( texture.type ); + const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace ); + const samples = getRenderTargetSamples( renderTarget ); + + if ( isMultisample && useMultisampledRTT( renderTarget ) === false ) { + + _gl.renderbufferStorageMultisample( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); + + } else if ( useMultisampledRTT( renderTarget ) ) { + + multisampledRTTExt.renderbufferStorageMultisampleEXT( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); + + } else { + + _gl.renderbufferStorage( _gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height ); + + } + + } + + } + + _gl.bindRenderbuffer( _gl.RENDERBUFFER, null ); + + } + + // Setup resources for a Depth Texture for a FBO (needs an extension) + function setupDepthTexture( framebuffer, renderTarget ) { + + const isCube = ( renderTarget && renderTarget.isWebGLCubeRenderTarget ); + if ( isCube ) throw new Error( 'Depth Texture with cube render targets is not supported' ); + + state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); + + if ( ! ( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) { + + throw new Error( 'renderTarget.depthTexture must be an instance of THREE.DepthTexture' ); + + } + + const textureProperties = properties.get( renderTarget.depthTexture ); + textureProperties.__renderTarget = renderTarget; + + // upload an empty depth texture with framebuffer size + if ( ! textureProperties.__webglTexture || + renderTarget.depthTexture.image.width !== renderTarget.width || + renderTarget.depthTexture.image.height !== renderTarget.height ) { + + renderTarget.depthTexture.image.width = renderTarget.width; + renderTarget.depthTexture.image.height = renderTarget.height; + renderTarget.depthTexture.needsUpdate = true; + + } + + setTexture2D( renderTarget.depthTexture, 0 ); + + const webglDepthTexture = textureProperties.__webglTexture; + const samples = getRenderTargetSamples( renderTarget ); + + if ( renderTarget.depthTexture.format === DepthFormat ) { + + if ( useMultisampledRTT( renderTarget ) ) { + + multisampledRTTExt.framebufferTexture2DMultisampleEXT( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0, samples ); + + } else { + + _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 ); + + } + + } else if ( renderTarget.depthTexture.format === DepthStencilFormat ) { + + if ( useMultisampledRTT( renderTarget ) ) { + + multisampledRTTExt.framebufferTexture2DMultisampleEXT( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0, samples ); + + } else { + + _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 ); + + } + + } else { + + throw new Error( 'Unknown depthTexture format' ); + + } + + } + + // Setup GL resources for a non-texture depth buffer + function setupDepthRenderbuffer( renderTarget ) { + + const renderTargetProperties = properties.get( renderTarget ); + const isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); + + // if the bound depth texture has changed + if ( renderTargetProperties.__boundDepthTexture !== renderTarget.depthTexture ) { + + // fire the dispose event to get rid of stored state associated with the previously bound depth buffer + const depthTexture = renderTarget.depthTexture; + if ( renderTargetProperties.__depthDisposeCallback ) { + + renderTargetProperties.__depthDisposeCallback(); + + } + + // set up dispose listeners to track when the currently attached buffer is implicitly unbound + if ( depthTexture ) { + + const disposeEvent = () => { + + delete renderTargetProperties.__boundDepthTexture; + delete renderTargetProperties.__depthDisposeCallback; + depthTexture.removeEventListener( 'dispose', disposeEvent ); + + }; + + depthTexture.addEventListener( 'dispose', disposeEvent ); + renderTargetProperties.__depthDisposeCallback = disposeEvent; + + } + + renderTargetProperties.__boundDepthTexture = depthTexture; + + } + + if ( renderTarget.depthTexture && ! renderTargetProperties.__autoAllocateDepthBuffer ) { + + if ( isCube ) throw new Error( 'target.depthTexture not supported in Cube render targets' ); + + const mipmaps = renderTarget.texture.mipmaps; + + if ( mipmaps && mipmaps.length > 0 ) { + + setupDepthTexture( renderTargetProperties.__webglFramebuffer[ 0 ], renderTarget ); + + } else { + + setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget ); + + } + + } else { + + if ( isCube ) { + + renderTargetProperties.__webglDepthbuffer = []; + + for ( let i = 0; i < 6; i ++ ) { + + state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ i ] ); + + if ( renderTargetProperties.__webglDepthbuffer[ i ] === undefined ) { + + renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer(); + setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget, false ); + + } else { + + // attach buffer if it's been created already + const glAttachmentType = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; + const renderbuffer = renderTargetProperties.__webglDepthbuffer[ i ]; + _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); + _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, glAttachmentType, _gl.RENDERBUFFER, renderbuffer ); + + } + + } + + } else { + + const mipmaps = renderTarget.texture.mipmaps; + + if ( mipmaps && mipmaps.length > 0 ) { + + state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ 0 ] ); + + } else { + + state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); + + } + + if ( renderTargetProperties.__webglDepthbuffer === undefined ) { + + renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); + setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget, false ); + + } else { + + // attach buffer if it's been created already + const glAttachmentType = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; + const renderbuffer = renderTargetProperties.__webglDepthbuffer; + _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); + _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, glAttachmentType, _gl.RENDERBUFFER, renderbuffer ); + + } + + } + + } + + state.bindFramebuffer( _gl.FRAMEBUFFER, null ); + + } + + // rebind framebuffer with external textures + function rebindTextures( renderTarget, colorTexture, depthTexture ) { + + const renderTargetProperties = properties.get( renderTarget ); + + if ( colorTexture !== undefined ) { + + setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, renderTarget.texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, 0 ); + + } + + if ( depthTexture !== undefined ) { + + setupDepthRenderbuffer( renderTarget ); + + } + + } + + // Set up GL resources for the render target + function setupRenderTarget( renderTarget ) { + + const texture = renderTarget.texture; + + const renderTargetProperties = properties.get( renderTarget ); + const textureProperties = properties.get( texture ); + + renderTarget.addEventListener( 'dispose', onRenderTargetDispose ); + + const textures = renderTarget.textures; + + const isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); + const isMultipleRenderTargets = ( textures.length > 1 ); + + if ( ! isMultipleRenderTargets ) { + + if ( textureProperties.__webglTexture === undefined ) { + + textureProperties.__webglTexture = _gl.createTexture(); + + } + + textureProperties.__version = texture.version; + info.memory.textures ++; + + } + + // Setup framebuffer + + if ( isCube ) { + + renderTargetProperties.__webglFramebuffer = []; + + for ( let i = 0; i < 6; i ++ ) { + + if ( texture.mipmaps && texture.mipmaps.length > 0 ) { + + renderTargetProperties.__webglFramebuffer[ i ] = []; + + for ( let level = 0; level < texture.mipmaps.length; level ++ ) { + + renderTargetProperties.__webglFramebuffer[ i ][ level ] = _gl.createFramebuffer(); + + } + + } else { + + renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer(); + + } + + } + + } else { + + if ( texture.mipmaps && texture.mipmaps.length > 0 ) { + + renderTargetProperties.__webglFramebuffer = []; + + for ( let level = 0; level < texture.mipmaps.length; level ++ ) { + + renderTargetProperties.__webglFramebuffer[ level ] = _gl.createFramebuffer(); + + } + + } else { + + renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); + + } + + if ( isMultipleRenderTargets ) { + + for ( let i = 0, il = textures.length; i < il; i ++ ) { + + const attachmentProperties = properties.get( textures[ i ] ); + + if ( attachmentProperties.__webglTexture === undefined ) { + + attachmentProperties.__webglTexture = _gl.createTexture(); + + info.memory.textures ++; + + } + + } + + } + + if ( ( renderTarget.samples > 0 ) && useMultisampledRTT( renderTarget ) === false ) { + + renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer(); + renderTargetProperties.__webglColorRenderbuffer = []; + + state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); + + for ( let i = 0; i < textures.length; i ++ ) { + + const texture = textures[ i ]; + renderTargetProperties.__webglColorRenderbuffer[ i ] = _gl.createRenderbuffer(); + + _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[ i ] ); + + const glFormat = utils.convert( texture.format, texture.colorSpace ); + const glType = utils.convert( texture.type ); + const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace, renderTarget.isXRRenderTarget === true ); + const samples = getRenderTargetSamples( renderTarget ); + _gl.renderbufferStorageMultisample( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); + + _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[ i ] ); + + } + + _gl.bindRenderbuffer( _gl.RENDERBUFFER, null ); + + if ( renderTarget.depthBuffer ) { + + renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer(); + setupRenderBufferStorage( renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true ); + + } + + state.bindFramebuffer( _gl.FRAMEBUFFER, null ); + + } + + } + + // Setup color buffer + + if ( isCube ) { + + state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture ); + setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture ); + + for ( let i = 0; i < 6; i ++ ) { + + if ( texture.mipmaps && texture.mipmaps.length > 0 ) { + + for ( let level = 0; level < texture.mipmaps.length; level ++ ) { + + setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ][ level ], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, level ); + + } + + } else { + + setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0 ); + + } + + } + + if ( textureNeedsGenerateMipmaps( texture ) ) { + + generateMipmap( _gl.TEXTURE_CUBE_MAP ); + + } + + state.unbindTexture(); + + } else if ( isMultipleRenderTargets ) { + + for ( let i = 0, il = textures.length; i < il; i ++ ) { + + const attachment = textures[ i ]; + const attachmentProperties = properties.get( attachment ); + + state.bindTexture( _gl.TEXTURE_2D, attachmentProperties.__webglTexture ); + setTextureParameters( _gl.TEXTURE_2D, attachment ); + setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, attachment, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D, 0 ); + + if ( textureNeedsGenerateMipmaps( attachment ) ) { + + generateMipmap( _gl.TEXTURE_2D ); + + } + + } + + state.unbindTexture(); + + } else { + + let glTextureType = _gl.TEXTURE_2D; + + if ( renderTarget.isWebGL3DRenderTarget || renderTarget.isWebGLArrayRenderTarget ) { + + glTextureType = renderTarget.isWebGL3DRenderTarget ? _gl.TEXTURE_3D : _gl.TEXTURE_2D_ARRAY; + + } + + state.bindTexture( glTextureType, textureProperties.__webglTexture ); + setTextureParameters( glTextureType, texture ); + + if ( texture.mipmaps && texture.mipmaps.length > 0 ) { + + for ( let level = 0; level < texture.mipmaps.length; level ++ ) { + + setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ level ], renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType, level ); + + } + + } else { + + setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType, 0 ); + + } + + if ( textureNeedsGenerateMipmaps( texture ) ) { + + generateMipmap( glTextureType ); + + } + + state.unbindTexture(); + + } + + // Setup depth and stencil buffers + + if ( renderTarget.depthBuffer ) { + + setupDepthRenderbuffer( renderTarget ); + + } + + } + + function updateRenderTargetMipmap( renderTarget ) { + + const textures = renderTarget.textures; + + for ( let i = 0, il = textures.length; i < il; i ++ ) { + + const texture = textures[ i ]; + + if ( textureNeedsGenerateMipmaps( texture ) ) { + + const targetType = getTargetType( renderTarget ); + const webglTexture = properties.get( texture ).__webglTexture; + + state.bindTexture( targetType, webglTexture ); + generateMipmap( targetType ); + state.unbindTexture(); + + } + + } + + } + + const invalidationArrayRead = []; + const invalidationArrayDraw = []; + + function updateMultisampleRenderTarget( renderTarget ) { + + if ( renderTarget.samples > 0 ) { + + if ( useMultisampledRTT( renderTarget ) === false ) { + + const textures = renderTarget.textures; + const width = renderTarget.width; + const height = renderTarget.height; + let mask = _gl.COLOR_BUFFER_BIT; + const depthStyle = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; + const renderTargetProperties = properties.get( renderTarget ); + const isMultipleRenderTargets = ( textures.length > 1 ); + + // If MRT we need to remove FBO attachments + if ( isMultipleRenderTargets ) { + + for ( let i = 0; i < textures.length; i ++ ) { + + state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); + _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.RENDERBUFFER, null ); + + state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); + _gl.framebufferTexture2D( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D, null, 0 ); + + } + + } + + state.bindFramebuffer( _gl.READ_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); + + const mipmaps = renderTarget.texture.mipmaps; + + if ( mipmaps && mipmaps.length > 0 ) { + + state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ 0 ] ); + + } else { + + state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); + + } + + for ( let i = 0; i < textures.length; i ++ ) { + + if ( renderTarget.resolveDepthBuffer ) { + + if ( renderTarget.depthBuffer ) mask |= _gl.DEPTH_BUFFER_BIT; + + // resolving stencil is slow with a D3D backend. disable it for all transmission render targets (see #27799) + + if ( renderTarget.stencilBuffer && renderTarget.resolveStencilBuffer ) mask |= _gl.STENCIL_BUFFER_BIT; + + } + + if ( isMultipleRenderTargets ) { + + _gl.framebufferRenderbuffer( _gl.READ_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[ i ] ); + + const webglTexture = properties.get( textures[ i ] ).__webglTexture; + _gl.framebufferTexture2D( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, webglTexture, 0 ); + + } + + _gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, _gl.NEAREST ); + + if ( supportsInvalidateFramebuffer === true ) { + + invalidationArrayRead.length = 0; + invalidationArrayDraw.length = 0; + + invalidationArrayRead.push( _gl.COLOR_ATTACHMENT0 + i ); + + if ( renderTarget.depthBuffer && renderTarget.resolveDepthBuffer === false ) { + + invalidationArrayRead.push( depthStyle ); + invalidationArrayDraw.push( depthStyle ); + + _gl.invalidateFramebuffer( _gl.DRAW_FRAMEBUFFER, invalidationArrayDraw ); + + } + + _gl.invalidateFramebuffer( _gl.READ_FRAMEBUFFER, invalidationArrayRead ); + + } + + } + + state.bindFramebuffer( _gl.READ_FRAMEBUFFER, null ); + state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, null ); + + // If MRT since pre-blit we removed the FBO we need to reconstruct the attachments + if ( isMultipleRenderTargets ) { + + for ( let i = 0; i < textures.length; i ++ ) { + + state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); + _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[ i ] ); + + const webglTexture = properties.get( textures[ i ] ).__webglTexture; + + state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); + _gl.framebufferTexture2D( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D, webglTexture, 0 ); + + } + + } + + state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); + + } else { + + if ( renderTarget.depthBuffer && renderTarget.resolveDepthBuffer === false && supportsInvalidateFramebuffer ) { + + const depthStyle = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; + + _gl.invalidateFramebuffer( _gl.DRAW_FRAMEBUFFER, [ depthStyle ] ); + + } + + } + + } + + } + + function getRenderTargetSamples( renderTarget ) { + + return Math.min( capabilities.maxSamples, renderTarget.samples ); + + } + + function useMultisampledRTT( renderTarget ) { + + const renderTargetProperties = properties.get( renderTarget ); + + return renderTarget.samples > 0 && extensions.has( 'WEBGL_multisampled_render_to_texture' ) === true && renderTargetProperties.__useRenderToTexture !== false; + + } + + function updateVideoTexture( texture ) { + + const frame = info.render.frame; + + // Check the last frame we updated the VideoTexture + + if ( _videoTextures.get( texture ) !== frame ) { + + _videoTextures.set( texture, frame ); + texture.update(); + + } + + } + + function verifyColorSpace( texture, image ) { + + const colorSpace = texture.colorSpace; + const format = texture.format; + const type = texture.type; + + if ( texture.isCompressedTexture === true || texture.isVideoTexture === true ) return image; + + if ( colorSpace !== LinearSRGBColorSpace && colorSpace !== NoColorSpace ) { + + // sRGB + + if ( ColorManagement.getTransfer( colorSpace ) === SRGBTransfer ) { + + // in WebGL 2 uncompressed textures can only be sRGB encoded if they have the RGBA8 format + + if ( format !== RGBAFormat || type !== UnsignedByteType ) { + + console.warn( 'THREE.WebGLTextures: sRGB encoded textures have to use RGBAFormat and UnsignedByteType.' ); + + } + + } else { + + console.error( 'THREE.WebGLTextures: Unsupported texture color space:', colorSpace ); + + } + + } + + return image; + + } + + function getDimensions( image ) { + + if ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) { + + // if intrinsic data are not available, fallback to width/height + + _imageDimensions.width = image.naturalWidth || image.width; + _imageDimensions.height = image.naturalHeight || image.height; + + } else if ( typeof VideoFrame !== 'undefined' && image instanceof VideoFrame ) { + + _imageDimensions.width = image.displayWidth; + _imageDimensions.height = image.displayHeight; + + } else { + + _imageDimensions.width = image.width; + _imageDimensions.height = image.height; + + } + + return _imageDimensions; + + } + + // + + this.allocateTextureUnit = allocateTextureUnit; + this.resetTextureUnits = resetTextureUnits; + + this.setTexture2D = setTexture2D; + this.setTexture2DArray = setTexture2DArray; + this.setTexture3D = setTexture3D; + this.setTextureCube = setTextureCube; + this.rebindTextures = rebindTextures; + this.setupRenderTarget = setupRenderTarget; + this.updateRenderTargetMipmap = updateRenderTargetMipmap; + this.updateMultisampleRenderTarget = updateMultisampleRenderTarget; + this.setupDepthRenderbuffer = setupDepthRenderbuffer; + this.setupFrameBufferTexture = setupFrameBufferTexture; + this.useMultisampledRTT = useMultisampledRTT; + +} + +function WebGLUtils( gl, extensions ) { + + function convert( p, colorSpace = NoColorSpace ) { + + let extension; + + const transfer = ColorManagement.getTransfer( colorSpace ); + + if ( p === UnsignedByteType ) return gl.UNSIGNED_BYTE; + if ( p === UnsignedShort4444Type ) return gl.UNSIGNED_SHORT_4_4_4_4; + if ( p === UnsignedShort5551Type ) return gl.UNSIGNED_SHORT_5_5_5_1; + if ( p === UnsignedInt5999Type ) return gl.UNSIGNED_INT_5_9_9_9_REV; + + if ( p === ByteType ) return gl.BYTE; + if ( p === ShortType ) return gl.SHORT; + if ( p === UnsignedShortType ) return gl.UNSIGNED_SHORT; + if ( p === IntType ) return gl.INT; + if ( p === UnsignedIntType ) return gl.UNSIGNED_INT; + if ( p === FloatType ) return gl.FLOAT; + if ( p === HalfFloatType ) return gl.HALF_FLOAT; + + if ( p === AlphaFormat ) return gl.ALPHA; + if ( p === RGBFormat ) return gl.RGB; + if ( p === RGBAFormat ) return gl.RGBA; + if ( p === DepthFormat ) return gl.DEPTH_COMPONENT; + if ( p === DepthStencilFormat ) return gl.DEPTH_STENCIL; + + // WebGL2 formats. + + if ( p === RedFormat ) return gl.RED; + if ( p === RedIntegerFormat ) return gl.RED_INTEGER; + if ( p === RGFormat ) return gl.RG; + if ( p === RGIntegerFormat ) return gl.RG_INTEGER; + if ( p === RGBAIntegerFormat ) return gl.RGBA_INTEGER; + + // S3TC + + if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) { + + if ( transfer === SRGBTransfer ) { + + extension = extensions.get( 'WEBGL_compressed_texture_s3tc_srgb' ); + + if ( extension !== null ) { + + if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_S3TC_DXT1_EXT; + if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT; + if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT; + if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT; + + } else { + + return null; + + } + + } else { + + extension = extensions.get( 'WEBGL_compressed_texture_s3tc' ); + + if ( extension !== null ) { + + if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; + if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; + if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; + if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; + + } else { + + return null; + + } + + } + + } + + // PVRTC + + if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' ); + + if ( extension !== null ) { + + if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; + if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; + if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; + if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; + + } else { + + return null; + + } + + } + + // ETC + + if ( p === RGB_ETC1_Format || p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_etc' ); + + if ( extension !== null ) { + + if ( p === RGB_ETC1_Format || p === RGB_ETC2_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ETC2 : extension.COMPRESSED_RGB8_ETC2; + if ( p === RGBA_ETC2_EAC_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ETC2_EAC : extension.COMPRESSED_RGBA8_ETC2_EAC; + + } else { + + return null; + + } + + } + + // ASTC + + if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || + p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || + p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || + p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || + p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_astc' ); + + if ( extension !== null ) { + + if ( p === RGBA_ASTC_4x4_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR : extension.COMPRESSED_RGBA_ASTC_4x4_KHR; + if ( p === RGBA_ASTC_5x4_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR : extension.COMPRESSED_RGBA_ASTC_5x4_KHR; + if ( p === RGBA_ASTC_5x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR : extension.COMPRESSED_RGBA_ASTC_5x5_KHR; + if ( p === RGBA_ASTC_6x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR : extension.COMPRESSED_RGBA_ASTC_6x5_KHR; + if ( p === RGBA_ASTC_6x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR : extension.COMPRESSED_RGBA_ASTC_6x6_KHR; + if ( p === RGBA_ASTC_8x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR : extension.COMPRESSED_RGBA_ASTC_8x5_KHR; + if ( p === RGBA_ASTC_8x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR : extension.COMPRESSED_RGBA_ASTC_8x6_KHR; + if ( p === RGBA_ASTC_8x8_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR : extension.COMPRESSED_RGBA_ASTC_8x8_KHR; + if ( p === RGBA_ASTC_10x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR : extension.COMPRESSED_RGBA_ASTC_10x5_KHR; + if ( p === RGBA_ASTC_10x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR : extension.COMPRESSED_RGBA_ASTC_10x6_KHR; + if ( p === RGBA_ASTC_10x8_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR : extension.COMPRESSED_RGBA_ASTC_10x8_KHR; + if ( p === RGBA_ASTC_10x10_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR : extension.COMPRESSED_RGBA_ASTC_10x10_KHR; + if ( p === RGBA_ASTC_12x10_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR : extension.COMPRESSED_RGBA_ASTC_12x10_KHR; + if ( p === RGBA_ASTC_12x12_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR : extension.COMPRESSED_RGBA_ASTC_12x12_KHR; + + } else { + + return null; + + } + + } + + // BPTC + + if ( p === RGBA_BPTC_Format || p === RGB_BPTC_SIGNED_Format || p === RGB_BPTC_UNSIGNED_Format ) { + + extension = extensions.get( 'EXT_texture_compression_bptc' ); + + if ( extension !== null ) { + + if ( p === RGBA_BPTC_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB_ALPHA_BPTC_UNORM_EXT : extension.COMPRESSED_RGBA_BPTC_UNORM_EXT; + if ( p === RGB_BPTC_SIGNED_Format ) return extension.COMPRESSED_RGB_BPTC_SIGNED_FLOAT_EXT; + if ( p === RGB_BPTC_UNSIGNED_Format ) return extension.COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_EXT; + + } else { + + return null; + + } + + } + + // RGTC + + if ( p === RED_RGTC1_Format || p === SIGNED_RED_RGTC1_Format || p === RED_GREEN_RGTC2_Format || p === SIGNED_RED_GREEN_RGTC2_Format ) { + + extension = extensions.get( 'EXT_texture_compression_rgtc' ); + + if ( extension !== null ) { + + if ( p === RGBA_BPTC_Format ) return extension.COMPRESSED_RED_RGTC1_EXT; + if ( p === SIGNED_RED_RGTC1_Format ) return extension.COMPRESSED_SIGNED_RED_RGTC1_EXT; + if ( p === RED_GREEN_RGTC2_Format ) return extension.COMPRESSED_RED_GREEN_RGTC2_EXT; + if ( p === SIGNED_RED_GREEN_RGTC2_Format ) return extension.COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT; + + } else { + + return null; + + } + + } + + // + + if ( p === UnsignedInt248Type ) return gl.UNSIGNED_INT_24_8; + + // if "p" can't be resolved, assume the user defines a WebGL constant as a string (fallback/workaround for packed RGB formats) + + return ( gl[ p ] !== undefined ) ? gl[ p ] : null; + + } + + return { convert: convert }; + +} + +const _occlusion_vertex = ` +void main() { + + gl_Position = vec4( position, 1.0 ); + +}`; + +const _occlusion_fragment = ` +uniform sampler2DArray depthColor; +uniform float depthWidth; +uniform float depthHeight; + +void main() { + + vec2 coord = vec2( gl_FragCoord.x / depthWidth, gl_FragCoord.y / depthHeight ); + + if ( coord.x >= 1.0 ) { + + gl_FragDepth = texture( depthColor, vec3( coord.x - 1.0, coord.y, 1 ) ).r; + + } else { + + gl_FragDepth = texture( depthColor, vec3( coord.x, coord.y, 0 ) ).r; + + } + +}`; + +/** + * A XR module that manages the access to the Depth Sensing API. + */ +class WebXRDepthSensing { + + /** + * Constructs a new depth sensing module. + */ + constructor() { + + /** + * A texture representing the depth of the user's environment. + * + * @type {?Texture} + */ + this.texture = null; + + /** + * A plane mesh for visualizing the depth texture. + * + * @type {?Mesh} + */ + this.mesh = null; + + /** + * The depth near value. + * + * @type {number} + */ + this.depthNear = 0; + + /** + * The depth near far. + * + * @type {number} + */ + this.depthFar = 0; + + } + + /** + * Inits the depth sensing module + * + * @param {WebGLRenderer} renderer - The renderer. + * @param {XRWebGLDepthInformation} depthData - The XR depth data. + * @param {XRRenderState} renderState - The XR render state. + */ + init( renderer, depthData, renderState ) { + + if ( this.texture === null ) { + + const texture = new Texture(); + + const texProps = renderer.properties.get( texture ); + texProps.__webglTexture = depthData.texture; + + if ( ( depthData.depthNear !== renderState.depthNear ) || ( depthData.depthFar !== renderState.depthFar ) ) { + + this.depthNear = depthData.depthNear; + this.depthFar = depthData.depthFar; + + } + + this.texture = texture; + + } + + } + + /** + * Returns a plane mesh that visualizes the depth texture. + * + * @param {ArrayCamera} cameraXR - The XR camera. + * @return {?Mesh} The plane mesh. + */ + getMesh( cameraXR ) { + + if ( this.texture !== null ) { + + if ( this.mesh === null ) { + + const viewport = cameraXR.cameras[ 0 ].viewport; + const material = new ShaderMaterial( { + vertexShader: _occlusion_vertex, + fragmentShader: _occlusion_fragment, + uniforms: { + depthColor: { value: this.texture }, + depthWidth: { value: viewport.z }, + depthHeight: { value: viewport.w } + } + } ); + + this.mesh = new Mesh( new PlaneGeometry( 20, 20 ), material ); + + } + + } + + return this.mesh; + + } + + /** + * Resets the module + */ + reset() { + + this.texture = null; + this.mesh = null; + + } + + /** + * Returns a texture representing the depth of the user's environment. + * + * @return {?Texture} The depth texture. + */ + getDepthTexture() { + + return this.texture; + + } + +} + +/** + * This class represents an abstraction of the WebXR Device API and is + * internally used by {@link WebGLRenderer}. `WebXRManager` also provides a public + * interface that allows users to enable/disable XR and perform XR related + * tasks like for instance retrieving controllers. + * + * @augments EventDispatcher + * @hideconstructor + */ +class WebXRManager extends EventDispatcher { + + /** + * Constructs a new WebGL renderer. + * + * @param {WebGLRenderer} renderer - The renderer. + * @param {WebGL2RenderingContext} gl - The rendering context. + */ + constructor( renderer, gl ) { + + super(); + + const scope = this; + + let session = null; + + let framebufferScaleFactor = 1.0; + + let referenceSpace = null; + let referenceSpaceType = 'local-floor'; + // Set default foveation to maximum. + let foveation = 1.0; + let customReferenceSpace = null; + + let pose = null; + let glBinding = null; + let glProjLayer = null; + let glBaseLayer = null; + let xrFrame = null; + + const depthSensing = new WebXRDepthSensing(); + const attributes = gl.getContextAttributes(); + + let initialRenderTarget = null; + let newRenderTarget = null; + + const controllers = []; + const controllerInputSources = []; + + const currentSize = new Vector2(); + let currentPixelRatio = null; + + // + + const cameraL = new PerspectiveCamera(); + cameraL.viewport = new Vector4(); + + const cameraR = new PerspectiveCamera(); + cameraR.viewport = new Vector4(); + + const cameras = [ cameraL, cameraR ]; + + const cameraXR = new ArrayCamera(); + + let _currentDepthNear = null; + let _currentDepthFar = null; + + // + + /** + * Whether the manager's XR camera should be automatically updated or not. + * + * @type {boolean} + * @default true + */ + this.cameraAutoUpdate = true; + + /** + * This flag notifies the renderer to be ready for XR rendering. Set it to `true` + * if you are going to use XR in your app. + * + * @type {boolean} + * @default false + */ + this.enabled = false; + + /** + * Whether XR presentation is active or not. + * + * @type {boolean} + * @readonly + * @default false + */ + this.isPresenting = false; + + /** + * Returns a group representing the `target ray` space of the XR controller. + * Use this space for visualizing 3D objects that support the user in pointing + * tasks like UI interaction. + * + * @param {number} index - The index of the controller. + * @return {Group} A group representing the `target ray` space. + */ + this.getController = function ( index ) { + + let controller = controllers[ index ]; + + if ( controller === undefined ) { + + controller = new WebXRController(); + controllers[ index ] = controller; + + } + + return controller.getTargetRaySpace(); + + }; + + /** + * Returns a group representing the `grip` space of the XR controller. + * Use this space for visualizing 3D objects that support the user in pointing + * tasks like UI interaction. + * + * Note: If you want to show something in the user's hand AND offer a + * pointing ray at the same time, you'll want to attached the handheld object + * to the group returned by `getControllerGrip()` and the ray to the + * group returned by `getController()`. The idea is to have two + * different groups in two different coordinate spaces for the same WebXR + * controller. + * + * @param {number} index - The index of the controller. + * @return {Group} A group representing the `grip` space. + */ + this.getControllerGrip = function ( index ) { + + let controller = controllers[ index ]; + + if ( controller === undefined ) { + + controller = new WebXRController(); + controllers[ index ] = controller; + + } + + return controller.getGripSpace(); + + }; + + /** + * Returns a group representing the `hand` space of the XR controller. + * Use this space for visualizing 3D objects that support the user in pointing + * tasks like UI interaction. + * + * @param {number} index - The index of the controller. + * @return {Group} A group representing the `hand` space. + */ + this.getHand = function ( index ) { + + let controller = controllers[ index ]; + + if ( controller === undefined ) { + + controller = new WebXRController(); + controllers[ index ] = controller; + + } + + return controller.getHandSpace(); + + }; + + // + + function onSessionEvent( event ) { + + const controllerIndex = controllerInputSources.indexOf( event.inputSource ); + + if ( controllerIndex === - 1 ) { + + return; + + } + + const controller = controllers[ controllerIndex ]; + + if ( controller !== undefined ) { + + controller.update( event.inputSource, event.frame, customReferenceSpace || referenceSpace ); + controller.dispatchEvent( { type: event.type, data: event.inputSource } ); + + } + + } + + function onSessionEnd() { + + session.removeEventListener( 'select', onSessionEvent ); + session.removeEventListener( 'selectstart', onSessionEvent ); + session.removeEventListener( 'selectend', onSessionEvent ); + session.removeEventListener( 'squeeze', onSessionEvent ); + session.removeEventListener( 'squeezestart', onSessionEvent ); + session.removeEventListener( 'squeezeend', onSessionEvent ); + session.removeEventListener( 'end', onSessionEnd ); + session.removeEventListener( 'inputsourceschange', onInputSourcesChange ); + + for ( let i = 0; i < controllers.length; i ++ ) { + + const inputSource = controllerInputSources[ i ]; + + if ( inputSource === null ) continue; + + controllerInputSources[ i ] = null; + + controllers[ i ].disconnect( inputSource ); + + } + + _currentDepthNear = null; + _currentDepthFar = null; + + depthSensing.reset(); + + // restore framebuffer/rendering state + + renderer.setRenderTarget( initialRenderTarget ); + + glBaseLayer = null; + glProjLayer = null; + glBinding = null; + session = null; + newRenderTarget = null; + + // + + animation.stop(); + + scope.isPresenting = false; + + renderer.setPixelRatio( currentPixelRatio ); + renderer.setSize( currentSize.width, currentSize.height, false ); + + scope.dispatchEvent( { type: 'sessionend' } ); + + } + + /** + * Sets the framebuffer scale factor. + * + * This method can not be used during a XR session. + * + * @param {number} value - The framebuffer scale factor. + */ + this.setFramebufferScaleFactor = function ( value ) { + + framebufferScaleFactor = value; + + if ( scope.isPresenting === true ) { + + console.warn( 'THREE.WebXRManager: Cannot change framebuffer scale while presenting.' ); + + } + + }; + + /** + * Sets the reference space type. Can be used to configure a spatial relationship with the user's physical + * environment. Depending on how the user moves in 3D space, setting an appropriate reference space can + * improve tracking. Default is `local-floor`. Valid values can be found here + * https://developer.mozilla.org/en-US/docs/Web/API/XRReferenceSpace#reference_space_types. + * + * This method can not be used during a XR session. + * + * @param {string} value - The reference space type. + */ + this.setReferenceSpaceType = function ( value ) { + + referenceSpaceType = value; + + if ( scope.isPresenting === true ) { + + console.warn( 'THREE.WebXRManager: Cannot change reference space type while presenting.' ); + + } + + }; + + /** + * Returns the XR reference space. + * + * @return {XRReferenceSpace} The XR reference space. + */ + this.getReferenceSpace = function () { + + return customReferenceSpace || referenceSpace; + + }; + + /** + * Sets a custom XR reference space. + * + * @param {XRReferenceSpace} space - The XR reference space. + */ + this.setReferenceSpace = function ( space ) { + + customReferenceSpace = space; + + }; + + /** + * Returns the current base layer. + * + * @return {?(XRWebGLLayer|XRProjectionLayer)} The XR base layer. + */ + this.getBaseLayer = function () { + + return glProjLayer !== null ? glProjLayer : glBaseLayer; + + }; + + /** + * Returns the current XR binding. + * + * @return {?XRWebGLBinding} The XR binding. + */ + this.getBinding = function () { + + return glBinding; + + }; + + /** + * Returns the current XR frame. + * + * @return {?XRFrame} The XR frame. Returns `null` when used outside a XR session. + */ + this.getFrame = function () { + + return xrFrame; + + }; + + /** + * Returns the current XR session. + * + * @return {?XRSession} The XR session. Returns `null` when used outside a XR session. + */ + this.getSession = function () { + + return session; + + }; + + /** + * After a XR session has been requested usually with one of the `*Button` modules, it + * is injected into the renderer with this method. This method triggers the start of + * the actual XR rendering. + * + * @async + * @param {XRSession} value - The XR session to set. + * @return {Promise} A Promise that resolves when the session has been set. + */ + this.setSession = async function ( value ) { + + session = value; + + if ( session !== null ) { + + initialRenderTarget = renderer.getRenderTarget(); + + session.addEventListener( 'select', onSessionEvent ); + session.addEventListener( 'selectstart', onSessionEvent ); + session.addEventListener( 'selectend', onSessionEvent ); + session.addEventListener( 'squeeze', onSessionEvent ); + session.addEventListener( 'squeezestart', onSessionEvent ); + session.addEventListener( 'squeezeend', onSessionEvent ); + session.addEventListener( 'end', onSessionEnd ); + session.addEventListener( 'inputsourceschange', onInputSourcesChange ); + + if ( attributes.xrCompatible !== true ) { + + await gl.makeXRCompatible(); + + } + + currentPixelRatio = renderer.getPixelRatio(); + renderer.getSize( currentSize ); + + // Check that the browser implements the necessary APIs to use an + // XRProjectionLayer rather than an XRWebGLLayer + const useLayers = typeof XRWebGLBinding !== 'undefined' && 'createProjectionLayer' in XRWebGLBinding.prototype; + + if ( ! useLayers ) { + + const layerInit = { + antialias: attributes.antialias, + alpha: true, + depth: attributes.depth, + stencil: attributes.stencil, + framebufferScaleFactor: framebufferScaleFactor + }; + + glBaseLayer = new XRWebGLLayer( session, gl, layerInit ); + + session.updateRenderState( { baseLayer: glBaseLayer } ); + + renderer.setPixelRatio( 1 ); + renderer.setSize( glBaseLayer.framebufferWidth, glBaseLayer.framebufferHeight, false ); + + newRenderTarget = new WebGLRenderTarget( + glBaseLayer.framebufferWidth, + glBaseLayer.framebufferHeight, + { + format: RGBAFormat, + type: UnsignedByteType, + colorSpace: renderer.outputColorSpace, + stencilBuffer: attributes.stencil, + resolveDepthBuffer: ( glBaseLayer.ignoreDepthValues === false ), + resolveStencilBuffer: ( glBaseLayer.ignoreDepthValues === false ) + + } + ); + + } else { + + let depthFormat = null; + let depthType = null; + let glDepthFormat = null; + + if ( attributes.depth ) { + + glDepthFormat = attributes.stencil ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24; + depthFormat = attributes.stencil ? DepthStencilFormat : DepthFormat; + depthType = attributes.stencil ? UnsignedInt248Type : UnsignedIntType; + + } + + const projectionlayerInit = { + colorFormat: gl.RGBA8, + depthFormat: glDepthFormat, + scaleFactor: framebufferScaleFactor + }; + + glBinding = new XRWebGLBinding( session, gl ); + + glProjLayer = glBinding.createProjectionLayer( projectionlayerInit ); + + session.updateRenderState( { layers: [ glProjLayer ] } ); + + renderer.setPixelRatio( 1 ); + renderer.setSize( glProjLayer.textureWidth, glProjLayer.textureHeight, false ); + + newRenderTarget = new WebGLRenderTarget( + glProjLayer.textureWidth, + glProjLayer.textureHeight, + { + format: RGBAFormat, + type: UnsignedByteType, + depthTexture: new DepthTexture( glProjLayer.textureWidth, glProjLayer.textureHeight, depthType, undefined, undefined, undefined, undefined, undefined, undefined, depthFormat ), + stencilBuffer: attributes.stencil, + colorSpace: renderer.outputColorSpace, + samples: attributes.antialias ? 4 : 0, + resolveDepthBuffer: ( glProjLayer.ignoreDepthValues === false ), + resolveStencilBuffer: ( glProjLayer.ignoreDepthValues === false ) + } ); + + } + + newRenderTarget.isXRRenderTarget = true; // TODO Remove this when possible, see #23278 + + this.setFoveation( foveation ); + + customReferenceSpace = null; + referenceSpace = await session.requestReferenceSpace( referenceSpaceType ); + + animation.setContext( session ); + animation.start(); + + scope.isPresenting = true; + + scope.dispatchEvent( { type: 'sessionstart' } ); + + } + + }; + + /** + * Returns the environment blend mode from the current XR session. + * + * @return {'opaque'|'additive'|'alpha-blend'|undefined} The environment blend mode. Returns `undefined` when used outside of a XR session. + */ + this.getEnvironmentBlendMode = function () { + + if ( session !== null ) { + + return session.environmentBlendMode; + + } + + }; + + /** + * Returns the current depth texture computed via depth sensing. + * + * @return {?Texture} The depth texture. + */ + this.getDepthTexture = function () { + + return depthSensing.getDepthTexture(); + + }; + + function onInputSourcesChange( event ) { + + // Notify disconnected + + for ( let i = 0; i < event.removed.length; i ++ ) { + + const inputSource = event.removed[ i ]; + const index = controllerInputSources.indexOf( inputSource ); + + if ( index >= 0 ) { + + controllerInputSources[ index ] = null; + controllers[ index ].disconnect( inputSource ); + + } + + } + + // Notify connected + + for ( let i = 0; i < event.added.length; i ++ ) { + + const inputSource = event.added[ i ]; + + let controllerIndex = controllerInputSources.indexOf( inputSource ); + + if ( controllerIndex === - 1 ) { + + // Assign input source a controller that currently has no input source + + for ( let i = 0; i < controllers.length; i ++ ) { + + if ( i >= controllerInputSources.length ) { + + controllerInputSources.push( inputSource ); + controllerIndex = i; + break; + + } else if ( controllerInputSources[ i ] === null ) { + + controllerInputSources[ i ] = inputSource; + controllerIndex = i; + break; + + } + + } + + // If all controllers do currently receive input we ignore new ones + + if ( controllerIndex === - 1 ) break; + + } + + const controller = controllers[ controllerIndex ]; + + if ( controller ) { + + controller.connect( inputSource ); + + } + + } + + } + + // + + const cameraLPos = new Vector3(); + const cameraRPos = new Vector3(); + + /** + * Assumes 2 cameras that are parallel and share an X-axis, and that + * the cameras' projection and world matrices have already been set. + * And that near and far planes are identical for both cameras. + * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765 + * + * @param {ArrayCamera} camera - The camera to update. + * @param {PerspectiveCamera} cameraL - The left camera. + * @param {PerspectiveCamera} cameraR - The right camera. + */ + function setProjectionFromUnion( camera, cameraL, cameraR ) { + + cameraLPos.setFromMatrixPosition( cameraL.matrixWorld ); + cameraRPos.setFromMatrixPosition( cameraR.matrixWorld ); + + const ipd = cameraLPos.distanceTo( cameraRPos ); + + const projL = cameraL.projectionMatrix.elements; + const projR = cameraR.projectionMatrix.elements; + + // VR systems will have identical far and near planes, and + // most likely identical top and bottom frustum extents. + // Use the left camera for these values. + const near = projL[ 14 ] / ( projL[ 10 ] - 1 ); + const far = projL[ 14 ] / ( projL[ 10 ] + 1 ); + const topFov = ( projL[ 9 ] + 1 ) / projL[ 5 ]; + const bottomFov = ( projL[ 9 ] - 1 ) / projL[ 5 ]; + + const leftFov = ( projL[ 8 ] - 1 ) / projL[ 0 ]; + const rightFov = ( projR[ 8 ] + 1 ) / projR[ 0 ]; + const left = near * leftFov; + const right = near * rightFov; + + // Calculate the new camera's position offset from the + // left camera. xOffset should be roughly half `ipd`. + const zOffset = ipd / ( - leftFov + rightFov ); + const xOffset = zOffset * - leftFov; + + // TODO: Better way to apply this offset? + cameraL.matrixWorld.decompose( camera.position, camera.quaternion, camera.scale ); + camera.translateX( xOffset ); + camera.translateZ( zOffset ); + camera.matrixWorld.compose( camera.position, camera.quaternion, camera.scale ); + camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); + + // Check if the projection uses an infinite far plane. + if ( projL[ 10 ] === - 1 ) { + + // Use the projection matrix from the left eye. + // The camera offset is sufficient to include the view volumes + // of both eyes (assuming symmetric projections). + camera.projectionMatrix.copy( cameraL.projectionMatrix ); + camera.projectionMatrixInverse.copy( cameraL.projectionMatrixInverse ); + + } else { + + // Find the union of the frustum values of the cameras and scale + // the values so that the near plane's position does not change in world space, + // although must now be relative to the new union camera. + const near2 = near + zOffset; + const far2 = far + zOffset; + const left2 = left - xOffset; + const right2 = right + ( ipd - xOffset ); + const top2 = topFov * far / far2 * near2; + const bottom2 = bottomFov * far / far2 * near2; + + camera.projectionMatrix.makePerspective( left2, right2, top2, bottom2, near2, far2 ); + camera.projectionMatrixInverse.copy( camera.projectionMatrix ).invert(); + + } + + } + + function updateCamera( camera, parent ) { + + if ( parent === null ) { + + camera.matrixWorld.copy( camera.matrix ); + + } else { + + camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix ); + + } + + camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); + + } + + /** + * Updates the state of the XR camera. Use this method on app level if you + * set cameraAutoUpdate` to `false`. The method requires the non-XR + * camera of the scene as a parameter. The passed in camera's transformation + * is automatically adjusted to the position of the XR camera when calling + * this method. + * + * @param {Camera} camera - The camera. + */ + this.updateCamera = function ( camera ) { + + if ( session === null ) return; + + let depthNear = camera.near; + let depthFar = camera.far; + + if ( depthSensing.texture !== null ) { + + if ( depthSensing.depthNear > 0 ) depthNear = depthSensing.depthNear; + if ( depthSensing.depthFar > 0 ) depthFar = depthSensing.depthFar; + + } + + cameraXR.near = cameraR.near = cameraL.near = depthNear; + cameraXR.far = cameraR.far = cameraL.far = depthFar; + + if ( _currentDepthNear !== cameraXR.near || _currentDepthFar !== cameraXR.far ) { + + // Note that the new renderState won't apply until the next frame. See #18320 + + session.updateRenderState( { + depthNear: cameraXR.near, + depthFar: cameraXR.far + } ); + + _currentDepthNear = cameraXR.near; + _currentDepthFar = cameraXR.far; + + } + + cameraL.layers.mask = camera.layers.mask | 0b010; + cameraR.layers.mask = camera.layers.mask | 0b100; + cameraXR.layers.mask = cameraL.layers.mask | cameraR.layers.mask; + + const parent = camera.parent; + const cameras = cameraXR.cameras; + + updateCamera( cameraXR, parent ); + + for ( let i = 0; i < cameras.length; i ++ ) { + + updateCamera( cameras[ i ], parent ); + + } + + // update projection matrix for proper view frustum culling + + if ( cameras.length === 2 ) { + + setProjectionFromUnion( cameraXR, cameraL, cameraR ); + + } else { + + // assume single camera setup (AR) + + cameraXR.projectionMatrix.copy( cameraL.projectionMatrix ); + + } + + // update user camera and its children + + updateUserCamera( camera, cameraXR, parent ); + + }; + + function updateUserCamera( camera, cameraXR, parent ) { + + if ( parent === null ) { + + camera.matrix.copy( cameraXR.matrixWorld ); + + } else { + + camera.matrix.copy( parent.matrixWorld ); + camera.matrix.invert(); + camera.matrix.multiply( cameraXR.matrixWorld ); + + } + + camera.matrix.decompose( camera.position, camera.quaternion, camera.scale ); + camera.updateMatrixWorld( true ); + + camera.projectionMatrix.copy( cameraXR.projectionMatrix ); + camera.projectionMatrixInverse.copy( cameraXR.projectionMatrixInverse ); + + if ( camera.isPerspectiveCamera ) { + + camera.fov = RAD2DEG * 2 * Math.atan( 1 / camera.projectionMatrix.elements[ 5 ] ); + camera.zoom = 1; + + } + + } + + /** + * Returns an instance of {@link ArrayCamera} which represents the XR camera + * of the active XR session. For each view it holds a separate camera object. + * + * The camera's `fov` is currently not used and does not reflect the fov of + * the XR camera. If you need the fov on app level, you have to compute in + * manually from the XR camera's projection matrices. + * + * @return {ArrayCamera} The XR camera. + */ + this.getCamera = function () { + + return cameraXR; + + }; + + /** + * Returns the amount of foveation used by the XR compositor for the projection layer. + * + * @return {number} The amount of foveation. + */ + this.getFoveation = function () { + + if ( glProjLayer === null && glBaseLayer === null ) { + + return undefined; + + } + + return foveation; + + }; + + /** + * Sets the foveation value. + * + * @param {number} value - A number in the range `[0,1]` where `0` means no foveation (full resolution) + * and `1` means maximum foveation (the edges render at lower resolution). + */ + this.setFoveation = function ( value ) { + + // 0 = no foveation = full resolution + // 1 = maximum foveation = the edges render at lower resolution + + foveation = value; + + if ( glProjLayer !== null ) { + + glProjLayer.fixedFoveation = value; + + } + + if ( glBaseLayer !== null && glBaseLayer.fixedFoveation !== undefined ) { + + glBaseLayer.fixedFoveation = value; + + } + + }; + + /** + * Returns `true` if depth sensing is supported. + * + * @return {boolean} Whether depth sensing is supported or not. + */ + this.hasDepthSensing = function () { + + return depthSensing.texture !== null; + + }; + + /** + * Returns the depth sensing mesh. + * + * @return {Mesh} The depth sensing mesh. + */ + this.getDepthSensingMesh = function () { + + return depthSensing.getMesh( cameraXR ); + + }; + + // Animation Loop + + let onAnimationFrameCallback = null; + + function onAnimationFrame( time, frame ) { + + pose = frame.getViewerPose( customReferenceSpace || referenceSpace ); + xrFrame = frame; + + if ( pose !== null ) { + + const views = pose.views; + + if ( glBaseLayer !== null ) { + + renderer.setRenderTargetFramebuffer( newRenderTarget, glBaseLayer.framebuffer ); + renderer.setRenderTarget( newRenderTarget ); + + } + + let cameraXRNeedsUpdate = false; + + // check if it's necessary to rebuild cameraXR's camera list + + if ( views.length !== cameraXR.cameras.length ) { + + cameraXR.cameras.length = 0; + cameraXRNeedsUpdate = true; + + } + + for ( let i = 0; i < views.length; i ++ ) { + + const view = views[ i ]; + + let viewport = null; + + if ( glBaseLayer !== null ) { + + viewport = glBaseLayer.getViewport( view ); + + } else { + + const glSubImage = glBinding.getViewSubImage( glProjLayer, view ); + viewport = glSubImage.viewport; + + // For side-by-side projection, we only produce a single texture for both eyes. + if ( i === 0 ) { + + renderer.setRenderTargetTextures( + newRenderTarget, + glSubImage.colorTexture, + glSubImage.depthStencilTexture ); + + renderer.setRenderTarget( newRenderTarget ); + + } + + } + + let camera = cameras[ i ]; + + if ( camera === undefined ) { + + camera = new PerspectiveCamera(); + camera.layers.enable( i ); + camera.viewport = new Vector4(); + cameras[ i ] = camera; + + } + + camera.matrix.fromArray( view.transform.matrix ); + camera.matrix.decompose( camera.position, camera.quaternion, camera.scale ); + camera.projectionMatrix.fromArray( view.projectionMatrix ); + camera.projectionMatrixInverse.copy( camera.projectionMatrix ).invert(); + camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height ); + + if ( i === 0 ) { + + cameraXR.matrix.copy( camera.matrix ); + cameraXR.matrix.decompose( cameraXR.position, cameraXR.quaternion, cameraXR.scale ); + + } + + if ( cameraXRNeedsUpdate === true ) { + + cameraXR.cameras.push( camera ); + + } + + } + + // + + const enabledFeatures = session.enabledFeatures; + const gpuDepthSensingEnabled = enabledFeatures && + enabledFeatures.includes( 'depth-sensing' ) && + session.depthUsage == 'gpu-optimized'; + + if ( gpuDepthSensingEnabled && glBinding ) { + + const depthData = glBinding.getDepthInformation( views[ 0 ] ); + + if ( depthData && depthData.isValid && depthData.texture ) { + + depthSensing.init( renderer, depthData, session.renderState ); + + } + + } + + } + + // + + for ( let i = 0; i < controllers.length; i ++ ) { + + const inputSource = controllerInputSources[ i ]; + const controller = controllers[ i ]; + + if ( inputSource !== null && controller !== undefined ) { + + controller.update( inputSource, frame, customReferenceSpace || referenceSpace ); + + } + + } + + if ( onAnimationFrameCallback ) onAnimationFrameCallback( time, frame ); + + if ( frame.detectedPlanes ) { + + scope.dispatchEvent( { type: 'planesdetected', data: frame } ); + + } + + xrFrame = null; + + } + + const animation = new WebGLAnimation(); + + animation.setAnimationLoop( onAnimationFrame ); + + this.setAnimationLoop = function ( callback ) { + + onAnimationFrameCallback = callback; + + }; + + this.dispose = function () {}; + + } + +} + +const _e1 = /*@__PURE__*/ new Euler(); +const _m1 = /*@__PURE__*/ new Matrix4(); + +function WebGLMaterials( renderer, properties ) { + + function refreshTransformUniform( map, uniform ) { + + if ( map.matrixAutoUpdate === true ) { + + map.updateMatrix(); + + } + + uniform.value.copy( map.matrix ); + + } + + function refreshFogUniforms( uniforms, fog ) { + + fog.color.getRGB( uniforms.fogColor.value, getUnlitUniformColorSpace( renderer ) ); + + if ( fog.isFog ) { + + uniforms.fogNear.value = fog.near; + uniforms.fogFar.value = fog.far; + + } else if ( fog.isFogExp2 ) { + + uniforms.fogDensity.value = fog.density; + + } + + } + + function refreshMaterialUniforms( uniforms, material, pixelRatio, height, transmissionRenderTarget ) { + + if ( material.isMeshBasicMaterial ) { + + refreshUniformsCommon( uniforms, material ); + + } else if ( material.isMeshLambertMaterial ) { + + refreshUniformsCommon( uniforms, material ); + + } else if ( material.isMeshToonMaterial ) { + + refreshUniformsCommon( uniforms, material ); + refreshUniformsToon( uniforms, material ); + + } else if ( material.isMeshPhongMaterial ) { + + refreshUniformsCommon( uniforms, material ); + refreshUniformsPhong( uniforms, material ); + + } else if ( material.isMeshStandardMaterial ) { + + refreshUniformsCommon( uniforms, material ); + refreshUniformsStandard( uniforms, material ); + + if ( material.isMeshPhysicalMaterial ) { + + refreshUniformsPhysical( uniforms, material, transmissionRenderTarget ); + + } + + } else if ( material.isMeshMatcapMaterial ) { + + refreshUniformsCommon( uniforms, material ); + refreshUniformsMatcap( uniforms, material ); + + } else if ( material.isMeshDepthMaterial ) { + + refreshUniformsCommon( uniforms, material ); + + } else if ( material.isMeshDistanceMaterial ) { + + refreshUniformsCommon( uniforms, material ); + refreshUniformsDistance( uniforms, material ); + + } else if ( material.isMeshNormalMaterial ) { + + refreshUniformsCommon( uniforms, material ); + + } else if ( material.isLineBasicMaterial ) { + + refreshUniformsLine( uniforms, material ); + + if ( material.isLineDashedMaterial ) { + + refreshUniformsDash( uniforms, material ); + + } + + } else if ( material.isPointsMaterial ) { + + refreshUniformsPoints( uniforms, material, pixelRatio, height ); + + } else if ( material.isSpriteMaterial ) { + + refreshUniformsSprites( uniforms, material ); + + } else if ( material.isShadowMaterial ) { + + uniforms.color.value.copy( material.color ); + uniforms.opacity.value = material.opacity; + + } else if ( material.isShaderMaterial ) { + + material.uniformsNeedUpdate = false; // #15581 + + } + + } + + function refreshUniformsCommon( uniforms, material ) { + + uniforms.opacity.value = material.opacity; + + if ( material.color ) { + + uniforms.diffuse.value.copy( material.color ); + + } + + if ( material.emissive ) { + + uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); + + } + + if ( material.map ) { + + uniforms.map.value = material.map; + + refreshTransformUniform( material.map, uniforms.mapTransform ); + + } + + if ( material.alphaMap ) { + + uniforms.alphaMap.value = material.alphaMap; + + refreshTransformUniform( material.alphaMap, uniforms.alphaMapTransform ); + + } + + if ( material.bumpMap ) { + + uniforms.bumpMap.value = material.bumpMap; + + refreshTransformUniform( material.bumpMap, uniforms.bumpMapTransform ); + + uniforms.bumpScale.value = material.bumpScale; + + if ( material.side === BackSide ) { + + uniforms.bumpScale.value *= - 1; + + } + + } + + if ( material.normalMap ) { + + uniforms.normalMap.value = material.normalMap; + + refreshTransformUniform( material.normalMap, uniforms.normalMapTransform ); + + uniforms.normalScale.value.copy( material.normalScale ); + + if ( material.side === BackSide ) { + + uniforms.normalScale.value.negate(); + + } + + } + + if ( material.displacementMap ) { + + uniforms.displacementMap.value = material.displacementMap; + + refreshTransformUniform( material.displacementMap, uniforms.displacementMapTransform ); + + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + + } + + if ( material.emissiveMap ) { + + uniforms.emissiveMap.value = material.emissiveMap; + + refreshTransformUniform( material.emissiveMap, uniforms.emissiveMapTransform ); + + } + + if ( material.specularMap ) { + + uniforms.specularMap.value = material.specularMap; + + refreshTransformUniform( material.specularMap, uniforms.specularMapTransform ); + + } + + if ( material.alphaTest > 0 ) { + + uniforms.alphaTest.value = material.alphaTest; + + } + + const materialProperties = properties.get( material ); + + const envMap = materialProperties.envMap; + const envMapRotation = materialProperties.envMapRotation; + + if ( envMap ) { + + uniforms.envMap.value = envMap; + + _e1.copy( envMapRotation ); + + // accommodate left-handed frame + _e1.x *= - 1; _e1.y *= - 1; _e1.z *= - 1; + + if ( envMap.isCubeTexture && envMap.isRenderTargetTexture === false ) { + + // environment maps which are not cube render targets or PMREMs follow a different convention + _e1.y *= - 1; + _e1.z *= - 1; + + } + + uniforms.envMapRotation.value.setFromMatrix4( _m1.makeRotationFromEuler( _e1 ) ); + + uniforms.flipEnvMap.value = ( envMap.isCubeTexture && envMap.isRenderTargetTexture === false ) ? - 1 : 1; + + uniforms.reflectivity.value = material.reflectivity; + uniforms.ior.value = material.ior; + uniforms.refractionRatio.value = material.refractionRatio; + + } + + if ( material.lightMap ) { + + uniforms.lightMap.value = material.lightMap; + uniforms.lightMapIntensity.value = material.lightMapIntensity; + + refreshTransformUniform( material.lightMap, uniforms.lightMapTransform ); + + } + + if ( material.aoMap ) { + + uniforms.aoMap.value = material.aoMap; + uniforms.aoMapIntensity.value = material.aoMapIntensity; + + refreshTransformUniform( material.aoMap, uniforms.aoMapTransform ); + + } + + } + + function refreshUniformsLine( uniforms, material ) { + + uniforms.diffuse.value.copy( material.color ); + uniforms.opacity.value = material.opacity; + + if ( material.map ) { + + uniforms.map.value = material.map; + + refreshTransformUniform( material.map, uniforms.mapTransform ); + + } + + } + + function refreshUniformsDash( uniforms, material ) { + + uniforms.dashSize.value = material.dashSize; + uniforms.totalSize.value = material.dashSize + material.gapSize; + uniforms.scale.value = material.scale; + + } + + function refreshUniformsPoints( uniforms, material, pixelRatio, height ) { + + uniforms.diffuse.value.copy( material.color ); + uniforms.opacity.value = material.opacity; + uniforms.size.value = material.size * pixelRatio; + uniforms.scale.value = height * 0.5; + + if ( material.map ) { + + uniforms.map.value = material.map; + + refreshTransformUniform( material.map, uniforms.uvTransform ); + + } + + if ( material.alphaMap ) { + + uniforms.alphaMap.value = material.alphaMap; + + refreshTransformUniform( material.alphaMap, uniforms.alphaMapTransform ); + + } + + if ( material.alphaTest > 0 ) { + + uniforms.alphaTest.value = material.alphaTest; + + } + + } + + function refreshUniformsSprites( uniforms, material ) { + + uniforms.diffuse.value.copy( material.color ); + uniforms.opacity.value = material.opacity; + uniforms.rotation.value = material.rotation; + + if ( material.map ) { + + uniforms.map.value = material.map; + + refreshTransformUniform( material.map, uniforms.mapTransform ); + + } + + if ( material.alphaMap ) { + + uniforms.alphaMap.value = material.alphaMap; + + refreshTransformUniform( material.alphaMap, uniforms.alphaMapTransform ); + + } + + if ( material.alphaTest > 0 ) { + + uniforms.alphaTest.value = material.alphaTest; + + } + + } + + function refreshUniformsPhong( uniforms, material ) { + + uniforms.specular.value.copy( material.specular ); + uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 ) + + } + + function refreshUniformsToon( uniforms, material ) { + + if ( material.gradientMap ) { + + uniforms.gradientMap.value = material.gradientMap; + + } + + } + + function refreshUniformsStandard( uniforms, material ) { + + uniforms.metalness.value = material.metalness; + + if ( material.metalnessMap ) { + + uniforms.metalnessMap.value = material.metalnessMap; + + refreshTransformUniform( material.metalnessMap, uniforms.metalnessMapTransform ); + + } + + uniforms.roughness.value = material.roughness; + + if ( material.roughnessMap ) { + + uniforms.roughnessMap.value = material.roughnessMap; + + refreshTransformUniform( material.roughnessMap, uniforms.roughnessMapTransform ); + + } + + if ( material.envMap ) { + + //uniforms.envMap.value = material.envMap; // part of uniforms common + + uniforms.envMapIntensity.value = material.envMapIntensity; + + } + + } + + function refreshUniformsPhysical( uniforms, material, transmissionRenderTarget ) { + + uniforms.ior.value = material.ior; // also part of uniforms common + + if ( material.sheen > 0 ) { + + uniforms.sheenColor.value.copy( material.sheenColor ).multiplyScalar( material.sheen ); + + uniforms.sheenRoughness.value = material.sheenRoughness; + + if ( material.sheenColorMap ) { + + uniforms.sheenColorMap.value = material.sheenColorMap; + + refreshTransformUniform( material.sheenColorMap, uniforms.sheenColorMapTransform ); + + } + + if ( material.sheenRoughnessMap ) { + + uniforms.sheenRoughnessMap.value = material.sheenRoughnessMap; + + refreshTransformUniform( material.sheenRoughnessMap, uniforms.sheenRoughnessMapTransform ); + + } + + } + + if ( material.clearcoat > 0 ) { + + uniforms.clearcoat.value = material.clearcoat; + uniforms.clearcoatRoughness.value = material.clearcoatRoughness; + + if ( material.clearcoatMap ) { + + uniforms.clearcoatMap.value = material.clearcoatMap; + + refreshTransformUniform( material.clearcoatMap, uniforms.clearcoatMapTransform ); + + } + + if ( material.clearcoatRoughnessMap ) { + + uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap; + + refreshTransformUniform( material.clearcoatRoughnessMap, uniforms.clearcoatRoughnessMapTransform ); + + } + + if ( material.clearcoatNormalMap ) { + + uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap; + + refreshTransformUniform( material.clearcoatNormalMap, uniforms.clearcoatNormalMapTransform ); + + uniforms.clearcoatNormalScale.value.copy( material.clearcoatNormalScale ); + + if ( material.side === BackSide ) { + + uniforms.clearcoatNormalScale.value.negate(); + + } + + } + + } + + if ( material.dispersion > 0 ) { + + uniforms.dispersion.value = material.dispersion; + + } + + if ( material.iridescence > 0 ) { + + uniforms.iridescence.value = material.iridescence; + uniforms.iridescenceIOR.value = material.iridescenceIOR; + uniforms.iridescenceThicknessMinimum.value = material.iridescenceThicknessRange[ 0 ]; + uniforms.iridescenceThicknessMaximum.value = material.iridescenceThicknessRange[ 1 ]; + + if ( material.iridescenceMap ) { + + uniforms.iridescenceMap.value = material.iridescenceMap; + + refreshTransformUniform( material.iridescenceMap, uniforms.iridescenceMapTransform ); + + } + + if ( material.iridescenceThicknessMap ) { + + uniforms.iridescenceThicknessMap.value = material.iridescenceThicknessMap; + + refreshTransformUniform( material.iridescenceThicknessMap, uniforms.iridescenceThicknessMapTransform ); + + } + + } + + if ( material.transmission > 0 ) { + + uniforms.transmission.value = material.transmission; + uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture; + uniforms.transmissionSamplerSize.value.set( transmissionRenderTarget.width, transmissionRenderTarget.height ); + + if ( material.transmissionMap ) { + + uniforms.transmissionMap.value = material.transmissionMap; + + refreshTransformUniform( material.transmissionMap, uniforms.transmissionMapTransform ); + + } + + uniforms.thickness.value = material.thickness; + + if ( material.thicknessMap ) { + + uniforms.thicknessMap.value = material.thicknessMap; + + refreshTransformUniform( material.thicknessMap, uniforms.thicknessMapTransform ); + + } + + uniforms.attenuationDistance.value = material.attenuationDistance; + uniforms.attenuationColor.value.copy( material.attenuationColor ); + + } + + if ( material.anisotropy > 0 ) { + + uniforms.anisotropyVector.value.set( material.anisotropy * Math.cos( material.anisotropyRotation ), material.anisotropy * Math.sin( material.anisotropyRotation ) ); + + if ( material.anisotropyMap ) { + + uniforms.anisotropyMap.value = material.anisotropyMap; + + refreshTransformUniform( material.anisotropyMap, uniforms.anisotropyMapTransform ); + + } + + } + + uniforms.specularIntensity.value = material.specularIntensity; + uniforms.specularColor.value.copy( material.specularColor ); + + if ( material.specularColorMap ) { + + uniforms.specularColorMap.value = material.specularColorMap; + + refreshTransformUniform( material.specularColorMap, uniforms.specularColorMapTransform ); + + } + + if ( material.specularIntensityMap ) { + + uniforms.specularIntensityMap.value = material.specularIntensityMap; + + refreshTransformUniform( material.specularIntensityMap, uniforms.specularIntensityMapTransform ); + + } + + } + + function refreshUniformsMatcap( uniforms, material ) { + + if ( material.matcap ) { + + uniforms.matcap.value = material.matcap; + + } + + } + + function refreshUniformsDistance( uniforms, material ) { + + const light = properties.get( material ).light; + + uniforms.referencePosition.value.setFromMatrixPosition( light.matrixWorld ); + uniforms.nearDistance.value = light.shadow.camera.near; + uniforms.farDistance.value = light.shadow.camera.far; + + } + + return { + refreshFogUniforms: refreshFogUniforms, + refreshMaterialUniforms: refreshMaterialUniforms + }; + +} + +function WebGLUniformsGroups( gl, info, capabilities, state ) { + + let buffers = {}; + let updateList = {}; + let allocatedBindingPoints = []; + + const maxBindingPoints = gl.getParameter( gl.MAX_UNIFORM_BUFFER_BINDINGS ); // binding points are global whereas block indices are per shader program + + function bind( uniformsGroup, program ) { + + const webglProgram = program.program; + state.uniformBlockBinding( uniformsGroup, webglProgram ); + + } + + function update( uniformsGroup, program ) { + + let buffer = buffers[ uniformsGroup.id ]; + + if ( buffer === undefined ) { + + prepareUniformsGroup( uniformsGroup ); + + buffer = createBuffer( uniformsGroup ); + buffers[ uniformsGroup.id ] = buffer; + + uniformsGroup.addEventListener( 'dispose', onUniformsGroupsDispose ); + + } + + // ensure to update the binding points/block indices mapping for this program + + const webglProgram = program.program; + state.updateUBOMapping( uniformsGroup, webglProgram ); + + // update UBO once per frame + + const frame = info.render.frame; + + if ( updateList[ uniformsGroup.id ] !== frame ) { + + updateBufferData( uniformsGroup ); + + updateList[ uniformsGroup.id ] = frame; + + } + + } + + function createBuffer( uniformsGroup ) { + + // the setup of an UBO is independent of a particular shader program but global + + const bindingPointIndex = allocateBindingPointIndex(); + uniformsGroup.__bindingPointIndex = bindingPointIndex; + + const buffer = gl.createBuffer(); + const size = uniformsGroup.__size; + const usage = uniformsGroup.usage; + + gl.bindBuffer( gl.UNIFORM_BUFFER, buffer ); + gl.bufferData( gl.UNIFORM_BUFFER, size, usage ); + gl.bindBuffer( gl.UNIFORM_BUFFER, null ); + gl.bindBufferBase( gl.UNIFORM_BUFFER, bindingPointIndex, buffer ); + + return buffer; + + } + + function allocateBindingPointIndex() { + + for ( let i = 0; i < maxBindingPoints; i ++ ) { + + if ( allocatedBindingPoints.indexOf( i ) === - 1 ) { + + allocatedBindingPoints.push( i ); + return i; + + } + + } + + console.error( 'THREE.WebGLRenderer: Maximum number of simultaneously usable uniforms groups reached.' ); + + return 0; + + } + + function updateBufferData( uniformsGroup ) { + + const buffer = buffers[ uniformsGroup.id ]; + const uniforms = uniformsGroup.uniforms; + const cache = uniformsGroup.__cache; + + gl.bindBuffer( gl.UNIFORM_BUFFER, buffer ); + + for ( let i = 0, il = uniforms.length; i < il; i ++ ) { + + const uniformArray = Array.isArray( uniforms[ i ] ) ? uniforms[ i ] : [ uniforms[ i ] ]; + + for ( let j = 0, jl = uniformArray.length; j < jl; j ++ ) { + + const uniform = uniformArray[ j ]; + + if ( hasUniformChanged( uniform, i, j, cache ) === true ) { + + const offset = uniform.__offset; + + const values = Array.isArray( uniform.value ) ? uniform.value : [ uniform.value ]; + + let arrayOffset = 0; + + for ( let k = 0; k < values.length; k ++ ) { + + const value = values[ k ]; + + const info = getUniformSize( value ); + + // TODO add integer and struct support + if ( typeof value === 'number' || typeof value === 'boolean' ) { + + uniform.__data[ 0 ] = value; + gl.bufferSubData( gl.UNIFORM_BUFFER, offset + arrayOffset, uniform.__data ); + + } else if ( value.isMatrix3 ) { + + // manually converting 3x3 to 3x4 + + uniform.__data[ 0 ] = value.elements[ 0 ]; + uniform.__data[ 1 ] = value.elements[ 1 ]; + uniform.__data[ 2 ] = value.elements[ 2 ]; + uniform.__data[ 3 ] = 0; + uniform.__data[ 4 ] = value.elements[ 3 ]; + uniform.__data[ 5 ] = value.elements[ 4 ]; + uniform.__data[ 6 ] = value.elements[ 5 ]; + uniform.__data[ 7 ] = 0; + uniform.__data[ 8 ] = value.elements[ 6 ]; + uniform.__data[ 9 ] = value.elements[ 7 ]; + uniform.__data[ 10 ] = value.elements[ 8 ]; + uniform.__data[ 11 ] = 0; + + } else { + + value.toArray( uniform.__data, arrayOffset ); + + arrayOffset += info.storage / Float32Array.BYTES_PER_ELEMENT; + + } + + } + + gl.bufferSubData( gl.UNIFORM_BUFFER, offset, uniform.__data ); + + } + + } + + } + + gl.bindBuffer( gl.UNIFORM_BUFFER, null ); + + } + + function hasUniformChanged( uniform, index, indexArray, cache ) { + + const value = uniform.value; + const indexString = index + '_' + indexArray; + + if ( cache[ indexString ] === undefined ) { + + // cache entry does not exist so far + + if ( typeof value === 'number' || typeof value === 'boolean' ) { + + cache[ indexString ] = value; + + } else { + + cache[ indexString ] = value.clone(); + + } + + return true; + + } else { + + const cachedObject = cache[ indexString ]; + + // compare current value with cached entry + + if ( typeof value === 'number' || typeof value === 'boolean' ) { + + if ( cachedObject !== value ) { + + cache[ indexString ] = value; + return true; + + } + + } else { + + if ( cachedObject.equals( value ) === false ) { + + cachedObject.copy( value ); + return true; + + } + + } + + } + + return false; + + } + + function prepareUniformsGroup( uniformsGroup ) { + + // determine total buffer size according to the STD140 layout + // Hint: STD140 is the only supported layout in WebGL 2 + + const uniforms = uniformsGroup.uniforms; + + let offset = 0; // global buffer offset in bytes + const chunkSize = 16; // size of a chunk in bytes + + for ( let i = 0, l = uniforms.length; i < l; i ++ ) { + + const uniformArray = Array.isArray( uniforms[ i ] ) ? uniforms[ i ] : [ uniforms[ i ] ]; + + for ( let j = 0, jl = uniformArray.length; j < jl; j ++ ) { + + const uniform = uniformArray[ j ]; + + const values = Array.isArray( uniform.value ) ? uniform.value : [ uniform.value ]; + + for ( let k = 0, kl = values.length; k < kl; k ++ ) { + + const value = values[ k ]; + + const info = getUniformSize( value ); + + const chunkOffset = offset % chunkSize; // offset in the current chunk + const chunkPadding = chunkOffset % info.boundary; // required padding to match boundary + const chunkStart = chunkOffset + chunkPadding; // the start position in the current chunk for the data + + offset += chunkPadding; + + // Check for chunk overflow + if ( chunkStart !== 0 && ( chunkSize - chunkStart ) < info.storage ) { + + // Add padding and adjust offset + offset += ( chunkSize - chunkStart ); + + } + + // the following two properties will be used for partial buffer updates + uniform.__data = new Float32Array( info.storage / Float32Array.BYTES_PER_ELEMENT ); + uniform.__offset = offset; + + // Update the global offset + offset += info.storage; + + } + + } + + } + + // ensure correct final padding + + const chunkOffset = offset % chunkSize; + + if ( chunkOffset > 0 ) offset += ( chunkSize - chunkOffset ); + + // + + uniformsGroup.__size = offset; + uniformsGroup.__cache = {}; + + return this; + + } + + function getUniformSize( value ) { + + const info = { + boundary: 0, // bytes + storage: 0 // bytes + }; + + // determine sizes according to STD140 + + if ( typeof value === 'number' || typeof value === 'boolean' ) { + + // float/int/bool + + info.boundary = 4; + info.storage = 4; + + } else if ( value.isVector2 ) { + + // vec2 + + info.boundary = 8; + info.storage = 8; + + } else if ( value.isVector3 || value.isColor ) { + + // vec3 + + info.boundary = 16; + info.storage = 12; // evil: vec3 must start on a 16-byte boundary but it only consumes 12 bytes + + } else if ( value.isVector4 ) { + + // vec4 + + info.boundary = 16; + info.storage = 16; + + } else if ( value.isMatrix3 ) { + + // mat3 (in STD140 a 3x3 matrix is represented as 3x4) + + info.boundary = 48; + info.storage = 48; + + } else if ( value.isMatrix4 ) { + + // mat4 + + info.boundary = 64; + info.storage = 64; + + } else if ( value.isTexture ) { + + console.warn( 'THREE.WebGLRenderer: Texture samplers can not be part of an uniforms group.' ); + + } else { + + console.warn( 'THREE.WebGLRenderer: Unsupported uniform value type.', value ); + + } + + return info; + + } + + function onUniformsGroupsDispose( event ) { + + const uniformsGroup = event.target; + + uniformsGroup.removeEventListener( 'dispose', onUniformsGroupsDispose ); + + const index = allocatedBindingPoints.indexOf( uniformsGroup.__bindingPointIndex ); + allocatedBindingPoints.splice( index, 1 ); + + gl.deleteBuffer( buffers[ uniformsGroup.id ] ); + + delete buffers[ uniformsGroup.id ]; + delete updateList[ uniformsGroup.id ]; + + } + + function dispose() { + + for ( const id in buffers ) { + + gl.deleteBuffer( buffers[ id ] ); + + } + + allocatedBindingPoints = []; + buffers = {}; + updateList = {}; + + } + + return { + + bind: bind, + update: update, + + dispose: dispose + + }; + +} + +/** + * This renderer uses WebGL 2 to display scenes. + * + * WebGL 1 is not supported since `r163`. + */ +class WebGLRenderer { + + /** + * Constructs a new WebGL renderer. + * + * @param {WebGLRenderer~Options} [parameters] - The configuration parameter. + */ + constructor( parameters = {} ) { + + const { + canvas = createCanvasElement(), + context = null, + depth = true, + stencil = false, + alpha = false, + antialias = false, + premultipliedAlpha = true, + preserveDrawingBuffer = false, + powerPreference = 'default', + failIfMajorPerformanceCaveat = false, + reverseDepthBuffer = false, + } = parameters; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWebGLRenderer = true; + + let _alpha; + + if ( context !== null ) { + + if ( typeof WebGLRenderingContext !== 'undefined' && context instanceof WebGLRenderingContext ) { + + throw new Error( 'THREE.WebGLRenderer: WebGL 1 is not supported since r163.' ); + + } + + _alpha = context.getContextAttributes().alpha; + + } else { + + _alpha = alpha; + + } + + const uintClearColor = new Uint32Array( 4 ); + const intClearColor = new Int32Array( 4 ); + + let currentRenderList = null; + let currentRenderState = null; + + // render() can be called from within a callback triggered by another render. + // We track this so that the nested render call gets its list and state isolated from the parent render call. + + const renderListStack = []; + const renderStateStack = []; + + // public properties + + /** + * A canvas where the renderer draws its output.This is automatically created by the renderer + * in the constructor (if not provided already); you just need to add it to your page like so: + * ```js + * document.body.appendChild( renderer.domElement ); + * ``` + * + * @type {DOMElement} + */ + this.domElement = canvas; + + /** + * A object with debug configuration settings. + * + * - `checkShaderErrors`: If it is `true`, defines whether material shader programs are + * checked for errors during compilation and linkage process. It may be useful to disable + * this check in production for performance gain. It is strongly recommended to keep these + * checks enabled during development. If the shader does not compile and link - it will not + * work and associated material will not render. + * - `onShaderError(gl, program, glVertexShader,glFragmentShader)`: A callback function that + * can be used for custom error reporting. The callback receives the WebGL context, an instance + * of WebGLProgram as well two instances of WebGLShader representing the vertex and fragment shader. + * Assigning a custom function disables the default error reporting. + * + * @type {Object} + */ + this.debug = { + + /** + * Enables error checking and reporting when shader programs are being compiled. + * @type {boolean} + */ + checkShaderErrors: true, + /** + * Callback for custom error reporting. + * @type {?Function} + */ + onShaderError: null + }; + + // clearing + + /** + * Whether the renderer should automatically clear its output before rendering a frame or not. + * + * @type {boolean} + * @default true + */ + this.autoClear = true; + + /** + * If {@link WebGLRenderer#autoClear} set to `true`, whether the renderer should clear + * the color buffer or not. + * + * @type {boolean} + * @default true + */ + this.autoClearColor = true; + + /** + * If {@link WebGLRenderer#autoClear} set to `true`, whether the renderer should clear + * the depth buffer or not. + * + * @type {boolean} + * @default true + */ + this.autoClearDepth = true; + + /** + * If {@link WebGLRenderer#autoClear} set to `true`, whether the renderer should clear + * the stencil buffer or not. + * + * @type {boolean} + * @default true + */ + this.autoClearStencil = true; + + // scene graph + + /** + * Whether the renderer should sort objects or not. + * + * Note: Sorting is used to attempt to properly render objects that have some + * degree of transparency. By definition, sorting objects may not work in all + * cases. Depending on the needs of application, it may be necessary to turn + * off sorting and use other methods to deal with transparency rendering e.g. + * manually determining each object's rendering order. + * + * @type {boolean} + * @default true + */ + this.sortObjects = true; + + // user-defined clipping + + /** + * User-defined clipping planes specified in world space. These planes apply globally. + * Points in space whose dot product with the plane is negative are cut away. + * + * @type {Array} + */ + this.clippingPlanes = []; + + /** + * Whether the renderer respects object-level clipping planes or not. + * + * @type {boolean} + * @default false + */ + this.localClippingEnabled = false; + + // tone mapping + + /** + * The tone mapping technique of the renderer. + * + * @type {(NoToneMapping|LinearToneMapping|ReinhardToneMapping|CineonToneMapping|ACESFilmicToneMapping|CustomToneMapping|AgXToneMapping|NeutralToneMapping)} + * @default NoToneMapping + */ + this.toneMapping = NoToneMapping; + + /** + * Exposure level of tone mapping. + * + * @type {number} + * @default 1 + */ + this.toneMappingExposure = 1.0; + + // transmission + + /** + * The normalized resolution scale for the transmission render target, measured in percentage + * of viewport dimensions. Lowering this value can result in significant performance improvements + * when using {@link MeshPhysicalMaterial#transmission}. + * + * @type {number} + * @default 1 + */ + this.transmissionResolutionScale = 1.0; + + // internal properties + + const _this = this; + + let _isContextLost = false; + + // internal state cache + + this._outputColorSpace = SRGBColorSpace; + + let _currentActiveCubeFace = 0; + let _currentActiveMipmapLevel = 0; + let _currentRenderTarget = null; + let _currentMaterialId = - 1; + + let _currentCamera = null; + + const _currentViewport = new Vector4(); + const _currentScissor = new Vector4(); + let _currentScissorTest = null; + + const _currentClearColor = new Color( 0x000000 ); + let _currentClearAlpha = 0; + + // + + let _width = canvas.width; + let _height = canvas.height; + + let _pixelRatio = 1; + let _opaqueSort = null; + let _transparentSort = null; + + const _viewport = new Vector4( 0, 0, _width, _height ); + const _scissor = new Vector4( 0, 0, _width, _height ); + let _scissorTest = false; + + // frustum + + const _frustum = new Frustum(); + + // clipping + + let _clippingEnabled = false; + let _localClippingEnabled = false; + + // camera matrices cache + + const _currentProjectionMatrix = new Matrix4(); + const _projScreenMatrix = new Matrix4(); + + const _vector3 = new Vector3(); + + const _vector4 = new Vector4(); + + const _emptyScene = { background: null, fog: null, environment: null, overrideMaterial: null, isScene: true }; + + let _renderBackground = false; + + function getTargetPixelRatio() { + + return _currentRenderTarget === null ? _pixelRatio : 1; + + } + + // initialize + + let _gl = context; + + function getContext( contextName, contextAttributes ) { + + return canvas.getContext( contextName, contextAttributes ); + + } + + try { + + const contextAttributes = { + alpha: true, + depth, + stencil, + antialias, + premultipliedAlpha, + preserveDrawingBuffer, + powerPreference, + failIfMajorPerformanceCaveat, + }; + + // OffscreenCanvas does not have setAttribute, see #22811 + if ( 'setAttribute' in canvas ) canvas.setAttribute( 'data-engine', `three.js r${REVISION}` ); + + // event listeners must be registered before WebGL context is created, see #12753 + canvas.addEventListener( 'webglcontextlost', onContextLost, false ); + canvas.addEventListener( 'webglcontextrestored', onContextRestore, false ); + canvas.addEventListener( 'webglcontextcreationerror', onContextCreationError, false ); + + if ( _gl === null ) { + + const contextName = 'webgl2'; + + _gl = getContext( contextName, contextAttributes ); + + if ( _gl === null ) { + + if ( getContext( contextName ) ) { + + throw new Error( 'Error creating WebGL context with your selected attributes.' ); + + } else { + + throw new Error( 'Error creating WebGL context.' ); + + } + + } + + } + + } catch ( error ) { + + console.error( 'THREE.WebGLRenderer: ' + error.message ); + throw error; + + } + + let extensions, capabilities, state, info; + let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects; + let programCache, materials, renderLists, renderStates, clipping, shadowMap; + + let background, morphtargets, bufferRenderer, indexedBufferRenderer; + + let utils, bindingStates, uniformsGroups; + + function initGLContext() { + + extensions = new WebGLExtensions( _gl ); + extensions.init(); + + utils = new WebGLUtils( _gl, extensions ); + + capabilities = new WebGLCapabilities( _gl, extensions, parameters, utils ); + + state = new WebGLState( _gl, extensions ); + + if ( capabilities.reverseDepthBuffer && reverseDepthBuffer ) { + + state.buffers.depth.setReversed( true ); + + } + + info = new WebGLInfo( _gl ); + properties = new WebGLProperties(); + textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ); + cubemaps = new WebGLCubeMaps( _this ); + cubeuvmaps = new WebGLCubeUVMaps( _this ); + attributes = new WebGLAttributes( _gl ); + bindingStates = new WebGLBindingStates( _gl, attributes ); + geometries = new WebGLGeometries( _gl, attributes, info, bindingStates ); + objects = new WebGLObjects( _gl, geometries, attributes, info ); + morphtargets = new WebGLMorphtargets( _gl, capabilities, textures ); + clipping = new WebGLClipping( properties ); + programCache = new WebGLPrograms( _this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping ); + materials = new WebGLMaterials( _this, properties ); + renderLists = new WebGLRenderLists(); + renderStates = new WebGLRenderStates( extensions ); + background = new WebGLBackground( _this, cubemaps, cubeuvmaps, state, objects, _alpha, premultipliedAlpha ); + shadowMap = new WebGLShadowMap( _this, objects, capabilities ); + uniformsGroups = new WebGLUniformsGroups( _gl, info, capabilities, state ); + + bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info ); + indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info ); + + info.programs = programCache.programs; + + /** + * Holds details about the capabilities of the current rendering context. + * + * @name WebGLRenderer#capabilities + * @type {WebGLRenderer~Capabilities} + */ + _this.capabilities = capabilities; + + /** + * Provides methods for retrieving and testing WebGL extensions. + * + * - `get(extensionName:string)`: Used to check whether a WebGL extension is supported + * and return the extension object if available. + * - `has(extensionName:string)`: returns `true` if the extension is supported. + * + * @name WebGLRenderer#extensions + * @type {Object} + */ + _this.extensions = extensions; + + /** + * Used to track properties of other objects like native WebGL objects. + * + * @name WebGLRenderer#properties + * @type {Object} + */ + _this.properties = properties; + + /** + * Manages the render lists of the renderer. + * + * @name WebGLRenderer#renderLists + * @type {Object} + */ + _this.renderLists = renderLists; + + + + /** + * Interface for managing shadows. + * + * @name WebGLRenderer#shadowMap + * @type {WebGLRenderer~ShadowMap} + */ + _this.shadowMap = shadowMap; + + /** + * Interface for managing the WebGL state. + * + * @name WebGLRenderer#state + * @type {Object} + */ + _this.state = state; + + /** + * Holds a series of statistical information about the GPU memory + * and the rendering process. Useful for debugging and monitoring. + * + * By default these data are reset at each render call but when having + * multiple render passes per frame (e.g. when using post processing) it can + * be preferred to reset with a custom pattern. First, set `autoReset` to + * `false`. + * ```js + * renderer.info.autoReset = false; + * ``` + * Call `reset()` whenever you have finished to render a single frame. + * ```js + * renderer.info.reset(); + * ``` + * + * @name WebGLRenderer#info + * @type {WebGLRenderer~Info} + */ + _this.info = info; + + } + + initGLContext(); + + // xr + + const xr = new WebXRManager( _this, _gl ); + + /** + * A reference to the XR manager. + * + * @type {WebXRManager} + */ + this.xr = xr; + + /** + * Returns the rendering context. + * + * @return {WebGL2RenderingContext} The rendering context. + */ + this.getContext = function () { + + return _gl; + + }; + + /** + * Returns the rendering context attributes. + * + * @return {WebGLContextAttributes} The rendering context attributes. + */ + this.getContextAttributes = function () { + + return _gl.getContextAttributes(); + + }; + + /** + * Simulates a loss of the WebGL context. This requires support for the `WEBGL_lose_context` extension. + */ + this.forceContextLoss = function () { + + const extension = extensions.get( 'WEBGL_lose_context' ); + if ( extension ) extension.loseContext(); + + }; + + /** + * Simulates a restore of the WebGL context. This requires support for the `WEBGL_lose_context` extension. + */ + this.forceContextRestore = function () { + + const extension = extensions.get( 'WEBGL_lose_context' ); + if ( extension ) extension.restoreContext(); + + }; + + /** + * Returns the pixel ratio. + * + * @return {number} The pixel ratio. + */ + this.getPixelRatio = function () { + + return _pixelRatio; + + }; + + /** + * Sets the given pixel ratio and resizes the canvas if necessary. + * + * @param {number} value - The pixel ratio. + */ + this.setPixelRatio = function ( value ) { + + if ( value === undefined ) return; + + _pixelRatio = value; + + this.setSize( _width, _height, false ); + + }; + + /** + * Returns the renderer's size in logical pixels. This method does not honor the pixel ratio. + * + * @param {Vector2} target - The method writes the result in this target object. + * @return {Vector2} The renderer's size in logical pixels. + */ + this.getSize = function ( target ) { + + return target.set( _width, _height ); + + }; + + /** + * Resizes the output canvas to (width, height) with device pixel ratio taken + * into account, and also sets the viewport to fit that size, starting in (0, + * 0). Setting `updateStyle` to false prevents any style changes to the output canvas. + * + * @param {number} width - The width in logical pixels. + * @param {number} height - The height in logical pixels. + * @param {boolean} [updateStyle=true] - Whether to update the `style` attribute of the canvas or not. + */ + this.setSize = function ( width, height, updateStyle = true ) { + + if ( xr.isPresenting ) { + + console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' ); + return; + + } + + _width = width; + _height = height; + + canvas.width = Math.floor( width * _pixelRatio ); + canvas.height = Math.floor( height * _pixelRatio ); + + if ( updateStyle === true ) { + + canvas.style.width = width + 'px'; + canvas.style.height = height + 'px'; + + } + + this.setViewport( 0, 0, width, height ); + + }; + + /** + * Returns the drawing buffer size in physical pixels. This method honors the pixel ratio. + * + * @param {Vector2} target - The method writes the result in this target object. + * @return {Vector2} The drawing buffer size. + */ + this.getDrawingBufferSize = function ( target ) { + + return target.set( _width * _pixelRatio, _height * _pixelRatio ).floor(); + + }; + + /** + * This method allows to define the drawing buffer size by specifying + * width, height and pixel ratio all at once. The size of the drawing + * buffer is computed with this formula: + * ```js + * size.x = width * pixelRatio; + * size.y = height * pixelRatio; + * ``` + * + * @param {number} width - The width in logical pixels. + * @param {number} height - The height in logical pixels. + * @param {number} pixelRatio - The pixel ratio. + */ + this.setDrawingBufferSize = function ( width, height, pixelRatio ) { + + _width = width; + _height = height; + + _pixelRatio = pixelRatio; + + canvas.width = Math.floor( width * pixelRatio ); + canvas.height = Math.floor( height * pixelRatio ); + + this.setViewport( 0, 0, width, height ); + + }; + + /** + * Returns the current viewport definition. + * + * @param {Vector2} target - The method writes the result in this target object. + * @return {Vector2} The current viewport definition. + */ + this.getCurrentViewport = function ( target ) { + + return target.copy( _currentViewport ); + + }; + + /** + * Returns the viewport definition. + * + * @param {Vector4} target - The method writes the result in this target object. + * @return {Vector4} The viewport definition. + */ + this.getViewport = function ( target ) { + + return target.copy( _viewport ); + + }; + + /** + * Sets the viewport to render from `(x, y)` to `(x + width, y + height)`. + * + * @param {number | Vector4} x - The horizontal coordinate for the lower left corner of the viewport origin in logical pixel unit. + * Or alternatively a four-component vector specifying all the parameters of the viewport. + * @param {number} y - The vertical coordinate for the lower left corner of the viewport origin in logical pixel unit. + * @param {number} width - The width of the viewport in logical pixel unit. + * @param {number} height - The height of the viewport in logical pixel unit. + */ + this.setViewport = function ( x, y, width, height ) { + + if ( x.isVector4 ) { + + _viewport.set( x.x, x.y, x.z, x.w ); + + } else { + + _viewport.set( x, y, width, height ); + + } + + state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).round() ); + + }; + + /** + * Returns the scissor region. + * + * @param {Vector4} target - The method writes the result in this target object. + * @return {Vector4} The scissor region. + */ + this.getScissor = function ( target ) { + + return target.copy( _scissor ); + + }; + + /** + * Sets the scissor region to render from `(x, y)` to `(x + width, y + height)`. + * + * @param {number | Vector4} x - The horizontal coordinate for the lower left corner of the scissor region origin in logical pixel unit. + * Or alternatively a four-component vector specifying all the parameters of the scissor region. + * @param {number} y - The vertical coordinate for the lower left corner of the scissor region origin in logical pixel unit. + * @param {number} width - The width of the scissor region in logical pixel unit. + * @param {number} height - The height of the scissor region in logical pixel unit. + */ + this.setScissor = function ( x, y, width, height ) { + + if ( x.isVector4 ) { + + _scissor.set( x.x, x.y, x.z, x.w ); + + } else { + + _scissor.set( x, y, width, height ); + + } + + state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).round() ); + + }; + + /** + * Returns `true` if the scissor test is enabled. + * + * @return {boolean} Whether the scissor test is enabled or not. + */ + this.getScissorTest = function () { + + return _scissorTest; + + }; + + /** + * Enable or disable the scissor test. When this is enabled, only the pixels + * within the defined scissor area will be affected by further renderer + * actions. + * + * @param {boolean} boolean - Whether the scissor test is enabled or not. + */ + this.setScissorTest = function ( boolean ) { + + state.setScissorTest( _scissorTest = boolean ); + + }; + + /** + * Sets a custom opaque sort function for the render lists. Pass `null` + * to use the default `painterSortStable` function. + * + * @param {?Function} method - The opaque sort function. + */ + this.setOpaqueSort = function ( method ) { + + _opaqueSort = method; + + }; + + /** + * Sets a custom transparent sort function for the render lists. Pass `null` + * to use the default `reversePainterSortStable` function. + * + * @param {?Function} method - The opaque sort function. + */ + this.setTransparentSort = function ( method ) { + + _transparentSort = method; + + }; + + // Clearing + + /** + * Returns the clear color. + * + * @param {Color} target - The method writes the result in this target object. + * @return {Color} The clear color. + */ + this.getClearColor = function ( target ) { + + return target.copy( background.getClearColor() ); + + }; + + /** + * Sets the clear color and alpha. + * + * @param {Color} color - The clear color. + * @param {number} [alpha=1] - The clear alpha. + */ + this.setClearColor = function () { + + background.setClearColor( ...arguments ); + + }; + + /** + * Returns the clear alpha. Ranges within `[0,1]`. + * + * @return {number} The clear alpha. + */ + this.getClearAlpha = function () { + + return background.getClearAlpha(); + + }; + + /** + * Sets the clear alpha. + * + * @param {number} alpha - The clear alpha. + */ + this.setClearAlpha = function () { + + background.setClearAlpha( ...arguments ); + + }; + + /** + * Tells the renderer to clear its color, depth or stencil drawing buffer(s). + * This method initializes the buffers to the current clear color values. + * + * @param {boolean} [color=true] - Whether the color buffer should be cleared or not. + * @param {boolean} [depth=true] - Whether the depth buffer should be cleared or not. + * @param {boolean} [stencil=true] - Whether the stencil buffer should be cleared or not. + */ + this.clear = function ( color = true, depth = true, stencil = true ) { + + let bits = 0; + + if ( color ) { + + // check if we're trying to clear an integer target + let isIntegerFormat = false; + if ( _currentRenderTarget !== null ) { + + const targetFormat = _currentRenderTarget.texture.format; + isIntegerFormat = targetFormat === RGBAIntegerFormat || + targetFormat === RGIntegerFormat || + targetFormat === RedIntegerFormat; + + } + + // use the appropriate clear functions to clear the target if it's a signed + // or unsigned integer target + if ( isIntegerFormat ) { + + const targetType = _currentRenderTarget.texture.type; + const isUnsignedType = targetType === UnsignedByteType || + targetType === UnsignedIntType || + targetType === UnsignedShortType || + targetType === UnsignedInt248Type || + targetType === UnsignedShort4444Type || + targetType === UnsignedShort5551Type; + + const clearColor = background.getClearColor(); + const a = background.getClearAlpha(); + const r = clearColor.r; + const g = clearColor.g; + const b = clearColor.b; + + if ( isUnsignedType ) { + + uintClearColor[ 0 ] = r; + uintClearColor[ 1 ] = g; + uintClearColor[ 2 ] = b; + uintClearColor[ 3 ] = a; + _gl.clearBufferuiv( _gl.COLOR, 0, uintClearColor ); + + } else { + + intClearColor[ 0 ] = r; + intClearColor[ 1 ] = g; + intClearColor[ 2 ] = b; + intClearColor[ 3 ] = a; + _gl.clearBufferiv( _gl.COLOR, 0, intClearColor ); + + } + + } else { + + bits |= _gl.COLOR_BUFFER_BIT; + + } + + } + + if ( depth ) { + + bits |= _gl.DEPTH_BUFFER_BIT; + + } + + if ( stencil ) { + + bits |= _gl.STENCIL_BUFFER_BIT; + this.state.buffers.stencil.setMask( 0xffffffff ); + + } + + _gl.clear( bits ); + + }; + + /** + * Clears the color buffer. Equivalent to calling `renderer.clear( true, false, false )`. + */ + this.clearColor = function () { + + this.clear( true, false, false ); + + }; + + /** + * Clears the depth buffer. Equivalent to calling `renderer.clear( false, true, false )`. + */ + this.clearDepth = function () { + + this.clear( false, true, false ); + + }; + + /** + * Clears the stencil buffer. Equivalent to calling `renderer.clear( false, false, true )`. + */ + this.clearStencil = function () { + + this.clear( false, false, true ); + + }; + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + */ + this.dispose = function () { + + canvas.removeEventListener( 'webglcontextlost', onContextLost, false ); + canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false ); + canvas.removeEventListener( 'webglcontextcreationerror', onContextCreationError, false ); + + background.dispose(); + renderLists.dispose(); + renderStates.dispose(); + properties.dispose(); + cubemaps.dispose(); + cubeuvmaps.dispose(); + objects.dispose(); + bindingStates.dispose(); + uniformsGroups.dispose(); + programCache.dispose(); + + xr.dispose(); + + xr.removeEventListener( 'sessionstart', onXRSessionStart ); + xr.removeEventListener( 'sessionend', onXRSessionEnd ); + + animation.stop(); + + }; + + // Events + + function onContextLost( event ) { + + event.preventDefault(); + + console.log( 'THREE.WebGLRenderer: Context Lost.' ); + + _isContextLost = true; + + } + + function onContextRestore( /* event */ ) { + + console.log( 'THREE.WebGLRenderer: Context Restored.' ); + + _isContextLost = false; + + const infoAutoReset = info.autoReset; + const shadowMapEnabled = shadowMap.enabled; + const shadowMapAutoUpdate = shadowMap.autoUpdate; + const shadowMapNeedsUpdate = shadowMap.needsUpdate; + const shadowMapType = shadowMap.type; + + initGLContext(); + + info.autoReset = infoAutoReset; + shadowMap.enabled = shadowMapEnabled; + shadowMap.autoUpdate = shadowMapAutoUpdate; + shadowMap.needsUpdate = shadowMapNeedsUpdate; + shadowMap.type = shadowMapType; + + } + + function onContextCreationError( event ) { + + console.error( 'THREE.WebGLRenderer: A WebGL context could not be created. Reason: ', event.statusMessage ); + + } + + function onMaterialDispose( event ) { + + const material = event.target; + + material.removeEventListener( 'dispose', onMaterialDispose ); + + deallocateMaterial( material ); + + } + + // Buffer deallocation + + function deallocateMaterial( material ) { + + releaseMaterialProgramReferences( material ); + + properties.remove( material ); + + } + + + function releaseMaterialProgramReferences( material ) { + + const programs = properties.get( material ).programs; + + if ( programs !== undefined ) { + + programs.forEach( function ( program ) { + + programCache.releaseProgram( program ); + + } ); + + if ( material.isShaderMaterial ) { + + programCache.releaseShaderCache( material ); + + } + + } + + } + + // Buffer rendering + + this.renderBufferDirect = function ( camera, scene, geometry, material, object, group ) { + + if ( scene === null ) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null) + + const frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 ); + + const program = setProgram( camera, scene, geometry, material, object ); + + state.setMaterial( material, frontFaceCW ); + + // + + let index = geometry.index; + let rangeFactor = 1; + + if ( material.wireframe === true ) { + + index = geometries.getWireframeAttribute( geometry ); + + if ( index === undefined ) return; + + rangeFactor = 2; + + } + + // + + const drawRange = geometry.drawRange; + const position = geometry.attributes.position; + + let drawStart = drawRange.start * rangeFactor; + let drawEnd = ( drawRange.start + drawRange.count ) * rangeFactor; + + if ( group !== null ) { + + drawStart = Math.max( drawStart, group.start * rangeFactor ); + drawEnd = Math.min( drawEnd, ( group.start + group.count ) * rangeFactor ); + + } + + if ( index !== null ) { + + drawStart = Math.max( drawStart, 0 ); + drawEnd = Math.min( drawEnd, index.count ); + + } else if ( position !== undefined && position !== null ) { + + drawStart = Math.max( drawStart, 0 ); + drawEnd = Math.min( drawEnd, position.count ); + + } + + const drawCount = drawEnd - drawStart; + + if ( drawCount < 0 || drawCount === Infinity ) return; + + // + + bindingStates.setup( object, material, program, geometry, index ); + + let attribute; + let renderer = bufferRenderer; + + if ( index !== null ) { + + attribute = attributes.get( index ); + + renderer = indexedBufferRenderer; + renderer.setIndex( attribute ); + + } + + // + + if ( object.isMesh ) { + + if ( material.wireframe === true ) { + + state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() ); + renderer.setMode( _gl.LINES ); + + } else { + + renderer.setMode( _gl.TRIANGLES ); + + } + + } else if ( object.isLine ) { + + let lineWidth = material.linewidth; + + if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material + + state.setLineWidth( lineWidth * getTargetPixelRatio() ); + + if ( object.isLineSegments ) { + + renderer.setMode( _gl.LINES ); + + } else if ( object.isLineLoop ) { + + renderer.setMode( _gl.LINE_LOOP ); + + } else { + + renderer.setMode( _gl.LINE_STRIP ); + + } + + } else if ( object.isPoints ) { + + renderer.setMode( _gl.POINTS ); + + } else if ( object.isSprite ) { + + renderer.setMode( _gl.TRIANGLES ); + + } + + if ( object.isBatchedMesh ) { + + if ( object._multiDrawInstances !== null ) { + + // @deprecated, r174 + warnOnce( 'THREE.WebGLRenderer: renderMultiDrawInstances has been deprecated and will be removed in r184. Append to renderMultiDraw arguments and use indirection.' ); + renderer.renderMultiDrawInstances( object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount, object._multiDrawInstances ); + + } else { + + if ( ! extensions.get( 'WEBGL_multi_draw' ) ) { + + const starts = object._multiDrawStarts; + const counts = object._multiDrawCounts; + const drawCount = object._multiDrawCount; + const bytesPerElement = index ? attributes.get( index ).bytesPerElement : 1; + const uniforms = properties.get( material ).currentProgram.getUniforms(); + for ( let i = 0; i < drawCount; i ++ ) { + + uniforms.setValue( _gl, '_gl_DrawID', i ); + renderer.render( starts[ i ] / bytesPerElement, counts[ i ] ); + + } + + } else { + + renderer.renderMultiDraw( object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount ); + + } + + } + + } else if ( object.isInstancedMesh ) { + + renderer.renderInstances( drawStart, drawCount, object.count ); + + } else if ( geometry.isInstancedBufferGeometry ) { + + const maxInstanceCount = geometry._maxInstanceCount !== undefined ? geometry._maxInstanceCount : Infinity; + const instanceCount = Math.min( geometry.instanceCount, maxInstanceCount ); + + renderer.renderInstances( drawStart, drawCount, instanceCount ); + + } else { + + renderer.render( drawStart, drawCount ); + + } + + }; + + // Compile + + function prepareMaterial( material, scene, object ) { + + if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) { + + material.side = BackSide; + material.needsUpdate = true; + getProgram( material, scene, object ); + + material.side = FrontSide; + material.needsUpdate = true; + getProgram( material, scene, object ); + + material.side = DoubleSide; + + } else { + + getProgram( material, scene, object ); + + } + + } + + /** + * Compiles all materials in the scene with the camera. This is useful to precompile shaders + * before the first rendering. If you want to add a 3D object to an existing scene, use the third + * optional parameter for applying the target scene. + * + * Note that the (target) scene's lighting and environment must be configured before calling this method. + * + * @param {Object3D} scene - The scene or another type of 3D object to precompile. + * @param {Camera} camera - The camera. + * @param {?Scene} [targetScene=null] - The target scene. + * @return {Set} The precompiled materials. + */ + this.compile = function ( scene, camera, targetScene = null ) { + + if ( targetScene === null ) targetScene = scene; + + currentRenderState = renderStates.get( targetScene ); + currentRenderState.init( camera ); + + renderStateStack.push( currentRenderState ); + + // gather lights from both the target scene and the new object that will be added to the scene. + + targetScene.traverseVisible( function ( object ) { + + if ( object.isLight && object.layers.test( camera.layers ) ) { + + currentRenderState.pushLight( object ); + + if ( object.castShadow ) { + + currentRenderState.pushShadow( object ); + + } + + } + + } ); + + if ( scene !== targetScene ) { + + scene.traverseVisible( function ( object ) { + + if ( object.isLight && object.layers.test( camera.layers ) ) { + + currentRenderState.pushLight( object ); + + if ( object.castShadow ) { + + currentRenderState.pushShadow( object ); + + } + + } + + } ); + + } + + currentRenderState.setupLights(); + + // Only initialize materials in the new scene, not the targetScene. + + const materials = new Set(); + + scene.traverse( function ( object ) { + + if ( ! ( object.isMesh || object.isPoints || object.isLine || object.isSprite ) ) { + + return; + + } + + const material = object.material; + + if ( material ) { + + if ( Array.isArray( material ) ) { + + for ( let i = 0; i < material.length; i ++ ) { + + const material2 = material[ i ]; + + prepareMaterial( material2, targetScene, object ); + materials.add( material2 ); + + } + + } else { + + prepareMaterial( material, targetScene, object ); + materials.add( material ); + + } + + } + + } ); + + currentRenderState = renderStateStack.pop(); + + return materials; + + }; + + // compileAsync + + /** + * Asynchronous version of {@link WebGLRenderer#compile}. + * + * This method makes use of the `KHR_parallel_shader_compile` WebGL extension. Hence, + * it is recommended to use this version of `compile()` whenever possible. + * + * @async + * @param {Object3D} scene - The scene or another type of 3D object to precompile. + * @param {Camera} camera - The camera. + * @param {?Scene} [targetScene=null] - The target scene. + * @return {Promise} A Promise that resolves when the given scene can be rendered without unnecessary stalling due to shader compilation. + */ + this.compileAsync = function ( scene, camera, targetScene = null ) { + + const materials = this.compile( scene, camera, targetScene ); + + // Wait for all the materials in the new object to indicate that they're + // ready to be used before resolving the promise. + + return new Promise( ( resolve ) => { + + function checkMaterialsReady() { + + materials.forEach( function ( material ) { + + const materialProperties = properties.get( material ); + const program = materialProperties.currentProgram; + + if ( program.isReady() ) { + + // remove any programs that report they're ready to use from the list + materials.delete( material ); + + } + + } ); + + // once the list of compiling materials is empty, call the callback + + if ( materials.size === 0 ) { + + resolve( scene ); + return; + + } + + // if some materials are still not ready, wait a bit and check again + + setTimeout( checkMaterialsReady, 10 ); + + } + + if ( extensions.get( 'KHR_parallel_shader_compile' ) !== null ) { + + // If we can check the compilation status of the materials without + // blocking then do so right away. + + checkMaterialsReady(); + + } else { + + // Otherwise start by waiting a bit to give the materials we just + // initialized a chance to finish. + + setTimeout( checkMaterialsReady, 10 ); + + } + + } ); + + }; + + // Animation Loop + + let onAnimationFrameCallback = null; + + function onAnimationFrame( time ) { + + if ( onAnimationFrameCallback ) onAnimationFrameCallback( time ); + + } + + function onXRSessionStart() { + + animation.stop(); + + } + + function onXRSessionEnd() { + + animation.start(); + + } + + const animation = new WebGLAnimation(); + animation.setAnimationLoop( onAnimationFrame ); + + if ( typeof self !== 'undefined' ) animation.setContext( self ); + + this.setAnimationLoop = function ( callback ) { + + onAnimationFrameCallback = callback; + xr.setAnimationLoop( callback ); + + ( callback === null ) ? animation.stop() : animation.start(); + + }; + + xr.addEventListener( 'sessionstart', onXRSessionStart ); + xr.addEventListener( 'sessionend', onXRSessionEnd ); + + // Rendering + + /** + * Renders the given scene (or other type of 3D object) using the given camera. + * + * The render is done to a previously specified render target set by calling {@link WebGLRenderer#setRenderTarget} + * or to the canvas as usual. + * + * By default render buffers are cleared before rendering but you can prevent + * this by setting the property `autoClear` to `false`. If you want to prevent + * only certain buffers being cleared you can `autoClearColor`, `autoClearDepth` + * or `autoClearStencil` to `false`. To force a clear, use {@link WebGLRenderer#clear}. + * + * @param {Object3D} scene - The scene to render. + * @param {Camera} camera - The camera. + */ + this.render = function ( scene, camera ) { + + if ( camera !== undefined && camera.isCamera !== true ) { + + console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' ); + return; + + } + + if ( _isContextLost === true ) return; + + // update scene graph + + if ( scene.matrixWorldAutoUpdate === true ) scene.updateMatrixWorld(); + + // update camera matrices and frustum + + if ( camera.parent === null && camera.matrixWorldAutoUpdate === true ) camera.updateMatrixWorld(); + + if ( xr.enabled === true && xr.isPresenting === true ) { + + if ( xr.cameraAutoUpdate === true ) xr.updateCamera( camera ); + + camera = xr.getCamera(); // use XR camera for rendering + + } + + // + if ( scene.isScene === true ) scene.onBeforeRender( _this, scene, camera, _currentRenderTarget ); + + currentRenderState = renderStates.get( scene, renderStateStack.length ); + currentRenderState.init( camera ); + + renderStateStack.push( currentRenderState ); + + _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); + _frustum.setFromProjectionMatrix( _projScreenMatrix ); + + _localClippingEnabled = this.localClippingEnabled; + _clippingEnabled = clipping.init( this.clippingPlanes, _localClippingEnabled ); + + currentRenderList = renderLists.get( scene, renderListStack.length ); + currentRenderList.init(); + + renderListStack.push( currentRenderList ); + + if ( xr.enabled === true && xr.isPresenting === true ) { + + const depthSensingMesh = _this.xr.getDepthSensingMesh(); + + if ( depthSensingMesh !== null ) { + + projectObject( depthSensingMesh, camera, - Infinity, _this.sortObjects ); + + } + + } + + projectObject( scene, camera, 0, _this.sortObjects ); + + currentRenderList.finish(); + + if ( _this.sortObjects === true ) { + + currentRenderList.sort( _opaqueSort, _transparentSort ); + + } + + _renderBackground = xr.enabled === false || xr.isPresenting === false || xr.hasDepthSensing() === false; + if ( _renderBackground ) { + + background.addToRenderList( currentRenderList, scene ); + + } + + // + + this.info.render.frame ++; + + if ( _clippingEnabled === true ) clipping.beginShadows(); + + const shadowsArray = currentRenderState.state.shadowsArray; + + shadowMap.render( shadowsArray, scene, camera ); + + if ( _clippingEnabled === true ) clipping.endShadows(); + + // + + if ( this.info.autoReset === true ) this.info.reset(); + + // render scene + + const opaqueObjects = currentRenderList.opaque; + const transmissiveObjects = currentRenderList.transmissive; + + currentRenderState.setupLights(); + + if ( camera.isArrayCamera ) { + + const cameras = camera.cameras; + + if ( transmissiveObjects.length > 0 ) { + + for ( let i = 0, l = cameras.length; i < l; i ++ ) { + + const camera2 = cameras[ i ]; + + renderTransmissionPass( opaqueObjects, transmissiveObjects, scene, camera2 ); + + } + + } + + if ( _renderBackground ) background.render( scene ); + + for ( let i = 0, l = cameras.length; i < l; i ++ ) { + + const camera2 = cameras[ i ]; + + renderScene( currentRenderList, scene, camera2, camera2.viewport ); + + } + + } else { + + if ( transmissiveObjects.length > 0 ) renderTransmissionPass( opaqueObjects, transmissiveObjects, scene, camera ); + + if ( _renderBackground ) background.render( scene ); + + renderScene( currentRenderList, scene, camera ); + + } + + // + + if ( _currentRenderTarget !== null && _currentActiveMipmapLevel === 0 ) { + + // resolve multisample renderbuffers to a single-sample texture if necessary + + textures.updateMultisampleRenderTarget( _currentRenderTarget ); + + // Generate mipmap if we're using any kind of mipmap filtering + + textures.updateRenderTargetMipmap( _currentRenderTarget ); + + } + + // + + if ( scene.isScene === true ) scene.onAfterRender( _this, scene, camera ); + + // _gl.finish(); + + bindingStates.resetDefaultState(); + _currentMaterialId = - 1; + _currentCamera = null; + + renderStateStack.pop(); + + if ( renderStateStack.length > 0 ) { + + currentRenderState = renderStateStack[ renderStateStack.length - 1 ]; + + if ( _clippingEnabled === true ) clipping.setGlobalState( _this.clippingPlanes, currentRenderState.state.camera ); + + } else { + + currentRenderState = null; + + } + + renderListStack.pop(); + + if ( renderListStack.length > 0 ) { + + currentRenderList = renderListStack[ renderListStack.length - 1 ]; + + } else { + + currentRenderList = null; + + } + + }; + + function projectObject( object, camera, groupOrder, sortObjects ) { + + if ( object.visible === false ) return; + + const visible = object.layers.test( camera.layers ); + + if ( visible ) { + + if ( object.isGroup ) { + + groupOrder = object.renderOrder; + + } else if ( object.isLOD ) { + + if ( object.autoUpdate === true ) object.update( camera ); + + } else if ( object.isLight ) { + + currentRenderState.pushLight( object ); + + if ( object.castShadow ) { + + currentRenderState.pushShadow( object ); + + } + + } else if ( object.isSprite ) { + + if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) { + + if ( sortObjects ) { + + _vector4.setFromMatrixPosition( object.matrixWorld ) + .applyMatrix4( _projScreenMatrix ); + + } + + const geometry = objects.update( object ); + const material = object.material; + + if ( material.visible ) { + + currentRenderList.push( object, geometry, material, groupOrder, _vector4.z, null ); + + } + + } + + } else if ( object.isMesh || object.isLine || object.isPoints ) { + + if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) { + + const geometry = objects.update( object ); + const material = object.material; + + if ( sortObjects ) { + + if ( object.boundingSphere !== undefined ) { + + if ( object.boundingSphere === null ) object.computeBoundingSphere(); + _vector4.copy( object.boundingSphere.center ); + + } else { + + if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); + _vector4.copy( geometry.boundingSphere.center ); + + } + + _vector4 + .applyMatrix4( object.matrixWorld ) + .applyMatrix4( _projScreenMatrix ); + + } + + if ( Array.isArray( material ) ) { + + const groups = geometry.groups; + + for ( let i = 0, l = groups.length; i < l; i ++ ) { + + const group = groups[ i ]; + const groupMaterial = material[ group.materialIndex ]; + + if ( groupMaterial && groupMaterial.visible ) { + + currentRenderList.push( object, geometry, groupMaterial, groupOrder, _vector4.z, group ); + + } + + } + + } else if ( material.visible ) { + + currentRenderList.push( object, geometry, material, groupOrder, _vector4.z, null ); + + } + + } + + } + + } + + const children = object.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + projectObject( children[ i ], camera, groupOrder, sortObjects ); + + } + + } + + function renderScene( currentRenderList, scene, camera, viewport ) { + + const opaqueObjects = currentRenderList.opaque; + const transmissiveObjects = currentRenderList.transmissive; + const transparentObjects = currentRenderList.transparent; + + currentRenderState.setupLightsView( camera ); + + if ( _clippingEnabled === true ) clipping.setGlobalState( _this.clippingPlanes, camera ); + + if ( viewport ) state.viewport( _currentViewport.copy( viewport ) ); + + if ( opaqueObjects.length > 0 ) renderObjects( opaqueObjects, scene, camera ); + if ( transmissiveObjects.length > 0 ) renderObjects( transmissiveObjects, scene, camera ); + if ( transparentObjects.length > 0 ) renderObjects( transparentObjects, scene, camera ); + + // Ensure depth buffer writing is enabled so it can be cleared on next render + + state.buffers.depth.setTest( true ); + state.buffers.depth.setMask( true ); + state.buffers.color.setMask( true ); + + state.setPolygonOffset( false ); + + } + + function renderTransmissionPass( opaqueObjects, transmissiveObjects, scene, camera ) { + + const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; + + if ( overrideMaterial !== null ) { + + return; + + } + + if ( currentRenderState.state.transmissionRenderTarget[ camera.id ] === undefined ) { + + currentRenderState.state.transmissionRenderTarget[ camera.id ] = new WebGLRenderTarget( 1, 1, { + generateMipmaps: true, + type: ( extensions.has( 'EXT_color_buffer_half_float' ) || extensions.has( 'EXT_color_buffer_float' ) ) ? HalfFloatType : UnsignedByteType, + minFilter: LinearMipmapLinearFilter, + samples: 4, + stencilBuffer: stencil, + resolveDepthBuffer: false, + resolveStencilBuffer: false, + colorSpace: ColorManagement.workingColorSpace, + } ); + + // debug + + /* + const geometry = new PlaneGeometry(); + const material = new MeshBasicMaterial( { map: _transmissionRenderTarget.texture } ); + + const mesh = new Mesh( geometry, material ); + scene.add( mesh ); + */ + + } + + const transmissionRenderTarget = currentRenderState.state.transmissionRenderTarget[ camera.id ]; + + const activeViewport = camera.viewport || _currentViewport; + transmissionRenderTarget.setSize( activeViewport.z * _this.transmissionResolutionScale, activeViewport.w * _this.transmissionResolutionScale ); + + // + + const currentRenderTarget = _this.getRenderTarget(); + _this.setRenderTarget( transmissionRenderTarget ); + + _this.getClearColor( _currentClearColor ); + _currentClearAlpha = _this.getClearAlpha(); + if ( _currentClearAlpha < 1 ) _this.setClearColor( 0xffffff, 0.5 ); + + _this.clear(); + + if ( _renderBackground ) background.render( scene ); + + // Turn off the features which can affect the frag color for opaque objects pass. + // Otherwise they are applied twice in opaque objects pass and transmission objects pass. + const currentToneMapping = _this.toneMapping; + _this.toneMapping = NoToneMapping; + + // Remove viewport from camera to avoid nested render calls resetting viewport to it (e.g Reflector). + // Transmission render pass requires viewport to match the transmissionRenderTarget. + const currentCameraViewport = camera.viewport; + if ( camera.viewport !== undefined ) camera.viewport = undefined; + + currentRenderState.setupLightsView( camera ); + + if ( _clippingEnabled === true ) clipping.setGlobalState( _this.clippingPlanes, camera ); + + renderObjects( opaqueObjects, scene, camera ); + + textures.updateMultisampleRenderTarget( transmissionRenderTarget ); + textures.updateRenderTargetMipmap( transmissionRenderTarget ); + + if ( extensions.has( 'WEBGL_multisampled_render_to_texture' ) === false ) { // see #28131 + + let renderTargetNeedsUpdate = false; + + for ( let i = 0, l = transmissiveObjects.length; i < l; i ++ ) { + + const renderItem = transmissiveObjects[ i ]; + + const object = renderItem.object; + const geometry = renderItem.geometry; + const material = renderItem.material; + const group = renderItem.group; + + if ( material.side === DoubleSide && object.layers.test( camera.layers ) ) { + + const currentSide = material.side; + + material.side = BackSide; + material.needsUpdate = true; + + renderObject( object, scene, camera, geometry, material, group ); + + material.side = currentSide; + material.needsUpdate = true; + + renderTargetNeedsUpdate = true; + + } + + } + + if ( renderTargetNeedsUpdate === true ) { + + textures.updateMultisampleRenderTarget( transmissionRenderTarget ); + textures.updateRenderTargetMipmap( transmissionRenderTarget ); + + } + + } + + _this.setRenderTarget( currentRenderTarget ); + + _this.setClearColor( _currentClearColor, _currentClearAlpha ); + + if ( currentCameraViewport !== undefined ) camera.viewport = currentCameraViewport; + + _this.toneMapping = currentToneMapping; + + } + + function renderObjects( renderList, scene, camera ) { + + const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; + + for ( let i = 0, l = renderList.length; i < l; i ++ ) { + + const renderItem = renderList[ i ]; + + const object = renderItem.object; + const geometry = renderItem.geometry; + const group = renderItem.group; + let material = renderItem.material; + + if ( material.allowOverride === true && overrideMaterial !== null ) { + + material = overrideMaterial; + + } + + if ( object.layers.test( camera.layers ) ) { + + renderObject( object, scene, camera, geometry, material, group ); + + } + + } + + } + + function renderObject( object, scene, camera, geometry, material, group ) { + + object.onBeforeRender( _this, scene, camera, geometry, material, group ); + + object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); + object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); + + material.onBeforeRender( _this, scene, camera, geometry, object, group ); + + if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) { + + material.side = BackSide; + material.needsUpdate = true; + _this.renderBufferDirect( camera, scene, geometry, material, object, group ); + + material.side = FrontSide; + material.needsUpdate = true; + _this.renderBufferDirect( camera, scene, geometry, material, object, group ); + + material.side = DoubleSide; + + } else { + + _this.renderBufferDirect( camera, scene, geometry, material, object, group ); + + } + + object.onAfterRender( _this, scene, camera, geometry, material, group ); + + } + + function getProgram( material, scene, object ) { + + if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... + + const materialProperties = properties.get( material ); + + const lights = currentRenderState.state.lights; + const shadowsArray = currentRenderState.state.shadowsArray; + + const lightsStateVersion = lights.state.version; + + const parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, object ); + const programCacheKey = programCache.getProgramCacheKey( parameters ); + + let programs = materialProperties.programs; + + // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change + + materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null; + materialProperties.fog = scene.fog; + materialProperties.envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || materialProperties.environment ); + materialProperties.envMapRotation = ( materialProperties.environment !== null && material.envMap === null ) ? scene.environmentRotation : material.envMapRotation; + + if ( programs === undefined ) { + + // new material + + material.addEventListener( 'dispose', onMaterialDispose ); + + programs = new Map(); + materialProperties.programs = programs; + + } + + let program = programs.get( programCacheKey ); + + if ( program !== undefined ) { + + // early out if program and light state is identical + + if ( materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion ) { + + updateCommonMaterialProperties( material, parameters ); + + return program; + + } + + } else { + + parameters.uniforms = programCache.getUniforms( material ); + + material.onBeforeCompile( parameters, _this ); + + program = programCache.acquireProgram( parameters, programCacheKey ); + programs.set( programCacheKey, program ); + + materialProperties.uniforms = parameters.uniforms; + + } + + const uniforms = materialProperties.uniforms; + + if ( ( ! material.isShaderMaterial && ! material.isRawShaderMaterial ) || material.clipping === true ) { + + uniforms.clippingPlanes = clipping.uniform; + + } + + updateCommonMaterialProperties( material, parameters ); + + // store the light setup it was created for + + materialProperties.needsLights = materialNeedsLights( material ); + materialProperties.lightsStateVersion = lightsStateVersion; + + if ( materialProperties.needsLights ) { + + // wire up the material to this renderer's lighting state + + uniforms.ambientLightColor.value = lights.state.ambient; + uniforms.lightProbe.value = lights.state.probe; + uniforms.directionalLights.value = lights.state.directional; + uniforms.directionalLightShadows.value = lights.state.directionalShadow; + uniforms.spotLights.value = lights.state.spot; + uniforms.spotLightShadows.value = lights.state.spotShadow; + uniforms.rectAreaLights.value = lights.state.rectArea; + uniforms.ltc_1.value = lights.state.rectAreaLTC1; + uniforms.ltc_2.value = lights.state.rectAreaLTC2; + uniforms.pointLights.value = lights.state.point; + uniforms.pointLightShadows.value = lights.state.pointShadow; + uniforms.hemisphereLights.value = lights.state.hemi; + + uniforms.directionalShadowMap.value = lights.state.directionalShadowMap; + uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix; + uniforms.spotShadowMap.value = lights.state.spotShadowMap; + uniforms.spotLightMatrix.value = lights.state.spotLightMatrix; + uniforms.spotLightMap.value = lights.state.spotLightMap; + uniforms.pointShadowMap.value = lights.state.pointShadowMap; + uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; + // TODO (abelnation): add area lights shadow info to uniforms + + } + + materialProperties.currentProgram = program; + materialProperties.uniformsList = null; + + return program; + + } + + function getUniformList( materialProperties ) { + + if ( materialProperties.uniformsList === null ) { + + const progUniforms = materialProperties.currentProgram.getUniforms(); + materialProperties.uniformsList = WebGLUniforms.seqWithValue( progUniforms.seq, materialProperties.uniforms ); + + } + + return materialProperties.uniformsList; + + } + + function updateCommonMaterialProperties( material, parameters ) { + + const materialProperties = properties.get( material ); + + materialProperties.outputColorSpace = parameters.outputColorSpace; + materialProperties.batching = parameters.batching; + materialProperties.batchingColor = parameters.batchingColor; + materialProperties.instancing = parameters.instancing; + materialProperties.instancingColor = parameters.instancingColor; + materialProperties.instancingMorph = parameters.instancingMorph; + materialProperties.skinning = parameters.skinning; + materialProperties.morphTargets = parameters.morphTargets; + materialProperties.morphNormals = parameters.morphNormals; + materialProperties.morphColors = parameters.morphColors; + materialProperties.morphTargetsCount = parameters.morphTargetsCount; + materialProperties.numClippingPlanes = parameters.numClippingPlanes; + materialProperties.numIntersection = parameters.numClipIntersection; + materialProperties.vertexAlphas = parameters.vertexAlphas; + materialProperties.vertexTangents = parameters.vertexTangents; + materialProperties.toneMapping = parameters.toneMapping; + + } + + function setProgram( camera, scene, geometry, material, object ) { + + if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... + + textures.resetTextureUnits(); + + const fog = scene.fog; + const environment = material.isMeshStandardMaterial ? scene.environment : null; + const colorSpace = ( _currentRenderTarget === null ) ? _this.outputColorSpace : ( _currentRenderTarget.isXRRenderTarget === true ? _currentRenderTarget.texture.colorSpace : LinearSRGBColorSpace ); + const envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || environment ); + const vertexAlphas = material.vertexColors === true && !! geometry.attributes.color && geometry.attributes.color.itemSize === 4; + const vertexTangents = !! geometry.attributes.tangent && ( !! material.normalMap || material.anisotropy > 0 ); + const morphTargets = !! geometry.morphAttributes.position; + const morphNormals = !! geometry.morphAttributes.normal; + const morphColors = !! geometry.morphAttributes.color; + + let toneMapping = NoToneMapping; + + if ( material.toneMapped ) { + + if ( _currentRenderTarget === null || _currentRenderTarget.isXRRenderTarget === true ) { + + toneMapping = _this.toneMapping; + + } + + } + + const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; + const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; + + const materialProperties = properties.get( material ); + const lights = currentRenderState.state.lights; + + if ( _clippingEnabled === true ) { + + if ( _localClippingEnabled === true || camera !== _currentCamera ) { + + const useCache = + camera === _currentCamera && + material.id === _currentMaterialId; + + // we might want to call this function with some ClippingGroup + // object instead of the material, once it becomes feasible + // (#8465, #8379) + clipping.setState( material, camera, useCache ); + + } + + } + + // + + let needsProgramChange = false; + + if ( material.version === materialProperties.__version ) { + + if ( materialProperties.needsLights && ( materialProperties.lightsStateVersion !== lights.state.version ) ) { + + needsProgramChange = true; + + } else if ( materialProperties.outputColorSpace !== colorSpace ) { + + needsProgramChange = true; + + } else if ( object.isBatchedMesh && materialProperties.batching === false ) { + + needsProgramChange = true; + + } else if ( ! object.isBatchedMesh && materialProperties.batching === true ) { + + needsProgramChange = true; + + } else if ( object.isBatchedMesh && materialProperties.batchingColor === true && object.colorTexture === null ) { + + needsProgramChange = true; + + } else if ( object.isBatchedMesh && materialProperties.batchingColor === false && object.colorTexture !== null ) { + + needsProgramChange = true; + + } else if ( object.isInstancedMesh && materialProperties.instancing === false ) { + + needsProgramChange = true; + + } else if ( ! object.isInstancedMesh && materialProperties.instancing === true ) { + + needsProgramChange = true; + + } else if ( object.isSkinnedMesh && materialProperties.skinning === false ) { + + needsProgramChange = true; + + } else if ( ! object.isSkinnedMesh && materialProperties.skinning === true ) { + + needsProgramChange = true; + + } else if ( object.isInstancedMesh && materialProperties.instancingColor === true && object.instanceColor === null ) { + + needsProgramChange = true; + + } else if ( object.isInstancedMesh && materialProperties.instancingColor === false && object.instanceColor !== null ) { + + needsProgramChange = true; + + } else if ( object.isInstancedMesh && materialProperties.instancingMorph === true && object.morphTexture === null ) { + + needsProgramChange = true; + + } else if ( object.isInstancedMesh && materialProperties.instancingMorph === false && object.morphTexture !== null ) { + + needsProgramChange = true; + + } else if ( materialProperties.envMap !== envMap ) { + + needsProgramChange = true; + + } else if ( material.fog === true && materialProperties.fog !== fog ) { + + needsProgramChange = true; + + } else if ( materialProperties.numClippingPlanes !== undefined && + ( materialProperties.numClippingPlanes !== clipping.numPlanes || + materialProperties.numIntersection !== clipping.numIntersection ) ) { + + needsProgramChange = true; + + } else if ( materialProperties.vertexAlphas !== vertexAlphas ) { + + needsProgramChange = true; + + } else if ( materialProperties.vertexTangents !== vertexTangents ) { + + needsProgramChange = true; + + } else if ( materialProperties.morphTargets !== morphTargets ) { + + needsProgramChange = true; + + } else if ( materialProperties.morphNormals !== morphNormals ) { + + needsProgramChange = true; + + } else if ( materialProperties.morphColors !== morphColors ) { + + needsProgramChange = true; + + } else if ( materialProperties.toneMapping !== toneMapping ) { + + needsProgramChange = true; + + } else if ( materialProperties.morphTargetsCount !== morphTargetsCount ) { + + needsProgramChange = true; + + } + + } else { + + needsProgramChange = true; + materialProperties.__version = material.version; + + } + + // + + let program = materialProperties.currentProgram; + + if ( needsProgramChange === true ) { + + program = getProgram( material, scene, object ); + + } + + let refreshProgram = false; + let refreshMaterial = false; + let refreshLights = false; + + const p_uniforms = program.getUniforms(), + m_uniforms = materialProperties.uniforms; + + if ( state.useProgram( program.program ) ) { + + refreshProgram = true; + refreshMaterial = true; + refreshLights = true; + + } + + if ( material.id !== _currentMaterialId ) { + + _currentMaterialId = material.id; + + refreshMaterial = true; + + } + + if ( refreshProgram || _currentCamera !== camera ) { + + // common camera uniforms + + const reverseDepthBuffer = state.buffers.depth.getReversed(); + + if ( reverseDepthBuffer ) { + + _currentProjectionMatrix.copy( camera.projectionMatrix ); + + toNormalizedProjectionMatrix( _currentProjectionMatrix ); + toReversedProjectionMatrix( _currentProjectionMatrix ); + + p_uniforms.setValue( _gl, 'projectionMatrix', _currentProjectionMatrix ); + + } else { + + p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix ); + + } + + p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse ); + + const uCamPos = p_uniforms.map.cameraPosition; + + if ( uCamPos !== undefined ) { + + uCamPos.setValue( _gl, _vector3.setFromMatrixPosition( camera.matrixWorld ) ); + + } + + if ( capabilities.logarithmicDepthBuffer ) { + + p_uniforms.setValue( _gl, 'logDepthBufFC', + 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) ); + + } + + // consider moving isOrthographic to UniformLib and WebGLMaterials, see https://github.com/mrdoob/three.js/pull/26467#issuecomment-1645185067 + + if ( material.isMeshPhongMaterial || + material.isMeshToonMaterial || + material.isMeshLambertMaterial || + material.isMeshBasicMaterial || + material.isMeshStandardMaterial || + material.isShaderMaterial ) { + + p_uniforms.setValue( _gl, 'isOrthographic', camera.isOrthographicCamera === true ); + + } + + if ( _currentCamera !== camera ) { + + _currentCamera = camera; + + // lighting uniforms depend on the camera so enforce an update + // now, in case this material supports lights - or later, when + // the next material that does gets activated: + + refreshMaterial = true; // set to true on material change + refreshLights = true; // remains set until update done + + } + + } + + // skinning and morph target uniforms must be set even if material didn't change + // auto-setting of texture unit for bone and morph texture must go before other textures + // otherwise textures used for skinning and morphing can take over texture units reserved for other material textures + + if ( object.isSkinnedMesh ) { + + p_uniforms.setOptional( _gl, object, 'bindMatrix' ); + p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' ); + + const skeleton = object.skeleton; + + if ( skeleton ) { + + if ( skeleton.boneTexture === null ) skeleton.computeBoneTexture(); + + p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture, textures ); + + } + + } + + if ( object.isBatchedMesh ) { + + p_uniforms.setOptional( _gl, object, 'batchingTexture' ); + p_uniforms.setValue( _gl, 'batchingTexture', object._matricesTexture, textures ); + + p_uniforms.setOptional( _gl, object, 'batchingIdTexture' ); + p_uniforms.setValue( _gl, 'batchingIdTexture', object._indirectTexture, textures ); + + p_uniforms.setOptional( _gl, object, 'batchingColorTexture' ); + if ( object._colorsTexture !== null ) { + + p_uniforms.setValue( _gl, 'batchingColorTexture', object._colorsTexture, textures ); + + } + + } + + const morphAttributes = geometry.morphAttributes; + + if ( morphAttributes.position !== undefined || morphAttributes.normal !== undefined || ( morphAttributes.color !== undefined ) ) { + + morphtargets.update( object, geometry, program ); + + } + + if ( refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow ) { + + materialProperties.receiveShadow = object.receiveShadow; + p_uniforms.setValue( _gl, 'receiveShadow', object.receiveShadow ); + + } + + // https://github.com/mrdoob/three.js/pull/24467#issuecomment-1209031512 + + if ( material.isMeshGouraudMaterial && material.envMap !== null ) { + + m_uniforms.envMap.value = envMap; + + m_uniforms.flipEnvMap.value = ( envMap.isCubeTexture && envMap.isRenderTargetTexture === false ) ? - 1 : 1; + + } + + if ( material.isMeshStandardMaterial && material.envMap === null && scene.environment !== null ) { + + m_uniforms.envMapIntensity.value = scene.environmentIntensity; + + } + + if ( refreshMaterial ) { + + p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure ); + + if ( materialProperties.needsLights ) { + + // the current material requires lighting info + + // note: all lighting uniforms are always set correctly + // they simply reference the renderer's state for their + // values + // + // use the current material's .needsUpdate flags to set + // the GL state when required + + markUniformsLightsNeedsUpdate( m_uniforms, refreshLights ); + + } + + // refresh uniforms common to several materials + + if ( fog && material.fog === true ) { + + materials.refreshFogUniforms( m_uniforms, fog ); + + } + + materials.refreshMaterialUniforms( m_uniforms, material, _pixelRatio, _height, currentRenderState.state.transmissionRenderTarget[ camera.id ] ); + + WebGLUniforms.upload( _gl, getUniformList( materialProperties ), m_uniforms, textures ); + + } + + if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) { + + WebGLUniforms.upload( _gl, getUniformList( materialProperties ), m_uniforms, textures ); + material.uniformsNeedUpdate = false; + + } + + if ( material.isSpriteMaterial ) { + + p_uniforms.setValue( _gl, 'center', object.center ); + + } + + // common matrices + + p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix ); + p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix ); + p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld ); + + // UBOs + + if ( material.isShaderMaterial || material.isRawShaderMaterial ) { + + const groups = material.uniformsGroups; + + for ( let i = 0, l = groups.length; i < l; i ++ ) { + + const group = groups[ i ]; + + uniformsGroups.update( group, program ); + uniformsGroups.bind( group, program ); + + } + + } + + return program; + + } + + // If uniforms are marked as clean, they don't need to be loaded to the GPU. + + function markUniformsLightsNeedsUpdate( uniforms, value ) { + + uniforms.ambientLightColor.needsUpdate = value; + uniforms.lightProbe.needsUpdate = value; + + uniforms.directionalLights.needsUpdate = value; + uniforms.directionalLightShadows.needsUpdate = value; + uniforms.pointLights.needsUpdate = value; + uniforms.pointLightShadows.needsUpdate = value; + uniforms.spotLights.needsUpdate = value; + uniforms.spotLightShadows.needsUpdate = value; + uniforms.rectAreaLights.needsUpdate = value; + uniforms.hemisphereLights.needsUpdate = value; + + } + + function materialNeedsLights( material ) { + + return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || + material.isMeshStandardMaterial || material.isShadowMaterial || + ( material.isShaderMaterial && material.lights === true ); + + } + + /** + * Returns the active cube face. + * + * @return {number} The active cube face. + */ + this.getActiveCubeFace = function () { + + return _currentActiveCubeFace; + + }; + + /** + * Returns the active mipmap level. + * + * @return {number} The active mipmap level. + */ + this.getActiveMipmapLevel = function () { + + return _currentActiveMipmapLevel; + + }; + + /** + * Returns the active render target. + * + * @return {?WebGLRenderTarget} The active render target. Returns `null` if no render target + * is currently set. + */ + this.getRenderTarget = function () { + + return _currentRenderTarget; + + }; + + this.setRenderTargetTextures = function ( renderTarget, colorTexture, depthTexture ) { + + const renderTargetProperties = properties.get( renderTarget ); + + renderTargetProperties.__autoAllocateDepthBuffer = renderTarget.resolveDepthBuffer === false; + if ( renderTargetProperties.__autoAllocateDepthBuffer === false ) { + + // The multisample_render_to_texture extension doesn't work properly if there + // are midframe flushes and an external depth buffer. Disable use of the extension. + renderTargetProperties.__useRenderToTexture = false; + + } + + properties.get( renderTarget.texture ).__webglTexture = colorTexture; + properties.get( renderTarget.depthTexture ).__webglTexture = renderTargetProperties.__autoAllocateDepthBuffer ? undefined : depthTexture; + + renderTargetProperties.__hasExternalTextures = true; + + }; + + this.setRenderTargetFramebuffer = function ( renderTarget, defaultFramebuffer ) { + + const renderTargetProperties = properties.get( renderTarget ); + renderTargetProperties.__webglFramebuffer = defaultFramebuffer; + renderTargetProperties.__useDefaultFramebuffer = defaultFramebuffer === undefined; + + }; + + const _scratchFrameBuffer = _gl.createFramebuffer(); + + /** + * Sets the active rendertarget. + * + * @param {?WebGLRenderTarget} renderTarget - The render target to set. When `null` is given, + * the canvas is set as the active render target instead. + * @param {number} [activeCubeFace=0] - The active cube face when using a cube render target. + * Indicates the z layer to render in to when using 3D or array render targets. + * @param {number} [activeMipmapLevel=0] - The active mipmap level. + */ + this.setRenderTarget = function ( renderTarget, activeCubeFace = 0, activeMipmapLevel = 0 ) { + + _currentRenderTarget = renderTarget; + _currentActiveCubeFace = activeCubeFace; + _currentActiveMipmapLevel = activeMipmapLevel; + + let useDefaultFramebuffer = true; + let framebuffer = null; + let isCube = false; + let isRenderTarget3D = false; + + if ( renderTarget ) { + + const renderTargetProperties = properties.get( renderTarget ); + + if ( renderTargetProperties.__useDefaultFramebuffer !== undefined ) { + + // We need to make sure to rebind the framebuffer. + state.bindFramebuffer( _gl.FRAMEBUFFER, null ); + useDefaultFramebuffer = false; + + } else if ( renderTargetProperties.__webglFramebuffer === undefined ) { + + textures.setupRenderTarget( renderTarget ); + + } else if ( renderTargetProperties.__hasExternalTextures ) { + + // Color and depth texture must be rebound in order for the swapchain to update. + textures.rebindTextures( renderTarget, properties.get( renderTarget.texture ).__webglTexture, properties.get( renderTarget.depthTexture ).__webglTexture ); + + } else if ( renderTarget.depthBuffer ) { + + // check if the depth texture is already bound to the frame buffer and that it's been initialized + const depthTexture = renderTarget.depthTexture; + if ( renderTargetProperties.__boundDepthTexture !== depthTexture ) { + + // check if the depth texture is compatible + if ( + depthTexture !== null && + properties.has( depthTexture ) && + ( renderTarget.width !== depthTexture.image.width || renderTarget.height !== depthTexture.image.height ) + ) { + + throw new Error( 'WebGLRenderTarget: Attached DepthTexture is initialized to the incorrect size.' ); + + } + + // Swap the depth buffer to the currently attached one + textures.setupDepthRenderbuffer( renderTarget ); + + } + + } + + const texture = renderTarget.texture; + + if ( texture.isData3DTexture || texture.isDataArrayTexture || texture.isCompressedArrayTexture ) { + + isRenderTarget3D = true; + + } + + const __webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer; + + if ( renderTarget.isWebGLCubeRenderTarget ) { + + if ( Array.isArray( __webglFramebuffer[ activeCubeFace ] ) ) { + + framebuffer = __webglFramebuffer[ activeCubeFace ][ activeMipmapLevel ]; + + } else { + + framebuffer = __webglFramebuffer[ activeCubeFace ]; + + } + + isCube = true; + + } else if ( ( renderTarget.samples > 0 ) && textures.useMultisampledRTT( renderTarget ) === false ) { + + framebuffer = properties.get( renderTarget ).__webglMultisampledFramebuffer; + + } else { + + if ( Array.isArray( __webglFramebuffer ) ) { + + framebuffer = __webglFramebuffer[ activeMipmapLevel ]; + + } else { + + framebuffer = __webglFramebuffer; + + } + + } + + _currentViewport.copy( renderTarget.viewport ); + _currentScissor.copy( renderTarget.scissor ); + _currentScissorTest = renderTarget.scissorTest; + + } else { + + _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor(); + _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor(); + _currentScissorTest = _scissorTest; + + } + + // Use a scratch frame buffer if rendering to a mip level to avoid depth buffers + // being bound that are different sizes. + if ( activeMipmapLevel !== 0 ) { + + framebuffer = _scratchFrameBuffer; + + } + + const framebufferBound = state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); + + if ( framebufferBound && useDefaultFramebuffer ) { + + state.drawBuffers( renderTarget, framebuffer ); + + } + + state.viewport( _currentViewport ); + state.scissor( _currentScissor ); + state.setScissorTest( _currentScissorTest ); + + if ( isCube ) { + + const textureProperties = properties.get( renderTarget.texture ); + _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel ); + + } else if ( isRenderTarget3D ) { + + const textureProperties = properties.get( renderTarget.texture ); + const layer = activeCubeFace; + _gl.framebufferTextureLayer( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureProperties.__webglTexture, activeMipmapLevel, layer ); + + } else if ( renderTarget !== null && activeMipmapLevel !== 0 ) { + + // Only bind the frame buffer if we are using a scratch frame buffer to render to a mipmap. + // If we rebind the texture when using a multi sample buffer then an error about inconsistent samples will be thrown. + const textureProperties = properties.get( renderTarget.texture ); + _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, textureProperties.__webglTexture, activeMipmapLevel ); + + } + + _currentMaterialId = - 1; // reset current material to ensure correct uniform bindings + + }; + + /** + * Reads the pixel data from the given render target into the given buffer. + * + * @param {WebGLRenderTarget} renderTarget - The render target to read from. + * @param {number} x - The `x` coordinate of the copy region's origin. + * @param {number} y - The `y` coordinate of the copy region's origin. + * @param {number} width - The width of the copy region. + * @param {number} height - The height of the copy region. + * @param {TypedArray} buffer - The result buffer. + * @param {number} [activeCubeFaceIndex] - The active cube face index. + */ + this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex ) { + + if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) { + + console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); + return; + + } + + let framebuffer = properties.get( renderTarget ).__webglFramebuffer; + + if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) { + + framebuffer = framebuffer[ activeCubeFaceIndex ]; + + } + + if ( framebuffer ) { + + state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); + + try { + + const texture = renderTarget.texture; + const textureFormat = texture.format; + const textureType = texture.type; + + if ( ! capabilities.textureFormatReadable( textureFormat ) ) { + + console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' ); + return; + + } + + if ( ! capabilities.textureTypeReadable( textureType ) ) { + + console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' ); + return; + + } + + // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) + + if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) { + + _gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer ); + + } + + } finally { + + // restore framebuffer of current render target if necessary + + const framebuffer = ( _currentRenderTarget !== null ) ? properties.get( _currentRenderTarget ).__webglFramebuffer : null; + state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); + + } + + } + + }; + + /** + * Asynchronous, non-blocking version of {@link WebGLRenderer#readRenderTargetPixels}. + * + * It is recommended to use this version of `readRenderTargetPixels()` whenever possible. + * + * @async + * @param {WebGLRenderTarget} renderTarget - The render target to read from. + * @param {number} x - The `x` coordinate of the copy region's origin. + * @param {number} y - The `y` coordinate of the copy region's origin. + * @param {number} width - The width of the copy region. + * @param {number} height - The height of the copy region. + * @param {TypedArray} buffer - The result buffer. + * @param {number} [activeCubeFaceIndex] - The active cube face index. + * @return {Promise} A Promise that resolves when the read has been finished. The resolve provides the read data as a typed array. + */ + this.readRenderTargetPixelsAsync = async function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex ) { + + if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) { + + throw new Error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); + + } + + let framebuffer = properties.get( renderTarget ).__webglFramebuffer; + if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) { + + framebuffer = framebuffer[ activeCubeFaceIndex ]; + + } + + if ( framebuffer ) { + + // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) + if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) { + + // set the active frame buffer to the one we want to read + state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); + + const texture = renderTarget.texture; + const textureFormat = texture.format; + const textureType = texture.type; + + if ( ! capabilities.textureFormatReadable( textureFormat ) ) { + + throw new Error( 'THREE.WebGLRenderer.readRenderTargetPixelsAsync: renderTarget is not in RGBA or implementation defined format.' ); + + } + + if ( ! capabilities.textureTypeReadable( textureType ) ) { + + throw new Error( 'THREE.WebGLRenderer.readRenderTargetPixelsAsync: renderTarget is not in UnsignedByteType or implementation defined type.' ); + + } + + const glBuffer = _gl.createBuffer(); + _gl.bindBuffer( _gl.PIXEL_PACK_BUFFER, glBuffer ); + _gl.bufferData( _gl.PIXEL_PACK_BUFFER, buffer.byteLength, _gl.STREAM_READ ); + _gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), 0 ); + + // reset the frame buffer to the currently set buffer before waiting + const currFramebuffer = _currentRenderTarget !== null ? properties.get( _currentRenderTarget ).__webglFramebuffer : null; + state.bindFramebuffer( _gl.FRAMEBUFFER, currFramebuffer ); + + // check if the commands have finished every 8 ms + const sync = _gl.fenceSync( _gl.SYNC_GPU_COMMANDS_COMPLETE, 0 ); + + _gl.flush(); + + await probeAsync( _gl, sync, 4 ); + + // read the data and delete the buffer + _gl.bindBuffer( _gl.PIXEL_PACK_BUFFER, glBuffer ); + _gl.getBufferSubData( _gl.PIXEL_PACK_BUFFER, 0, buffer ); + _gl.deleteBuffer( glBuffer ); + _gl.deleteSync( sync ); + + return buffer; + + } else { + + throw new Error( 'THREE.WebGLRenderer.readRenderTargetPixelsAsync: requested read bounds are out of range.' ); + + } + + } + + }; + + /** + * Copies pixels from the current bound framebuffer into the given texture. + * + * @param {FramebufferTexture} texture - The texture. + * @param {?Vector2} [position=null] - The start position of the copy operation. + * @param {number} [level=0] - The mip level. The default represents the base mip. + */ + this.copyFramebufferToTexture = function ( texture, position = null, level = 0 ) { + + const levelScale = Math.pow( 2, - level ); + const width = Math.floor( texture.image.width * levelScale ); + const height = Math.floor( texture.image.height * levelScale ); + + const x = position !== null ? position.x : 0; + const y = position !== null ? position.y : 0; + + textures.setTexture2D( texture, 0 ); + + _gl.copyTexSubImage2D( _gl.TEXTURE_2D, level, 0, 0, x, y, width, height ); + + state.unbindTexture(); + + }; + + const _srcFramebuffer = _gl.createFramebuffer(); + const _dstFramebuffer = _gl.createFramebuffer(); + + /** + * Copies data of the given source texture into a destination texture. + * + * When using render target textures as `srcTexture` and `dstTexture`, you must make sure both render targets are initialized + * {@link WebGLRenderer#initRenderTarget}. + * + * @param {Texture} srcTexture - The source texture. + * @param {Texture} dstTexture - The destination texture. + * @param {?(Box2|Box3)} [srcRegion=null] - A bounding box which describes the source region. Can be two or three-dimensional. + * @param {?(Vector2|Vector3)} [dstPosition=null] - A vector that represents the origin of the destination region. Can be two or three-dimensional. + * @param {number} [srcLevel=0] - The source mipmap level to copy. + * @param {?number} [dstLevel=null] - The destination mipmap level. + */ + this.copyTextureToTexture = function ( srcTexture, dstTexture, srcRegion = null, dstPosition = null, srcLevel = 0, dstLevel = null ) { + + // support the previous signature with just a single dst mipmap level + if ( dstLevel === null ) { + + if ( srcLevel !== 0 ) { + + // @deprecated, r171 + warnOnce( 'WebGLRenderer: copyTextureToTexture function signature has changed to support src and dst mipmap levels.' ); + dstLevel = srcLevel; + srcLevel = 0; + + } else { + + dstLevel = 0; + + } + + } + + // gather the necessary dimensions to copy + let width, height, depth, minX, minY, minZ; + let dstX, dstY, dstZ; + const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[ dstLevel ] : srcTexture.image; + if ( srcRegion !== null ) { + + width = srcRegion.max.x - srcRegion.min.x; + height = srcRegion.max.y - srcRegion.min.y; + depth = srcRegion.isBox3 ? srcRegion.max.z - srcRegion.min.z : 1; + minX = srcRegion.min.x; + minY = srcRegion.min.y; + minZ = srcRegion.isBox3 ? srcRegion.min.z : 0; + + } else { + + const levelScale = Math.pow( 2, - srcLevel ); + width = Math.floor( image.width * levelScale ); + height = Math.floor( image.height * levelScale ); + if ( srcTexture.isDataArrayTexture ) { + + depth = image.depth; + + } else if ( srcTexture.isData3DTexture ) { + + depth = Math.floor( image.depth * levelScale ); + + } else { + + depth = 1; + + } + + minX = 0; + minY = 0; + minZ = 0; + + } + + if ( dstPosition !== null ) { + + dstX = dstPosition.x; + dstY = dstPosition.y; + dstZ = dstPosition.z; + + } else { + + dstX = 0; + dstY = 0; + dstZ = 0; + + } + + // Set up the destination target + const glFormat = utils.convert( dstTexture.format ); + const glType = utils.convert( dstTexture.type ); + let glTarget; + + if ( dstTexture.isData3DTexture ) { + + textures.setTexture3D( dstTexture, 0 ); + glTarget = _gl.TEXTURE_3D; + + } else if ( dstTexture.isDataArrayTexture || dstTexture.isCompressedArrayTexture ) { + + textures.setTexture2DArray( dstTexture, 0 ); + glTarget = _gl.TEXTURE_2D_ARRAY; + + } else { + + textures.setTexture2D( dstTexture, 0 ); + glTarget = _gl.TEXTURE_2D; + + } + + _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY ); + _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha ); + _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment ); + + // used for copying data from cpu + const currentUnpackRowLen = _gl.getParameter( _gl.UNPACK_ROW_LENGTH ); + const currentUnpackImageHeight = _gl.getParameter( _gl.UNPACK_IMAGE_HEIGHT ); + const currentUnpackSkipPixels = _gl.getParameter( _gl.UNPACK_SKIP_PIXELS ); + const currentUnpackSkipRows = _gl.getParameter( _gl.UNPACK_SKIP_ROWS ); + const currentUnpackSkipImages = _gl.getParameter( _gl.UNPACK_SKIP_IMAGES ); + + _gl.pixelStorei( _gl.UNPACK_ROW_LENGTH, image.width ); + _gl.pixelStorei( _gl.UNPACK_IMAGE_HEIGHT, image.height ); + _gl.pixelStorei( _gl.UNPACK_SKIP_PIXELS, minX ); + _gl.pixelStorei( _gl.UNPACK_SKIP_ROWS, minY ); + _gl.pixelStorei( _gl.UNPACK_SKIP_IMAGES, minZ ); + + // set up the src texture + const isSrc3D = srcTexture.isDataArrayTexture || srcTexture.isData3DTexture; + const isDst3D = dstTexture.isDataArrayTexture || dstTexture.isData3DTexture; + if ( srcTexture.isDepthTexture ) { + + const srcTextureProperties = properties.get( srcTexture ); + const dstTextureProperties = properties.get( dstTexture ); + const srcRenderTargetProperties = properties.get( srcTextureProperties.__renderTarget ); + const dstRenderTargetProperties = properties.get( dstTextureProperties.__renderTarget ); + state.bindFramebuffer( _gl.READ_FRAMEBUFFER, srcRenderTargetProperties.__webglFramebuffer ); + state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, dstRenderTargetProperties.__webglFramebuffer ); + + for ( let i = 0; i < depth; i ++ ) { + + // if the source or destination are a 3d target then a layer needs to be bound + if ( isSrc3D ) { + + _gl.framebufferTextureLayer( _gl.READ_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, properties.get( srcTexture ).__webglTexture, srcLevel, minZ + i ); + _gl.framebufferTextureLayer( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, properties.get( dstTexture ).__webglTexture, dstLevel, dstZ + i ); + + } + + _gl.blitFramebuffer( minX, minY, width, height, dstX, dstY, width, height, _gl.DEPTH_BUFFER_BIT, _gl.NEAREST ); + + } + + state.bindFramebuffer( _gl.READ_FRAMEBUFFER, null ); + state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, null ); + + } else if ( srcLevel !== 0 || srcTexture.isRenderTargetTexture || properties.has( srcTexture ) ) { + + // get the appropriate frame buffers + const srcTextureProperties = properties.get( srcTexture ); + const dstTextureProperties = properties.get( dstTexture ); + + // bind the frame buffer targets + state.bindFramebuffer( _gl.READ_FRAMEBUFFER, _srcFramebuffer ); + state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, _dstFramebuffer ); + + for ( let i = 0; i < depth; i ++ ) { + + // assign the correct layers and mip maps to the frame buffers + if ( isSrc3D ) { + + _gl.framebufferTextureLayer( _gl.READ_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, srcTextureProperties.__webglTexture, srcLevel, minZ + i ); + + } else { + + _gl.framebufferTexture2D( _gl.READ_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, srcTextureProperties.__webglTexture, srcLevel ); + + } + + if ( isDst3D ) { + + _gl.framebufferTextureLayer( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, dstTextureProperties.__webglTexture, dstLevel, dstZ + i ); + + } else { + + _gl.framebufferTexture2D( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, dstTextureProperties.__webglTexture, dstLevel ); + + } + + // copy the data using the fastest function that can achieve the copy + if ( srcLevel !== 0 ) { + + _gl.blitFramebuffer( minX, minY, width, height, dstX, dstY, width, height, _gl.COLOR_BUFFER_BIT, _gl.NEAREST ); + + } else if ( isDst3D ) { + + _gl.copyTexSubImage3D( glTarget, dstLevel, dstX, dstY, dstZ + i, minX, minY, width, height ); + + } else { + + _gl.copyTexSubImage2D( glTarget, dstLevel, dstX, dstY, minX, minY, width, height ); + + } + + } + + // unbind read, draw buffers + state.bindFramebuffer( _gl.READ_FRAMEBUFFER, null ); + state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, null ); + + } else { + + if ( isDst3D ) { + + // copy data into the 3d texture + if ( srcTexture.isDataTexture || srcTexture.isData3DTexture ) { + + _gl.texSubImage3D( glTarget, dstLevel, dstX, dstY, dstZ, width, height, depth, glFormat, glType, image.data ); + + } else if ( dstTexture.isCompressedArrayTexture ) { + + _gl.compressedTexSubImage3D( glTarget, dstLevel, dstX, dstY, dstZ, width, height, depth, glFormat, image.data ); + + } else { + + _gl.texSubImage3D( glTarget, dstLevel, dstX, dstY, dstZ, width, height, depth, glFormat, glType, image ); + + } + + } else { + + // copy data into the 2d texture + if ( srcTexture.isDataTexture ) { + + _gl.texSubImage2D( _gl.TEXTURE_2D, dstLevel, dstX, dstY, width, height, glFormat, glType, image.data ); + + } else if ( srcTexture.isCompressedTexture ) { + + _gl.compressedTexSubImage2D( _gl.TEXTURE_2D, dstLevel, dstX, dstY, image.width, image.height, glFormat, image.data ); + + } else { + + _gl.texSubImage2D( _gl.TEXTURE_2D, dstLevel, dstX, dstY, width, height, glFormat, glType, image ); + + } + + } + + } + + // reset values + _gl.pixelStorei( _gl.UNPACK_ROW_LENGTH, currentUnpackRowLen ); + _gl.pixelStorei( _gl.UNPACK_IMAGE_HEIGHT, currentUnpackImageHeight ); + _gl.pixelStorei( _gl.UNPACK_SKIP_PIXELS, currentUnpackSkipPixels ); + _gl.pixelStorei( _gl.UNPACK_SKIP_ROWS, currentUnpackSkipRows ); + _gl.pixelStorei( _gl.UNPACK_SKIP_IMAGES, currentUnpackSkipImages ); + + // Generate mipmaps only when copying level 0 + if ( dstLevel === 0 && dstTexture.generateMipmaps ) { + + _gl.generateMipmap( glTarget ); + + } + + state.unbindTexture(); + + }; + + this.copyTextureToTexture3D = function ( srcTexture, dstTexture, srcRegion = null, dstPosition = null, level = 0 ) { + + // @deprecated, r170 + warnOnce( 'WebGLRenderer: copyTextureToTexture3D function has been deprecated. Use "copyTextureToTexture" instead.' ); + + return this.copyTextureToTexture( srcTexture, dstTexture, srcRegion, dstPosition, level ); + + }; + + /** + * Initializes the given WebGLRenderTarget memory. Useful for initializing a render target so data + * can be copied into it using {@link WebGLRenderer#copyTextureToTexture} before it has been + * rendered to. + * + * @param {WebGLRenderTarget} target - The render target. + */ + this.initRenderTarget = function ( target ) { + + if ( properties.get( target ).__webglFramebuffer === undefined ) { + + textures.setupRenderTarget( target ); + + } + + }; + + /** + * Initializes the given texture. Useful for preloading a texture rather than waiting until first + * render (which can cause noticeable lags due to decode and GPU upload overhead). + * + * @param {Texture} texture - The texture. + */ + this.initTexture = function ( texture ) { + + if ( texture.isCubeTexture ) { + + textures.setTextureCube( texture, 0 ); + + } else if ( texture.isData3DTexture ) { + + textures.setTexture3D( texture, 0 ); + + } else if ( texture.isDataArrayTexture || texture.isCompressedArrayTexture ) { + + textures.setTexture2DArray( texture, 0 ); + + } else { + + textures.setTexture2D( texture, 0 ); + + } + + state.unbindTexture(); + + }; + + /** + * Can be used to reset the internal WebGL state. This method is mostly + * relevant for applications which share a single WebGL context across + * multiple WebGL libraries. + */ + this.resetState = function () { + + _currentActiveCubeFace = 0; + _currentActiveMipmapLevel = 0; + _currentRenderTarget = null; + + state.reset(); + bindingStates.reset(); + + }; + + if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { + + __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); + + } + + } + + /** + * Defines the coordinate system of the renderer. + * + * In `WebGLRenderer`, the value is always `WebGLCoordinateSystem`. + * + * @type {WebGLCoordinateSystem|WebGPUCoordinateSystem} + * @default WebGLCoordinateSystem + * @readonly + */ + get coordinateSystem() { + + return WebGLCoordinateSystem; + + } + + /** + * Defines the output color space of the renderer. + * + * @type {SRGBColorSpace|LinearSRGBColorSpace} + * @default SRGBColorSpace + */ + get outputColorSpace() { + + return this._outputColorSpace; + + } + + set outputColorSpace( colorSpace ) { + + this._outputColorSpace = colorSpace; + + const gl = this.getContext(); + gl.drawingBufferColorSpace = ColorManagement._getDrawingBufferColorSpace( colorSpace ); + gl.unpackColorSpace = ColorManagement._getUnpackColorSpace(); + + } + +} + +export { ACESFilmicToneMapping, AddEquation, AddOperation, AdditiveBlending, AgXToneMapping, AlphaFormat, AlwaysCompare, AlwaysDepth, ArrayCamera, BackSide, BoxGeometry, BufferAttribute, BufferGeometry, ByteType, CineonToneMapping, ClampToEdgeWrapping, Color, ColorManagement, ConstantAlphaFactor, ConstantColorFactor, CubeReflectionMapping, CubeRefractionMapping, CubeTexture, CubeUVReflectionMapping, CullFaceBack, CullFaceFront, CullFaceNone, CustomBlending, CustomToneMapping, Data3DTexture, DataArrayTexture, DepthFormat, DepthStencilFormat, DepthTexture, DoubleSide, DstAlphaFactor, DstColorFactor, EqualCompare, EqualDepth, EquirectangularReflectionMapping, EquirectangularRefractionMapping, Euler, EventDispatcher, FloatType, FrontSide, Frustum, GLSL3, GreaterCompare, GreaterDepth, GreaterEqualCompare, GreaterEqualDepth, HalfFloatType, IntType, Layers, LessCompare, LessDepth, LessEqualCompare, LessEqualDepth, LinearFilter, LinearMipmapLinearFilter, LinearMipmapNearestFilter, LinearSRGBColorSpace, LinearToneMapping, LinearTransfer, Matrix3, Matrix4, MaxEquation, Mesh, MeshBasicMaterial, MeshDepthMaterial, MeshDistanceMaterial, MinEquation, MirroredRepeatWrapping, MixOperation, MultiplyBlending, MultiplyOperation, NearestFilter, NearestMipmapLinearFilter, NearestMipmapNearestFilter, NeutralToneMapping, NeverCompare, NeverDepth, NoBlending, NoColorSpace, NoToneMapping, NormalBlending, NotEqualCompare, NotEqualDepth, ObjectSpaceNormalMap, OneFactor, OneMinusConstantAlphaFactor, OneMinusConstantColorFactor, OneMinusDstAlphaFactor, OneMinusDstColorFactor, OneMinusSrcAlphaFactor, OneMinusSrcColorFactor, OrthographicCamera, PCFShadowMap, PCFSoftShadowMap, PMREMGenerator, PerspectiveCamera, Plane, PlaneGeometry, RED_GREEN_RGTC2_Format, RED_RGTC1_Format, REVISION, RGBADepthPacking, RGBAFormat, RGBAIntegerFormat, RGBA_ASTC_10x10_Format, RGBA_ASTC_10x5_Format, RGBA_ASTC_10x6_Format, RGBA_ASTC_10x8_Format, RGBA_ASTC_12x10_Format, RGBA_ASTC_12x12_Format, RGBA_ASTC_4x4_Format, RGBA_ASTC_5x4_Format, RGBA_ASTC_5x5_Format, RGBA_ASTC_6x5_Format, RGBA_ASTC_6x6_Format, RGBA_ASTC_8x5_Format, RGBA_ASTC_8x6_Format, RGBA_ASTC_8x8_Format, RGBA_BPTC_Format, RGBA_ETC2_EAC_Format, RGBA_PVRTC_2BPPV1_Format, RGBA_PVRTC_4BPPV1_Format, RGBA_S3TC_DXT1_Format, RGBA_S3TC_DXT3_Format, RGBA_S3TC_DXT5_Format, RGBFormat, RGB_BPTC_SIGNED_Format, RGB_BPTC_UNSIGNED_Format, RGB_ETC1_Format, RGB_ETC2_Format, RGB_PVRTC_2BPPV1_Format, RGB_PVRTC_4BPPV1_Format, RGB_S3TC_DXT1_Format, RGFormat, RGIntegerFormat, RedFormat, RedIntegerFormat, ReinhardToneMapping, RepeatWrapping, ReverseSubtractEquation, SIGNED_RED_GREEN_RGTC2_Format, SIGNED_RED_RGTC1_Format, SRGBColorSpace, SRGBTransfer, ShaderChunk, ShaderLib, ShaderMaterial, ShortType, SrcAlphaFactor, SrcAlphaSaturateFactor, SrcColorFactor, SubtractEquation, SubtractiveBlending, TangentSpaceNormalMap, Texture, Uint16BufferAttribute, Uint32BufferAttribute, UniformsLib, UniformsUtils, UnsignedByteType, UnsignedInt248Type, UnsignedInt5999Type, UnsignedIntType, UnsignedShort4444Type, UnsignedShort5551Type, UnsignedShortType, VSMShadowMap, Vector2, Vector3, Vector4, WebGLCoordinateSystem, WebGLCubeRenderTarget, WebGLRenderTarget, WebGLRenderer, WebGLUtils, WebXRController, ZeroFactor, createCanvasElement }; diff --git a/devtools/panel/build/three.tsl.js b/devtools/panel/build/three.tsl.js new file mode 100644 index 00000000000000..c2dbc51a6b1579 --- /dev/null +++ b/devtools/panel/build/three.tsl.js @@ -0,0 +1,560 @@ +/** + * @license + * Copyright 2010-2025 Three.js Authors + * SPDX-License-Identifier: MIT + */ +import { TSL } from 'three/webgpu'; + +const BRDF_GGX = TSL.BRDF_GGX; +const BRDF_Lambert = TSL.BRDF_Lambert; +const BasicShadowFilter = TSL.BasicShadowFilter; +const Break = TSL.Break; +const Continue = TSL.Continue; +const DFGApprox = TSL.DFGApprox; +const D_GGX = TSL.D_GGX; +const Discard = TSL.Discard; +const EPSILON = TSL.EPSILON; +const F_Schlick = TSL.F_Schlick; +const Fn = TSL.Fn; +const INFINITY = TSL.INFINITY; +const If = TSL.If; +const Switch = TSL.Switch; +const Loop = TSL.Loop; +const NodeShaderStage = TSL.NodeShaderStage; +const NodeType = TSL.NodeType; +const NodeUpdateType = TSL.NodeUpdateType; +const NodeAccess = TSL.NodeAccess; +const PCFShadowFilter = TSL.PCFShadowFilter; +const PCFSoftShadowFilter = TSL.PCFSoftShadowFilter; +const PI = TSL.PI; +const PI2 = TSL.PI2; +const Return = TSL.Return; +const Schlick_to_F0 = TSL.Schlick_to_F0; +const ScriptableNodeResources = TSL.ScriptableNodeResources; +const ShaderNode = TSL.ShaderNode; +const TBNViewMatrix = TSL.TBNViewMatrix; +const VSMShadowFilter = TSL.VSMShadowFilter; +const V_GGX_SmithCorrelated = TSL.V_GGX_SmithCorrelated; +const abs = TSL.abs; +const acesFilmicToneMapping = TSL.acesFilmicToneMapping; +const acos = TSL.acos; +const add = TSL.add; +const addNodeElement = TSL.addNodeElement; +const agxToneMapping = TSL.agxToneMapping; +const all = TSL.all; +const alphaT = TSL.alphaT; +const and = TSL.and; +const anisotropy = TSL.anisotropy; +const anisotropyB = TSL.anisotropyB; +const anisotropyT = TSL.anisotropyT; +const any = TSL.any; +const append = TSL.append; +const array = TSL.array; +const arrayBuffer = TSL.arrayBuffer; +const asin = TSL.asin; +const assign = TSL.assign; +const atan = TSL.atan; +const atan2 = TSL.atan2; +const atomicAdd = TSL.atomicAdd; +const atomicAnd = TSL.atomicAnd; +const atomicFunc = TSL.atomicFunc; +const atomicMax = TSL.atomicMax; +const atomicMin = TSL.atomicMin; +const atomicOr = TSL.atomicOr; +const atomicStore = TSL.atomicStore; +const atomicSub = TSL.atomicSub; +const atomicXor = TSL.atomicXor; +const atomicLoad = TSL.atomicLoad; +const attenuationColor = TSL.attenuationColor; +const attenuationDistance = TSL.attenuationDistance; +const attribute = TSL.attribute; +const attributeArray = TSL.attributeArray; +const backgroundBlurriness = TSL.backgroundBlurriness; +const backgroundIntensity = TSL.backgroundIntensity; +const backgroundRotation = TSL.backgroundRotation; +const batch = TSL.batch; +const billboarding = TSL.billboarding; +const bitAnd = TSL.bitAnd; +const bitNot = TSL.bitNot; +const bitOr = TSL.bitOr; +const bitXor = TSL.bitXor; +const bitangentGeometry = TSL.bitangentGeometry; +const bitangentLocal = TSL.bitangentLocal; +const bitangentView = TSL.bitangentView; +const bitangentWorld = TSL.bitangentWorld; +const bitcast = TSL.bitcast; +const blendBurn = TSL.blendBurn; +const blendColor = TSL.blendColor; +const blendDodge = TSL.blendDodge; +const blendOverlay = TSL.blendOverlay; +const blendScreen = TSL.blendScreen; +const blur = TSL.blur; +const bool = TSL.bool; +const buffer = TSL.buffer; +const bufferAttribute = TSL.bufferAttribute; +const bumpMap = TSL.bumpMap; +const burn = TSL.burn; +const bvec2 = TSL.bvec2; +const bvec3 = TSL.bvec3; +const bvec4 = TSL.bvec4; +const bypass = TSL.bypass; +const cache = TSL.cache; +const call = TSL.call; +const cameraFar = TSL.cameraFar; +const cameraIndex = TSL.cameraIndex; +const cameraNear = TSL.cameraNear; +const cameraNormalMatrix = TSL.cameraNormalMatrix; +const cameraPosition = TSL.cameraPosition; +const cameraProjectionMatrix = TSL.cameraProjectionMatrix; +const cameraProjectionMatrixInverse = TSL.cameraProjectionMatrixInverse; +const cameraViewMatrix = TSL.cameraViewMatrix; +const cameraWorldMatrix = TSL.cameraWorldMatrix; +const cbrt = TSL.cbrt; +const cdl = TSL.cdl; +const ceil = TSL.ceil; +const checker = TSL.checker; +const cineonToneMapping = TSL.cineonToneMapping; +const clamp = TSL.clamp; +const clearcoat = TSL.clearcoat; +const clearcoatRoughness = TSL.clearcoatRoughness; +const code = TSL.code; +const color = TSL.color; +const colorSpaceToWorking = TSL.colorSpaceToWorking; +const colorToDirection = TSL.colorToDirection; +const compute = TSL.compute; +const computeSkinning = TSL.computeSkinning; +const cond = TSL.cond; +const Const = TSL.Const; +const context = TSL.context; +const convert = TSL.convert; +const convertColorSpace = TSL.convertColorSpace; +const convertToTexture = TSL.convertToTexture; +const cos = TSL.cos; +const cross = TSL.cross; +const cubeTexture = TSL.cubeTexture; +const dFdx = TSL.dFdx; +const dFdy = TSL.dFdy; +const dashSize = TSL.dashSize; +const debug = TSL.debug; +const decrement = TSL.decrement; +const decrementBefore = TSL.decrementBefore; +const defaultBuildStages = TSL.defaultBuildStages; +const defaultShaderStages = TSL.defaultShaderStages; +const defined = TSL.defined; +const degrees = TSL.degrees; +const deltaTime = TSL.deltaTime; +const densityFog = TSL.densityFog; +const densityFogFactor = TSL.densityFogFactor; +const depth = TSL.depth; +const depthPass = TSL.depthPass; +const difference = TSL.difference; +const diffuseColor = TSL.diffuseColor; +const directPointLight = TSL.directPointLight; +const directionToColor = TSL.directionToColor; +const dispersion = TSL.dispersion; +const distance = TSL.distance; +const div = TSL.div; +const dodge = TSL.dodge; +const dot = TSL.dot; +const drawIndex = TSL.drawIndex; +const dynamicBufferAttribute = TSL.dynamicBufferAttribute; +const element = TSL.element; +const emissive = TSL.emissive; +const equal = TSL.equal; +const equals = TSL.equals; +const equirectUV = TSL.equirectUV; +const exp = TSL.exp; +const exp2 = TSL.exp2; +const expression = TSL.expression; +const faceDirection = TSL.faceDirection; +const faceForward = TSL.faceForward; +const faceforward = TSL.faceforward; +const float = TSL.float; +const floor = TSL.floor; +const fog = TSL.fog; +const fract = TSL.fract; +const frameGroup = TSL.frameGroup; +const frameId = TSL.frameId; +const frontFacing = TSL.frontFacing; +const fwidth = TSL.fwidth; +const gain = TSL.gain; +const gapSize = TSL.gapSize; +const getConstNodeType = TSL.getConstNodeType; +const getCurrentStack = TSL.getCurrentStack; +const getDirection = TSL.getDirection; +const getDistanceAttenuation = TSL.getDistanceAttenuation; +const getGeometryRoughness = TSL.getGeometryRoughness; +const getNormalFromDepth = TSL.getNormalFromDepth; +const getParallaxCorrectNormal = TSL.getParallaxCorrectNormal; +const getRoughness = TSL.getRoughness; +const getScreenPosition = TSL.getScreenPosition; +const getShIrradianceAt = TSL.getShIrradianceAt; +const getTextureIndex = TSL.getTextureIndex; +const getViewPosition = TSL.getViewPosition; +const getShadowMaterial = TSL.getShadowMaterial; +const getShadowRenderObjectFunction = TSL.getShadowRenderObjectFunction; +const glsl = TSL.glsl; +const glslFn = TSL.glslFn; +const grayscale = TSL.grayscale; +const greaterThan = TSL.greaterThan; +const greaterThanEqual = TSL.greaterThanEqual; +const hash = TSL.hash; +const highpModelNormalViewMatrix = TSL.highpModelNormalViewMatrix; +const highpModelViewMatrix = TSL.highpModelViewMatrix; +const hue = TSL.hue; +const increment = TSL.increment; +const incrementBefore = TSL.incrementBefore; +const instance = TSL.instance; +const instanceIndex = TSL.instanceIndex; +const instancedArray = TSL.instancedArray; +const instancedBufferAttribute = TSL.instancedBufferAttribute; +const instancedDynamicBufferAttribute = TSL.instancedDynamicBufferAttribute; +const instancedMesh = TSL.instancedMesh; +const int = TSL.int; +const inverseSqrt = TSL.inverseSqrt; +const inversesqrt = TSL.inversesqrt; +const invocationLocalIndex = TSL.invocationLocalIndex; +const invocationSubgroupIndex = TSL.invocationSubgroupIndex; +const ior = TSL.ior; +const iridescence = TSL.iridescence; +const iridescenceIOR = TSL.iridescenceIOR; +const iridescenceThickness = TSL.iridescenceThickness; +const ivec2 = TSL.ivec2; +const ivec3 = TSL.ivec3; +const ivec4 = TSL.ivec4; +const js = TSL.js; +const label = TSL.label; +const length = TSL.length; +const lengthSq = TSL.lengthSq; +const lessThan = TSL.lessThan; +const lessThanEqual = TSL.lessThanEqual; +const lightPosition = TSL.lightPosition; +const lightShadowMatrix = TSL.lightShadowMatrix; +const lightTargetDirection = TSL.lightTargetDirection; +const lightTargetPosition = TSL.lightTargetPosition; +const lightViewPosition = TSL.lightViewPosition; +const lightingContext = TSL.lightingContext; +const lights = TSL.lights; +const linearDepth = TSL.linearDepth; +const linearToneMapping = TSL.linearToneMapping; +const localId = TSL.localId; +const globalId = TSL.globalId; +const log = TSL.log; +const log2 = TSL.log2; +const logarithmicDepthToViewZ = TSL.logarithmicDepthToViewZ; +const loop = TSL.loop; +const luminance = TSL.luminance; +const mediumpModelViewMatrix = TSL.mediumpModelViewMatrix; +const mat2 = TSL.mat2; +const mat3 = TSL.mat3; +const mat4 = TSL.mat4; +const matcapUV = TSL.matcapUV; +const materialAO = TSL.materialAO; +const materialAlphaTest = TSL.materialAlphaTest; +const materialAnisotropy = TSL.materialAnisotropy; +const materialAnisotropyVector = TSL.materialAnisotropyVector; +const materialAttenuationColor = TSL.materialAttenuationColor; +const materialAttenuationDistance = TSL.materialAttenuationDistance; +const materialClearcoat = TSL.materialClearcoat; +const materialClearcoatNormal = TSL.materialClearcoatNormal; +const materialClearcoatRoughness = TSL.materialClearcoatRoughness; +const materialColor = TSL.materialColor; +const materialDispersion = TSL.materialDispersion; +const materialEmissive = TSL.materialEmissive; +const materialIOR = TSL.materialIOR; +const materialIridescence = TSL.materialIridescence; +const materialIridescenceIOR = TSL.materialIridescenceIOR; +const materialIridescenceThickness = TSL.materialIridescenceThickness; +const materialLightMap = TSL.materialLightMap; +const materialLineDashOffset = TSL.materialLineDashOffset; +const materialLineDashSize = TSL.materialLineDashSize; +const materialLineGapSize = TSL.materialLineGapSize; +const materialLineScale = TSL.materialLineScale; +const materialLineWidth = TSL.materialLineWidth; +const materialMetalness = TSL.materialMetalness; +const materialNormal = TSL.materialNormal; +const materialOpacity = TSL.materialOpacity; +const materialPointSize = TSL.materialPointSize; +const materialReference = TSL.materialReference; +const materialReflectivity = TSL.materialReflectivity; +const materialRefractionRatio = TSL.materialRefractionRatio; +const materialRotation = TSL.materialRotation; +const materialRoughness = TSL.materialRoughness; +const materialSheen = TSL.materialSheen; +const materialSheenRoughness = TSL.materialSheenRoughness; +const materialShininess = TSL.materialShininess; +const materialSpecular = TSL.materialSpecular; +const materialSpecularColor = TSL.materialSpecularColor; +const materialSpecularIntensity = TSL.materialSpecularIntensity; +const materialSpecularStrength = TSL.materialSpecularStrength; +const materialThickness = TSL.materialThickness; +const materialTransmission = TSL.materialTransmission; +const max = TSL.max; +const maxMipLevel = TSL.maxMipLevel; +const metalness = TSL.metalness; +const min = TSL.min; +const mix = TSL.mix; +const mixElement = TSL.mixElement; +const mod = TSL.mod; +const modInt = TSL.modInt; +const modelDirection = TSL.modelDirection; +const modelNormalMatrix = TSL.modelNormalMatrix; +const modelPosition = TSL.modelPosition; +const modelRadius = TSL.modelRadius; +const modelScale = TSL.modelScale; +const modelViewMatrix = TSL.modelViewMatrix; +const modelViewPosition = TSL.modelViewPosition; +const modelViewProjection = TSL.modelViewProjection; +const modelWorldMatrix = TSL.modelWorldMatrix; +const modelWorldMatrixInverse = TSL.modelWorldMatrixInverse; +const morphReference = TSL.morphReference; +const mrt = TSL.mrt; +const mul = TSL.mul; +const mx_aastep = TSL.mx_aastep; +const mx_cell_noise_float = TSL.mx_cell_noise_float; +const mx_contrast = TSL.mx_contrast; +const mx_fractal_noise_float = TSL.mx_fractal_noise_float; +const mx_fractal_noise_vec2 = TSL.mx_fractal_noise_vec2; +const mx_fractal_noise_vec3 = TSL.mx_fractal_noise_vec3; +const mx_fractal_noise_vec4 = TSL.mx_fractal_noise_vec4; +const mx_hsvtorgb = TSL.mx_hsvtorgb; +const mx_noise_float = TSL.mx_noise_float; +const mx_noise_vec3 = TSL.mx_noise_vec3; +const mx_noise_vec4 = TSL.mx_noise_vec4; +const mx_ramplr = TSL.mx_ramplr; +const mx_ramptb = TSL.mx_ramptb; +const mx_rgbtohsv = TSL.mx_rgbtohsv; +const mx_safepower = TSL.mx_safepower; +const mx_splitlr = TSL.mx_splitlr; +const mx_splittb = TSL.mx_splittb; +const mx_srgb_texture_to_lin_rec709 = TSL.mx_srgb_texture_to_lin_rec709; +const mx_transform_uv = TSL.mx_transform_uv; +const mx_worley_noise_float = TSL.mx_worley_noise_float; +const mx_worley_noise_vec2 = TSL.mx_worley_noise_vec2; +const mx_worley_noise_vec3 = TSL.mx_worley_noise_vec3; +const namespace = TSL.namespace; +const negate = TSL.negate; +const neutralToneMapping = TSL.neutralToneMapping; +const nodeArray = TSL.nodeArray; +const nodeImmutable = TSL.nodeImmutable; +const nodeObject = TSL.nodeObject; +const nodeObjects = TSL.nodeObjects; +const nodeProxy = TSL.nodeProxy; +const normalFlat = TSL.normalFlat; +const normalGeometry = TSL.normalGeometry; +const normalLocal = TSL.normalLocal; +const normalMap = TSL.normalMap; +const normalView = TSL.normalView; +const normalWorld = TSL.normalWorld; +const normalize = TSL.normalize; +const not = TSL.not; +const notEqual = TSL.notEqual; +const numWorkgroups = TSL.numWorkgroups; +const objectDirection = TSL.objectDirection; +const objectGroup = TSL.objectGroup; +const objectPosition = TSL.objectPosition; +const objectRadius = TSL.objectRadius; +const objectScale = TSL.objectScale; +const objectViewPosition = TSL.objectViewPosition; +const objectWorldMatrix = TSL.objectWorldMatrix; +const oneMinus = TSL.oneMinus; +const or = TSL.or; +const orthographicDepthToViewZ = TSL.orthographicDepthToViewZ; +const oscSawtooth = TSL.oscSawtooth; +const oscSine = TSL.oscSine; +const oscSquare = TSL.oscSquare; +const oscTriangle = TSL.oscTriangle; +const output = TSL.output; +const outputStruct = TSL.outputStruct; +const overlay = TSL.overlay; +const overloadingFn = TSL.overloadingFn; +const parabola = TSL.parabola; +const parallaxDirection = TSL.parallaxDirection; +const parallaxUV = TSL.parallaxUV; +const parameter = TSL.parameter; +const pass = TSL.pass; +const passTexture = TSL.passTexture; +const pcurve = TSL.pcurve; +const perspectiveDepthToViewZ = TSL.perspectiveDepthToViewZ; +const pmremTexture = TSL.pmremTexture; +const pointUV = TSL.pointUV; +const pointWidth = TSL.pointWidth; +const positionGeometry = TSL.positionGeometry; +const positionLocal = TSL.positionLocal; +const positionPrevious = TSL.positionPrevious; +const positionView = TSL.positionView; +const positionViewDirection = TSL.positionViewDirection; +const positionWorld = TSL.positionWorld; +const positionWorldDirection = TSL.positionWorldDirection; +const posterize = TSL.posterize; +const pow = TSL.pow; +const pow2 = TSL.pow2; +const pow3 = TSL.pow3; +const pow4 = TSL.pow4; +const premult = TSL.premult; +const property = TSL.property; +const radians = TSL.radians; +const rand = TSL.rand; +const range = TSL.range; +const rangeFog = TSL.rangeFog; +const rangeFogFactor = TSL.rangeFogFactor; +const reciprocal = TSL.reciprocal; +const lightProjectionUV = TSL.lightProjectionUV; +const reference = TSL.reference; +const referenceBuffer = TSL.referenceBuffer; +const reflect = TSL.reflect; +const reflectVector = TSL.reflectVector; +const reflectView = TSL.reflectView; +const reflector = TSL.reflector; +const refract = TSL.refract; +const refractVector = TSL.refractVector; +const refractView = TSL.refractView; +const reinhardToneMapping = TSL.reinhardToneMapping; +const remainder = TSL.remainder; +const remap = TSL.remap; +const remapClamp = TSL.remapClamp; +const renderGroup = TSL.renderGroup; +const renderOutput = TSL.renderOutput; +const rendererReference = TSL.rendererReference; +const rotate = TSL.rotate; +const rotateUV = TSL.rotateUV; +const roughness = TSL.roughness; +const round = TSL.round; +const rtt = TSL.rtt; +const sRGBTransferEOTF = TSL.sRGBTransferEOTF; +const sRGBTransferOETF = TSL.sRGBTransferOETF; +const sampler = TSL.sampler; +const samplerComparison = TSL.samplerComparison; +const saturate = TSL.saturate; +const saturation = TSL.saturation; +const screen = TSL.screen; +const screenCoordinate = TSL.screenCoordinate; +const screenSize = TSL.screenSize; +const screenUV = TSL.screenUV; +const scriptable = TSL.scriptable; +const scriptableValue = TSL.scriptableValue; +const select = TSL.select; +const setCurrentStack = TSL.setCurrentStack; +const shaderStages = TSL.shaderStages; +const shadow = TSL.shadow; +const pointShadow = TSL.pointShadow; +const shadowPositionWorld = TSL.shadowPositionWorld; +const sharedUniformGroup = TSL.sharedUniformGroup; +const shapeCircle = TSL.shapeCircle; +const sheen = TSL.sheen; +const sheenRoughness = TSL.sheenRoughness; +const shiftLeft = TSL.shiftLeft; +const shiftRight = TSL.shiftRight; +const shininess = TSL.shininess; +const sign = TSL.sign; +const sin = TSL.sin; +const sinc = TSL.sinc; +const skinning = TSL.skinning; +const smoothstep = TSL.smoothstep; +const smoothstepElement = TSL.smoothstepElement; +const specularColor = TSL.specularColor; +const specularF90 = TSL.specularF90; +const spherizeUV = TSL.spherizeUV; +const split = TSL.split; +const spritesheetUV = TSL.spritesheetUV; +const sqrt = TSL.sqrt; +const stack = TSL.stack; +const step = TSL.step; +const storage = TSL.storage; +const storageBarrier = TSL.storageBarrier; +const storageObject = TSL.storageObject; +const storageTexture = TSL.storageTexture; +const string = TSL.string; +const struct = TSL.struct; +const sub = TSL.sub; +const subgroupIndex = TSL.subgroupIndex; +const subgroupSize = TSL.subgroupSize; +const tan = TSL.tan; +const tangentGeometry = TSL.tangentGeometry; +const tangentLocal = TSL.tangentLocal; +const tangentView = TSL.tangentView; +const tangentWorld = TSL.tangentWorld; +const temp = TSL.temp; +const texture = TSL.texture; +const texture3D = TSL.texture3D; +const textureBarrier = TSL.textureBarrier; +const textureBicubic = TSL.textureBicubic; +const textureCubeUV = TSL.textureCubeUV; +const textureLoad = TSL.textureLoad; +const textureSize = TSL.textureSize; +const textureStore = TSL.textureStore; +const thickness = TSL.thickness; +const time = TSL.time; +const timerDelta = TSL.timerDelta; +const timerGlobal = TSL.timerGlobal; +const timerLocal = TSL.timerLocal; +const toneMapping = TSL.toneMapping; +const toneMappingExposure = TSL.toneMappingExposure; +const toonOutlinePass = TSL.toonOutlinePass; +const transformDirection = TSL.transformDirection; +const transformNormal = TSL.transformNormal; +const transformNormalToView = TSL.transformNormalToView; +const transformedBentNormalView = TSL.transformedBentNormalView; +const transformedBitangentView = TSL.transformedBitangentView; +const transformedBitangentWorld = TSL.transformedBitangentWorld; +const transformedClearcoatNormalView = TSL.transformedClearcoatNormalView; +const transformedNormalView = TSL.transformedNormalView; +const transformedNormalWorld = TSL.transformedNormalWorld; +const transformedTangentView = TSL.transformedTangentView; +const transformedTangentWorld = TSL.transformedTangentWorld; +const transmission = TSL.transmission; +const transpose = TSL.transpose; +const triNoise3D = TSL.triNoise3D; +const triplanarTexture = TSL.triplanarTexture; +const triplanarTextures = TSL.triplanarTextures; +const trunc = TSL.trunc; +const tslFn = TSL.tslFn; +const uint = TSL.uint; +const uniform = TSL.uniform; +const uniformCubeTexture = TSL.uniformCubeTexture; +const uniformArray = TSL.uniformArray; +const uniformGroup = TSL.uniformGroup; +const uniformTexture = TSL.uniformTexture; +const uniforms = TSL.uniforms; +const unpremult = TSL.unpremult; +const userData = TSL.userData; +const uv = TSL.uv; +const uvec2 = TSL.uvec2; +const uvec3 = TSL.uvec3; +const uvec4 = TSL.uvec4; +const Var = TSL.Var; +const varying = TSL.varying; +const varyingProperty = TSL.varyingProperty; +const vec2 = TSL.vec2; +const vec3 = TSL.vec3; +const vec4 = TSL.vec4; +const vectorComponents = TSL.vectorComponents; +const velocity = TSL.velocity; +const vertexColor = TSL.vertexColor; +const vertexIndex = TSL.vertexIndex; +const vibrance = TSL.vibrance; +const viewZToLogarithmicDepth = TSL.viewZToLogarithmicDepth; +const viewZToOrthographicDepth = TSL.viewZToOrthographicDepth; +const viewZToPerspectiveDepth = TSL.viewZToPerspectiveDepth; +const viewport = TSL.viewport; +const viewportBottomLeft = TSL.viewportBottomLeft; +const viewportCoordinate = TSL.viewportCoordinate; +const viewportDepthTexture = TSL.viewportDepthTexture; +const viewportLinearDepth = TSL.viewportLinearDepth; +const viewportMipTexture = TSL.viewportMipTexture; +const viewportResolution = TSL.viewportResolution; +const viewportSafeUV = TSL.viewportSafeUV; +const viewportSharedTexture = TSL.viewportSharedTexture; +const viewportSize = TSL.viewportSize; +const viewportTexture = TSL.viewportTexture; +const viewportTopLeft = TSL.viewportTopLeft; +const viewportUV = TSL.viewportUV; +const wgsl = TSL.wgsl; +const wgslFn = TSL.wgslFn; +const workgroupArray = TSL.workgroupArray; +const workgroupBarrier = TSL.workgroupBarrier; +const workgroupId = TSL.workgroupId; +const workingToColorSpace = TSL.workingToColorSpace; +const xor = TSL.xor; + +export { BRDF_GGX, BRDF_Lambert, BasicShadowFilter, Break, Const, Continue, DFGApprox, D_GGX, Discard, EPSILON, F_Schlick, Fn, INFINITY, If, Loop, NodeAccess, NodeShaderStage, NodeType, NodeUpdateType, PCFShadowFilter, PCFSoftShadowFilter, PI, PI2, Return, Schlick_to_F0, ScriptableNodeResources, ShaderNode, Switch, TBNViewMatrix, VSMShadowFilter, V_GGX_SmithCorrelated, Var, abs, acesFilmicToneMapping, acos, add, addNodeElement, agxToneMapping, all, alphaT, and, anisotropy, anisotropyB, anisotropyT, any, append, array, arrayBuffer, asin, assign, atan, atan2, atomicAdd, atomicAnd, atomicFunc, atomicLoad, atomicMax, atomicMin, atomicOr, atomicStore, atomicSub, atomicXor, attenuationColor, attenuationDistance, attribute, attributeArray, backgroundBlurriness, backgroundIntensity, backgroundRotation, batch, billboarding, bitAnd, bitNot, bitOr, bitXor, bitangentGeometry, bitangentLocal, bitangentView, bitangentWorld, bitcast, blendBurn, blendColor, blendDodge, blendOverlay, blendScreen, blur, bool, buffer, bufferAttribute, bumpMap, burn, bvec2, bvec3, bvec4, bypass, cache, call, cameraFar, cameraIndex, cameraNear, cameraNormalMatrix, cameraPosition, cameraProjectionMatrix, cameraProjectionMatrixInverse, cameraViewMatrix, cameraWorldMatrix, cbrt, cdl, ceil, checker, cineonToneMapping, clamp, clearcoat, clearcoatRoughness, code, color, colorSpaceToWorking, colorToDirection, compute, computeSkinning, cond, context, convert, convertColorSpace, convertToTexture, cos, cross, cubeTexture, dFdx, dFdy, dashSize, debug, decrement, decrementBefore, defaultBuildStages, defaultShaderStages, defined, degrees, deltaTime, densityFog, densityFogFactor, depth, depthPass, difference, diffuseColor, directPointLight, directionToColor, dispersion, distance, div, dodge, dot, drawIndex, dynamicBufferAttribute, element, emissive, equal, equals, equirectUV, exp, exp2, expression, faceDirection, faceForward, faceforward, float, floor, fog, fract, frameGroup, frameId, frontFacing, fwidth, gain, gapSize, getConstNodeType, getCurrentStack, getDirection, getDistanceAttenuation, getGeometryRoughness, getNormalFromDepth, getParallaxCorrectNormal, getRoughness, getScreenPosition, getShIrradianceAt, getShadowMaterial, getShadowRenderObjectFunction, getTextureIndex, getViewPosition, globalId, glsl, glslFn, grayscale, greaterThan, greaterThanEqual, hash, highpModelNormalViewMatrix, highpModelViewMatrix, hue, increment, incrementBefore, instance, instanceIndex, instancedArray, instancedBufferAttribute, instancedDynamicBufferAttribute, instancedMesh, int, inverseSqrt, inversesqrt, invocationLocalIndex, invocationSubgroupIndex, ior, iridescence, iridescenceIOR, iridescenceThickness, ivec2, ivec3, ivec4, js, label, length, lengthSq, lessThan, lessThanEqual, lightPosition, lightProjectionUV, lightShadowMatrix, lightTargetDirection, lightTargetPosition, lightViewPosition, lightingContext, lights, linearDepth, linearToneMapping, localId, log, log2, logarithmicDepthToViewZ, loop, luminance, mat2, mat3, mat4, matcapUV, materialAO, materialAlphaTest, materialAnisotropy, materialAnisotropyVector, materialAttenuationColor, materialAttenuationDistance, materialClearcoat, materialClearcoatNormal, materialClearcoatRoughness, materialColor, materialDispersion, materialEmissive, materialIOR, materialIridescence, materialIridescenceIOR, materialIridescenceThickness, materialLightMap, materialLineDashOffset, materialLineDashSize, materialLineGapSize, materialLineScale, materialLineWidth, materialMetalness, materialNormal, materialOpacity, materialPointSize, materialReference, materialReflectivity, materialRefractionRatio, materialRotation, materialRoughness, materialSheen, materialSheenRoughness, materialShininess, materialSpecular, materialSpecularColor, materialSpecularIntensity, materialSpecularStrength, materialThickness, materialTransmission, max, maxMipLevel, mediumpModelViewMatrix, metalness, min, mix, mixElement, mod, modInt, modelDirection, modelNormalMatrix, modelPosition, modelRadius, modelScale, modelViewMatrix, modelViewPosition, modelViewProjection, modelWorldMatrix, modelWorldMatrixInverse, morphReference, mrt, mul, mx_aastep, mx_cell_noise_float, mx_contrast, mx_fractal_noise_float, mx_fractal_noise_vec2, mx_fractal_noise_vec3, mx_fractal_noise_vec4, mx_hsvtorgb, mx_noise_float, mx_noise_vec3, mx_noise_vec4, mx_ramplr, mx_ramptb, mx_rgbtohsv, mx_safepower, mx_splitlr, mx_splittb, mx_srgb_texture_to_lin_rec709, mx_transform_uv, mx_worley_noise_float, mx_worley_noise_vec2, mx_worley_noise_vec3, namespace, negate, neutralToneMapping, nodeArray, nodeImmutable, nodeObject, nodeObjects, nodeProxy, normalFlat, normalGeometry, normalLocal, normalMap, normalView, normalWorld, normalize, not, notEqual, numWorkgroups, objectDirection, objectGroup, objectPosition, objectRadius, objectScale, objectViewPosition, objectWorldMatrix, oneMinus, or, orthographicDepthToViewZ, oscSawtooth, oscSine, oscSquare, oscTriangle, output, outputStruct, overlay, overloadingFn, parabola, parallaxDirection, parallaxUV, parameter, pass, passTexture, pcurve, perspectiveDepthToViewZ, pmremTexture, pointShadow, pointUV, pointWidth, positionGeometry, positionLocal, positionPrevious, positionView, positionViewDirection, positionWorld, positionWorldDirection, posterize, pow, pow2, pow3, pow4, premult, property, radians, rand, range, rangeFog, rangeFogFactor, reciprocal, reference, referenceBuffer, reflect, reflectVector, reflectView, reflector, refract, refractVector, refractView, reinhardToneMapping, remainder, remap, remapClamp, renderGroup, renderOutput, rendererReference, rotate, rotateUV, roughness, round, rtt, sRGBTransferEOTF, sRGBTransferOETF, sampler, samplerComparison, saturate, saturation, screen, screenCoordinate, screenSize, screenUV, scriptable, scriptableValue, select, setCurrentStack, shaderStages, shadow, shadowPositionWorld, shapeCircle, sharedUniformGroup, sheen, sheenRoughness, shiftLeft, shiftRight, shininess, sign, sin, sinc, skinning, smoothstep, smoothstepElement, specularColor, specularF90, spherizeUV, split, spritesheetUV, sqrt, stack, step, storage, storageBarrier, storageObject, storageTexture, string, struct, sub, subgroupIndex, subgroupSize, tan, tangentGeometry, tangentLocal, tangentView, tangentWorld, temp, texture, texture3D, textureBarrier, textureBicubic, textureCubeUV, textureLoad, textureSize, textureStore, thickness, time, timerDelta, timerGlobal, timerLocal, toneMapping, toneMappingExposure, toonOutlinePass, transformDirection, transformNormal, transformNormalToView, transformedBentNormalView, transformedBitangentView, transformedBitangentWorld, transformedClearcoatNormalView, transformedNormalView, transformedNormalWorld, transformedTangentView, transformedTangentWorld, transmission, transpose, triNoise3D, triplanarTexture, triplanarTextures, trunc, tslFn, uint, uniform, uniformArray, uniformCubeTexture, uniformGroup, uniformTexture, uniforms, unpremult, userData, uv, uvec2, uvec3, uvec4, varying, varyingProperty, vec2, vec3, vec4, vectorComponents, velocity, vertexColor, vertexIndex, vibrance, viewZToLogarithmicDepth, viewZToOrthographicDepth, viewZToPerspectiveDepth, viewport, viewportBottomLeft, viewportCoordinate, viewportDepthTexture, viewportLinearDepth, viewportMipTexture, viewportResolution, viewportSafeUV, viewportSharedTexture, viewportSize, viewportTexture, viewportTopLeft, viewportUV, wgsl, wgslFn, workgroupArray, workgroupBarrier, workgroupId, workingToColorSpace, xor }; diff --git a/devtools/panel/build/three.webgpu.js b/devtools/panel/build/three.webgpu.js new file mode 100644 index 00000000000000..ff15c6b4da5ca2 --- /dev/null +++ b/devtools/panel/build/three.webgpu.js @@ -0,0 +1,73537 @@ +/** + * @license + * Copyright 2010-2025 Three.js Authors + * SPDX-License-Identifier: MIT + */ +import { Color, Vector2, Vector3, Vector4, Matrix2, Matrix3, Matrix4, EventDispatcher, MathUtils, WebGLCoordinateSystem, WebGPUCoordinateSystem, ColorManagement, SRGBTransfer, NoToneMapping, StaticDrawUsage, InterleavedBuffer, InterleavedBufferAttribute, DynamicDrawUsage, NoColorSpace, Texture, UnsignedIntType, IntType, NearestFilter, Sphere, BackSide, Euler, CubeTexture, CubeReflectionMapping, CubeRefractionMapping, TangentSpaceNormalMap, ObjectSpaceNormalMap, InstancedInterleavedBuffer, InstancedBufferAttribute, DataArrayTexture, FloatType, FramebufferTexture, LinearMipmapLinearFilter, DepthTexture, Material, NormalBlending, LineBasicMaterial, LineDashedMaterial, NoBlending, MeshNormalMaterial, SRGBColorSpace, WebGLCubeRenderTarget, BoxGeometry, Mesh, Scene, LinearFilter, CubeCamera, EquirectangularReflectionMapping, EquirectangularRefractionMapping, AddOperation, MixOperation, MultiplyOperation, MeshBasicMaterial, MeshLambertMaterial, MeshPhongMaterial, OrthographicCamera, PerspectiveCamera, RenderTarget, LinearSRGBColorSpace, RGBAFormat, HalfFloatType, CubeUVReflectionMapping, BufferGeometry, BufferAttribute, MeshStandardMaterial, MeshPhysicalMaterial, MeshToonMaterial, MeshMatcapMaterial, SpriteMaterial, PointsMaterial, ShadowMaterial, Uint32BufferAttribute, Uint16BufferAttribute, arrayNeedsUint32, DoubleSide, Camera, DepthStencilFormat, DepthFormat, UnsignedInt248Type, UnsignedByteType, Plane, Object3D, LinearMipMapLinearFilter, Float32BufferAttribute, UVMapping, VSMShadowMap, LessCompare, RGFormat, BasicShadowMap, SphereGeometry, LinearMipmapNearestFilter, NearestMipmapLinearFilter, Float16BufferAttribute, REVISION, ArrayCamera, PlaneGeometry, FrontSide, CustomBlending, AddEquation, ZeroFactor, CylinderGeometry, Quaternion, WebXRController, RAD2DEG, PCFShadowMap, FrustumArray, Frustum, DataTexture, RedIntegerFormat, RedFormat, ShortType, ByteType, UnsignedShortType, RGIntegerFormat, RGBIntegerFormat, RGBFormat, RGBAIntegerFormat, warnOnce, createCanvasElement, ReverseSubtractEquation, SubtractEquation, OneMinusDstAlphaFactor, OneMinusDstColorFactor, OneMinusSrcAlphaFactor, OneMinusSrcColorFactor, DstAlphaFactor, DstColorFactor, SrcAlphaSaturateFactor, SrcAlphaFactor, SrcColorFactor, OneFactor, CullFaceNone, CullFaceBack, CullFaceFront, MultiplyBlending, SubtractiveBlending, AdditiveBlending, NotEqualDepth, GreaterDepth, GreaterEqualDepth, EqualDepth, LessEqualDepth, LessDepth, AlwaysDepth, NeverDepth, UnsignedShort4444Type, UnsignedShort5551Type, UnsignedInt5999Type, AlphaFormat, RGB_S3TC_DXT1_Format, RGBA_S3TC_DXT1_Format, RGBA_S3TC_DXT3_Format, RGBA_S3TC_DXT5_Format, RGB_PVRTC_4BPPV1_Format, RGB_PVRTC_2BPPV1_Format, RGBA_PVRTC_4BPPV1_Format, RGBA_PVRTC_2BPPV1_Format, RGB_ETC1_Format, RGB_ETC2_Format, RGBA_ETC2_EAC_Format, RGBA_ASTC_4x4_Format, RGBA_ASTC_5x4_Format, RGBA_ASTC_5x5_Format, RGBA_ASTC_6x5_Format, RGBA_ASTC_6x6_Format, RGBA_ASTC_8x5_Format, RGBA_ASTC_8x6_Format, RGBA_ASTC_8x8_Format, RGBA_ASTC_10x5_Format, RGBA_ASTC_10x6_Format, RGBA_ASTC_10x8_Format, RGBA_ASTC_10x10_Format, RGBA_ASTC_12x10_Format, RGBA_ASTC_12x12_Format, RGBA_BPTC_Format, RED_RGTC1_Format, SIGNED_RED_RGTC1_Format, RED_GREEN_RGTC2_Format, SIGNED_RED_GREEN_RGTC2_Format, MirroredRepeatWrapping, ClampToEdgeWrapping, RepeatWrapping, NearestMipmapNearestFilter, NotEqualCompare, GreaterCompare, GreaterEqualCompare, EqualCompare, LessEqualCompare, AlwaysCompare, NeverCompare, LinearTransfer, NotEqualStencilFunc, GreaterStencilFunc, GreaterEqualStencilFunc, EqualStencilFunc, LessEqualStencilFunc, LessStencilFunc, AlwaysStencilFunc, NeverStencilFunc, DecrementWrapStencilOp, IncrementWrapStencilOp, DecrementStencilOp, IncrementStencilOp, InvertStencilOp, ReplaceStencilOp, ZeroStencilOp, KeepStencilOp, MaxEquation, MinEquation, SpotLight, PointLight, DirectionalLight, RectAreaLight, AmbientLight, HemisphereLight, LightProbe, LinearToneMapping, ReinhardToneMapping, CineonToneMapping, ACESFilmicToneMapping, AgXToneMapping, NeutralToneMapping, Group, Loader, FileLoader, MaterialLoader, ObjectLoader } from './three.core.js'; +export { AdditiveAnimationBlendMode, AnimationAction, AnimationClip, AnimationLoader, AnimationMixer, AnimationObjectGroup, AnimationUtils, ArcCurve, ArrowHelper, AttachedBindMode, Audio, AudioAnalyser, AudioContext, AudioListener, AudioLoader, AxesHelper, BasicDepthPacking, BatchedMesh, Bone, BooleanKeyframeTrack, Box2, Box3, Box3Helper, BoxHelper, BufferGeometryLoader, Cache, CameraHelper, CanvasTexture, CapsuleGeometry, CatmullRomCurve3, CircleGeometry, Clock, ColorKeyframeTrack, CompressedArrayTexture, CompressedCubeTexture, CompressedTexture, CompressedTextureLoader, ConeGeometry, ConstantAlphaFactor, ConstantColorFactor, Controls, CubeTextureLoader, CubicBezierCurve, CubicBezierCurve3, CubicInterpolant, CullFaceFrontBack, Curve, CurvePath, CustomToneMapping, Cylindrical, Data3DTexture, DataTextureLoader, DataUtils, DefaultLoadingManager, DetachedBindMode, DirectionalLightHelper, DiscreteInterpolant, DodecahedronGeometry, DynamicCopyUsage, DynamicReadUsage, EdgesGeometry, EllipseCurve, ExtrudeGeometry, Fog, FogExp2, GLBufferAttribute, GLSL1, GLSL3, GridHelper, HemisphereLightHelper, IcosahedronGeometry, ImageBitmapLoader, ImageLoader, ImageUtils, InstancedBufferGeometry, InstancedMesh, Int16BufferAttribute, Int32BufferAttribute, Int8BufferAttribute, Interpolant, InterpolateDiscrete, InterpolateLinear, InterpolateSmooth, InterpolationSamplingMode, InterpolationSamplingType, KeyframeTrack, LOD, LatheGeometry, Layers, Light, Line, Line3, LineCurve, LineCurve3, LineLoop, LineSegments, LinearInterpolant, LinearMipMapNearestFilter, LoaderUtils, LoadingManager, LoopOnce, LoopPingPong, LoopRepeat, MOUSE, MeshDepthMaterial, MeshDistanceMaterial, NearestMipMapLinearFilter, NearestMipMapNearestFilter, NormalAnimationBlendMode, NumberKeyframeTrack, OctahedronGeometry, OneMinusConstantAlphaFactor, OneMinusConstantColorFactor, PCFSoftShadowMap, Path, PlaneHelper, PointLightHelper, Points, PolarGridHelper, PolyhedronGeometry, PositionalAudio, PropertyBinding, PropertyMixer, QuadraticBezierCurve, QuadraticBezierCurve3, QuaternionKeyframeTrack, QuaternionLinearInterpolant, RGBADepthPacking, RGBDepthPacking, RGB_BPTC_SIGNED_Format, RGB_BPTC_UNSIGNED_Format, RGDepthPacking, RawShaderMaterial, Ray, Raycaster, RenderTarget3D, RingGeometry, ShaderMaterial, Shape, ShapeGeometry, ShapePath, ShapeUtils, Skeleton, SkeletonHelper, SkinnedMesh, Source, Spherical, SphericalHarmonics3, SplineCurve, SpotLightHelper, Sprite, StaticCopyUsage, StaticReadUsage, StereoCamera, StreamCopyUsage, StreamDrawUsage, StreamReadUsage, StringKeyframeTrack, TOUCH, TetrahedronGeometry, TextureLoader, TextureUtils, TimestampQuery, TorusGeometry, TorusKnotGeometry, Triangle, TriangleFanDrawMode, TriangleStripDrawMode, TrianglesDrawMode, TubeGeometry, Uint8BufferAttribute, Uint8ClampedBufferAttribute, Uniform, UniformsGroup, VectorKeyframeTrack, VideoFrameTexture, VideoTexture, WebGL3DRenderTarget, WebGLArrayRenderTarget, WebGLRenderTarget, WireframeGeometry, WrapAroundEnding, ZeroCurvatureEnding, ZeroSlopeEnding } from './three.core.js'; + +const refreshUniforms = [ + 'alphaMap', + 'alphaTest', + 'anisotropy', + 'anisotropyMap', + 'anisotropyRotation', + 'aoMap', + 'aoMapIntensity', + 'attenuationColor', + 'attenuationDistance', + 'bumpMap', + 'clearcoat', + 'clearcoatMap', + 'clearcoatNormalMap', + 'clearcoatNormalScale', + 'clearcoatRoughness', + 'color', + 'dispersion', + 'displacementMap', + 'emissive', + 'emissiveIntensity', + 'emissiveMap', + 'envMap', + 'envMapIntensity', + 'gradientMap', + 'ior', + 'iridescence', + 'iridescenceIOR', + 'iridescenceMap', + 'iridescenceThicknessMap', + 'lightMap', + 'lightMapIntensity', + 'map', + 'matcap', + 'metalness', + 'metalnessMap', + 'normalMap', + 'normalScale', + 'opacity', + 'roughness', + 'roughnessMap', + 'sheen', + 'sheenColor', + 'sheenColorMap', + 'sheenRoughnessMap', + 'shininess', + 'specular', + 'specularColor', + 'specularColorMap', + 'specularIntensity', + 'specularIntensityMap', + 'specularMap', + 'thickness', + 'transmission', + 'transmissionMap' +]; + +/** + * This class is used by {@link WebGPURenderer} as management component. + * It's primary purpose is to determine whether render objects require a + * refresh right before they are going to be rendered or not. + */ +class NodeMaterialObserver { + + /** + * Constructs a new node material observer. + * + * @param {NodeBuilder} builder - The node builder. + */ + constructor( builder ) { + + /** + * A node material can be used by more than one render object so the + * monitor must maintain a list of render objects. + * + * @type {WeakMap} + */ + this.renderObjects = new WeakMap(); + + /** + * Whether the material uses node objects or not. + * + * @type {boolean} + */ + this.hasNode = this.containsNode( builder ); + + /** + * Whether the node builder's 3D object is animated or not. + * + * @type {boolean} + */ + this.hasAnimation = builder.object.isSkinnedMesh === true; + + /** + * A list of all possible material uniforms + * + * @type {Array} + */ + this.refreshUniforms = refreshUniforms; + + /** + * Holds the current render ID from the node frame. + * + * @type {number} + * @default 0 + */ + this.renderId = 0; + + } + + /** + * Returns `true` if the given render object is verified for the first time of this observer. + * + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the given render object is verified for the first time of this observer. + */ + firstInitialization( renderObject ) { + + const hasInitialized = this.renderObjects.has( renderObject ); + + if ( hasInitialized === false ) { + + this.getRenderObjectData( renderObject ); + + return true; + + } + + return false; + + } + + /** + * Returns `true` if the current rendering produces motion vectors. + * + * @param {Renderer} renderer - The renderer. + * @return {boolean} Whether the current rendering produces motion vectors or not. + */ + needsVelocity( renderer ) { + + const mrt = renderer.getMRT(); + + return ( mrt !== null && mrt.has( 'velocity' ) ); + + } + + /** + * Returns monitoring data for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @return {Object} The monitoring data. + */ + getRenderObjectData( renderObject ) { + + let data = this.renderObjects.get( renderObject ); + + if ( data === undefined ) { + + const { geometry, material, object } = renderObject; + + data = { + material: this.getMaterialData( material ), + geometry: { + id: geometry.id, + attributes: this.getAttributesData( geometry.attributes ), + indexVersion: geometry.index ? geometry.index.version : null, + drawRange: { start: geometry.drawRange.start, count: geometry.drawRange.count } + }, + worldMatrix: object.matrixWorld.clone() + }; + + if ( object.center ) { + + data.center = object.center.clone(); + + } + + if ( object.morphTargetInfluences ) { + + data.morphTargetInfluences = object.morphTargetInfluences.slice(); + + } + + if ( renderObject.bundle !== null ) { + + data.version = renderObject.bundle.version; + + } + + if ( data.material.transmission > 0 ) { + + const { width, height } = renderObject.context; + + data.bufferWidth = width; + data.bufferHeight = height; + + } + + this.renderObjects.set( renderObject, data ); + + } + + return data; + + } + + /** + * Returns an attribute data structure holding the attributes versions for + * monitoring. + * + * @param {Object} attributes - The geometry attributes. + * @return {Object} An object for monitoring the versions of attributes. + */ + getAttributesData( attributes ) { + + const attributesData = {}; + + for ( const name in attributes ) { + + const attribute = attributes[ name ]; + + attributesData[ name ] = { + version: attribute.version + }; + + } + + return attributesData; + + } + + /** + * Returns `true` if the node builder's material uses + * node properties. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {boolean} Whether the node builder's material uses node properties or not. + */ + containsNode( builder ) { + + const material = builder.material; + + for ( const property in material ) { + + if ( material[ property ] && material[ property ].isNode ) + return true; + + } + + if ( builder.renderer.overrideNodes.modelViewMatrix !== null || builder.renderer.overrideNodes.modelNormalViewMatrix !== null ) + return true; + + return false; + + } + + /** + * Returns a material data structure holding the material property values for + * monitoring. + * + * @param {Material} material - The material. + * @return {Object} An object for monitoring material properties. + */ + getMaterialData( material ) { + + const data = {}; + + for ( const property of this.refreshUniforms ) { + + const value = material[ property ]; + + if ( value === null || value === undefined ) continue; + + if ( typeof value === 'object' && value.clone !== undefined ) { + + if ( value.isTexture === true ) { + + data[ property ] = { id: value.id, version: value.version }; + + } else { + + data[ property ] = value.clone(); + + } + + } else { + + data[ property ] = value; + + } + + } + + return data; + + } + + /** + * Returns `true` if the given render object has not changed its state. + * + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the given render object has changed its state or not. + */ + equals( renderObject ) { + + const { object, material, geometry } = renderObject; + + const renderObjectData = this.getRenderObjectData( renderObject ); + + // world matrix + + if ( renderObjectData.worldMatrix.equals( object.matrixWorld ) !== true ) { + + renderObjectData.worldMatrix.copy( object.matrixWorld ); + + return false; + + } + + // material + + const materialData = renderObjectData.material; + + for ( const property in materialData ) { + + const value = materialData[ property ]; + const mtlValue = material[ property ]; + + if ( value.equals !== undefined ) { + + if ( value.equals( mtlValue ) === false ) { + + value.copy( mtlValue ); + + return false; + + } + + } else if ( mtlValue.isTexture === true ) { + + if ( value.id !== mtlValue.id || value.version !== mtlValue.version ) { + + value.id = mtlValue.id; + value.version = mtlValue.version; + + return false; + + } + + } else if ( value !== mtlValue ) { + + materialData[ property ] = mtlValue; + + return false; + + } + + } + + if ( materialData.transmission > 0 ) { + + const { width, height } = renderObject.context; + + if ( renderObjectData.bufferWidth !== width || renderObjectData.bufferHeight !== height ) { + + renderObjectData.bufferWidth = width; + renderObjectData.bufferHeight = height; + + return false; + + } + + } + + // geometry + + const storedGeometryData = renderObjectData.geometry; + const attributes = geometry.attributes; + const storedAttributes = storedGeometryData.attributes; + + const storedAttributeNames = Object.keys( storedAttributes ); + const currentAttributeNames = Object.keys( attributes ); + + if ( storedGeometryData.id !== geometry.id ) { + + storedGeometryData.id = geometry.id; + return false; + + } + + if ( storedAttributeNames.length !== currentAttributeNames.length ) { + + renderObjectData.geometry.attributes = this.getAttributesData( attributes ); + return false; + + } + + // compare each attribute + + for ( const name of storedAttributeNames ) { + + const storedAttributeData = storedAttributes[ name ]; + const attribute = attributes[ name ]; + + if ( attribute === undefined ) { + + // attribute was removed + delete storedAttributes[ name ]; + return false; + + } + + if ( storedAttributeData.version !== attribute.version ) { + + storedAttributeData.version = attribute.version; + return false; + + } + + } + + // check index + + const index = geometry.index; + const storedIndexVersion = storedGeometryData.indexVersion; + const currentIndexVersion = index ? index.version : null; + + if ( storedIndexVersion !== currentIndexVersion ) { + + storedGeometryData.indexVersion = currentIndexVersion; + return false; + + } + + // check drawRange + + if ( storedGeometryData.drawRange.start !== geometry.drawRange.start || storedGeometryData.drawRange.count !== geometry.drawRange.count ) { + + storedGeometryData.drawRange.start = geometry.drawRange.start; + storedGeometryData.drawRange.count = geometry.drawRange.count; + return false; + + } + + // morph targets + + if ( renderObjectData.morphTargetInfluences ) { + + let morphChanged = false; + + for ( let i = 0; i < renderObjectData.morphTargetInfluences.length; i ++ ) { + + if ( renderObjectData.morphTargetInfluences[ i ] !== object.morphTargetInfluences[ i ] ) { + + morphChanged = true; + + } + + } + + if ( morphChanged ) return true; + + } + + // center + + if ( renderObjectData.center ) { + + if ( renderObjectData.center.equals( object.center ) === false ) { + + renderObjectData.center.copy( object.center ); + + return true; + + } + + } + + // bundle + + if ( renderObject.bundle !== null ) { + + renderObjectData.version = renderObject.bundle.version; + + } + + return true; + + } + + /** + * Checks if the given render object requires a refresh. + * + * @param {RenderObject} renderObject - The render object. + * @param {NodeFrame} nodeFrame - The current node frame. + * @return {boolean} Whether the given render object requires a refresh or not. + */ + needsRefresh( renderObject, nodeFrame ) { + + if ( this.hasNode || this.hasAnimation || this.firstInitialization( renderObject ) || this.needsVelocity( nodeFrame.renderer ) ) + return true; + + const { renderId } = nodeFrame; + + if ( this.renderId !== renderId ) { + + this.renderId = renderId; + + return true; + + } + + const isStatic = renderObject.object.static === true; + const isBundle = renderObject.bundle !== null && renderObject.bundle.static === true && this.getRenderObjectData( renderObject ).version === renderObject.bundle.version; + + if ( isStatic || isBundle ) + return false; + + const notEqual = this.equals( renderObject ) !== true; + + return notEqual; + + } + +} + +// cyrb53 (c) 2018 bryc (github.com/bryc). License: Public domain. Attribution appreciated. +// A fast and simple 64-bit (or 53-bit) string hash function with decent collision resistance. +// Largely inspired by MurmurHash2/3, but with a focus on speed/simplicity. +// See https://stackoverflow.com/questions/7616461/generate-a-hash-from-string-in-javascript/52171480#52171480 +// https://github.com/bryc/code/blob/master/jshash/experimental/cyrb53.js +function cyrb53( value, seed = 0 ) { + + let h1 = 0xdeadbeef ^ seed, h2 = 0x41c6ce57 ^ seed; + + if ( value instanceof Array ) { + + for ( let i = 0, val; i < value.length; i ++ ) { + + val = value[ i ]; + h1 = Math.imul( h1 ^ val, 2654435761 ); + h2 = Math.imul( h2 ^ val, 1597334677 ); + + } + + } else { + + for ( let i = 0, ch; i < value.length; i ++ ) { + + ch = value.charCodeAt( i ); + h1 = Math.imul( h1 ^ ch, 2654435761 ); + h2 = Math.imul( h2 ^ ch, 1597334677 ); + + } + + } + + h1 = Math.imul( h1 ^ ( h1 >>> 16 ), 2246822507 ); + h1 ^= Math.imul( h2 ^ ( h2 >>> 13 ), 3266489909 ); + h2 = Math.imul( h2 ^ ( h2 >>> 16 ), 2246822507 ); + h2 ^= Math.imul( h1 ^ ( h1 >>> 13 ), 3266489909 ); + + return 4294967296 * ( 2097151 & h2 ) + ( h1 >>> 0 ); + +} + +/** + * Computes a hash for the given string. + * + * @method + * @param {string} str - The string to be hashed. + * @return {number} The hash. + */ +const hashString = ( str ) => cyrb53( str ); + +/** + * Computes a hash for the given array. + * + * @method + * @param {Array} array - The array to be hashed. + * @return {number} The hash. + */ +const hashArray = ( array ) => cyrb53( array ); + +/** + * Computes a hash for the given list of parameters. + * + * @method + * @param {...number} params - A list of parameters. + * @return {number} The hash. + */ +const hash$1 = ( ...params ) => cyrb53( params ); + +/** + * Computes a cache key for the given node. + * + * @method + * @param {Object|Node} object - The object to be hashed. + * @param {boolean} [force=false] - Whether to force a cache key computation or not. + * @return {number} The hash. + */ +function getCacheKey$1( object, force = false ) { + + const values = []; + + if ( object.isNode === true ) { + + values.push( object.id ); + object = object.getSelf(); + + } + + for ( const { property, childNode } of getNodeChildren( object ) ) { + + values.push( cyrb53( property.slice( 0, - 4 ) ), childNode.getCacheKey( force ) ); + + } + + return cyrb53( values ); + +} + +/** + * This generator function can be used to iterate over the node children + * of the given object. + * + * @generator + * @param {Object} node - The object to be hashed. + * @param {boolean} [toJSON=false] - Whether to return JSON or not. + * @yields {Object} A result node holding the property, index (if available) and the child node. + */ +function* getNodeChildren( node, toJSON = false ) { + + for ( const property in node ) { + + // Ignore private properties. + if ( property.startsWith( '_' ) === true ) continue; + + const object = node[ property ]; + + if ( Array.isArray( object ) === true ) { + + for ( let i = 0; i < object.length; i ++ ) { + + const child = object[ i ]; + + if ( child && ( child.isNode === true || toJSON && typeof child.toJSON === 'function' ) ) { + + yield { property, index: i, childNode: child }; + + } + + } + + } else if ( object && object.isNode === true ) { + + yield { property, childNode: object }; + + } else if ( typeof object === 'object' ) { + + for ( const subProperty in object ) { + + const child = object[ subProperty ]; + + if ( child && ( child.isNode === true || toJSON && typeof child.toJSON === 'function' ) ) { + + yield { property, index: subProperty, childNode: child }; + + } + + } + + } + + } + +} + +const typeFromLength = /*@__PURE__*/ new Map( [ + [ 1, 'float' ], + [ 2, 'vec2' ], + [ 3, 'vec3' ], + [ 4, 'vec4' ], + [ 9, 'mat3' ], + [ 16, 'mat4' ] +] ); + +const dataFromObject = /*@__PURE__*/ new WeakMap(); + +/** + * Returns the data type for the given the length. + * + * @method + * @param {number} length - The length. + * @return {string} The data type. + */ +function getTypeFromLength( length ) { + + return typeFromLength.get( length ); + +} + +/** + * Returns the typed array for the given data type. + * + * @method + * @param {string} type - The data type. + * @return {TypedArray} The typed array. + */ +function getTypedArrayFromType( type ) { + + // Handle component type for vectors and matrices + if ( /[iu]?vec\d/.test( type ) ) { + + // Handle int vectors + if ( type.startsWith( 'ivec' ) ) return Int32Array; + // Handle uint vectors + if ( type.startsWith( 'uvec' ) ) return Uint32Array; + // Default to float vectors + return Float32Array; + + } + + // Handle matrices (always float) + if ( /mat\d/.test( type ) ) return Float32Array; + + // Basic types + if ( /float/.test( type ) ) return Float32Array; + if ( /uint/.test( type ) ) return Uint32Array; + if ( /int/.test( type ) ) return Int32Array; + + throw new Error( `THREE.NodeUtils: Unsupported type: ${type}` ); + +} + +/** + * Returns the length for the given data type. + * + * @method + * @param {string} type - The data type. + * @return {number} The length. + */ +function getLengthFromType( type ) { + + if ( /float|int|uint/.test( type ) ) return 1; + if ( /vec2/.test( type ) ) return 2; + if ( /vec3/.test( type ) ) return 3; + if ( /vec4/.test( type ) ) return 4; + if ( /mat2/.test( type ) ) return 4; + if ( /mat3/.test( type ) ) return 9; + if ( /mat4/.test( type ) ) return 16; + + console.error( 'THREE.TSL: Unsupported type:', type ); + +} + +/** + * Returns the gpu memory length for the given data type. + * + * @method + * @param {string} type - The data type. + * @return {number} The length. + */ +function getMemoryLengthFromType( type ) { + + if ( /float|int|uint/.test( type ) ) return 1; + if ( /vec2/.test( type ) ) return 2; + if ( /vec3/.test( type ) ) return 3; + if ( /vec4/.test( type ) ) return 4; + if ( /mat2/.test( type ) ) return 4; + if ( /mat3/.test( type ) ) return 12; + if ( /mat4/.test( type ) ) return 16; + + console.error( 'THREE.TSL: Unsupported type:', type ); + +} + +/** + * Returns the byte boundary for the given data type. + * + * @method + * @param {string} type - The data type. + * @return {number} The byte boundary. + */ +function getByteBoundaryFromType( type ) { + + if ( /float|int|uint/.test( type ) ) return 4; + if ( /vec2/.test( type ) ) return 8; + if ( /vec3/.test( type ) ) return 16; + if ( /vec4/.test( type ) ) return 16; + if ( /mat2/.test( type ) ) return 8; + if ( /mat3/.test( type ) ) return 48; + if ( /mat4/.test( type ) ) return 64; + + console.error( 'THREE.TSL: Unsupported type:', type ); + +} + +/** + * Returns the data type for the given value. + * + * @method + * @param {any} value - The value. + * @return {?string} The data type. + */ +function getValueType( value ) { + + if ( value === undefined || value === null ) return null; + + const typeOf = typeof value; + + if ( value.isNode === true ) { + + return 'node'; + + } else if ( typeOf === 'number' ) { + + return 'float'; + + } else if ( typeOf === 'boolean' ) { + + return 'bool'; + + } else if ( typeOf === 'string' ) { + + return 'string'; + + } else if ( typeOf === 'function' ) { + + return 'shader'; + + } else if ( value.isVector2 === true ) { + + return 'vec2'; + + } else if ( value.isVector3 === true ) { + + return 'vec3'; + + } else if ( value.isVector4 === true ) { + + return 'vec4'; + + } else if ( value.isMatrix2 === true ) { + + return 'mat2'; + + } else if ( value.isMatrix3 === true ) { + + return 'mat3'; + + } else if ( value.isMatrix4 === true ) { + + return 'mat4'; + + } else if ( value.isColor === true ) { + + return 'color'; + + } else if ( value instanceof ArrayBuffer ) { + + return 'ArrayBuffer'; + + } + + return null; + +} + +/** + * Returns the value/object for the given data type and parameters. + * + * @method + * @param {string} type - The given type. + * @param {...any} params - A parameter list. + * @return {any} The value/object. + */ +function getValueFromType( type, ...params ) { + + const last4 = type ? type.slice( - 4 ) : undefined; + + if ( params.length === 1 ) { // ensure same behaviour as in NodeBuilder.format() + + if ( last4 === 'vec2' ) params = [ params[ 0 ], params[ 0 ] ]; + else if ( last4 === 'vec3' ) params = [ params[ 0 ], params[ 0 ], params[ 0 ] ]; + else if ( last4 === 'vec4' ) params = [ params[ 0 ], params[ 0 ], params[ 0 ], params[ 0 ] ]; + + } + + if ( type === 'color' ) { + + return new Color( ...params ); + + } else if ( last4 === 'vec2' ) { + + return new Vector2( ...params ); + + } else if ( last4 === 'vec3' ) { + + return new Vector3( ...params ); + + } else if ( last4 === 'vec4' ) { + + return new Vector4( ...params ); + + } else if ( last4 === 'mat2' ) { + + return new Matrix2( ...params ); + + } else if ( last4 === 'mat3' ) { + + return new Matrix3( ...params ); + + } else if ( last4 === 'mat4' ) { + + return new Matrix4( ...params ); + + } else if ( type === 'bool' ) { + + return params[ 0 ] || false; + + } else if ( ( type === 'float' ) || ( type === 'int' ) || ( type === 'uint' ) ) { + + return params[ 0 ] || 0; + + } else if ( type === 'string' ) { + + return params[ 0 ] || ''; + + } else if ( type === 'ArrayBuffer' ) { + + return base64ToArrayBuffer( params[ 0 ] ); + + } + + return null; + +} + +/** + * Gets the object data that can be shared between different rendering steps. + * + * @param {Object} object - The object to get the data for. + * @return {Object} The object data. + */ +function getDataFromObject( object ) { + + let data = dataFromObject.get( object ); + + if ( data === undefined ) { + + data = {}; + dataFromObject.set( object, data ); + + } + + return data; + +} + +/** + * Converts the given array buffer to a Base64 string. + * + * @method + * @param {ArrayBuffer} arrayBuffer - The array buffer. + * @return {string} The Base64 string. + */ +function arrayBufferToBase64( arrayBuffer ) { + + let chars = ''; + + const array = new Uint8Array( arrayBuffer ); + + for ( let i = 0; i < array.length; i ++ ) { + + chars += String.fromCharCode( array[ i ] ); + + } + + return btoa( chars ); + +} + +/** + * Converts the given Base64 string to an array buffer. + * + * @method + * @param {string} base64 - The Base64 string. + * @return {ArrayBuffer} The array buffer. + */ +function base64ToArrayBuffer( base64 ) { + + return Uint8Array.from( atob( base64 ), c => c.charCodeAt( 0 ) ).buffer; + +} + +var NodeUtils = /*#__PURE__*/Object.freeze( { + __proto__: null, + arrayBufferToBase64: arrayBufferToBase64, + base64ToArrayBuffer: base64ToArrayBuffer, + getByteBoundaryFromType: getByteBoundaryFromType, + getCacheKey: getCacheKey$1, + getDataFromObject: getDataFromObject, + getLengthFromType: getLengthFromType, + getMemoryLengthFromType: getMemoryLengthFromType, + getNodeChildren: getNodeChildren, + getTypeFromLength: getTypeFromLength, + getTypedArrayFromType: getTypedArrayFromType, + getValueFromType: getValueFromType, + getValueType: getValueType, + hash: hash$1, + hashArray: hashArray, + hashString: hashString +} ); + +/** + * Possible shader stages. + * + * @property {string} VERTEX The vertex shader stage. + * @property {string} FRAGMENT The fragment shader stage. + */ +const NodeShaderStage = { + VERTEX: 'vertex', + FRAGMENT: 'fragment' +}; + +/** + * Update types of a node. + * + * @property {string} NONE The update method is not executed. + * @property {string} FRAME The update method is executed per frame. + * @property {string} RENDER The update method is executed per render. A frame might be produced by multiple render calls so this value allows more detailed updates than FRAME. + * @property {string} OBJECT The update method is executed per {@link Object3D} that uses the node for rendering. + */ +const NodeUpdateType = { + NONE: 'none', + FRAME: 'frame', + RENDER: 'render', + OBJECT: 'object' +}; + +/** + * Data types of a node. + * + * @property {string} BOOLEAN Boolean type. + * @property {string} INTEGER Integer type. + * @property {string} FLOAT Float type. + * @property {string} VECTOR2 Two-dimensional vector type. + * @property {string} VECTOR3 Three-dimensional vector type. + * @property {string} VECTOR4 Four-dimensional vector type. + * @property {string} MATRIX2 2x2 matrix type. + * @property {string} MATRIX3 3x3 matrix type. + * @property {string} MATRIX4 4x4 matrix type. + */ +const NodeType = { + BOOLEAN: 'bool', + INTEGER: 'int', + FLOAT: 'float', + VECTOR2: 'vec2', + VECTOR3: 'vec3', + VECTOR4: 'vec4', + MATRIX2: 'mat2', + MATRIX3: 'mat3', + MATRIX4: 'mat4' +}; + +/** + * Access types of a node. These are relevant for compute and storage usage. + * + * @property {string} READ_ONLY Read-only access + * @property {string} WRITE_ONLY Write-only access. + * @property {string} READ_WRITE Read and write access. + */ +const NodeAccess = { + READ_ONLY: 'readOnly', + WRITE_ONLY: 'writeOnly', + READ_WRITE: 'readWrite', +}; + +const defaultShaderStages = [ 'fragment', 'vertex' ]; +const defaultBuildStages = [ 'setup', 'analyze', 'generate' ]; +const shaderStages = [ ...defaultShaderStages, 'compute' ]; +const vectorComponents = [ 'x', 'y', 'z', 'w' ]; + +const _parentBuildStage = { + analyze: 'setup', + generate: 'analyze' +}; + +let _nodeId = 0; + +/** + * Base class for all nodes. + * + * @augments EventDispatcher + */ +class Node extends EventDispatcher { + + static get type() { + + return 'Node'; + + } + + /** + * Constructs a new node. + * + * @param {?string} nodeType - The node type. + */ + constructor( nodeType = null ) { + + super(); + + /** + * The node type. This represents the result type of the node (e.g. `float` or `vec3`). + * + * @type {?string} + * @default null + */ + this.nodeType = nodeType; + + /** + * The update type of the node's {@link Node#update} method. Possible values are listed in {@link NodeUpdateType}. + * + * @type {string} + * @default 'none' + */ + this.updateType = NodeUpdateType.NONE; + + /** + * The update type of the node's {@link Node#updateBefore} method. Possible values are listed in {@link NodeUpdateType}. + * + * @type {string} + * @default 'none' + */ + this.updateBeforeType = NodeUpdateType.NONE; + + /** + * The update type of the node's {@link Node#updateAfter} method. Possible values are listed in {@link NodeUpdateType}. + * + * @type {string} + * @default 'none' + */ + this.updateAfterType = NodeUpdateType.NONE; + + /** + * The UUID of the node. + * + * @type {string} + * @readonly + */ + this.uuid = MathUtils.generateUUID(); + + /** + * The version of the node. The version automatically is increased when {@link Node#needsUpdate} is set to `true`. + * + * @type {number} + * @readonly + * @default 0 + */ + this.version = 0; + + /** + * Whether this node is global or not. This property is relevant for the internal + * node caching system. All nodes which should be declared just once should + * set this flag to `true` (a typical example is {@link AttributeNode}). + * + * @type {boolean} + * @default false + */ + this.global = false; + + /** + * Create a list of parents for this node during the build process. + * + * @type {boolean} + * @default false + */ + this.parents = false; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNode = true; + + // private + + /** + * The cache key of this node. + * + * @private + * @type {?number} + * @default null + */ + this._cacheKey = null; + + /** + * The cache key 's version. + * + * @private + * @type {number} + * @default 0 + */ + this._cacheKeyVersion = 0; + + Object.defineProperty( this, 'id', { value: _nodeId ++ } ); + + } + + /** + * Set this property to `true` when the node should be regenerated. + * + * @type {boolean} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + if ( value === true ) { + + this.version ++; + + } + + } + + /** + * The type of the class. The value is usually the constructor name. + * + * @type {string} + * @readonly + */ + get type() { + + return this.constructor.type; + + } + + /** + * Convenient method for defining {@link Node#update}. + * + * @param {Function} callback - The update method. + * @param {string} updateType - The update type. + * @return {Node} A reference to this node. + */ + onUpdate( callback, updateType ) { + + this.updateType = updateType; + this.update = callback.bind( this.getSelf() ); + + return this; + + } + + /** + * Convenient method for defining {@link Node#update}. Similar to {@link Node#onUpdate}, but + * this method automatically sets the update type to `FRAME`. + * + * @param {Function} callback - The update method. + * @return {Node} A reference to this node. + */ + onFrameUpdate( callback ) { + + return this.onUpdate( callback, NodeUpdateType.FRAME ); + + } + + /** + * Convenient method for defining {@link Node#update}. Similar to {@link Node#onUpdate}, but + * this method automatically sets the update type to `RENDER`. + * + * @param {Function} callback - The update method. + * @return {Node} A reference to this node. + */ + onRenderUpdate( callback ) { + + return this.onUpdate( callback, NodeUpdateType.RENDER ); + + } + + /** + * Convenient method for defining {@link Node#update}. Similar to {@link Node#onUpdate}, but + * this method automatically sets the update type to `OBJECT`. + * + * @param {Function} callback - The update method. + * @return {Node} A reference to this node. + */ + onObjectUpdate( callback ) { + + return this.onUpdate( callback, NodeUpdateType.OBJECT ); + + } + + /** + * Convenient method for defining {@link Node#updateReference}. + * + * @param {Function} callback - The update method. + * @return {Node} A reference to this node. + */ + onReference( callback ) { + + this.updateReference = callback.bind( this.getSelf() ); + + return this; + + } + + /** + * The `this` reference might point to a Proxy so this method can be used + * to get the reference to the actual node instance. + * + * @return {Node} A reference to the node. + */ + getSelf() { + + // Returns non-node object. + + return this.self || this; + + } + + /** + * Nodes might refer to other objects like materials. This method allows to dynamically update the reference + * to such objects based on a given state (e.g. the current node frame or builder). + * + * @param {any} state - This method can be invocated in different contexts so `state` can refer to any object type. + * @return {any} The updated reference. + */ + updateReference( /*state*/ ) { + + return this; + + } + + /** + * By default this method returns the value of the {@link Node#global} flag. This method + * can be overwritten in derived classes if an analytical way is required to determine the + * global cache referring to the current shader-stage. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {boolean} Whether this node is global or not. + */ + isGlobal( /*builder*/ ) { + + return this.global; + + } + + /** + * Generator function that can be used to iterate over the child nodes. + * + * @generator + * @yields {Node} A child node. + */ + * getChildren() { + + for ( const { childNode } of getNodeChildren( this ) ) { + + yield childNode; + + } + + } + + /** + * Calling this method dispatches the `dispose` event. This event can be used + * to register event listeners for clean up tasks. + */ + dispose() { + + this.dispatchEvent( { type: 'dispose' } ); + + } + + /** + * Callback for {@link Node#traverse}. + * + * @callback traverseCallback + * @param {Node} node - The current node. + */ + + /** + * Can be used to traverse through the node's hierarchy. + * + * @param {traverseCallback} callback - A callback that is executed per node. + */ + traverse( callback ) { + + callback( this ); + + for ( const childNode of this.getChildren() ) { + + childNode.traverse( callback ); + + } + + } + + /** + * Returns the cache key for this node. + * + * @param {boolean} [force=false] - When set to `true`, a recomputation of the cache key is forced. + * @return {number} The cache key of the node. + */ + getCacheKey( force = false ) { + + force = force || this.version !== this._cacheKeyVersion; + + if ( force === true || this._cacheKey === null ) { + + this._cacheKey = hash$1( getCacheKey$1( this, force ), this.customCacheKey() ); + this._cacheKeyVersion = this.version; + + } + + return this._cacheKey; + + } + + /** + * Generate a custom cache key for this node. + * + * @return {number} The cache key of the node. + */ + customCacheKey() { + + return 0; + + } + + /** + * Returns the references to this node which is by default `this`. + * + * @return {Node} A reference to this node. + */ + getScope() { + + return this; + + } + + /** + * Returns the hash of the node which is used to identify the node. By default it's + * the {@link Node#uuid} however derived node classes might have to overwrite this method + * depending on their implementation. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The hash. + */ + getHash( /*builder*/ ) { + + return this.uuid; + + } + + /** + * Returns the update type of {@link Node#update}. + * + * @return {NodeUpdateType} The update type. + */ + getUpdateType() { + + return this.updateType; + + } + + /** + * Returns the update type of {@link Node#updateBefore}. + * + * @return {NodeUpdateType} The update type. + */ + getUpdateBeforeType() { + + return this.updateBeforeType; + + } + + /** + * Returns the update type of {@link Node#updateAfter}. + * + * @return {NodeUpdateType} The update type. + */ + getUpdateAfterType() { + + return this.updateAfterType; + + } + + /** + * Certain types are composed of multiple elements. For example a `vec3` + * is composed of three `float` values. This method returns the type of + * these elements. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The type of the node. + */ + getElementType( builder ) { + + const type = this.getNodeType( builder ); + const elementType = builder.getElementType( type ); + + return elementType; + + } + + /** + * Returns the node member type for the given name. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} name - The name of the member. + * @return {string} The type of the node. + */ + getMemberType( /*builder, name*/ ) { + + return 'void'; + + } + + /** + * Returns the node's type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The type of the node. + */ + getNodeType( builder ) { + + const nodeProperties = builder.getNodeProperties( this ); + + if ( nodeProperties.outputNode ) { + + return nodeProperties.outputNode.getNodeType( builder ); + + } + + return this.nodeType; + + } + + /** + * This method is used during the build process of a node and ensures + * equal nodes are not built multiple times but just once. For example if + * `attribute( 'uv' )` is used multiple times by the user, the build + * process makes sure to process just the first node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The shared node if possible. Otherwise `this` is returned. + */ + getShared( builder ) { + + const hash = this.getHash( builder ); + const nodeFromHash = builder.getNodeFromHash( hash ); + + return nodeFromHash || this; + + } + + /** + * Represents the setup stage which is the first step of the build process, see {@link Node#build} method. + * This method is often overwritten in derived modules to prepare the node which is used as the output/result. + * The output node must be returned in the `return` statement. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {?Node} The output node. + */ + setup( builder ) { + + const nodeProperties = builder.getNodeProperties( this ); + + let index = 0; + + for ( const childNode of this.getChildren() ) { + + nodeProperties[ 'node' + index ++ ] = childNode; + + } + + // return a outputNode if exists or null + + return nodeProperties.outputNode || null; + + } + + /** + * Represents the analyze stage which is the second step of the build process, see {@link Node#build} method. + * This stage analyzes the node hierarchy and ensures descendent nodes are built. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {?Node} output - The target output node. + */ + analyze( builder, output = null ) { + + const usageCount = builder.increaseUsage( this ); + + if ( this.parents === true ) { + + const nodeData = builder.getDataFromNode( this, 'any' ); + nodeData.stages = nodeData.stages || {}; + nodeData.stages[ builder.shaderStage ] = nodeData.stages[ builder.shaderStage ] || []; + nodeData.stages[ builder.shaderStage ].push( output ); + + } + + if ( usageCount === 1 ) { + + // node flow children + + const nodeProperties = builder.getNodeProperties( this ); + + for ( const childNode of Object.values( nodeProperties ) ) { + + if ( childNode && childNode.isNode === true ) { + + childNode.build( builder, this ); + + } + + } + + } + + } + + /** + * Represents the generate stage which is the third step of the build process, see {@link Node#build} method. + * This state builds the output node and returns the resulting shader string. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {?string} output - Can be used to define the output type. + * @return {?string} The generated shader string. + */ + generate( builder, output ) { + + const { outputNode } = builder.getNodeProperties( this ); + + if ( outputNode && outputNode.isNode === true ) { + + return outputNode.build( builder, output ); + + } + + } + + /** + * The method can be implemented to update the node's internal state before it is used to render an object. + * The {@link Node#updateBeforeType} property defines how often the update is executed. + * + * @abstract + * @param {NodeFrame} frame - A reference to the current node frame. + * @return {?boolean} An optional bool that indicates whether the implementation actually performed an update or not (e.g. due to caching). + */ + updateBefore( /*frame*/ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * The method can be implemented to update the node's internal state after it was used to render an object. + * The {@link Node#updateAfterType} property defines how often the update is executed. + * + * @abstract + * @param {NodeFrame} frame - A reference to the current node frame. + * @return {?boolean} An optional bool that indicates whether the implementation actually performed an update or not (e.g. due to caching). + */ + updateAfter( /*frame*/ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * The method can be implemented to update the node's internal state when it is used to render an object. + * The {@link Node#updateType} property defines how often the update is executed. + * + * @abstract + * @param {NodeFrame} frame - A reference to the current node frame. + * @return {?boolean} An optional bool that indicates whether the implementation actually performed an update or not (e.g. due to caching). + */ + update( /*frame*/ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * This method performs the build of a node. The behavior and return value depend on the current build stage: + * - **setup**: Prepares the node and its children for the build process. This process can also create new nodes. Returns the node itself or a variant. + * - **analyze**: Analyzes the node hierarchy for optimizations in the code generation stage. Returns `null`. + * - **generate**: Generates the shader code for the node. Returns the generated shader string. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string|Node|null} [output=null] - Can be used to define the output type. + * @return {Node|string|null} The result of the build process, depending on the build stage. + */ + build( builder, output = null ) { + + const refNode = this.getShared( builder ); + + if ( this !== refNode ) { + + return refNode.build( builder, output ); + + } + + // + + const nodeData = builder.getDataFromNode( this ); + nodeData.buildStages = nodeData.buildStages || {}; + nodeData.buildStages[ builder.buildStage ] = true; + + const parentBuildStage = _parentBuildStage[ builder.buildStage ]; + + if ( parentBuildStage && nodeData.buildStages[ parentBuildStage ] !== true ) { + + // force parent build stage (setup or analyze) + + const previousBuildStage = builder.getBuildStage(); + + builder.setBuildStage( parentBuildStage ); + + this.build( builder ); + + builder.setBuildStage( previousBuildStage ); + + } + + // + + builder.addNode( this ); + builder.addChain( this ); + + /* Build stages expected results: + - "setup" -> Node + - "analyze" -> null + - "generate" -> String + */ + let result = null; + + const buildStage = builder.getBuildStage(); + + if ( buildStage === 'setup' ) { + + this.updateReference( builder ); + + const properties = builder.getNodeProperties( this ); + + if ( properties.initialized !== true ) { + + //const stackNodesBeforeSetup = builder.stack.nodes.length; + + properties.initialized = true; + properties.outputNode = this.setup( builder ) || properties.outputNode || null; + + /*if ( isNodeOutput && builder.stack.nodes.length !== stackNodesBeforeSetup ) { + + // !! no outputNode !! + //outputNode = builder.stack; + + }*/ + + for ( const childNode of Object.values( properties ) ) { + + if ( childNode && childNode.isNode === true ) { + + if ( childNode.parents === true ) { + + const childProperties = builder.getNodeProperties( childNode ); + childProperties.parents = childProperties.parents || []; + childProperties.parents.push( this ); + + } + + childNode.build( builder ); + + } + + } + + } + + result = properties.outputNode; + + } else if ( buildStage === 'analyze' ) { + + this.analyze( builder, output ); + + } else if ( buildStage === 'generate' ) { + + const isGenerateOnce = this.generate.length === 1; + + if ( isGenerateOnce ) { + + const type = this.getNodeType( builder ); + const nodeData = builder.getDataFromNode( this ); + + result = nodeData.snippet; + + if ( result === undefined ) { + + if ( nodeData.generated === undefined ) { + + nodeData.generated = true; + + result = this.generate( builder ) || ''; + + nodeData.snippet = result; + + } else { + + console.warn( 'THREE.Node: Recursion detected.', this ); + + result = ''; + + } + + } else if ( nodeData.flowCodes !== undefined && builder.context.nodeBlock !== undefined ) { + + builder.addFlowCodeHierarchy( this, builder.context.nodeBlock ); + + } + + result = builder.format( result, type, output ); + + } else { + + result = this.generate( builder, output ) || ''; + + } + + } + + builder.removeChain( this ); + builder.addSequentialNode( this ); + + return result; + + } + + /** + * Returns the child nodes as a JSON object. + * + * @return {Array} An iterable list of serialized child objects as JSON. + */ + getSerializeChildren() { + + return getNodeChildren( this ); + + } + + /** + * Serializes the node to JSON. + * + * @param {Object} json - The output JSON object. + */ + serialize( json ) { + + const nodeChildren = this.getSerializeChildren(); + + const inputNodes = {}; + + for ( const { property, index, childNode } of nodeChildren ) { + + if ( index !== undefined ) { + + if ( inputNodes[ property ] === undefined ) { + + inputNodes[ property ] = Number.isInteger( index ) ? [] : {}; + + } + + inputNodes[ property ][ index ] = childNode.toJSON( json.meta ).uuid; + + } else { + + inputNodes[ property ] = childNode.toJSON( json.meta ).uuid; + + } + + } + + if ( Object.keys( inputNodes ).length > 0 ) { + + json.inputNodes = inputNodes; + + } + + } + + /** + * Deserializes the node from the given JSON. + * + * @param {Object} json - The JSON object. + */ + deserialize( json ) { + + if ( json.inputNodes !== undefined ) { + + const nodes = json.meta.nodes; + + for ( const property in json.inputNodes ) { + + if ( Array.isArray( json.inputNodes[ property ] ) ) { + + const inputArray = []; + + for ( const uuid of json.inputNodes[ property ] ) { + + inputArray.push( nodes[ uuid ] ); + + } + + this[ property ] = inputArray; + + } else if ( typeof json.inputNodes[ property ] === 'object' ) { + + const inputObject = {}; + + for ( const subProperty in json.inputNodes[ property ] ) { + + const uuid = json.inputNodes[ property ][ subProperty ]; + + inputObject[ subProperty ] = nodes[ uuid ]; + + } + + this[ property ] = inputObject; + + } else { + + const uuid = json.inputNodes[ property ]; + + this[ property ] = nodes[ uuid ]; + + } + + } + + } + + } + + /** + * Serializes the node into the three.js JSON Object/Scene format. + * + * @param {?Object} meta - An optional JSON object that already holds serialized data from other scene objects. + * @return {Object} The serialized node. + */ + toJSON( meta ) { + + const { uuid, type } = this; + const isRoot = ( meta === undefined || typeof meta === 'string' ); + + if ( isRoot ) { + + meta = { + textures: {}, + images: {}, + nodes: {} + }; + + } + + // serialize + + let data = meta.nodes[ uuid ]; + + if ( data === undefined ) { + + data = { + uuid, + type, + meta, + metadata: { + version: 4.7, + type: 'Node', + generator: 'Node.toJSON' + } + }; + + if ( isRoot !== true ) meta.nodes[ data.uuid ] = data; + + this.serialize( data ); + + delete data.meta; + + } + + // TODO: Copied from Object3D.toJSON + + function extractFromCache( cache ) { + + const values = []; + + for ( const key in cache ) { + + const data = cache[ key ]; + delete data.metadata; + values.push( data ); + + } + + return values; + + } + + if ( isRoot ) { + + const textures = extractFromCache( meta.textures ); + const images = extractFromCache( meta.images ); + const nodes = extractFromCache( meta.nodes ); + + if ( textures.length > 0 ) data.textures = textures; + if ( images.length > 0 ) data.images = images; + if ( nodes.length > 0 ) data.nodes = nodes; + + } + + return data; + + } + +} + +/** + * Base class for representing element access on an array-like + * node data structures. + * + * @augments Node + */ +class ArrayElementNode extends Node { // @TODO: If extending from TempNode it breaks webgpu_compute + + static get type() { + + return 'ArrayElementNode'; + + } + + /** + * Constructs an array element node. + * + * @param {Node} node - The array-like node. + * @param {Node} indexNode - The index node that defines the element access. + */ + constructor( node, indexNode ) { + + super(); + + /** + * The array-like node. + * + * @type {Node} + */ + this.node = node; + + /** + * The index node that defines the element access. + * + * @type {Node} + */ + this.indexNode = indexNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isArrayElementNode = true; + + } + + /** + * This method is overwritten since the node type is inferred from the array-like node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.node.getElementType( builder ); + + } + + generate( builder ) { + + const indexType = this.indexNode.getNodeType( builder ); + + const nodeSnippet = this.node.build( builder ); + const indexSnippet = this.indexNode.build( builder, ! builder.isVector( indexType ) && builder.isInteger( indexType ) ? indexType : 'uint' ); + + return `${ nodeSnippet }[ ${ indexSnippet } ]`; + + } + +} + +/** + * This module is part of the TSL core and usually not used in app level code. + * It represents a convert operation during the shader generation process + * meaning it converts the data type of a node to a target data type. + * + * @augments Node + */ +class ConvertNode extends Node { + + static get type() { + + return 'ConvertNode'; + + } + + /** + * Constructs a new convert node. + * + * @param {Node} node - The node which type should be converted. + * @param {string} convertTo - The target node type. Multiple types can be defined by separating them with a `|` sign. + */ + constructor( node, convertTo ) { + + super(); + + /** + * The node which type should be converted. + * + * @type {Node} + */ + this.node = node; + + /** + * The target node type. Multiple types can be defined by separating them with a `|` sign. + * + * @type {string} + */ + this.convertTo = convertTo; + + } + + /** + * This method is overwritten since the implementation tries to infer the best + * matching type from the {@link ConvertNode#convertTo} property. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + const requestType = this.node.getNodeType( builder ); + + let convertTo = null; + + for ( const overloadingType of this.convertTo.split( '|' ) ) { + + if ( convertTo === null || builder.getTypeLength( requestType ) === builder.getTypeLength( overloadingType ) ) { + + convertTo = overloadingType; + + } + + } + + return convertTo; + + } + + serialize( data ) { + + super.serialize( data ); + + data.convertTo = this.convertTo; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.convertTo = data.convertTo; + + } + + generate( builder, output ) { + + const node = this.node; + const type = this.getNodeType( builder ); + + const snippet = node.build( builder, type ); + + return builder.format( snippet, type, output ); + + } + +} + +/** + * This module uses cache management to create temporary variables + * if the node is used more than once to prevent duplicate calculations. + * + * The class acts as a base class for many other nodes types. + * + * @augments Node + */ +class TempNode extends Node { + + static get type() { + + return 'TempNode'; + + } + + /** + * Constructs a temp node. + * + * @param {?string} nodeType - The node type. + */ + constructor( nodeType = null ) { + + super( nodeType ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isTempNode = true; + + } + + /** + * Whether this node is used more than once in context of other nodes. + * + * @param {NodeBuilder} builder - The node builder. + * @return {boolean} A flag that indicates if there is more than one dependency to other nodes. + */ + hasDependencies( builder ) { + + return builder.getDataFromNode( this ).usageCount > 1; + + } + + build( builder, output ) { + + const buildStage = builder.getBuildStage(); + + if ( buildStage === 'generate' ) { + + const type = builder.getVectorType( this.getNodeType( builder, output ) ); + const nodeData = builder.getDataFromNode( this ); + + if ( nodeData.propertyName !== undefined ) { + + return builder.format( nodeData.propertyName, type, output ); + + } else if ( type !== 'void' && output !== 'void' && this.hasDependencies( builder ) ) { + + const snippet = super.build( builder, type ); + + const nodeVar = builder.getVarFromNode( this, null, type ); + const propertyName = builder.getPropertyName( nodeVar ); + + builder.addLineFlowCode( `${ propertyName } = ${ snippet }`, this ); + + nodeData.snippet = snippet; + nodeData.propertyName = propertyName; + + return builder.format( nodeData.propertyName, type, output ); + + } + + } + + return super.build( builder, output ); + + } + +} + +/** + * This module is part of the TSL core and usually not used in app level code. + * It represents a join operation during the shader generation process. + * For example in can compose/join two single floats into a `vec2` type. + * + * @augments TempNode + */ +class JoinNode extends TempNode { + + static get type() { + + return 'JoinNode'; + + } + + /** + * Constructs a new join node. + * + * @param {Array} nodes - An array of nodes that should be joined. + * @param {?string} [nodeType=null] - The node type. + */ + constructor( nodes = [], nodeType = null ) { + + super( nodeType ); + + /** + * An array of nodes that should be joined. + * + * @type {Array} + */ + this.nodes = nodes; + + } + + /** + * This method is overwritten since the node type must be inferred from the + * joined data length if not explicitly defined. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + if ( this.nodeType !== null ) { + + return builder.getVectorType( this.nodeType ); + + } + + return builder.getTypeFromLength( this.nodes.reduce( ( count, cur ) => count + builder.getTypeLength( cur.getNodeType( builder ) ), 0 ) ); + + } + + generate( builder, output ) { + + const type = this.getNodeType( builder ); + const maxLength = builder.getTypeLength( type ); + + const nodes = this.nodes; + + const primitiveType = builder.getComponentType( type ); + + const snippetValues = []; + + let length = 0; + + for ( const input of nodes ) { + + if ( length >= maxLength ) { + + console.error( `THREE.TSL: Length of parameters exceeds maximum length of function '${ type }()' type.` ); + break; + + } + + let inputType = input.getNodeType( builder ); + let inputTypeLength = builder.getTypeLength( inputType ); + let inputSnippet; + + if ( length + inputTypeLength > maxLength ) { + + console.error( `THREE.TSL: Length of '${ type }()' data exceeds maximum length of output type.` ); + + inputTypeLength = maxLength - length; + inputType = builder.getTypeFromLength( inputTypeLength ); + + } + + length += inputTypeLength; + inputSnippet = input.build( builder, inputType ); + + const inputPrimitiveType = builder.getComponentType( inputType ); + + if ( inputPrimitiveType !== primitiveType ) { + + inputSnippet = builder.format( inputSnippet, inputPrimitiveType, primitiveType ); + + } + + snippetValues.push( inputSnippet ); + + } + + const snippet = `${ builder.getType( type ) }( ${ snippetValues.join( ', ' ) } )`; + + return builder.format( snippet, type, output ); + + } + +} + +const _stringVectorComponents = vectorComponents.join( '' ); + +/** + * This module is part of the TSL core and usually not used in app level code. + * `SplitNode` represents a property access operation which means it is + * used to implement any `.xyzw`, `.rgba` and `stpq` usage on node objects. + * For example: + * ```js + * const redValue = color.r; + * ``` + * + * @augments Node + */ +class SplitNode extends Node { + + static get type() { + + return 'SplitNode'; + + } + + /** + * Constructs a new split node. + * + * @param {Node} node - The node that should be accessed. + * @param {string} [components='x'] - The components that should be accessed. + */ + constructor( node, components = 'x' ) { + + super(); + + /** + * The node that should be accessed. + * + * @type {Node} + */ + this.node = node; + + /** + * The components that should be accessed. + * + * @type {string} + */ + this.components = components; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSplitNode = true; + + } + + /** + * Returns the vector length which is computed based on the requested components. + * + * @return {number} The vector length. + */ + getVectorLength() { + + let vectorLength = this.components.length; + + for ( const c of this.components ) { + + vectorLength = Math.max( vectorComponents.indexOf( c ) + 1, vectorLength ); + + } + + return vectorLength; + + } + + /** + * Returns the component type of the node's type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The component type. + */ + getComponentType( builder ) { + + return builder.getComponentType( this.node.getNodeType( builder ) ); + + } + + /** + * This method is overwritten since the node type is inferred from requested components. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return builder.getTypeFromLength( this.components.length, this.getComponentType( builder ) ); + + } + + generate( builder, output ) { + + const node = this.node; + const nodeTypeLength = builder.getTypeLength( node.getNodeType( builder ) ); + + let snippet = null; + + if ( nodeTypeLength > 1 ) { + + let type = null; + + const componentsLength = this.getVectorLength(); + + if ( componentsLength >= nodeTypeLength ) { + + // needed expand the input node + + type = builder.getTypeFromLength( this.getVectorLength(), this.getComponentType( builder ) ); + + } + + const nodeSnippet = node.build( builder, type ); + + if ( this.components.length === nodeTypeLength && this.components === _stringVectorComponents.slice( 0, this.components.length ) ) { + + // unnecessary swizzle + + snippet = builder.format( nodeSnippet, type, output ); + + } else { + + snippet = builder.format( `${nodeSnippet}.${this.components}`, this.getNodeType( builder ), output ); + + } + + } else { + + // ignore .components if .node returns float/integer + + snippet = node.build( builder, output ); + + } + + return snippet; + + } + + serialize( data ) { + + super.serialize( data ); + + data.components = this.components; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.components = data.components; + + } + +} + +/** + * This module is part of the TSL core and usually not used in app level code. + * `SetNode` represents a set operation which means it is used to implement any + * `setXYZW()`, `setRGBA()` and `setSTPQ()` method invocations on node objects. + * For example: + * ```js + * materialLine.colorNode = color( 0, 0, 0 ).setR( float( 1 ) ); + * ``` + * + * @augments TempNode + */ +class SetNode extends TempNode { + + static get type() { + + return 'SetNode'; + + } + + /** + * Constructs a new set node. + * + * @param {Node} sourceNode - The node that should be updated. + * @param {string} components - The components that should be updated. + * @param {Node} targetNode - The value node. + */ + constructor( sourceNode, components, targetNode ) { + + super(); + + /** + * The node that should be updated. + * + * @type {Node} + */ + this.sourceNode = sourceNode; + + /** + * The components that should be updated. + * + * @type {string} + */ + this.components = components; + + /** + * The value node. + * + * @type {Node} + */ + this.targetNode = targetNode; + + } + + /** + * This method is overwritten since the node type is inferred from {@link SetNode#sourceNode}. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.sourceNode.getNodeType( builder ); + + } + + generate( builder ) { + + const { sourceNode, components, targetNode } = this; + + const sourceType = this.getNodeType( builder ); + + const componentType = builder.getComponentType( targetNode.getNodeType( builder ) ); + const targetType = builder.getTypeFromLength( components.length, componentType ); + + const targetSnippet = targetNode.build( builder, targetType ); + const sourceSnippet = sourceNode.build( builder, sourceType ); + + const length = builder.getTypeLength( sourceType ); + const snippetValues = []; + + for ( let i = 0; i < length; i ++ ) { + + const component = vectorComponents[ i ]; + + if ( component === components[ 0 ] ) { + + snippetValues.push( targetSnippet ); + + i += components.length - 1; + + } else { + + snippetValues.push( sourceSnippet + '.' + component ); + + } + + } + + return `${ builder.getType( sourceType ) }( ${ snippetValues.join( ', ' ) } )`; + + } + +} + +/** + * This module is part of the TSL core and usually not used in app level code. + * It represents a flip operation during the shader generation process + * meaning it flips normalized values with the following formula: + * ``` + * x = 1 - x; + * ``` + * `FlipNode` is internally used to implement any `flipXYZW()`, `flipRGBA()` and + * `flipSTPQ()` method invocations on node objects. For example: + * ```js + * uvNode = uvNode.flipY(); + * ``` + * + * @augments TempNode + */ +class FlipNode extends TempNode { + + static get type() { + + return 'FlipNode'; + + } + + /** + * Constructs a new flip node. + * + * @param {Node} sourceNode - The node which component(s) should be flipped. + * @param {string} components - The components that should be flipped e.g. `'x'` or `'xy'`. + */ + constructor( sourceNode, components ) { + + super(); + + /** + * The node which component(s) should be flipped. + * + * @type {Node} + */ + this.sourceNode = sourceNode; + + /** + * The components that should be flipped e.g. `'x'` or `'xy'`. + * + * @type {string} + */ + this.components = components; + + } + + /** + * This method is overwritten since the node type is inferred from the source node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.sourceNode.getNodeType( builder ); + + } + + generate( builder ) { + + const { components, sourceNode } = this; + + const sourceType = this.getNodeType( builder ); + const sourceSnippet = sourceNode.build( builder ); + + const sourceCache = builder.getVarFromNode( this ); + const sourceProperty = builder.getPropertyName( sourceCache ); + + builder.addLineFlowCode( sourceProperty + ' = ' + sourceSnippet, this ); + + const length = builder.getTypeLength( sourceType ); + const snippetValues = []; + + let componentIndex = 0; + + for ( let i = 0; i < length; i ++ ) { + + const component = vectorComponents[ i ]; + + if ( component === components[ componentIndex ] ) { + + snippetValues.push( '1.0 - ' + ( sourceProperty + '.' + component ) ); + + componentIndex ++; + + } else { + + snippetValues.push( sourceProperty + '.' + component ); + + } + + } + + return `${ builder.getType( sourceType ) }( ${ snippetValues.join( ', ' ) } )`; + + } + +} + +/** + * Base class for representing data input nodes. + * + * @augments Node + */ +class InputNode extends Node { + + static get type() { + + return 'InputNode'; + + } + + /** + * Constructs a new input node. + * + * @param {any} value - The value of this node. This can be any JS primitive, functions, array buffers or even three.js objects (vector, matrices, colors). + * @param {?string} nodeType - The node type. If no explicit type is defined, the node tries to derive the type from its value. + */ + constructor( value, nodeType = null ) { + + super( nodeType ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isInputNode = true; + + /** + * The value of this node. This can be any JS primitive, functions, array buffers or even three.js objects (vector, matrices, colors). + * + * @type {any} + */ + this.value = value; + + /** + * The precision of the value in the shader. + * + * @type {?('low'|'medium'|'high')} + * @default null + */ + this.precision = null; + + } + + getNodeType( /*builder*/ ) { + + if ( this.nodeType === null ) { + + return getValueType( this.value ); + + } + + return this.nodeType; + + } + + /** + * Returns the input type of the node which is by default the node type. Derived modules + * might overwrite this method and use a fixed type or compute one analytically. + * + * A typical example for different input and node types are textures. The input type of a + * normal RGBA texture is `texture` whereas its node type is `vec4`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( builder ) { + + return this.getNodeType( builder ); + + } + + /** + * Sets the precision to the given value. The method can be + * overwritten in derived classes if the final precision must be computed + * analytically. + * + * @param {('low'|'medium'|'high')} precision - The precision of the input value in the shader. + * @return {InputNode} A reference to this node. + */ + setPrecision( precision ) { + + this.precision = precision; + + return this; + + } + + serialize( data ) { + + super.serialize( data ); + + data.value = this.value; + + if ( this.value && this.value.toArray ) data.value = this.value.toArray(); + + data.valueType = getValueType( this.value ); + data.nodeType = this.nodeType; + + if ( data.valueType === 'ArrayBuffer' ) data.value = arrayBufferToBase64( data.value ); + + data.precision = this.precision; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.nodeType = data.nodeType; + this.value = Array.isArray( data.value ) ? getValueFromType( data.valueType, ...data.value ) : data.value; + + this.precision = data.precision || null; + + if ( this.value && this.value.fromArray ) this.value = this.value.fromArray( data.value ); + + } + + generate( /*builder, output*/ ) { + + console.warn( 'Abstract function.' ); + + } + +} + +const _regNum = /float|u?int/; + +/** + * Class for representing a constant value in the shader. + * + * @augments InputNode + */ +class ConstNode extends InputNode { + + static get type() { + + return 'ConstNode'; + + } + + /** + * Constructs a new input node. + * + * @param {any} value - The value of this node. Usually a JS primitive or three.js object (vector, matrix, color). + * @param {?string} nodeType - The node type. If no explicit type is defined, the node tries to derive the type from its value. + */ + constructor( value, nodeType = null ) { + + super( value, nodeType ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isConstNode = true; + + } + + /** + * Generates the shader string of the value with the current node builder. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The generated value as a shader string. + */ + generateConst( builder ) { + + return builder.generateConst( this.getNodeType( builder ), this.value ); + + } + + generate( builder, output ) { + + const type = this.getNodeType( builder ); + + if ( _regNum.test( type ) && _regNum.test( output ) ) { + + return builder.generateConst( output, this.value ); + + } + + return builder.format( this.generateConst( builder ), type, output ); + + } + +} + +/** + * Base class for representing member access on an object-like + * node data structures. + * + * @augments Node + */ +class MemberNode extends Node { + + static get type() { + + return 'MemberNode'; + + } + + /** + * Constructs an array element node. + * + * @param {Node} node - The array-like node. + * @param {string} property - The property name. + */ + constructor( node, property ) { + + super(); + + /** + * The array-like node. + * + * @type {Node} + */ + this.node = node; + + /** + * The property name. + * + * @type {Node} + */ + this.property = property; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMemberNode = true; + + } + + getNodeType( builder ) { + + return this.node.getMemberType( builder, this.property ); + + } + + generate( builder ) { + + const propertyName = this.node.build( builder ); + + return propertyName + '.' + this.property; + + } + +} + +let currentStack = null; + +const NodeElements = new Map(); + +function addMethodChaining( name, nodeElement ) { + + if ( NodeElements.has( name ) ) { + + console.warn( `THREE.TSL: Redefinition of method chaining '${ name }'.` ); + return; + + } + + if ( typeof nodeElement !== 'function' ) throw new Error( `THREE.TSL: Node element ${ name } is not a function` ); + + NodeElements.set( name, nodeElement ); + +} + +const parseSwizzle = ( props ) => props.replace( /r|s/g, 'x' ).replace( /g|t/g, 'y' ).replace( /b|p/g, 'z' ).replace( /a|q/g, 'w' ); +const parseSwizzleAndSort = ( props ) => parseSwizzle( props ).split( '' ).sort().join( '' ); + +const shaderNodeHandler = { + + setup( NodeClosure, params ) { + + const inputs = params.shift(); + + return NodeClosure( nodeObjects( inputs ), ...params ); + + }, + + get( node, prop, nodeObj ) { + + if ( typeof prop === 'string' && node[ prop ] === undefined ) { + + if ( node.isStackNode !== true && prop === 'assign' ) { + + return ( ...params ) => { + + currentStack.assign( nodeObj, ...params ); + + return nodeObj; + + }; + + } else if ( NodeElements.has( prop ) ) { + + const nodeElement = NodeElements.get( prop ); + + return node.isStackNode ? ( ...params ) => nodeObj.add( nodeElement( ...params ) ) : ( ...params ) => nodeElement( nodeObj, ...params ); + + } else if ( prop === 'self' ) { + + return node; + + } else if ( prop.endsWith( 'Assign' ) && NodeElements.has( prop.slice( 0, prop.length - 'Assign'.length ) ) ) { + + const nodeElement = NodeElements.get( prop.slice( 0, prop.length - 'Assign'.length ) ); + + return node.isStackNode ? ( ...params ) => nodeObj.assign( params[ 0 ], nodeElement( ...params ) ) : ( ...params ) => nodeObj.assign( nodeElement( nodeObj, ...params ) ); + + } else if ( /^[xyzwrgbastpq]{1,4}$/.test( prop ) === true ) { + + // accessing properties ( swizzle ) + + prop = parseSwizzle( prop ); + + return nodeObject( new SplitNode( nodeObj, prop ) ); + + } else if ( /^set[XYZWRGBASTPQ]{1,4}$/.test( prop ) === true ) { + + // set properties ( swizzle ) and sort to xyzw sequence + + prop = parseSwizzleAndSort( prop.slice( 3 ).toLowerCase() ); + + return ( value ) => nodeObject( new SetNode( node, prop, nodeObject( value ) ) ); + + } else if ( /^flip[XYZWRGBASTPQ]{1,4}$/.test( prop ) === true ) { + + // set properties ( swizzle ) and sort to xyzw sequence + + prop = parseSwizzleAndSort( prop.slice( 4 ).toLowerCase() ); + + return () => nodeObject( new FlipNode( nodeObject( node ), prop ) ); + + } else if ( prop === 'width' || prop === 'height' || prop === 'depth' ) { + + // accessing property + + if ( prop === 'width' ) prop = 'x'; + else if ( prop === 'height' ) prop = 'y'; + else if ( prop === 'depth' ) prop = 'z'; + + return nodeObject( new SplitNode( node, prop ) ); + + } else if ( /^\d+$/.test( prop ) === true ) { + + // accessing array + + return nodeObject( new ArrayElementNode( nodeObj, new ConstNode( Number( prop ), 'uint' ) ) ); + + } else if ( /^get$/.test( prop ) === true ) { + + // accessing properties + + return ( value ) => nodeObject( new MemberNode( nodeObj, value ) ); + + } + + } + + return Reflect.get( node, prop, nodeObj ); + + }, + + set( node, prop, value, nodeObj ) { + + if ( typeof prop === 'string' && node[ prop ] === undefined ) { + + // setting properties + + if ( /^[xyzwrgbastpq]{1,4}$/.test( prop ) === true || prop === 'width' || prop === 'height' || prop === 'depth' || /^\d+$/.test( prop ) === true ) { + + nodeObj[ prop ].assign( value ); + + return true; + + } + + } + + return Reflect.set( node, prop, value, nodeObj ); + + } + +}; + +const nodeObjectsCacheMap = new WeakMap(); +const nodeBuilderFunctionsCacheMap = new WeakMap(); + +const ShaderNodeObject = function ( obj, altType = null ) { + + const type = getValueType( obj ); + + if ( type === 'node' ) { + + let nodeObject = nodeObjectsCacheMap.get( obj ); + + if ( nodeObject === undefined ) { + + nodeObject = new Proxy( obj, shaderNodeHandler ); + + nodeObjectsCacheMap.set( obj, nodeObject ); + nodeObjectsCacheMap.set( nodeObject, nodeObject ); + + } + + return nodeObject; + + } else if ( ( altType === null && ( type === 'float' || type === 'boolean' ) ) || ( type && type !== 'shader' && type !== 'string' ) ) { + + return nodeObject( getConstNode( obj, altType ) ); + + } else if ( type === 'shader' ) { + + return Fn( obj ); + + } + + return obj; + +}; + +const ShaderNodeObjects = function ( objects, altType = null ) { + + for ( const name in objects ) { + + objects[ name ] = nodeObject( objects[ name ], altType ); + + } + + return objects; + +}; + +const ShaderNodeArray = function ( array, altType = null ) { + + const len = array.length; + + for ( let i = 0; i < len; i ++ ) { + + array[ i ] = nodeObject( array[ i ], altType ); + + } + + return array; + +}; + +const ShaderNodeProxy = function ( NodeClass, scope = null, factor = null, settings = null ) { + + const assignNode = ( node ) => nodeObject( settings !== null ? Object.assign( node, settings ) : node ); + + let fn, name = scope, minParams, maxParams; + + function verifyParamsLimit( params ) { + + let tslName; + + if ( name ) tslName = /[a-z]/i.test( name ) ? name + '()' : name; + else tslName = NodeClass.type; + + if ( minParams !== undefined && params.length < minParams ) { + + console.error( `THREE.TSL: "${ tslName }" parameter length is less than minimum required.` ); + + return params.concat( new Array( minParams - params.length ).fill( 0 ) ); + + } else if ( maxParams !== undefined && params.length > maxParams ) { + + console.error( `THREE.TSL: "${ tslName }" parameter length exceeds limit.` ); + + return params.slice( 0, maxParams ); + + } + + return params; + + } + + if ( scope === null ) { + + fn = ( ...params ) => { + + return assignNode( new NodeClass( ...nodeArray( verifyParamsLimit( params ) ) ) ); + + }; + + } else if ( factor !== null ) { + + factor = nodeObject( factor ); + + fn = ( ...params ) => { + + return assignNode( new NodeClass( scope, ...nodeArray( verifyParamsLimit( params ) ), factor ) ); + + }; + + } else { + + fn = ( ...params ) => { + + return assignNode( new NodeClass( scope, ...nodeArray( verifyParamsLimit( params ) ) ) ); + + }; + + } + + fn.setParameterLength = ( ...params ) => { + + if ( params.length === 1 ) minParams = maxParams = params[ 0 ]; + else if ( params.length === 2 ) [ minParams, maxParams ] = params; + + return fn; + + }; + + fn.setName = ( value ) => { + + name = value; + + return fn; + + }; + + return fn; + +}; + +const ShaderNodeImmutable = function ( NodeClass, ...params ) { + + return nodeObject( new NodeClass( ...nodeArray( params ) ) ); + +}; + +class ShaderCallNodeInternal extends Node { + + constructor( shaderNode, inputNodes ) { + + super(); + + this.shaderNode = shaderNode; + this.inputNodes = inputNodes; + + this.isShaderCallNodeInternal = true; + + } + + getNodeType( builder ) { + + return this.shaderNode.nodeType || this.getOutputNode( builder ).getNodeType( builder ); + + } + + getMemberType( builder, name ) { + + return this.getOutputNode( builder ).getMemberType( builder, name ); + + } + + call( builder ) { + + const { shaderNode, inputNodes } = this; + + const properties = builder.getNodeProperties( shaderNode ); + const onceNS = shaderNode.namespace && shaderNode.namespace === builder.namespace ? builder.getNamespace( 'once' ) : 'once'; + + if ( properties[ onceNS ] ) { + + return properties[ onceNS ]; + + } + + // + + let result = null; + + if ( shaderNode.layout ) { + + let functionNodesCacheMap = nodeBuilderFunctionsCacheMap.get( builder.constructor ); + + if ( functionNodesCacheMap === undefined ) { + + functionNodesCacheMap = new WeakMap(); + + nodeBuilderFunctionsCacheMap.set( builder.constructor, functionNodesCacheMap ); + + } + + let functionNode = functionNodesCacheMap.get( shaderNode ); + + if ( functionNode === undefined ) { + + functionNode = nodeObject( builder.buildFunctionNode( shaderNode ) ); + + functionNodesCacheMap.set( shaderNode, functionNode ); + + } + + builder.addInclude( functionNode ); + + result = nodeObject( functionNode.call( inputNodes ) ); + + } else { + + const jsFunc = shaderNode.jsFunc; + const outputNode = inputNodes !== null || jsFunc.length > 1 ? jsFunc( inputNodes || [], builder ) : jsFunc( builder ); + + result = nodeObject( outputNode ); + + } + + if ( shaderNode.once ) { + + properties[ onceNS ] = result; + + } + + return result; + + } + + setupOutput( builder ) { + + builder.addStack(); + + builder.stack.outputNode = this.call( builder ); + + return builder.removeStack(); + + } + + getOutputNode( builder ) { + + const properties = builder.getNodeProperties( this ); + const outputNamespace = builder.getOutputNamespace(); + + properties[ outputNamespace ] = properties[ outputNamespace ] || this.setupOutput( builder ); + + return properties[ outputNamespace ]; + + } + + build( builder, output = null ) { + + let result = null; + + const buildStage = builder.getBuildStage(); + const properties = builder.getNodeProperties( this ); + + const outputNamespace = builder.getOutputNamespace(); + const outputNode = this.getOutputNode( builder ); + + if ( buildStage === 'setup' ) { + + const initializedNamespace = builder.getNamespace( 'initialized' ); + + if ( properties[ initializedNamespace ] !== true ) { + + properties[ initializedNamespace ] = true; + + properties[ outputNamespace ] = this.getOutputNode( builder ); + properties[ outputNamespace ].build( builder ); + + } + + result = properties[ outputNamespace ]; + + } else if ( buildStage === 'analyze' ) { + + outputNode.build( builder, output ); + + } else if ( buildStage === 'generate' ) { + + result = outputNode.build( builder, output ) || ''; + + } + + return result; + + } + +} + +class ShaderNodeInternal extends Node { + + constructor( jsFunc, nodeType ) { + + super( nodeType ); + + this.jsFunc = jsFunc; + this.layout = null; + + this.global = true; + + this.once = false; + this.namespace = null; + + } + + setLayout( layout ) { + + this.layout = layout; + + return this; + + } + + call( inputs = null ) { + + nodeObjects( inputs ); + + return nodeObject( new ShaderCallNodeInternal( this, inputs ) ); + + } + + setup() { + + return this.call(); + + } + +} + +const bools = [ false, true ]; +const uints = [ 0, 1, 2, 3 ]; +const ints = [ - 1, - 2 ]; +const floats = [ 0.5, 1.5, 1 / 3, 1e-6, 1e6, Math.PI, Math.PI * 2, 1 / Math.PI, 2 / Math.PI, 1 / ( Math.PI * 2 ), Math.PI / 2 ]; + +const boolsCacheMap = new Map(); +for ( const bool of bools ) boolsCacheMap.set( bool, new ConstNode( bool ) ); + +const uintsCacheMap = new Map(); +for ( const uint of uints ) uintsCacheMap.set( uint, new ConstNode( uint, 'uint' ) ); + +const intsCacheMap = new Map( [ ...uintsCacheMap ].map( el => new ConstNode( el.value, 'int' ) ) ); +for ( const int of ints ) intsCacheMap.set( int, new ConstNode( int, 'int' ) ); + +const floatsCacheMap = new Map( [ ...intsCacheMap ].map( el => new ConstNode( el.value ) ) ); +for ( const float of floats ) floatsCacheMap.set( float, new ConstNode( float ) ); +for ( const float of floats ) floatsCacheMap.set( - float, new ConstNode( - float ) ); + +const cacheMaps = { bool: boolsCacheMap, uint: uintsCacheMap, ints: intsCacheMap, float: floatsCacheMap }; + +const constNodesCacheMap = new Map( [ ...boolsCacheMap, ...floatsCacheMap ] ); + +const getConstNode = ( value, type ) => { + + if ( constNodesCacheMap.has( value ) ) { + + return constNodesCacheMap.get( value ); + + } else if ( value.isNode === true ) { + + return value; + + } else { + + return new ConstNode( value, type ); + + } + +}; + +const safeGetNodeType = ( node ) => { + + try { + + return node.getNodeType(); + + } catch ( _ ) { + + return undefined; + + } + +}; + +const ConvertType = function ( type, cacheMap = null ) { + + return ( ...params ) => { + + if ( params.length === 0 || ( ! [ 'bool', 'float', 'int', 'uint' ].includes( type ) && params.every( param => typeof param !== 'object' ) ) ) { + + params = [ getValueFromType( type, ...params ) ]; + + } + + if ( params.length === 1 && cacheMap !== null && cacheMap.has( params[ 0 ] ) ) { + + return nodeObject( cacheMap.get( params[ 0 ] ) ); + + } + + if ( params.length === 1 ) { + + const node = getConstNode( params[ 0 ], type ); + if ( safeGetNodeType( node ) === type ) return nodeObject( node ); + return nodeObject( new ConvertNode( node, type ) ); + + } + + const nodes = params.map( param => getConstNode( param ) ); + return nodeObject( new JoinNode( nodes, type ) ); + + }; + +}; + +// exports + +const defined = ( v ) => typeof v === 'object' && v !== null ? v.value : v; // TODO: remove boolean conversion and defined function + +// utils + +const getConstNodeType = ( value ) => ( value !== undefined && value !== null ) ? ( value.nodeType || value.convertTo || ( typeof value === 'string' ? value : null ) ) : null; + +// shader node base + +function ShaderNode( jsFunc, nodeType ) { + + return new Proxy( new ShaderNodeInternal( jsFunc, nodeType ), shaderNodeHandler ); + +} + +const nodeObject = ( val, altType = null ) => /* new */ ShaderNodeObject( val, altType ); +const nodeObjects = ( val, altType = null ) => new ShaderNodeObjects( val, altType ); +const nodeArray = ( val, altType = null ) => new ShaderNodeArray( val, altType ); +const nodeProxy = ( ...params ) => new ShaderNodeProxy( ...params ); +const nodeImmutable = ( ...params ) => new ShaderNodeImmutable( ...params ); + +let fnId = 0; + +const Fn = ( jsFunc, layout = null ) => { + + let nodeType = null; + + if ( layout !== null ) { + + if ( typeof layout === 'object' ) { + + nodeType = layout.return; + + } else { + + if ( typeof layout === 'string' ) { + + nodeType = layout; + + } else { + + console.error( 'THREE.TSL: Invalid layout type.' ); + + } + + layout = null; + + } + + } + + const shaderNode = new ShaderNode( jsFunc, nodeType ); + + const fn = ( ...params ) => { + + let inputs; + + nodeObjects( params ); + + const isArrayAsParameter = params[ 0 ] && ( params[ 0 ].isNode || Object.getPrototypeOf( params[ 0 ] ) !== Object.prototype ); + + if ( isArrayAsParameter ) { + + inputs = [ ...params ]; + + } else { + + inputs = params[ 0 ]; + + } + + const fnCall = shaderNode.call( inputs ); + + if ( nodeType === 'void' ) fnCall.toStack(); + + return fnCall; + + }; + + fn.shaderNode = shaderNode; + fn.id = shaderNode.id; + + fn.getNodeType = ( ...params ) => shaderNode.getNodeType( ...params ); + fn.getCacheKey = ( ...params ) => shaderNode.getCacheKey( ...params ); + + fn.setLayout = ( layout ) => { + + shaderNode.setLayout( layout ); + + return fn; + + }; + + fn.once = ( namespace = null ) => { + + shaderNode.once = true; + shaderNode.namespace = namespace; + + return fn; + + }; + + if ( layout !== null ) { + + if ( typeof layout.inputs !== 'object' ) { + + const fullLayout = { + name: 'fn' + fnId ++, + type: nodeType, + inputs: [] + }; + + for ( const name in layout ) { + + if ( name === 'return' ) continue; + + fullLayout.inputs.push( { + name: name, + type: layout[ name ] + } ); + + } + + layout = fullLayout; + + } + + fn.setLayout( layout ); + + } + + return fn; + +}; + +// + +const setCurrentStack = ( stack ) => { + + currentStack = stack; + +}; + +const getCurrentStack = () => currentStack; + +/** + * Represent a conditional node using if/else statements. + * + * ```js + * If( condition, function ) + * .ElseIf( condition, function ) + * .Else( function ) + * ``` + * @tsl + * @function + * @param {...any} params - The parameters for the conditional node. + * @returns {StackNode} The conditional node. + */ +const If = ( ...params ) => currentStack.If( ...params ); + +/** + * Represent a conditional node using switch/case statements. + * + * ```js + * Switch( value ) + * .Case( 1, function ) + * .Case( 2, 3, 4, function ) + * .Default( function ) + * ``` + * @tsl + * @function + * @param {...any} params - The parameters for the conditional node. + * @returns {StackNode} The conditional node. + */ +const Switch = ( ...params ) => currentStack.Switch( ...params ); + +/** + * Add the given node to the current stack. + * + * @param {Node} node - The node to add. + * @returns {Node} The node that was added to the stack. + */ +function Stack( node ) { + + if ( currentStack ) currentStack.add( node ); + + return node; + +} + +addMethodChaining( 'toStack', Stack ); + +// types + +const color = new ConvertType( 'color' ); + +const float = new ConvertType( 'float', cacheMaps.float ); +const int = new ConvertType( 'int', cacheMaps.ints ); +const uint = new ConvertType( 'uint', cacheMaps.uint ); +const bool = new ConvertType( 'bool', cacheMaps.bool ); + +const vec2 = new ConvertType( 'vec2' ); +const ivec2 = new ConvertType( 'ivec2' ); +const uvec2 = new ConvertType( 'uvec2' ); +const bvec2 = new ConvertType( 'bvec2' ); + +const vec3 = new ConvertType( 'vec3' ); +const ivec3 = new ConvertType( 'ivec3' ); +const uvec3 = new ConvertType( 'uvec3' ); +const bvec3 = new ConvertType( 'bvec3' ); + +const vec4 = new ConvertType( 'vec4' ); +const ivec4 = new ConvertType( 'ivec4' ); +const uvec4 = new ConvertType( 'uvec4' ); +const bvec4 = new ConvertType( 'bvec4' ); + +const mat2 = new ConvertType( 'mat2' ); +const mat3 = new ConvertType( 'mat3' ); +const mat4 = new ConvertType( 'mat4' ); + +const string = ( value = '' ) => nodeObject( new ConstNode( value, 'string' ) ); +const arrayBuffer = ( value ) => nodeObject( new ConstNode( value, 'ArrayBuffer' ) ); + +addMethodChaining( 'toColor', color ); +addMethodChaining( 'toFloat', float ); +addMethodChaining( 'toInt', int ); +addMethodChaining( 'toUint', uint ); +addMethodChaining( 'toBool', bool ); +addMethodChaining( 'toVec2', vec2 ); +addMethodChaining( 'toIVec2', ivec2 ); +addMethodChaining( 'toUVec2', uvec2 ); +addMethodChaining( 'toBVec2', bvec2 ); +addMethodChaining( 'toVec3', vec3 ); +addMethodChaining( 'toIVec3', ivec3 ); +addMethodChaining( 'toUVec3', uvec3 ); +addMethodChaining( 'toBVec3', bvec3 ); +addMethodChaining( 'toVec4', vec4 ); +addMethodChaining( 'toIVec4', ivec4 ); +addMethodChaining( 'toUVec4', uvec4 ); +addMethodChaining( 'toBVec4', bvec4 ); +addMethodChaining( 'toMat2', mat2 ); +addMethodChaining( 'toMat3', mat3 ); +addMethodChaining( 'toMat4', mat4 ); + +// basic nodes + +const element = /*@__PURE__*/ nodeProxy( ArrayElementNode ).setParameterLength( 2 ); +const convert = ( node, types ) => nodeObject( new ConvertNode( nodeObject( node ), types ) ); +const split = ( node, channels ) => nodeObject( new SplitNode( nodeObject( node ), channels ) ); + +addMethodChaining( 'element', element ); +addMethodChaining( 'convert', convert ); + +// deprecated + +/** + * @tsl + * @function + * @deprecated since r176. Use {@link Stack} instead. + * + * @param {Node} node - The node to add. + * @returns {Function} + */ +const append = ( node ) => { // @deprecated, r176 + + console.warn( 'THREE.TSL: append() has been renamed to Stack().' ); + return Stack( node ); + +}; + +addMethodChaining( 'append', ( node ) => { // @deprecated, r176 + + console.warn( 'THREE.TSL: .append() has been renamed to .toStack().' ); + return Stack( node ); + +} ); + +/** + * @tsl + * @function + * @deprecated since r168. Use {@link Fn} instead. + * + * @param {...any} params + * @returns {Function} + */ +const tslFn = ( ...params ) => { // @deprecated, r168 + + console.warn( 'THREE.TSL: tslFn() has been renamed to Fn().' ); + return Fn( ...params ); + +}; + +/** + * This class represents a shader property. It can be used + * to explicitly define a property and assign a value to it. + * + * ```js + * const threshold = property( 'float', 'threshold' ).assign( THRESHOLD ); + *``` + * `PropertyNode` is used by the engine to predefined common material properties + * for TSL code. + * + * @augments Node + */ +class PropertyNode extends Node { + + static get type() { + + return 'PropertyNode'; + + } + + /** + * Constructs a new property node. + * + * @param {string} nodeType - The type of the node. + * @param {?string} [name=null] - The name of the property in the shader. + * @param {boolean} [varying=false] - Whether this property is a varying or not. + */ + constructor( nodeType, name = null, varying = false ) { + + super( nodeType ); + + /** + * The name of the property in the shader. If no name is defined, + * the node system auto-generates one. + * + * @type {?string} + * @default null + */ + this.name = name; + + /** + * Whether this property is a varying or not. + * + * @type {boolean} + * @default false + */ + this.varying = varying; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPropertyNode = true; + + /** + * This flag is used for global cache. + * + * @type {boolean} + * @default true + */ + this.global = true; + + } + + getHash( builder ) { + + return this.name || super.getHash( builder ); + + } + + generate( builder ) { + + let nodeVar; + + if ( this.varying === true ) { + + nodeVar = builder.getVaryingFromNode( this, this.name ); + nodeVar.needsInterpolation = true; + + } else { + + nodeVar = builder.getVarFromNode( this, this.name ); + + } + + return builder.getPropertyName( nodeVar ); + + } + +} + +/** + * TSL function for creating a property node. + * + * @tsl + * @function + * @param {string} type - The type of the node. + * @param {?string} [name=null] - The name of the property in the shader. + * @returns {PropertyNode} + */ +const property = ( type, name ) => nodeObject( new PropertyNode( type, name ) ); + +/** + * TSL function for creating a varying property node. + * + * @tsl + * @function + * @param {string} type - The type of the node. + * @param {?string} [name=null] - The name of the varying in the shader. + * @returns {PropertyNode} + */ +const varyingProperty = ( type, name ) => nodeObject( new PropertyNode( type, name, true ) ); + +/** + * TSL object that represents the shader variable `DiffuseColor`. + * + * @tsl + * @type {PropertyNode} + */ +const diffuseColor = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec4', 'DiffuseColor' ); + +/** + * TSL object that represents the shader variable `EmissiveColor`. + * + * @tsl + * @type {PropertyNode} + */ +const emissive = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec3', 'EmissiveColor' ); + +/** + * TSL object that represents the shader variable `Roughness`. + * + * @tsl + * @type {PropertyNode} + */ +const roughness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Roughness' ); + +/** + * TSL object that represents the shader variable `Metalness`. + * + * @tsl + * @type {PropertyNode} + */ +const metalness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Metalness' ); + +/** + * TSL object that represents the shader variable `Clearcoat`. + * + * @tsl + * @type {PropertyNode} + */ +const clearcoat = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Clearcoat' ); + +/** + * TSL object that represents the shader variable `ClearcoatRoughness`. + * + * @tsl + * @type {PropertyNode} + */ +const clearcoatRoughness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'ClearcoatRoughness' ); + +/** + * TSL object that represents the shader variable `Sheen`. + * + * @tsl + * @type {PropertyNode} + */ +const sheen = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec3', 'Sheen' ); + +/** + * TSL object that represents the shader variable `SheenRoughness`. + * + * @tsl + * @type {PropertyNode} + */ +const sheenRoughness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'SheenRoughness' ); + +/** + * TSL object that represents the shader variable `Iridescence`. + * + * @tsl + * @type {PropertyNode} + */ +const iridescence = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Iridescence' ); + +/** + * TSL object that represents the shader variable `IridescenceIOR`. + * + * @tsl + * @type {PropertyNode} + */ +const iridescenceIOR = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'IridescenceIOR' ); + +/** + * TSL object that represents the shader variable `IridescenceThickness`. + * + * @tsl + * @type {PropertyNode} + */ +const iridescenceThickness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'IridescenceThickness' ); + +/** + * TSL object that represents the shader variable `AlphaT`. + * + * @tsl + * @type {PropertyNode} + */ +const alphaT = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'AlphaT' ); + +/** + * TSL object that represents the shader variable `Anisotropy`. + * + * @tsl + * @type {PropertyNode} + */ +const anisotropy = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Anisotropy' ); + +/** + * TSL object that represents the shader variable `AnisotropyT`. + * + * @tsl + * @type {PropertyNode} + */ +const anisotropyT = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec3', 'AnisotropyT' ); + +/** + * TSL object that represents the shader variable `AnisotropyB`. + * + * @tsl + * @type {PropertyNode} + */ +const anisotropyB = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec3', 'AnisotropyB' ); + +/** + * TSL object that represents the shader variable `SpecularColor`. + * + * @tsl + * @type {PropertyNode} + */ +const specularColor = /*@__PURE__*/ nodeImmutable( PropertyNode, 'color', 'SpecularColor' ); + +/** + * TSL object that represents the shader variable `SpecularF90`. + * + * @tsl + * @type {PropertyNode} + */ +const specularF90 = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'SpecularF90' ); + +/** + * TSL object that represents the shader variable `Shininess`. + * + * @tsl + * @type {PropertyNode} + */ +const shininess = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Shininess' ); + +/** + * TSL object that represents the shader variable `Output`. + * + * @tsl + * @type {PropertyNode} + */ +const output = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec4', 'Output' ); + +/** + * TSL object that represents the shader variable `dashSize`. + * + * @tsl + * @type {PropertyNode} + */ +const dashSize = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'dashSize' ); + +/** + * TSL object that represents the shader variable `gapSize`. + * + * @tsl + * @type {PropertyNode} + */ +const gapSize = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'gapSize' ); + +/** + * TSL object that represents the shader variable `pointWidth`. + * + * @tsl + * @type {PropertyNode} + */ +const pointWidth = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'pointWidth' ); + +/** + * TSL object that represents the shader variable `IOR`. + * + * @tsl + * @type {PropertyNode} + */ +const ior = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'IOR' ); + +/** + * TSL object that represents the shader variable `Transmission`. + * + * @tsl + * @type {PropertyNode} + */ +const transmission = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Transmission' ); + +/** + * TSL object that represents the shader variable `Thickness`. + * + * @tsl + * @type {PropertyNode} + */ +const thickness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Thickness' ); + +/** + * TSL object that represents the shader variable `AttenuationDistance`. + * + * @tsl + * @type {PropertyNode} + */ +const attenuationDistance = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'AttenuationDistance' ); + +/** + * TSL object that represents the shader variable `AttenuationColor`. + * + * @tsl + * @type {PropertyNode} + */ +const attenuationColor = /*@__PURE__*/ nodeImmutable( PropertyNode, 'color', 'AttenuationColor' ); + +/** + * TSL object that represents the shader variable `Dispersion`. + * + * @tsl + * @type {PropertyNode} + */ +const dispersion = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Dispersion' ); + +/** + * This node can be used to group single instances of {@link UniformNode} + * and manage them as a uniform buffer. + * + * In most cases, the predefined nodes `objectGroup`, `renderGroup` and `frameGroup` + * will be used when defining the {@link UniformNode#groupNode} property. + * + * - `objectGroup`: Uniform buffer per object. + * - `renderGroup`: Shared uniform buffer, updated once per render call. + * - `frameGroup`: Shared uniform buffer, updated once per frame. + * + * @augments Node + */ +class UniformGroupNode extends Node { + + static get type() { + + return 'UniformGroupNode'; + + } + + /** + * Constructs a new uniform group node. + * + * @param {string} name - The name of the uniform group node. + * @param {boolean} [shared=false] - Whether this uniform group node is shared or not. + * @param {number} [order=1] - Influences the internal sorting. + */ + constructor( name, shared = false, order = 1 ) { + + super( 'string' ); + + /** + * The name of the uniform group node. + * + * @type {string} + */ + this.name = name; + + /** + * Whether this uniform group node is shared or not. + * + * @type {boolean} + * @default false + */ + this.shared = shared; + + /** + * Influences the internal sorting. + * TODO: Add details when this property should be changed. + * + * @type {number} + * @default 1 + */ + this.order = order; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isUniformGroup = true; + + } + + serialize( data ) { + + super.serialize( data ); + + data.name = this.name; + data.version = this.version; + data.shared = this.shared; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.name = data.name; + this.version = data.version; + this.shared = data.shared; + + } + +} + +/** + * TSL function for creating a uniform group node with the given name. + * + * @tsl + * @function + * @param {string} name - The name of the uniform group node. + * @returns {UniformGroupNode} + */ +const uniformGroup = ( name ) => new UniformGroupNode( name ); + +/** + * TSL function for creating a shared uniform group node with the given name and order. + * + * @tsl + * @function + * @param {string} name - The name of the uniform group node. + * @param {number} [order=0] - Influences the internal sorting. + * @returns {UniformGroupNode} + */ +const sharedUniformGroup = ( name, order = 0 ) => new UniformGroupNode( name, true, order ); + +/** + * TSL object that represents a shared uniform group node which is updated once per frame. + * + * @tsl + * @type {UniformGroupNode} + */ +const frameGroup = /*@__PURE__*/ sharedUniformGroup( 'frame' ); + +/** + * TSL object that represents a shared uniform group node which is updated once per render. + * + * @tsl + * @type {UniformGroupNode} + */ +const renderGroup = /*@__PURE__*/ sharedUniformGroup( 'render' ); + +/** + * TSL object that represents a uniform group node which is updated once per object. + * + * @tsl + * @type {UniformGroupNode} + */ +const objectGroup = /*@__PURE__*/ uniformGroup( 'object' ); + +/** + * Class for representing a uniform. + * + * @augments InputNode + */ +class UniformNode extends InputNode { + + static get type() { + + return 'UniformNode'; + + } + + /** + * Constructs a new uniform node. + * + * @param {any} value - The value of this node. Usually a JS primitive or three.js object (vector, matrix, color, texture). + * @param {?string} nodeType - The node type. If no explicit type is defined, the node tries to derive the type from its value. + */ + constructor( value, nodeType = null ) { + + super( value, nodeType ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isUniformNode = true; + + /** + * The name or label of the uniform. + * + * @type {string} + * @default '' + */ + this.name = ''; + + /** + * The uniform group of this uniform. By default, uniforms are + * managed per object but they might belong to a shared group + * which is updated per frame or render call. + * + * @type {UniformGroupNode} + */ + this.groupNode = objectGroup; + + } + + /** + * Sets the {@link UniformNode#name} property. + * + * @param {string} name - The name of the uniform. + * @return {UniformNode} A reference to this node. + */ + label( name ) { + + this.name = name; + + return this; + + } + + /** + * Sets the {@link UniformNode#groupNode} property. + * + * @param {UniformGroupNode} group - The uniform group. + * @return {UniformNode} A reference to this node. + */ + setGroup( group ) { + + this.groupNode = group; + + return this; + + } + + /** + * Returns the {@link UniformNode#groupNode}. + * + * @return {UniformGroupNode} The uniform group. + */ + getGroup() { + + return this.groupNode; + + } + + /** + * By default, this method returns the result of {@link Node#getHash} but derived + * classes might overwrite this method with a different implementation. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The uniform hash. + */ + getUniformHash( builder ) { + + return this.getHash( builder ); + + } + + onUpdate( callback, updateType ) { + + const self = this.getSelf(); + + callback = callback.bind( self ); + + return super.onUpdate( ( frame ) => { + + const value = callback( frame, self ); + + if ( value !== undefined ) { + + this.value = value; + + } + + }, updateType ); + + } + + generate( builder, output ) { + + const type = this.getNodeType( builder ); + + const hash = this.getUniformHash( builder ); + + let sharedNode = builder.getNodeFromHash( hash ); + + if ( sharedNode === undefined ) { + + builder.setHashNode( this, hash ); + + sharedNode = this; + + } + + const sharedNodeType = sharedNode.getInputType( builder ); + + const nodeUniform = builder.getUniformFromNode( sharedNode, sharedNodeType, builder.shaderStage, this.name || builder.context.label ); + const propertyName = builder.getPropertyName( nodeUniform ); + + if ( builder.context.label !== undefined ) delete builder.context.label; + + return builder.format( propertyName, type, output ); + + } + +} + +/** + * TSL function for creating a uniform node. + * + * @tsl + * @function + * @param {any} arg1 - The value of this node. Usually a JS primitive or three.js object (vector, matrix, color, texture). + * @param {string} [arg2] - The node type. If no explicit type is defined, the node tries to derive the type from its value. + * @returns {UniformNode} + */ +const uniform = ( arg1, arg2 ) => { + + const nodeType = getConstNodeType( arg2 || arg1 ); + + // @TODO: get ConstNode from .traverse() in the future + const value = ( arg1 && arg1.isNode === true ) ? ( arg1.node && arg1.node.value ) || arg1.value : arg1; + + return nodeObject( new UniformNode( value, nodeType ) ); + +}; + +/** + * ArrayNode represents a collection of nodes, typically created using the {@link array} function. + * ```js + * const colors = array( [ + * vec3( 1, 0, 0 ), + * vec3( 0, 1, 0 ), + * vec3( 0, 0, 1 ) + * ] ); + * + * const redColor = tintColors.element( 0 ); + * + * @augments TempNode + */ +class ArrayNode extends TempNode { + + static get type() { + + return 'ArrayNode'; + + } + + /** + * Constructs a new array node. + * + * @param {?string} nodeType - The data type of the elements. + * @param {number} count - Size of the array. + * @param {?Array} [values=null] - Array default values. + */ + constructor( nodeType, count, values = null ) { + + super( nodeType ); + + /** + * Array size. + * + * @type {number} + */ + this.count = count; + + /** + * Array default values. + * + * @type {?Array} + */ + this.values = values; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isArrayNode = true; + + } + + /** + * Returns the node's type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The type of the node. + */ + getNodeType( builder ) { + + if ( this.nodeType === null ) { + + this.nodeType = this.values[ 0 ].getNodeType( builder ); + + } + + return this.nodeType; + + } + + /** + * Returns the node's type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The type of the node. + */ + getElementType( builder ) { + + return this.getNodeType( builder ); + + } + + /** + * This method builds the output node and returns the resulting array as a shader string. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The generated shader string. + */ + generate( builder ) { + + const type = this.getNodeType( builder ); + + return builder.generateArray( type, this.count, this.values ); + + } + +} + +/** + * TSL function for creating an array node. + * + * @tsl + * @function + * @param {string|Array} nodeTypeOrValues - A string representing the element type (e.g., 'vec3') + * or an array containing the default values (e.g., [ vec3() ]). + * @param {?number} [count] - Size of the array. + * @returns {ArrayNode} + */ +const array = ( ...params ) => { + + let node; + + if ( params.length === 1 ) { + + const values = params[ 0 ]; + + node = new ArrayNode( null, values.length, values ); + + } else { + + const nodeType = params[ 0 ]; + const count = params[ 1 ]; + + node = new ArrayNode( nodeType, count ); + + } + + return nodeObject( node ); + +}; + +addMethodChaining( 'toArray', ( node, count ) => array( Array( count ).fill( node ) ) ); + +/** + * These node represents an assign operation. Meaning a node is assigned + * to another node. + * + * @augments TempNode + */ +class AssignNode extends TempNode { + + static get type() { + + return 'AssignNode'; + + } + + /** + * Constructs a new assign node. + * + * @param {Node} targetNode - The target node. + * @param {Node} sourceNode - The source type. + */ + constructor( targetNode, sourceNode ) { + + super(); + + /** + * The target node. + * + * @type {Node} + */ + this.targetNode = targetNode; + + /** + * The source node. + * + * @type {Node} + */ + this.sourceNode = sourceNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isAssignNode = true; + + } + + /** + * Whether this node is used more than once in context of other nodes. This method + * is overwritten since it always returns `false` (assigns are unique). + * + * @return {boolean} A flag that indicates if there is more than one dependency to other nodes. Always `false`. + */ + hasDependencies() { + + return false; + + } + + getNodeType( builder, output ) { + + return output !== 'void' ? this.targetNode.getNodeType( builder ) : 'void'; + + } + + /** + * Whether a split is required when assigning source to target. This can happen when the component length of + * target and source data type does not match. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {boolean} Whether a split is required when assigning source to target. + */ + needsSplitAssign( builder ) { + + const { targetNode } = this; + + if ( builder.isAvailable( 'swizzleAssign' ) === false && targetNode.isSplitNode && targetNode.components.length > 1 ) { + + const targetLength = builder.getTypeLength( targetNode.node.getNodeType( builder ) ); + const assignDifferentVector = vectorComponents.join( '' ).slice( 0, targetLength ) !== targetNode.components; + + return assignDifferentVector; + + } + + return false; + + } + + setup( builder ) { + + const { targetNode, sourceNode } = this; + + const properties = builder.getNodeProperties( this ); + properties.sourceNode = sourceNode; + properties.targetNode = targetNode.context( { assign: true } ); + + } + + generate( builder, output ) { + + const { targetNode, sourceNode } = builder.getNodeProperties( this ); + + const needsSplitAssign = this.needsSplitAssign( builder ); + + const targetType = targetNode.getNodeType( builder ); + + const target = targetNode.build( builder ); + const source = sourceNode.build( builder, targetType ); + + const sourceType = sourceNode.getNodeType( builder ); + + const nodeData = builder.getDataFromNode( this ); + + // + + let snippet; + + if ( nodeData.initialized === true ) { + + if ( output !== 'void' ) { + + snippet = target; + + } + + } else if ( needsSplitAssign ) { + + const sourceVar = builder.getVarFromNode( this, null, targetType ); + const sourceProperty = builder.getPropertyName( sourceVar ); + + builder.addLineFlowCode( `${ sourceProperty } = ${ source }`, this ); + + const splitNode = targetNode.node; + const splitTargetNode = splitNode.node.context( { assign: true } ); + + const targetRoot = splitTargetNode.build( builder ); + + for ( let i = 0; i < splitNode.components.length; i ++ ) { + + const component = splitNode.components[ i ]; + + builder.addLineFlowCode( `${ targetRoot }.${ component } = ${ sourceProperty }[ ${ i } ]`, this ); + + } + + if ( output !== 'void' ) { + + snippet = target; + + } + + } else { + + snippet = `${ target } = ${ source }`; + + if ( output === 'void' || sourceType === 'void' ) { + + builder.addLineFlowCode( snippet, this ); + + if ( output !== 'void' ) { + + snippet = target; + + } + + } + + } + + nodeData.initialized = true; + + return builder.format( snippet, targetType, output ); + + } + +} + +/** + * TSL function for creating an assign node. + * + * @tsl + * @function + * @param {Node} targetNode - The target node. + * @param {Node} sourceNode - The source type. + * @returns {AssignNode} + */ +const assign = /*@__PURE__*/ nodeProxy( AssignNode ).setParameterLength( 2 ); + +addMethodChaining( 'assign', assign ); + +/** + * This module represents the call of a {@link FunctionNode}. Developers are usually not confronted + * with this module since they use the predefined TSL syntax `wgslFn` and `glslFn` which encapsulate + * this logic. + * + * @augments TempNode + */ +class FunctionCallNode extends TempNode { + + static get type() { + + return 'FunctionCallNode'; + + } + + /** + * Constructs a new function call node. + * + * @param {?FunctionNode} functionNode - The function node. + * @param {Object} [parameters={}] - The parameters for the function call. + */ + constructor( functionNode = null, parameters = {} ) { + + super(); + + /** + * The function node. + * + * @type {?FunctionNode} + * @default null + */ + this.functionNode = functionNode; + + /** + * The parameters of the function call. + * + * @type {Object} + * @default {} + */ + this.parameters = parameters; + + } + + /** + * Sets the parameters of the function call node. + * + * @param {Object} parameters - The parameters to set. + * @return {FunctionCallNode} A reference to this node. + */ + setParameters( parameters ) { + + this.parameters = parameters; + + return this; + + } + + /** + * Returns the parameters of the function call node. + * + * @return {Object} The parameters of this node. + */ + getParameters() { + + return this.parameters; + + } + + getNodeType( builder ) { + + return this.functionNode.getNodeType( builder ); + + } + + generate( builder ) { + + const params = []; + + const functionNode = this.functionNode; + + const inputs = functionNode.getInputs( builder ); + const parameters = this.parameters; + + const generateInput = ( node, inputNode ) => { + + const type = inputNode.type; + const pointer = type === 'pointer'; + + let output; + + if ( pointer ) output = '&' + node.build( builder ); + else output = node.build( builder, type ); + + return output; + + }; + + if ( Array.isArray( parameters ) ) { + + if ( parameters.length > inputs.length ) { + + console.error( 'THREE.TSL: The number of provided parameters exceeds the expected number of inputs in \'Fn()\'.' ); + + parameters.length = inputs.length; + + } else if ( parameters.length < inputs.length ) { + + console.error( 'THREE.TSL: The number of provided parameters is less than the expected number of inputs in \'Fn()\'.' ); + + while ( parameters.length < inputs.length ) { + + parameters.push( float( 0 ) ); + + } + + } + + for ( let i = 0; i < parameters.length; i ++ ) { + + params.push( generateInput( parameters[ i ], inputs[ i ] ) ); + + } + + } else { + + for ( const inputNode of inputs ) { + + const node = parameters[ inputNode.name ]; + + if ( node !== undefined ) { + + params.push( generateInput( node, inputNode ) ); + + } else { + + console.error( `THREE.TSL: Input '${ inputNode.name }' not found in \'Fn()\'.` ); + + params.push( generateInput( float( 0 ), inputNode ) ); + + } + + } + + } + + const functionName = functionNode.build( builder, 'property' ); + + return `${ functionName }( ${ params.join( ', ' ) } )`; + + } + +} + +const call = ( func, ...params ) => { + + params = params.length > 1 || ( params[ 0 ] && params[ 0 ].isNode === true ) ? nodeArray( params ) : nodeObjects( params[ 0 ] ); + + return nodeObject( new FunctionCallNode( nodeObject( func ), params ) ); + +}; + +addMethodChaining( 'call', call ); + +const _vectorOperators = { + '==': 'equal', + '!=': 'notEqual', + '<': 'lessThan', + '>': 'greaterThan', + '<=': 'lessThanEqual', + '>=': 'greaterThanEqual', + '%': 'mod' +}; + +/** + * This node represents basic mathematical and logical operations like addition, + * subtraction or comparisons (e.g. `equal()`). + * + * @augments TempNode + */ +class OperatorNode extends TempNode { + + static get type() { + + return 'OperatorNode'; + + } + + /** + * Constructs a new operator node. + * + * @param {string} op - The operator. + * @param {Node} aNode - The first input. + * @param {Node} bNode - The second input. + * @param {...Node} params - Additional input parameters. + */ + constructor( op, aNode, bNode, ...params ) { + + super(); + + if ( params.length > 0 ) { + + let finalOp = new OperatorNode( op, aNode, bNode ); + + for ( let i = 0; i < params.length - 1; i ++ ) { + + finalOp = new OperatorNode( op, finalOp, params[ i ] ); + + } + + aNode = finalOp; + bNode = params[ params.length - 1 ]; + + } + + /** + * The operator. + * + * @type {string} + */ + this.op = op; + + /** + * The first input. + * + * @type {Node} + */ + this.aNode = aNode; + + /** + * The second input. + * + * @type {Node} + */ + this.bNode = bNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isOperatorNode = true; + + } + + /** + * Returns the operator method name. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} output - The output type. + * @returns {string} The operator method name. + */ + getOperatorMethod( builder, output ) { + + return builder.getMethod( _vectorOperators[ this.op ], output ); + + } + + /** + * This method is overwritten since the node type is inferred from the operator + * and the input node types. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + const op = this.op; + + const aNode = this.aNode; + const bNode = this.bNode; + + const typeA = aNode.getNodeType( builder ); + const typeB = bNode ? bNode.getNodeType( builder ) : null; + + if ( typeA === 'void' || typeB === 'void' ) { + + return 'void'; + + } else if ( op === '%' ) { + + return typeA; + + } else if ( op === '~' || op === '&' || op === '|' || op === '^' || op === '>>' || op === '<<' ) { + + return builder.getIntegerType( typeA ); + + } else if ( op === '!' || op === '&&' || op === '||' || op === '^^' ) { + + return 'bool'; + + } else if ( op === '==' || op === '!=' || op === '<' || op === '>' || op === '<=' || op === '>=' ) { + + const typeLength = Math.max( builder.getTypeLength( typeA ), builder.getTypeLength( typeB ) ); + + return typeLength > 1 ? `bvec${ typeLength }` : 'bool'; + + } else { + + // Handle matrix operations + + if ( builder.isMatrix( typeA ) ) { + + if ( typeB === 'float' ) { + + return typeA; // matrix * scalar = matrix + + } else if ( builder.isVector( typeB ) ) { + + return builder.getVectorFromMatrix( typeA ); // matrix * vector + + } else if ( builder.isMatrix( typeB ) ) { + + return typeA; // matrix * matrix + + } + + } else if ( builder.isMatrix( typeB ) ) { + + if ( typeA === 'float' ) { + + return typeB; // scalar * matrix = matrix + + } else if ( builder.isVector( typeA ) ) { + + return builder.getVectorFromMatrix( typeB ); // vector * matrix + + } + + } + + // Handle non-matrix cases + + if ( builder.getTypeLength( typeB ) > builder.getTypeLength( typeA ) ) { + + // anytype x anytype: use the greater length vector + + return typeB; + + } + + return typeA; + + } + + } + + generate( builder, output ) { + + const op = this.op; + + const { aNode, bNode } = this; + + const type = this.getNodeType( builder ); + + let typeA = null; + let typeB = null; + + if ( type !== 'void' ) { + + typeA = aNode.getNodeType( builder ); + typeB = bNode ? bNode.getNodeType( builder ) : null; + + if ( op === '<' || op === '>' || op === '<=' || op === '>=' || op === '==' || op === '!=' ) { + + if ( builder.isVector( typeA ) ) { + + typeB = typeA; + + } else if ( builder.isVector( typeB ) ) { + + typeA = typeB; + + } else if ( typeA !== typeB ) { + + typeA = typeB = 'float'; + + } + + } else if ( op === '>>' || op === '<<' ) { + + typeA = type; + typeB = builder.changeComponentType( typeB, 'uint' ); + + } else if ( op === '%' ) { + + typeA = type; + typeB = builder.isInteger( typeA ) && builder.isInteger( typeB ) ? typeB : typeA; + + } else if ( builder.isMatrix( typeA ) ) { + + if ( typeB === 'float' ) { + + // Keep matrix type for typeA, but ensure typeB stays float + + typeB = 'float'; + + } else if ( builder.isVector( typeB ) ) { + + // matrix x vector + typeB = builder.getVectorFromMatrix( typeA ); + + } else if ( builder.isMatrix( typeB ) ) ; else { + + typeA = typeB = type; + + } + + } else if ( builder.isMatrix( typeB ) ) { + + if ( typeA === 'float' ) { + + // Keep matrix type for typeB, but ensure typeA stays float + + typeA = 'float'; + + } else if ( builder.isVector( typeA ) ) { + + // vector x matrix + + typeA = builder.getVectorFromMatrix( typeB ); + + } else { + + typeA = typeB = type; + + } + + } else { + + // anytype x anytype + + typeA = typeB = type; + + } + + } else { + + typeA = typeB = type; + + } + + const a = aNode.build( builder, typeA ); + const b = bNode ? bNode.build( builder, typeB ) : null; + + const fnOpSnippet = builder.getFunctionOperator( op ); + + if ( output !== 'void' ) { + + const isGLSL = builder.renderer.coordinateSystem === WebGLCoordinateSystem; + + if ( op === '==' || op === '!=' || op === '<' || op === '>' || op === '<=' || op === '>=' ) { + + if ( isGLSL ) { + + if ( builder.isVector( typeA ) ) { + + return builder.format( `${ this.getOperatorMethod( builder, output ) }( ${ a }, ${ b } )`, type, output ); + + } else { + + return builder.format( `( ${ a } ${ op } ${ b } )`, type, output ); + + } + + } else { + + // WGSL + + return builder.format( `( ${ a } ${ op } ${ b } )`, type, output ); + + } + + } else if ( op === '%' ) { + + if ( builder.isInteger( typeB ) ) { + + return builder.format( `( ${ a } % ${ b } )`, type, output ); + + } else { + + return builder.format( `${ this.getOperatorMethod( builder, type ) }( ${ a }, ${ b } )`, type, output ); + + } + + } else if ( op === '!' || op === '~' ) { + + return builder.format( `(${op}${a})`, typeA, output ); + + } else if ( fnOpSnippet ) { + + return builder.format( `${ fnOpSnippet }( ${ a }, ${ b } )`, type, output ); + + } else { + + // Handle matrix operations + + if ( builder.isMatrix( typeA ) && typeB === 'float' ) { + + return builder.format( `( ${ b } ${ op } ${ a } )`, type, output ); + + } else if ( typeA === 'float' && builder.isMatrix( typeB ) ) { + + return builder.format( `${ a } ${ op } ${ b }`, type, output ); + + } else { + + let snippet = `( ${ a } ${ op } ${ b } )`; + + if ( ! isGLSL && type === 'bool' && builder.isVector( typeA ) && builder.isVector( typeB ) ) { + + snippet = `all${ snippet }`; + + } + + return builder.format( snippet, type, output ); + + } + + } + + } else if ( typeA !== 'void' ) { + + if ( fnOpSnippet ) { + + return builder.format( `${ fnOpSnippet }( ${ a }, ${ b } )`, type, output ); + + } else { + + if ( builder.isMatrix( typeA ) && typeB === 'float' ) { + + return builder.format( `${ b } ${ op } ${ a }`, type, output ); + + } else { + + return builder.format( `${ a } ${ op } ${ b }`, type, output ); + + } + + } + + } + + } + + serialize( data ) { + + super.serialize( data ); + + data.op = this.op; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.op = data.op; + + } + +} + +/** + * Returns the addition of two or more value. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @param {...Node} params - Additional input parameters. + * @returns {OperatorNode} + */ +const add = /*@__PURE__*/ nodeProxy( OperatorNode, '+' ).setParameterLength( 2, Infinity ).setName( 'add' ); + +/** + * Returns the subtraction of two or more value. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @param {...Node} params - Additional input parameters. + * @returns {OperatorNode} + */ +const sub = /*@__PURE__*/ nodeProxy( OperatorNode, '-' ).setParameterLength( 2, Infinity ).setName( 'sub' ); + +/** + * Returns the multiplication of two or more value. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @param {...Node} params - Additional input parameters. + * @returns {OperatorNode} + */ +const mul = /*@__PURE__*/ nodeProxy( OperatorNode, '*' ).setParameterLength( 2, Infinity ).setName( 'mul' ); + +/** + * Returns the division of two or more value. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @param {...Node} params - Additional input parameters. + * @returns {OperatorNode} + */ +const div = /*@__PURE__*/ nodeProxy( OperatorNode, '/' ).setParameterLength( 2, Infinity ).setName( 'div' ); + +/** + * Computes the remainder of dividing the first node by the second one. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const mod = /*@__PURE__*/ nodeProxy( OperatorNode, '%' ).setParameterLength( 2 ).setName( 'mod' ); + +/** + * Checks if two nodes are equal. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const equal = /*@__PURE__*/ nodeProxy( OperatorNode, '==' ).setParameterLength( 2 ).setName( 'equal' ); + +/** + * Checks if two nodes are not equal. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const notEqual = /*@__PURE__*/ nodeProxy( OperatorNode, '!=' ).setParameterLength( 2 ).setName( 'notEqual' ); + +/** + * Checks if the first node is less than the second. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const lessThan = /*@__PURE__*/ nodeProxy( OperatorNode, '<' ).setParameterLength( 2 ).setName( 'lessThan' ); + +/** + * Checks if the first node is greater than the second. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const greaterThan = /*@__PURE__*/ nodeProxy( OperatorNode, '>' ).setParameterLength( 2 ).setName( 'greaterThan' ); + +/** + * Checks if the first node is less than or equal to the second. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const lessThanEqual = /*@__PURE__*/ nodeProxy( OperatorNode, '<=' ).setParameterLength( 2 ).setName( 'lessThanEqual' ); + +/** + * Checks if the first node is greater than or equal to the second. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const greaterThanEqual = /*@__PURE__*/ nodeProxy( OperatorNode, '>=' ).setParameterLength( 2 ).setName( 'greaterThanEqual' ); + +/** + * Performs a logical AND operation on multiple nodes. + * + * @tsl + * @function + * @param {...Node} nodes - The input nodes to be combined using AND. + * @returns {OperatorNode} + */ +const and = /*@__PURE__*/ nodeProxy( OperatorNode, '&&' ).setParameterLength( 2, Infinity ).setName( 'and' ); + +/** + * Performs a logical OR operation on multiple nodes. + * + * @tsl + * @function + * @param {...Node} nodes - The input nodes to be combined using OR. + * @returns {OperatorNode} + */ +const or = /*@__PURE__*/ nodeProxy( OperatorNode, '||' ).setParameterLength( 2, Infinity ).setName( 'or' ); + +/** + * Performs logical NOT on a node. + * + * @tsl + * @function + * @param {Node} value - The value. + * @returns {OperatorNode} + */ +const not = /*@__PURE__*/ nodeProxy( OperatorNode, '!' ).setParameterLength( 1 ).setName( 'not' ); + +/** + * Performs logical XOR on two nodes. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const xor = /*@__PURE__*/ nodeProxy( OperatorNode, '^^' ).setParameterLength( 2 ).setName( 'xor' ); + +/** + * Performs bitwise AND on two nodes. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const bitAnd = /*@__PURE__*/ nodeProxy( OperatorNode, '&' ).setParameterLength( 2 ).setName( 'bitAnd' ); + +/** + * Performs bitwise NOT on a node. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const bitNot = /*@__PURE__*/ nodeProxy( OperatorNode, '~' ).setParameterLength( 2 ).setName( 'bitNot' ); + +/** + * Performs bitwise OR on two nodes. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const bitOr = /*@__PURE__*/ nodeProxy( OperatorNode, '|' ).setParameterLength( 2 ).setName( 'bitOr' ); + +/** + * Performs bitwise XOR on two nodes. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const bitXor = /*@__PURE__*/ nodeProxy( OperatorNode, '^' ).setParameterLength( 2 ).setName( 'bitXor' ); + +/** + * Shifts a node to the left. + * + * @tsl + * @function + * @param {Node} a - The node to shift. + * @param {Node} b - The value to shift. + * @returns {OperatorNode} + */ +const shiftLeft = /*@__PURE__*/ nodeProxy( OperatorNode, '<<' ).setParameterLength( 2 ).setName( 'shiftLeft' ); + +/** + * Shifts a node to the right. + * + * @tsl + * @function + * @param {Node} a - The node to shift. + * @param {Node} b - The value to shift. + * @returns {OperatorNode} + */ +const shiftRight = /*@__PURE__*/ nodeProxy( OperatorNode, '>>' ).setParameterLength( 2 ).setName( 'shiftRight' ); + +/** + * Increments a node by 1. + * + * @tsl + * @function + * @param {Node} a - The node to increment. + * @returns {OperatorNode} + */ +const incrementBefore = Fn( ( [ a ] ) => { + + a.addAssign( 1 ); + return a; + +} ); + +/** + * Decrements a node by 1. + * + * @tsl + * @function + * @param {Node} a - The node to decrement. + * @returns {OperatorNode} + */ +const decrementBefore = Fn( ( [ a ] ) => { + + a.subAssign( 1 ); + return a; + +} ); + +/** + * Increments a node by 1 and returns the previous value. + * + * @tsl + * @function + * @param {Node} a - The node to increment. + * @returns {OperatorNode} + */ +const increment = /*@__PURE__*/ Fn( ( [ a ] ) => { + + const temp = int( a ).toConst(); + a.addAssign( 1 ); + return temp; + +} ); + +/** + * Decrements a node by 1 and returns the previous value. + * + * @tsl + * @function + * @param {Node} a - The node to decrement. + * @returns {OperatorNode} + */ +const decrement = /*@__PURE__*/ Fn( ( [ a ] ) => { + + const temp = int( a ).toConst(); + a.subAssign( 1 ); + return temp; + +} ); + +addMethodChaining( 'add', add ); +addMethodChaining( 'sub', sub ); +addMethodChaining( 'mul', mul ); +addMethodChaining( 'div', div ); +addMethodChaining( 'mod', mod ); +addMethodChaining( 'equal', equal ); +addMethodChaining( 'notEqual', notEqual ); +addMethodChaining( 'lessThan', lessThan ); +addMethodChaining( 'greaterThan', greaterThan ); +addMethodChaining( 'lessThanEqual', lessThanEqual ); +addMethodChaining( 'greaterThanEqual', greaterThanEqual ); +addMethodChaining( 'and', and ); +addMethodChaining( 'or', or ); +addMethodChaining( 'not', not ); +addMethodChaining( 'xor', xor ); +addMethodChaining( 'bitAnd', bitAnd ); +addMethodChaining( 'bitNot', bitNot ); +addMethodChaining( 'bitOr', bitOr ); +addMethodChaining( 'bitXor', bitXor ); +addMethodChaining( 'shiftLeft', shiftLeft ); +addMethodChaining( 'shiftRight', shiftRight ); + +addMethodChaining( 'incrementBefore', incrementBefore ); +addMethodChaining( 'decrementBefore', decrementBefore ); +addMethodChaining( 'increment', increment ); +addMethodChaining( 'decrement', decrement ); + +/** + * @tsl + * @function + * @deprecated since r168. Use {@link mod} instead. + * + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const remainder = ( a, b ) => { // @deprecated, r168 + + console.warn( 'THREE.TSL: "remainder()" is deprecated. Use "mod( int( ... ) )" instead.' ); + return mod( a, b ); + +}; + +/** + * @tsl + * @function + * @deprecated since r175. Use {@link mod} instead. + * + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const modInt = ( a, b ) => { // @deprecated, r175 + + console.warn( 'THREE.TSL: "modInt()" is deprecated. Use "mod( int( ... ) )" instead.' ); + return mod( int( a ), int( b ) ); + +}; + +addMethodChaining( 'remainder', remainder ); +addMethodChaining( 'modInt', modInt ); + +/** + * This node represents a variety of mathematical methods available in shaders. + * They are divided into three categories: + * + * - Methods with one input like `sin`, `cos` or `normalize`. + * - Methods with two inputs like `dot`, `cross` or `pow`. + * - Methods with three inputs like `mix`, `clamp` or `smoothstep`. + * + * @augments TempNode + */ +class MathNode extends TempNode { + + static get type() { + + return 'MathNode'; + + } + + /** + * Constructs a new math node. + * + * @param {string} method - The method name. + * @param {Node} aNode - The first input. + * @param {?Node} [bNode=null] - The second input. + * @param {?Node} [cNode=null] - The third input. + */ + constructor( method, aNode, bNode = null, cNode = null ) { + + super(); + + // Allow the max() and min() functions to take an arbitrary number of arguments. + + if ( ( method === MathNode.MAX || method === MathNode.MIN ) && arguments.length > 3 ) { + + let finalOp = new MathNode( method, aNode, bNode ); + + for ( let i = 2; i < arguments.length - 1; i ++ ) { + + finalOp = new MathNode( method, finalOp, arguments[ i ] ); + + } + + aNode = finalOp; + bNode = arguments[ arguments.length - 1 ]; + cNode = null; + + } + + /** + * The method name. + * + * @type {string} + */ + this.method = method; + + /** + * The first input. + * + * @type {Node} + */ + this.aNode = aNode; + + /** + * The second input. + * + * @type {?Node} + * @default null + */ + this.bNode = bNode; + + /** + * The third input. + * + * @type {?Node} + * @default null + */ + this.cNode = cNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMathNode = true; + + } + + /** + * The input type is inferred from the node types of the input nodes. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( builder ) { + + const aType = this.aNode.getNodeType( builder ); + const bType = this.bNode ? this.bNode.getNodeType( builder ) : null; + const cType = this.cNode ? this.cNode.getNodeType( builder ) : null; + + const aLen = builder.isMatrix( aType ) ? 0 : builder.getTypeLength( aType ); + const bLen = builder.isMatrix( bType ) ? 0 : builder.getTypeLength( bType ); + const cLen = builder.isMatrix( cType ) ? 0 : builder.getTypeLength( cType ); + + if ( aLen > bLen && aLen > cLen ) { + + return aType; + + } else if ( bLen > cLen ) { + + return bType; + + } else if ( cLen > aLen ) { + + return cType; + + } + + return aType; + + } + + /** + * The selected method as well as the input type determine the node type of this node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + const method = this.method; + + if ( method === MathNode.LENGTH || method === MathNode.DISTANCE || method === MathNode.DOT ) { + + return 'float'; + + } else if ( method === MathNode.CROSS ) { + + return 'vec3'; + + } else if ( method === MathNode.ALL || method === MathNode.ANY ) { + + return 'bool'; + + } else if ( method === MathNode.EQUALS ) { + + return builder.changeComponentType( this.aNode.getNodeType( builder ), 'bool' ); + + } else { + + return this.getInputType( builder ); + + } + + } + + setup( builder ) { + + const { aNode, bNode, method } = this; + + let outputNode = null; + + if ( method === MathNode.ONE_MINUS ) { + + outputNode = sub( 1.0, aNode ); + + } else if ( method === MathNode.RECIPROCAL ) { + + outputNode = div( 1.0, aNode ); + + } else if ( method === MathNode.DIFFERENCE ) { + + outputNode = abs( sub( aNode, bNode ) ); + + } else if ( method === MathNode.TRANSFORM_DIRECTION ) { + + // dir can be either a direction vector or a normal vector + // upper-left 3x3 of matrix is assumed to be orthogonal + + let tA = aNode; + let tB = bNode; + + if ( builder.isMatrix( tA.getNodeType( builder ) ) ) { + + tB = vec4( vec3( tB ), 0.0 ); + + } else { + + tA = vec4( vec3( tA ), 0.0 ); + + } + + const mulNode = mul( tA, tB ).xyz; + + outputNode = normalize( mulNode ); + + } + + if ( outputNode !== null ) { + + return outputNode; + + } else { + + return super.setup( builder ); + + } + + } + + generate( builder, output ) { + + const properties = builder.getNodeProperties( this ); + + if ( properties.outputNode ) { + + return super.generate( builder, output ); + + } + + let method = this.method; + + const type = this.getNodeType( builder ); + const inputType = this.getInputType( builder ); + + const a = this.aNode; + const b = this.bNode; + const c = this.cNode; + + const coordinateSystem = builder.renderer.coordinateSystem; + + if ( method === MathNode.NEGATE ) { + + return builder.format( '( - ' + a.build( builder, inputType ) + ' )', type, output ); + + } else { + + const params = []; + + if ( method === MathNode.CROSS ) { + + params.push( + a.build( builder, type ), + b.build( builder, type ) + ); + + } else if ( coordinateSystem === WebGLCoordinateSystem && method === MathNode.STEP ) { + + params.push( + a.build( builder, builder.getTypeLength( a.getNodeType( builder ) ) === 1 ? 'float' : inputType ), + b.build( builder, inputType ) + ); + + } else if ( coordinateSystem === WebGLCoordinateSystem && ( method === MathNode.MIN || method === MathNode.MAX ) ) { + + params.push( + a.build( builder, inputType ), + b.build( builder, builder.getTypeLength( b.getNodeType( builder ) ) === 1 ? 'float' : inputType ) + ); + + } else if ( method === MathNode.REFRACT ) { + + params.push( + a.build( builder, inputType ), + b.build( builder, inputType ), + c.build( builder, 'float' ) + ); + + } else if ( method === MathNode.MIX ) { + + params.push( + a.build( builder, inputType ), + b.build( builder, inputType ), + c.build( builder, builder.getTypeLength( c.getNodeType( builder ) ) === 1 ? 'float' : inputType ) + ); + + } else { + + if ( coordinateSystem === WebGPUCoordinateSystem && method === MathNode.ATAN && b !== null ) { + + method = 'atan2'; + + } + + if ( builder.shaderStage !== 'fragment' && ( method === MathNode.DFDX || method === MathNode.DFDY ) ) { + + console.warn( `THREE.TSL: '${ method }' is not supported in the ${ builder.shaderStage } stage.` ); + + method = '/*' + method + '*/'; + + } + + params.push( a.build( builder, inputType ) ); + if ( b !== null ) params.push( b.build( builder, inputType ) ); + if ( c !== null ) params.push( c.build( builder, inputType ) ); + + } + + return builder.format( `${ builder.getMethod( method, type ) }( ${params.join( ', ' )} )`, type, output ); + + } + + } + + serialize( data ) { + + super.serialize( data ); + + data.method = this.method; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.method = data.method; + + } + +} + +// 1 input + +MathNode.ALL = 'all'; +MathNode.ANY = 'any'; + +MathNode.RADIANS = 'radians'; +MathNode.DEGREES = 'degrees'; +MathNode.EXP = 'exp'; +MathNode.EXP2 = 'exp2'; +MathNode.LOG = 'log'; +MathNode.LOG2 = 'log2'; +MathNode.SQRT = 'sqrt'; +MathNode.INVERSE_SQRT = 'inversesqrt'; +MathNode.FLOOR = 'floor'; +MathNode.CEIL = 'ceil'; +MathNode.NORMALIZE = 'normalize'; +MathNode.FRACT = 'fract'; +MathNode.SIN = 'sin'; +MathNode.COS = 'cos'; +MathNode.TAN = 'tan'; +MathNode.ASIN = 'asin'; +MathNode.ACOS = 'acos'; +MathNode.ATAN = 'atan'; +MathNode.ABS = 'abs'; +MathNode.SIGN = 'sign'; +MathNode.LENGTH = 'length'; +MathNode.NEGATE = 'negate'; +MathNode.ONE_MINUS = 'oneMinus'; +MathNode.DFDX = 'dFdx'; +MathNode.DFDY = 'dFdy'; +MathNode.ROUND = 'round'; +MathNode.RECIPROCAL = 'reciprocal'; +MathNode.TRUNC = 'trunc'; +MathNode.FWIDTH = 'fwidth'; +MathNode.TRANSPOSE = 'transpose'; + +// 2 inputs + +MathNode.BITCAST = 'bitcast'; +MathNode.EQUALS = 'equals'; +MathNode.MIN = 'min'; +MathNode.MAX = 'max'; +MathNode.STEP = 'step'; +MathNode.REFLECT = 'reflect'; +MathNode.DISTANCE = 'distance'; +MathNode.DIFFERENCE = 'difference'; +MathNode.DOT = 'dot'; +MathNode.CROSS = 'cross'; +MathNode.POW = 'pow'; +MathNode.TRANSFORM_DIRECTION = 'transformDirection'; + +// 3 inputs + +MathNode.MIX = 'mix'; +MathNode.CLAMP = 'clamp'; +MathNode.REFRACT = 'refract'; +MathNode.SMOOTHSTEP = 'smoothstep'; +MathNode.FACEFORWARD = 'faceforward'; + +// 1 inputs + +/** + * A small value used to handle floating-point precision errors. + * + * @tsl + * @type {Node} + */ +const EPSILON = /*@__PURE__*/ float( 1e-6 ); + +/** + * Represents infinity. + * + * @tsl + * @type {Node} + */ +const INFINITY = /*@__PURE__*/ float( 1e6 ); + +/** + * Represents PI. + * + * @tsl + * @type {Node} + */ +const PI = /*@__PURE__*/ float( Math.PI ); + +/** + * Represents PI * 2. + * + * @tsl + * @type {Node} + */ +const PI2 = /*@__PURE__*/ float( Math.PI * 2 ); + +/** + * Returns `true` if all components of `x` are `true`. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const all = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ALL ).setParameterLength( 1 ); + +/** + * Returns `true` if any components of `x` are `true`. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const any = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ANY ).setParameterLength( 1 ); + +/** + * Converts a quantity in degrees to radians. + * + * @tsl + * @function + * @param {Node | number} x - The input in degrees. + * @returns {Node} + */ +const radians = /*@__PURE__*/ nodeProxy( MathNode, MathNode.RADIANS ).setParameterLength( 1 ); + +/** + * Convert a quantity in radians to degrees. + * + * @tsl + * @function + * @param {Node | number} x - The input in radians. + * @returns {Node} + */ +const degrees = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DEGREES ).setParameterLength( 1 ); + +/** + * Returns the natural exponentiation of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const exp = /*@__PURE__*/ nodeProxy( MathNode, MathNode.EXP ).setParameterLength( 1 ); + +/** + * Returns 2 raised to the power of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const exp2 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.EXP2 ).setParameterLength( 1 ); + +/** + * Returns the natural logarithm of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const log = /*@__PURE__*/ nodeProxy( MathNode, MathNode.LOG ).setParameterLength( 1 ); + +/** + * Returns the base 2 logarithm of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const log2 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.LOG2 ).setParameterLength( 1 ); + +/** + * Returns the square root of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const sqrt = /*@__PURE__*/ nodeProxy( MathNode, MathNode.SQRT ).setParameterLength( 1 ); + +/** + * Returns the inverse of the square root of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const inverseSqrt = /*@__PURE__*/ nodeProxy( MathNode, MathNode.INVERSE_SQRT ).setParameterLength( 1 ); + +/** + * Finds the nearest integer less than or equal to the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const floor = /*@__PURE__*/ nodeProxy( MathNode, MathNode.FLOOR ).setParameterLength( 1 ); + +/** + * Finds the nearest integer that is greater than or equal to the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const ceil = /*@__PURE__*/ nodeProxy( MathNode, MathNode.CEIL ).setParameterLength( 1 ); + +/** + * Calculates the unit vector in the same direction as the original vector. + * + * @tsl + * @function + * @param {Node} x - The input vector. + * @returns {Node} + */ +const normalize = /*@__PURE__*/ nodeProxy( MathNode, MathNode.NORMALIZE ).setParameterLength( 1 ); + +/** + * Computes the fractional part of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const fract = /*@__PURE__*/ nodeProxy( MathNode, MathNode.FRACT ).setParameterLength( 1 ); + +/** + * Returns the sine of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const sin = /*@__PURE__*/ nodeProxy( MathNode, MathNode.SIN ).setParameterLength( 1 ); + +/** + * Returns the cosine of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const cos = /*@__PURE__*/ nodeProxy( MathNode, MathNode.COS ).setParameterLength( 1 ); + +/** + * Returns the tangent of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const tan = /*@__PURE__*/ nodeProxy( MathNode, MathNode.TAN ).setParameterLength( 1 ); + +/** + * Returns the arcsine of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const asin = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ASIN ).setParameterLength( 1 ); + +/** + * Returns the arccosine of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const acos = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ACOS ).setParameterLength( 1 ); + +/** + * Returns the arc-tangent of the parameter. + * If two parameters are provided, the result is `atan2(y/x)`. + * + * @tsl + * @function + * @param {Node | number} y - The y parameter. + * @param {?(Node | number)} x - The x parameter. + * @returns {Node} + */ +const atan = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ATAN ).setParameterLength( 1, 2 ); + +/** + * Returns the absolute value of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const abs = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ABS ).setParameterLength( 1 ); + +/** + * Extracts the sign of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const sign = /*@__PURE__*/ nodeProxy( MathNode, MathNode.SIGN ).setParameterLength( 1 ); + +/** + * Calculates the length of a vector. + * + * @tsl + * @function + * @param {Node} x - The parameter. + * @returns {Node} + */ +const length = /*@__PURE__*/ nodeProxy( MathNode, MathNode.LENGTH ).setParameterLength( 1 ); + +/** + * Negates the value of the parameter (-x). + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const negate = /*@__PURE__*/ nodeProxy( MathNode, MathNode.NEGATE ).setParameterLength( 1 ); + +/** + * Return `1` minus the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const oneMinus = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ONE_MINUS ).setParameterLength( 1 ); + +/** + * Returns the partial derivative of the parameter with respect to x. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const dFdx = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DFDX ).setParameterLength( 1 ); + +/** + * Returns the partial derivative of the parameter with respect to y. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const dFdy = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DFDY ).setParameterLength( 1 ); + +/** + * Rounds the parameter to the nearest integer. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const round = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ROUND ).setParameterLength( 1 ); + +/** + * Returns the reciprocal of the parameter `(1/x)`. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const reciprocal = /*@__PURE__*/ nodeProxy( MathNode, MathNode.RECIPROCAL ).setParameterLength( 1 ); + +/** + * Truncates the parameter, removing the fractional part. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const trunc = /*@__PURE__*/ nodeProxy( MathNode, MathNode.TRUNC ).setParameterLength( 1 ); + +/** + * Returns the sum of the absolute derivatives in x and y. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const fwidth = /*@__PURE__*/ nodeProxy( MathNode, MathNode.FWIDTH ).setParameterLength( 1 ); + +/** + * Returns the transpose of a matrix. + * + * @tsl + * @function + * @param {Node} x - The parameter. + * @returns {Node} + */ +const transpose = /*@__PURE__*/ nodeProxy( MathNode, MathNode.TRANSPOSE ).setParameterLength( 1 ); + +// 2 inputs + +/** + * Reinterpret the bit representation of a value in one type as a value in another type. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @param {string} y - The new type. + * @returns {Node} + */ +const bitcast = /*@__PURE__*/ nodeProxy( MathNode, MathNode.BITCAST ).setParameterLength( 2 ); + +/** + * Returns `true` if `x` equals `y`. + * + * @tsl + * @function + * @param {Node | number} x - The first parameter. + * @param {Node | number} y - The second parameter. + * @deprecated since r175. Use {@link equal} instead. + * @returns {Node} + */ +const equals = ( x, y ) => { // @deprecated, r172 + + console.warn( 'THREE.TSL: "equals" is deprecated. Use "equal" inside a vector instead, like: "bvec*( equal( ... ) )"' ); + return equal( x, y ); + +}; + +/** + * Returns the least of the given values. + * + * @tsl + * @function + * @param {...(Node | number)} values - The values to compare. + * @returns {Node} + */ +const min$1 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.MIN ).setParameterLength( 2, Infinity ); + +/** + * Returns the greatest of the given values. + * + * @tsl + * @function + * @param {...(Node | number)} values - The values to compare. + * @returns {Node} + */ +const max$1 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.MAX ).setParameterLength( 2, Infinity ); + +/** + * Generate a step function by comparing two values. + * + * @tsl + * @function + * @param {Node | number} x - The y parameter. + * @param {Node | number} y - The x parameter. + * @returns {Node} + */ +const step = /*@__PURE__*/ nodeProxy( MathNode, MathNode.STEP ).setParameterLength( 2 ); + +/** + * Calculates the reflection direction for an incident vector. + * + * @tsl + * @function + * @param {Node} I - The incident vector. + * @param {Node} N - The normal vector. + * @returns {Node} + */ +const reflect = /*@__PURE__*/ nodeProxy( MathNode, MathNode.REFLECT ).setParameterLength( 2 ); + +/** + * Calculates the distance between two points. + * + * @tsl + * @function + * @param {Node} x - The first point. + * @param {Node} y - The second point. + * @returns {Node} + */ +const distance = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DISTANCE ).setParameterLength( 2 ); + +/** + * Calculates the absolute difference between two values. + * + * @tsl + * @function + * @param {Node | number} x - The first parameter. + * @param {Node | number} y - The second parameter. + * @returns {Node} + */ +const difference = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DIFFERENCE ).setParameterLength( 2 ); + +/** + * Calculates the dot product of two vectors. + * + * @tsl + * @function + * @param {Node} x - The first vector. + * @param {Node} y - The second vector. + * @returns {Node} + */ +const dot = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DOT ).setParameterLength( 2 ); + +/** + * Calculates the cross product of two vectors. + * + * @tsl + * @function + * @param {Node} x - The first vector. + * @param {Node} y - The second vector. + * @returns {Node} + */ +const cross = /*@__PURE__*/ nodeProxy( MathNode, MathNode.CROSS ).setParameterLength( 2 ); + +/** + * Return the value of the first parameter raised to the power of the second one. + * + * @tsl + * @function + * @param {Node | number} x - The first parameter. + * @param {Node | number} y - The second parameter. + * @returns {Node} + */ +const pow = /*@__PURE__*/ nodeProxy( MathNode, MathNode.POW ).setParameterLength( 2 ); + +/** + * Returns the square of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The first parameter. + * @returns {Node} + */ +const pow2 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.POW, 2 ).setParameterLength( 1 ); + +/** + * Returns the cube of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The first parameter. + * @returns {Node} + */ +const pow3 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.POW, 3 ).setParameterLength( 1 ); + +/** + * Returns the fourth power of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The first parameter. + * @returns {Node} + */ +const pow4 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.POW, 4 ).setParameterLength( 1 ); + +/** + * Transforms the direction of a vector by a matrix and then normalizes the result. + * + * @tsl + * @function + * @param {Node} direction - The direction vector. + * @param {Node} matrix - The transformation matrix. + * @returns {Node} + */ +const transformDirection = /*@__PURE__*/ nodeProxy( MathNode, MathNode.TRANSFORM_DIRECTION ).setParameterLength( 2 ); + +/** + * Returns the cube root of a number. + * + * @tsl + * @function + * @param {Node | number} a - The first parameter. + * @returns {Node} + */ +const cbrt = ( a ) => mul( sign( a ), pow( abs( a ), 1.0 / 3.0 ) ); + +/** + * Calculate the squared length of a vector. + * + * @tsl + * @function + * @param {Node} a - The vector. + * @returns {Node} + */ +const lengthSq = ( a ) => dot( a, a ); + +/** + * Linearly interpolates between two values. + * + * @tsl + * @function + * @param {Node | number} a - The first parameter. + * @param {Node | number} b - The second parameter. + * @param {Node | number} t - The interpolation value. + * @returns {Node} + */ +const mix = /*@__PURE__*/ nodeProxy( MathNode, MathNode.MIX ).setParameterLength( 3 ); + +/** + * Constrains a value to lie between two further values. + * + * @tsl + * @function + * @param {Node | number} value - The value to constrain. + * @param {Node | number} [low=0] - The lower bound. + * @param {Node | number} [high=1] - The upper bound. + * @returns {Node} + */ +const clamp = ( value, low = 0, high = 1 ) => nodeObject( new MathNode( MathNode.CLAMP, nodeObject( value ), nodeObject( low ), nodeObject( high ) ) ); + +/** + * Constrains a value between `0` and `1`. + * + * @tsl + * @function + * @param {Node | number} value - The value to constrain. + * @returns {Node} + */ +const saturate = ( value ) => clamp( value ); + +/** + * Calculates the refraction direction for an incident vector. + * + * @tsl + * @function + * @param {Node} I - The incident vector. + * @param {Node} N - The normal vector. + * @param {Node} eta - The ratio of indices of refraction. + * @returns {Node} + */ +const refract = /*@__PURE__*/ nodeProxy( MathNode, MathNode.REFRACT ).setParameterLength( 3 ); + +/** + * Performs a Hermite interpolation between two values. + * + * @tsl + * @function + * @param {Node | number} low - The value of the lower edge of the Hermite function. + * @param {Node | number} high - The value of the upper edge of the Hermite function. + * @param {Node | number} x - The source value for interpolation. + * @returns {Node} + */ +const smoothstep = /*@__PURE__*/ nodeProxy( MathNode, MathNode.SMOOTHSTEP ).setParameterLength( 3 ); + +/** + * Returns a vector pointing in the same direction as another. + * + * @tsl + * @function + * @param {Node} N - The vector to orient. + * @param {Node} I - The incident vector. + * @param {Node} Nref - The reference vector. + * @returns {Node} + */ +const faceForward = /*@__PURE__*/ nodeProxy( MathNode, MathNode.FACEFORWARD ).setParameterLength( 3 ); + +/** + * Returns a random value for the given uv. + * + * @tsl + * @function + * @param {Node} uv - The uv node. + * @returns {Node} + */ +const rand = /*@__PURE__*/ Fn( ( [ uv ] ) => { + + const a = 12.9898, b = 78.233, c = 43758.5453; + const dt = dot( uv.xy, vec2( a, b ) ), sn = mod( dt, PI ); + + return fract( sin( sn ).mul( c ) ); + +} ); + +/** + * Alias for `mix()` with a different parameter order. + * + * @tsl + * @function + * @param {Node | number} t - The interpolation value. + * @param {Node | number} e1 - The first parameter. + * @param {Node | number} e2 - The second parameter. + * @returns {Node} + */ +const mixElement = ( t, e1, e2 ) => mix( e1, e2, t ); + +/** + * Alias for `smoothstep()` with a different parameter order. + * + * @tsl + * @function + * @param {Node | number} x - The source value for interpolation. + * @param {Node | number} low - The value of the lower edge of the Hermite function. + * @param {Node | number} high - The value of the upper edge of the Hermite function. + * @returns {Node} + */ +const smoothstepElement = ( x, low, high ) => smoothstep( low, high, x ); + +/** + * Returns the arc-tangent of the quotient of its parameters. + * + * @tsl + * @function + * @deprecated since r172. Use {@link atan} instead. + * + * @param {Node | number} y - The y parameter. + * @param {Node | number} x - The x parameter. + * @returns {Node} + */ +const atan2 = ( y, x ) => { // @deprecated, r172 + + console.warn( 'THREE.TSL: "atan2" is overloaded. Use "atan" instead.' ); + return atan( y, x ); + +}; + +// GLSL alias function + +const faceforward = faceForward; +const inversesqrt = inverseSqrt; + +// Method chaining + +addMethodChaining( 'all', all ); +addMethodChaining( 'any', any ); +addMethodChaining( 'equals', equals ); + +addMethodChaining( 'radians', radians ); +addMethodChaining( 'degrees', degrees ); +addMethodChaining( 'exp', exp ); +addMethodChaining( 'exp2', exp2 ); +addMethodChaining( 'log', log ); +addMethodChaining( 'log2', log2 ); +addMethodChaining( 'sqrt', sqrt ); +addMethodChaining( 'inverseSqrt', inverseSqrt ); +addMethodChaining( 'floor', floor ); +addMethodChaining( 'ceil', ceil ); +addMethodChaining( 'normalize', normalize ); +addMethodChaining( 'fract', fract ); +addMethodChaining( 'sin', sin ); +addMethodChaining( 'cos', cos ); +addMethodChaining( 'tan', tan ); +addMethodChaining( 'asin', asin ); +addMethodChaining( 'acos', acos ); +addMethodChaining( 'atan', atan ); +addMethodChaining( 'abs', abs ); +addMethodChaining( 'sign', sign ); +addMethodChaining( 'length', length ); +addMethodChaining( 'lengthSq', lengthSq ); +addMethodChaining( 'negate', negate ); +addMethodChaining( 'oneMinus', oneMinus ); +addMethodChaining( 'dFdx', dFdx ); +addMethodChaining( 'dFdy', dFdy ); +addMethodChaining( 'round', round ); +addMethodChaining( 'reciprocal', reciprocal ); +addMethodChaining( 'trunc', trunc ); +addMethodChaining( 'fwidth', fwidth ); +addMethodChaining( 'atan2', atan2 ); +addMethodChaining( 'min', min$1 ); +addMethodChaining( 'max', max$1 ); +addMethodChaining( 'step', step ); +addMethodChaining( 'reflect', reflect ); +addMethodChaining( 'distance', distance ); +addMethodChaining( 'dot', dot ); +addMethodChaining( 'cross', cross ); +addMethodChaining( 'pow', pow ); +addMethodChaining( 'pow2', pow2 ); +addMethodChaining( 'pow3', pow3 ); +addMethodChaining( 'pow4', pow4 ); +addMethodChaining( 'transformDirection', transformDirection ); +addMethodChaining( 'mix', mixElement ); +addMethodChaining( 'clamp', clamp ); +addMethodChaining( 'refract', refract ); +addMethodChaining( 'smoothstep', smoothstepElement ); +addMethodChaining( 'faceForward', faceForward ); +addMethodChaining( 'difference', difference ); +addMethodChaining( 'saturate', saturate ); +addMethodChaining( 'cbrt', cbrt ); +addMethodChaining( 'transpose', transpose ); +addMethodChaining( 'rand', rand ); + +/** + * Represents a logical `if/else` statement. Can be used as an alternative + * to the `If()`/`Else()` syntax. + * + * The corresponding TSL `select()` looks like so: + * ```js + * velocity = position.greaterThanEqual( limit ).select( velocity.negate(), velocity ); + * ``` + * The `select()` method is called in a chaining fashion on a condition. The parameter nodes of `select()` + * determine the outcome of the entire statement. + * + * @augments Node + */ +class ConditionalNode extends Node { + + static get type() { + + return 'ConditionalNode'; + + } + + /** + * Constructs a new conditional node. + * + * @param {Node} condNode - The node that defines the condition. + * @param {Node} ifNode - The node that is evaluate when the condition ends up `true`. + * @param {?Node} [elseNode=null] - The node that is evaluate when the condition ends up `false`. + */ + constructor( condNode, ifNode, elseNode = null ) { + + super(); + + /** + * The node that defines the condition. + * + * @type {Node} + */ + this.condNode = condNode; + + /** + * The node that is evaluate when the condition ends up `true`. + * + * @type {Node} + */ + this.ifNode = ifNode; + + /** + * The node that is evaluate when the condition ends up `false`. + * + * @type {?Node} + * @default null + */ + this.elseNode = elseNode; + + } + + /** + * This method is overwritten since the node type is inferred from the if/else + * nodes. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + const { ifNode, elseNode } = builder.getNodeProperties( this ); + + if ( ifNode === undefined ) { + + // fallback setup + + this.setup( builder ); + + return this.getNodeType( builder ); + + } + + const ifType = ifNode.getNodeType( builder ); + + if ( elseNode !== null ) { + + const elseType = elseNode.getNodeType( builder ); + + if ( builder.getTypeLength( elseType ) > builder.getTypeLength( ifType ) ) { + + return elseType; + + } + + } + + return ifType; + + } + + setup( builder ) { + + const condNode = this.condNode.cache(); + const ifNode = this.ifNode.cache(); + const elseNode = this.elseNode ? this.elseNode.cache() : null; + + // + + const currentNodeBlock = builder.context.nodeBlock; + + builder.getDataFromNode( ifNode ).parentNodeBlock = currentNodeBlock; + if ( elseNode !== null ) builder.getDataFromNode( elseNode ).parentNodeBlock = currentNodeBlock; + + // + + const properties = builder.getNodeProperties( this ); + properties.condNode = condNode; + properties.ifNode = ifNode.context( { nodeBlock: ifNode } ); + properties.elseNode = elseNode ? elseNode.context( { nodeBlock: elseNode } ) : null; + + } + + generate( builder, output ) { + + const type = this.getNodeType( builder ); + + const nodeData = builder.getDataFromNode( this ); + + if ( nodeData.nodeProperty !== undefined ) { + + return nodeData.nodeProperty; + + } + + const { condNode, ifNode, elseNode } = builder.getNodeProperties( this ); + + const functionNode = builder.currentFunctionNode; + const needsOutput = output !== 'void'; + const nodeProperty = needsOutput ? property( type ).build( builder ) : ''; + + nodeData.nodeProperty = nodeProperty; + + const nodeSnippet = condNode.build( builder, 'bool' ); + + builder.addFlowCode( `\n${ builder.tab }if ( ${ nodeSnippet } ) {\n\n` ).addFlowTab(); + + let ifSnippet = ifNode.build( builder, type ); + + if ( ifSnippet ) { + + if ( needsOutput ) { + + ifSnippet = nodeProperty + ' = ' + ifSnippet + ';'; + + } else { + + ifSnippet = 'return ' + ifSnippet + ';'; + + if ( functionNode === null ) { + + console.warn( 'THREE.TSL: Return statement used in an inline \'Fn()\'. Define a layout struct to allow return values.' ); + + ifSnippet = '// ' + ifSnippet; + + } + + } + + } + + builder.removeFlowTab().addFlowCode( builder.tab + '\t' + ifSnippet + '\n\n' + builder.tab + '}' ); + + if ( elseNode !== null ) { + + builder.addFlowCode( ' else {\n\n' ).addFlowTab(); + + let elseSnippet = elseNode.build( builder, type ); + + if ( elseSnippet ) { + + if ( needsOutput ) { + + elseSnippet = nodeProperty + ' = ' + elseSnippet + ';'; + + } else { + + elseSnippet = 'return ' + elseSnippet + ';'; + + if ( functionNode === null ) { + + console.warn( 'THREE.TSL: Return statement used in an inline \'Fn()\'. Define a layout struct to allow return values.' ); + + elseSnippet = '// ' + elseSnippet; + + } + + } + + } + + builder.removeFlowTab().addFlowCode( builder.tab + '\t' + elseSnippet + '\n\n' + builder.tab + '}\n\n' ); + + } else { + + builder.addFlowCode( '\n\n' ); + + } + + return builder.format( nodeProperty, type, output ); + + } + +} + +/** + * TSL function for creating a conditional node. + * + * @tsl + * @function + * @param {Node} condNode - The node that defines the condition. + * @param {Node} ifNode - The node that is evaluate when the condition ends up `true`. + * @param {?Node} [elseNode=null] - The node that is evaluate when the condition ends up `false`. + * @returns {ConditionalNode} + */ +const select = /*@__PURE__*/ nodeProxy( ConditionalNode ).setParameterLength( 2, 3 ); + +addMethodChaining( 'select', select ); + +// Deprecated + +/** + * @tsl + * @function + * @deprecated since r168. Use {@link select} instead. + * + * @param {...any} params + * @returns {ConditionalNode} + */ +const cond = ( ...params ) => { // @deprecated, r168 + + console.warn( 'THREE.TSL: cond() has been renamed to select().' ); + return select( ...params ); + +}; + +addMethodChaining( 'cond', cond ); + +/** + * This node can be used as a context management component for another node. + * {@link NodeBuilder} performs its node building process in a specific context and + * this node allows the modify the context. A typical use case is to overwrite `getUV()` e.g.: + * + * ```js + *node.context( { getUV: () => customCoord } ); + *``` + * @augments Node + */ +class ContextNode extends Node { + + static get type() { + + return 'ContextNode'; + + } + + /** + * Constructs a new context node. + * + * @param {Node} node - The node whose context should be modified. + * @param {Object} [value={}] - The modified context data. + */ + constructor( node, value = {} ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isContextNode = true; + + /** + * The node whose context should be modified. + * + * @type {Node} + */ + this.node = node; + + /** + * The modified context data. + * + * @type {Object} + * @default {} + */ + this.value = value; + + } + + /** + * This method is overwritten to ensure it returns the reference to {@link ContextNode#node}. + * + * @return {Node} A reference to {@link ContextNode#node}. + */ + getScope() { + + return this.node.getScope(); + + } + + /** + * This method is overwritten to ensure it returns the type of {@link ContextNode#node}. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.node.getNodeType( builder ); + + } + + analyze( builder ) { + + const previousContext = builder.getContext(); + + builder.setContext( { ...builder.context, ...this.value } ); + + this.node.build( builder ); + + builder.setContext( previousContext ); + + } + + setup( builder ) { + + const previousContext = builder.getContext(); + + builder.setContext( { ...builder.context, ...this.value } ); + + this.node.build( builder ); + + builder.setContext( previousContext ); + + } + + generate( builder, output ) { + + const previousContext = builder.getContext(); + + builder.setContext( { ...builder.context, ...this.value } ); + + const snippet = this.node.build( builder, output ); + + builder.setContext( previousContext ); + + return snippet; + + } + +} + +/** + * TSL function for creating a context node. + * + * @tsl + * @function + * @param {Node} node - The node whose context should be modified. + * @param {Object} [value={}] - The modified context data. + * @returns {ContextNode} + */ +const context = /*@__PURE__*/ nodeProxy( ContextNode ).setParameterLength( 1, 2 ); + +/** + * TSL function for defining a label context value for a given node. + * + * @tsl + * @function + * @param {Node} node - The node whose context should be modified. + * @param {string} name - The name/label to set. + * @returns {ContextNode} + */ +const label = ( node, name ) => context( node, { label: name } ); + +addMethodChaining( 'context', context ); +addMethodChaining( 'label', label ); + +/** + * Class for representing shader variables as nodes. Variables are created from + * existing nodes like the following: + * + * ```js + * const depth = sampleDepth( uvNode ).toVar( 'depth' ); + * ``` + * + * @augments Node + */ +class VarNode extends Node { + + static get type() { + + return 'VarNode'; + + } + + /** + * Constructs a new variable node. + * + * @param {Node} node - The node for which a variable should be created. + * @param {?string} [name=null] - The name of the variable in the shader. + * @param {boolean} [readOnly=false] - The read-only flag. + */ + constructor( node, name = null, readOnly = false ) { + + super(); + + /** + * The node for which a variable should be created. + * + * @type {Node} + */ + this.node = node; + + /** + * The name of the variable in the shader. If no name is defined, + * the node system auto-generates one. + * + * @type {?string} + * @default null + */ + this.name = name; + + /** + * `VarNode` sets this property to `true` by default. + * + * @type {boolean} + * @default true + */ + this.global = true; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVarNode = true; + + /** + * + * The read-only flag. + * + * @type {boolean} + * @default false + */ + this.readOnly = readOnly; + + /** + * + * Add this flag to the node system to indicate that this node require parents. + * + * @type {boolean} + * @default true + */ + this.parents = true; + + } + + getMemberType( builder, name ) { + + return this.node.getMemberType( builder, name ); + + } + + getElementType( builder ) { + + return this.node.getElementType( builder ); + + } + + getNodeType( builder ) { + + return this.node.getNodeType( builder ); + + } + + generate( builder ) { + + const { node, name, readOnly } = this; + const { renderer } = builder; + + const isWebGPUBackend = renderer.backend.isWebGPUBackend === true; + + let isDeterministic = false; + let shouldTreatAsReadOnly = false; + + if ( readOnly ) { + + isDeterministic = builder.isDeterministic( node ); + + shouldTreatAsReadOnly = isWebGPUBackend ? readOnly : isDeterministic; + + } + + const vectorType = builder.getVectorType( this.getNodeType( builder ) ); + const snippet = node.build( builder, vectorType ); + + const nodeVar = builder.getVarFromNode( this, name, vectorType, undefined, shouldTreatAsReadOnly ); + + const propertyName = builder.getPropertyName( nodeVar ); + + let declarationPrefix = propertyName; + + if ( shouldTreatAsReadOnly ) { + + if ( isWebGPUBackend ) { + + declarationPrefix = isDeterministic + ? `const ${ propertyName }` + : `let ${ propertyName }`; + + } else { + + const count = builder.getArrayCount( node ); + + declarationPrefix = `const ${ builder.getVar( nodeVar.type, propertyName, count ) }`; + + } + + } + + builder.addLineFlowCode( `${ declarationPrefix } = ${ snippet }`, this ); + + return propertyName; + + } + +} + +/** + * TSL function for creating a var node. + * + * @tsl + * @function + * @param {Node} node - The node for which a variable should be created. + * @param {?string} name - The name of the variable in the shader. + * @returns {VarNode} + */ +const createVar = /*@__PURE__*/ nodeProxy( VarNode ); + +/** + * TSL function for creating a var node. + * + * @tsl + * @function + * @param {Node} node - The node for which a variable should be created. + * @param {?string} name - The name of the variable in the shader. + * @returns {VarNode} + */ +const Var = ( node, name = null ) => createVar( node, name ).toStack(); + +/** + * TSL function for creating a const node. + * + * @tsl + * @function + * @param {Node} node - The node for which a constant should be created. + * @param {?string} name - The name of the constant in the shader. + * @returns {VarNode} + */ +const Const = ( node, name = null ) => createVar( node, name, true ).toStack(); + +// Method chaining + +addMethodChaining( 'toVar', Var ); +addMethodChaining( 'toConst', Const ); + +// Deprecated + +/** + * @tsl + * @function + * @deprecated since r170. Use `Var( node )` or `node.toVar()` instead. + * + * @param {any} node + * @returns {VarNode} + */ +const temp = ( node ) => { // @deprecated, r170 + + console.warn( 'TSL: "temp( node )" is deprecated. Use "Var( node )" or "node.toVar()" instead.' ); + + return createVar( node ); + +}; + +addMethodChaining( 'temp', temp ); + +/** + * Class for representing shader varyings as nodes. Varyings are create from + * existing nodes like the following: + * + * ```js + * const positionLocal = positionGeometry.toVarying( 'vPositionLocal' ); + * ``` + * + * @augments Node + */ +class VaryingNode extends Node { + + static get type() { + + return 'VaryingNode'; + + } + + /** + * Constructs a new varying node. + * + * @param {Node} node - The node for which a varying should be created. + * @param {?string} name - The name of the varying in the shader. + */ + constructor( node, name = null ) { + + super(); + + /** + * The node for which a varying should be created. + * + * @type {Node} + */ + this.node = node; + + /** + * The name of the varying in the shader. If no name is defined, + * the node system auto-generates one. + * + * @type {?string} + * @default null + */ + this.name = name; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVaryingNode = true; + + /** + * The interpolation type of the varying data. + * + * @type {?string} + * @default null + */ + this.interpolationType = null; + + /** + * The interpolation sampling type of varying data. + * + * @type {?string} + * @default null + */ + this.interpolationSampling = null; + + /** + * This flag is used for global cache. + * + * @type {boolean} + * @default true + */ + this.global = true; + + } + + /** + * Defines the interpolation type of the varying. + * + * @param {string} type - The interpolation type. + * @param {?string} sampling - The interpolation sampling type + * @return {VaryingNode} A reference to this node. + */ + setInterpolation( type, sampling = null ) { + + this.interpolationType = type; + this.interpolationSampling = sampling; + + return this; + + } + + getHash( builder ) { + + return this.name || super.getHash( builder ); + + } + + getNodeType( builder ) { + + // VaryingNode is auto type + + return this.node.getNodeType( builder ); + + } + + /** + * This method performs the setup of a varying node with the current node builder. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {NodeVarying} The node varying from the node builder. + */ + setupVarying( builder ) { + + const properties = builder.getNodeProperties( this ); + + let varying = properties.varying; + + if ( varying === undefined ) { + + const name = this.name; + const type = this.getNodeType( builder ); + const interpolationType = this.interpolationType; + const interpolationSampling = this.interpolationSampling; + + properties.varying = varying = builder.getVaryingFromNode( this, name, type, interpolationType, interpolationSampling ); + properties.node = this.node; + + } + + // this property can be used to check if the varying can be optimized for a variable + varying.needsInterpolation || ( varying.needsInterpolation = ( builder.shaderStage === 'fragment' ) ); + + return varying; + + } + + setup( builder ) { + + this.setupVarying( builder ); + + builder.flowNodeFromShaderStage( NodeShaderStage.VERTEX, this.node ); + + } + + analyze( builder ) { + + this.setupVarying( builder ); + + builder.flowNodeFromShaderStage( NodeShaderStage.VERTEX, this.node ); + + } + + generate( builder ) { + + const properties = builder.getNodeProperties( this ); + const varying = this.setupVarying( builder ); + + if ( properties.propertyName === undefined ) { + + const type = this.getNodeType( builder ); + const propertyName = builder.getPropertyName( varying, NodeShaderStage.VERTEX ); + + // force node run in vertex stage + builder.flowNodeFromShaderStage( NodeShaderStage.VERTEX, this.node, type, propertyName ); + + properties.propertyName = propertyName; + + } + + return builder.getPropertyName( varying ); + + } + +} + +/** + * TSL function for creating a varying node. + * + * @tsl + * @function + * @param {Node} node - The node for which a varying should be created. + * @param {?string} name - The name of the varying in the shader. + * @returns {VaryingNode} + */ +const varying = /*@__PURE__*/ nodeProxy( VaryingNode ).setParameterLength( 1, 2 ); + +/** + * Computes a node in the vertex stage. + * + * @tsl + * @function + * @param {Node} node - The node which should be executed in the vertex stage. + * @returns {VaryingNode} + */ +const vertexStage = ( node ) => varying( node ); + +addMethodChaining( 'toVarying', varying ); +addMethodChaining( 'toVertexStage', vertexStage ); + +// Deprecated + +addMethodChaining( 'varying', ( ...params ) => { // @deprecated, r173 + + console.warn( 'THREE.TSL: .varying() has been renamed to .toVarying().' ); + return varying( ...params ); + +} ); + +addMethodChaining( 'vertexStage', ( ...params ) => { // @deprecated, r173 + + console.warn( 'THREE.TSL: .vertexStage() has been renamed to .toVertexStage().' ); + return varying( ...params ); + +} ); + +/** + * Converts the given color value from sRGB to linear-sRGB color space. + * + * @tsl + * @function + * @param {Node} color - The sRGB color. + * @return {Node} The linear-sRGB color. + */ +const sRGBTransferEOTF = /*@__PURE__*/ Fn( ( [ color ] ) => { + + const a = color.mul( 0.9478672986 ).add( 0.0521327014 ).pow( 2.4 ); + const b = color.mul( 0.0773993808 ); + const factor = color.lessThanEqual( 0.04045 ); + + const rgbResult = mix( a, b, factor ); + + return rgbResult; + +} ).setLayout( { + name: 'sRGBTransferEOTF', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' } + ] +} ); + +/** + * Converts the given color value from linear-sRGB to sRGB color space. + * + * @tsl + * @function + * @param {Node} color - The linear-sRGB color. + * @return {Node} The sRGB color. + */ +const sRGBTransferOETF = /*@__PURE__*/ Fn( ( [ color ] ) => { + + const a = color.pow( 0.41666 ).mul( 1.055 ).sub( 0.055 ); + const b = color.mul( 12.92 ); + const factor = color.lessThanEqual( 0.0031308 ); + + const rgbResult = mix( a, b, factor ); + + return rgbResult; + +} ).setLayout( { + name: 'sRGBTransferOETF', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' } + ] +} ); + +const WORKING_COLOR_SPACE = 'WorkingColorSpace'; +const OUTPUT_COLOR_SPACE = 'OutputColorSpace'; + +/** + * This node represents a color space conversion. Meaning it converts + * a color value from a source to a target color space. + * + * @augments TempNode + */ +class ColorSpaceNode extends TempNode { + + static get type() { + + return 'ColorSpaceNode'; + + } + + /** + * Constructs a new color space node. + * + * @param {Node} colorNode - Represents the color to convert. + * @param {string} source - The source color space. + * @param {string} target - The target color space. + */ + constructor( colorNode, source, target ) { + + super( 'vec4' ); + + /** + * Represents the color to convert. + * + * @type {Node} + */ + this.colorNode = colorNode; + + /** + * The source color space. + * + * @type {string} + */ + this.source = source; + + /** + * The target color space. + * + * @type {string} + */ + this.target = target; + + } + + /** + * This method resolves the constants `WORKING_COLOR_SPACE` and + * `OUTPUT_COLOR_SPACE` based on the current configuration of the + * color management and renderer. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} colorSpace - The color space to resolve. + * @return {string} The resolved color space. + */ + resolveColorSpace( builder, colorSpace ) { + + if ( colorSpace === WORKING_COLOR_SPACE ) { + + return ColorManagement.workingColorSpace; + + } else if ( colorSpace === OUTPUT_COLOR_SPACE ) { + + return builder.context.outputColorSpace || builder.renderer.outputColorSpace; + + } + + return colorSpace; + + } + + setup( builder ) { + + const { colorNode } = this; + + const source = this.resolveColorSpace( builder, this.source ); + const target = this.resolveColorSpace( builder, this.target ); + + let outputNode = colorNode; + + if ( ColorManagement.enabled === false || source === target || ! source || ! target ) { + + return outputNode; + + } + + if ( ColorManagement.getTransfer( source ) === SRGBTransfer ) { + + outputNode = vec4( sRGBTransferEOTF( outputNode.rgb ), outputNode.a ); + + } + + if ( ColorManagement.getPrimaries( source ) !== ColorManagement.getPrimaries( target ) ) { + + outputNode = vec4( + mat3( ColorManagement._getMatrix( new Matrix3(), source, target ) ).mul( outputNode.rgb ), + outputNode.a + ); + + } + + if ( ColorManagement.getTransfer( target ) === SRGBTransfer ) { + + outputNode = vec4( sRGBTransferOETF( outputNode.rgb ), outputNode.a ); + + } + + return outputNode; + + } + +} + +/** + * TSL function for converting a given color node from the current working color space to the given color space. + * + * @tsl + * @function + * @param {Node} node - Represents the node to convert. + * @param {string} targetColorSpace - The target color space. + * @returns {ColorSpaceNode} + */ +const workingToColorSpace = ( node, targetColorSpace ) => nodeObject( new ColorSpaceNode( nodeObject( node ), WORKING_COLOR_SPACE, targetColorSpace ) ); + +/** + * TSL function for converting a given color node from the given color space to the current working color space. + * + * @tsl + * @function + * @param {Node} node - Represents the node to convert. + * @param {string} sourceColorSpace - The source color space. + * @returns {ColorSpaceNode} + */ +const colorSpaceToWorking = ( node, sourceColorSpace ) => nodeObject( new ColorSpaceNode( nodeObject( node ), sourceColorSpace, WORKING_COLOR_SPACE ) ); + +/** + * TSL function for converting a given color node from one color space to another one. + * + * @tsl + * @function + * @param {Node} node - Represents the node to convert. + * @param {string} sourceColorSpace - The source color space. + * @param {string} targetColorSpace - The target color space. + * @returns {ColorSpaceNode} + */ +const convertColorSpace = ( node, sourceColorSpace, targetColorSpace ) => nodeObject( new ColorSpaceNode( nodeObject( node ), sourceColorSpace, targetColorSpace ) ); + +addMethodChaining( 'workingToColorSpace', workingToColorSpace ); +addMethodChaining( 'colorSpaceToWorking', colorSpaceToWorking ); + +// TODO: Avoid duplicated code and ues only ReferenceBaseNode or ReferenceNode + +/** + * This class is only relevant if the referenced property is array-like. + * In this case, `ReferenceElementNode` allows to refer to a specific + * element inside the data structure via an index. + * + * @augments ArrayElementNode + */ +const ReferenceElementNode$1 = class ReferenceElementNode extends ArrayElementNode { + + static get type() { + + return 'ReferenceElementNode'; + + } + + /** + * Constructs a new reference element node. + * + * @param {ReferenceBaseNode} referenceNode - The reference node. + * @param {Node} indexNode - The index node that defines the element access. + */ + constructor( referenceNode, indexNode ) { + + super( referenceNode, indexNode ); + + /** + * Similar to {@link ReferenceBaseNode#reference}, an additional + * property references to the current node. + * + * @type {?ReferenceBaseNode} + * @default null + */ + this.referenceNode = referenceNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isReferenceElementNode = true; + + } + + /** + * This method is overwritten since the node type is inferred from + * the uniform type of the reference node. + * + * @return {string} The node type. + */ + getNodeType() { + + return this.referenceNode.uniformType; + + } + + generate( builder ) { + + const snippet = super.generate( builder ); + const arrayType = this.referenceNode.getNodeType(); + const elementType = this.getNodeType(); + + return builder.format( snippet, arrayType, elementType ); + + } + +}; + +/** + * Base class for nodes which establishes a reference to a property of another object. + * In this way, the value of the node is automatically linked to the value of + * referenced object. Reference nodes internally represent the linked value + * as a uniform. + * + * @augments Node + */ +class ReferenceBaseNode extends Node { + + static get type() { + + return 'ReferenceBaseNode'; + + } + + /** + * Constructs a new reference base node. + * + * @param {string} property - The name of the property the node refers to. + * @param {string} uniformType - The uniform type that should be used to represent the property value. + * @param {?Object} [object=null] - The object the property belongs to. + * @param {?number} [count=null] - When the linked property is an array-like, this parameter defines its length. + */ + constructor( property, uniformType, object = null, count = null ) { + + super(); + + /** + * The name of the property the node refers to. + * + * @type {string} + */ + this.property = property; + + /** + * The uniform type that should be used to represent the property value. + * + * @type {string} + */ + this.uniformType = uniformType; + + /** + * The object the property belongs to. + * + * @type {?Object} + * @default null + */ + this.object = object; + + /** + * When the linked property is an array, this parameter defines its length. + * + * @type {?number} + * @default null + */ + this.count = count; + + /** + * The property name might have dots so nested properties can be referred. + * The hierarchy of the names is stored inside this array. + * + * @type {Array} + */ + this.properties = property.split( '.' ); + + /** + * Points to the current referred object. This property exists next to {@link ReferenceNode#object} + * since the final reference might be updated from calling code. + * + * @type {?Object} + * @default null + */ + this.reference = object; + + /** + * The uniform node that holds the value of the reference node. + * + * @type {UniformNode} + * @default null + */ + this.node = null; + + /** + * The uniform group of the internal uniform. + * + * @type {UniformGroupNode} + * @default null + */ + this.group = null; + + /** + * Overwritten since reference nodes are updated per object. + * + * @type {string} + * @default 'object' + */ + this.updateType = NodeUpdateType.OBJECT; + + } + + /** + * Sets the uniform group for this reference node. + * + * @param {UniformGroupNode} group - The uniform group to set. + * @return {ReferenceBaseNode} A reference to this node. + */ + setGroup( group ) { + + this.group = group; + + return this; + + } + + /** + * When the referred property is array-like, this method can be used + * to access elements via an index node. + * + * @param {IndexNode} indexNode - indexNode. + * @return {ReferenceElementNode} A reference to an element. + */ + element( indexNode ) { + + return nodeObject( new ReferenceElementNode$1( this, nodeObject( indexNode ) ) ); + + } + + /** + * Sets the node type which automatically defines the internal + * uniform type. + * + * @param {string} uniformType - The type to set. + */ + setNodeType( uniformType ) { + + const node = uniform( null, uniformType ).getSelf(); + + if ( this.group !== null ) { + + node.setGroup( this.group ); + + } + + this.node = node; + + } + + /** + * This method is overwritten since the node type is inferred from + * the type of the reference node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + if ( this.node === null ) { + + this.updateReference( builder ); + this.updateValue(); + + } + + return this.node.getNodeType( builder ); + + } + + /** + * Returns the property value from the given referred object. + * + * @param {Object} [object=this.reference] - The object to retrieve the property value from. + * @return {any} The value. + */ + getValueFromReference( object = this.reference ) { + + const { properties } = this; + + let value = object[ properties[ 0 ] ]; + + for ( let i = 1; i < properties.length; i ++ ) { + + value = value[ properties[ i ] ]; + + } + + return value; + + } + + /** + * Allows to update the reference based on the given state. The state is only + * evaluated {@link ReferenceBaseNode#object} is not set. + * + * @param {(NodeFrame|NodeBuilder)} state - The current state. + * @return {Object} The updated reference. + */ + updateReference( state ) { + + this.reference = this.object !== null ? this.object : state.object; + + return this.reference; + + } + + /** + * The output of the reference node is the internal uniform node. + * + * @return {UniformNode} The output node. + */ + setup() { + + this.updateValue(); + + return this.node; + + } + + /** + * Overwritten to update the internal uniform value. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( /*frame*/ ) { + + this.updateValue(); + + } + + /** + * Retrieves the value from the referred object property and uses it + * to updated the internal uniform. + */ + updateValue() { + + if ( this.node === null ) this.setNodeType( this.uniformType ); + + const value = this.getValueFromReference(); + + if ( Array.isArray( value ) ) { + + this.node.array = value; + + } else { + + this.node.value = value; + + } + + } + +} + +/** + * TSL function for creating a reference base node. + * + * @tsl + * @function + * @param {string} name - The name of the property the node refers to. + * @param {string} type - The uniform type that should be used to represent the property value. + * @param {Object} object - The object the property belongs to. + * @returns {ReferenceBaseNode} + */ +const reference$1 = ( name, type, object ) => nodeObject( new ReferenceBaseNode( name, type, object ) ); + +/** + * This node is a special type of reference node which is intended + * for linking renderer properties with node values. + * ```js + * const exposureNode = rendererReference( 'toneMappingExposure', 'float', renderer ); + * ``` + * When changing `renderer.toneMappingExposure`, the node value of `exposureNode` will + * automatically be updated. + * + * @augments ReferenceBaseNode + */ +class RendererReferenceNode extends ReferenceBaseNode { + + static get type() { + + return 'RendererReferenceNode'; + + } + + /** + * Constructs a new renderer reference node. + * + * @param {string} property - The name of the property the node refers to. + * @param {string} inputType - The uniform type that should be used to represent the property value. + * @param {?Renderer} [renderer=null] - The renderer the property belongs to. When no renderer is set, + * the node refers to the renderer of the current state. + */ + constructor( property, inputType, renderer = null ) { + + super( property, inputType, renderer ); + + /** + * The renderer the property belongs to. When no renderer is set, + * the node refers to the renderer of the current state. + * + * @type {?Renderer} + * @default null + */ + this.renderer = renderer; + + this.setGroup( renderGroup ); + + } + + /** + * Updates the reference based on the given state. The state is only evaluated + * {@link RendererReferenceNode#renderer} is not set. + * + * @param {(NodeFrame|NodeBuilder)} state - The current state. + * @return {Object} The updated reference. + */ + updateReference( state ) { + + this.reference = this.renderer !== null ? this.renderer : state.renderer; + + return this.reference; + + } + +} + +/** + * TSL function for creating a renderer reference node. + * + * @tsl + * @function + * @param {string} name - The name of the property the node refers to. + * @param {string} type - The uniform type that should be used to represent the property value. + * @param {?Renderer} [renderer=null] - The renderer the property belongs to. When no renderer is set, + * the node refers to the renderer of the current state. + * @returns {RendererReferenceNode} + */ +const rendererReference = ( name, type, renderer = null ) => nodeObject( new RendererReferenceNode( name, type, renderer ) ); + +/** + * This node represents a tone mapping operation. + * + * @augments TempNode + */ +class ToneMappingNode extends TempNode { + + static get type() { + + return 'ToneMappingNode'; + + } + + /** + * Constructs a new tone mapping node. + * + * @param {number} toneMapping - The tone mapping type. + * @param {Node} exposureNode - The tone mapping exposure. + * @param {Node} [colorNode=null] - The color node to process. + */ + constructor( toneMapping, exposureNode = toneMappingExposure, colorNode = null ) { + + super( 'vec3' ); + + /** + * The tone mapping type. + * + * @type {number} + */ + this.toneMapping = toneMapping; + + /** + * The tone mapping exposure. + * + * @type {Node} + * @default null + */ + this.exposureNode = exposureNode; + + /** + * Represents the color to process. + * + * @type {?Node} + * @default null + */ + this.colorNode = colorNode; + + } + + /** + * Overwrites the default `customCacheKey()` implementation by including the tone + * mapping type into the cache key. + * + * @return {number} The hash. + */ + customCacheKey() { + + return hash$1( this.toneMapping ); + + } + + setup( builder ) { + + const colorNode = this.colorNode || builder.context.color; + const toneMapping = this.toneMapping; + + if ( toneMapping === NoToneMapping ) return colorNode; + + let outputNode = null; + + const toneMappingFn = builder.renderer.library.getToneMappingFunction( toneMapping ); + + if ( toneMappingFn !== null ) { + + outputNode = vec4( toneMappingFn( colorNode.rgb, this.exposureNode ), colorNode.a ); + + } else { + + console.error( 'ToneMappingNode: Unsupported Tone Mapping configuration.', toneMapping ); + + outputNode = colorNode; + + } + + return outputNode; + + } + +} + +/** + * TSL function for creating a tone mapping node. + * + * @tsl + * @function + * @param {number} mapping - The tone mapping type. + * @param {Node | number} exposure - The tone mapping exposure. + * @param {Node | Color} color - The color node to process. + * @returns {ToneMappingNode} + */ +const toneMapping = ( mapping, exposure, color ) => nodeObject( new ToneMappingNode( mapping, nodeObject( exposure ), nodeObject( color ) ) ); + +/** + * TSL object that represents the global tone mapping exposure of the renderer. + * + * @tsl + * @type {RendererReferenceNode} + */ +const toneMappingExposure = /*@__PURE__*/ rendererReference( 'toneMappingExposure', 'float' ); + +addMethodChaining( 'toneMapping', ( color, mapping, exposure ) => toneMapping( mapping, exposure, color ) ); + +/** + * In earlier `three.js` versions it was only possible to define attribute data + * on geometry level. With `BufferAttributeNode`, it is also possible to do this + * on the node level. + * ```js + * const geometry = new THREE.PlaneGeometry(); + * const positionAttribute = geometry.getAttribute( 'position' ); + * + * const colors = []; + * for ( let i = 0; i < position.count; i ++ ) { + * colors.push( 1, 0, 0 ); + * } + * + * material.colorNode = bufferAttribute( new THREE.Float32BufferAttribute( colors, 3 ) ); + * ``` + * This new approach is especially interesting when geometry data are generated via + * compute shaders. The below line converts a storage buffer into an attribute node. + * ```js + * material.positionNode = positionBuffer.toAttribute(); + * ``` + * @augments InputNode + */ +class BufferAttributeNode extends InputNode { + + static get type() { + + return 'BufferAttributeNode'; + + } + + /** + * Constructs a new buffer attribute node. + * + * @param {BufferAttribute|InterleavedBuffer|TypedArray} value - The attribute data. + * @param {?string} [bufferType=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [bufferStride=0] - The buffer stride. + * @param {number} [bufferOffset=0] - The buffer offset. + */ + constructor( value, bufferType = null, bufferStride = 0, bufferOffset = 0 ) { + + super( value, bufferType ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBufferNode = true; + + /** + * The buffer type (e.g. `'vec3'`). + * + * @type {?string} + * @default null + */ + this.bufferType = bufferType; + + /** + * The buffer stride. + * + * @type {number} + * @default 0 + */ + this.bufferStride = bufferStride; + + /** + * The buffer offset. + * + * @type {number} + * @default 0 + */ + this.bufferOffset = bufferOffset; + + /** + * The usage property. Set this to `THREE.DynamicDrawUsage` via `.setUsage()`, + * if you are planning to update the attribute data per frame. + * + * @type {number} + * @default StaticDrawUsage + */ + this.usage = StaticDrawUsage; + + /** + * Whether the attribute is instanced or not. + * + * @type {boolean} + * @default false + */ + this.instanced = false; + + /** + * A reference to the buffer attribute. + * + * @type {?BufferAttribute} + * @default null + */ + this.attribute = null; + + /** + * `BufferAttributeNode` sets this property to `true` by default. + * + * @type {boolean} + * @default true + */ + this.global = true; + + if ( value && value.isBufferAttribute === true ) { + + this.attribute = value; + this.usage = value.usage; + this.instanced = value.isInstancedBufferAttribute; + + } + + } + + /** + * This method is overwritten since the attribute data might be shared + * and thus the hash should be shared as well. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The hash. + */ + getHash( builder ) { + + if ( this.bufferStride === 0 && this.bufferOffset === 0 ) { + + let bufferData = builder.globalCache.getData( this.value ); + + if ( bufferData === undefined ) { + + bufferData = { + node: this + }; + + builder.globalCache.setData( this.value, bufferData ); + + } + + return bufferData.node.uuid; + + } + + return this.uuid; + + } + + /** + * This method is overwritten since the node type is inferred from + * the buffer attribute. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + if ( this.bufferType === null ) { + + this.bufferType = builder.getTypeFromAttribute( this.attribute ); + + } + + return this.bufferType; + + } + + /** + * Depending on which value was passed to the node, `setup()` behaves + * differently. If no instance of `BufferAttribute` was passed, the method + * creates an internal attribute and configures it respectively. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + if ( this.attribute !== null ) return; + + const type = this.getNodeType( builder ); + const array = this.value; + const itemSize = builder.getTypeLength( type ); + const stride = this.bufferStride || itemSize; + const offset = this.bufferOffset; + + const buffer = array.isInterleavedBuffer === true ? array : new InterleavedBuffer( array, stride ); + const bufferAttribute = new InterleavedBufferAttribute( buffer, itemSize, offset ); + + buffer.setUsage( this.usage ); + + this.attribute = bufferAttribute; + this.attribute.isInstancedBufferAttribute = this.instanced; // @TODO: Add a possible: InstancedInterleavedBufferAttribute + + } + + /** + * Generates the code snippet of the buffer attribute node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The generated code snippet. + */ + generate( builder ) { + + const nodeType = this.getNodeType( builder ); + + const nodeAttribute = builder.getBufferAttributeFromNode( this, nodeType ); + const propertyName = builder.getPropertyName( nodeAttribute ); + + let output = null; + + if ( builder.shaderStage === 'vertex' || builder.shaderStage === 'compute' ) { + + this.name = propertyName; + + output = propertyName; + + } else { + + const nodeVarying = varying( this ); + + output = nodeVarying.build( builder, nodeType ); + + } + + return output; + + } + + /** + * Overwrites the default implementation to return a fixed value `'bufferAttribute'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return 'bufferAttribute'; + + } + + /** + * Sets the `usage` property to the given value. + * + * @param {number} value - The usage to set. + * @return {BufferAttributeNode} A reference to this node. + */ + setUsage( value ) { + + this.usage = value; + + if ( this.attribute && this.attribute.isBufferAttribute === true ) { + + this.attribute.usage = value; + + } + + return this; + + } + + /** + * Sets the `instanced` property to the given value. + * + * @param {boolean} value - The value to set. + * @return {BufferAttributeNode} A reference to this node. + */ + setInstanced( value ) { + + this.instanced = value; + + return this; + + } + +} + +/** + * TSL function for creating a buffer attribute node. + * + * @tsl + * @function + * @param {BufferAttribute|InterleavedBuffer|TypedArray} array - The attribute data. + * @param {?string} [type=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [stride=0] - The buffer stride. + * @param {number} [offset=0] - The buffer offset. + * @returns {BufferAttributeNode} + */ +const bufferAttribute = ( array, type = null, stride = 0, offset = 0 ) => nodeObject( new BufferAttributeNode( array, type, stride, offset ) ); + +/** + * TSL function for creating a buffer attribute node but with dynamic draw usage. + * Use this function if attribute data are updated per frame. + * + * @tsl + * @function + * @param {BufferAttribute|InterleavedBuffer|TypedArray} array - The attribute data. + * @param {?string} [type=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [stride=0] - The buffer stride. + * @param {number} [offset=0] - The buffer offset. + * @returns {BufferAttributeNode} + */ +const dynamicBufferAttribute = ( array, type = null, stride = 0, offset = 0 ) => bufferAttribute( array, type, stride, offset ).setUsage( DynamicDrawUsage ); + +/** + * TSL function for creating a buffer attribute node but with enabled instancing + * + * @tsl + * @function + * @param {BufferAttribute|InterleavedBuffer|TypedArray} array - The attribute data. + * @param {?string} [type=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [stride=0] - The buffer stride. + * @param {number} [offset=0] - The buffer offset. + * @returns {BufferAttributeNode} + */ +const instancedBufferAttribute = ( array, type = null, stride = 0, offset = 0 ) => bufferAttribute( array, type, stride, offset ).setInstanced( true ); + +/** + * TSL function for creating a buffer attribute node but with dynamic draw usage and enabled instancing + * + * @tsl + * @function + * @param {BufferAttribute|InterleavedBuffer|TypedArray} array - The attribute data. + * @param {?string} [type=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [stride=0] - The buffer stride. + * @param {number} [offset=0] - The buffer offset. + * @returns {BufferAttributeNode} + */ +const instancedDynamicBufferAttribute = ( array, type = null, stride = 0, offset = 0 ) => dynamicBufferAttribute( array, type, stride, offset ).setInstanced( true ); + +addMethodChaining( 'toAttribute', ( bufferNode ) => bufferAttribute( bufferNode.value ) ); + +/** + * TODO + * + * @augments Node + */ +class ComputeNode extends Node { + + static get type() { + + return 'ComputeNode'; + + } + + /** + * Constructs a new compute node. + * + * @param {Node} computeNode - TODO + * @param {number} count - TODO. + * @param {Array} [workgroupSize=[64]] - TODO. + */ + constructor( computeNode, count, workgroupSize = [ 64 ] ) { + + super( 'void' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isComputeNode = true; + + /** + * TODO + * + * @type {Node} + */ + this.computeNode = computeNode; + + /** + * TODO + * + * @type {number} + */ + this.count = count; + + /** + * TODO + * + * @type {Array} + * @default [64] + */ + this.workgroupSize = workgroupSize; + + /** + * TODO + * + * @type {number} + */ + this.dispatchCount = 0; + + /** + * TODO + * + * @type {number} + */ + this.version = 1; + + /** + * The name or label of the uniform. + * + * @type {string} + * @default '' + */ + this.name = ''; + + /** + * The `updateBeforeType` is set to `NodeUpdateType.OBJECT` since {@link ComputeNode#updateBefore} + * is executed once per object by default. + * + * @type {string} + * @default 'object' + */ + this.updateBeforeType = NodeUpdateType.OBJECT; + + /** + * TODO + * + * @type {?Function} + */ + this.onInitFunction = null; + + this.updateDispatchCount(); + + } + + /** + * Executes the `dispose` event for this node. + */ + dispose() { + + this.dispatchEvent( { type: 'dispose' } ); + + } + + /** + * Sets the {@link ComputeNode#name} property. + * + * @param {string} name - The name of the uniform. + * @return {ComputeNode} A reference to this node. + */ + label( name ) { + + this.name = name; + + return this; + + } + + /** + * TODO + */ + updateDispatchCount() { + + const { count, workgroupSize } = this; + + let size = workgroupSize[ 0 ]; + + for ( let i = 1; i < workgroupSize.length; i ++ ) + size *= workgroupSize[ i ]; + + this.dispatchCount = Math.ceil( count / size ); + + } + + /** + * TODO + * + * @param {Function} callback - TODO. + * @return {ComputeNode} A reference to this node. + */ + onInit( callback ) { + + this.onInitFunction = callback; + + return this; + + } + + /** + * The method execute the compute for this node. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + updateBefore( { renderer } ) { + + renderer.compute( this ); + + } + + setup( builder ) { + + const result = this.computeNode.build( builder ); + + if ( result ) { + + const properties = builder.getNodeProperties( this ); + properties.outputComputeNode = result.outputNode; + + result.outputNode = null; + + } + + return result; + + } + + generate( builder, output ) { + + const { shaderStage } = builder; + + if ( shaderStage === 'compute' ) { + + const snippet = this.computeNode.build( builder, 'void' ); + + if ( snippet !== '' ) { + + builder.addLineFlowCode( snippet, this ); + + } + + } else { + + const properties = builder.getNodeProperties( this ); + const outputComputeNode = properties.outputComputeNode; + + if ( outputComputeNode ) { + + return outputComputeNode.build( builder, output ); + + } + + } + + } + +} + +/** + * TSL function for creating a compute node. + * + * @tsl + * @function + * @param {Node} node - TODO + * @param {number} count - TODO. + * @param {Array} [workgroupSize=[64]] - TODO. + * @returns {AtomicFunctionNode} + */ +const compute = ( node, count, workgroupSize ) => nodeObject( new ComputeNode( nodeObject( node ), count, workgroupSize ) ); + +addMethodChaining( 'compute', compute ); + +/** + * This node can be used as a cache management component for another node. + * Caching is in general used by default in {@link NodeBuilder} but this node + * allows the usage of a shared parent cache during the build process. + * + * @augments Node + */ +class CacheNode extends Node { + + static get type() { + + return 'CacheNode'; + + } + + /** + * Constructs a new cache node. + * + * @param {Node} node - The node that should be cached. + * @param {boolean} [parent=true] - Whether this node refers to a shared parent cache or not. + */ + constructor( node, parent = true ) { + + super(); + + /** + * The node that should be cached. + * + * @type {Node} + */ + this.node = node; + + /** + * Whether this node refers to a shared parent cache or not. + * + * @type {boolean} + * @default true + */ + this.parent = parent; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCacheNode = true; + + } + + getNodeType( builder ) { + + const previousCache = builder.getCache(); + const cache = builder.getCacheFromNode( this, this.parent ); + + builder.setCache( cache ); + + const nodeType = this.node.getNodeType( builder ); + + builder.setCache( previousCache ); + + return nodeType; + + } + + build( builder, ...params ) { + + const previousCache = builder.getCache(); + const cache = builder.getCacheFromNode( this, this.parent ); + + builder.setCache( cache ); + + const data = this.node.build( builder, ...params ); + + builder.setCache( previousCache ); + + return data; + + } + +} + +/** + * TSL function for creating a cache node. + * + * @tsl + * @function + * @param {Node} node - The node that should be cached. + * @param {boolean} [parent] - Whether this node refers to a shared parent cache or not. + * @returns {CacheNode} + */ +const cache = ( node, parent ) => nodeObject( new CacheNode( nodeObject( node ), parent ) ); + +/** + * Assigns a namespace to the given node by updating its context. + * + * Important for TSL functions that use `.once( namespace )` to ensure that the namespace will run twice, + * once when the node is build in the specific namespace and once when the node is built in the others namespace. + * + * This is useful for nodes like `positionWorld` that need to be re-updated if used in `material.positionNode` and outside of it in the same material. + * + * @param {Object} node - The node to which the namespace will be assigned. + * @param {string} namespace - The namespace to be assigned to the node. + * @returns {Object} The updated node with the new namespace in its context. + */ +const namespace = ( node, namespace ) => node.context( { namespace } ); + +addMethodChaining( 'cache', cache ); + +/** + * The class generates the code of a given node but returns another node in the output. + * This can be used to call a method or node that does not return a value, i.e. + * type `void` on an input where returning a value is required. Example: + * + * ```js + * material.colorNode = myColor.bypass( runVoidFn() ) + *``` + * + * @augments Node + */ +class BypassNode extends Node { + + static get type() { + + return 'BypassNode'; + + } + + /** + * Constructs a new bypass node. + * + * @param {Node} outputNode - The output node. + * @param {Node} callNode - The call node. + */ + constructor( outputNode, callNode ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBypassNode = true; + + /** + * The output node. + * + * @type {Node} + */ + this.outputNode = outputNode; + + /** + * The call node. + * + * @type {Node} + */ + this.callNode = callNode; + + } + + getNodeType( builder ) { + + return this.outputNode.getNodeType( builder ); + + } + + generate( builder ) { + + const snippet = this.callNode.build( builder, 'void' ); + + if ( snippet !== '' ) { + + builder.addLineFlowCode( snippet, this ); + + } + + return this.outputNode.build( builder ); + + } + +} + +/** + * TSL function for creating a bypass node. + * + * @tsl + * @function + * @param {Node} outputNode - The output node. + * @param {Node} callNode - The call node. + * @returns {BypassNode} + */ +const bypass = /*@__PURE__*/ nodeProxy( BypassNode ).setParameterLength( 2 ); + +addMethodChaining( 'bypass', bypass ); + +/** + * This node allows to remap a node value from one range into another. E.g a value of + * `0.4` in the range `[ 0.3, 0.5 ]` should be remapped into the normalized range `[ 0, 1 ]`. + * `RemapNode` takes care of that and converts the original value of `0.4` to `0.5`. + * + * @augments Node + */ +class RemapNode extends Node { + + static get type() { + + return 'RemapNode'; + + } + + /** + * Constructs a new remap node. + * + * @param {Node} node - The node that should be remapped. + * @param {Node} inLowNode - The source or current lower bound of the range. + * @param {Node} inHighNode - The source or current upper bound of the range. + * @param {Node} [outLowNode=float(0)] - The target lower bound of the range. + * @param {Node} [outHighNode=float(1)] - The target upper bound of the range. + */ + constructor( node, inLowNode, inHighNode, outLowNode = float( 0 ), outHighNode = float( 1 ) ) { + + super(); + + /** + * The node that should be remapped. + * + * @type {Node} + */ + this.node = node; + + /** + * The source or current lower bound of the range. + * + * @type {Node} + */ + this.inLowNode = inLowNode; + + /** + * The source or current upper bound of the range. + * + * @type {Node} + */ + this.inHighNode = inHighNode; + + /** + * The target lower bound of the range. + * + * @type {Node} + * @default float(0) + */ + this.outLowNode = outLowNode; + + /** + * The target upper bound of the range. + * + * @type {Node} + * @default float(1) + */ + this.outHighNode = outHighNode; + + /** + * Whether the node value should be clamped before + * remapping it to the target range. + * + * @type {boolean} + * @default true + */ + this.doClamp = true; + + } + + setup() { + + const { node, inLowNode, inHighNode, outLowNode, outHighNode, doClamp } = this; + + let t = node.sub( inLowNode ).div( inHighNode.sub( inLowNode ) ); + + if ( doClamp === true ) t = t.clamp(); + + return t.mul( outHighNode.sub( outLowNode ) ).add( outLowNode ); + + } + +} + +/** + * TSL function for creating a remap node. + * + * @tsl + * @function + * @param {Node} node - The node that should be remapped. + * @param {Node} inLowNode - The source or current lower bound of the range. + * @param {Node} inHighNode - The source or current upper bound of the range. + * @param {?Node} [outLowNode=float(0)] - The target lower bound of the range. + * @param {?Node} [outHighNode=float(1)] - The target upper bound of the range. + * @returns {RemapNode} + */ +const remap = /*@__PURE__*/ nodeProxy( RemapNode, null, null, { doClamp: false } ).setParameterLength( 3, 5 ); + +/** + * TSL function for creating a remap node, but with enabled clamping. + * + * @tsl + * @function + * @param {Node} node - The node that should be remapped. + * @param {Node} inLowNode - The source or current lower bound of the range. + * @param {Node} inHighNode - The source or current upper bound of the range. + * @param {?Node} [outLowNode=float(0)] - The target lower bound of the range. + * @param {?Node} [outHighNode=float(1)] - The target upper bound of the range. + * @returns {RemapNode} + */ +const remapClamp = /*@__PURE__*/ nodeProxy( RemapNode ).setParameterLength( 3, 5 ); + +addMethodChaining( 'remap', remap ); +addMethodChaining( 'remapClamp', remapClamp ); + +/** + * This class can be used to implement basic expressions in shader code. + * Basic examples for that are `return`, `continue` or `discard` statements. + * + * @augments Node + */ +class ExpressionNode extends Node { + + static get type() { + + return 'ExpressionNode'; + + } + + /** + * Constructs a new expression node. + * + * @param {string} [snippet=''] - The native code snippet. + * @param {string} [nodeType='void'] - The node type. + */ + constructor( snippet = '', nodeType = 'void' ) { + + super( nodeType ); + + /** + * The native code snippet. + * + * @type {string} + * @default '' + */ + this.snippet = snippet; + + } + + generate( builder, output ) { + + const type = this.getNodeType( builder ); + const snippet = this.snippet; + + if ( type === 'void' ) { + + builder.addLineFlowCode( snippet, this ); + + } else { + + return builder.format( snippet, type, output ); + + } + + } + +} + +/** + * TSL function for creating an expression node. + * + * @tsl + * @function + * @param {string} [snippet] - The native code snippet. + * @param {?string} [nodeType='void'] - The node type. + * @returns {ExpressionNode} + */ +const expression = /*@__PURE__*/ nodeProxy( ExpressionNode ).setParameterLength( 1, 2 ); + +/** + * Represents a `discard` shader operation in TSL. + * + * @tsl + * @function + * @param {?ConditionalNode} conditional - An optional conditional node. It allows to decide whether the discard should be executed or not. + * @return {Node} The `discard` expression. + */ +const Discard = ( conditional ) => ( conditional ? select( conditional, expression( 'discard' ) ) : expression( 'discard' ) ).toStack(); + +/** + * Represents a `return` shader operation in TSL. + * + * @tsl + * @function + * @return {ExpressionNode} The `return` expression. + */ +const Return = () => expression( 'return' ).toStack(); + +addMethodChaining( 'discard', Discard ); + +/** + * Normally, tone mapping and color conversion happens automatically + * before outputting pixel too the default (screen) framebuffer. In certain + * post processing setups this happens to late because certain effects + * require e.g. sRGB input. For such scenarios, `RenderOutputNode` can be used + * to apply tone mapping and color space conversion at an arbitrary point + * in the effect chain. + * + * When applying tone mapping and color space conversion manually with this node, + * you have to set {@link PostProcessing#outputColorTransform} to `false`. + * + * ```js + * const postProcessing = new PostProcessing( renderer ); + * postProcessing.outputColorTransform = false; + * + * const scenePass = pass( scene, camera ); + * const outputPass = renderOutput( scenePass ); + * + * postProcessing.outputNode = outputPass; + * ``` + * + * @augments TempNode + */ +class RenderOutputNode extends TempNode { + + static get type() { + + return 'RenderOutputNode'; + + } + + /** + * Constructs a new render output node. + * + * @param {Node} colorNode - The color node to process. + * @param {?number} toneMapping - The tone mapping type. + * @param {?string} outputColorSpace - The output color space. + */ + constructor( colorNode, toneMapping, outputColorSpace ) { + + super( 'vec4' ); + + /** + * The color node to process. + * + * @type {Node} + */ + this.colorNode = colorNode; + + /** + * The tone mapping type. + * + * @type {?number} + */ + this.toneMapping = toneMapping; + + /** + * The output color space. + * + * @type {?string} + */ + this.outputColorSpace = outputColorSpace; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isRenderOutputNode = true; + + } + + setup( { context } ) { + + let outputNode = this.colorNode || context.color; + + // tone mapping + + const toneMapping = ( this.toneMapping !== null ? this.toneMapping : context.toneMapping ) || NoToneMapping; + const outputColorSpace = ( this.outputColorSpace !== null ? this.outputColorSpace : context.outputColorSpace ) || NoColorSpace; + + if ( toneMapping !== NoToneMapping ) { + + outputNode = outputNode.toneMapping( toneMapping ); + + } + + // working to output color space + + if ( outputColorSpace !== NoColorSpace && outputColorSpace !== ColorManagement.workingColorSpace ) { + + outputNode = outputNode.workingToColorSpace( outputColorSpace ); + + } + + return outputNode; + + } + +} + +/** + * TSL function for creating a posterize node. + * + * @tsl + * @function + * @param {Node} color - The color node to process. + * @param {?number} [toneMapping=null] - The tone mapping type. + * @param {?string} [outputColorSpace=null] - The output color space. + * @returns {RenderOutputNode} + */ +const renderOutput = ( color, toneMapping = null, outputColorSpace = null ) => nodeObject( new RenderOutputNode( nodeObject( color ), toneMapping, outputColorSpace ) ); + +addMethodChaining( 'renderOutput', renderOutput ); + +class DebugNode extends TempNode { + + static get type() { + + return 'DebugNode'; + + } + + constructor( node, callback = null ) { + + super(); + + this.node = node; + this.callback = callback; + + } + + getNodeType( builder ) { + + return this.node.getNodeType( builder ); + + } + + setup( builder ) { + + return this.node.build( builder ); + + } + + analyze( builder ) { + + return this.node.build( builder ); + + } + + generate( builder ) { + + const callback = this.callback; + const snippet = this.node.build( builder ); + + const title = '--- TSL debug - ' + builder.shaderStage + ' shader ---'; + const border = '-'.repeat( title.length ); + + let code = ''; + code += '// #' + title + '#\n'; + code += builder.flow.code.replace( /^\t/mg, '' ) + '\n'; + code += '/* ... */ ' + snippet + ' /* ... */\n'; + code += '// #' + border + '#\n'; + + if ( callback !== null ) { + + callback( builder, code ); + + } else { + + console.log( code ); + + } + + return snippet; + + } + +} + +/** + * TSL function for creating a debug node. + * + * @tsl + * @function + * @param {Node} node - The node to debug. + * @param {?Function} [callback=null] - Optional callback function to handle the debug output. + * @returns {DebugNode} + */ +const debug = ( node, callback = null ) => nodeObject( new DebugNode( nodeObject( node ), callback ) ); + +addMethodChaining( 'debug', debug ); + +// Non-PURE exports list, side-effects are required here. +// TSL Base Syntax + + +function addNodeElement( name/*, nodeElement*/ ) { + + console.warn( 'THREE.TSL: AddNodeElement has been removed in favor of tree-shaking. Trying add', name ); + +} + +/** + * Base class for representing shader attributes as nodes. + * + * @augments Node + */ +class AttributeNode extends Node { + + static get type() { + + return 'AttributeNode'; + + } + + /** + * Constructs a new attribute node. + * + * @param {string} attributeName - The name of the attribute. + * @param {?string} nodeType - The node type. + */ + constructor( attributeName, nodeType = null ) { + + super( nodeType ); + + /** + * `AttributeNode` sets this property to `true` by default. + * + * @type {boolean} + * @default true + */ + this.global = true; + + this._attributeName = attributeName; + + } + + getHash( builder ) { + + return this.getAttributeName( builder ); + + } + + getNodeType( builder ) { + + let nodeType = this.nodeType; + + if ( nodeType === null ) { + + const attributeName = this.getAttributeName( builder ); + + if ( builder.hasGeometryAttribute( attributeName ) ) { + + const attribute = builder.geometry.getAttribute( attributeName ); + + nodeType = builder.getTypeFromAttribute( attribute ); + + } else { + + nodeType = 'float'; + + } + + } + + return nodeType; + + } + + /** + * Sets the attribute name to the given value. The method can be + * overwritten in derived classes if the final name must be computed + * analytically. + * + * @param {string} attributeName - The name of the attribute. + * @return {AttributeNode} A reference to this node. + */ + setAttributeName( attributeName ) { + + this._attributeName = attributeName; + + return this; + + } + + /** + * Returns the attribute name of this node. The method can be + * overwritten in derived classes if the final name must be computed + * analytically. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The attribute name. + */ + getAttributeName( /*builder*/ ) { + + return this._attributeName; + + } + + generate( builder ) { + + const attributeName = this.getAttributeName( builder ); + const nodeType = this.getNodeType( builder ); + const geometryAttribute = builder.hasGeometryAttribute( attributeName ); + + if ( geometryAttribute === true ) { + + const attribute = builder.geometry.getAttribute( attributeName ); + const attributeType = builder.getTypeFromAttribute( attribute ); + + const nodeAttribute = builder.getAttribute( attributeName, attributeType ); + + if ( builder.shaderStage === 'vertex' ) { + + return builder.format( nodeAttribute.name, attributeType, nodeType ); + + } else { + + const nodeVarying = varying( this ); + + return nodeVarying.build( builder, nodeType ); + + } + + } else { + + console.warn( `AttributeNode: Vertex attribute "${ attributeName }" not found on geometry.` ); + + return builder.generateConst( nodeType ); + + } + + } + + serialize( data ) { + + super.serialize( data ); + + data.global = this.global; + data._attributeName = this._attributeName; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.global = data.global; + this._attributeName = data._attributeName; + + } + +} + +/** + * TSL function for creating an attribute node. + * + * @tsl + * @function + * @param {string} name - The name of the attribute. + * @param {?string} [nodeType=null] - The node type. + * @returns {AttributeNode} + */ +const attribute = ( name, nodeType = null ) => nodeObject( new AttributeNode( name, nodeType ) ); + +/** + * TSL function for creating an uv attribute node with the given index. + * + * @tsl + * @function + * @param {number} [index=0] - The uv index. + * @return {AttributeNode} The uv attribute node. + */ +const uv = ( index = 0 ) => attribute( 'uv' + ( index > 0 ? index : '' ), 'vec2' ); + +/** + * A node that represents the dimensions of a texture. The texture size is + * retrieved in the shader via built-in shader functions like `textureDimensions()` + * or `textureSize()`. + * + * @augments Node + */ +class TextureSizeNode extends Node { + + static get type() { + + return 'TextureSizeNode'; + + } + + /** + * Constructs a new texture size node. + * + * @param {TextureNode} textureNode - A texture node which size should be retrieved. + * @param {?Node} [levelNode=null] - A level node which defines the requested mip. + */ + constructor( textureNode, levelNode = null ) { + + super( 'uvec2' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isTextureSizeNode = true; + + /** + * A texture node which size should be retrieved. + * + * @type {TextureNode} + */ + this.textureNode = textureNode; + + /** + * A level node which defines the requested mip. + * + * @type {Node} + * @default null + */ + this.levelNode = levelNode; + + } + + generate( builder, output ) { + + const textureProperty = this.textureNode.build( builder, 'property' ); + const level = this.levelNode === null ? '0' : this.levelNode.build( builder, 'int' ); + + return builder.format( `${ builder.getMethod( 'textureDimensions' ) }( ${ textureProperty }, ${ level } )`, this.getNodeType( builder ), output ); + + } + +} + +/** + * TSL function for creating a texture size node. + * + * @tsl + * @function + * @param {TextureNode} textureNode - A texture node which size should be retrieved. + * @param {?Node} [levelNode=null] - A level node which defines the requested mip. + * @returns {TextureSizeNode} + */ +const textureSize = /*@__PURE__*/ nodeProxy( TextureSizeNode ).setParameterLength( 1, 2 ); + +/** + * A special type of uniform node that computes the + * maximum mipmap level for a given texture node. + * + * ```js + * const level = maxMipLevel( textureNode ); + * ``` + * + * @augments UniformNode + */ +class MaxMipLevelNode extends UniformNode { + + static get type() { + + return 'MaxMipLevelNode'; + + } + + /** + * Constructs a new max mip level node. + * + * @param {TextureNode} textureNode - The texture node to compute the max mip level for. + */ + constructor( textureNode ) { + + super( 0 ); + + /** + * The texture node to compute the max mip level for. + * + * @private + * @type {TextureNode} + */ + this._textureNode = textureNode; + + /** + * The `updateType` is set to `NodeUpdateType.FRAME` since the node updates + * the texture once per frame in its {@link MaxMipLevelNode#update} method. + * + * @type {string} + * @default 'frame' + */ + this.updateType = NodeUpdateType.FRAME; + + } + + /** + * The texture node to compute the max mip level for. + * + * @readonly + * @type {TextureNode} + */ + get textureNode() { + + return this._textureNode; + + } + + /** + * The texture. + * + * @readonly + * @type {Texture} + */ + get texture() { + + return this._textureNode.value; + + } + + update() { + + const texture = this.texture; + const images = texture.images; + const image = ( images && images.length > 0 ) ? ( ( images[ 0 ] && images[ 0 ].image ) || images[ 0 ] ) : texture.image; + + if ( image && image.width !== undefined ) { + + const { width, height } = image; + + this.value = Math.log2( Math.max( width, height ) ); + + } + + } + +} + +/** + * TSL function for creating a max mip level node. + * + * @tsl + * @function + * @param {TextureNode} textureNode - The texture node to compute the max mip level for. + * @returns {MaxMipLevelNode} + */ +const maxMipLevel = /*@__PURE__*/ nodeProxy( MaxMipLevelNode ).setParameterLength( 1 ); + +const EmptyTexture$1 = /*@__PURE__*/ new Texture(); + +/** + * This type of uniform node represents a 2D texture. + * + * @augments UniformNode + */ +class TextureNode extends UniformNode { + + static get type() { + + return 'TextureNode'; + + } + + /** + * Constructs a new texture node. + * + * @param {Texture} [value=EmptyTexture] - The texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + */ + constructor( value = EmptyTexture$1, uvNode = null, levelNode = null, biasNode = null ) { + + super( value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isTextureNode = true; + + /** + * Represents the texture coordinates. + * + * @type {?Node} + * @default null + */ + this.uvNode = uvNode; + + /** + * Represents the mip level that should be selected. + * + * @type {?Node} + * @default null + */ + this.levelNode = levelNode; + + /** + * Represents the bias to be applied during level-of-detail computation. + * + * @type {?Node} + * @default null + */ + this.biasNode = biasNode; + + /** + * Represents a reference value a texture sample is compared to. + * + * @type {?Node} + * @default null + */ + this.compareNode = null; + + /** + * When using texture arrays, the depth node defines the layer to select. + * + * @type {?Node} + * @default null + */ + this.depthNode = null; + + /** + * When defined, a texture is sampled using explicit gradients. + * + * @type {?Array>} + * @default null + */ + this.gradNode = null; + + /** + * Whether texture values should be sampled or fetched. + * + * @type {boolean} + * @default true + */ + this.sampler = true; + + /** + * Whether the uv transformation matrix should be + * automatically updated or not. Use `setUpdateMatrix()` + * if you want to change the value of the property. + * + * @type {boolean} + * @default false + */ + this.updateMatrix = false; + + /** + * By default the `update()` method is not executed. `setUpdateMatrix()` + * sets the value to `frame` when the uv transformation matrix should + * automatically be updated. + * + * @type {string} + * @default 'none' + */ + this.updateType = NodeUpdateType.NONE; + + /** + * The reference node. + * + * @type {?Node} + * @default null + */ + this.referenceNode = null; + + /** + * The texture value is stored in a private property. + * + * @private + * @type {Texture} + */ + this._value = value; + + /** + * The uniform node that represents the uv transformation matrix. + * + * @private + * @type {?UniformNode} + */ + this._matrixUniform = null; + + this.setUpdateMatrix( uvNode === null ); + + } + + set value( value ) { + + if ( this.referenceNode ) { + + this.referenceNode.value = value; + + } else { + + this._value = value; + + } + + } + + /** + * The texture value. + * + * @type {Texture} + */ + get value() { + + return this.referenceNode ? this.referenceNode.value : this._value; + + } + + /** + * Overwritten since the uniform hash is defined by the texture's UUID. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The uniform hash. + */ + getUniformHash( /*builder*/ ) { + + return this.value.uuid; + + } + + /** + * Overwritten since the node type is inferred from the texture type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( /*builder*/ ) { + + if ( this.value.isDepthTexture === true ) return 'float'; + + if ( this.value.type === UnsignedIntType ) { + + return 'uvec4'; + + } else if ( this.value.type === IntType ) { + + return 'ivec4'; + + } + + return 'vec4'; + + } + + /** + * Overwrites the default implementation to return a fixed value `'texture'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return 'texture'; + + } + + /** + * Returns a default uvs based on the current texture's channel. + * + * @return {AttributeNode} The default uvs. + */ + getDefaultUV() { + + return uv( this.value.channel ); + + } + + /** + * Overwritten to always return the texture reference of the node. + * + * @param {any} state - This method can be invocated in different contexts so `state` can refer to any object type. + * @return {Texture} The texture reference. + */ + updateReference( /*state*/ ) { + + return this.value; + + } + + /** + * Transforms the given uv node with the texture transformation matrix. + * + * @param {Node} uvNode - The uv node to transform. + * @return {Node} The transformed uv node. + */ + getTransformedUV( uvNode ) { + + if ( this._matrixUniform === null ) this._matrixUniform = uniform( this.value.matrix ); + + return this._matrixUniform.mul( vec3( uvNode, 1 ) ).xy; + + } + + /** + * Defines whether the uv transformation matrix should automatically be updated or not. + * + * @param {boolean} value - The update toggle. + * @return {TextureNode} A reference to this node. + */ + setUpdateMatrix( value ) { + + this.updateMatrix = value; + this.updateType = value ? NodeUpdateType.OBJECT : NodeUpdateType.NONE; + + return this; + + } + + /** + * Setups the uv node. Depending on the backend as well as texture's image and type, it might be necessary + * to modify the uv node for correct sampling. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} uvNode - The uv node to setup. + * @return {Node} The updated uv node. + */ + setupUV( builder, uvNode ) { + + const texture = this.value; + + if ( builder.isFlipY() && ( ( texture.image instanceof ImageBitmap && texture.flipY === true ) || texture.isRenderTargetTexture === true || texture.isFramebufferTexture === true || texture.isDepthTexture === true ) ) { + + if ( this.sampler ) { + + uvNode = uvNode.flipY(); + + } else { + + uvNode = uvNode.setY( int( textureSize( this, this.levelNode ).y ).sub( uvNode.y ).sub( 1 ) ); + + } + + } + + return uvNode; + + } + + /** + * Setups texture node by preparing the internal nodes for code generation. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + const properties = builder.getNodeProperties( this ); + properties.referenceNode = this.referenceNode; + + // + + const texture = this.value; + + if ( ! texture || texture.isTexture !== true ) { + + throw new Error( 'THREE.TSL: `texture( value )` function expects a valid instance of THREE.Texture().' ); + + } + + // + + let uvNode = this.uvNode; + + if ( ( uvNode === null || builder.context.forceUVContext === true ) && builder.context.getUV ) { + + uvNode = builder.context.getUV( this, builder ); + + } + + if ( ! uvNode ) uvNode = this.getDefaultUV(); + + if ( this.updateMatrix === true ) { + + uvNode = this.getTransformedUV( uvNode ); + + } + + uvNode = this.setupUV( builder, uvNode ); + + // + + let levelNode = this.levelNode; + + if ( levelNode === null && builder.context.getTextureLevel ) { + + levelNode = builder.context.getTextureLevel( this ); + + } + + // + + properties.uvNode = uvNode; + properties.levelNode = levelNode; + properties.biasNode = this.biasNode; + properties.compareNode = this.compareNode; + properties.gradNode = this.gradNode; + properties.depthNode = this.depthNode; + + } + + /** + * Generates the uv code snippet. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} uvNode - The uv node to generate code for. + * @return {string} The generated code snippet. + */ + generateUV( builder, uvNode ) { + + return uvNode.build( builder, this.sampler === true ? 'vec2' : 'ivec2' ); + + } + + /** + * Generates the snippet for the texture sampling. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} textureProperty - The texture property. + * @param {string} uvSnippet - The uv snippet. + * @param {?string} levelSnippet - The level snippet. + * @param {?string} biasSnippet - The bias snippet. + * @param {?string} depthSnippet - The depth snippet. + * @param {?string} compareSnippet - The compare snippet. + * @param {?Array} gradSnippet - The grad snippet. + * @return {string} The generated code snippet. + */ + generateSnippet( builder, textureProperty, uvSnippet, levelSnippet, biasSnippet, depthSnippet, compareSnippet, gradSnippet ) { + + const texture = this.value; + + let snippet; + + if ( levelSnippet ) { + + snippet = builder.generateTextureLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet ); + + } else if ( biasSnippet ) { + + snippet = builder.generateTextureBias( texture, textureProperty, uvSnippet, biasSnippet, depthSnippet ); + + } else if ( gradSnippet ) { + + snippet = builder.generateTextureGrad( texture, textureProperty, uvSnippet, gradSnippet, depthSnippet ); + + } else if ( compareSnippet ) { + + snippet = builder.generateTextureCompare( texture, textureProperty, uvSnippet, compareSnippet, depthSnippet ); + + } else if ( this.sampler === false ) { + + snippet = builder.generateTextureLoad( texture, textureProperty, uvSnippet, depthSnippet ); + + } else { + + snippet = builder.generateTexture( texture, textureProperty, uvSnippet, depthSnippet ); + + } + + return snippet; + + } + + /** + * Generates the code snippet of the texture node. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} output - The current output. + * @return {string} The generated code snippet. + */ + generate( builder, output ) { + + const texture = this.value; + + const properties = builder.getNodeProperties( this ); + const textureProperty = super.generate( builder, 'property' ); + + if ( /^sampler/.test( output ) ) { + + return textureProperty + '_sampler'; + + } else if ( builder.isReference( output ) ) { + + return textureProperty; + + } else { + + const nodeData = builder.getDataFromNode( this ); + + let propertyName = nodeData.propertyName; + + if ( propertyName === undefined ) { + + const { uvNode, levelNode, biasNode, compareNode, depthNode, gradNode } = properties; + + const uvSnippet = this.generateUV( builder, uvNode ); + const levelSnippet = levelNode ? levelNode.build( builder, 'float' ) : null; + const biasSnippet = biasNode ? biasNode.build( builder, 'float' ) : null; + const depthSnippet = depthNode ? depthNode.build( builder, 'int' ) : null; + const compareSnippet = compareNode ? compareNode.build( builder, 'float' ) : null; + const gradSnippet = gradNode ? [ gradNode[ 0 ].build( builder, 'vec2' ), gradNode[ 1 ].build( builder, 'vec2' ) ] : null; + + const nodeVar = builder.getVarFromNode( this ); + + propertyName = builder.getPropertyName( nodeVar ); + + const snippet = this.generateSnippet( builder, textureProperty, uvSnippet, levelSnippet, biasSnippet, depthSnippet, compareSnippet, gradSnippet ); + + builder.addLineFlowCode( `${propertyName} = ${snippet}`, this ); + + nodeData.snippet = snippet; + nodeData.propertyName = propertyName; + + } + + let snippet = propertyName; + const nodeType = this.getNodeType( builder ); + + if ( builder.needsToWorkingColorSpace( texture ) ) { + + snippet = colorSpaceToWorking( expression( snippet, nodeType ), texture.colorSpace ).setup( builder ).build( builder, nodeType ); + + } + + return builder.format( snippet, nodeType, output ); + + } + + } + + /** + * Sets the sampler value. + * + * @param {boolean} value - The sampler value to set. + * @return {TextureNode} A reference to this texture node. + */ + setSampler( value ) { + + this.sampler = value; + + return this; + + } + + /** + * Returns the sampler value. + * + * @return {boolean} The sampler value. + */ + getSampler() { + + return this.sampler; + + } + + // @TODO: Move to TSL + + /** + * @function + * @deprecated since r172. Use {@link TextureNode#sample} instead. + * + * @param {Node} uvNode - The uv node. + * @return {TextureNode} A texture node representing the texture sample. + */ + uv( uvNode ) { // @deprecated, r172 + + console.warn( 'THREE.TextureNode: .uv() has been renamed. Use .sample() instead.' ); + + return this.sample( uvNode ); + + } + + /** + * Samples the texture with the given uv node. + * + * @param {Node} uvNode - The uv node. + * @return {TextureNode} A texture node representing the texture sample. + */ + sample( uvNode ) { + + const textureNode = this.clone(); + textureNode.uvNode = nodeObject( uvNode ); + textureNode.referenceNode = this.getSelf(); + + return nodeObject( textureNode ); + + } + + /** + * Samples a blurred version of the texture by defining an internal bias. + * + * @param {Node} amountNode - How blurred the texture should be. + * @return {TextureNode} A texture node representing the texture sample. + */ + blur( amountNode ) { + + const textureNode = this.clone(); + textureNode.biasNode = nodeObject( amountNode ).mul( maxMipLevel( textureNode ) ); + textureNode.referenceNode = this.getSelf(); + + const map = textureNode.value; + + if ( textureNode.generateMipmaps === false && ( map && map.generateMipmaps === false || map.minFilter === NearestFilter || map.magFilter === NearestFilter ) ) { + + console.warn( 'THREE.TSL: texture().blur() requires mipmaps and sampling. Use .generateMipmaps=true and .minFilter/.magFilter=THREE.LinearFilter in the Texture.' ); + + textureNode.biasNode = null; + + } + + return nodeObject( textureNode ); + + } + + /** + * Samples a specific mip of the texture. + * + * @param {Node} levelNode - The mip level to sample. + * @return {TextureNode} A texture node representing the texture sample. + */ + level( levelNode ) { + + const textureNode = this.clone(); + textureNode.levelNode = nodeObject( levelNode ); + textureNode.referenceNode = this.getSelf(); + + return nodeObject( textureNode ); + + } + + /** + * Returns the texture size of the requested level. + * + * @param {Node} levelNode - The level to compute the size for. + * @return {TextureSizeNode} The texture size. + */ + size( levelNode ) { + + return textureSize( this, levelNode ); + + } + + /** + * Samples the texture with the given bias. + * + * @param {Node} biasNode - The bias node. + * @return {TextureNode} A texture node representing the texture sample. + */ + bias( biasNode ) { + + const textureNode = this.clone(); + textureNode.biasNode = nodeObject( biasNode ); + textureNode.referenceNode = this.getSelf(); + + return nodeObject( textureNode ); + + } + + /** + * Samples the texture by executing a compare operation. + * + * @param {Node} compareNode - The node that defines the compare value. + * @return {TextureNode} A texture node representing the texture sample. + */ + compare( compareNode ) { + + const textureNode = this.clone(); + textureNode.compareNode = nodeObject( compareNode ); + textureNode.referenceNode = this.getSelf(); + + return nodeObject( textureNode ); + + } + + /** + * Samples the texture using an explicit gradient. + * + * @param {Node} gradNodeX - The gradX node. + * @param {Node} gradNodeY - The gradY node. + * @return {TextureNode} A texture node representing the texture sample. + */ + grad( gradNodeX, gradNodeY ) { + + const textureNode = this.clone(); + textureNode.gradNode = [ nodeObject( gradNodeX ), nodeObject( gradNodeY ) ]; + textureNode.referenceNode = this.getSelf(); + + return nodeObject( textureNode ); + + } + + /** + * Samples the texture by defining a depth node. + * + * @param {Node} depthNode - The depth node. + * @return {TextureNode} A texture node representing the texture sample. + */ + depth( depthNode ) { + + const textureNode = this.clone(); + textureNode.depthNode = nodeObject( depthNode ); + textureNode.referenceNode = this.getSelf(); + + return nodeObject( textureNode ); + + } + + // -- + + serialize( data ) { + + super.serialize( data ); + + data.value = this.value.toJSON( data.meta ).uuid; + data.sampler = this.sampler; + data.updateMatrix = this.updateMatrix; + data.updateType = this.updateType; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.value = data.meta.textures[ data.value ]; + this.sampler = data.sampler; + this.updateMatrix = data.updateMatrix; + this.updateType = data.updateType; + + } + + /** + * The update is used to implement the update of the uv transformation matrix. + */ + update() { + + const texture = this.value; + const matrixUniform = this._matrixUniform; + + if ( matrixUniform !== null ) matrixUniform.value = texture.matrix; + + if ( texture.matrixAutoUpdate === true ) { + + texture.updateMatrix(); + + } + + } + + /** + * Clones the texture node. + * + * @return {TextureNode} The cloned texture node. + */ + clone() { + + const newNode = new this.constructor( this.value, this.uvNode, this.levelNode, this.biasNode ); + newNode.sampler = this.sampler; + newNode.depthNode = this.depthNode; + newNode.compareNode = this.compareNode; + newNode.gradNode = this.gradNode; + + return newNode; + + } + +} + +/** + * TSL function for creating a texture node. + * + * @tsl + * @function + * @param {?Texture} value - The texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + * @returns {TextureNode} + */ +const textureBase = /*@__PURE__*/ nodeProxy( TextureNode ).setParameterLength( 1, 4 ).setName( 'texture' ); + +/** + * TSL function for creating a texture node or sample a texture node already existing. + * + * @tsl + * @function + * @param {?Texture|TextureNode} [value=EmptyTexture] - The texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + * @returns {TextureNode} + */ +const texture = ( value = EmptyTexture$1, uvNode = null, levelNode = null, biasNode = null ) => { + + let textureNode; + + if ( value && value.isTextureNode === true ) { + + textureNode = nodeObject( value.clone() ); + textureNode.referenceNode = value.getSelf(); // Ensure the reference is set to the original node + + if ( uvNode !== null ) textureNode.uvNode = nodeObject( uvNode ); + if ( levelNode !== null ) textureNode.levelNode = nodeObject( levelNode ); + if ( biasNode !== null ) textureNode.biasNode = nodeObject( biasNode ); + + } else { + + textureNode = textureBase( value, uvNode, levelNode, biasNode ); + + } + + return textureNode; + +}; + +/** + * TSL function for creating a uniform texture node. + * + * @tsl + * @function + * @param {?Texture} value - The texture. + * @returns {TextureNode} + */ +const uniformTexture = ( value = EmptyTexture$1 ) => texture( value ); + +/** + * TSL function for creating a texture node that fetches/loads texels without interpolation. + * + * @tsl + * @function + * @param {?Texture|TextureNode} [value=EmptyTexture] - The texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + * @returns {TextureNode} + */ +const textureLoad = ( ...params ) => texture( ...params ).setSampler( false ); + +//export const textureLevel = ( value, uv, level ) => texture( value, uv ).level( level ); + +/** + * Converts a texture or texture node to a sampler. + * + * @tsl + * @function + * @param {TextureNode|Texture} value - The texture or texture node to convert. + * @returns {Node} + */ +const sampler = ( value ) => ( value.isNode === true ? value : texture( value ) ).convert( 'sampler' ); + +/** + * Converts a texture or texture node to a sampler comparison. + * + * @tsl + * @function + * @param {TextureNode|Texture} value - The texture or texture node to convert. + * @returns {Node} + */ +const samplerComparison = ( value ) => ( value.isNode === true ? value : texture( value ) ).convert( 'samplerComparison' ); + +/** + * A special type of uniform node which represents array-like data + * as uniform buffers. The access usually happens via `element()` + * which returns an instance of {@link ArrayElementNode}. For example: + * + * ```js + * const bufferNode = buffer( array, 'mat4', count ); + * const matrixNode = bufferNode.element( index ); // access a matrix from the buffer + * ``` + * In general, it is recommended to use the more managed {@link UniformArrayNode} + * since it handles more input types and automatically cares about buffer paddings. + * + * @augments UniformNode + */ +class BufferNode extends UniformNode { + + static get type() { + + return 'BufferNode'; + + } + + /** + * Constructs a new buffer node. + * + * @param {Array} value - Array-like buffer data. + * @param {string} bufferType - The data type of the buffer. + * @param {number} [bufferCount=0] - The count of buffer elements. + */ + constructor( value, bufferType, bufferCount = 0 ) { + + super( value, bufferType ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBufferNode = true; + + /** + * The data type of the buffer. + * + * @type {string} + */ + this.bufferType = bufferType; + + /** + * The uniform node that holds the value of the reference node. + * + * @type {number} + * @default 0 + */ + this.bufferCount = bufferCount; + + } + + /** + * The data type of the buffer elements. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The element type. + */ + getElementType( builder ) { + + return this.getNodeType( builder ); + + } + + /** + * Overwrites the default implementation to return a fixed value `'buffer'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return 'buffer'; + + } + +} + +/** + * TSL function for creating a buffer node. + * + * @tsl + * @function + * @param {Array} value - Array-like buffer data. + * @param {string} type - The data type of a buffer element. + * @param {number} count - The count of buffer elements. + * @returns {BufferNode} + */ +const buffer = ( value, type, count ) => nodeObject( new BufferNode( value, type, count ) ); + +/** + * Represents the element access on uniform array nodes. + * + * @augments ArrayElementNode + */ +class UniformArrayElementNode extends ArrayElementNode { + + static get type() { + + return 'UniformArrayElementNode'; + + } + + /** + * Constructs a new buffer node. + * + * @param {UniformArrayNode} uniformArrayNode - The uniform array node to access. + * @param {IndexNode} indexNode - The index data that define the position of the accessed element in the array. + */ + constructor( uniformArrayNode, indexNode ) { + + super( uniformArrayNode, indexNode ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isArrayBufferElementNode = true; + + } + + generate( builder ) { + + const snippet = super.generate( builder ); + const type = this.getNodeType(); + const paddedType = this.node.getPaddedType(); + + return builder.format( snippet, paddedType, type ); + + } + +} + +/** + * Similar to {@link BufferNode} this module represents array-like data as + * uniform buffers. Unlike {@link BufferNode}, it can handle more common + * data types in the array (e.g `three.js` primitives) and automatically + * manage buffer padding. It should be the first choice when working with + * uniforms buffers. + * ```js + * const tintColors = uniformArray( [ + * new Color( 1, 0, 0 ), + * new Color( 0, 1, 0 ), + * new Color( 0, 0, 1 ) + * ], 'color' ); + * + * const redColor = tintColors.element( 0 ); + * + * @augments BufferNode + */ +class UniformArrayNode extends BufferNode { + + static get type() { + + return 'UniformArrayNode'; + + } + + /** + * Constructs a new uniform array node. + * + * @param {Array} value - Array holding the buffer data. + * @param {?string} [elementType=null] - The data type of a buffer element. + */ + constructor( value, elementType = null ) { + + super( null ); + + /** + * Array holding the buffer data. Unlike {@link BufferNode}, the array can + * hold number primitives as well as three.js objects like vectors, matrices + * or colors. + * + * @type {Array} + */ + this.array = value; + + /** + * The data type of an array element. + * + * @type {string} + */ + this.elementType = elementType === null ? getValueType( value[ 0 ] ) : elementType; + + /** + * The padded type. Uniform buffers must conform to a certain buffer layout + * so a separate type is computed to ensure correct buffer size. + * + * @type {string} + */ + this.paddedType = this.getPaddedType(); + + /** + * Overwritten since uniform array nodes are updated per render. + * + * @type {string} + * @default 'render' + */ + this.updateType = NodeUpdateType.RENDER; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isArrayBufferNode = true; + + } + + /** + * This method is overwritten since the node type is inferred from the + * {@link UniformArrayNode#paddedType}. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( /*builder*/ ) { + + return this.paddedType; + + } + + /** + * The data type of the array elements. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The element type. + */ + getElementType() { + + return this.elementType; + + } + + /** + * Returns the padded type based on the element type. + * + * @return {string} The padded type. + */ + getPaddedType() { + + const elementType = this.elementType; + + let paddedType = 'vec4'; + + if ( elementType === 'mat2' ) { + + paddedType = 'mat2'; + + } else if ( /mat/.test( elementType ) === true ) { + + paddedType = 'mat4'; + + } else if ( elementType.charAt( 0 ) === 'i' ) { + + paddedType = 'ivec4'; + + } else if ( elementType.charAt( 0 ) === 'u' ) { + + paddedType = 'uvec4'; + + } + + return paddedType; + + } + + /** + * The update makes sure to correctly transfer the data from the (complex) objects + * in the array to the internal, correctly padded value buffer. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( /*frame*/ ) { + + const { array, value } = this; + + const elementType = this.elementType; + + if ( elementType === 'float' || elementType === 'int' || elementType === 'uint' ) { + + for ( let i = 0; i < array.length; i ++ ) { + + const index = i * 4; + + value[ index ] = array[ i ]; + + } + + } else if ( elementType === 'color' ) { + + for ( let i = 0; i < array.length; i ++ ) { + + const index = i * 4; + const vector = array[ i ]; + + value[ index ] = vector.r; + value[ index + 1 ] = vector.g; + value[ index + 2 ] = vector.b || 0; + //value[ index + 3 ] = vector.a || 0; + + } + + } else if ( elementType === 'mat2' ) { + + for ( let i = 0; i < array.length; i ++ ) { + + const index = i * 4; + const matrix = array[ i ]; + + value[ index ] = matrix.elements[ 0 ]; + value[ index + 1 ] = matrix.elements[ 1 ]; + value[ index + 2 ] = matrix.elements[ 2 ]; + value[ index + 3 ] = matrix.elements[ 3 ]; + + } + + } else if ( elementType === 'mat3' ) { + + for ( let i = 0; i < array.length; i ++ ) { + + const index = i * 16; + const matrix = array[ i ]; + + value[ index ] = matrix.elements[ 0 ]; + value[ index + 1 ] = matrix.elements[ 1 ]; + value[ index + 2 ] = matrix.elements[ 2 ]; + + value[ index + 4 ] = matrix.elements[ 3 ]; + value[ index + 5 ] = matrix.elements[ 4 ]; + value[ index + 6 ] = matrix.elements[ 5 ]; + + value[ index + 8 ] = matrix.elements[ 6 ]; + value[ index + 9 ] = matrix.elements[ 7 ]; + value[ index + 10 ] = matrix.elements[ 8 ]; + + value[ index + 15 ] = 1; + + } + + } else if ( elementType === 'mat4' ) { + + for ( let i = 0; i < array.length; i ++ ) { + + const index = i * 16; + const matrix = array[ i ]; + + for ( let i = 0; i < matrix.elements.length; i ++ ) { + + value[ index + i ] = matrix.elements[ i ]; + + } + + } + + } else { + + for ( let i = 0; i < array.length; i ++ ) { + + const index = i * 4; + const vector = array[ i ]; + + value[ index ] = vector.x; + value[ index + 1 ] = vector.y; + value[ index + 2 ] = vector.z || 0; + value[ index + 3 ] = vector.w || 0; + + } + + } + + } + + /** + * Implement the value buffer creation based on the array data. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @return {null} + */ + setup( builder ) { + + const length = this.array.length; + const elementType = this.elementType; + + let arrayType = Float32Array; + + const paddedType = this.paddedType; + const paddedElementLength = builder.getTypeLength( paddedType ); + + if ( elementType.charAt( 0 ) === 'i' ) arrayType = Int32Array; + if ( elementType.charAt( 0 ) === 'u' ) arrayType = Uint32Array; + + this.value = new arrayType( length * paddedElementLength ); + this.bufferCount = length; + this.bufferType = paddedType; + + return super.setup( builder ); + + } + + /** + * Overwrites the default `element()` method to provide element access + * based on {@link UniformArrayNode}. + * + * @param {IndexNode} indexNode - The index node. + * @return {UniformArrayElementNode} + */ + element( indexNode ) { + + return nodeObject( new UniformArrayElementNode( this, nodeObject( indexNode ) ) ); + + } + +} + +/** + * TSL function for creating an uniform array node. + * + * @tsl + * @function + * @param {Array} values - Array-like data. + * @param {?string} [nodeType] - The data type of the array elements. + * @returns {UniformArrayNode} + */ +const uniformArray = ( values, nodeType ) => nodeObject( new UniformArrayNode( values, nodeType ) ); + +/** + * @tsl + * @function + * @deprecated since r168. Use {@link uniformArray} instead. + * + * @param {Array} values - Array-like data. + * @param {string} nodeType - The data type of the array elements. + * @returns {UniformArrayNode} + */ +const uniforms = ( values, nodeType ) => { // @deprecated, r168 + + console.warn( 'THREE.TSL: uniforms() has been renamed to uniformArray().' ); + return nodeObject( new UniformArrayNode( values, nodeType ) ); + +}; + +/** + * The node allows to set values for built-in shader variables. That is + * required for features like hardware-accelerated vertex clipping. + * + * @augments Node + */ +class BuiltinNode extends Node { + + /** + * Constructs a new builtin node. + * + * @param {string} name - The name of the built-in shader variable. + */ + constructor( name ) { + + super( 'float' ); + + /** + * The name of the built-in shader variable. + * + * @type {string} + */ + this.name = name; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBuiltinNode = true; + + } + + /** + * Generates the code snippet of the builtin node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The generated code snippet. + */ + generate( /* builder */ ) { + + return this.name; + + } + +} + +/** + * TSL function for creating a builtin node. + * + * @tsl + * @function + * @param {string} name - The name of the built-in shader variable. + * @returns {BuiltinNode} + */ +const builtin = nodeProxy( BuiltinNode ).setParameterLength( 1 ); + +/** + * TSL object that represents the current `index` value of the camera if used ArrayCamera. + * + * @tsl + * @type {UniformNode} + */ +const cameraIndex = /*@__PURE__*/ uniform( 0, 'uint' ).label( 'u_cameraIndex' ).setGroup( sharedUniformGroup( 'cameraIndex' ) ).toVarying( 'v_cameraIndex' ); + +/** + * TSL object that represents the `near` value of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraNear = /*@__PURE__*/ uniform( 'float' ).label( 'cameraNear' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.near ); + +/** + * TSL object that represents the `far` value of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraFar = /*@__PURE__*/ uniform( 'float' ).label( 'cameraFar' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.far ); + +/** + * TSL object that represents the projection matrix of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraProjectionMatrix = /*@__PURE__*/ ( Fn( ( { camera } ) => { + + let cameraProjectionMatrix; + + if ( camera.isArrayCamera && camera.cameras.length > 0 ) { + + const matrices = []; + + for ( const subCamera of camera.cameras ) { + + matrices.push( subCamera.projectionMatrix ); + + } + + const cameraProjectionMatrices = uniformArray( matrices ).setGroup( renderGroup ).label( 'cameraProjectionMatrices' ); + + cameraProjectionMatrix = cameraProjectionMatrices.element( camera.isMultiViewCamera ? builtin( 'gl_ViewID_OVR' ) : cameraIndex ).toVar( 'cameraProjectionMatrix' ); + + } else { + + cameraProjectionMatrix = uniform( 'mat4' ).label( 'cameraProjectionMatrix' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.projectionMatrix ); + + } + + return cameraProjectionMatrix; + +} ).once() )(); + +/** + * TSL object that represents the inverse projection matrix of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraProjectionMatrixInverse = /*@__PURE__*/ ( Fn( ( { camera } ) => { + + let cameraProjectionMatrixInverse; + + if ( camera.isArrayCamera && camera.cameras.length > 0 ) { + + const matrices = []; + + for ( const subCamera of camera.cameras ) { + + matrices.push( subCamera.projectionMatrixInverse ); + + } + + const cameraProjectionMatricesInverse = uniformArray( matrices ).setGroup( renderGroup ).label( 'cameraProjectionMatricesInverse' ); + + cameraProjectionMatrixInverse = cameraProjectionMatricesInverse.element( camera.isMultiViewCamera ? builtin( 'gl_ViewID_OVR' ) : cameraIndex ).toVar( 'cameraProjectionMatrixInverse' ); + + } else { + + cameraProjectionMatrixInverse = uniform( 'mat4' ).label( 'cameraProjectionMatrixInverse' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.projectionMatrixInverse ); + + } + + return cameraProjectionMatrixInverse; + +} ).once() )(); + +/** + * TSL object that represents the view matrix of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraViewMatrix = /*@__PURE__*/ ( Fn( ( { camera } ) => { + + let cameraViewMatrix; + + if ( camera.isArrayCamera && camera.cameras.length > 0 ) { + + const matrices = []; + + for ( const subCamera of camera.cameras ) { + + matrices.push( subCamera.matrixWorldInverse ); + + } + + const cameraViewMatrices = uniformArray( matrices ).setGroup( renderGroup ).label( 'cameraViewMatrices' ); + + cameraViewMatrix = cameraViewMatrices.element( camera.isMultiViewCamera ? builtin( 'gl_ViewID_OVR' ) : cameraIndex ).toVar( 'cameraViewMatrix' ); + + } else { + + cameraViewMatrix = uniform( 'mat4' ).label( 'cameraViewMatrix' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.matrixWorldInverse ); + + } + + return cameraViewMatrix; + +} ).once() )(); + +/** + * TSL object that represents the world matrix of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraWorldMatrix = /*@__PURE__*/ uniform( 'mat4' ).label( 'cameraWorldMatrix' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.matrixWorld ); + +/** + * TSL object that represents the normal matrix of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraNormalMatrix = /*@__PURE__*/ uniform( 'mat3' ).label( 'cameraNormalMatrix' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.normalMatrix ); + +/** + * TSL object that represents the position in world space of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraPosition = /*@__PURE__*/ uniform( new Vector3() ).label( 'cameraPosition' ).setGroup( renderGroup ).onRenderUpdate( ( { camera }, self ) => self.value.setFromMatrixPosition( camera.matrixWorld ) ); + +const _sphere = /*@__PURE__*/ new Sphere(); + +/** + * This node can be used to access transformation related metrics of 3D objects. + * Depending on the selected scope, a different metric is represented as a uniform + * in the shader. The following scopes are supported: + * + * - `POSITION`: The object's position in world space. + * - `VIEW_POSITION`: The object's position in view/camera space. + * - `DIRECTION`: The object's direction in world space. + * - `SCALE`: The object's scale in world space. + * - `WORLD_MATRIX`: The object's matrix in world space. + * + * @augments Node + */ +class Object3DNode extends Node { + + static get type() { + + return 'Object3DNode'; + + } + + /** + * Constructs a new object 3D node. + * + * @param {('position'|'viewPosition'|'direction'|'scale'|'worldMatrix')} scope - The node represents a different type of transformation depending on the scope. + * @param {?Object3D} [object3d=null] - The 3D object. + */ + constructor( scope, object3d = null ) { + + super(); + + /** + * The node reports a different type of transformation depending on the scope. + * + * @type {('position'|'viewPosition'|'direction'|'scale'|'worldMatrix')} + */ + this.scope = scope; + + /** + * The 3D object. + * + * @type {?Object3D} + * @default null + */ + this.object3d = object3d; + + /** + * Overwritten since this type of node is updated per object. + * + * @type {string} + * @default 'object' + */ + this.updateType = NodeUpdateType.OBJECT; + + /** + * Holds the value of the node as a uniform. + * + * @type {UniformNode} + */ + this.uniformNode = new UniformNode( null ); + + } + + /** + * Overwritten since the node type is inferred from the scope. + * + * @return {string} The node type. + */ + getNodeType() { + + const scope = this.scope; + + if ( scope === Object3DNode.WORLD_MATRIX ) { + + return 'mat4'; + + } else if ( scope === Object3DNode.POSITION || scope === Object3DNode.VIEW_POSITION || scope === Object3DNode.DIRECTION || scope === Object3DNode.SCALE ) { + + return 'vec3'; + + } else if ( scope === Object3DNode.RADIUS ) { + + return 'float'; + + } + + } + + /** + * Updates the uniform value depending on the scope. + * + * @param {NodeFrame} frame - The current node frame. + */ + update( frame ) { + + const object = this.object3d; + const uniformNode = this.uniformNode; + const scope = this.scope; + + if ( scope === Object3DNode.WORLD_MATRIX ) { + + uniformNode.value = object.matrixWorld; + + } else if ( scope === Object3DNode.POSITION ) { + + uniformNode.value = uniformNode.value || new Vector3(); + + uniformNode.value.setFromMatrixPosition( object.matrixWorld ); + + } else if ( scope === Object3DNode.SCALE ) { + + uniformNode.value = uniformNode.value || new Vector3(); + + uniformNode.value.setFromMatrixScale( object.matrixWorld ); + + } else if ( scope === Object3DNode.DIRECTION ) { + + uniformNode.value = uniformNode.value || new Vector3(); + + object.getWorldDirection( uniformNode.value ); + + } else if ( scope === Object3DNode.VIEW_POSITION ) { + + const camera = frame.camera; + + uniformNode.value = uniformNode.value || new Vector3(); + uniformNode.value.setFromMatrixPosition( object.matrixWorld ); + + uniformNode.value.applyMatrix4( camera.matrixWorldInverse ); + + } else if ( scope === Object3DNode.RADIUS ) { + + const geometry = frame.object.geometry; + + if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); + + _sphere.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld ); + + uniformNode.value = _sphere.radius; + + } + + } + + /** + * Generates the code snippet of the uniform node. The node type of the uniform + * node also depends on the selected scope. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The generated code snippet. + */ + generate( builder ) { + + const scope = this.scope; + + if ( scope === Object3DNode.WORLD_MATRIX ) { + + this.uniformNode.nodeType = 'mat4'; + + } else if ( scope === Object3DNode.POSITION || scope === Object3DNode.VIEW_POSITION || scope === Object3DNode.DIRECTION || scope === Object3DNode.SCALE ) { + + this.uniformNode.nodeType = 'vec3'; + + } else if ( scope === Object3DNode.RADIUS ) { + + this.uniformNode.nodeType = 'float'; + + } + + return this.uniformNode.build( builder ); + + } + + serialize( data ) { + + super.serialize( data ); + + data.scope = this.scope; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.scope = data.scope; + + } + +} + +Object3DNode.WORLD_MATRIX = 'worldMatrix'; +Object3DNode.POSITION = 'position'; +Object3DNode.SCALE = 'scale'; +Object3DNode.VIEW_POSITION = 'viewPosition'; +Object3DNode.DIRECTION = 'direction'; +Object3DNode.RADIUS = 'radius'; + +/** + * TSL function for creating an object 3D node that represents the object's direction in world space. + * + * @tsl + * @function + * @param {?Object3D} [object3d] - The 3D object. + * @returns {Object3DNode} + */ +const objectDirection = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.DIRECTION ).setParameterLength( 1 ); + +/** + * TSL function for creating an object 3D node that represents the object's world matrix. + * + * @tsl + * @function + * @param {?Object3D} [object3d] - The 3D object. + * @returns {Object3DNode} + */ +const objectWorldMatrix = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.WORLD_MATRIX ).setParameterLength( 1 ); + +/** + * TSL function for creating an object 3D node that represents the object's position in world space. + * + * @tsl + * @function + * @param {?Object3D} [object3d] - The 3D object. + * @returns {Object3DNode} + */ +const objectPosition = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.POSITION ).setParameterLength( 1 ); + +/** + * TSL function for creating an object 3D node that represents the object's scale in world space. + * + * @tsl + * @function + * @param {?Object3D} [object3d] - The 3D object. + * @returns {Object3DNode} + */ +const objectScale = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.SCALE ).setParameterLength( 1 ); + +/** + * TSL function for creating an object 3D node that represents the object's position in view/camera space. + * + * @tsl + * @function + * @param {?Object3D} [object3d] - The 3D object. + * @returns {Object3DNode} + */ +const objectViewPosition = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.VIEW_POSITION ).setParameterLength( 1 ); + +/** + * TSL function for creating an object 3D node that represents the object's radius. + * + * @tsl + * @function + * @param {?Object3D} [object3d] - The 3D object. + * @returns {Object3DNode} + */ +const objectRadius = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.RADIUS ).setParameterLength( 1 ); + +/** + * This type of node is a specialized version of `Object3DNode` + * with larger set of model related metrics. Unlike `Object3DNode`, + * `ModelNode` extracts the reference to the 3D object from the + * current node frame state. + * + * @augments Object3DNode + */ +class ModelNode extends Object3DNode { + + static get type() { + + return 'ModelNode'; + + } + + /** + * Constructs a new object model node. + * + * @param {('position'|'viewPosition'|'direction'|'scale'|'worldMatrix')} scope - The node represents a different type of transformation depending on the scope. + */ + constructor( scope ) { + + super( scope ); + + } + + /** + * Extracts the model reference from the frame state and then + * updates the uniform value depending on the scope. + * + * @param {NodeFrame} frame - The current node frame. + */ + update( frame ) { + + this.object3d = frame.object; + + super.update( frame ); + + } + +} + +/** + * TSL object that represents the object's direction in world space. + * + * @tsl + * @type {ModelNode} + */ +const modelDirection = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.DIRECTION ); + +/** + * TSL object that represents the object's world matrix. + * + * @tsl + * @type {ModelNode} + */ +const modelWorldMatrix = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.WORLD_MATRIX ); + +/** + * TSL object that represents the object's position in world space. + * + * @tsl + * @type {ModelNode} + */ +const modelPosition = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.POSITION ); + +/** + * TSL object that represents the object's scale in world space. + * + * @tsl + * @type {ModelNode} + */ +const modelScale = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.SCALE ); + +/** + * TSL object that represents the object's position in view/camera space. + * + * @tsl + * @type {ModelNode} + */ +const modelViewPosition = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.VIEW_POSITION ); + +/** + * TSL object that represents the object's radius. + * + * @tsl + * @type {ModelNode} + */ +const modelRadius = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.RADIUS ); + +/** + * TSL object that represents the object's normal matrix. + * + * @tsl + * @type {UniformNode} + */ +const modelNormalMatrix = /*@__PURE__*/ uniform( new Matrix3() ).onObjectUpdate( ( { object }, self ) => self.value.getNormalMatrix( object.matrixWorld ) ); + +/** + * TSL object that represents the object's inverse world matrix. + * + * @tsl + * @type {UniformNode} + */ +const modelWorldMatrixInverse = /*@__PURE__*/ uniform( new Matrix4() ).onObjectUpdate( ( { object }, self ) => self.value.copy( object.matrixWorld ).invert() ); + +/** + * TSL object that represents the object's model view matrix. + * + * @tsl + * @type {Node} + */ +const modelViewMatrix = /*@__PURE__*/ ( Fn( ( builder ) => { + + return builder.renderer.overrideNodes.modelViewMatrix || mediumpModelViewMatrix; + +} ).once() )().toVar( 'modelViewMatrix' ); + +// GPU Precision + +/** + * TSL object that represents the object's model view in `mediump` precision. + * + * @tsl + * @type {Node} + */ +const mediumpModelViewMatrix = /*@__PURE__*/ cameraViewMatrix.mul( modelWorldMatrix ); + +// CPU Precision + +/** + * TSL object that represents the object's model view in `highp` precision + * which is achieved by computing the matrix in JS and not in the shader. + * + * @tsl + * @type {Node} + */ +const highpModelViewMatrix = /*@__PURE__*/ ( Fn( ( builder ) => { + + builder.context.isHighPrecisionModelViewMatrix = true; + + return uniform( 'mat4' ).onObjectUpdate( ( { object, camera } ) => { + + return object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); + + } ); + +} ).once() )().toVar( 'highpModelViewMatrix' ); + +/** + * TSL object that represents the object's model normal view in `highp` precision + * which is achieved by computing the matrix in JS and not in the shader. + * + * @tsl + * @type {Node} + */ +const highpModelNormalViewMatrix = /*@__PURE__*/ ( Fn( ( builder ) => { + + const isHighPrecisionModelViewMatrix = builder.context.isHighPrecisionModelViewMatrix; + + return uniform( 'mat3' ).onObjectUpdate( ( { object, camera } ) => { + + if ( isHighPrecisionModelViewMatrix !== true ) { + + object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); + + } + + return object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); + + } ); + +} ).once() )().toVar( 'highpModelNormalViewMatrix' ); + +/** + * TSL object that represents the position attribute of the current rendered object. + * + * @tsl + * @type {AttributeNode} + */ +const positionGeometry = /*@__PURE__*/ attribute( 'position', 'vec3' ); + +/** + * TSL object that represents the vertex position in local space of the current rendered object. + * + * @tsl + * @type {AttributeNode} + */ +const positionLocal = /*@__PURE__*/ positionGeometry.toVarying( 'positionLocal' ); + +/** + * TSL object that represents the previous vertex position in local space of the current rendered object. + * Used in context of {@link VelocityNode} for rendering motion vectors. + * + * @tsl + * @type {AttributeNode} + */ +const positionPrevious = /*@__PURE__*/ positionGeometry.toVarying( 'positionPrevious' ); + +/** + * TSL object that represents the vertex position in world space of the current rendered object. + * + * @tsl + * @type {VaryingNode} + */ +const positionWorld = /*@__PURE__*/ ( Fn( ( builder ) => { + + return modelWorldMatrix.mul( positionLocal ).xyz.toVarying( builder.getNamespace( 'v_positionWorld' ) ); + +}, 'vec3' ).once( 'POSITION' ) )(); + +/** + * TSL object that represents the position world direction of the current rendered object. + * + * @tsl + * @type {Node} + */ +const positionWorldDirection = /*@__PURE__*/ ( Fn( ( builder ) => { + + const vertexPWD = positionLocal.transformDirection( modelWorldMatrix ).toVarying( builder.getNamespace( 'v_positionWorldDirection' ) ); + + return vertexPWD.normalize().toVar( 'positionWorldDirection' ); + +}, 'vec3' ).once( 'POSITION' ) )(); + +/** + * TSL object that represents the vertex position in view space of the current rendered object. + * + * @tsl + * @type {VaryingNode} + */ +const positionView = /*@__PURE__*/ ( Fn( ( builder ) => { + + return builder.context.setupPositionView().toVarying( builder.getNamespace( 'v_positionView' ) ); + +}, 'vec3' ).once( 'POSITION' ) )(); + +/** + * TSL object that represents the position view direction of the current rendered object. + * + * @tsl + * @type {VaryingNode} + */ +const positionViewDirection = /*@__PURE__*/ positionView.negate().toVarying( 'v_positionViewDirection' ).normalize().toVar( 'positionViewDirection' ); + +/** + * This node can be used to evaluate whether a primitive is front or back facing. + * + * @augments Node + */ +class FrontFacingNode extends Node { + + static get type() { + + return 'FrontFacingNode'; + + } + + /** + * Constructs a new front facing node. + */ + constructor() { + + super( 'bool' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isFrontFacingNode = true; + + } + + generate( builder ) { + + const { renderer, material } = builder; + + if ( renderer.coordinateSystem === WebGLCoordinateSystem ) { + + if ( material.side === BackSide ) { + + return 'false'; + + } + + } + + return builder.getFrontFacing(); + + } + +} + +/** + * TSL object that represents whether a primitive is front or back facing + * + * @tsl + * @type {FrontFacingNode} + */ +const frontFacing = /*@__PURE__*/ nodeImmutable( FrontFacingNode ); + +/** + * TSL object that represents the front facing status as a number instead of a bool. + * `1` means front facing, `-1` means back facing. + * + * @tsl + * @type {Node} + */ +const faceDirection = /*@__PURE__*/ float( frontFacing ).mul( 2.0 ).sub( 1.0 ); + +/** + * TSL object that represents the normal attribute of the current rendered object. + * + * @tsl + * @type {Node} + */ +const normalGeometry = /*@__PURE__*/ attribute( 'normal', 'vec3' ); + +/** + * TSL object that represents the vertex normal in local space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const normalLocal = /*@__PURE__*/ ( Fn( ( builder ) => { + + if ( builder.geometry.hasAttribute( 'normal' ) === false ) { + + console.warn( 'THREE.TSL: Vertex attribute "normal" not found on geometry.' ); + + return vec3( 0, 1, 0 ); + + } + + return normalGeometry; + +}, 'vec3' ).once() )().toVar( 'normalLocal' ); + +/** + * TSL object that represents the flat vertex normal in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const normalFlat = /*@__PURE__*/ positionView.dFdx().cross( positionView.dFdy() ).normalize().toVar( 'normalFlat' ); + +/** + * TSL object that represents the vertex normal in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const normalView = /*@__PURE__*/ ( Fn( ( builder ) => { + + let node; + + if ( builder.material.flatShading === true ) { + + node = normalFlat; + + } else { + + node = varying( transformNormalToView( normalLocal ), 'v_normalView' ).normalize(); + + } + + return node; + +}, 'vec3' ).once() )().toVar( 'normalView' ); + +/** + * TSL object that represents the vertex normal in world space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const normalWorld = /*@__PURE__*/ ( Fn( ( builder ) => { + + let normal = normalView.transformDirection( cameraViewMatrix ); + + if ( builder.material.flatShading !== true ) { + + normal = varying( normal, 'v_normalWorld' ); + + } + + return normal; + +}, 'vec3' ).once() )().normalize().toVar( 'normalWorld' ); + +/** + * TSL object that represents the transformed vertex normal in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedNormalView = /*@__PURE__*/ ( Fn( ( builder ) => { + + // Use getUV context to avoid side effects from nodes overwriting getUV in the context (e.g. EnvironmentNode) + + let node = builder.context.setupNormal().context( { getUV: null } ); + + if ( builder.material.flatShading !== true ) node = node.mul( faceDirection ); + + return node; + +}, 'vec3' ).once() )().toVar( 'transformedNormalView' ); + +/** + * TSL object that represents the transformed vertex normal in world space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedNormalWorld = /*@__PURE__*/ transformedNormalView.transformDirection( cameraViewMatrix ).toVar( 'transformedNormalWorld' ); + +/** + * TSL object that represents the transformed clearcoat vertex normal in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedClearcoatNormalView = /*@__PURE__*/ ( Fn( ( builder ) => { + + // Use getUV context to avoid side effects from nodes overwriting getUV in the context (e.g. EnvironmentNode) + + let node = builder.context.setupClearcoatNormal().context( { getUV: null } ); + + if ( builder.material.flatShading !== true ) node = node.mul( faceDirection ); + + return node; + +}, 'vec3' ).once() )().toVar( 'transformedClearcoatNormalView' ); + +/** + * Transforms the normal with the given matrix. + * + * @tsl + * @function + * @param {Node} normal - The normal. + * @param {Node} [matrix=modelWorldMatrix] - The matrix. + * @return {Node} The transformed normal. + */ +const transformNormal = /*@__PURE__*/ Fn( ( [ normal, matrix = modelWorldMatrix ] ) => { + + const m = mat3( matrix ); + + const transformedNormal = normal.div( vec3( m[ 0 ].dot( m[ 0 ] ), m[ 1 ].dot( m[ 1 ] ), m[ 2 ].dot( m[ 2 ] ) ) ); + + return m.mul( transformedNormal ).xyz; + +} ); + +/** + * Transforms the given normal from local to view space. + * + * @tsl + * @function + * @param {Node} normal - The normal. + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The transformed normal. + */ +const transformNormalToView = /*@__PURE__*/ Fn( ( [ normal ], builder ) => { + + const modelNormalViewMatrix = builder.renderer.overrideNodes.modelNormalViewMatrix; + + if ( modelNormalViewMatrix !== null ) { + + return modelNormalViewMatrix.transformDirection( normal ); + + } + + // + + const transformedNormal = modelNormalMatrix.mul( normal ); + + return cameraViewMatrix.transformDirection( transformedNormal ); + +} ); + +const _e1$1 = /*@__PURE__*/ new Euler(); +const _m1$1 = /*@__PURE__*/ new Matrix4(); + +/** + * TSL object that represents the refraction ratio of the material used for rendering the current object. + * + * @tsl + * @type {UniformNode} + */ +const materialRefractionRatio = /*@__PURE__*/ uniform( 0 ).onReference( ( { material } ) => material ).onObjectUpdate( ( { material } ) => material.refractionRatio ); + +/** + * TSL object that represents the intensity of environment maps of PBR materials. + * When `material.envMap` is set, the value is `material.envMapIntensity` otherwise `scene.environmentIntensity`. + * + * @tsl + * @type {Node} + */ +const materialEnvIntensity = /*@__PURE__*/ uniform( 1 ).onReference( ( { material } ) => material ).onObjectUpdate( function ( { material, scene } ) { + + return material.envMap ? material.envMapIntensity : scene.environmentIntensity; + +} ); + +/** + * TSL object that represents the rotation of environment maps. + * When `material.envMap` is set, the value is `material.envMapRotation`. `scene.environmentRotation` controls the + * rotation of `scene.environment` instead. + * + * @tsl + * @type {Node} + */ +const materialEnvRotation = /*@__PURE__*/ uniform( new Matrix4() ).onReference( function ( frame ) { + + return frame.material; + +} ).onObjectUpdate( function ( { material, scene } ) { + + const rotation = ( scene.environment !== null && material.envMap === null ) ? scene.environmentRotation : material.envMapRotation; + + if ( rotation ) { + + _e1$1.copy( rotation ); + + _m1$1.makeRotationFromEuler( _e1$1 ); + + } else { + + _m1$1.identity(); + + } + + return _m1$1; + +} ); + +/** + * The reflect vector in view space. + * + * @tsl + * @type {Node} + */ +const reflectView = /*@__PURE__*/ positionViewDirection.negate().reflect( transformedNormalView ); + +/** + * The refract vector in view space. + * + * @tsl + * @type {Node} + */ +const refractView = /*@__PURE__*/ positionViewDirection.negate().refract( transformedNormalView, materialRefractionRatio ); + +/** + * Used for sampling cube maps when using cube reflection mapping. + * + * @tsl + * @type {Node} + */ +const reflectVector = /*@__PURE__*/ reflectView.transformDirection( cameraViewMatrix ).toVar( 'reflectVector' ); + +/** + * Used for sampling cube maps when using cube refraction mapping. + * + * @tsl + * @type {Node} + */ +const refractVector = /*@__PURE__*/ refractView.transformDirection( cameraViewMatrix ).toVar( 'reflectVector' ); + +const EmptyTexture = /*@__PURE__*/ new CubeTexture(); + +/** + * This type of uniform node represents a cube texture. + * + * @augments TextureNode + */ +class CubeTextureNode extends TextureNode { + + static get type() { + + return 'CubeTextureNode'; + + } + + /** + * Constructs a new cube texture node. + * + * @param {CubeTexture} value - The cube texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + */ + constructor( value, uvNode = null, levelNode = null, biasNode = null ) { + + super( value, uvNode, levelNode, biasNode ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCubeTextureNode = true; + + } + + /** + * Overwrites the default implementation to return a fixed value `'cubeTexture'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return 'cubeTexture'; + + } + + /** + * Returns a default uvs based on the mapping type of the cube texture. + * + * @return {Node} The default uv attribute. + */ + getDefaultUV() { + + const texture = this.value; + + if ( texture.mapping === CubeReflectionMapping ) { + + return reflectVector; + + } else if ( texture.mapping === CubeRefractionMapping ) { + + return refractVector; + + } else { + + console.error( 'THREE.CubeTextureNode: Mapping "%s" not supported.', texture.mapping ); + + return vec3( 0, 0, 0 ); + + } + + } + + /** + * Overwritten with an empty implementation since the `updateMatrix` flag is ignored + * for cube textures. The uv transformation matrix is not applied to cube textures. + * + * @param {boolean} value - The update toggle. + */ + setUpdateMatrix( /*updateMatrix*/ ) { } // Ignore .updateMatrix for CubeTextureNode + + /** + * Setups the uv node. Depending on the backend as well as the texture type, it might be necessary + * to modify the uv node for correct sampling. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} uvNode - The uv node to setup. + * @return {Node} The updated uv node. + */ + setupUV( builder, uvNode ) { + + const texture = this.value; + + if ( builder.renderer.coordinateSystem === WebGPUCoordinateSystem || ! texture.isRenderTargetTexture ) { + + uvNode = vec3( uvNode.x.negate(), uvNode.yz ); + + } + + return materialEnvRotation.mul( uvNode ); + + } + + /** + * Generates the uv code snippet. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} cubeUV - The uv node to generate code for. + * @return {string} The generated code snippet. + */ + generateUV( builder, cubeUV ) { + + return cubeUV.build( builder, 'vec3' ); + + } + +} + +/** + * TSL function for creating a cube texture node. + * + * @tsl + * @function + * @param {CubeTexture} value - The cube texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + * @returns {CubeTextureNode} + */ +const cubeTextureBase = /*@__PURE__*/ nodeProxy( CubeTextureNode ).setParameterLength( 1, 4 ).setName( 'cubeTexture' ); + +/** + * TSL function for creating a cube texture uniform node. + * + * @tsl + * @function + * @param {?CubeTexture|CubeTextureNode} [value=EmptyTexture] - The cube texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + * @returns {CubeTextureNode} + */ +const cubeTexture = ( value = EmptyTexture, uvNode = null, levelNode = null, biasNode = null ) => { + + let textureNode; + + if ( value && value.isCubeTextureNode === true ) { + + textureNode = nodeObject( value.clone() ); + textureNode.referenceNode = value.getSelf(); // Ensure the reference is set to the original node + + if ( uvNode !== null ) textureNode.uvNode = nodeObject( uvNode ); + if ( levelNode !== null ) textureNode.levelNode = nodeObject( levelNode ); + if ( biasNode !== null ) textureNode.biasNode = nodeObject( biasNode ); + + } else { + + textureNode = cubeTextureBase( value, uvNode, levelNode, biasNode ); + + } + + return textureNode; + +}; + +/** + * TSL function for creating a uniform cube texture node. + * + * @tsl + * @function + * @param {?CubeTexture} [value=EmptyTexture] - The cube texture. + * @returns {CubeTextureNode} + */ +const uniformCubeTexture = ( value = EmptyTexture ) => cubeTextureBase( value ); + +// TODO: Avoid duplicated code and ues only ReferenceBaseNode or ReferenceNode + +/** + * This class is only relevant if the referenced property is array-like. + * In this case, `ReferenceElementNode` allows to refer to a specific + * element inside the data structure via an index. + * + * @augments ArrayElementNode + */ +class ReferenceElementNode extends ArrayElementNode { + + static get type() { + + return 'ReferenceElementNode'; + + } + + /** + * Constructs a new reference element node. + * + * @param {?ReferenceNode} referenceNode - The reference node. + * @param {Node} indexNode - The index node that defines the element access. + */ + constructor( referenceNode, indexNode ) { + + super( referenceNode, indexNode ); + + /** + * Similar to {@link ReferenceNode#reference}, an additional + * property references to the current node. + * + * @type {?ReferenceNode} + * @default null + */ + this.referenceNode = referenceNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isReferenceElementNode = true; + + } + + /** + * This method is overwritten since the node type is inferred from + * the uniform type of the reference node. + * + * @return {string} The node type. + */ + getNodeType() { + + return this.referenceNode.uniformType; + + } + + generate( builder ) { + + const snippet = super.generate( builder ); + const arrayType = this.referenceNode.getNodeType(); + const elementType = this.getNodeType(); + + return builder.format( snippet, arrayType, elementType ); + + } + +} + +/** + * This type of node establishes a reference to a property of another object. + * In this way, the value of the node is automatically linked to the value of + * referenced object. Reference nodes internally represent the linked value + * as a uniform. + * + * @augments Node + */ +class ReferenceNode extends Node { + + static get type() { + + return 'ReferenceNode'; + + } + + /** + * Constructs a new reference node. + * + * @param {string} property - The name of the property the node refers to. + * @param {string} uniformType - The uniform type that should be used to represent the property value. + * @param {?Object} [object=null] - The object the property belongs to. + * @param {?number} [count=null] - When the linked property is an array-like, this parameter defines its length. + */ + constructor( property, uniformType, object = null, count = null ) { + + super(); + + /** + * The name of the property the node refers to. + * + * @type {string} + */ + this.property = property; + + /** + * The uniform type that should be used to represent the property value. + * + * @type {string} + */ + this.uniformType = uniformType; + + /** + * The object the property belongs to. + * + * @type {?Object} + * @default null + */ + this.object = object; + + /** + * When the linked property is an array, this parameter defines its length. + * + * @type {?number} + * @default null + */ + this.count = count; + + /** + * The property name might have dots so nested properties can be referred. + * The hierarchy of the names is stored inside this array. + * + * @type {Array} + */ + this.properties = property.split( '.' ); + + /** + * Points to the current referred object. This property exists next to {@link ReferenceNode#object} + * since the final reference might be updated from calling code. + * + * @type {?Object} + * @default null + */ + this.reference = object; + + /** + * The uniform node that holds the value of the reference node. + * + * @type {UniformNode} + * @default null + */ + this.node = null; + + /** + * The uniform group of the internal uniform. + * + * @type {UniformGroupNode} + * @default null + */ + this.group = null; + + /** + * An optional label of the internal uniform node. + * + * @type {?string} + * @default null + */ + this.name = null; + + /** + * Overwritten since reference nodes are updated per object. + * + * @type {string} + * @default 'object' + */ + this.updateType = NodeUpdateType.OBJECT; + + } + + /** + * When the referred property is array-like, this method can be used + * to access elements via an index node. + * + * @param {IndexNode} indexNode - indexNode. + * @return {ReferenceElementNode} A reference to an element. + */ + element( indexNode ) { + + return nodeObject( new ReferenceElementNode( this, nodeObject( indexNode ) ) ); + + } + + /** + * Sets the uniform group for this reference node. + * + * @param {UniformGroupNode} group - The uniform group to set. + * @return {ReferenceNode} A reference to this node. + */ + setGroup( group ) { + + this.group = group; + + return this; + + } + + /** + * Sets the label for the internal uniform. + * + * @param {string} name - The label to set. + * @return {ReferenceNode} A reference to this node. + */ + label( name ) { + + this.name = name; + + return this; + + } + + /** + * Sets the node type which automatically defines the internal + * uniform type. + * + * @param {string} uniformType - The type to set. + */ + setNodeType( uniformType ) { + + let node = null; + + if ( this.count !== null ) { + + node = buffer( null, uniformType, this.count ); + + } else if ( Array.isArray( this.getValueFromReference() ) ) { + + node = uniformArray( null, uniformType ); + + } else if ( uniformType === 'texture' ) { + + node = texture( null ); + + } else if ( uniformType === 'cubeTexture' ) { + + node = cubeTexture( null ); + + } else { + + node = uniform( null, uniformType ); + + } + + if ( this.group !== null ) { + + node.setGroup( this.group ); + + } + + if ( this.name !== null ) node.label( this.name ); + + this.node = node.getSelf(); + + } + + /** + * This method is overwritten since the node type is inferred from + * the type of the reference node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + if ( this.node === null ) { + + this.updateReference( builder ); + this.updateValue(); + + } + + return this.node.getNodeType( builder ); + + } + + /** + * Returns the property value from the given referred object. + * + * @param {Object} [object=this.reference] - The object to retrieve the property value from. + * @return {any} The value. + */ + getValueFromReference( object = this.reference ) { + + const { properties } = this; + + let value = object[ properties[ 0 ] ]; + + for ( let i = 1; i < properties.length; i ++ ) { + + value = value[ properties[ i ] ]; + + } + + return value; + + } + + /** + * Allows to update the reference based on the given state. The state is only + * evaluated {@link ReferenceNode#object} is not set. + * + * @param {(NodeFrame|NodeBuilder)} state - The current state. + * @return {Object} The updated reference. + */ + updateReference( state ) { + + this.reference = this.object !== null ? this.object : state.object; + + return this.reference; + + } + + /** + * The output of the reference node is the internal uniform node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {UniformNode} The output node. + */ + setup( /* builder */ ) { + + this.updateValue(); + + return this.node; + + } + + /** + * Overwritten to update the internal uniform value. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( /*frame*/ ) { + + this.updateValue(); + + } + + /** + * Retrieves the value from the referred object property and uses it + * to updated the internal uniform. + */ + updateValue() { + + if ( this.node === null ) this.setNodeType( this.uniformType ); + + const value = this.getValueFromReference(); + + if ( Array.isArray( value ) ) { + + this.node.array = value; + + } else { + + this.node.value = value; + + } + + } + +} + +/** + * TSL function for creating a reference node. + * + * @tsl + * @function + * @param {string} name - The name of the property the node refers to. + * @param {string} type - The uniform type that should be used to represent the property value. + * @param {?Object} [object] - The object the property belongs to. + * @returns {ReferenceNode} + */ +const reference = ( name, type, object ) => nodeObject( new ReferenceNode( name, type, object ) ); + +/** + * TSL function for creating a reference node. Use this function if you want need a reference + * to an array-like property that should be represented as a uniform buffer. + * + * @tsl + * @function + * @param {string} name - The name of the property the node refers to. + * @param {string} type - The uniform type that should be used to represent the property value. + * @param {number} count - The number of value inside the array-like object. + * @param {Object} object - An array-like object the property belongs to. + * @returns {ReferenceNode} + */ +const referenceBuffer = ( name, type, count, object ) => nodeObject( new ReferenceNode( name, type, object, count ) ); + +/** + * This node is a special type of reference node which is intended + * for linking material properties with node values. + * ```js + * const opacityNode = materialReference( 'opacity', 'float', material ); + * ``` + * When changing `material.opacity`, the node value of `opacityNode` will + * automatically be updated. + * + * @augments ReferenceNode + */ +class MaterialReferenceNode extends ReferenceNode { + + static get type() { + + return 'MaterialReferenceNode'; + + } + + /** + * Constructs a new material reference node. + * + * @param {string} property - The name of the property the node refers to. + * @param {string} inputType - The uniform type that should be used to represent the property value. + * @param {?Material} [material=null] - The material the property belongs to. When no material is set, + * the node refers to the material of the current rendered object. + */ + constructor( property, inputType, material = null ) { + + super( property, inputType, material ); + + /** + * The material the property belongs to. When no material is set, + * the node refers to the material of the current rendered object. + * + * @type {?Material} + * @default null + */ + this.material = material; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMaterialReferenceNode = true; + + } + + /** + * Updates the reference based on the given state. The state is only evaluated + * {@link MaterialReferenceNode#material} is not set. + * + * @param {(NodeFrame|NodeBuilder)} state - The current state. + * @return {Object} The updated reference. + */ + updateReference( state ) { + + this.reference = this.material !== null ? this.material : state.material; + + return this.reference; + + } + +} + +/** + * TSL function for creating a material reference node. + * + * @tsl + * @function + * @param {string} name - The name of the property the node refers to. + * @param {string} type - The uniform type that should be used to represent the property value. + * @param {?Material} [material=null] - The material the property belongs to. + * When no material is set, the node refers to the material of the current rendered object. + * @returns {MaterialReferenceNode} + */ +const materialReference = ( name, type, material = null ) => nodeObject( new MaterialReferenceNode( name, type, material ) ); + +/** + * TSL object that represents the tangent attribute of the current rendered object. + * + * @tsl + * @type {Node} + */ +const tangentGeometry = /*@__PURE__*/ Fn( ( builder ) => { + + if ( builder.geometry.hasAttribute( 'tangent' ) === false ) { + + builder.geometry.computeTangents(); + + } + + return attribute( 'tangent', 'vec4' ); + +} )(); + +/** + * TSL object that represents the vertex tangent in local space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const tangentLocal = /*@__PURE__*/ tangentGeometry.xyz.toVar( 'tangentLocal' ); + +/** + * TSL object that represents the vertex tangent in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const tangentView = /*@__PURE__*/ modelViewMatrix.mul( vec4( tangentLocal, 0 ) ).xyz.toVarying( 'v_tangentView' ).normalize().toVar( 'tangentView' ); + +/** + * TSL object that represents the vertex tangent in world space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const tangentWorld = /*@__PURE__*/ tangentView.transformDirection( cameraViewMatrix ).toVarying( 'v_tangentWorld' ).normalize().toVar( 'tangentWorld' ); + +/** + * TSL object that represents the transformed vertex tangent in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedTangentView = /*@__PURE__*/ tangentView.toVar( 'transformedTangentView' ); + +/** + * TSL object that represents the transformed vertex tangent in world space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedTangentWorld = /*@__PURE__*/ transformedTangentView.transformDirection( cameraViewMatrix ).normalize().toVar( 'transformedTangentWorld' ); + +/** + * Returns the bitangent node and assigns it to a varying if the material is not flat shaded. + * + * @tsl + * @private + * @param {Node} crossNormalTangent - The cross product of the normal and tangent vectors. + * @param {string} varyingName - The name of the varying to assign the bitangent to. + * @returns {Node} The bitangent node. + */ +const getBitangent = /*@__PURE__*/ Fn( ( [ crossNormalTangent, varyingName ], builder ) => { + + let bitangent = crossNormalTangent.mul( tangentGeometry.w ).xyz; + + if ( builder.material.flatShading !== true ) { + + bitangent = varying( bitangent, varyingName ); + + } + + return bitangent; + +} ).once(); + +/** + * TSL object that represents the bitangent attribute of the current rendered object. + * + * @tsl + * @type {Node} + */ +const bitangentGeometry = /*@__PURE__*/ getBitangent( normalGeometry.cross( tangentGeometry ), 'v_bitangentGeometry' ).normalize().toVar( 'bitangentGeometry' ); + +/** + * TSL object that represents the vertex bitangent in local space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const bitangentLocal = /*@__PURE__*/ getBitangent( normalLocal.cross( tangentLocal ), 'v_bitangentLocal' ).normalize().toVar( 'bitangentLocal' ); + +/** + * TSL object that represents the vertex bitangent in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const bitangentView = getBitangent( normalView.cross( tangentView ), 'v_bitangentView' ).normalize().toVar( 'bitangentView' ); + +/** + * TSL object that represents the vertex bitangent in world space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const bitangentWorld = /*@__PURE__*/ getBitangent( normalWorld.cross( tangentWorld ), 'v_bitangentWorld' ).normalize().toVar( 'bitangentWorld' ); + +/** + * TSL object that represents the transformed vertex bitangent in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedBitangentView = /*@__PURE__*/ getBitangent( transformedNormalView.cross( transformedTangentView ), 'v_transformedBitangentView' ).normalize().toVar( 'transformedBitangentView' ); + +/** + * TSL object that represents the transformed vertex bitangent in world space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedBitangentWorld = /*@__PURE__*/ transformedBitangentView.transformDirection( cameraViewMatrix ).normalize().toVar( 'transformedBitangentWorld' ); + +/** + * TSL object that represents the TBN matrix in view space. + * + * @tsl + * @type {Node} + */ +const TBNViewMatrix = /*@__PURE__*/ mat3( tangentView, bitangentView, normalView ); + +/** + * TSL object that represents the parallax direction. + * + * @tsl + * @type {Node} + */ +const parallaxDirection = /*@__PURE__*/ positionViewDirection.mul( TBNViewMatrix )/*.normalize()*/; + +/** + * TSL function for computing parallax uv coordinates. + * + * @tsl + * @function + * @param {Node} uv - A uv node. + * @param {Node} scale - A scale node. + * @returns {Node} Parallax uv coordinates. + */ +const parallaxUV = ( uv, scale ) => uv.sub( parallaxDirection.mul( scale ) ); + +/** + * TSL function for computing bent normals. + * + * @tsl + * @function + * @returns {Node} Bent normals. + */ +const transformedBentNormalView = /*@__PURE__*/ ( () => { + + // https://google.github.io/filament/Filament.md.html#lighting/imagebasedlights/anisotropy + + let bentNormal = anisotropyB.cross( positionViewDirection ); + bentNormal = bentNormal.cross( anisotropyB ).normalize(); + bentNormal = mix( bentNormal, transformedNormalView, anisotropy.mul( roughness.oneMinus() ).oneMinus().pow2().pow2() ).normalize(); + + return bentNormal; + + +} )(); + +// Normal Mapping Without Precomputed Tangents +// http://www.thetenthplanet.de/archives/1180 + +const perturbNormal2Arb = /*@__PURE__*/ Fn( ( inputs ) => { + + const { eye_pos, surf_norm, mapN, uv } = inputs; + + const q0 = eye_pos.dFdx(); + const q1 = eye_pos.dFdy(); + const st0 = uv.dFdx(); + const st1 = uv.dFdy(); + + const N = surf_norm; // normalized + + const q1perp = q1.cross( N ); + const q0perp = N.cross( q0 ); + + const T = q1perp.mul( st0.x ).add( q0perp.mul( st1.x ) ); + const B = q1perp.mul( st0.y ).add( q0perp.mul( st1.y ) ); + + const det = T.dot( T ).max( B.dot( B ) ); + const scale = faceDirection.mul( det.inverseSqrt() ); + + return add( T.mul( mapN.x, scale ), B.mul( mapN.y, scale ), N.mul( mapN.z ) ).normalize(); + +} ); + +/** + * This class can be used for applying normals maps to materials. + * + * ```js + * material.normalNode = normalMap( texture( normalTex ) ); + * ``` + * + * @augments TempNode + */ +class NormalMapNode extends TempNode { + + static get type() { + + return 'NormalMapNode'; + + } + + /** + * Constructs a new normal map node. + * + * @param {Node} node - Represents the normal map data. + * @param {?Node} [scaleNode=null] - Controls the intensity of the effect. + */ + constructor( node, scaleNode = null ) { + + super( 'vec3' ); + + /** + * Represents the normal map data. + * + * @type {Node} + */ + this.node = node; + + /** + * Controls the intensity of the effect. + * + * @type {?Node} + * @default null + */ + this.scaleNode = scaleNode; + + /** + * The normal map type. + * + * @type {(TangentSpaceNormalMap|ObjectSpaceNormalMap)} + * @default TangentSpaceNormalMap + */ + this.normalMapType = TangentSpaceNormalMap; + + } + + setup( builder ) { + + const { normalMapType, scaleNode } = this; + + let normalMap = this.node.mul( 2.0 ).sub( 1.0 ); + + if ( scaleNode !== null ) { + + normalMap = vec3( normalMap.xy.mul( scaleNode ), normalMap.z ); + + } + + let outputNode = null; + + if ( normalMapType === ObjectSpaceNormalMap ) { + + outputNode = transformNormalToView( normalMap ); + + } else if ( normalMapType === TangentSpaceNormalMap ) { + + const tangent = builder.hasGeometryAttribute( 'tangent' ); + + if ( tangent === true ) { + + outputNode = TBNViewMatrix.mul( normalMap ).normalize(); + + } else { + + outputNode = perturbNormal2Arb( { + eye_pos: positionView, + surf_norm: normalView, + mapN: normalMap, + uv: uv() + } ); + + } + + } + + return outputNode; + + } + +} + +/** + * TSL function for creating a normal map node. + * + * @tsl + * @function + * @param {Node} node - Represents the normal map data. + * @param {?Node} [scaleNode=null] - Controls the intensity of the effect. + * @returns {NormalMapNode} + */ +const normalMap = /*@__PURE__*/ nodeProxy( NormalMapNode ).setParameterLength( 1, 2 ); + +// Bump Mapping Unparametrized Surfaces on the GPU by Morten S. Mikkelsen +// https://mmikk.github.io/papers3d/mm_sfgrad_bump.pdf + +const dHdxy_fwd = Fn( ( { textureNode, bumpScale } ) => { + + // It's used to preserve the same TextureNode instance + const sampleTexture = ( callback ) => textureNode.cache().context( { getUV: ( texNode ) => callback( texNode.uvNode || uv() ), forceUVContext: true } ); + + const Hll = float( sampleTexture( ( uvNode ) => uvNode ) ); + + return vec2( + float( sampleTexture( ( uvNode ) => uvNode.add( uvNode.dFdx() ) ) ).sub( Hll ), + float( sampleTexture( ( uvNode ) => uvNode.add( uvNode.dFdy() ) ) ).sub( Hll ) + ).mul( bumpScale ); + +} ); + +// Evaluate the derivative of the height w.r.t. screen-space using forward differencing (listing 2) + +const perturbNormalArb = Fn( ( inputs ) => { + + const { surf_pos, surf_norm, dHdxy } = inputs; + + // normalize is done to ensure that the bump map looks the same regardless of the texture's scale + const vSigmaX = surf_pos.dFdx().normalize(); + const vSigmaY = surf_pos.dFdy().normalize(); + const vN = surf_norm; // normalized + + const R1 = vSigmaY.cross( vN ); + const R2 = vN.cross( vSigmaX ); + + const fDet = vSigmaX.dot( R1 ).mul( faceDirection ); + + const vGrad = fDet.sign().mul( dHdxy.x.mul( R1 ).add( dHdxy.y.mul( R2 ) ) ); + + return fDet.abs().mul( surf_norm ).sub( vGrad ).normalize(); + +} ); + +/** + * This class can be used for applying bump maps to materials. + * + * ```js + * material.normalNode = bumpMap( texture( bumpTex ) ); + * ``` + * + * @augments TempNode + */ +class BumpMapNode extends TempNode { + + static get type() { + + return 'BumpMapNode'; + + } + + /** + * Constructs a new bump map node. + * + * @param {Node} textureNode - Represents the bump map data. + * @param {?Node} [scaleNode=null] - Controls the intensity of the bump effect. + */ + constructor( textureNode, scaleNode = null ) { + + super( 'vec3' ); + + /** + * Represents the bump map data. + * + * @type {Node} + */ + this.textureNode = textureNode; + + /** + * Controls the intensity of the bump effect. + * + * @type {?Node} + * @default null + */ + this.scaleNode = scaleNode; + + } + + setup() { + + const bumpScale = this.scaleNode !== null ? this.scaleNode : 1; + const dHdxy = dHdxy_fwd( { textureNode: this.textureNode, bumpScale } ); + + return perturbNormalArb( { + surf_pos: positionView, + surf_norm: normalView, + dHdxy + } ); + + } + +} + +/** + * TSL function for creating a bump map node. + * + * @tsl + * @function + * @param {Node} textureNode - Represents the bump map data. + * @param {?Node} [scaleNode=null] - Controls the intensity of the bump effect. + * @returns {BumpMapNode} + */ +const bumpMap = /*@__PURE__*/ nodeProxy( BumpMapNode ).setParameterLength( 1, 2 ); + +const _propertyCache = new Map(); + +/** + * This class should simplify the node access to material properties. + * It internal uses reference nodes to make sure changes to material + * properties are automatically reflected to predefined TSL objects + * like e.g. `materialColor`. + * + * @augments Node + */ +class MaterialNode extends Node { + + static get type() { + + return 'MaterialNode'; + + } + + /** + * Constructs a new material node. + * + * @param {string} scope - The scope defines what kind of material property is referred by the node. + */ + constructor( scope ) { + + super(); + + /** + * The scope defines what material property is referred by the node. + * + * @type {string} + */ + this.scope = scope; + + } + + /** + * Returns a cached reference node for the given property and type. + * + * @param {string} property - The name of the material property. + * @param {string} type - The uniform type of the property. + * @return {MaterialReferenceNode} A material reference node representing the property access. + */ + getCache( property, type ) { + + let node = _propertyCache.get( property ); + + if ( node === undefined ) { + + node = materialReference( property, type ); + + _propertyCache.set( property, node ); + + } + + return node; + + } + + /** + * Returns a float-typed material reference node for the given property name. + * + * @param {string} property - The name of the material property. + * @return {MaterialReferenceNode} A material reference node representing the property access. + */ + getFloat( property ) { + + return this.getCache( property, 'float' ); + + } + + /** + * Returns a color-typed material reference node for the given property name. + * + * @param {string} property - The name of the material property. + * @return {MaterialReferenceNode} A material reference node representing the property access. + */ + getColor( property ) { + + return this.getCache( property, 'color' ); + + } + + /** + * Returns a texture-typed material reference node for the given property name. + * + * @param {string} property - The name of the material property. + * @return {MaterialReferenceNode} A material reference node representing the property access. + */ + getTexture( property ) { + + return this.getCache( property === 'map' ? 'map' : property + 'Map', 'texture' ); + + } + + /** + * The node setup is done depending on the selected scope. Multiple material properties + * might be grouped into a single node composition if they logically belong together. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The node representing the selected scope. + */ + setup( builder ) { + + const material = builder.context.material; + const scope = this.scope; + + let node = null; + + if ( scope === MaterialNode.COLOR ) { + + const colorNode = material.color !== undefined ? this.getColor( scope ) : vec3(); + + if ( material.map && material.map.isTexture === true ) { + + node = colorNode.mul( this.getTexture( 'map' ) ); + + } else { + + node = colorNode; + + } + + } else if ( scope === MaterialNode.OPACITY ) { + + const opacityNode = this.getFloat( scope ); + + if ( material.alphaMap && material.alphaMap.isTexture === true ) { + + node = opacityNode.mul( this.getTexture( 'alpha' ) ); + + } else { + + node = opacityNode; + + } + + } else if ( scope === MaterialNode.SPECULAR_STRENGTH ) { + + if ( material.specularMap && material.specularMap.isTexture === true ) { + + node = this.getTexture( 'specular' ).r; + + } else { + + node = float( 1 ); + + } + + } else if ( scope === MaterialNode.SPECULAR_INTENSITY ) { + + const specularIntensityNode = this.getFloat( scope ); + + if ( material.specularIntensityMap && material.specularIntensityMap.isTexture === true ) { + + node = specularIntensityNode.mul( this.getTexture( scope ).a ); + + } else { + + node = specularIntensityNode; + + } + + } else if ( scope === MaterialNode.SPECULAR_COLOR ) { + + const specularColorNode = this.getColor( scope ); + + if ( material.specularColorMap && material.specularColorMap.isTexture === true ) { + + node = specularColorNode.mul( this.getTexture( scope ).rgb ); + + } else { + + node = specularColorNode; + + } + + } else if ( scope === MaterialNode.ROUGHNESS ) { // TODO: cleanup similar branches + + const roughnessNode = this.getFloat( scope ); + + if ( material.roughnessMap && material.roughnessMap.isTexture === true ) { + + node = roughnessNode.mul( this.getTexture( scope ).g ); + + } else { + + node = roughnessNode; + + } + + } else if ( scope === MaterialNode.METALNESS ) { + + const metalnessNode = this.getFloat( scope ); + + if ( material.metalnessMap && material.metalnessMap.isTexture === true ) { + + node = metalnessNode.mul( this.getTexture( scope ).b ); + + } else { + + node = metalnessNode; + + } + + } else if ( scope === MaterialNode.EMISSIVE ) { + + const emissiveIntensityNode = this.getFloat( 'emissiveIntensity' ); + const emissiveNode = this.getColor( scope ).mul( emissiveIntensityNode ); + + if ( material.emissiveMap && material.emissiveMap.isTexture === true ) { + + node = emissiveNode.mul( this.getTexture( scope ) ); + + } else { + + node = emissiveNode; + + } + + } else if ( scope === MaterialNode.NORMAL ) { + + if ( material.normalMap ) { + + node = normalMap( this.getTexture( 'normal' ), this.getCache( 'normalScale', 'vec2' ) ); + node.normalMapType = material.normalMapType; + + } else if ( material.bumpMap ) { + + node = bumpMap( this.getTexture( 'bump' ).r, this.getFloat( 'bumpScale' ) ); + + } else { + + node = normalView; + + } + + } else if ( scope === MaterialNode.CLEARCOAT ) { + + const clearcoatNode = this.getFloat( scope ); + + if ( material.clearcoatMap && material.clearcoatMap.isTexture === true ) { + + node = clearcoatNode.mul( this.getTexture( scope ).r ); + + } else { + + node = clearcoatNode; + + } + + } else if ( scope === MaterialNode.CLEARCOAT_ROUGHNESS ) { + + const clearcoatRoughnessNode = this.getFloat( scope ); + + if ( material.clearcoatRoughnessMap && material.clearcoatRoughnessMap.isTexture === true ) { + + node = clearcoatRoughnessNode.mul( this.getTexture( scope ).r ); + + } else { + + node = clearcoatRoughnessNode; + + } + + } else if ( scope === MaterialNode.CLEARCOAT_NORMAL ) { + + if ( material.clearcoatNormalMap ) { + + node = normalMap( this.getTexture( scope ), this.getCache( scope + 'Scale', 'vec2' ) ); + + } else { + + node = normalView; + + } + + } else if ( scope === MaterialNode.SHEEN ) { + + const sheenNode = this.getColor( 'sheenColor' ).mul( this.getFloat( 'sheen' ) ); // Move this mul() to CPU + + if ( material.sheenColorMap && material.sheenColorMap.isTexture === true ) { + + node = sheenNode.mul( this.getTexture( 'sheenColor' ).rgb ); + + } else { + + node = sheenNode; + + } + + } else if ( scope === MaterialNode.SHEEN_ROUGHNESS ) { + + const sheenRoughnessNode = this.getFloat( scope ); + + if ( material.sheenRoughnessMap && material.sheenRoughnessMap.isTexture === true ) { + + node = sheenRoughnessNode.mul( this.getTexture( scope ).a ); + + } else { + + node = sheenRoughnessNode; + + } + + node = node.clamp( 0.07, 1.0 ); + + } else if ( scope === MaterialNode.ANISOTROPY ) { + + if ( material.anisotropyMap && material.anisotropyMap.isTexture === true ) { + + const anisotropyPolar = this.getTexture( scope ); + const anisotropyMat = mat2( materialAnisotropyVector.x, materialAnisotropyVector.y, materialAnisotropyVector.y.negate(), materialAnisotropyVector.x ); + + node = anisotropyMat.mul( anisotropyPolar.rg.mul( 2.0 ).sub( vec2( 1.0 ) ).normalize().mul( anisotropyPolar.b ) ); + + } else { + + node = materialAnisotropyVector; + + } + + } else if ( scope === MaterialNode.IRIDESCENCE_THICKNESS ) { + + const iridescenceThicknessMaximum = reference( '1', 'float', material.iridescenceThicknessRange ); + + if ( material.iridescenceThicknessMap ) { + + const iridescenceThicknessMinimum = reference( '0', 'float', material.iridescenceThicknessRange ); + + node = iridescenceThicknessMaximum.sub( iridescenceThicknessMinimum ).mul( this.getTexture( scope ).g ).add( iridescenceThicknessMinimum ); + + } else { + + node = iridescenceThicknessMaximum; + + } + + } else if ( scope === MaterialNode.TRANSMISSION ) { + + const transmissionNode = this.getFloat( scope ); + + if ( material.transmissionMap ) { + + node = transmissionNode.mul( this.getTexture( scope ).r ); + + } else { + + node = transmissionNode; + + } + + } else if ( scope === MaterialNode.THICKNESS ) { + + const thicknessNode = this.getFloat( scope ); + + if ( material.thicknessMap ) { + + node = thicknessNode.mul( this.getTexture( scope ).g ); + + } else { + + node = thicknessNode; + + } + + } else if ( scope === MaterialNode.IOR ) { + + node = this.getFloat( scope ); + + } else if ( scope === MaterialNode.LIGHT_MAP ) { + + node = this.getTexture( scope ).rgb.mul( this.getFloat( 'lightMapIntensity' ) ); + + } else if ( scope === MaterialNode.AO ) { + + node = this.getTexture( scope ).r.sub( 1.0 ).mul( this.getFloat( 'aoMapIntensity' ) ).add( 1.0 ); + + } else if ( scope === MaterialNode.LINE_DASH_OFFSET ) { + + node = ( material.dashOffset ) ? this.getFloat( scope ) : float( 0 ); + + } else { + + const outputType = this.getNodeType( builder ); + + node = this.getCache( scope, outputType ); + + } + + return node; + + } + +} + +MaterialNode.ALPHA_TEST = 'alphaTest'; +MaterialNode.COLOR = 'color'; +MaterialNode.OPACITY = 'opacity'; +MaterialNode.SHININESS = 'shininess'; +MaterialNode.SPECULAR = 'specular'; +MaterialNode.SPECULAR_STRENGTH = 'specularStrength'; +MaterialNode.SPECULAR_INTENSITY = 'specularIntensity'; +MaterialNode.SPECULAR_COLOR = 'specularColor'; +MaterialNode.REFLECTIVITY = 'reflectivity'; +MaterialNode.ROUGHNESS = 'roughness'; +MaterialNode.METALNESS = 'metalness'; +MaterialNode.NORMAL = 'normal'; +MaterialNode.CLEARCOAT = 'clearcoat'; +MaterialNode.CLEARCOAT_ROUGHNESS = 'clearcoatRoughness'; +MaterialNode.CLEARCOAT_NORMAL = 'clearcoatNormal'; +MaterialNode.EMISSIVE = 'emissive'; +MaterialNode.ROTATION = 'rotation'; +MaterialNode.SHEEN = 'sheen'; +MaterialNode.SHEEN_ROUGHNESS = 'sheenRoughness'; +MaterialNode.ANISOTROPY = 'anisotropy'; +MaterialNode.IRIDESCENCE = 'iridescence'; +MaterialNode.IRIDESCENCE_IOR = 'iridescenceIOR'; +MaterialNode.IRIDESCENCE_THICKNESS = 'iridescenceThickness'; +MaterialNode.IOR = 'ior'; +MaterialNode.TRANSMISSION = 'transmission'; +MaterialNode.THICKNESS = 'thickness'; +MaterialNode.ATTENUATION_DISTANCE = 'attenuationDistance'; +MaterialNode.ATTENUATION_COLOR = 'attenuationColor'; +MaterialNode.LINE_SCALE = 'scale'; +MaterialNode.LINE_DASH_SIZE = 'dashSize'; +MaterialNode.LINE_GAP_SIZE = 'gapSize'; +MaterialNode.LINE_WIDTH = 'linewidth'; +MaterialNode.LINE_DASH_OFFSET = 'dashOffset'; +MaterialNode.POINT_SIZE = 'size'; +MaterialNode.DISPERSION = 'dispersion'; +MaterialNode.LIGHT_MAP = 'light'; +MaterialNode.AO = 'ao'; + +/** + * TSL object that represents alpha test of the current material. + * + * @tsl + * @type {Node} + */ +const materialAlphaTest = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ALPHA_TEST ); + +/** + * TSL object that represents the diffuse color of the current material. + * The value is composed via `color` * `map`. + * + * @tsl + * @type {Node} + */ +const materialColor = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.COLOR ); + +/** + * TSL object that represents the shininess of the current material. + * + * @tsl + * @type {Node} + */ +const materialShininess = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SHININESS ); + +/** + * TSL object that represents the emissive color of the current material. + * The value is composed via `emissive` * `emissiveIntensity` * `emissiveMap`. + * + * @tsl + * @type {Node} + */ +const materialEmissive = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.EMISSIVE ); + +/** + * TSL object that represents the opacity of the current material. + * The value is composed via `opacity` * `alphaMap`. + * + * @tsl + * @type {Node} + */ +const materialOpacity = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.OPACITY ); + +/** + * TSL object that represents the specular of the current material. + * + * @tsl + * @type {Node} + */ +const materialSpecular = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SPECULAR ); + +/** + * TSL object that represents the specular intensity of the current material. + * The value is composed via `specularIntensity` * `specularMap.a`. + * + * @tsl + * @type {Node} + */ +const materialSpecularIntensity = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SPECULAR_INTENSITY ); + +/** + * TSL object that represents the specular color of the current material. + * The value is composed via `specularColor` * `specularMap.rgb`. + * + * @tsl + * @type {Node} + */ +const materialSpecularColor = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SPECULAR_COLOR ); + +/** + * TSL object that represents the specular strength of the current material. + * The value is composed via `specularMap.r`. + * + * @tsl + * @type {Node} + */ +const materialSpecularStrength = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SPECULAR_STRENGTH ); + +/** + * TSL object that represents the reflectivity of the current material. + * + * @tsl + * @type {Node} + */ +const materialReflectivity = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.REFLECTIVITY ); + +/** + * TSL object that represents the roughness of the current material. + * The value is composed via `roughness` * `roughnessMap.g`. + * + * @tsl + * @type {Node} + */ +const materialRoughness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ROUGHNESS ); + +/** + * TSL object that represents the metalness of the current material. + * The value is composed via `metalness` * `metalnessMap.b`. + * + * @tsl + * @type {Node} + */ +const materialMetalness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.METALNESS ); + +/** + * TSL object that represents the normal of the current material. + * The value will be either `normalMap` * `normalScale`, `bumpMap` * `bumpScale` or `normalView`. + * + * @tsl + * @type {Node} + */ +const materialNormal = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.NORMAL ); + +/** + * TSL object that represents the clearcoat of the current material. + * The value is composed via `clearcoat` * `clearcoatMap.r` + * + * @tsl + * @type {Node} + */ +const materialClearcoat = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.CLEARCOAT ); + +/** + * TSL object that represents the clearcoat roughness of the current material. + * The value is composed via `clearcoatRoughness` * `clearcoatRoughnessMap.r`. + * + * @tsl + * @type {Node} + */ +const materialClearcoatRoughness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.CLEARCOAT_ROUGHNESS ); + +/** + * TSL object that represents the clearcoat normal of the current material. + * The value will be either `clearcoatNormalMap` or `normalView`. + * + * @tsl + * @type {Node} + */ +const materialClearcoatNormal = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.CLEARCOAT_NORMAL ); + +/** + * TSL object that represents the rotation of the current sprite material. + * + * @tsl + * @type {Node} + */ +const materialRotation = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ROTATION ); + +/** + * TSL object that represents the sheen color of the current material. + * The value is composed via `sheen` * `sheenColor` * `sheenColorMap`. + * + * @tsl + * @type {Node} + */ +const materialSheen = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SHEEN ); + +/** + * TSL object that represents the sheen roughness of the current material. + * The value is composed via `sheenRoughness` * `sheenRoughnessMap.a`. + * + * @tsl + * @type {Node} + */ +const materialSheenRoughness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SHEEN_ROUGHNESS ); + +/** + * TSL object that represents the anisotropy of the current material. + * + * @tsl + * @type {Node} + */ +const materialAnisotropy = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ANISOTROPY ); + +/** + * TSL object that represents the iridescence of the current material. + * + * @tsl + * @type {Node} + */ +const materialIridescence = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.IRIDESCENCE ); + +/** + * TSL object that represents the iridescence IOR of the current material. + * + * @tsl + * @type {Node} + */ +const materialIridescenceIOR = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.IRIDESCENCE_IOR ); + +/** + * TSL object that represents the iridescence thickness of the current material. + * + * @tsl + * @type {Node} + */ +const materialIridescenceThickness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.IRIDESCENCE_THICKNESS ); + +/** + * TSL object that represents the transmission of the current material. + * The value is composed via `transmission` * `transmissionMap.r`. + * + * @tsl + * @type {Node} + */ +const materialTransmission = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.TRANSMISSION ); + +/** + * TSL object that represents the thickness of the current material. + * The value is composed via `thickness` * `thicknessMap.g`. + * + * @tsl + * @type {Node} + */ +const materialThickness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.THICKNESS ); + +/** + * TSL object that represents the IOR of the current material. + * + * @tsl + * @type {Node} + */ +const materialIOR = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.IOR ); + +/** + * TSL object that represents the attenuation distance of the current material. + * + * @tsl + * @type {Node} + */ +const materialAttenuationDistance = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ATTENUATION_DISTANCE ); + +/** + * TSL object that represents the attenuation color of the current material. + * + * @tsl + * @type {Node} + */ +const materialAttenuationColor = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ATTENUATION_COLOR ); + +/** + * TSL object that represents the scale of the current dashed line material. + * + * @tsl + * @type {Node} + */ +const materialLineScale = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_SCALE ); + +/** + * TSL object that represents the dash size of the current dashed line material. + * + * @tsl + * @type {Node} + */ +const materialLineDashSize = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_DASH_SIZE ); + +/** + * TSL object that represents the gap size of the current dashed line material. + * + * @tsl + * @type {Node} + */ +const materialLineGapSize = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_GAP_SIZE ); + +/** + * TSL object that represents the line width of the current line material. + * + * @tsl + * @type {Node} + */ +const materialLineWidth = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_WIDTH ); + +/** + * TSL object that represents the dash offset of the current line material. + * + * @tsl + * @type {Node} + */ +const materialLineDashOffset = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_DASH_OFFSET ); + +/** + * TSL object that represents the point size of the current points material. + * + * @tsl + * @type {Node} + */ +const materialPointSize = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.POINT_SIZE ); + +/** + * TSL object that represents the dispersion of the current material. + * + * @tsl + * @type {Node} + */ +const materialDispersion = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.DISPERSION ); + +/** + * TSL object that represents the light map of the current material. + * The value is composed via `lightMapIntensity` * `lightMap.rgb`. + * + * @tsl + * @type {Node} + */ +const materialLightMap = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LIGHT_MAP ); + +/** + * TSL object that represents the ambient occlusion map of the current material. + * The value is composed via `aoMap.r` - 1 * `aoMapIntensity` + 1. + * + * @tsl + * @type {Node} + */ +const materialAO = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.AO ); + +/** + * TSL object that represents the anisotropy vector of the current material. + * + * @tsl + * @type {Node} + */ +const materialAnisotropyVector = /*@__PURE__*/ uniform( new Vector2() ).onReference( function ( frame ) { + + return frame.material; + +} ).onRenderUpdate( function ( { material } ) { + + this.value.set( material.anisotropy * Math.cos( material.anisotropyRotation ), material.anisotropy * Math.sin( material.anisotropyRotation ) ); + +} ); + +/** + * TSL object that represents the position in clip space after the model-view-projection transform of the current rendered object. + * + * @tsl + * @type {VaryingNode} + */ +const modelViewProjection = /*@__PURE__*/ ( Fn( ( builder ) => { + + return builder.context.setupModelViewProjection(); + +}, 'vec4' ).once() )().toVarying( 'v_modelViewProjection' ); + +/** + * This class represents shader indices of different types. The following predefined node + * objects cover frequent use cases: + * + * - `vertexIndex`: The index of a vertex within a mesh. + * - `instanceIndex`: The index of either a mesh instance or an invocation of a compute shader. + * - `drawIndex`: The index of a draw call. + * - `invocationLocalIndex`: The index of a compute invocation within the scope of a workgroup load. + * - `invocationSubgroupIndex`: The index of a compute invocation within the scope of a subgroup. + * - `subgroupIndex`: The index of the subgroup the current compute invocation belongs to. + * + * @augments Node + */ +class IndexNode extends Node { + + static get type() { + + return 'IndexNode'; + + } + + /** + * Constructs a new index node. + * + * @param {('vertex'|'instance'|'subgroup'|'invocationLocal'|'invocationSubgroup'|'draw')} scope - The scope of the index node. + */ + constructor( scope ) { + + super( 'uint' ); + + /** + * The scope of the index node. + * + * @type {string} + */ + this.scope = scope; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isIndexNode = true; + + } + + generate( builder ) { + + const nodeType = this.getNodeType( builder ); + const scope = this.scope; + + let propertyName; + + if ( scope === IndexNode.VERTEX ) { + + propertyName = builder.getVertexIndex(); + + } else if ( scope === IndexNode.INSTANCE ) { + + propertyName = builder.getInstanceIndex(); + + } else if ( scope === IndexNode.DRAW ) { + + propertyName = builder.getDrawIndex(); + + } else if ( scope === IndexNode.INVOCATION_LOCAL ) { + + propertyName = builder.getInvocationLocalIndex(); + + } else if ( scope === IndexNode.INVOCATION_SUBGROUP ) { + + propertyName = builder.getInvocationSubgroupIndex(); + + } else if ( scope === IndexNode.SUBGROUP ) { + + propertyName = builder.getSubgroupIndex(); + + } else { + + throw new Error( 'THREE.IndexNode: Unknown scope: ' + scope ); + + } + + let output; + + if ( builder.shaderStage === 'vertex' || builder.shaderStage === 'compute' ) { + + output = propertyName; + + } else { + + const nodeVarying = varying( this ); + + output = nodeVarying.build( builder, nodeType ); + + } + + return output; + + } + +} + +IndexNode.VERTEX = 'vertex'; +IndexNode.INSTANCE = 'instance'; +IndexNode.SUBGROUP = 'subgroup'; +IndexNode.INVOCATION_LOCAL = 'invocationLocal'; +IndexNode.INVOCATION_SUBGROUP = 'invocationSubgroup'; +IndexNode.DRAW = 'draw'; + +/** + * TSL object that represents the index of a vertex within a mesh. + * + * @tsl + * @type {IndexNode} + */ +const vertexIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.VERTEX ); + +/** + * TSL object that represents the index of either a mesh instance or an invocation of a compute shader. + * + * @tsl + * @type {IndexNode} + */ +const instanceIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.INSTANCE ); + +/** + * TSL object that represents the index of the subgroup the current compute invocation belongs to. + * + * @tsl + * @type {IndexNode} + */ +const subgroupIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.SUBGROUP ); + +/** + * TSL object that represents the index of a compute invocation within the scope of a subgroup. + * + * @tsl + * @type {IndexNode} + */ +const invocationSubgroupIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.INVOCATION_SUBGROUP ); + +/** + * TSL object that represents the index of a compute invocation within the scope of a workgroup load. + * + * @tsl + * @type {IndexNode} + */ +const invocationLocalIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.INVOCATION_LOCAL ); + +/** + * TSL object that represents the index of a draw call. + * + * @tsl + * @type {IndexNode} + */ +const drawIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.DRAW ); + +/** + * This node implements the vertex shader logic which is required + * when rendering 3D objects via instancing. The code makes sure + * vertex positions, normals and colors can be modified via instanced + * data. + * + * @augments Node + */ +class InstanceNode extends Node { + + static get type() { + + return 'InstanceNode'; + + } + + /** + * Constructs a new instance node. + * + * @param {number} count - The number of instances. + * @param {InstancedBufferAttribute} instanceMatrix - Instanced buffer attribute representing the instance transformations. + * @param {?InstancedBufferAttribute} instanceColor - Instanced buffer attribute representing the instance colors. + */ + constructor( count, instanceMatrix, instanceColor = null ) { + + super( 'void' ); + + /** + * The number of instances. + * + * @type {number} + */ + this.count = count; + + /** + * Instanced buffer attribute representing the transformation of instances. + * + * @type {InstancedBufferAttribute} + */ + this.instanceMatrix = instanceMatrix; + + /** + * Instanced buffer attribute representing the color of instances. + * + * @type {InstancedBufferAttribute} + */ + this.instanceColor = instanceColor; + + /** + * The node that represents the instance matrix data. + * + * @type {?Node} + */ + this.instanceMatrixNode = null; + + /** + * The node that represents the instance color data. + * + * @type {?Node} + * @default null + */ + this.instanceColorNode = null; + + /** + * The update type is set to `frame` since an update + * of instanced buffer data must be checked per frame. + * + * @type {string} + * @default 'frame' + */ + this.updateType = NodeUpdateType.FRAME; + + /** + * A reference to a buffer that is used by `instanceMatrixNode`. + * + * @type {?InstancedInterleavedBuffer} + */ + this.buffer = null; + + /** + * A reference to a buffer that is used by `instanceColorNode`. + * + * @type {?InstancedBufferAttribute} + */ + this.bufferColor = null; + + } + + /** + * Setups the internal buffers and nodes and assigns the transformed vertex data + * to predefined node variables for accumulation. That follows the same patterns + * like with morph and skinning nodes. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + const { count, instanceMatrix, instanceColor } = this; + + let { instanceMatrixNode, instanceColorNode } = this; + + if ( instanceMatrixNode === null ) { + + // Both WebGPU and WebGL backends have UBO max limited to 64kb. Matrix count number bigger than 1000 ( 16 * 4 * 1000 = 64kb ) will fallback to attribute. + + if ( count <= 1000 ) { + + instanceMatrixNode = buffer( instanceMatrix.array, 'mat4', Math.max( count, 1 ) ).element( instanceIndex ); + + } else { + + const buffer = new InstancedInterleavedBuffer( instanceMatrix.array, 16, 1 ); + + this.buffer = buffer; + + const bufferFn = instanceMatrix.usage === DynamicDrawUsage ? instancedDynamicBufferAttribute : instancedBufferAttribute; + + const instanceBuffers = [ + // F.Signature -> bufferAttribute( array, type, stride, offset ) + bufferFn( buffer, 'vec4', 16, 0 ), + bufferFn( buffer, 'vec4', 16, 4 ), + bufferFn( buffer, 'vec4', 16, 8 ), + bufferFn( buffer, 'vec4', 16, 12 ) + ]; + + instanceMatrixNode = mat4( ...instanceBuffers ); + + } + + this.instanceMatrixNode = instanceMatrixNode; + + } + + if ( instanceColor && instanceColorNode === null ) { + + const buffer = new InstancedBufferAttribute( instanceColor.array, 3 ); + + const bufferFn = instanceColor.usage === DynamicDrawUsage ? instancedDynamicBufferAttribute : instancedBufferAttribute; + + this.bufferColor = buffer; + + instanceColorNode = vec3( bufferFn( buffer, 'vec3', 3, 0 ) ); + + this.instanceColorNode = instanceColorNode; + + } + + // POSITION + + const instancePosition = instanceMatrixNode.mul( positionLocal ).xyz; + positionLocal.assign( instancePosition ); + + // NORMAL + + if ( builder.hasGeometryAttribute( 'normal' ) ) { + + const instanceNormal = transformNormal( normalLocal, instanceMatrixNode ); + + // ASSIGNS + + normalLocal.assign( instanceNormal ); + + } + + // COLOR + + if ( this.instanceColorNode !== null ) { + + varyingProperty( 'vec3', 'vInstanceColor' ).assign( this.instanceColorNode ); + + } + + } + + /** + * Checks if the internal buffers required an update. + * + * @param {NodeFrame} frame - The current node frame. + */ + update( /*frame*/ ) { + + if ( this.instanceMatrix.usage !== DynamicDrawUsage && this.buffer !== null && this.instanceMatrix.version !== this.buffer.version ) { + + this.buffer.version = this.instanceMatrix.version; + + } + + if ( this.instanceColor && this.instanceColor.usage !== DynamicDrawUsage && this.bufferColor !== null && this.instanceColor.version !== this.bufferColor.version ) { + + this.bufferColor.version = this.instanceColor.version; + + } + + } + +} + +/** + * TSL function for creating an instance node. + * + * @tsl + * @function + * @param {number} count - The number of instances. + * @param {InstancedBufferAttribute} instanceMatrix - Instanced buffer attribute representing the instance transformations. + * @param {?InstancedBufferAttribute} instanceColor - Instanced buffer attribute representing the instance colors. + * @returns {InstanceNode} + */ +const instance = /*@__PURE__*/ nodeProxy( InstanceNode ).setParameterLength( 2, 3 ); + +/** + * This is a special version of `InstanceNode` which requires the usage of {@link InstancedMesh}. + * It allows an easier setup of the instance node. + * + * @augments InstanceNode + */ +class InstancedMeshNode extends InstanceNode { + + static get type() { + + return 'InstancedMeshNode'; + + } + + /** + * Constructs a new instanced mesh node. + * + * @param {InstancedMesh} instancedMesh - The instanced mesh. + */ + constructor( instancedMesh ) { + + const { count, instanceMatrix, instanceColor } = instancedMesh; + + super( count, instanceMatrix, instanceColor ); + + /** + * A reference to the instanced mesh. + * + * @type {InstancedMesh} + */ + this.instancedMesh = instancedMesh; + + } + +} + +/** + * TSL function for creating an instanced mesh node. + * + * @tsl + * @function + * @param {InstancedMesh} instancedMesh - The instancedMesh. + * @returns {InstancedMeshNode} + */ +const instancedMesh = /*@__PURE__*/ nodeProxy( InstancedMeshNode ).setParameterLength( 1 ); + +/** + * This node implements the vertex shader logic which is required + * when rendering 3D objects via batching. `BatchNode` must be used + * with instances of {@link BatchedMesh}. + * + * @augments Node + */ +class BatchNode extends Node { + + static get type() { + + return 'BatchNode'; + + } + + /** + * Constructs a new batch node. + * + * @param {BatchedMesh} batchMesh - A reference to batched mesh. + */ + constructor( batchMesh ) { + + super( 'void' ); + + /** + * A reference to batched mesh. + * + * @type {BatchedMesh} + */ + this.batchMesh = batchMesh; + + /** + * The batching index node. + * + * @type {?IndexNode} + * @default null + */ + this.batchingIdNode = null; + + } + + /** + * Setups the internal buffers and nodes and assigns the transformed vertex data + * to predefined node variables for accumulation. That follows the same patterns + * like with morph and skinning nodes. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + if ( this.batchingIdNode === null ) { + + if ( builder.getDrawIndex() === null ) { + + this.batchingIdNode = instanceIndex; + + } else { + + this.batchingIdNode = drawIndex; + + } + + } + + const getIndirectIndex = Fn( ( [ id ] ) => { + + const size = int( textureSize( textureLoad( this.batchMesh._indirectTexture ), 0 ).x ); + const x = int( id ).mod( size ); + const y = int( id ).div( size ); + return textureLoad( this.batchMesh._indirectTexture, ivec2( x, y ) ).x; + + } ).setLayout( { + name: 'getIndirectIndex', + type: 'uint', + inputs: [ + { name: 'id', type: 'int' } + ] + } ); + + const indirectId = getIndirectIndex( int( this.batchingIdNode ) ); + + const matricesTexture = this.batchMesh._matricesTexture; + + const size = int( textureSize( textureLoad( matricesTexture ), 0 ).x ); + const j = float( indirectId ).mul( 4 ).toInt().toVar(); + + const x = j.mod( size ); + const y = j.div( size ); + const batchingMatrix = mat4( + textureLoad( matricesTexture, ivec2( x, y ) ), + textureLoad( matricesTexture, ivec2( x.add( 1 ), y ) ), + textureLoad( matricesTexture, ivec2( x.add( 2 ), y ) ), + textureLoad( matricesTexture, ivec2( x.add( 3 ), y ) ) + ); + + + const colorsTexture = this.batchMesh._colorsTexture; + + if ( colorsTexture !== null ) { + + const getBatchingColor = Fn( ( [ id ] ) => { + + const size = int( textureSize( textureLoad( colorsTexture ), 0 ).x ); + const j = id; + const x = j.mod( size ); + const y = j.div( size ); + return textureLoad( colorsTexture, ivec2( x, y ) ).rgb; + + } ).setLayout( { + name: 'getBatchingColor', + type: 'vec3', + inputs: [ + { name: 'id', type: 'int' } + ] + } ); + + const color = getBatchingColor( indirectId ); + + varyingProperty( 'vec3', 'vBatchColor' ).assign( color ); + + } + + const bm = mat3( batchingMatrix ); + + positionLocal.assign( batchingMatrix.mul( positionLocal ) ); + + const transformedNormal = normalLocal.div( vec3( bm[ 0 ].dot( bm[ 0 ] ), bm[ 1 ].dot( bm[ 1 ] ), bm[ 2 ].dot( bm[ 2 ] ) ) ); + + const batchingNormal = bm.mul( transformedNormal ).xyz; + + normalLocal.assign( batchingNormal ); + + if ( builder.hasGeometryAttribute( 'tangent' ) ) { + + tangentLocal.mulAssign( bm ); + + } + + } + +} + +/** + * TSL function for creating a batch node. + * + * @tsl + * @function + * @param {BatchedMesh} batchMesh - A reference to batched mesh. + * @returns {BatchNode} + */ +const batch = /*@__PURE__*/ nodeProxy( BatchNode ).setParameterLength( 1 ); + +/** + * This class enables element access on instances of {@link StorageBufferNode}. + * In most cases, it is indirectly used when accessing elements with the + * {@link StorageBufferNode#element} method. + * + * ```js + * const position = positionStorage.element( instanceIndex ); + * ``` + * + * @augments ArrayElementNode + */ +class StorageArrayElementNode extends ArrayElementNode { + + static get type() { + + return 'StorageArrayElementNode'; + + } + + /** + * Constructs storage buffer element node. + * + * @param {StorageBufferNode} storageBufferNode - The storage buffer node. + * @param {Node} indexNode - The index node that defines the element access. + */ + constructor( storageBufferNode, indexNode ) { + + super( storageBufferNode, indexNode ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageArrayElementNode = true; + + } + + /** + * The storage buffer node. + * + * @param {Node} value + * @type {StorageBufferNode} + */ + set storageBufferNode( value ) { + + this.node = value; + + } + + get storageBufferNode() { + + return this.node; + + } + + getMemberType( builder, name ) { + + const structTypeNode = this.storageBufferNode.structTypeNode; + + if ( structTypeNode ) { + + return structTypeNode.getMemberType( builder, name ); + + } + + return 'void'; + + } + + setup( builder ) { + + if ( builder.isAvailable( 'storageBuffer' ) === false ) { + + if ( this.node.isPBO === true ) { + + builder.setupPBO( this.node ); + + } + + } + + return super.setup( builder ); + + } + + generate( builder, output ) { + + let snippet; + + const isAssignContext = builder.context.assign; + + // + + if ( builder.isAvailable( 'storageBuffer' ) === false ) { + + if ( this.node.isPBO === true && isAssignContext !== true && ( this.node.value.isInstancedBufferAttribute || builder.shaderStage !== 'compute' ) ) { + + snippet = builder.generatePBO( this ); + + } else { + + snippet = this.node.build( builder ); + + } + + } else { + + snippet = super.generate( builder ); + + } + + if ( isAssignContext !== true ) { + + const type = this.getNodeType( builder ); + + snippet = builder.format( snippet, type, output ); + + } + + return snippet; + + } + +} + +/** + * TSL function for creating a storage element node. + * + * @tsl + * @function + * @param {StorageBufferNode} storageBufferNode - The storage buffer node. + * @param {Node} indexNode - The index node that defines the element access. + * @returns {StorageArrayElementNode} + */ +const storageElement = /*@__PURE__*/ nodeProxy( StorageArrayElementNode ).setParameterLength( 2 ); + +/** + * This node is used in context of compute shaders and allows to define a + * storage buffer for data. A typical workflow is to create instances of + * this node with the convenience functions `attributeArray()` or `instancedArray()`, + * setup up a compute shader that writes into the buffers and then convert + * the storage buffers to attribute nodes for rendering. + * + * ```js + * const positionBuffer = instancedArray( particleCount, 'vec3' ); // the storage buffer node + * + * const computeInit = Fn( () => { // the compute shader + * + * const position = positionBuffer.element( instanceIndex ); + * + * // compute position data + * + * position.x = 1; + * position.y = 1; + * position.z = 1; + * + * } )().compute( particleCount ); + * + * const particleMaterial = new THREE.SpriteNodeMaterial(); + * particleMaterial.positionNode = positionBuffer.toAttribute(); + * + * renderer.computeAsync( computeInit ); + * + * ``` + * + * @augments BufferNode + */ +class StorageBufferNode extends BufferNode { + + static get type() { + + return 'StorageBufferNode'; + + } + + /** + * Constructs a new storage buffer node. + * + * @param {StorageBufferAttribute|StorageInstancedBufferAttribute|BufferAttribute} value - The buffer data. + * @param {?(string|Struct)} [bufferType=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [bufferCount=0] - The buffer count. + */ + constructor( value, bufferType = null, bufferCount = 0 ) { + + let nodeType, structTypeNode = null; + + if ( bufferType && bufferType.isStruct ) { + + nodeType = 'struct'; + structTypeNode = bufferType.layout; + + if ( value.isStorageBufferAttribute || value.isStorageInstancedBufferAttribute ) { + + bufferCount = value.count; + + } + + } else if ( bufferType === null && ( value.isStorageBufferAttribute || value.isStorageInstancedBufferAttribute ) ) { + + nodeType = getTypeFromLength( value.itemSize ); + bufferCount = value.count; + + } else { + + nodeType = bufferType; + + } + + super( value, nodeType, bufferCount ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageBufferNode = true; + + + /** + * The buffer struct type. + * + * @type {?StructTypeNode} + * @default null + */ + this.structTypeNode = structTypeNode; + + /** + * The access type of the texture node. + * + * @type {string} + * @default 'readWrite' + */ + this.access = NodeAccess.READ_WRITE; + + /** + * Whether the node is atomic or not. + * + * @type {boolean} + * @default false + */ + this.isAtomic = false; + + /** + * Whether the node represents a PBO or not. + * Only relevant for WebGL. + * + * @type {boolean} + * @default false + */ + this.isPBO = false; + + /** + * A reference to the internal buffer attribute node. + * + * @type {?BufferAttributeNode} + * @default null + */ + this._attribute = null; + + /** + * A reference to the internal varying node. + * + * @type {?VaryingNode} + * @default null + */ + this._varying = null; + + /** + * `StorageBufferNode` sets this property to `true` by default. + * + * @type {boolean} + * @default true + */ + this.global = true; + + if ( value.isStorageBufferAttribute !== true && value.isStorageInstancedBufferAttribute !== true ) { + + // TODO: Improve it, possibly adding a new property to the BufferAttribute to identify it as a storage buffer read-only attribute in Renderer + + if ( value.isInstancedBufferAttribute ) value.isStorageInstancedBufferAttribute = true; + else value.isStorageBufferAttribute = true; + + } + + } + + /** + * This method is overwritten since the buffer data might be shared + * and thus the hash should be shared as well. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The hash. + */ + getHash( builder ) { + + if ( this.bufferCount === 0 ) { + + let bufferData = builder.globalCache.getData( this.value ); + + if ( bufferData === undefined ) { + + bufferData = { + node: this + }; + + builder.globalCache.setData( this.value, bufferData ); + + } + + return bufferData.node.uuid; + + } + + return this.uuid; + + } + + /** + * Overwrites the default implementation to return a fixed value `'indirectStorageBuffer'` or `'storageBuffer'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return this.value.isIndirectStorageBufferAttribute ? 'indirectStorageBuffer' : 'storageBuffer'; + + } + + /** + * Enables element access with the given index node. + * + * @param {IndexNode} indexNode - The index node. + * @return {StorageArrayElementNode} A node representing the element access. + */ + element( indexNode ) { + + return storageElement( this, indexNode ); + + } + + /** + * Defines whether this node is a PBO or not. Only relevant for WebGL. + * + * @param {boolean} value - The value so set. + * @return {StorageBufferNode} A reference to this node. + */ + setPBO( value ) { + + this.isPBO = value; + + return this; + + } + + /** + * Returns the `isPBO` value. + * + * @return {boolean} Whether the node represents a PBO or not. + */ + getPBO() { + + return this.isPBO; + + } + + /** + * Defines the node access. + * + * @param {string} value - The node access. + * @return {StorageBufferNode} A reference to this node. + */ + setAccess( value ) { + + this.access = value; + + return this; + + } + + /** + * Convenience method for configuring a read-only node access. + * + * @return {StorageBufferNode} A reference to this node. + */ + toReadOnly() { + + return this.setAccess( NodeAccess.READ_ONLY ); + + } + + /** + * Defines whether the node is atomic or not. + * + * @param {boolean} value - The atomic flag. + * @return {StorageBufferNode} A reference to this node. + */ + setAtomic( value ) { + + this.isAtomic = value; + + return this; + + } + + /** + * Convenience method for making this node atomic. + * + * @return {StorageBufferNode} A reference to this node. + */ + toAtomic() { + + return this.setAtomic( true ); + + } + + /** + * Returns attribute data for this storage buffer node. + * + * @return {{attribute: BufferAttributeNode, varying: VaryingNode}} The attribute data. + */ + getAttributeData() { + + if ( this._attribute === null ) { + + this._attribute = bufferAttribute( this.value ); + this._varying = varying( this._attribute ); + + } + + return { + attribute: this._attribute, + varying: this._varying + }; + + } + + /** + * This method is overwritten since the node type from the availability of storage buffers + * and the attribute data. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + if ( this.structTypeNode !== null ) { + + return this.structTypeNode.getNodeType( builder ); + + } + + if ( builder.isAvailable( 'storageBuffer' ) || builder.isAvailable( 'indirectStorageBuffer' ) ) { + + return super.getNodeType( builder ); + + } + + const { attribute } = this.getAttributeData(); + + return attribute.getNodeType( builder ); + + } + + /** + * Returns the type of a member of the struct. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} name - The name of the member. + * @return {string} The type of the member. + */ + getMemberType( builder, name ) { + + if ( this.structTypeNode !== null ) { + + return this.structTypeNode.getMemberType( builder, name ); + + } + + return 'void'; + + } + + /** + * Generates the code snippet of the storage buffer node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The generated code snippet. + */ + generate( builder ) { + + if ( this.structTypeNode !== null ) this.structTypeNode.build( builder ); + + if ( builder.isAvailable( 'storageBuffer' ) || builder.isAvailable( 'indirectStorageBuffer' ) ) { + + return super.generate( builder ); + + } + + const { attribute, varying } = this.getAttributeData(); + + const output = varying.build( builder ); + + builder.registerTransform( output, attribute ); + + return output; + + } + +} + +/** + * TSL function for creating a storage buffer node. + * + * @tsl + * @function + * @param {StorageBufferAttribute|StorageInstancedBufferAttribute|BufferAttribute} value - The buffer data. + * @param {?(string|Struct)} [type=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [count=0] - The buffer count. + * @returns {StorageBufferNode} + */ +const storage = ( value, type = null, count = 0 ) => nodeObject( new StorageBufferNode( value, type, count ) ); + +/** + * @tsl + * @function + * @deprecated since r171. Use `storage().setPBO( true )` instead. + * + * @param {StorageBufferAttribute|StorageInstancedBufferAttribute|BufferAttribute} value - The buffer data. + * @param {?string} type - The buffer type (e.g. `'vec3'`). + * @param {number} count - The buffer count. + * @returns {StorageBufferNode} + */ +const storageObject = ( value, type, count ) => { // @deprecated, r171 + + console.warn( 'THREE.TSL: "storageObject()" is deprecated. Use "storage().setPBO( true )" instead.' ); + + return storage( value, type, count ).setPBO( true ); + +}; + +const _frameId = new WeakMap(); + +/** + * This node implements the vertex transformation shader logic which is required + * for skinning/skeletal animation. + * + * @augments Node + */ +class SkinningNode extends Node { + + static get type() { + + return 'SkinningNode'; + + } + + /** + * Constructs a new skinning node. + * + * @param {SkinnedMesh} skinnedMesh - The skinned mesh. + */ + constructor( skinnedMesh ) { + + super( 'void' ); + + /** + * The skinned mesh. + * + * @type {SkinnedMesh} + */ + this.skinnedMesh = skinnedMesh; + + /** + * The update type overwritten since skinning nodes are updated per object. + * + * @type {string} + */ + this.updateType = NodeUpdateType.OBJECT; + + // + + /** + * The skin index attribute. + * + * @type {AttributeNode} + */ + this.skinIndexNode = attribute( 'skinIndex', 'uvec4' ); + + /** + * The skin weight attribute. + * + * @type {AttributeNode} + */ + this.skinWeightNode = attribute( 'skinWeight', 'vec4' ); + + /** + * The bind matrix node. + * + * @type {Node} + */ + this.bindMatrixNode = reference( 'bindMatrix', 'mat4' ); + + /** + * The bind matrix inverse node. + * + * @type {Node} + */ + this.bindMatrixInverseNode = reference( 'bindMatrixInverse', 'mat4' ); + + /** + * The bind matrices as a uniform buffer node. + * + * @type {Node} + */ + this.boneMatricesNode = referenceBuffer( 'skeleton.boneMatrices', 'mat4', skinnedMesh.skeleton.bones.length ); + + /** + * The current vertex position in local space. + * + * @type {Node} + */ + this.positionNode = positionLocal; + + /** + * The result of vertex position in local space. + * + * @type {Node} + */ + this.toPositionNode = positionLocal; + + /** + * The previous bind matrices as a uniform buffer node. + * Required for computing motion vectors. + * + * @type {?Node} + * @default null + */ + this.previousBoneMatricesNode = null; + + } + + /** + * Transforms the given vertex position via skinning. + * + * @param {Node} [boneMatrices=this.boneMatricesNode] - The bone matrices + * @param {Node} [position=this.positionNode] - The vertex position in local space. + * @return {Node} The transformed vertex position. + */ + getSkinnedPosition( boneMatrices = this.boneMatricesNode, position = this.positionNode ) { + + const { skinIndexNode, skinWeightNode, bindMatrixNode, bindMatrixInverseNode } = this; + + const boneMatX = boneMatrices.element( skinIndexNode.x ); + const boneMatY = boneMatrices.element( skinIndexNode.y ); + const boneMatZ = boneMatrices.element( skinIndexNode.z ); + const boneMatW = boneMatrices.element( skinIndexNode.w ); + + // POSITION + + const skinVertex = bindMatrixNode.mul( position ); + + const skinned = add( + boneMatX.mul( skinWeightNode.x ).mul( skinVertex ), + boneMatY.mul( skinWeightNode.y ).mul( skinVertex ), + boneMatZ.mul( skinWeightNode.z ).mul( skinVertex ), + boneMatW.mul( skinWeightNode.w ).mul( skinVertex ) + ); + + return bindMatrixInverseNode.mul( skinned ).xyz; + + } + + /** + * Transforms the given vertex normal via skinning. + * + * @param {Node} [boneMatrices=this.boneMatricesNode] - The bone matrices + * @param {Node} [normal=normalLocal] - The vertex normal in local space. + * @return {Node} The transformed vertex normal. + */ + getSkinnedNormal( boneMatrices = this.boneMatricesNode, normal = normalLocal ) { + + const { skinIndexNode, skinWeightNode, bindMatrixNode, bindMatrixInverseNode } = this; + + const boneMatX = boneMatrices.element( skinIndexNode.x ); + const boneMatY = boneMatrices.element( skinIndexNode.y ); + const boneMatZ = boneMatrices.element( skinIndexNode.z ); + const boneMatW = boneMatrices.element( skinIndexNode.w ); + + // NORMAL + + let skinMatrix = add( + skinWeightNode.x.mul( boneMatX ), + skinWeightNode.y.mul( boneMatY ), + skinWeightNode.z.mul( boneMatZ ), + skinWeightNode.w.mul( boneMatW ) + ); + + skinMatrix = bindMatrixInverseNode.mul( skinMatrix ).mul( bindMatrixNode ); + + return skinMatrix.transformDirection( normal ).xyz; + + } + + /** + * Computes the transformed/skinned vertex position of the previous frame. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The skinned position from the previous frame. + */ + getPreviousSkinnedPosition( builder ) { + + const skinnedMesh = builder.object; + + if ( this.previousBoneMatricesNode === null ) { + + skinnedMesh.skeleton.previousBoneMatrices = new Float32Array( skinnedMesh.skeleton.boneMatrices ); + + this.previousBoneMatricesNode = referenceBuffer( 'skeleton.previousBoneMatrices', 'mat4', skinnedMesh.skeleton.bones.length ); + + } + + return this.getSkinnedPosition( this.previousBoneMatricesNode, positionPrevious ); + + } + + /** + * Returns `true` if bone matrices from the previous frame are required. Relevant + * when computing motion vectors with {@link VelocityNode}. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {boolean} Whether bone matrices from the previous frame are required or not. + */ + needsPreviousBoneMatrices( builder ) { + + const mrt = builder.renderer.getMRT(); + + return ( mrt && mrt.has( 'velocity' ) ) || getDataFromObject( builder.object ).useVelocity === true; + + } + + /** + * Setups the skinning node by assigning the transformed vertex data to predefined node variables. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The transformed vertex position. + */ + setup( builder ) { + + if ( this.needsPreviousBoneMatrices( builder ) ) { + + positionPrevious.assign( this.getPreviousSkinnedPosition( builder ) ); + + } + + const skinPosition = this.getSkinnedPosition(); + + if ( this.toPositionNode ) this.toPositionNode.assign( skinPosition ); + + // + + if ( builder.hasGeometryAttribute( 'normal' ) ) { + + const skinNormal = this.getSkinnedNormal(); + + normalLocal.assign( skinNormal ); + + if ( builder.hasGeometryAttribute( 'tangent' ) ) { + + tangentLocal.assign( skinNormal ); + + } + + } + + return skinPosition; + + } + + /** + * Generates the code snippet of the skinning node. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} output - The current output. + * @return {string} The generated code snippet. + */ + generate( builder, output ) { + + if ( output !== 'void' ) { + + return super.generate( builder, output ); + + } + + } + + /** + * Updates the state of the skinned mesh by updating the skeleton once per frame. + * + * @param {NodeFrame} frame - The current node frame. + */ + update( frame ) { + + const skeleton = frame.object && frame.object.skeleton ? frame.object.skeleton : this.skinnedMesh.skeleton; + + if ( _frameId.get( skeleton ) === frame.frameId ) return; + + _frameId.set( skeleton, frame.frameId ); + + if ( this.previousBoneMatricesNode !== null ) skeleton.previousBoneMatrices.set( skeleton.boneMatrices ); + + skeleton.update(); + + } + +} + +/** + * TSL function for creating a skinning node. + * + * @tsl + * @function + * @param {SkinnedMesh} skinnedMesh - The skinned mesh. + * @returns {SkinningNode} + */ +const skinning = ( skinnedMesh ) => nodeObject( new SkinningNode( skinnedMesh ) ); + +/** + * TSL function for computing skinning. + * + * @tsl + * @function + * @param {SkinnedMesh} skinnedMesh - The skinned mesh. + * @param {Node} [toPosition=null] - The target position. + * @returns {SkinningNode} + */ +const computeSkinning = ( skinnedMesh, toPosition = null ) => { + + const node = new SkinningNode( skinnedMesh ); + node.positionNode = storage( new InstancedBufferAttribute( skinnedMesh.geometry.getAttribute( 'position' ).array, 3 ), 'vec3' ).setPBO( true ).toReadOnly().element( instanceIndex ).toVar(); + node.skinIndexNode = storage( new InstancedBufferAttribute( new Uint32Array( skinnedMesh.geometry.getAttribute( 'skinIndex' ).array ), 4 ), 'uvec4' ).setPBO( true ).toReadOnly().element( instanceIndex ).toVar(); + node.skinWeightNode = storage( new InstancedBufferAttribute( skinnedMesh.geometry.getAttribute( 'skinWeight' ).array, 4 ), 'vec4' ).setPBO( true ).toReadOnly().element( instanceIndex ).toVar(); + node.bindMatrixNode = uniform( skinnedMesh.bindMatrix, 'mat4' ); + node.bindMatrixInverseNode = uniform( skinnedMesh.bindMatrixInverse, 'mat4' ); + node.boneMatricesNode = buffer( skinnedMesh.skeleton.boneMatrices, 'mat4', skinnedMesh.skeleton.bones.length ); + node.toPositionNode = toPosition; + + return nodeObject( node ); + +}; + +/** + * This module offers a variety of ways to implement loops in TSL. In it's basic form it's: + * ```js + * Loop( count, ( { i } ) => { + * + * } ); + * ``` + * However, it is also possible to define a start and end ranges, data types and loop conditions: + * ```js + * Loop( { start: int( 0 ), end: int( 10 ), type: 'int', condition: '<' }, ( { i } ) => { + * + * } ); + *``` + * Nested loops can be defined in a compacted form: + * ```js + * Loop( 10, 5, ( { i, j } ) => { + * + * } ); + * ``` + * Loops that should run backwards can be defined like so: + * ```js + * Loop( { start: 10 }, () => {} ); + * ``` + * It is possible to execute with boolean values, similar to the `while` syntax. + * ```js + * const value = float( 0 ).toVar(); + * + * Loop( value.lessThan( 10 ), () => { + * + * value.addAssign( 1 ); + * + * } ); + * ``` + * The module also provides `Break()` and `Continue()` TSL expression for loop control. + * @augments Node + */ +class LoopNode extends Node { + + static get type() { + + return 'LoopNode'; + + } + + /** + * Constructs a new loop node. + * + * @param {Array} params - Depending on the loop type, array holds different parameterization values for the loop. + */ + constructor( params = [] ) { + + super(); + + this.params = params; + + } + + /** + * Returns a loop variable name based on an index. The pattern is + * `0` = `i`, `1`= `j`, `2`= `k` and so on. + * + * @param {number} index - The index. + * @return {string} The loop variable name. + */ + getVarName( index ) { + + return String.fromCharCode( 'i'.charCodeAt( 0 ) + index ); + + } + + /** + * Returns properties about this node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Object} The node properties. + */ + getProperties( builder ) { + + const properties = builder.getNodeProperties( this ); + + if ( properties.stackNode !== undefined ) return properties; + + // + + const inputs = {}; + + for ( let i = 0, l = this.params.length - 1; i < l; i ++ ) { + + const param = this.params[ i ]; + + const name = ( param.isNode !== true && param.name ) || this.getVarName( i ); + const type = ( param.isNode !== true && param.type ) || 'int'; + + inputs[ name ] = expression( name, type ); + + } + + const stack = builder.addStack(); // TODO: cache() it + + properties.returnsNode = this.params[ this.params.length - 1 ]( inputs, builder ); + properties.stackNode = stack; + + const baseParam = this.params[ 0 ]; + + if ( baseParam.isNode !== true && typeof baseParam.update === 'function' ) { + + properties.updateNode = Fn( this.params[ 0 ].update )( inputs ); + + } + + builder.removeStack(); + + return properties; + + } + + /** + * This method is overwritten since the node type is inferred based on the loop configuration. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + const { returnsNode } = this.getProperties( builder ); + + return returnsNode ? returnsNode.getNodeType( builder ) : 'void'; + + } + + setup( builder ) { + + // setup properties + + this.getProperties( builder ); + + } + + generate( builder ) { + + const properties = this.getProperties( builder ); + + const params = this.params; + const stackNode = properties.stackNode; + + for ( let i = 0, l = params.length - 1; i < l; i ++ ) { + + const param = params[ i ]; + + let isWhile = false, start = null, end = null, name = null, type = null, condition = null, update = null; + + if ( param.isNode ) { + + if ( param.getNodeType( builder ) === 'bool' ) { + + isWhile = true; + type = 'bool'; + end = param.build( builder, type ); + + } else { + + type = 'int'; + name = this.getVarName( i ); + start = '0'; + end = param.build( builder, type ); + condition = '<'; + + } + + } else { + + type = param.type || 'int'; + name = param.name || this.getVarName( i ); + start = param.start; + end = param.end; + condition = param.condition; + update = param.update; + + if ( typeof start === 'number' ) start = builder.generateConst( type, start ); + else if ( start && start.isNode ) start = start.build( builder, type ); + + if ( typeof end === 'number' ) end = builder.generateConst( type, end ); + else if ( end && end.isNode ) end = end.build( builder, type ); + + if ( start !== undefined && end === undefined ) { + + start = start + ' - 1'; + end = '0'; + condition = '>='; + + } else if ( end !== undefined && start === undefined ) { + + start = '0'; + condition = '<'; + + } + + if ( condition === undefined ) { + + if ( Number( start ) > Number( end ) ) { + + condition = '>='; + + } else { + + condition = '<'; + + } + + } + + } + + let loopSnippet; + + if ( isWhile ) { + + loopSnippet = `while ( ${ end } )`; + + } else { + + const internalParam = { start, end }; + + // + + const startSnippet = internalParam.start; + const endSnippet = internalParam.end; + + let updateSnippet; + + const deltaOperator = () => condition.includes( '<' ) ? '+=' : '-='; + + if ( update !== undefined && update !== null ) { + + switch ( typeof update ) { + + case 'function': + + const flow = builder.flowStagesNode( properties.updateNode, 'void' ); + const snippet = flow.code.replace( /\t|;/g, '' ); + + updateSnippet = snippet; + + break; + + case 'number': + + updateSnippet = name + ' ' + deltaOperator() + ' ' + builder.generateConst( type, update ); + + break; + + case 'string': + + updateSnippet = name + ' ' + update; + + break; + + default: + + if ( update.isNode ) { + + updateSnippet = name + ' ' + deltaOperator() + ' ' + update.build( builder ); + + } else { + + console.error( 'THREE.TSL: \'Loop( { update: ... } )\' is not a function, string or number.' ); + + updateSnippet = 'break /* invalid update */'; + + } + + } + + } else { + + if ( type === 'int' || type === 'uint' ) { + + update = condition.includes( '<' ) ? '++' : '--'; + + } else { + + update = deltaOperator() + ' 1.'; + + } + + updateSnippet = name + ' ' + update; + + } + + const declarationSnippet = builder.getVar( type, name ) + ' = ' + startSnippet; + const conditionalSnippet = name + ' ' + condition + ' ' + endSnippet; + + loopSnippet = `for ( ${ declarationSnippet }; ${ conditionalSnippet }; ${ updateSnippet } )`; + + } + + builder.addFlowCode( ( i === 0 ? '\n' : '' ) + builder.tab + loopSnippet + ' {\n\n' ).addFlowTab(); + + } + + const stackSnippet = stackNode.build( builder, 'void' ); + + const returnsSnippet = properties.returnsNode ? properties.returnsNode.build( builder ) : ''; + + builder.removeFlowTab().addFlowCode( '\n' + builder.tab + stackSnippet ); + + for ( let i = 0, l = this.params.length - 1; i < l; i ++ ) { + + builder.addFlowCode( ( i === 0 ? '' : builder.tab ) + '}\n\n' ).removeFlowTab(); + + } + + builder.addFlowTab(); + + return returnsSnippet; + + } + +} + +/** + * TSL function for creating a loop node. + * + * @tsl + * @function + * @param {...any} params - A list of parameters. + * @returns {LoopNode} + */ +const Loop = ( ...params ) => nodeObject( new LoopNode( nodeArray( params, 'int' ) ) ).toStack(); + +/** + * TSL function for creating a `Continue()` expression. + * + * @tsl + * @function + * @returns {ExpressionNode} + */ +const Continue = () => expression( 'continue' ).toStack(); + +/** + * TSL function for creating a `Break()` expression. + * + * @tsl + * @function + * @returns {ExpressionNode} + */ +const Break = () => expression( 'break' ).toStack(); + +// Deprecated + +/** + * @tsl + * @function + * @deprecated since r168. Use {@link Loop} instead. + * + * @param {...any} params + * @returns {LoopNode} + */ +const loop = ( ...params ) => { // @deprecated, r168 + + console.warn( 'THREE.TSL: loop() has been renamed to Loop().' ); + return Loop( ...params ); + +}; + +const _morphTextures = /*@__PURE__*/ new WeakMap(); +const _morphVec4 = /*@__PURE__*/ new Vector4(); + +const getMorph = /*@__PURE__*/ Fn( ( { bufferMap, influence, stride, width, depth, offset } ) => { + + const texelIndex = int( vertexIndex ).mul( stride ).add( offset ); + + const y = texelIndex.div( width ); + const x = texelIndex.sub( y.mul( width ) ); + + const bufferAttrib = textureLoad( bufferMap, ivec2( x, y ) ).depth( depth ).xyz; + + return bufferAttrib.mul( influence ); + +} ); + +function getEntry( geometry ) { + + const hasMorphPosition = geometry.morphAttributes.position !== undefined; + const hasMorphNormals = geometry.morphAttributes.normal !== undefined; + const hasMorphColors = geometry.morphAttributes.color !== undefined; + + // instead of using attributes, the WebGL 2 code path encodes morph targets + // into an array of data textures. Each layer represents a single morph target. + + const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; + const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; + + let entry = _morphTextures.get( geometry ); + + if ( entry === undefined || entry.count !== morphTargetsCount ) { + + if ( entry !== undefined ) entry.texture.dispose(); + + const morphTargets = geometry.morphAttributes.position || []; + const morphNormals = geometry.morphAttributes.normal || []; + const morphColors = geometry.morphAttributes.color || []; + + let vertexDataCount = 0; + + if ( hasMorphPosition === true ) vertexDataCount = 1; + if ( hasMorphNormals === true ) vertexDataCount = 2; + if ( hasMorphColors === true ) vertexDataCount = 3; + + let width = geometry.attributes.position.count * vertexDataCount; + let height = 1; + + const maxTextureSize = 4096; // @TODO: Use 'capabilities.maxTextureSize' + + if ( width > maxTextureSize ) { + + height = Math.ceil( width / maxTextureSize ); + width = maxTextureSize; + + } + + const buffer = new Float32Array( width * height * 4 * morphTargetsCount ); + + const bufferTexture = new DataArrayTexture( buffer, width, height, morphTargetsCount ); + bufferTexture.type = FloatType; + bufferTexture.needsUpdate = true; + + // fill buffer + + const vertexDataStride = vertexDataCount * 4; + + for ( let i = 0; i < morphTargetsCount; i ++ ) { + + const morphTarget = morphTargets[ i ]; + const morphNormal = morphNormals[ i ]; + const morphColor = morphColors[ i ]; + + const offset = width * height * 4 * i; + + for ( let j = 0; j < morphTarget.count; j ++ ) { + + const stride = j * vertexDataStride; + + if ( hasMorphPosition === true ) { + + _morphVec4.fromBufferAttribute( morphTarget, j ); + + buffer[ offset + stride + 0 ] = _morphVec4.x; + buffer[ offset + stride + 1 ] = _morphVec4.y; + buffer[ offset + stride + 2 ] = _morphVec4.z; + buffer[ offset + stride + 3 ] = 0; + + } + + if ( hasMorphNormals === true ) { + + _morphVec4.fromBufferAttribute( morphNormal, j ); + + buffer[ offset + stride + 4 ] = _morphVec4.x; + buffer[ offset + stride + 5 ] = _morphVec4.y; + buffer[ offset + stride + 6 ] = _morphVec4.z; + buffer[ offset + stride + 7 ] = 0; + + } + + if ( hasMorphColors === true ) { + + _morphVec4.fromBufferAttribute( morphColor, j ); + + buffer[ offset + stride + 8 ] = _morphVec4.x; + buffer[ offset + stride + 9 ] = _morphVec4.y; + buffer[ offset + stride + 10 ] = _morphVec4.z; + buffer[ offset + stride + 11 ] = ( morphColor.itemSize === 4 ) ? _morphVec4.w : 1; + + } + + } + + } + + entry = { + count: morphTargetsCount, + texture: bufferTexture, + stride: vertexDataCount, + size: new Vector2( width, height ) + }; + + _morphTextures.set( geometry, entry ); + + function disposeTexture() { + + bufferTexture.dispose(); + + _morphTextures.delete( geometry ); + + geometry.removeEventListener( 'dispose', disposeTexture ); + + } + + geometry.addEventListener( 'dispose', disposeTexture ); + + } + + return entry; + +} + +/** + * This node implements the vertex transformation shader logic which is required + * for morph target animation. + * + * @augments Node + */ +class MorphNode extends Node { + + static get type() { + + return 'MorphNode'; + + } + + /** + * Constructs a new morph node. + * + * @param {Mesh} mesh - The mesh holding the morph targets. + */ + constructor( mesh ) { + + super( 'void' ); + + /** + * The mesh holding the morph targets. + * + * @type {Mesh} + */ + this.mesh = mesh; + + /** + * A uniform node which represents the morph base influence value. + * + * @type {UniformNode} + */ + this.morphBaseInfluence = uniform( 1 ); + + /** + * The update type overwritten since morph nodes are updated per object. + * + * @type {string} + */ + this.updateType = NodeUpdateType.OBJECT; + + } + + /** + * Setups the morph node by assigning the transformed vertex data to predefined node variables. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + const { geometry } = builder; + + const hasMorphPosition = geometry.morphAttributes.position !== undefined; + const hasMorphNormals = geometry.hasAttribute( 'normal' ) && geometry.morphAttributes.normal !== undefined; + + const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; + const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; + + // nodes + + const { texture: bufferMap, stride, size } = getEntry( geometry ); + + if ( hasMorphPosition === true ) positionLocal.mulAssign( this.morphBaseInfluence ); + if ( hasMorphNormals === true ) normalLocal.mulAssign( this.morphBaseInfluence ); + + const width = int( size.width ); + + Loop( morphTargetsCount, ( { i } ) => { + + const influence = float( 0 ).toVar(); + + if ( this.mesh.count > 1 && ( this.mesh.morphTexture !== null && this.mesh.morphTexture !== undefined ) ) { + + influence.assign( textureLoad( this.mesh.morphTexture, ivec2( int( i ).add( 1 ), int( instanceIndex ) ) ).r ); + + } else { + + influence.assign( reference( 'morphTargetInfluences', 'float' ).element( i ).toVar() ); + + } + + If( influence.notEqual( 0 ), () => { + + if ( hasMorphPosition === true ) { + + positionLocal.addAssign( getMorph( { + bufferMap, + influence, + stride, + width, + depth: i, + offset: int( 0 ) + } ) ); + + } + + if ( hasMorphNormals === true ) { + + normalLocal.addAssign( getMorph( { + bufferMap, + influence, + stride, + width, + depth: i, + offset: int( 1 ) + } ) ); + + } + + } ); + + } ); + + } + + /** + * Updates the state of the morphed mesh by updating the base influence. + * + * @param {NodeFrame} frame - The current node frame. + */ + update( /*frame*/ ) { + + const morphBaseInfluence = this.morphBaseInfluence; + + if ( this.mesh.geometry.morphTargetsRelative ) { + + morphBaseInfluence.value = 1; + + } else { + + morphBaseInfluence.value = 1 - this.mesh.morphTargetInfluences.reduce( ( a, b ) => a + b, 0 ); + + } + + } + +} + +/** + * TSL function for creating a morph node. + * + * @tsl + * @function + * @param {Mesh} mesh - The mesh holding the morph targets. + * @returns {MorphNode} + */ +const morphReference = /*@__PURE__*/ nodeProxy( MorphNode ).setParameterLength( 1 ); + +/** + * Base class for lighting nodes. + * + * @augments Node + */ +class LightingNode extends Node { + + static get type() { + + return 'LightingNode'; + + } + + /** + * Constructs a new lighting node. + */ + constructor() { + + super( 'vec3' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLightingNode = true; + + } + +} + +/** + * A generic class that can be used by nodes which contribute + * ambient occlusion to the scene. E.g. an ambient occlusion map + * node can be used as input for this module. Used in {@link NodeMaterial}. + * + * @augments LightingNode + */ +class AONode extends LightingNode { + + static get type() { + + return 'AONode'; + + } + + /** + * Constructs a new AO node. + * + * @param {?Node} [aoNode=null] - The ambient occlusion node. + */ + constructor( aoNode = null ) { + + super(); + + /** + * The ambient occlusion node. + * + * @type {?Node} + * @default null + */ + this.aoNode = aoNode; + + } + + setup( builder ) { + + builder.context.ambientOcclusion.mulAssign( this.aoNode ); + + } + +} + +/** + * `LightingContextNode` represents an extension of the {@link ContextNode} module + * by adding lighting specific context data. It represents the runtime context of + * {@link LightsNode}. + * + * @augments ContextNode + */ +class LightingContextNode extends ContextNode { + + static get type() { + + return 'LightingContextNode'; + + } + + /** + * Constructs a new lighting context node. + * + * @param {LightsNode} lightsNode - The lights node. + * @param {?LightingModel} [lightingModel=null] - The current lighting model. + * @param {?Node} [backdropNode=null] - A backdrop node. + * @param {?Node} [backdropAlphaNode=null] - A backdrop alpha node. + */ + constructor( lightsNode, lightingModel = null, backdropNode = null, backdropAlphaNode = null ) { + + super( lightsNode ); + + /** + * The current lighting model. + * + * @type {?LightingModel} + * @default null + */ + this.lightingModel = lightingModel; + + /** + * A backdrop node. + * + * @type {?Node} + * @default null + */ + this.backdropNode = backdropNode; + + /** + * A backdrop alpha node. + * + * @type {?Node} + * @default null + */ + this.backdropAlphaNode = backdropAlphaNode; + + this._value = null; + + } + + /** + * Returns a lighting context object. + * + * @return {{ + * radiance: Node, + * irradiance: Node, + * iblIrradiance: Node, + * ambientOcclusion: Node, + * reflectedLight: {directDiffuse: Node, directSpecular: Node, indirectDiffuse: Node, indirectSpecular: Node}, + * backdrop: Node, + * backdropAlpha: Node + * }} The lighting context object. + */ + getContext() { + + const { backdropNode, backdropAlphaNode } = this; + + const directDiffuse = vec3().toVar( 'directDiffuse' ), + directSpecular = vec3().toVar( 'directSpecular' ), + indirectDiffuse = vec3().toVar( 'indirectDiffuse' ), + indirectSpecular = vec3().toVar( 'indirectSpecular' ); + + const reflectedLight = { + directDiffuse, + directSpecular, + indirectDiffuse, + indirectSpecular + }; + + const context = { + radiance: vec3().toVar( 'radiance' ), + irradiance: vec3().toVar( 'irradiance' ), + iblIrradiance: vec3().toVar( 'iblIrradiance' ), + ambientOcclusion: float( 1 ).toVar( 'ambientOcclusion' ), + reflectedLight, + backdrop: backdropNode, + backdropAlpha: backdropAlphaNode + }; + + return context; + + } + + setup( builder ) { + + this.value = this._value || ( this._value = this.getContext() ); + this.value.lightingModel = this.lightingModel || builder.context.lightingModel; + + return super.setup( builder ); + + } + +} + +const lightingContext = /*@__PURE__*/ nodeProxy( LightingContextNode ); + +/** + * A generic class that can be used by nodes which contribute + * irradiance to the scene. E.g. a light map node can be used + * as input for this module. Used in {@link NodeMaterial}. + * + * @augments LightingNode + */ +class IrradianceNode extends LightingNode { + + static get type() { + + return 'IrradianceNode'; + + } + + /** + * Constructs a new irradiance node. + * + * @param {Node} node - A node contributing irradiance. + */ + constructor( node ) { + + super(); + + /** + * A node contributing irradiance. + * + * @type {Node} + */ + this.node = node; + + } + + setup( builder ) { + + builder.context.irradiance.addAssign( this.node ); + + } + +} + +let screenSizeVec, viewportVec; + +/** + * This node provides a collection of screen related metrics. + * Depending on {@link ScreenNode#scope}, the nodes can represent + * resolution or viewport data as well as fragment or uv coordinates. + * + * @augments Node + */ +class ScreenNode extends Node { + + static get type() { + + return 'ScreenNode'; + + } + + /** + * Constructs a new screen node. + * + * @param {('coordinate'|'viewport'|'size'|'uv')} scope - The node's scope. + */ + constructor( scope ) { + + super(); + + /** + * The node represents different metric depending on which scope is selected. + * + * - `ScreenNode.COORDINATE`: Window-relative coordinates of the current fragment according to WebGPU standards. + * - `ScreenNode.VIEWPORT`: The current viewport defined as a four-dimensional vector. + * - `ScreenNode.SIZE`: The dimensions of the current bound framebuffer. + * - `ScreenNode.UV`: Normalized coordinates. + * + * @type {('coordinate'|'viewport'|'size'|'uv')} + */ + this.scope = scope; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isViewportNode = true; + + } + + /** + * This method is overwritten since the node type depends on the selected scope. + * + * @return {('vec2'|'vec4')} The node type. + */ + getNodeType() { + + if ( this.scope === ScreenNode.VIEWPORT ) return 'vec4'; + else return 'vec2'; + + } + + /** + * This method is overwritten since the node's update type depends on the selected scope. + * + * @return {NodeUpdateType} The update type. + */ + getUpdateType() { + + let updateType = NodeUpdateType.NONE; + + if ( this.scope === ScreenNode.SIZE || this.scope === ScreenNode.VIEWPORT ) { + + updateType = NodeUpdateType.RENDER; + + } + + this.updateType = updateType; + + return updateType; + + } + + /** + * `ScreenNode` implements {@link Node#update} to retrieve viewport and size information + * from the current renderer. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( { renderer } ) { + + const renderTarget = renderer.getRenderTarget(); + + if ( this.scope === ScreenNode.VIEWPORT ) { + + if ( renderTarget !== null ) { + + viewportVec.copy( renderTarget.viewport ); + + } else { + + renderer.getViewport( viewportVec ); + + viewportVec.multiplyScalar( renderer.getPixelRatio() ); + + } + + } else { + + if ( renderTarget !== null ) { + + screenSizeVec.width = renderTarget.width; + screenSizeVec.height = renderTarget.height; + + } else { + + renderer.getDrawingBufferSize( screenSizeVec ); + + } + + } + + } + + setup( /*builder*/ ) { + + const scope = this.scope; + + let output = null; + + if ( scope === ScreenNode.SIZE ) { + + output = uniform( screenSizeVec || ( screenSizeVec = new Vector2() ) ); + + } else if ( scope === ScreenNode.VIEWPORT ) { + + output = uniform( viewportVec || ( viewportVec = new Vector4() ) ); + + } else { + + output = vec2( screenCoordinate.div( screenSize ) ); + + } + + return output; + + } + + generate( builder ) { + + if ( this.scope === ScreenNode.COORDINATE ) { + + let coord = builder.getFragCoord(); + + if ( builder.isFlipY() ) { + + // follow webgpu standards + + const size = builder.getNodeProperties( screenSize ).outputNode.build( builder ); + + coord = `${ builder.getType( 'vec2' ) }( ${ coord }.x, ${ size }.y - ${ coord }.y )`; + + } + + return coord; + + } + + return super.generate( builder ); + + } + +} + +ScreenNode.COORDINATE = 'coordinate'; +ScreenNode.VIEWPORT = 'viewport'; +ScreenNode.SIZE = 'size'; +ScreenNode.UV = 'uv'; + +// Screen + +/** + * TSL object that represents normalized screen coordinates, unitless in `[0, 1]`. + * + * @tsl + * @type {ScreenNode} + */ +const screenUV = /*@__PURE__*/ nodeImmutable( ScreenNode, ScreenNode.UV ); + +/** + * TSL object that represents the screen resolution in physical pixel units. + * + * @tsl + * @type {ScreenNode} + */ +const screenSize = /*@__PURE__*/ nodeImmutable( ScreenNode, ScreenNode.SIZE ); + +/** + * TSL object that represents the current `x`/`y` pixel position on the screen in physical pixel units. + * + * @tsl + * @type {ScreenNode} + */ +const screenCoordinate = /*@__PURE__*/ nodeImmutable( ScreenNode, ScreenNode.COORDINATE ); + +// Viewport + +/** + * TSL object that represents the viewport rectangle as `x`, `y`, `width` and `height` in physical pixel units. + * + * @tsl + * @type {ScreenNode} + */ +const viewport = /*@__PURE__*/ nodeImmutable( ScreenNode, ScreenNode.VIEWPORT ); + +/** + * TSL object that represents the viewport resolution in physical pixel units. + * + * @tsl + * @type {ScreenNode} + */ +const viewportSize = viewport.zw; + +/** + * TSL object that represents the current `x`/`y` pixel position on the viewport in physical pixel units. + * + * @tsl + * @type {ScreenNode} + */ +const viewportCoordinate = /*@__PURE__*/ screenCoordinate.sub( viewport.xy ); + +/** + * TSL object that represents normalized viewport coordinates, unitless in `[0, 1]`. + * + * @tsl + * @type {ScreenNode} + */ +const viewportUV = /*@__PURE__*/ viewportCoordinate.div( viewportSize ); + +// Deprecated + +/** + * @deprecated since r169. Use {@link screenSize} instead. + */ +const viewportResolution = /*@__PURE__*/ ( Fn( () => { // @deprecated, r169 + + console.warn( 'THREE.TSL: "viewportResolution" is deprecated. Use "screenSize" instead.' ); + + return screenSize; + +}, 'vec2' ).once() )(); + +/** + * @tsl + * @deprecated since r168. Use {@link screenUV} instead. + * @type {Node} + */ +const viewportTopLeft = /*@__PURE__*/ ( Fn( () => { // @deprecated, r168 + + console.warn( 'THREE.TSL: "viewportTopLeft" is deprecated. Use "screenUV" instead.' ); + + return screenUV; + +}, 'vec2' ).once() )(); + +/** + * @tsl + * @deprecated since r168. Use `screenUV.flipY()` instead. + * @type {Node} + */ +const viewportBottomLeft = /*@__PURE__*/ ( Fn( () => { // @deprecated, r168 + + console.warn( 'THREE.TSL: "viewportBottomLeft" is deprecated. Use "screenUV.flipY()" instead.' ); + + return screenUV.flipY(); + +}, 'vec2' ).once() )(); + +const _size$4 = /*@__PURE__*/ new Vector2(); + +/** + * A special type of texture node which represents the data of the current viewport + * as a texture. The module extracts data from the current bound framebuffer with + * a copy operation so no extra render pass is required to produce the texture data + * (which is good for performance). `ViewportTextureNode` can be used as an input for a + * variety of effects like refractive or transmissive materials. + * + * @augments TextureNode + */ +class ViewportTextureNode extends TextureNode { + + static get type() { + + return 'ViewportTextureNode'; + + } + + /** + * Constructs a new viewport texture node. + * + * @param {Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Texture} [framebufferTexture=null] - A framebuffer texture holding the viewport data. If not provided, a framebuffer texture is created automatically. + */ + constructor( uvNode = screenUV, levelNode = null, framebufferTexture = null ) { + + if ( framebufferTexture === null ) { + + framebufferTexture = new FramebufferTexture(); + framebufferTexture.minFilter = LinearMipmapLinearFilter; + + } + + super( framebufferTexture, uvNode, levelNode ); + + /** + * Whether to generate mipmaps or not. + * + * @type {boolean} + * @default false + */ + this.generateMipmaps = false; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isOutputTextureNode = true; + + /** + * The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node renders the + * scene once per frame in its {@link ViewportTextureNode#updateBefore} method. + * + * @type {string} + * @default 'frame' + */ + this.updateBeforeType = NodeUpdateType.FRAME; + + } + + updateBefore( frame ) { + + const renderer = frame.renderer; + renderer.getDrawingBufferSize( _size$4 ); + + // + + const framebufferTexture = this.value; + + if ( framebufferTexture.image.width !== _size$4.width || framebufferTexture.image.height !== _size$4.height ) { + + framebufferTexture.image.width = _size$4.width; + framebufferTexture.image.height = _size$4.height; + framebufferTexture.needsUpdate = true; + + } + + // + + const currentGenerateMipmaps = framebufferTexture.generateMipmaps; + framebufferTexture.generateMipmaps = this.generateMipmaps; + + renderer.copyFramebufferToTexture( framebufferTexture ); + + framebufferTexture.generateMipmaps = currentGenerateMipmaps; + + } + + clone() { + + const viewportTextureNode = new this.constructor( this.uvNode, this.levelNode, this.value ); + viewportTextureNode.generateMipmaps = this.generateMipmaps; + + return viewportTextureNode; + + } + +} + +/** + * TSL function for creating a viewport texture node. + * + * @tsl + * @function + * @param {?Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Texture} [framebufferTexture=null] - A framebuffer texture holding the viewport data. If not provided, a framebuffer texture is created automatically. + * @returns {ViewportTextureNode} + */ +const viewportTexture = /*@__PURE__*/ nodeProxy( ViewportTextureNode ).setParameterLength( 0, 3 ); + +/** + * TSL function for creating a viewport texture node with enabled mipmap generation. + * + * @tsl + * @function + * @param {?Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Texture} [framebufferTexture=null] - A framebuffer texture holding the viewport data. If not provided, a framebuffer texture is created automatically. + * @returns {ViewportTextureNode} + */ +const viewportMipTexture = /*@__PURE__*/ nodeProxy( ViewportTextureNode, null, null, { generateMipmaps: true } ).setParameterLength( 0, 3 ); + +let sharedDepthbuffer = null; + +/** + * Represents the depth of the current viewport as a texture. This module + * can be used in combination with viewport texture to achieve effects + * that require depth evaluation. + * + * @augments ViewportTextureNode + */ +class ViewportDepthTextureNode extends ViewportTextureNode { + + static get type() { + + return 'ViewportDepthTextureNode'; + + } + + /** + * Constructs a new viewport depth texture node. + * + * @param {Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + */ + constructor( uvNode = screenUV, levelNode = null ) { + + if ( sharedDepthbuffer === null ) { + + sharedDepthbuffer = new DepthTexture(); + + } + + super( uvNode, levelNode, sharedDepthbuffer ); + + } + +} + +/** + * TSL function for a viewport depth texture node. + * + * @tsl + * @function + * @param {?Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @returns {ViewportDepthTextureNode} + */ +const viewportDepthTexture = /*@__PURE__*/ nodeProxy( ViewportDepthTextureNode ).setParameterLength( 0, 2 ); + +/** + * This node offers a collection of features in context of the depth logic in the fragment shader. + * Depending on {@link ViewportDepthNode#scope}, it can be used to define a depth value for the current + * fragment or for depth evaluation purposes. + * + * @augments Node + */ +class ViewportDepthNode extends Node { + + static get type() { + + return 'ViewportDepthNode'; + + } + + /** + * Constructs a new viewport depth node. + * + * @param {('depth'|'depthBase'|'linearDepth')} scope - The node's scope. + * @param {?Node} [valueNode=null] - The value node. + */ + constructor( scope, valueNode = null ) { + + super( 'float' ); + + /** + * The node behaves differently depending on which scope is selected. + * + * - `ViewportDepthNode.DEPTH_BASE`: Allows to define a value for the current fragment's depth. + * - `ViewportDepthNode.DEPTH`: Represents the depth value for the current fragment (`valueNode` is ignored). + * - `ViewportDepthNode.LINEAR_DEPTH`: Represents the linear (orthographic) depth value of the current fragment. + * If a `valueNode` is set, the scope can be used to convert perspective depth data to linear data. + * + * @type {('depth'|'depthBase'|'linearDepth')} + */ + this.scope = scope; + + /** + * Can be used to define a custom depth value. + * The property is ignored in the `ViewportDepthNode.DEPTH` scope. + * + * @type {?Node} + * @default null + */ + this.valueNode = valueNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isViewportDepthNode = true; + + } + + generate( builder ) { + + const { scope } = this; + + if ( scope === ViewportDepthNode.DEPTH_BASE ) { + + return builder.getFragDepth(); + + } + + return super.generate( builder ); + + } + + setup( { camera } ) { + + const { scope } = this; + const value = this.valueNode; + + let node = null; + + if ( scope === ViewportDepthNode.DEPTH_BASE ) { + + if ( value !== null ) { + + node = depthBase().assign( value ); + + } + + } else if ( scope === ViewportDepthNode.DEPTH ) { + + if ( camera.isPerspectiveCamera ) { + + node = viewZToPerspectiveDepth( positionView.z, cameraNear, cameraFar ); + + } else { + + node = viewZToOrthographicDepth( positionView.z, cameraNear, cameraFar ); + + } + + } else if ( scope === ViewportDepthNode.LINEAR_DEPTH ) { + + if ( value !== null ) { + + if ( camera.isPerspectiveCamera ) { + + const viewZ = perspectiveDepthToViewZ( value, cameraNear, cameraFar ); + + node = viewZToOrthographicDepth( viewZ, cameraNear, cameraFar ); + + } else { + + node = value; + + } + + } else { + + node = viewZToOrthographicDepth( positionView.z, cameraNear, cameraFar ); + + } + + } + + return node; + + } + +} + +ViewportDepthNode.DEPTH_BASE = 'depthBase'; +ViewportDepthNode.DEPTH = 'depth'; +ViewportDepthNode.LINEAR_DEPTH = 'linearDepth'; + +// NOTE: viewZ, the z-coordinate in camera space, is negative for points in front of the camera + +/** + * TSL function for converting a viewZ value to an orthographic depth value. + * + * @tsl + * @function + * @param {Node} viewZ - The viewZ node. + * @param {Node} near - The camera's near value. + * @param {Node} far - The camera's far value. + * @returns {Node} + */ +const viewZToOrthographicDepth = ( viewZ, near, far ) => viewZ.add( near ).div( near.sub( far ) ); + +/** + * TSL function for converting an orthographic depth value to a viewZ value. + * + * @tsl + * @function + * @param {Node} depth - The orthographic depth. + * @param {Node} near - The camera's near value. + * @param {Node} far - The camera's far value. + * @returns {Node} + */ +const orthographicDepthToViewZ = ( depth, near, far ) => near.sub( far ).mul( depth ).sub( near ); + +/** + * TSL function for converting a viewZ value to a perspective depth value. + * + * Note: {link https://twitter.com/gonnavis/status/1377183786949959682}. + * + * @tsl + * @function + * @param {Node} viewZ - The viewZ node. + * @param {Node} near - The camera's near value. + * @param {Node} far - The camera's far value. + * @returns {Node} + */ +const viewZToPerspectiveDepth = ( viewZ, near, far ) => near.add( viewZ ).mul( far ).div( far.sub( near ).mul( viewZ ) ); + +/** + * TSL function for converting a perspective depth value to a viewZ value. + * + * @tsl + * @function + * @param {Node} depth - The perspective depth. + * @param {Node} near - The camera's near value. + * @param {Node} far - The camera's far value. + * @returns {Node} + */ +const perspectiveDepthToViewZ = ( depth, near, far ) => near.mul( far ).div( far.sub( near ).mul( depth ).sub( far ) ); + +/** + * TSL function for converting a viewZ value to a logarithmic depth value. + * + * @tsl + * @function + * @param {Node} viewZ - The viewZ node. + * @param {Node} near - The camera's near value. + * @param {Node} far - The camera's far value. + * @returns {Node} + */ +const viewZToLogarithmicDepth = ( viewZ, near, far ) => { + + // NOTE: viewZ must be negative--see explanation at the end of this comment block. + // The final logarithmic depth formula used here is adapted from one described in an + // article by Thatcher Ulrich (see http://tulrich.com/geekstuff/log_depth_buffer.txt), + // which was an improvement upon an earlier formula one described in an + // Outerra article (https://outerra.blogspot.com/2009/08/logarithmic-z-buffer.html). + // Ulrich's formula is the following: + // z = K * log( w / cameraNear ) / log( cameraFar / cameraNear ) + // where K = 2^k - 1, and k is the number of bits in the depth buffer. + // The Outerra variant ignored the camera near plane (it assumed it was 0) and instead + // opted for a "C-constant" for resolution adjustment of objects near the camera. + // Outerra states: "Notice that the 'C' variant doesn’t use a near plane distance, it has it + // set at 0" (quote from https://outerra.blogspot.com/2012/11/maximizing-depth-buffer-range-and.html). + // Ulrich's variant has the benefit of constant relative precision over the whole near-far range. + // It was debated here whether Outerra's "C-constant" or Ulrich's "near plane" variant should + // be used, and ultimately Ulrich's "near plane" version was chosen. + // Outerra eventually made another improvement to their original "C-constant" variant, + // but it still does not incorporate the camera near plane (for this version, + // see https://outerra.blogspot.com/2013/07/logarithmic-depth-buffer-optimizations.html). + // Here we make 4 changes to Ulrich's formula: + // 1. Clamp the camera near plane so we don't divide by 0. + // 2. Use log2 instead of log to avoid an extra multiply (shaders implement log using log2). + // 3. Assume K is 1 (K = maximum value in depth buffer; see Ulrich's formula above). + // 4. To maintain consistency with the functions "viewZToOrthographicDepth" and "viewZToPerspectiveDepth", + // we modify the formula here to use 'viewZ' instead of 'w'. The other functions expect a negative viewZ, + // so we do the same here, hence the 'viewZ.negate()' call. + // For visual representation of this depth curve, see https://www.desmos.com/calculator/uyqk0vex1u + near = near.max( 1e-6 ).toVar(); + const numerator = log2( viewZ.negate().div( near ) ); + const denominator = log2( far.div( near ) ); + return numerator.div( denominator ); + +}; + +/** + * TSL function for converting a logarithmic depth value to a viewZ value. + * + * @tsl + * @function + * @param {Node} depth - The logarithmic depth. + * @param {Node} near - The camera's near value. + * @param {Node} far - The camera's far value. + * @returns {Node} + */ +const logarithmicDepthToViewZ = ( depth, near, far ) => { + + // NOTE: we add a 'negate()' call to the return value here to maintain consistency with + // the functions "orthographicDepthToViewZ" and "perspectiveDepthToViewZ" (they return + // a negative viewZ). + const exponent = depth.mul( log( far.div( near ) ) ); + return float( Math.E ).pow( exponent ).mul( near ).negate(); + +}; + +/** + * TSL function for defining a value for the current fragment's depth. + * + * @tsl + * @function + * @param {Node} value - The depth value to set. + * @returns {ViewportDepthNode} + */ +const depthBase = /*@__PURE__*/ nodeProxy( ViewportDepthNode, ViewportDepthNode.DEPTH_BASE ); + +/** + * TSL object that represents the depth value for the current fragment. + * + * @tsl + * @type {ViewportDepthNode} + */ +const depth = /*@__PURE__*/ nodeImmutable( ViewportDepthNode, ViewportDepthNode.DEPTH ); + +/** + * TSL function for converting a perspective depth value to linear depth. + * + * @tsl + * @function + * @param {?Node} [value=null] - The perspective depth. If `null` is provided, the current fragment's depth is used. + * @returns {ViewportDepthNode} + */ +const linearDepth = /*@__PURE__*/ nodeProxy( ViewportDepthNode, ViewportDepthNode.LINEAR_DEPTH ).setParameterLength( 0, 1 ); + +/** + * TSL object that represents the linear (orthographic) depth value of the current fragment + * + * @tsl + * @type {ViewportDepthNode} + */ +const viewportLinearDepth = /*@__PURE__*/ linearDepth( viewportDepthTexture() ); + +depth.assign = ( value ) => depthBase( value ); + +/** + * This node is used in {@link NodeMaterial} to setup the clipping + * which can happen hardware-accelerated (if supported) and optionally + * use alpha-to-coverage for anti-aliasing clipped edges. + * + * @augments Node + */ +class ClippingNode extends Node { + + static get type() { + + return 'ClippingNode'; + + } + + /** + * Constructs a new clipping node. + * + * @param {('default'|'hardware'|'alphaToCoverage')} [scope='default'] - The node's scope. Similar to other nodes, + * the selected scope influences the behavior of the node and what type of code is generated. + */ + constructor( scope = ClippingNode.DEFAULT ) { + + super(); + + /** + * The node's scope. Similar to other nodes, the selected scope influences + * the behavior of the node and what type of code is generated. + * + * @type {('default'|'hardware'|'alphaToCoverage')} + */ + this.scope = scope; + + } + + /** + * Setups the node depending on the selected scope. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The result node. + */ + setup( builder ) { + + super.setup( builder ); + + const clippingContext = builder.clippingContext; + const { intersectionPlanes, unionPlanes } = clippingContext; + + this.hardwareClipping = builder.material.hardwareClipping; + + if ( this.scope === ClippingNode.ALPHA_TO_COVERAGE ) { + + return this.setupAlphaToCoverage( intersectionPlanes, unionPlanes ); + + } else if ( this.scope === ClippingNode.HARDWARE ) { + + return this.setupHardwareClipping( unionPlanes, builder ); + + } else { + + return this.setupDefault( intersectionPlanes, unionPlanes ); + + } + + } + + /** + * Setups alpha to coverage. + * + * @param {Array} intersectionPlanes - The intersection planes. + * @param {Array} unionPlanes - The union planes. + * @return {Node} The result node. + */ + setupAlphaToCoverage( intersectionPlanes, unionPlanes ) { + + return Fn( () => { + + const distanceToPlane = float().toVar( 'distanceToPlane' ); + const distanceGradient = float().toVar( 'distanceToGradient' ); + + const clipOpacity = float( 1 ).toVar( 'clipOpacity' ); + + const numUnionPlanes = unionPlanes.length; + + if ( this.hardwareClipping === false && numUnionPlanes > 0 ) { + + const clippingPlanes = uniformArray( unionPlanes ); + + Loop( numUnionPlanes, ( { i } ) => { + + const plane = clippingPlanes.element( i ); + + distanceToPlane.assign( positionView.dot( plane.xyz ).negate().add( plane.w ) ); + distanceGradient.assign( distanceToPlane.fwidth().div( 2.0 ) ); + + clipOpacity.mulAssign( smoothstep( distanceGradient.negate(), distanceGradient, distanceToPlane ) ); + + } ); + + } + + const numIntersectionPlanes = intersectionPlanes.length; + + if ( numIntersectionPlanes > 0 ) { + + const clippingPlanes = uniformArray( intersectionPlanes ); + const intersectionClipOpacity = float( 1 ).toVar( 'intersectionClipOpacity' ); + + Loop( numIntersectionPlanes, ( { i } ) => { + + const plane = clippingPlanes.element( i ); + + distanceToPlane.assign( positionView.dot( plane.xyz ).negate().add( plane.w ) ); + distanceGradient.assign( distanceToPlane.fwidth().div( 2.0 ) ); + + intersectionClipOpacity.mulAssign( smoothstep( distanceGradient.negate(), distanceGradient, distanceToPlane ).oneMinus() ); + + } ); + + clipOpacity.mulAssign( intersectionClipOpacity.oneMinus() ); + + } + + diffuseColor.a.mulAssign( clipOpacity ); + + diffuseColor.a.equal( 0.0 ).discard(); + + } )(); + + } + + /** + * Setups the default clipping. + * + * @param {Array} intersectionPlanes - The intersection planes. + * @param {Array} unionPlanes - The union planes. + * @return {Node} The result node. + */ + setupDefault( intersectionPlanes, unionPlanes ) { + + return Fn( () => { + + const numUnionPlanes = unionPlanes.length; + + if ( this.hardwareClipping === false && numUnionPlanes > 0 ) { + + const clippingPlanes = uniformArray( unionPlanes ); + + Loop( numUnionPlanes, ( { i } ) => { + + const plane = clippingPlanes.element( i ); + positionView.dot( plane.xyz ).greaterThan( plane.w ).discard(); + + } ); + + } + + const numIntersectionPlanes = intersectionPlanes.length; + + if ( numIntersectionPlanes > 0 ) { + + const clippingPlanes = uniformArray( intersectionPlanes ); + const clipped = bool( true ).toVar( 'clipped' ); + + Loop( numIntersectionPlanes, ( { i } ) => { + + const plane = clippingPlanes.element( i ); + clipped.assign( positionView.dot( plane.xyz ).greaterThan( plane.w ).and( clipped ) ); + + } ); + + clipped.discard(); + + } + + } )(); + + } + + /** + * Setups hardware clipping. + * + * @param {Array} unionPlanes - The union planes. + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The result node. + */ + setupHardwareClipping( unionPlanes, builder ) { + + const numUnionPlanes = unionPlanes.length; + + builder.enableHardwareClipping( numUnionPlanes ); + + return Fn( () => { + + const clippingPlanes = uniformArray( unionPlanes ); + const hw_clip_distances = builtin( builder.getClipDistance() ); + + Loop( numUnionPlanes, ( { i } ) => { + + const plane = clippingPlanes.element( i ); + + const distance = positionView.dot( plane.xyz ).sub( plane.w ).negate(); + hw_clip_distances.element( i ).assign( distance ); + + } ); + + } )(); + + } + +} + +ClippingNode.ALPHA_TO_COVERAGE = 'alphaToCoverage'; +ClippingNode.DEFAULT = 'default'; +ClippingNode.HARDWARE = 'hardware'; + +/** + * TSL function for setting up the default clipping logic. + * + * @tsl + * @function + * @returns {ClippingNode} + */ +const clipping = () => nodeObject( new ClippingNode() ); + +/** + * TSL function for setting up alpha to coverage. + * + * @tsl + * @function + * @returns {ClippingNode} + */ +const clippingAlpha = () => nodeObject( new ClippingNode( ClippingNode.ALPHA_TO_COVERAGE ) ); + +/** + * TSL function for setting up hardware-based clipping. + * + * @tsl + * @function + * @returns {ClippingNode} + */ +const hardwareClipping = () => nodeObject( new ClippingNode( ClippingNode.HARDWARE ) ); + +// See: https://casual-effects.com/research/Wyman2017Hashed/index.html + +const ALPHA_HASH_SCALE = 0.05; // Derived from trials only, and may be changed. + +const hash2D = /*@__PURE__*/ Fn( ( [ value ] ) => { + + return fract( mul( 1.0e4, sin( mul( 17.0, value.x ).add( mul( 0.1, value.y ) ) ) ).mul( add( 0.1, abs( sin( mul( 13.0, value.y ).add( value.x ) ) ) ) ) ); + +} ); + +const hash3D = /*@__PURE__*/ Fn( ( [ value ] ) => { + + return hash2D( vec2( hash2D( value.xy ), value.z ) ); + +} ); + +const getAlphaHashThreshold = /*@__PURE__*/ Fn( ( [ position ] ) => { + + // Find the discretized derivatives of our coordinates + const maxDeriv = max$1( + length( dFdx( position.xyz ) ), + length( dFdy( position.xyz ) ) + ); + + const pixScale = float( 1 ).div( float( ALPHA_HASH_SCALE ).mul( maxDeriv ) ).toVar( 'pixScale' ); + + // Find two nearest log-discretized noise scales + const pixScales = vec2( + exp2( floor( log2( pixScale ) ) ), + exp2( ceil( log2( pixScale ) ) ) + ); + + // Compute alpha thresholds at our two noise scales + const alpha = vec2( + hash3D( floor( pixScales.x.mul( position.xyz ) ) ), + hash3D( floor( pixScales.y.mul( position.xyz ) ) ), + ); + + // Factor to interpolate lerp with + const lerpFactor = fract( log2( pixScale ) ); + + // Interpolate alpha threshold from noise at two scales + const x = add( mul( lerpFactor.oneMinus(), alpha.x ), mul( lerpFactor, alpha.y ) ); + + // Pass into CDF to compute uniformly distrib threshold + const a = min$1( lerpFactor, lerpFactor.oneMinus() ); + const cases = vec3( + x.mul( x ).div( mul( 2.0, a ).mul( sub( 1.0, a ) ) ), + x.sub( mul( 0.5, a ) ).div( sub( 1.0, a ) ), + sub( 1.0, sub( 1.0, x ).mul( sub( 1.0, x ) ).div( mul( 2.0, a ).mul( sub( 1.0, a ) ) ) ) ); + + // Find our final, uniformly distributed alpha threshold (ατ) + const threshold = x.lessThan( a.oneMinus() ).select( x.lessThan( a ).select( cases.x, cases.y ), cases.z ); + + // Avoids ατ == 0. Could also do ατ =1-ατ + return clamp( threshold, 1.0e-6, 1.0 ); + +} ).setLayout( { + name: 'getAlphaHashThreshold', + type: 'float', + inputs: [ + { name: 'position', type: 'vec3' } + ] +} ); + +/** + * An attribute node for representing vertex colors. + * + * @augments AttributeNode + */ +class VertexColorNode extends AttributeNode { + + static get type() { + + return 'VertexColorNode'; + + } + + /** + * Constructs a new vertex color node. + * + * @param {number} index - The attribute index. + */ + constructor( index ) { + + super( null, 'vec4' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVertexColorNode = true; + + /** + * The attribute index to enable more than one sets of vertex colors. + * + * @type {number} + * @default 0 + */ + this.index = index; + + } + + /** + * Overwrites the default implementation by honoring the attribute index. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The attribute name. + */ + getAttributeName( /*builder*/ ) { + + const index = this.index; + + return 'color' + ( index > 0 ? index : '' ); + + } + + generate( builder ) { + + const attributeName = this.getAttributeName( builder ); + const geometryAttribute = builder.hasGeometryAttribute( attributeName ); + + let result; + + if ( geometryAttribute === true ) { + + result = super.generate( builder ); + + } else { + + // Vertex color fallback should be white + result = builder.generateConst( this.nodeType, new Vector4( 1, 1, 1, 1 ) ); + + } + + return result; + + } + + serialize( data ) { + + super.serialize( data ); + + data.index = this.index; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.index = data.index; + + } + +} + +/** + * TSL function for creating a reference node. + * + * @tsl + * @function + * @param {number} [index=0] - The attribute index. + * @returns {VertexColorNode} + */ +const vertexColor = ( index = 0 ) => nodeObject( new VertexColorNode( index ) ); + +/** + * Base class for all node materials. + * + * @augments Material + */ +class NodeMaterial extends Material { + + static get type() { + + return 'NodeMaterial'; + + } + + /** + * Represents the type of the node material. + * + * @type {string} + */ + get type() { + + return this.constructor.type; + + } + + set type( _value ) { /* */ } + + /** + * Constructs a new node material. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNodeMaterial = true; + + /** + * Whether this material is affected by fog or not. + * + * @type {boolean} + * @default true + */ + this.fog = true; + + /** + * Whether this material is affected by lights or not. + * + * @type {boolean} + * @default false + */ + this.lights = false; + + /** + * Whether this material uses hardware clipping or not. + * This property is managed by the engine and should not be + * modified by apps. + * + * @type {boolean} + * @default false + */ + this.hardwareClipping = false; + + /** + * Node materials which set their `lights` property to `true` + * are affected by all lights of the scene. Sometimes selective + * lighting is wanted which means only _some_ lights in the scene + * affect a material. This can be achieved by creating an instance + * of {@link LightsNode} with a list of selective + * lights and assign the node to this property. + * + * ```js + * const customLightsNode = lights( [ light1, light2 ] ); + * material.lightsNode = customLightsNode; + * ``` + * + * @type {?LightsNode} + * @default null + */ + this.lightsNode = null; + + /** + * The environment of node materials can be defined by an environment + * map assigned to the `envMap` property or by `Scene.environment` + * if the node material is a PBR material. This node property allows to overwrite + * the default behavior and define the environment with a custom node. + * + * ```js + * material.envNode = pmremTexture( renderTarget.texture ); + * ``` + * + * @type {?Node} + * @default null + */ + this.envNode = null; + + /** + * The lighting of node materials might be influenced by ambient occlusion. + * The default AO is inferred from an ambient occlusion map assigned to `aoMap` + * and the respective `aoMapIntensity`. This node property allows to overwrite + * the default and define the ambient occlusion with a custom node instead. + * + * If you don't want to overwrite the diffuse color but modify the existing + * values instead, use {@link materialAO}. + * + * @type {?Node} + * @default null + */ + this.aoNode = null; + + /** + * The diffuse color of node materials is by default inferred from the + * `color` and `map` properties. This node property allows to overwrite the default + * and define the diffuse color with a node instead. + * + * ```js + * material.colorNode = color( 0xff0000 ); // define red color + * ``` + * + * If you don't want to overwrite the diffuse color but modify the existing + * values instead, use {@link materialColor}. + * + * ```js + * material.colorNode = materialColor.mul( color( 0xff0000 ) ); // give diffuse colors a red tint + * ``` + * + * @type {?Node} + * @default null + */ + this.colorNode = null; + + /** + * The normals of node materials are by default inferred from the `normalMap`/`normalScale` + * or `bumpMap`/`bumpScale` properties. This node property allows to overwrite the default + * and define the normals with a node instead. + * + * If you don't want to overwrite the normals but modify the existing values instead, + * use {@link materialNormal}. + * + * @type {?Node} + * @default null + */ + this.normalNode = null; + + /** + * The opacity of node materials is by default inferred from the `opacity` + * and `alphaMap` properties. This node property allows to overwrite the default + * and define the opacity with a node instead. + * + * If you don't want to overwrite the normals but modify the existing + * value instead, use {@link materialOpacity}. + * + * @type {?Node} + * @default null + */ + this.opacityNode = null; + + /** + * This node can be used to implement a variety of filter-like effects. The idea is + * to store the current rendering into a texture e.g. via `viewportSharedTexture()`, use it + * to create an arbitrary effect and then assign the node composition to this property. + * Everything behind the object using this material will now be affected by a filter. + * + * ```js + * const material = new NodeMaterial() + * material.transparent = true; + * + * // everything behind the object will be monochromatic + * material.backdropNode = saturation( viewportSharedTexture().rgb, 0 ); + * ``` + * + * Backdrop computations are part of the lighting so only lit materials can use this property. + * + * @type {?Node} + * @default null + */ + this.backdropNode = null; + + /** + * This node allows to modulate the influence of `backdropNode` to the outgoing light. + * + * @type {?Node} + * @default null + */ + this.backdropAlphaNode = null; + + /** + * The alpha test of node materials is by default inferred from the `alphaTest` + * property. This node property allows to overwrite the default and define the + * alpha test with a node instead. + * + * If you don't want to overwrite the alpha test but modify the existing + * value instead, use {@link materialAlphaTest}. + * + * @type {?Node} + * @default null + */ + this.alphaTestNode = null; + + + /** + * Discards the fragment if the mask value is `false`. + * + * @type {?Node} + * @default null + */ + this.maskNode = null; + + /** + * The local vertex positions are computed based on multiple factors like the + * attribute data, morphing or skinning. This node property allows to overwrite + * the default and define local vertex positions with nodes instead. + * + * If you don't want to overwrite the vertex positions but modify the existing + * values instead, use {@link positionLocal}. + * + *```js + * material.positionNode = positionLocal.add( displace ); + * ``` + * + * @type {?Node} + * @default null + */ + this.positionNode = null; + + /** + * This node property is intended for logic which modifies geometry data once or per animation step. + * Apps usually place such logic randomly in initialization routines or in the animation loop. + * `geometryNode` is intended as a dedicated API so there is an intended spot where geometry modifications + * can be implemented. + * + * The idea is to assign a `Fn` definition that holds the geometry modification logic. A typical example + * would be a GPU based particle system that provides a node material for usage on app level. The particle + * simulation would be implemented as compute shaders and managed inside a `Fn` function. This function is + * eventually assigned to `geometryNode`. + * + * @type {?Function} + * @default null + */ + this.geometryNode = null; + + /** + * Allows to overwrite depth values in the fragment shader. + * + * @type {?Node} + * @default null + */ + this.depthNode = null; + + /** + * Allows to overwrite the position used for shadow map rendering which + * is by default {@link positionWorld}, the vertex position + * in world space. + * + * @type {?Node} + * @default null + */ + this.receivedShadowPositionNode = null; + + /** + * Allows to overwrite the geometry position used for shadow map projection which + * is by default {@link positionLocal}, the vertex position in local space. + * + * @type {?Node} + * @default null + */ + this.castShadowPositionNode = null; + + /** + * This node can be used to influence how an object using this node material + * receive shadows. + * + * ```js + * const totalShadows = float( 1 ).toVar(); + * material.receivedShadowNode = Fn( ( [ shadow ] ) => { + * totalShadows.mulAssign( shadow ); + * //return float( 1 ); // bypass received shadows + * return shadow.mix( color( 0xff0000 ), 1 ); // modify shadow color + * } ); + * + * @type {?(Function|FunctionNode)} + * @default null + */ + this.receivedShadowNode = null; + + /** + * This node can be used to influence how an object using this node material + * casts shadows. To apply a color to shadows, you can simply do: + * + * ```js + * material.castShadowNode = vec4( 1, 0, 0, 1 ); + * ``` + * + * Which can be nice to fake colored shadows of semi-transparent objects. It + * is also common to use the property with `Fn` function so checks are performed + * per fragment. + * + * ```js + * materialCustomShadow.castShadowNode = Fn( () => { + * hash( vertexIndex ).greaterThan( 0.5 ).discard(); + * return materialColor; + * } )(); + * ``` + * + * @type {?Node} + * @default null + */ + this.castShadowNode = null; + + /** + * This node can be used to define the final output of the material. + * + * TODO: Explain the differences to `fragmentNode`. + * + * @type {?Node} + * @default null + */ + this.outputNode = null; + + /** + * MRT configuration is done on renderer or pass level. This node allows to + * overwrite what values are written into MRT targets on material level. This + * can be useful for implementing selective FX features that should only affect + * specific objects. + * + * @type {?MRTNode} + * @default null + */ + this.mrtNode = null; + + /** + * This node property can be used if you need complete freedom in implementing + * the fragment shader. Assigning a node will replace the built-in material + * logic used in the fragment stage. + * + * @type {?Node} + * @default null + */ + this.fragmentNode = null; + + /** + * This node property can be used if you need complete freedom in implementing + * the vertex shader. Assigning a node will replace the built-in material logic + * used in the vertex stage. + * + * @type {?Node} + * @default null + */ + this.vertexNode = null; + + // Deprecated properties + + Object.defineProperty( this, 'shadowPositionNode', { // @deprecated, r176 + + get: () => { + + return this.receivedShadowPositionNode; + + }, + + set: ( value ) => { + + console.warn( 'THREE.NodeMaterial: ".shadowPositionNode" was renamed to ".receivedShadowPositionNode".' ); + + this.receivedShadowPositionNode = value; + + } + + } ); + + } + + /** + * Allows to define a custom cache key that influence the material key computation + * for render objects. + * + * @return {string} The custom cache key. + */ + customProgramCacheKey() { + + return this.type + getCacheKey$1( this ); + + } + + /** + * Builds this material with the given node builder. + * + * @param {NodeBuilder} builder - The current node builder. + */ + build( builder ) { + + this.setup( builder ); + + } + + /** + * Setups a node material observer with the given builder. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {NodeMaterialObserver} The node material observer. + */ + setupObserver( builder ) { + + return new NodeMaterialObserver( builder ); + + } + + /** + * Setups the vertex and fragment stage of this node material. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + builder.context.setupNormal = () => this.setupNormal( builder ); + builder.context.setupPositionView = () => this.setupPositionView( builder ); + builder.context.setupModelViewProjection = () => this.setupModelViewProjection( builder ); + + const renderer = builder.renderer; + const renderTarget = renderer.getRenderTarget(); + + // < VERTEX STAGE > + + builder.addStack(); + + const mvp = this.setupVertex( builder ); + + const vertexNode = this.vertexNode || mvp; + + builder.stack.outputNode = vertexNode; + + this.setupHardwareClipping( builder ); + + if ( this.geometryNode !== null ) { + + builder.stack.outputNode = builder.stack.outputNode.bypass( this.geometryNode ); + + } + + builder.addFlow( 'vertex', builder.removeStack() ); + + // < FRAGMENT STAGE > + + builder.addStack(); + + let resultNode; + + const clippingNode = this.setupClipping( builder ); + + if ( this.depthWrite === true || this.depthTest === true ) { + + // only write depth if depth buffer is configured + + if ( renderTarget !== null ) { + + if ( renderTarget.depthBuffer === true ) this.setupDepth( builder ); + + } else { + + if ( renderer.depth === true ) this.setupDepth( builder ); + + } + + } + + if ( this.fragmentNode === null ) { + + this.setupDiffuseColor( builder ); + this.setupVariants( builder ); + + const outgoingLightNode = this.setupLighting( builder ); + + if ( clippingNode !== null ) builder.stack.add( clippingNode ); + + // force unsigned floats - useful for RenderTargets + + const basicOutput = vec4( outgoingLightNode, diffuseColor.a ).max( 0 ); + + resultNode = this.setupOutput( builder, basicOutput ); + + // OUTPUT NODE + + output.assign( resultNode ); + + // + + const isCustomOutput = this.outputNode !== null; + + if ( isCustomOutput ) resultNode = this.outputNode; + + // MRT + + if ( renderTarget !== null ) { + + const mrt = renderer.getMRT(); + const materialMRT = this.mrtNode; + + if ( mrt !== null ) { + + if ( isCustomOutput ) output.assign( resultNode ); + + resultNode = mrt; + + if ( materialMRT !== null ) { + + resultNode = mrt.merge( materialMRT ); + + } + + } else if ( materialMRT !== null ) { + + resultNode = materialMRT; + + } + + } + + } else { + + let fragmentNode = this.fragmentNode; + + if ( fragmentNode.isOutputStructNode !== true ) { + + fragmentNode = vec4( fragmentNode ); + + } + + resultNode = this.setupOutput( builder, fragmentNode ); + + } + + builder.stack.outputNode = resultNode; + + builder.addFlow( 'fragment', builder.removeStack() ); + + // < OBSERVER > + + builder.observer = this.setupObserver( builder ); + + } + + /** + * Setups the clipping node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {ClippingNode} The clipping node. + */ + setupClipping( builder ) { + + if ( builder.clippingContext === null ) return null; + + const { unionPlanes, intersectionPlanes } = builder.clippingContext; + + let result = null; + + if ( unionPlanes.length > 0 || intersectionPlanes.length > 0 ) { + + const samples = builder.renderer.samples; + + if ( this.alphaToCoverage && samples > 1 ) { + + // to be added to flow when the color/alpha value has been determined + result = clippingAlpha(); + + } else { + + builder.stack.add( clipping() ); + + } + + } + + return result; + + } + + /** + * Setups the hardware clipping if available on the current device. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupHardwareClipping( builder ) { + + this.hardwareClipping = false; + + if ( builder.clippingContext === null ) return; + + const candidateCount = builder.clippingContext.unionPlanes.length; + + // 8 planes supported by WebGL ANGLE_clip_cull_distance and WebGPU clip-distances + + if ( candidateCount > 0 && candidateCount <= 8 && builder.isAvailable( 'clipDistance' ) ) { + + builder.stack.add( hardwareClipping() ); + + this.hardwareClipping = true; + + } + + return; + + } + + /** + * Setups the depth of this material. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupDepth( builder ) { + + const { renderer, camera } = builder; + + // Depth + + let depthNode = this.depthNode; + + if ( depthNode === null ) { + + const mrt = renderer.getMRT(); + + if ( mrt && mrt.has( 'depth' ) ) { + + depthNode = mrt.get( 'depth' ); + + } else if ( renderer.logarithmicDepthBuffer === true ) { + + if ( camera.isPerspectiveCamera ) { + + depthNode = viewZToLogarithmicDepth( positionView.z, cameraNear, cameraFar ); + + } else { + + depthNode = viewZToOrthographicDepth( positionView.z, cameraNear, cameraFar ); + + } + + } + + } + + if ( depthNode !== null ) { + + depth.assign( depthNode ).toStack(); + + } + + } + + /** + * Setups the position node in view space. This method exists + * so derived node materials can modify the implementation e.g. sprite materials. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The position in view space. + */ + setupPositionView( /*builder*/ ) { + + return modelViewMatrix.mul( positionLocal ).xyz; + + } + + /** + * Setups the position in clip space. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The position in view space. + */ + setupModelViewProjection( /*builder*/ ) { + + return cameraProjectionMatrix.mul( positionView ); + + } + + /** + * Setups the logic for the vertex stage. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The position in clip space. + */ + setupVertex( builder ) { + + builder.addStack(); + + this.setupPosition( builder ); + + builder.context.vertex = builder.removeStack(); + + return modelViewProjection; + + } + + /** + * Setups the computation of the position in local space. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The position in local space. + */ + setupPosition( builder ) { + + const { object, geometry } = builder; + + if ( geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color ) { + + morphReference( object ).toStack(); + + } + + if ( object.isSkinnedMesh === true ) { + + skinning( object ).toStack(); + + } + + if ( this.displacementMap ) { + + const displacementMap = materialReference( 'displacementMap', 'texture' ); + const displacementScale = materialReference( 'displacementScale', 'float' ); + const displacementBias = materialReference( 'displacementBias', 'float' ); + + positionLocal.addAssign( normalLocal.normalize().mul( ( displacementMap.x.mul( displacementScale ).add( displacementBias ) ) ) ); + + } + + if ( object.isBatchedMesh ) { + + batch( object ).toStack(); + + } + + if ( ( object.isInstancedMesh && object.instanceMatrix && object.instanceMatrix.isInstancedBufferAttribute === true ) ) { + + instancedMesh( object ).toStack(); + + } + + if ( this.positionNode !== null ) { + + positionLocal.assign( namespace( this.positionNode, 'POSITION' ) ); + + } + + return positionLocal; + + } + + /** + * Setups the computation of the material's diffuse color. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {BufferGeometry} geometry - The geometry. + */ + setupDiffuseColor( { object, geometry } ) { + + // MASK + + if ( this.maskNode !== null ) { + + // Discard if the mask is `false` + + bool( this.maskNode ).not().discard(); + + } + + // COLOR + + let colorNode = this.colorNode ? vec4( this.colorNode ) : materialColor; + + // VERTEX COLORS + + if ( this.vertexColors === true && geometry.hasAttribute( 'color' ) ) { + + colorNode = colorNode.mul( vertexColor() ); + + } + + // INSTANCED COLORS + + if ( object.instanceColor ) { + + const instanceColor = varyingProperty( 'vec3', 'vInstanceColor' ); + + colorNode = instanceColor.mul( colorNode ); + + } + + if ( object.isBatchedMesh && object._colorsTexture ) { + + const batchColor = varyingProperty( 'vec3', 'vBatchColor' ); + + colorNode = batchColor.mul( colorNode ); + + } + + // DIFFUSE COLOR + + diffuseColor.assign( colorNode ); + + // OPACITY + + const opacityNode = this.opacityNode ? float( this.opacityNode ) : materialOpacity; + diffuseColor.a.assign( diffuseColor.a.mul( opacityNode ) ); + + // ALPHA TEST + + let alphaTestNode = null; + + if ( this.alphaTestNode !== null || this.alphaTest > 0 ) { + + alphaTestNode = this.alphaTestNode !== null ? float( this.alphaTestNode ) : materialAlphaTest; + + diffuseColor.a.lessThanEqual( alphaTestNode ).discard(); + + } + + // ALPHA HASH + + if ( this.alphaHash === true ) { + + diffuseColor.a.lessThan( getAlphaHashThreshold( positionLocal ) ).discard(); + + } + + // OPAQUE + + const isOpaque = this.transparent === false && this.blending === NormalBlending && this.alphaToCoverage === false; + + if ( isOpaque ) { + + diffuseColor.a.assign( 1.0 ); + + } else if ( alphaTestNode === null ) { + + diffuseColor.a.lessThanEqual( 0 ).discard(); + + } + + } + + /** + * Abstract interface method that can be implemented by derived materials + * to setup material-specific node variables. + * + * @abstract + * @param {NodeBuilder} builder - The current node builder. + */ + setupVariants( /*builder*/ ) { + + // Interface function. + + } + + /** + * Setups the outgoing light node variable + * + * @return {Node} The outgoing light node. + */ + setupOutgoingLight() { + + return ( this.lights === true ) ? vec3( 0 ) : diffuseColor.rgb; + + } + + /** + * Setups the normal node from the material. + * + * @return {Node} The normal node. + */ + setupNormal() { + + return this.normalNode ? vec3( this.normalNode ) : materialNormal; + + } + + /** + * Setups the environment node from the material. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The environment node. + */ + setupEnvironment( /*builder*/ ) { + + let node = null; + + if ( this.envNode ) { + + node = this.envNode; + + } else if ( this.envMap ) { + + node = this.envMap.isCubeTexture ? materialReference( 'envMap', 'cubeTexture' ) : materialReference( 'envMap', 'texture' ); + + } + + return node; + + } + + /** + * Setups the light map node from the material. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The light map node. + */ + setupLightMap( builder ) { + + let node = null; + + if ( builder.material.lightMap ) { + + node = new IrradianceNode( materialLightMap ); + + } + + return node; + + } + + /** + * Setups the lights node based on the scene, environment and material. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {LightsNode} The lights node. + */ + setupLights( builder ) { + + const materialLightsNode = []; + + // + + const envNode = this.setupEnvironment( builder ); + + if ( envNode && envNode.isLightingNode ) { + + materialLightsNode.push( envNode ); + + } + + const lightMapNode = this.setupLightMap( builder ); + + if ( lightMapNode && lightMapNode.isLightingNode ) { + + materialLightsNode.push( lightMapNode ); + + } + + if ( this.aoNode !== null || builder.material.aoMap ) { + + const aoNode = this.aoNode !== null ? this.aoNode : materialAO; + + materialLightsNode.push( new AONode( aoNode ) ); + + } + + let lightsN = this.lightsNode || builder.lightsNode; + + if ( materialLightsNode.length > 0 ) { + + lightsN = builder.renderer.lighting.createNode( [ ...lightsN.getLights(), ...materialLightsNode ] ); + + } + + return lightsN; + + } + + /** + * This method should be implemented by most derived materials + * since it defines the material's lighting model. + * + * @abstract + * @param {NodeBuilder} builder - The current node builder. + * @return {LightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + // Interface function. + + } + + /** + * Setups the outgoing light node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The outgoing light node. + */ + setupLighting( builder ) { + + const { material } = builder; + const { backdropNode, backdropAlphaNode, emissiveNode } = this; + + // OUTGOING LIGHT + + const lights = this.lights === true || this.lightsNode !== null; + + const lightsNode = lights ? this.setupLights( builder ) : null; + + let outgoingLightNode = this.setupOutgoingLight( builder ); + + if ( lightsNode && lightsNode.getScope().hasLights ) { + + const lightingModel = this.setupLightingModel( builder ) || null; + + outgoingLightNode = lightingContext( lightsNode, lightingModel, backdropNode, backdropAlphaNode ); + + } else if ( backdropNode !== null ) { + + outgoingLightNode = vec3( backdropAlphaNode !== null ? mix( outgoingLightNode, backdropNode, backdropAlphaNode ) : backdropNode ); + + } + + // EMISSIVE + + if ( ( emissiveNode && emissiveNode.isNode === true ) || ( material.emissive && material.emissive.isColor === true ) ) { + + emissive.assign( vec3( emissiveNode ? emissiveNode : materialEmissive ) ); + + outgoingLightNode = outgoingLightNode.add( emissive ); + + } + + return outgoingLightNode; + + } + + /** + * Setup the fog. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} outputNode - The existing output node. + * @return {Node} The output node. + */ + setupFog( builder, outputNode ) { + + const fogNode = builder.fogNode; + + if ( fogNode ) { + + output.assign( outputNode ); + + outputNode = vec4( fogNode ); + + } + + return outputNode; + + } + + /** + * Setups the output node. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} outputNode - The existing output node. + * @return {Node} The output node. + */ + setupOutput( builder, outputNode ) { + + // FOG + + if ( this.fog === true ) { + + outputNode = this.setupFog( builder, outputNode ); + + } + + return outputNode; + + } + + /** + * Most classic material types have a node pendant e.g. for `MeshBasicMaterial` + * there is `MeshBasicNodeMaterial`. This utility method is intended for + * defining all material properties of the classic type in the node type. + * + * @param {Material} material - The material to copy properties with their values to this node material. + */ + setDefaultValues( material ) { + + // This approach is to reuse the native refreshUniforms* + // and turn available the use of features like transmission and environment in core + + for ( const property in material ) { + + const value = material[ property ]; + + if ( this[ property ] === undefined ) { + + this[ property ] = value; + + if ( value && value.clone ) this[ property ] = value.clone(); + + } + + } + + const descriptors = Object.getOwnPropertyDescriptors( material.constructor.prototype ); + + for ( const key in descriptors ) { + + if ( Object.getOwnPropertyDescriptor( this.constructor.prototype, key ) === undefined && + descriptors[ key ].get !== undefined ) { + + Object.defineProperty( this.constructor.prototype, key, descriptors[ key ] ); + + } + + } + + } + + /** + * Serializes this material to JSON. + * + * @param {?(Object|string)} meta - The meta information for serialization. + * @return {Object} The serialized node. + */ + toJSON( meta ) { + + const isRoot = ( meta === undefined || typeof meta === 'string' ); + + if ( isRoot ) { + + meta = { + textures: {}, + images: {}, + nodes: {} + }; + + } + + const data = Material.prototype.toJSON.call( this, meta ); + const nodeChildren = getNodeChildren( this ); + + data.inputNodes = {}; + + for ( const { property, childNode } of nodeChildren ) { + + data.inputNodes[ property ] = childNode.toJSON( meta ).uuid; + + } + + // TODO: Copied from Object3D.toJSON + + function extractFromCache( cache ) { + + const values = []; + + for ( const key in cache ) { + + const data = cache[ key ]; + delete data.metadata; + values.push( data ); + + } + + return values; + + } + + if ( isRoot ) { + + const textures = extractFromCache( meta.textures ); + const images = extractFromCache( meta.images ); + const nodes = extractFromCache( meta.nodes ); + + if ( textures.length > 0 ) data.textures = textures; + if ( images.length > 0 ) data.images = images; + if ( nodes.length > 0 ) data.nodes = nodes; + + } + + return data; + + } + + /** + * Copies the properties of the given node material to this instance. + * + * @param {NodeMaterial} source - The material to copy. + * @return {NodeMaterial} A reference to this node material. + */ + copy( source ) { + + this.lightsNode = source.lightsNode; + this.envNode = source.envNode; + + this.colorNode = source.colorNode; + this.normalNode = source.normalNode; + this.opacityNode = source.opacityNode; + this.backdropNode = source.backdropNode; + this.backdropAlphaNode = source.backdropAlphaNode; + this.alphaTestNode = source.alphaTestNode; + this.maskNode = source.maskNode; + + this.positionNode = source.positionNode; + this.geometryNode = source.geometryNode; + + this.depthNode = source.depthNode; + this.receivedShadowPositionNode = source.receivedShadowPositionNode; + this.castShadowPositionNode = source.castShadowPositionNode; + this.receivedShadowNode = source.receivedShadowNode; + this.castShadowNode = source.castShadowNode; + + this.outputNode = source.outputNode; + this.mrtNode = source.mrtNode; + + this.fragmentNode = source.fragmentNode; + this.vertexNode = source.vertexNode; + + return super.copy( source ); + + } + +} + +const _defaultValues$d = /*@__PURE__*/ new LineBasicMaterial(); + +/** + * Node material version of {@link LineBasicMaterial}. + * + * @augments NodeMaterial + */ +class LineBasicNodeMaterial extends NodeMaterial { + + static get type() { + + return 'LineBasicNodeMaterial'; + + } + + /** + * Constructs a new line basic node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLineBasicNodeMaterial = true; + + this.setDefaultValues( _defaultValues$d ); + + this.setValues( parameters ); + + } + +} + +const _defaultValues$c = /*@__PURE__*/ new LineDashedMaterial(); + +/** + * Node material version of {@link LineDashedMaterial}. + * + * @augments NodeMaterial + */ +class LineDashedNodeMaterial extends NodeMaterial { + + static get type() { + + return 'LineDashedNodeMaterial'; + + } + + /** + * Constructs a new line dashed node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLineDashedNodeMaterial = true; + + this.setDefaultValues( _defaultValues$c ); + + /** + * The dash offset. + * + * @type {number} + * @default 0 + */ + this.dashOffset = 0; + + /** + * The offset of dash materials is by default inferred from the `dashOffset` + * property. This node property allows to overwrite the default + * and define the offset with a node instead. + * + * If you don't want to overwrite the offset but modify the existing + * value instead, use {@link materialLineDashOffset}. + * + * @type {?Node} + * @default null + */ + this.offsetNode = null; + + /** + * The scale of dash materials is by default inferred from the `scale` + * property. This node property allows to overwrite the default + * and define the scale with a node instead. + * + * If you don't want to overwrite the scale but modify the existing + * value instead, use {@link materialLineScale}. + * + * @type {?Node} + * @default null + */ + this.dashScaleNode = null; + + /** + * The dash size of dash materials is by default inferred from the `dashSize` + * property. This node property allows to overwrite the default + * and define the dash size with a node instead. + * + * If you don't want to overwrite the dash size but modify the existing + * value instead, use {@link materialLineDashSize}. + * + * @type {?Node} + * @default null + */ + this.dashSizeNode = null; + + /** + * The gap size of dash materials is by default inferred from the `gapSize` + * property. This node property allows to overwrite the default + * and define the gap size with a node instead. + * + * If you don't want to overwrite the gap size but modify the existing + * value instead, use {@link materialLineGapSize}. + * + * @type {?Node} + * @default null + */ + this.gapSizeNode = null; + + this.setValues( parameters ); + + } + + /** + * Setups the dash specific node variables. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupVariants( /* builder */ ) { + + const offsetNode = this.offsetNode ? float( this.offsetNode ) : materialLineDashOffset; + const dashScaleNode = this.dashScaleNode ? float( this.dashScaleNode ) : materialLineScale; + const dashSizeNode = this.dashSizeNode ? float( this.dashSizeNode ) : materialLineDashSize; + const gapSizeNode = this.gapSizeNode ? float( this.gapSizeNode ) : materialLineGapSize; + + dashSize.assign( dashSizeNode ); + gapSize.assign( gapSizeNode ); + + const vLineDistance = varying( attribute( 'lineDistance' ).mul( dashScaleNode ) ); + const vLineDistanceOffset = offsetNode ? vLineDistance.add( offsetNode ) : vLineDistance; + + vLineDistanceOffset.mod( dashSize.add( gapSize ) ).greaterThan( dashSize ).discard(); + + } + +} + +let _sharedFramebuffer = null; + +/** + * `ViewportTextureNode` creates an internal texture for each node instance. This module + * shares a texture across all instances of `ViewportSharedTextureNode`. It should + * be the first choice when using data of the default/screen framebuffer for performance reasons. + * + * @augments ViewportTextureNode + */ +class ViewportSharedTextureNode extends ViewportTextureNode { + + static get type() { + + return 'ViewportSharedTextureNode'; + + } + + /** + * Constructs a new viewport shared texture node. + * + * @param {Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + */ + constructor( uvNode = screenUV, levelNode = null ) { + + if ( _sharedFramebuffer === null ) { + + _sharedFramebuffer = new FramebufferTexture(); + + } + + super( uvNode, levelNode, _sharedFramebuffer ); + + } + + updateReference() { + + return this; + + } + +} + +/** + * TSL function for creating a shared viewport texture node. + * + * @tsl + * @function + * @param {?Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @returns {ViewportSharedTextureNode} + */ +const viewportSharedTexture = /*@__PURE__*/ nodeProxy( ViewportSharedTextureNode ).setParameterLength( 0, 2 ); + +const _defaultValues$b = /*@__PURE__*/ new LineDashedMaterial(); + +/** + * This node material can be used to render lines with a size larger than one + * by representing them as instanced meshes. + * + * @augments NodeMaterial + */ +class Line2NodeMaterial extends NodeMaterial { + + static get type() { + + return 'Line2NodeMaterial'; + + } + + /** + * Constructs a new node material for wide line rendering. + * + * @param {Object} [parameters={}] - The configuration parameter. + */ + constructor( parameters = {} ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLine2NodeMaterial = true; + + this.setDefaultValues( _defaultValues$b ); + + /** + * Whether vertex colors should be used or not. + * + * @type {boolean} + * @default false + */ + this.useColor = parameters.vertexColors; + + /** + * The dash offset. + * + * @type {number} + * @default 0 + */ + this.dashOffset = 0; + + /** + * The line width. + * + * @type {number} + * @default 0 + */ + this.lineWidth = 1; + + /** + * Defines the lines color. + * + * @type {?Node} + * @default null + */ + this.lineColorNode = null; + + /** + * Defines the offset. + * + * @type {?Node} + * @default null + */ + this.offsetNode = null; + + /** + * Defines the dash scale. + * + * @type {?Node} + * @default null + */ + this.dashScaleNode = null; + + /** + * Defines the dash size. + * + * @type {?Node} + * @default null + */ + this.dashSizeNode = null; + + /** + * Defines the gap size. + * + * @type {?Node} + * @default null + */ + this.gapSizeNode = null; + + /** + * Blending is set to `NoBlending` since transparency + * is not supported, yet. + * + * @type {number} + * @default 0 + */ + this.blending = NoBlending; + + this._useDash = parameters.dashed; + this._useAlphaToCoverage = true; + this._useWorldUnits = false; + + this.setValues( parameters ); + + } + + /** + * Setups the vertex and fragment stage of this node material. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + const { renderer } = builder; + + const useAlphaToCoverage = this._useAlphaToCoverage; + const useColor = this.useColor; + const useDash = this._useDash; + const useWorldUnits = this._useWorldUnits; + + const trimSegment = Fn( ( { start, end } ) => { + + const a = cameraProjectionMatrix.element( 2 ).element( 2 ); // 3nd entry in 3th column + const b = cameraProjectionMatrix.element( 3 ).element( 2 ); // 3nd entry in 4th column + const nearEstimate = b.mul( - 0.5 ).div( a ); + + const alpha = nearEstimate.sub( start.z ).div( end.z.sub( start.z ) ); + + return vec4( mix( start.xyz, end.xyz, alpha ), end.w ); + + } ).setLayout( { + name: 'trimSegment', + type: 'vec4', + inputs: [ + { name: 'start', type: 'vec4' }, + { name: 'end', type: 'vec4' } + ] + } ); + + this.vertexNode = Fn( () => { + + const instanceStart = attribute( 'instanceStart' ); + const instanceEnd = attribute( 'instanceEnd' ); + + // camera space + + const start = vec4( modelViewMatrix.mul( vec4( instanceStart, 1.0 ) ) ).toVar( 'start' ); + const end = vec4( modelViewMatrix.mul( vec4( instanceEnd, 1.0 ) ) ).toVar( 'end' ); + + if ( useDash ) { + + const dashScaleNode = this.dashScaleNode ? float( this.dashScaleNode ) : materialLineScale; + const offsetNode = this.offsetNode ? float( this.offsetNode ) : materialLineDashOffset; + + const instanceDistanceStart = attribute( 'instanceDistanceStart' ); + const instanceDistanceEnd = attribute( 'instanceDistanceEnd' ); + + let lineDistance = positionGeometry.y.lessThan( 0.5 ).select( dashScaleNode.mul( instanceDistanceStart ), dashScaleNode.mul( instanceDistanceEnd ) ); + lineDistance = lineDistance.add( offsetNode ); + + varyingProperty( 'float', 'lineDistance' ).assign( lineDistance ); + + } + + if ( useWorldUnits ) { + + varyingProperty( 'vec3', 'worldStart' ).assign( start.xyz ); + varyingProperty( 'vec3', 'worldEnd' ).assign( end.xyz ); + + } + + const aspect = viewport.z.div( viewport.w ); + + // special case for perspective projection, and segments that terminate either in, or behind, the camera plane + // clearly the gpu firmware has a way of addressing this issue when projecting into ndc space + // but we need to perform ndc-space calculations in the shader, so we must address this issue directly + // perhaps there is a more elegant solution -- WestLangley + + const perspective = cameraProjectionMatrix.element( 2 ).element( 3 ).equal( - 1 ); // 4th entry in the 3rd column + + If( perspective, () => { + + If( start.z.lessThan( 0.0 ).and( end.z.greaterThan( 0.0 ) ), () => { + + end.assign( trimSegment( { start: start, end: end } ) ); + + } ).ElseIf( end.z.lessThan( 0.0 ).and( start.z.greaterThanEqual( 0.0 ) ), () => { + + start.assign( trimSegment( { start: end, end: start } ) ); + + } ); + + } ); + + // clip space + const clipStart = cameraProjectionMatrix.mul( start ); + const clipEnd = cameraProjectionMatrix.mul( end ); + + // ndc space + const ndcStart = clipStart.xyz.div( clipStart.w ); + const ndcEnd = clipEnd.xyz.div( clipEnd.w ); + + // direction + const dir = ndcEnd.xy.sub( ndcStart.xy ).toVar(); + + // account for clip-space aspect ratio + dir.x.assign( dir.x.mul( aspect ) ); + dir.assign( dir.normalize() ); + + const clip = vec4().toVar(); + + if ( useWorldUnits ) { + + // get the offset direction as perpendicular to the view vector + + const worldDir = end.xyz.sub( start.xyz ).normalize(); + const tmpFwd = mix( start.xyz, end.xyz, 0.5 ).normalize(); + const worldUp = worldDir.cross( tmpFwd ).normalize(); + const worldFwd = worldDir.cross( worldUp ); + + const worldPos = varyingProperty( 'vec4', 'worldPos' ); + + worldPos.assign( positionGeometry.y.lessThan( 0.5 ).select( start, end ) ); + + // height offset + const hw = materialLineWidth.mul( 0.5 ); + worldPos.addAssign( vec4( positionGeometry.x.lessThan( 0.0 ).select( worldUp.mul( hw ), worldUp.mul( hw ).negate() ), 0 ) ); + + // don't extend the line if we're rendering dashes because we + // won't be rendering the endcaps + if ( ! useDash ) { + + // cap extension + worldPos.addAssign( vec4( positionGeometry.y.lessThan( 0.5 ).select( worldDir.mul( hw ).negate(), worldDir.mul( hw ) ), 0 ) ); + + // add width to the box + worldPos.addAssign( vec4( worldFwd.mul( hw ), 0 ) ); + + // endcaps + If( positionGeometry.y.greaterThan( 1.0 ).or( positionGeometry.y.lessThan( 0.0 ) ), () => { + + worldPos.subAssign( vec4( worldFwd.mul( 2.0 ).mul( hw ), 0 ) ); + + } ); + + } + + // project the worldpos + clip.assign( cameraProjectionMatrix.mul( worldPos ) ); + + // shift the depth of the projected points so the line + // segments overlap neatly + const clipPose = vec3().toVar(); + + clipPose.assign( positionGeometry.y.lessThan( 0.5 ).select( ndcStart, ndcEnd ) ); + clip.z.assign( clipPose.z.mul( clip.w ) ); + + } else { + + const offset = vec2( dir.y, dir.x.negate() ).toVar( 'offset' ); + + // undo aspect ratio adjustment + dir.x.assign( dir.x.div( aspect ) ); + offset.x.assign( offset.x.div( aspect ) ); + + // sign flip + offset.assign( positionGeometry.x.lessThan( 0.0 ).select( offset.negate(), offset ) ); + + // endcaps + If( positionGeometry.y.lessThan( 0.0 ), () => { + + offset.assign( offset.sub( dir ) ); + + } ).ElseIf( positionGeometry.y.greaterThan( 1.0 ), () => { + + offset.assign( offset.add( dir ) ); + + } ); + + // adjust for linewidth + offset.assign( offset.mul( materialLineWidth ) ); + + // adjust for clip-space to screen-space conversion // maybe resolution should be based on viewport ... + offset.assign( offset.div( viewport.w ) ); + + // select end + clip.assign( positionGeometry.y.lessThan( 0.5 ).select( clipStart, clipEnd ) ); + + // back to clip space + offset.assign( offset.mul( clip.w ) ); + + clip.assign( clip.add( vec4( offset, 0, 0 ) ) ); + + } + + return clip; + + } )(); + + const closestLineToLine = Fn( ( { p1, p2, p3, p4 } ) => { + + const p13 = p1.sub( p3 ); + const p43 = p4.sub( p3 ); + + const p21 = p2.sub( p1 ); + + const d1343 = p13.dot( p43 ); + const d4321 = p43.dot( p21 ); + const d1321 = p13.dot( p21 ); + const d4343 = p43.dot( p43 ); + const d2121 = p21.dot( p21 ); + + const denom = d2121.mul( d4343 ).sub( d4321.mul( d4321 ) ); + const numer = d1343.mul( d4321 ).sub( d1321.mul( d4343 ) ); + + const mua = numer.div( denom ).clamp(); + const mub = d1343.add( d4321.mul( mua ) ).div( d4343 ).clamp(); + + return vec2( mua, mub ); + + } ); + + this.colorNode = Fn( () => { + + const vUv = uv(); + + if ( useDash ) { + + const dashSizeNode = this.dashSizeNode ? float( this.dashSizeNode ) : materialLineDashSize; + const gapSizeNode = this.gapSizeNode ? float( this.gapSizeNode ) : materialLineGapSize; + + dashSize.assign( dashSizeNode ); + gapSize.assign( gapSizeNode ); + + const vLineDistance = varyingProperty( 'float', 'lineDistance' ); + + vUv.y.lessThan( - 1 ).or( vUv.y.greaterThan( 1.0 ) ).discard(); // discard endcaps + vLineDistance.mod( dashSize.add( gapSize ) ).greaterThan( dashSize ).discard(); // todo - FIX + + } + + const alpha = float( 1 ).toVar( 'alpha' ); + + if ( useWorldUnits ) { + + const worldStart = varyingProperty( 'vec3', 'worldStart' ); + const worldEnd = varyingProperty( 'vec3', 'worldEnd' ); + + // Find the closest points on the view ray and the line segment + const rayEnd = varyingProperty( 'vec4', 'worldPos' ).xyz.normalize().mul( 1e5 ); + const lineDir = worldEnd.sub( worldStart ); + const params = closestLineToLine( { p1: worldStart, p2: worldEnd, p3: vec3( 0.0, 0.0, 0.0 ), p4: rayEnd } ); + + const p1 = worldStart.add( lineDir.mul( params.x ) ); + const p2 = rayEnd.mul( params.y ); + const delta = p1.sub( p2 ); + const len = delta.length(); + const norm = len.div( materialLineWidth ); + + if ( ! useDash ) { + + if ( useAlphaToCoverage && renderer.samples > 1 ) { + + const dnorm = norm.fwidth(); + alpha.assign( smoothstep( dnorm.negate().add( 0.5 ), dnorm.add( 0.5 ), norm ).oneMinus() ); + + } else { + + norm.greaterThan( 0.5 ).discard(); + + } + + } + + } else { + + // round endcaps + + if ( useAlphaToCoverage && renderer.samples > 1 ) { + + const a = vUv.x; + const b = vUv.y.greaterThan( 0.0 ).select( vUv.y.sub( 1.0 ), vUv.y.add( 1.0 ) ); + + const len2 = a.mul( a ).add( b.mul( b ) ); + + const dlen = float( len2.fwidth() ).toVar( 'dlen' ); + + If( vUv.y.abs().greaterThan( 1.0 ), () => { + + alpha.assign( smoothstep( dlen.oneMinus(), dlen.add( 1 ), len2 ).oneMinus() ); + + } ); + + } else { + + If( vUv.y.abs().greaterThan( 1.0 ), () => { + + const a = vUv.x; + const b = vUv.y.greaterThan( 0.0 ).select( vUv.y.sub( 1.0 ), vUv.y.add( 1.0 ) ); + const len2 = a.mul( a ).add( b.mul( b ) ); + + len2.greaterThan( 1.0 ).discard(); + + } ); + + } + + } + + let lineColorNode; + + if ( this.lineColorNode ) { + + lineColorNode = this.lineColorNode; + + } else { + + if ( useColor ) { + + const instanceColorStart = attribute( 'instanceColorStart' ); + const instanceColorEnd = attribute( 'instanceColorEnd' ); + + const instanceColor = positionGeometry.y.lessThan( 0.5 ).select( instanceColorStart, instanceColorEnd ); + + lineColorNode = instanceColor.mul( materialColor ); + + } else { + + lineColorNode = materialColor; + + } + + } + + return vec4( lineColorNode, alpha ); + + } )(); + + if ( this.transparent ) { + + const opacityNode = this.opacityNode ? float( this.opacityNode ) : materialOpacity; + + this.outputNode = vec4( this.colorNode.rgb.mul( opacityNode ).add( viewportSharedTexture().rgb.mul( opacityNode.oneMinus() ) ), this.colorNode.a ); + + } + + super.setup( builder ); + + } + + /** + * Whether the lines should sized in world units or not. + * When set to `false` the unit is pixel. + * + * @type {boolean} + * @default false + */ + get worldUnits() { + + return this._useWorldUnits; + + } + + set worldUnits( value ) { + + if ( this._useWorldUnits !== value ) { + + this._useWorldUnits = value; + this.needsUpdate = true; + + } + + } + + /** + * Whether the lines should be dashed or not. + * + * @type {boolean} + * @default false + */ + get dashed() { + + return this._useDash; + + } + + set dashed( value ) { + + if ( this._useDash !== value ) { + + this._useDash = value; + this.needsUpdate = true; + + } + + } + + /** + * Whether alpha to coverage should be used or not. + * + * @type {boolean} + * @default true + */ + get alphaToCoverage() { + + return this._useAlphaToCoverage; + + } + + set alphaToCoverage( value ) { + + if ( this._useAlphaToCoverage !== value ) { + + this._useAlphaToCoverage = value; + this.needsUpdate = true; + + } + + } + +} + +/** + * Packs a direction vector into a color value. + * + * @tsl + * @function + * @param {Node} node - The direction to pack. + * @return {Node} The color. + */ +const directionToColor = ( node ) => nodeObject( node ).mul( 0.5 ).add( 0.5 ); + +/** + * Unpacks a color value into a direction vector. + * + * @tsl + * @function + * @param {Node} node - The color to unpack. + * @return {Node} The direction. + */ +const colorToDirection = ( node ) => nodeObject( node ).mul( 2.0 ).sub( 1 ); + +const _defaultValues$a = /*@__PURE__*/ new MeshNormalMaterial(); + +/** + * Node material version of {@link MeshNormalMaterial}. + * + * @augments NodeMaterial + */ +class MeshNormalNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshNormalNodeMaterial'; + + } + + /** + * Constructs a new mesh normal node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshNormalNodeMaterial = true; + + this.setDefaultValues( _defaultValues$a ); + + this.setValues( parameters ); + + } + + /** + * Overwrites the default implementation by computing the diffuse color + * based on the normal data. + */ + setupDiffuseColor() { + + const opacityNode = this.opacityNode ? float( this.opacityNode ) : materialOpacity; + + // By convention, a normal packed to RGB is in sRGB color space. Convert it to working color space. + + diffuseColor.assign( colorSpaceToWorking( vec4( directionToColor( transformedNormalView ), opacityNode ), SRGBColorSpace ) ); + + } + +} + +/** + * Can be used to compute texture coordinates for projecting an + * equirectangular texture onto a mesh for using it as the scene's + * background. + * + * ```js + * scene.backgroundNode = texture( equirectTexture, equirectUV() ); + * ``` + * + * @augments TempNode + */ +class EquirectUVNode extends TempNode { + + static get type() { + + return 'EquirectUVNode'; + + } + + /** + * Constructs a new equirect uv node. + * + * @param {Node} [dirNode=positionWorldDirection] - A direction vector for sampling which is by default `positionWorldDirection`. + */ + constructor( dirNode = positionWorldDirection ) { + + super( 'vec2' ); + + /** + * A direction vector for sampling why is by default `positionWorldDirection`. + * + * @type {Node} + */ + this.dirNode = dirNode; + + } + + setup() { + + const dir = this.dirNode; + + const u = dir.z.atan( dir.x ).mul( 1 / ( Math.PI * 2 ) ).add( 0.5 ); + const v = dir.y.clamp( - 1, 1.0 ).asin().mul( 1 / Math.PI ).add( 0.5 ); + + return vec2( u, v ); + + } + +} + +/** + * TSL function for creating an equirect uv node. + * + * @tsl + * @function + * @param {?Node} [dirNode=positionWorldDirection] - A direction vector for sampling which is by default `positionWorldDirection`. + * @returns {EquirectUVNode} + */ +const equirectUV = /*@__PURE__*/ nodeProxy( EquirectUVNode ).setParameterLength( 0, 1 ); + +// @TODO: Consider rename WebGLCubeRenderTarget to just CubeRenderTarget + +/** + * This class represents a cube render target. It is a special version + * of `WebGLCubeRenderTarget` which is compatible with `WebGPURenderer`. + * + * @augments WebGLCubeRenderTarget + */ +class CubeRenderTarget extends WebGLCubeRenderTarget { + + /** + * Constructs a new cube render target. + * + * @param {number} [size=1] - The size of the render target. + * @param {RenderTarget~Options} [options] - The configuration object. + */ + constructor( size = 1, options = {} ) { + + super( size, options ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCubeRenderTarget = true; + + } + + /** + * Converts the given equirectangular texture to a cube map. + * + * @param {Renderer} renderer - The renderer. + * @param {Texture} texture - The equirectangular texture. + * @return {CubeRenderTarget} A reference to this cube render target. + */ + fromEquirectangularTexture( renderer, texture$1 ) { + + const currentMinFilter = texture$1.minFilter; + const currentGenerateMipmaps = texture$1.generateMipmaps; + + texture$1.generateMipmaps = true; + + this.texture.type = texture$1.type; + this.texture.colorSpace = texture$1.colorSpace; + + this.texture.generateMipmaps = texture$1.generateMipmaps; + this.texture.minFilter = texture$1.minFilter; + this.texture.magFilter = texture$1.magFilter; + + const geometry = new BoxGeometry( 5, 5, 5 ); + + const uvNode = equirectUV( positionWorldDirection ); + + const material = new NodeMaterial(); + material.colorNode = texture( texture$1, uvNode, 0 ); + material.side = BackSide; + material.blending = NoBlending; + + const mesh = new Mesh( geometry, material ); + + const scene = new Scene(); + scene.add( mesh ); + + // Avoid blurred poles + if ( texture$1.minFilter === LinearMipmapLinearFilter ) texture$1.minFilter = LinearFilter; + + const camera = new CubeCamera( 1, 10, this ); + + const currentMRT = renderer.getMRT(); + renderer.setMRT( null ); + + camera.update( renderer, scene ); + + renderer.setMRT( currentMRT ); + + texture$1.minFilter = currentMinFilter; + texture$1.currentGenerateMipmaps = currentGenerateMipmaps; + + mesh.geometry.dispose(); + mesh.material.dispose(); + + return this; + + } + +} + +const _cache$1 = new WeakMap(); + +/** + * This node can be used to automatically convert environment maps in the + * equirectangular format into the cube map format. + * + * @augments TempNode + */ +class CubeMapNode extends TempNode { + + static get type() { + + return 'CubeMapNode'; + + } + + /** + * Constructs a new cube map node. + * + * @param {Node} envNode - The node representing the environment map. + */ + constructor( envNode ) { + + super( 'vec3' ); + + /** + * The node representing the environment map. + * + * @type {Node} + */ + this.envNode = envNode; + + /** + * A reference to the internal cube texture. + * + * @private + * @type {?CubeTexture} + * @default null + */ + this._cubeTexture = null; + + /** + * A reference to the internal cube texture node. + * + * @private + * @type {CubeTextureNode} + */ + this._cubeTextureNode = cubeTexture( null ); + + const defaultTexture = new CubeTexture(); + defaultTexture.isRenderTargetTexture = true; + + /** + * A default cube texture that acts as a placeholder. + * It is used when the conversion from equirectangular to cube + * map has not finished yet for a given texture. + * + * @private + * @type {CubeTexture} + */ + this._defaultTexture = defaultTexture; + + /** + * The `updateBeforeType` is set to `NodeUpdateType.RENDER` since the node updates + * the texture once per render in its {@link CubeMapNode#updateBefore} method. + * + * @type {string} + * @default 'render' + */ + this.updateBeforeType = NodeUpdateType.RENDER; + + } + + updateBefore( frame ) { + + const { renderer, material } = frame; + + const envNode = this.envNode; + + if ( envNode.isTextureNode || envNode.isMaterialReferenceNode ) { + + const texture = ( envNode.isTextureNode ) ? envNode.value : material[ envNode.property ]; + + if ( texture && texture.isTexture ) { + + const mapping = texture.mapping; + + if ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ) { + + // check for converted cubemap map + + if ( _cache$1.has( texture ) ) { + + const cubeMap = _cache$1.get( texture ); + + mapTextureMapping( cubeMap, texture.mapping ); + this._cubeTexture = cubeMap; + + } else { + + // create cube map from equirectangular map + + const image = texture.image; + + if ( isEquirectangularMapReady$1( image ) ) { + + const renderTarget = new CubeRenderTarget( image.height ); + renderTarget.fromEquirectangularTexture( renderer, texture ); + + mapTextureMapping( renderTarget.texture, texture.mapping ); + this._cubeTexture = renderTarget.texture; + + _cache$1.set( texture, renderTarget.texture ); + + texture.addEventListener( 'dispose', onTextureDispose ); + + } else { + + // default cube texture as fallback when equirectangular texture is not yet loaded + + this._cubeTexture = this._defaultTexture; + + } + + } + + // + + this._cubeTextureNode.value = this._cubeTexture; + + } else { + + // envNode already refers to a cube map + + this._cubeTextureNode = this.envNode; + + } + + } + + } + + } + + setup( builder ) { + + this.updateBefore( builder ); + + return this._cubeTextureNode; + + } + +} + +/** + * Returns true if the given equirectangular image has been fully loaded + * and is ready for further processing. + * + * @private + * @param {Image} image - The equirectangular image to check. + * @return {boolean} Whether the image is ready or not. + */ +function isEquirectangularMapReady$1( image ) { + + if ( image === null || image === undefined ) return false; + + return image.height > 0; + +} + +/** + * This function is executed when `dispose()` is called on the equirectangular + * texture. In this case, the generated cube map with its render target + * is deleted as well. + * + * @private + * @param {Object} event - The event object. + */ +function onTextureDispose( event ) { + + const texture = event.target; + + texture.removeEventListener( 'dispose', onTextureDispose ); + + const renderTarget = _cache$1.get( texture ); + + if ( renderTarget !== undefined ) { + + _cache$1.delete( texture ); + + renderTarget.dispose(); + + } + +} + +/** + * This function makes sure the generated cube map uses the correct + * texture mapping that corresponds to the equirectangular original. + * + * @private + * @param {Texture} texture - The cube texture. + * @param {number} mapping - The original texture mapping. + */ +function mapTextureMapping( texture, mapping ) { + + if ( mapping === EquirectangularReflectionMapping ) { + + texture.mapping = CubeReflectionMapping; + + } else if ( mapping === EquirectangularRefractionMapping ) { + + texture.mapping = CubeRefractionMapping; + + } + +} + +/** + * TSL function for creating a cube map node. + * + * @tsl + * @function + * @param {Node} envNode - The node representing the environment map. + * @returns {CubeMapNode} + */ +const cubeMapNode = /*@__PURE__*/ nodeProxy( CubeMapNode ).setParameterLength( 1 ); + +/** + * Represents a basic model for Image-based lighting (IBL). The environment + * is defined via environment maps in the equirectangular or cube map format. + * `BasicEnvironmentNode` is intended for non-PBR materials like {@link MeshBasicNodeMaterial} + * or {@link MeshPhongNodeMaterial}. + * + * @augments LightingNode + */ +class BasicEnvironmentNode extends LightingNode { + + static get type() { + + return 'BasicEnvironmentNode'; + + } + + /** + * Constructs a new basic environment node. + * + * @param {Node} [envNode=null] - A node representing the environment. + */ + constructor( envNode = null ) { + + super(); + + /** + * A node representing the environment. + * + * @type {Node} + * @default null + */ + this.envNode = envNode; + + } + + setup( builder ) { + + // environment property is used in the finish() method of BasicLightingModel + + builder.context.environment = cubeMapNode( this.envNode ); + + } + +} + +/** + * A specific version of {@link IrradianceNode} that is only relevant + * for {@link MeshBasicNodeMaterial}. Since the material is unlit, it + * requires a special scaling factor for the light map. + * + * @augments LightingNode + */ +class BasicLightMapNode extends LightingNode { + + static get type() { + + return 'BasicLightMapNode'; + + } + + /** + * Constructs a new basic light map node. + * + * @param {?Node} [lightMapNode=null] - The light map node. + */ + constructor( lightMapNode = null ) { + + super(); + + /** + * The light map node. + * + * @type {?Node} + */ + this.lightMapNode = lightMapNode; + + } + + setup( builder ) { + + // irradianceLightMap property is used in the indirectDiffuse() method of BasicLightingModel + + const RECIPROCAL_PI = float( 1 / Math.PI ); + + builder.context.irradianceLightMap = this.lightMapNode.mul( RECIPROCAL_PI ); + + } + +} + +/** + * Abstract class for implementing lighting models. The module defines + * multiple methods that concrete lighting models can implement. These + * methods are executed at different points during the light evaluation + * process. + */ +class LightingModel { + + /** + * This method is intended for setting up lighting model and context data + * which are later used in the evaluation process. + * + * @abstract + * @param {NodeBuilder} builder - The current node builder. + */ + start( builder ) { + + // lights ( direct ) + + builder.lightsNode.setupLights( builder, builder.lightsNode.getLightNodes( builder ) ); + + // indirect + + this.indirect( builder ); + + } + + /** + * This method is intended for executing final tasks like final updates + * to the outgoing light. + * + * @abstract + * @param {NodeBuilder} builder - The current node builder. + */ + finish( /*builder*/ ) { } + + /** + * This method is intended for implementing the direct light term and + * executed during the build process of directional, point and spot light nodes. + * + * @abstract + * @param {Object} lightData - The light data. + * @param {NodeBuilder} builder - The current node builder. + */ + direct( /*lightData, builder*/ ) { } + + /** + * This method is intended for implementing the direct light term for + * rect area light nodes. + * + * @abstract + * @param {Object} lightData - The light data. + * @param {NodeBuilder} builder - The current node builder. + */ + directRectArea( /*lightData, builder*/ ) {} + + /** + * This method is intended for implementing the indirect light term. + * + * @abstract + * @param {NodeBuilder} builder - The current node builder. + */ + indirect( /*builder*/ ) { } + + /** + * This method is intended for implementing the ambient occlusion term. + * Unlike other methods, this method must be called manually by the lighting + * model in its indirect term. + * + * @abstract + * @param {NodeBuilder} builder - The current node builder. + */ + ambientOcclusion( /*input, stack, builder*/ ) { } + +} + +/** + * Represents the lighting model for unlit materials. The only light contribution + * is baked indirect lighting modulated with ambient occlusion and the material's + * diffuse color. Environment mapping is supported. Used in {@link MeshBasicNodeMaterial}. + * + * @augments LightingModel + */ +class BasicLightingModel extends LightingModel { + + /** + * Constructs a new basic lighting model. + */ + constructor() { + + super(); + + } + + /** + * Implements the baked indirect lighting with its modulation. + * + * @param {NodeBuilder} builder - The current node builder. + */ + indirect( { context } ) { + + const ambientOcclusion = context.ambientOcclusion; + const reflectedLight = context.reflectedLight; + const irradianceLightMap = context.irradianceLightMap; + + reflectedLight.indirectDiffuse.assign( vec4( 0.0 ) ); + + // accumulation (baked indirect lighting only) + + if ( irradianceLightMap ) { + + reflectedLight.indirectDiffuse.addAssign( irradianceLightMap ); + + } else { + + reflectedLight.indirectDiffuse.addAssign( vec4( 1.0, 1.0, 1.0, 0.0 ) ); + + } + + // modulation + + reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion ); + + reflectedLight.indirectDiffuse.mulAssign( diffuseColor.rgb ); + + } + + /** + * Implements the environment mapping. + * + * @param {NodeBuilder} builder - The current node builder. + */ + finish( builder ) { + + const { material, context } = builder; + + const outgoingLight = context.outgoingLight; + const envNode = builder.context.environment; + + if ( envNode ) { + + switch ( material.combine ) { + + case MultiplyOperation: + outgoingLight.rgb.assign( mix( outgoingLight.rgb, outgoingLight.rgb.mul( envNode.rgb ), materialSpecularStrength.mul( materialReflectivity ) ) ); + break; + + case MixOperation: + outgoingLight.rgb.assign( mix( outgoingLight.rgb, envNode.rgb, materialSpecularStrength.mul( materialReflectivity ) ) ); + break; + + case AddOperation: + outgoingLight.rgb.addAssign( envNode.rgb.mul( materialSpecularStrength.mul( materialReflectivity ) ) ); + break; + + default: + console.warn( 'THREE.BasicLightingModel: Unsupported .combine value:', material.combine ); + break; + + } + + } + + } + +} + +const _defaultValues$9 = /*@__PURE__*/ new MeshBasicMaterial(); + +/** + * Node material version of {@link MeshBasicMaterial}. + * + * @augments NodeMaterial + */ +class MeshBasicNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshBasicNodeMaterial'; + + } + + /** + * Constructs a new mesh basic node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshBasicNodeMaterial = true; + + /** + * Although the basic material is by definition unlit, we set + * this property to `true` since we use a lighting model to compute + * the outgoing light of the fragment shader. + * + * @type {boolean} + * @default true + */ + this.lights = true; + + this.setDefaultValues( _defaultValues$9 ); + + this.setValues( parameters ); + + } + + /** + * Basic materials are not affected by normal and bump maps so we + * return by default {@link normalView}. + * + * @return {Node} The normal node. + */ + setupNormal() { + + return normalView; // see #28839 + + } + + /** + * Overwritten since this type of material uses {@link BasicEnvironmentNode} + * to implement the default environment mapping. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {?BasicEnvironmentNode} The environment node. + */ + setupEnvironment( builder ) { + + const envNode = super.setupEnvironment( builder ); + + return envNode ? new BasicEnvironmentNode( envNode ) : null; + + } + + /** + * This method must be overwritten since light maps are evaluated + * with a special scaling factor for basic materials. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {?BasicLightMapNode} The light map node. + */ + setupLightMap( builder ) { + + let node = null; + + if ( builder.material.lightMap ) { + + node = new BasicLightMapNode( materialLightMap ); + + } + + return node; + + } + + /** + * The material overwrites this method because `lights` is set to `true` but + * we still want to return the diffuse color as the outgoing light. + * + * @return {Node} The outgoing light node. + */ + setupOutgoingLight() { + + return diffuseColor.rgb; + + } + + /** + * Setups the lighting model. + * + * @return {BasicLightingModel} The lighting model. + */ + setupLightingModel() { + + return new BasicLightingModel(); + + } + +} + +const F_Schlick = /*@__PURE__*/ Fn( ( { f0, f90, dotVH } ) => { + + // Original approximation by Christophe Schlick '94 + // float fresnel = pow( 1.0 - dotVH, 5.0 ); + + // Optimized variant (presented by Epic at SIGGRAPH '13) + // https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf + const fresnel = dotVH.mul( - 5.55473 ).sub( 6.98316 ).mul( dotVH ).exp2(); + + return f0.mul( fresnel.oneMinus() ).add( f90.mul( fresnel ) ); + +} ); // validated + +const BRDF_Lambert = /*@__PURE__*/ Fn( ( inputs ) => { + + return inputs.diffuseColor.mul( 1 / Math.PI ); // punctual light + +} ); // validated + +const G_BlinnPhong_Implicit = () => float( 0.25 ); + +const D_BlinnPhong = /*@__PURE__*/ Fn( ( { dotNH } ) => { + + return shininess.mul( float( 0.5 ) ).add( 1.0 ).mul( float( 1 / Math.PI ) ).mul( dotNH.pow( shininess ) ); + +} ); + +const BRDF_BlinnPhong = /*@__PURE__*/ Fn( ( { lightDirection } ) => { + + const halfDir = lightDirection.add( positionViewDirection ).normalize(); + + const dotNH = transformedNormalView.dot( halfDir ).clamp(); + const dotVH = positionViewDirection.dot( halfDir ).clamp(); + + const F = F_Schlick( { f0: specularColor, f90: 1.0, dotVH } ); + const G = G_BlinnPhong_Implicit(); + const D = D_BlinnPhong( { dotNH } ); + + return F.mul( G ).mul( D ); + +} ); + +/** + * Represents the lighting model for a phong material. Used in {@link MeshPhongNodeMaterial}. + * + * @augments BasicLightingModel + */ +class PhongLightingModel extends BasicLightingModel { + + /** + * Constructs a new phong lighting model. + * + * @param {boolean} [specular=true] - Whether specular is supported or not. + */ + constructor( specular = true ) { + + super(); + + /** + * Whether specular is supported or not. Set this to `false` if you are + * looking for a Lambert-like material meaning a material for non-shiny + * surfaces, without specular highlights. + * + * @type {boolean} + * @default true + */ + this.specular = specular; + + } + + /** + * Implements the direct lighting. The specular portion is optional an can be controlled + * with the {@link PhongLightingModel#specular} flag. + * + * @param {Object} lightData - The light data. + */ + direct( { lightDirection, lightColor, reflectedLight } ) { + + const dotNL = transformedNormalView.dot( lightDirection ).clamp(); + const irradiance = dotNL.mul( lightColor ); + + reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) ); + + if ( this.specular === true ) { + + reflectedLight.directSpecular.addAssign( irradiance.mul( BRDF_BlinnPhong( { lightDirection } ) ).mul( materialSpecularStrength ) ); + + } + + } + + /** + * Implements the indirect lighting. + * + * @param {NodeBuilder} builder - The current node builder. + */ + indirect( builder ) { + + const { ambientOcclusion, irradiance, reflectedLight } = builder.context; + + reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) ); + + reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion ); + + } + +} + +const _defaultValues$8 = /*@__PURE__*/ new MeshLambertMaterial(); + +/** + * Node material version of {@link MeshLambertMaterial}. + * + * @augments NodeMaterial + */ +class MeshLambertNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshLambertNodeMaterial'; + + } + + /** + * Constructs a new mesh lambert node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshLambertNodeMaterial = true; + + /** + * Set to `true` because lambert materials react on lights. + * + * @type {boolean} + * @default true + */ + this.lights = true; + + this.setDefaultValues( _defaultValues$8 ); + + this.setValues( parameters ); + + } + + /** + * Overwritten since this type of material uses {@link BasicEnvironmentNode} + * to implement the default environment mapping. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {?BasicEnvironmentNode} The environment node. + */ + setupEnvironment( builder ) { + + const envNode = super.setupEnvironment( builder ); + + return envNode ? new BasicEnvironmentNode( envNode ) : null; + + } + + /** + * Setups the lighting model. + * + * @return {PhongLightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new PhongLightingModel( false ); // ( specular ) -> force lambert + + } + +} + +const _defaultValues$7 = /*@__PURE__*/ new MeshPhongMaterial(); + +/** + * Node material version of {@link MeshPhongMaterial}. + * + * @augments NodeMaterial + */ +class MeshPhongNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshPhongNodeMaterial'; + + } + + /** + * Constructs a new mesh lambert node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshPhongNodeMaterial = true; + + /** + * Set to `true` because phong materials react on lights. + * + * @type {boolean} + * @default true + */ + this.lights = true; + + /** + * The shininess of phong materials is by default inferred from the `shininess` + * property. This node property allows to overwrite the default + * and define the shininess with a node instead. + * + * If you don't want to overwrite the shininess but modify the existing + * value instead, use {@link materialShininess}. + * + * @type {?Node} + * @default null + */ + this.shininessNode = null; + + /** + * The specular color of phong materials is by default inferred from the + * `specular` property. This node property allows to overwrite the default + * and define the specular color with a node instead. + * + * If you don't want to overwrite the specular color but modify the existing + * value instead, use {@link materialSpecular}. + * + * @type {?Node} + * @default null + */ + this.specularNode = null; + + this.setDefaultValues( _defaultValues$7 ); + + this.setValues( parameters ); + + } + + /** + * Overwritten since this type of material uses {@link BasicEnvironmentNode} + * to implement the default environment mapping. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {?BasicEnvironmentNode} The environment node. + */ + setupEnvironment( builder ) { + + const envNode = super.setupEnvironment( builder ); + + return envNode ? new BasicEnvironmentNode( envNode ) : null; + + } + + /** + * Setups the lighting model. + * + * @return {PhongLightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new PhongLightingModel(); + + } + + /** + * Setups the phong specific node variables. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupVariants( /*builder*/ ) { + + // SHININESS + + const shininessNode = ( this.shininessNode ? float( this.shininessNode ) : materialShininess ).max( 1e-4 ); // to prevent pow( 0.0, 0.0 ) + + shininess.assign( shininessNode ); + + // SPECULAR COLOR + + const specularNode = this.specularNode || materialSpecular; + + specularColor.assign( specularNode ); + + } + + copy( source ) { + + this.shininessNode = source.shininessNode; + this.specularNode = source.specularNode; + + return super.copy( source ); + + } + +} + +const getGeometryRoughness = /*@__PURE__*/ Fn( ( builder ) => { + + if ( builder.geometry.hasAttribute( 'normal' ) === false ) { + + return float( 0 ); + + } + + const dxy = normalView.dFdx().abs().max( normalView.dFdy().abs() ); + const geometryRoughness = dxy.x.max( dxy.y ).max( dxy.z ); + + return geometryRoughness; + +} ); + +const getRoughness = /*@__PURE__*/ Fn( ( inputs ) => { + + const { roughness } = inputs; + + const geometryRoughness = getGeometryRoughness(); + + let roughnessFactor = roughness.max( 0.0525 ); // 0.0525 corresponds to the base mip of a 256 cubemap. + roughnessFactor = roughnessFactor.add( geometryRoughness ); + roughnessFactor = roughnessFactor.min( 1.0 ); + + return roughnessFactor; + +} ); + +// Moving Frostbite to Physically Based Rendering 3.0 - page 12, listing 2 +// https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf +const V_GGX_SmithCorrelated = /*@__PURE__*/ Fn( ( { alpha, dotNL, dotNV } ) => { + + const a2 = alpha.pow2(); + + const gv = dotNL.mul( a2.add( a2.oneMinus().mul( dotNV.pow2() ) ).sqrt() ); + const gl = dotNV.mul( a2.add( a2.oneMinus().mul( dotNL.pow2() ) ).sqrt() ); + + return div( 0.5, gv.add( gl ).max( EPSILON ) ); + +} ).setLayout( { + name: 'V_GGX_SmithCorrelated', + type: 'float', + inputs: [ + { name: 'alpha', type: 'float' }, + { name: 'dotNL', type: 'float' }, + { name: 'dotNV', type: 'float' } + ] +} ); // validated + +// https://google.github.io/filament/Filament.md.html#materialsystem/anisotropicmodel/anisotropicspecularbrdf + +const V_GGX_SmithCorrelated_Anisotropic = /*@__PURE__*/ Fn( ( { alphaT, alphaB, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL } ) => { + + const gv = dotNL.mul( vec3( alphaT.mul( dotTV ), alphaB.mul( dotBV ), dotNV ).length() ); + const gl = dotNV.mul( vec3( alphaT.mul( dotTL ), alphaB.mul( dotBL ), dotNL ).length() ); + const v = div( 0.5, gv.add( gl ) ); + + return v.saturate(); + +} ).setLayout( { + name: 'V_GGX_SmithCorrelated_Anisotropic', + type: 'float', + inputs: [ + { name: 'alphaT', type: 'float', qualifier: 'in' }, + { name: 'alphaB', type: 'float', qualifier: 'in' }, + { name: 'dotTV', type: 'float', qualifier: 'in' }, + { name: 'dotBV', type: 'float', qualifier: 'in' }, + { name: 'dotTL', type: 'float', qualifier: 'in' }, + { name: 'dotBL', type: 'float', qualifier: 'in' }, + { name: 'dotNV', type: 'float', qualifier: 'in' }, + { name: 'dotNL', type: 'float', qualifier: 'in' } + ] +} ); + +// Microfacet Models for Refraction through Rough Surfaces - equation (33) +// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html +// alpha is "roughness squared" in Disney’s reparameterization +const D_GGX = /*@__PURE__*/ Fn( ( { alpha, dotNH } ) => { + + const a2 = alpha.pow2(); + + const denom = dotNH.pow2().mul( a2.oneMinus() ).oneMinus(); // avoid alpha = 0 with dotNH = 1 + + return a2.div( denom.pow2() ).mul( 1 / Math.PI ); + +} ).setLayout( { + name: 'D_GGX', + type: 'float', + inputs: [ + { name: 'alpha', type: 'float' }, + { name: 'dotNH', type: 'float' } + ] +} ); // validated + +const RECIPROCAL_PI = /*@__PURE__*/ float( 1 / Math.PI ); + +// https://google.github.io/filament/Filament.md.html#materialsystem/anisotropicmodel/anisotropicspecularbrdf + +const D_GGX_Anisotropic = /*@__PURE__*/ Fn( ( { alphaT, alphaB, dotNH, dotTH, dotBH } ) => { + + const a2 = alphaT.mul( alphaB ); + const v = vec3( alphaB.mul( dotTH ), alphaT.mul( dotBH ), a2.mul( dotNH ) ); + const v2 = v.dot( v ); + const w2 = a2.div( v2 ); + + return RECIPROCAL_PI.mul( a2.mul( w2.pow2() ) ); + +} ).setLayout( { + name: 'D_GGX_Anisotropic', + type: 'float', + inputs: [ + { name: 'alphaT', type: 'float', qualifier: 'in' }, + { name: 'alphaB', type: 'float', qualifier: 'in' }, + { name: 'dotNH', type: 'float', qualifier: 'in' }, + { name: 'dotTH', type: 'float', qualifier: 'in' }, + { name: 'dotBH', type: 'float', qualifier: 'in' } + ] +} ); + +// GGX Distribution, Schlick Fresnel, GGX_SmithCorrelated Visibility +const BRDF_GGX = /*@__PURE__*/ Fn( ( inputs ) => { + + const { lightDirection, f0, f90, roughness, f, USE_IRIDESCENCE, USE_ANISOTROPY } = inputs; + + const normalView = inputs.normalView || transformedNormalView; + + const alpha = roughness.pow2(); // UE4's roughness + + const halfDir = lightDirection.add( positionViewDirection ).normalize(); + + const dotNL = normalView.dot( lightDirection ).clamp(); + const dotNV = normalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV + const dotNH = normalView.dot( halfDir ).clamp(); + const dotVH = positionViewDirection.dot( halfDir ).clamp(); + + let F = F_Schlick( { f0, f90, dotVH } ); + let V, D; + + if ( defined( USE_IRIDESCENCE ) ) { + + F = iridescence.mix( F, f ); + + } + + if ( defined( USE_ANISOTROPY ) ) { + + const dotTL = anisotropyT.dot( lightDirection ); + const dotTV = anisotropyT.dot( positionViewDirection ); + const dotTH = anisotropyT.dot( halfDir ); + const dotBL = anisotropyB.dot( lightDirection ); + const dotBV = anisotropyB.dot( positionViewDirection ); + const dotBH = anisotropyB.dot( halfDir ); + + V = V_GGX_SmithCorrelated_Anisotropic( { alphaT, alphaB: alpha, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL } ); + D = D_GGX_Anisotropic( { alphaT, alphaB: alpha, dotNH, dotTH, dotBH } ); + + } else { + + V = V_GGX_SmithCorrelated( { alpha, dotNL, dotNV } ); + D = D_GGX( { alpha, dotNH } ); + + } + + return F.mul( V ).mul( D ); + +} ); // validated + +// Analytical approximation of the DFG LUT, one half of the +// split-sum approximation used in indirect specular lighting. +// via 'environmentBRDF' from "Physically Based Shading on Mobile" +// https://www.unrealengine.com/blog/physically-based-shading-on-mobile +const DFGApprox = /*@__PURE__*/ Fn( ( { roughness, dotNV } ) => { + + const c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 ); + + const c1 = vec4( 1, 0.0425, 1.04, - 0.04 ); + + const r = roughness.mul( c0 ).add( c1 ); + + const a004 = r.x.mul( r.x ).min( dotNV.mul( - 9.28 ).exp2() ).mul( r.x ).add( r.y ); + + const fab = vec2( - 1.04, 1.04 ).mul( a004 ).add( r.zw ); + + return fab; + +} ).setLayout( { + name: 'DFGApprox', + type: 'vec2', + inputs: [ + { name: 'roughness', type: 'float' }, + { name: 'dotNV', type: 'vec3' } + ] +} ); + +const EnvironmentBRDF = /*@__PURE__*/ Fn( ( inputs ) => { + + const { dotNV, specularColor, specularF90, roughness } = inputs; + + const fab = DFGApprox( { dotNV, roughness } ); + return specularColor.mul( fab.x ).add( specularF90.mul( fab.y ) ); + +} ); + +const Schlick_to_F0 = /*@__PURE__*/ Fn( ( { f, f90, dotVH } ) => { + + const x = dotVH.oneMinus().saturate(); + const x2 = x.mul( x ); + const x5 = x.mul( x2, x2 ).clamp( 0, .9999 ); + + return f.sub( vec3( f90 ).mul( x5 ) ).div( x5.oneMinus() ); + +} ).setLayout( { + name: 'Schlick_to_F0', + type: 'vec3', + inputs: [ + { name: 'f', type: 'vec3' }, + { name: 'f90', type: 'float' }, + { name: 'dotVH', type: 'float' } + ] +} ); + +// https://github.com/google/filament/blob/master/shaders/src/brdf.fs +const D_Charlie = /*@__PURE__*/ Fn( ( { roughness, dotNH } ) => { + + const alpha = roughness.pow2(); + + // Estevez and Kulla 2017, "Production Friendly Microfacet Sheen BRDF" + const invAlpha = float( 1.0 ).div( alpha ); + const cos2h = dotNH.pow2(); + const sin2h = cos2h.oneMinus().max( 0.0078125 ); // 2^(-14/2), so sin2h^2 > 0 in fp16 + + return float( 2.0 ).add( invAlpha ).mul( sin2h.pow( invAlpha.mul( 0.5 ) ) ).div( 2.0 * Math.PI ); + +} ).setLayout( { + name: 'D_Charlie', + type: 'float', + inputs: [ + { name: 'roughness', type: 'float' }, + { name: 'dotNH', type: 'float' } + ] +} ); + +// https://github.com/google/filament/blob/master/shaders/src/brdf.fs +const V_Neubelt = /*@__PURE__*/ Fn( ( { dotNV, dotNL } ) => { + + // Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886" + return float( 1.0 ).div( float( 4.0 ).mul( dotNL.add( dotNV ).sub( dotNL.mul( dotNV ) ) ) ); + +} ).setLayout( { + name: 'V_Neubelt', + type: 'float', + inputs: [ + { name: 'dotNV', type: 'float' }, + { name: 'dotNL', type: 'float' } + ] +} ); + +const BRDF_Sheen = /*@__PURE__*/ Fn( ( { lightDirection } ) => { + + const halfDir = lightDirection.add( positionViewDirection ).normalize(); + + const dotNL = transformedNormalView.dot( lightDirection ).clamp(); + const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); + const dotNH = transformedNormalView.dot( halfDir ).clamp(); + + const D = D_Charlie( { roughness: sheenRoughness, dotNH } ); + const V = V_Neubelt( { dotNV, dotNL } ); + + return sheen.mul( D ).mul( V ); + +} ); + +// Rect Area Light + +// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines +// by Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt +// code: https://github.com/selfshadow/ltc_code/ + +const LTC_Uv = /*@__PURE__*/ Fn( ( { N, V, roughness } ) => { + + const LUT_SIZE = 64.0; + const LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE; + const LUT_BIAS = 0.5 / LUT_SIZE; + + const dotNV = N.dot( V ).saturate(); + + // texture parameterized by sqrt( GGX alpha ) and sqrt( 1 - cos( theta ) ) + const uv = vec2( roughness, dotNV.oneMinus().sqrt() ); + + uv.assign( uv.mul( LUT_SCALE ).add( LUT_BIAS ) ); + + return uv; + +} ).setLayout( { + name: 'LTC_Uv', + type: 'vec2', + inputs: [ + { name: 'N', type: 'vec3' }, + { name: 'V', type: 'vec3' }, + { name: 'roughness', type: 'float' } + ] +} ); + +const LTC_ClippedSphereFormFactor = /*@__PURE__*/ Fn( ( { f } ) => { + + // Real-Time Area Lighting: a Journey from Research to Production (p.102) + // An approximation of the form factor of a horizon-clipped rectangle. + + const l = f.length(); + + return max$1( l.mul( l ).add( f.z ).div( l.add( 1.0 ) ), 0 ); + +} ).setLayout( { + name: 'LTC_ClippedSphereFormFactor', + type: 'float', + inputs: [ + { name: 'f', type: 'vec3' } + ] +} ); + +const LTC_EdgeVectorFormFactor = /*@__PURE__*/ Fn( ( { v1, v2 } ) => { + + const x = v1.dot( v2 ); + const y = x.abs().toVar(); + + // rational polynomial approximation to theta / sin( theta ) / 2PI + const a = y.mul( 0.0145206 ).add( 0.4965155 ).mul( y ).add( 0.8543985 ).toVar(); + const b = y.add( 4.1616724 ).mul( y ).add( 3.4175940 ).toVar(); + const v = a.div( b ); + + const theta_sintheta = x.greaterThan( 0.0 ).select( v, max$1( x.mul( x ).oneMinus(), 1e-7 ).inverseSqrt().mul( 0.5 ).sub( v ) ); + + return v1.cross( v2 ).mul( theta_sintheta ); + +} ).setLayout( { + name: 'LTC_EdgeVectorFormFactor', + type: 'vec3', + inputs: [ + { name: 'v1', type: 'vec3' }, + { name: 'v2', type: 'vec3' } + ] +} ); + +const LTC_Evaluate = /*@__PURE__*/ Fn( ( { N, V, P, mInv, p0, p1, p2, p3 } ) => { + + // bail if point is on back side of plane of light + // assumes ccw winding order of light vertices + const v1 = p1.sub( p0 ).toVar(); + const v2 = p3.sub( p0 ).toVar(); + + const lightNormal = v1.cross( v2 ); + const result = vec3().toVar(); + + If( lightNormal.dot( P.sub( p0 ) ).greaterThanEqual( 0.0 ), () => { + + // construct orthonormal basis around N + const T1 = V.sub( N.mul( V.dot( N ) ) ).normalize(); + const T2 = N.cross( T1 ).negate(); // negated from paper; possibly due to a different handedness of world coordinate system + + // compute transform + const mat = mInv.mul( mat3( T1, T2, N ).transpose() ).toVar(); + + // transform rect + // & project rect onto sphere + const coords0 = mat.mul( p0.sub( P ) ).normalize().toVar(); + const coords1 = mat.mul( p1.sub( P ) ).normalize().toVar(); + const coords2 = mat.mul( p2.sub( P ) ).normalize().toVar(); + const coords3 = mat.mul( p3.sub( P ) ).normalize().toVar(); + + // calculate vector form factor + const vectorFormFactor = vec3( 0 ).toVar(); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords0, v2: coords1 } ) ); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords1, v2: coords2 } ) ); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords2, v2: coords3 } ) ); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords3, v2: coords0 } ) ); + + // adjust for horizon clipping + result.assign( vec3( LTC_ClippedSphereFormFactor( { f: vectorFormFactor } ) ) ); + + } ); + + return result; + +} ).setLayout( { + name: 'LTC_Evaluate', + type: 'vec3', + inputs: [ + { name: 'N', type: 'vec3' }, + { name: 'V', type: 'vec3' }, + { name: 'P', type: 'vec3' }, + { name: 'mInv', type: 'mat3' }, + { name: 'p0', type: 'vec3' }, + { name: 'p1', type: 'vec3' }, + { name: 'p2', type: 'vec3' }, + { name: 'p3', type: 'vec3' } + ] +} ); + +const LTC_Evaluate_Volume = /*@__PURE__*/ Fn( ( { P, p0, p1, p2, p3 } ) => { + + // bail if point is on back side of plane of light + // assumes ccw winding order of light vertices + const v1 = p1.sub( p0 ).toVar(); + const v2 = p3.sub( p0 ).toVar(); + + const lightNormal = v1.cross( v2 ); + const result = vec3().toVar(); + + If( lightNormal.dot( P.sub( p0 ) ).greaterThanEqual( 0.0 ), () => { + + // transform rect + // & project rect onto sphere + const coords0 = p0.sub( P ).normalize().toVar(); + const coords1 = p1.sub( P ).normalize().toVar(); + const coords2 = p2.sub( P ).normalize().toVar(); + const coords3 = p3.sub( P ).normalize().toVar(); + + // calculate vector form factor + const vectorFormFactor = vec3( 0 ).toVar(); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords0, v2: coords1 } ) ); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords1, v2: coords2 } ) ); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords2, v2: coords3 } ) ); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords3, v2: coords0 } ) ); + + // adjust for horizon clipping + result.assign( vec3( LTC_ClippedSphereFormFactor( { f: vectorFormFactor.abs() } ) ) ); + + } ); + + return result; + +} ).setLayout( { + name: 'LTC_Evaluate', + type: 'vec3', + inputs: [ + { name: 'P', type: 'vec3' }, + { name: 'p0', type: 'vec3' }, + { name: 'p1', type: 'vec3' }, + { name: 'p2', type: 'vec3' }, + { name: 'p3', type: 'vec3' } + ] +} ); + +// Mipped Bicubic Texture Filtering by N8 +// https://www.shadertoy.com/view/Dl2SDW + +const bC = 1.0 / 6.0; + +const w0 = ( a ) => mul( bC, mul( a, mul( a, a.negate().add( 3.0 ) ).sub( 3.0 ) ).add( 1.0 ) ); + +const w1 = ( a ) => mul( bC, mul( a, mul( a, mul( 3.0, a ).sub( 6.0 ) ) ).add( 4.0 ) ); + +const w2 = ( a ) => mul( bC, mul( a, mul( a, mul( - 3, a ).add( 3.0 ) ).add( 3.0 ) ).add( 1.0 ) ); + +const w3 = ( a ) => mul( bC, pow( a, 3 ) ); + +const g0 = ( a ) => w0( a ).add( w1( a ) ); + +const g1 = ( a ) => w2( a ).add( w3( a ) ); + +// h0 and h1 are the two offset functions +const h0 = ( a ) => add( - 1, w1( a ).div( w0( a ).add( w1( a ) ) ) ); + +const h1 = ( a ) => add( 1.0, w3( a ).div( w2( a ).add( w3( a ) ) ) ); + +const bicubic = ( textureNode, texelSize, lod ) => { + + const uv = textureNode.uvNode; + const uvScaled = mul( uv, texelSize.zw ).add( 0.5 ); + + const iuv = floor( uvScaled ); + const fuv = fract( uvScaled ); + + const g0x = g0( fuv.x ); + const g1x = g1( fuv.x ); + const h0x = h0( fuv.x ); + const h1x = h1( fuv.x ); + const h0y = h0( fuv.y ); + const h1y = h1( fuv.y ); + + const p0 = vec2( iuv.x.add( h0x ), iuv.y.add( h0y ) ).sub( 0.5 ).mul( texelSize.xy ); + const p1 = vec2( iuv.x.add( h1x ), iuv.y.add( h0y ) ).sub( 0.5 ).mul( texelSize.xy ); + const p2 = vec2( iuv.x.add( h0x ), iuv.y.add( h1y ) ).sub( 0.5 ).mul( texelSize.xy ); + const p3 = vec2( iuv.x.add( h1x ), iuv.y.add( h1y ) ).sub( 0.5 ).mul( texelSize.xy ); + + const a = g0( fuv.y ).mul( add( g0x.mul( textureNode.sample( p0 ).level( lod ) ), g1x.mul( textureNode.sample( p1 ).level( lod ) ) ) ); + const b = g1( fuv.y ).mul( add( g0x.mul( textureNode.sample( p2 ).level( lod ) ), g1x.mul( textureNode.sample( p3 ).level( lod ) ) ) ); + + return a.add( b ); + +}; + +/** + * Applies mipped bicubic texture filtering to the given texture node. + * + * @tsl + * @function + * @param {TextureNode} textureNode - The texture node that should be filtered. + * @param {Node} [lodNode=float(3)] - Defines the LOD to sample from. + * @return {Node} The filtered texture sample. + */ +const textureBicubic = /*@__PURE__*/ Fn( ( [ textureNode, lodNode = float( 3 ) ] ) => { + + const fLodSize = vec2( textureNode.size( int( lodNode ) ) ); + const cLodSize = vec2( textureNode.size( int( lodNode.add( 1.0 ) ) ) ); + const fLodSizeInv = div( 1.0, fLodSize ); + const cLodSizeInv = div( 1.0, cLodSize ); + const fSample = bicubic( textureNode, vec4( fLodSizeInv, fLodSize ), floor( lodNode ) ); + const cSample = bicubic( textureNode, vec4( cLodSizeInv, cLodSize ), ceil( lodNode ) ); + + return fract( lodNode ).mix( fSample, cSample ); + +} ); + +// +// Transmission +// + +const getVolumeTransmissionRay = /*@__PURE__*/ Fn( ( [ n, v, thickness, ior, modelMatrix ] ) => { + + // Direction of refracted light. + const refractionVector = vec3( refract( v.negate(), normalize( n ), div( 1.0, ior ) ) ); + + // Compute rotation-independent scaling of the model matrix. + const modelScale = vec3( + length( modelMatrix[ 0 ].xyz ), + length( modelMatrix[ 1 ].xyz ), + length( modelMatrix[ 2 ].xyz ) + ); + + // The thickness is specified in local space. + return normalize( refractionVector ).mul( thickness.mul( modelScale ) ); + +} ).setLayout( { + name: 'getVolumeTransmissionRay', + type: 'vec3', + inputs: [ + { name: 'n', type: 'vec3' }, + { name: 'v', type: 'vec3' }, + { name: 'thickness', type: 'float' }, + { name: 'ior', type: 'float' }, + { name: 'modelMatrix', type: 'mat4' } + ] +} ); + +const applyIorToRoughness = /*@__PURE__*/ Fn( ( [ roughness, ior ] ) => { + + // Scale roughness with IOR so that an IOR of 1.0 results in no microfacet refraction and + // an IOR of 1.5 results in the default amount of microfacet refraction. + return roughness.mul( clamp( ior.mul( 2.0 ).sub( 2.0 ), 0.0, 1.0 ) ); + +} ).setLayout( { + name: 'applyIorToRoughness', + type: 'float', + inputs: [ + { name: 'roughness', type: 'float' }, + { name: 'ior', type: 'float' } + ] +} ); + +const viewportBackSideTexture = /*@__PURE__*/ viewportMipTexture(); +const viewportFrontSideTexture = /*@__PURE__*/ viewportMipTexture(); + +const getTransmissionSample = /*@__PURE__*/ Fn( ( [ fragCoord, roughness, ior ], { material } ) => { + + const vTexture = material.side === BackSide ? viewportBackSideTexture : viewportFrontSideTexture; + + const transmissionSample = vTexture.sample( fragCoord ); + //const transmissionSample = viewportMipTexture( fragCoord ); + + const lod = log2( screenSize.x ).mul( applyIorToRoughness( roughness, ior ) ); + + return textureBicubic( transmissionSample, lod ); + +} ); + +const volumeAttenuation = /*@__PURE__*/ Fn( ( [ transmissionDistance, attenuationColor, attenuationDistance ] ) => { + + If( attenuationDistance.notEqual( 0 ), () => { + + // Compute light attenuation using Beer's law. + const attenuationCoefficient = log( attenuationColor ).negate().div( attenuationDistance ); + const transmittance = exp( attenuationCoefficient.negate().mul( transmissionDistance ) ); + + return transmittance; + + } ); + + // Attenuation distance is +∞, i.e. the transmitted color is not attenuated at all. + return vec3( 1.0 ); + +} ).setLayout( { + name: 'volumeAttenuation', + type: 'vec3', + inputs: [ + { name: 'transmissionDistance', type: 'float' }, + { name: 'attenuationColor', type: 'vec3' }, + { name: 'attenuationDistance', type: 'float' } + ] +} ); + +const getIBLVolumeRefraction = /*@__PURE__*/ Fn( ( [ n, v, roughness, diffuseColor, specularColor, specularF90, position, modelMatrix, viewMatrix, projMatrix, ior, thickness, attenuationColor, attenuationDistance, dispersion ] ) => { + + let transmittedLight, transmittance; + + if ( dispersion ) { + + transmittedLight = vec4().toVar(); + transmittance = vec3().toVar(); + + const halfSpread = ior.sub( 1.0 ).mul( dispersion.mul( 0.025 ) ); + const iors = vec3( ior.sub( halfSpread ), ior, ior.add( halfSpread ) ); + + Loop( { start: 0, end: 3 }, ( { i } ) => { + + const ior = iors.element( i ); + + const transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix ); + const refractedRayExit = position.add( transmissionRay ); + + // Project refracted vector on the framebuffer, while mapping to normalized device coordinates. + const ndcPos = projMatrix.mul( viewMatrix.mul( vec4( refractedRayExit, 1.0 ) ) ); + const refractionCoords = vec2( ndcPos.xy.div( ndcPos.w ) ).toVar(); + refractionCoords.addAssign( 1.0 ); + refractionCoords.divAssign( 2.0 ); + refractionCoords.assign( vec2( refractionCoords.x, refractionCoords.y.oneMinus() ) ); // webgpu + + // Sample framebuffer to get pixel the refracted ray hits. + const transmissionSample = getTransmissionSample( refractionCoords, roughness, ior ); + + transmittedLight.element( i ).assign( transmissionSample.element( i ) ); + transmittedLight.a.addAssign( transmissionSample.a ); + + transmittance.element( i ).assign( diffuseColor.element( i ).mul( volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance ).element( i ) ) ); + + } ); + + transmittedLight.a.divAssign( 3.0 ); + + } else { + + const transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix ); + const refractedRayExit = position.add( transmissionRay ); + + // Project refracted vector on the framebuffer, while mapping to normalized device coordinates. + const ndcPos = projMatrix.mul( viewMatrix.mul( vec4( refractedRayExit, 1.0 ) ) ); + const refractionCoords = vec2( ndcPos.xy.div( ndcPos.w ) ).toVar(); + refractionCoords.addAssign( 1.0 ); + refractionCoords.divAssign( 2.0 ); + refractionCoords.assign( vec2( refractionCoords.x, refractionCoords.y.oneMinus() ) ); // webgpu + + // Sample framebuffer to get pixel the refracted ray hits. + transmittedLight = getTransmissionSample( refractionCoords, roughness, ior ); + transmittance = diffuseColor.mul( volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance ) ); + + } + + const attenuatedColor = transmittance.rgb.mul( transmittedLight.rgb ); + const dotNV = n.dot( v ).clamp(); + + // Get the specular component. + const F = vec3( EnvironmentBRDF( { // n, v, specularColor, specularF90, roughness + dotNV, + specularColor, + specularF90, + roughness + } ) ); + + // As less light is transmitted, the opacity should be increased. This simple approximation does a decent job + // of modulating a CSS background, and has no effect when the buffer is opaque, due to a solid object or clear color. + const transmittanceFactor = transmittance.r.add( transmittance.g, transmittance.b ).div( 3.0 ); + + return vec4( F.oneMinus().mul( attenuatedColor ), transmittedLight.a.oneMinus().mul( transmittanceFactor ).oneMinus() ); + +} ); + +// +// Iridescence +// + +// XYZ to linear-sRGB color space +const XYZ_TO_REC709 = /*@__PURE__*/ mat3( + 3.2404542, - 0.969266, 0.0556434, + - 1.5371385, 1.8760108, - 0.2040259, + - 0.4985314, 0.0415560, 1.0572252 +); + +// Assume air interface for top +// Note: We don't handle the case fresnel0 == 1 +const Fresnel0ToIor = ( fresnel0 ) => { + + const sqrtF0 = fresnel0.sqrt(); + return vec3( 1.0 ).add( sqrtF0 ).div( vec3( 1.0 ).sub( sqrtF0 ) ); + +}; + +// ior is a value between 1.0 and 3.0. 1.0 is air interface +const IorToFresnel0 = ( transmittedIor, incidentIor ) => { + + return transmittedIor.sub( incidentIor ).div( transmittedIor.add( incidentIor ) ).pow2(); + +}; + +// Fresnel equations for dielectric/dielectric interfaces. +// Ref: https://belcour.github.io/blog/research/2017/05/01/brdf-thin-film.html +// Evaluation XYZ sensitivity curves in Fourier space +const evalSensitivity = ( OPD, shift ) => { + + const phase = OPD.mul( 2.0 * Math.PI * 1.0e-9 ); + const val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 ); + const pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 ); + const VAR = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 ); + + const x = float( 9.7470e-14 * Math.sqrt( 2.0 * Math.PI * 4.5282e+09 ) ).mul( phase.mul( 2.2399e+06 ).add( shift.x ).cos() ).mul( phase.pow2().mul( - 45282e5 ).exp() ); + + let xyz = val.mul( VAR.mul( 2.0 * Math.PI ).sqrt() ).mul( pos.mul( phase ).add( shift ).cos() ).mul( phase.pow2().negate().mul( VAR ).exp() ); + xyz = vec3( xyz.x.add( x ), xyz.y, xyz.z ).div( 1.0685e-7 ); + + const rgb = XYZ_TO_REC709.mul( xyz ); + + return rgb; + +}; + +const evalIridescence = /*@__PURE__*/ Fn( ( { outsideIOR, eta2, cosTheta1, thinFilmThickness, baseF0 } ) => { + + // Force iridescenceIOR -> outsideIOR when thinFilmThickness -> 0.0 + const iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) ); + // Evaluate the cosTheta on the base layer (Snell law) + const sinTheta2Sq = outsideIOR.div( iridescenceIOR ).pow2().mul( cosTheta1.pow2().oneMinus() ); + + // Handle TIR: + const cosTheta2Sq = sinTheta2Sq.oneMinus(); + + If( cosTheta2Sq.lessThan( 0 ), () => { + + return vec3( 1.0 ); + + } ); + + const cosTheta2 = cosTheta2Sq.sqrt(); + + // First interface + const R0 = IorToFresnel0( iridescenceIOR, outsideIOR ); + const R12 = F_Schlick( { f0: R0, f90: 1.0, dotVH: cosTheta1 } ); + //const R21 = R12; + const T121 = R12.oneMinus(); + const phi12 = iridescenceIOR.lessThan( outsideIOR ).select( Math.PI, 0.0 ); + const phi21 = float( Math.PI ).sub( phi12 ); + + // Second interface + const baseIOR = Fresnel0ToIor( baseF0.clamp( 0.0, 0.9999 ) ); // guard against 1.0 + const R1 = IorToFresnel0( baseIOR, iridescenceIOR.toVec3() ); + const R23 = F_Schlick( { f0: R1, f90: 1.0, dotVH: cosTheta2 } ); + const phi23 = vec3( + baseIOR.x.lessThan( iridescenceIOR ).select( Math.PI, 0.0 ), + baseIOR.y.lessThan( iridescenceIOR ).select( Math.PI, 0.0 ), + baseIOR.z.lessThan( iridescenceIOR ).select( Math.PI, 0.0 ) + ); + + // Phase shift + const OPD = iridescenceIOR.mul( thinFilmThickness, cosTheta2, 2.0 ); + const phi = vec3( phi21 ).add( phi23 ); + + // Compound terms + const R123 = R12.mul( R23 ).clamp( 1e-5, 0.9999 ); + const r123 = R123.sqrt(); + const Rs = T121.pow2().mul( R23 ).div( vec3( 1.0 ).sub( R123 ) ); + + // Reflectance term for m = 0 (DC term amplitude) + const C0 = R12.add( Rs ); + const I = C0.toVar(); + + // Reflectance term for m > 0 (pairs of diracs) + const Cm = Rs.sub( T121 ).toVar(); + + Loop( { start: 1, end: 2, condition: '<=', name: 'm' }, ( { m } ) => { + + Cm.mulAssign( r123 ); + const Sm = evalSensitivity( float( m ).mul( OPD ), float( m ).mul( phi ) ).mul( 2.0 ); + I.addAssign( Cm.mul( Sm ) ); + + } ); + + // Since out of gamut colors might be produced, negative color values are clamped to 0. + return I.max( vec3( 0.0 ) ); + +} ).setLayout( { + name: 'evalIridescence', + type: 'vec3', + inputs: [ + { name: 'outsideIOR', type: 'float' }, + { name: 'eta2', type: 'float' }, + { name: 'cosTheta1', type: 'float' }, + { name: 'thinFilmThickness', type: 'float' }, + { name: 'baseF0', type: 'vec3' } + ] +} ); + +// +// Sheen +// + +// This is a curve-fit approximation to the "Charlie sheen" BRDF integrated over the hemisphere from +// Estevez and Kulla 2017, "Production Friendly Microfacet Sheen BRDF". The analysis can be found +// in the Sheen section of https://drive.google.com/file/d/1T0D1VSyR4AllqIJTQAraEIzjlb5h4FKH/view?usp=sharing +const IBLSheenBRDF = /*@__PURE__*/ Fn( ( { normal, viewDir, roughness } ) => { + + const dotNV = normal.dot( viewDir ).saturate(); + + const r2 = roughness.pow2(); + + const a = select( + roughness.lessThan( 0.25 ), + float( - 339.2 ).mul( r2 ).add( float( 161.4 ).mul( roughness ) ).sub( 25.9 ), + float( - 8.48 ).mul( r2 ).add( float( 14.3 ).mul( roughness ) ).sub( 9.95 ) + ); + + const b = select( + roughness.lessThan( 0.25 ), + float( 44.0 ).mul( r2 ).sub( float( 23.7 ).mul( roughness ) ).add( 3.26 ), + float( 1.97 ).mul( r2 ).sub( float( 3.27 ).mul( roughness ) ).add( 0.72 ) + ); + + const DG = select( roughness.lessThan( 0.25 ), 0.0, float( 0.1 ).mul( roughness ).sub( 0.025 ) ).add( a.mul( dotNV ).add( b ).exp() ); + + return DG.mul( 1.0 / Math.PI ).saturate(); + +} ); + +const clearcoatF0 = vec3( 0.04 ); +const clearcoatF90 = float( 1 ); + + +/** + * Represents the lighting model for a PBR material. + * + * @augments LightingModel + */ +class PhysicalLightingModel extends LightingModel { + + /** + * Constructs a new physical lighting model. + * + * @param {boolean} [clearcoat=false] - Whether clearcoat is supported or not. + * @param {boolean} [sheen=false] - Whether sheen is supported or not. + * @param {boolean} [iridescence=false] - Whether iridescence is supported or not. + * @param {boolean} [anisotropy=false] - Whether anisotropy is supported or not. + * @param {boolean} [transmission=false] - Whether transmission is supported or not. + * @param {boolean} [dispersion=false] - Whether dispersion is supported or not. + */ + constructor( clearcoat = false, sheen = false, iridescence = false, anisotropy = false, transmission = false, dispersion = false ) { + + super(); + + /** + * Whether clearcoat is supported or not. + * + * @type {boolean} + * @default false + */ + this.clearcoat = clearcoat; + + /** + * Whether sheen is supported or not. + * + * @type {boolean} + * @default false + */ + this.sheen = sheen; + + /** + * Whether iridescence is supported or not. + * + * @type {boolean} + * @default false + */ + this.iridescence = iridescence; + + /** + * Whether anisotropy is supported or not. + * + * @type {boolean} + * @default false + */ + this.anisotropy = anisotropy; + + /** + * Whether transmission is supported or not. + * + * @type {boolean} + * @default false + */ + this.transmission = transmission; + + /** + * Whether dispersion is supported or not. + * + * @type {boolean} + * @default false + */ + this.dispersion = dispersion; + + /** + * The clear coat radiance. + * + * @type {?Node} + * @default null + */ + this.clearcoatRadiance = null; + + /** + * The clear coat specular direct. + * + * @type {?Node} + * @default null + */ + this.clearcoatSpecularDirect = null; + + /** + * The clear coat specular indirect. + * + * @type {?Node} + * @default null + */ + this.clearcoatSpecularIndirect = null; + + /** + * The sheen specular direct. + * + * @type {?Node} + * @default null + */ + this.sheenSpecularDirect = null; + + /** + * The sheen specular indirect. + * + * @type {?Node} + * @default null + */ + this.sheenSpecularIndirect = null; + + /** + * The iridescence Fresnel. + * + * @type {?Node} + * @default null + */ + this.iridescenceFresnel = null; + + /** + * The iridescence F0. + * + * @type {?Node} + * @default null + */ + this.iridescenceF0 = null; + + } + + /** + * Depending on what features are requested, the method prepares certain node variables + * which are later used for lighting computations. + * + * @param {NodeBuilder} builder - The current node builder. + */ + start( builder ) { + + if ( this.clearcoat === true ) { + + this.clearcoatRadiance = vec3().toVar( 'clearcoatRadiance' ); + this.clearcoatSpecularDirect = vec3().toVar( 'clearcoatSpecularDirect' ); + this.clearcoatSpecularIndirect = vec3().toVar( 'clearcoatSpecularIndirect' ); + + } + + if ( this.sheen === true ) { + + this.sheenSpecularDirect = vec3().toVar( 'sheenSpecularDirect' ); + this.sheenSpecularIndirect = vec3().toVar( 'sheenSpecularIndirect' ); + + } + + if ( this.iridescence === true ) { + + const dotNVi = transformedNormalView.dot( positionViewDirection ).clamp(); + + this.iridescenceFresnel = evalIridescence( { + outsideIOR: float( 1.0 ), + eta2: iridescenceIOR, + cosTheta1: dotNVi, + thinFilmThickness: iridescenceThickness, + baseF0: specularColor + } ); + + this.iridescenceF0 = Schlick_to_F0( { f: this.iridescenceFresnel, f90: 1.0, dotVH: dotNVi } ); + + } + + if ( this.transmission === true ) { + + const position = positionWorld; + const v = cameraPosition.sub( positionWorld ).normalize(); // TODO: Create Node for this, same issue in MaterialX + const n = transformedNormalWorld; + + const context = builder.context; + + context.backdrop = getIBLVolumeRefraction( + n, + v, + roughness, + diffuseColor, + specularColor, + specularF90, // specularF90 + position, // positionWorld + modelWorldMatrix, // modelMatrix + cameraViewMatrix, // viewMatrix + cameraProjectionMatrix, // projMatrix + ior, + thickness, + attenuationColor, + attenuationDistance, + this.dispersion ? dispersion : null + ); + + context.backdropAlpha = transmission; + + diffuseColor.a.mulAssign( mix( 1, context.backdrop.a, transmission ) ); + + } + + super.start( builder ); + + } + + // Fdez-Agüera's "Multiple-Scattering Microfacet Model for Real-Time Image Based Lighting" + // Approximates multi-scattering in order to preserve energy. + // http://www.jcgt.org/published/0008/01/03/ + + computeMultiscattering( singleScatter, multiScatter, specularF90 ) { + + const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV + + const fab = DFGApprox( { roughness, dotNV } ); + + const Fr = this.iridescenceF0 ? iridescence.mix( specularColor, this.iridescenceF0 ) : specularColor; + + const FssEss = Fr.mul( fab.x ).add( specularF90.mul( fab.y ) ); + + const Ess = fab.x.add( fab.y ); + const Ems = Ess.oneMinus(); + + const Favg = specularColor.add( specularColor.oneMinus().mul( 0.047619 ) ); // 1/21 + const Fms = FssEss.mul( Favg ).div( Ems.mul( Favg ).oneMinus() ); + + singleScatter.addAssign( FssEss ); + multiScatter.addAssign( Fms.mul( Ems ) ); + + } + + /** + * Implements the direct light. + * + * @param {Object} lightData - The light data. + * @param {NodeBuilder} builder - The current node builder. + */ + direct( { lightDirection, lightColor, reflectedLight } ) { + + const dotNL = transformedNormalView.dot( lightDirection ).clamp(); + const irradiance = dotNL.mul( lightColor ); + + if ( this.sheen === true ) { + + this.sheenSpecularDirect.addAssign( irradiance.mul( BRDF_Sheen( { lightDirection } ) ) ); + + } + + if ( this.clearcoat === true ) { + + const dotNLcc = transformedClearcoatNormalView.dot( lightDirection ).clamp(); + const ccIrradiance = dotNLcc.mul( lightColor ); + + this.clearcoatSpecularDirect.addAssign( ccIrradiance.mul( BRDF_GGX( { lightDirection, f0: clearcoatF0, f90: clearcoatF90, roughness: clearcoatRoughness, normalView: transformedClearcoatNormalView } ) ) ); + + } + + reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) ); + + reflectedLight.directSpecular.addAssign( irradiance.mul( BRDF_GGX( { lightDirection, f0: specularColor, f90: 1, roughness, iridescence: this.iridescence, f: this.iridescenceFresnel, USE_IRIDESCENCE: this.iridescence, USE_ANISOTROPY: this.anisotropy } ) ) ); + + } + + /** + * This method is intended for implementing the direct light term for + * rect area light nodes. + * + * @param {Object} input - The input data. + * @param {NodeBuilder} builder - The current node builder. + */ + directRectArea( { lightColor, lightPosition, halfWidth, halfHeight, reflectedLight, ltc_1, ltc_2 } ) { + + const p0 = lightPosition.add( halfWidth ).sub( halfHeight ); // counterclockwise; light shines in local neg z direction + const p1 = lightPosition.sub( halfWidth ).sub( halfHeight ); + const p2 = lightPosition.sub( halfWidth ).add( halfHeight ); + const p3 = lightPosition.add( halfWidth ).add( halfHeight ); + + const N = transformedNormalView; + const V = positionViewDirection; + const P = positionView.toVar(); + + const uv = LTC_Uv( { N, V, roughness } ); + + const t1 = ltc_1.sample( uv ).toVar(); + const t2 = ltc_2.sample( uv ).toVar(); + + const mInv = mat3( + vec3( t1.x, 0, t1.y ), + vec3( 0, 1, 0 ), + vec3( t1.z, 0, t1.w ) + ).toVar(); + + // LTC Fresnel Approximation by Stephen Hill + // http://blog.selfshadow.com/publications/s2016-advances/s2016_ltc_fresnel.pdf + const fresnel = specularColor.mul( t2.x ).add( specularColor.oneMinus().mul( t2.y ) ).toVar(); + + reflectedLight.directSpecular.addAssign( lightColor.mul( fresnel ).mul( LTC_Evaluate( { N, V, P, mInv, p0, p1, p2, p3 } ) ) ); + + reflectedLight.directDiffuse.addAssign( lightColor.mul( diffuseColor ).mul( LTC_Evaluate( { N, V, P, mInv: mat3( 1, 0, 0, 0, 1, 0, 0, 0, 1 ), p0, p1, p2, p3 } ) ) ); + + } + + /** + * Implements the indirect lighting. + * + * @param {NodeBuilder} builder - The current node builder. + */ + indirect( builder ) { + + this.indirectDiffuse( builder ); + this.indirectSpecular( builder ); + this.ambientOcclusion( builder ); + + } + + /** + * Implements the indirect diffuse term. + * + * @param {NodeBuilder} builder - The current node builder. + */ + indirectDiffuse( builder ) { + + const { irradiance, reflectedLight } = builder.context; + + reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) ); + + } + + /** + * Implements the indirect specular term. + * + * @param {NodeBuilder} builder - The current node builder. + */ + indirectSpecular( builder ) { + + const { radiance, iblIrradiance, reflectedLight } = builder.context; + + if ( this.sheen === true ) { + + this.sheenSpecularIndirect.addAssign( iblIrradiance.mul( + sheen, + IBLSheenBRDF( { + normal: transformedNormalView, + viewDir: positionViewDirection, + roughness: sheenRoughness + } ) + ) ); + + } + + if ( this.clearcoat === true ) { + + const dotNVcc = transformedClearcoatNormalView.dot( positionViewDirection ).clamp(); + + const clearcoatEnv = EnvironmentBRDF( { + dotNV: dotNVcc, + specularColor: clearcoatF0, + specularF90: clearcoatF90, + roughness: clearcoatRoughness + } ); + + this.clearcoatSpecularIndirect.addAssign( this.clearcoatRadiance.mul( clearcoatEnv ) ); + + } + + // Both indirect specular and indirect diffuse light accumulate here + + const singleScattering = vec3().toVar( 'singleScattering' ); + const multiScattering = vec3().toVar( 'multiScattering' ); + const cosineWeightedIrradiance = iblIrradiance.mul( 1 / Math.PI ); + + this.computeMultiscattering( singleScattering, multiScattering, specularF90 ); + + const totalScattering = singleScattering.add( multiScattering ); + + const diffuse = diffuseColor.mul( totalScattering.r.max( totalScattering.g ).max( totalScattering.b ).oneMinus() ); + + reflectedLight.indirectSpecular.addAssign( radiance.mul( singleScattering ) ); + reflectedLight.indirectSpecular.addAssign( multiScattering.mul( cosineWeightedIrradiance ) ); + + reflectedLight.indirectDiffuse.addAssign( diffuse.mul( cosineWeightedIrradiance ) ); + + } + + /** + * Implements the ambient occlusion term. + * + * @param {NodeBuilder} builder - The current node builder. + */ + ambientOcclusion( builder ) { + + const { ambientOcclusion, reflectedLight } = builder.context; + + const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV + + const aoNV = dotNV.add( ambientOcclusion ); + const aoExp = roughness.mul( - 16 ).oneMinus().negate().exp2(); + + const aoNode = ambientOcclusion.sub( aoNV.pow( aoExp ).oneMinus() ).clamp(); + + if ( this.clearcoat === true ) { + + this.clearcoatSpecularIndirect.mulAssign( ambientOcclusion ); + + } + + if ( this.sheen === true ) { + + this.sheenSpecularIndirect.mulAssign( ambientOcclusion ); + + } + + reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion ); + reflectedLight.indirectSpecular.mulAssign( aoNode ); + + } + + /** + * Used for final lighting accumulations depending on the requested features. + * + * @param {NodeBuilder} builder - The current node builder. + */ + finish( { context } ) { + + const { outgoingLight } = context; + + if ( this.clearcoat === true ) { + + const dotNVcc = transformedClearcoatNormalView.dot( positionViewDirection ).clamp(); + + const Fcc = F_Schlick( { + dotVH: dotNVcc, + f0: clearcoatF0, + f90: clearcoatF90 + } ); + + const clearcoatLight = outgoingLight.mul( clearcoat.mul( Fcc ).oneMinus() ).add( this.clearcoatSpecularDirect.add( this.clearcoatSpecularIndirect ).mul( clearcoat ) ); + + outgoingLight.assign( clearcoatLight ); + + } + + if ( this.sheen === true ) { + + const sheenEnergyComp = sheen.r.max( sheen.g ).max( sheen.b ).mul( 0.157 ).oneMinus(); + const sheenLight = outgoingLight.mul( sheenEnergyComp ).add( this.sheenSpecularDirect, this.sheenSpecularIndirect ); + + outgoingLight.assign( sheenLight ); + + } + + } + +} + +// These defines must match with PMREMGenerator + +const cubeUV_r0 = /*@__PURE__*/ float( 1.0 ); +const cubeUV_m0 = /*@__PURE__*/ float( - 2 ); +const cubeUV_r1 = /*@__PURE__*/ float( 0.8 ); +const cubeUV_m1 = /*@__PURE__*/ float( - 1 ); +const cubeUV_r4 = /*@__PURE__*/ float( 0.4 ); +const cubeUV_m4 = /*@__PURE__*/ float( 2.0 ); +const cubeUV_r5 = /*@__PURE__*/ float( 0.305 ); +const cubeUV_m5 = /*@__PURE__*/ float( 3.0 ); +const cubeUV_r6 = /*@__PURE__*/ float( 0.21 ); +const cubeUV_m6 = /*@__PURE__*/ float( 4.0 ); + +const cubeUV_minMipLevel = /*@__PURE__*/ float( 4.0 ); +const cubeUV_minTileSize = /*@__PURE__*/ float( 16.0 ); + +// These shader functions convert between the UV coordinates of a single face of +// a cubemap, the 0-5 integer index of a cube face, and the direction vector for +// sampling a textureCube (not generally normalized ). + +const getFace = /*@__PURE__*/ Fn( ( [ direction ] ) => { + + const absDirection = vec3( abs( direction ) ).toVar(); + const face = float( - 1 ).toVar(); + + If( absDirection.x.greaterThan( absDirection.z ), () => { + + If( absDirection.x.greaterThan( absDirection.y ), () => { + + face.assign( select( direction.x.greaterThan( 0.0 ), 0.0, 3.0 ) ); + + } ).Else( () => { + + face.assign( select( direction.y.greaterThan( 0.0 ), 1.0, 4.0 ) ); + + } ); + + } ).Else( () => { + + If( absDirection.z.greaterThan( absDirection.y ), () => { + + face.assign( select( direction.z.greaterThan( 0.0 ), 2.0, 5.0 ) ); + + } ).Else( () => { + + face.assign( select( direction.y.greaterThan( 0.0 ), 1.0, 4.0 ) ); + + } ); + + } ); + + return face; + +} ).setLayout( { + name: 'getFace', + type: 'float', + inputs: [ + { name: 'direction', type: 'vec3' } + ] +} ); + +// RH coordinate system; PMREM face-indexing convention +const getUV = /*@__PURE__*/ Fn( ( [ direction, face ] ) => { + + const uv = vec2().toVar(); + + If( face.equal( 0.0 ), () => { + + uv.assign( vec2( direction.z, direction.y ).div( abs( direction.x ) ) ); // pos x + + } ).ElseIf( face.equal( 1.0 ), () => { + + uv.assign( vec2( direction.x.negate(), direction.z.negate() ).div( abs( direction.y ) ) ); // pos y + + } ).ElseIf( face.equal( 2.0 ), () => { + + uv.assign( vec2( direction.x.negate(), direction.y ).div( abs( direction.z ) ) ); // pos z + + } ).ElseIf( face.equal( 3.0 ), () => { + + uv.assign( vec2( direction.z.negate(), direction.y ).div( abs( direction.x ) ) ); // neg x + + } ).ElseIf( face.equal( 4.0 ), () => { + + uv.assign( vec2( direction.x.negate(), direction.z ).div( abs( direction.y ) ) ); // neg y + + } ).Else( () => { + + uv.assign( vec2( direction.x, direction.y ).div( abs( direction.z ) ) ); // neg z + + } ); + + return mul( 0.5, uv.add( 1.0 ) ); + +} ).setLayout( { + name: 'getUV', + type: 'vec2', + inputs: [ + { name: 'direction', type: 'vec3' }, + { name: 'face', type: 'float' } + ] +} ); + +const roughnessToMip = /*@__PURE__*/ Fn( ( [ roughness ] ) => { + + const mip = float( 0.0 ).toVar(); + + If( roughness.greaterThanEqual( cubeUV_r1 ), () => { + + mip.assign( cubeUV_r0.sub( roughness ).mul( cubeUV_m1.sub( cubeUV_m0 ) ).div( cubeUV_r0.sub( cubeUV_r1 ) ).add( cubeUV_m0 ) ); + + } ).ElseIf( roughness.greaterThanEqual( cubeUV_r4 ), () => { + + mip.assign( cubeUV_r1.sub( roughness ).mul( cubeUV_m4.sub( cubeUV_m1 ) ).div( cubeUV_r1.sub( cubeUV_r4 ) ).add( cubeUV_m1 ) ); + + } ).ElseIf( roughness.greaterThanEqual( cubeUV_r5 ), () => { + + mip.assign( cubeUV_r4.sub( roughness ).mul( cubeUV_m5.sub( cubeUV_m4 ) ).div( cubeUV_r4.sub( cubeUV_r5 ) ).add( cubeUV_m4 ) ); + + } ).ElseIf( roughness.greaterThanEqual( cubeUV_r6 ), () => { + + mip.assign( cubeUV_r5.sub( roughness ).mul( cubeUV_m6.sub( cubeUV_m5 ) ).div( cubeUV_r5.sub( cubeUV_r6 ) ).add( cubeUV_m5 ) ); + + } ).Else( () => { + + mip.assign( float( - 2 ).mul( log2( mul( 1.16, roughness ) ) ) ); // 1.16 = 1.79^0.25 + + } ); + + return mip; + +} ).setLayout( { + name: 'roughnessToMip', + type: 'float', + inputs: [ + { name: 'roughness', type: 'float' } + ] +} ); + +// RH coordinate system; PMREM face-indexing convention +const getDirection = /*@__PURE__*/ Fn( ( [ uv_immutable, face ] ) => { + + const uv = uv_immutable.toVar(); + uv.assign( mul( 2.0, uv ).sub( 1.0 ) ); + const direction = vec3( uv, 1.0 ).toVar(); + + If( face.equal( 0.0 ), () => { + + direction.assign( direction.zyx ); // ( 1, v, u ) pos x + + } ).ElseIf( face.equal( 1.0 ), () => { + + direction.assign( direction.xzy ); + direction.xz.mulAssign( - 1 ); // ( -u, 1, -v ) pos y + + } ).ElseIf( face.equal( 2.0 ), () => { + + direction.x.mulAssign( - 1 ); // ( -u, v, 1 ) pos z + + } ).ElseIf( face.equal( 3.0 ), () => { + + direction.assign( direction.zyx ); + direction.xz.mulAssign( - 1 ); // ( -1, v, -u ) neg x + + } ).ElseIf( face.equal( 4.0 ), () => { + + direction.assign( direction.xzy ); + direction.xy.mulAssign( - 1 ); // ( -u, -1, v ) neg y + + } ).ElseIf( face.equal( 5.0 ), () => { + + direction.z.mulAssign( - 1 ); // ( u, v, -1 ) neg zS + + } ); + + return direction; + +} ).setLayout( { + name: 'getDirection', + type: 'vec3', + inputs: [ + { name: 'uv', type: 'vec2' }, + { name: 'face', type: 'float' } + ] +} ); + +// + +const textureCubeUV = /*@__PURE__*/ Fn( ( [ envMap, sampleDir_immutable, roughness_immutable, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ] ) => { + + const roughness = float( roughness_immutable ); + const sampleDir = vec3( sampleDir_immutable ); + + const mip = clamp( roughnessToMip( roughness ), cubeUV_m0, CUBEUV_MAX_MIP ); + const mipF = fract( mip ); + const mipInt = floor( mip ); + const color0 = vec3( bilinearCubeUV( envMap, sampleDir, mipInt, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ) ).toVar(); + + If( mipF.notEqual( 0.0 ), () => { + + const color1 = vec3( bilinearCubeUV( envMap, sampleDir, mipInt.add( 1.0 ), CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ) ).toVar(); + + color0.assign( mix( color0, color1, mipF ) ); + + } ); + + return color0; + +} ); + +const bilinearCubeUV = /*@__PURE__*/ Fn( ( [ envMap, direction_immutable, mipInt_immutable, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ] ) => { + + const mipInt = float( mipInt_immutable ).toVar(); + const direction = vec3( direction_immutable ); + const face = float( getFace( direction ) ).toVar(); + const filterInt = float( max$1( cubeUV_minMipLevel.sub( mipInt ), 0.0 ) ).toVar(); + mipInt.assign( max$1( mipInt, cubeUV_minMipLevel ) ); + const faceSize = float( exp2( mipInt ) ).toVar(); + const uv = vec2( getUV( direction, face ).mul( faceSize.sub( 2.0 ) ).add( 1.0 ) ).toVar(); + + If( face.greaterThan( 2.0 ), () => { + + uv.y.addAssign( faceSize ); + face.subAssign( 3.0 ); + + } ); + + uv.x.addAssign( face.mul( faceSize ) ); + uv.x.addAssign( filterInt.mul( mul( 3.0, cubeUV_minTileSize ) ) ); + uv.y.addAssign( mul( 4.0, exp2( CUBEUV_MAX_MIP ).sub( faceSize ) ) ); + uv.x.mulAssign( CUBEUV_TEXEL_WIDTH ); + uv.y.mulAssign( CUBEUV_TEXEL_HEIGHT ); + + return envMap.sample( uv ).grad( vec2(), vec2() ); // disable anisotropic filtering + +} ); + +const getSample = /*@__PURE__*/ Fn( ( { envMap, mipInt, outputDirection, theta, axis, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) => { + + const cosTheta = cos( theta ); + + // Rodrigues' axis-angle rotation + const sampleDirection = outputDirection.mul( cosTheta ) + .add( axis.cross( outputDirection ).mul( sin( theta ) ) ) + .add( axis.mul( axis.dot( outputDirection ).mul( cosTheta.oneMinus() ) ) ); + + return bilinearCubeUV( envMap, sampleDirection, mipInt, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ); + +} ); + +const blur = /*@__PURE__*/ Fn( ( { n, latitudinal, poleAxis, outputDirection, weights, samples, dTheta, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) => { + + const axis = vec3( select( latitudinal, poleAxis, cross( poleAxis, outputDirection ) ) ).toVar(); + + If( axis.equal( vec3( 0.0 ) ), () => { + + axis.assign( vec3( outputDirection.z, 0.0, outputDirection.x.negate() ) ); + + } ); + + axis.assign( normalize( axis ) ); + + const gl_FragColor = vec3().toVar(); + gl_FragColor.addAssign( weights.element( 0 ).mul( getSample( { theta: 0.0, axis, outputDirection, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) ) ); + + Loop( { start: int( 1 ), end: n }, ( { i } ) => { + + If( i.greaterThanEqual( samples ), () => { + + Break(); + + } ); + + const theta = float( dTheta.mul( float( i ) ) ).toVar(); + gl_FragColor.addAssign( weights.element( i ).mul( getSample( { theta: theta.mul( - 1 ), axis, outputDirection, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) ) ); + gl_FragColor.addAssign( weights.element( i ).mul( getSample( { theta, axis, outputDirection, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) ) ); + + } ); + + return vec4( gl_FragColor, 1 ); + +} ); + +const LOD_MIN = 4; + +// The standard deviations (radians) associated with the extra mips. These are +// chosen to approximate a Trowbridge-Reitz distribution function times the +// geometric shadowing function. These sigma values squared must match the +// variance #defines in cube_uv_reflection_fragment.glsl.js. +const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ]; + +// The maximum length of the blur for loop. Smaller sigmas will use fewer +// samples and exit early, but not recompile the shader. +const MAX_SAMPLES = 20; + +const _flatCamera = /*@__PURE__*/ new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 ); +const _cubeCamera = /*@__PURE__*/ new PerspectiveCamera( 90, 1 ); +const _clearColor$2 = /*@__PURE__*/ new Color(); +let _oldTarget = null; +let _oldActiveCubeFace = 0; +let _oldActiveMipmapLevel = 0; + +// Golden Ratio +const PHI = ( 1 + Math.sqrt( 5 ) ) / 2; +const INV_PHI = 1 / PHI; + +// Vertices of a dodecahedron (except the opposites, which represent the +// same axis), used as axis directions evenly spread on a sphere. +const _axisDirections = [ + /*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ), + /*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ), + /*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ), + /*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ), + /*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ), + /*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ), + /*@__PURE__*/ new Vector3( - 1, 1, - 1 ), + /*@__PURE__*/ new Vector3( 1, 1, - 1 ), + /*@__PURE__*/ new Vector3( - 1, 1, 1 ), + /*@__PURE__*/ new Vector3( 1, 1, 1 ) +]; + +const _origin = /*@__PURE__*/ new Vector3(); + +// maps blur materials to their uniforms dictionary + +const _uniformsMap = new WeakMap(); + +// WebGPU Face indices +const _faceLib = [ + 3, 1, 5, + 0, 4, 2 +]; + +const _direction = /*@__PURE__*/ getDirection( uv(), attribute( 'faceIndex' ) ).normalize(); +const _outputDirection = /*@__PURE__*/ vec3( _direction.x, _direction.y, _direction.z ); + +/** + * This class generates a Prefiltered, Mipmapped Radiance Environment Map + * (PMREM) from a cubeMap environment texture. This allows different levels of + * blur to be quickly accessed based on material roughness. It is packed into a + * special CubeUV format that allows us to perform custom interpolation so that + * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap + * chain, it only goes down to the LOD_MIN level (above), and then creates extra + * even more filtered 'mips' at the same LOD_MIN resolution, associated with + * higher roughness levels. In this way we maintain resolution to smoothly + * interpolate diffuse lighting while limiting sampling computation. + * + * Paper: Fast, Accurate Image-Based Lighting: + * {@link https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view} +*/ +class PMREMGenerator { + + /** + * Constructs a new PMREM generator. + * + * @param {Renderer} renderer - The renderer. + */ + constructor( renderer ) { + + this._renderer = renderer; + this._pingPongRenderTarget = null; + + this._lodMax = 0; + this._cubeSize = 0; + this._lodPlanes = []; + this._sizeLods = []; + this._sigmas = []; + this._lodMeshes = []; + + this._blurMaterial = null; + this._cubemapMaterial = null; + this._equirectMaterial = null; + this._backgroundBox = null; + + } + + get _hasInitialized() { + + return this._renderer.hasInitialized(); + + } + + /** + * Generates a PMREM from a supplied Scene, which can be faster than using an + * image if networking bandwidth is low. Optional sigma specifies a blur radius + * in radians to be applied to the scene before PMREM generation. Optional near + * and far planes ensure the scene is rendered in its entirety. + * + * @param {Scene} scene - The scene to be captured. + * @param {number} [sigma=0] - The blur radius in radians. + * @param {number} [near=0.1] - The near plane distance. + * @param {number} [far=100] - The far plane distance. + * @param {Object} [options={}] - The configuration options. + * @param {number} [options.size=256] - The texture size of the PMREM. + * @param {Vector3} [options.renderTarget=origin] - The position of the internal cube camera that renders the scene. + * @param {?RenderTarget} [options.renderTarget=null] - The render target to use. + * @return {RenderTarget} The resulting PMREM. + * @see {@link PMREMGenerator#fromSceneAsync} + */ + fromScene( scene, sigma = 0, near = 0.1, far = 100, options = {} ) { + + const { + size = 256, + position = _origin, + renderTarget = null, + } = options; + + this._setSize( size ); + + if ( this._hasInitialized === false ) { + + console.warn( 'THREE.PMREMGenerator: .fromScene() called before the backend is initialized. Try using .fromSceneAsync() instead.' ); + + const cubeUVRenderTarget = renderTarget || this._allocateTarget(); + + options.renderTarget = cubeUVRenderTarget; + + this.fromSceneAsync( scene, sigma, near, far, options ); + + return cubeUVRenderTarget; + + } + + _oldTarget = this._renderer.getRenderTarget(); + _oldActiveCubeFace = this._renderer.getActiveCubeFace(); + _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); + + const cubeUVRenderTarget = renderTarget || this._allocateTarget(); + cubeUVRenderTarget.depthBuffer = true; + + this._init( cubeUVRenderTarget ); + + this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget, position ); + + if ( sigma > 0 ) { + + this._blur( cubeUVRenderTarget, 0, 0, sigma ); + + } + + this._applyPMREM( cubeUVRenderTarget ); + + this._cleanup( cubeUVRenderTarget ); + + return cubeUVRenderTarget; + + } + + /** + * Generates a PMREM from a supplied Scene, which can be faster than using an + * image if networking bandwidth is low. Optional sigma specifies a blur radius + * in radians to be applied to the scene before PMREM generation. Optional near + * and far planes ensure the scene is rendered in its entirety (the cubeCamera + * is placed at the origin). + * + * @param {Scene} scene - The scene to be captured. + * @param {number} [sigma=0] - The blur radius in radians. + * @param {number} [near=0.1] - The near plane distance. + * @param {number} [far=100] - The far plane distance. + * @param {Object} [options={}] - The configuration options. + * @param {number} [options.size=256] - The texture size of the PMREM. + * @param {Vector3} [options.position=origin] - The position of the internal cube camera that renders the scene. + * @param {?RenderTarget} [options.renderTarget=null] - The render target to use. + * @return {Promise} A Promise that resolve with the PMREM when the generation has been finished. + * @see {@link PMREMGenerator#fromScene} + */ + async fromSceneAsync( scene, sigma = 0, near = 0.1, far = 100, options = {} ) { + + if ( this._hasInitialized === false ) await this._renderer.init(); + + return this.fromScene( scene, sigma, near, far, options ); + + } + + /** + * Generates a PMREM from an equirectangular texture, which can be either LDR + * or HDR. The ideal input image size is 1k (1024 x 512), + * as this matches best with the 256 x 256 cubemap output. + * + * @param {Texture} equirectangular - The equirectangular texture to be converted. + * @param {?RenderTarget} [renderTarget=null] - The render target to use. + * @return {RenderTarget} The resulting PMREM. + * @see {@link PMREMGenerator#fromEquirectangularAsync} + */ + fromEquirectangular( equirectangular, renderTarget = null ) { + + if ( this._hasInitialized === false ) { + + console.warn( 'THREE.PMREMGenerator: .fromEquirectangular() called before the backend is initialized. Try using .fromEquirectangularAsync() instead.' ); + + this._setSizeFromTexture( equirectangular ); + + const cubeUVRenderTarget = renderTarget || this._allocateTarget(); + + this.fromEquirectangularAsync( equirectangular, cubeUVRenderTarget ); + + return cubeUVRenderTarget; + + } + + return this._fromTexture( equirectangular, renderTarget ); + + } + + /** + * Generates a PMREM from an equirectangular texture, which can be either LDR + * or HDR. The ideal input image size is 1k (1024 x 512), + * as this matches best with the 256 x 256 cubemap output. + * + * @param {Texture} equirectangular - The equirectangular texture to be converted. + * @param {?RenderTarget} [renderTarget=null] - The render target to use. + * @return {Promise} The resulting PMREM. + * @see {@link PMREMGenerator#fromEquirectangular} + */ + async fromEquirectangularAsync( equirectangular, renderTarget = null ) { + + if ( this._hasInitialized === false ) await this._renderer.init(); + + return this._fromTexture( equirectangular, renderTarget ); + + } + + /** + * Generates a PMREM from an cubemap texture, which can be either LDR + * or HDR. The ideal input cube size is 256 x 256, + * as this matches best with the 256 x 256 cubemap output. + * + * @param {Texture} cubemap - The cubemap texture to be converted. + * @param {?RenderTarget} [renderTarget=null] - The render target to use. + * @return {RenderTarget} The resulting PMREM. + * @see {@link PMREMGenerator#fromCubemapAsync} + */ + fromCubemap( cubemap, renderTarget = null ) { + + if ( this._hasInitialized === false ) { + + console.warn( 'THREE.PMREMGenerator: .fromCubemap() called before the backend is initialized. Try using .fromCubemapAsync() instead.' ); + + this._setSizeFromTexture( cubemap ); + + const cubeUVRenderTarget = renderTarget || this._allocateTarget(); + + this.fromCubemapAsync( cubemap, renderTarget ); + + return cubeUVRenderTarget; + + } + + return this._fromTexture( cubemap, renderTarget ); + + } + + /** + * Generates a PMREM from an cubemap texture, which can be either LDR + * or HDR. The ideal input cube size is 256 x 256, + * with the 256 x 256 cubemap output. + * + * @param {Texture} cubemap - The cubemap texture to be converted. + * @param {?RenderTarget} [renderTarget=null] - The render target to use. + * @return {Promise} The resulting PMREM. + * @see {@link PMREMGenerator#fromCubemap} + */ + async fromCubemapAsync( cubemap, renderTarget = null ) { + + if ( this._hasInitialized === false ) await this._renderer.init(); + + return this._fromTexture( cubemap, renderTarget ); + + } + + /** + * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during + * your texture's network fetch for increased concurrency. + * + * @returns {Promise} + */ + async compileCubemapShader() { + + if ( this._cubemapMaterial === null ) { + + this._cubemapMaterial = _getCubemapMaterial(); + await this._compileMaterial( this._cubemapMaterial ); + + } + + } + + /** + * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during + * your texture's network fetch for increased concurrency. + * + * @returns {Promise} + */ + async compileEquirectangularShader() { + + if ( this._equirectMaterial === null ) { + + this._equirectMaterial = _getEquirectMaterial(); + await this._compileMaterial( this._equirectMaterial ); + + } + + } + + /** + * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, + * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on + * one of them will cause any others to also become unusable. + */ + dispose() { + + this._dispose(); + + if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose(); + if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose(); + if ( this._backgroundBox !== null ) { + + this._backgroundBox.geometry.dispose(); + this._backgroundBox.material.dispose(); + + } + + } + + // private interface + + _setSizeFromTexture( texture ) { + + if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) { + + this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) ); + + } else { // Equirectangular + + this._setSize( texture.image.width / 4 ); + + } + + } + + _setSize( cubeSize ) { + + this._lodMax = Math.floor( Math.log2( cubeSize ) ); + this._cubeSize = Math.pow( 2, this._lodMax ); + + } + + _dispose() { + + if ( this._blurMaterial !== null ) this._blurMaterial.dispose(); + + if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose(); + + for ( let i = 0; i < this._lodPlanes.length; i ++ ) { + + this._lodPlanes[ i ].dispose(); + + } + + } + + _cleanup( outputTarget ) { + + this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel ); + outputTarget.scissorTest = false; + _setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height ); + + } + + _fromTexture( texture, renderTarget ) { + + this._setSizeFromTexture( texture ); + + _oldTarget = this._renderer.getRenderTarget(); + _oldActiveCubeFace = this._renderer.getActiveCubeFace(); + _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); + + const cubeUVRenderTarget = renderTarget || this._allocateTarget(); + this._init( cubeUVRenderTarget ); + this._textureToCubeUV( texture, cubeUVRenderTarget ); + this._applyPMREM( cubeUVRenderTarget ); + this._cleanup( cubeUVRenderTarget ); + + return cubeUVRenderTarget; + + } + + _allocateTarget() { + + const width = 3 * Math.max( this._cubeSize, 16 * 7 ); + const height = 4 * this._cubeSize; + + const cubeUVRenderTarget = _createRenderTarget( width, height ); + + return cubeUVRenderTarget; + + } + + _init( renderTarget ) { + + if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== renderTarget.width || this._pingPongRenderTarget.height !== renderTarget.height ) { + + if ( this._pingPongRenderTarget !== null ) { + + this._dispose(); + + } + + this._pingPongRenderTarget = _createRenderTarget( renderTarget.width, renderTarget.height ); + + const { _lodMax } = this; + ( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas, lodMeshes: this._lodMeshes } = _createPlanes( _lodMax ) ); + + this._blurMaterial = _getBlurShader( _lodMax, renderTarget.width, renderTarget.height ); + + } + + } + + async _compileMaterial( material ) { + + const tmpMesh = new Mesh( this._lodPlanes[ 0 ], material ); + await this._renderer.compile( tmpMesh, _flatCamera ); + + } + + _sceneToCubeUV( scene, near, far, cubeUVRenderTarget, position ) { + + const cubeCamera = _cubeCamera; + cubeCamera.near = near; + cubeCamera.far = far; + + // px, py, pz, nx, ny, nz + const upSign = [ 1, 1, 1, 1, - 1, 1 ]; + const forwardSign = [ 1, - 1, 1, - 1, 1, - 1 ]; + + const renderer = this._renderer; + + const originalAutoClear = renderer.autoClear; + + renderer.getClearColor( _clearColor$2 ); + + renderer.autoClear = false; + + let backgroundBox = this._backgroundBox; + + if ( backgroundBox === null ) { + + const backgroundMaterial = new MeshBasicMaterial( { + name: 'PMREM.Background', + side: BackSide, + depthWrite: false, + depthTest: false + } ); + + backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial ); + + } + + let useSolidColor = false; + const background = scene.background; + + if ( background ) { + + if ( background.isColor ) { + + backgroundBox.material.color.copy( background ); + scene.background = null; + useSolidColor = true; + + } + + } else { + + backgroundBox.material.color.copy( _clearColor$2 ); + useSolidColor = true; + + } + + renderer.setRenderTarget( cubeUVRenderTarget ); + + renderer.clear(); + + if ( useSolidColor ) { + + renderer.render( backgroundBox, cubeCamera ); + + } + + for ( let i = 0; i < 6; i ++ ) { + + const col = i % 3; + + if ( col === 0 ) { + + cubeCamera.up.set( 0, upSign[ i ], 0 ); + cubeCamera.position.set( position.x, position.y, position.z ); + cubeCamera.lookAt( position.x + forwardSign[ i ], position.y, position.z ); + + } else if ( col === 1 ) { + + cubeCamera.up.set( 0, 0, upSign[ i ] ); + cubeCamera.position.set( position.x, position.y, position.z ); + cubeCamera.lookAt( position.x, position.y + forwardSign[ i ], position.z ); + + + } else { + + cubeCamera.up.set( 0, upSign[ i ], 0 ); + cubeCamera.position.set( position.x, position.y, position.z ); + cubeCamera.lookAt( position.x, position.y, position.z + forwardSign[ i ] ); + + + } + + const size = this._cubeSize; + + _setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size ); + + renderer.render( scene, cubeCamera ); + + } + + renderer.autoClear = originalAutoClear; + scene.background = background; + + } + + _textureToCubeUV( texture, cubeUVRenderTarget ) { + + const renderer = this._renderer; + + const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ); + + if ( isCubeTexture ) { + + if ( this._cubemapMaterial === null ) { + + this._cubemapMaterial = _getCubemapMaterial( texture ); + + } + + } else { + + if ( this._equirectMaterial === null ) { + + this._equirectMaterial = _getEquirectMaterial( texture ); + + } + + } + + const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial; + material.fragmentNode.value = texture; + + const mesh = this._lodMeshes[ 0 ]; + mesh.material = material; + + const size = this._cubeSize; + + _setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size ); + + renderer.setRenderTarget( cubeUVRenderTarget ); + renderer.render( mesh, _flatCamera ); + + } + + _applyPMREM( cubeUVRenderTarget ) { + + const renderer = this._renderer; + const autoClear = renderer.autoClear; + renderer.autoClear = false; + const n = this._lodPlanes.length; + + for ( let i = 1; i < n; i ++ ) { + + const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] ); + + const poleAxis = _axisDirections[ ( n - i - 1 ) % _axisDirections.length ]; + + this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis ); + + } + + renderer.autoClear = autoClear; + + } + + /** + * This is a two-pass Gaussian blur for a cubemap. Normally this is done + * vertically and horizontally, but this breaks down on a cube. Here we apply + * the blur latitudinally (around the poles), and then longitudinally (towards + * the poles) to approximate the orthogonally-separable blur. It is least + * accurate at the poles, but still does a decent job. + * + * @private + * @param {RenderTarget} cubeUVRenderTarget - The cubemap render target. + * @param {number} lodIn - The input level-of-detail. + * @param {number} lodOut - The output level-of-detail. + * @param {number} sigma - The blur radius in radians. + * @param {Vector3} [poleAxis] - The pole axis. + */ + _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) { + + const pingPongRenderTarget = this._pingPongRenderTarget; + + this._halfBlur( + cubeUVRenderTarget, + pingPongRenderTarget, + lodIn, + lodOut, + sigma, + 'latitudinal', + poleAxis ); + + this._halfBlur( + pingPongRenderTarget, + cubeUVRenderTarget, + lodOut, + lodOut, + sigma, + 'longitudinal', + poleAxis ); + + } + + _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) { + + const renderer = this._renderer; + const blurMaterial = this._blurMaterial; + + if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) { + + console.error( 'blur direction must be either latitudinal or longitudinal!' ); + + } + + // Number of standard deviations at which to cut off the discrete approximation. + const STANDARD_DEVIATIONS = 3; + + const blurMesh = this._lodMeshes[ lodOut ]; + blurMesh.material = blurMaterial; + + const blurUniforms = _uniformsMap.get( blurMaterial ); + + const pixels = this._sizeLods[ lodIn ] - 1; + const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 ); + const sigmaPixels = sigmaRadians / radiansPerPixel; + const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES; + + if ( samples > MAX_SAMPLES ) { + + console.warn( `sigmaRadians, ${ + sigmaRadians}, is too large and will clip, as it requested ${ + samples} samples when the maximum is set to ${MAX_SAMPLES}` ); + + } + + const weights = []; + let sum = 0; + + for ( let i = 0; i < MAX_SAMPLES; ++ i ) { + + const x = i / sigmaPixels; + const weight = Math.exp( - x * x / 2 ); + weights.push( weight ); + + if ( i === 0 ) { + + sum += weight; + + } else if ( i < samples ) { + + sum += 2 * weight; + + } + + } + + for ( let i = 0; i < weights.length; i ++ ) { + + weights[ i ] = weights[ i ] / sum; + + } + + targetIn.texture.frame = ( targetIn.texture.frame || 0 ) + 1; + + blurUniforms.envMap.value = targetIn.texture; + blurUniforms.samples.value = samples; + blurUniforms.weights.array = weights; + blurUniforms.latitudinal.value = direction === 'latitudinal' ? 1 : 0; + + if ( poleAxis ) { + + blurUniforms.poleAxis.value = poleAxis; + + } + + const { _lodMax } = this; + blurUniforms.dTheta.value = radiansPerPixel; + blurUniforms.mipInt.value = _lodMax - lodIn; + + const outputSize = this._sizeLods[ lodOut ]; + const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 ); + const y = 4 * ( this._cubeSize - outputSize ); + + _setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize ); + renderer.setRenderTarget( targetOut ); + renderer.render( blurMesh, _flatCamera ); + + } + +} + +function _createPlanes( lodMax ) { + + const lodPlanes = []; + const sizeLods = []; + const sigmas = []; + const lodMeshes = []; + + let lod = lodMax; + + const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; + + for ( let i = 0; i < totalLods; i ++ ) { + + const sizeLod = Math.pow( 2, lod ); + sizeLods.push( sizeLod ); + let sigma = 1.0 / sizeLod; + + if ( i > lodMax - LOD_MIN ) { + + sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ]; + + } else if ( i === 0 ) { + + sigma = 0; + + } + + sigmas.push( sigma ); + + const texelSize = 1.0 / ( sizeLod - 2 ); + const min = - texelSize; + const max = 1 + texelSize; + const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ]; + + const cubeFaces = 6; + const vertices = 6; + const positionSize = 3; + const uvSize = 2; + const faceIndexSize = 1; + + const position = new Float32Array( positionSize * vertices * cubeFaces ); + const uv = new Float32Array( uvSize * vertices * cubeFaces ); + const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces ); + + for ( let face = 0; face < cubeFaces; face ++ ) { + + const x = ( face % 3 ) * 2 / 3 - 1; + const y = face > 2 ? 0 : - 1; + const coordinates = [ + x, y, 0, + x + 2 / 3, y, 0, + x + 2 / 3, y + 1, 0, + x, y, 0, + x + 2 / 3, y + 1, 0, + x, y + 1, 0 + ]; + + const faceIdx = _faceLib[ face ]; + position.set( coordinates, positionSize * vertices * faceIdx ); + uv.set( uv1, uvSize * vertices * faceIdx ); + const fill = [ faceIdx, faceIdx, faceIdx, faceIdx, faceIdx, faceIdx ]; + faceIndex.set( fill, faceIndexSize * vertices * faceIdx ); + + } + + const planes = new BufferGeometry(); + planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) ); + planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) ); + planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) ); + lodPlanes.push( planes ); + lodMeshes.push( new Mesh( planes, null ) ); + + if ( lod > LOD_MIN ) { + + lod --; + + } + + } + + return { lodPlanes, sizeLods, sigmas, lodMeshes }; + +} + +function _createRenderTarget( width, height ) { + + const params = { + magFilter: LinearFilter, + minFilter: LinearFilter, + generateMipmaps: false, + type: HalfFloatType, + format: RGBAFormat, + colorSpace: LinearSRGBColorSpace, + //depthBuffer: false + }; + + const cubeUVRenderTarget = new RenderTarget( width, height, params ); + cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; + cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; + cubeUVRenderTarget.texture.isPMREMTexture = true; + cubeUVRenderTarget.scissorTest = true; + return cubeUVRenderTarget; + +} + +function _setViewport( target, x, y, width, height ) { + + target.viewport.set( x, y, width, height ); + target.scissor.set( x, y, width, height ); + +} + +function _getMaterial( type ) { + + const material = new NodeMaterial(); + material.depthTest = false; + material.depthWrite = false; + material.blending = NoBlending; + material.name = `PMREM_${ type }`; + + return material; + +} + +function _getBlurShader( lodMax, width, height ) { + + const weights = uniformArray( new Array( MAX_SAMPLES ).fill( 0 ) ); + const poleAxis = uniform( new Vector3( 0, 1, 0 ) ); + const dTheta = uniform( 0 ); + const n = float( MAX_SAMPLES ); + const latitudinal = uniform( 0 ); // false, bool + const samples = uniform( 1 ); // int + const envMap = texture( null ); + const mipInt = uniform( 0 ); // int + const CUBEUV_TEXEL_WIDTH = float( 1 / width ); + const CUBEUV_TEXEL_HEIGHT = float( 1 / height ); + const CUBEUV_MAX_MIP = float( lodMax ); + + const materialUniforms = { + n, + latitudinal, + weights, + poleAxis, + outputDirection: _outputDirection, + dTheta, + samples, + envMap, + mipInt, + CUBEUV_TEXEL_WIDTH, + CUBEUV_TEXEL_HEIGHT, + CUBEUV_MAX_MIP + }; + + const material = _getMaterial( 'blur' ); + material.fragmentNode = blur( { ...materialUniforms, latitudinal: latitudinal.equal( 1 ) } ); + + _uniformsMap.set( material, materialUniforms ); + + return material; + +} + +function _getCubemapMaterial( envTexture ) { + + const material = _getMaterial( 'cubemap' ); + material.fragmentNode = cubeTexture( envTexture, _outputDirection ); + + return material; + +} + +function _getEquirectMaterial( envTexture ) { + + const material = _getMaterial( 'equirect' ); + material.fragmentNode = texture( envTexture, equirectUV( _outputDirection ), 0 ); + + return material; + +} + +const _cache = new WeakMap(); + +/** + * Generates the cubeUV size based on the given image height. + * + * @private + * @param {number} imageHeight - The image height. + * @return {{texelWidth: number,texelHeight: number, maxMip: number}} The result object. + */ +function _generateCubeUVSize( imageHeight ) { + + const maxMip = Math.log2( imageHeight ) - 2; + + const texelHeight = 1.0 / imageHeight; + + const texelWidth = 1.0 / ( 3 * Math.max( Math.pow( 2, maxMip ), 7 * 16 ) ); + + return { texelWidth, texelHeight, maxMip }; + +} + +/** + * Generates a PMREM from the given texture. + * + * @private + * @param {Texture} texture - The texture to create the PMREM for. + * @param {Renderer} renderer - The renderer. + * @param {PMREMGenerator} generator - The PMREM generator. + * @return {?Texture} The PMREM. + */ +function _getPMREMFromTexture( texture, renderer, generator ) { + + const cache = _getCache( renderer ); + + let cacheTexture = cache.get( texture ); + + const pmremVersion = cacheTexture !== undefined ? cacheTexture.pmremVersion : - 1; + + if ( pmremVersion !== texture.pmremVersion ) { + + const image = texture.image; + + if ( texture.isCubeTexture ) { + + if ( isCubeMapReady( image ) ) { + + cacheTexture = generator.fromCubemap( texture, cacheTexture ); + + } else { + + return null; + + } + + + } else { + + if ( isEquirectangularMapReady( image ) ) { + + cacheTexture = generator.fromEquirectangular( texture, cacheTexture ); + + } else { + + return null; + + } + + } + + cacheTexture.pmremVersion = texture.pmremVersion; + + cache.set( texture, cacheTexture ); + + } + + return cacheTexture.texture; + +} + +/** + * Returns a cache that stores generated PMREMs for the respective textures. + * A cache must be maintained per renderer since PMREMs are render target textures + * which can't be shared across render contexts. + * + * @private + * @param {Renderer} renderer - The renderer. + * @return {WeakMap} The PMREM cache. + */ +function _getCache( renderer ) { + + let rendererCache = _cache.get( renderer ); + + if ( rendererCache === undefined ) { + + rendererCache = new WeakMap(); + _cache.set( renderer, rendererCache ); + + } + + return rendererCache; + +} + +/** + * This node represents a PMREM which is a special type of preprocessed + * environment map intended for PBR materials. + * + * ```js + * const material = new MeshStandardNodeMaterial(); + * material.envNode = pmremTexture( envMap ); + * ``` + * + * @augments TempNode + */ +class PMREMNode extends TempNode { + + static get type() { + + return 'PMREMNode'; + + } + + /** + * Constructs a new function overloading node. + * + * @param {Texture} value - The input texture. + * @param {Node} [uvNode=null] - The uv node. + * @param {Node} [levelNode=null] - The level node. + */ + constructor( value, uvNode = null, levelNode = null ) { + + super( 'vec3' ); + + /** + * Reference to the input texture. + * + * @private + * @type {Texture} + */ + this._value = value; + + /** + * Reference to the generated PMREM. + * + * @private + * @type {Texture | null} + * @default null + */ + this._pmrem = null; + + /** + * The uv node. + * + * @type {Node} + */ + this.uvNode = uvNode; + + /** + * The level node. + * + * @type {Node} + */ + this.levelNode = levelNode; + + /** + * Reference to a PMREM generator. + * + * @private + * @type {?PMREMGenerator} + * @default null + */ + this._generator = null; + + const defaultTexture = new Texture(); + defaultTexture.isRenderTargetTexture = true; + + /** + * The texture node holding the generated PMREM. + * + * @private + * @type {TextureNode} + */ + this._texture = texture( defaultTexture ); + + /** + * A uniform representing the PMREM's width. + * + * @private + * @type {UniformNode} + */ + this._width = uniform( 0 ); + + /** + * A uniform representing the PMREM's height. + * + * @private + * @type {UniformNode} + */ + this._height = uniform( 0 ); + + /** + * A uniform representing the PMREM's max Mip. + * + * @private + * @type {UniformNode} + */ + this._maxMip = uniform( 0 ); + + /** + * The `updateBeforeType` is set to `NodeUpdateType.RENDER`. + * + * @type {string} + * @default 'render' + */ + this.updateBeforeType = NodeUpdateType.RENDER; + + } + + set value( value ) { + + this._value = value; + this._pmrem = null; + + } + + /** + * The node's texture value. + * + * @type {Texture} + */ + get value() { + + return this._value; + + } + + /** + * Uses the given PMREM texture to update internal values. + * + * @param {Texture} texture - The PMREM texture. + */ + updateFromTexture( texture ) { + + const cubeUVSize = _generateCubeUVSize( texture.image.height ); + + this._texture.value = texture; + this._width.value = cubeUVSize.texelWidth; + this._height.value = cubeUVSize.texelHeight; + this._maxMip.value = cubeUVSize.maxMip; + + } + + updateBefore( frame ) { + + let pmrem = this._pmrem; + + const pmremVersion = pmrem ? pmrem.pmremVersion : - 1; + const texture = this._value; + + if ( pmremVersion !== texture.pmremVersion ) { + + if ( texture.isPMREMTexture === true ) { + + pmrem = texture; + + } else { + + pmrem = _getPMREMFromTexture( texture, frame.renderer, this._generator ); + + } + + if ( pmrem !== null ) { + + this._pmrem = pmrem; + + this.updateFromTexture( pmrem ); + + } + + } + + } + + setup( builder ) { + + if ( this._generator === null ) { + + this._generator = new PMREMGenerator( builder.renderer ); + + } + + this.updateBefore( builder ); + + // + + let uvNode = this.uvNode; + + if ( uvNode === null && builder.context.getUV ) { + + uvNode = builder.context.getUV( this ); + + } + + // + + uvNode = materialEnvRotation.mul( vec3( uvNode.x, uvNode.y.negate(), uvNode.z ) ); + + // + + let levelNode = this.levelNode; + + if ( levelNode === null && builder.context.getTextureLevel ) { + + levelNode = builder.context.getTextureLevel( this ); + + } + + // + + return textureCubeUV( this._texture, uvNode, levelNode, this._width, this._height, this._maxMip ); + + } + + dispose() { + + super.dispose(); + + if ( this._generator !== null ) this._generator.dispose(); + + } + +} + +/** + * Returns `true` if the given cube map image has been fully loaded. + * + * @private + * @param {?Array<(Image|Object)>} [image] - The cube map image. + * @return {boolean} Whether the given cube map is ready or not. + */ +function isCubeMapReady( image ) { + + if ( image === null || image === undefined ) return false; + + let count = 0; + const length = 6; + + for ( let i = 0; i < length; i ++ ) { + + if ( image[ i ] !== undefined ) count ++; + + } + + return count === length; + + +} + +/** + * Returns `true` if the given equirectangular image has been fully loaded. + * + * @private + * @param {(Image|Object)} image - The equirectangular image. + * @return {boolean} Whether the given cube map is ready or not. + */ +function isEquirectangularMapReady( image ) { + + if ( image === null || image === undefined ) return false; + + return image.height > 0; + +} + +/** + * TSL function for creating a PMREM node. + * + * @tsl + * @function + * @param {Texture} value - The input texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @returns {PMREMNode} + */ +const pmremTexture = /*@__PURE__*/ nodeProxy( PMREMNode ).setParameterLength( 1, 3 ); + +const _envNodeCache = new WeakMap(); + +/** + * Represents a physical model for Image-based lighting (IBL). The environment + * is defined via environment maps in the equirectangular, cube map or cubeUV (PMREM) format. + * `EnvironmentNode` is intended for PBR materials like {@link MeshStandardNodeMaterial}. + * + * @augments LightingNode + */ +class EnvironmentNode extends LightingNode { + + static get type() { + + return 'EnvironmentNode'; + + } + + /** + * Constructs a new environment node. + * + * @param {Node} [envNode=null] - A node representing the environment. + */ + constructor( envNode = null ) { + + super(); + + /** + * A node representing the environment. + * + * @type {?Node} + * @default null + */ + this.envNode = envNode; + + } + + setup( builder ) { + + const { material } = builder; + + let envNode = this.envNode; + + if ( envNode.isTextureNode || envNode.isMaterialReferenceNode ) { + + const value = ( envNode.isTextureNode ) ? envNode.value : material[ envNode.property ]; + + let cacheEnvNode = _envNodeCache.get( value ); + + if ( cacheEnvNode === undefined ) { + + cacheEnvNode = pmremTexture( value ); + + _envNodeCache.set( value, cacheEnvNode ); + + } + + envNode = cacheEnvNode; + + } + + // + + const useAnisotropy = material.useAnisotropy === true || material.anisotropy > 0; + const radianceNormalView = useAnisotropy ? transformedBentNormalView : transformedNormalView; + + const radiance = envNode.context( createRadianceContext( roughness, radianceNormalView ) ).mul( materialEnvIntensity ); + const irradiance = envNode.context( createIrradianceContext( transformedNormalWorld ) ).mul( Math.PI ).mul( materialEnvIntensity ); + + const isolateRadiance = cache( radiance ); + const isolateIrradiance = cache( irradiance ); + + // + + builder.context.radiance.addAssign( isolateRadiance ); + + builder.context.iblIrradiance.addAssign( isolateIrradiance ); + + // + + const clearcoatRadiance = builder.context.lightingModel.clearcoatRadiance; + + if ( clearcoatRadiance ) { + + const clearcoatRadianceContext = envNode.context( createRadianceContext( clearcoatRoughness, transformedClearcoatNormalView ) ).mul( materialEnvIntensity ); + const isolateClearcoatRadiance = cache( clearcoatRadianceContext ); + + clearcoatRadiance.addAssign( isolateClearcoatRadiance ); + + } + + } + +} + +const createRadianceContext = ( roughnessNode, normalViewNode ) => { + + let reflectVec = null; + + return { + getUV: () => { + + if ( reflectVec === null ) { + + reflectVec = positionViewDirection.negate().reflect( normalViewNode ); + + // Mixing the reflection with the normal is more accurate and keeps rough objects from gathering light from behind their tangent plane. + reflectVec = roughnessNode.mul( roughnessNode ).mix( reflectVec, normalViewNode ).normalize(); + + reflectVec = reflectVec.transformDirection( cameraViewMatrix ); + + } + + return reflectVec; + + }, + getTextureLevel: () => { + + return roughnessNode; + + } + }; + +}; + +const createIrradianceContext = ( normalWorldNode ) => { + + return { + getUV: () => { + + return normalWorldNode; + + }, + getTextureLevel: () => { + + return float( 1.0 ); + + } + }; + +}; + +const _defaultValues$6 = /*@__PURE__*/ new MeshStandardMaterial(); + +/** + * Node material version of {@link MeshStandardMaterial}. + * + * @augments NodeMaterial + */ +class MeshStandardNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshStandardNodeMaterial'; + + } + + /** + * Constructs a new mesh standard node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshStandardNodeMaterial = true; + + /** + * Set to `true` because standard materials react on lights. + * + * @type {boolean} + * @default true + */ + this.lights = true; + + /** + * The emissive color of standard materials is by default inferred from the `emissive`, + * `emissiveIntensity` and `emissiveMap` properties. This node property allows to + * overwrite the default and define the emissive color with a node instead. + * + * If you don't want to overwrite the emissive color but modify the existing + * value instead, use {@link materialEmissive}. + * + * @type {?Node} + * @default null + */ + this.emissiveNode = null; + + /** + * The metalness of standard materials is by default inferred from the `metalness`, + * and `metalnessMap` properties. This node property allows to + * overwrite the default and define the metalness with a node instead. + * + * If you don't want to overwrite the metalness but modify the existing + * value instead, use {@link materialMetalness}. + * + * @type {?Node} + * @default null + */ + this.metalnessNode = null; + + /** + * The roughness of standard materials is by default inferred from the `roughness`, + * and `roughnessMap` properties. This node property allows to + * overwrite the default and define the roughness with a node instead. + * + * If you don't want to overwrite the roughness but modify the existing + * value instead, use {@link materialRoughness}. + * + * @type {?Node} + * @default null + */ + this.roughnessNode = null; + + this.setDefaultValues( _defaultValues$6 ); + + this.setValues( parameters ); + + } + + /** + * Overwritten since this type of material uses {@link EnvironmentNode} + * to implement the PBR (PMREM based) environment mapping. Besides, the + * method honors `Scene.environment`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {?EnvironmentNode} The environment node. + */ + setupEnvironment( builder ) { + + let envNode = super.setupEnvironment( builder ); + + if ( envNode === null && builder.environmentNode ) { + + envNode = builder.environmentNode; + + } + + return envNode ? new EnvironmentNode( envNode ) : null; + + } + + /** + * Setups the lighting model. + * + * @return {PhysicalLightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new PhysicalLightingModel(); + + } + + /** + * Setups the specular related node variables. + */ + setupSpecular() { + + const specularColorNode = mix( vec3( 0.04 ), diffuseColor.rgb, metalness ); + + specularColor.assign( specularColorNode ); + specularF90.assign( 1.0 ); + + } + + /** + * Setups the standard specific node variables. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupVariants() { + + // METALNESS + + const metalnessNode = this.metalnessNode ? float( this.metalnessNode ) : materialMetalness; + + metalness.assign( metalnessNode ); + + // ROUGHNESS + + let roughnessNode = this.roughnessNode ? float( this.roughnessNode ) : materialRoughness; + roughnessNode = getRoughness( { roughness: roughnessNode } ); + + roughness.assign( roughnessNode ); + + // SPECULAR COLOR + + this.setupSpecular(); + + // DIFFUSE COLOR + + diffuseColor.assign( vec4( diffuseColor.rgb.mul( metalnessNode.oneMinus() ), diffuseColor.a ) ); + + } + + copy( source ) { + + this.emissiveNode = source.emissiveNode; + + this.metalnessNode = source.metalnessNode; + this.roughnessNode = source.roughnessNode; + + return super.copy( source ); + + } + +} + +const _defaultValues$5 = /*@__PURE__*/ new MeshPhysicalMaterial(); + +/** + * Node material version of {@link MeshPhysicalMaterial}. + * + * @augments MeshStandardNodeMaterial + */ +class MeshPhysicalNodeMaterial extends MeshStandardNodeMaterial { + + static get type() { + + return 'MeshPhysicalNodeMaterial'; + + } + + /** + * Constructs a new mesh physical node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshPhysicalNodeMaterial = true; + + /** + * The clearcoat of physical materials is by default inferred from the `clearcoat` + * and `clearcoatMap` properties. This node property allows to overwrite the default + * and define the clearcoat with a node instead. + * + * If you don't want to overwrite the clearcoat but modify the existing + * value instead, use {@link materialClearcoat}. + * + * @type {?Node} + * @default null + */ + this.clearcoatNode = null; + + /** + * The clearcoat roughness of physical materials is by default inferred from the `clearcoatRoughness` + * and `clearcoatRoughnessMap` properties. This node property allows to overwrite the default + * and define the clearcoat roughness with a node instead. + * + * If you don't want to overwrite the clearcoat roughness but modify the existing + * value instead, use {@link materialClearcoatRoughness}. + * + * @type {?Node} + * @default null + */ + this.clearcoatRoughnessNode = null; + + /** + * The clearcoat normal of physical materials is by default inferred from the `clearcoatNormalMap` + * property. This node property allows to overwrite the default + * and define the clearcoat normal with a node instead. + * + * If you don't want to overwrite the clearcoat normal but modify the existing + * value instead, use {@link materialClearcoatNormal}. + * + * @type {?Node} + * @default null + */ + this.clearcoatNormalNode = null; + + /** + * The sheen of physical materials is by default inferred from the `sheen`, `sheenColor` + * and `sheenColorMap` properties. This node property allows to overwrite the default + * and define the sheen with a node instead. + * + * If you don't want to overwrite the sheen but modify the existing + * value instead, use {@link materialSheen}. + * + * @type {?Node} + * @default null + */ + this.sheenNode = null; + + /** + * The sheen roughness of physical materials is by default inferred from the `sheenRoughness` and + * `sheenRoughnessMap` properties. This node property allows to overwrite the default + * and define the sheen roughness with a node instead. + * + * If you don't want to overwrite the sheen roughness but modify the existing + * value instead, use {@link materialSheenRoughness}. + * + * @type {?Node} + * @default null + */ + this.sheenRoughnessNode = null; + + /** + * The iridescence of physical materials is by default inferred from the `iridescence` + * property. This node property allows to overwrite the default + * and define the iridescence with a node instead. + * + * If you don't want to overwrite the iridescence but modify the existing + * value instead, use {@link materialIridescence}. + * + * @type {?Node} + * @default null + */ + this.iridescenceNode = null; + + /** + * The iridescence IOR of physical materials is by default inferred from the `iridescenceIOR` + * property. This node property allows to overwrite the default + * and define the iridescence IOR with a node instead. + * + * If you don't want to overwrite the iridescence IOR but modify the existing + * value instead, use {@link materialIridescenceIOR}. + * + * @type {?Node} + * @default null + */ + this.iridescenceIORNode = null; + + /** + * The iridescence thickness of physical materials is by default inferred from the `iridescenceThicknessRange` + * and `iridescenceThicknessMap` properties. This node property allows to overwrite the default + * and define the iridescence thickness with a node instead. + * + * If you don't want to overwrite the iridescence thickness but modify the existing + * value instead, use {@link materialIridescenceThickness}. + * + * @type {?Node} + * @default null + */ + this.iridescenceThicknessNode = null; + + /** + * The specular intensity of physical materials is by default inferred from the `specularIntensity` + * and `specularIntensityMap` properties. This node property allows to overwrite the default + * and define the specular intensity with a node instead. + * + * If you don't want to overwrite the specular intensity but modify the existing + * value instead, use {@link materialSpecularIntensity}. + * + * @type {?Node} + * @default null + */ + this.specularIntensityNode = null; + + /** + * The specular color of physical materials is by default inferred from the `specularColor` + * and `specularColorMap` properties. This node property allows to overwrite the default + * and define the specular color with a node instead. + * + * If you don't want to overwrite the specular color but modify the existing + * value instead, use {@link materialSpecularColor}. + * + * @type {?Node} + * @default null + */ + this.specularColorNode = null; + + /** + * The ior of physical materials is by default inferred from the `ior` + * property. This node property allows to overwrite the default + * and define the ior with a node instead. + * + * If you don't want to overwrite the ior but modify the existing + * value instead, use {@link materialIOR}. + * + * @type {?Node} + * @default null + */ + this.iorNode = null; + + /** + * The transmission of physical materials is by default inferred from the `transmission` and + * `transmissionMap` properties. This node property allows to overwrite the default + * and define the transmission with a node instead. + * + * If you don't want to overwrite the transmission but modify the existing + * value instead, use {@link materialTransmission}. + * + * @type {?Node} + * @default null + */ + this.transmissionNode = null; + + /** + * The thickness of physical materials is by default inferred from the `thickness` and + * `thicknessMap` properties. This node property allows to overwrite the default + * and define the thickness with a node instead. + * + * If you don't want to overwrite the thickness but modify the existing + * value instead, use {@link materialThickness}. + * + * @type {?Node} + * @default null + */ + this.thicknessNode = null; + + /** + * The attenuation distance of physical materials is by default inferred from the + * `attenuationDistance` property. This node property allows to overwrite the default + * and define the attenuation distance with a node instead. + * + * If you don't want to overwrite the attenuation distance but modify the existing + * value instead, use {@link materialAttenuationDistance}. + * + * @type {?Node} + * @default null + */ + this.attenuationDistanceNode = null; + + /** + * The attenuation color of physical materials is by default inferred from the + * `attenuationColor` property. This node property allows to overwrite the default + * and define the attenuation color with a node instead. + * + * If you don't want to overwrite the attenuation color but modify the existing + * value instead, use {@link materialAttenuationColor}. + * + * @type {?Node} + * @default null + */ + this.attenuationColorNode = null; + + /** + * The dispersion of physical materials is by default inferred from the + * `dispersion` property. This node property allows to overwrite the default + * and define the dispersion with a node instead. + * + * If you don't want to overwrite the dispersion but modify the existing + * value instead, use {@link materialDispersion}. + * + * @type {?Node} + * @default null + */ + this.dispersionNode = null; + + /** + * The anisotropy of physical materials is by default inferred from the + * `anisotropy` property. This node property allows to overwrite the default + * and define the anisotropy with a node instead. + * + * If you don't want to overwrite the anisotropy but modify the existing + * value instead, use {@link materialAnisotropy}. + * + * @type {?Node} + * @default null + */ + this.anisotropyNode = null; + + this.setDefaultValues( _defaultValues$5 ); + + this.setValues( parameters ); + + } + + /** + * Whether the lighting model should use clearcoat or not. + * + * @type {boolean} + * @default true + */ + get useClearcoat() { + + return this.clearcoat > 0 || this.clearcoatNode !== null; + + } + + /** + * Whether the lighting model should use iridescence or not. + * + * @type {boolean} + * @default true + */ + get useIridescence() { + + return this.iridescence > 0 || this.iridescenceNode !== null; + + } + + /** + * Whether the lighting model should use sheen or not. + * + * @type {boolean} + * @default true + */ + get useSheen() { + + return this.sheen > 0 || this.sheenNode !== null; + + } + + /** + * Whether the lighting model should use anisotropy or not. + * + * @type {boolean} + * @default true + */ + get useAnisotropy() { + + return this.anisotropy > 0 || this.anisotropyNode !== null; + + } + + /** + * Whether the lighting model should use transmission or not. + * + * @type {boolean} + * @default true + */ + get useTransmission() { + + return this.transmission > 0 || this.transmissionNode !== null; + + } + + /** + * Whether the lighting model should use dispersion or not. + * + * @type {boolean} + * @default true + */ + get useDispersion() { + + return this.dispersion > 0 || this.dispersionNode !== null; + + } + + /** + * Setups the specular related node variables. + */ + setupSpecular() { + + const iorNode = this.iorNode ? float( this.iorNode ) : materialIOR; + + ior.assign( iorNode ); + specularColor.assign( mix( min$1( pow2( ior.sub( 1.0 ).div( ior.add( 1.0 ) ) ).mul( materialSpecularColor ), vec3( 1.0 ) ).mul( materialSpecularIntensity ), diffuseColor.rgb, metalness ) ); + specularF90.assign( mix( materialSpecularIntensity, 1.0, metalness ) ); + + } + + /** + * Setups the lighting model. + * + * @return {PhysicalLightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new PhysicalLightingModel( this.useClearcoat, this.useSheen, this.useIridescence, this.useAnisotropy, this.useTransmission, this.useDispersion ); + + } + + /** + * Setups the physical specific node variables. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupVariants( builder ) { + + super.setupVariants( builder ); + + // CLEARCOAT + + if ( this.useClearcoat ) { + + const clearcoatNode = this.clearcoatNode ? float( this.clearcoatNode ) : materialClearcoat; + const clearcoatRoughnessNode = this.clearcoatRoughnessNode ? float( this.clearcoatRoughnessNode ) : materialClearcoatRoughness; + + clearcoat.assign( clearcoatNode ); + clearcoatRoughness.assign( getRoughness( { roughness: clearcoatRoughnessNode } ) ); + + } + + // SHEEN + + if ( this.useSheen ) { + + const sheenNode = this.sheenNode ? vec3( this.sheenNode ) : materialSheen; + const sheenRoughnessNode = this.sheenRoughnessNode ? float( this.sheenRoughnessNode ) : materialSheenRoughness; + + sheen.assign( sheenNode ); + sheenRoughness.assign( sheenRoughnessNode ); + + } + + // IRIDESCENCE + + if ( this.useIridescence ) { + + const iridescenceNode = this.iridescenceNode ? float( this.iridescenceNode ) : materialIridescence; + const iridescenceIORNode = this.iridescenceIORNode ? float( this.iridescenceIORNode ) : materialIridescenceIOR; + const iridescenceThicknessNode = this.iridescenceThicknessNode ? float( this.iridescenceThicknessNode ) : materialIridescenceThickness; + + iridescence.assign( iridescenceNode ); + iridescenceIOR.assign( iridescenceIORNode ); + iridescenceThickness.assign( iridescenceThicknessNode ); + + } + + // ANISOTROPY + + if ( this.useAnisotropy ) { + + const anisotropyV = ( this.anisotropyNode ? vec2( this.anisotropyNode ) : materialAnisotropy ).toVar(); + + anisotropy.assign( anisotropyV.length() ); + + If( anisotropy.equal( 0.0 ), () => { + + anisotropyV.assign( vec2( 1.0, 0.0 ) ); + + } ).Else( () => { + + anisotropyV.divAssign( vec2( anisotropy ) ); + anisotropy.assign( anisotropy.saturate() ); + + } ); + + // Roughness along the anisotropy bitangent is the material roughness, while the tangent roughness increases with anisotropy. + alphaT.assign( anisotropy.pow2().mix( roughness.pow2(), 1.0 ) ); + + anisotropyT.assign( TBNViewMatrix[ 0 ].mul( anisotropyV.x ).add( TBNViewMatrix[ 1 ].mul( anisotropyV.y ) ) ); + anisotropyB.assign( TBNViewMatrix[ 1 ].mul( anisotropyV.x ).sub( TBNViewMatrix[ 0 ].mul( anisotropyV.y ) ) ); + + } + + // TRANSMISSION + + if ( this.useTransmission ) { + + const transmissionNode = this.transmissionNode ? float( this.transmissionNode ) : materialTransmission; + const thicknessNode = this.thicknessNode ? float( this.thicknessNode ) : materialThickness; + const attenuationDistanceNode = this.attenuationDistanceNode ? float( this.attenuationDistanceNode ) : materialAttenuationDistance; + const attenuationColorNode = this.attenuationColorNode ? vec3( this.attenuationColorNode ) : materialAttenuationColor; + + transmission.assign( transmissionNode ); + thickness.assign( thicknessNode ); + attenuationDistance.assign( attenuationDistanceNode ); + attenuationColor.assign( attenuationColorNode ); + + if ( this.useDispersion ) { + + const dispersionNode = this.dispersionNode ? float( this.dispersionNode ) : materialDispersion; + + dispersion.assign( dispersionNode ); + + } + + } + + } + + /** + * Setups the clearcoat normal node. + * + * @return {Node} The clearcoat normal. + */ + setupClearcoatNormal() { + + return this.clearcoatNormalNode ? vec3( this.clearcoatNormalNode ) : materialClearcoatNormal; + + } + + setup( builder ) { + + builder.context.setupClearcoatNormal = () => this.setupClearcoatNormal( builder ); + + super.setup( builder ); + + } + + copy( source ) { + + this.clearcoatNode = source.clearcoatNode; + this.clearcoatRoughnessNode = source.clearcoatRoughnessNode; + this.clearcoatNormalNode = source.clearcoatNormalNode; + + this.sheenNode = source.sheenNode; + this.sheenRoughnessNode = source.sheenRoughnessNode; + + this.iridescenceNode = source.iridescenceNode; + this.iridescenceIORNode = source.iridescenceIORNode; + this.iridescenceThicknessNode = source.iridescenceThicknessNode; + + this.specularIntensityNode = source.specularIntensityNode; + this.specularColorNode = source.specularColorNode; + + this.transmissionNode = source.transmissionNode; + this.thicknessNode = source.thicknessNode; + this.attenuationDistanceNode = source.attenuationDistanceNode; + this.attenuationColorNode = source.attenuationColorNode; + this.dispersionNode = source.dispersionNode; + + this.anisotropyNode = source.anisotropyNode; + + return super.copy( source ); + + } + +} + +/** + * Represents the lighting model for {@link MeshSSSNodeMaterial}. + * + * @augments PhysicalLightingModel + */ +class SSSLightingModel extends PhysicalLightingModel { + + /** + * Constructs a new physical lighting model. + * + * @param {boolean} [clearcoat=false] - Whether clearcoat is supported or not. + * @param {boolean} [sheen=false] - Whether sheen is supported or not. + * @param {boolean} [iridescence=false] - Whether iridescence is supported or not. + * @param {boolean} [anisotropy=false] - Whether anisotropy is supported or not. + * @param {boolean} [transmission=false] - Whether transmission is supported or not. + * @param {boolean} [dispersion=false] - Whether dispersion is supported or not. + * @param {boolean} [sss=false] - Whether SSS is supported or not. + */ + constructor( clearcoat = false, sheen = false, iridescence = false, anisotropy = false, transmission = false, dispersion = false, sss = false ) { + + super( clearcoat, sheen, iridescence, anisotropy, transmission, dispersion ); + + /** + * Whether the lighting model should use SSS or not. + * + * @type {boolean} + * @default false + */ + this.useSSS = sss; + + } + + /** + * Extends the default implementation with a SSS term. + * + * Reference: [Approximating Translucency for a Fast, Cheap and Convincing Subsurface Scattering Look]{@link https://colinbarrebrisebois.com/2011/03/07/gdc-2011-approximating-translucency-for-a-fast-cheap-and-convincing-subsurface-scattering-look/} + * + * @param {Object} input - The input data. + * @param {NodeBuilder} builder - The current node builder. + */ + direct( { lightDirection, lightColor, reflectedLight }, builder ) { + + if ( this.useSSS === true ) { + + const material = builder.material; + + const { thicknessColorNode, thicknessDistortionNode, thicknessAmbientNode, thicknessAttenuationNode, thicknessPowerNode, thicknessScaleNode } = material; + + const scatteringHalf = lightDirection.add( transformedNormalView.mul( thicknessDistortionNode ) ).normalize(); + const scatteringDot = float( positionViewDirection.dot( scatteringHalf.negate() ).saturate().pow( thicknessPowerNode ).mul( thicknessScaleNode ) ); + const scatteringIllu = vec3( scatteringDot.add( thicknessAmbientNode ).mul( thicknessColorNode ) ); + + reflectedLight.directDiffuse.addAssign( scatteringIllu.mul( thicknessAttenuationNode.mul( lightColor ) ) ); + + } + + super.direct( { lightDirection, lightColor, reflectedLight }, builder ); + + } + +} + +/** + * This node material is an experimental extension of {@link MeshPhysicalNodeMaterial} + * that implements a Subsurface scattering (SSS) term. + * + * @augments MeshPhysicalNodeMaterial + */ +class MeshSSSNodeMaterial extends MeshPhysicalNodeMaterial { + + static get type() { + + return 'MeshSSSNodeMaterial'; + + } + + /** + * Constructs a new mesh SSS node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super( parameters ); + + /** + * Represents the thickness color. + * + * @type {?Node} + * @default null + */ + this.thicknessColorNode = null; + + /** + * Represents the distortion factor. + * + * @type {?Node} + */ + this.thicknessDistortionNode = float( 0.1 ); + + /** + * Represents the thickness ambient factor. + * + * @type {?Node} + */ + this.thicknessAmbientNode = float( 0.0 ); + + /** + * Represents the thickness attenuation. + * + * @type {?Node} + */ + this.thicknessAttenuationNode = float( .1 ); + + /** + * Represents the thickness power. + * + * @type {?Node} + */ + this.thicknessPowerNode = float( 2.0 ); + + /** + * Represents the thickness scale. + * + * @type {?Node} + */ + this.thicknessScaleNode = float( 10.0 ); + + } + + /** + * Whether the lighting model should use SSS or not. + * + * @type {boolean} + * @default true + */ + get useSSS() { + + return this.thicknessColorNode !== null; + + } + + /** + * Setups the lighting model. + * + * @return {SSSLightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new SSSLightingModel( this.useClearcoat, this.useSheen, this.useIridescence, this.useAnisotropy, this.useTransmission, this.useDispersion, this.useSSS ); + + } + + copy( source ) { + + this.thicknessColorNode = source.thicknessColorNode; + this.thicknessDistortionNode = source.thicknessDistortionNode; + this.thicknessAmbientNode = source.thicknessAmbientNode; + this.thicknessAttenuationNode = source.thicknessAttenuationNode; + this.thicknessPowerNode = source.thicknessPowerNode; + this.thicknessScaleNode = source.thicknessScaleNode; + + return super.copy( source ); + + } + +} + +const getGradientIrradiance = /*@__PURE__*/ Fn( ( { normal, lightDirection, builder } ) => { + + // dotNL will be from -1.0 to 1.0 + const dotNL = normal.dot( lightDirection ); + const coord = vec2( dotNL.mul( 0.5 ).add( 0.5 ), 0.0 ); + + if ( builder.material.gradientMap ) { + + const gradientMap = materialReference( 'gradientMap', 'texture' ).context( { getUV: () => coord } ); + + return vec3( gradientMap.r ); + + } else { + + const fw = coord.fwidth().mul( 0.5 ); + + return mix( vec3( 0.7 ), vec3( 1.0 ), smoothstep( float( 0.7 ).sub( fw.x ), float( 0.7 ).add( fw.x ), coord.x ) ); + + } + +} ); + +/** + * Represents the lighting model for a toon material. Used in {@link MeshToonNodeMaterial}. + * + * @augments LightingModel + */ +class ToonLightingModel extends LightingModel { + + /** + * Implements the direct lighting. Instead of using a conventional smooth irradiance, the irradiance is + * reduced to a small number of discrete shades to create a comic-like, flat look. + * + * @param {Object} lightData - The light data. + * @param {NodeBuilder} builder - The current node builder. + */ + direct( { lightDirection, lightColor, reflectedLight }, builder ) { + + const irradiance = getGradientIrradiance( { normal: normalGeometry, lightDirection, builder } ).mul( lightColor ); + + reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) ); + + } + + /** + * Implements the indirect lighting. + * + * @param {NodeBuilder} builder - The current node builder. + */ + indirect( builder ) { + + const { ambientOcclusion, irradiance, reflectedLight } = builder.context; + + reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) ); + + reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion ); + + } + +} + +const _defaultValues$4 = /*@__PURE__*/ new MeshToonMaterial(); + +/** + * Node material version of {@link MeshToonMaterial}. + * + * @augments NodeMaterial + */ +class MeshToonNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshToonNodeMaterial'; + + } + + /** + * Constructs a new mesh toon node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshToonNodeMaterial = true; + + /** + * Set to `true` because toon materials react on lights. + * + * @type {boolean} + * @default true + */ + this.lights = true; + + this.setDefaultValues( _defaultValues$4 ); + + this.setValues( parameters ); + + } + + /** + * Setups the lighting model. + * + * @return {ToonLightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new ToonLightingModel(); + + } + +} + +/** + * Can be used to compute texture coordinates for projecting a + * matcap onto a mesh. Used by {@link MeshMatcapNodeMaterial}. + * + * @augments TempNode + */ +class MatcapUVNode extends TempNode { + + static get type() { + + return 'MatcapUVNode'; + + } + + /** + * Constructs a new matcap uv node. + */ + constructor() { + + super( 'vec2' ); + + } + + setup() { + + const x = vec3( positionViewDirection.z, 0, positionViewDirection.x.negate() ).normalize(); + const y = positionViewDirection.cross( x ); + + return vec2( x.dot( transformedNormalView ), y.dot( transformedNormalView ) ).mul( 0.495 ).add( 0.5 ); // 0.495 to remove artifacts caused by undersized matcap disks + + } + +} + +/** + * TSL function for creating a matcap uv node. + * + * @tsl + * @function + * @returns {MatcapUVNode} + */ +const matcapUV = /*@__PURE__*/ nodeImmutable( MatcapUVNode ); + +const _defaultValues$3 = /*@__PURE__*/ new MeshMatcapMaterial(); + +/** + * Node material version of {@link MeshMatcapMaterial}. + * + * @augments NodeMaterial + */ +class MeshMatcapNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshMatcapNodeMaterial'; + + } + + /** + * Constructs a new mesh normal node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshMatcapNodeMaterial = true; + + this.setDefaultValues( _defaultValues$3 ); + + this.setValues( parameters ); + + } + + /** + * Setups the matcap specific node variables. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupVariants( builder ) { + + const uv = matcapUV; + + let matcapColor; + + if ( builder.material.matcap ) { + + matcapColor = materialReference( 'matcap', 'texture' ).context( { getUV: () => uv } ); + + } else { + + matcapColor = vec3( mix( 0.2, 0.8, uv.y ) ); // default if matcap is missing + + } + + diffuseColor.rgb.mulAssign( matcapColor.rgb ); + + } + +} + +/** + * Applies a rotation to the given position node. + * + * @augments TempNode + */ +class RotateNode extends TempNode { + + static get type() { + + return 'RotateNode'; + + } + + /** + * Constructs a new rotate node. + * + * @param {Node} positionNode - The position node. + * @param {Node} rotationNode - Represents the rotation that is applied to the position node. Depending + * on whether the position data are 2D or 3D, the rotation is expressed a single float value or an Euler value. + */ + constructor( positionNode, rotationNode ) { + + super(); + + /** + * The position node. + * + * @type {Node} + */ + this.positionNode = positionNode; + + /** + * Represents the rotation that is applied to the position node. + * Depending on whether the position data are 2D or 3D, the rotation is expressed a single float value or an Euler value. + * + * @type {Node} + */ + this.rotationNode = rotationNode; + + } + + /** + * The type of the {@link RotateNode#positionNode} defines the node's type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node's type. + */ + getNodeType( builder ) { + + return this.positionNode.getNodeType( builder ); + + } + + setup( builder ) { + + const { rotationNode, positionNode } = this; + + const nodeType = this.getNodeType( builder ); + + if ( nodeType === 'vec2' ) { + + const cosAngle = rotationNode.cos(); + const sinAngle = rotationNode.sin(); + + const rotationMatrix = mat2( + cosAngle, sinAngle, + sinAngle.negate(), cosAngle + ); + + return rotationMatrix.mul( positionNode ); + + } else { + + const rotation = rotationNode; + const rotationXMatrix = mat4( vec4( 1.0, 0.0, 0.0, 0.0 ), vec4( 0.0, cos( rotation.x ), sin( rotation.x ).negate(), 0.0 ), vec4( 0.0, sin( rotation.x ), cos( rotation.x ), 0.0 ), vec4( 0.0, 0.0, 0.0, 1.0 ) ); + const rotationYMatrix = mat4( vec4( cos( rotation.y ), 0.0, sin( rotation.y ), 0.0 ), vec4( 0.0, 1.0, 0.0, 0.0 ), vec4( sin( rotation.y ).negate(), 0.0, cos( rotation.y ), 0.0 ), vec4( 0.0, 0.0, 0.0, 1.0 ) ); + const rotationZMatrix = mat4( vec4( cos( rotation.z ), sin( rotation.z ).negate(), 0.0, 0.0 ), vec4( sin( rotation.z ), cos( rotation.z ), 0.0, 0.0 ), vec4( 0.0, 0.0, 1.0, 0.0 ), vec4( 0.0, 0.0, 0.0, 1.0 ) ); + + return rotationXMatrix.mul( rotationYMatrix ).mul( rotationZMatrix ).mul( vec4( positionNode, 1.0 ) ).xyz; + + } + + } + +} + +/** + * TSL function for creating a rotate node. + * + * @tsl + * @function + * @param {Node} positionNode - The position node. + * @param {Node} rotationNode - Represents the rotation that is applied to the position node. Depending + * on whether the position data are 2D or 3D, the rotation is expressed a single float value or an Euler value. + * @returns {RotateNode} + */ +const rotate = /*@__PURE__*/ nodeProxy( RotateNode ).setParameterLength( 2 ); + +const _defaultValues$2 = /*@__PURE__*/ new SpriteMaterial(); + +/** + * Node material version of {@link SpriteMaterial}. + * + * @augments NodeMaterial + */ +class SpriteNodeMaterial extends NodeMaterial { + + static get type() { + + return 'SpriteNodeMaterial'; + + } + + /** + * Constructs a new sprite node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSpriteNodeMaterial = true; + + this._useSizeAttenuation = true; + + /** + * This property makes it possible to define the position of the sprite with a + * node. That can be useful when the material is used with instanced rendering + * and node data are defined with an instanced attribute node: + * ```js + * const positionAttribute = new InstancedBufferAttribute( new Float32Array( positions ), 3 ); + * material.positionNode = instancedBufferAttribute( positionAttribute ); + * ``` + * Another possibility is to compute the instanced data with a compute shader: + * ```js + * const positionBuffer = instancedArray( particleCount, 'vec3' ); + * particleMaterial.positionNode = positionBuffer.toAttribute(); + * ``` + * + * @type {?Node} + * @default null + */ + this.positionNode = null; + + /** + * The rotation of sprite materials is by default inferred from the `rotation`, + * property. This node property allows to overwrite the default and define + * the rotation with a node instead. + * + * If you don't want to overwrite the rotation but modify the existing + * value instead, use {@link materialRotation}. + * + * @type {?Node} + * @default null + */ + this.rotationNode = null; + + /** + * This node property provides an additional way to scale sprites next to + * `Object3D.scale`. The scale transformation based in `Object3D.scale` + * is multiplied with the scale value of this node in the vertex shader. + * + * @type {?Node} + * @default null + */ + this.scaleNode = null; + + /** + * In Sprites, the transparent property is enabled by default. + * + * @type {boolean} + * @default true + */ + this.transparent = true; + + this.setDefaultValues( _defaultValues$2 ); + + this.setValues( parameters ); + + } + + /** + * Setups the position node in view space. This method implements + * the sprite specific vertex shader. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The position in view space. + */ + setupPositionView( builder ) { + + const { object, camera } = builder; + + const sizeAttenuation = this.sizeAttenuation; + + const { positionNode, rotationNode, scaleNode } = this; + + const mvPosition = modelViewMatrix.mul( vec3( positionNode || 0 ) ); + + let scale = vec2( modelWorldMatrix[ 0 ].xyz.length(), modelWorldMatrix[ 1 ].xyz.length() ); + + if ( scaleNode !== null ) { + + scale = scale.mul( vec2( scaleNode ) ); + + } + + if ( sizeAttenuation === false ) { + + if ( camera.isPerspectiveCamera ) { + + scale = scale.mul( mvPosition.z.negate() ); + + } else { + + const orthoScale = float( 2.0 ).div( cameraProjectionMatrix.element( 1 ).element( 1 ) ); + scale = scale.mul( orthoScale.mul( 2 ) ); + + } + + } + + let alignedPosition = positionGeometry.xy; + + if ( object.center && object.center.isVector2 === true ) { + + const center = reference$1( 'center', 'vec2', object ); + + alignedPosition = alignedPosition.sub( center.sub( 0.5 ) ); + + } + + alignedPosition = alignedPosition.mul( scale ); + + const rotation = float( rotationNode || materialRotation ); + + const rotatedPosition = rotate( alignedPosition, rotation ); + + return vec4( mvPosition.xy.add( rotatedPosition ), mvPosition.zw ); + + } + + copy( source ) { + + this.positionNode = source.positionNode; + this.rotationNode = source.rotationNode; + this.scaleNode = source.scaleNode; + + return super.copy( source ); + + } + + /** + * Whether to use size attenuation or not. + * + * @type {boolean} + * @default true + */ + get sizeAttenuation() { + + return this._useSizeAttenuation; + + } + + set sizeAttenuation( value ) { + + if ( this._useSizeAttenuation !== value ) { + + this._useSizeAttenuation = value; + this.needsUpdate = true; + + } + + } + +} + +const _defaultValues$1 = /*@__PURE__*/ new PointsMaterial(); + +/** + * Node material version of {@link PointsMaterial}. + * + * @augments SpriteNodeMaterial + */ +class PointsNodeMaterial extends SpriteNodeMaterial { + + static get type() { + + return 'PointsNodeMaterial'; + + } + + /** + * Constructs a new points node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This node property provides an additional way to set the point size. + * + * @type {?Node} + * @default null + */ + this.sizeNode = null; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPointsNodeMaterial = true; + + this.setDefaultValues( _defaultValues$1 ); + + this.setValues( parameters ); + + } + + setupPositionView() { + + const { positionNode } = this; + + return modelViewMatrix.mul( vec3( positionNode || positionLocal ) ).xyz; + + } + + setupVertex( builder ) { + + const mvp = super.setupVertex( builder ); + + // skip further processing if the material is not a node material + + if ( builder.material.isNodeMaterial !== true ) { + + return mvp; + + } + + // ndc space + + const { rotationNode, scaleNode, sizeNode } = this; + + const alignedPosition = positionGeometry.xy.toVar(); + const aspect = viewport.z.div( viewport.w ); + + // rotation + + if ( rotationNode && rotationNode.isNode ) { + + const rotation = float( rotationNode ); + + alignedPosition.assign( rotate( alignedPosition, rotation ) ); + + } + + // point size + + let pointSize = sizeNode !== null ? vec2( sizeNode ) : materialPointSize; + + if ( this.sizeAttenuation === true ) { + + pointSize = pointSize.mul( pointSize.div( positionView.z.negate() ) ); + + } + + // scale + + if ( scaleNode && scaleNode.isNode ) { + + pointSize = pointSize.mul( vec2( scaleNode ) ); + + } + + alignedPosition.mulAssign( pointSize.mul( 2 ) ); + + alignedPosition.assign( alignedPosition.div( viewport.z ) ); + alignedPosition.y.assign( alignedPosition.y.mul( aspect ) ); + + // back to clip space + alignedPosition.assign( alignedPosition.mul( mvp.w ) ); + + //clipPos.xy += offset; + mvp.addAssign( vec4( alignedPosition, 0, 0 ) ); + + return mvp; + + } + + /** + * Whether alpha to coverage should be used or not. + * + * @type {boolean} + * @default true + */ + get alphaToCoverage() { + + return this._useAlphaToCoverage; + + } + + set alphaToCoverage( value ) { + + if ( this._useAlphaToCoverage !== value ) { + + this._useAlphaToCoverage = value; + this.needsUpdate = true; + + } + + } + +} + +/** + * Represents lighting model for a shadow material. Used in {@link ShadowNodeMaterial}. + * + * @augments LightingModel + */ +class ShadowMaskModel extends LightingModel { + + /** + * Constructs a new shadow mask model. + */ + constructor() { + + super(); + + /** + * The shadow mask node. + * + * @type {Node} + */ + this.shadowNode = float( 1 ).toVar( 'shadowMask' ); + + } + + /** + * Only used to save the shadow mask. + * + * @param {Object} input - The input data. + */ + direct( { lightNode } ) { + + if ( lightNode.shadowNode !== null ) { + + this.shadowNode.mulAssign( lightNode.shadowNode ); + + } + + } + + /** + * Uses the shadow mask to produce the final color. + * + * @param {NodeBuilder} builder - The current node builder. + */ + finish( { context } ) { + + diffuseColor.a.mulAssign( this.shadowNode.oneMinus() ); + + context.outgoingLight.rgb.assign( diffuseColor.rgb ); // TODO: Optimize LightsNode to avoid this assignment + + } + +} + +const _defaultValues = /*@__PURE__*/ new ShadowMaterial(); + +/** + * Node material version of {@link ShadowMaterial}. + * + * @augments NodeMaterial + */ +class ShadowNodeMaterial extends NodeMaterial { + + static get type() { + + return 'ShadowNodeMaterial'; + + } + + /** + * Constructs a new shadow node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isShadowNodeMaterial = true; + + /** + * Set to `true` because so it's possible to implement + * the shadow mask effect. + * + * @type {boolean} + * @default true + */ + this.lights = true; + + /** + * Overwritten since shadow materials are transparent + * by default. + * + * @type {boolean} + * @default true + */ + this.transparent = true; + + this.setDefaultValues( _defaultValues ); + + this.setValues( parameters ); + + } + + /** + * Setups the lighting model. + * + * @return {ShadowMaskModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new ShadowMaskModel(); + + } + +} + +const scatteringDensity = property( 'vec3' ); +const linearDepthRay = property( 'vec3' ); +const outgoingRayLight = property( 'vec3' ); + +/** + * VolumetricLightingModel class extends the LightingModel to implement volumetric lighting effects. + * This model calculates the scattering and transmittance of light through a volumetric medium. + * It dynamically adjusts the direction of the ray based on the camera and object positions. + * The model supports custom scattering and depth nodes to enhance the lighting effects. + * + * @augments LightingModel + */ +class VolumetricLightingModel extends LightingModel { + + constructor() { + + super(); + + } + + start( builder ) { + + const { material, context } = builder; + + const startPos = property( 'vec3' ); + const endPos = property( 'vec3' ); + + // This approach dynamically changes the direction of the ray, + // prioritizing the ray from the camera to the object if it is inside the mesh, and from the object to the camera if it is far away. + + If( cameraPosition.sub( positionWorld ).length().greaterThan( modelRadius.mul( 2 ) ), () => { + + startPos.assign( cameraPosition ); + endPos.assign( positionWorld ); + + } ).Else( () => { + + startPos.assign( positionWorld ); + endPos.assign( cameraPosition ); + + } ); + + // + + const viewVector = endPos.sub( startPos ); + + const steps = uniform( 'int' ).onRenderUpdate( ( { material } ) => material.steps ); + const stepSize = viewVector.length().div( steps ).toVar(); + + const rayDir = viewVector.normalize().toVar(); // TODO: toVar() should be automatic here ( in loop ) + + const distTravelled = float( 0.0 ).toVar(); + const transmittance = vec3( 1 ).toVar(); + + if ( material.offsetNode ) { + + // reduce banding + + distTravelled.addAssign( material.offsetNode.mul( stepSize ) ); + + } + + Loop( steps, () => { + + const positionRay = startPos.add( rayDir.mul( distTravelled ) ); + const positionViewRay = cameraViewMatrix.mul( vec4( positionRay, 1 ) ).xyz; + + if ( material.depthNode !== null ) { + + linearDepthRay.assign( linearDepth( viewZToPerspectiveDepth( positionViewRay.z, cameraNear, cameraFar ) ) ); + + context.sceneDepthNode = linearDepth( material.depthNode ).toVar(); + + } + + context.positionWorld = positionRay; + context.shadowPositionWorld = positionRay; + context.positionView = positionViewRay; + + scatteringDensity.assign( 0 ); + + let scatteringNode; + + if ( material.scatteringNode ) { + + scatteringNode = material.scatteringNode( { + positionRay + } ); + + } + + super.start( builder ); + + if ( scatteringNode ) { + + scatteringDensity.mulAssign( scatteringNode ); + + } + + // beer's law + + const falloff = scatteringDensity.mul( .01 ).negate().mul( stepSize ).exp(); + transmittance.mulAssign( falloff ); + + // move along the ray + + distTravelled.addAssign( stepSize ); + + } ); + + outgoingRayLight.addAssign( transmittance.saturate().oneMinus() ); + + } + + scatteringLight( lightColor, builder ) { + + const sceneDepthNode = builder.context.sceneDepthNode; + + if ( sceneDepthNode ) { + + If( sceneDepthNode.greaterThanEqual( linearDepthRay ), () => { + + scatteringDensity.addAssign( lightColor ); + + } ); + + } else { + + scatteringDensity.addAssign( lightColor ); + + } + + } + + direct( { lightNode, lightColor }, builder ) { + + // Ignore lights with infinite distance + + if ( lightNode.light.distance === undefined ) return; + + // TODO: We need a viewportOpaque*() ( output, depth ) to fit with modern rendering approaches + + const directLight = lightColor.xyz.toVar(); + directLight.mulAssign( lightNode.shadowNode ); // it no should be necessary if used in the same render pass + + this.scatteringLight( directLight, builder ); + + } + + directRectArea( { lightColor, lightPosition, halfWidth, halfHeight }, builder ) { + + const p0 = lightPosition.add( halfWidth ).sub( halfHeight ); // counterclockwise; light shines in local neg z direction + const p1 = lightPosition.sub( halfWidth ).sub( halfHeight ); + const p2 = lightPosition.sub( halfWidth ).add( halfHeight ); + const p3 = lightPosition.add( halfWidth ).add( halfHeight ); + + const P = builder.context.positionView; + + const directLight = lightColor.xyz.mul( LTC_Evaluate_Volume( { P, p0, p1, p2, p3 } ) ).pow( 1.5 ); + + this.scatteringLight( directLight, builder ); + + } + + finish( builder ) { + + builder.context.outgoingLight.assign( outgoingRayLight ); + + } + +} + +/** + * Volume node material. + * + * @augments NodeMaterial + */ +class VolumeNodeMaterial extends NodeMaterial { + + static get type() { + + return 'VolumeNodeMaterial'; + + } + + /** + * Constructs a new volume node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVolumeNodeMaterial = true; + + /** + * Number of steps used for raymarching. + * + * @type {number} + * @default 25 + */ + this.steps = 25; + + /** + * Offsets the distance a ray has been traveled through a volume. + * Can be used to implement dithering to reduce banding. + * + * @type {Node} + * @default null + */ + this.offsetNode = null; + + /** + * Node used for scattering calculations. + * + * @type {Function|FunctionNode} + * @default null + */ + this.scatteringNode = null; + + this.lights = true; + + this.transparent = true; + this.side = BackSide; + + this.depthTest = false; + this.depthWrite = false; + + this.setValues( parameters ); + + } + + setupLightingModel() { + + return new VolumetricLightingModel(); + + } + +} + +/** + * This module manages the internal animation loop of the renderer. + * + * @private + */ +class Animation { + + /** + * Constructs a new animation loop management component. + * + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + * @param {Info} info - Renderer component for managing metrics and monitoring data. + */ + constructor( nodes, info ) { + + /** + * Renderer component for managing nodes related logic. + * + * @type {Nodes} + */ + this.nodes = nodes; + + /** + * Renderer component for managing metrics and monitoring data. + * + * @type {Info} + */ + this.info = info; + + /** + * A reference to the context from `requestAnimationFrame()` can + * be called (usually `window`). + * + * @type {?(Window|XRSession)} + */ + this._context = typeof self !== 'undefined' ? self : null; + + /** + * The user-defined animation loop. + * + * @type {?Function} + * @default null + */ + this._animationLoop = null; + + /** + * The requestId which is returned from the `requestAnimationFrame()` call. + * Can be used to cancel the stop the animation loop. + * + * @type {?number} + * @default null + */ + this._requestId = null; + + } + + /** + * Starts the internal animation loop. + */ + start() { + + const update = ( time, xrFrame ) => { + + this._requestId = this._context.requestAnimationFrame( update ); + + if ( this.info.autoReset === true ) this.info.reset(); + + this.nodes.nodeFrame.update(); + + this.info.frame = this.nodes.nodeFrame.frameId; + + if ( this._animationLoop !== null ) this._animationLoop( time, xrFrame ); + + }; + + update(); + + } + + /** + * Stops the internal animation loop. + */ + stop() { + + this._context.cancelAnimationFrame( this._requestId ); + + this._requestId = null; + + } + + /** + * Returns the user-level animation loop. + * + * @return {?Function} The animation loop. + */ + getAnimationLoop() { + + return this._animationLoop; + + } + + /** + * Defines the user-level animation loop. + * + * @param {?Function} callback - The animation loop. + */ + setAnimationLoop( callback ) { + + this._animationLoop = callback; + + } + + /** + * Returns the animation context. + * + * @return {Window|XRSession} The animation context. + */ + getContext() { + + return this._context; + + } + + /** + * Defines the context in which `requestAnimationFrame()` is executed. + * + * @param {Window|XRSession} context - The context to set. + */ + setContext( context ) { + + this._context = context; + + } + + /** + * Frees all internal resources and stops the animation loop. + */ + dispose() { + + this.stop(); + + } + +} + +/** + * Data structure for the renderer. It allows defining values + * with chained, hierarchical keys. Keys are meant to be + * objects since the module internally works with Weak Maps + * for performance reasons. + * + * @private + */ +class ChainMap { + + /** + * Constructs a new Chain Map. + */ + constructor() { + + /** + * The root Weak Map. + * + * @type {WeakMap} + */ + this.weakMap = new WeakMap(); + + } + + /** + * Returns the value for the given array of keys. + * + * @param {Array} keys - List of keys. + * @return {any} The value. Returns `undefined` if no value was found. + */ + get( keys ) { + + let map = this.weakMap; + + for ( let i = 0; i < keys.length - 1; i ++ ) { + + map = map.get( keys[ i ] ); + + if ( map === undefined ) return undefined; + + } + + return map.get( keys[ keys.length - 1 ] ); + + } + + /** + * Sets the value for the given keys. + * + * @param {Array} keys - List of keys. + * @param {any} value - The value to set. + * @return {ChainMap} A reference to this Chain Map. + */ + set( keys, value ) { + + let map = this.weakMap; + + for ( let i = 0; i < keys.length - 1; i ++ ) { + + const key = keys[ i ]; + + if ( map.has( key ) === false ) map.set( key, new WeakMap() ); + + map = map.get( key ); + + } + + map.set( keys[ keys.length - 1 ], value ); + + return this; + + } + + /** + * Deletes a value for the given keys. + * + * @param {Array} keys - The keys. + * @return {boolean} Returns `true` if the value has been removed successfully and `false` if the value has not be found. + */ + delete( keys ) { + + let map = this.weakMap; + + for ( let i = 0; i < keys.length - 1; i ++ ) { + + map = map.get( keys[ i ] ); + + if ( map === undefined ) return false; + + } + + return map.delete( keys[ keys.length - 1 ] ); + + } + +} + +let _id$9 = 0; + +function getKeys( obj ) { + + const keys = Object.keys( obj ); + + let proto = Object.getPrototypeOf( obj ); + + while ( proto ) { + + const descriptors = Object.getOwnPropertyDescriptors( proto ); + + for ( const key in descriptors ) { + + if ( descriptors[ key ] !== undefined ) { + + const descriptor = descriptors[ key ]; + + if ( descriptor && typeof descriptor.get === 'function' ) { + + keys.push( key ); + + } + + } + + } + + proto = Object.getPrototypeOf( proto ); + + } + + return keys; + +} + +/** + * A render object is the renderer's representation of single entity that gets drawn + * with a draw command. There is no unique mapping of render objects to 3D objects in the + * scene since render objects also depend from the used material, the current render context + * and the current scene's lighting. + * + * In general, the basic process of the renderer is: + * + * - Analyze the 3D objects in the scene and generate render lists containing render items. + * - Process the render lists by calling one or more render commands for each render item. + * - For each render command, request a render object and perform the draw. + * + * The module provides an interface to get data required for the draw command like the actual + * draw parameters or vertex buffers. It also holds a series of caching related methods since + * creating render objects should only be done when necessary. + * + * @private + */ +class RenderObject { + + /** + * Constructs a new render object. + * + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + * @param {Geometries} geometries - Renderer component for managing geometries. + * @param {Renderer} renderer - The renderer. + * @param {Object3D} object - The 3D object. + * @param {Material} material - The 3D object's material. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the object should be rendered with. + * @param {LightsNode} lightsNode - The lights node. + * @param {RenderContext} renderContext - The render context. + * @param {ClippingContext} clippingContext - The clipping context. + */ + constructor( nodes, geometries, renderer, object, material, scene, camera, lightsNode, renderContext, clippingContext ) { + + this.id = _id$9 ++; + + /** + * Renderer component for managing nodes related logic. + * + * @type {Nodes} + * @private + */ + this._nodes = nodes; + + /** + * Renderer component for managing geometries. + * + * @type {Geometries} + * @private + */ + this._geometries = geometries; + + /** + * The renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * The 3D object. + * + * @type {Object3D} + */ + this.object = object; + + /** + * The 3D object's material. + * + * @type {Material} + */ + this.material = material; + + /** + * The scene the 3D object belongs to. + * + * @type {Scene} + */ + this.scene = scene; + + /** + * The camera the 3D object should be rendered with. + * + * @type {Camera} + */ + this.camera = camera; + + /** + * The lights node. + * + * @type {LightsNode} + */ + this.lightsNode = lightsNode; + + /** + * The render context. + * + * @type {RenderContext} + */ + this.context = renderContext; + + /** + * The 3D object's geometry. + * + * @type {BufferGeometry} + */ + this.geometry = object.geometry; + + /** + * The render object's version. + * + * @type {number} + */ + this.version = material.version; + + /** + * The draw range of the geometry. + * + * @type {?Object} + * @default null + */ + this.drawRange = null; + + /** + * An array holding the buffer attributes + * of the render object. This entails attribute + * definitions on geometry and node level. + * + * @type {?Array} + * @default null + */ + this.attributes = null; + + /** + * A reference to a render pipeline the render + * object is processed with. + * + * @type {RenderPipeline} + * @default null + */ + this.pipeline = null; + + /** + * Only relevant for objects using + * multiple materials. This represents a group entry + * from the respective `BufferGeometry`. + * + * @type {?{start: number, count: number}} + * @default null + */ + this.group = null; + + /** + * An array holding the vertex buffers which can + * be buffer attributes but also interleaved buffers. + * + * @type {?Array} + * @default null + */ + this.vertexBuffers = null; + + /** + * The parameters for the draw command. + * + * @type {?Object} + * @default null + */ + this.drawParams = null; + + /** + * If this render object is used inside a render bundle, + * this property points to the respective bundle group. + * + * @type {?BundleGroup} + * @default null + */ + this.bundle = null; + + /** + * The clipping context. + * + * @type {ClippingContext} + */ + this.clippingContext = clippingContext; + + /** + * The clipping context's cache key. + * + * @type {string} + */ + this.clippingContextCacheKey = clippingContext !== null ? clippingContext.cacheKey : ''; + + /** + * The initial node cache key. + * + * @type {number} + */ + this.initialNodesCacheKey = this.getDynamicCacheKey(); + + /** + * The initial cache key. + * + * @type {number} + */ + this.initialCacheKey = this.getCacheKey(); + + /** + * The node builder state. + * + * @type {?NodeBuilderState} + * @private + * @default null + */ + this._nodeBuilderState = null; + + /** + * An array of bindings. + * + * @type {?Array} + * @private + * @default null + */ + this._bindings = null; + + /** + * Reference to the node material observer. + * + * @type {?NodeMaterialObserver} + * @private + * @default null + */ + this._monitor = null; + + /** + * An event listener which is defined by `RenderObjects`. It performs + * clean up tasks when `dispose()` on this render object. + * + * @method + */ + this.onDispose = null; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isRenderObject = true; + + /** + * An event listener which is executed when `dispose()` is called on + * the render object's material. + * + * @method + */ + this.onMaterialDispose = () => { + + this.dispose(); + + }; + + this.material.addEventListener( 'dispose', this.onMaterialDispose ); + + } + + /** + * Updates the clipping context. + * + * @param {ClippingContext} context - The clipping context to set. + */ + updateClipping( context ) { + + this.clippingContext = context; + + } + + /** + * Whether the clipping requires an update or not. + * + * @type {boolean} + * @readonly + */ + get clippingNeedsUpdate() { + + if ( this.clippingContext === null || this.clippingContext.cacheKey === this.clippingContextCacheKey ) return false; + + this.clippingContextCacheKey = this.clippingContext.cacheKey; + + return true; + + } + + /** + * The number of clipping planes defined in context of hardware clipping. + * + * @type {number} + * @readonly + */ + get hardwareClippingPlanes() { + + return this.material.hardwareClipping === true ? this.clippingContext.unionClippingCount : 0; + + } + + /** + * Returns the node builder state of this render object. + * + * @return {NodeBuilderState} The node builder state. + */ + getNodeBuilderState() { + + return this._nodeBuilderState || ( this._nodeBuilderState = this._nodes.getForRender( this ) ); + + } + + /** + * Returns the node material observer of this render object. + * + * @return {NodeMaterialObserver} The node material observer. + */ + getMonitor() { + + return this._monitor || ( this._monitor = this.getNodeBuilderState().observer ); + + } + + /** + * Returns an array of bind groups of this render object. + * + * @return {Array} The bindings. + */ + getBindings() { + + return this._bindings || ( this._bindings = this.getNodeBuilderState().createBindings() ); + + } + + /** + * Returns a binding group by group name of this render object. + * + * @param {string} name - The name of the binding group. + * @return {?BindGroup} The bindings. + */ + getBindingGroup( name ) { + + for ( const bindingGroup of this.getBindings() ) { + + if ( bindingGroup.name === name ) { + + return bindingGroup; + + } + + } + + } + + /** + * Returns the index of the render object's geometry. + * + * @return {?BufferAttribute} The index. Returns `null` for non-indexed geometries. + */ + getIndex() { + + return this._geometries.getIndex( this ); + + } + + /** + * Returns the indirect buffer attribute. + * + * @return {?BufferAttribute} The indirect attribute. `null` if no indirect drawing is used. + */ + getIndirect() { + + return this._geometries.getIndirect( this ); + + } + + /** + * Returns an array that acts as a key for identifying the render object in a chain map. + * + * @return {Array} An array with object references. + */ + getChainArray() { + + return [ this.object, this.material, this.context, this.lightsNode ]; + + } + + /** + * This method is used when the geometry of a 3D object has been exchanged and the + * respective render object now requires an update. + * + * @param {BufferGeometry} geometry - The geometry to set. + */ + setGeometry( geometry ) { + + this.geometry = geometry; + this.attributes = null; + + } + + /** + * Returns the buffer attributes of the render object. The returned array holds + * attribute definitions on geometry and node level. + * + * @return {Array} An array with buffer attributes. + */ + getAttributes() { + + if ( this.attributes !== null ) return this.attributes; + + const nodeAttributes = this.getNodeBuilderState().nodeAttributes; + const geometry = this.geometry; + + const attributes = []; + const vertexBuffers = new Set(); + + for ( const nodeAttribute of nodeAttributes ) { + + const attribute = nodeAttribute.node && nodeAttribute.node.attribute ? nodeAttribute.node.attribute : geometry.getAttribute( nodeAttribute.name ); + + if ( attribute === undefined ) continue; + + attributes.push( attribute ); + + const bufferAttribute = attribute.isInterleavedBufferAttribute ? attribute.data : attribute; + vertexBuffers.add( bufferAttribute ); + + } + + this.attributes = attributes; + this.vertexBuffers = Array.from( vertexBuffers.values() ); + + return attributes; + + } + + /** + * Returns the vertex buffers of the render object. + * + * @return {Array} An array with buffer attribute or interleaved buffers. + */ + getVertexBuffers() { + + if ( this.vertexBuffers === null ) this.getAttributes(); + + return this.vertexBuffers; + + } + + /** + * Returns the draw parameters for the render object. + * + * @return {?{vertexCount: number, firstVertex: number, instanceCount: number, firstInstance: number}} The draw parameters. + */ + getDrawParameters() { + + const { object, material, geometry, group, drawRange } = this; + + const drawParams = this.drawParams || ( this.drawParams = { + vertexCount: 0, + firstVertex: 0, + instanceCount: 0, + firstInstance: 0 + } ); + + const index = this.getIndex(); + const hasIndex = ( index !== null ); + + let instanceCount = 1; + + if ( geometry.isInstancedBufferGeometry === true ) { + + instanceCount = geometry.instanceCount; + + } else if ( object.count !== undefined ) { + + instanceCount = Math.max( 0, object.count ); + + } + + if ( instanceCount === 0 ) return null; + + drawParams.instanceCount = instanceCount; + + if ( object.isBatchedMesh === true ) return drawParams; + + let rangeFactor = 1; + + if ( material.wireframe === true && ! object.isPoints && ! object.isLineSegments && ! object.isLine && ! object.isLineLoop ) { + + rangeFactor = 2; + + } + + let firstVertex = drawRange.start * rangeFactor; + let lastVertex = ( drawRange.start + drawRange.count ) * rangeFactor; + + if ( group !== null ) { + + firstVertex = Math.max( firstVertex, group.start * rangeFactor ); + lastVertex = Math.min( lastVertex, ( group.start + group.count ) * rangeFactor ); + + } + + const position = geometry.attributes.position; + let itemCount = Infinity; + + if ( hasIndex ) { + + itemCount = index.count; + + } else if ( position !== undefined && position !== null ) { + + itemCount = position.count; + + } + + firstVertex = Math.max( firstVertex, 0 ); + lastVertex = Math.min( lastVertex, itemCount ); + + const count = lastVertex - firstVertex; + + if ( count < 0 || count === Infinity ) return null; + + drawParams.vertexCount = count; + drawParams.firstVertex = firstVertex; + + return drawParams; + + } + + /** + * Returns the render object's geometry cache key. + * + * The geometry cache key is part of the material cache key. + * + * @return {string} The geometry cache key. + */ + getGeometryCacheKey() { + + const { geometry } = this; + + let cacheKey = ''; + + for ( const name of Object.keys( geometry.attributes ).sort() ) { + + const attribute = geometry.attributes[ name ]; + + cacheKey += name + ','; + + if ( attribute.data ) cacheKey += attribute.data.stride + ','; + if ( attribute.offset ) cacheKey += attribute.offset + ','; + if ( attribute.itemSize ) cacheKey += attribute.itemSize + ','; + if ( attribute.normalized ) cacheKey += 'n,'; + + } + + // structural equality isn't sufficient for morph targets since the + // data are maintained in textures. only if the targets are all equal + // the texture and thus the instance of `MorphNode` can be shared. + + for ( const name of Object.keys( geometry.morphAttributes ).sort() ) { + + const targets = geometry.morphAttributes[ name ]; + + cacheKey += 'morph-' + name + ','; + + for ( let i = 0, l = targets.length; i < l; i ++ ) { + + const attribute = targets[ i ]; + + cacheKey += attribute.id + ','; + + } + + } + + if ( geometry.index ) { + + cacheKey += 'index,'; + + } + + return cacheKey; + + } + + /** + * Returns the render object's material cache key. + * + * The material cache key is part of the render object cache key. + * + * @return {number} The material cache key. + */ + getMaterialCacheKey() { + + const { object, material } = this; + + let cacheKey = material.customProgramCacheKey(); + + for ( const property of getKeys( material ) ) { + + if ( /^(is[A-Z]|_)|^(visible|version|uuid|name|opacity|userData)$/.test( property ) ) continue; + + const value = material[ property ]; + + let valueKey; + + if ( value !== null ) { + + // some material values require a formatting + + const type = typeof value; + + if ( type === 'number' ) { + + valueKey = value !== 0 ? '1' : '0'; // Convert to on/off, important for clearcoat, transmission, etc + + } else if ( type === 'object' ) { + + valueKey = '{'; + + if ( value.isTexture ) { + + valueKey += value.mapping; + + } + + valueKey += '}'; + + } else { + + valueKey = String( value ); + + } + + } else { + + valueKey = String( value ); + + } + + cacheKey += /*property + ':' +*/ valueKey + ','; + + } + + cacheKey += this.clippingContextCacheKey + ','; + + if ( object.geometry ) { + + cacheKey += this.getGeometryCacheKey(); + + } + + if ( object.skeleton ) { + + cacheKey += object.skeleton.bones.length + ','; + + } + + if ( object.isBatchedMesh ) { + + cacheKey += object._matricesTexture.uuid + ','; + + if ( object._colorsTexture !== null ) { + + cacheKey += object._colorsTexture.uuid + ','; + + } + + } + + if ( object.count > 1 ) { + + // TODO: https://github.com/mrdoob/three.js/pull/29066#issuecomment-2269400850 + + cacheKey += object.uuid + ','; + + } + + cacheKey += object.receiveShadow + ','; + + return hashString( cacheKey ); + + } + + /** + * Whether the geometry requires an update or not. + * + * @type {boolean} + * @readonly + */ + get needsGeometryUpdate() { + + return this.geometry.id !== this.object.geometry.id; + + } + + /** + * Whether the render object requires an update or not. + * + * Note: There are two distinct places where render objects are checked for an update. + * + * 1. In `RenderObjects.get()` which is executed when the render object is request. This + * method checks the `needsUpdate` flag and recreates the render object if necessary. + * 2. In `Renderer._renderObjectDirect()` right after getting the render object via + * `RenderObjects.get()`. The render object's NodeMaterialObserver is then used to detect + * a need for a refresh due to material, geometry or object related value changes. + * + * TODO: Investigate if it's possible to merge both steps so there is only a single place + * that performs the 'needsUpdate' check. + * + * @type {boolean} + * @readonly + */ + get needsUpdate() { + + return /*this.object.static !== true &&*/ ( this.initialNodesCacheKey !== this.getDynamicCacheKey() || this.clippingNeedsUpdate ); + + } + + /** + * Returns the dynamic cache key which represents a key that is computed per draw command. + * + * @return {number} The cache key. + */ + getDynamicCacheKey() { + + let cacheKey = 0; + + // `Nodes.getCacheKey()` returns an environment cache key which is not relevant when + // the renderer is inside a shadow pass. + + if ( this.material.isShadowPassMaterial !== true ) { + + cacheKey = this._nodes.getCacheKey( this.scene, this.lightsNode ); + + } + + if ( this.camera.isArrayCamera ) { + + cacheKey = hash$1( cacheKey, this.camera.cameras.length ); + + } + + if ( this.object.receiveShadow ) { + + cacheKey = hash$1( cacheKey, 1 ); + + } + + return cacheKey; + + } + + /** + * Returns the render object's cache key. + * + * @return {number} The cache key. + */ + getCacheKey() { + + return this.getMaterialCacheKey() + this.getDynamicCacheKey(); + + } + + /** + * Frees internal resources. + */ + dispose() { + + this.material.removeEventListener( 'dispose', this.onMaterialDispose ); + + this.onDispose(); + + } + +} + +const _chainKeys$5 = []; + +/** + * This module manages the render objects of the renderer. + * + * @private + */ +class RenderObjects { + + /** + * Constructs a new render object management component. + * + * @param {Renderer} renderer - The renderer. + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + * @param {Geometries} geometries - Renderer component for managing geometries. + * @param {Pipelines} pipelines - Renderer component for managing pipelines. + * @param {Bindings} bindings - Renderer component for managing bindings. + * @param {Info} info - Renderer component for managing metrics and monitoring data. + */ + constructor( renderer, nodes, geometries, pipelines, bindings, info ) { + + /** + * The renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * Renderer component for managing nodes related logic. + * + * @type {Nodes} + */ + this.nodes = nodes; + + /** + * Renderer component for managing geometries. + * + * @type {Geometries} + */ + this.geometries = geometries; + + /** + * Renderer component for managing pipelines. + * + * @type {Pipelines} + */ + this.pipelines = pipelines; + + /** + * Renderer component for managing bindings. + * + * @type {Bindings} + */ + this.bindings = bindings; + + /** + * Renderer component for managing metrics and monitoring data. + * + * @type {Info} + */ + this.info = info; + + /** + * A dictionary that manages render contexts in chain maps + * for each pass ID. + * + * @type {Object} + */ + this.chainMaps = {}; + + } + + /** + * Returns a render object for the given object and state data. + * + * @param {Object3D} object - The 3D object. + * @param {Material} material - The 3D object's material. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the 3D object should be rendered with. + * @param {LightsNode} lightsNode - The lights node. + * @param {RenderContext} renderContext - The render context. + * @param {ClippingContext} clippingContext - The clipping context. + * @param {string} [passId] - An optional ID for identifying the pass. + * @return {RenderObject} The render object. + */ + get( object, material, scene, camera, lightsNode, renderContext, clippingContext, passId ) { + + const chainMap = this.getChainMap( passId ); + + // reuse chainArray + _chainKeys$5[ 0 ] = object; + _chainKeys$5[ 1 ] = material; + _chainKeys$5[ 2 ] = renderContext; + _chainKeys$5[ 3 ] = lightsNode; + + let renderObject = chainMap.get( _chainKeys$5 ); + + if ( renderObject === undefined ) { + + renderObject = this.createRenderObject( this.nodes, this.geometries, this.renderer, object, material, scene, camera, lightsNode, renderContext, clippingContext, passId ); + + chainMap.set( _chainKeys$5, renderObject ); + + } else { + + renderObject.updateClipping( clippingContext ); + + if ( renderObject.needsGeometryUpdate ) { + + renderObject.setGeometry( object.geometry ); + + } + + if ( renderObject.version !== material.version || renderObject.needsUpdate ) { + + if ( renderObject.initialCacheKey !== renderObject.getCacheKey() ) { + + renderObject.dispose(); + + renderObject = this.get( object, material, scene, camera, lightsNode, renderContext, clippingContext, passId ); + + } else { + + renderObject.version = material.version; + + } + + } + + } + + _chainKeys$5.length = 0; + + return renderObject; + + } + + /** + * Returns a chain map for the given pass ID. + * + * @param {string} [passId='default'] - The pass ID. + * @return {ChainMap} The chain map. + */ + getChainMap( passId = 'default' ) { + + return this.chainMaps[ passId ] || ( this.chainMaps[ passId ] = new ChainMap() ); + + } + + /** + * Frees internal resources. + */ + dispose() { + + this.chainMaps = {}; + + } + + /** + * Factory method for creating render objects with the given list of parameters. + * + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + * @param {Geometries} geometries - Renderer component for managing geometries. + * @param {Renderer} renderer - The renderer. + * @param {Object3D} object - The 3D object. + * @param {Material} material - The object's material. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the object should be rendered with. + * @param {LightsNode} lightsNode - The lights node. + * @param {RenderContext} renderContext - The render context. + * @param {ClippingContext} clippingContext - The clipping context. + * @param {string} [passId] - An optional ID for identifying the pass. + * @return {RenderObject} The render object. + */ + createRenderObject( nodes, geometries, renderer, object, material, scene, camera, lightsNode, renderContext, clippingContext, passId ) { + + const chainMap = this.getChainMap( passId ); + + const renderObject = new RenderObject( nodes, geometries, renderer, object, material, scene, camera, lightsNode, renderContext, clippingContext ); + + renderObject.onDispose = () => { + + this.pipelines.delete( renderObject ); + this.bindings.delete( renderObject ); + this.nodes.delete( renderObject ); + + chainMap.delete( renderObject.getChainArray() ); + + }; + + return renderObject; + + } + + +} + +/** + * Data structure for the renderer. It is intended to manage + * data of objects in dictionaries. + * + * @private + */ +class DataMap { + + /** + * Constructs a new data map. + */ + constructor() { + + /** + * `DataMap` internally uses a weak map + * to manage its data. + * + * @type {WeakMap} + */ + this.data = new WeakMap(); + + } + + /** + * Returns the dictionary for the given object. + * + * @param {Object} object - The object. + * @return {Object} The dictionary. + */ + get( object ) { + + let map = this.data.get( object ); + + if ( map === undefined ) { + + map = {}; + this.data.set( object, map ); + + } + + return map; + + } + + /** + * Deletes the dictionary for the given object. + * + * @param {Object} object - The object. + * @return {?Object} The deleted dictionary. + */ + delete( object ) { + + let map = null; + + if ( this.data.has( object ) ) { + + map = this.data.get( object ); + + this.data.delete( object ); + + } + + return map; + + } + + /** + * Returns `true` if the given object has a dictionary defined. + * + * @param {Object} object - The object to test. + * @return {boolean} Whether a dictionary is defined or not. + */ + has( object ) { + + return this.data.has( object ); + + } + + /** + * Frees internal resources. + */ + dispose() { + + this.data = new WeakMap(); + + } + +} + +const AttributeType = { + VERTEX: 1, + INDEX: 2, + STORAGE: 3, + INDIRECT: 4 +}; + +// size of a chunk in bytes (STD140 layout) + +const GPU_CHUNK_BYTES = 16; + +// @TODO: Move to src/constants.js + +const BlendColorFactor = 211; +const OneMinusBlendColorFactor = 212; + +/** + * This renderer module manages geometry attributes. + * + * @private + * @augments DataMap + */ +class Attributes extends DataMap { + + /** + * Constructs a new attribute management component. + * + * @param {Backend} backend - The renderer's backend. + */ + constructor( backend ) { + + super(); + + /** + * The renderer's backend. + * + * @type {Backend} + */ + this.backend = backend; + + } + + /** + * Deletes the data for the given attribute. + * + * @param {BufferAttribute} attribute - The attribute. + * @return {Object|null} The deleted attribute data. + */ + delete( attribute ) { + + const attributeData = super.delete( attribute ); + + if ( attributeData !== null ) { + + this.backend.destroyAttribute( attribute ); + + } + + return attributeData; + + } + + /** + * Updates the given attribute. This method creates attribute buffers + * for new attributes and updates data for existing ones. + * + * @param {BufferAttribute} attribute - The attribute to update. + * @param {number} type - The attribute type. + */ + update( attribute, type ) { + + const data = this.get( attribute ); + + if ( data.version === undefined ) { + + if ( type === AttributeType.VERTEX ) { + + this.backend.createAttribute( attribute ); + + } else if ( type === AttributeType.INDEX ) { + + this.backend.createIndexAttribute( attribute ); + + } else if ( type === AttributeType.STORAGE ) { + + this.backend.createStorageAttribute( attribute ); + + } else if ( type === AttributeType.INDIRECT ) { + + this.backend.createIndirectStorageAttribute( attribute ); + + } + + data.version = this._getBufferAttribute( attribute ).version; + + } else { + + const bufferAttribute = this._getBufferAttribute( attribute ); + + if ( data.version < bufferAttribute.version || bufferAttribute.usage === DynamicDrawUsage ) { + + this.backend.updateAttribute( attribute ); + + data.version = bufferAttribute.version; + + } + + } + + } + + /** + * Utility method for handling interleaved buffer attributes correctly. + * To process them, their `InterleavedBuffer` is returned. + * + * @param {BufferAttribute} attribute - The attribute. + * @return {BufferAttribute|InterleavedBuffer} + */ + _getBufferAttribute( attribute ) { + + if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; + + return attribute; + + } + +} + +/** + * Returns the wireframe version for the given geometry. + * + * @private + * @function + * @param {BufferGeometry} geometry - The geometry. + * @return {number} The version. + */ +function getWireframeVersion( geometry ) { + + return ( geometry.index !== null ) ? geometry.index.version : geometry.attributes.position.version; + +} + +/** + * Returns a wireframe index attribute for the given geometry. + * + * @private + * @function + * @param {BufferGeometry} geometry - The geometry. + * @return {BufferAttribute} The wireframe index attribute. + */ +function getWireframeIndex( geometry ) { + + const indices = []; + + const geometryIndex = geometry.index; + const geometryPosition = geometry.attributes.position; + + if ( geometryIndex !== null ) { + + const array = geometryIndex.array; + + for ( let i = 0, l = array.length; i < l; i += 3 ) { + + const a = array[ i + 0 ]; + const b = array[ i + 1 ]; + const c = array[ i + 2 ]; + + indices.push( a, b, b, c, c, a ); + + } + + } else { + + const array = geometryPosition.array; + + for ( let i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) { + + const a = i + 0; + const b = i + 1; + const c = i + 2; + + indices.push( a, b, b, c, c, a ); + + } + + } + + const attribute = new ( arrayNeedsUint32( indices ) ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 ); + attribute.version = getWireframeVersion( geometry ); + + return attribute; + +} + +/** + * This renderer module manages geometries. + * + * @private + * @augments DataMap + */ +class Geometries extends DataMap { + + /** + * Constructs a new geometry management component. + * + * @param {Attributes} attributes - Renderer component for managing attributes. + * @param {Info} info - Renderer component for managing metrics and monitoring data. + */ + constructor( attributes, info ) { + + super(); + + /** + * Renderer component for managing attributes. + * + * @type {Attributes} + */ + this.attributes = attributes; + + /** + * Renderer component for managing metrics and monitoring data. + * + * @type {Info} + */ + this.info = info; + + /** + * Weak Map for managing attributes for wireframe rendering. + * + * @type {WeakMap} + */ + this.wireframes = new WeakMap(); + + /** + * This Weak Map is used to make sure buffer attributes are + * updated only once per render call. + * + * @type {WeakMap} + */ + this.attributeCall = new WeakMap(); + + } + + /** + * Returns `true` if the given render object has an initialized geometry. + * + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether if the given render object has an initialized geometry or not. + */ + has( renderObject ) { + + const geometry = renderObject.geometry; + + return super.has( geometry ) && this.get( geometry ).initialized === true; + + } + + /** + * Prepares the geometry of the given render object for rendering. + * + * @param {RenderObject} renderObject - The render object. + */ + updateForRender( renderObject ) { + + if ( this.has( renderObject ) === false ) this.initGeometry( renderObject ); + + this.updateAttributes( renderObject ); + + } + + /** + * Initializes the geometry of the given render object. + * + * @param {RenderObject} renderObject - The render object. + */ + initGeometry( renderObject ) { + + const geometry = renderObject.geometry; + const geometryData = this.get( geometry ); + + geometryData.initialized = true; + + this.info.memory.geometries ++; + + const onDispose = () => { + + this.info.memory.geometries --; + + const index = geometry.index; + const geometryAttributes = renderObject.getAttributes(); + + if ( index !== null ) { + + this.attributes.delete( index ); + + } + + for ( const geometryAttribute of geometryAttributes ) { + + this.attributes.delete( geometryAttribute ); + + } + + const wireframeAttribute = this.wireframes.get( geometry ); + + if ( wireframeAttribute !== undefined ) { + + this.attributes.delete( wireframeAttribute ); + + } + + geometry.removeEventListener( 'dispose', onDispose ); + + }; + + geometry.addEventListener( 'dispose', onDispose ); + + } + + /** + * Updates the geometry attributes of the given render object. + * + * @param {RenderObject} renderObject - The render object. + */ + updateAttributes( renderObject ) { + + // attributes + + const attributes = renderObject.getAttributes(); + + for ( const attribute of attributes ) { + + if ( attribute.isStorageBufferAttribute || attribute.isStorageInstancedBufferAttribute ) { + + this.updateAttribute( attribute, AttributeType.STORAGE ); + + } else { + + this.updateAttribute( attribute, AttributeType.VERTEX ); + + } + + } + + // indexes + + const index = this.getIndex( renderObject ); + + if ( index !== null ) { + + this.updateAttribute( index, AttributeType.INDEX ); + + } + + // indirect + + const indirect = renderObject.geometry.indirect; + + if ( indirect !== null ) { + + this.updateAttribute( indirect, AttributeType.INDIRECT ); + + } + + } + + /** + * Updates the given attribute. + * + * @param {BufferAttribute} attribute - The attribute to update. + * @param {number} type - The attribute type. + */ + updateAttribute( attribute, type ) { + + const callId = this.info.render.calls; + + if ( ! attribute.isInterleavedBufferAttribute ) { + + if ( this.attributeCall.get( attribute ) !== callId ) { + + this.attributes.update( attribute, type ); + + this.attributeCall.set( attribute, callId ); + + } + + } else { + + if ( this.attributeCall.get( attribute ) === undefined ) { + + this.attributes.update( attribute, type ); + + this.attributeCall.set( attribute, callId ); + + } else if ( this.attributeCall.get( attribute.data ) !== callId ) { + + this.attributes.update( attribute, type ); + + this.attributeCall.set( attribute.data, callId ); + + this.attributeCall.set( attribute, callId ); + + } + + } + + } + + /** + * Returns the indirect buffer attribute of the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @return {?BufferAttribute} The indirect attribute. `null` if no indirect drawing is used. + */ + getIndirect( renderObject ) { + + return renderObject.geometry.indirect; + + } + + /** + * Returns the index of the given render object's geometry. This is implemented + * in a method to return a wireframe index if necessary. + * + * @param {RenderObject} renderObject - The render object. + * @return {?BufferAttribute} The index. Returns `null` for non-indexed geometries. + */ + getIndex( renderObject ) { + + const { geometry, material } = renderObject; + + let index = geometry.index; + + if ( material.wireframe === true ) { + + const wireframes = this.wireframes; + + let wireframeAttribute = wireframes.get( geometry ); + + if ( wireframeAttribute === undefined ) { + + wireframeAttribute = getWireframeIndex( geometry ); + + wireframes.set( geometry, wireframeAttribute ); + + } else if ( wireframeAttribute.version !== getWireframeVersion( geometry ) ) { + + this.attributes.delete( wireframeAttribute ); + + wireframeAttribute = getWireframeIndex( geometry ); + + wireframes.set( geometry, wireframeAttribute ); + + } + + index = wireframeAttribute; + + } + + return index; + + } + +} + +/** + * This renderer module provides a series of statistical information + * about the GPU memory and the rendering process. Useful for debugging + * and monitoring. + */ +class Info { + + /** + * Constructs a new info component. + */ + constructor() { + + /** + * Whether frame related metrics should automatically + * be resetted or not. This property should be set to `false` + * by apps which manage their own animation loop. They must + * then call `renderer.info.reset()` once per frame manually. + * + * @type {boolean} + * @default true + */ + this.autoReset = true; + + /** + * The current frame ID. This ID is managed + * by `NodeFrame`. + * + * @type {number} + * @readonly + * @default 0 + */ + this.frame = 0; + + /** + * The number of render calls since the + * app has been started. + * + * @type {number} + * @readonly + * @default 0 + */ + this.calls = 0; + + /** + * Render related metrics. + * + * @type {Object} + * @readonly + * @property {number} calls - The number of render calls since the app has been started. + * @property {number} frameCalls - The number of render calls of the current frame. + * @property {number} drawCalls - The number of draw calls of the current frame. + * @property {number} triangles - The number of rendered triangle primitives of the current frame. + * @property {number} points - The number of rendered point primitives of the current frame. + * @property {number} lines - The number of rendered line primitives of the current frame. + * @property {number} timestamp - The timestamp of the frame when using `renderer.renderAsync()`. + */ + this.render = { + calls: 0, + frameCalls: 0, + drawCalls: 0, + triangles: 0, + points: 0, + lines: 0, + timestamp: 0, + }; + + /** + * Compute related metrics. + * + * @type {Object} + * @readonly + * @property {number} calls - The number of compute calls since the app has been started. + * @property {number} frameCalls - The number of compute calls of the current frame. + * @property {number} timestamp - The timestamp of the frame when using `renderer.computeAsync()`. + */ + this.compute = { + calls: 0, + frameCalls: 0, + timestamp: 0 + }; + + /** + * Memory related metrics. + * + * @type {Object} + * @readonly + * @property {number} geometries - The number of active geometries. + * @property {number} frameCalls - The number of active textures. + */ + this.memory = { + geometries: 0, + textures: 0 + }; + + } + + /** + * This method should be executed per draw call and updates the corresponding metrics. + * + * @param {Object3D} object - The 3D object that is going to be rendered. + * @param {number} count - The vertex or index count. + * @param {number} instanceCount - The instance count. + */ + update( object, count, instanceCount ) { + + this.render.drawCalls ++; + + if ( object.isMesh || object.isSprite ) { + + this.render.triangles += instanceCount * ( count / 3 ); + + } else if ( object.isPoints ) { + + this.render.points += instanceCount * count; + + } else if ( object.isLineSegments ) { + + this.render.lines += instanceCount * ( count / 2 ); + + } else if ( object.isLine ) { + + this.render.lines += instanceCount * ( count - 1 ); + + } else { + + console.error( 'THREE.WebGPUInfo: Unknown object type.' ); + + } + + } + + /** + * Resets frame related metrics. + */ + reset() { + + this.render.drawCalls = 0; + this.render.frameCalls = 0; + this.compute.frameCalls = 0; + + this.render.triangles = 0; + this.render.points = 0; + this.render.lines = 0; + + + } + + /** + * Performs a complete reset of the object. + */ + dispose() { + + this.reset(); + + this.calls = 0; + + this.render.calls = 0; + this.compute.calls = 0; + + this.render.timestamp = 0; + this.compute.timestamp = 0; + this.memory.geometries = 0; + this.memory.textures = 0; + + } + +} + +/** + * Abstract class for representing pipelines. + * + * @private + * @abstract + */ +class Pipeline { + + /** + * Constructs a new pipeline. + * + * @param {string} cacheKey - The pipeline's cache key. + */ + constructor( cacheKey ) { + + /** + * The pipeline's cache key. + * + * @type {string} + */ + this.cacheKey = cacheKey; + + /** + * How often the pipeline is currently in use. + * + * @type {number} + * @default 0 + */ + this.usedTimes = 0; + + } + +} + +/** + * Class for representing render pipelines. + * + * @private + * @augments Pipeline + */ +class RenderPipeline extends Pipeline { + + /** + * Constructs a new render pipeline. + * + * @param {string} cacheKey - The pipeline's cache key. + * @param {ProgrammableStage} vertexProgram - The pipeline's vertex shader. + * @param {ProgrammableStage} fragmentProgram - The pipeline's fragment shader. + */ + constructor( cacheKey, vertexProgram, fragmentProgram ) { + + super( cacheKey ); + + /** + * The pipeline's vertex shader. + * + * @type {ProgrammableStage} + */ + this.vertexProgram = vertexProgram; + + /** + * The pipeline's fragment shader. + * + * @type {ProgrammableStage} + */ + this.fragmentProgram = fragmentProgram; + + } + +} + +/** + * Class for representing compute pipelines. + * + * @private + * @augments Pipeline + */ +class ComputePipeline extends Pipeline { + + /** + * Constructs a new render pipeline. + * + * @param {string} cacheKey - The pipeline's cache key. + * @param {ProgrammableStage} computeProgram - The pipeline's compute shader. + */ + constructor( cacheKey, computeProgram ) { + + super( cacheKey ); + + /** + * The pipeline's compute shader. + * + * @type {ProgrammableStage} + */ + this.computeProgram = computeProgram; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isComputePipeline = true; + + } + +} + +let _id$8 = 0; + +/** + * Class for representing programmable stages which are vertex, + * fragment or compute shaders. Unlike fixed-function states (like blending), + * they represent the programmable part of a pipeline. + * + * @private + */ +class ProgrammableStage { + + /** + * Constructs a new programmable stage. + * + * @param {string} code - The shader code. + * @param {('vertex'|'fragment'|'compute')} stage - The type of stage. + * @param {string} name - The name of the shader. + * @param {?Array} [transforms=null] - The transforms (only relevant for compute stages with WebGL 2 which uses Transform Feedback). + * @param {?Array} [attributes=null] - The attributes (only relevant for compute stages with WebGL 2 which uses Transform Feedback). + */ + constructor( code, stage, name, transforms = null, attributes = null ) { + + /** + * The id of the programmable stage. + * + * @type {number} + */ + this.id = _id$8 ++; + + /** + * The shader code. + * + * @type {string} + */ + this.code = code; + + /** + * The type of stage. + * + * @type {string} + */ + this.stage = stage; + + /** + * The name of the stage. + * This is used for debugging purposes. + * + * @type {string} + */ + this.name = name; + + /** + * The transforms (only relevant for compute stages with WebGL 2 which uses Transform Feedback). + * + * @type {?Array} + */ + this.transforms = transforms; + + /** + * The attributes (only relevant for compute stages with WebGL 2 which uses Transform Feedback). + * + * @type {?Array} + */ + this.attributes = attributes; + + /** + * How often the programmable stage is currently in use. + * + * @type {number} + * @default 0 + */ + this.usedTimes = 0; + + } + +} + +/** + * This renderer module manages the pipelines of the renderer. + * + * @private + * @augments DataMap + */ +class Pipelines extends DataMap { + + /** + * Constructs a new pipeline management component. + * + * @param {Backend} backend - The renderer's backend. + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + */ + constructor( backend, nodes ) { + + super(); + + /** + * The renderer's backend. + * + * @type {Backend} + */ + this.backend = backend; + + /** + * Renderer component for managing nodes related logic. + * + * @type {Nodes} + */ + this.nodes = nodes; + + /** + * A references to the bindings management component. + * This reference will be set inside the `Bindings` + * constructor. + * + * @type {?Bindings} + * @default null + */ + this.bindings = null; + + /** + * Internal cache for maintaining pipelines. + * The key of the map is a cache key, the value the pipeline. + * + * @type {Map} + */ + this.caches = new Map(); + + /** + * This dictionary maintains for each shader stage type (vertex, + * fragment and compute) the programmable stage objects which + * represent the actual shader code. + * + * @type {Object} + */ + this.programs = { + vertex: new Map(), + fragment: new Map(), + compute: new Map() + }; + + } + + /** + * Returns a compute pipeline for the given compute node. + * + * @param {Node} computeNode - The compute node. + * @param {Array} bindings - The bindings. + * @return {ComputePipeline} The compute pipeline. + */ + getForCompute( computeNode, bindings ) { + + const { backend } = this; + + const data = this.get( computeNode ); + + if ( this._needsComputeUpdate( computeNode ) ) { + + const previousPipeline = data.pipeline; + + if ( previousPipeline ) { + + previousPipeline.usedTimes --; + previousPipeline.computeProgram.usedTimes --; + + } + + // get shader + + const nodeBuilderState = this.nodes.getForCompute( computeNode ); + + // programmable stage + + let stageCompute = this.programs.compute.get( nodeBuilderState.computeShader ); + + if ( stageCompute === undefined ) { + + if ( previousPipeline && previousPipeline.computeProgram.usedTimes === 0 ) this._releaseProgram( previousPipeline.computeProgram ); + + stageCompute = new ProgrammableStage( nodeBuilderState.computeShader, 'compute', computeNode.name, nodeBuilderState.transforms, nodeBuilderState.nodeAttributes ); + this.programs.compute.set( nodeBuilderState.computeShader, stageCompute ); + + backend.createProgram( stageCompute ); + + } + + // determine compute pipeline + + const cacheKey = this._getComputeCacheKey( computeNode, stageCompute ); + + let pipeline = this.caches.get( cacheKey ); + + if ( pipeline === undefined ) { + + if ( previousPipeline && previousPipeline.usedTimes === 0 ) this._releasePipeline( previousPipeline ); + + pipeline = this._getComputePipeline( computeNode, stageCompute, cacheKey, bindings ); + + } + + // keep track of all used times + + pipeline.usedTimes ++; + stageCompute.usedTimes ++; + + // + + data.version = computeNode.version; + data.pipeline = pipeline; + + } + + return data.pipeline; + + } + + /** + * Returns a render pipeline for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @param {?Array} [promises=null] - An array of compilation promises which is only relevant in context of `Renderer.compileAsync()`. + * @return {RenderPipeline} The render pipeline. + */ + getForRender( renderObject, promises = null ) { + + const { backend } = this; + + const data = this.get( renderObject ); + + if ( this._needsRenderUpdate( renderObject ) ) { + + const previousPipeline = data.pipeline; + + if ( previousPipeline ) { + + previousPipeline.usedTimes --; + previousPipeline.vertexProgram.usedTimes --; + previousPipeline.fragmentProgram.usedTimes --; + + } + + // get shader + + const nodeBuilderState = renderObject.getNodeBuilderState(); + + const name = renderObject.material ? renderObject.material.name : ''; + + // programmable stages + + let stageVertex = this.programs.vertex.get( nodeBuilderState.vertexShader ); + + if ( stageVertex === undefined ) { + + if ( previousPipeline && previousPipeline.vertexProgram.usedTimes === 0 ) this._releaseProgram( previousPipeline.vertexProgram ); + + stageVertex = new ProgrammableStage( nodeBuilderState.vertexShader, 'vertex', name ); + this.programs.vertex.set( nodeBuilderState.vertexShader, stageVertex ); + + backend.createProgram( stageVertex ); + + } + + let stageFragment = this.programs.fragment.get( nodeBuilderState.fragmentShader ); + + if ( stageFragment === undefined ) { + + if ( previousPipeline && previousPipeline.fragmentProgram.usedTimes === 0 ) this._releaseProgram( previousPipeline.fragmentProgram ); + + stageFragment = new ProgrammableStage( nodeBuilderState.fragmentShader, 'fragment', name ); + this.programs.fragment.set( nodeBuilderState.fragmentShader, stageFragment ); + + backend.createProgram( stageFragment ); + + } + + // determine render pipeline + + const cacheKey = this._getRenderCacheKey( renderObject, stageVertex, stageFragment ); + + let pipeline = this.caches.get( cacheKey ); + + if ( pipeline === undefined ) { + + if ( previousPipeline && previousPipeline.usedTimes === 0 ) this._releasePipeline( previousPipeline ); + + pipeline = this._getRenderPipeline( renderObject, stageVertex, stageFragment, cacheKey, promises ); + + } else { + + renderObject.pipeline = pipeline; + + } + + // keep track of all used times + + pipeline.usedTimes ++; + stageVertex.usedTimes ++; + stageFragment.usedTimes ++; + + // + + data.pipeline = pipeline; + + } + + return data.pipeline; + + } + + /** + * Deletes the pipeline for the given render object. + * + * @param {RenderObject} object - The render object. + * @return {?Object} The deleted dictionary. + */ + delete( object ) { + + const pipeline = this.get( object ).pipeline; + + if ( pipeline ) { + + // pipeline + + pipeline.usedTimes --; + + if ( pipeline.usedTimes === 0 ) this._releasePipeline( pipeline ); + + // programs + + if ( pipeline.isComputePipeline ) { + + pipeline.computeProgram.usedTimes --; + + if ( pipeline.computeProgram.usedTimes === 0 ) this._releaseProgram( pipeline.computeProgram ); + + } else { + + pipeline.fragmentProgram.usedTimes --; + pipeline.vertexProgram.usedTimes --; + + if ( pipeline.vertexProgram.usedTimes === 0 ) this._releaseProgram( pipeline.vertexProgram ); + if ( pipeline.fragmentProgram.usedTimes === 0 ) this._releaseProgram( pipeline.fragmentProgram ); + + } + + } + + return super.delete( object ); + + } + + /** + * Frees internal resources. + */ + dispose() { + + super.dispose(); + + this.caches = new Map(); + this.programs = { + vertex: new Map(), + fragment: new Map(), + compute: new Map() + }; + + } + + /** + * Updates the pipeline for the given render object. + * + * @param {RenderObject} renderObject - The render object. + */ + updateForRender( renderObject ) { + + this.getForRender( renderObject ); + + } + + /** + * Returns a compute pipeline for the given parameters. + * + * @private + * @param {Node} computeNode - The compute node. + * @param {ProgrammableStage} stageCompute - The programmable stage representing the compute shader. + * @param {string} cacheKey - The cache key. + * @param {Array} bindings - The bindings. + * @return {ComputePipeline} The compute pipeline. + */ + _getComputePipeline( computeNode, stageCompute, cacheKey, bindings ) { + + // check for existing pipeline + + cacheKey = cacheKey || this._getComputeCacheKey( computeNode, stageCompute ); + + let pipeline = this.caches.get( cacheKey ); + + if ( pipeline === undefined ) { + + pipeline = new ComputePipeline( cacheKey, stageCompute ); + + this.caches.set( cacheKey, pipeline ); + + this.backend.createComputePipeline( pipeline, bindings ); + + } + + return pipeline; + + } + + /** + * Returns a render pipeline for the given parameters. + * + * @private + * @param {RenderObject} renderObject - The render object. + * @param {ProgrammableStage} stageVertex - The programmable stage representing the vertex shader. + * @param {ProgrammableStage} stageFragment - The programmable stage representing the fragment shader. + * @param {string} cacheKey - The cache key. + * @param {?Array} promises - An array of compilation promises which is only relevant in context of `Renderer.compileAsync()`. + * @return {ComputePipeline} The compute pipeline. + */ + _getRenderPipeline( renderObject, stageVertex, stageFragment, cacheKey, promises ) { + + // check for existing pipeline + + cacheKey = cacheKey || this._getRenderCacheKey( renderObject, stageVertex, stageFragment ); + + let pipeline = this.caches.get( cacheKey ); + + if ( pipeline === undefined ) { + + pipeline = new RenderPipeline( cacheKey, stageVertex, stageFragment ); + + this.caches.set( cacheKey, pipeline ); + + renderObject.pipeline = pipeline; + + // The `promises` array is `null` by default and only set to an empty array when + // `Renderer.compileAsync()` is used. The next call actually fills the array with + // pending promises that resolve when the render pipelines are ready for rendering. + + this.backend.createRenderPipeline( renderObject, promises ); + + } + + return pipeline; + + } + + /** + * Computes a cache key representing a compute pipeline. + * + * @private + * @param {Node} computeNode - The compute node. + * @param {ProgrammableStage} stageCompute - The programmable stage representing the compute shader. + * @return {string} The cache key. + */ + _getComputeCacheKey( computeNode, stageCompute ) { + + return computeNode.id + ',' + stageCompute.id; + + } + + /** + * Computes a cache key representing a render pipeline. + * + * @private + * @param {RenderObject} renderObject - The render object. + * @param {ProgrammableStage} stageVertex - The programmable stage representing the vertex shader. + * @param {ProgrammableStage} stageFragment - The programmable stage representing the fragment shader. + * @return {string} The cache key. + */ + _getRenderCacheKey( renderObject, stageVertex, stageFragment ) { + + return stageVertex.id + ',' + stageFragment.id + ',' + this.backend.getRenderCacheKey( renderObject ); + + } + + /** + * Releases the given pipeline. + * + * @private + * @param {Pipeline} pipeline - The pipeline to release. + */ + _releasePipeline( pipeline ) { + + this.caches.delete( pipeline.cacheKey ); + + } + + /** + * Releases the shader program. + * + * @private + * @param {Object} program - The shader program to release. + */ + _releaseProgram( program ) { + + const code = program.code; + const stage = program.stage; + + this.programs[ stage ].delete( code ); + + } + + /** + * Returns `true` if the compute pipeline for the given compute node requires an update. + * + * @private + * @param {Node} computeNode - The compute node. + * @return {boolean} Whether the compute pipeline for the given compute node requires an update or not. + */ + _needsComputeUpdate( computeNode ) { + + const data = this.get( computeNode ); + + return data.pipeline === undefined || data.version !== computeNode.version; + + } + + /** + * Returns `true` if the render pipeline for the given render object requires an update. + * + * @private + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the render object for the given render object requires an update or not. + */ + _needsRenderUpdate( renderObject ) { + + const data = this.get( renderObject ); + + return data.pipeline === undefined || this.backend.needsRenderUpdate( renderObject ); + + } + +} + +/** + * This renderer module manages the bindings of the renderer. + * + * @private + * @augments DataMap + */ +class Bindings extends DataMap { + + /** + * Constructs a new bindings management component. + * + * @param {Backend} backend - The renderer's backend. + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + * @param {Textures} textures - Renderer component for managing textures. + * @param {Attributes} attributes - Renderer component for managing attributes. + * @param {Pipelines} pipelines - Renderer component for managing pipelines. + * @param {Info} info - Renderer component for managing metrics and monitoring data. + */ + constructor( backend, nodes, textures, attributes, pipelines, info ) { + + super(); + + /** + * The renderer's backend. + * + * @type {Backend} + */ + this.backend = backend; + + /** + * Renderer component for managing textures. + * + * @type {Textures} + */ + this.textures = textures; + + /** + * Renderer component for managing pipelines. + * + * @type {Pipelines} + */ + this.pipelines = pipelines; + + /** + * Renderer component for managing attributes. + * + * @type {Attributes} + */ + this.attributes = attributes; + + /** + * Renderer component for managing nodes related logic. + * + * @type {Nodes} + */ + this.nodes = nodes; + + /** + * Renderer component for managing metrics and monitoring data. + * + * @type {Info} + */ + this.info = info; + + this.pipelines.bindings = this; // assign bindings to pipelines + + } + + /** + * Returns the bind groups for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @return {Array} The bind groups. + */ + getForRender( renderObject ) { + + const bindings = renderObject.getBindings(); + + for ( const bindGroup of bindings ) { + + const groupData = this.get( bindGroup ); + + if ( groupData.bindGroup === undefined ) { + + // each object defines an array of bindings (ubos, textures, samplers etc.) + + this._init( bindGroup ); + + this.backend.createBindings( bindGroup, bindings, 0 ); + + groupData.bindGroup = bindGroup; + + } + + } + + return bindings; + + } + + /** + * Returns the bind groups for the given compute node. + * + * @param {Node} computeNode - The compute node. + * @return {Array} The bind groups. + */ + getForCompute( computeNode ) { + + const bindings = this.nodes.getForCompute( computeNode ).bindings; + + for ( const bindGroup of bindings ) { + + const groupData = this.get( bindGroup ); + + if ( groupData.bindGroup === undefined ) { + + this._init( bindGroup ); + + this.backend.createBindings( bindGroup, bindings, 0 ); + + groupData.bindGroup = bindGroup; + + } + + } + + return bindings; + + } + + /** + * Updates the bindings for the given compute node. + * + * @param {Node} computeNode - The compute node. + */ + updateForCompute( computeNode ) { + + this._updateBindings( this.getForCompute( computeNode ) ); + + } + + /** + * Updates the bindings for the given render object. + * + * @param {RenderObject} renderObject - The render object. + */ + updateForRender( renderObject ) { + + this._updateBindings( this.getForRender( renderObject ) ); + + } + + /** + * Updates the given array of bindings. + * + * @param {Array} bindings - The bind groups. + */ + _updateBindings( bindings ) { + + for ( const bindGroup of bindings ) { + + this._update( bindGroup, bindings ); + + } + + } + + /** + * Initializes the given bind group. + * + * @param {BindGroup} bindGroup - The bind group to initialize. + */ + _init( bindGroup ) { + + for ( const binding of bindGroup.bindings ) { + + if ( binding.isSampledTexture ) { + + this.textures.updateTexture( binding.texture ); + + } else if ( binding.isStorageBuffer ) { + + const attribute = binding.attribute; + const attributeType = attribute.isIndirectStorageBufferAttribute ? AttributeType.INDIRECT : AttributeType.STORAGE; + + this.attributes.update( attribute, attributeType ); + + } + + } + + } + + /** + * Updates the given bind group. + * + * @param {BindGroup} bindGroup - The bind group to update. + * @param {Array} bindings - The bind groups. + */ + _update( bindGroup, bindings ) { + + const { backend } = this; + + let needsBindingsUpdate = false; + let cacheBindings = true; + let cacheIndex = 0; + let version = 0; + + // iterate over all bindings and check if buffer updates or a new binding group is required + + for ( const binding of bindGroup.bindings ) { + + if ( binding.isNodeUniformsGroup ) { + + const updated = this.nodes.updateGroup( binding ); + + // every uniforms group is a uniform buffer. So if no update is required, + // we move one with the next binding. Otherwise the next if block will update the group. + + if ( updated === false ) continue; + + } + + if ( binding.isStorageBuffer ) { + + const attribute = binding.attribute; + const attributeType = attribute.isIndirectStorageBufferAttribute ? AttributeType.INDIRECT : AttributeType.STORAGE; + + this.attributes.update( attribute, attributeType ); + + + } + + if ( binding.isUniformBuffer ) { + + const updated = binding.update(); + + if ( updated ) { + + backend.updateBinding( binding ); + + } + + } else if ( binding.isSampler ) { + + binding.update(); + + } else if ( binding.isSampledTexture ) { + + const texturesTextureData = this.textures.get( binding.texture ); + + if ( binding.needsBindingsUpdate( texturesTextureData.generation ) ) needsBindingsUpdate = true; + + const updated = binding.update(); + + const texture = binding.texture; + + if ( updated ) { + + this.textures.updateTexture( texture ); + + } + + const textureData = backend.get( texture ); + + if ( textureData.externalTexture !== undefined || texturesTextureData.isDefaultTexture ) { + + cacheBindings = false; + + } else { + + cacheIndex = cacheIndex * 10 + texture.id; + version += texture.version; + + } + + if ( backend.isWebGPUBackend === true && textureData.texture === undefined && textureData.externalTexture === undefined ) { + + // TODO: Remove this once we found why updated === false isn't bound to a texture in the WebGPU backend + console.error( 'Bindings._update: binding should be available:', binding, updated, texture, binding.textureNode.value, needsBindingsUpdate ); + + this.textures.updateTexture( texture ); + needsBindingsUpdate = true; + + } + + if ( texture.isStorageTexture === true ) { + + const textureData = this.get( texture ); + + if ( binding.store === true ) { + + textureData.needsMipmap = true; + + } else if ( this.textures.needsMipmaps( texture ) && textureData.needsMipmap === true ) { + + this.backend.generateMipmaps( texture ); + + textureData.needsMipmap = false; + + } + + } + + } + + } + + if ( needsBindingsUpdate === true ) { + + this.backend.updateBindings( bindGroup, bindings, cacheBindings ? cacheIndex : 0, version ); + + } + + } + +} + +/** + * Default sorting function for opaque render items. + * + * @private + * @function + * @param {Object} a - The first render item. + * @param {Object} b - The second render item. + * @return {number} A numeric value which defines the sort order. + */ +function painterSortStable( a, b ) { + + if ( a.groupOrder !== b.groupOrder ) { + + return a.groupOrder - b.groupOrder; + + } else if ( a.renderOrder !== b.renderOrder ) { + + return a.renderOrder - b.renderOrder; + + } else if ( a.z !== b.z ) { + + return a.z - b.z; + + } else { + + return a.id - b.id; + + } + +} + +/** + * Default sorting function for transparent render items. + * + * @private + * @function + * @param {Object} a - The first render item. + * @param {Object} b - The second render item. + * @return {number} A numeric value which defines the sort order. + */ +function reversePainterSortStable( a, b ) { + + if ( a.groupOrder !== b.groupOrder ) { + + return a.groupOrder - b.groupOrder; + + } else if ( a.renderOrder !== b.renderOrder ) { + + return a.renderOrder - b.renderOrder; + + } else if ( a.z !== b.z ) { + + return b.z - a.z; + + } else { + + return a.id - b.id; + + } + +} + +/** + * Returns `true` if the given transparent material requires a double pass. + * + * @private + * @function + * @param {Material} material - The transparent material. + * @return {boolean} Whether the given material requires a double pass or not. + */ +function needsDoublePass( material ) { + + const hasTransmission = material.transmission > 0 || material.transmissionNode; + + return hasTransmission && material.side === DoubleSide && material.forceSinglePass === false; + +} + +/** + * When the renderer analyzes the scene at the beginning of a render call, + * it stores 3D object for further processing in render lists. Depending on the + * properties of a 3D objects (like their transformation or material state), the + * objects are maintained in ordered lists for the actual rendering. + * + * Render lists are unique per scene and camera combination. + * + * @private + * @augments Pipeline + */ +class RenderList { + + /** + * Constructs a render list. + * + * @param {Lighting} lighting - The lighting management component. + * @param {Scene} scene - The scene. + * @param {Camera} camera - The camera the scene is rendered with. + */ + constructor( lighting, scene, camera ) { + + /** + * 3D objects are transformed into render items and stored in this array. + * + * @type {Array} + */ + this.renderItems = []; + + /** + * The current render items index. + * + * @type {number} + * @default 0 + */ + this.renderItemsIndex = 0; + + /** + * A list with opaque render items. + * + * @type {Array} + */ + this.opaque = []; + + /** + * A list with transparent render items which require + * double pass rendering (e.g. transmissive objects). + * + * @type {Array} + */ + this.transparentDoublePass = []; + + /** + * A list with transparent render items. + * + * @type {Array} + */ + this.transparent = []; + + /** + * A list with transparent render bundle data. + * + * @type {Array} + */ + this.bundles = []; + + /** + * The render list's lights node. This node is later + * relevant for the actual analytical light nodes which + * compute the scene's lighting in the shader. + * + * @type {LightsNode} + */ + this.lightsNode = lighting.getNode( scene, camera ); + + /** + * The scene's lights stored in an array. This array + * is used to setup the lights node. + * + * @type {Array} + */ + this.lightsArray = []; + + /** + * The scene. + * + * @type {Scene} + */ + this.scene = scene; + + /** + * The camera the scene is rendered with. + * + * @type {Camera} + */ + this.camera = camera; + + /** + * How many objects perform occlusion query tests. + * + * @type {number} + * @default 0 + */ + this.occlusionQueryCount = 0; + + } + + /** + * This method is called right at the beginning of a render call + * before the scene is analyzed. It prepares the internal data + * structures for the upcoming render lists generation. + * + * @return {RenderList} A reference to this render list. + */ + begin() { + + this.renderItemsIndex = 0; + + this.opaque.length = 0; + this.transparentDoublePass.length = 0; + this.transparent.length = 0; + this.bundles.length = 0; + + this.lightsArray.length = 0; + + this.occlusionQueryCount = 0; + + return this; + + } + + /** + * Returns a render item for the giving render item state. The state is defined + * by a series of object-related parameters. + * + * The method avoids object creation by holding render items and reusing them in + * subsequent render calls (just with different property values). + * + * @param {Object3D} object - The 3D object. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} material - The 3D object's material. + * @param {number} groupOrder - The current group order. + * @param {number} z - Th 3D object's depth value (z value in clip space). + * @param {?number} group - {?Object} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {ClippingContext} clippingContext - The current clipping context. + * @return {Object} The render item. + */ + getNextRenderItem( object, geometry, material, groupOrder, z, group, clippingContext ) { + + let renderItem = this.renderItems[ this.renderItemsIndex ]; + + if ( renderItem === undefined ) { + + renderItem = { + id: object.id, + object: object, + geometry: geometry, + material: material, + groupOrder: groupOrder, + renderOrder: object.renderOrder, + z: z, + group: group, + clippingContext: clippingContext + }; + + this.renderItems[ this.renderItemsIndex ] = renderItem; + + } else { + + renderItem.id = object.id; + renderItem.object = object; + renderItem.geometry = geometry; + renderItem.material = material; + renderItem.groupOrder = groupOrder; + renderItem.renderOrder = object.renderOrder; + renderItem.z = z; + renderItem.group = group; + renderItem.clippingContext = clippingContext; + + } + + this.renderItemsIndex ++; + + return renderItem; + + } + + /** + * Pushes the given object as a render item to the internal render lists. + * The selected lists depend on the object properties. + * + * @param {Object3D} object - The 3D object. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} material - The 3D object's material. + * @param {number} groupOrder - The current group order. + * @param {number} z - Th 3D object's depth value (z value in clip space). + * @param {?number} group - {?Object} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {ClippingContext} clippingContext - The current clipping context. + */ + push( object, geometry, material, groupOrder, z, group, clippingContext ) { + + const renderItem = this.getNextRenderItem( object, geometry, material, groupOrder, z, group, clippingContext ); + + if ( object.occlusionTest === true ) this.occlusionQueryCount ++; + + if ( material.transparent === true || material.transmission > 0 ) { + + if ( needsDoublePass( material ) ) this.transparentDoublePass.push( renderItem ); + + this.transparent.push( renderItem ); + + } else { + + this.opaque.push( renderItem ); + + } + + } + + /** + * Inserts the given object as a render item at the start of the internal render lists. + * The selected lists depend on the object properties. + * + * @param {Object3D} object - The 3D object. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} material - The 3D object's material. + * @param {number} groupOrder - The current group order. + * @param {number} z - Th 3D object's depth value (z value in clip space). + * @param {?number} group - {?Object} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {ClippingContext} clippingContext - The current clipping context. + */ + unshift( object, geometry, material, groupOrder, z, group, clippingContext ) { + + const renderItem = this.getNextRenderItem( object, geometry, material, groupOrder, z, group, clippingContext ); + + if ( material.transparent === true || material.transmission > 0 ) { + + if ( needsDoublePass( material ) ) this.transparentDoublePass.unshift( renderItem ); + + this.transparent.unshift( renderItem ); + + } else { + + this.opaque.unshift( renderItem ); + + } + + } + + /** + * Pushes render bundle group data into the render list. + * + * @param {Object} group - Bundle group data. + */ + pushBundle( group ) { + + this.bundles.push( group ); + + } + + /** + * Pushes a light into the render list. + * + * @param {Light} light - The light. + */ + pushLight( light ) { + + this.lightsArray.push( light ); + + } + + /** + * Sorts the internal render lists. + * + * @param {?function(any, any): number} customOpaqueSort - A custom sort function for opaque objects. + * @param {?function(any, any): number} customTransparentSort - A custom sort function for transparent objects. + */ + sort( customOpaqueSort, customTransparentSort ) { + + if ( this.opaque.length > 1 ) this.opaque.sort( customOpaqueSort || painterSortStable ); + if ( this.transparentDoublePass.length > 1 ) this.transparentDoublePass.sort( customTransparentSort || reversePainterSortStable ); + if ( this.transparent.length > 1 ) this.transparent.sort( customTransparentSort || reversePainterSortStable ); + + } + + /** + * This method performs finalizing tasks right after the render lists + * have been generated. + */ + finish() { + + // update lights + + this.lightsNode.setLights( this.lightsArray ); + + // Clear references from inactive renderItems in the list + + for ( let i = this.renderItemsIndex, il = this.renderItems.length; i < il; i ++ ) { + + const renderItem = this.renderItems[ i ]; + + if ( renderItem.id === null ) break; + + renderItem.id = null; + renderItem.object = null; + renderItem.geometry = null; + renderItem.material = null; + renderItem.groupOrder = null; + renderItem.renderOrder = null; + renderItem.z = null; + renderItem.group = null; + renderItem.clippingContext = null; + + } + + } + +} + +const _chainKeys$4 = []; + +/** + * This renderer module manages the render lists which are unique + * per scene and camera combination. + * + * @private + */ +class RenderLists { + + /** + * Constructs a render lists management component. + * + * @param {Lighting} lighting - The lighting management component. + */ + constructor( lighting ) { + + /** + * The lighting management component. + * + * @type {Lighting} + */ + this.lighting = lighting; + + /** + * The internal chain map which holds the render lists. + * + * @type {ChainMap} + */ + this.lists = new ChainMap(); + + } + + /** + * Returns a render list for the given scene and camera. + * + * @param {Scene} scene - The scene. + * @param {Camera} camera - The camera. + * @return {RenderList} The render list. + */ + get( scene, camera ) { + + const lists = this.lists; + + _chainKeys$4[ 0 ] = scene; + _chainKeys$4[ 1 ] = camera; + + let list = lists.get( _chainKeys$4 ); + + if ( list === undefined ) { + + list = new RenderList( this.lighting, scene, camera ); + lists.set( _chainKeys$4, list ); + + } + + _chainKeys$4.length = 0; + + return list; + + } + + /** + * Frees all internal resources. + */ + dispose() { + + this.lists = new ChainMap(); + + } + +} + +let _id$7 = 0; + +/** + * Any render or compute command is executed in a specific context that defines + * the state of the renderer and its backend. Typical examples for such context + * data are the current clear values or data from the active framebuffer. This + * module is used to represent these contexts as objects. + * + * @private + */ +class RenderContext { + + /** + * Constructs a new render context. + */ + constructor() { + + /** + * The context's ID. + * + * @type {number} + */ + this.id = _id$7 ++; + + /** + * Whether the current active framebuffer has a color attachment. + * + * @type {boolean} + * @default true + */ + this.color = true; + + /** + * Whether the color attachment should be cleared or not. + * + * @type {boolean} + * @default true + */ + this.clearColor = true; + + /** + * The clear color value. + * + * @type {Object} + * @default true + */ + this.clearColorValue = { r: 0, g: 0, b: 0, a: 1 }; + + /** + * Whether the current active framebuffer has a depth attachment. + * + * @type {boolean} + * @default true + */ + this.depth = true; + + /** + * Whether the depth attachment should be cleared or not. + * + * @type {boolean} + * @default true + */ + this.clearDepth = true; + + /** + * The clear depth value. + * + * @type {number} + * @default 1 + */ + this.clearDepthValue = 1; + + /** + * Whether the current active framebuffer has a stencil attachment. + * + * @type {boolean} + * @default false + */ + this.stencil = false; + + /** + * Whether the stencil attachment should be cleared or not. + * + * @type {boolean} + * @default true + */ + this.clearStencil = true; + + /** + * The clear stencil value. + * + * @type {number} + * @default 1 + */ + this.clearStencilValue = 1; + + /** + * By default the viewport encloses the entire framebuffer If a smaller + * viewport is manually defined, this property is to `true` by the renderer. + * + * @type {boolean} + * @default false + */ + this.viewport = false; + + /** + * The viewport value. This value is in physical pixels meaning it incorporates + * the renderer's pixel ratio. The viewport property of render targets or + * the renderer is in logical pixels. + * + * @type {Vector4} + */ + this.viewportValue = new Vector4(); + + /** + * When the scissor test is active and scissor rectangle smaller than the + * framebuffers dimensions, this property is to `true` by the renderer. + * + * @type {boolean} + * @default false + */ + this.scissor = false; + + /** + * The scissor rectangle. + * + * @type {Vector4} + */ + this.scissorValue = new Vector4(); + + /** + * The active render target. + * + * @type {?RenderTarget} + * @default null + */ + this.renderTarget = null; + + /** + * The textures of the active render target. + * `null` when no render target is set. + * + * @type {?Array} + * @default null + */ + this.textures = null; + + /** + * The depth texture of the active render target. + * `null` when no render target is set. + * + * @type {?DepthTexture} + * @default null + */ + this.depthTexture = null; + + /** + * The active cube face. + * + * @type {number} + * @default 0 + */ + this.activeCubeFace = 0; + + /** + * The active mipmap level. + * + * @type {number} + * @default 0 + */ + this.activeMipmapLevel = 0; + + /** + * The number of MSAA samples. This value is always `1` when + * MSAA isn't used. + * + * @type {number} + * @default 1 + */ + this.sampleCount = 1; + + /** + * The active render target's width in physical pixels. + * + * @type {number} + * @default 0 + */ + this.width = 0; + + /** + * The active render target's height in physical pixels. + * + * @type {number} + * @default 0 + */ + this.height = 0; + + /** + * The occlusion query count. + * + * @type {number} + * @default 0 + */ + this.occlusionQueryCount = 0; + + /** + * The current clipping context. + * + * @type {?ClippingContext} + * @default null + */ + this.clippingContext = null; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isRenderContext = true; + + } + + /** + * Returns the cache key of this render context. + * + * @return {number} The cache key. + */ + getCacheKey() { + + return getCacheKey( this ); + + } + +} + +/** + * Computes a cache key for the given render context. This key + * should identify the render target state so it is possible to + * configure the correct attachments in the respective backend. + * + * @param {RenderContext} renderContext - The render context. + * @return {number} The cache key. + */ +function getCacheKey( renderContext ) { + + const { textures, activeCubeFace } = renderContext; + + const values = [ activeCubeFace ]; + + for ( const texture of textures ) { + + values.push( texture.id ); + + } + + return hashArray( values ); + +} + +const _chainKeys$3 = []; +const _defaultScene = /*@__PURE__*/ new Scene(); +const _defaultCamera = /*@__PURE__*/ new Camera(); + +/** + * This module manages the render contexts of the renderer. + * + * @private + */ +class RenderContexts { + + /** + * Constructs a new render context management component. + */ + constructor() { + + /** + * A dictionary that manages render contexts in chain maps + * for each attachment state. + * + * @type {Object} + */ + this.chainMaps = {}; + + } + + /** + * Returns a render context for the given scene, camera and render target. + * + * @param {Scene} scene - The scene. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {?RenderTarget} [renderTarget=null] - The active render target. + * @return {RenderContext} The render context. + */ + get( scene, camera, renderTarget = null ) { + + _chainKeys$3[ 0 ] = scene; + _chainKeys$3[ 1 ] = camera; + + let attachmentState; + + if ( renderTarget === null ) { + + attachmentState = 'default'; + + } else { + + const format = renderTarget.texture.format; + const count = renderTarget.textures.length; + + attachmentState = `${ count }:${ format }:${ renderTarget.samples }:${ renderTarget.depthBuffer }:${ renderTarget.stencilBuffer }`; + + } + + const chainMap = this._getChainMap( attachmentState ); + + let renderState = chainMap.get( _chainKeys$3 ); + + if ( renderState === undefined ) { + + renderState = new RenderContext(); + + chainMap.set( _chainKeys$3, renderState ); + + } + + _chainKeys$3.length = 0; + + if ( renderTarget !== null ) renderState.sampleCount = renderTarget.samples === 0 ? 1 : renderTarget.samples; + + return renderState; + + } + + /** + * Returns a render context intended for clear operations. + * + * @param {?RenderTarget} [renderTarget=null] - The active render target. + * @return {RenderContext} The render context. + */ + getForClear( renderTarget = null ) { + + return this.get( _defaultScene, _defaultCamera, renderTarget ); + + } + + /** + * Returns a chain map for the given attachment state. + * + * @private + * @param {string} attachmentState - The attachment state. + * @return {ChainMap} The chain map. + */ + _getChainMap( attachmentState ) { + + return this.chainMaps[ attachmentState ] || ( this.chainMaps[ attachmentState ] = new ChainMap() ); + + } + + /** + * Frees internal resources. + */ + dispose() { + + this.chainMaps = {}; + + } + +} + +const _size$3 = /*@__PURE__*/ new Vector3(); + +/** + * This module manages the textures of the renderer. + * + * @private + * @augments DataMap + */ +class Textures extends DataMap { + + /** + * Constructs a new texture management component. + * + * @param {Renderer} renderer - The renderer. + * @param {Backend} backend - The renderer's backend. + * @param {Info} info - Renderer component for managing metrics and monitoring data. + */ + constructor( renderer, backend, info ) { + + super(); + + /** + * The renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * The backend. + * + * @type {Backend} + */ + this.backend = backend; + + /** + * Renderer component for managing metrics and monitoring data. + * + * @type {Info} + */ + this.info = info; + + } + + /** + * Updates the given render target. Based on the given render target configuration, + * it updates the texture states representing the attachments of the framebuffer. + * + * @param {RenderTarget} renderTarget - The render target to update. + * @param {number} [activeMipmapLevel=0] - The active mipmap level. + */ + updateRenderTarget( renderTarget, activeMipmapLevel = 0 ) { + + const renderTargetData = this.get( renderTarget ); + + const sampleCount = renderTarget.samples === 0 ? 1 : renderTarget.samples; + const depthTextureMips = renderTargetData.depthTextureMips || ( renderTargetData.depthTextureMips = {} ); + + const textures = renderTarget.textures; + + const size = this.getSize( textures[ 0 ] ); + + const mipWidth = size.width >> activeMipmapLevel; + const mipHeight = size.height >> activeMipmapLevel; + + let depthTexture = renderTarget.depthTexture || depthTextureMips[ activeMipmapLevel ]; + const useDepthTexture = renderTarget.depthBuffer === true || renderTarget.stencilBuffer === true; + + let textureNeedsUpdate = false; + + if ( depthTexture === undefined && useDepthTexture ) { + + depthTexture = new DepthTexture(); + + depthTexture.format = renderTarget.stencilBuffer ? DepthStencilFormat : DepthFormat; + depthTexture.type = renderTarget.stencilBuffer ? UnsignedInt248Type : UnsignedIntType; // FloatType + depthTexture.image.width = mipWidth; + depthTexture.image.height = mipHeight; + depthTexture.image.depth = size.depth; + depthTexture.isArrayTexture = renderTarget.multiview === true && size.depth > 1; + + depthTextureMips[ activeMipmapLevel ] = depthTexture; + + } + + if ( renderTargetData.width !== size.width || size.height !== renderTargetData.height ) { + + textureNeedsUpdate = true; + + if ( depthTexture ) { + + depthTexture.needsUpdate = true; + depthTexture.image.width = mipWidth; + depthTexture.image.height = mipHeight; + depthTexture.image.depth = depthTexture.isArrayTexture ? depthTexture.image.depth : 1; + + } + + } + + renderTargetData.width = size.width; + renderTargetData.height = size.height; + renderTargetData.textures = textures; + renderTargetData.depthTexture = depthTexture || null; + renderTargetData.depth = renderTarget.depthBuffer; + renderTargetData.stencil = renderTarget.stencilBuffer; + renderTargetData.renderTarget = renderTarget; + + if ( renderTargetData.sampleCount !== sampleCount ) { + + textureNeedsUpdate = true; + + if ( depthTexture ) { + + depthTexture.needsUpdate = true; + + } + + renderTargetData.sampleCount = sampleCount; + + } + + // + + + const options = { sampleCount }; + + // XR render targets require no texture updates + + if ( renderTarget.isXRRenderTarget !== true ) { + + for ( let i = 0; i < textures.length; i ++ ) { + + const texture = textures[ i ]; + + if ( textureNeedsUpdate ) texture.needsUpdate = true; + + this.updateTexture( texture, options ); + + } + + if ( depthTexture ) { + + this.updateTexture( depthTexture, options ); + + } + + } + + // dispose handler + + if ( renderTargetData.initialized !== true ) { + + renderTargetData.initialized = true; + + // dispose + + const onDispose = () => { + + renderTarget.removeEventListener( 'dispose', onDispose ); + + for ( let i = 0; i < textures.length; i ++ ) { + + this._destroyTexture( textures[ i ] ); + + } + + if ( depthTexture ) { + + this._destroyTexture( depthTexture ); + + } + + this.delete( renderTarget ); + + }; + + renderTarget.addEventListener( 'dispose', onDispose ); + + } + + } + + /** + * Updates the given texture. Depending on the texture state, this method + * triggers the upload of texture data to the GPU memory. If the texture data are + * not yet ready for the upload, it uses default texture data for as a placeholder. + * + * @param {Texture} texture - The texture to update. + * @param {Object} [options={}] - The options. + */ + updateTexture( texture, options = {} ) { + + const textureData = this.get( texture ); + if ( textureData.initialized === true && textureData.version === texture.version ) return; + + const isRenderTarget = texture.isRenderTargetTexture || texture.isDepthTexture || texture.isFramebufferTexture; + const backend = this.backend; + + if ( isRenderTarget && textureData.initialized === true ) { + + // it's an update + + backend.destroySampler( texture ); + backend.destroyTexture( texture ); + + } + + // + + if ( texture.isFramebufferTexture ) { + + const renderTarget = this.renderer.getRenderTarget(); + + if ( renderTarget ) { + + texture.type = renderTarget.texture.type; + + } else { + + texture.type = UnsignedByteType; + + } + + } + + // + + const { width, height, depth } = this.getSize( texture ); + + options.width = width; + options.height = height; + options.depth = depth; + options.needsMipmaps = this.needsMipmaps( texture ); + options.levels = options.needsMipmaps ? this.getMipLevels( texture, width, height ) : 1; + + // + + if ( isRenderTarget || texture.isStorageTexture === true ) { + + backend.createSampler( texture ); + backend.createTexture( texture, options ); + + textureData.generation = texture.version; + + } else { + + const needsCreate = textureData.initialized !== true; + + if ( needsCreate ) backend.createSampler( texture ); + + if ( texture.version > 0 ) { + + const image = texture.image; + + if ( image === undefined ) { + + console.warn( 'THREE.Renderer: Texture marked for update but image is undefined.' ); + + } else if ( image.complete === false ) { + + console.warn( 'THREE.Renderer: Texture marked for update but image is incomplete.' ); + + } else { + + if ( texture.images ) { + + const images = []; + + for ( const image of texture.images ) { + + images.push( image ); + + } + + options.images = images; + + } else { + + options.image = image; + + } + + if ( textureData.isDefaultTexture === undefined || textureData.isDefaultTexture === true ) { + + backend.createTexture( texture, options ); + + textureData.isDefaultTexture = false; + textureData.generation = texture.version; + + } + + if ( texture.source.dataReady === true ) backend.updateTexture( texture, options ); + + if ( options.needsMipmaps && texture.mipmaps.length === 0 ) backend.generateMipmaps( texture ); + + } + + } else { + + // async update + + backend.createDefaultTexture( texture ); + + textureData.isDefaultTexture = true; + textureData.generation = texture.version; + + } + + } + + // dispose handler + + if ( textureData.initialized !== true ) { + + textureData.initialized = true; + textureData.generation = texture.version; + + // + + this.info.memory.textures ++; + + // dispose + + const onDispose = () => { + + texture.removeEventListener( 'dispose', onDispose ); + + this._destroyTexture( texture ); + + }; + + texture.addEventListener( 'dispose', onDispose ); + + } + + // + + textureData.version = texture.version; + + } + + /** + * Computes the size of the given texture and writes the result + * into the target vector. This vector is also returned by the + * method. + * + * If no texture data are available for the compute yet, the method + * returns default size values. + * + * @param {Texture} texture - The texture to compute the size for. + * @param {Vector3} target - The target vector. + * @return {Vector3} The target vector. + */ + getSize( texture, target = _size$3 ) { + + let image = texture.images ? texture.images[ 0 ] : texture.image; + + if ( image ) { + + if ( image.image !== undefined ) image = image.image; + + target.width = image.width || 1; + target.height = image.height || 1; + target.depth = texture.isCubeTexture ? 6 : ( image.depth || 1 ); + + } else { + + target.width = target.height = target.depth = 1; + + } + + return target; + + } + + /** + * Computes the number of mipmap levels for the given texture. + * + * @param {Texture} texture - The texture. + * @param {number} width - The texture's width. + * @param {number} height - The texture's height. + * @return {number} The number of mipmap levels. + */ + getMipLevels( texture, width, height ) { + + let mipLevelCount; + + if ( texture.isCompressedTexture ) { + + if ( texture.mipmaps ) { + + mipLevelCount = texture.mipmaps.length; + + } else { + + mipLevelCount = 1; + + } + + } else { + + mipLevelCount = Math.floor( Math.log2( Math.max( width, height ) ) ) + 1; + + } + + return mipLevelCount; + + } + + /** + * Returns `true` if the given texture requires mipmaps. + * + * @param {Texture} texture - The texture. + * @return {boolean} Whether mipmaps are required or not. + */ + needsMipmaps( texture ) { + + return texture.isCompressedTexture === true || texture.generateMipmaps; + + } + + /** + * Frees internal resource when the given texture isn't + * required anymore. + * + * @param {Texture} texture - The texture to destroy. + */ + _destroyTexture( texture ) { + + if ( this.has( texture ) === true ) { + + this.backend.destroySampler( texture ); + this.backend.destroyTexture( texture ); + + this.delete( texture ); + + this.info.memory.textures --; + + } + + } + +} + +/** + * A four-component version of {@link Color} which is internally + * used by the renderer to represents clear color with alpha as + * one object. + * + * @private + * @augments Color + */ +class Color4 extends Color { + + /** + * Constructs a new four-component color. + * You can also pass a single THREE.Color, hex or + * string argument to this constructor. + * + * @param {number|string} [r=1] - The red value. + * @param {number} [g=1] - The green value. + * @param {number} [b=1] - The blue value. + * @param {number} [a=1] - The alpha value. + */ + constructor( r, g, b, a = 1 ) { + + super( r, g, b ); + + this.a = a; + + } + + /** + * Overwrites the default to honor alpha. + * You can also pass a single THREE.Color, hex or + * string argument to this method. + * + * @param {number|string|Color} r - The red value. + * @param {number} g - The green value. + * @param {number} b - The blue value. + * @param {number} [a=1] - The alpha value. + * @return {Color4} A reference to this object. + */ + set( r, g, b, a = 1 ) { + + this.a = a; + + return super.set( r, g, b ); + + } + + /** + * Overwrites the default to honor alpha. + * + * @param {Color4} color - The color to copy. + * @return {Color4} A reference to this object. + */ + copy( color ) { + + if ( color.a !== undefined ) this.a = color.a; + + return super.copy( color ); + + } + + /** + * Overwrites the default to honor alpha. + * + * @return {Color4} The cloned color. + */ + clone() { + + return new this.constructor( this.r, this.g, this.b, this.a ); + + } + +} + +/** + * Special version of {@link PropertyNode} which is used for parameters. + * + * @augments PropertyNode + */ +class ParameterNode extends PropertyNode { + + static get type() { + + return 'ParameterNode'; + + } + + /** + * Constructs a new parameter node. + * + * @param {string} nodeType - The type of the node. + * @param {?string} [name=null] - The name of the parameter in the shader. + */ + constructor( nodeType, name = null ) { + + super( nodeType, name ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isParameterNode = true; + + } + + getHash() { + + return this.uuid; + + } + + generate() { + + return this.name; + + } + +} + +/** + * TSL function for creating a parameter node. + * + * @tsl + * @function + * @param {string} type - The type of the node. + * @param {?string} name - The name of the parameter in the shader. + * @returns {ParameterNode} + */ +const parameter = ( type, name ) => nodeObject( new ParameterNode( type, name ) ); + +/** + * Stack is a helper for Nodes that need to produce stack-based code instead of continuous flow. + * They are usually needed in cases like `If`, `Else`. + * + * @augments Node + */ +class StackNode extends Node { + + static get type() { + + return 'StackNode'; + + } + + /** + * Constructs a new stack node. + * + * @param {?StackNode} [parent=null] - The parent stack node. + */ + constructor( parent = null ) { + + super(); + + /** + * List of nodes. + * + * @type {Array} + */ + this.nodes = []; + + /** + * The output node. + * + * @type {?Node} + * @default null + */ + this.outputNode = null; + + /** + * The parent stack node. + * + * @type {?StackNode} + * @default null + */ + this.parent = parent; + + /** + * The current conditional node. + * + * @private + * @type {ConditionalNode} + * @default null + */ + this._currentCond = null; + + /** + * The expression node. Only + * relevant for Switch/Case. + * + * @private + * @type {Node} + * @default null + */ + this._expressionNode = null; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStackNode = true; + + } + + getNodeType( builder ) { + + return this.outputNode ? this.outputNode.getNodeType( builder ) : 'void'; + + } + + getMemberType( builder, name ) { + + return this.outputNode ? this.outputNode.getMemberType( builder, name ) : 'void'; + + } + + /** + * Adds a node to this stack. + * + * @param {Node} node - The node to add. + * @return {StackNode} A reference to this stack node. + */ + add( node ) { + + this.nodes.push( node ); + + return this; + + } + + /** + * Represent an `if` statement in TSL. + * + * @param {Node} boolNode - Represents the condition. + * @param {Function} method - TSL code which is executed if the condition evaluates to `true`. + * @return {StackNode} A reference to this stack node. + */ + If( boolNode, method ) { + + const methodNode = new ShaderNode( method ); + this._currentCond = select( boolNode, methodNode ); + + return this.add( this._currentCond ); + + } + + /** + * Represent an `elseif` statement in TSL. + * + * @param {Node} boolNode - Represents the condition. + * @param {Function} method - TSL code which is executed if the condition evaluates to `true`. + * @return {StackNode} A reference to this stack node. + */ + ElseIf( boolNode, method ) { + + const methodNode = new ShaderNode( method ); + const ifNode = select( boolNode, methodNode ); + + this._currentCond.elseNode = ifNode; + this._currentCond = ifNode; + + return this; + + } + + /** + * Represent an `else` statement in TSL. + * + * @param {Function} method - TSL code which is executed in the `else` case. + * @return {StackNode} A reference to this stack node. + */ + Else( method ) { + + this._currentCond.elseNode = new ShaderNode( method ); + + return this; + + } + + /** + * Represents a `switch` statement in TSL. + * + * @param {any} expression - Represents the expression. + * @param {Function} method - TSL code which is executed if the condition evaluates to `true`. + * @return {StackNode} A reference to this stack node. + */ + Switch( expression ) { + + this._expressionNode = nodeObject( expression ); + + return this; + + } + + /** + * Represents a `case` statement in TSL. The TSL version accepts an arbitrary numbers of values. + * The last parameter must be the callback method that should be executed in the `true` case. + * + * @param {...any} params - The values of the `Case()` statement as well as the callback method. + * @return {StackNode} A reference to this stack node. + */ + Case( ...params ) { + + const caseNodes = []; + + // extract case nodes from the parameter list + + if ( params.length >= 2 ) { + + for ( let i = 0; i < params.length - 1; i ++ ) { + + caseNodes.push( this._expressionNode.equal( nodeObject( params[ i ] ) ) ); + + } + + } else { + + throw new Error( 'TSL: Invalid parameter length. Case() requires at least two parameters.' ); + + } + + // extract method + + const method = params[ params.length - 1 ]; + const methodNode = new ShaderNode( method ); + + // chain multiple cases when using Case( 1, 2, 3, () => {} ) + + let caseNode = caseNodes[ 0 ]; + + for ( let i = 1; i < caseNodes.length; i ++ ) { + + caseNode = caseNode.or( caseNodes[ i ] ); + + } + + // build condition + + const condNode = select( caseNode, methodNode ); + + if ( this._currentCond === null ) { + + this._currentCond = condNode; + + return this.add( this._currentCond ); + + } else { + + this._currentCond.elseNode = condNode; + this._currentCond = condNode; + + return this; + + } + + } + + /** + * Represents the default code block of a Switch/Case statement. + * + * @param {Function} method - TSL code which is executed in the `else` case. + * @return {StackNode} A reference to this stack node. + */ + Default( method ) { + + this.Else( method ); + + return this; + + } + + build( builder, ...params ) { + + const previousStack = getCurrentStack(); + + setCurrentStack( this ); + + const buildStage = builder.buildStage; + + for ( const node of this.nodes ) { + + if ( buildStage === 'setup' ) { + + node.build( builder ); + + } else if ( buildStage === 'analyze' ) { + + node.build( builder, this ); + + } else if ( buildStage === 'generate' ) { + + const stages = builder.getDataFromNode( node, 'any' ).stages; + const parents = stages && stages[ builder.shaderStage ]; + + if ( node.isVarNode && parents && parents.length === 1 && parents[ 0 ] && parents[ 0 ].isStackNode ) { + + continue; // skip var nodes that are only used in .toVarying() + + } + + node.build( builder, 'void' ); + + } + + } + + setCurrentStack( previousStack ); + + return this.outputNode ? this.outputNode.build( builder, ...params ) : super.build( builder, ...params ); + + } + + // Deprecated + + /** + * @function + * @deprecated since r168. Use {@link StackNode#Else} instead. + * + * @param {...any} params + * @returns {StackNode} + */ + else( ...params ) { // @deprecated, r168 + + console.warn( 'THREE.TSL: .else() has been renamed to .Else().' ); + return this.Else( ...params ); + + } + + /** + * @deprecated since r168. Use {@link StackNode#ElseIf} instead. + * + * @param {...any} params + * @returns {StackNode} + */ + elseif( ...params ) { // @deprecated, r168 + + console.warn( 'THREE.TSL: .elseif() has been renamed to .ElseIf().' ); + return this.ElseIf( ...params ); + + } + +} + +/** + * TSL function for creating a stack node. + * + * @tsl + * @function + * @param {?StackNode} [parent=null] - The parent stack node. + * @returns {StackNode} + */ +const stack = /*@__PURE__*/ nodeProxy( StackNode ).setParameterLength( 0, 1 ); + +/** + * Generates a layout for struct members. + * This function takes an object representing struct members and returns an array of member layouts. + * Each member layout includes the member's name, type, and whether it is atomic. + * + * @param {Object.} members - An object where keys are member names and values are either types (as strings) or objects with type and atomic properties. + * @returns {Array.<{name: string, type: string, atomic: boolean}>} An array of member layouts. + */ +function getMembersLayout( members ) { + + return Object.entries( members ).map( ( [ name, value ] ) => { + + if ( typeof value === 'string' ) { + + return { name, type: value, atomic: false }; + + } + + return { name, type: value.type, atomic: value.atomic || false }; + + } ); + +} + +/** + * Represents a struct type node in the node-based system. + * This class is used to define and manage the layout and types of struct members. + * It extends the base Node class and provides methods to get the length of the struct, + * retrieve member types, and generate the struct type for a builder. + * + * @augments Node + */ +class StructTypeNode extends Node { + + static get type() { + + return 'StructTypeNode'; + + } + + /** + * Creates an instance of StructTypeNode. + * + * @param {Object} membersLayout - The layout of the members for the struct. + * @param {?string} [name=null] - The optional name of the struct. + */ + constructor( membersLayout, name = null ) { + + super( 'struct' ); + + /** + * The layout of the members for the struct + * + * @type {Array.<{name: string, type: string, atomic: boolean}>} + */ + this.membersLayout = getMembersLayout( membersLayout ); + + /** + * The name of the struct. + * + * @type {?string} + * @default null + */ + this.name = name; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStructLayoutNode = true; + + } + + /** + * Returns the length of the struct. + * The length is calculated by summing the lengths of the struct's members. + * + * @returns {number} The length of the struct. + */ + getLength() { + + const GPU_CHUNK_BYTES = 8; + const BYTES_PER_ELEMENT = Float32Array.BYTES_PER_ELEMENT; + + let offset = 0; // global buffer offset in bytes + + for ( const member of this.membersLayout ) { + + const type = member.type; + + const itemSize = getMemoryLengthFromType( type ) * BYTES_PER_ELEMENT; + const boundary = getByteBoundaryFromType( type ); + + const chunkOffset = offset % GPU_CHUNK_BYTES; // offset in the current chunk + const chunkPadding = chunkOffset % boundary; // required padding to match boundary + const chunkStart = chunkOffset + chunkPadding; // start position in the current chunk for the data + + offset += chunkPadding; + + // Check for chunk overflow + if ( chunkStart !== 0 && ( GPU_CHUNK_BYTES - chunkStart ) < itemSize ) { + + // Add padding to the end of the chunk + offset += ( GPU_CHUNK_BYTES - chunkStart ); + + } + + offset += itemSize; + + } + + return ( Math.ceil( offset / GPU_CHUNK_BYTES ) * GPU_CHUNK_BYTES ) / BYTES_PER_ELEMENT; + + } + + getMemberType( builder, name ) { + + const member = this.membersLayout.find( m => m.name === name ); + + return member ? member.type : 'void'; + + } + + getNodeType( builder ) { + + const structType = builder.getStructTypeFromNode( this, this.membersLayout, this.name ); + + return structType.name; + + } + + setup( builder ) { + + builder.addInclude( this ); + + } + + generate( builder ) { + + return this.getNodeType( builder ); + + } + +} + +/** + * StructNode allows to create custom structures with multiple members. + * This can also be used to define structures in attribute and uniform data. + * + * ```js + * // Define a custom struct + * const BoundingBox = struct( { min: 'vec3', max: 'vec3' } ); + * + * // Create a new instance of the struct + * const bb = BoundingBox( vec3( 0 ), vec3( 1 ) ); // style 1 + * const bb = BoundingBox( { min: vec3( 0 ), max: vec3( 1 ) } ); // style 2 + * + * // Access the struct members + * const min = bb.get( 'min' ); + * + * // Assign a new value to a member + * min.assign( vec3() ); + * ``` + * @augments Node + */ +class StructNode extends Node { + + static get type() { + + return 'StructNode'; + + } + + constructor( structLayoutNode, values ) { + + super( 'vec3' ); + + this.structLayoutNode = structLayoutNode; + this.values = values; + + this.isStructNode = true; + + } + + getNodeType( builder ) { + + return this.structLayoutNode.getNodeType( builder ); + + } + + getMemberType( builder, name ) { + + return this.structLayoutNode.getMemberType( builder, name ); + + } + + generate( builder ) { + + const nodeVar = builder.getVarFromNode( this ); + const structType = nodeVar.type; + const propertyName = builder.getPropertyName( nodeVar ); + + builder.addLineFlowCode( `${ propertyName } = ${ builder.generateStruct( structType, this.structLayoutNode.membersLayout, this.values ) }`, this ); + + return nodeVar.name; + + } + +} + +/** + * TSL function for creating a struct node. + * + * @tsl + * @function + * @param {Object} membersLayout - The layout of the struct members. + * @param {?string} [name=null] - The name of the struct. + * @returns {Function} The struct function. + */ +const struct = ( membersLayout, name = null ) => { + + const structLayout = new StructTypeNode( membersLayout, name ); + + const struct = ( ...params ) => { + + let values = null; + + if ( params.length > 0 ) { + + if ( params[ 0 ].isNode ) { + + values = {}; + + const names = Object.keys( membersLayout ); + + for ( let i = 0; i < params.length; i ++ ) { + + values[ names[ i ] ] = params[ i ]; + + } + + } else { + + values = params[ 0 ]; + + } + + } + + return nodeObject( new StructNode( structLayout, values ) ); + + }; + + struct.layout = structLayout; + struct.isStruct = true; + + return struct; + +}; + +/** + * This node can be used to define multiple outputs in a shader programs. + * + * @augments Node + */ +class OutputStructNode extends Node { + + static get type() { + + return 'OutputStructNode'; + + } + + /** + * Constructs a new output struct node. The constructor can be invoked with an + * arbitrary number of nodes representing the members. + * + * @param {...Node} members - A parameter list of nodes. + */ + constructor( ...members ) { + + super(); + + /** + * An array of nodes which defines the output. + * + * @type {Array} + */ + this.members = members; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isOutputStructNode = true; + + } + + getNodeType( builder ) { + + const properties = builder.getNodeProperties( this ); + + if ( properties.membersLayout === undefined ) { + + const members = this.members; + const membersLayout = []; + + for ( let i = 0; i < members.length; i ++ ) { + + const name = 'm' + i; + const type = members[ i ].getNodeType( builder ); + + membersLayout.push( { name, type, index: i } ); + + } + + properties.membersLayout = membersLayout; + properties.structType = builder.getOutputStructTypeFromNode( this, properties.membersLayout ); + + } + + return properties.structType.name; + + } + + generate( builder ) { + + const propertyName = builder.getOutputStructName(); + const members = this.members; + + const structPrefix = propertyName !== '' ? propertyName + '.' : ''; + + for ( let i = 0; i < members.length; i ++ ) { + + const snippet = members[ i ].build( builder ); + + builder.addLineFlowCode( `${ structPrefix }m${ i } = ${ snippet }`, this ); + + } + + return propertyName; + + } + +} + +/** + * TSL function for creating an output struct node. + * + * @tsl + * @function + * @param {...Node} members - A parameter list of nodes. + * @returns {OutputStructNode} + */ +const outputStruct = /*@__PURE__*/ nodeProxy( OutputStructNode ); + +/** + * Returns the MRT texture index for the given name. + * + * @param {Array} textures - The textures of a MRT-configured render target. + * @param {string} name - The name of the MRT texture which index is requested. + * @return {number} The texture index. + */ +function getTextureIndex( textures, name ) { + + for ( let i = 0; i < textures.length; i ++ ) { + + if ( textures[ i ].name === name ) { + + return i; + + } + + } + + return - 1; + +} + +/** + * This node can be used setup a MRT context for rendering. A typical MRT setup for + * post-processing is shown below: + * ```js + * const mrtNode = mrt( { + * output: output, + * normal: normalView + * } ) ); + * ``` + * The MRT output is defined as a dictionary. + * + * @augments OutputStructNode + */ +class MRTNode extends OutputStructNode { + + static get type() { + + return 'MRTNode'; + + } + + /** + * Constructs a new output struct node. + * + * @param {Object} outputNodes - The MRT outputs. + */ + constructor( outputNodes ) { + + super(); + + /** + * A dictionary representing the MRT outputs. The key + * is the name of the output, the value the node which produces + * the output result. + * + * @type {Object} + */ + this.outputNodes = outputNodes; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMRTNode = true; + + } + + /** + * Returns `true` if the MRT node has an output with the given name. + * + * @param {string} name - The name of the output. + * @return {NodeBuilder} Whether the MRT node has an output for the given name or not. + */ + has( name ) { + + return this.outputNodes[ name ] !== undefined; + + } + + /** + * Returns the output node for the given name. + * + * @param {string} name - The name of the output. + * @return {Node} The output node. + */ + get( name ) { + + return this.outputNodes[ name ]; + + } + + /** + * Merges the outputs of the given MRT node with the outputs of this node. + * + * @param {MRTNode} mrtNode - The MRT to merge. + * @return {MRTNode} A new MRT node with merged outputs.. + */ + merge( mrtNode ) { + + const outputs = { ...this.outputNodes, ...mrtNode.outputNodes }; + + return mrt( outputs ); + + } + + setup( builder ) { + + const outputNodes = this.outputNodes; + const mrt = builder.renderer.getRenderTarget(); + + const members = []; + + const textures = mrt.textures; + + for ( const name in outputNodes ) { + + const index = getTextureIndex( textures, name ); + + members[ index ] = vec4( outputNodes[ name ] ); + + } + + this.members = members; + + return super.setup( builder ); + + } + +} + +/** + * TSL function for creating a MRT node. + * + * @tsl + * @function + * @param {Object} outputNodes - The MRT outputs. + * @returns {MRTNode} + */ +const mrt = /*@__PURE__*/ nodeProxy( MRTNode ); + +/** + * Generates a hash value in the range `[0, 1]` from the given seed. + * + * @tsl + * @function + * @param {Node} seed - The seed. + * @return {Node} The hash value. + */ +const hash = /*@__PURE__*/ Fn( ( [ seed ] ) => { + + // Taken from https://www.shadertoy.com/view/XlGcRh, originally from pcg-random.org + + const state = seed.toUint().mul( 747796405 ).add( 2891336453 ); + const word = state.shiftRight( state.shiftRight( 28 ).add( 4 ) ).bitXor( state ).mul( 277803737 ); + const result = word.shiftRight( 22 ).bitXor( word ); + + return result.toFloat().mul( 1 / 2 ** 32 ); // Convert to range [0, 1) + +} ); + +/** + * A function that remaps the `[0,1]` interval into the `[0,1]` interval. + * The corners are mapped to `0` and the center to `1`. + * Reference: {@link https://iquilezles.org/articles/functions/}. + * + * @tsl + * @function + * @param {Node} x - The value to remap. + * @param {Node} k - Allows to control the remapping functions shape by rising the parabola to a power `k`. + * @return {Node} The remapped value. + */ +const parabola = ( x, k ) => pow( mul( 4.0, x.mul( sub( 1.0, x ) ) ), k ); + +/** + * A function that remaps the `[0,1]` interval into the `[0,1]` interval. + * Expands the sides and compresses the center, and keeps `0.5` mapped to `0.5`. + * Reference: {@link https://iquilezles.org/articles/functions/}. + * + * @tsl + * @function + * @param {Node} x - The value to remap. + * @param {Node} k - `k=1` is the identity curve,`k<1` produces the classic `gain()` shape, and `k>1` produces "s" shaped curves. + * @return {Node} The remapped value. + */ +const gain = ( x, k ) => x.lessThan( 0.5 ) ? parabola( x.mul( 2.0 ), k ).div( 2.0 ) : sub( 1.0, parabola( mul( sub( 1.0, x ), 2.0 ), k ).div( 2.0 ) ); + +/** + * A function that remaps the `[0,1]` interval into the `[0,1]` interval. + * A generalization of the `parabola()`. Keeps the corners mapped to 0 but allows the control of the shape one either side of the curve. + * Reference: {@link https://iquilezles.org/articles/functions/}. + * + * @tsl + * @function + * @param {Node} x - The value to remap. + * @param {Node} a - First control parameter. + * @param {Node} b - Second control parameter. + * @return {Node} The remapped value. + */ +const pcurve = ( x, a, b ) => pow( div( pow( x, a ), add( pow( x, a ), pow( sub( 1.0, x ), b ) ) ), 1.0 / a ); + +/** + * A phase shifted sinus curve that starts at zero and ends at zero, with bouncing behavior. + * Reference: {@link https://iquilezles.org/articles/functions/}. + * + * @tsl + * @function + * @param {Node} x - The value to compute the sin for. + * @param {Node} k - Controls the amount of bounces. + * @return {Node} The result value. + */ +const sinc = ( x, k ) => sin( PI.mul( k.mul( x ).sub( 1.0 ) ) ).div( PI.mul( k.mul( x ).sub( 1.0 ) ) ); + +// https://github.com/cabbibo/glsl-tri-noise-3d + + +const tri = /*@__PURE__*/ Fn( ( [ x ] ) => { + + return x.fract().sub( .5 ).abs(); + +} ).setLayout( { + name: 'tri', + type: 'float', + inputs: [ + { name: 'x', type: 'float' } + ] +} ); + +const tri3 = /*@__PURE__*/ Fn( ( [ p ] ) => { + + return vec3( tri( p.z.add( tri( p.y.mul( 1. ) ) ) ), tri( p.z.add( tri( p.x.mul( 1. ) ) ) ), tri( p.y.add( tri( p.x.mul( 1. ) ) ) ) ); + +} ).setLayout( { + name: 'tri3', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec3' } + ] +} ); + +/** + * Generates a noise value from the given position, speed and time parameters. + * + * @tsl + * @function + * @param {Node} position - The position. + * @param {Node} speed - The speed. + * @param {Node} time - The time. + * @return {Node} The generated noise. + */ +const triNoise3D = /*@__PURE__*/ Fn( ( [ position, speed, time ] ) => { + + const p = vec3( position ).toVar(); + const z = float( 1.4 ).toVar(); + const rz = float( 0.0 ).toVar(); + const bp = vec3( p ).toVar(); + + Loop( { start: float( 0.0 ), end: float( 3.0 ), type: 'float', condition: '<=' }, () => { + + const dg = vec3( tri3( bp.mul( 2.0 ) ) ).toVar(); + p.addAssign( dg.add( time.mul( float( 0.1 ).mul( speed ) ) ) ); + bp.mulAssign( 1.8 ); + z.mulAssign( 1.5 ); + p.mulAssign( 1.2 ); + + const t = float( tri( p.z.add( tri( p.x.add( tri( p.y ) ) ) ) ) ).toVar(); + rz.addAssign( t.div( z ) ); + bp.addAssign( 0.14 ); + + } ); + + return rz; + +} ).setLayout( { + name: 'triNoise3D', + type: 'float', + inputs: [ + { name: 'position', type: 'vec3' }, + { name: 'speed', type: 'float' }, + { name: 'time', type: 'float' } + ] +} ); + +/** + * This class allows to define multiple overloaded versions + * of the same function. Depending on the parameters of the function + * call, the node picks the best-fit overloaded version. + * + * @augments Node + */ +class FunctionOverloadingNode extends Node { + + static get type() { + + return 'FunctionOverloadingNode'; + + } + + /** + * Constructs a new function overloading node. + * + * @param {Array} functionNodes - Array of `Fn` function definitions. + * @param {...Node} parametersNodes - A list of parameter nodes. + */ + constructor( functionNodes = [], ...parametersNodes ) { + + super(); + + /** + * Array of `Fn` function definitions. + * + * @type {Array} + */ + this.functionNodes = functionNodes; + + /** + * A list of parameter nodes. + * + * @type {Array} + */ + this.parametersNodes = parametersNodes; + + /** + * The selected overloaded function call. + * + * @private + * @type {ShaderCallNodeInternal} + */ + this._candidateFnCall = null; + + /** + * This node is marked as global. + * + * @type {boolean} + * @default true + */ + this.global = true; + + } + + /** + * This method is overwritten since the node type is inferred from + * the function's return type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType() { + + return this.functionNodes[ 0 ].shaderNode.layout.type; + + } + + setup( builder ) { + + const params = this.parametersNodes; + + let candidateFnCall = this._candidateFnCall; + + if ( candidateFnCall === null ) { + + let candidateFn = null; + let candidateScore = - 1; + + for ( const functionNode of this.functionNodes ) { + + const shaderNode = functionNode.shaderNode; + const layout = shaderNode.layout; + + if ( layout === null ) { + + throw new Error( 'FunctionOverloadingNode: FunctionNode must be a layout.' ); + + } + + const inputs = layout.inputs; + + if ( params.length === inputs.length ) { + + let score = 0; + + for ( let i = 0; i < params.length; i ++ ) { + + const param = params[ i ]; + const input = inputs[ i ]; + + if ( param.getNodeType( builder ) === input.type ) { + + score ++; + + } else { + + score = 0; + + } + + } + + if ( score > candidateScore ) { + + candidateFn = functionNode; + candidateScore = score; + + } + + } + + } + + this._candidateFnCall = candidateFnCall = candidateFn( ...params ); + + } + + return candidateFnCall; + + } + +} + +const overloadingBaseFn = /*@__PURE__*/ nodeProxy( FunctionOverloadingNode ); + +/** + * TSL function for creating a function overloading node. + * + * @tsl + * @function + * @param {Array} functionNodes - Array of `Fn` function definitions. + * @returns {FunctionOverloadingNode} + */ +const overloadingFn = ( functionNodes ) => ( ...params ) => overloadingBaseFn( functionNodes, ...params ); + +/** + * Represents the elapsed time in seconds. + * + * @tsl + * @type {UniformNode} + */ +const time = /*@__PURE__*/ uniform( 0 ).setGroup( renderGroup ).onRenderUpdate( ( frame ) => frame.time ); + +/** + * Represents the delta time in seconds. + * + * @tsl + * @type {UniformNode} + */ +const deltaTime = /*@__PURE__*/ uniform( 0 ).setGroup( renderGroup ).onRenderUpdate( ( frame ) => frame.deltaTime ); + +/** + * Represents the current frame ID. + * + * @tsl + * @type {UniformNode} + */ +const frameId = /*@__PURE__*/ uniform( 0, 'uint' ).setGroup( renderGroup ).onRenderUpdate( ( frame ) => frame.frameId ); + +// Deprecated + +/** + * @tsl + * @function + * @deprecated since r170. Use {@link time} instead. + * + * @param {number} [timeScale=1] - The time scale. + * @returns {UniformNode} + */ +const timerLocal = ( timeScale = 1 ) => { // @deprecated, r170 + + console.warn( 'TSL: timerLocal() is deprecated. Use "time" instead.' ); + return time.mul( timeScale ); + +}; + +/** + * @tsl + * @function + * @deprecated since r170. Use {@link time} instead. + * + * @param {number} [timeScale=1] - The time scale. + * @returns {UniformNode} + */ +const timerGlobal = ( timeScale = 1 ) => { // @deprecated, r170 + + console.warn( 'TSL: timerGlobal() is deprecated. Use "time" instead.' ); + return time.mul( timeScale ); + +}; + +/** + * @tsl + * @function + * @deprecated since r170. Use {@link deltaTime} instead. + * + * @param {number} [timeScale=1] - The time scale. + * @returns {UniformNode} + */ +const timerDelta = ( timeScale = 1 ) => { // @deprecated, r170 + + console.warn( 'TSL: timerDelta() is deprecated. Use "deltaTime" instead.' ); + return deltaTime.mul( timeScale ); + +}; + +/** + * Generates a sine wave oscillation based on a timer. + * + * @tsl + * @function + * @param {Node} t - The timer to generate the oscillation with. + * @return {Node} The oscillation node. + */ +const oscSine = ( t = time ) => t.add( 0.75 ).mul( Math.PI * 2 ).sin().mul( 0.5 ).add( 0.5 ); + +/** + * Generates a square wave oscillation based on a timer. + * + * @tsl + * @function + * @param {Node} t - The timer to generate the oscillation with. + * @return {Node} The oscillation node. + */ +const oscSquare = ( t = time ) => t.fract().round(); + +/** + * Generates a triangle wave oscillation based on a timer. + * + * @tsl + * @function + * @param {Node} t - The timer to generate the oscillation with. + * @return {Node} The oscillation node. + */ +const oscTriangle = ( t = time ) => t.add( 0.5 ).fract().mul( 2 ).sub( 1 ).abs(); + +/** + * Generates a sawtooth wave oscillation based on a timer. + * + * @tsl + * @function + * @param {Node} t - The timer to generate the oscillation with. + * @return {Node} The oscillation node. + */ +const oscSawtooth = ( t = time ) => t.fract(); + +/** + * Rotates the given uv coordinates around a center point + * + * @tsl + * @function + * @param {Node} uv - The uv coordinates. + * @param {Node} rotation - The rotation defined in radians. + * @param {Node} center - The center of rotation + * @return {Node} The rotated uv coordinates. + */ +const rotateUV = /*@__PURE__*/ Fn( ( [ uv, rotation, center = vec2( 0.5 ) ] ) => { + + return rotate( uv.sub( center ), rotation ).add( center ); + +} ); + +/** + * Applies a spherical warping effect to the given uv coordinates. + * + * @tsl + * @function + * @param {Node} uv - The uv coordinates. + * @param {Node} strength - The strength of the effect. + * @param {Node} center - The center point + * @return {Node} The updated uv coordinates. + */ +const spherizeUV = /*@__PURE__*/ Fn( ( [ uv, strength, center = vec2( 0.5 ) ] ) => { + + const delta = uv.sub( center ); + const delta2 = delta.dot( delta ); + const delta4 = delta2.mul( delta2 ); + const deltaOffset = delta4.mul( strength ); + + return uv.add( delta.mul( deltaOffset ) ); + +} ); + +/** + * This can be used to achieve a billboarding behavior for flat meshes. That means they are + * oriented always towards the camera. + * + * ```js + * material.vertexNode = billboarding(); + * ``` + * + * @tsl + * @function + * @param {Object} config - The configuration object. + * @param {?Node} [config.position=null] - Can be used to define the vertex positions in world space. + * @param {boolean} [config.horizontal=true] - Whether to follow the camera rotation horizontally or not. + * @param {boolean} [config.vertical=false] - Whether to follow the camera rotation vertically or not. + * @return {Node} The updated vertex position in clip space. + */ +const billboarding = /*@__PURE__*/ Fn( ( { position = null, horizontal = true, vertical = false } ) => { + + let worldMatrix; + + if ( position !== null ) { + + worldMatrix = modelWorldMatrix.toVar(); + worldMatrix[ 3 ][ 0 ] = position.x; + worldMatrix[ 3 ][ 1 ] = position.y; + worldMatrix[ 3 ][ 2 ] = position.z; + + } else { + + worldMatrix = modelWorldMatrix; + + } + + const modelViewMatrix = cameraViewMatrix.mul( worldMatrix ); + + if ( defined( horizontal ) ) { + + modelViewMatrix[ 0 ][ 0 ] = modelWorldMatrix[ 0 ].length(); + modelViewMatrix[ 0 ][ 1 ] = 0; + modelViewMatrix[ 0 ][ 2 ] = 0; + + } + + if ( defined( vertical ) ) { + + modelViewMatrix[ 1 ][ 0 ] = 0; + modelViewMatrix[ 1 ][ 1 ] = modelWorldMatrix[ 1 ].length(); + modelViewMatrix[ 1 ][ 2 ] = 0; + + } + + modelViewMatrix[ 2 ][ 0 ] = 0; + modelViewMatrix[ 2 ][ 1 ] = 0; + modelViewMatrix[ 2 ][ 2 ] = 1; + + return cameraProjectionMatrix.mul( modelViewMatrix ).mul( positionLocal ); + +} ); + +/** + * A special version of a screen uv function that involves a depth comparison + * when computing the final uvs. The function mitigates visual errors when + * using viewport texture nodes for refraction purposes. Without this function + * objects in front of a refractive surface might appear on the refractive surface + * which is incorrect. + * + * @tsl + * @function + * @param {?Node} uv - Optional uv coordinates. By default `screenUV` is used. + * @return {Node} The update uv coordinates. + */ +const viewportSafeUV = /*@__PURE__*/ Fn( ( [ uv = null ] ) => { + + const depth = linearDepth(); + const depthDiff = linearDepth( viewportDepthTexture( uv ) ).sub( depth ); + const finalUV = depthDiff.lessThan( 0 ).select( screenUV, uv ); + + return finalUV; + +} ); + +/** + * Can be used to compute texture coordinates for animated sprite sheets. + * + * ```js + * const uvNode = spritesheetUV( vec2( 6, 6 ), uv(), time.mul( animationSpeed ) ); + * + * material.colorNode = texture( spriteSheet, uvNode ); + * ``` + * + * @augments Node + */ +class SpriteSheetUVNode extends Node { + + static get type() { + + return 'SpriteSheetUVNode'; + + } + + /** + * Constructs a new sprite sheet uv node. + * + * @param {Node} countNode - The node that defines the number of sprites in the x and y direction (e.g 6x6). + * @param {Node} [uvNode=uv()] - The uv node. + * @param {Node} [frameNode=float()] - The node that defines the current frame/sprite. + */ + constructor( countNode, uvNode = uv(), frameNode = float( 0 ) ) { + + super( 'vec2' ); + + /** + * The node that defines the number of sprites in the x and y direction (e.g 6x6). + * + * @type {Node} + */ + this.countNode = countNode; + + /** + * The uv node. + * + * @type {Node} + */ + this.uvNode = uvNode; + + /** + * The node that defines the current frame/sprite. + * + * @type {Node} + */ + this.frameNode = frameNode; + + } + + setup() { + + const { frameNode, uvNode, countNode } = this; + + const { width, height } = countNode; + + const frameNum = frameNode.mod( width.mul( height ) ).floor(); + + const column = frameNum.mod( width ); + const row = height.sub( frameNum.add( 1 ).div( width ).ceil() ); + + const scale = countNode.reciprocal(); + const uvFrameOffset = vec2( column, row ); + + return uvNode.add( uvFrameOffset ).mul( scale ); + + } + +} + +/** + * TSL function for creating a sprite sheet uv node. + * + * @tsl + * @function + * @param {Node} countNode - The node that defines the number of sprites in the x and y direction (e.g 6x6). + * @param {?Node} [uvNode=uv()] - The uv node. + * @param {?Node} [frameNode=float()] - The node that defines the current frame/sprite. + * @returns {SpriteSheetUVNode} + */ +const spritesheetUV = /*@__PURE__*/ nodeProxy( SpriteSheetUVNode ).setParameterLength( 3 ); + +/** + * Can be used for triplanar texture mapping. + * + * ```js + * material.colorNode = triplanarTexture( texture( diffuseMap ) ); + * ``` + * + * @augments Node + */ +class TriplanarTexturesNode extends Node { + + static get type() { + + return 'TriplanarTexturesNode'; + + } + + /** + * Constructs a new triplanar textures node. + * + * @param {Node} textureXNode - First texture node. + * @param {?Node} [textureYNode=null] - Second texture node. When not set, the shader will sample from `textureXNode` instead. + * @param {?Node} [textureZNode=null] - Third texture node. When not set, the shader will sample from `textureXNode` instead. + * @param {?Node} [scaleNode=float(1)] - The scale node. + * @param {?Node} [positionNode=positionLocal] - Vertex positions in local space. + * @param {?Node} [normalNode=normalLocal] - Normals in local space. + */ + constructor( textureXNode, textureYNode = null, textureZNode = null, scaleNode = float( 1 ), positionNode = positionLocal, normalNode = normalLocal ) { + + super( 'vec4' ); + + /** + * First texture node. + * + * @type {Node} + */ + this.textureXNode = textureXNode; + + /** + * Second texture node. When not set, the shader will sample from `textureXNode` instead. + * + * @type {?Node} + * @default null + */ + this.textureYNode = textureYNode; + + /** + * Third texture node. When not set, the shader will sample from `textureXNode` instead. + * + * @type {?Node} + * @default null + */ + this.textureZNode = textureZNode; + + /** + * The scale node. + * + * @type {Node} + * @default float(1) + */ + this.scaleNode = scaleNode; + + /** + * Vertex positions in local space. + * + * @type {Node} + * @default positionLocal + */ + this.positionNode = positionNode; + + /** + * Normals in local space. + * + * @type {Node} + * @default normalLocal + */ + this.normalNode = normalNode; + + } + + setup() { + + const { textureXNode, textureYNode, textureZNode, scaleNode, positionNode, normalNode } = this; + + // Ref: https://github.com/keijiro/StandardTriplanar + + // Blending factor of triplanar mapping + let bf = normalNode.abs().normalize(); + bf = bf.div( bf.dot( vec3( 1.0 ) ) ); + + // Triplanar mapping + const tx = positionNode.yz.mul( scaleNode ); + const ty = positionNode.zx.mul( scaleNode ); + const tz = positionNode.xy.mul( scaleNode ); + + // Base color + const textureX = textureXNode.value; + const textureY = textureYNode !== null ? textureYNode.value : textureX; + const textureZ = textureZNode !== null ? textureZNode.value : textureX; + + const cx = texture( textureX, tx ).mul( bf.x ); + const cy = texture( textureY, ty ).mul( bf.y ); + const cz = texture( textureZ, tz ).mul( bf.z ); + + return add( cx, cy, cz ); + + } + +} + +/** + * TSL function for creating a triplanar textures node. + * + * @tsl + * @function + * @param {Node} textureXNode - First texture node. + * @param {?Node} [textureYNode=null] - Second texture node. When not set, the shader will sample from `textureXNode` instead. + * @param {?Node} [textureZNode=null] - Third texture node. When not set, the shader will sample from `textureXNode` instead. + * @param {?Node} [scaleNode=float(1)] - The scale node. + * @param {?Node} [positionNode=positionLocal] - Vertex positions in local space. + * @param {?Node} [normalNode=normalLocal] - Normals in local space. + * @returns {TriplanarTexturesNode} + */ +const triplanarTextures = /*@__PURE__*/ nodeProxy( TriplanarTexturesNode ).setParameterLength( 1, 6 ); + +/** + * TSL function for creating a triplanar textures node. + * + * @tsl + * @function + * @param {Node} textureXNode - First texture node. + * @param {?Node} [textureYNode=null] - Second texture node. When not set, the shader will sample from `textureXNode` instead. + * @param {?Node} [textureZNode=null] - Third texture node. When not set, the shader will sample from `textureXNode` instead. + * @param {?Node} [scaleNode=float(1)] - The scale node. + * @param {?Node} [positionNode=positionLocal] - Vertex positions in local space. + * @param {?Node} [normalNode=normalLocal] - Normals in local space. + * @returns {TriplanarTexturesNode} + */ +const triplanarTexture = ( ...params ) => triplanarTextures( ...params ); + +const _reflectorPlane = new Plane(); +const _normal = new Vector3(); +const _reflectorWorldPosition = new Vector3(); +const _cameraWorldPosition = new Vector3(); +const _rotationMatrix = new Matrix4(); +const _lookAtPosition = new Vector3( 0, 0, - 1 ); +const clipPlane = new Vector4(); + +const _view = new Vector3(); +const _target = new Vector3(); +const _q = new Vector4(); + +const _size$2 = new Vector2(); + +const _defaultRT = new RenderTarget(); +const _defaultUV = screenUV.flipX(); + +_defaultRT.depthTexture = new DepthTexture( 1, 1 ); + +let _inReflector = false; + +/** + * This node can be used to implement mirror-like flat reflective surfaces. + * + * ```js + * const groundReflector = reflector(); + * material.colorNode = groundReflector; + * + * const plane = new Mesh( geometry, material ); + * plane.add( groundReflector.target ); + * ``` + * + * @augments TextureNode + */ +class ReflectorNode extends TextureNode { + + static get type() { + + return 'ReflectorNode'; + + } + + /** + * Constructs a new reflector node. + * + * @param {Object} [parameters={}] - An object holding configuration parameters. + * @param {Object3D} [parameters.target=new Object3D()] - The 3D object the reflector is linked to. + * @param {number} [parameters.resolution=1] - The resolution scale. + * @param {boolean} [parameters.generateMipmaps=false] - Whether mipmaps should be generated or not. + * @param {boolean} [parameters.bounces=true] - Whether reflectors can render other reflector nodes or not. + * @param {boolean} [parameters.depth=false] - Whether depth data should be generated or not. + * @param {TextureNode} [parameters.defaultTexture] - The default texture node. + * @param {ReflectorBaseNode} [parameters.reflector] - The reflector base node. + */ + constructor( parameters = {} ) { + + super( parameters.defaultTexture || _defaultRT.texture, _defaultUV ); + + /** + * A reference to the internal reflector base node which holds the actual implementation. + * + * @private + * @type {ReflectorBaseNode} + * @default ReflectorBaseNode + */ + this._reflectorBaseNode = parameters.reflector || new ReflectorBaseNode( this, parameters ); + + /** + * A reference to the internal depth node. + * + * @private + * @type {?Node} + * @default null + */ + this._depthNode = null; + + this.setUpdateMatrix( false ); + + } + + /** + * A reference to the internal reflector node. + * + * @type {ReflectorBaseNode} + */ + get reflector() { + + return this._reflectorBaseNode; + + } + + /** + * A reference to 3D object the reflector is linked to. + * + * @type {Object3D} + */ + get target() { + + return this._reflectorBaseNode.target; + + } + + /** + * Returns a node representing the mirror's depth. That can be used + * to implement more advanced reflection effects like distance attenuation. + * + * @return {Node} The depth node. + */ + getDepthNode() { + + if ( this._depthNode === null ) { + + if ( this._reflectorBaseNode.depth !== true ) { + + throw new Error( 'THREE.ReflectorNode: Depth node can only be requested when the reflector is created with { depth: true }. ' ); + + } + + this._depthNode = nodeObject( new ReflectorNode( { + defaultTexture: _defaultRT.depthTexture, + reflector: this._reflectorBaseNode + } ) ); + + } + + return this._depthNode; + + } + + setup( builder ) { + + // ignore if used in post-processing + if ( ! builder.object.isQuadMesh ) this._reflectorBaseNode.build( builder ); + + return super.setup( builder ); + + } + + clone() { + + const texture = new this.constructor( this.reflectorNode ); + texture._reflectorBaseNode = this._reflectorBaseNode; + + return texture; + + } + + /** + * Frees internal resources. Should be called when the node is no longer in use. + */ + dispose() { + + super.dispose(); + + this._reflectorBaseNode.dispose(); + + } + +} + +/** + * Holds the actual implementation of the reflector. + * + * TODO: Explain why `ReflectorBaseNode`. Originally the entire logic was implemented + * in `ReflectorNode`, see #29619. + * + * @private + * @augments Node + */ +class ReflectorBaseNode extends Node { + + static get type() { + + return 'ReflectorBaseNode'; + + } + + /** + * Constructs a new reflector base node. + * + * @param {TextureNode} textureNode - Represents the rendered reflections as a texture node. + * @param {Object} [parameters={}] - An object holding configuration parameters. + * @param {Object3D} [parameters.target=new Object3D()] - The 3D object the reflector is linked to. + * @param {number} [parameters.resolution=1] - The resolution scale. + * @param {boolean} [parameters.generateMipmaps=false] - Whether mipmaps should be generated or not. + * @param {boolean} [parameters.bounces=true] - Whether reflectors can render other reflector nodes or not. + * @param {boolean} [parameters.depth=false] - Whether depth data should be generated or not. + */ + constructor( textureNode, parameters = {} ) { + + super(); + + const { + target = new Object3D(), + resolution = 1, + generateMipmaps = false, + bounces = true, + depth = false + } = parameters; + + /** + * Represents the rendered reflections as a texture node. + * + * @type {TextureNode} + */ + this.textureNode = textureNode; + + /** + * The 3D object the reflector is linked to. + * + * @type {Object3D} + * @default {new Object3D()} + */ + this.target = target; + + /** + * The resolution scale. + * + * @type {number} + * @default {1} + */ + this.resolution = resolution; + + /** + * Whether mipmaps should be generated or not. + * + * @type {boolean} + * @default {false} + */ + this.generateMipmaps = generateMipmaps; + + /** + * Whether reflectors can render other reflector nodes or not. + * + * @type {boolean} + * @default {true} + */ + this.bounces = bounces; + + /** + * Whether depth data should be generated or not. + * + * @type {boolean} + * @default {false} + */ + this.depth = depth; + + /** + * The `updateBeforeType` is set to `NodeUpdateType.RENDER` when {@link ReflectorBaseNode#bounces} + * is `true`. Otherwise it's `NodeUpdateType.FRAME`. + * + * @type {string} + * @default 'render' + */ + this.updateBeforeType = bounces ? NodeUpdateType.RENDER : NodeUpdateType.FRAME; + + /** + * Weak map for managing virtual cameras. + * + * @type {WeakMap} + */ + this.virtualCameras = new WeakMap(); + + /** + * Weak map for managing render targets. + * + * @type {Map} + */ + this.renderTargets = new Map(); + + /** + * Force render even if reflector is facing away from camera. + * + * @type {boolean} + * @default {false} + */ + this.forceUpdate = false; + + /** + * Whether the reflector has been rendered or not. + * + * When the reflector is facing away from the camera, + * this flag is set to `false` and the texture will be empty(black). + * + * @type {boolean} + * @default {false} + */ + this.hasOutput = false; + + } + + /** + * Updates the resolution of the internal render target. + * + * @private + * @param {RenderTarget} renderTarget - The render target to resize. + * @param {Renderer} renderer - The renderer that is used to determine the new size. + */ + _updateResolution( renderTarget, renderer ) { + + const resolution = this.resolution; + + renderer.getDrawingBufferSize( _size$2 ); + + renderTarget.setSize( Math.round( _size$2.width * resolution ), Math.round( _size$2.height * resolution ) ); + + } + + setup( builder ) { + + this._updateResolution( _defaultRT, builder.renderer ); + + return super.setup( builder ); + + } + + /** + * Frees internal resources. Should be called when the node is no longer in use. + */ + dispose() { + + super.dispose(); + + for ( const renderTarget of this.renderTargets.values() ) { + + renderTarget.dispose(); + + } + + } + + /** + * Returns a virtual camera for the given camera. The virtual camera is used to + * render the scene from the reflector's view so correct reflections can be produced. + * + * @param {Camera} camera - The scene's camera. + * @return {Camera} The corresponding virtual camera. + */ + getVirtualCamera( camera ) { + + let virtualCamera = this.virtualCameras.get( camera ); + + if ( virtualCamera === undefined ) { + + virtualCamera = camera.clone(); + + this.virtualCameras.set( camera, virtualCamera ); + + } + + return virtualCamera; + + } + + /** + * Returns a render target for the given camera. The reflections are rendered + * into this render target. + * + * @param {Camera} camera - The scene's camera. + * @return {RenderTarget} The render target. + */ + getRenderTarget( camera ) { + + let renderTarget = this.renderTargets.get( camera ); + + if ( renderTarget === undefined ) { + + renderTarget = new RenderTarget( 0, 0, { type: HalfFloatType } ); + + if ( this.generateMipmaps === true ) { + + renderTarget.texture.minFilter = LinearMipMapLinearFilter; + renderTarget.texture.generateMipmaps = true; + + } + + if ( this.depth === true ) { + + renderTarget.depthTexture = new DepthTexture(); + + } + + this.renderTargets.set( camera, renderTarget ); + + } + + return renderTarget; + + } + + updateBefore( frame ) { + + if ( this.bounces === false && _inReflector ) return false; + + _inReflector = true; + + const { scene, camera, renderer, material } = frame; + const { target } = this; + + const virtualCamera = this.getVirtualCamera( camera ); + const renderTarget = this.getRenderTarget( virtualCamera ); + + renderer.getDrawingBufferSize( _size$2 ); + + this._updateResolution( renderTarget, renderer ); + + // + + _reflectorWorldPosition.setFromMatrixPosition( target.matrixWorld ); + _cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld ); + + _rotationMatrix.extractRotation( target.matrixWorld ); + + _normal.set( 0, 0, 1 ); + _normal.applyMatrix4( _rotationMatrix ); + + _view.subVectors( _reflectorWorldPosition, _cameraWorldPosition ); + + // Avoid rendering when reflector is facing away unless forcing an update + const isFacingAway = _view.dot( _normal ) > 0; + + let needsClear = false; + + if ( isFacingAway === true && this.forceUpdate === false ) { + + if ( this.hasOutput === false ) { + + _inReflector = false; + + return; + + } + + needsClear = true; + + } + + _view.reflect( _normal ).negate(); + _view.add( _reflectorWorldPosition ); + + _rotationMatrix.extractRotation( camera.matrixWorld ); + + _lookAtPosition.set( 0, 0, - 1 ); + _lookAtPosition.applyMatrix4( _rotationMatrix ); + _lookAtPosition.add( _cameraWorldPosition ); + + _target.subVectors( _reflectorWorldPosition, _lookAtPosition ); + _target.reflect( _normal ).negate(); + _target.add( _reflectorWorldPosition ); + + // + + virtualCamera.coordinateSystem = camera.coordinateSystem; + virtualCamera.position.copy( _view ); + virtualCamera.up.set( 0, 1, 0 ); + virtualCamera.up.applyMatrix4( _rotationMatrix ); + virtualCamera.up.reflect( _normal ); + virtualCamera.lookAt( _target ); + + virtualCamera.near = camera.near; + virtualCamera.far = camera.far; + + virtualCamera.updateMatrixWorld(); + virtualCamera.projectionMatrix.copy( camera.projectionMatrix ); + + // Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html + // Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf + _reflectorPlane.setFromNormalAndCoplanarPoint( _normal, _reflectorWorldPosition ); + _reflectorPlane.applyMatrix4( virtualCamera.matrixWorldInverse ); + + clipPlane.set( _reflectorPlane.normal.x, _reflectorPlane.normal.y, _reflectorPlane.normal.z, _reflectorPlane.constant ); + + const projectionMatrix = virtualCamera.projectionMatrix; + + _q.x = ( Math.sign( clipPlane.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ]; + _q.y = ( Math.sign( clipPlane.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ]; + _q.z = - 1; + _q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ]; + + // Calculate the scaled plane vector + clipPlane.multiplyScalar( 1.0 / clipPlane.dot( _q ) ); + + const clipBias = 0; + + // Replacing the third row of the projection matrix + projectionMatrix.elements[ 2 ] = clipPlane.x; + projectionMatrix.elements[ 6 ] = clipPlane.y; + projectionMatrix.elements[ 10 ] = ( renderer.coordinateSystem === WebGPUCoordinateSystem ) ? ( clipPlane.z - clipBias ) : ( clipPlane.z + 1.0 - clipBias ); + projectionMatrix.elements[ 14 ] = clipPlane.w; + + // + + this.textureNode.value = renderTarget.texture; + + if ( this.depth === true ) { + + this.textureNode.getDepthNode().value = renderTarget.depthTexture; + + } + + material.visible = false; + + const currentRenderTarget = renderer.getRenderTarget(); + const currentMRT = renderer.getMRT(); + const currentAutoClear = renderer.autoClear; + + renderer.setMRT( null ); + renderer.setRenderTarget( renderTarget ); + renderer.autoClear = true; + + if ( needsClear ) { + + renderer.clear(); + + this.hasOutput = false; + + } else { + + renderer.render( scene, virtualCamera ); + + this.hasOutput = true; + + } + + renderer.setMRT( currentMRT ); + renderer.setRenderTarget( currentRenderTarget ); + renderer.autoClear = currentAutoClear; + + material.visible = true; + + _inReflector = false; + + this.forceUpdate = false; + + } + +} + +/** + * TSL function for creating a reflector node. + * + * @tsl + * @function + * @param {Object} [parameters={}] - An object holding configuration parameters. + * @param {Object3D} [parameters.target=new Object3D()] - The 3D object the reflector is linked to. + * @param {number} [parameters.resolution=1] - The resolution scale. + * @param {boolean} [parameters.generateMipmaps=false] - Whether mipmaps should be generated or not. + * @param {boolean} [parameters.bounces=true] - Whether reflectors can render other reflector nodes or not. + * @param {boolean} [parameters.depth=false] - Whether depth data should be generated or not. + * @param {TextureNode} [parameters.defaultTexture] - The default texture node. + * @param {ReflectorBaseNode} [parameters.reflector] - The reflector base node. + * @returns {ReflectorNode} + */ +const reflector = ( parameters ) => nodeObject( new ReflectorNode( parameters ) ); + +const _camera = /*@__PURE__*/ new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 ); + +/** + * The purpose of this special geometry is to fill the entire viewport with a single triangle. + * + * Reference: {@link https://github.com/mrdoob/three.js/pull/21358} + * + * @private + * @augments BufferGeometry + */ +class QuadGeometry extends BufferGeometry { + + /** + * Constructs a new quad geometry. + * + * @param {boolean} [flipY=false] - Whether the uv coordinates should be flipped along the vertical axis or not. + */ + constructor( flipY = false ) { + + super(); + + const uv = flipY === false ? [ 0, - 1, 0, 1, 2, 1 ] : [ 0, 2, 0, 0, 2, 0 ]; + + this.setAttribute( 'position', new Float32BufferAttribute( [ - 1, 3, 0, - 1, - 1, 0, 3, - 1, 0 ], 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uv, 2 ) ); + + } + +} + +const _geometry = /*@__PURE__*/ new QuadGeometry(); + + +/** + * This module is a helper for passes which need to render a full + * screen effect which is quite common in context of post processing. + * + * The intended usage is to reuse a single quad mesh for rendering + * subsequent passes by just reassigning the `material` reference. + * + * Note: This module can only be used with `WebGPURenderer`. + * + * @augments Mesh + */ +class QuadMesh extends Mesh { + + /** + * Constructs a new quad mesh. + * + * @param {?Material} [material=null] - The material to render the quad mesh with. + */ + constructor( material = null ) { + + super( _geometry, material ); + + /** + * The camera to render the quad mesh with. + * + * @type {OrthographicCamera} + * @readonly + */ + this.camera = _camera; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isQuadMesh = true; + + } + + /** + * Async version of `render()`. + * + * @async + * @param {Renderer} renderer - The renderer. + * @return {Promise} A Promise that resolves when the render has been finished. + */ + async renderAsync( renderer ) { + + return renderer.renderAsync( this, _camera ); + + } + + /** + * Renders the quad mesh + * + * @param {Renderer} renderer - The renderer. + */ + render( renderer ) { + + renderer.render( this, _camera ); + + } + +} + +const _size$1 = /*@__PURE__*/ new Vector2(); + +/** + * `RTTNode` takes another node and uses it with a `QuadMesh` to render into a texture (RTT). + * This module is especially relevant in context of post processing where certain nodes require + * texture input for their effects. With the helper function `convertToTexture()` which is based + * on this module, the node system can automatically ensure texture input if required. + * + * @augments TextureNode + */ +class RTTNode extends TextureNode { + + static get type() { + + return 'RTTNode'; + + } + + /** + * Constructs a new RTT node. + * + * @param {Node} node - The node to render a texture with. + * @param {?number} [width=null] - The width of the internal render target. If not width is applied, the render target is automatically resized. + * @param {?number} [height=null] - The height of the internal render target. + * @param {Object} [options={type:HalfFloatType}] - The options for the internal render target. + */ + constructor( node, width = null, height = null, options = { type: HalfFloatType } ) { + + const renderTarget = new RenderTarget( width, height, options ); + + super( renderTarget.texture, uv() ); + + /** + * The node to render a texture with. + * + * @type {Node} + */ + this.node = node; + + /** + * The width of the internal render target. + * If not width is applied, the render target is automatically resized. + * + * @type {?number} + * @default null + */ + this.width = width; + + /** + * The height of the internal render target. + * + * @type {?number} + * @default null + */ + this.height = height; + + /** + * The pixel ratio + * + * @type {number} + * @default 1 + */ + this.pixelRatio = 1; + + /** + * The render target + * + * @type {RenderTarget} + */ + this.renderTarget = renderTarget; + + /** + * Whether the texture requires an update or not. + * + * @type {boolean} + * @default true + */ + this.textureNeedsUpdate = true; + + /** + * Whether the texture should automatically be updated or not. + * + * @type {boolean} + * @default true + */ + this.autoUpdate = true; + + /** + * The node which is used with the quad mesh for RTT. + * + * @private + * @type {Node} + * @default null + */ + this._rttNode = null; + + /** + * The internal quad mesh for RTT. + * + * @private + * @type {QuadMesh} + */ + this._quadMesh = new QuadMesh( new NodeMaterial() ); + + /** + * The `updateBeforeType` is set to `NodeUpdateType.RENDER` since the node updates + * the texture once per render in its {@link RTTNode#updateBefore} method. + * + * @type {string} + * @default 'render' + */ + this.updateBeforeType = NodeUpdateType.RENDER; + + } + + /** + * Whether the internal render target should automatically be resized or not. + * + * @type {boolean} + * @readonly + * @default true + */ + get autoSize() { + + return this.width === null; + + } + + setup( builder ) { + + this._rttNode = this.node.context( builder.getSharedContext() ); + this._quadMesh.material.name = 'RTT'; + this._quadMesh.material.needsUpdate = true; + + return super.setup( builder ); + + } + + /** + * Sets the size of the internal render target + * + * @param {number} width - The width to set. + * @param {number} height - The width to set. + */ + setSize( width, height ) { + + this.width = width; + this.height = height; + + const effectiveWidth = width * this.pixelRatio; + const effectiveHeight = height * this.pixelRatio; + + this.renderTarget.setSize( effectiveWidth, effectiveHeight ); + + this.textureNeedsUpdate = true; + + } + + /** + * Sets the pixel ratio. This will also resize the render target. + * + * @param {number} pixelRatio - The pixel ratio to set. + */ + setPixelRatio( pixelRatio ) { + + this.pixelRatio = pixelRatio; + + this.setSize( this.width, this.height ); + + } + + updateBefore( { renderer } ) { + + if ( this.textureNeedsUpdate === false && this.autoUpdate === false ) return; + + this.textureNeedsUpdate = false; + + // + + if ( this.autoSize === true ) { + + this.pixelRatio = renderer.getPixelRatio(); + + const size = renderer.getSize( _size$1 ); + + this.setSize( size.width, size.height ); + + } + + // + + this._quadMesh.material.fragmentNode = this._rttNode; + + // + + const currentRenderTarget = renderer.getRenderTarget(); + + renderer.setRenderTarget( this.renderTarget ); + + this._quadMesh.render( renderer ); + + renderer.setRenderTarget( currentRenderTarget ); + + } + + clone() { + + const newNode = new TextureNode( this.value, this.uvNode, this.levelNode ); + newNode.sampler = this.sampler; + newNode.referenceNode = this; + + return newNode; + + } + +} + +/** + * TSL function for creating a RTT node. + * + * @tsl + * @function + * @param {Node} node - The node to render a texture with. + * @param {?number} [width=null] - The width of the internal render target. If not width is applied, the render target is automatically resized. + * @param {?number} [height=null] - The height of the internal render target. + * @param {Object} [options={type:HalfFloatType}] - The options for the internal render target. + * @returns {RTTNode} + */ +const rtt = ( node, ...params ) => nodeObject( new RTTNode( nodeObject( node ), ...params ) ); + +/** + * TSL function for converting nodes to textures nodes. + * + * @tsl + * @function + * @param {Node} node - The node to render a texture with. + * @param {?number} [width=null] - The width of the internal render target. If not width is applied, the render target is automatically resized. + * @param {?number} [height=null] - The height of the internal render target. + * @param {Object} [options={type:HalfFloatType}] - The options for the internal render target. + * @returns {RTTNode} + */ +const convertToTexture = ( node, ...params ) => { + + if ( node.isTextureNode ) return node; + if ( node.isPassNode ) return node.getTextureNode(); + + return rtt( node, ...params ); + +}; + +/** + * Computes a position in view space based on a fragment's screen position expressed as uv coordinates, the fragments + * depth value and the camera's inverse projection matrix. + * + * @tsl + * @function + * @param {Node} screenPosition - The fragment's screen position expressed as uv coordinates. + * @param {Node} depth - The fragment's depth value. + * @param {Node} projectionMatrixInverse - The camera's inverse projection matrix. + * @return {Node} The fragments position in view space. + */ +const getViewPosition = /*@__PURE__*/ Fn( ( [ screenPosition, depth, projectionMatrixInverse ], builder ) => { + + let clipSpacePosition; + + if ( builder.renderer.coordinateSystem === WebGPUCoordinateSystem ) { + + screenPosition = vec2( screenPosition.x, screenPosition.y.oneMinus() ).mul( 2.0 ).sub( 1.0 ); + clipSpacePosition = vec4( vec3( screenPosition, depth ), 1.0 ); + + } else { + + clipSpacePosition = vec4( vec3( screenPosition.x, screenPosition.y.oneMinus(), depth ).mul( 2.0 ).sub( 1.0 ), 1.0 ); + + } + + const viewSpacePosition = vec4( projectionMatrixInverse.mul( clipSpacePosition ) ); + + return viewSpacePosition.xyz.div( viewSpacePosition.w ); + +} ); + +/** + * Computes a screen position expressed as uv coordinates based on a fragment's position in view space + * and the camera's projection matrix + * + * @tsl + * @function + * @param {Node} viewPosition - The fragments position in view space. + * @param {Node} projectionMatrix - The camera's projection matrix. + * @return {Node} The fragment's screen position expressed as uv coordinates. + */ +const getScreenPosition = /*@__PURE__*/ Fn( ( [ viewPosition, projectionMatrix ] ) => { + + const sampleClipPos = projectionMatrix.mul( vec4( viewPosition, 1.0 ) ); + const sampleUv = sampleClipPos.xy.div( sampleClipPos.w ).mul( 0.5 ).add( 0.5 ).toVar(); + return vec2( sampleUv.x, sampleUv.y.oneMinus() ); + +} ); + +/** + * Computes a normal vector based on depth data. Can be used as a fallback when no normal render + * target is available or if flat surface normals are required. + * + * @tsl + * @function + * @param {Node} uv - The texture coordinate. + * @param {DepthTexture} depthTexture - The depth texture. + * @param {Node} projectionMatrixInverse - The camera's inverse projection matrix. + * @return {Node} The computed normal vector. + */ +const getNormalFromDepth = /*@__PURE__*/ Fn( ( [ uv, depthTexture, projectionMatrixInverse ] ) => { + + const size = textureSize( textureLoad( depthTexture ) ); + const p = ivec2( uv.mul( size ) ).toVar(); + + const c0 = textureLoad( depthTexture, p ).toVar(); + + const l2 = textureLoad( depthTexture, p.sub( ivec2( 2, 0 ) ) ).toVar(); + const l1 = textureLoad( depthTexture, p.sub( ivec2( 1, 0 ) ) ).toVar(); + const r1 = textureLoad( depthTexture, p.add( ivec2( 1, 0 ) ) ).toVar(); + const r2 = textureLoad( depthTexture, p.add( ivec2( 2, 0 ) ) ).toVar(); + const b2 = textureLoad( depthTexture, p.add( ivec2( 0, 2 ) ) ).toVar(); + const b1 = textureLoad( depthTexture, p.add( ivec2( 0, 1 ) ) ).toVar(); + const t1 = textureLoad( depthTexture, p.sub( ivec2( 0, 1 ) ) ).toVar(); + const t2 = textureLoad( depthTexture, p.sub( ivec2( 0, 2 ) ) ).toVar(); + + const dl = abs( sub( float( 2 ).mul( l1 ).sub( l2 ), c0 ) ).toVar(); + const dr = abs( sub( float( 2 ).mul( r1 ).sub( r2 ), c0 ) ).toVar(); + const db = abs( sub( float( 2 ).mul( b1 ).sub( b2 ), c0 ) ).toVar(); + const dt = abs( sub( float( 2 ).mul( t1 ).sub( t2 ), c0 ) ).toVar(); + + const ce = getViewPosition( uv, c0, projectionMatrixInverse ).toVar(); + + const dpdx = dl.lessThan( dr ).select( ce.sub( getViewPosition( uv.sub( vec2( float( 1 ).div( size.x ), 0 ) ), l1, projectionMatrixInverse ) ), ce.negate().add( getViewPosition( uv.add( vec2( float( 1 ).div( size.x ), 0 ) ), r1, projectionMatrixInverse ) ) ); + const dpdy = db.lessThan( dt ).select( ce.sub( getViewPosition( uv.add( vec2( 0, float( 1 ).div( size.y ) ) ), b1, projectionMatrixInverse ) ), ce.negate().add( getViewPosition( uv.sub( vec2( 0, float( 1 ).div( size.y ) ) ), t1, projectionMatrixInverse ) ) ); + + return normalize( cross( dpdx, dpdy ) ); + +} ); + +/** + * This special type of instanced buffer attribute is intended for compute shaders. + * In earlier three.js versions it was only possible to update attribute data + * on the CPU via JavaScript and then upload the data to the GPU. With the + * new material system and renderer it is now possible to use compute shaders + * to compute the data for an attribute more efficiently on the GPU. + * + * The idea is to create an instance of this class and provide it as an input + * to {@link StorageBufferNode}. + * + * Note: This type of buffer attribute can only be used with `WebGPURenderer`. + * + * @augments InstancedBufferAttribute + */ +class StorageInstancedBufferAttribute extends InstancedBufferAttribute { + + /** + * Constructs a new storage instanced buffer attribute. + * + * @param {number|TypedArray} count - The item count. It is also valid to pass a typed array as an argument. + * The subsequent parameters are then obsolete. + * @param {number} itemSize - The item size. + * @param {TypedArray.constructor} [typeClass=Float32Array] - A typed array constructor. + */ + constructor( count, itemSize, typeClass = Float32Array ) { + + const array = ArrayBuffer.isView( count ) ? count : new typeClass( count * itemSize ); + + super( array, itemSize ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageInstancedBufferAttribute = true; + + } + +} + +/** + * This special type of buffer attribute is intended for compute shaders. + * In earlier three.js versions it was only possible to update attribute data + * on the CPU via JavaScript and then upload the data to the GPU. With the + * new material system and renderer it is now possible to use compute shaders + * to compute the data for an attribute more efficiently on the GPU. + * + * The idea is to create an instance of this class and provide it as an input + * to {@link StorageBufferNode}. + * + * Note: This type of buffer attribute can only be used with `WebGPURenderer`. + * + * @augments BufferAttribute + */ +class StorageBufferAttribute extends BufferAttribute { + + /** + * Constructs a new storage buffer attribute. + * + * @param {number|TypedArray} count - The item count. It is also valid to pass a typed array as an argument. + * The subsequent parameters are then obsolete. + * @param {number} itemSize - The item size. + * @param {TypedArray.constructor} [typeClass=Float32Array] - A typed array constructor. + */ + constructor( count, itemSize, typeClass = Float32Array ) { + + const array = ArrayBuffer.isView( count ) ? count : new typeClass( count * itemSize ); + + super( array, itemSize ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageBufferAttribute = true; + + } + +} + +/** + * TSL function for creating a storage buffer node with a configured `StorageBufferAttribute`. + * + * @tsl + * @function + * @param {number|TypedArray} count - The data count. It is also valid to pass a typed array as an argument. + * @param {string|Struct} [type='float'] - The data type. + * @returns {StorageBufferNode} + */ +const attributeArray = ( count, type = 'float' ) => { + + let itemSize, typedArray; + + if ( type.isStruct === true ) { + + itemSize = type.layout.getLength(); + typedArray = getTypedArrayFromType( 'float' ); + + } else { + + itemSize = getLengthFromType( type ); + typedArray = getTypedArrayFromType( type ); + + } + + const buffer = new StorageBufferAttribute( count, itemSize, typedArray ); + const node = storage( buffer, type, count ); + + return node; + +}; + +/** + * TSL function for creating a storage buffer node with a configured `StorageInstancedBufferAttribute`. + * + * @tsl + * @function + * @param {number|TypedArray} count - The data count. It is also valid to pass a typed array as an argument. + * @param {string|Struct} [type='float'] - The data type. + * @returns {StorageBufferNode} + */ +const instancedArray = ( count, type = 'float' ) => { + + let itemSize, typedArray; + + if ( type.isStruct === true ) { + + itemSize = type.layout.getLength(); + typedArray = getTypedArrayFromType( 'float' ); + + } else { + + itemSize = getLengthFromType( type ); + typedArray = getTypedArrayFromType( type ); + + } + + const buffer = new StorageInstancedBufferAttribute( count, itemSize, typedArray ); + const node = storage( buffer, type, count ); + + return node; + +}; + +/** + * A node for representing the uv coordinates of points. + * + * Can only be used with a WebGL backend. In WebGPU, point + * primitives always have the size of one pixel and can thus + * can't be used as sprite-like objects that display textures. + * + * @augments Node + */ +class PointUVNode extends Node { + + static get type() { + + return 'PointUVNode'; + + } + + /** + * Constructs a new point uv node. + */ + constructor() { + + super( 'vec2' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPointUVNode = true; + + } + + generate( /*builder*/ ) { + + return 'vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y )'; + + } + +} + +/** + * TSL object that represents the uv coordinates of points. + * + * @tsl + * @type {PointUVNode} + */ +const pointUV = /*@__PURE__*/ nodeImmutable( PointUVNode ); + +const _e1 = /*@__PURE__*/ new Euler(); +const _m1 = /*@__PURE__*/ new Matrix4(); + +/** + * This module allows access to a collection of scene properties. The following predefined TSL objects + * are available for easier use: + * + * - `backgroundBlurriness`: A node that represents the scene's background blurriness. + * - `backgroundIntensity`: A node that represents the scene's background intensity. + * - `backgroundRotation`: A node that represents the scene's background rotation. + * + * @augments Node + */ +class SceneNode extends Node { + + static get type() { + + return 'SceneNode'; + + } + + /** + * Constructs a new scene node. + * + * @param {('backgroundBlurriness'|'backgroundIntensity'|'backgroundRotation')} scope - The scope defines the type of scene property that is accessed. + * @param {?Scene} [scene=null] - A reference to the scene. + */ + constructor( scope = SceneNode.BACKGROUND_BLURRINESS, scene = null ) { + + super(); + + /** + * The scope defines the type of scene property that is accessed. + * + * @type {('backgroundBlurriness'|'backgroundIntensity'|'backgroundRotation')} + */ + this.scope = scope; + + /** + * A reference to the scene that is going to be accessed. + * + * @type {?Scene} + * @default null + */ + this.scene = scene; + + } + + /** + * Depending on the scope, the method returns a different type of node that represents + * the respective scene property. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The output node. + */ + setup( builder ) { + + const scope = this.scope; + const scene = this.scene !== null ? this.scene : builder.scene; + + let output; + + if ( scope === SceneNode.BACKGROUND_BLURRINESS ) { + + output = reference( 'backgroundBlurriness', 'float', scene ); + + } else if ( scope === SceneNode.BACKGROUND_INTENSITY ) { + + output = reference( 'backgroundIntensity', 'float', scene ); + + } else if ( scope === SceneNode.BACKGROUND_ROTATION ) { + + output = uniform( 'mat4' ).label( 'backgroundRotation' ).setGroup( renderGroup ).onRenderUpdate( () => { + + const background = scene.background; + + if ( background !== null && background.isTexture && background.mapping !== UVMapping ) { + + _e1.copy( scene.backgroundRotation ); + + // accommodate left-handed frame + _e1.x *= - 1; _e1.y *= - 1; _e1.z *= - 1; + + _m1.makeRotationFromEuler( _e1 ); + + } else { + + _m1.identity(); + + } + + return _m1; + + } ); + + } else { + + console.error( 'THREE.SceneNode: Unknown scope:', scope ); + + } + + return output; + + } + +} + +SceneNode.BACKGROUND_BLURRINESS = 'backgroundBlurriness'; +SceneNode.BACKGROUND_INTENSITY = 'backgroundIntensity'; +SceneNode.BACKGROUND_ROTATION = 'backgroundRotation'; + +/** + * TSL object that represents the scene's background blurriness. + * + * @tsl + * @type {SceneNode} + */ +const backgroundBlurriness = /*@__PURE__*/ nodeImmutable( SceneNode, SceneNode.BACKGROUND_BLURRINESS ); + +/** + * TSL object that represents the scene's background intensity. + * + * @tsl + * @type {SceneNode} + */ +const backgroundIntensity = /*@__PURE__*/ nodeImmutable( SceneNode, SceneNode.BACKGROUND_INTENSITY ); + +/** + * TSL object that represents the scene's background rotation. + * + * @tsl + * @type {SceneNode} + */ +const backgroundRotation = /*@__PURE__*/ nodeImmutable( SceneNode, SceneNode.BACKGROUND_ROTATION ); + +/** + * This special version of a texture node can be used to + * write data into a storage texture with a compute shader. + * + * ```js + * const storageTexture = new THREE.StorageTexture( width, height ); + * + * const computeTexture = Fn( ( { storageTexture } ) => { + * + * const posX = instanceIndex.mod( width ); + * const posY = instanceIndex.div( width ); + * const indexUV = uvec2( posX, posY ); + * + * // generate RGB values + * + * const r = 1; + * const g = 1; + * const b = 1; + * + * textureStore( storageTexture, indexUV, vec4( r, g, b, 1 ) ).toWriteOnly(); + * + * } ); + * + * const computeNode = computeTexture( { storageTexture } ).compute( width * height ); + * renderer.computeAsync( computeNode ); + * ``` + * + * This node can only be used with a WebGPU backend. + * + * @augments TextureNode + */ +class StorageTextureNode extends TextureNode { + + static get type() { + + return 'StorageTextureNode'; + + } + + /** + * Constructs a new storage texture node. + * + * @param {StorageTexture} value - The storage texture. + * @param {Node} uvNode - The uv node. + * @param {?Node} [storeNode=null] - The value node that should be stored in the texture. + */ + constructor( value, uvNode, storeNode = null ) { + + super( value, uvNode ); + + /** + * The value node that should be stored in the texture. + * + * @type {?Node} + * @default null + */ + this.storeNode = storeNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageTextureNode = true; + + /** + * The access type of the texture node. + * + * @type {string} + * @default 'writeOnly' + */ + this.access = NodeAccess.WRITE_ONLY; + + } + + /** + * Overwrites the default implementation to return a fixed value `'storageTexture'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return 'storageTexture'; + + } + + setup( builder ) { + + super.setup( builder ); + + const properties = builder.getNodeProperties( this ); + properties.storeNode = this.storeNode; + + return properties; + + } + + /** + * Defines the node access. + * + * @param {string} value - The node access. + * @return {StorageTextureNode} A reference to this node. + */ + setAccess( value ) { + + this.access = value; + return this; + + } + + /** + * Generates the code snippet of the storage node. If no `storeNode` + * is defined, the texture node is generated as normal texture. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} output - The current output. + * @return {string} The generated code snippet. + */ + generate( builder, output ) { + + let snippet; + + if ( this.storeNode !== null ) { + + snippet = this.generateStore( builder ); + + } else { + + snippet = super.generate( builder, output ); + + } + + return snippet; + + } + + /** + * Convenience method for configuring a read/write node access. + * + * @return {StorageTextureNode} A reference to this node. + */ + toReadWrite() { + + return this.setAccess( NodeAccess.READ_WRITE ); + + } + + /** + * Convenience method for configuring a read-only node access. + * + * @return {StorageTextureNode} A reference to this node. + */ + toReadOnly() { + + return this.setAccess( NodeAccess.READ_ONLY ); + + } + + /** + * Convenience method for configuring a write-only node access. + * + * @return {StorageTextureNode} A reference to this node. + */ + toWriteOnly() { + + return this.setAccess( NodeAccess.WRITE_ONLY ); + + } + + /** + * Generates the code snippet of the storage texture node. + * + * @param {NodeBuilder} builder - The current node builder. + */ + generateStore( builder ) { + + const properties = builder.getNodeProperties( this ); + + const { uvNode, storeNode, depthNode } = properties; + + const textureProperty = super.generate( builder, 'property' ); + const uvSnippet = uvNode.build( builder, 'uvec2' ); + const storeSnippet = storeNode.build( builder, 'vec4' ); + const depthSnippet = depthNode ? depthNode.build( builder, 'int' ) : null; + + const snippet = builder.generateTextureStore( builder, textureProperty, uvSnippet, depthSnippet, storeSnippet ); + + builder.addLineFlowCode( snippet, this ); + + } + + clone() { + + const newNode = super.clone(); + newNode.storeNode = this.storeNode; + return newNode; + + } + +} + +/** + * TSL function for creating a storage texture node. + * + * @tsl + * @function + * @param {StorageTexture} value - The storage texture. + * @param {?Node} uvNode - The uv node. + * @param {?Node} [storeNode=null] - The value node that should be stored in the texture. + * @returns {StorageTextureNode} + */ +const storageTexture = /*@__PURE__*/ nodeProxy( StorageTextureNode ).setParameterLength( 1, 3 ); + + +/** + * TODO: Explain difference to `storageTexture()`. + * + * @tsl + * @function + * @param {StorageTexture} value - The storage texture. + * @param {Node} uvNode - The uv node. + * @param {?Node} [storeNode=null] - The value node that should be stored in the texture. + * @returns {StorageTextureNode} + */ +const textureStore = ( value, uvNode, storeNode ) => { + + const node = storageTexture( value, uvNode, storeNode ); + + if ( storeNode !== null ) node.toStack(); + + return node; + +}; + +const normal = Fn( ( { texture, uv } ) => { + + const epsilon = 0.0001; + + const ret = vec3().toVar(); + + If( uv.x.lessThan( epsilon ), () => { + + ret.assign( vec3( 1, 0, 0 ) ); + + } ).ElseIf( uv.y.lessThan( epsilon ), () => { + + ret.assign( vec3( 0, 1, 0 ) ); + + } ).ElseIf( uv.z.lessThan( epsilon ), () => { + + ret.assign( vec3( 0, 0, 1 ) ); + + } ).ElseIf( uv.x.greaterThan( 1 - epsilon ), () => { + + ret.assign( vec3( - 1, 0, 0 ) ); + + } ).ElseIf( uv.y.greaterThan( 1 - epsilon ), () => { + + ret.assign( vec3( 0, - 1, 0 ) ); + + } ).ElseIf( uv.z.greaterThan( 1 - epsilon ), () => { + + ret.assign( vec3( 0, 0, - 1 ) ); + + } ).Else( () => { + + const step = 0.01; + + const x = texture.sample( uv.add( vec3( - 0.01, 0.0, 0.0 ) ) ).r.sub( texture.sample( uv.add( vec3( step, 0.0, 0.0 ) ) ).r ); + const y = texture.sample( uv.add( vec3( 0.0, - 0.01, 0.0 ) ) ).r.sub( texture.sample( uv.add( vec3( 0.0, step, 0.0 ) ) ).r ); + const z = texture.sample( uv.add( vec3( 0.0, 0.0, - 0.01 ) ) ).r.sub( texture.sample( uv.add( vec3( 0.0, 0.0, step ) ) ).r ); + + ret.assign( vec3( x, y, z ) ); + + } ); + + return ret.normalize(); + +} ); + +/** + * This type of uniform node represents a 3D texture. + * + * @augments TextureNode + */ +class Texture3DNode extends TextureNode { + + static get type() { + + return 'Texture3DNode'; + + } + + /** + * Constructs a new 3D texture node. + * + * @param {Data3DTexture} value - The 3D texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + */ + constructor( value, uvNode = null, levelNode = null ) { + + super( value, uvNode, levelNode ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isTexture3DNode = true; + + } + + /** + * Overwrites the default implementation to return a fixed value `'texture3D'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return 'texture3D'; + + } + + /** + * Returns a default uv node which is in context of 3D textures a three-dimensional + * uv node. + * + * @return {Node} The default uv node. + */ + getDefaultUV() { + + return vec3( 0.5, 0.5, 0.5 ); + + } + + /** + * Overwritten with an empty implementation since the `updateMatrix` flag is ignored + * for 3D textures. The uv transformation matrix is not applied to 3D textures. + * + * @param {boolean} value - The update toggle. + */ + setUpdateMatrix( /*value*/ ) { } // Ignore .updateMatrix for 3d TextureNode + + /** + * Overwrites the default implementation to return the unmodified uv node. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} uvNode - The uv node to setup. + * @return {Node} The unmodified uv node. + */ + setupUV( builder, uvNode ) { + + const texture = this.value; + + if ( builder.isFlipY() && ( texture.isRenderTargetTexture === true || texture.isFramebufferTexture === true ) ) { + + if ( this.sampler ) { + + uvNode = uvNode.flipY(); + + } else { + + uvNode = uvNode.setY( int( textureSize( this, this.levelNode ).y ).sub( uvNode.y ).sub( 1 ) ); + + } + + } + + return uvNode; + + } + + /** + * Generates the uv code snippet. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} uvNode - The uv node to generate code for. + * @return {string} The generated code snippet. + */ + generateUV( builder, uvNode ) { + + return uvNode.build( builder, 'vec3' ); + + } + + /** + * TODO. + * + * @param {Node} uvNode - The uv node . + * @return {Node} TODO. + */ + normal( uvNode ) { + + return normal( { texture: this, uv: uvNode } ); + + } + +} + +/** + * TSL function for creating a 3D texture node. + * + * @tsl + * @function + * @param {Data3DTexture} value - The 3D texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @returns {Texture3DNode} + */ +const texture3D = /*@__PURE__*/ nodeProxy( Texture3DNode ).setParameterLength( 1, 3 ); + +/** + * A special type of reference node that allows to link values in + * `userData` fields to node objects. + * ```js + * sprite.userData.rotation = 1; // stores individual rotation per sprite + * + * const material = new THREE.SpriteNodeMaterial(); + * material.rotationNode = userData( 'rotation', 'float' ); + * ``` + * Since `UserDataNode` is extended from {@link ReferenceNode}, the node value + * will automatically be updated when the `rotation` user data field changes. + * + * @augments ReferenceNode + */ +class UserDataNode extends ReferenceNode { + + static get type() { + + return 'UserDataNode'; + + } + + /** + * Constructs a new user data node. + * + * @param {string} property - The property name that should be referenced by the node. + * @param {string} inputType - The node data type of the reference. + * @param {?Object} [userData=null] - A reference to the `userData` object. If not provided, the `userData` property of the 3D object that uses the node material is evaluated. + */ + constructor( property, inputType, userData = null ) { + + super( property, inputType, userData ); + + /** + * A reference to the `userData` object. If not provided, the `userData` + * property of the 3D object that uses the node material is evaluated. + * + * @type {?Object} + * @default null + */ + this.userData = userData; + + } + + /** + * Overwritten to make sure {@link ReferenceNode#reference} points to the correct + * `userData` field. + * + * @param {(NodeFrame|NodeBuilder)} state - The current state to evaluate. + * @return {Object} A reference to the `userData` field. + */ + updateReference( state ) { + + this.reference = this.userData !== null ? this.userData : state.object.userData; + + return this.reference; + + } + +} + +/** + * TSL function for creating a user data node. + * + * @tsl + * @function + * @param {string} name - The property name that should be referenced by the node. + * @param {string} inputType - The node data type of the reference. + * @param {?Object} userData - A reference to the `userData` object. If not provided, the `userData` property of the 3D object that uses the node material is evaluated. + * @returns {UserDataNode} + */ +const userData = ( name, inputType, userData ) => nodeObject( new UserDataNode( name, inputType, userData ) ); + +const _objectData = new WeakMap(); + +/** + * A node for representing motion or velocity vectors. Foundation + * for advanced post processing effects like motion blur or TRAA. + * + * The node keeps track of the model, view and projection matrices + * of the previous frame and uses them to compute offsets in NDC space. + * These offsets represent the final velocity. + * + * @augments TempNode + */ +class VelocityNode extends TempNode { + + static get type() { + + return 'VelocityNode'; + + } + + /** + * Constructs a new vertex color node. + */ + constructor() { + + super( 'vec2' ); + + /** + * The current projection matrix. + * + * @type {?Matrix4} + * @default null + */ + this.projectionMatrix = null; + + /** + * Overwritten since velocity nodes are updated per object. + * + * @type {string} + * @default 'object' + */ + this.updateType = NodeUpdateType.OBJECT; + + /** + * Overwritten since velocity nodes save data after the update. + * + * @type {string} + * @default 'object' + */ + this.updateAfterType = NodeUpdateType.OBJECT; + + /** + * Uniform node representing the previous model matrix in world space. + * + * @type {UniformNode} + * @default null + */ + this.previousModelWorldMatrix = uniform( new Matrix4() ); + + /** + * Uniform node representing the previous projection matrix. + * + * @type {UniformNode} + * @default null + */ + this.previousProjectionMatrix = uniform( new Matrix4() ).setGroup( renderGroup ); + + /** + * Uniform node representing the previous view matrix. + * + * @type {UniformNode} + * @default null + */ + this.previousCameraViewMatrix = uniform( new Matrix4() ); + + } + + /** + * Sets the given projection matrix. + * + * @param {Matrix4} projectionMatrix - The projection matrix to set. + */ + setProjectionMatrix( projectionMatrix ) { + + this.projectionMatrix = projectionMatrix; + + } + + /** + * Updates velocity specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( { frameId, camera, object } ) { + + const previousModelMatrix = getPreviousMatrix( object ); + + this.previousModelWorldMatrix.value.copy( previousModelMatrix ); + + // + + const cameraData = getData( camera ); + + if ( cameraData.frameId !== frameId ) { + + cameraData.frameId = frameId; + + if ( cameraData.previousProjectionMatrix === undefined ) { + + cameraData.previousProjectionMatrix = new Matrix4(); + cameraData.previousCameraViewMatrix = new Matrix4(); + + cameraData.currentProjectionMatrix = new Matrix4(); + cameraData.currentCameraViewMatrix = new Matrix4(); + + cameraData.previousProjectionMatrix.copy( this.projectionMatrix || camera.projectionMatrix ); + cameraData.previousCameraViewMatrix.copy( camera.matrixWorldInverse ); + + } else { + + cameraData.previousProjectionMatrix.copy( cameraData.currentProjectionMatrix ); + cameraData.previousCameraViewMatrix.copy( cameraData.currentCameraViewMatrix ); + + } + + cameraData.currentProjectionMatrix.copy( this.projectionMatrix || camera.projectionMatrix ); + cameraData.currentCameraViewMatrix.copy( camera.matrixWorldInverse ); + + this.previousProjectionMatrix.value.copy( cameraData.previousProjectionMatrix ); + this.previousCameraViewMatrix.value.copy( cameraData.previousCameraViewMatrix ); + + } + + } + + /** + * Overwritten to updated velocity specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + updateAfter( { object } ) { + + getPreviousMatrix( object ).copy( object.matrixWorld ); + + } + + /** + * Implements the velocity computation based on the previous and current vertex data. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @return {Node} The motion vector. + */ + setup( /*builder*/ ) { + + const projectionMatrix = ( this.projectionMatrix === null ) ? cameraProjectionMatrix : uniform( this.projectionMatrix ); + + const previousModelViewMatrix = this.previousCameraViewMatrix.mul( this.previousModelWorldMatrix ); + + const clipPositionCurrent = projectionMatrix.mul( modelViewMatrix ).mul( positionLocal ); + const clipPositionPrevious = this.previousProjectionMatrix.mul( previousModelViewMatrix ).mul( positionPrevious ); + + const ndcPositionCurrent = clipPositionCurrent.xy.div( clipPositionCurrent.w ); + const ndcPositionPrevious = clipPositionPrevious.xy.div( clipPositionPrevious.w ); + + const velocity = sub( ndcPositionCurrent, ndcPositionPrevious ); + + return velocity; + + } + +} + +function getData( object ) { + + let objectData = _objectData.get( object ); + + if ( objectData === undefined ) { + + objectData = {}; + _objectData.set( object, objectData ); + + } + + return objectData; + +} + +function getPreviousMatrix( object, index = 0 ) { + + const objectData = getData( object ); + + let matrix = objectData[ index ]; + + if ( matrix === undefined ) { + + objectData[ index ] = matrix = new Matrix4(); + objectData[ index ].copy( object.matrixWorld ); + + } + + return matrix; + +} + +/** + * TSL object that represents the velocity of a render pass. + * + * @tsl + * @type {VelocityNode} + */ +const velocity = /*@__PURE__*/ nodeImmutable( VelocityNode ); + +/** + * Represents a "Color Burn" blend mode. + * + * It's designed to darken the base layer's colors based on the color of the blend layer. + * It significantly increases the contrast of the base layer, making the colors more vibrant and saturated. + * The darker the color in the blend layer, the stronger the darkening and contrast effect on the base layer. + * + * @tsl + * @function + * @param {Node} base - The base color. + * @param {Node} blend - The blend color. A white (#ffffff) blend color does not alter the base color. + * @return {Node} The result. + */ +const blendBurn = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { + + return min$1( 1.0, base.oneMinus().div( blend ) ).oneMinus(); + +} ).setLayout( { + name: 'blendBurn', + type: 'vec3', + inputs: [ + { name: 'base', type: 'vec3' }, + { name: 'blend', type: 'vec3' } + ] +} ); + +/** + * Represents a "Color Dodge" blend mode. + * + * It's designed to lighten the base layer's colors based on the color of the blend layer. + * It significantly increases the brightness of the base layer, making the colors lighter and more vibrant. + * The brighter the color in the blend layer, the stronger the lightening and contrast effect on the base layer. + * + * @tsl + * @function + * @param {Node} base - The base color. + * @param {Node} blend - The blend color. A black (#000000) blend color does not alter the base color. + * @return {Node} The result. + */ +const blendDodge = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { + + return min$1( base.div( blend.oneMinus() ), 1.0 ); + +} ).setLayout( { + name: 'blendDodge', + type: 'vec3', + inputs: [ + { name: 'base', type: 'vec3' }, + { name: 'blend', type: 'vec3' } + ] +} ); + +/** + * Represents a "Screen" blend mode. + * + * Similar to `blendDodge()`, this mode also lightens the base layer's colors based on the color of the blend layer. + * The "Screen" blend mode is better for general brightening whereas the "Dodge" results in more subtle and nuanced + * effects. + * + * @tsl + * @function + * @param {Node} base - The base color. + * @param {Node} blend - The blend color. A black (#000000) blend color does not alter the base color. + * @return {Node} The result. + */ +const blendScreen = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { + + return base.oneMinus().mul( blend.oneMinus() ).oneMinus(); + +} ).setLayout( { + name: 'blendScreen', + type: 'vec3', + inputs: [ + { name: 'base', type: 'vec3' }, + { name: 'blend', type: 'vec3' } + ] +} ); + +/** + * Represents a "Overlay" blend mode. + * + * It's designed to increase the contrast of the base layer based on the color of the blend layer. + * It amplifies the existing colors and contrast in the base layer, making lighter areas lighter and darker areas darker. + * The color of the blend layer significantly influences the resulting contrast and color shift in the base layer. + * + * @tsl + * @function + * @param {Node} base - The base color. + * @param {Node} blend - The blend color + * @return {Node} The result. + */ +const blendOverlay = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { + + return mix( base.mul( 2.0 ).mul( blend ), base.oneMinus().mul( 2.0 ).mul( blend.oneMinus() ).oneMinus(), step( 0.5, base ) ); + +} ).setLayout( { + name: 'blendOverlay', + type: 'vec3', + inputs: [ + { name: 'base', type: 'vec3' }, + { name: 'blend', type: 'vec3' } + ] +} ); + +/** + * This function blends two color based on their alpha values by replicating the behavior of `THREE.NormalBlending`. + * It assumes both input colors have non-premultiplied alpha. + * + * @tsl + * @function + * @param {Node} base - The base color. + * @param {Node} blend - The blend color + * @return {Node} The result. + */ +const blendColor = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { + + const outAlpha = blend.a.add( base.a.mul( blend.a.oneMinus() ) ); + + return vec4( blend.rgb.mul( blend.a ).add( base.rgb.mul( base.a ).mul( blend.a.oneMinus() ) ).div( outAlpha ), outAlpha ); + +} ).setLayout( { + name: 'blendColor', + type: 'vec4', + inputs: [ + { name: 'base', type: 'vec4' }, + { name: 'blend', type: 'vec4' } + ] +} ); + +/** + * Premultiplies the RGB channels of a color by its alpha channel. + * + * This function is useful for converting a non-premultiplied alpha color + * into a premultiplied alpha format, where the RGB values are scaled + * by the alpha value. Premultiplied alpha is often used in graphics + * rendering for certain operations, such as compositing and image processing. + * + * @tsl + * @function + * @param {Node} color - The input color with non-premultiplied alpha. + * @return {Node} The color with premultiplied alpha. + */ +const premult = /*@__PURE__*/ Fn( ( [ color ] ) => { + + return vec4( color.rgb.mul( color.a ), color.a ); + +}, { color: 'vec4', return: 'vec4' } ); + +/** + * Unpremultiplies the RGB channels of a color by its alpha channel. + * + * This function is useful for converting a premultiplied alpha color + * back into a non-premultiplied alpha format, where the RGB values are + * divided by the alpha value. Unpremultiplied alpha is often used in graphics + * rendering for certain operations, such as compositing and image processing. + * + * @tsl + * @function + * @param {Node} color - The input color with premultiplied alpha. + * @return {Node} The color with non-premultiplied alpha. + */ +const unpremult = /*@__PURE__*/ Fn( ( [ color ] ) => { + + If( color.a.equal( 0.0 ), () => vec4( 0.0 ) ); + + return vec4( color.rgb.div( color.a ), color.a ); + +}, { color: 'vec4', return: 'vec4' } ); + + +// Deprecated + +/** + * @tsl + * @function + * @deprecated since r171. Use {@link blendBurn} instead. + * + * @param {...any} params + * @returns {Function} + */ +const burn = ( ...params ) => { // @deprecated, r171 + + console.warn( 'THREE.TSL: "burn" has been renamed. Use "blendBurn" instead.' ); + return blendBurn( params ); + +}; + +/** + * @tsl + * @function + * @deprecated since r171. Use {@link blendDodge} instead. + * + * @param {...any} params + * @returns {Function} + */ +const dodge = ( ...params ) => { // @deprecated, r171 + + console.warn( 'THREE.TSL: "dodge" has been renamed. Use "blendDodge" instead.' ); + return blendDodge( params ); + +}; + +/** + * @tsl + * @function + * @deprecated since r171. Use {@link blendScreen} instead. + * + * @param {...any} params + * @returns {Function} + */ +const screen = ( ...params ) => { // @deprecated, r171 + + console.warn( 'THREE.TSL: "screen" has been renamed. Use "blendScreen" instead.' ); + return blendScreen( params ); + +}; + +/** + * @tsl + * @function + * @deprecated since r171. Use {@link blendOverlay} instead. + * + * @param {...any} params + * @returns {Function} + */ +const overlay = ( ...params ) => { // @deprecated, r171 + + console.warn( 'THREE.TSL: "overlay" has been renamed. Use "blendOverlay" instead.' ); + return blendOverlay( params ); + +}; + +/** + * Computes a grayscale value for the given RGB color value. + * + * @tsl + * @function + * @param {Node} color - The color value to compute the grayscale for. + * @return {Node} The grayscale color. + */ +const grayscale = /*@__PURE__*/ Fn( ( [ color ] ) => { + + return luminance( color.rgb ); + +} ); + +/** + * Super-saturates or desaturates the given RGB color. + * + * @tsl + * @function + * @param {Node} color - The input color. + * @param {Node} [adjustment=1] - Specifies the amount of the conversion. A value under `1` desaturates the color, a value over `1` super-saturates it. + * @return {Node} The saturated color. + */ +const saturation = /*@__PURE__*/ Fn( ( [ color, adjustment = float( 1 ) ] ) => { + + return adjustment.mix( luminance( color.rgb ), color.rgb ); + +} ); + +/** + * Selectively enhance the intensity of less saturated RGB colors. Can result + * in a more natural and visually appealing image with enhanced color depth + * compared to {@link ColorAdjustment#saturation}. + * + * @tsl + * @function + * @param {Node} color - The input color. + * @param {Node} [adjustment=1] - Controls the intensity of the vibrance effect. + * @return {Node} The updated color. + */ +const vibrance = /*@__PURE__*/ Fn( ( [ color, adjustment = float( 1 ) ] ) => { + + const average = add( color.r, color.g, color.b ).div( 3.0 ); + + const mx = color.r.max( color.g.max( color.b ) ); + const amt = mx.sub( average ).mul( adjustment ).mul( - 3 ); + + return mix( color.rgb, mx, amt ); + +} ); + +/** + * Updates the hue component of the given RGB color while preserving its luminance and saturation. + * + * @tsl + * @function + * @param {Node} color - The input color. + * @param {Node} [adjustment=1] - Defines the degree of hue rotation in radians. A positive value rotates the hue clockwise, while a negative value rotates it counterclockwise. + * @return {Node} The updated color. + */ +const hue = /*@__PURE__*/ Fn( ( [ color, adjustment = float( 1 ) ] ) => { + + const k = vec3( 0.57735, 0.57735, 0.57735 ); + + const cosAngle = adjustment.cos(); + + return vec3( color.rgb.mul( cosAngle ).add( k.cross( color.rgb ).mul( adjustment.sin() ).add( k.mul( dot( k, color.rgb ).mul( cosAngle.oneMinus() ) ) ) ) ); + +} ); + +/** + * Computes the luminance for the given RGB color value. + * + * @tsl + * @function + * @param {Node} color - The color value to compute the luminance for. + * @param {?Node} luminanceCoefficients - The luminance coefficients. By default predefined values of the current working color space are used. + * @return {Node} The luminance. + */ +const luminance = ( + color, + luminanceCoefficients = vec3( ColorManagement.getLuminanceCoefficients( new Vector3() ) ) +) => dot( color, luminanceCoefficients ); + +/** + * Color Decision List (CDL) v1.2 + * + * Compact representation of color grading information, defined by slope, offset, power, and + * saturation. The CDL should be typically be given input in a log space (such as LogC, ACEScc, + * or AgX Log), and will return output in the same space. Output may require clamping >=0. + * + * @tsl + * @function + * @param {Node} color Input (-Infinity < input < +Infinity) + * @param {Node} slope Slope (0 ≤ slope < +Infinity) + * @param {Node} offset Offset (-Infinity < offset < +Infinity; typically -1 < offset < 1) + * @param {Node} power Power (0 < power < +Infinity) + * @param {Node} saturation Saturation (0 ≤ saturation < +Infinity; typically 0 ≤ saturation < 4) + * @param {Node} luminanceCoefficients Luminance coefficients for saturation term, typically Rec. 709 + * @return {Node} Output, -Infinity < output < +Infinity + * + * References: + * - ASC CDL v1.2 + * - {@link https://blender.stackexchange.com/a/55239/43930} + * - {@link https://docs.acescentral.com/specifications/acescc/} + */ +const cdl = /*@__PURE__*/ Fn( ( [ + color, + slope = vec3( 1 ), + offset = vec3( 0 ), + power = vec3( 1 ), + saturation = float( 1 ), + // ASC CDL v1.2 explicitly requires Rec. 709 luminance coefficients. + luminanceCoefficients = vec3( ColorManagement.getLuminanceCoefficients( new Vector3(), LinearSRGBColorSpace ) ) +] ) => { + + // NOTE: The ASC CDL v1.2 defines a [0, 1] clamp on the slope+offset term, and another on the + // saturation term. Per the ACEScc specification and Filament, limits may be omitted to support + // values outside [0, 1], requiring a workaround for negative values in the power expression. + + const luma = color.rgb.dot( vec3( luminanceCoefficients ) ); + + const v = max$1( color.rgb.mul( slope ).add( offset ), 0.0 ).toVar(); + const pv = v.pow( power ).toVar(); + + If( v.r.greaterThan( 0.0 ), () => { v.r.assign( pv.r ); } ); // eslint-disable-line + If( v.g.greaterThan( 0.0 ), () => { v.g.assign( pv.g ); } ); // eslint-disable-line + If( v.b.greaterThan( 0.0 ), () => { v.b.assign( pv.b ); } ); // eslint-disable-line + + v.assign( luma.add( v.sub( luma ).mul( saturation ) ) ); + + return vec4( v.rgb, color.a ); + +} ); + +/** + * Represents a posterize effect which reduces the number of colors + * in an image, resulting in a more blocky and stylized appearance. + * + * @augments TempNode + */ +class PosterizeNode extends TempNode { + + static get type() { + + return 'PosterizeNode'; + + } + + /** + * Constructs a new posterize node. + * + * @param {Node} sourceNode - The input color. + * @param {Node} stepsNode - Controls the intensity of the posterization effect. A lower number results in a more blocky appearance. + */ + constructor( sourceNode, stepsNode ) { + + super(); + + /** + * The input color. + * + * @type {Node} + */ + this.sourceNode = sourceNode; + + /** + * Controls the intensity of the posterization effect. A lower number results in a more blocky appearance. + * + * @type {Node} + */ + this.stepsNode = stepsNode; + + } + + setup() { + + const { sourceNode, stepsNode } = this; + + return sourceNode.mul( stepsNode ).floor().div( stepsNode ); + + } + +} + +/** + * TSL function for creating a posterize node. + * + * @tsl + * @function + * @param {Node} sourceNode - The input color. + * @param {Node} stepsNode - Controls the intensity of the posterization effect. A lower number results in a more blocky appearance. + * @returns {PosterizeNode} + */ +const posterize = /*@__PURE__*/ nodeProxy( PosterizeNode ).setParameterLength( 2 ); + +const _size = /*@__PURE__*/ new Vector2(); + +/** + * Represents the texture of a pass node. + * + * @augments TextureNode + */ +class PassTextureNode extends TextureNode { + + static get type() { + + return 'PassTextureNode'; + + } + + /** + * Constructs a new pass texture node. + * + * @param {PassNode} passNode - The pass node. + * @param {Texture} texture - The output texture. + */ + constructor( passNode, texture ) { + + super( texture ); + + /** + * A reference to the pass node. + * + * @type {PassNode} + */ + this.passNode = passNode; + + this.setUpdateMatrix( false ); + + } + + setup( builder ) { + + if ( builder.object.isQuadMesh ) this.passNode.build( builder ); + + return super.setup( builder ); + + } + + clone() { + + return new this.constructor( this.passNode, this.value ); + + } + +} + +/** + * An extension of `PassTextureNode` which allows to manage more than one + * internal texture. Relevant for the `getPreviousTexture()` related API. + * + * @augments PassTextureNode + */ +class PassMultipleTextureNode extends PassTextureNode { + + static get type() { + + return 'PassMultipleTextureNode'; + + } + + /** + * Constructs a new pass texture node. + * + * @param {PassNode} passNode - The pass node. + * @param {string} textureName - The output texture name. + * @param {boolean} [previousTexture=false] - Whether previous frame data should be used or not. + */ + constructor( passNode, textureName, previousTexture = false ) { + + // null is passed to the super call since this class does not + // use an external texture for rendering pass data into. Instead + // the texture is managed by the pass node itself + + super( passNode, null ); + + /** + * The output texture name. + * + * @type {string} + */ + this.textureName = textureName; + + /** + * Whether previous frame data should be used or not. + * + * @type {boolean} + */ + this.previousTexture = previousTexture; + + } + + /** + * Updates the texture reference of this node. + */ + updateTexture() { + + this.value = this.previousTexture ? this.passNode.getPreviousTexture( this.textureName ) : this.passNode.getTexture( this.textureName ); + + } + + setup( builder ) { + + this.updateTexture(); + + return super.setup( builder ); + + } + + clone() { + + return new this.constructor( this.passNode, this.textureName, this.previousTexture ); + + } + +} + +/** + * Represents a render pass (sometimes called beauty pass) in context of post processing. + * This pass produces a render for the given scene and camera and can provide multiple outputs + * via MRT for further processing. + * + * ```js + * const postProcessing = new PostProcessing( renderer ); + * + * const scenePass = pass( scene, camera ); + * + * postProcessing.outputNode = scenePass; + * ``` + * + * @augments TempNode + */ +class PassNode extends TempNode { + + static get type() { + + return 'PassNode'; + + } + + /** + * Constructs a new pass node. + * + * @param {('color'|'depth')} scope - The scope of the pass. The scope determines whether the node outputs color or depth. + * @param {Scene} scene - A reference to the scene. + * @param {Camera} camera - A reference to the camera. + * @param {Object} options - Options for the internal render target. + */ + constructor( scope, scene, camera, options = {} ) { + + super( 'vec4' ); + + /** + * The scope of the pass. The scope determines whether the node outputs color or depth. + * + * @type {('color'|'depth')} + */ + this.scope = scope; + + /** + * A reference to the scene. + * + * @type {Scene} + */ + this.scene = scene; + + /** + * A reference to the camera. + * + * @type {Camera} + */ + this.camera = camera; + + /** + * Options for the internal render target. + * + * @type {Object} + */ + this.options = options; + + /** + * The pass's pixel ratio. Will be kept automatically kept in sync with the renderer's pixel ratio. + * + * @private + * @type {number} + * @default 1 + */ + this._pixelRatio = 1; + + /** + * The pass's pixel width. Will be kept automatically kept in sync with the renderer's width. + * @private + * @type {number} + * @default 1 + */ + this._width = 1; + + /** + * The pass's pixel height. Will be kept automatically kept in sync with the renderer's height. + * @private + * @type {number} + * @default 1 + */ + this._height = 1; + + const depthTexture = new DepthTexture(); + depthTexture.isRenderTargetTexture = true; + //depthTexture.type = FloatType; + depthTexture.name = 'depth'; + + const renderTarget = new RenderTarget( this._width * this._pixelRatio, this._height * this._pixelRatio, { type: HalfFloatType, ...options, } ); + renderTarget.texture.name = 'output'; + renderTarget.depthTexture = depthTexture; + + /** + * The pass's render target. + * + * @type {RenderTarget} + */ + this.renderTarget = renderTarget; + + /** + * A dictionary holding the internal result textures. + * + * @private + * @type {Object} + */ + this._textures = { + output: renderTarget.texture, + depth: depthTexture + }; + + /** + * A dictionary holding the internal texture nodes. + * + * @private + * @type {Object} + */ + this._textureNodes = {}; + + /** + * A dictionary holding the internal depth nodes. + * + * @private + * @type {Object} + */ + this._linearDepthNodes = {}; + + /** + * A dictionary holding the internal viewZ nodes. + * + * @private + * @type {Object} + */ + this._viewZNodes = {}; + + /** + * A dictionary holding the texture data of the previous frame. + * Used for computing velocity/motion vectors. + * + * @private + * @type {Object} + */ + this._previousTextures = {}; + + /** + * A dictionary holding the texture nodes of the previous frame. + * Used for computing velocity/motion vectors. + * + * @private + * @type {Object} + */ + this._previousTextureNodes = {}; + + /** + * The `near` property of the camera as a uniform. + * + * @private + * @type {UniformNode} + */ + this._cameraNear = uniform( 0 ); + + /** + * The `far` property of the camera as a uniform. + * + * @private + * @type {UniformNode} + */ + this._cameraFar = uniform( 0 ); + + /** + * A MRT node configuring the MRT settings. + * + * @private + * @type {?MRTNode} + * @default null + */ + this._mrt = null; + + this._layers = null; + + this._resolution = 1; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPassNode = true; + + /** + * The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node renders the + * scene once per frame in its {@link PassNode#updateBefore} method. + * + * @type {string} + * @default 'frame' + */ + this.updateBeforeType = NodeUpdateType.FRAME; + + /** + * This flag is used for global cache. + * + * @type {boolean} + * @default true + */ + this.global = true; + + } + + /** + * Sets the resolution for the pass. + * The resolution is a factor that is multiplied with the renderer's width and height. + * + * @param {number} resolution - The resolution to set. A value of `1` means full resolution. + * @return {PassNode} A reference to this pass. + */ + setResolution( resolution ) { + + this._resolution = resolution; + + return this; + + } + + /** + * Gets the current resolution of the pass. + * + * @return {number} The current resolution. A value of `1` means full resolution. + * @default 1 + */ + getResolution() { + + return this._resolution; + + } + + setLayers( layers ) { + + this._layers = layers; + + return this; + + } + + getLayers() { + + return this._layers; + + } + + /** + * Sets the given MRT node to setup MRT for this pass. + * + * @param {MRTNode} mrt - The MRT object. + * @return {PassNode} A reference to this pass. + */ + setMRT( mrt ) { + + this._mrt = mrt; + + return this; + + } + + /** + * Returns the current MRT node. + * + * @return {MRTNode} The current MRT node. + */ + getMRT() { + + return this._mrt; + + } + + /** + * Returns the texture for the given output name. + * + * @param {string} name - The output name to get the texture for. + * @return {Texture} The texture. + */ + getTexture( name ) { + + let texture = this._textures[ name ]; + + if ( texture === undefined ) { + + const refTexture = this.renderTarget.texture; + + texture = refTexture.clone(); + texture.name = name; + + this._textures[ name ] = texture; + + this.renderTarget.textures.push( texture ); + + } + + return texture; + + } + + /** + * Returns the texture holding the data of the previous frame for the given output name. + * + * @param {string} name - The output name to get the texture for. + * @return {Texture} The texture holding the data of the previous frame. + */ + getPreviousTexture( name ) { + + let texture = this._previousTextures[ name ]; + + if ( texture === undefined ) { + + texture = this.getTexture( name ).clone(); + + this._previousTextures[ name ] = texture; + + } + + return texture; + + } + + /** + * Switches current and previous textures for the given output name. + * + * @param {string} name - The output name. + */ + toggleTexture( name ) { + + const prevTexture = this._previousTextures[ name ]; + + if ( prevTexture !== undefined ) { + + const texture = this._textures[ name ]; + + const index = this.renderTarget.textures.indexOf( texture ); + this.renderTarget.textures[ index ] = prevTexture; + + this._textures[ name ] = prevTexture; + this._previousTextures[ name ] = texture; + + this._textureNodes[ name ].updateTexture(); + this._previousTextureNodes[ name ].updateTexture(); + + } + + } + + /** + * Returns the texture node for the given output name. + * + * @param {string} [name='output'] - The output name to get the texture node for. + * @return {TextureNode} The texture node. + */ + getTextureNode( name = 'output' ) { + + let textureNode = this._textureNodes[ name ]; + + if ( textureNode === undefined ) { + + textureNode = nodeObject( new PassMultipleTextureNode( this, name ) ); + textureNode.updateTexture(); + this._textureNodes[ name ] = textureNode; + + } + + return textureNode; + + } + + /** + * Returns the previous texture node for the given output name. + * + * @param {string} [name='output'] - The output name to get the previous texture node for. + * @return {TextureNode} The previous texture node. + */ + getPreviousTextureNode( name = 'output' ) { + + let textureNode = this._previousTextureNodes[ name ]; + + if ( textureNode === undefined ) { + + if ( this._textureNodes[ name ] === undefined ) this.getTextureNode( name ); + + textureNode = nodeObject( new PassMultipleTextureNode( this, name, true ) ); + textureNode.updateTexture(); + this._previousTextureNodes[ name ] = textureNode; + + } + + return textureNode; + + } + + /** + * Returns a viewZ node of this pass. + * + * @param {string} [name='depth'] - The output name to get the viewZ node for. In most cases the default `'depth'` can be used however the parameter exists for custom depth outputs. + * @return {Node} The viewZ node. + */ + getViewZNode( name = 'depth' ) { + + let viewZNode = this._viewZNodes[ name ]; + + if ( viewZNode === undefined ) { + + const cameraNear = this._cameraNear; + const cameraFar = this._cameraFar; + + this._viewZNodes[ name ] = viewZNode = perspectiveDepthToViewZ( this.getTextureNode( name ), cameraNear, cameraFar ); + + } + + return viewZNode; + + } + + /** + * Returns a linear depth node of this pass. + * + * @param {string} [name='depth'] - The output name to get the linear depth node for. In most cases the default `'depth'` can be used however the parameter exists for custom depth outputs. + * @return {Node} The linear depth node. + */ + getLinearDepthNode( name = 'depth' ) { + + let linearDepthNode = this._linearDepthNodes[ name ]; + + if ( linearDepthNode === undefined ) { + + const cameraNear = this._cameraNear; + const cameraFar = this._cameraFar; + const viewZNode = this.getViewZNode( name ); + + // TODO: just if ( builder.camera.isPerspectiveCamera ) + + this._linearDepthNodes[ name ] = linearDepthNode = viewZToOrthographicDepth( viewZNode, cameraNear, cameraFar ); + + } + + return linearDepthNode; + + } + + setup( { renderer } ) { + + this.renderTarget.samples = this.options.samples === undefined ? renderer.samples : this.options.samples; + + // TODO: Disable MSAA for WebGL backend for now + if ( renderer.backend.isWebGLBackend === true ) { + + this.renderTarget.samples = 0; + + } + + this.renderTarget.texture.type = renderer.getColorBufferType(); + + return this.scope === PassNode.COLOR ? this.getTextureNode() : this.getLinearDepthNode(); + + } + + updateBefore( frame ) { + + const { renderer } = frame; + const { scene } = this; + + let camera; + let pixelRatio; + + const outputRenderTarget = renderer.getOutputRenderTarget(); + + if ( outputRenderTarget && outputRenderTarget.isXRRenderTarget === true ) { + + pixelRatio = 1; + camera = renderer.xr.getCamera(); + + renderer.xr.updateCamera( camera ); + + _size.set( outputRenderTarget.width, outputRenderTarget.height ); + + } else { + + camera = this.camera; + pixelRatio = renderer.getPixelRatio(); + + renderer.getSize( _size ); + + } + + this._pixelRatio = pixelRatio; + + this.setSize( _size.width, _size.height ); + + const currentRenderTarget = renderer.getRenderTarget(); + const currentMRT = renderer.getMRT(); + const currentMask = camera.layers.mask; + + this._cameraNear.value = camera.near; + this._cameraFar.value = camera.far; + + if ( this._layers !== null ) { + + camera.layers.mask = this._layers.mask; + + } + + for ( const name in this._previousTextures ) { + + this.toggleTexture( name ); + + } + + renderer.setRenderTarget( this.renderTarget ); + renderer.setMRT( this._mrt ); + + renderer.render( scene, camera ); + + renderer.setRenderTarget( currentRenderTarget ); + renderer.setMRT( currentMRT ); + + camera.layers.mask = currentMask; + + } + + /** + * Sets the size of the pass's render target. Honors the pixel ratio. + * + * @param {number} width - The width to set. + * @param {number} height - The height to set. + */ + setSize( width, height ) { + + this._width = width; + this._height = height; + + const effectiveWidth = this._width * this._pixelRatio * this._resolution; + const effectiveHeight = this._height * this._pixelRatio * this._resolution; + + this.renderTarget.setSize( effectiveWidth, effectiveHeight ); + + } + + /** + * Sets the pixel ratio the pass's render target and updates the size. + * + * @param {number} pixelRatio - The pixel ratio to set. + */ + setPixelRatio( pixelRatio ) { + + this._pixelRatio = pixelRatio; + + this.setSize( this._width, this._height ); + + } + + /** + * Frees internal resources. Should be called when the node is no longer in use. + */ + dispose() { + + this.renderTarget.dispose(); + + } + + +} + +/** + * @static + * @type {'color'} + * @default 'color' + */ +PassNode.COLOR = 'color'; + +/** + * @static + * @type {'depth'} + * @default 'depth' + */ +PassNode.DEPTH = 'depth'; + +/** + * TSL function for creating a pass node. + * + * @tsl + * @function + * @param {Scene} scene - A reference to the scene. + * @param {Camera} camera - A reference to the camera. + * @param {Object} options - Options for the internal render target. + * @returns {PassNode} + */ +const pass = ( scene, camera, options ) => nodeObject( new PassNode( PassNode.COLOR, scene, camera, options ) ); + +/** + * TSL function for creating a pass texture node. + * + * @tsl + * @function + * @param {PassNode} pass - The pass node. + * @param {Texture} texture - The output texture. + * @returns {PassTextureNode} + */ +const passTexture = ( pass, texture ) => nodeObject( new PassTextureNode( pass, texture ) ); + +/** + * TSL function for creating a depth pass node. + * + * @tsl + * @function + * @param {Scene} scene - A reference to the scene. + * @param {Camera} camera - A reference to the camera. + * @param {Object} options - Options for the internal render target. + * @returns {PassNode} + */ +const depthPass = ( scene, camera, options ) => nodeObject( new PassNode( PassNode.DEPTH, scene, camera, options ) ); + +/** + * Represents a render pass for producing a toon outline effect on compatible objects. + * Only 3D objects with materials of type `MeshToonMaterial` and `MeshToonNodeMaterial` + * will receive the outline. + * + * ```js + * const postProcessing = new PostProcessing( renderer ); + * + * const scenePass = toonOutlinePass( scene, camera ); + * + * postProcessing.outputNode = scenePass; + * ``` + * @augments PassNode + */ +class ToonOutlinePassNode extends PassNode { + + static get type() { + + return 'ToonOutlinePassNode'; + + } + + /** + * Constructs a new outline pass node. + * + * @param {Scene} scene - A reference to the scene. + * @param {Camera} camera - A reference to the camera. + * @param {Node} colorNode - Defines the outline's color. + * @param {Node} thicknessNode - Defines the outline's thickness. + * @param {Node} alphaNode - Defines the outline's alpha. + */ + constructor( scene, camera, colorNode, thicknessNode, alphaNode ) { + + super( PassNode.COLOR, scene, camera ); + + /** + * Defines the outline's color. + * + * @type {Node} + */ + this.colorNode = colorNode; + + /** + * Defines the outline's thickness. + * + * @type {Node} + */ + this.thicknessNode = thicknessNode; + + /** + * Defines the outline's alpha. + * + * @type {Node} + */ + this.alphaNode = alphaNode; + + /** + * An internal material cache. + * + * @private + * @type {WeakMap} + */ + this._materialCache = new WeakMap(); + + } + + updateBefore( frame ) { + + const { renderer } = frame; + + const currentRenderObjectFunction = renderer.getRenderObjectFunction(); + + renderer.setRenderObjectFunction( ( object, scene, camera, geometry, material, group, lightsNode, clippingContext ) => { + + // only render outline for supported materials + + if ( material.isMeshToonMaterial || material.isMeshToonNodeMaterial ) { + + if ( material.wireframe === false ) { + + const outlineMaterial = this._getOutlineMaterial( material ); + renderer.renderObject( object, scene, camera, geometry, outlineMaterial, group, lightsNode, clippingContext ); + + } + + } + + // default + + renderer.renderObject( object, scene, camera, geometry, material, group, lightsNode, clippingContext ); + + } ); + + super.updateBefore( frame ); + + renderer.setRenderObjectFunction( currentRenderObjectFunction ); + + } + + /** + * Creates the material used for outline rendering. + * + * @private + * @return {NodeMaterial} The outline material. + */ + _createMaterial() { + + const material = new NodeMaterial(); + material.isMeshToonOutlineMaterial = true; + material.name = 'Toon_Outline'; + material.side = BackSide; + + // vertex node + + const outlineNormal = normalLocal.negate(); + const mvp = cameraProjectionMatrix.mul( modelViewMatrix ); + + const ratio = float( 1.0 ); // TODO: support outline thickness ratio for each vertex + const pos = mvp.mul( vec4( positionLocal, 1.0 ) ); + const pos2 = mvp.mul( vec4( positionLocal.add( outlineNormal ), 1.0 ) ); + const norm = normalize( pos.sub( pos2 ) ); // NOTE: subtract pos2 from pos because BackSide objectNormal is negative + + material.vertexNode = pos.add( norm.mul( this.thicknessNode ).mul( pos.w ).mul( ratio ) ); + + // color node + + material.colorNode = vec4( this.colorNode, this.alphaNode ); + + return material; + + } + + /** + * For the given toon material, this method returns a corresponding + * outline material. + * + * @private + * @param {(MeshToonMaterial|MeshToonNodeMaterial)} originalMaterial - The toon material. + * @return {NodeMaterial} The outline material. + */ + _getOutlineMaterial( originalMaterial ) { + + let outlineMaterial = this._materialCache.get( originalMaterial ); + + if ( outlineMaterial === undefined ) { + + outlineMaterial = this._createMaterial(); + + this._materialCache.set( originalMaterial, outlineMaterial ); + + } + + return outlineMaterial; + + } + +} + +/** + * TSL function for creating a toon outline pass node. + * + * @tsl + * @function + * @param {Scene} scene - A reference to the scene. + * @param {Camera} camera - A reference to the camera. + * @param {Color} color - Defines the outline's color. + * @param {number} [thickness=0.003] - Defines the outline's thickness. + * @param {number} [alpha=1] - Defines the outline's alpha. + * @returns {ToonOutlinePassNode} + */ +const toonOutlinePass = ( scene, camera, color = new Color( 0, 0, 0 ), thickness = 0.003, alpha = 1 ) => nodeObject( new ToonOutlinePassNode( scene, camera, nodeObject( color ), nodeObject( thickness ), nodeObject( alpha ) ) ); + +/** + * Linear tone mapping, exposure only. + * + * @tsl + * @function + * @param {Node} color - The color that should be tone mapped. + * @param {Node} exposure - The exposure. + * @return {Node} The tone mapped color. + */ +const linearToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { + + return color.mul( exposure ).clamp(); + +} ).setLayout( { + name: 'linearToneMapping', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' }, + { name: 'exposure', type: 'float' } + ] +} ); + +/** + * Reinhard tone mapping. + * + * Reference: {@link https://www.cs.utah.edu/docs/techreports/2002/pdf/UUCS-02-001.pdf} + * + * @tsl + * @function + * @param {Node} color - The color that should be tone mapped. + * @param {Node} exposure - The exposure. + * @return {Node} The tone mapped color. + */ +const reinhardToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { + + color = color.mul( exposure ); + + return color.div( color.add( 1.0 ) ).clamp(); + +} ).setLayout( { + name: 'reinhardToneMapping', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' }, + { name: 'exposure', type: 'float' } + ] +} ); + +/** + * Cineon tone mapping. + * + * Reference: {@link http://filmicworlds.com/blog/filmic-tonemapping-operators/} + * + * @tsl + * @function + * @param {Node} color - The color that should be tone mapped. + * @param {Node} exposure - The exposure. + * @return {Node} The tone mapped color. + */ +const cineonToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { + + // filmic operator by Jim Hejl and Richard Burgess-Dawson + color = color.mul( exposure ); + color = color.sub( 0.004 ).max( 0.0 ); + + const a = color.mul( color.mul( 6.2 ).add( 0.5 ) ); + const b = color.mul( color.mul( 6.2 ).add( 1.7 ) ).add( 0.06 ); + + return a.div( b ).pow( 2.2 ); + +} ).setLayout( { + name: 'cineonToneMapping', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' }, + { name: 'exposure', type: 'float' } + ] +} ); + +// source: https://github.com/selfshadow/ltc_code/blob/master/webgl/shaders/ltc/ltc_blit.fs + +const RRTAndODTFit = /*@__PURE__*/ Fn( ( [ color ] ) => { + + const a = color.mul( color.add( 0.0245786 ) ).sub( 0.000090537 ); + const b = color.mul( color.add( 0.4329510 ).mul( 0.983729 ) ).add( 0.238081 ); + + return a.div( b ); + +} ); + +/** + * ACESFilmic tone mapping. + * + * Reference: {@link https://github.com/selfshadow/ltc_code/blob/master/webgl/shaders/ltc/ltc_blit.fs} + * + * @tsl + * @function + * @param {Node} color - The color that should be tone mapped. + * @param {Node} exposure - The exposure. + * @return {Node} The tone mapped color. + */ +const acesFilmicToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { + + // sRGB => XYZ => D65_2_D60 => AP1 => RRT_SAT + const ACESInputMat = mat3( + 0.59719, 0.35458, 0.04823, + 0.07600, 0.90834, 0.01566, + 0.02840, 0.13383, 0.83777 + ); + + // ODT_SAT => XYZ => D60_2_D65 => sRGB + const ACESOutputMat = mat3( + 1.60475, - 0.53108, - 0.07367, + - 0.10208, 1.10813, - 605e-5, + - 327e-5, - 0.07276, 1.07602 + ); + + color = color.mul( exposure ).div( 0.6 ); + + color = ACESInputMat.mul( color ); + + // Apply RRT and ODT + color = RRTAndODTFit( color ); + + color = ACESOutputMat.mul( color ); + + // Clamp to [0, 1] + return color.clamp(); + +} ).setLayout( { + name: 'acesFilmicToneMapping', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' }, + { name: 'exposure', type: 'float' } + ] +} ); + +const LINEAR_REC2020_TO_LINEAR_SRGB = /*@__PURE__*/ mat3( vec3( 1.6605, - 0.1246, - 0.0182 ), vec3( - 0.5876, 1.1329, - 0.1006 ), vec3( - 0.0728, - 83e-4, 1.1187 ) ); +const LINEAR_SRGB_TO_LINEAR_REC2020 = /*@__PURE__*/ mat3( vec3( 0.6274, 0.0691, 0.0164 ), vec3( 0.3293, 0.9195, 0.0880 ), vec3( 0.0433, 0.0113, 0.8956 ) ); + +const agxDefaultContrastApprox = /*@__PURE__*/ Fn( ( [ x_immutable ] ) => { + + const x = vec3( x_immutable ).toVar(); + const x2 = vec3( x.mul( x ) ).toVar(); + const x4 = vec3( x2.mul( x2 ) ).toVar(); + + return float( 15.5 ).mul( x4.mul( x2 ) ).sub( mul( 40.14, x4.mul( x ) ) ).add( mul( 31.96, x4 ).sub( mul( 6.868, x2.mul( x ) ) ).add( mul( 0.4298, x2 ).add( mul( 0.1191, x ).sub( 0.00232 ) ) ) ); + +} ); + +/** + * AgX tone mapping. + * + * @tsl + * @function + * @param {Node} color - The color that should be tone mapped. + * @param {Node} exposure - The exposure. + * @return {Node} The tone mapped color. + */ +const agxToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { + + const colortone = vec3( color ).toVar(); + const AgXInsetMatrix = mat3( vec3( 0.856627153315983, 0.137318972929847, 0.11189821299995 ), vec3( 0.0951212405381588, 0.761241990602591, 0.0767994186031903 ), vec3( 0.0482516061458583, 0.101439036467562, 0.811302368396859 ) ); + const AgXOutsetMatrix = mat3( vec3( 1.1271005818144368, - 0.1413297634984383, - 0.14132976349843826 ), vec3( - 0.11060664309660323, 1.157823702216272, - 0.11060664309660294 ), vec3( - 0.016493938717834573, - 0.016493938717834257, 1.2519364065950405 ) ); + const AgxMinEv = float( - 12.47393 ); + const AgxMaxEv = float( 4.026069 ); + colortone.mulAssign( exposure ); + colortone.assign( LINEAR_SRGB_TO_LINEAR_REC2020.mul( colortone ) ); + colortone.assign( AgXInsetMatrix.mul( colortone ) ); + colortone.assign( max$1( colortone, 1e-10 ) ); + colortone.assign( log2( colortone ) ); + colortone.assign( colortone.sub( AgxMinEv ).div( AgxMaxEv.sub( AgxMinEv ) ) ); + colortone.assign( clamp( colortone, 0.0, 1.0 ) ); + colortone.assign( agxDefaultContrastApprox( colortone ) ); + colortone.assign( AgXOutsetMatrix.mul( colortone ) ); + colortone.assign( pow( max$1( vec3( 0.0 ), colortone ), vec3( 2.2 ) ) ); + colortone.assign( LINEAR_REC2020_TO_LINEAR_SRGB.mul( colortone ) ); + colortone.assign( clamp( colortone, 0.0, 1.0 ) ); + + return colortone; + +} ).setLayout( { + name: 'agxToneMapping', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' }, + { name: 'exposure', type: 'float' } + ] +} ); + +/** + * Neutral tone mapping. + * + * Reference: {@link https://modelviewer.dev/examples/tone-mapping} + * + * @tsl + * @function + * @param {Node} color - The color that should be tone mapped. + * @param {Node} exposure - The exposure. + * @return {Node} The tone mapped color. + */ +const neutralToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { + + const StartCompression = float( 0.8 - 0.04 ); + const Desaturation = float( 0.15 ); + + color = color.mul( exposure ); + + const x = min$1( color.r, min$1( color.g, color.b ) ); + const offset = select( x.lessThan( 0.08 ), x.sub( mul( 6.25, x.mul( x ) ) ), 0.04 ); + + color.subAssign( offset ); + + const peak = max$1( color.r, max$1( color.g, color.b ) ); + + If( peak.lessThan( StartCompression ), () => { + + return color; + + } ); + + const d = sub( 1, StartCompression ); + const newPeak = sub( 1, d.mul( d ).div( peak.add( d.sub( StartCompression ) ) ) ); + color.mulAssign( newPeak.div( peak ) ); + const g = sub( 1, div( 1, Desaturation.mul( peak.sub( newPeak ) ).add( 1 ) ) ); + + return mix( color, vec3( newPeak ), g ); + +} ).setLayout( { + name: 'neutralToneMapping', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' }, + { name: 'exposure', type: 'float' } + ] +} ); + +/** + * This class represents native code sections. It is the base + * class for modules like {@link FunctionNode} which allows to implement + * functions with native shader languages. + * + * @augments Node + */ +class CodeNode extends Node { + + static get type() { + + return 'CodeNode'; + + } + + /** + * Constructs a new code node. + * + * @param {string} [code=''] - The native code. + * @param {Array} [includes=[]] - An array of includes. + * @param {('js'|'wgsl'|'glsl')} [language=''] - The used language. + */ + constructor( code = '', includes = [], language = '' ) { + + super( 'code' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCodeNode = true; + + /** + * This flag is used for global cache. + * + * @type {boolean} + * @default true + */ + this.global = true; + + /** + * The native code. + * + * @type {string} + * @default '' + */ + this.code = code; + + /** + * An array of includes + * + * @type {Array} + * @default [] + */ + this.includes = includes; + + /** + * The used language. + * + * @type {('js'|'wgsl'|'glsl')} + * @default '' + */ + this.language = language; + + } + + /** + * Sets the includes of this code node. + * + * @param {Array} includes - The includes to set. + * @return {CodeNode} A reference to this node. + */ + setIncludes( includes ) { + + this.includes = includes; + + return this; + + } + + /** + * Returns the includes of this code node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Array} The includes. + */ + getIncludes( /*builder*/ ) { + + return this.includes; + + } + + generate( builder ) { + + const includes = this.getIncludes( builder ); + + for ( const include of includes ) { + + include.build( builder ); + + } + + const nodeCode = builder.getCodeFromNode( this, this.getNodeType( builder ) ); + nodeCode.code = this.code; + + return nodeCode.code; + + } + + serialize( data ) { + + super.serialize( data ); + + data.code = this.code; + data.language = this.language; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.code = data.code; + this.language = data.language; + + } + +} + +/** + * TSL function for creating a code node. + * + * @tsl + * @function + * @param {string} [code] - The native code. + * @param {?Array} [includes=[]] - An array of includes. + * @param {?('js'|'wgsl'|'glsl')} [language=''] - The used language. + * @returns {CodeNode} + */ +const code = /*@__PURE__*/ nodeProxy( CodeNode ).setParameterLength( 1, 3 ); + +/** + * TSL function for creating a JS code node. + * + * @tsl + * @function + * @param {string} src - The native code. + * @param {Array} includes - An array of includes. + * @returns {CodeNode} + */ +const js = ( src, includes ) => code( src, includes, 'js' ); + +/** + * TSL function for creating a WGSL code node. + * + * @tsl + * @function + * @param {string} src - The native code. + * @param {Array} includes - An array of includes. + * @returns {CodeNode} + */ +const wgsl = ( src, includes ) => code( src, includes, 'wgsl' ); + +/** + * TSL function for creating a GLSL code node. + * + * @tsl + * @function + * @param {string} src - The native code. + * @param {Array} includes - An array of includes. + * @returns {CodeNode} + */ +const glsl = ( src, includes ) => code( src, includes, 'glsl' ); + +/** + * This class represents a native shader function. It can be used to implement + * certain aspects of a node material with native shader code. There are two predefined + * TSL functions for easier usage. + * + * - `wgslFn`: Creates a WGSL function node. + * - `glslFn`: Creates a GLSL function node. + * + * A basic example with one include looks like so: + * + * ```js + * const desaturateWGSLFn = wgslFn( ` + * fn desaturate( color:vec3 ) -> vec3 { + * let lum = vec3( 0.299, 0.587, 0.114 ); + * return vec3( dot( lum, color ) ); + * }` + *); + * const someWGSLFn = wgslFn( ` + * fn someFn( color:vec3 ) -> vec3 { + * return desaturate( color ); + * } + * `, [ desaturateWGSLFn ] ); + * material.colorNode = someWGSLFn( { color: texture( map ) } ); + *``` + * @augments CodeNode + */ +class FunctionNode extends CodeNode { + + static get type() { + + return 'FunctionNode'; + + } + + /** + * Constructs a new function node. + * + * @param {string} [code=''] - The native code. + * @param {Array} [includes=[]] - An array of includes. + * @param {('js'|'wgsl'|'glsl')} [language=''] - The used language. + */ + constructor( code = '', includes = [], language = '' ) { + + super( code, includes, language ); + + } + + getNodeType( builder ) { + + return this.getNodeFunction( builder ).type; + + } + + /** + * Returns the inputs of this function node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Array} The inputs. + */ + getInputs( builder ) { + + return this.getNodeFunction( builder ).inputs; + + } + + /** + * Returns the node function for this function node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {NodeFunction} The node function. + */ + getNodeFunction( builder ) { + + const nodeData = builder.getDataFromNode( this ); + + let nodeFunction = nodeData.nodeFunction; + + if ( nodeFunction === undefined ) { + + nodeFunction = builder.parser.parseFunction( this.code ); + + nodeData.nodeFunction = nodeFunction; + + } + + return nodeFunction; + + } + + generate( builder, output ) { + + super.generate( builder ); + + const nodeFunction = this.getNodeFunction( builder ); + + const name = nodeFunction.name; + const type = nodeFunction.type; + + const nodeCode = builder.getCodeFromNode( this, type ); + + if ( name !== '' ) { + + // use a custom property name + + nodeCode.name = name; + + } + + const propertyName = builder.getPropertyName( nodeCode ); + + const code = this.getNodeFunction( builder ).getCode( propertyName ); + + nodeCode.code = code + '\n'; + + if ( output === 'property' ) { + + return propertyName; + + } else { + + return builder.format( `${ propertyName }()`, type, output ); + + } + + } + +} + +const nativeFn = ( code, includes = [], language = '' ) => { + + for ( let i = 0; i < includes.length; i ++ ) { + + const include = includes[ i ]; + + // TSL Function: glslFn, wgslFn + + if ( typeof include === 'function' ) { + + includes[ i ] = include.functionNode; + + } + + } + + const functionNode = nodeObject( new FunctionNode( code, includes, language ) ); + + const fn = ( ...params ) => functionNode.call( ...params ); + fn.functionNode = functionNode; + + return fn; + +}; + +const glslFn = ( code, includes ) => nativeFn( code, includes, 'glsl' ); +const wgslFn = ( code, includes ) => nativeFn( code, includes, 'wgsl' ); + +/** + * `ScriptableNode` uses this class to manage script inputs and outputs. + * + * @augments Node + */ +class ScriptableValueNode extends Node { + + static get type() { + + return 'ScriptableValueNode'; + + } + + /** + * Constructs a new scriptable node. + * + * @param {any} [value=null] - The value. + */ + constructor( value = null ) { + + super(); + + /** + * A reference to the value. + * + * @private + * @default null + */ + this._value = value; + + /** + * Depending on the type of `_value`, this property might cache parsed data. + * + * @private + * @default null + */ + this._cache = null; + + /** + * If this node represents an input, this property represents the input type. + * + * @type {?string} + * @default null + */ + this.inputType = null; + + /** + * If this node represents an output, this property represents the output type. + * + * @type {?string} + * @default null + */ + this.outputType = null; + + /** + * An event dispatcher for managing events. + * + * @type {EventDispatcher} + */ + this.events = new EventDispatcher(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isScriptableValueNode = true; + + } + + /** + * Whether this node represents an output or not. + * + * @type {boolean} + * @readonly + * @default true + */ + get isScriptableOutputNode() { + + return this.outputType !== null; + + } + + set value( val ) { + + if ( this._value === val ) return; + + if ( this._cache && this.inputType === 'URL' && this.value.value instanceof ArrayBuffer ) { + + URL.revokeObjectURL( this._cache ); + + this._cache = null; + + } + + this._value = val; + + this.events.dispatchEvent( { type: 'change' } ); + + this.refresh(); + + } + + /** + * The node's value. + * + * @type {any} + */ + get value() { + + return this._value; + + } + + /** + * Dispatches the `refresh` event. + */ + refresh() { + + this.events.dispatchEvent( { type: 'refresh' } ); + + } + + /** + * The `value` property usually represents a node or even binary data in form of array buffers. + * In this case, this method tries to return the actual value behind the complex type. + * + * @return {any} The value. + */ + getValue() { + + const value = this.value; + + if ( value && this._cache === null && this.inputType === 'URL' && value.value instanceof ArrayBuffer ) { + + this._cache = URL.createObjectURL( new Blob( [ value.value ] ) ); + + } else if ( value && value.value !== null && value.value !== undefined && ( + ( ( this.inputType === 'URL' || this.inputType === 'String' ) && typeof value.value === 'string' ) || + ( this.inputType === 'Number' && typeof value.value === 'number' ) || + ( this.inputType === 'Vector2' && value.value.isVector2 ) || + ( this.inputType === 'Vector3' && value.value.isVector3 ) || + ( this.inputType === 'Vector4' && value.value.isVector4 ) || + ( this.inputType === 'Color' && value.value.isColor ) || + ( this.inputType === 'Matrix3' && value.value.isMatrix3 ) || + ( this.inputType === 'Matrix4' && value.value.isMatrix4 ) + ) ) { + + return value.value; + + } + + return this._cache || value; + + } + + /** + * Overwritten since the node type is inferred from the value. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.value && this.value.isNode ? this.value.getNodeType( builder ) : 'float'; + + } + + setup() { + + return this.value && this.value.isNode ? this.value : float(); + + } + + serialize( data ) { + + super.serialize( data ); + + if ( this.value !== null ) { + + if ( this.inputType === 'ArrayBuffer' ) { + + data.value = arrayBufferToBase64( this.value ); + + } else { + + data.value = this.value ? this.value.toJSON( data.meta ).uuid : null; + + } + + } else { + + data.value = null; + + } + + data.inputType = this.inputType; + data.outputType = this.outputType; + + } + + deserialize( data ) { + + super.deserialize( data ); + + let value = null; + + if ( data.value !== null ) { + + if ( data.inputType === 'ArrayBuffer' ) { + + value = base64ToArrayBuffer( data.value ); + + } else if ( data.inputType === 'Texture' ) { + + value = data.meta.textures[ data.value ]; + + } else { + + value = data.meta.nodes[ data.value ] || null; + + } + + } + + this.value = value; + + this.inputType = data.inputType; + this.outputType = data.outputType; + + } + +} + +/** + * TSL function for creating a scriptable value node. + * + * @tsl + * @function + * @param {any} [value] - The value. + * @returns {ScriptableValueNode} + */ +const scriptableValue = /*@__PURE__*/ nodeProxy( ScriptableValueNode ).setParameterLength( 1 ); + +/** + * A Map-like data structure for managing resources of scriptable nodes. + * + * @augments Map + */ +class Resources extends Map { + + get( key, callback = null, ...params ) { + + if ( this.has( key ) ) return super.get( key ); + + if ( callback !== null ) { + + const value = callback( ...params ); + this.set( key, value ); + return value; + + } + + } + +} + +class Parameters { + + constructor( scriptableNode ) { + + this.scriptableNode = scriptableNode; + + } + + get parameters() { + + return this.scriptableNode.parameters; + + } + + get layout() { + + return this.scriptableNode.getLayout(); + + } + + getInputLayout( id ) { + + return this.scriptableNode.getInputLayout( id ); + + } + + get( name ) { + + const param = this.parameters[ name ]; + const value = param ? param.getValue() : null; + + return value; + + } + +} + +/** + * Defines the resources (e.g. namespaces) of scriptable nodes. + * + * @type {Resources} + */ +const ScriptableNodeResources = new Resources(); + +/** + * This type of node allows to implement nodes with custom scripts. The script + * section is represented as an instance of `CodeNode` written with JavaScript. + * The script itself must adhere to a specific structure. + * + * - main(): Executed once by default and every time `node.needsUpdate` is set. + * - layout: The layout object defines the script's interface (inputs and outputs). + * + * ```js + * ScriptableNodeResources.set( 'TSL', TSL ); + * + * const scriptableNode = scriptable( js( ` + * layout = { + * outputType: 'node', + * elements: [ + * { name: 'source', inputType: 'node' }, + * ] + * }; + * + * const { mul, oscSine } = TSL; + * + * function main() { + * const source = parameters.get( 'source' ) || float(); + * return mul( source, oscSine() ) ); + * } + * + * ` ) ); + * + * scriptableNode.setParameter( 'source', color( 1, 0, 0 ) ); + * + * const material = new THREE.MeshBasicNodeMaterial(); + * material.colorNode = scriptableNode; + * ``` + * + * @augments Node + */ +class ScriptableNode extends Node { + + static get type() { + + return 'ScriptableNode'; + + } + + /** + * Constructs a new scriptable node. + * + * @param {?CodeNode} [codeNode=null] - The code node. + * @param {Object} [parameters={}] - The parameters definition. + */ + constructor( codeNode = null, parameters = {} ) { + + super(); + + /** + * The code node. + * + * @type {?CodeNode} + * @default null + */ + this.codeNode = codeNode; + + /** + * The parameters definition. + * + * @type {Object} + * @default {} + */ + this.parameters = parameters; + + this._local = new Resources(); + this._output = scriptableValue( null ); + this._outputs = {}; + this._source = this.source; + this._method = null; + this._object = null; + this._value = null; + this._needsOutputUpdate = true; + + this.onRefresh = this.onRefresh.bind( this ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isScriptableNode = true; + + } + + /** + * The source code of the scriptable node. + * + * @type {string} + */ + get source() { + + return this.codeNode ? this.codeNode.code : ''; + + } + + /** + * Sets the reference of a local script variable. + * + * @param {string} name - The variable name. + * @param {Object} value - The reference to set. + * @return {Resources} The resource map + */ + setLocal( name, value ) { + + return this._local.set( name, value ); + + } + + /** + * Gets the value of a local script variable. + * + * @param {string} name - The variable name. + * @return {Object} The value. + */ + getLocal( name ) { + + return this._local.get( name ); + + } + + /** + * Event listener for the `refresh` event. + */ + onRefresh() { + + this._refresh(); + + } + + /** + * Returns an input from the layout with the given id/name. + * + * @param {string} id - The id/name of the input. + * @return {Object} The element entry. + */ + getInputLayout( id ) { + + for ( const element of this.getLayout() ) { + + if ( element.inputType && ( element.id === id || element.name === id ) ) { + + return element; + + } + + } + + } + + /** + * Returns an output from the layout with the given id/name. + * + * @param {string} id - The id/name of the output. + * @return {Object} The element entry. + */ + getOutputLayout( id ) { + + for ( const element of this.getLayout() ) { + + if ( element.outputType && ( element.id === id || element.name === id ) ) { + + return element; + + } + + } + + } + + /** + * Defines a script output for the given name and value. + * + * @param {string} name - The name of the output. + * @param {Node} value - The node value. + * @return {ScriptableNode} A reference to this node. + */ + setOutput( name, value ) { + + const outputs = this._outputs; + + if ( outputs[ name ] === undefined ) { + + outputs[ name ] = scriptableValue( value ); + + } else { + + outputs[ name ].value = value; + + } + + return this; + + } + + /** + * Returns a script output for the given name. + * + * @param {string} name - The name of the output. + * @return {ScriptableValueNode} The node value. + */ + getOutput( name ) { + + return this._outputs[ name ]; + + } + + /** + * Returns a parameter for the given name + * + * @param {string} name - The name of the parameter. + * @return {ScriptableValueNode} The node value. + */ + getParameter( name ) { + + return this.parameters[ name ]; + + } + + /** + * Sets a value for the given parameter name. + * + * @param {string} name - The parameter name. + * @param {any} value - The parameter value. + * @return {ScriptableNode} A reference to this node. + */ + setParameter( name, value ) { + + const parameters = this.parameters; + + if ( value && value.isScriptableNode ) { + + this.deleteParameter( name ); + + parameters[ name ] = value; + parameters[ name ].getDefaultOutput().events.addEventListener( 'refresh', this.onRefresh ); + + } else if ( value && value.isScriptableValueNode ) { + + this.deleteParameter( name ); + + parameters[ name ] = value; + parameters[ name ].events.addEventListener( 'refresh', this.onRefresh ); + + } else if ( parameters[ name ] === undefined ) { + + parameters[ name ] = scriptableValue( value ); + parameters[ name ].events.addEventListener( 'refresh', this.onRefresh ); + + } else { + + parameters[ name ].value = value; + + } + + return this; + + } + + /** + * Returns the value of this node which is the value of + * the default output. + * + * @return {Node} The value. + */ + getValue() { + + return this.getDefaultOutput().getValue(); + + } + + /** + * Deletes a parameter from the script. + * + * @param {string} name - The parameter to remove. + * @return {ScriptableNode} A reference to this node. + */ + deleteParameter( name ) { + + let valueNode = this.parameters[ name ]; + + if ( valueNode ) { + + if ( valueNode.isScriptableNode ) valueNode = valueNode.getDefaultOutput(); + + valueNode.events.removeEventListener( 'refresh', this.onRefresh ); + + } + + return this; + + } + + /** + * Deletes all parameters from the script. + * + * @return {ScriptableNode} A reference to this node. + */ + clearParameters() { + + for ( const name of Object.keys( this.parameters ) ) { + + this.deleteParameter( name ); + + } + + this.needsUpdate = true; + + return this; + + } + + /** + * Calls a function from the script. + * + * @param {string} name - The function name. + * @param {...any} params - A list of parameters. + * @return {any} The result of the function call. + */ + call( name, ...params ) { + + const object = this.getObject(); + const method = object[ name ]; + + if ( typeof method === 'function' ) { + + return method( ...params ); + + } + + } + + /** + * Asynchronously calls a function from the script. + * + * @param {string} name - The function name. + * @param {...any} params - A list of parameters. + * @return {Promise} The result of the function call. + */ + async callAsync( name, ...params ) { + + const object = this.getObject(); + const method = object[ name ]; + + if ( typeof method === 'function' ) { + + return method.constructor.name === 'AsyncFunction' ? await method( ...params ) : method( ...params ); + + } + + } + + /** + * Overwritten since the node types is inferred from the script's output. + * + * @param {NodeBuilder} builder - The current node builder + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.getDefaultOutputNode().getNodeType( builder ); + + } + + /** + * Refreshes the script node. + * + * @param {?string} [output=null] - An optional output. + */ + refresh( output = null ) { + + if ( output !== null ) { + + this.getOutput( output ).refresh(); + + } else { + + this._refresh(); + + } + + } + + /** + * Returns an object representation of the script. + * + * @return {Object} The result object. + */ + getObject() { + + if ( this.needsUpdate ) this.dispose(); + if ( this._object !== null ) return this._object; + + // + + const refresh = () => this.refresh(); + const setOutput = ( id, value ) => this.setOutput( id, value ); + + const parameters = new Parameters( this ); + + const THREE = ScriptableNodeResources.get( 'THREE' ); + const TSL = ScriptableNodeResources.get( 'TSL' ); + + const method = this.getMethod(); + const params = [ parameters, this._local, ScriptableNodeResources, refresh, setOutput, THREE, TSL ]; + + this._object = method( ...params ); + + const layout = this._object.layout; + + if ( layout ) { + + if ( layout.cache === false ) { + + this._local.clear(); + + } + + // default output + this._output.outputType = layout.outputType || null; + + if ( Array.isArray( layout.elements ) ) { + + for ( const element of layout.elements ) { + + const id = element.id || element.name; + + if ( element.inputType ) { + + if ( this.getParameter( id ) === undefined ) this.setParameter( id, null ); + + this.getParameter( id ).inputType = element.inputType; + + } + + if ( element.outputType ) { + + if ( this.getOutput( id ) === undefined ) this.setOutput( id, null ); + + this.getOutput( id ).outputType = element.outputType; + + } + + } + + } + + } + + return this._object; + + } + + deserialize( data ) { + + super.deserialize( data ); + + for ( const name in this.parameters ) { + + let valueNode = this.parameters[ name ]; + + if ( valueNode.isScriptableNode ) valueNode = valueNode.getDefaultOutput(); + + valueNode.events.addEventListener( 'refresh', this.onRefresh ); + + } + + } + + /** + * Returns the layout of the script. + * + * @return {Object} The script's layout. + */ + getLayout() { + + return this.getObject().layout; + + } + + /** + * Returns default node output of the script. + * + * @return {Node} The default node output. + */ + getDefaultOutputNode() { + + const output = this.getDefaultOutput().value; + + if ( output && output.isNode ) { + + return output; + + } + + return float(); + + } + + /** + * Returns default output of the script. + * + * @return {ScriptableValueNode} The default output. + */ + getDefaultOutput() { + + return this._exec()._output; + + } + + /** + * Returns a function created from the node's script. + * + * @return {Function} The function representing the node's code. + */ + getMethod() { + + if ( this.needsUpdate ) this.dispose(); + if ( this._method !== null ) return this._method; + + // + + const parametersProps = [ 'parameters', 'local', 'global', 'refresh', 'setOutput', 'THREE', 'TSL' ]; + const interfaceProps = [ 'layout', 'init', 'main', 'dispose' ]; + + const properties = interfaceProps.join( ', ' ); + const declarations = 'var ' + properties + '; var output = {};\n'; + const returns = '\nreturn { ...output, ' + properties + ' };'; + + const code = declarations + this.codeNode.code + returns; + + // + + this._method = new Function( ...parametersProps, code ); + + return this._method; + + } + + /** + * Frees all internal resources. + */ + dispose() { + + if ( this._method === null ) return; + + if ( this._object && typeof this._object.dispose === 'function' ) { + + this._object.dispose(); + + } + + this._method = null; + this._object = null; + this._source = null; + this._value = null; + this._needsOutputUpdate = true; + this._output.value = null; + this._outputs = {}; + + } + + setup() { + + return this.getDefaultOutputNode(); + + } + + getCacheKey( force ) { + + const values = [ hashString( this.source ), this.getDefaultOutputNode().getCacheKey( force ) ]; + + for ( const param in this.parameters ) { + + values.push( this.parameters[ param ].getCacheKey( force ) ); + + } + + return hashArray( values ); + + } + + set needsUpdate( value ) { + + if ( value === true ) this.dispose(); + + } + + get needsUpdate() { + + return this.source !== this._source; + + } + + /** + * Executes the `main` function of the script. + * + * @private + * @return {ScriptableNode} A reference to this node. + */ + _exec() { + + if ( this.codeNode === null ) return this; + + if ( this._needsOutputUpdate === true ) { + + this._value = this.call( 'main' ); + + this._needsOutputUpdate = false; + + } + + this._output.value = this._value; + + return this; + + } + + /** + * Executes the refresh. + * + * @private + */ + _refresh() { + + this.needsUpdate = true; + + this._exec(); + + this._output.refresh(); + + } + +} + +/** + * TSL function for creating a scriptable node. + * + * @tsl + * @function + * @param {CodeNode} [codeNode] - The code node. + * @param {?Object} [parameters={}] - The parameters definition. + * @returns {ScriptableNode} + */ +const scriptable = /*@__PURE__*/ nodeProxy( ScriptableNode ).setParameterLength( 1, 2 ); + +/** + * Returns a node that represents the `z` coordinate in view space + * for the current fragment. It's a different representation of the + * default depth value. + * + * This value can be part of a computation that defines how the fog + * density increases when moving away from the camera. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The viewZ node. + */ +function getViewZNode( builder ) { + + let viewZ; + + const getViewZ = builder.context.getViewZ; + + if ( getViewZ !== undefined ) { + + viewZ = getViewZ( this ); + + } + + return ( viewZ || positionView.z ).negate(); + +} + +/** + * Constructs a new range factor node. + * + * @tsl + * @function + * @param {Node} near - Defines the near value. + * @param {Node} far - Defines the far value. + */ +const rangeFogFactor = Fn( ( [ near, far ], builder ) => { + + const viewZ = getViewZNode( builder ); + + return smoothstep( near, far, viewZ ); + +} ); + +/** + * Represents an exponential squared fog. This type of fog gives + * a clear view near the camera and a faster than exponentially + * densening fog farther from the camera. + * + * @tsl + * @function + * @param {Node} density - Defines the fog density. + */ +const densityFogFactor = Fn( ( [ density ], builder ) => { + + const viewZ = getViewZNode( builder ); + + return density.mul( density, viewZ, viewZ ).negate().exp().oneMinus(); + +} ); + +/** + * This class can be used to configure a fog for the scene. + * Nodes of this type are assigned to `Scene.fogNode`. + * + * @tsl + * @function + * @param {Node} color - Defines the color of the fog. + * @param {Node} factor - Defines how the fog is factored in the scene. + */ +const fog = Fn( ( [ color, factor ] ) => { + + return vec4( factor.toFloat().mix( output.rgb, color.toVec3() ), output.a ); + +} ); + +// Deprecated + +/** + * @tsl + * @function + * @deprecated since r171. Use `fog( color, rangeFogFactor( near, far ) )` instead. + * + * @param {Node} color + * @param {Node} near + * @param {Node} far + * @returns {Function} + */ +function rangeFog( color, near, far ) { // @deprecated, r171 + + console.warn( 'THREE.TSL: "rangeFog( color, near, far )" is deprecated. Use "fog( color, rangeFogFactor( near, far ) )" instead.' ); + return fog( color, rangeFogFactor( near, far ) ); + +} + +/** + * @tsl + * @function + * @deprecated since r171. Use `fog( color, densityFogFactor( density ) )` instead. + * + * @param {Node} color + * @param {Node} density + * @returns {Function} + */ +function densityFog( color, density ) { // @deprecated, r171 + + console.warn( 'THREE.TSL: "densityFog( color, density )" is deprecated. Use "fog( color, densityFogFactor( density ) )" instead.' ); + return fog( color, densityFogFactor( density ) ); + +} + +let min = null; +let max = null; + +/** + * `RangeNode` generates random instanced attribute data in a defined range. + * An exemplary use case for this utility node is to generate random per-instance + * colors: + * ```js + * const material = new MeshBasicNodeMaterial(); + * material.colorNode = range( new Color( 0x000000 ), new Color( 0xFFFFFF ) ); + * const mesh = new InstancedMesh( geometry, material, count ); + * ``` + * @augments Node + */ +class RangeNode extends Node { + + static get type() { + + return 'RangeNode'; + + } + + /** + * Constructs a new range node. + * + * @param {Node} [minNode=float()] - A node defining the lower bound of the range. + * @param {Node} [maxNode=float()] - A node defining the upper bound of the range. + */ + constructor( minNode = float(), maxNode = float() ) { + + super(); + + /** + * A node defining the lower bound of the range. + * + * @type {Node} + * @default float() + */ + this.minNode = minNode; + + /** + * A node defining the upper bound of the range. + * + * @type {Node} + * @default float() + */ + this.maxNode = maxNode; + + } + + /** + * Returns the vector length which is computed based on the range definition. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {number} The vector length. + */ + getVectorLength( builder ) { + + const minLength = builder.getTypeLength( getValueType( this.minNode.value ) ); + const maxLength = builder.getTypeLength( getValueType( this.maxNode.value ) ); + + return minLength > maxLength ? minLength : maxLength; + + } + + /** + * This method is overwritten since the node type is inferred from range definition. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return builder.object.count > 1 ? builder.getTypeFromLength( this.getVectorLength( builder ) ) : 'float'; + + } + + setup( builder ) { + + const object = builder.object; + + let output = null; + + if ( object.count > 1 ) { + + const minValue = this.minNode.value; + const maxValue = this.maxNode.value; + + const minLength = builder.getTypeLength( getValueType( minValue ) ); + const maxLength = builder.getTypeLength( getValueType( maxValue ) ); + + min = min || new Vector4(); + max = max || new Vector4(); + + min.setScalar( 0 ); + max.setScalar( 0 ); + + if ( minLength === 1 ) min.setScalar( minValue ); + else if ( minValue.isColor ) min.set( minValue.r, minValue.g, minValue.b, 1 ); + else min.set( minValue.x, minValue.y, minValue.z || 0, minValue.w || 0 ); + + if ( maxLength === 1 ) max.setScalar( maxValue ); + else if ( maxValue.isColor ) max.set( maxValue.r, maxValue.g, maxValue.b, 1 ); + else max.set( maxValue.x, maxValue.y, maxValue.z || 0, maxValue.w || 0 ); + + const stride = 4; + + const length = stride * object.count; + const array = new Float32Array( length ); + + for ( let i = 0; i < length; i ++ ) { + + const index = i % stride; + + const minElementValue = min.getComponent( index ); + const maxElementValue = max.getComponent( index ); + + array[ i ] = MathUtils.lerp( minElementValue, maxElementValue, Math.random() ); + + } + + const nodeType = this.getNodeType( builder ); + + if ( object.count <= 4096 ) { + + output = buffer( array, 'vec4', object.count ).element( instanceIndex ).convert( nodeType ); + + } else { + + // TODO: Improve anonymous buffer attribute creation removing this part + const bufferAttribute = new InstancedBufferAttribute( array, 4 ); + builder.geometry.setAttribute( '__range' + this.id, bufferAttribute ); + + output = instancedBufferAttribute( bufferAttribute ).convert( nodeType ); + + } + + } else { + + output = float( 0 ); + + } + + return output; + + } + +} + +/** + * TSL function for creating a range node. + * + * @tsl + * @function + * @param {Node} [minNode=float()] - A node defining the lower bound of the range. + * @param {Node} [maxNode=float()] - A node defining the upper bound of the range. + * @returns {RangeNode} + */ +const range = /*@__PURE__*/ nodeProxy( RangeNode ).setParameterLength( 2 ); + +/** + * `ComputeBuiltinNode` represents a compute-scope builtin value that expose information + * about the currently running dispatch and/or the device it is running on. + * + * This node can only be used with a WebGPU backend. + * + * @augments Node + */ +class ComputeBuiltinNode extends Node { + + static get type() { + + return 'ComputeBuiltinNode'; + + } + + /** + * Constructs a new compute builtin node. + * + * @param {string} builtinName - The built-in name. + * @param {string} nodeType - The node type. + */ + constructor( builtinName, nodeType ) { + + super( nodeType ); + + /** + * The built-in name. + * + * @private + * @type {string} + */ + this._builtinName = builtinName; + + } + + /** + * This method is overwritten since hash is derived from the built-in name. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The hash. + */ + getHash( builder ) { + + return this.getBuiltinName( builder ); + + } + + /** + * This method is overwritten since the node type is simply derived from `nodeType`.. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( /*builder*/ ) { + + return this.nodeType; + + } + + /** + * Sets the builtin name. + * + * @param {string} builtinName - The built-in name. + * @return {ComputeBuiltinNode} A reference to this node. + */ + setBuiltinName( builtinName ) { + + this._builtinName = builtinName; + + return this; + + } + + /** + * Returns the builtin name. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The builtin name. + */ + getBuiltinName( /*builder*/ ) { + + return this._builtinName; + + } + + /** + * Whether the current node builder has the builtin or not. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {boolean} Whether the builder has the builtin or not. + */ + hasBuiltin( builder ) { + + return builder.hasBuiltin( this._builtinName ); + + } + + generate( builder, output ) { + + const builtinName = this.getBuiltinName( builder ); + const nodeType = this.getNodeType( builder ); + + if ( builder.shaderStage === 'compute' ) { + + return builder.format( builtinName, nodeType, output ); + + } else { + + console.warn( `ComputeBuiltinNode: Compute built-in value ${builtinName} can not be accessed in the ${builder.shaderStage} stage` ); + return builder.generateConst( nodeType ); + + } + + } + + serialize( data ) { + + super.serialize( data ); + + data.global = this.global; + data._builtinName = this._builtinName; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.global = data.global; + this._builtinName = data._builtinName; + + } + +} + +/** + * TSL function for creating a compute builtin node. + * + * @tsl + * @function + * @param {string} name - The built-in name. + * @param {string} nodeType - The node type. + * @returns {ComputeBuiltinNode} + */ +const computeBuiltin = ( name, nodeType ) => nodeObject( new ComputeBuiltinNode( name, nodeType ) ); + +/** + * Represents the number of workgroups dispatched by the compute shader. + * ```js + * // Run 512 invocations/threads with a workgroup size of 128. + * const computeFn = Fn(() => { + * + * // numWorkgroups.x = 4 + * storageBuffer.element(0).assign(numWorkgroups.x) + * + * })().compute(512, [128]); + * + * // Run 512 invocations/threads with the default workgroup size of 64. + * const computeFn = Fn(() => { + * + * // numWorkgroups.x = 8 + * storageBuffer.element(0).assign(numWorkgroups.x) + * + * })().compute(512); + * ``` + * + * @tsl + * @type {ComputeBuiltinNode} + */ +const numWorkgroups = /*@__PURE__*/ computeBuiltin( 'numWorkgroups', 'uvec3' ); + +/** + * Represents the 3-dimensional index of the workgroup the current compute invocation belongs to. + * ```js + * // Execute 12 compute threads with a workgroup size of 3. + * const computeFn = Fn( () => { + * + * If( workgroupId.x.mod( 2 ).equal( 0 ), () => { + * + * storageBuffer.element( instanceIndex ).assign( instanceIndex ); + * + * } ).Else( () => { + * + * storageBuffer.element( instanceIndex ).assign( 0 ); + * + * } ); + * + * } )().compute( 12, [ 3 ] ); + * + * // workgroupId.x = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]; + * // Buffer Output = [0, 1, 2, 0, 0, 0, 6, 7, 8, 0, 0, 0]; + * ``` + * + * @tsl + * @type {ComputeBuiltinNode} + */ +const workgroupId = /*@__PURE__*/ computeBuiltin( 'workgroupId', 'uvec3' ); + +/** + * A non-linearized 3-dimensional representation of the current invocation's position within a 3D global grid. + * + * @tsl + * @type {ComputeBuiltinNode} + */ +const globalId = /*@__PURE__*/ computeBuiltin( 'globalId', 'uvec3' ); +/** + * A non-linearized 3-dimensional representation of the current invocation's position within a 3D workgroup grid. + * + * @tsl + * @type {ComputeBuiltinNode} + */ +const localId = /*@__PURE__*/ computeBuiltin( 'localId', 'uvec3' ); + +/** + * A device dependent variable that exposes the size of the current invocation's subgroup. + * + * @tsl + * @type {ComputeBuiltinNode} + */ +const subgroupSize = /*@__PURE__*/ computeBuiltin( 'subgroupSize', 'uint' ); + +/** + * Represents a GPU control barrier that synchronizes compute operations within a given scope. + * + * This node can only be used with a WebGPU backend. + * + * @augments Node + */ +class BarrierNode extends Node { + + /** + * Constructs a new barrier node. + * + * @param {string} scope - The scope defines the behavior of the node. + */ + constructor( scope ) { + + super(); + + this.scope = scope; + + } + + generate( builder ) { + + const { scope } = this; + const { renderer } = builder; + + if ( renderer.backend.isWebGLBackend === true ) { + + builder.addFlowCode( `\t// ${scope}Barrier \n` ); + + } else { + + builder.addLineFlowCode( `${scope}Barrier()`, this ); + + } + + } + +} + +/** + * TSL function for creating a barrier node. + * + * @tsl + * @function + * @param {string} scope - The scope defines the behavior of the node.. + * @returns {BarrierNode} + */ +const barrier = nodeProxy( BarrierNode ); + +/** + * TSL function for creating a workgroup barrier. All compute shader + * invocations must wait for each invocation within a workgroup to + * complete before the barrier can be surpassed. + * + * @tsl + * @function + * @returns {BarrierNode} + */ +const workgroupBarrier = () => barrier( 'workgroup' ).toStack(); + +/** + * TSL function for creating a storage barrier. All invocations must + * wait for each access to variables within the 'storage' address space + * to complete before the barrier can be passed. + * + * @tsl + * @function + * @returns {BarrierNode} + */ +const storageBarrier = () => barrier( 'storage' ).toStack(); + +/** + * TSL function for creating a texture barrier. All invocations must + * wait for each access to variables within the 'texture' address space + * to complete before the barrier can be passed. + * + * @tsl + * @function + * @returns {BarrierNode} + */ +const textureBarrier = () => barrier( 'texture' ).toStack(); + +/** + * Represents an element of a 'workgroup' scoped buffer. + * + * @augments ArrayElementNode + */ +class WorkgroupInfoElementNode extends ArrayElementNode { + + /** + * Constructs a new workgroup info element node. + * + * @param {Node} workgroupInfoNode - The workgroup info node. + * @param {Node} indexNode - The index node that defines the element access. + */ + constructor( workgroupInfoNode, indexNode ) { + + super( workgroupInfoNode, indexNode ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWorkgroupInfoElementNode = true; + + } + + generate( builder, output ) { + + let snippet; + + const isAssignContext = builder.context.assign; + snippet = super.generate( builder ); + + if ( isAssignContext !== true ) { + + const type = this.getNodeType( builder ); + + snippet = builder.format( snippet, type, output ); + + } + + // TODO: Possibly activate clip distance index on index access rather than from clipping context + + return snippet; + + } + +} + +/** + * A node allowing the user to create a 'workgroup' scoped buffer within the + * context of a compute shader. Typically, workgroup scoped buffers are + * created to hold data that is transferred from a global storage scope into + * a local workgroup scope. For invocations within a workgroup, data + * access speeds on 'workgroup' scoped buffers can be significantly faster + * than similar access operations on globally accessible storage buffers. + * + * This node can only be used with a WebGPU backend. + * + * @augments Node + */ +class WorkgroupInfoNode extends Node { + + /** + * Constructs a new buffer scoped to type scope. + * + * @param {string} scope - TODO. + * @param {string} bufferType - The data type of a 'workgroup' scoped buffer element. + * @param {number} [bufferCount=0] - The number of elements in the buffer. + */ + constructor( scope, bufferType, bufferCount = 0 ) { + + super( bufferType ); + + /** + * The buffer type. + * + * @type {string} + */ + this.bufferType = bufferType; + + /** + * The buffer count. + * + * @type {number} + * @default 0 + */ + this.bufferCount = bufferCount; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWorkgroupInfoNode = true; + + /** + * The data type of the array buffer. + * + * @type {string} + */ + this.elementType = bufferType; + + /** + * TODO. + * + * @type {string} + */ + this.scope = scope; + + } + + /** + * Sets the name/label of this node. + * + * @param {string} name - The name to set. + * @return {WorkgroupInfoNode} A reference to this node. + */ + label( name ) { + + this.name = name; + + return this; + + } + + /** + * Sets the scope of this node. + * + * @param {string} scope - The scope to set. + * @return {WorkgroupInfoNode} A reference to this node. + */ + setScope( scope ) { + + this.scope = scope; + + return this; + + } + + + /** + * The data type of the array buffer. + * + * @return {string} The element type. + */ + getElementType() { + + return this.elementType; + + } + + /** + * Overwrites the default implementation since the input type + * is inferred from the scope. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return `${this.scope}Array`; + + } + + /** + * This method can be used to access elements via an index node. + * + * @param {IndexNode} indexNode - indexNode. + * @return {WorkgroupInfoElementNode} A reference to an element. + */ + element( indexNode ) { + + return nodeObject( new WorkgroupInfoElementNode( this, indexNode ) ); + + } + + generate( builder ) { + + return builder.getScopedArray( this.name || `${this.scope}Array_${this.id}`, this.scope.toLowerCase(), this.bufferType, this.bufferCount ); + + } + +} + +/** + * TSL function for creating a workgroup info node. + * Creates a new 'workgroup' scoped array buffer. + * + * @tsl + * @function + * @param {string} type - The data type of a 'workgroup' scoped buffer element. + * @param {number} [count=0] - The number of elements in the buffer. + * @returns {WorkgroupInfoNode} + */ +const workgroupArray = ( type, count ) => nodeObject( new WorkgroupInfoNode( 'Workgroup', type, count ) ); + +/** + * `AtomicFunctionNode` represents any function that can operate on atomic variable types + * within a shader. In an atomic function, any modification to an atomic variable will + * occur as an indivisible step with a defined order relative to other modifications. + * Accordingly, even if multiple atomic functions are modifying an atomic variable at once + * atomic operations will not interfere with each other. + * + * This node can only be used with a WebGPU backend. + * + * @augments Node + */ +class AtomicFunctionNode extends Node { + + static get type() { + + return 'AtomicFunctionNode'; + + } + + /** + * Constructs a new atomic function node. + * + * @param {string} method - The signature of the atomic function to construct. + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + */ + constructor( method, pointerNode, valueNode ) { + + super( 'uint' ); + + /** + * The signature of the atomic function to construct. + * + * @type {string} + */ + this.method = method; + + /** + * An atomic variable or element of an atomic buffer. + * + * @type {Node} + */ + this.pointerNode = pointerNode; + + /** + * A value that modifies the atomic variable. + * + * @type {Node} + */ + this.valueNode = valueNode; + + /** + * Creates a list of the parents for this node for detecting if the node needs to return a value. + * + * @type {boolean} + * @default true + */ + this.parents = true; + + } + + /** + * Overwrites the default implementation to return the type of + * the pointer node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( builder ) { + + return this.pointerNode.getNodeType( builder ); + + } + + /** + * Overwritten since the node type is inferred from the input type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.getInputType( builder ); + + } + + generate( builder ) { + + const properties = builder.getNodeProperties( this ); + const parents = properties.parents; + + const method = this.method; + + const type = this.getNodeType( builder ); + const inputType = this.getInputType( builder ); + + const a = this.pointerNode; + const b = this.valueNode; + + const params = []; + + params.push( `&${ a.build( builder, inputType ) }` ); + + if ( b !== null ) { + + params.push( b.build( builder, inputType ) ); + + + } + + const methodSnippet = `${ builder.getMethod( method, type ) }( ${ params.join( ', ' ) } )`; + const isVoid = parents.length === 1 && parents[ 0 ].isStackNode === true; + + if ( isVoid ) { + + builder.addLineFlowCode( methodSnippet, this ); + + } else { + + if ( properties.constNode === undefined ) { + + properties.constNode = expression( methodSnippet, type ).toConst(); + + } + + return properties.constNode.build( builder ); + + } + + } + +} + +AtomicFunctionNode.ATOMIC_LOAD = 'atomicLoad'; +AtomicFunctionNode.ATOMIC_STORE = 'atomicStore'; +AtomicFunctionNode.ATOMIC_ADD = 'atomicAdd'; +AtomicFunctionNode.ATOMIC_SUB = 'atomicSub'; +AtomicFunctionNode.ATOMIC_MAX = 'atomicMax'; +AtomicFunctionNode.ATOMIC_MIN = 'atomicMin'; +AtomicFunctionNode.ATOMIC_AND = 'atomicAnd'; +AtomicFunctionNode.ATOMIC_OR = 'atomicOr'; +AtomicFunctionNode.ATOMIC_XOR = 'atomicXor'; + +/** + * TSL function for creating an atomic function node. + * + * @tsl + * @function + * @param {string} method - The signature of the atomic function to construct. + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicNode = nodeProxy( AtomicFunctionNode ); + +/** + * TSL function for appending an atomic function call into the programmatic flow of a compute shader. + * + * @tsl + * @function + * @param {string} method - The signature of the atomic function to construct. + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicFunc = ( method, pointerNode, valueNode ) => { + + return atomicNode( method, pointerNode, valueNode ).toStack(); + +}; + +/** + * Loads the value stored in the atomic variable. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @returns {AtomicFunctionNode} + */ +const atomicLoad = ( pointerNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_LOAD, pointerNode, null ); + +/** + * Stores a value in the atomic variable. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicStore = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_STORE, pointerNode, valueNode ); + +/** + * Increments the value stored in the atomic variable. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicAdd = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_ADD, pointerNode, valueNode ); + +/** + * Decrements the value stored in the atomic variable. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicSub = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_SUB, pointerNode, valueNode ); + +/** + * Stores in an atomic variable the maximum between its current value and a parameter. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicMax = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_MAX, pointerNode, valueNode ); + +/** + * Stores in an atomic variable the minimum between its current value and a parameter. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicMin = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_MIN, pointerNode, valueNode ); + +/** + * Stores in an atomic variable the bitwise AND of its value with a parameter. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicAnd = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_AND, pointerNode, valueNode ); + +/** + * Stores in an atomic variable the bitwise OR of its value with a parameter. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicOr = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_OR, pointerNode, valueNode ); + +/** + * Stores in an atomic variable the bitwise XOR of its value with a parameter. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicXor = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_XOR, pointerNode, valueNode ); + +let uniformsLib; + +function getLightData( light ) { + + uniformsLib = uniformsLib || new WeakMap(); + + let uniforms = uniformsLib.get( light ); + + if ( uniforms === undefined ) uniformsLib.set( light, uniforms = {} ); + + return uniforms; + +} + +/** + * TSL function for getting a shadow matrix uniform node for the given light. + * + * @tsl + * @function + * @param {Light} light -The light source. + * @returns {UniformNode} The shadow matrix uniform node. + */ +function lightShadowMatrix( light ) { + + const data = getLightData( light ); + + return data.shadowMatrix || ( data.shadowMatrix = uniform( 'mat4' ).setGroup( renderGroup ).onRenderUpdate( ( frame ) => { + + if ( light.castShadow !== true || frame.renderer.shadowMap.enabled === false ) { + + light.shadow.updateMatrices( light ); + + } + + return light.shadow.matrix; + + } ) ); + +} + +/** + * TSL function for getting projected uv coordinates for the given light. + * Relevant when using maps with spot lights. + * + * @tsl + * @function + * @param {Light} light -The light source. + * @param {Node} [position=positionWorld] -The position to project. + * @returns {Node} The projected uvs. + */ +function lightProjectionUV( light, position = positionWorld ) { + + const spotLightCoord = lightShadowMatrix( light ).mul( position ); + const projectionUV = spotLightCoord.xyz.div( spotLightCoord.w ); + + return projectionUV; + +} + +/** + * TSL function for getting the position in world space for the given light. + * + * @tsl + * @function + * @param {Light} light -The light source. + * @returns {UniformNode} The light's position in world space. + */ +function lightPosition( light ) { + + const data = getLightData( light ); + + return data.position || ( data.position = uniform( new Vector3() ).setGroup( renderGroup ).onRenderUpdate( ( _, self ) => self.value.setFromMatrixPosition( light.matrixWorld ) ) ); + +} + +/** + * TSL function for getting the light target position in world space for the given light. + * + * @tsl + * @function + * @param {Light} light -The light source. + * @returns {UniformNode} The light target position in world space. + */ +function lightTargetPosition( light ) { + + const data = getLightData( light ); + + return data.targetPosition || ( data.targetPosition = uniform( new Vector3() ).setGroup( renderGroup ).onRenderUpdate( ( _, self ) => self.value.setFromMatrixPosition( light.target.matrixWorld ) ) ); + +} + +/** + * TSL function for getting the position in view space for the given light. + * + * @tsl + * @function + * @param {Light} light - The light source. + * @returns {UniformNode} The light's position in view space. + */ +function lightViewPosition( light ) { + + const data = getLightData( light ); + + return data.viewPosition || ( data.viewPosition = uniform( new Vector3() ).setGroup( renderGroup ).onRenderUpdate( ( { camera }, self ) => { + + self.value = self.value || new Vector3(); + self.value.setFromMatrixPosition( light.matrixWorld ); + + self.value.applyMatrix4( camera.matrixWorldInverse ); + + } ) ); + +} + +/** + * TSL function for getting the light target direction for the given light. + * + * @tsl + * @function + * @param {Light} light -The light source. + * @returns {Node} The light's target direction. + */ +const lightTargetDirection = ( light ) => cameraViewMatrix.transformDirection( lightPosition( light ).sub( lightTargetPosition( light ) ) ); + +const sortLights = ( lights ) => { + + return lights.sort( ( a, b ) => a.id - b.id ); + +}; + +const getLightNodeById = ( id, lightNodes ) => { + + for ( const lightNode of lightNodes ) { + + if ( lightNode.isAnalyticLightNode && lightNode.light.id === id ) { + + return lightNode; + + } + + } + + return null; + +}; + +const _lightsNodeRef = /*@__PURE__*/ new WeakMap(); +const _hashData = []; + +/** + * This node represents the scene's lighting and manages the lighting model's life cycle + * for the current build 3D object. It is responsible for computing the total outgoing + * light in a given lighting context. + * + * @augments Node + */ +class LightsNode extends Node { + + static get type() { + + return 'LightsNode'; + + } + + /** + * Constructs a new lights node. + */ + constructor() { + + super( 'vec3' ); + + /** + * A node representing the total diffuse light. + * + * @type {Node} + */ + this.totalDiffuseNode = vec3().toVar(); + + /** + * A node representing the total specular light. + * + * @type {Node} + */ + this.totalSpecularNode = vec3().toVar(); + + /** + * A node representing the outgoing light. + * + * @type {Node} + */ + this.outgoingLightNode = vec3().toVar(); + + /** + * An array representing the lights in the scene. + * + * @private + * @type {Array} + */ + this._lights = []; + + /** + * For each light in the scene, this node will create a + * corresponding light node. + * + * @private + * @type {?Array} + * @default null + */ + this._lightNodes = null; + + /** + * A hash for identifying the current light nodes setup. + * + * @private + * @type {?string} + * @default null + */ + this._lightNodesHash = null; + + /** + * `LightsNode` sets this property to `true` by default. + * + * @type {boolean} + * @default true + */ + this.global = true; + + } + + /** + * Overwrites the default {@link Node#customCacheKey} implementation by including + * light data into the cache key. + * + * @return {number} The custom cache key. + */ + customCacheKey() { + + const lights = this._lights; + + for ( let i = 0; i < lights.length; i ++ ) { + + const light = lights[ i ]; + + _hashData.push( light.id ); + _hashData.push( light.castShadow ? 1 : 0 ); + + if ( light.isSpotLight === true ) { + + const hashMap = ( light.map !== null ) ? light.map.id : - 1; + const hashColorNode = ( light.colorNode ) ? light.colorNode.getCacheKey() : - 1; + + _hashData.push( hashMap, hashColorNode ); + + } + + } + + const cacheKey = hashArray( _hashData ); + + _hashData.length = 0; + + return cacheKey; + + } + + /** + * Computes a hash value for identifying the current light nodes setup. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @return {string} The computed hash. + */ + getHash( builder ) { + + if ( this._lightNodesHash === null ) { + + if ( this._lightNodes === null ) this.setupLightsNode( builder ); + + const hash = []; + + for ( const lightNode of this._lightNodes ) { + + hash.push( lightNode.getSelf().getHash() ); + + } + + this._lightNodesHash = 'lights-' + hash.join( ',' ); + + } + + return this._lightNodesHash; + + } + + analyze( builder ) { + + const properties = builder.getNodeProperties( this ); + + for ( const node of properties.nodes ) { + + node.build( builder ); + + } + + properties.outputNode.build( builder ); + + } + + /** + * Creates lighting nodes for each scene light. This makes it possible to further + * process lights in the node system. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + */ + setupLightsNode( builder ) { + + const lightNodes = []; + + const previousLightNodes = this._lightNodes; + + const lights = sortLights( this._lights ); + const nodeLibrary = builder.renderer.library; + + for ( const light of lights ) { + + if ( light.isNode ) { + + lightNodes.push( nodeObject( light ) ); + + } else { + + let lightNode = null; + + if ( previousLightNodes !== null ) { + + lightNode = getLightNodeById( light.id, previousLightNodes ); // reuse existing light node + + } + + if ( lightNode === null ) { + + // find the corresponding node type for a given light + + const lightNodeClass = nodeLibrary.getLightNodeClass( light.constructor ); + + if ( lightNodeClass === null ) { + + console.warn( `LightsNode.setupNodeLights: Light node not found for ${ light.constructor.name }` ); + continue; + + } + + let lightNode = null; + + if ( ! _lightsNodeRef.has( light ) ) { + + lightNode = nodeObject( new lightNodeClass( light ) ); + _lightsNodeRef.set( light, lightNode ); + + } else { + + lightNode = _lightsNodeRef.get( light ); + + } + + lightNodes.push( lightNode ); + + } + + } + + } + + this._lightNodes = lightNodes; + + } + + /** + * Sets up a direct light in the lighting model. + * + * @param {Object} builder - The builder object containing the context and stack. + * @param {Object} lightNode - The light node. + * @param {Object} lightData - The light object containing color and direction properties. + */ + setupDirectLight( builder, lightNode, lightData ) { + + const { lightingModel, reflectedLight } = builder.context; + + lightingModel.direct( { + ...lightData, + lightNode, + reflectedLight + }, builder ); + + } + + setupDirectRectAreaLight( builder, lightNode, lightData ) { + + const { lightingModel, reflectedLight } = builder.context; + + lightingModel.directRectArea( { + ...lightData, + lightNode, + reflectedLight + }, builder ); + + } + + /** + * Setups the internal lights by building all respective + * light nodes. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @param {Array} lightNodes - An array of lighting nodes. + */ + setupLights( builder, lightNodes ) { + + for ( const lightNode of lightNodes ) { + + lightNode.build( builder ); + + } + + } + + getLightNodes( builder ) { + + if ( this._lightNodes === null ) this.setupLightsNode( builder ); + + return this._lightNodes; + + } + + /** + * The implementation makes sure that for each light in the scene + * there is a corresponding light node. By building the light nodes + * and evaluating the lighting model the outgoing light is computed. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @return {Node} A node representing the outgoing light. + */ + setup( builder ) { + + const currentLightsNode = builder.lightsNode; + + builder.lightsNode = this; + + // + + let outgoingLightNode = this.outgoingLightNode; + + const context = builder.context; + const lightingModel = context.lightingModel; + + const properties = builder.getNodeProperties( this ); + + if ( lightingModel ) { + + const { totalDiffuseNode, totalSpecularNode } = this; + + context.outgoingLight = outgoingLightNode; + + const stack = builder.addStack(); + + // + + properties.nodes = stack.nodes; + + // + + lightingModel.start( builder ); + + // + + const { backdrop, backdropAlpha } = context; + const { directDiffuse, directSpecular, indirectDiffuse, indirectSpecular } = context.reflectedLight; + + let totalDiffuse = directDiffuse.add( indirectDiffuse ); + + if ( backdrop !== null ) { + + if ( backdropAlpha !== null ) { + + totalDiffuse = vec3( backdropAlpha.mix( totalDiffuse, backdrop ) ); + + } else { + + totalDiffuse = vec3( backdrop ); + + } + + context.material.transparent = true; + + } + + totalDiffuseNode.assign( totalDiffuse ); + totalSpecularNode.assign( directSpecular.add( indirectSpecular ) ); + + outgoingLightNode.assign( totalDiffuseNode.add( totalSpecularNode ) ); + + // + + lightingModel.finish( builder ); + + // + + outgoingLightNode = outgoingLightNode.bypass( builder.removeStack() ); + + } else { + + properties.nodes = []; + + } + + // + + builder.lightsNode = currentLightsNode; + + return outgoingLightNode; + + } + + /** + * Configures this node with an array of lights. + * + * @param {Array} lights - An array of lights. + * @return {LightsNode} A reference to this node. + */ + setLights( lights ) { + + this._lights = lights; + + this._lightNodes = null; + this._lightNodesHash = null; + + return this; + + } + + /** + * Returns an array of the scene's lights. + * + * @return {Array} The scene's lights. + */ + getLights() { + + return this._lights; + + } + + /** + * Whether the scene has lights or not. + * + * @type {boolean} + */ + get hasLights() { + + return this._lights.length > 0; + + } + +} + +/** + * TSL function for creating an instance of `LightsNode` and configuring + * it with the given array of lights. + * + * @tsl + * @function + * @param {Array} lights - An array of lights. + * @return {LightsNode} The created lights node. + */ +const lights = ( lights = [] ) => nodeObject( new LightsNode() ).setLights( lights ); + +/** + * Base class for all shadow nodes. + * + * Shadow nodes encapsulate shadow related logic and are always coupled to lighting nodes. + * Lighting nodes might share the same shadow node type or use specific ones depending on + * their requirements. + * + * @augments Node + */ +class ShadowBaseNode extends Node { + + static get type() { + + return 'ShadowBaseNode'; + + } + + /** + * Constructs a new shadow base node. + * + * @param {Light} light - The shadow casting light. + */ + constructor( light ) { + + super(); + + /** + * The shadow casting light. + * + * @type {Light} + */ + this.light = light; + + /** + * Overwritten since shadows are updated by default per render. + * + * @type {string} + * @default 'render' + */ + this.updateBeforeType = NodeUpdateType.RENDER; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isShadowBaseNode = true; + + } + + /** + * Setups the shadow position node which is by default the predefined TSL node object `shadowPositionWorld`. + * + * @param {NodeBuilder} object - A configuration object that must at least hold a material reference. + */ + setupShadowPosition( { context, material } ) { + + // Use assign inside an Fn() + + shadowPositionWorld.assign( material.receivedShadowPositionNode || context.shadowPositionWorld || positionWorld ); + + } + +} + +/** + * TSL object that represents the vertex position in world space during the shadow pass. + * + * @tsl + * @type {Node} + */ +const shadowPositionWorld = /*@__PURE__*/ property( 'vec3', 'shadowPositionWorld' ); + +/** + * Saves the state of the given renderer and stores it into the given state object. + * + * If not state object is provided, the function creates one. + * + * @function + * @param {Renderer} renderer - The renderer. + * @param {Object} [state={}] - The state. + * @return {Object} The state. + */ +function saveRendererState( renderer, state = {} ) { + + state.toneMapping = renderer.toneMapping; + state.toneMappingExposure = renderer.toneMappingExposure; + state.outputColorSpace = renderer.outputColorSpace; + state.renderTarget = renderer.getRenderTarget(); + state.activeCubeFace = renderer.getActiveCubeFace(); + state.activeMipmapLevel = renderer.getActiveMipmapLevel(); + state.renderObjectFunction = renderer.getRenderObjectFunction(); + state.pixelRatio = renderer.getPixelRatio(); + state.mrt = renderer.getMRT(); + state.clearColor = renderer.getClearColor( state.clearColor || new Color() ); + state.clearAlpha = renderer.getClearAlpha(); + state.autoClear = renderer.autoClear; + state.scissorTest = renderer.getScissorTest(); + + return state; + +} + +/** + * Saves the state of the given renderer and stores it into the given state object. + * Besides, the function also resets the state of the renderer to its default values. + * + * If not state object is provided, the function creates one. + * + * @function + * @param {Renderer} renderer - The renderer. + * @param {Object} [state={}] - The state. + * @return {Object} The state. + */ +function resetRendererState( renderer, state ) { + + state = saveRendererState( renderer, state ); + + renderer.setMRT( null ); + renderer.setRenderObjectFunction( null ); + renderer.setClearColor( 0x000000, 1 ); + renderer.autoClear = true; + + return state; + +} + +/** + * Restores the state of the given renderer from the given state object. + * + * @function + * @param {Renderer} renderer - The renderer. + * @param {Object} state - The state to restore. + */ +function restoreRendererState( renderer, state ) { + + renderer.toneMapping = state.toneMapping; + renderer.toneMappingExposure = state.toneMappingExposure; + renderer.outputColorSpace = state.outputColorSpace; + renderer.setRenderTarget( state.renderTarget, state.activeCubeFace, state.activeMipmapLevel ); + renderer.setRenderObjectFunction( state.renderObjectFunction ); + renderer.setPixelRatio( state.pixelRatio ); + renderer.setMRT( state.mrt ); + renderer.setClearColor( state.clearColor, state.clearAlpha ); + renderer.autoClear = state.autoClear; + renderer.setScissorTest( state.scissorTest ); + +} + +/** + * Saves the state of the given scene and stores it into the given state object. + * + * If not state object is provided, the function creates one. + * + * @function + * @param {Scene} scene - The scene. + * @param {Object} [state={}] - The state. + * @return {Object} The state. + */ +function saveSceneState( scene, state = {} ) { + + state.background = scene.background; + state.backgroundNode = scene.backgroundNode; + state.overrideMaterial = scene.overrideMaterial; + + return state; + +} + +/** + * Saves the state of the given scene and stores it into the given state object. + * Besides, the function also resets the state of the scene to its default values. + * + * If not state object is provided, the function creates one. + * + * @function + * @param {Scene} scene - The scene. + * @param {Object} [state={}] - The state. + * @return {Object} The state. + */ +function resetSceneState( scene, state ) { + + state = saveSceneState( scene, state ); + + scene.background = null; + scene.backgroundNode = null; + scene.overrideMaterial = null; + + return state; + +} + +/** + * Restores the state of the given scene from the given state object. + * + * @function + * @param {Scene} scene - The scene. + * @param {Object} state - The state to restore. + */ +function restoreSceneState( scene, state ) { + + scene.background = state.background; + scene.backgroundNode = state.backgroundNode; + scene.overrideMaterial = state.overrideMaterial; + +} + +/** + * Saves the state of the given renderer and scene and stores it into the given state object. + * + * If not state object is provided, the function creates one. + * + * @function + * @param {Renderer} renderer - The renderer. + * @param {Scene} scene - The scene. + * @param {Object} [state={}] - The state. + * @return {Object} The state. + */ +function saveRendererAndSceneState( renderer, scene, state = {} ) { + + state = saveRendererState( renderer, state ); + state = saveSceneState( scene, state ); + + return state; + +} + +/** + * Saves the state of the given renderer and scene and stores it into the given state object. + * Besides, the function also resets the state of the renderer and scene to its default values. + * + * If not state object is provided, the function creates one. + * + * @function + * @param {Renderer} renderer - The renderer. + * @param {Scene} scene - The scene. + * @param {Object} [state={}] - The state. + * @return {Object} The state. + */ +function resetRendererAndSceneState( renderer, scene, state ) { + + state = resetRendererState( renderer, state ); + state = resetSceneState( scene, state ); + + return state; + +} + +/** + * Restores the state of the given renderer and scene from the given state object. + * + * @function + * @param {Renderer} renderer - The renderer. + * @param {Scene} scene - The scene. + * @param {Object} state - The state to restore. + */ +function restoreRendererAndSceneState( renderer, scene, state ) { + + restoreRendererState( renderer, state ); + restoreSceneState( scene, state ); + +} + +var RendererUtils = /*#__PURE__*/Object.freeze( { + __proto__: null, + resetRendererAndSceneState: resetRendererAndSceneState, + resetRendererState: resetRendererState, + resetSceneState: resetSceneState, + restoreRendererAndSceneState: restoreRendererAndSceneState, + restoreRendererState: restoreRendererState, + restoreSceneState: restoreSceneState, + saveRendererAndSceneState: saveRendererAndSceneState, + saveRendererState: saveRendererState, + saveSceneState: saveSceneState +} ); + +const shadowMaterialLib = /*@__PURE__*/ new WeakMap(); + +/** + * A shadow filtering function performing basic filtering. This is in fact an unfiltered version of the shadow map + * with a binary `[0,1]` result. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {DepthTexture} inputs.depthTexture - A reference to the shadow map's texture data. + * @param {Node} inputs.shadowCoord - The shadow coordinates. + * @return {Node} The filtering result. + */ +const BasicShadowFilter = /*@__PURE__*/ Fn( ( { depthTexture, shadowCoord, depthLayer } ) => { + + let basic = texture( depthTexture, shadowCoord.xy ).label( 't_basic' ); + + if ( depthTexture.isArrayTexture ) { + + basic = basic.depth( depthLayer ); + + } + + return basic.compare( shadowCoord.z ); + +} ); + +/** + * A shadow filtering function performing PCF filtering. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {DepthTexture} inputs.depthTexture - A reference to the shadow map's texture data. + * @param {Node} inputs.shadowCoord - The shadow coordinates. + * @param {LightShadow} inputs.shadow - The light shadow. + * @return {Node} The filtering result. + */ +const PCFShadowFilter = /*@__PURE__*/ Fn( ( { depthTexture, shadowCoord, shadow, depthLayer } ) => { + + const depthCompare = ( uv, compare ) => { + + let depth = texture( depthTexture, uv ); + + if ( depthTexture.isArrayTexture ) { + + depth = depth.depth( depthLayer ); + + } + + return depth.compare( compare ); + + }; + + const mapSize = reference( 'mapSize', 'vec2', shadow ).setGroup( renderGroup ); + const radius = reference( 'radius', 'float', shadow ).setGroup( renderGroup ); + + const texelSize = vec2( 1 ).div( mapSize ); + const dx0 = texelSize.x.negate().mul( radius ); + const dy0 = texelSize.y.negate().mul( radius ); + const dx1 = texelSize.x.mul( radius ); + const dy1 = texelSize.y.mul( radius ); + const dx2 = dx0.div( 2 ); + const dy2 = dy0.div( 2 ); + const dx3 = dx1.div( 2 ); + const dy3 = dy1.div( 2 ); + + return add( + depthCompare( shadowCoord.xy.add( vec2( dx0, dy0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( 0, dy0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx1, dy0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx2, dy2 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( 0, dy2 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx3, dy2 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx0, 0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx2, 0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy, shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx3, 0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx1, 0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx2, dy3 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( 0, dy3 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx3, dy3 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx0, dy1 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( 0, dy1 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx1, dy1 ) ), shadowCoord.z ) + ).mul( 1 / 17 ); + +} ); + +/** + * A shadow filtering function performing PCF soft filtering. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {DepthTexture} inputs.depthTexture - A reference to the shadow map's texture data. + * @param {Node} inputs.shadowCoord - The shadow coordinates. + * @param {LightShadow} inputs.shadow - The light shadow. + * @return {Node} The filtering result. + */ +const PCFSoftShadowFilter = /*@__PURE__*/ Fn( ( { depthTexture, shadowCoord, shadow, depthLayer } ) => { + + const depthCompare = ( uv, compare ) => { + + let depth = texture( depthTexture, uv ); + + if ( depthTexture.isArrayTexture ) { + + depth = depth.depth( depthLayer ); + + } + + return depth.compare( compare ); + + }; + + + const mapSize = reference( 'mapSize', 'vec2', shadow ).setGroup( renderGroup ); + + const texelSize = vec2( 1 ).div( mapSize ); + const dx = texelSize.x; + const dy = texelSize.y; + + const uv = shadowCoord.xy; + const f = fract( uv.mul( mapSize ).add( 0.5 ) ); + uv.subAssign( f.mul( texelSize ) ); + + return add( + depthCompare( uv, shadowCoord.z ), + depthCompare( uv.add( vec2( dx, 0 ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( 0, dy ) ), shadowCoord.z ), + depthCompare( uv.add( texelSize ), shadowCoord.z ), + mix( + depthCompare( uv.add( vec2( dx.negate(), 0 ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( dx.mul( 2 ), 0 ) ), shadowCoord.z ), + f.x + ), + mix( + depthCompare( uv.add( vec2( dx.negate(), dy ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( dx.mul( 2 ), dy ) ), shadowCoord.z ), + f.x + ), + mix( + depthCompare( uv.add( vec2( 0, dy.negate() ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( 0, dy.mul( 2 ) ) ), shadowCoord.z ), + f.y + ), + mix( + depthCompare( uv.add( vec2( dx, dy.negate() ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( dx, dy.mul( 2 ) ) ), shadowCoord.z ), + f.y + ), + mix( + mix( + depthCompare( uv.add( vec2( dx.negate(), dy.negate() ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( dx.mul( 2 ), dy.negate() ) ), shadowCoord.z ), + f.x + ), + mix( + depthCompare( uv.add( vec2( dx.negate(), dy.mul( 2 ) ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( dx.mul( 2 ), dy.mul( 2 ) ) ), shadowCoord.z ), + f.x + ), + f.y + ) + ).mul( 1 / 9 ); + +} ); + +/** + * A shadow filtering function performing VSM filtering. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {DepthTexture} inputs.depthTexture - A reference to the shadow map's texture data. + * @param {Node} inputs.shadowCoord - The shadow coordinates. + * @return {Node} The filtering result. + */ +const VSMShadowFilter = /*@__PURE__*/ Fn( ( { depthTexture, shadowCoord, depthLayer } ) => { + + const occlusion = float( 1 ).toVar(); + + let distribution = texture( depthTexture ).sample( shadowCoord.xy ); + + if ( depthTexture.isArrayTexture ) { + + distribution = distribution.depth( depthLayer ); + + } + + distribution = distribution.rg; + + const hardShadow = step( shadowCoord.z, distribution.x ); + + If( hardShadow.notEqual( float( 1.0 ) ), () => { + + const distance = shadowCoord.z.sub( distribution.x ); + const variance = max$1( 0, distribution.y.mul( distribution.y ) ); + let softnessProbability = variance.div( variance.add( distance.mul( distance ) ) ); // Chebeyshevs inequality + softnessProbability = clamp( sub( softnessProbability, 0.3 ).div( 0.95 - 0.3 ) ); + occlusion.assign( clamp( max$1( hardShadow, softnessProbability ) ) ); + + } ); + + return occlusion; + +} ); + +// + +const linearDistance = /*@__PURE__*/ Fn( ( [ position, cameraNear, cameraFar ] ) => { + + let dist = positionWorld.sub( position ).length(); + dist = dist.sub( cameraNear ).div( cameraFar.sub( cameraNear ) ); + dist = dist.saturate(); // clamp to [ 0, 1 ] + + return dist; + +} ); + +const linearShadowDistance = ( light ) => { + + const camera = light.shadow.camera; + + const nearDistance = reference( 'near', 'float', camera ).setGroup( renderGroup ); + const farDistance = reference( 'far', 'float', camera ).setGroup( renderGroup ); + + const referencePosition = objectPosition( light ); + + return linearDistance( referencePosition, nearDistance, farDistance ); + +}; + +/** + * Retrieves or creates a shadow material for the given light source. + * + * This function checks if a shadow material already exists for the provided light. + * If not, it creates a new `NodeMaterial` configured for shadow rendering and stores it + * in the `shadowMaterialLib` for future use. + * + * @param {Light} light - The light source for which the shadow material is needed. + * If the light is a point light, a depth node is calculated + * using the linear shadow distance. + * @returns {NodeMaterial} The shadow material associated with the given light. + */ +const getShadowMaterial = ( light ) => { + + let material = shadowMaterialLib.get( light ); + + if ( material === undefined ) { + + const depthNode = light.isPointLight ? linearShadowDistance( light ) : null; + + material = new NodeMaterial(); + material.colorNode = vec4( 0, 0, 0, 1 ); + material.depthNode = depthNode; + material.isShadowPassMaterial = true; // Use to avoid other overrideMaterial override material.colorNode unintentionally when using material.shadowNode + material.name = 'ShadowMaterial'; + material.fog = false; + + shadowMaterialLib.set( light, material ); + + } + + return material; + +}; + +// + +const _shadowRenderObjectLibrary = /*@__PURE__*/ new ChainMap(); +const _shadowRenderObjectKeys = []; + +/** + * Creates a function to render shadow objects in a scene. + * + * @param {Renderer} renderer - The renderer. + * @param {LightShadow} shadow - The light shadow object containing shadow properties. + * @param {number} shadowType - The type of shadow map (e.g., BasicShadowMap). + * @param {boolean} useVelocity - Whether to use velocity data for rendering. + * @return {Function} A function that renders shadow objects. + * + * The returned function has the following parameters: + * @param {Object3D} object - The 3D object to render. + * @param {Scene} scene - The scene containing the object. + * @param {Camera} _camera - The camera used for rendering. + * @param {BufferGeometry} geometry - The geometry of the object. + * @param {Material} material - The material of the object. + * @param {Group} group - The group the object belongs to. + * @param {...any} params - Additional parameters for rendering. + */ +const getShadowRenderObjectFunction = ( renderer, shadow, shadowType, useVelocity ) => { + + _shadowRenderObjectKeys[ 0 ] = renderer; + _shadowRenderObjectKeys[ 1 ] = shadow; + + let renderObjectFunction = _shadowRenderObjectLibrary.get( _shadowRenderObjectKeys ); + + if ( renderObjectFunction === undefined || ( renderObjectFunction.shadowType !== shadowType || renderObjectFunction.useVelocity !== useVelocity ) ) { + + renderObjectFunction = ( object, scene, _camera, geometry, material, group, ...params ) => { + + if ( object.castShadow === true || ( object.receiveShadow && shadowType === VSMShadowMap ) ) { + + if ( useVelocity ) { + + getDataFromObject( object ).useVelocity = true; + + } + + object.onBeforeShadow( renderer, object, _camera, shadow.camera, geometry, scene.overrideMaterial, group ); + + renderer.renderObject( object, scene, _camera, geometry, material, group, ...params ); + + object.onAfterShadow( renderer, object, _camera, shadow.camera, geometry, scene.overrideMaterial, group ); + + } + + }; + + renderObjectFunction.shadowType = shadowType; + renderObjectFunction.useVelocity = useVelocity; + + _shadowRenderObjectLibrary.set( _shadowRenderObjectKeys, renderObjectFunction ); + + } + + _shadowRenderObjectKeys[ 0 ] = null; + _shadowRenderObjectKeys[ 1 ] = null; + + return renderObjectFunction; + +}; + +/** + * Represents the shader code for the first VSM render pass. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {Node} inputs.samples - The number of samples + * @param {Node} inputs.radius - The radius. + * @param {Node} inputs.size - The size. + * @param {TextureNode} inputs.shadowPass - A reference to the render target's depth data. + * @return {Node} The VSM output. + */ +const VSMPassVertical = /*@__PURE__*/ Fn( ( { samples, radius, size, shadowPass, depthLayer } ) => { + + const mean = float( 0 ).toVar( 'meanVertical' ); + const squaredMean = float( 0 ).toVar( 'squareMeanVertical' ); + + const uvStride = samples.lessThanEqual( float( 1 ) ).select( float( 0 ), float( 2 ).div( samples.sub( 1 ) ) ); + const uvStart = samples.lessThanEqual( float( 1 ) ).select( float( 0 ), float( - 1 ) ); + + Loop( { start: int( 0 ), end: int( samples ), type: 'int', condition: '<' }, ( { i } ) => { + + const uvOffset = uvStart.add( float( i ).mul( uvStride ) ); + + let depth = shadowPass.sample( add( screenCoordinate.xy, vec2( 0, uvOffset ).mul( radius ) ).div( size ) ); + + if ( shadowPass.value.isArrayTexture ) { + + depth = depth.depth( depthLayer ); + + } + + depth = depth.x; + + mean.addAssign( depth ); + squaredMean.addAssign( depth.mul( depth ) ); + + } ); + + mean.divAssign( samples ); + squaredMean.divAssign( samples ); + + const std_dev = sqrt( squaredMean.sub( mean.mul( mean ) ) ); + return vec2( mean, std_dev ); + +} ); + +/** + * Represents the shader code for the second VSM render pass. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {Node} inputs.samples - The number of samples + * @param {Node} inputs.radius - The radius. + * @param {Node} inputs.size - The size. + * @param {TextureNode} inputs.shadowPass - The result of the first VSM render pass. + * @return {Node} The VSM output. + */ +const VSMPassHorizontal = /*@__PURE__*/ Fn( ( { samples, radius, size, shadowPass, depthLayer } ) => { + + const mean = float( 0 ).toVar( 'meanHorizontal' ); + const squaredMean = float( 0 ).toVar( 'squareMeanHorizontal' ); + + const uvStride = samples.lessThanEqual( float( 1 ) ).select( float( 0 ), float( 2 ).div( samples.sub( 1 ) ) ); + const uvStart = samples.lessThanEqual( float( 1 ) ).select( float( 0 ), float( - 1 ) ); + + Loop( { start: int( 0 ), end: int( samples ), type: 'int', condition: '<' }, ( { i } ) => { + + const uvOffset = uvStart.add( float( i ).mul( uvStride ) ); + + let distribution = shadowPass.sample( add( screenCoordinate.xy, vec2( uvOffset, 0 ).mul( radius ) ).div( size ) ); + + if ( shadowPass.value.isArrayTexture ) { + + distribution = distribution.depth( depthLayer ); + + } + + mean.addAssign( distribution.x ); + squaredMean.addAssign( add( distribution.y.mul( distribution.y ), distribution.x.mul( distribution.x ) ) ); + + } ); + + mean.divAssign( samples ); + squaredMean.divAssign( samples ); + + const std_dev = sqrt( squaredMean.sub( mean.mul( mean ) ) ); + return vec2( mean, std_dev ); + +} ); + +const _shadowFilterLib = [ BasicShadowFilter, PCFShadowFilter, PCFSoftShadowFilter, VSMShadowFilter ]; + +// + +let _rendererState; +const _quadMesh = /*@__PURE__*/ new QuadMesh(); + +/** + * Represents the default shadow implementation for lighting nodes. + * + * @augments ShadowBaseNode + */ +class ShadowNode extends ShadowBaseNode { + + static get type() { + + return 'ShadowNode'; + + } + + /** + * Constructs a new shadow node. + * + * @param {Light} light - The shadow casting light. + * @param {?LightShadow} [shadow=null] - An optional light shadow. + */ + constructor( light, shadow = null ) { + + super( light ); + + /** + * The light shadow which defines the properties light's + * shadow. + * + * @type {?LightShadow} + * @default null + */ + this.shadow = shadow || light.shadow; + + /** + * A reference to the shadow map which is a render target. + * + * @type {?RenderTarget} + * @default null + */ + this.shadowMap = null; + + /** + * Only relevant for VSM shadows. Render target for the + * first VSM render pass. + * + * @type {?RenderTarget} + * @default null + */ + this.vsmShadowMapVertical = null; + + /** + * Only relevant for VSM shadows. Render target for the + * second VSM render pass. + * + * @type {?RenderTarget} + * @default null + */ + this.vsmShadowMapHorizontal = null; + + /** + * Only relevant for VSM shadows. Node material which + * is used to render the first VSM pass. + * + * @type {?NodeMaterial} + * @default null + */ + this.vsmMaterialVertical = null; + + /** + * Only relevant for VSM shadows. Node material which + * is used to render the second VSM pass. + * + * @type {?NodeMaterial} + * @default null + */ + this.vsmMaterialHorizontal = null; + + /** + * A reference to the output node which defines the + * final result of this shadow node. + * + * @type {?Node} + * @private + * @default null + */ + this._node = null; + + this._cameraFrameId = new WeakMap(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isShadowNode = true; + + /** + * This index can be used when overriding setupRenderTarget with a RenderTarget Array to specify the depth layer. + * + * @type {number} + * @readonly + * @default true + */ + this.depthLayer = 0; + + } + + /** + * Setups the shadow filtering. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @param {Object} inputs - A configuration object that defines the shadow filtering. + * @param {Function} inputs.filterFn - This function defines the filtering type of the shadow map e.g. PCF. + * @param {DepthTexture} inputs.depthTexture - A reference to the shadow map's texture data. + * @param {Node} inputs.shadowCoord - Shadow coordinates which are used to sample from the shadow map. + * @param {LightShadow} inputs.shadow - The light shadow. + * @return {Node} The result node of the shadow filtering. + */ + setupShadowFilter( builder, { filterFn, depthTexture, shadowCoord, shadow, depthLayer } ) { + + const frustumTest = shadowCoord.x.greaterThanEqual( 0 ) + .and( shadowCoord.x.lessThanEqual( 1 ) ) + .and( shadowCoord.y.greaterThanEqual( 0 ) ) + .and( shadowCoord.y.lessThanEqual( 1 ) ) + .and( shadowCoord.z.lessThanEqual( 1 ) ); + + const shadowNode = filterFn( { depthTexture, shadowCoord, shadow, depthLayer } ); + + return frustumTest.select( shadowNode, float( 1 ) ); + + } + + /** + * Setups the shadow coordinates. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @param {Node} shadowPosition - A node representing the shadow position. + * @return {Node} The shadow coordinates. + */ + setupShadowCoord( builder, shadowPosition ) { + + const { shadow } = this; + const { renderer } = builder; + + const bias = reference( 'bias', 'float', shadow ).setGroup( renderGroup ); + + let shadowCoord = shadowPosition; + let coordZ; + + if ( shadow.camera.isOrthographicCamera || renderer.logarithmicDepthBuffer !== true ) { + + shadowCoord = shadowCoord.xyz.div( shadowCoord.w ); + + coordZ = shadowCoord.z; + + if ( renderer.coordinateSystem === WebGPUCoordinateSystem ) { + + coordZ = coordZ.mul( 2 ).sub( 1 ); // WebGPU: Conversion [ 0, 1 ] to [ - 1, 1 ] + + } + + } else { + + const w = shadowCoord.w; + shadowCoord = shadowCoord.xy.div( w ); // <-- Only divide X/Y coords since we don't need Z + + // The normally available "cameraNear" and "cameraFar" nodes cannot be used here because they do not get + // updated to use the shadow camera. So, we have to declare our own "local" ones here. + // TODO: How do we get the cameraNear/cameraFar nodes to use the shadow camera so we don't have to declare local ones here? + const cameraNearLocal = reference( 'near', 'float', shadow.camera ).setGroup( renderGroup ); + const cameraFarLocal = reference( 'far', 'float', shadow.camera ).setGroup( renderGroup ); + + coordZ = viewZToLogarithmicDepth( w.negate(), cameraNearLocal, cameraFarLocal ); + + } + + shadowCoord = vec3( + shadowCoord.x, + shadowCoord.y.oneMinus(), // follow webgpu standards + coordZ.add( bias ) + ); + + return shadowCoord; + + } + + /** + * Returns the shadow filtering function for the given shadow type. + * + * @param {number} type - The shadow type. + * @return {Function} The filtering function. + */ + getShadowFilterFn( type ) { + + return _shadowFilterLib[ type ]; + + } + + + setupRenderTarget( shadow, builder ) { + + const depthTexture = new DepthTexture( shadow.mapSize.width, shadow.mapSize.height ); + depthTexture.name = 'ShadowDepthTexture'; + depthTexture.compareFunction = LessCompare; + + const shadowMap = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height ); + shadowMap.texture.name = 'ShadowMap'; + shadowMap.texture.type = shadow.mapType; + shadowMap.depthTexture = depthTexture; + + return { shadowMap, depthTexture }; + + } + + /** + * Setups the shadow output node. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @return {Node} The shadow output node. + */ + setupShadow( builder ) { + + const { renderer } = builder; + + const { light, shadow } = this; + + const shadowMapType = renderer.shadowMap.type; + + const { depthTexture, shadowMap } = this.setupRenderTarget( shadow, builder ); + + shadow.camera.updateProjectionMatrix(); + + // VSM + + if ( shadowMapType === VSMShadowMap && shadow.isPointLightShadow !== true ) { + + depthTexture.compareFunction = null; // VSM does not use textureSampleCompare()/texture2DCompare() + + if ( shadowMap.depth > 1 ) { + + if ( ! shadowMap._vsmShadowMapVertical ) { + + shadowMap._vsmShadowMapVertical = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height, { format: RGFormat, type: HalfFloatType, depth: shadowMap.depth, depthBuffer: false } ); + shadowMap._vsmShadowMapVertical.texture.name = 'VSMVertical'; + + } + + this.vsmShadowMapVertical = shadowMap._vsmShadowMapVertical; + + if ( ! shadowMap._vsmShadowMapHorizontal ) { + + shadowMap._vsmShadowMapHorizontal = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height, { format: RGFormat, type: HalfFloatType, depth: shadowMap.depth, depthBuffer: false } ); + shadowMap._vsmShadowMapHorizontal.texture.name = 'VSMHorizontal'; + + } + + this.vsmShadowMapHorizontal = shadowMap._vsmShadowMapHorizontal; + + } else { + + this.vsmShadowMapVertical = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height, { format: RGFormat, type: HalfFloatType, depthBuffer: false } ); + this.vsmShadowMapHorizontal = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height, { format: RGFormat, type: HalfFloatType, depthBuffer: false } ); + + } + + + let shadowPassVertical = texture( depthTexture ); + + if ( depthTexture.isArrayTexture ) { + + shadowPassVertical = shadowPassVertical.depth( this.depthLayer ); + + } + + let shadowPassHorizontal = texture( this.vsmShadowMapVertical.texture ); + + if ( depthTexture.isArrayTexture ) { + + shadowPassHorizontal = shadowPassHorizontal.depth( this.depthLayer ); + + } + + const samples = reference( 'blurSamples', 'float', shadow ).setGroup( renderGroup ); + const radius = reference( 'radius', 'float', shadow ).setGroup( renderGroup ); + const size = reference( 'mapSize', 'vec2', shadow ).setGroup( renderGroup ); + + let material = this.vsmMaterialVertical || ( this.vsmMaterialVertical = new NodeMaterial() ); + material.fragmentNode = VSMPassVertical( { samples, radius, size, shadowPass: shadowPassVertical, depthLayer: this.depthLayer } ).context( builder.getSharedContext() ); + material.name = 'VSMVertical'; + + material = this.vsmMaterialHorizontal || ( this.vsmMaterialHorizontal = new NodeMaterial() ); + material.fragmentNode = VSMPassHorizontal( { samples, radius, size, shadowPass: shadowPassHorizontal, depthLayer: this.depthLayer } ).context( builder.getSharedContext() ); + material.name = 'VSMHorizontal'; + + } + + // + + const shadowIntensity = reference( 'intensity', 'float', shadow ).setGroup( renderGroup ); + const normalBias = reference( 'normalBias', 'float', shadow ).setGroup( renderGroup ); + + const shadowPosition = lightShadowMatrix( light ).mul( shadowPositionWorld.add( transformedNormalWorld.mul( normalBias ) ) ); + const shadowCoord = this.setupShadowCoord( builder, shadowPosition ); + + // + + const filterFn = shadow.filterNode || this.getShadowFilterFn( renderer.shadowMap.type ) || null; + + if ( filterFn === null ) { + + throw new Error( 'THREE.WebGPURenderer: Shadow map type not supported yet.' ); + + } + + const shadowDepthTexture = ( shadowMapType === VSMShadowMap && shadow.isPointLightShadow !== true ) ? this.vsmShadowMapHorizontal.texture : depthTexture; + + const shadowNode = this.setupShadowFilter( builder, { filterFn, shadowTexture: shadowMap.texture, depthTexture: shadowDepthTexture, shadowCoord, shadow, depthLayer: this.depthLayer } ); + + let shadowColor = texture( shadowMap.texture, shadowCoord ); + + if ( depthTexture.isArrayTexture ) { + + shadowColor = shadowColor.depth( this.depthLayer ); + + } + + const shadowOutput = mix( 1, shadowNode.rgb.mix( shadowColor, 1 ), shadowIntensity.mul( shadowColor.a ) ).toVar(); + + this.shadowMap = shadowMap; + this.shadow.map = shadowMap; + + return shadowOutput; + + } + + /** + * The implementation performs the setup of the output node. An output is only + * produces if shadow mapping is globally enabled in the renderer. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @return {ShaderCallNodeInternal} The output node. + */ + setup( builder ) { + + if ( builder.renderer.shadowMap.enabled === false ) return; + + return Fn( () => { + + let node = this._node; + + this.setupShadowPosition( builder ); + + if ( node === null ) { + + this._node = node = this.setupShadow( builder ); + + } + + if ( builder.material.shadowNode ) { // @deprecated, r171 + + console.warn( 'THREE.NodeMaterial: ".shadowNode" is deprecated. Use ".castShadowNode" instead.' ); + + } + + if ( builder.material.receivedShadowNode ) { + + node = builder.material.receivedShadowNode( node ); + + } + + return node; + + } )(); + + } + + /** + * Renders the shadow. The logic of this function could be included + * into {@link ShadowNode#updateShadow} however more specialized shadow + * nodes might require a custom shadow map rendering. By having a + * dedicated method, it's easier to overwrite the default behavior. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + renderShadow( frame ) { + + const { shadow, shadowMap, light } = this; + const { renderer, scene } = frame; + + shadow.updateMatrices( light ); + + shadowMap.setSize( shadow.mapSize.width, shadow.mapSize.height, shadowMap.depth ); + + renderer.render( scene, shadow.camera ); + + } + + /** + * Updates the shadow. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + updateShadow( frame ) { + + const { shadowMap, light, shadow } = this; + const { renderer, scene, camera } = frame; + + const shadowType = renderer.shadowMap.type; + + const depthVersion = shadowMap.depthTexture.version; + this._depthVersionCached = depthVersion; + + const _shadowCameraLayer = shadow.camera.layers.mask; + + if ( ( shadow.camera.layers.mask & 0xFFFFFFFE ) === 0 ) { + + shadow.camera.layers.mask = camera.layers.mask; + + } + + const currentRenderObjectFunction = renderer.getRenderObjectFunction(); + + const currentMRT = renderer.getMRT(); + const useVelocity = currentMRT ? currentMRT.has( 'velocity' ) : false; + + _rendererState = resetRendererAndSceneState( renderer, scene, _rendererState ); + + scene.overrideMaterial = getShadowMaterial( light ); + + renderer.setRenderObjectFunction( getShadowRenderObjectFunction( renderer, shadow, shadowType, useVelocity ) ); + + renderer.setClearColor( 0x000000, 0 ); + + renderer.setRenderTarget( shadowMap ); + + this.renderShadow( frame ); + + renderer.setRenderObjectFunction( currentRenderObjectFunction ); + + // vsm blur pass + + if ( shadowType === VSMShadowMap && shadow.isPointLightShadow !== true ) { + + this.vsmPass( renderer ); + + } + + shadow.camera.layers.mask = _shadowCameraLayer; + + restoreRendererAndSceneState( renderer, scene, _rendererState ); + + } + + /** + * For VSM additional render passes are required. + * + * @param {Renderer} renderer - A reference to the current renderer. + */ + vsmPass( renderer ) { + + const { shadow } = this; + + const depth = this.shadowMap.depth; + this.vsmShadowMapVertical.setSize( shadow.mapSize.width, shadow.mapSize.height, depth ); + this.vsmShadowMapHorizontal.setSize( shadow.mapSize.width, shadow.mapSize.height, depth ); + + renderer.setRenderTarget( this.vsmShadowMapVertical ); + _quadMesh.material = this.vsmMaterialVertical; + _quadMesh.render( renderer ); + + renderer.setRenderTarget( this.vsmShadowMapHorizontal ); + _quadMesh.material = this.vsmMaterialHorizontal; + _quadMesh.render( renderer ); + + } + + /** + * Frees the internal resources of this shadow node. + */ + dispose() { + + this.shadowMap.dispose(); + this.shadowMap = null; + + if ( this.vsmShadowMapVertical !== null ) { + + this.vsmShadowMapVertical.dispose(); + this.vsmShadowMapVertical = null; + + this.vsmMaterialVertical.dispose(); + this.vsmMaterialVertical = null; + + } + + if ( this.vsmShadowMapHorizontal !== null ) { + + this.vsmShadowMapHorizontal.dispose(); + this.vsmShadowMapHorizontal = null; + + this.vsmMaterialHorizontal.dispose(); + this.vsmMaterialHorizontal = null; + + } + + super.dispose(); + + } + + /** + * The implementation performs the update of the shadow map if necessary. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + updateBefore( frame ) { + + const { shadow } = this; + + let needsUpdate = shadow.needsUpdate || shadow.autoUpdate; + + if ( needsUpdate ) { + + if ( this._cameraFrameId[ frame.camera ] === frame.frameId ) { + + needsUpdate = false; + + } + + this._cameraFrameId[ frame.camera ] = frame.frameId; + + } + + if ( needsUpdate ) { + + this.updateShadow( frame ); + + if ( this.shadowMap.depthTexture.version === this._depthVersionCached ) { + + shadow.needsUpdate = false; + + } + + } + + } + +} + +/** + * TSL function for creating an instance of `ShadowNode`. + * + * @tsl + * @function + * @param {Light} light - The shadow casting light. + * @param {?LightShadow} [shadow] - The light shadow. + * @return {ShadowNode} The created shadow node. + */ +const shadow = ( light, shadow ) => nodeObject( new ShadowNode( light, shadow ) ); + +const _clearColor$1 = /*@__PURE__*/ new Color(); + +// cubeToUV() maps a 3D direction vector suitable for cube texture mapping to a 2D +// vector suitable for 2D texture mapping. This code uses the following layout for the +// 2D texture: +// +// xzXZ +// y Y +// +// Y - Positive y direction +// y - Negative y direction +// X - Positive x direction +// x - Negative x direction +// Z - Positive z direction +// z - Negative z direction +// +// Source and test bed: +// https://gist.github.com/tschw/da10c43c467ce8afd0c4 + +const cubeToUV = /*@__PURE__*/ Fn( ( [ pos, texelSizeY ] ) => { + + const v = pos.toVar(); + + // Number of texels to avoid at the edge of each square + + const absV = abs( v ); + + // Intersect unit cube + + const scaleToCube = div( 1.0, max$1( absV.x, max$1( absV.y, absV.z ) ) ); + absV.mulAssign( scaleToCube ); + + // Apply scale to avoid seams + + // two texels less per square (one texel will do for NEAREST) + v.mulAssign( scaleToCube.mul( texelSizeY.mul( 2 ).oneMinus() ) ); + + // Unwrap + + // space: -1 ... 1 range for each square + // + // #X## dim := ( 4 , 2 ) + // # # center := ( 1 , 1 ) + + const planar = vec2( v.xy ).toVar(); + + const almostATexel = texelSizeY.mul( 1.5 ); + const almostOne = almostATexel.oneMinus(); + + If( absV.z.greaterThanEqual( almostOne ), () => { + + If( v.z.greaterThan( 0.0 ), () => { + + planar.x.assign( sub( 4.0, v.x ) ); + + } ); + + } ).ElseIf( absV.x.greaterThanEqual( almostOne ), () => { + + const signX = sign( v.x ); + planar.x.assign( v.z.mul( signX ).add( signX.mul( 2.0 ) ) ); + + } ).ElseIf( absV.y.greaterThanEqual( almostOne ), () => { + + const signY = sign( v.y ); + planar.x.assign( v.x.add( signY.mul( 2.0 ) ).add( 2.0 ) ); + planar.y.assign( v.z.mul( signY ).sub( 2.0 ) ); + + } ); + + // Transform to UV space + + // scale := 0.5 / dim + // translate := ( center + 0.5 ) / dim + return vec2( 0.125, 0.25 ).mul( planar ).add( vec2( 0.375, 0.75 ) ).flipY(); + +} ).setLayout( { + name: 'cubeToUV', + type: 'vec2', + inputs: [ + { name: 'pos', type: 'vec3' }, + { name: 'texelSizeY', type: 'float' } + ] +} ); + +const BasicPointShadowFilter = /*@__PURE__*/ Fn( ( { depthTexture, bd3D, dp, texelSize } ) => { + + return texture( depthTexture, cubeToUV( bd3D, texelSize.y ) ).compare( dp ); + +} ); + +const PointShadowFilter = /*@__PURE__*/ Fn( ( { depthTexture, bd3D, dp, texelSize, shadow } ) => { + + const radius = reference( 'radius', 'float', shadow ).setGroup( renderGroup ); + const offset = vec2( - 1, 1.0 ).mul( radius ).mul( texelSize.y ); + + return texture( depthTexture, cubeToUV( bd3D.add( offset.xyy ), texelSize.y ) ).compare( dp ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.yyy ), texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.xyx ), texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.yyx ), texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D, texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.xxy ), texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.yxy ), texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.xxx ), texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.yxx ), texelSize.y ) ).compare( dp ) ) + .mul( 1.0 / 9.0 ); + +} ); + +const pointShadowFilter = /*@__PURE__*/ Fn( ( { filterFn, depthTexture, shadowCoord, shadow } ) => { + + // for point lights, the uniform @vShadowCoord is re-purposed to hold + // the vector from the light to the world-space position of the fragment. + const lightToPosition = shadowCoord.xyz.toVar(); + const lightToPositionLength = lightToPosition.length(); + + const cameraNearLocal = uniform( 'float' ).setGroup( renderGroup ).onRenderUpdate( () => shadow.camera.near ); + const cameraFarLocal = uniform( 'float' ).setGroup( renderGroup ).onRenderUpdate( () => shadow.camera.far ); + const bias = reference( 'bias', 'float', shadow ).setGroup( renderGroup ); + const mapSize = uniform( shadow.mapSize ).setGroup( renderGroup ); + + const result = float( 1.0 ).toVar(); + + If( lightToPositionLength.sub( cameraFarLocal ).lessThanEqual( 0.0 ).and( lightToPositionLength.sub( cameraNearLocal ).greaterThanEqual( 0.0 ) ), () => { + + // dp = normalized distance from light to fragment position + const dp = lightToPositionLength.sub( cameraNearLocal ).div( cameraFarLocal.sub( cameraNearLocal ) ).toVar(); // need to clamp? + dp.addAssign( bias ); + + // bd3D = base direction 3D + const bd3D = lightToPosition.normalize(); + const texelSize = vec2( 1.0 ).div( mapSize.mul( vec2( 4.0, 2.0 ) ) ); + + // percentage-closer filtering + result.assign( filterFn( { depthTexture, bd3D, dp, texelSize, shadow } ) ); + + } ); + + return result; + +} ); + +const _viewport = /*@__PURE__*/ new Vector4(); +const _viewportSize = /*@__PURE__*/ new Vector2(); +const _shadowMapSize = /*@__PURE__*/ new Vector2(); + + +/** + * Represents the shadow implementation for point light nodes. + * + * @augments ShadowNode + */ +class PointShadowNode extends ShadowNode { + + static get type() { + + return 'PointShadowNode'; + + } + + /** + * Constructs a new point shadow node. + * + * @param {PointLight} light - The shadow casting point light. + * @param {?PointLightShadow} [shadow=null] - An optional point light shadow. + */ + constructor( light, shadow = null ) { + + super( light, shadow ); + + } + + /** + * Overwrites the default implementation to return point light shadow specific + * filtering functions. + * + * @param {number} type - The shadow type. + * @return {Function} The filtering function. + */ + getShadowFilterFn( type ) { + + return type === BasicShadowMap ? BasicPointShadowFilter : PointShadowFilter; + + } + + /** + * Overwrites the default implementation so the unaltered shadow position is used. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @param {Node} shadowPosition - A node representing the shadow position. + * @return {Node} The shadow coordinates. + */ + setupShadowCoord( builder, shadowPosition ) { + + return shadowPosition; + + } + + /** + * Overwrites the default implementation to only use point light specific + * shadow filter functions. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @param {Object} inputs - A configuration object that defines the shadow filtering. + * @param {Function} inputs.filterFn - This function defines the filtering type of the shadow map e.g. PCF. + * @param {Texture} inputs.shadowTexture - A reference to the shadow map's texture. + * @param {DepthTexture} inputs.depthTexture - A reference to the shadow map's texture data. + * @param {Node} inputs.shadowCoord - Shadow coordinates which are used to sample from the shadow map. + * @param {LightShadow} inputs.shadow - The light shadow. + * @return {Node} The result node of the shadow filtering. + */ + setupShadowFilter( builder, { filterFn, shadowTexture, depthTexture, shadowCoord, shadow } ) { + + return pointShadowFilter( { filterFn, shadowTexture, depthTexture, shadowCoord, shadow } ); + + } + + /** + * Overwrites the default implementation with point light specific + * rendering code. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + renderShadow( frame ) { + + const { shadow, shadowMap, light } = this; + const { renderer, scene } = frame; + + const shadowFrameExtents = shadow.getFrameExtents(); + + _shadowMapSize.copy( shadow.mapSize ); + _shadowMapSize.multiply( shadowFrameExtents ); + + shadowMap.setSize( _shadowMapSize.width, _shadowMapSize.height ); + + _viewportSize.copy( shadow.mapSize ); + + // + + const previousAutoClear = renderer.autoClear; + + const previousClearColor = renderer.getClearColor( _clearColor$1 ); + const previousClearAlpha = renderer.getClearAlpha(); + + renderer.autoClear = false; + renderer.setClearColor( shadow.clearColor, shadow.clearAlpha ); + renderer.clear(); + + const viewportCount = shadow.getViewportCount(); + + for ( let vp = 0; vp < viewportCount; vp ++ ) { + + const viewport = shadow.getViewport( vp ); + + const x = _viewportSize.x * viewport.x; + const y = _shadowMapSize.y - _viewportSize.y - ( _viewportSize.y * viewport.y ); + + _viewport.set( + x, + y, + _viewportSize.x * viewport.z, + _viewportSize.y * viewport.w + ); + + shadowMap.viewport.copy( _viewport ); + + shadow.updateMatrices( light, vp ); + + renderer.render( scene, shadow.camera ); + + } + + // + + renderer.autoClear = previousAutoClear; + renderer.setClearColor( previousClearColor, previousClearAlpha ); + + } + +} + +/** + * TSL function for creating an instance of `PointShadowNode`. + * + * @tsl + * @function + * @param {PointLight} light - The shadow casting point light. + * @param {?PointLightShadow} [shadow=null] - An optional point light shadow. + * @return {PointShadowNode} The created point shadow node. + */ +const pointShadow = ( light, shadow ) => nodeObject( new PointShadowNode( light, shadow ) ); + +/** + * Base class for analytic light nodes. + * + * @augments LightingNode + */ +class AnalyticLightNode extends LightingNode { + + static get type() { + + return 'AnalyticLightNode'; + + } + + /** + * Constructs a new analytic light node. + * + * @param {?Light} [light=null] - The light source. + */ + constructor( light = null ) { + + super(); + + /** + * The light source. + * + * @type {?Light} + * @default null + */ + this.light = light; + + /** + * The light's color value. + * + * @type {Color} + */ + this.color = new Color(); + + /** + * The light's color node. Points to `colorNode` of the light source, if set. Otherwise + * it creates a uniform node based on {@link AnalyticLightNode#color}. + * + * @type {Node} + */ + this.colorNode = ( light && light.colorNode ) || uniform( this.color ).setGroup( renderGroup ); + + /** + * This property is used to retain a reference to the original value of {@link AnalyticLightNode#colorNode}. + * The final color node is represented by a different node when using shadows. + * + * @type {?Node} + * @default null + */ + this.baseColorNode = null; + + /** + * Represents the light's shadow. + * + * @type {?ShadowNode} + * @default null + */ + this.shadowNode = null; + + /** + * Represents the light's shadow color. + * + * @type {?Node} + * @default null + */ + this.shadowColorNode = null; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isAnalyticLightNode = true; + + /** + * Overwritten since analytic light nodes are updated + * once per frame. + * + * @type {string} + * @default 'frame' + */ + this.updateType = NodeUpdateType.FRAME; + + } + + getHash() { + + return this.light.uuid; + + } + + /** + * Returns a node representing a direction vector which points from the current + * position in view space to the light's position in view space. + * + * @param {NodeBuilder} builder - The builder object used for setting up the light. + * @return {Node} The light vector node. + */ + getLightVector( builder ) { + + return lightViewPosition( this.light ).sub( builder.context.positionView || positionView ); + + } + + /** + * Sets up the direct lighting for the analytic light node. + * + * @abstract + * @param {NodeBuilder} builder - The builder object used for setting up the light. + * @return {Object|undefined} The direct light data (color and direction). + */ + setupDirect( /*builder*/ ) { } + + /** + * Sets up the direct rect area lighting for the analytic light node. + * + * @abstract + * @param {NodeBuilder} builder - The builder object used for setting up the light. + * @return {Object|undefined} The direct rect area light data. + */ + setupDirectRectArea( /*builder*/ ) { } + + /** + * Setups the shadow node for this light. The method exists so concrete light classes + * can setup different types of shadow nodes. + * + * @return {ShadowNode} The created shadow node. + */ + setupShadowNode() { + + return shadow( this.light ); + + } + + /** + * Setups the shadow for this light. This method is only executed if the light + * cast shadows and the current build object receives shadows. It incorporates + * shadows into the lighting computation. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupShadow( builder ) { + + const { renderer } = builder; + + if ( renderer.shadowMap.enabled === false ) return; + + let shadowColorNode = this.shadowColorNode; + + if ( shadowColorNode === null ) { + + const customShadowNode = this.light.shadow.shadowNode; + + let shadowNode; + + if ( customShadowNode !== undefined ) { + + shadowNode = nodeObject( customShadowNode ); + + } else { + + shadowNode = this.setupShadowNode(); + + } + + this.shadowNode = shadowNode; + + this.shadowColorNode = shadowColorNode = this.colorNode.mul( shadowNode ); + + this.baseColorNode = this.colorNode; + + } + + // + + this.colorNode = shadowColorNode; + + } + + /** + * Unlike most other nodes, lighting nodes do not return a output node in {@link Node#setup}. + * The main purpose of lighting nodes is to configure the current {@link LightingModel} and/or + * invocate the respective interface methods. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + this.colorNode = this.baseColorNode || this.colorNode; + + if ( this.light.castShadow ) { + + if ( builder.object.receiveShadow ) { + + this.setupShadow( builder ); + + } + + } else if ( this.shadowNode !== null ) { + + this.shadowNode.dispose(); + this.shadowNode = null; + this.shadowColorNode = null; + + } + + const directLightData = this.setupDirect( builder ); + const directRectAreaLightData = this.setupDirectRectArea( builder ); + + if ( directLightData ) { + + builder.lightsNode.setupDirectLight( builder, this, directLightData ); + + } + + if ( directRectAreaLightData ) { + + builder.lightsNode.setupDirectRectAreaLight( builder, this, directRectAreaLightData ); + + } + + } + + /** + * The update method is used to update light uniforms per frame. + * Potentially overwritten in concrete light nodes to update light + * specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( /*frame*/ ) { + + const { light } = this; + + this.color.copy( light.color ).multiplyScalar( light.intensity ); + + } + +} + +/** + * Represents a `discard` shader operation in TSL. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {Node} inputs.lightDistance - The distance of the light's position to the current fragment position. + * @param {Node} inputs.cutoffDistance - The light's cutoff distance. + * @param {Node} inputs.decayExponent - The light's decay exponent. + * @return {Node} The distance falloff. + */ +const getDistanceAttenuation = /*@__PURE__*/ Fn( ( { lightDistance, cutoffDistance, decayExponent } ) => { + + // based upon Frostbite 3 Moving to Physically-based Rendering + // page 32, equation 26: E[window1] + // https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf + const distanceFalloff = lightDistance.pow( decayExponent ).max( 0.01 ).reciprocal(); + + return cutoffDistance.greaterThan( 0 ).select( + distanceFalloff.mul( lightDistance.div( cutoffDistance ).pow4().oneMinus().clamp().pow2() ), + distanceFalloff + ); + +} ); // validated + +const directPointLight = ( { color, lightVector, cutoffDistance, decayExponent } ) => { + + const lightDirection = lightVector.normalize(); + const lightDistance = lightVector.length(); + + const attenuation = getDistanceAttenuation( { + lightDistance, + cutoffDistance, + decayExponent + } ); + + const lightColor = color.mul( attenuation ); + + return { lightDirection, lightColor }; + +}; + +/** + * Module for representing point lights as nodes. + * + * @augments AnalyticLightNode + */ +class PointLightNode extends AnalyticLightNode { + + static get type() { + + return 'PointLightNode'; + + } + + /** + * Constructs a new point light node. + * + * @param {?PointLight} [light=null] - The point light source. + */ + constructor( light = null ) { + + super( light ); + + /** + * Uniform node representing the cutoff distance. + * + * @type {UniformNode} + */ + this.cutoffDistanceNode = uniform( 0 ).setGroup( renderGroup ); + + /** + * Uniform node representing the decay exponent. + * + * @type {UniformNode} + */ + this.decayExponentNode = uniform( 2 ).setGroup( renderGroup ); + + } + + /** + * Overwritten to updated point light specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( frame ) { + + const { light } = this; + + super.update( frame ); + + this.cutoffDistanceNode.value = light.distance; + this.decayExponentNode.value = light.decay; + + } + + /** + * Overwritten to setup point light specific shadow. + * + * @return {PointShadowNode} + */ + setupShadowNode() { + + return pointShadow( this.light ); + + } + + setupDirect( builder ) { + + return directPointLight( { + color: this.colorNode, + lightVector: this.getLightVector( builder ), + cutoffDistance: this.cutoffDistanceNode, + decayExponent: this.decayExponentNode + } ); + + } + +} + +/** + * Creates a 2x2 checkerboard pattern that can be used as procedural texture data. + * + * @tsl + * @function + * @param {Node} coord - The uv coordinates. + * @return {Node} The result data. + */ +const checker = /*@__PURE__*/ Fn( ( [ coord = uv() ] ) => { + + const uv = coord.mul( 2.0 ); + + const cx = uv.x.floor(); + const cy = uv.y.floor(); + const result = cx.add( cy ).mod( 2.0 ); + + return result.sign(); + +} ); + +/** + * Generates a circle based on the uv coordinates. + * + * @tsl + * @function + * @param {Node} coord - The uv to generate the circle. + * @return {Node} The circle shape. + */ +const shapeCircle = Fn( ( [ coord = uv() ], { renderer, material } ) => { + + const len2 = lengthSq( coord.mul( 2 ).sub( 1 ) ); + + let alpha; + + if ( material.alphaToCoverage && renderer.samples > 1 ) { + + const dlen = float( len2.fwidth() ).toVar(); + + alpha = smoothstep( dlen.oneMinus(), dlen.add( 1 ), len2 ).oneMinus(); + + } else { + + alpha = select( len2.greaterThan( 1.0 ), 0, 1 ); + + } + + return alpha; + +} ); + +// Three.js Transpiler +// https://raw.githubusercontent.com/AcademySoftwareFoundation/MaterialX/main/libraries/stdlib/genglsl/lib/mx_noise.glsl + + + +const mx_select = /*@__PURE__*/ Fn( ( [ b_immutable, t_immutable, f_immutable ] ) => { + + const f = float( f_immutable ).toVar(); + const t = float( t_immutable ).toVar(); + const b = bool( b_immutable ).toVar(); + + return select( b, t, f ); + +} ).setLayout( { + name: 'mx_select', + type: 'float', + inputs: [ + { name: 'b', type: 'bool' }, + { name: 't', type: 'float' }, + { name: 'f', type: 'float' } + ] +} ); + +const mx_negate_if = /*@__PURE__*/ Fn( ( [ val_immutable, b_immutable ] ) => { + + const b = bool( b_immutable ).toVar(); + const val = float( val_immutable ).toVar(); + + return select( b, val.negate(), val ); + +} ).setLayout( { + name: 'mx_negate_if', + type: 'float', + inputs: [ + { name: 'val', type: 'float' }, + { name: 'b', type: 'bool' } + ] +} ); + +const mx_floor = /*@__PURE__*/ Fn( ( [ x_immutable ] ) => { + + const x = float( x_immutable ).toVar(); + + return int( floor( x ) ); + +} ).setLayout( { + name: 'mx_floor', + type: 'int', + inputs: [ + { name: 'x', type: 'float' } + ] +} ); + +const mx_floorfrac = /*@__PURE__*/ Fn( ( [ x_immutable, i ] ) => { + + const x = float( x_immutable ).toVar(); + i.assign( mx_floor( x ) ); + + return x.sub( float( i ) ); + +} ); + +const mx_bilerp_0 = /*@__PURE__*/ Fn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, s_immutable, t_immutable ] ) => { + + const t = float( t_immutable ).toVar(); + const s = float( s_immutable ).toVar(); + const v3 = float( v3_immutable ).toVar(); + const v2 = float( v2_immutable ).toVar(); + const v1 = float( v1_immutable ).toVar(); + const v0 = float( v0_immutable ).toVar(); + const s1 = float( sub( 1.0, s ) ).toVar(); + + return sub( 1.0, t ).mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ); + +} ).setLayout( { + name: 'mx_bilerp_0', + type: 'float', + inputs: [ + { name: 'v0', type: 'float' }, + { name: 'v1', type: 'float' }, + { name: 'v2', type: 'float' }, + { name: 'v3', type: 'float' }, + { name: 's', type: 'float' }, + { name: 't', type: 'float' } + ] +} ); + +const mx_bilerp_1 = /*@__PURE__*/ Fn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, s_immutable, t_immutable ] ) => { + + const t = float( t_immutable ).toVar(); + const s = float( s_immutable ).toVar(); + const v3 = vec3( v3_immutable ).toVar(); + const v2 = vec3( v2_immutable ).toVar(); + const v1 = vec3( v1_immutable ).toVar(); + const v0 = vec3( v0_immutable ).toVar(); + const s1 = float( sub( 1.0, s ) ).toVar(); + + return sub( 1.0, t ).mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ); + +} ).setLayout( { + name: 'mx_bilerp_1', + type: 'vec3', + inputs: [ + { name: 'v0', type: 'vec3' }, + { name: 'v1', type: 'vec3' }, + { name: 'v2', type: 'vec3' }, + { name: 'v3', type: 'vec3' }, + { name: 's', type: 'float' }, + { name: 't', type: 'float' } + ] +} ); + +const mx_bilerp = /*@__PURE__*/ overloadingFn( [ mx_bilerp_0, mx_bilerp_1 ] ); + +const mx_trilerp_0 = /*@__PURE__*/ Fn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, v4_immutable, v5_immutable, v6_immutable, v7_immutable, s_immutable, t_immutable, r_immutable ] ) => { + + const r = float( r_immutable ).toVar(); + const t = float( t_immutable ).toVar(); + const s = float( s_immutable ).toVar(); + const v7 = float( v7_immutable ).toVar(); + const v6 = float( v6_immutable ).toVar(); + const v5 = float( v5_immutable ).toVar(); + const v4 = float( v4_immutable ).toVar(); + const v3 = float( v3_immutable ).toVar(); + const v2 = float( v2_immutable ).toVar(); + const v1 = float( v1_immutable ).toVar(); + const v0 = float( v0_immutable ).toVar(); + const s1 = float( sub( 1.0, s ) ).toVar(); + const t1 = float( sub( 1.0, t ) ).toVar(); + const r1 = float( sub( 1.0, r ) ).toVar(); + + return r1.mul( t1.mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ) ).add( r.mul( t1.mul( v4.mul( s1 ).add( v5.mul( s ) ) ).add( t.mul( v6.mul( s1 ).add( v7.mul( s ) ) ) ) ) ); + +} ).setLayout( { + name: 'mx_trilerp_0', + type: 'float', + inputs: [ + { name: 'v0', type: 'float' }, + { name: 'v1', type: 'float' }, + { name: 'v2', type: 'float' }, + { name: 'v3', type: 'float' }, + { name: 'v4', type: 'float' }, + { name: 'v5', type: 'float' }, + { name: 'v6', type: 'float' }, + { name: 'v7', type: 'float' }, + { name: 's', type: 'float' }, + { name: 't', type: 'float' }, + { name: 'r', type: 'float' } + ] +} ); + +const mx_trilerp_1 = /*@__PURE__*/ Fn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, v4_immutable, v5_immutable, v6_immutable, v7_immutable, s_immutable, t_immutable, r_immutable ] ) => { + + const r = float( r_immutable ).toVar(); + const t = float( t_immutable ).toVar(); + const s = float( s_immutable ).toVar(); + const v7 = vec3( v7_immutable ).toVar(); + const v6 = vec3( v6_immutable ).toVar(); + const v5 = vec3( v5_immutable ).toVar(); + const v4 = vec3( v4_immutable ).toVar(); + const v3 = vec3( v3_immutable ).toVar(); + const v2 = vec3( v2_immutable ).toVar(); + const v1 = vec3( v1_immutable ).toVar(); + const v0 = vec3( v0_immutable ).toVar(); + const s1 = float( sub( 1.0, s ) ).toVar(); + const t1 = float( sub( 1.0, t ) ).toVar(); + const r1 = float( sub( 1.0, r ) ).toVar(); + + return r1.mul( t1.mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ) ).add( r.mul( t1.mul( v4.mul( s1 ).add( v5.mul( s ) ) ).add( t.mul( v6.mul( s1 ).add( v7.mul( s ) ) ) ) ) ); + +} ).setLayout( { + name: 'mx_trilerp_1', + type: 'vec3', + inputs: [ + { name: 'v0', type: 'vec3' }, + { name: 'v1', type: 'vec3' }, + { name: 'v2', type: 'vec3' }, + { name: 'v3', type: 'vec3' }, + { name: 'v4', type: 'vec3' }, + { name: 'v5', type: 'vec3' }, + { name: 'v6', type: 'vec3' }, + { name: 'v7', type: 'vec3' }, + { name: 's', type: 'float' }, + { name: 't', type: 'float' }, + { name: 'r', type: 'float' } + ] +} ); + +const mx_trilerp = /*@__PURE__*/ overloadingFn( [ mx_trilerp_0, mx_trilerp_1 ] ); + +const mx_gradient_float_0 = /*@__PURE__*/ Fn( ( [ hash_immutable, x_immutable, y_immutable ] ) => { + + const y = float( y_immutable ).toVar(); + const x = float( x_immutable ).toVar(); + const hash = uint( hash_immutable ).toVar(); + const h = uint( hash.bitAnd( uint( 7 ) ) ).toVar(); + const u = float( mx_select( h.lessThan( uint( 4 ) ), x, y ) ).toVar(); + const v = float( mul( 2.0, mx_select( h.lessThan( uint( 4 ) ), y, x ) ) ).toVar(); + + return mx_negate_if( u, bool( h.bitAnd( uint( 1 ) ) ) ).add( mx_negate_if( v, bool( h.bitAnd( uint( 2 ) ) ) ) ); + +} ).setLayout( { + name: 'mx_gradient_float_0', + type: 'float', + inputs: [ + { name: 'hash', type: 'uint' }, + { name: 'x', type: 'float' }, + { name: 'y', type: 'float' } + ] +} ); + +const mx_gradient_float_1 = /*@__PURE__*/ Fn( ( [ hash_immutable, x_immutable, y_immutable, z_immutable ] ) => { + + const z = float( z_immutable ).toVar(); + const y = float( y_immutable ).toVar(); + const x = float( x_immutable ).toVar(); + const hash = uint( hash_immutable ).toVar(); + const h = uint( hash.bitAnd( uint( 15 ) ) ).toVar(); + const u = float( mx_select( h.lessThan( uint( 8 ) ), x, y ) ).toVar(); + const v = float( mx_select( h.lessThan( uint( 4 ) ), y, mx_select( h.equal( uint( 12 ) ).or( h.equal( uint( 14 ) ) ), x, z ) ) ).toVar(); + + return mx_negate_if( u, bool( h.bitAnd( uint( 1 ) ) ) ).add( mx_negate_if( v, bool( h.bitAnd( uint( 2 ) ) ) ) ); + +} ).setLayout( { + name: 'mx_gradient_float_1', + type: 'float', + inputs: [ + { name: 'hash', type: 'uint' }, + { name: 'x', type: 'float' }, + { name: 'y', type: 'float' }, + { name: 'z', type: 'float' } + ] +} ); + +const mx_gradient_float = /*@__PURE__*/ overloadingFn( [ mx_gradient_float_0, mx_gradient_float_1 ] ); + +const mx_gradient_vec3_0 = /*@__PURE__*/ Fn( ( [ hash_immutable, x_immutable, y_immutable ] ) => { + + const y = float( y_immutable ).toVar(); + const x = float( x_immutable ).toVar(); + const hash = uvec3( hash_immutable ).toVar(); + + return vec3( mx_gradient_float( hash.x, x, y ), mx_gradient_float( hash.y, x, y ), mx_gradient_float( hash.z, x, y ) ); + +} ).setLayout( { + name: 'mx_gradient_vec3_0', + type: 'vec3', + inputs: [ + { name: 'hash', type: 'uvec3' }, + { name: 'x', type: 'float' }, + { name: 'y', type: 'float' } + ] +} ); + +const mx_gradient_vec3_1 = /*@__PURE__*/ Fn( ( [ hash_immutable, x_immutable, y_immutable, z_immutable ] ) => { + + const z = float( z_immutable ).toVar(); + const y = float( y_immutable ).toVar(); + const x = float( x_immutable ).toVar(); + const hash = uvec3( hash_immutable ).toVar(); + + return vec3( mx_gradient_float( hash.x, x, y, z ), mx_gradient_float( hash.y, x, y, z ), mx_gradient_float( hash.z, x, y, z ) ); + +} ).setLayout( { + name: 'mx_gradient_vec3_1', + type: 'vec3', + inputs: [ + { name: 'hash', type: 'uvec3' }, + { name: 'x', type: 'float' }, + { name: 'y', type: 'float' }, + { name: 'z', type: 'float' } + ] +} ); + +const mx_gradient_vec3 = /*@__PURE__*/ overloadingFn( [ mx_gradient_vec3_0, mx_gradient_vec3_1 ] ); + +const mx_gradient_scale2d_0 = /*@__PURE__*/ Fn( ( [ v_immutable ] ) => { + + const v = float( v_immutable ).toVar(); + + return mul( 0.6616, v ); + +} ).setLayout( { + name: 'mx_gradient_scale2d_0', + type: 'float', + inputs: [ + { name: 'v', type: 'float' } + ] +} ); + +const mx_gradient_scale3d_0 = /*@__PURE__*/ Fn( ( [ v_immutable ] ) => { + + const v = float( v_immutable ).toVar(); + + return mul( 0.9820, v ); + +} ).setLayout( { + name: 'mx_gradient_scale3d_0', + type: 'float', + inputs: [ + { name: 'v', type: 'float' } + ] +} ); + +const mx_gradient_scale2d_1 = /*@__PURE__*/ Fn( ( [ v_immutable ] ) => { + + const v = vec3( v_immutable ).toVar(); + + return mul( 0.6616, v ); + +} ).setLayout( { + name: 'mx_gradient_scale2d_1', + type: 'vec3', + inputs: [ + { name: 'v', type: 'vec3' } + ] +} ); + +const mx_gradient_scale2d = /*@__PURE__*/ overloadingFn( [ mx_gradient_scale2d_0, mx_gradient_scale2d_1 ] ); + +const mx_gradient_scale3d_1 = /*@__PURE__*/ Fn( ( [ v_immutable ] ) => { + + const v = vec3( v_immutable ).toVar(); + + return mul( 0.9820, v ); + +} ).setLayout( { + name: 'mx_gradient_scale3d_1', + type: 'vec3', + inputs: [ + { name: 'v', type: 'vec3' } + ] +} ); + +const mx_gradient_scale3d = /*@__PURE__*/ overloadingFn( [ mx_gradient_scale3d_0, mx_gradient_scale3d_1 ] ); + +const mx_rotl32 = /*@__PURE__*/ Fn( ( [ x_immutable, k_immutable ] ) => { + + const k = int( k_immutable ).toVar(); + const x = uint( x_immutable ).toVar(); + + return x.shiftLeft( k ).bitOr( x.shiftRight( int( 32 ).sub( k ) ) ); + +} ).setLayout( { + name: 'mx_rotl32', + type: 'uint', + inputs: [ + { name: 'x', type: 'uint' }, + { name: 'k', type: 'int' } + ] +} ); + +const mx_bjmix = /*@__PURE__*/ Fn( ( [ a, b, c ] ) => { + + a.subAssign( c ); + a.bitXorAssign( mx_rotl32( c, int( 4 ) ) ); + c.addAssign( b ); + b.subAssign( a ); + b.bitXorAssign( mx_rotl32( a, int( 6 ) ) ); + a.addAssign( c ); + c.subAssign( b ); + c.bitXorAssign( mx_rotl32( b, int( 8 ) ) ); + b.addAssign( a ); + a.subAssign( c ); + a.bitXorAssign( mx_rotl32( c, int( 16 ) ) ); + c.addAssign( b ); + b.subAssign( a ); + b.bitXorAssign( mx_rotl32( a, int( 19 ) ) ); + a.addAssign( c ); + c.subAssign( b ); + c.bitXorAssign( mx_rotl32( b, int( 4 ) ) ); + b.addAssign( a ); + +} ); + +const mx_bjfinal = /*@__PURE__*/ Fn( ( [ a_immutable, b_immutable, c_immutable ] ) => { + + const c = uint( c_immutable ).toVar(); + const b = uint( b_immutable ).toVar(); + const a = uint( a_immutable ).toVar(); + c.bitXorAssign( b ); + c.subAssign( mx_rotl32( b, int( 14 ) ) ); + a.bitXorAssign( c ); + a.subAssign( mx_rotl32( c, int( 11 ) ) ); + b.bitXorAssign( a ); + b.subAssign( mx_rotl32( a, int( 25 ) ) ); + c.bitXorAssign( b ); + c.subAssign( mx_rotl32( b, int( 16 ) ) ); + a.bitXorAssign( c ); + a.subAssign( mx_rotl32( c, int( 4 ) ) ); + b.bitXorAssign( a ); + b.subAssign( mx_rotl32( a, int( 14 ) ) ); + c.bitXorAssign( b ); + c.subAssign( mx_rotl32( b, int( 24 ) ) ); + + return c; + +} ).setLayout( { + name: 'mx_bjfinal', + type: 'uint', + inputs: [ + { name: 'a', type: 'uint' }, + { name: 'b', type: 'uint' }, + { name: 'c', type: 'uint' } + ] +} ); + +const mx_bits_to_01 = /*@__PURE__*/ Fn( ( [ bits_immutable ] ) => { + + const bits = uint( bits_immutable ).toVar(); + + return float( bits ).div( float( uint( int( 0xffffffff ) ) ) ); + +} ).setLayout( { + name: 'mx_bits_to_01', + type: 'float', + inputs: [ + { name: 'bits', type: 'uint' } + ] +} ); + +const mx_fade = /*@__PURE__*/ Fn( ( [ t_immutable ] ) => { + + const t = float( t_immutable ).toVar(); + + return t.mul( t ).mul( t ).mul( t.mul( t.mul( 6.0 ).sub( 15.0 ) ).add( 10.0 ) ); + +} ).setLayout( { + name: 'mx_fade', + type: 'float', + inputs: [ + { name: 't', type: 'float' } + ] +} ); + +const mx_hash_int_0 = /*@__PURE__*/ Fn( ( [ x_immutable ] ) => { + + const x = int( x_immutable ).toVar(); + const len = uint( uint( 1 ) ).toVar(); + const seed = uint( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ).toVar(); + + return mx_bjfinal( seed.add( uint( x ) ), seed, seed ); + +} ).setLayout( { + name: 'mx_hash_int_0', + type: 'uint', + inputs: [ + { name: 'x', type: 'int' } + ] +} ); + +const mx_hash_int_1 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable ] ) => { + + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const len = uint( uint( 2 ) ).toVar(); + const a = uint().toVar(), b = uint().toVar(), c = uint().toVar(); + a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) ); + a.addAssign( uint( x ) ); + b.addAssign( uint( y ) ); + + return mx_bjfinal( a, b, c ); + +} ).setLayout( { + name: 'mx_hash_int_1', + type: 'uint', + inputs: [ + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' } + ] +} ); + +const mx_hash_int_2 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable, z_immutable ] ) => { + + const z = int( z_immutable ).toVar(); + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const len = uint( uint( 3 ) ).toVar(); + const a = uint().toVar(), b = uint().toVar(), c = uint().toVar(); + a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) ); + a.addAssign( uint( x ) ); + b.addAssign( uint( y ) ); + c.addAssign( uint( z ) ); + + return mx_bjfinal( a, b, c ); + +} ).setLayout( { + name: 'mx_hash_int_2', + type: 'uint', + inputs: [ + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' }, + { name: 'z', type: 'int' } + ] +} ); + +const mx_hash_int_3 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable, z_immutable, xx_immutable ] ) => { + + const xx = int( xx_immutable ).toVar(); + const z = int( z_immutable ).toVar(); + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const len = uint( uint( 4 ) ).toVar(); + const a = uint().toVar(), b = uint().toVar(), c = uint().toVar(); + a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) ); + a.addAssign( uint( x ) ); + b.addAssign( uint( y ) ); + c.addAssign( uint( z ) ); + mx_bjmix( a, b, c ); + a.addAssign( uint( xx ) ); + + return mx_bjfinal( a, b, c ); + +} ).setLayout( { + name: 'mx_hash_int_3', + type: 'uint', + inputs: [ + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' }, + { name: 'z', type: 'int' }, + { name: 'xx', type: 'int' } + ] +} ); + +const mx_hash_int_4 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable, z_immutable, xx_immutable, yy_immutable ] ) => { + + const yy = int( yy_immutable ).toVar(); + const xx = int( xx_immutable ).toVar(); + const z = int( z_immutable ).toVar(); + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const len = uint( uint( 5 ) ).toVar(); + const a = uint().toVar(), b = uint().toVar(), c = uint().toVar(); + a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) ); + a.addAssign( uint( x ) ); + b.addAssign( uint( y ) ); + c.addAssign( uint( z ) ); + mx_bjmix( a, b, c ); + a.addAssign( uint( xx ) ); + b.addAssign( uint( yy ) ); + + return mx_bjfinal( a, b, c ); + +} ).setLayout( { + name: 'mx_hash_int_4', + type: 'uint', + inputs: [ + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' }, + { name: 'z', type: 'int' }, + { name: 'xx', type: 'int' }, + { name: 'yy', type: 'int' } + ] +} ); + +const mx_hash_int = /*@__PURE__*/ overloadingFn( [ mx_hash_int_0, mx_hash_int_1, mx_hash_int_2, mx_hash_int_3, mx_hash_int_4 ] ); + +const mx_hash_vec3_0 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable ] ) => { + + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const h = uint( mx_hash_int( x, y ) ).toVar(); + const result = uvec3().toVar(); + result.x.assign( h.bitAnd( int( 0xFF ) ) ); + result.y.assign( h.shiftRight( int( 8 ) ).bitAnd( int( 0xFF ) ) ); + result.z.assign( h.shiftRight( int( 16 ) ).bitAnd( int( 0xFF ) ) ); + + return result; + +} ).setLayout( { + name: 'mx_hash_vec3_0', + type: 'uvec3', + inputs: [ + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' } + ] +} ); + +const mx_hash_vec3_1 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable, z_immutable ] ) => { + + const z = int( z_immutable ).toVar(); + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const h = uint( mx_hash_int( x, y, z ) ).toVar(); + const result = uvec3().toVar(); + result.x.assign( h.bitAnd( int( 0xFF ) ) ); + result.y.assign( h.shiftRight( int( 8 ) ).bitAnd( int( 0xFF ) ) ); + result.z.assign( h.shiftRight( int( 16 ) ).bitAnd( int( 0xFF ) ) ); + + return result; + +} ).setLayout( { + name: 'mx_hash_vec3_1', + type: 'uvec3', + inputs: [ + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' }, + { name: 'z', type: 'int' } + ] +} ); + +const mx_hash_vec3 = /*@__PURE__*/ overloadingFn( [ mx_hash_vec3_0, mx_hash_vec3_1 ] ); + +const mx_perlin_noise_float_0 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec2( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(); + const fx = float( mx_floorfrac( p.x, X ) ).toVar(); + const fy = float( mx_floorfrac( p.y, Y ) ).toVar(); + const u = float( mx_fade( fx ) ).toVar(); + const v = float( mx_fade( fy ) ).toVar(); + const result = float( mx_bilerp( mx_gradient_float( mx_hash_int( X, Y ), fx, fy ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y ), fx.sub( 1.0 ), fy ), mx_gradient_float( mx_hash_int( X, Y.add( int( 1 ) ) ), fx, fy.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ) ), u, v ) ).toVar(); + + return mx_gradient_scale2d( result ); + +} ).setLayout( { + name: 'mx_perlin_noise_float_0', + type: 'float', + inputs: [ + { name: 'p', type: 'vec2' } + ] +} ); + +const mx_perlin_noise_float_1 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec3( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); + const fx = float( mx_floorfrac( p.x, X ) ).toVar(); + const fy = float( mx_floorfrac( p.y, Y ) ).toVar(); + const fz = float( mx_floorfrac( p.z, Z ) ).toVar(); + const u = float( mx_fade( fx ) ).toVar(); + const v = float( mx_fade( fy ) ).toVar(); + const w = float( mx_fade( fz ) ).toVar(); + const result = float( mx_trilerp( mx_gradient_float( mx_hash_int( X, Y, Z ), fx, fy, fz ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y, Z ), fx.sub( 1.0 ), fy, fz ), mx_gradient_float( mx_hash_int( X, Y.add( int( 1 ) ), Z ), fx, fy.sub( 1.0 ), fz ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz ), mx_gradient_float( mx_hash_int( X, Y, Z.add( int( 1 ) ) ), fx, fy, fz.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y, Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy, fz.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X, Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx, fy.sub( 1.0 ), fz.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz.sub( 1.0 ) ), u, v, w ) ).toVar(); + + return mx_gradient_scale3d( result ); + +} ).setLayout( { + name: 'mx_perlin_noise_float_1', + type: 'float', + inputs: [ + { name: 'p', type: 'vec3' } + ] +} ); + +const mx_perlin_noise_float = /*@__PURE__*/ overloadingFn( [ mx_perlin_noise_float_0, mx_perlin_noise_float_1 ] ); + +const mx_perlin_noise_vec3_0 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec2( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(); + const fx = float( mx_floorfrac( p.x, X ) ).toVar(); + const fy = float( mx_floorfrac( p.y, Y ) ).toVar(); + const u = float( mx_fade( fx ) ).toVar(); + const v = float( mx_fade( fy ) ).toVar(); + const result = vec3( mx_bilerp( mx_gradient_vec3( mx_hash_vec3( X, Y ), fx, fy ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y ), fx.sub( 1.0 ), fy ), mx_gradient_vec3( mx_hash_vec3( X, Y.add( int( 1 ) ) ), fx, fy.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ) ), u, v ) ).toVar(); + + return mx_gradient_scale2d( result ); + +} ).setLayout( { + name: 'mx_perlin_noise_vec3_0', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec2' } + ] +} ); + +const mx_perlin_noise_vec3_1 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec3( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); + const fx = float( mx_floorfrac( p.x, X ) ).toVar(); + const fy = float( mx_floorfrac( p.y, Y ) ).toVar(); + const fz = float( mx_floorfrac( p.z, Z ) ).toVar(); + const u = float( mx_fade( fx ) ).toVar(); + const v = float( mx_fade( fy ) ).toVar(); + const w = float( mx_fade( fz ) ).toVar(); + const result = vec3( mx_trilerp( mx_gradient_vec3( mx_hash_vec3( X, Y, Z ), fx, fy, fz ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y, Z ), fx.sub( 1.0 ), fy, fz ), mx_gradient_vec3( mx_hash_vec3( X, Y.add( int( 1 ) ), Z ), fx, fy.sub( 1.0 ), fz ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz ), mx_gradient_vec3( mx_hash_vec3( X, Y, Z.add( int( 1 ) ) ), fx, fy, fz.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y, Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy, fz.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X, Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx, fy.sub( 1.0 ), fz.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz.sub( 1.0 ) ), u, v, w ) ).toVar(); + + return mx_gradient_scale3d( result ); + +} ).setLayout( { + name: 'mx_perlin_noise_vec3_1', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec3' } + ] +} ); + +const mx_perlin_noise_vec3 = /*@__PURE__*/ overloadingFn( [ mx_perlin_noise_vec3_0, mx_perlin_noise_vec3_1 ] ); + +const mx_cell_noise_float_0 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = float( p_immutable ).toVar(); + const ix = int( mx_floor( p ) ).toVar(); + + return mx_bits_to_01( mx_hash_int( ix ) ); + +} ).setLayout( { + name: 'mx_cell_noise_float_0', + type: 'float', + inputs: [ + { name: 'p', type: 'float' } + ] +} ); + +const mx_cell_noise_float_1 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec2( p_immutable ).toVar(); + const ix = int( mx_floor( p.x ) ).toVar(); + const iy = int( mx_floor( p.y ) ).toVar(); + + return mx_bits_to_01( mx_hash_int( ix, iy ) ); + +} ).setLayout( { + name: 'mx_cell_noise_float_1', + type: 'float', + inputs: [ + { name: 'p', type: 'vec2' } + ] +} ); + +const mx_cell_noise_float_2 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec3( p_immutable ).toVar(); + const ix = int( mx_floor( p.x ) ).toVar(); + const iy = int( mx_floor( p.y ) ).toVar(); + const iz = int( mx_floor( p.z ) ).toVar(); + + return mx_bits_to_01( mx_hash_int( ix, iy, iz ) ); + +} ).setLayout( { + name: 'mx_cell_noise_float_2', + type: 'float', + inputs: [ + { name: 'p', type: 'vec3' } + ] +} ); + +const mx_cell_noise_float_3 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec4( p_immutable ).toVar(); + const ix = int( mx_floor( p.x ) ).toVar(); + const iy = int( mx_floor( p.y ) ).toVar(); + const iz = int( mx_floor( p.z ) ).toVar(); + const iw = int( mx_floor( p.w ) ).toVar(); + + return mx_bits_to_01( mx_hash_int( ix, iy, iz, iw ) ); + +} ).setLayout( { + name: 'mx_cell_noise_float_3', + type: 'float', + inputs: [ + { name: 'p', type: 'vec4' } + ] +} ); + +const mx_cell_noise_float$1 = /*@__PURE__*/ overloadingFn( [ mx_cell_noise_float_0, mx_cell_noise_float_1, mx_cell_noise_float_2, mx_cell_noise_float_3 ] ); + +const mx_cell_noise_vec3_0 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = float( p_immutable ).toVar(); + const ix = int( mx_floor( p ) ).toVar(); + + return vec3( mx_bits_to_01( mx_hash_int( ix, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, int( 2 ) ) ) ); + +} ).setLayout( { + name: 'mx_cell_noise_vec3_0', + type: 'vec3', + inputs: [ + { name: 'p', type: 'float' } + ] +} ); + +const mx_cell_noise_vec3_1 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec2( p_immutable ).toVar(); + const ix = int( mx_floor( p.x ) ).toVar(); + const iy = int( mx_floor( p.y ) ).toVar(); + + return vec3( mx_bits_to_01( mx_hash_int( ix, iy, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, int( 2 ) ) ) ); + +} ).setLayout( { + name: 'mx_cell_noise_vec3_1', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec2' } + ] +} ); + +const mx_cell_noise_vec3_2 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec3( p_immutable ).toVar(); + const ix = int( mx_floor( p.x ) ).toVar(); + const iy = int( mx_floor( p.y ) ).toVar(); + const iz = int( mx_floor( p.z ) ).toVar(); + + return vec3( mx_bits_to_01( mx_hash_int( ix, iy, iz, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, int( 2 ) ) ) ); + +} ).setLayout( { + name: 'mx_cell_noise_vec3_2', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec3' } + ] +} ); + +const mx_cell_noise_vec3_3 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec4( p_immutable ).toVar(); + const ix = int( mx_floor( p.x ) ).toVar(); + const iy = int( mx_floor( p.y ) ).toVar(); + const iz = int( mx_floor( p.z ) ).toVar(); + const iw = int( mx_floor( p.w ) ).toVar(); + + return vec3( mx_bits_to_01( mx_hash_int( ix, iy, iz, iw, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, iw, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, iw, int( 2 ) ) ) ); + +} ).setLayout( { + name: 'mx_cell_noise_vec3_3', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec4' } + ] +} ); + +const mx_cell_noise_vec3 = /*@__PURE__*/ overloadingFn( [ mx_cell_noise_vec3_0, mx_cell_noise_vec3_1, mx_cell_noise_vec3_2, mx_cell_noise_vec3_3 ] ); + +const mx_fractal_noise_float$1 = /*@__PURE__*/ Fn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => { + + const diminish = float( diminish_immutable ).toVar(); + const lacunarity = float( lacunarity_immutable ).toVar(); + const octaves = int( octaves_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const result = float( 0.0 ).toVar(); + const amplitude = float( 1.0 ).toVar(); + + Loop( octaves, () => { + + result.addAssign( amplitude.mul( mx_perlin_noise_float( p ) ) ); + amplitude.mulAssign( diminish ); + p.mulAssign( lacunarity ); + + } ); + + return result; + +} ).setLayout( { + name: 'mx_fractal_noise_float', + type: 'float', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'octaves', type: 'int' }, + { name: 'lacunarity', type: 'float' }, + { name: 'diminish', type: 'float' } + ] +} ); + +const mx_fractal_noise_vec3$1 = /*@__PURE__*/ Fn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => { + + const diminish = float( diminish_immutable ).toVar(); + const lacunarity = float( lacunarity_immutable ).toVar(); + const octaves = int( octaves_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const result = vec3( 0.0 ).toVar(); + const amplitude = float( 1.0 ).toVar(); + + Loop( octaves, () => { + + result.addAssign( amplitude.mul( mx_perlin_noise_vec3( p ) ) ); + amplitude.mulAssign( diminish ); + p.mulAssign( lacunarity ); + + } ); + + return result; + +} ).setLayout( { + name: 'mx_fractal_noise_vec3', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'octaves', type: 'int' }, + { name: 'lacunarity', type: 'float' }, + { name: 'diminish', type: 'float' } + ] +} ); + +const mx_fractal_noise_vec2$1 = /*@__PURE__*/ Fn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => { + + const diminish = float( diminish_immutable ).toVar(); + const lacunarity = float( lacunarity_immutable ).toVar(); + const octaves = int( octaves_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + + return vec2( mx_fractal_noise_float$1( p, octaves, lacunarity, diminish ), mx_fractal_noise_float$1( p.add( vec3( int( 19 ), int( 193 ), int( 17 ) ) ), octaves, lacunarity, diminish ) ); + +} ).setLayout( { + name: 'mx_fractal_noise_vec2', + type: 'vec2', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'octaves', type: 'int' }, + { name: 'lacunarity', type: 'float' }, + { name: 'diminish', type: 'float' } + ] +} ); + +const mx_fractal_noise_vec4$1 = /*@__PURE__*/ Fn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => { + + const diminish = float( diminish_immutable ).toVar(); + const lacunarity = float( lacunarity_immutable ).toVar(); + const octaves = int( octaves_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const c = vec3( mx_fractal_noise_vec3$1( p, octaves, lacunarity, diminish ) ).toVar(); + const f = float( mx_fractal_noise_float$1( p.add( vec3( int( 19 ), int( 193 ), int( 17 ) ) ), octaves, lacunarity, diminish ) ).toVar(); + + return vec4( c, f ); + +} ).setLayout( { + name: 'mx_fractal_noise_vec4', + type: 'vec4', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'octaves', type: 'int' }, + { name: 'lacunarity', type: 'float' }, + { name: 'diminish', type: 'float' } + ] +} ); + +const mx_worley_distance_0 = /*@__PURE__*/ Fn( ( [ p_immutable, x_immutable, y_immutable, xoff_immutable, yoff_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const yoff = int( yoff_immutable ).toVar(); + const xoff = int( xoff_immutable ).toVar(); + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const p = vec2( p_immutable ).toVar(); + const tmp = vec3( mx_cell_noise_vec3( vec2( x.add( xoff ), y.add( yoff ) ) ) ).toVar(); + const off = vec2( tmp.x, tmp.y ).toVar(); + off.subAssign( 0.5 ); + off.mulAssign( jitter ); + off.addAssign( 0.5 ); + const cellpos = vec2( vec2( float( x ), float( y ) ).add( off ) ).toVar(); + const diff = vec2( cellpos.sub( p ) ).toVar(); + + If( metric.equal( int( 2 ) ), () => { + + return abs( diff.x ).add( abs( diff.y ) ); + + } ); + + If( metric.equal( int( 3 ) ), () => { + + return max$1( abs( diff.x ), abs( diff.y ) ); + + } ); + + return dot( diff, diff ); + +} ).setLayout( { + name: 'mx_worley_distance_0', + type: 'float', + inputs: [ + { name: 'p', type: 'vec2' }, + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' }, + { name: 'xoff', type: 'int' }, + { name: 'yoff', type: 'int' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_distance_1 = /*@__PURE__*/ Fn( ( [ p_immutable, x_immutable, y_immutable, z_immutable, xoff_immutable, yoff_immutable, zoff_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const zoff = int( zoff_immutable ).toVar(); + const yoff = int( yoff_immutable ).toVar(); + const xoff = int( xoff_immutable ).toVar(); + const z = int( z_immutable ).toVar(); + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const off = vec3( mx_cell_noise_vec3( vec3( x.add( xoff ), y.add( yoff ), z.add( zoff ) ) ) ).toVar(); + off.subAssign( 0.5 ); + off.mulAssign( jitter ); + off.addAssign( 0.5 ); + const cellpos = vec3( vec3( float( x ), float( y ), float( z ) ).add( off ) ).toVar(); + const diff = vec3( cellpos.sub( p ) ).toVar(); + + If( metric.equal( int( 2 ) ), () => { + + return abs( diff.x ).add( abs( diff.y ) ).add( abs( diff.z ) ); + + } ); + + If( metric.equal( int( 3 ) ), () => { + + return max$1( max$1( abs( diff.x ), abs( diff.y ) ), abs( diff.z ) ); + + } ); + + return dot( diff, diff ); + +} ).setLayout( { + name: 'mx_worley_distance_1', + type: 'float', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' }, + { name: 'z', type: 'int' }, + { name: 'xoff', type: 'int' }, + { name: 'yoff', type: 'int' }, + { name: 'zoff', type: 'int' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_distance = /*@__PURE__*/ overloadingFn( [ mx_worley_distance_0, mx_worley_distance_1 ] ); + +const mx_worley_noise_float_0 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const p = vec2( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(); + const localpos = vec2( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ) ).toVar(); + const sqdist = float( 1e6 ).toVar(); + + Loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { + + const dist = float( mx_worley_distance( localpos, x, y, X, Y, jitter, metric ) ).toVar(); + sqdist.assign( min$1( sqdist, dist ) ); + + } ); + + } ); + + If( metric.equal( int( 0 ) ), () => { + + sqdist.assign( sqrt( sqdist ) ); + + } ); + + return sqdist; + +} ).setLayout( { + name: 'mx_worley_noise_float_0', + type: 'float', + inputs: [ + { name: 'p', type: 'vec2' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_noise_vec2_0 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const p = vec2( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(); + const localpos = vec2( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ) ).toVar(); + const sqdist = vec2( 1e6, 1e6 ).toVar(); + + Loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { + + const dist = float( mx_worley_distance( localpos, x, y, X, Y, jitter, metric ) ).toVar(); + + If( dist.lessThan( sqdist.x ), () => { + + sqdist.y.assign( sqdist.x ); + sqdist.x.assign( dist ); + + } ).ElseIf( dist.lessThan( sqdist.y ), () => { + + sqdist.y.assign( dist ); + + } ); + + } ); + + } ); + + If( metric.equal( int( 0 ) ), () => { + + sqdist.assign( sqrt( sqdist ) ); + + } ); + + return sqdist; + +} ).setLayout( { + name: 'mx_worley_noise_vec2_0', + type: 'vec2', + inputs: [ + { name: 'p', type: 'vec2' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_noise_vec3_0 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const p = vec2( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(); + const localpos = vec2( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ) ).toVar(); + const sqdist = vec3( 1e6, 1e6, 1e6 ).toVar(); + + Loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { + + const dist = float( mx_worley_distance( localpos, x, y, X, Y, jitter, metric ) ).toVar(); + + If( dist.lessThan( sqdist.x ), () => { + + sqdist.z.assign( sqdist.y ); + sqdist.y.assign( sqdist.x ); + sqdist.x.assign( dist ); + + } ).ElseIf( dist.lessThan( sqdist.y ), () => { + + sqdist.z.assign( sqdist.y ); + sqdist.y.assign( dist ); + + } ).ElseIf( dist.lessThan( sqdist.z ), () => { + + sqdist.z.assign( dist ); + + } ); + + } ); + + } ); + + If( metric.equal( int( 0 ) ), () => { + + sqdist.assign( sqrt( sqdist ) ); + + } ); + + return sqdist; + +} ).setLayout( { + name: 'mx_worley_noise_vec3_0', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec2' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_noise_float_1 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); + const localpos = vec3( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ), mx_floorfrac( p.z, Z ) ).toVar(); + const sqdist = float( 1e6 ).toVar(); + + Loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'z', condition: '<=' }, ( { z } ) => { + + const dist = float( mx_worley_distance( localpos, x, y, z, X, Y, Z, jitter, metric ) ).toVar(); + sqdist.assign( min$1( sqdist, dist ) ); + + } ); + + } ); + + } ); + + If( metric.equal( int( 0 ) ), () => { + + sqdist.assign( sqrt( sqdist ) ); + + } ); + + return sqdist; + +} ).setLayout( { + name: 'mx_worley_noise_float_1', + type: 'float', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_noise_float$1 = /*@__PURE__*/ overloadingFn( [ mx_worley_noise_float_0, mx_worley_noise_float_1 ] ); + +const mx_worley_noise_vec2_1 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); + const localpos = vec3( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ), mx_floorfrac( p.z, Z ) ).toVar(); + const sqdist = vec2( 1e6, 1e6 ).toVar(); + + Loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'z', condition: '<=' }, ( { z } ) => { + + const dist = float( mx_worley_distance( localpos, x, y, z, X, Y, Z, jitter, metric ) ).toVar(); + + If( dist.lessThan( sqdist.x ), () => { + + sqdist.y.assign( sqdist.x ); + sqdist.x.assign( dist ); + + } ).ElseIf( dist.lessThan( sqdist.y ), () => { + + sqdist.y.assign( dist ); + + } ); + + } ); + + } ); + + } ); + + If( metric.equal( int( 0 ) ), () => { + + sqdist.assign( sqrt( sqdist ) ); + + } ); + + return sqdist; + +} ).setLayout( { + name: 'mx_worley_noise_vec2_1', + type: 'vec2', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_noise_vec2$1 = /*@__PURE__*/ overloadingFn( [ mx_worley_noise_vec2_0, mx_worley_noise_vec2_1 ] ); + +const mx_worley_noise_vec3_1 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); + const localpos = vec3( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ), mx_floorfrac( p.z, Z ) ).toVar(); + const sqdist = vec3( 1e6, 1e6, 1e6 ).toVar(); + + Loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'z', condition: '<=' }, ( { z } ) => { + + const dist = float( mx_worley_distance( localpos, x, y, z, X, Y, Z, jitter, metric ) ).toVar(); + + If( dist.lessThan( sqdist.x ), () => { + + sqdist.z.assign( sqdist.y ); + sqdist.y.assign( sqdist.x ); + sqdist.x.assign( dist ); + + } ).ElseIf( dist.lessThan( sqdist.y ), () => { + + sqdist.z.assign( sqdist.y ); + sqdist.y.assign( dist ); + + } ).ElseIf( dist.lessThan( sqdist.z ), () => { + + sqdist.z.assign( dist ); + + } ); + + } ); + + } ); + + } ); + + If( metric.equal( int( 0 ) ), () => { + + sqdist.assign( sqrt( sqdist ) ); + + } ); + + return sqdist; + +} ).setLayout( { + name: 'mx_worley_noise_vec3_1', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_noise_vec3$1 = /*@__PURE__*/ overloadingFn( [ mx_worley_noise_vec3_0, mx_worley_noise_vec3_1 ] ); + +// Three.js Transpiler +// https://github.com/AcademySoftwareFoundation/MaterialX/blob/main/libraries/stdlib/genglsl/lib/mx_hsv.glsl + + +const mx_hsvtorgb = /*@__PURE__*/ Fn( ( [ hsv ] ) => { + + const s = hsv.y; + const v = hsv.z; + + const result = vec3().toVar(); + + If( s.lessThan( 0.0001 ), () => { + + result.assign( vec3( v, v, v ) ); + + } ).Else( () => { + + let h = hsv.x; + h = h.sub( floor( h ) ).mul( 6.0 ).toVar(); // TODO: check what .toVar() is needed in node system cache + const hi = int( trunc( h ) ); + const f = h.sub( float( hi ) ); + const p = v.mul( s.oneMinus() ); + const q = v.mul( s.mul( f ).oneMinus() ); + const t = v.mul( s.mul( f.oneMinus() ).oneMinus() ); + + If( hi.equal( int( 0 ) ), () => { + + result.assign( vec3( v, t, p ) ); + + } ).ElseIf( hi.equal( int( 1 ) ), () => { + + result.assign( vec3( q, v, p ) ); + + } ).ElseIf( hi.equal( int( 2 ) ), () => { + + result.assign( vec3( p, v, t ) ); + + } ).ElseIf( hi.equal( int( 3 ) ), () => { + + result.assign( vec3( p, q, v ) ); + + } ).ElseIf( hi.equal( int( 4 ) ), () => { + + result.assign( vec3( t, p, v ) ); + + } ).Else( () => { + + result.assign( vec3( v, p, q ) ); + + } ); + + } ); + + return result; + +} ).setLayout( { + name: 'mx_hsvtorgb', + type: 'vec3', + inputs: [ + { name: 'hsv', type: 'vec3' } + ] +} ); + +const mx_rgbtohsv = /*@__PURE__*/ Fn( ( [ c_immutable ] ) => { + + const c = vec3( c_immutable ).toVar(); + const r = float( c.x ).toVar(); + const g = float( c.y ).toVar(); + const b = float( c.z ).toVar(); + const mincomp = float( min$1( r, min$1( g, b ) ) ).toVar(); + const maxcomp = float( max$1( r, max$1( g, b ) ) ).toVar(); + const delta = float( maxcomp.sub( mincomp ) ).toVar(); + const h = float().toVar(), s = float().toVar(), v = float().toVar(); + v.assign( maxcomp ); + + If( maxcomp.greaterThan( 0.0 ), () => { + + s.assign( delta.div( maxcomp ) ); + + } ).Else( () => { + + s.assign( 0.0 ); + + } ); + + If( s.lessThanEqual( 0.0 ), () => { + + h.assign( 0.0 ); + + } ).Else( () => { + + If( r.greaterThanEqual( maxcomp ), () => { + + h.assign( g.sub( b ).div( delta ) ); + + } ).ElseIf( g.greaterThanEqual( maxcomp ), () => { + + h.assign( add( 2.0, b.sub( r ).div( delta ) ) ); + + } ).Else( () => { + + h.assign( add( 4.0, r.sub( g ).div( delta ) ) ); + + } ); + + h.mulAssign( 1.0 / 6.0 ); + + If( h.lessThan( 0.0 ), () => { + + h.addAssign( 1.0 ); + + } ); + + } ); + + return vec3( h, s, v ); + +} ).setLayout( { + name: 'mx_rgbtohsv', + type: 'vec3', + inputs: [ + { name: 'c', type: 'vec3' } + ] +} ); + +// Three.js Transpiler +// https://github.com/AcademySoftwareFoundation/MaterialX/blob/main/libraries/stdlib/genglsl/lib/mx_transform_color.glsl + + +const mx_srgb_texture_to_lin_rec709 = /*@__PURE__*/ Fn( ( [ color_immutable ] ) => { + + const color = vec3( color_immutable ).toVar(); + const isAbove = bvec3( greaterThan( color, vec3( 0.04045 ) ) ).toVar(); + const linSeg = vec3( color.div( 12.92 ) ).toVar(); + const powSeg = vec3( pow( max$1( color.add( vec3( 0.055 ) ), vec3( 0.0 ) ).div( 1.055 ), vec3( 2.4 ) ) ).toVar(); + + return mix( linSeg, powSeg, isAbove ); + +} ).setLayout( { + name: 'mx_srgb_texture_to_lin_rec709', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' } + ] +} ); + +const mx_aastep = ( threshold, value ) => { + + threshold = float( threshold ); + value = float( value ); + + const afwidth = vec2( value.dFdx(), value.dFdy() ).length().mul( 0.70710678118654757 ); + + return smoothstep( threshold.sub( afwidth ), threshold.add( afwidth ), value ); + +}; + +const _ramp = ( a, b, uv, p ) => mix( a, b, uv[ p ].clamp() ); +const mx_ramplr = ( valuel, valuer, texcoord = uv() ) => _ramp( valuel, valuer, texcoord, 'x' ); +const mx_ramptb = ( valuet, valueb, texcoord = uv() ) => _ramp( valuet, valueb, texcoord, 'y' ); + +const _split = ( a, b, center, uv, p ) => mix( a, b, mx_aastep( center, uv[ p ] ) ); +const mx_splitlr = ( valuel, valuer, center, texcoord = uv() ) => _split( valuel, valuer, center, texcoord, 'x' ); +const mx_splittb = ( valuet, valueb, center, texcoord = uv() ) => _split( valuet, valueb, center, texcoord, 'y' ); + +const mx_transform_uv = ( uv_scale = 1, uv_offset = 0, uv_geo = uv() ) => uv_geo.mul( uv_scale ).add( uv_offset ); + +const mx_safepower = ( in1, in2 = 1 ) => { + + in1 = float( in1 ); + + return in1.abs().pow( in2 ).mul( in1.sign() ); + +}; + +const mx_contrast = ( input, amount = 1, pivot = .5 ) => float( input ).sub( pivot ).mul( amount ).add( pivot ); + +const mx_noise_float = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => mx_perlin_noise_float( texcoord.convert( 'vec2|vec3' ) ).mul( amplitude ).add( pivot ); +//export const mx_noise_vec2 = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => mx_perlin_noise_vec3( texcoord.convert( 'vec2|vec3' ) ).mul( amplitude ).add( pivot ); +const mx_noise_vec3 = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => mx_perlin_noise_vec3( texcoord.convert( 'vec2|vec3' ) ).mul( amplitude ).add( pivot ); +const mx_noise_vec4 = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => { + + texcoord = texcoord.convert( 'vec2|vec3' ); // overloading type + + const noise_vec4 = vec4( mx_perlin_noise_vec3( texcoord ), mx_perlin_noise_float( texcoord.add( vec2( 19, 73 ) ) ) ); + + return noise_vec4.mul( amplitude ).add( pivot ); + +}; + +const mx_worley_noise_float = ( texcoord = uv(), jitter = 1 ) => mx_worley_noise_float$1( texcoord.convert( 'vec2|vec3' ), jitter, int( 1 ) ); +const mx_worley_noise_vec2 = ( texcoord = uv(), jitter = 1 ) => mx_worley_noise_vec2$1( texcoord.convert( 'vec2|vec3' ), jitter, int( 1 ) ); +const mx_worley_noise_vec3 = ( texcoord = uv(), jitter = 1 ) => mx_worley_noise_vec3$1( texcoord.convert( 'vec2|vec3' ), jitter, int( 1 ) ); + +const mx_cell_noise_float = ( texcoord = uv() ) => mx_cell_noise_float$1( texcoord.convert( 'vec2|vec3' ) ); + +const mx_fractal_noise_float = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_float$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude ); +const mx_fractal_noise_vec2 = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_vec2$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude ); +const mx_fractal_noise_vec3 = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_vec3$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude ); +const mx_fractal_noise_vec4 = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_vec4$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude ); + +/** + * This computes a parallax corrected normal which is used for box-projected cube mapping (BPCEM). + * + * Reference: {@link https://devlog-martinsh.blogspot.com/2011/09/box-projected-cube-environment-mapping.html} + * + * ```js + * const uvNode = getParallaxCorrectNormal( reflectVector, vec3( 200, 100, 100 ), vec3( 0, - 50, 0 ) ); + * material.envNode = pmremTexture( renderTarget.texture, uvNode ); + * ``` + * + * @tsl + * @function + * @param {Node} normal - The normal to correct. + * @param {Node} cubeSize - The cube size should reflect the size of the environment (BPCEM is usually applied in closed environments like rooms). + * @param {Node} cubePos - The cube position. + * @return {Node} The parallax corrected normal. + */ +const getParallaxCorrectNormal = /*@__PURE__*/ Fn( ( [ normal, cubeSize, cubePos ] ) => { + + const nDir = normalize( normal ).toVar(); + const rbmax = sub( float( 0.5 ).mul( cubeSize.sub( cubePos ) ), positionWorld ).div( nDir ).toVar(); + const rbmin = sub( float( - 0.5 ).mul( cubeSize.sub( cubePos ) ), positionWorld ).div( nDir ).toVar(); + const rbminmax = vec3().toVar(); + rbminmax.x = nDir.x.greaterThan( float( 0 ) ).select( rbmax.x, rbmin.x ); + rbminmax.y = nDir.y.greaterThan( float( 0 ) ).select( rbmax.y, rbmin.y ); + rbminmax.z = nDir.z.greaterThan( float( 0 ) ).select( rbmax.z, rbmin.z ); + + const correction = min$1( min$1( rbminmax.x, rbminmax.y ), rbminmax.z ).toVar(); + const boxIntersection = positionWorld.add( nDir.mul( correction ) ).toVar(); + return boxIntersection.sub( cubePos ); + +} ); + +const getShIrradianceAt = /*@__PURE__*/ Fn( ( [ normal, shCoefficients ] ) => { + + // normal is assumed to have unit length + + const x = normal.x, y = normal.y, z = normal.z; + + // band 0 + let result = shCoefficients.element( 0 ).mul( 0.886227 ); + + // band 1 + result = result.add( shCoefficients.element( 1 ).mul( 2.0 * 0.511664 ).mul( y ) ); + result = result.add( shCoefficients.element( 2 ).mul( 2.0 * 0.511664 ).mul( z ) ); + result = result.add( shCoefficients.element( 3 ).mul( 2.0 * 0.511664 ).mul( x ) ); + + // band 2 + result = result.add( shCoefficients.element( 4 ).mul( 2.0 * 0.429043 ).mul( x ).mul( y ) ); + result = result.add( shCoefficients.element( 5 ).mul( 2.0 * 0.429043 ).mul( y ).mul( z ) ); + result = result.add( shCoefficients.element( 6 ).mul( z.mul( z ).mul( 0.743125 ).sub( 0.247708 ) ) ); + result = result.add( shCoefficients.element( 7 ).mul( 2.0 * 0.429043 ).mul( x ).mul( z ) ); + result = result.add( shCoefficients.element( 8 ).mul( 0.429043 ).mul( mul( x, x ).sub( mul( y, y ) ) ) ); + + return result; + +} ); + +// constants + +var TSL = /*#__PURE__*/Object.freeze( { + __proto__: null, + BRDF_GGX: BRDF_GGX, + BRDF_Lambert: BRDF_Lambert, + BasicPointShadowFilter: BasicPointShadowFilter, + BasicShadowFilter: BasicShadowFilter, + Break: Break, + Const: Const, + Continue: Continue, + DFGApprox: DFGApprox, + D_GGX: D_GGX, + Discard: Discard, + EPSILON: EPSILON, + F_Schlick: F_Schlick, + Fn: Fn, + INFINITY: INFINITY, + If: If, + Loop: Loop, + NodeAccess: NodeAccess, + NodeShaderStage: NodeShaderStage, + NodeType: NodeType, + NodeUpdateType: NodeUpdateType, + PCFShadowFilter: PCFShadowFilter, + PCFSoftShadowFilter: PCFSoftShadowFilter, + PI: PI, + PI2: PI2, + PointShadowFilter: PointShadowFilter, + Return: Return, + Schlick_to_F0: Schlick_to_F0, + ScriptableNodeResources: ScriptableNodeResources, + ShaderNode: ShaderNode, + Stack: Stack, + Switch: Switch, + TBNViewMatrix: TBNViewMatrix, + VSMShadowFilter: VSMShadowFilter, + V_GGX_SmithCorrelated: V_GGX_SmithCorrelated, + Var: Var, + abs: abs, + acesFilmicToneMapping: acesFilmicToneMapping, + acos: acos, + add: add, + addMethodChaining: addMethodChaining, + addNodeElement: addNodeElement, + agxToneMapping: agxToneMapping, + all: all, + alphaT: alphaT, + and: and, + anisotropy: anisotropy, + anisotropyB: anisotropyB, + anisotropyT: anisotropyT, + any: any, + append: append, + array: array, + arrayBuffer: arrayBuffer, + asin: asin, + assign: assign, + atan: atan, + atan2: atan2, + atomicAdd: atomicAdd, + atomicAnd: atomicAnd, + atomicFunc: atomicFunc, + atomicLoad: atomicLoad, + atomicMax: atomicMax, + atomicMin: atomicMin, + atomicOr: atomicOr, + atomicStore: atomicStore, + atomicSub: atomicSub, + atomicXor: atomicXor, + attenuationColor: attenuationColor, + attenuationDistance: attenuationDistance, + attribute: attribute, + attributeArray: attributeArray, + backgroundBlurriness: backgroundBlurriness, + backgroundIntensity: backgroundIntensity, + backgroundRotation: backgroundRotation, + batch: batch, + billboarding: billboarding, + bitAnd: bitAnd, + bitNot: bitNot, + bitOr: bitOr, + bitXor: bitXor, + bitangentGeometry: bitangentGeometry, + bitangentLocal: bitangentLocal, + bitangentView: bitangentView, + bitangentWorld: bitangentWorld, + bitcast: bitcast, + blendBurn: blendBurn, + blendColor: blendColor, + blendDodge: blendDodge, + blendOverlay: blendOverlay, + blendScreen: blendScreen, + blur: blur, + bool: bool, + buffer: buffer, + bufferAttribute: bufferAttribute, + bumpMap: bumpMap, + burn: burn, + bvec2: bvec2, + bvec3: bvec3, + bvec4: bvec4, + bypass: bypass, + cache: cache, + call: call, + cameraFar: cameraFar, + cameraIndex: cameraIndex, + cameraNear: cameraNear, + cameraNormalMatrix: cameraNormalMatrix, + cameraPosition: cameraPosition, + cameraProjectionMatrix: cameraProjectionMatrix, + cameraProjectionMatrixInverse: cameraProjectionMatrixInverse, + cameraViewMatrix: cameraViewMatrix, + cameraWorldMatrix: cameraWorldMatrix, + cbrt: cbrt, + cdl: cdl, + ceil: ceil, + checker: checker, + cineonToneMapping: cineonToneMapping, + clamp: clamp, + clearcoat: clearcoat, + clearcoatRoughness: clearcoatRoughness, + code: code, + color: color, + colorSpaceToWorking: colorSpaceToWorking, + colorToDirection: colorToDirection, + compute: compute, + computeSkinning: computeSkinning, + cond: cond, + context: context, + convert: convert, + convertColorSpace: convertColorSpace, + convertToTexture: convertToTexture, + cos: cos, + cross: cross, + cubeTexture: cubeTexture, + cubeTextureBase: cubeTextureBase, + cubeToUV: cubeToUV, + dFdx: dFdx, + dFdy: dFdy, + dashSize: dashSize, + debug: debug, + decrement: decrement, + decrementBefore: decrementBefore, + defaultBuildStages: defaultBuildStages, + defaultShaderStages: defaultShaderStages, + defined: defined, + degrees: degrees, + deltaTime: deltaTime, + densityFog: densityFog, + densityFogFactor: densityFogFactor, + depth: depth, + depthPass: depthPass, + difference: difference, + diffuseColor: diffuseColor, + directPointLight: directPointLight, + directionToColor: directionToColor, + dispersion: dispersion, + distance: distance, + div: div, + dodge: dodge, + dot: dot, + drawIndex: drawIndex, + dynamicBufferAttribute: dynamicBufferAttribute, + element: element, + emissive: emissive, + equal: equal, + equals: equals, + equirectUV: equirectUV, + exp: exp, + exp2: exp2, + expression: expression, + faceDirection: faceDirection, + faceForward: faceForward, + faceforward: faceforward, + float: float, + floor: floor, + fog: fog, + fract: fract, + frameGroup: frameGroup, + frameId: frameId, + frontFacing: frontFacing, + fwidth: fwidth, + gain: gain, + gapSize: gapSize, + getConstNodeType: getConstNodeType, + getCurrentStack: getCurrentStack, + getDirection: getDirection, + getDistanceAttenuation: getDistanceAttenuation, + getGeometryRoughness: getGeometryRoughness, + getNormalFromDepth: getNormalFromDepth, + getParallaxCorrectNormal: getParallaxCorrectNormal, + getRoughness: getRoughness, + getScreenPosition: getScreenPosition, + getShIrradianceAt: getShIrradianceAt, + getShadowMaterial: getShadowMaterial, + getShadowRenderObjectFunction: getShadowRenderObjectFunction, + getTextureIndex: getTextureIndex, + getViewPosition: getViewPosition, + globalId: globalId, + glsl: glsl, + glslFn: glslFn, + grayscale: grayscale, + greaterThan: greaterThan, + greaterThanEqual: greaterThanEqual, + hash: hash, + highpModelNormalViewMatrix: highpModelNormalViewMatrix, + highpModelViewMatrix: highpModelViewMatrix, + hue: hue, + increment: increment, + incrementBefore: incrementBefore, + instance: instance, + instanceIndex: instanceIndex, + instancedArray: instancedArray, + instancedBufferAttribute: instancedBufferAttribute, + instancedDynamicBufferAttribute: instancedDynamicBufferAttribute, + instancedMesh: instancedMesh, + int: int, + inverseSqrt: inverseSqrt, + inversesqrt: inversesqrt, + invocationLocalIndex: invocationLocalIndex, + invocationSubgroupIndex: invocationSubgroupIndex, + ior: ior, + iridescence: iridescence, + iridescenceIOR: iridescenceIOR, + iridescenceThickness: iridescenceThickness, + ivec2: ivec2, + ivec3: ivec3, + ivec4: ivec4, + js: js, + label: label, + length: length, + lengthSq: lengthSq, + lessThan: lessThan, + lessThanEqual: lessThanEqual, + lightPosition: lightPosition, + lightProjectionUV: lightProjectionUV, + lightShadowMatrix: lightShadowMatrix, + lightTargetDirection: lightTargetDirection, + lightTargetPosition: lightTargetPosition, + lightViewPosition: lightViewPosition, + lightingContext: lightingContext, + lights: lights, + linearDepth: linearDepth, + linearToneMapping: linearToneMapping, + localId: localId, + log: log, + log2: log2, + logarithmicDepthToViewZ: logarithmicDepthToViewZ, + loop: loop, + luminance: luminance, + mat2: mat2, + mat3: mat3, + mat4: mat4, + matcapUV: matcapUV, + materialAO: materialAO, + materialAlphaTest: materialAlphaTest, + materialAnisotropy: materialAnisotropy, + materialAnisotropyVector: materialAnisotropyVector, + materialAttenuationColor: materialAttenuationColor, + materialAttenuationDistance: materialAttenuationDistance, + materialClearcoat: materialClearcoat, + materialClearcoatNormal: materialClearcoatNormal, + materialClearcoatRoughness: materialClearcoatRoughness, + materialColor: materialColor, + materialDispersion: materialDispersion, + materialEmissive: materialEmissive, + materialEnvIntensity: materialEnvIntensity, + materialEnvRotation: materialEnvRotation, + materialIOR: materialIOR, + materialIridescence: materialIridescence, + materialIridescenceIOR: materialIridescenceIOR, + materialIridescenceThickness: materialIridescenceThickness, + materialLightMap: materialLightMap, + materialLineDashOffset: materialLineDashOffset, + materialLineDashSize: materialLineDashSize, + materialLineGapSize: materialLineGapSize, + materialLineScale: materialLineScale, + materialLineWidth: materialLineWidth, + materialMetalness: materialMetalness, + materialNormal: materialNormal, + materialOpacity: materialOpacity, + materialPointSize: materialPointSize, + materialReference: materialReference, + materialReflectivity: materialReflectivity, + materialRefractionRatio: materialRefractionRatio, + materialRotation: materialRotation, + materialRoughness: materialRoughness, + materialSheen: materialSheen, + materialSheenRoughness: materialSheenRoughness, + materialShininess: materialShininess, + materialSpecular: materialSpecular, + materialSpecularColor: materialSpecularColor, + materialSpecularIntensity: materialSpecularIntensity, + materialSpecularStrength: materialSpecularStrength, + materialThickness: materialThickness, + materialTransmission: materialTransmission, + max: max$1, + maxMipLevel: maxMipLevel, + mediumpModelViewMatrix: mediumpModelViewMatrix, + metalness: metalness, + min: min$1, + mix: mix, + mixElement: mixElement, + mod: mod, + modInt: modInt, + modelDirection: modelDirection, + modelNormalMatrix: modelNormalMatrix, + modelPosition: modelPosition, + modelRadius: modelRadius, + modelScale: modelScale, + modelViewMatrix: modelViewMatrix, + modelViewPosition: modelViewPosition, + modelViewProjection: modelViewProjection, + modelWorldMatrix: modelWorldMatrix, + modelWorldMatrixInverse: modelWorldMatrixInverse, + morphReference: morphReference, + mrt: mrt, + mul: mul, + mx_aastep: mx_aastep, + mx_cell_noise_float: mx_cell_noise_float, + mx_contrast: mx_contrast, + mx_fractal_noise_float: mx_fractal_noise_float, + mx_fractal_noise_vec2: mx_fractal_noise_vec2, + mx_fractal_noise_vec3: mx_fractal_noise_vec3, + mx_fractal_noise_vec4: mx_fractal_noise_vec4, + mx_hsvtorgb: mx_hsvtorgb, + mx_noise_float: mx_noise_float, + mx_noise_vec3: mx_noise_vec3, + mx_noise_vec4: mx_noise_vec4, + mx_ramplr: mx_ramplr, + mx_ramptb: mx_ramptb, + mx_rgbtohsv: mx_rgbtohsv, + mx_safepower: mx_safepower, + mx_splitlr: mx_splitlr, + mx_splittb: mx_splittb, + mx_srgb_texture_to_lin_rec709: mx_srgb_texture_to_lin_rec709, + mx_transform_uv: mx_transform_uv, + mx_worley_noise_float: mx_worley_noise_float, + mx_worley_noise_vec2: mx_worley_noise_vec2, + mx_worley_noise_vec3: mx_worley_noise_vec3, + namespace: namespace, + negate: negate, + neutralToneMapping: neutralToneMapping, + nodeArray: nodeArray, + nodeImmutable: nodeImmutable, + nodeObject: nodeObject, + nodeObjects: nodeObjects, + nodeProxy: nodeProxy, + normalFlat: normalFlat, + normalGeometry: normalGeometry, + normalLocal: normalLocal, + normalMap: normalMap, + normalView: normalView, + normalWorld: normalWorld, + normalize: normalize, + not: not, + notEqual: notEqual, + numWorkgroups: numWorkgroups, + objectDirection: objectDirection, + objectGroup: objectGroup, + objectPosition: objectPosition, + objectRadius: objectRadius, + objectScale: objectScale, + objectViewPosition: objectViewPosition, + objectWorldMatrix: objectWorldMatrix, + oneMinus: oneMinus, + or: or, + orthographicDepthToViewZ: orthographicDepthToViewZ, + oscSawtooth: oscSawtooth, + oscSine: oscSine, + oscSquare: oscSquare, + oscTriangle: oscTriangle, + output: output, + outputStruct: outputStruct, + overlay: overlay, + overloadingFn: overloadingFn, + parabola: parabola, + parallaxDirection: parallaxDirection, + parallaxUV: parallaxUV, + parameter: parameter, + pass: pass, + passTexture: passTexture, + pcurve: pcurve, + perspectiveDepthToViewZ: perspectiveDepthToViewZ, + pmremTexture: pmremTexture, + pointShadow: pointShadow, + pointUV: pointUV, + pointWidth: pointWidth, + positionGeometry: positionGeometry, + positionLocal: positionLocal, + positionPrevious: positionPrevious, + positionView: positionView, + positionViewDirection: positionViewDirection, + positionWorld: positionWorld, + positionWorldDirection: positionWorldDirection, + posterize: posterize, + pow: pow, + pow2: pow2, + pow3: pow3, + pow4: pow4, + premult: premult, + property: property, + radians: radians, + rand: rand, + range: range, + rangeFog: rangeFog, + rangeFogFactor: rangeFogFactor, + reciprocal: reciprocal, + reference: reference, + referenceBuffer: referenceBuffer, + reflect: reflect, + reflectVector: reflectVector, + reflectView: reflectView, + reflector: reflector, + refract: refract, + refractVector: refractVector, + refractView: refractView, + reinhardToneMapping: reinhardToneMapping, + remainder: remainder, + remap: remap, + remapClamp: remapClamp, + renderGroup: renderGroup, + renderOutput: renderOutput, + rendererReference: rendererReference, + rotate: rotate, + rotateUV: rotateUV, + roughness: roughness, + round: round, + rtt: rtt, + sRGBTransferEOTF: sRGBTransferEOTF, + sRGBTransferOETF: sRGBTransferOETF, + sampler: sampler, + samplerComparison: samplerComparison, + saturate: saturate, + saturation: saturation, + screen: screen, + screenCoordinate: screenCoordinate, + screenSize: screenSize, + screenUV: screenUV, + scriptable: scriptable, + scriptableValue: scriptableValue, + select: select, + setCurrentStack: setCurrentStack, + shaderStages: shaderStages, + shadow: shadow, + shadowPositionWorld: shadowPositionWorld, + shapeCircle: shapeCircle, + sharedUniformGroup: sharedUniformGroup, + sheen: sheen, + sheenRoughness: sheenRoughness, + shiftLeft: shiftLeft, + shiftRight: shiftRight, + shininess: shininess, + sign: sign, + sin: sin, + sinc: sinc, + skinning: skinning, + smoothstep: smoothstep, + smoothstepElement: smoothstepElement, + specularColor: specularColor, + specularF90: specularF90, + spherizeUV: spherizeUV, + split: split, + spritesheetUV: spritesheetUV, + sqrt: sqrt, + stack: stack, + step: step, + storage: storage, + storageBarrier: storageBarrier, + storageObject: storageObject, + storageTexture: storageTexture, + string: string, + struct: struct, + sub: sub, + subgroupIndex: subgroupIndex, + subgroupSize: subgroupSize, + tan: tan, + tangentGeometry: tangentGeometry, + tangentLocal: tangentLocal, + tangentView: tangentView, + tangentWorld: tangentWorld, + temp: temp, + texture: texture, + texture3D: texture3D, + textureBarrier: textureBarrier, + textureBicubic: textureBicubic, + textureCubeUV: textureCubeUV, + textureLoad: textureLoad, + textureSize: textureSize, + textureStore: textureStore, + thickness: thickness, + time: time, + timerDelta: timerDelta, + timerGlobal: timerGlobal, + timerLocal: timerLocal, + toneMapping: toneMapping, + toneMappingExposure: toneMappingExposure, + toonOutlinePass: toonOutlinePass, + transformDirection: transformDirection, + transformNormal: transformNormal, + transformNormalToView: transformNormalToView, + transformedBentNormalView: transformedBentNormalView, + transformedBitangentView: transformedBitangentView, + transformedBitangentWorld: transformedBitangentWorld, + transformedClearcoatNormalView: transformedClearcoatNormalView, + transformedNormalView: transformedNormalView, + transformedNormalWorld: transformedNormalWorld, + transformedTangentView: transformedTangentView, + transformedTangentWorld: transformedTangentWorld, + transmission: transmission, + transpose: transpose, + triNoise3D: triNoise3D, + triplanarTexture: triplanarTexture, + triplanarTextures: triplanarTextures, + trunc: trunc, + tslFn: tslFn, + uint: uint, + uniform: uniform, + uniformArray: uniformArray, + uniformCubeTexture: uniformCubeTexture, + uniformGroup: uniformGroup, + uniformTexture: uniformTexture, + uniforms: uniforms, + unpremult: unpremult, + userData: userData, + uv: uv, + uvec2: uvec2, + uvec3: uvec3, + uvec4: uvec4, + varying: varying, + varyingProperty: varyingProperty, + vec2: vec2, + vec3: vec3, + vec4: vec4, + vectorComponents: vectorComponents, + velocity: velocity, + vertexColor: vertexColor, + vertexIndex: vertexIndex, + vertexStage: vertexStage, + vibrance: vibrance, + viewZToLogarithmicDepth: viewZToLogarithmicDepth, + viewZToOrthographicDepth: viewZToOrthographicDepth, + viewZToPerspectiveDepth: viewZToPerspectiveDepth, + viewport: viewport, + viewportBottomLeft: viewportBottomLeft, + viewportCoordinate: viewportCoordinate, + viewportDepthTexture: viewportDepthTexture, + viewportLinearDepth: viewportLinearDepth, + viewportMipTexture: viewportMipTexture, + viewportResolution: viewportResolution, + viewportSafeUV: viewportSafeUV, + viewportSharedTexture: viewportSharedTexture, + viewportSize: viewportSize, + viewportTexture: viewportTexture, + viewportTopLeft: viewportTopLeft, + viewportUV: viewportUV, + wgsl: wgsl, + wgslFn: wgslFn, + workgroupArray: workgroupArray, + workgroupBarrier: workgroupBarrier, + workgroupId: workgroupId, + workingToColorSpace: workingToColorSpace, + xor: xor +} ); + +const _clearColor = /*@__PURE__*/ new Color4(); + +/** + * This renderer module manages the background. + * + * @private + * @augments DataMap + */ +class Background extends DataMap { + + /** + * Constructs a new background management component. + * + * @param {Renderer} renderer - The renderer. + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + */ + constructor( renderer, nodes ) { + + super(); + + /** + * The renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * Renderer component for managing nodes related logic. + * + * @type {Nodes} + */ + this.nodes = nodes; + + } + + /** + * Updates the background for the given scene. Depending on how `Scene.background` + * or `Scene.backgroundNode` are configured, this method might configure a simple clear + * or add a mesh to the render list for rendering the background as a textured plane + * or skybox. + * + * @param {Scene} scene - The scene. + * @param {RenderList} renderList - The current render list. + * @param {RenderContext} renderContext - The current render context. + */ + update( scene, renderList, renderContext ) { + + const renderer = this.renderer; + const background = this.nodes.getBackgroundNode( scene ) || scene.background; + + let forceClear = false; + + if ( background === null ) { + + // no background settings, use clear color configuration from the renderer + + renderer._clearColor.getRGB( _clearColor ); + _clearColor.a = renderer._clearColor.a; + + } else if ( background.isColor === true ) { + + // background is an opaque color + + background.getRGB( _clearColor ); + _clearColor.a = 1; + + forceClear = true; + + } else if ( background.isNode === true ) { + + const sceneData = this.get( scene ); + const backgroundNode = background; + + _clearColor.copy( renderer._clearColor ); + + let backgroundMesh = sceneData.backgroundMesh; + + if ( backgroundMesh === undefined ) { + + const backgroundMeshNode = context( vec4( backgroundNode ).mul( backgroundIntensity ), { + // @TODO: Add Texture2D support using node context + getUV: () => backgroundRotation.mul( normalWorld ), + getTextureLevel: () => backgroundBlurriness + } ); + + let viewProj = modelViewProjection; + viewProj = viewProj.setZ( viewProj.w ); + + const nodeMaterial = new NodeMaterial(); + nodeMaterial.name = 'Background.material'; + nodeMaterial.side = BackSide; + nodeMaterial.depthTest = false; + nodeMaterial.depthWrite = false; + nodeMaterial.allowOverride = false; + nodeMaterial.fog = false; + nodeMaterial.lights = false; + nodeMaterial.vertexNode = viewProj; + nodeMaterial.colorNode = backgroundMeshNode; + + sceneData.backgroundMeshNode = backgroundMeshNode; + sceneData.backgroundMesh = backgroundMesh = new Mesh( new SphereGeometry( 1, 32, 32 ), nodeMaterial ); + backgroundMesh.frustumCulled = false; + backgroundMesh.name = 'Background.mesh'; + + backgroundMesh.onBeforeRender = function ( renderer, scene, camera ) { + + this.matrixWorld.copyPosition( camera.matrixWorld ); + + }; + + function onBackgroundDispose() { + + background.removeEventListener( 'dispose', onBackgroundDispose ); + + backgroundMesh.material.dispose(); + backgroundMesh.geometry.dispose(); + + } + + background.addEventListener( 'dispose', onBackgroundDispose ); + + } + + const backgroundCacheKey = backgroundNode.getCacheKey(); + + if ( sceneData.backgroundCacheKey !== backgroundCacheKey ) { + + sceneData.backgroundMeshNode.node = vec4( backgroundNode ).mul( backgroundIntensity ); + sceneData.backgroundMeshNode.needsUpdate = true; + + backgroundMesh.material.needsUpdate = true; + + sceneData.backgroundCacheKey = backgroundCacheKey; + + } + + renderList.unshift( backgroundMesh, backgroundMesh.geometry, backgroundMesh.material, 0, 0, null, null ); + + } else { + + console.error( 'THREE.Renderer: Unsupported background configuration.', background ); + + } + + // + + const environmentBlendMode = renderer.xr.getEnvironmentBlendMode(); + + if ( environmentBlendMode === 'additive' ) { + + _clearColor.set( 0, 0, 0, 1 ); + + } else if ( environmentBlendMode === 'alpha-blend' ) { + + _clearColor.set( 0, 0, 0, 0 ); + + } + + // + + if ( renderer.autoClear === true || forceClear === true ) { + + const clearColorValue = renderContext.clearColorValue; + + clearColorValue.r = _clearColor.r; + clearColorValue.g = _clearColor.g; + clearColorValue.b = _clearColor.b; + clearColorValue.a = _clearColor.a; + + // premultiply alpha + + if ( renderer.backend.isWebGLBackend === true || renderer.alpha === true ) { + + clearColorValue.r *= clearColorValue.a; + clearColorValue.g *= clearColorValue.a; + clearColorValue.b *= clearColorValue.a; + + } + + // + + renderContext.depthClearValue = renderer._clearDepth; + renderContext.stencilClearValue = renderer._clearStencil; + + renderContext.clearColor = renderer.autoClearColor === true; + renderContext.clearDepth = renderer.autoClearDepth === true; + renderContext.clearStencil = renderer.autoClearStencil === true; + + } else { + + renderContext.clearColor = false; + renderContext.clearDepth = false; + renderContext.clearStencil = false; + + } + + } + +} + +let _id$6 = 0; + +/** + * A bind group represents a collection of bindings and thus a collection + * or resources. Bind groups are assigned to pipelines to provide them + * with the required resources (like uniform buffers or textures). + * + * @private + */ +class BindGroup { + + /** + * Constructs a new bind group. + * + * @param {string} name - The bind group's name. + * @param {Array} bindings - An array of bindings. + * @param {number} index - The group index. + * @param {Array} bindingsReference - An array of reference bindings. + */ + constructor( name = '', bindings = [], index = 0, bindingsReference = [] ) { + + /** + * The bind group's name. + * + * @type {string} + */ + this.name = name; + + /** + * An array of bindings. + * + * @type {Array} + */ + this.bindings = bindings; + + /** + * The group index. + * + * @type {number} + */ + this.index = index; + + /** + * An array of reference bindings. + * + * @type {Array} + */ + this.bindingsReference = bindingsReference; + + /** + * The group's ID. + * + * @type {number} + */ + this.id = _id$6 ++; + + } + +} + +/** + * This module represents the state of a node builder after it was + * used to build the nodes for a render object. The state holds the + * results of the build for further processing in the renderer. + * + * Render objects with identical cache keys share the same node builder state. + * + * @private + */ +class NodeBuilderState { + + /** + * Constructs a new node builder state. + * + * @param {string} vertexShader - The native vertex shader code. + * @param {string} fragmentShader - The native fragment shader code. + * @param {string} computeShader - The native compute shader code. + * @param {Array} nodeAttributes - An array of node attributes. + * @param {Array} bindings - An array of bind groups. + * @param {Array} updateNodes - An array of nodes that implement their `update()` method. + * @param {Array} updateBeforeNodes - An array of nodes that implement their `updateBefore()` method. + * @param {Array} updateAfterNodes - An array of nodes that implement their `updateAfter()` method. + * @param {NodeMaterialObserver} observer - A node material observer. + * @param {Array} transforms - An array with transform attribute objects. Only relevant when using compute shaders with WebGL 2. + */ + constructor( vertexShader, fragmentShader, computeShader, nodeAttributes, bindings, updateNodes, updateBeforeNodes, updateAfterNodes, observer, transforms = [] ) { + + /** + * The native vertex shader code. + * + * @type {string} + */ + this.vertexShader = vertexShader; + + /** + * The native fragment shader code. + * + * @type {string} + */ + this.fragmentShader = fragmentShader; + + /** + * The native compute shader code. + * + * @type {string} + */ + this.computeShader = computeShader; + + /** + * An array with transform attribute objects. + * Only relevant when using compute shaders with WebGL 2. + * + * @type {Array} + */ + this.transforms = transforms; + + /** + * An array of node attributes representing + * the attributes of the shaders. + * + * @type {Array} + */ + this.nodeAttributes = nodeAttributes; + + /** + * An array of bind groups representing the uniform or storage + * buffers, texture or samplers of the shader. + * + * @type {Array} + */ + this.bindings = bindings; + + /** + * An array of nodes that implement their `update()` method. + * + * @type {Array} + */ + this.updateNodes = updateNodes; + + /** + * An array of nodes that implement their `updateBefore()` method. + * + * @type {Array} + */ + this.updateBeforeNodes = updateBeforeNodes; + + /** + * An array of nodes that implement their `updateAfter()` method. + * + * @type {Array} + */ + this.updateAfterNodes = updateAfterNodes; + + /** + * A node material observer. + * + * @type {NodeMaterialObserver} + */ + this.observer = observer; + + /** + * How often this state is used by render objects. + * + * @type {number} + */ + this.usedTimes = 0; + + } + + /** + * This method is used to create a array of bind groups based + * on the existing bind groups of this state. Shared groups are + * not cloned. + * + * @return {Array} A array of bind groups. + */ + createBindings() { + + const bindings = []; + + for ( const instanceGroup of this.bindings ) { + + const shared = instanceGroup.bindings[ 0 ].groupNode.shared; // All bindings in the group must have the same groupNode. + + if ( shared !== true ) { + + const bindingsGroup = new BindGroup( instanceGroup.name, [], instanceGroup.index, instanceGroup ); + bindings.push( bindingsGroup ); + + for ( const instanceBinding of instanceGroup.bindings ) { + + bindingsGroup.bindings.push( instanceBinding.clone() ); + + } + + } else { + + bindings.push( instanceGroup ); + + } + + } + + return bindings; + + } + +} + +/** + * {@link NodeBuilder} is going to create instances of this class during the build process + * of nodes. They represent the final shader attributes that are going to be generated + * by the builder. Arrays of node attributes is maintained in {@link NodeBuilder#attributes} + * and {@link NodeBuilder#bufferAttributes} for this purpose. + */ +class NodeAttribute { + + /** + * Constructs a new node attribute. + * + * @param {string} name - The name of the attribute. + * @param {string} type - The type of the attribute. + * @param {?Node} node - An optional reference to the node. + */ + constructor( name, type, node = null ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNodeAttribute = true; + + /** + * The name of the attribute. + * + * @type {string} + */ + this.name = name; + + /** + * The type of the attribute. + * + * @type {string} + */ + this.type = type; + + /** + * An optional reference to the node. + * + * @type {?Node} + * @default null + */ + this.node = node; + + } + +} + +/** + * {@link NodeBuilder} is going to create instances of this class during the build process + * of nodes. They represent the final shader uniforms that are going to be generated + * by the builder. A dictionary of node uniforms is maintained in {@link NodeBuilder#uniforms} + * for this purpose. + */ +class NodeUniform { + + /** + * Constructs a new node uniform. + * + * @param {string} name - The name of the uniform. + * @param {string} type - The type of the uniform. + * @param {UniformNode} node - An reference to the node. + */ + constructor( name, type, node ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNodeUniform = true; + + /** + * The name of the uniform. + * + * @type {string} + */ + this.name = name; + + /** + * The type of the uniform. + * + * @type {string} + */ + this.type = type; + + /** + * An reference to the node. + * + * @type {UniformNode} + */ + this.node = node.getSelf(); + + } + + /** + * The value of the uniform node. + * + * @type {any} + */ + get value() { + + return this.node.value; + + } + + set value( val ) { + + this.node.value = val; + + } + + /** + * The id of the uniform node. + * + * @type {number} + */ + get id() { + + return this.node.id; + + } + + /** + * The uniform node's group. + * + * @type {UniformGroupNode} + */ + get groupNode() { + + return this.node.groupNode; + + } + +} + +/** + * {@link NodeBuilder} is going to create instances of this class during the build process + * of nodes. They represent the final shader variables that are going to be generated + * by the builder. A dictionary of node variables is maintained in {@link NodeBuilder#vars} for + * this purpose. + */ +class NodeVar { + + /** + * Constructs a new node variable. + * + * @param {string} name - The name of the variable. + * @param {string} type - The type of the variable. + * @param {boolean} [readOnly=false] - The read-only flag. + * @param {?number} [count=null] - The size. + */ + constructor( name, type, readOnly = false, count = null ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNodeVar = true; + + /** + * The name of the variable. + * + * @type {string} + */ + this.name = name; + + /** + * The type of the variable. + * + * @type {string} + */ + this.type = type; + + /** + * The read-only flag. + * + * @type {boolean} + */ + this.readOnly = readOnly; + + /** + * The size. + * + * @type {?number} + */ + this.count = count; + + } + +} + +/** + * {@link NodeBuilder} is going to create instances of this class during the build process + * of nodes. They represent the final shader varyings that are going to be generated + * by the builder. An array of node varyings is maintained in {@link NodeBuilder#varyings} for + * this purpose. + * + * @augments NodeVar + */ +class NodeVarying extends NodeVar { + + /** + * Constructs a new node varying. + * + * @param {string} name - The name of the varying. + * @param {string} type - The type of the varying. + * @param {?string} interpolationType - The interpolation type of the varying. + * @param {?string} interpolationSampling - The interpolation sampling type of the varying. + */ + constructor( name, type, interpolationType = null, interpolationSampling = null ) { + + super( name, type ); + + /** + * Whether this varying requires interpolation or not. This property can be used + * to check if the varying can be optimized for a variable. + * + * @type {boolean} + * @default false + */ + this.needsInterpolation = false; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNodeVarying = true; + + /** + * The interpolation type of the varying data. + * + * @type {?string} + * @default null + */ + this.interpolationType = interpolationType; + + /** + * The interpolation sampling type of varying data. + * + * @type {?string} + * @default null + */ + this.interpolationSampling = interpolationSampling; + + } + +} + +/** + * {@link NodeBuilder} is going to create instances of this class during the build process + * of nodes. They represent user-defined, native shader code portions that are going to be + * injected by the builder. A dictionary of node codes is maintained in {@link NodeBuilder#codes} + * for this purpose. + */ +class NodeCode { + + /** + * Constructs a new code node. + * + * @param {string} name - The name of the code. + * @param {string} type - The node type. + * @param {string} [code=''] - The native shader code. + */ + constructor( name, type, code = '' ) { + + /** + * The name of the code. + * + * @type {string} + */ + this.name = name; + + /** + * The node type. + * + * @type {string} + */ + this.type = type; + + /** + * The native shader code. + * + * @type {string} + * @default '' + */ + this.code = code; + + Object.defineProperty( this, 'isNodeCode', { value: true } ); + + } + +} + +let _id$5 = 0; + +/** + * This utility class is used in {@link NodeBuilder} as an internal + * cache data structure for node data. + */ +class NodeCache { + + /** + * Constructs a new node cache. + * + * @param {?NodeCache} parent - A reference to a parent cache. + */ + constructor( parent = null ) { + + /** + * The id of the cache. + * + * @type {number} + * @readonly + */ + this.id = _id$5 ++; + + /** + * A weak map for managing node data. + * + * @type {WeakMap} + */ + this.nodesData = new WeakMap(); + + /** + * Reference to a parent node cache. + * + * @type {?NodeCache} + * @default null + */ + this.parent = parent; + + } + + /** + * Returns the data for the given node. + * + * @param {Node} node - The node. + * @return {?Object} The data for the node. + */ + getData( node ) { + + let data = this.nodesData.get( node ); + + if ( data === undefined && this.parent !== null ) { + + data = this.parent.getData( node ); + + } + + return data; + + } + + /** + * Sets the data for a given node. + * + * @param {Node} node - The node. + * @param {Object} data - The data that should be cached. + */ + setData( node, data ) { + + this.nodesData.set( node, data ); + + } + +} + +class StructType { + + constructor( name, members ) { + + this.name = name; + this.members = members; + this.output = false; + + } + +} + +/** + * Abstract base class for uniforms. + * + * @abstract + * @private + */ +class Uniform { + + /** + * Constructs a new uniform. + * + * @param {string} name - The uniform's name. + * @param {any} value - The uniform's value. + */ + constructor( name, value ) { + + /** + * The uniform's name. + * + * @type {string} + */ + this.name = name; + + /** + * The uniform's value. + * + * @type {any} + */ + this.value = value; + + /** + * Used to build the uniform buffer according to the STD140 layout. + * Derived uniforms will set this property to a data type specific + * value. + * + * @type {number} + */ + this.boundary = 0; + + /** + * The item size. Derived uniforms will set this property to a data + * type specific value. + * + * @type {number} + */ + this.itemSize = 0; + + /** + * This property is set by {@link UniformsGroup} and marks + * the start position in the uniform buffer. + * + * @type {number} + */ + this.offset = 0; + + } + + /** + * Sets the uniform's value. + * + * @param {any} value - The value to set. + */ + setValue( value ) { + + this.value = value; + + } + + /** + * Returns the uniform's value. + * + * @return {any} The value. + */ + getValue() { + + return this.value; + + } + +} + +/** + * Represents a Number uniform. + * + * @private + * @augments Uniform + */ +class NumberUniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {number} value - The uniform's value. + */ + constructor( name, value = 0 ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNumberUniform = true; + + this.boundary = 4; + this.itemSize = 1; + + } + +} + +/** + * Represents a Vector2 uniform. + * + * @private + * @augments Uniform + */ +class Vector2Uniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Vector2} value - The uniform's value. + */ + constructor( name, value = new Vector2() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVector2Uniform = true; + + this.boundary = 8; + this.itemSize = 2; + + } + +} + +/** + * Represents a Vector3 uniform. + * + * @private + * @augments Uniform + */ +class Vector3Uniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Vector3} value - The uniform's value. + */ + constructor( name, value = new Vector3() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVector3Uniform = true; + + this.boundary = 16; + this.itemSize = 3; + + } + +} + +/** + * Represents a Vector4 uniform. + * + * @private + * @augments Uniform + */ +class Vector4Uniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Vector4} value - The uniform's value. + */ + constructor( name, value = new Vector4() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVector4Uniform = true; + + this.boundary = 16; + this.itemSize = 4; + + } + +} + +/** + * Represents a Color uniform. + * + * @private + * @augments Uniform + */ +class ColorUniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Color} value - The uniform's value. + */ + constructor( name, value = new Color() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isColorUniform = true; + + this.boundary = 16; + this.itemSize = 3; + + } + +} + +/** + * Represents a Matrix2 uniform. + * + * @private + * @augments Uniform + */ +class Matrix2Uniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Matrix2} value - The uniform's value. + */ + constructor( name, value = new Matrix2() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMatrix2Uniform = true; + + this.boundary = 8; + this.itemSize = 4; + + } + +} + + +/** + * Represents a Matrix3 uniform. + * + * @private + * @augments Uniform + */ +class Matrix3Uniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Matrix3} value - The uniform's value. + */ + constructor( name, value = new Matrix3() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMatrix3Uniform = true; + + this.boundary = 48; + this.itemSize = 12; + + } + +} + +/** + * Represents a Matrix4 uniform. + * + * @private + * @augments Uniform + */ +class Matrix4Uniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Matrix4} value - The uniform's value. + */ + constructor( name, value = new Matrix4() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMatrix4Uniform = true; + + this.boundary = 64; + this.itemSize = 16; + + } + +} + +/** + * A special form of Number uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments NumberUniform + */ +class NumberNodeUniform extends NumberUniform { + + /** + * Constructs a new node-based Number uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {number} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +/** + * A special form of Vector2 uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments Vector2Uniform + */ +class Vector2NodeUniform extends Vector2Uniform { + + /** + * Constructs a new node-based Vector2 uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Vector2} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +/** + * A special form of Vector3 uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments Vector3Uniform + */ +class Vector3NodeUniform extends Vector3Uniform { + + /** + * Constructs a new node-based Vector3 uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Vector3} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +/** + * A special form of Vector4 uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments Vector4Uniform + */ +class Vector4NodeUniform extends Vector4Uniform { + + /** + * Constructs a new node-based Vector4 uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Vector4} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +/** + * A special form of Color uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments ColorUniform + */ +class ColorNodeUniform extends ColorUniform { + + /** + * Constructs a new node-based Color uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Color} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + + +/** + * A special form of Matrix2 uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments Matrix2Uniform + */ +class Matrix2NodeUniform extends Matrix2Uniform { + + /** + * Constructs a new node-based Matrix2 uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Matrix2} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +/** + * A special form of Matrix3 uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments Matrix3Uniform + */ +class Matrix3NodeUniform extends Matrix3Uniform { + + /** + * Constructs a new node-based Matrix3 uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Matrix3} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +/** + * A special form of Matrix4 uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments Matrix4Uniform + */ +class Matrix4NodeUniform extends Matrix4Uniform { + + /** + * Constructs a new node-based Matrix4 uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Matrix4} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +const rendererCache = new WeakMap(); + +const typeFromArray = new Map( [ + [ Int8Array, 'int' ], + [ Int16Array, 'int' ], + [ Int32Array, 'int' ], + [ Uint8Array, 'uint' ], + [ Uint16Array, 'uint' ], + [ Uint32Array, 'uint' ], + [ Float32Array, 'float' ] +] ); + +const toFloat = ( value ) => { + + if ( /e/g.test( value ) ) { + + return String( value ).replace( /\+/g, '' ); + + } else { + + value = Number( value ); + + return value + ( value % 1 ? '' : '.0' ); + + } + +}; + +/** + * Base class for builders which generate a shader program based + * on a 3D object and its node material definition. + */ +class NodeBuilder { + + /** + * Constructs a new node builder. + * + * @param {Object3D} object - The 3D object. + * @param {Renderer} renderer - The current renderer. + * @param {NodeParser} parser - A reference to a node parser. + */ + constructor( object, renderer, parser ) { + + /** + * The 3D object. + * + * @type {Object3D} + */ + this.object = object; + + /** + * The material of the 3D object. + * + * @type {?Material} + */ + this.material = ( object && object.material ) || null; + + /** + * The geometry of the 3D object. + * + * @type {?BufferGeometry} + */ + this.geometry = ( object && object.geometry ) || null; + + /** + * The current renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * A reference to a node parser. + * + * @type {NodeParser} + */ + this.parser = parser; + + /** + * The scene the 3D object belongs to. + * + * @type {?Scene} + * @default null + */ + this.scene = null; + + /** + * The camera the 3D object is rendered with. + * + * @type {?Camera} + * @default null + */ + this.camera = null; + + /** + * A list of all nodes the builder is processing + * for this 3D object. + * + * @type {Array} + */ + this.nodes = []; + + /** + * A list of all sequential nodes. + * + * @type {Array} + */ + this.sequentialNodes = []; + + /** + * A list of all nodes which {@link Node#update} method should be executed. + * + * @type {Array} + */ + this.updateNodes = []; + + /** + * A list of all nodes which {@link Node#updateBefore} method should be executed. + * + * @type {Array} + */ + this.updateBeforeNodes = []; + + /** + * A list of all nodes which {@link Node#updateAfter} method should be executed. + * + * @type {Array} + */ + this.updateAfterNodes = []; + + /** + * A dictionary that assigns each node to a unique hash. + * + * @type {Object} + */ + this.hashNodes = {}; + + /** + * A reference to a node material observer. + * + * @type {?NodeMaterialObserver} + * @default null + */ + this.observer = null; + + /** + * A reference to the current lights node. + * + * @type {?LightsNode} + * @default null + */ + this.lightsNode = null; + + /** + * A reference to the current environment node. + * + * @type {?Node} + * @default null + */ + this.environmentNode = null; + + /** + * A reference to the current fog node. + * + * @type {?FogNode} + * @default null + */ + this.fogNode = null; + + /** + * The current clipping context. + * + * @type {?ClippingContext} + */ + this.clippingContext = null; + + /** + * The generated vertex shader. + * + * @type {?string} + */ + this.vertexShader = null; + + /** + * The generated fragment shader. + * + * @type {?string} + */ + this.fragmentShader = null; + + /** + * The generated compute shader. + * + * @type {?string} + */ + this.computeShader = null; + + /** + * Nodes used in the primary flow of code generation. + * + * @type {Object>} + */ + this.flowNodes = { vertex: [], fragment: [], compute: [] }; + + /** + * Nodes code from `.flowNodes`. + * + * @type {Object} + */ + this.flowCode = { vertex: '', fragment: '', compute: '' }; + + /** + * This dictionary holds the node uniforms of the builder. + * The uniforms are maintained in an array for each shader stage. + * + * @type {Object} + */ + this.uniforms = { vertex: [], fragment: [], compute: [], index: 0 }; + + /** + * This dictionary holds the output structs of the builder. + * The structs are maintained in an array for each shader stage. + * + * @type {Object} + */ + this.structs = { vertex: [], fragment: [], compute: [], index: 0 }; + + /** + * This dictionary holds the bindings for each shader stage. + * + * @type {Object} + */ + this.bindings = { vertex: {}, fragment: {}, compute: {} }; + + /** + * This dictionary maintains the binding indices per bind group. + * + * @type {Object} + */ + this.bindingsIndexes = {}; + + /** + * Reference to the array of bind groups. + * + * @type {?Array} + */ + this.bindGroups = null; + + /** + * This array holds the node attributes of this builder + * created via {@link AttributeNode}. + * + * @type {Array} + */ + this.attributes = []; + + /** + * This array holds the node attributes of this builder + * created via {@link BufferAttributeNode}. + * + * @type {Array} + */ + this.bufferAttributes = []; + + /** + * This array holds the node varyings of this builder. + * + * @type {Array} + */ + this.varyings = []; + + /** + * This dictionary holds the (native) node codes of this builder. + * The codes are maintained in an array for each shader stage. + * + * @type {Object>} + */ + this.codes = {}; + + /** + * This dictionary holds the node variables of this builder. + * The variables are maintained in an array for each shader stage. + * This dictionary is also used to count the number of variables + * according to their type (const, vars). + * + * @type {Object|number>} + */ + this.vars = {}; + + /** + * This dictionary holds the declarations for each shader stage. + * + * @type {Object} + */ + this.declarations = {}; + + /** + * Current code flow. + * All code generated in this stack will be stored in `.flow`. + * + * @type {{code: string}} + */ + this.flow = { code: '' }; + + /** + * A chain of nodes. + * Used to check recursive calls in node-graph. + * + * @type {Array} + */ + this.chaining = []; + + /** + * The current stack. + * This reflects the current process in the code block hierarchy, + * it is useful to know if the current process is inside a conditional for example. + * + * @type {StackNode} + */ + this.stack = stack(); + + /** + * List of stack nodes. + * The current stack hierarchy is stored in an array. + * + * @type {Array} + */ + this.stacks = []; + + /** + * A tab value. Used for shader string generation. + * + * @type {string} + * @default '\t' + */ + this.tab = '\t'; + + /** + * Reference to the current function node. + * + * @type {?FunctionNode} + * @default null + */ + this.currentFunctionNode = null; + + /** + * The builder's context. + * + * @type {Object} + */ + this.context = { + material: this.material + }; + + /** + * The builder's cache. + * + * @type {NodeCache} + */ + this.cache = new NodeCache(); + + /** + * Since the {@link NodeBuilder#cache} might be temporarily + * overwritten by other caches, this member retains the reference + * to the builder's own cache. + * + * @type {NodeCache} + * @default this.cache + */ + this.globalCache = this.cache; + + this.flowsData = new WeakMap(); + + /** + * The current shader stage. + * + * @type {?('vertex'|'fragment'|'compute'|'any')} + */ + this.shaderStage = null; + + /** + * The current build stage. + * + * @type {?('setup'|'analyze'|'generate')} + */ + this.buildStage = null; + + } + + /** + * Returns the bind groups of the current renderer. + * + * @return {ChainMap} The cache. + */ + getBindGroupsCache() { + + let bindGroupsCache = rendererCache.get( this.renderer ); + + if ( bindGroupsCache === undefined ) { + + bindGroupsCache = new ChainMap(); + + rendererCache.set( this.renderer, bindGroupsCache ); + + } + + return bindGroupsCache; + + } + + /** + * Factory method for creating an instance of {@link RenderTarget} with the given + * dimensions and options. + * + * @param {number} width - The width of the render target. + * @param {number} height - The height of the render target. + * @param {Object} options - The options of the render target. + * @return {RenderTarget} The render target. + */ + createRenderTarget( width, height, options ) { + + return new RenderTarget( width, height, options ); + + } + + /** + * Factory method for creating an instance of {@link CubeRenderTarget} with the given + * dimensions and options. + * + * @param {number} size - The size of the cube render target. + * @param {Object} options - The options of the cube render target. + * @return {CubeRenderTarget} The cube render target. + */ + createCubeRenderTarget( size, options ) { + + return new CubeRenderTarget( size, options ); + + } + + /** + * Whether the given node is included in the internal array of nodes or not. + * + * @param {Node} node - The node to test. + * @return {boolean} Whether the given node is included in the internal array of nodes or not. + */ + includes( node ) { + + return this.nodes.includes( node ); + + } + + /** + * Returns the output struct name which is required by + * {@link OutputStructNode}. + * + * @abstract + * @return {string} The name of the output struct. + */ + getOutputStructName() {} + + /** + * Returns a bind group for the given group name and binding. + * + * @private + * @param {string} groupName - The group name. + * @param {Array} bindings - List of bindings. + * @return {BindGroup} The bind group + */ + _getBindGroup( groupName, bindings ) { + + const bindGroupsCache = this.getBindGroupsCache(); + + // + + const bindingsArray = []; + + let sharedGroup = true; + + for ( const binding of bindings ) { + + bindingsArray.push( binding ); + + sharedGroup = sharedGroup && binding.groupNode.shared !== true; + + } + + // + + let bindGroup; + + if ( sharedGroup ) { + + bindGroup = bindGroupsCache.get( bindingsArray ); + + if ( bindGroup === undefined ) { + + bindGroup = new BindGroup( groupName, bindingsArray, this.bindingsIndexes[ groupName ].group, bindingsArray ); + + bindGroupsCache.set( bindingsArray, bindGroup ); + + } + + } else { + + bindGroup = new BindGroup( groupName, bindingsArray, this.bindingsIndexes[ groupName ].group, bindingsArray ); + + } + + return bindGroup; + + } + + /** + * Returns an array of node uniform groups for the given group name and shader stage. + * + * @param {string} groupName - The group name. + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {Array} The array of node uniform groups. + */ + getBindGroupArray( groupName, shaderStage ) { + + const bindings = this.bindings[ shaderStage ]; + + let bindGroup = bindings[ groupName ]; + + if ( bindGroup === undefined ) { + + if ( this.bindingsIndexes[ groupName ] === undefined ) { + + this.bindingsIndexes[ groupName ] = { binding: 0, group: Object.keys( this.bindingsIndexes ).length }; + + } + + bindings[ groupName ] = bindGroup = []; + + } + + return bindGroup; + + } + + /** + * Returns a list bindings of all shader stages separated by groups. + * + * @return {Array} The list of bindings. + */ + getBindings() { + + let bindingsGroups = this.bindGroups; + + if ( bindingsGroups === null ) { + + const groups = {}; + const bindings = this.bindings; + + for ( const shaderStage of shaderStages ) { + + for ( const groupName in bindings[ shaderStage ] ) { + + const uniforms = bindings[ shaderStage ][ groupName ]; + + const groupUniforms = groups[ groupName ] || ( groups[ groupName ] = [] ); + groupUniforms.push( ...uniforms ); + + } + + } + + bindingsGroups = []; + + for ( const groupName in groups ) { + + const group = groups[ groupName ]; + + const bindingsGroup = this._getBindGroup( groupName, group ); + + bindingsGroups.push( bindingsGroup ); + + } + + this.bindGroups = bindingsGroups; + + } + + return bindingsGroups; + + } + + /** + * Sorts the bind groups and updates {@link NodeBuilder#bindingsIndexes}. + */ + sortBindingGroups() { + + const bindingsGroups = this.getBindings(); + + bindingsGroups.sort( ( a, b ) => ( a.bindings[ 0 ].groupNode.order - b.bindings[ 0 ].groupNode.order ) ); + + for ( let i = 0; i < bindingsGroups.length; i ++ ) { + + const bindingGroup = bindingsGroups[ i ]; + this.bindingsIndexes[ bindingGroup.name ].group = i; + + bindingGroup.index = i; + + } + + } + + /** + * The builder maintains each node in a hash-based dictionary. + * This method sets the given node (value) with the given hash (key) into this dictionary. + * + * @param {Node} node - The node to add. + * @param {number} hash - The hash of the node. + */ + setHashNode( node, hash ) { + + this.hashNodes[ hash ] = node; + + } + + /** + * Adds a node to this builder. + * + * @param {Node} node - The node to add. + */ + addNode( node ) { + + if ( this.nodes.includes( node ) === false ) { + + this.nodes.push( node ); + + this.setHashNode( node, node.getHash( this ) ); + + } + + } + + /** + * It is used to add Nodes that will be used as FRAME and RENDER events, + * and need to follow a certain sequence in the calls to work correctly. + * This function should be called after 'setup()' in the 'build()' process to ensure that the child nodes are processed first. + * + * @param {Node} node - The node to add. + */ + addSequentialNode( node ) { + + if ( this.sequentialNodes.includes( node ) === false ) { + + this.sequentialNodes.push( node ); + + } + + } + + /** + * Checks the update types of nodes + */ + buildUpdateNodes() { + + for ( const node of this.nodes ) { + + const updateType = node.getUpdateType(); + + if ( updateType !== NodeUpdateType.NONE ) { + + this.updateNodes.push( node.getSelf() ); + + } + + } + + for ( const node of this.sequentialNodes ) { + + const updateBeforeType = node.getUpdateBeforeType(); + const updateAfterType = node.getUpdateAfterType(); + + if ( updateBeforeType !== NodeUpdateType.NONE ) { + + this.updateBeforeNodes.push( node.getSelf() ); + + } + + if ( updateAfterType !== NodeUpdateType.NONE ) { + + this.updateAfterNodes.push( node.getSelf() ); + + } + + } + + } + + /** + * A reference the current node which is the + * last node in the chain of nodes. + * + * @type {Node} + */ + get currentNode() { + + return this.chaining[ this.chaining.length - 1 ]; + + } + + /** + * Whether the given texture is filtered or not. + * + * @param {Texture} texture - The texture to check. + * @return {boolean} Whether the given texture is filtered or not. + */ + isFilteredTexture( texture ) { + + return ( texture.magFilter === LinearFilter || texture.magFilter === LinearMipmapNearestFilter || texture.magFilter === NearestMipmapLinearFilter || texture.magFilter === LinearMipmapLinearFilter || + texture.minFilter === LinearFilter || texture.minFilter === LinearMipmapNearestFilter || texture.minFilter === NearestMipmapLinearFilter || texture.minFilter === LinearMipmapLinearFilter ); + + } + + /** + * Adds the given node to the internal node chain. + * This is used to check recursive calls in node-graph. + * + * @param {Node} node - The node to add. + */ + addChain( node ) { + + /* + if ( this.chaining.indexOf( node ) !== - 1 ) { + + console.warn( 'Recursive node: ', node ); + + } + */ + + this.chaining.push( node ); + + } + + /** + * Removes the given node from the internal node chain. + * + * @param {Node} node - The node to remove. + */ + removeChain( node ) { + + const lastChain = this.chaining.pop(); + + if ( lastChain !== node ) { + + throw new Error( 'NodeBuilder: Invalid node chaining!' ); + + } + + } + + /** + * Returns the native shader method name for a given generic name. E.g. + * the method name `textureDimensions` matches the WGSL name but must be + * resolved to `textureSize` in GLSL. + * + * @abstract + * @param {string} method - The method name to resolve. + * @return {string} The resolved method name. + */ + getMethod( method ) { + + return method; + + } + + /** + * Returns a node for the given hash, see {@link NodeBuilder#setHashNode}. + * + * @param {number} hash - The hash of the node. + * @return {Node} The found node. + */ + getNodeFromHash( hash ) { + + return this.hashNodes[ hash ]; + + } + + /** + * Adds the Node to a target flow so that it can generate code in the 'generate' process. + * + * @param {('vertex'|'fragment'|'compute')} shaderStage - The shader stage. + * @param {Node} node - The node to add. + * @return {Node} The node. + */ + addFlow( shaderStage, node ) { + + this.flowNodes[ shaderStage ].push( node ); + + return node; + + } + + /** + * Sets builder's context. + * + * @param {Object} context - The context to set. + */ + setContext( context ) { + + this.context = context; + + } + + /** + * Returns the builder's current context. + * + * @return {Object} The builder's current context. + */ + getContext() { + + return this.context; + + } + + /** + * Gets a context used in shader construction that can be shared across different materials. + * This is necessary since the renderer cache can reuse shaders generated in one material and use them in another. + * + * @return {Object} The builder's current context without material. + */ + getSharedContext() { + + ( { ...this.context } ); + + return this.context; + + } + + /** + * Sets builder's cache. + * + * @param {NodeCache} cache - The cache to set. + */ + setCache( cache ) { + + this.cache = cache; + + } + + /** + * Returns the builder's current cache. + * + * @return {NodeCache} The builder's current cache. + */ + getCache() { + + return this.cache; + + } + + /** + * Returns a cache for the given node. + * + * @param {Node} node - The node. + * @param {boolean} [parent=true] - Whether this node refers to a shared parent cache or not. + * @return {NodeCache} The cache. + */ + getCacheFromNode( node, parent = true ) { + + const data = this.getDataFromNode( node ); + if ( data.cache === undefined ) data.cache = new NodeCache( parent ? this.getCache() : null ); + + return data.cache; + + } + + /** + * Whether the requested feature is available or not. + * + * @abstract + * @param {string} name - The requested feature. + * @return {boolean} Whether the requested feature is supported or not. + */ + isAvailable( /*name*/ ) { + + return false; + + } + + /** + * Returns the vertexIndex input variable as a native shader string. + * + * @abstract + * @return {string} The instanceIndex shader string. + */ + getVertexIndex() { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns the instanceIndex input variable as a native shader string. + * + * @abstract + * @return {string} The instanceIndex shader string. + */ + getInstanceIndex() { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns the drawIndex input variable as a native shader string. + * Only relevant for WebGL and its `WEBGL_multi_draw` extension. + * + * @abstract + * @return {?string} The drawIndex shader string. + */ + getDrawIndex() { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns the frontFacing input variable as a native shader string. + * + * @abstract + * @return {string} The frontFacing shader string. + */ + getFrontFacing() { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns the fragCoord input variable as a native shader string. + * + * @abstract + * @return {string} The fragCoord shader string. + */ + getFragCoord() { + + console.warn( 'Abstract function.' ); + + } + + /** + * Whether to flip texture data along its vertical axis or not. WebGL needs + * this method evaluate to `true`, WebGPU to `false`. + * + * @abstract + * @return {boolean} Whether to flip texture data along its vertical axis or not. + */ + isFlipY() { + + return false; + + } + + /** + * Calling this method increases the usage count for the given node by one. + * + * @param {Node} node - The node to increase the usage count for. + * @return {number} The updated usage count. + */ + increaseUsage( node ) { + + const nodeData = this.getDataFromNode( node ); + nodeData.usageCount = nodeData.usageCount === undefined ? 1 : nodeData.usageCount + 1; + + return nodeData.usageCount; + + } + + /** + * Generates a texture sample shader string for the given texture data. + * + * @abstract + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The texture property name. + * @param {string} uvSnippet - Snippet defining the texture coordinates. + * @return {string} The generated shader string. + */ + generateTexture( /* texture, textureProperty, uvSnippet */ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * Generates a texture LOD shader string for the given texture data. + * + * @abstract + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The texture property name. + * @param {string} uvSnippet - Snippet defining the texture coordinates. + * @param {?string} depthSnippet - Snippet defining the 0-based texture array index to sample. + * @param {string} levelSnippet - Snippet defining the mip level. + * @return {string} The generated shader string. + */ + generateTextureLod( /* texture, textureProperty, uvSnippet, depthSnippet, levelSnippet */ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * Generates the array declaration string. + * + * @param {string} type - The type. + * @param {?number} [count] - The count. + * @return {string} The generated value as a shader string. + */ + generateArrayDeclaration( type, count ) { + + return this.getType( type ) + '[ ' + count + ' ]'; + + } + + /** + * Generates the array shader string for the given type and value. + * + * @param {string} type - The type. + * @param {?number} [count] - The count. + * @param {?Array} [values=null] - The default values. + * @return {string} The generated value as a shader string. + */ + generateArray( type, count, values = null ) { + + let snippet = this.generateArrayDeclaration( type, count ) + '( '; + + for ( let i = 0; i < count; i ++ ) { + + const value = values ? values[ i ] : null; + + if ( value !== null ) { + + snippet += value.build( this, type ); + + } else { + + snippet += this.generateConst( type ); + + } + + if ( i < count - 1 ) snippet += ', '; + + } + + snippet += ' )'; + + return snippet; + + } + + /** + * Generates the struct shader string. + * + * @param {string} type - The type. + * @param {Array} [membersLayout] - The count. + * @param {?Array} [values=null] - The default values. + * @return {string} The generated value as a shader string. + */ + generateStruct( type, membersLayout, values = null ) { + + const snippets = []; + + for ( const member of membersLayout ) { + + const { name, type } = member; + + if ( values && values[ name ] && values[ name ].isNode ) { + + snippets.push( values[ name ].build( this, type ) ); + + } else { + + snippets.push( this.generateConst( type ) ); + + } + + } + + return type + '( ' + snippets.join( ', ' ) + ' )'; + + } + + + /** + * Generates the shader string for the given type and value. + * + * @param {string} type - The type. + * @param {?any} [value=null] - The value. + * @return {string} The generated value as a shader string. + */ + generateConst( type, value = null ) { + + if ( value === null ) { + + if ( type === 'float' || type === 'int' || type === 'uint' ) value = 0; + else if ( type === 'bool' ) value = false; + else if ( type === 'color' ) value = new Color(); + else if ( type === 'vec2' ) value = new Vector2(); + else if ( type === 'vec3' ) value = new Vector3(); + else if ( type === 'vec4' ) value = new Vector4(); + + } + + if ( type === 'float' ) return toFloat( value ); + if ( type === 'int' ) return `${ Math.round( value ) }`; + if ( type === 'uint' ) return value >= 0 ? `${ Math.round( value ) }u` : '0u'; + if ( type === 'bool' ) return value ? 'true' : 'false'; + if ( type === 'color' ) return `${ this.getType( 'vec3' ) }( ${ toFloat( value.r ) }, ${ toFloat( value.g ) }, ${ toFloat( value.b ) } )`; + + const typeLength = this.getTypeLength( type ); + + const componentType = this.getComponentType( type ); + + const generateConst = value => this.generateConst( componentType, value ); + + if ( typeLength === 2 ) { + + return `${ this.getType( type ) }( ${ generateConst( value.x ) }, ${ generateConst( value.y ) } )`; + + } else if ( typeLength === 3 ) { + + return `${ this.getType( type ) }( ${ generateConst( value.x ) }, ${ generateConst( value.y ) }, ${ generateConst( value.z ) } )`; + + } else if ( typeLength === 4 && type !== 'mat2' ) { + + return `${ this.getType( type ) }( ${ generateConst( value.x ) }, ${ generateConst( value.y ) }, ${ generateConst( value.z ) }, ${ generateConst( value.w ) } )`; + + } else if ( typeLength >= 4 && value && ( value.isMatrix2 || value.isMatrix3 || value.isMatrix4 ) ) { + + return `${ this.getType( type ) }( ${ value.elements.map( generateConst ).join( ', ' ) } )`; + + } else if ( typeLength > 4 ) { + + return `${ this.getType( type ) }()`; + + } + + throw new Error( `NodeBuilder: Type '${type}' not found in generate constant attempt.` ); + + } + + /** + * It might be necessary to convert certain data types to different ones + * so this method can be used to hide the conversion. + * + * @param {string} type - The type. + * @return {string} The updated type. + */ + getType( type ) { + + if ( type === 'color' ) return 'vec3'; + + return type; + + } + + /** + * Whether the given attribute name is defined in the geometry or not. + * + * @param {string} name - The attribute name. + * @return {boolean} Whether the given attribute name is defined in the geometry. + */ + hasGeometryAttribute( name ) { + + return this.geometry && this.geometry.getAttribute( name ) !== undefined; + + } + + /** + * Returns a node attribute for the given name and type. + * + * @param {string} name - The attribute's name. + * @param {string} type - The attribute's type. + * @return {NodeAttribute} The node attribute. + */ + getAttribute( name, type ) { + + const attributes = this.attributes; + + // find attribute + + for ( const attribute of attributes ) { + + if ( attribute.name === name ) { + + return attribute; + + } + + } + + // create a new if no exist + + const attribute = new NodeAttribute( name, type ); + + this.registerDeclaration( attribute ); + + attributes.push( attribute ); + + return attribute; + + } + + /** + * Returns for the given node and shader stage the property name for the shader. + * + * @param {Node} node - The node. + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {string} The property name. + */ + getPropertyName( node/*, shaderStage*/ ) { + + return node.name; + + } + + /** + * Whether the given type is a vector type or not. + * + * @param {string} type - The type to check. + * @return {boolean} Whether the given type is a vector type or not. + */ + isVector( type ) { + + return /vec\d/.test( type ); + + } + + /** + * Whether the given type is a matrix type or not. + * + * @param {string} type - The type to check. + * @return {boolean} Whether the given type is a matrix type or not. + */ + isMatrix( type ) { + + return /mat\d/.test( type ); + + } + + /** + * Whether the given type is a reference type or not. + * + * @param {string} type - The type to check. + * @return {boolean} Whether the given type is a reference type or not. + */ + isReference( type ) { + + return type === 'void' || type === 'property' || type === 'sampler' || type === 'samplerComparison' || type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'depthTexture' || type === 'texture3D'; + + } + + /** + * Checks if the given texture requires a manual conversion to the working color space. + * + * @abstract + * @param {Texture} texture - The texture to check. + * @return {boolean} Whether the given texture requires a conversion to working color space or not. + */ + needsToWorkingColorSpace( /*texture*/ ) { + + return false; + + } + + /** + * Returns the component type of a given texture. + * + * @param {Texture} texture - The texture. + * @return {string} The component type. + */ + getComponentTypeFromTexture( texture ) { + + const type = texture.type; + + if ( texture.isDataTexture ) { + + if ( type === IntType ) return 'int'; + if ( type === UnsignedIntType ) return 'uint'; + + } + + return 'float'; + + } + + /** + * Returns the element type for a given type. + * + * @param {string} type - The type. + * @return {string} The element type. + */ + getElementType( type ) { + + if ( type === 'mat2' ) return 'vec2'; + if ( type === 'mat3' ) return 'vec3'; + if ( type === 'mat4' ) return 'vec4'; + + return this.getComponentType( type ); + + } + + /** + * Returns the component type for a given type. + * + * @param {string} type - The type. + * @return {string} The component type. + */ + getComponentType( type ) { + + type = this.getVectorType( type ); + + if ( type === 'float' || type === 'bool' || type === 'int' || type === 'uint' ) return type; + + const componentType = /(b|i|u|)(vec|mat)([2-4])/.exec( type ); + + if ( componentType === null ) return null; + + if ( componentType[ 1 ] === 'b' ) return 'bool'; + if ( componentType[ 1 ] === 'i' ) return 'int'; + if ( componentType[ 1 ] === 'u' ) return 'uint'; + + return 'float'; + + } + + /** + * Returns the vector type for a given type. + * + * @param {string} type - The type. + * @return {string} The vector type. + */ + getVectorType( type ) { + + if ( type === 'color' ) return 'vec3'; + if ( type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'texture3D' ) return 'vec4'; + + return type; + + } + + /** + * Returns the data type for the given the length and component type. + * + * @param {number} length - The length. + * @param {string} [componentType='float'] - The component type. + * @return {string} The type. + */ + getTypeFromLength( length, componentType = 'float' ) { + + if ( length === 1 ) return componentType; + + let baseType = getTypeFromLength( length ); + const prefix = componentType === 'float' ? '' : componentType[ 0 ]; + + // fix edge case for mat2x2 being same size as vec4 + if ( /mat2/.test( componentType ) === true ) { + + baseType = baseType.replace( 'vec', 'mat' ); + + } + + return prefix + baseType; + + } + + /** + * Returns the type for a given typed array. + * + * @param {TypedArray} array - The typed array. + * @return {string} The type. + */ + getTypeFromArray( array ) { + + return typeFromArray.get( array.constructor ); + + } + + /** + * Returns the type is an integer type. + * + * @param {string} type - The type. + * @return {boolean} Whether the type is an integer type or not. + */ + isInteger( type ) { + + return /int|uint|(i|u)vec/.test( type ); + + } + + /** + * Returns the type for a given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + * @return {string} The type. + */ + getTypeFromAttribute( attribute ) { + + let dataAttribute = attribute; + + if ( attribute.isInterleavedBufferAttribute ) dataAttribute = attribute.data; + + const array = dataAttribute.array; + const itemSize = attribute.itemSize; + const normalized = attribute.normalized; + + let arrayType; + + if ( ! ( attribute instanceof Float16BufferAttribute ) && normalized !== true ) { + + arrayType = this.getTypeFromArray( array ); + + } + + return this.getTypeFromLength( itemSize, arrayType ); + + } + + /** + * Returns the length for the given data type. + * + * @param {string} type - The data type. + * @return {number} The length. + */ + getTypeLength( type ) { + + const vecType = this.getVectorType( type ); + const vecNum = /vec([2-4])/.exec( vecType ); + + if ( vecNum !== null ) return Number( vecNum[ 1 ] ); + if ( vecType === 'float' || vecType === 'bool' || vecType === 'int' || vecType === 'uint' ) return 1; + if ( /mat2/.test( type ) === true ) return 4; + if ( /mat3/.test( type ) === true ) return 9; + if ( /mat4/.test( type ) === true ) return 16; + + return 0; + + } + + /** + * Returns the vector type for a given matrix type. + * + * @param {string} type - The matrix type. + * @return {string} The vector type. + */ + getVectorFromMatrix( type ) { + + return type.replace( 'mat', 'vec' ); + + } + + /** + * For a given type this method changes the component type to the + * given value. E.g. `vec4` should be changed to the new component type + * `uint` which results in `uvec4`. + * + * @param {string} type - The type. + * @param {string} newComponentType - The new component type. + * @return {string} The new type. + */ + changeComponentType( type, newComponentType ) { + + return this.getTypeFromLength( this.getTypeLength( type ), newComponentType ); + + } + + /** + * Returns the integer type pendant for the given type. + * + * @param {string} type - The type. + * @return {string} The integer type. + */ + getIntegerType( type ) { + + const componentType = this.getComponentType( type ); + + if ( componentType === 'int' || componentType === 'uint' ) return type; + + return this.changeComponentType( type, 'int' ); + + } + + /** + * Adds a stack node to the internal stack. + * + * @return {StackNode} The added stack node. + */ + addStack() { + + this.stack = stack( this.stack ); + + this.stacks.push( getCurrentStack() || this.stack ); + setCurrentStack( this.stack ); + + return this.stack; + + } + + /** + * Removes the last stack node from the internal stack. + * + * @return {StackNode} The removed stack node. + */ + removeStack() { + + const lastStack = this.stack; + this.stack = lastStack.parent; + + setCurrentStack( this.stacks.pop() ); + + return lastStack; + + } + + /** + * The builder maintains (cached) data for each node during the building process. This method + * can be used to get these data for a specific shader stage and cache. + * + * @param {Node} node - The node to get the data for. + * @param {('vertex'|'fragment'|'compute'|'any')} [shaderStage=this.shaderStage] - The shader stage. + * @param {?NodeCache} cache - An optional cache. + * @return {Object} The node data. + */ + getDataFromNode( node, shaderStage = this.shaderStage, cache = null ) { + + cache = cache === null ? ( node.isGlobal( this ) ? this.globalCache : this.cache ) : cache; + + let nodeData = cache.getData( node ); + + if ( nodeData === undefined ) { + + nodeData = {}; + + cache.setData( node, nodeData ); + + } + + if ( nodeData[ shaderStage ] === undefined ) nodeData[ shaderStage ] = {}; + + return nodeData[ shaderStage ]; + + } + + /** + * Returns the properties for the given node and shader stage. + * + * @param {Node} node - The node to get the properties for. + * @param {('vertex'|'fragment'|'compute'|'any')} [shaderStage='any'] - The shader stage. + * @return {Object} The node properties. + */ + getNodeProperties( node, shaderStage = 'any' ) { + + const nodeData = this.getDataFromNode( node, shaderStage ); + + return nodeData.properties || ( nodeData.properties = { outputNode: null } ); + + } + + /** + * Returns an instance of {@link NodeAttribute} for the given buffer attribute node. + * + * @param {BufferAttributeNode} node - The buffer attribute node. + * @param {string} type - The node type. + * @return {NodeAttribute} The node attribute. + */ + getBufferAttributeFromNode( node, type ) { + + const nodeData = this.getDataFromNode( node ); + + let bufferAttribute = nodeData.bufferAttribute; + + if ( bufferAttribute === undefined ) { + + const index = this.uniforms.index ++; + + bufferAttribute = new NodeAttribute( 'nodeAttribute' + index, type, node ); + + this.bufferAttributes.push( bufferAttribute ); + + nodeData.bufferAttribute = bufferAttribute; + + } + + return bufferAttribute; + + } + + /** + * Returns an instance of {@link StructType} for the given output struct node. + * + * @param {OutputStructNode} node - The output struct node. + * @param {Array} membersLayout - The output struct types. + * @param {?string} [name=null] - The name of the struct. + * @param {('vertex'|'fragment'|'compute'|'any')} [shaderStage=this.shaderStage] - The shader stage. + * @return {StructType} The struct type attribute. + */ + getStructTypeFromNode( node, membersLayout, name = null, shaderStage = this.shaderStage ) { + + const nodeData = this.getDataFromNode( node, shaderStage, this.globalCache ); + + let structType = nodeData.structType; + + if ( structType === undefined ) { + + const index = this.structs.index ++; + + if ( name === null ) name = 'StructType' + index; + + structType = new StructType( name, membersLayout ); + + this.structs[ shaderStage ].push( structType ); + + nodeData.structType = structType; + + } + + return structType; + + } + + /** + * Returns an instance of {@link StructType} for the given output struct node. + * + * @param {OutputStructNode} node - The output struct node. + * @param {Array} membersLayout - The output struct types. + * @return {StructType} The struct type attribute. + */ + getOutputStructTypeFromNode( node, membersLayout ) { + + const structType = this.getStructTypeFromNode( node, membersLayout, 'OutputType', 'fragment' ); + structType.output = true; + + return structType; + + } + + /** + * Returns an instance of {@link NodeUniform} for the given uniform node. + * + * @param {UniformNode} node - The uniform node. + * @param {string} type - The uniform type. + * @param {('vertex'|'fragment'|'compute'|'any')} [shaderStage=this.shaderStage] - The shader stage. + * @param {?string} name - The name of the uniform. + * @return {NodeUniform} The node uniform. + */ + getUniformFromNode( node, type, shaderStage = this.shaderStage, name = null ) { + + const nodeData = this.getDataFromNode( node, shaderStage, this.globalCache ); + + let nodeUniform = nodeData.uniform; + + if ( nodeUniform === undefined ) { + + const index = this.uniforms.index ++; + + nodeUniform = new NodeUniform( name || ( 'nodeUniform' + index ), type, node ); + + this.uniforms[ shaderStage ].push( nodeUniform ); + + this.registerDeclaration( nodeUniform ); + + nodeData.uniform = nodeUniform; + + } + + return nodeUniform; + + } + + /** + * Returns the array length. + * + * @param {Node} node - The node. + * @return {?number} The array length. + */ + getArrayCount( node ) { + + let count = null; + + if ( node.isArrayNode ) count = node.count; + else if ( node.isVarNode && node.node.isArrayNode ) count = node.node.count; + + return count; + + } + + /** + * Returns an instance of {@link NodeVar} for the given variable node. + * + * @param {VarNode} node - The variable node. + * @param {?string} name - The variable's name. + * @param {string} [type=node.getNodeType( this )] - The variable's type. + * @param {('vertex'|'fragment'|'compute'|'any')} [shaderStage=this.shaderStage] - The shader stage. + * @param {boolean} [readOnly=false] - Whether the variable is read-only or not. + * + * @return {NodeVar} The node variable. + */ + getVarFromNode( node, name = null, type = node.getNodeType( this ), shaderStage = this.shaderStage, readOnly = false ) { + + const nodeData = this.getDataFromNode( node, shaderStage ); + + let nodeVar = nodeData.variable; + + if ( nodeVar === undefined ) { + + const idNS = readOnly ? '_const' : '_var'; + + const vars = this.vars[ shaderStage ] || ( this.vars[ shaderStage ] = [] ); + const id = this.vars[ idNS ] || ( this.vars[ idNS ] = 0 ); + + if ( name === null ) { + + name = ( readOnly ? 'nodeConst' : 'nodeVar' ) + id; + + this.vars[ idNS ] ++; + + } + + // + + const count = this.getArrayCount( node ); + + nodeVar = new NodeVar( name, type, readOnly, count ); + + if ( ! readOnly ) { + + vars.push( nodeVar ); + + } + + this.registerDeclaration( nodeVar ); + + nodeData.variable = nodeVar; + + } + + return nodeVar; + + } + + /** + * Returns whether a Node or its flow is deterministic, useful for use in `const`. + * + * @param {Node} node - The varying node. + * @return {boolean} Returns true if deterministic. + */ + isDeterministic( node ) { + + if ( node.isMathNode ) { + + return this.isDeterministic( node.aNode ) && + ( node.bNode ? this.isDeterministic( node.bNode ) : true ) && + ( node.cNode ? this.isDeterministic( node.cNode ) : true ); + + } else if ( node.isOperatorNode ) { + + return this.isDeterministic( node.aNode ) && + ( node.bNode ? this.isDeterministic( node.bNode ) : true ); + + } else if ( node.isArrayNode ) { + + if ( node.values !== null ) { + + for ( const n of node.values ) { + + if ( ! this.isDeterministic( n ) ) { + + return false; + + } + + } + + } + + return true; + + } else if ( node.isConstNode ) { + + return true; + + } + + return false; + + } + + /** + * Returns an instance of {@link NodeVarying} for the given varying node. + * + * @param {(VaryingNode|PropertyNode)} node - The varying node. + * @param {?string} name - The varying's name. + * @param {string} [type=node.getNodeType( this )] - The varying's type. + * @param {?string} interpolationType - The interpolation type of the varying. + * @param {?string} interpolationSampling - The interpolation sampling type of the varying. + * @return {NodeVar} The node varying. + */ + getVaryingFromNode( node, name = null, type = node.getNodeType( this ), interpolationType = null, interpolationSampling = null ) { + + const nodeData = this.getDataFromNode( node, 'any' ); + + let nodeVarying = nodeData.varying; + + if ( nodeVarying === undefined ) { + + const varyings = this.varyings; + const index = varyings.length; + + if ( name === null ) name = 'nodeVarying' + index; + + nodeVarying = new NodeVarying( name, type, interpolationType, interpolationSampling ); + + varyings.push( nodeVarying ); + + this.registerDeclaration( nodeVarying ); + + nodeData.varying = nodeVarying; + + } + + return nodeVarying; + + } + + /** + * Returns the current namespace for the node builder. + * + * @return {string} The current namespace. + */ + get namespace() { + + return this.context.namespace; + + } + + /** + * Returns the output namespace for the node builder, which is used for the current output node. + * + * @return {string} The output namespace. + */ + getOutputNamespace() { + + return this.getNamespace( 'outputNode' ); + + } + + /** + * Returns the namespace for the given property. + * + * If the property name is not set, it returns the namespace only. + * If the namespace is not set, it returns the property name. + * If the namespace is set, it returns the namespace concatenated with the property name. + * + * @param {string} [property=''] - The property name. + * @return {string} The namespace for the property. + */ + getNamespace( property = '' ) { + + const ns = this.namespace; + + let nsName; + + if ( ns ) { + + nsName = property ? ( ns + '_' + property ) : ns; + + } else { + + nsName = property; + + } + + return nsName; + + } + + /** + * Registers a node declaration in the current shader stage. + * + * @param {Object} node - The node to be registered. + */ + registerDeclaration( node ) { + + const shaderStage = this.shaderStage; + const declarations = this.declarations[ shaderStage ] || ( this.declarations[ shaderStage ] = {} ); + + const property = this.getPropertyName( node ); + + let index = 1; + let name = property; + + // Automatically renames the property if the name is already in use. + + while ( declarations[ name ] !== undefined ) { + + name = property + '_' + index ++; + + } + + if ( index > 1 ) { + + node.name = name; + + console.warn( `THREE.TSL: Declaration name '${ property }' of '${ node.type }' already in use. Renamed to '${ name }'.` ); + + } + + declarations[ name ] = node; + + } + + /** + * Returns an instance of {@link NodeCode} for the given code node. + * + * @param {CodeNode} node - The code node. + * @param {string} type - The node type. + * @param {('vertex'|'fragment'|'compute'|'any')} [shaderStage=this.shaderStage] - The shader stage. + * @return {NodeCode} The node code. + */ + getCodeFromNode( node, type, shaderStage = this.shaderStage ) { + + const nodeData = this.getDataFromNode( node ); + + let nodeCode = nodeData.code; + + if ( nodeCode === undefined ) { + + const codes = this.codes[ shaderStage ] || ( this.codes[ shaderStage ] = [] ); + const index = codes.length; + + nodeCode = new NodeCode( 'nodeCode' + index, type ); + + codes.push( nodeCode ); + + nodeData.code = nodeCode; + + } + + return nodeCode; + + } + + /** + * Adds a code flow based on the code-block hierarchy. + + * This is used so that code-blocks like If,Else create their variables locally if the Node + * is only used inside one of these conditionals in the current shader stage. + * + * @param {Node} node - The node to add. + * @param {Node} nodeBlock - Node-based code-block. Usually 'ConditionalNode'. + */ + addFlowCodeHierarchy( node, nodeBlock ) { + + const { flowCodes, flowCodeBlock } = this.getDataFromNode( node ); + + let needsFlowCode = true; + let nodeBlockHierarchy = nodeBlock; + + while ( nodeBlockHierarchy ) { + + if ( flowCodeBlock.get( nodeBlockHierarchy ) === true ) { + + needsFlowCode = false; + break; + + } + + nodeBlockHierarchy = this.getDataFromNode( nodeBlockHierarchy ).parentNodeBlock; + + } + + if ( needsFlowCode ) { + + for ( const flowCode of flowCodes ) { + + this.addLineFlowCode( flowCode ); + + } + + } + + } + + /** + * Add a inline-code to the current flow code-block. + * + * @param {Node} node - The node to add. + * @param {string} code - The code to add. + * @param {Node} nodeBlock - Current ConditionalNode + */ + addLineFlowCodeBlock( node, code, nodeBlock ) { + + const nodeData = this.getDataFromNode( node ); + const flowCodes = nodeData.flowCodes || ( nodeData.flowCodes = [] ); + const codeBlock = nodeData.flowCodeBlock || ( nodeData.flowCodeBlock = new WeakMap() ); + + flowCodes.push( code ); + codeBlock.set( nodeBlock, true ); + + } + + /** + * Add a inline-code to the current flow. + * + * @param {string} code - The code to add. + * @param {?Node} [node= null] - Optional Node, can help the system understand if the Node is part of a code-block. + * @return {NodeBuilder} A reference to this node builder. + */ + addLineFlowCode( code, node = null ) { + + if ( code === '' ) return this; + + if ( node !== null && this.context.nodeBlock ) { + + this.addLineFlowCodeBlock( node, code, this.context.nodeBlock ); + + } + + code = this.tab + code; + + if ( ! /;\s*$/.test( code ) ) { + + code = code + ';\n'; + + } + + this.flow.code += code; + + return this; + + } + + /** + * Adds a code to the current code flow. + * + * @param {string} code - Shader code. + * @return {NodeBuilder} A reference to this node builder. + */ + addFlowCode( code ) { + + this.flow.code += code; + + return this; + + } + + /** + * Add tab in the code that will be generated so that other snippets respect the current tabulation. + * Typically used in codes with If,Else. + * + * @return {NodeBuilder} A reference to this node builder. + */ + addFlowTab() { + + this.tab += '\t'; + + return this; + + } + + /** + * Removes a tab. + * + * @return {NodeBuilder} A reference to this node builder. + */ + removeFlowTab() { + + this.tab = this.tab.slice( 0, - 1 ); + + return this; + + } + + /** + * Gets the current flow data based on a Node. + * + * @param {Node} node - Node that the flow was started. + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {Object} The flow data. + */ + getFlowData( node/*, shaderStage*/ ) { + + return this.flowsData.get( node ); + + } + + /** + * Executes the node flow based on a root node to generate the final shader code. + * + * @param {Node} node - The node to execute. + * @return {Object} The code flow. + */ + flowNode( node ) { + + const output = node.getNodeType( this ); + + const flowData = this.flowChildNode( node, output ); + + this.flowsData.set( node, flowData ); + + return flowData; + + } + + /** + * Includes a node in the current function node. + * + * @param {Node} node - The node to include. + * @returns {void} + */ + addInclude( node ) { + + if ( this.currentFunctionNode !== null ) { + + this.currentFunctionNode.includes.push( node ); + + } + + } + + /** + * Returns the native shader operator name for a given generic name. + * It is a similar type of method like {@link NodeBuilder#getMethod}. + * + * @param {ShaderNodeInternal} shaderNode - The shader node to build the function node with. + * @return {FunctionNode} The build function node. + */ + buildFunctionNode( shaderNode ) { + + const fn = new FunctionNode(); + + const previous = this.currentFunctionNode; + + this.currentFunctionNode = fn; + + fn.code = this.buildFunctionCode( shaderNode ); + + this.currentFunctionNode = previous; + + return fn; + + } + + /** + * Generates a code flow based on a TSL function: Fn(). + * + * @param {ShaderNodeInternal} shaderNode - A function code will be generated based on the input. + * @return {Object} + */ + flowShaderNode( shaderNode ) { + + const layout = shaderNode.layout; + + const inputs = { + [ Symbol.iterator ]() { + + let index = 0; + const values = Object.values( this ); + return { + next: () => ( { + value: values[ index ], + done: index ++ >= values.length + } ) + }; + + } + }; + + for ( const input of layout.inputs ) { + + inputs[ input.name ] = new ParameterNode( input.type, input.name ); + + } + + // + + shaderNode.layout = null; + + const callNode = shaderNode.call( inputs ); + const flowData = this.flowStagesNode( callNode, layout.type ); + + shaderNode.layout = layout; + + return flowData; + + } + + /** + * Runs the node flow through all the steps of creation, 'setup', 'analyze', 'generate'. + * + * @param {Node} node - The node to execute. + * @param {?string} output - Expected output type. For example 'vec3'. + * @return {Object} + */ + flowStagesNode( node, output = null ) { + + const previousFlow = this.flow; + const previousVars = this.vars; + const previousDeclarations = this.declarations; + const previousCache = this.cache; + const previousBuildStage = this.buildStage; + const previousStack = this.stack; + + const flow = { + code: '' + }; + + this.flow = flow; + this.vars = {}; + this.declarations = {}; + this.cache = new NodeCache(); + this.stack = stack(); + + for ( const buildStage of defaultBuildStages ) { + + this.setBuildStage( buildStage ); + + flow.result = node.build( this, output ); + + } + + flow.vars = this.getVars( this.shaderStage ); + + this.flow = previousFlow; + this.vars = previousVars; + this.declarations = previousDeclarations; + this.cache = previousCache; + this.stack = previousStack; + + this.setBuildStage( previousBuildStage ); + + return flow; + + } + + /** + * Returns the native shader operator name for a given generic name. + * It is a similar type of method like {@link NodeBuilder#getMethod}. + * + * @abstract + * @param {string} op - The operator name to resolve. + * @return {?string} The resolved operator name. + */ + getFunctionOperator( /* op */ ) { + + return null; + + } + + /** + * Builds the given shader node. + * + * @abstract + * @param {ShaderNodeInternal} shaderNode - The shader node. + * @return {string} The function code. + */ + buildFunctionCode( /* shaderNode */ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * Generates a code flow based on a child Node. + * + * @param {Node} node - The node to execute. + * @param {?string} output - Expected output type. For example 'vec3'. + * @return {Object} The code flow. + */ + flowChildNode( node, output = null ) { + + const previousFlow = this.flow; + + const flow = { + code: '' + }; + + this.flow = flow; + + flow.result = node.build( this, output ); + + this.flow = previousFlow; + + return flow; + + } + + /** + * Executes a flow of code in a different stage. + * + * Some nodes like `varying()` have the ability to compute code in vertex-stage and + * return the value in fragment-stage even if it is being executed in an input fragment. + * + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @param {Node} node - The node to execute. + * @param {?string} output - Expected output type. For example 'vec3'. + * @param {?string} propertyName - The property name to assign the result. + * @return {Object|Node|null} The code flow or node.build() result. + */ + flowNodeFromShaderStage( shaderStage, node, output = null, propertyName = null ) { + + const previousTab = this.tab; + const previousCache = this.cache; + const previousShaderStage = this.shaderStage; + const previousContext = this.context; + + this.setShaderStage( shaderStage ); + + const context = { ...this.context }; + delete context.nodeBlock; + + this.cache = this.globalCache; + this.tab = '\t'; + this.context = context; + + let result = null; + + if ( this.buildStage === 'generate' ) { + + const flowData = this.flowChildNode( node, output ); + + if ( propertyName !== null ) { + + flowData.code += `${ this.tab + propertyName } = ${ flowData.result };\n`; + + } + + this.flowCode[ shaderStage ] = this.flowCode[ shaderStage ] + flowData.code; + + result = flowData; + + } else { + + result = node.build( this ); + + } + + this.setShaderStage( previousShaderStage ); + + this.cache = previousCache; + this.tab = previousTab; + this.context = previousContext; + + return result; + + } + + /** + * Returns an array holding all node attributes of this node builder. + * + * @return {Array} The node attributes of this builder. + */ + getAttributesArray() { + + return this.attributes.concat( this.bufferAttributes ); + + } + + /** + * Returns the attribute definitions as a shader string for the given shader stage. + * + * @abstract + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {string} The attribute code section. + */ + getAttributes( /*shaderStage*/ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns the varying definitions as a shader string for the given shader stage. + * + * @abstract + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {string} The varying code section. + */ + getVaryings( /*shaderStage*/ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns a single variable definition as a shader string for the given variable type and name. + * + * @param {string} type - The variable's type. + * @param {string} name - The variable's name. + * @param {?number} [count=null] - The array length. + * @return {string} The shader string. + */ + getVar( type, name, count = null ) { + + return `${ count !== null ? this.generateArrayDeclaration( type, count ) : this.getType( type ) } ${ name }`; + + } + + /** + * Returns the variable definitions as a shader string for the given shader stage. + * + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {string} The variable code section. + */ + getVars( shaderStage ) { + + let snippet = ''; + + const vars = this.vars[ shaderStage ]; + + if ( vars !== undefined ) { + + for ( const variable of vars ) { + + snippet += `${ this.getVar( variable.type, variable.name ) }; `; + + } + + } + + return snippet; + + } + + /** + * Returns the uniform definitions as a shader string for the given shader stage. + * + * @abstract + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {string} The uniform code section. + */ + getUniforms( /*shaderStage*/ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns the native code definitions as a shader string for the given shader stage. + * + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {string} The native code section. + */ + getCodes( shaderStage ) { + + const codes = this.codes[ shaderStage ]; + + let code = ''; + + if ( codes !== undefined ) { + + for ( const nodeCode of codes ) { + + code += nodeCode.code + '\n'; + + } + + } + + return code; + + } + + /** + * Returns the hash of this node builder. + * + * @return {string} The hash. + */ + getHash() { + + return this.vertexShader + this.fragmentShader + this.computeShader; + + } + + /** + * Sets the current shader stage. + * + * @param {?('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage to set. + */ + setShaderStage( shaderStage ) { + + this.shaderStage = shaderStage; + + } + + /** + * Returns the current shader stage. + * + * @return {?('vertex'|'fragment'|'compute'|'any')} The current shader stage. + */ + getShaderStage() { + + return this.shaderStage; + + } + + /** + * Sets the current build stage. + * + * @param {?('setup'|'analyze'|'generate')} buildStage - The build stage to set. + */ + setBuildStage( buildStage ) { + + this.buildStage = buildStage; + + } + + /** + * Returns the current build stage. + * + * @return {?('setup'|'analyze'|'generate')} The current build stage. + */ + getBuildStage() { + + return this.buildStage; + + } + + /** + * Controls the code build of the shader stages. + * + * @abstract + */ + buildCode() { + + console.warn( 'Abstract function.' ); + + } + + /** + * Central build method which controls the build for the given object. + * + * @return {NodeBuilder} A reference to this node builder. + */ + build() { + + const { object, material, renderer } = this; + + if ( material !== null ) { + + let nodeMaterial = renderer.library.fromMaterial( material ); + + if ( nodeMaterial === null ) { + + console.error( `NodeMaterial: Material "${ material.type }" is not compatible.` ); + + nodeMaterial = new NodeMaterial(); + + } + + nodeMaterial.build( this ); + + } else { + + this.addFlow( 'compute', object ); + + } + + // setup() -> stage 1: create possible new nodes and returns an output reference node + // analyze() -> stage 2: analyze nodes to possible optimization and validation + // generate() -> stage 3: generate shader + + for ( const buildStage of defaultBuildStages ) { + + this.setBuildStage( buildStage ); + + if ( this.context.vertex && this.context.vertex.isNode ) { + + this.flowNodeFromShaderStage( 'vertex', this.context.vertex ); + + } + + for ( const shaderStage of shaderStages ) { + + this.setShaderStage( shaderStage ); + + const flowNodes = this.flowNodes[ shaderStage ]; + + for ( const node of flowNodes ) { + + if ( buildStage === 'generate' ) { + + this.flowNode( node ); + + } else { + + node.build( this ); + + } + + } + + } + + } + + this.setBuildStage( null ); + this.setShaderStage( null ); + + // stage 4: build code for a specific output + + this.buildCode(); + this.buildUpdateNodes(); + + return this; + + } + + /** + * Returns a uniform representation which is later used for UBO generation and rendering. + * + * @param {NodeUniform} uniformNode - The uniform node. + * @param {string} type - The requested type. + * @return {Uniform} The uniform. + */ + getNodeUniform( uniformNode, type ) { + + if ( type === 'float' || type === 'int' || type === 'uint' ) return new NumberNodeUniform( uniformNode ); + if ( type === 'vec2' || type === 'ivec2' || type === 'uvec2' ) return new Vector2NodeUniform( uniformNode ); + if ( type === 'vec3' || type === 'ivec3' || type === 'uvec3' ) return new Vector3NodeUniform( uniformNode ); + if ( type === 'vec4' || type === 'ivec4' || type === 'uvec4' ) return new Vector4NodeUniform( uniformNode ); + if ( type === 'color' ) return new ColorNodeUniform( uniformNode ); + if ( type === 'mat2' ) return new Matrix2NodeUniform( uniformNode ); + if ( type === 'mat3' ) return new Matrix3NodeUniform( uniformNode ); + if ( type === 'mat4' ) return new Matrix4NodeUniform( uniformNode ); + + throw new Error( `Uniform "${type}" not declared.` ); + + } + + /** + * Formats the given shader snippet from a given type into another one. E.g. + * this method might be used to convert a simple float string `"1.0"` into a + * `vec3` representation: `"vec3( 1.0 )"`. + * + * @param {string} snippet - The shader snippet. + * @param {string} fromType - The source type. + * @param {string} toType - The target type. + * @return {string} The updated shader string. + */ + format( snippet, fromType, toType ) { + + fromType = this.getVectorType( fromType ); + toType = this.getVectorType( toType ); + + if ( fromType === toType || toType === null || this.isReference( toType ) ) { + + return snippet; + + } + + const fromTypeLength = this.getTypeLength( fromType ); + const toTypeLength = this.getTypeLength( toType ); + + if ( fromTypeLength === 16 && toTypeLength === 9 ) { + + return `${ this.getType( toType ) }( ${ snippet }[ 0 ].xyz, ${ snippet }[ 1 ].xyz, ${ snippet }[ 2 ].xyz )`; + + } + + if ( fromTypeLength === 9 && toTypeLength === 4 ) { + + return `${ this.getType( toType ) }( ${ snippet }[ 0 ].xy, ${ snippet }[ 1 ].xy )`; + + } + + + if ( fromTypeLength > 4 ) { // fromType is matrix-like + + // @TODO: ignore for now + + return snippet; + + } + + if ( toTypeLength > 4 || toTypeLength === 0 ) { // toType is matrix-like or unknown + + // @TODO: ignore for now + + return snippet; + + } + + if ( fromTypeLength === toTypeLength ) { + + return `${ this.getType( toType ) }( ${ snippet } )`; + + } + + if ( fromTypeLength > toTypeLength ) { + + snippet = toType === 'bool' ? `all( ${ snippet } )` : `${ snippet }.${ 'xyz'.slice( 0, toTypeLength ) }`; + + return this.format( snippet, this.getTypeFromLength( toTypeLength, this.getComponentType( fromType ) ), toType ); + + } + + if ( toTypeLength === 4 && fromTypeLength > 1 ) { // toType is vec4-like + + return `${ this.getType( toType ) }( ${ this.format( snippet, fromType, 'vec3' ) }, 1.0 )`; + + } + + if ( fromTypeLength === 2 ) { // fromType is vec2-like and toType is vec3-like + + return `${ this.getType( toType ) }( ${ this.format( snippet, fromType, 'vec2' ) }, 0.0 )`; + + } + + if ( fromTypeLength === 1 && toTypeLength > 1 && fromType !== this.getComponentType( toType ) ) { // fromType is float-like + + // convert a number value to vector type, e.g: + // vec3( 1u ) -> vec3( float( 1u ) ) + + snippet = `${ this.getType( this.getComponentType( toType ) ) }( ${ snippet } )`; + + } + + return `${ this.getType( toType ) }( ${ snippet } )`; // fromType is float-like + + } + + /** + * Returns a signature with the engine's current revision. + * + * @return {string} The signature. + */ + getSignature() { + + return `// Three.js r${ REVISION } - Node System\n`; + + } + + /** + * Prevents the node builder from being used as an iterable in TSL.Fn(), avoiding potential runtime errors. + */ + *[ Symbol.iterator ]() { } + + // Deprecated + + /** + * @function + * @deprecated since r168. Use `new NodeMaterial()` instead, with targeted node material name. + * + * @param {string} [type='NodeMaterial'] - The node material type. + * @throws {Error} + */ + createNodeMaterial( type = 'NodeMaterial' ) { // @deprecated, r168 + + throw new Error( `THREE.NodeBuilder: createNodeMaterial() was deprecated. Use new ${ type }() instead.` ); + + } + + +} + +/** + * Management class for updating nodes. The module tracks metrics like + * the elapsed time, delta time, the render and frame ID to correctly + * call the node update methods {@link Node#updateBefore}, {@link Node#update} + * and {@link Node#updateAfter} depending on the node's configuration. + */ +class NodeFrame { + + /** + * Constructs a new node fame. + */ + constructor() { + + /** + * The elapsed time in seconds. + * + * @type {number} + * @default 0 + */ + this.time = 0; + + /** + * The delta time in seconds. + * + * @type {number} + * @default 0 + */ + this.deltaTime = 0; + + /** + * The frame ID. + * + * @type {number} + * @default 0 + */ + this.frameId = 0; + + /** + * The render ID. + * + * @type {number} + * @default 0 + */ + this.renderId = 0; + + /** + * Used to control the {@link Node#update} call. + * + * @type {WeakMap} + */ + this.updateMap = new WeakMap(); + + /** + * Used to control the {@link Node#updateBefore} call. + * + * @type {WeakMap} + */ + this.updateBeforeMap = new WeakMap(); + + /** + * Used to control the {@link Node#updateAfter} call. + * + * @type {WeakMap} + */ + this.updateAfterMap = new WeakMap(); + + /** + * A reference to the current renderer. + * + * @type {?Renderer} + * @default null + */ + this.renderer = null; + + /** + * A reference to the current material. + * + * @type {?Material} + * @default null + */ + this.material = null; + + /** + * A reference to the current camera. + * + * @type {?Camera} + * @default null + */ + this.camera = null; + + /** + * A reference to the current 3D object. + * + * @type {?Object3D} + * @default null + */ + this.object = null; + + /** + * A reference to the current scene. + * + * @type {?Scene} + * @default null + */ + this.scene = null; + + } + + /** + * Returns a dictionary for a given node and update map which + * is used to correctly call node update methods per frame or render. + * + * @private + * @param {WeakMap} referenceMap - The reference weak map. + * @param {Node} nodeRef - The reference to the current node. + * @return {Object} The dictionary. + */ + _getMaps( referenceMap, nodeRef ) { + + let maps = referenceMap.get( nodeRef ); + + if ( maps === undefined ) { + + maps = { + renderMap: new WeakMap(), + frameMap: new WeakMap() + }; + + referenceMap.set( nodeRef, maps ); + + } + + return maps; + + } + + /** + * This method executes the {@link Node#updateBefore} for the given node. + * It makes sure {@link Node#updateBeforeType} is honored meaning the update + * is only executed once per frame, render or object depending on the update + * type. + * + * @param {Node} node - The node that should be updated. + */ + updateBeforeNode( node ) { + + const updateType = node.getUpdateBeforeType(); + const reference = node.updateReference( this ); + + if ( updateType === NodeUpdateType.FRAME ) { + + const { frameMap } = this._getMaps( this.updateBeforeMap, reference ); + + if ( frameMap.get( reference ) !== this.frameId ) { + + if ( node.updateBefore( this ) !== false ) { + + frameMap.set( reference, this.frameId ); + + } + + } + + } else if ( updateType === NodeUpdateType.RENDER ) { + + const { renderMap } = this._getMaps( this.updateBeforeMap, reference ); + + if ( renderMap.get( reference ) !== this.renderId ) { + + if ( node.updateBefore( this ) !== false ) { + + renderMap.set( reference, this.renderId ); + + } + + } + + } else if ( updateType === NodeUpdateType.OBJECT ) { + + node.updateBefore( this ); + + } + + } + + /** + * This method executes the {@link Node#updateAfter} for the given node. + * It makes sure {@link Node#updateAfterType} is honored meaning the update + * is only executed once per frame, render or object depending on the update + * type. + * + * @param {Node} node - The node that should be updated. + */ + updateAfterNode( node ) { + + const updateType = node.getUpdateAfterType(); + const reference = node.updateReference( this ); + + if ( updateType === NodeUpdateType.FRAME ) { + + const { frameMap } = this._getMaps( this.updateAfterMap, reference ); + + if ( frameMap.get( reference ) !== this.frameId ) { + + if ( node.updateAfter( this ) !== false ) { + + frameMap.set( reference, this.frameId ); + + } + + } + + } else if ( updateType === NodeUpdateType.RENDER ) { + + const { renderMap } = this._getMaps( this.updateAfterMap, reference ); + + if ( renderMap.get( reference ) !== this.renderId ) { + + if ( node.updateAfter( this ) !== false ) { + + renderMap.set( reference, this.renderId ); + + } + + } + + } else if ( updateType === NodeUpdateType.OBJECT ) { + + node.updateAfter( this ); + + } + + } + + /** + * This method executes the {@link Node#update} for the given node. + * It makes sure {@link Node#updateType} is honored meaning the update + * is only executed once per frame, render or object depending on the update + * type. + * + * @param {Node} node - The node that should be updated. + */ + updateNode( node ) { + + const updateType = node.getUpdateType(); + const reference = node.updateReference( this ); + + if ( updateType === NodeUpdateType.FRAME ) { + + const { frameMap } = this._getMaps( this.updateMap, reference ); + + if ( frameMap.get( reference ) !== this.frameId ) { + + if ( node.update( this ) !== false ) { + + frameMap.set( reference, this.frameId ); + + } + + } + + } else if ( updateType === NodeUpdateType.RENDER ) { + + const { renderMap } = this._getMaps( this.updateMap, reference ); + + if ( renderMap.get( reference ) !== this.renderId ) { + + if ( node.update( this ) !== false ) { + + renderMap.set( reference, this.renderId ); + + } + + } + + } else if ( updateType === NodeUpdateType.OBJECT ) { + + node.update( this ); + + } + + } + + /** + * Updates the internal state of the node frame. This method is + * called by the renderer in its internal animation loop. + */ + update() { + + this.frameId ++; + + if ( this.lastTime === undefined ) this.lastTime = performance.now(); + + this.deltaTime = ( performance.now() - this.lastTime ) / 1000; + + this.lastTime = performance.now(); + + this.time += this.deltaTime; + + } + +} + +/** + * Describes the input of a {@link NodeFunction}. + */ +class NodeFunctionInput { + + /** + * Constructs a new node function input. + * + * @param {string} type - The input type. + * @param {string} name - The input name. + * @param {?number} [count=null] - If the input is an Array, count will be the length. + * @param {('in'|'out'|'inout')} [qualifier=''] - The parameter qualifier (only relevant for GLSL). + * @param {boolean} [isConst=false] - Whether the input uses a const qualifier or not (only relevant for GLSL). + */ + constructor( type, name, count = null, qualifier = '', isConst = false ) { + + /** + * The input type. + * + * @type {string} + */ + this.type = type; + + /** + * The input name. + * + * @type {string} + */ + this.name = name; + + /** + * If the input is an Array, count will be the length. + * + * @type {?number} + * @default null + */ + this.count = count; + + /** + *The parameter qualifier (only relevant for GLSL). + * + * @type {('in'|'out'|'inout')} + * @default '' + */ + this.qualifier = qualifier; + + /** + * Whether the input uses a const qualifier or not (only relevant for GLSL). + * + * @type {boolean} + * @default false + */ + this.isConst = isConst; + + } + +} + +NodeFunctionInput.isNodeFunctionInput = true; + +/** + * Module for representing directional lights as nodes. + * + * @augments AnalyticLightNode + */ +class DirectionalLightNode extends AnalyticLightNode { + + static get type() { + + return 'DirectionalLightNode'; + + } + + /** + * Constructs a new directional light node. + * + * @param {?DirectionalLight} [light=null] - The directional light source. + */ + constructor( light = null ) { + + super( light ); + + } + + setupDirect() { + + const lightColor = this.colorNode; + const lightDirection = lightTargetDirection( this.light ); + + return { lightDirection, lightColor }; + + } + +} + +const _matrix41 = /*@__PURE__*/ new Matrix4(); +const _matrix42 = /*@__PURE__*/ new Matrix4(); + +let _ltcLib = null; + +/** + * Module for representing rect area lights as nodes. + * + * @augments AnalyticLightNode + */ +class RectAreaLightNode extends AnalyticLightNode { + + static get type() { + + return 'RectAreaLightNode'; + + } + + /** + * Constructs a new rect area light node. + * + * @param {?RectAreaLight} [light=null] - The rect area light source. + */ + constructor( light = null ) { + + super( light ); + + /** + * Uniform node representing the half height of the are light. + * + * @type {UniformNode} + */ + this.halfHeight = uniform( new Vector3() ).setGroup( renderGroup ); + + /** + * Uniform node representing the half width of the are light. + * + * @type {UniformNode} + */ + this.halfWidth = uniform( new Vector3() ).setGroup( renderGroup ); + + /** + * The `updateType` is set to `NodeUpdateType.RENDER` since the light + * relies on `viewMatrix` which might vary per render call. + * + * @type {string} + * @default 'render' + */ + this.updateType = NodeUpdateType.RENDER; + + } + + /** + * Overwritten to updated rect area light specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( frame ) { + + super.update( frame ); + + const { light } = this; + + const viewMatrix = frame.camera.matrixWorldInverse; + + _matrix42.identity(); + _matrix41.copy( light.matrixWorld ); + _matrix41.premultiply( viewMatrix ); + _matrix42.extractRotation( _matrix41 ); + + this.halfWidth.value.set( light.width * 0.5, 0.0, 0.0 ); + this.halfHeight.value.set( 0.0, light.height * 0.5, 0.0 ); + + this.halfWidth.value.applyMatrix4( _matrix42 ); + this.halfHeight.value.applyMatrix4( _matrix42 ); + + } + + setupDirectRectArea( builder ) { + + let ltc_1, ltc_2; + + if ( builder.isAvailable( 'float32Filterable' ) ) { + + ltc_1 = texture( _ltcLib.LTC_FLOAT_1 ); + ltc_2 = texture( _ltcLib.LTC_FLOAT_2 ); + + } else { + + ltc_1 = texture( _ltcLib.LTC_HALF_1 ); + ltc_2 = texture( _ltcLib.LTC_HALF_2 ); + + } + + const { colorNode, light } = this; + + const lightPosition = lightViewPosition( light ); + + return { + lightColor: colorNode, + lightPosition, + halfWidth: this.halfWidth, + halfHeight: this.halfHeight, + ltc_1, + ltc_2 + }; + + } + + /** + * Used to configure the internal BRDF approximation texture data. + * + * @param {RectAreaLightTexturesLib} ltc - The BRDF approximation texture data. + */ + static setLTC( ltc ) { + + _ltcLib = ltc; + + } + +} + +/** + * Module for representing spot lights as nodes. + * + * @augments AnalyticLightNode + */ +class SpotLightNode extends AnalyticLightNode { + + static get type() { + + return 'SpotLightNode'; + + } + + /** + * Constructs a new spot light node. + * + * @param {?SpotLight} [light=null] - The spot light source. + */ + constructor( light = null ) { + + super( light ); + + /** + * Uniform node representing the cone cosine. + * + * @type {UniformNode} + */ + this.coneCosNode = uniform( 0 ).setGroup( renderGroup ); + + /** + * Uniform node representing the penumbra cosine. + * + * @type {UniformNode} + */ + this.penumbraCosNode = uniform( 0 ).setGroup( renderGroup ); + + /** + * Uniform node representing the cutoff distance. + * + * @type {UniformNode} + */ + this.cutoffDistanceNode = uniform( 0 ).setGroup( renderGroup ); + + /** + * Uniform node representing the decay exponent. + * + * @type {UniformNode} + */ + this.decayExponentNode = uniform( 0 ).setGroup( renderGroup ); + + /** + * Uniform node representing the light color. + * + * @type {UniformNode} + */ + this.colorNode = uniform( this.color ).setGroup( renderGroup ); + + } + + /** + * Overwritten to updated spot light specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( frame ) { + + super.update( frame ); + + const { light } = this; + + this.coneCosNode.value = Math.cos( light.angle ); + this.penumbraCosNode.value = Math.cos( light.angle * ( 1 - light.penumbra ) ); + + this.cutoffDistanceNode.value = light.distance; + this.decayExponentNode.value = light.decay; + + } + + /** + * Computes the spot attenuation for the given angle. + * + * @param {NodeBuilder} builder - The node builder. + * @param {Node} angleCosine - The angle to compute the spot attenuation for. + * @return {Node} The spot attenuation. + */ + getSpotAttenuation( builder, angleCosine ) { + + const { coneCosNode, penumbraCosNode } = this; + + return smoothstep( coneCosNode, penumbraCosNode, angleCosine ); + + } + + getLightCoord( builder ) { + + const properties = builder.getNodeProperties( this ); + let projectionUV = properties.projectionUV; + + if ( projectionUV === undefined ) { + + projectionUV = lightProjectionUV( this.light, builder.context.positionWorld ); + + properties.projectionUV = projectionUV; + + } + + return projectionUV; + + } + + setupDirect( builder ) { + + const { colorNode, cutoffDistanceNode, decayExponentNode, light } = this; + + const lightVector = this.getLightVector( builder ); + + const lightDirection = lightVector.normalize(); + const angleCos = lightDirection.dot( lightTargetDirection( light ) ); + + const spotAttenuation = this.getSpotAttenuation( builder, angleCos ); + + const lightDistance = lightVector.length(); + + const lightAttenuation = getDistanceAttenuation( { + lightDistance, + cutoffDistance: cutoffDistanceNode, + decayExponent: decayExponentNode + } ); + + let lightColor = colorNode.mul( spotAttenuation ).mul( lightAttenuation ); + + let projected, lightCoord; + + if ( light.colorNode ) { + + lightCoord = this.getLightCoord( builder ); + projected = light.colorNode( lightCoord ); + + } else if ( light.map ) { + + lightCoord = this.getLightCoord( builder ); + projected = texture( light.map, lightCoord.xy ).onRenderUpdate( () => light.map ); + + } + + if ( projected ) { + + const inSpotLightMap = lightCoord.mul( 2. ).sub( 1. ).abs().lessThan( 1. ).all(); + + lightColor = inSpotLightMap.select( lightColor.mul( projected ), lightColor ); + + } + + return { lightColor, lightDirection }; + + } + +} + +/** + * An IES version of the default spot light node. + * + * @augments SpotLightNode + */ +class IESSpotLightNode extends SpotLightNode { + + static get type() { + + return 'IESSpotLightNode'; + + } + + /** + * Overwrites the default implementation to compute an IES conform spot attenuation. + * + * @param {NodeBuilder} builder - The node builder. + * @param {Node} angleCosine - The angle to compute the spot attenuation for. + * @return {Node} The spot attenuation. + */ + getSpotAttenuation( builder, angleCosine ) { + + const iesMap = this.light.iesMap; + + let spotAttenuation = null; + + if ( iesMap && iesMap.isTexture === true ) { + + const angle = angleCosine.acos().mul( 1.0 / Math.PI ); + + spotAttenuation = texture( iesMap, vec2( angle, 0 ), 0 ).r; + + } else { + + spotAttenuation = super.getSpotAttenuation( angleCosine ); + + } + + return spotAttenuation; + + } + +} + +const sdBox = /*@__PURE__*/ Fn( ( [ p, b ] ) => { + + const d = p.abs().sub( b ); + + return length( max$1( d, 0.0 ) ).add( min$1( max$1( d.x, d.y ), 0.0 ) ); + +} ); + +/** + * An implementation of a projector light node. + * + * @augments SpotLightNode + */ +class ProjectorLightNode extends SpotLightNode { + + static get type() { + + return 'ProjectorLightNode'; + + } + + update( frame ) { + + super.update( frame ); + + const light = this.light; + + this.penumbraCosNode.value = Math.min( Math.cos( light.angle * ( 1 - light.penumbra ) ), .99999 ); + + if ( light.aspect === null ) { + + let aspect = 1; + + if ( light.map !== null ) { + + aspect = light.map.width / light.map.height; + + } + + light.shadow.aspect = aspect; + + } else { + + light.shadow.aspect = light.aspect; + + } + + } + + /** + * Overwrites the default implementation to compute projection attenuation. + * + * @param {NodeBuilder} builder - The node builder. + * @return {Node} The spot attenuation. + */ + getSpotAttenuation( builder ) { + + const penumbraCos = this.penumbraCosNode; + const spotLightCoord = this.getLightCoord( builder ); + const coord = spotLightCoord.xyz.div( spotLightCoord.w ); + + const boxDist = sdBox( coord.xy.sub( vec2( 0.5 ) ), vec2( 0.5 ) ); + const angleFactor = div( - 1, sub( 1.0, acos( penumbraCos ) ).sub( 1.0 ) ); + const attenuation = saturate( boxDist.mul( - 2 ).mul( angleFactor ) ); + + return attenuation; + + } + +} + +/** + * Module for representing ambient lights as nodes. + * + * @augments AnalyticLightNode + */ +class AmbientLightNode extends AnalyticLightNode { + + static get type() { + + return 'AmbientLightNode'; + + } + + /** + * Constructs a new ambient light node. + * + * @param {?AmbientLight} [light=null] - The ambient light source. + */ + constructor( light = null ) { + + super( light ); + + } + + setup( { context } ) { + + context.irradiance.addAssign( this.colorNode ); + + } + +} + +/** + * Module for representing hemisphere lights as nodes. + * + * @augments AnalyticLightNode + */ +class HemisphereLightNode extends AnalyticLightNode { + + static get type() { + + return 'HemisphereLightNode'; + + } + + /** + * Constructs a new hemisphere light node. + * + * @param {?HemisphereLight} [light=null] - The hemisphere light source. + */ + constructor( light = null ) { + + super( light ); + + /** + * Uniform node representing the light's position. + * + * @type {UniformNode} + */ + this.lightPositionNode = lightPosition( light ); + + /** + * A node representing the light's direction. + * + * @type {Node} + */ + this.lightDirectionNode = this.lightPositionNode.normalize(); + + /** + * Uniform node representing the light's ground color. + * + * @type {UniformNode} + */ + this.groundColorNode = uniform( new Color() ).setGroup( renderGroup ); + + } + + /** + * Overwritten to updated hemisphere light specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( frame ) { + + const { light } = this; + + super.update( frame ); + + this.lightPositionNode.object3d = light; + + this.groundColorNode.value.copy( light.groundColor ).multiplyScalar( light.intensity ); + + } + + setup( builder ) { + + const { colorNode, groundColorNode, lightDirectionNode } = this; + + const dotNL = normalWorld.dot( lightDirectionNode ); + const hemiDiffuseWeight = dotNL.mul( 0.5 ).add( 0.5 ); + + const irradiance = mix( groundColorNode, colorNode, hemiDiffuseWeight ); + + builder.context.irradiance.addAssign( irradiance ); + + } + +} + +/** + * Module for representing light probes as nodes. + * + * @augments AnalyticLightNode + */ +class LightProbeNode extends AnalyticLightNode { + + static get type() { + + return 'LightProbeNode'; + + } + + /** + * Constructs a new light probe node. + * + * @param {?LightProbe} [light=null] - The light probe. + */ + constructor( light = null ) { + + super( light ); + + const array = []; + + for ( let i = 0; i < 9; i ++ ) array.push( new Vector3() ); + + /** + * Light probe represented as a uniform of spherical harmonics. + * + * @type {UniformArrayNode} + */ + this.lightProbe = uniformArray( array ); + + } + + /** + * Overwritten to updated light probe specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( frame ) { + + const { light } = this; + + super.update( frame ); + + // + + for ( let i = 0; i < 9; i ++ ) { + + this.lightProbe.array[ i ].copy( light.sh.coefficients[ i ] ).multiplyScalar( light.intensity ); + + } + + } + + setup( builder ) { + + const irradiance = getShIrradianceAt( normalWorld, this.lightProbe ); + + builder.context.irradiance.addAssign( irradiance ); + + } + +} + +/** + * Base class for node parsers. A derived parser must be implemented + * for each supported native shader language. + */ +class NodeParser { + + /** + * The method parses the given native code an returns a node function. + * + * @abstract + * @param {string} source - The native shader code. + * @return {NodeFunction} A node function. + */ + parseFunction( /*source*/ ) { + + console.warn( 'Abstract function.' ); + + } + +} + +/** + * Base class for node functions. A derived module must be implemented + * for each supported native shader language. Similar to other `Node*` modules, + * this class is only relevant during the building process and not used + * in user-level code. + */ +class NodeFunction { + + /** + * Constructs a new node function. + * + * @param {string} type - The node type. This type is the return type of the node function. + * @param {Array} inputs - The function's inputs. + * @param {string} [name=''] - The function's name. + * @param {string} [precision=''] - The precision qualifier. + */ + constructor( type, inputs, name = '', precision = '' ) { + + /** + * The node type. This type is the return type of the node function. + * + * @type {string} + */ + this.type = type; + + /** + * The function's inputs. + * + * @type {Array} + */ + this.inputs = inputs; + + /** + * The name of the uniform. + * + * @type {string} + * @default '' + */ + this.name = name; + + /** + * The precision qualifier. + * + * @type {string} + * @default '' + */ + this.precision = precision; + + } + + /** + * This method returns the native code of the node function. + * + * @abstract + * @param {string} name - The function's name. + * @return {string} A shader code. + */ + getCode( /*name = this.name*/ ) { + + console.warn( 'Abstract function.' ); + + } + +} + +NodeFunction.isNodeFunction = true; + +const declarationRegexp$1 = /^\s*(highp|mediump|lowp)?\s*([a-z_0-9]+)\s*([a-z_0-9]+)?\s*\(([\s\S]*?)\)/i; +const propertiesRegexp$1 = /[a-z_0-9]+/ig; + +const pragmaMain = '#pragma main'; + +const parse$1 = ( source ) => { + + source = source.trim(); + + const pragmaMainIndex = source.indexOf( pragmaMain ); + + const mainCode = pragmaMainIndex !== - 1 ? source.slice( pragmaMainIndex + pragmaMain.length ) : source; + + const declaration = mainCode.match( declarationRegexp$1 ); + + if ( declaration !== null && declaration.length === 5 ) { + + // tokenizer + + const inputsCode = declaration[ 4 ]; + const propsMatches = []; + + let nameMatch = null; + + while ( ( nameMatch = propertiesRegexp$1.exec( inputsCode ) ) !== null ) { + + propsMatches.push( nameMatch ); + + } + + // parser + + const inputs = []; + + let i = 0; + + while ( i < propsMatches.length ) { + + const isConst = propsMatches[ i ][ 0 ] === 'const'; + + if ( isConst === true ) { + + i ++; + + } + + let qualifier = propsMatches[ i ][ 0 ]; + + if ( qualifier === 'in' || qualifier === 'out' || qualifier === 'inout' ) { + + i ++; + + } else { + + qualifier = ''; + + } + + const type = propsMatches[ i ++ ][ 0 ]; + + let count = Number.parseInt( propsMatches[ i ][ 0 ] ); + + if ( Number.isNaN( count ) === false ) i ++; + else count = null; + + const name = propsMatches[ i ++ ][ 0 ]; + + inputs.push( new NodeFunctionInput( type, name, count, qualifier, isConst ) ); + + } + + // + + const blockCode = mainCode.substring( declaration[ 0 ].length ); + + const name = declaration[ 3 ] !== undefined ? declaration[ 3 ] : ''; + const type = declaration[ 2 ]; + + const precision = declaration[ 1 ] !== undefined ? declaration[ 1 ] : ''; + + const headerCode = pragmaMainIndex !== - 1 ? source.slice( 0, pragmaMainIndex ) : ''; + + return { + type, + inputs, + name, + precision, + inputsCode, + blockCode, + headerCode + }; + + } else { + + throw new Error( 'FunctionNode: Function is not a GLSL code.' ); + + } + +}; + +/** + * This class represents a GLSL node function. + * + * @augments NodeFunction + */ +class GLSLNodeFunction extends NodeFunction { + + /** + * Constructs a new GLSL node function. + * + * @param {string} source - The GLSL source. + */ + constructor( source ) { + + const { type, inputs, name, precision, inputsCode, blockCode, headerCode } = parse$1( source ); + + super( type, inputs, name, precision ); + + this.inputsCode = inputsCode; + this.blockCode = blockCode; + this.headerCode = headerCode; + + } + + /** + * This method returns the GLSL code of the node function. + * + * @param {string} [name=this.name] - The function's name. + * @return {string} The shader code. + */ + getCode( name = this.name ) { + + let code; + + const blockCode = this.blockCode; + + if ( blockCode !== '' ) { + + const { type, inputsCode, headerCode, precision } = this; + + let declarationCode = `${ type } ${ name } ( ${ inputsCode.trim() } )`; + + if ( precision !== '' ) { + + declarationCode = `${ precision } ${ declarationCode }`; + + } + + code = headerCode + declarationCode + blockCode; + + } else { + + // interface function + + code = ''; + + } + + return code; + + } + +} + +/** + * A GLSL node parser. + * + * @augments NodeParser + */ +class GLSLNodeParser extends NodeParser { + + /** + * The method parses the given GLSL code an returns a node function. + * + * @param {string} source - The GLSL code. + * @return {GLSLNodeFunction} A node function. + */ + parseFunction( source ) { + + return new GLSLNodeFunction( source ); + + } + +} + +const _outputNodeMap = new WeakMap(); +const _chainKeys$2 = []; +const _cacheKeyValues = []; + +/** + * This renderer module manages node-related objects and is the + * primary interface between the renderer and the node system. + * + * @private + * @augments DataMap + */ +class Nodes extends DataMap { + + /** + * Constructs a new nodes management component. + * + * @param {Renderer} renderer - The renderer. + * @param {Backend} backend - The renderer's backend. + */ + constructor( renderer, backend ) { + + super(); + + /** + * The renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * The renderer's backend. + * + * @type {Backend} + */ + this.backend = backend; + + /** + * The node frame. + * + * @type {Renderer} + */ + this.nodeFrame = new NodeFrame(); + + /** + * A cache for managing node builder states. + * + * @type {Map} + */ + this.nodeBuilderCache = new Map(); + + /** + * A cache for managing data cache key data. + * + * @type {ChainMap} + */ + this.callHashCache = new ChainMap(); + + /** + * A cache for managing node uniforms group data. + * + * @type {ChainMap} + */ + this.groupsData = new ChainMap(); + + /** + * A cache for managing node objects of + * scene properties like fog or environments. + * + * @type {Object} + */ + this.cacheLib = {}; + + } + + /** + * Returns `true` if the given node uniforms group must be updated or not. + * + * @param {NodeUniformsGroup} nodeUniformsGroup - The node uniforms group. + * @return {boolean} Whether the node uniforms group requires an update or not. + */ + updateGroup( nodeUniformsGroup ) { + + const groupNode = nodeUniformsGroup.groupNode; + const name = groupNode.name; + + // objectGroup is always updated + + if ( name === objectGroup.name ) return true; + + // renderGroup is updated once per render/compute call + + if ( name === renderGroup.name ) { + + const uniformsGroupData = this.get( nodeUniformsGroup ); + const renderId = this.nodeFrame.renderId; + + if ( uniformsGroupData.renderId !== renderId ) { + + uniformsGroupData.renderId = renderId; + + return true; + + } + + return false; + + } + + // frameGroup is updated once per frame + + if ( name === frameGroup.name ) { + + const uniformsGroupData = this.get( nodeUniformsGroup ); + const frameId = this.nodeFrame.frameId; + + if ( uniformsGroupData.frameId !== frameId ) { + + uniformsGroupData.frameId = frameId; + + return true; + + } + + return false; + + } + + // other groups are updated just when groupNode.needsUpdate is true + + _chainKeys$2[ 0 ] = groupNode; + _chainKeys$2[ 1 ] = nodeUniformsGroup; + + let groupData = this.groupsData.get( _chainKeys$2 ); + if ( groupData === undefined ) this.groupsData.set( _chainKeys$2, groupData = {} ); + + _chainKeys$2.length = 0; + + if ( groupData.version !== groupNode.version ) { + + groupData.version = groupNode.version; + + return true; + + } + + return false; + + } + + /** + * Returns the cache key for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @return {number} The cache key. + */ + getForRenderCacheKey( renderObject ) { + + return renderObject.initialCacheKey; + + } + + /** + * Returns a node builder state for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @return {NodeBuilderState} The node builder state. + */ + getForRender( renderObject ) { + + const renderObjectData = this.get( renderObject ); + + let nodeBuilderState = renderObjectData.nodeBuilderState; + + if ( nodeBuilderState === undefined ) { + + const { nodeBuilderCache } = this; + + const cacheKey = this.getForRenderCacheKey( renderObject ); + + nodeBuilderState = nodeBuilderCache.get( cacheKey ); + + if ( nodeBuilderState === undefined ) { + + const nodeBuilder = this.backend.createNodeBuilder( renderObject.object, this.renderer ); + nodeBuilder.scene = renderObject.scene; + nodeBuilder.material = renderObject.material; + nodeBuilder.camera = renderObject.camera; + nodeBuilder.context.material = renderObject.material; + nodeBuilder.lightsNode = renderObject.lightsNode; + nodeBuilder.environmentNode = this.getEnvironmentNode( renderObject.scene ); + nodeBuilder.fogNode = this.getFogNode( renderObject.scene ); + nodeBuilder.clippingContext = renderObject.clippingContext; + if ( this.renderer.getOutputRenderTarget() ? this.renderer.getOutputRenderTarget().multiview : false ) { + + nodeBuilder.enableMultiview(); + + } + + nodeBuilder.build(); + + nodeBuilderState = this._createNodeBuilderState( nodeBuilder ); + + nodeBuilderCache.set( cacheKey, nodeBuilderState ); + + } + + nodeBuilderState.usedTimes ++; + + renderObjectData.nodeBuilderState = nodeBuilderState; + + } + + return nodeBuilderState; + + } + + /** + * Deletes the given object from the internal data map + * + * @param {any} object - The object to delete. + * @return {?Object} The deleted dictionary. + */ + delete( object ) { + + if ( object.isRenderObject ) { + + const nodeBuilderState = this.get( object ).nodeBuilderState; + nodeBuilderState.usedTimes --; + + if ( nodeBuilderState.usedTimes === 0 ) { + + this.nodeBuilderCache.delete( this.getForRenderCacheKey( object ) ); + + } + + } + + return super.delete( object ); + + } + + /** + * Returns a node builder state for the given compute node. + * + * @param {Node} computeNode - The compute node. + * @return {NodeBuilderState} The node builder state. + */ + getForCompute( computeNode ) { + + const computeData = this.get( computeNode ); + + let nodeBuilderState = computeData.nodeBuilderState; + + if ( nodeBuilderState === undefined ) { + + const nodeBuilder = this.backend.createNodeBuilder( computeNode, this.renderer ); + nodeBuilder.build(); + + nodeBuilderState = this._createNodeBuilderState( nodeBuilder ); + + computeData.nodeBuilderState = nodeBuilderState; + + } + + return nodeBuilderState; + + } + + /** + * Creates a node builder state for the given node builder. + * + * @private + * @param {NodeBuilder} nodeBuilder - The node builder. + * @return {NodeBuilderState} The node builder state. + */ + _createNodeBuilderState( nodeBuilder ) { + + return new NodeBuilderState( + nodeBuilder.vertexShader, + nodeBuilder.fragmentShader, + nodeBuilder.computeShader, + nodeBuilder.getAttributesArray(), + nodeBuilder.getBindings(), + nodeBuilder.updateNodes, + nodeBuilder.updateBeforeNodes, + nodeBuilder.updateAfterNodes, + nodeBuilder.observer, + nodeBuilder.transforms + ); + + } + + /** + * Returns an environment node for the current configured + * scene environment. + * + * @param {Scene} scene - The scene. + * @return {Node} A node representing the current scene environment. + */ + getEnvironmentNode( scene ) { + + this.updateEnvironment( scene ); + + let environmentNode = null; + + if ( scene.environmentNode && scene.environmentNode.isNode ) { + + environmentNode = scene.environmentNode; + + } else { + + const sceneData = this.get( scene ); + + if ( sceneData.environmentNode ) { + + environmentNode = sceneData.environmentNode; + + } + + } + + return environmentNode; + + } + + /** + * Returns a background node for the current configured + * scene background. + * + * @param {Scene} scene - The scene. + * @return {Node} A node representing the current scene background. + */ + getBackgroundNode( scene ) { + + this.updateBackground( scene ); + + let backgroundNode = null; + + if ( scene.backgroundNode && scene.backgroundNode.isNode ) { + + backgroundNode = scene.backgroundNode; + + } else { + + const sceneData = this.get( scene ); + + if ( sceneData.backgroundNode ) { + + backgroundNode = sceneData.backgroundNode; + + } + + } + + return backgroundNode; + + } + + /** + * Returns a fog node for the current configured scene fog. + * + * @param {Scene} scene - The scene. + * @return {Node} A node representing the current scene fog. + */ + getFogNode( scene ) { + + this.updateFog( scene ); + + return scene.fogNode || this.get( scene ).fogNode || null; + + } + + /** + * Returns a cache key for the given scene and lights node. + * This key is used by `RenderObject` as a part of the dynamic + * cache key (a key that must be checked every time the render + * objects is drawn). + * + * @param {Scene} scene - The scene. + * @param {LightsNode} lightsNode - The lights node. + * @return {number} The cache key. + */ + getCacheKey( scene, lightsNode ) { + + _chainKeys$2[ 0 ] = scene; + _chainKeys$2[ 1 ] = lightsNode; + + const callId = this.renderer.info.calls; + + const cacheKeyData = this.callHashCache.get( _chainKeys$2 ) || {}; + + if ( cacheKeyData.callId !== callId ) { + + const environmentNode = this.getEnvironmentNode( scene ); + const fogNode = this.getFogNode( scene ); + + if ( lightsNode ) _cacheKeyValues.push( lightsNode.getCacheKey( true ) ); + if ( environmentNode ) _cacheKeyValues.push( environmentNode.getCacheKey() ); + if ( fogNode ) _cacheKeyValues.push( fogNode.getCacheKey() ); + + _cacheKeyValues.push( this.renderer.getOutputRenderTarget() && this.renderer.getOutputRenderTarget().multiview ? 1 : 0 ); + _cacheKeyValues.push( this.renderer.shadowMap.enabled ? 1 : 0 ); + + cacheKeyData.callId = callId; + cacheKeyData.cacheKey = hashArray( _cacheKeyValues ); + + this.callHashCache.set( _chainKeys$2, cacheKeyData ); + + _cacheKeyValues.length = 0; + + } + + _chainKeys$2.length = 0; + + return cacheKeyData.cacheKey; + + } + + /** + * A boolean that indicates whether tone mapping should be enabled + * or not. + * + * @type {boolean} + */ + get isToneMappingState() { + + return this.renderer.getRenderTarget() ? false : true; + + } + + /** + * If a scene background is configured, this method makes sure to + * represent the background with a corresponding node-based implementation. + * + * @param {Scene} scene - The scene. + */ + updateBackground( scene ) { + + const sceneData = this.get( scene ); + const background = scene.background; + + if ( background ) { + + const forceUpdate = ( scene.backgroundBlurriness === 0 && sceneData.backgroundBlurriness > 0 ) || ( scene.backgroundBlurriness > 0 && sceneData.backgroundBlurriness === 0 ); + + if ( sceneData.background !== background || forceUpdate ) { + + const backgroundNode = this.getCacheNode( 'background', background, () => { + + if ( background.isCubeTexture === true || ( background.mapping === EquirectangularReflectionMapping || background.mapping === EquirectangularRefractionMapping || background.mapping === CubeUVReflectionMapping ) ) { + + if ( scene.backgroundBlurriness > 0 || background.mapping === CubeUVReflectionMapping ) { + + return pmremTexture( background ); + + } else { + + let envMap; + + if ( background.isCubeTexture === true ) { + + envMap = cubeTexture( background ); + + } else { + + envMap = texture( background ); + + } + + return cubeMapNode( envMap ); + + } + + } else if ( background.isTexture === true ) { + + return texture( background, screenUV.flipY() ).setUpdateMatrix( true ); + + } else if ( background.isColor !== true ) { + + console.error( 'WebGPUNodes: Unsupported background configuration.', background ); + + } + + }, forceUpdate ); + + sceneData.backgroundNode = backgroundNode; + sceneData.background = background; + sceneData.backgroundBlurriness = scene.backgroundBlurriness; + + } + + } else if ( sceneData.backgroundNode ) { + + delete sceneData.backgroundNode; + delete sceneData.background; + + } + + } + + /** + * This method is part of the caching of nodes which are used to represents the + * scene's background, fog or environment. + * + * @param {string} type - The type of object to cache. + * @param {Object} object - The object. + * @param {Function} callback - A callback that produces a node representation for the given object. + * @param {boolean} [forceUpdate=false] - Whether an update should be enforced or not. + * @return {Node} The node representation. + */ + getCacheNode( type, object, callback, forceUpdate = false ) { + + const nodeCache = this.cacheLib[ type ] || ( this.cacheLib[ type ] = new WeakMap() ); + + let node = nodeCache.get( object ); + + if ( node === undefined || forceUpdate ) { + + node = callback(); + nodeCache.set( object, node ); + + } + + return node; + + } + + /** + * If a scene fog is configured, this method makes sure to + * represent the fog with a corresponding node-based implementation. + * + * @param {Scene} scene - The scene. + */ + updateFog( scene ) { + + const sceneData = this.get( scene ); + const sceneFog = scene.fog; + + if ( sceneFog ) { + + if ( sceneData.fog !== sceneFog ) { + + const fogNode = this.getCacheNode( 'fog', sceneFog, () => { + + if ( sceneFog.isFogExp2 ) { + + const color = reference( 'color', 'color', sceneFog ).setGroup( renderGroup ); + const density = reference( 'density', 'float', sceneFog ).setGroup( renderGroup ); + + return fog( color, densityFogFactor( density ) ); + + } else if ( sceneFog.isFog ) { + + const color = reference( 'color', 'color', sceneFog ).setGroup( renderGroup ); + const near = reference( 'near', 'float', sceneFog ).setGroup( renderGroup ); + const far = reference( 'far', 'float', sceneFog ).setGroup( renderGroup ); + + return fog( color, rangeFogFactor( near, far ) ); + + } else { + + console.error( 'THREE.Renderer: Unsupported fog configuration.', sceneFog ); + + } + + } ); + + sceneData.fogNode = fogNode; + sceneData.fog = sceneFog; + + } + + } else { + + delete sceneData.fogNode; + delete sceneData.fog; + + } + + } + + /** + * If a scene environment is configured, this method makes sure to + * represent the environment with a corresponding node-based implementation. + * + * @param {Scene} scene - The scene. + */ + updateEnvironment( scene ) { + + const sceneData = this.get( scene ); + const environment = scene.environment; + + if ( environment ) { + + if ( sceneData.environment !== environment ) { + + const environmentNode = this.getCacheNode( 'environment', environment, () => { + + if ( environment.isCubeTexture === true ) { + + return cubeTexture( environment ); + + } else if ( environment.isTexture === true ) { + + return texture( environment ); + + } else { + + console.error( 'Nodes: Unsupported environment configuration.', environment ); + + } + + } ); + + sceneData.environmentNode = environmentNode; + sceneData.environment = environment; + + } + + } else if ( sceneData.environmentNode ) { + + delete sceneData.environmentNode; + delete sceneData.environment; + + } + + } + + getNodeFrame( renderer = this.renderer, scene = null, object = null, camera = null, material = null ) { + + const nodeFrame = this.nodeFrame; + nodeFrame.renderer = renderer; + nodeFrame.scene = scene; + nodeFrame.object = object; + nodeFrame.camera = camera; + nodeFrame.material = material; + + return nodeFrame; + + } + + getNodeFrameForRender( renderObject ) { + + return this.getNodeFrame( renderObject.renderer, renderObject.scene, renderObject.object, renderObject.camera, renderObject.material ); + + } + + /** + * Returns the current output cache key. + * + * @return {string} The output cache key. + */ + getOutputCacheKey() { + + const renderer = this.renderer; + + return renderer.toneMapping + ',' + renderer.currentColorSpace + ',' + renderer.xr.isPresenting; + + } + + /** + * Checks if the output configuration (tone mapping and color space) for + * the given target has changed. + * + * @param {Texture} outputTarget - The output target. + * @return {boolean} Whether the output configuration has changed or not. + */ + hasOutputChange( outputTarget ) { + + const cacheKey = _outputNodeMap.get( outputTarget ); + + return cacheKey !== this.getOutputCacheKey(); + + } + + /** + * Returns a node that represents the output configuration (tone mapping and + * color space) for the current target. + * + * @param {Texture} outputTarget - The output target. + * @return {Node} The output node. + */ + getOutputNode( outputTarget ) { + + const renderer = this.renderer; + const cacheKey = this.getOutputCacheKey(); + + const output = outputTarget.isArrayTexture ? + texture3D( outputTarget, vec3( screenUV, builtin( 'gl_ViewID_OVR' ) ) ).renderOutput( renderer.toneMapping, renderer.currentColorSpace ) : + texture( outputTarget, screenUV ).renderOutput( renderer.toneMapping, renderer.currentColorSpace ); + + _outputNodeMap.set( outputTarget, cacheKey ); + + return output; + + } + + /** + * Triggers the call of `updateBefore()` methods + * for all nodes of the given render object. + * + * @param {RenderObject} renderObject - The render object. + */ + updateBefore( renderObject ) { + + const nodeBuilder = renderObject.getNodeBuilderState(); + + for ( const node of nodeBuilder.updateBeforeNodes ) { + + // update frame state for each node + + this.getNodeFrameForRender( renderObject ).updateBeforeNode( node ); + + } + + } + + /** + * Triggers the call of `updateAfter()` methods + * for all nodes of the given render object. + * + * @param {RenderObject} renderObject - The render object. + */ + updateAfter( renderObject ) { + + const nodeBuilder = renderObject.getNodeBuilderState(); + + for ( const node of nodeBuilder.updateAfterNodes ) { + + // update frame state for each node + + this.getNodeFrameForRender( renderObject ).updateAfterNode( node ); + + } + + } + + /** + * Triggers the call of `update()` methods + * for all nodes of the given compute node. + * + * @param {Node} computeNode - The compute node. + */ + updateForCompute( computeNode ) { + + const nodeFrame = this.getNodeFrame(); + const nodeBuilder = this.getForCompute( computeNode ); + + for ( const node of nodeBuilder.updateNodes ) { + + nodeFrame.updateNode( node ); + + } + + } + + /** + * Triggers the call of `update()` methods + * for all nodes of the given compute node. + * + * @param {RenderObject} renderObject - The render object. + */ + updateForRender( renderObject ) { + + const nodeFrame = this.getNodeFrameForRender( renderObject ); + const nodeBuilder = renderObject.getNodeBuilderState(); + + for ( const node of nodeBuilder.updateNodes ) { + + nodeFrame.updateNode( node ); + + } + + } + + /** + * Returns `true` if the given render object requires a refresh. + * + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the given render object requires a refresh or not. + */ + needsRefresh( renderObject ) { + + const nodeFrame = this.getNodeFrameForRender( renderObject ); + const monitor = renderObject.getMonitor(); + + return monitor.needsRefresh( renderObject, nodeFrame ); + + } + + /** + * Frees the internal resources. + */ + dispose() { + + super.dispose(); + + this.nodeFrame = new NodeFrame(); + this.nodeBuilderCache = new Map(); + this.cacheLib = {}; + + } + +} + +const _plane = /*@__PURE__*/ new Plane(); + +/** + * Represents the state that is used to perform clipping via clipping planes. + * There is a default clipping context for each render context. When the + * scene holds instances of `ClippingGroup`, there will be a context for each + * group. + * + * @private + */ +class ClippingContext { + + /** + * Constructs a new clipping context. + * + * @param {?ClippingContext} [parentContext=null] - A reference to the parent clipping context. + */ + constructor( parentContext = null ) { + + /** + * The clipping context's version. + * + * @type {number} + * @readonly + */ + this.version = 0; + + /** + * Whether the intersection of the clipping planes is used to clip objects, rather than their union. + * + * @type {?boolean} + * @default null + */ + this.clipIntersection = null; + + /** + * The clipping context's cache key. + * + * @type {string} + */ + this.cacheKey = ''; + + /** + * Whether the shadow pass is active or not. + * + * @type {boolean} + * @default false + */ + this.shadowPass = false; + + /** + * The view normal matrix. + * + * @type {Matrix3} + */ + this.viewNormalMatrix = new Matrix3(); + + /** + * Internal cache for maintaining clipping contexts. + * + * @type {WeakMap} + */ + this.clippingGroupContexts = new WeakMap(); + + /** + * The intersection planes. + * + * @type {Array} + */ + this.intersectionPlanes = []; + + /** + * The intersection planes. + * + * @type {Array} + */ + this.unionPlanes = []; + + /** + * The version of the clipping context's parent context. + * + * @type {?number} + * @readonly + */ + this.parentVersion = null; + + if ( parentContext !== null ) { + + this.viewNormalMatrix = parentContext.viewNormalMatrix; + this.clippingGroupContexts = parentContext.clippingGroupContexts; + + this.shadowPass = parentContext.shadowPass; + this.viewMatrix = parentContext.viewMatrix; + + } + + } + + /** + * Projects the given source clipping planes and writes the result into the + * destination array. + * + * @param {Array} source - The source clipping planes. + * @param {Array} destination - The destination. + * @param {number} offset - The offset. + */ + projectPlanes( source, destination, offset ) { + + const l = source.length; + + for ( let i = 0; i < l; i ++ ) { + + _plane.copy( source[ i ] ).applyMatrix4( this.viewMatrix, this.viewNormalMatrix ); + + const v = destination[ offset + i ]; + const normal = _plane.normal; + + v.x = - normal.x; + v.y = - normal.y; + v.z = - normal.z; + v.w = _plane.constant; + + } + + } + + /** + * Updates the root clipping context of a scene. + * + * @param {Scene} scene - The scene. + * @param {Camera} camera - The camera that is used to render the scene. + */ + updateGlobal( scene, camera ) { + + this.shadowPass = ( scene.overrideMaterial !== null && scene.overrideMaterial.isShadowPassMaterial ); + this.viewMatrix = camera.matrixWorldInverse; + + this.viewNormalMatrix.getNormalMatrix( this.viewMatrix ); + + } + + /** + * Updates the clipping context. + * + * @param {ClippingContext} parentContext - The parent context. + * @param {ClippingGroup} clippingGroup - The clipping group this context belongs to. + */ + update( parentContext, clippingGroup ) { + + let update = false; + + if ( parentContext.version !== this.parentVersion ) { + + this.intersectionPlanes = Array.from( parentContext.intersectionPlanes ); + this.unionPlanes = Array.from( parentContext.unionPlanes ); + this.parentVersion = parentContext.version; + + } + + if ( this.clipIntersection !== clippingGroup.clipIntersection ) { + + this.clipIntersection = clippingGroup.clipIntersection; + + if ( this.clipIntersection ) { + + this.unionPlanes.length = parentContext.unionPlanes.length; + + } else { + + this.intersectionPlanes.length = parentContext.intersectionPlanes.length; + + } + + } + + const srcClippingPlanes = clippingGroup.clippingPlanes; + const l = srcClippingPlanes.length; + + let dstClippingPlanes; + let offset; + + if ( this.clipIntersection ) { + + dstClippingPlanes = this.intersectionPlanes; + offset = parentContext.intersectionPlanes.length; + + } else { + + dstClippingPlanes = this.unionPlanes; + offset = parentContext.unionPlanes.length; + + } + + if ( dstClippingPlanes.length !== offset + l ) { + + dstClippingPlanes.length = offset + l; + + for ( let i = 0; i < l; i ++ ) { + + dstClippingPlanes[ offset + i ] = new Vector4(); + + } + + update = true; + + } + + this.projectPlanes( srcClippingPlanes, dstClippingPlanes, offset ); + + if ( update ) { + + this.version ++; + this.cacheKey = `${ this.intersectionPlanes.length }:${ this.unionPlanes.length }`; + + } + + } + + /** + * Returns a clipping context for the given clipping group. + * + * @param {ClippingGroup} clippingGroup - The clipping group. + * @return {ClippingContext} The clipping context. + */ + getGroupContext( clippingGroup ) { + + if ( this.shadowPass && ! clippingGroup.clipShadows ) return this; + + let context = this.clippingGroupContexts.get( clippingGroup ); + + if ( context === undefined ) { + + context = new ClippingContext( this ); + this.clippingGroupContexts.set( clippingGroup, context ); + + } + + context.update( this, clippingGroup ); + + return context; + + } + + /** + * The count of union clipping planes. + * + * @type {number} + * @readonly + */ + get unionClippingCount() { + + return this.unionPlanes.length; + + } + +} + +/** + * This module is used to represent render bundles inside the renderer + * for further processing. + * + * @private + */ +class RenderBundle { + + /** + * Constructs a new bundle group. + * + * @param {BundleGroup} bundleGroup - The bundle group. + * @param {Camera} camera - The camera the bundle group is rendered with. + */ + constructor( bundleGroup, camera ) { + + this.bundleGroup = bundleGroup; + this.camera = camera; + + } + +} + +const _chainKeys$1 = []; + +/** + * This renderer module manages render bundles. + * + * @private + */ +class RenderBundles { + + /** + * Constructs a new render bundle management component. + */ + constructor() { + + /** + * A chain map for maintaining the render bundles. + * + * @type {ChainMap} + */ + this.bundles = new ChainMap(); + + } + + /** + * Returns a render bundle for the given bundle group and camera. + * + * @param {BundleGroup} bundleGroup - The bundle group. + * @param {Camera} camera - The camera the bundle group is rendered with. + * @return {RenderBundle} The render bundle. + */ + get( bundleGroup, camera ) { + + const bundles = this.bundles; + + _chainKeys$1[ 0 ] = bundleGroup; + _chainKeys$1[ 1 ] = camera; + + let bundle = bundles.get( _chainKeys$1 ); + + if ( bundle === undefined ) { + + bundle = new RenderBundle( bundleGroup, camera ); + bundles.set( _chainKeys$1, bundle ); + + } + + _chainKeys$1.length = 0; + + return bundle; + + } + + /** + * Frees all internal resources. + */ + dispose() { + + this.bundles = new ChainMap(); + + } + +} + +/** + * The purpose of a node library is to assign node implementations + * to existing library features. In `WebGPURenderer` lights, materials + * which are not based on `NodeMaterial` as well as tone mapping techniques + * are implemented with node-based modules. + * + * @private + */ +class NodeLibrary { + + /** + * Constructs a new node library. + */ + constructor() { + + /** + * A weak map that maps lights to light nodes. + * + * @type {WeakMap} + */ + this.lightNodes = new WeakMap(); + + /** + * A map that maps materials to node materials. + * + * @type {Map} + */ + this.materialNodes = new Map(); + + /** + * A map that maps tone mapping techniques (constants) + * to tone mapping node functions. + * + * @type {Map} + */ + this.toneMappingNodes = new Map(); + + } + + /** + * Returns a matching node material instance for the given material object. + * + * This method also assigns/copies the properties of the given material object + * to the node material. This is done to make sure the current material + * configuration carries over to the node version. + * + * @param {Material} material - A material. + * @return {NodeMaterial} The corresponding node material. + */ + fromMaterial( material ) { + + if ( material.isNodeMaterial ) return material; + + let nodeMaterial = null; + + const nodeMaterialClass = this.getMaterialNodeClass( material.type ); + + if ( nodeMaterialClass !== null ) { + + nodeMaterial = new nodeMaterialClass(); + + for ( const key in material ) { + + nodeMaterial[ key ] = material[ key ]; + + } + + } + + return nodeMaterial; + + } + + /** + * Adds a tone mapping node function for a tone mapping technique (constant). + * + * @param {Function} toneMappingNode - The tone mapping node function. + * @param {number} toneMapping - The tone mapping. + */ + addToneMapping( toneMappingNode, toneMapping ) { + + this.addType( toneMappingNode, toneMapping, this.toneMappingNodes ); + + } + + /** + * Returns a tone mapping node function for a tone mapping technique (constant). + * + * @param {number} toneMapping - The tone mapping. + * @return {?Function} The tone mapping node function. Returns `null` if no node function is found. + */ + getToneMappingFunction( toneMapping ) { + + return this.toneMappingNodes.get( toneMapping ) || null; + + } + + /** + * Returns a node material class definition for a material type. + * + * @param {string} materialType - The material type. + * @return {?NodeMaterial.constructor} The node material class definition. Returns `null` if no node material is found. + */ + getMaterialNodeClass( materialType ) { + + return this.materialNodes.get( materialType ) || null; + + } + + /** + * Adds a node material class definition for a given material type. + * + * @param {NodeMaterial.constructor} materialNodeClass - The node material class definition. + * @param {string} materialClassType - The material type. + */ + addMaterial( materialNodeClass, materialClassType ) { + + this.addType( materialNodeClass, materialClassType, this.materialNodes ); + + } + + /** + * Returns a light node class definition for a light class definition. + * + * @param {Light.constructor} light - The light class definition. + * @return {?AnalyticLightNode.constructor} The light node class definition. Returns `null` if no light node is found. + */ + getLightNodeClass( light ) { + + return this.lightNodes.get( light ) || null; + + } + + /** + * Adds a light node class definition for a given light class definition. + * + * @param {AnalyticLightNode.constructor} lightNodeClass - The light node class definition. + * @param {Light.constructor} lightClass - The light class definition. + */ + addLight( lightNodeClass, lightClass ) { + + this.addClass( lightNodeClass, lightClass, this.lightNodes ); + + } + + /** + * Adds a node class definition for the given type to the provided type library. + * + * @param {any} nodeClass - The node class definition. + * @param {number|string} type - The object type. + * @param {Map} library - The type library. + */ + addType( nodeClass, type, library ) { + + if ( library.has( type ) ) { + + console.warn( `Redefinition of node ${ type }` ); + return; + + } + + if ( typeof nodeClass !== 'function' ) throw new Error( `Node class ${ nodeClass.name } is not a class.` ); + if ( typeof type === 'function' || typeof type === 'object' ) throw new Error( `Base class ${ type } is not a class.` ); + + library.set( type, nodeClass ); + + } + + /** + * Adds a node class definition for the given class definition to the provided type library. + * + * @param {any} nodeClass - The node class definition. + * @param {any} baseClass - The class definition. + * @param {WeakMap} library - The type library. + */ + addClass( nodeClass, baseClass, library ) { + + if ( library.has( baseClass ) ) { + + console.warn( `Redefinition of node ${ baseClass.name }` ); + return; + + } + + if ( typeof nodeClass !== 'function' ) throw new Error( `Node class ${ nodeClass.name } is not a class.` ); + if ( typeof baseClass !== 'function' ) throw new Error( `Base class ${ baseClass.name } is not a class.` ); + + library.set( baseClass, nodeClass ); + + } + +} + +const _defaultLights = /*@__PURE__*/ new LightsNode(); +const _chainKeys = []; + +/** + * This renderer module manages the lights nodes which are unique + * per scene and camera combination. + * + * The lights node itself is later configured in the render list + * with the actual lights from the scene. + * + * @private + * @augments ChainMap + */ +class Lighting extends ChainMap { + + /** + * Constructs a lighting management component. + */ + constructor() { + + super(); + + } + + /** + * Creates a new lights node for the given array of lights. + * + * @param {Array} lights - The render object. + * @return {LightsNode} The lights node. + */ + createNode( lights = [] ) { + + return new LightsNode().setLights( lights ); + + } + + /** + * Returns a lights node for the given scene and camera. + * + * @param {Scene} scene - The scene. + * @param {Camera} camera - The camera. + * @return {LightsNode} The lights node. + */ + getNode( scene, camera ) { + + // ignore post-processing + + if ( scene.isQuadMesh ) return _defaultLights; + + _chainKeys[ 0 ] = scene; + _chainKeys[ 1 ] = camera; + + let node = this.get( _chainKeys ); + + if ( node === undefined ) { + + node = this.createNode(); + this.set( _chainKeys, node ); + + } + + _chainKeys.length = 0; + + return node; + + } + +} + +/** + * A special type of render target that is used when rendering + * with the WebXR Device API. + * + * @private + * @augments RenderTarget + */ +class XRRenderTarget extends RenderTarget { + + /** + * Constructs a new XR render target. + * + * @param {number} [width=1] - The width of the render target. + * @param {number} [height=1] - The height of the render target. + * @param {Object} [options={}] - The configuration options. + */ + constructor( width = 1, height = 1, options = {} ) { + + super( width, height, options ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isXRRenderTarget = true; + + /** + * Whether the attachments of the render target + * are defined by external textures. This flag is + * set to `true` when using the WebXR Layers API. + * + * @type {boolean} + * @default false + */ + this.hasExternalTextures = false; + + /** + * Whether a depth buffer should automatically be allocated + * for this XR render target or not. + * + * Allocating a depth buffer is the default behavior of XR render + * targets. However, when using the WebXR Layers API, this flag + * must be set to `false` when the `ignoreDepthValues` property of + * the projection layers evaluates to `false`. + * + * Reference: {@link https://www.w3.org/TR/webxrlayers-1/#dom-xrprojectionlayer-ignoredepthvalues}. + * + * @type {boolean} + * @default true + */ + this.autoAllocateDepthBuffer = true; + + } + + copy( source ) { + + super.copy( source ); + + this.hasExternalTextures = source.hasExternalTextures; + this.autoAllocateDepthBuffer = source.autoAllocateDepthBuffer; + + return this; + + } + + +} + +const _cameraLPos = /*@__PURE__*/ new Vector3(); +const _cameraRPos = /*@__PURE__*/ new Vector3(); + +/** + * The XR manager is built on top of the WebXR Device API to + * manage XR sessions with `WebGPURenderer`. + * + * XR is currently only supported with a WebGL 2 backend. + * + * @augments EventDispatcher + */ +class XRManager extends EventDispatcher { + + /** + * Constructs a new XR manager. + * + * @param {Renderer} renderer - The renderer. + * @param {boolean} [multiview=false] - Enables multiview if the device supports it. + */ + constructor( renderer, multiview = false ) { + + super(); + + /** + * This flag globally enables XR rendering. + * + * @type {boolean} + * @default false + */ + this.enabled = false; + + /** + * Whether the XR device is currently presenting or not. + * + * @type {boolean} + * @default false + * @readonly + */ + this.isPresenting = false; + + /** + * Whether the XR camera should automatically be updated or not. + * + * @type {boolean} + * @default true + */ + this.cameraAutoUpdate = true; + + /** + * The renderer. + * + * @private + * @type {Renderer} + */ + this._renderer = renderer; + + // camera + + /** + * Represents the camera for the left eye. + * + * @private + * @type {PerspectiveCamera} + */ + this._cameraL = new PerspectiveCamera(); + this._cameraL.viewport = new Vector4(); + + /** + * Represents the camera for the right eye. + * + * @private + * @type {PerspectiveCamera} + */ + this._cameraR = new PerspectiveCamera(); + this._cameraR.viewport = new Vector4(); + + /** + * A list of cameras used for rendering the XR views. + * + * @private + * @type {Array} + */ + this._cameras = [ this._cameraL, this._cameraR ]; + + /** + * The main XR camera. + * + * @private + * @type {ArrayCamera} + */ + this._cameraXR = new ArrayCamera(); + + /** + * The current near value of the XR camera. + * + * @private + * @type {?number} + * @default null + */ + this._currentDepthNear = null; + + /** + * The current far value of the XR camera. + * + * @private + * @type {?number} + * @default null + */ + this._currentDepthFar = null; + + /** + * A list of WebXR controllers requested by the application. + * + * @private + * @type {Array} + */ + this._controllers = []; + + /** + * A list of XR input source. Each input source belongs to + * an instance of WebXRController. + * + * @private + * @type {Array} + */ + this._controllerInputSources = []; + + /** + * The XR render target that represents the rendering destination + * during an active XR session. + * + * @private + * @type {?RenderTarget} + * @default null + */ + this._xrRenderTarget = null; + + /** + * An array holding all the non-projection layers + * + * @private + * @type {Array} + * @default [] + */ + this._layers = []; + + /** + * Whether the device has support for all layer types. + * + * @type {boolean} + * @default false + */ + this._supportsLayers = false; + + this._frameBufferTargets = null; + + /** + * Helper function to create native WebXR Layer. + * + * @private + * @type {Function} + */ + this._createXRLayer = createXRLayer.bind( this ); + + /** + * The current WebGL context. + * + * @private + * @type {?WebGL2RenderingContext} + * @default null + */ + this._gl = null; + + /** + * The current animation context. + * + * @private + * @type {?Window} + * @default null + */ + this._currentAnimationContext = null; + + /** + * The current animation loop. + * + * @private + * @type {?Function} + * @default null + */ + this._currentAnimationLoop = null; + + /** + * The current pixel ratio. + * + * @private + * @type {?number} + * @default null + */ + this._currentPixelRatio = null; + + /** + * The current size of the renderer's canvas + * in logical pixel unit. + * + * @private + * @type {Vector2} + */ + this._currentSize = new Vector2(); + + /** + * The default event listener for handling events inside a XR session. + * + * @private + * @type {Function} + */ + this._onSessionEvent = onSessionEvent.bind( this ); + + /** + * The event listener for handling the end of a XR session. + * + * @private + * @type {Function} + */ + this._onSessionEnd = onSessionEnd.bind( this ); + + /** + * The event listener for handling the `inputsourceschange` event. + * + * @private + * @type {Function} + */ + this._onInputSourcesChange = onInputSourcesChange.bind( this ); + + /** + * The animation loop which is used as a replacement for the default + * animation loop of the application. It is only used when a XR session + * is active. + * + * @private + * @type {Function} + */ + this._onAnimationFrame = onAnimationFrame.bind( this ); + + /** + * The current XR reference space. + * + * @private + * @type {?XRReferenceSpace} + * @default null + */ + this._referenceSpace = null; + + /** + * The current XR reference space type. + * + * @private + * @type {XRReferenceSpaceType} + * @default 'local-floor' + */ + this._referenceSpaceType = 'local-floor'; + + /** + * A custom reference space defined by the application. + * + * @private + * @type {?XRReferenceSpace} + * @default null + */ + this._customReferenceSpace = null; + + /** + * The framebuffer scale factor. + * + * @private + * @type {number} + * @default 1 + */ + this._framebufferScaleFactor = 1; + + /** + * The foveation factor. + * + * @private + * @type {number} + * @default 1 + */ + this._foveation = 1.0; + + /** + * A reference to the current XR session. + * + * @private + * @type {?XRSession} + * @default null + */ + this._session = null; + + /** + * A reference to the current XR base layer. + * + * @private + * @type {?XRWebGLLayer} + * @default null + */ + this._glBaseLayer = null; + + /** + * A reference to the current XR binding. + * + * @private + * @type {?XRWebGLBinding} + * @default null + */ + this._glBinding = null; + + /** + * A reference to the current XR projection layer. + * + * @private + * @type {?XRProjectionLayer} + * @default null + */ + this._glProjLayer = null; + + /** + * A reference to the current XR frame. + * + * @private + * @type {?XRFrame} + * @default null + */ + this._xrFrame = null; + + /** + * Whether to use the WebXR Layers API or not. + * + * @private + * @type {boolean} + * @readonly + */ + this._useLayers = ( typeof XRWebGLBinding !== 'undefined' && 'createProjectionLayer' in XRWebGLBinding.prototype ); // eslint-disable-line compat/compat + + /** + * Whether the usage of multiview has been requested by the application or not. + * + * @private + * @type {boolean} + * @default false + * @readonly + */ + this._useMultiviewIfPossible = multiview; + + /** + * Whether the usage of multiview is actually enabled. This flag only evaluates to `true` + * if multiview has been requested by the application and the `OVR_multiview2` is available. + * + * @private + * @type {boolean} + * @readonly + */ + this._useMultiview = false; + + } + + /** + * Returns an instance of `THREE.Group` that represents the transformation + * of a XR controller in target ray space. The requested controller is defined + * by the given index. + * + * @param {number} index - The index of the XR controller. + * @return {Group} A group that represents the controller's transformation. + */ + getController( index ) { + + const controller = this._getController( index ); + + return controller.getTargetRaySpace(); + + } + + /** + * Returns an instance of `THREE.Group` that represents the transformation + * of a XR controller in grip space. The requested controller is defined + * by the given index. + * + * @param {number} index - The index of the XR controller. + * @return {Group} A group that represents the controller's transformation. + */ + getControllerGrip( index ) { + + const controller = this._getController( index ); + + return controller.getGripSpace(); + + } + + /** + * Returns an instance of `THREE.Group` that represents the transformation + * of a XR controller in hand space. The requested controller is defined + * by the given index. + * + * @param {number} index - The index of the XR controller. + * @return {Group} A group that represents the controller's transformation. + */ + getHand( index ) { + + const controller = this._getController( index ); + + return controller.getHandSpace(); + + } + + /** + * Returns the foveation value. + * + * @return {number|undefined} The foveation value. Returns `undefined` if no base or projection layer is defined. + */ + getFoveation() { + + if ( this._glProjLayer === null && this._glBaseLayer === null ) { + + return undefined; + + } + + return this._foveation; + + } + + /** + * Sets the foveation value. + * + * @param {number} foveation - A number in the range `[0,1]` where `0` means no foveation (full resolution) + * and `1` means maximum foveation (the edges render at lower resolution). + */ + setFoveation( foveation ) { + + this._foveation = foveation; + + if ( this._glProjLayer !== null ) { + + this._glProjLayer.fixedFoveation = foveation; + + } + + if ( this._glBaseLayer !== null && this._glBaseLayer.fixedFoveation !== undefined ) { + + this._glBaseLayer.fixedFoveation = foveation; + + } + + } + + /** + * Returns the framebuffer scale factor. + * + * @return {number} The framebuffer scale factor. + */ + getFramebufferScaleFactor() { + + return this._framebufferScaleFactor; + + } + + /** + * Sets the framebuffer scale factor. + * + * This method can not be used during a XR session. + * + * @param {number} factor - The framebuffer scale factor. + */ + setFramebufferScaleFactor( factor ) { + + this._framebufferScaleFactor = factor; + + if ( this.isPresenting === true ) { + + console.warn( 'THREE.XRManager: Cannot change framebuffer scale while presenting.' ); + + } + + } + + /** + * Returns the reference space type. + * + * @return {XRReferenceSpaceType} The reference space type. + */ + getReferenceSpaceType() { + + return this._referenceSpaceType; + + } + + /** + * Sets the reference space type. + * + * This method can not be used during a XR session. + * + * @param {XRReferenceSpaceType} type - The reference space type. + */ + setReferenceSpaceType( type ) { + + this._referenceSpaceType = type; + + if ( this.isPresenting === true ) { + + console.warn( 'THREE.XRManager: Cannot change reference space type while presenting.' ); + + } + + } + + /** + * Returns the XR reference space. + * + * @return {XRReferenceSpace} The XR reference space. + */ + getReferenceSpace() { + + return this._customReferenceSpace || this._referenceSpace; + + } + + /** + * Sets a custom XR reference space. + * + * @param {XRReferenceSpace} space - The XR reference space. + */ + setReferenceSpace( space ) { + + this._customReferenceSpace = space; + + } + + /** + * Returns the XR camera. + * + * @return {ArrayCamera} The XR camera. + */ + getCamera() { + + return this._cameraXR; + + } + + /** + * Returns the environment blend mode from the current XR session. + * + * @return {'opaque'|'additive'|'alpha-blend'|undefined} The environment blend mode. Returns `undefined` when used outside of a XR session. + */ + getEnvironmentBlendMode() { + + if ( this._session !== null ) { + + return this._session.environmentBlendMode; + + } + + } + + /** + * Returns the current XR frame. + * + * @return {?XRFrame} The XR frame. Returns `null` when used outside a XR session. + */ + getFrame() { + + return this._xrFrame; + + } + + /** + * Returns `true` if the engine renders to a multiview target. + * + * @return {boolean} Whether the engine renders to a multiview render target or not. + */ + useMultiview() { + + return this._useMultiview; + + } + + /** + * This method can be used in XR applications to create a quadratic layer that presents a separate + * rendered scene. + * + * @param {number} width - The width of the layer plane in world units. + * @param {number} height - The height of the layer plane in world units. + * @param {Vector3} translation - The position/translation of the layer plane in world units. + * @param {Quaternion} quaternion - The orientation of the layer plane expressed as a quaternion. + * @param {number} pixelwidth - The width of the layer's render target in pixels. + * @param {number} pixelheight - The height of the layer's render target in pixels. + * @param {Function} rendercall - A callback function that renders the layer. Similar to code in + * the default animation loop, this method can be used to update/transform 3D object in the layer's scene. + * @param {Object} [attributes={}] - Allows to configure the layer's render target. + * @return {Mesh} A mesh representing the quadratic XR layer. This mesh should be added to the XR scene. + */ + createQuadLayer( width, height, translation, quaternion, pixelwidth, pixelheight, rendercall, attributes = {} ) { + + const geometry = new PlaneGeometry( width, height ); + const renderTarget = new XRRenderTarget( + pixelwidth, + pixelheight, + { + format: RGBAFormat, + type: UnsignedByteType, + depthTexture: new DepthTexture( + pixelwidth, + pixelheight, + attributes.stencil ? UnsignedInt248Type : UnsignedIntType, + undefined, + undefined, + undefined, + undefined, + undefined, + undefined, + attributes.stencil ? DepthStencilFormat : DepthFormat + ), + stencilBuffer: attributes.stencil, + resolveDepthBuffer: false, + resolveStencilBuffer: false + } ); + + renderTarget.autoAllocateDepthBuffer = true; + + const material = new MeshBasicMaterial( { color: 0xffffff, side: FrontSide } ); + material.map = renderTarget.texture; + material.map.offset.y = 1; + material.map.repeat.y = - 1; + const plane = new Mesh( geometry, material ); + plane.position.copy( translation ); + plane.quaternion.copy( quaternion ); + + const layer = { + type: 'quad', + width: width, + height: height, + translation: translation, + quaternion: quaternion, + pixelwidth: pixelwidth, + pixelheight: pixelheight, + plane: plane, + material: material, + rendercall: rendercall, + renderTarget: renderTarget }; + + this._layers.push( layer ); + + if ( this._session !== null ) { + + layer.plane.material = new MeshBasicMaterial( { color: 0xffffff, side: FrontSide } ); + layer.plane.material.blending = CustomBlending; + layer.plane.material.blendEquation = AddEquation; + layer.plane.material.blendSrc = ZeroFactor; + layer.plane.material.blendDst = ZeroFactor; + + layer.xrlayer = this._createXRLayer( layer ); + + const xrlayers = this._session.renderState.layers; + xrlayers.unshift( layer.xrlayer ); + this._session.updateRenderState( { layers: xrlayers } ); + + } else { + + renderTarget.isXRRenderTarget = false; + + } + + return plane; + + } + + /** + * This method can be used in XR applications to create a cylindrical layer that presents a separate + * rendered scene. + * + * @param {number} radius - The radius of the cylinder in world units. + * @param {number} centralAngle - The central angle of the cylinder in radians. + * @param {number} aspectratio - The aspect ratio. + * @param {Vector3} translation - The position/translation of the layer plane in world units. + * @param {Quaternion} quaternion - The orientation of the layer plane expressed as a quaternion. + * @param {number} pixelwidth - The width of the layer's render target in pixels. + * @param {number} pixelheight - The height of the layer's render target in pixels. + * @param {Function} rendercall - A callback function that renders the layer. Similar to code in + * the default animation loop, this method can be used to update/transform 3D object in the layer's scene. + * @param {Object} [attributes={}] - Allows to configure the layer's render target. + * @return {Mesh} A mesh representing the cylindrical XR layer. This mesh should be added to the XR scene. + */ + createCylinderLayer( radius, centralAngle, aspectratio, translation, quaternion, pixelwidth, pixelheight, rendercall, attributes = {} ) { + + const geometry = new CylinderGeometry( radius, radius, radius * centralAngle / aspectratio, 64, 64, true, Math.PI - centralAngle / 2, centralAngle ); + const renderTarget = new XRRenderTarget( + pixelwidth, + pixelheight, + { + format: RGBAFormat, + type: UnsignedByteType, + depthTexture: new DepthTexture( + pixelwidth, + pixelheight, + attributes.stencil ? UnsignedInt248Type : UnsignedIntType, + undefined, + undefined, + undefined, + undefined, + undefined, + undefined, + attributes.stencil ? DepthStencilFormat : DepthFormat + ), + stencilBuffer: attributes.stencil, + resolveDepthBuffer: false, + resolveStencilBuffer: false + } ); + + renderTarget.autoAllocateDepthBuffer = true; + + const material = new MeshBasicMaterial( { color: 0xffffff, side: BackSide } ); + material.map = renderTarget.texture; + material.map.offset.y = 1; + material.map.repeat.y = - 1; + const plane = new Mesh( geometry, material ); + plane.position.copy( translation ); + plane.quaternion.copy( quaternion ); + + const layer = { + type: 'cylinder', + radius: radius, + centralAngle: centralAngle, + aspectratio: aspectratio, + translation: translation, + quaternion: quaternion, + pixelwidth: pixelwidth, + pixelheight: pixelheight, + plane: plane, + material: material, + rendercall: rendercall, + renderTarget: renderTarget }; + + this._layers.push( layer ); + + if ( this._session !== null ) { + + layer.plane.material = new MeshBasicMaterial( { color: 0xffffff, side: BackSide } ); + layer.plane.material.blending = CustomBlending; + layer.plane.material.blendEquation = AddEquation; + layer.plane.material.blendSrc = ZeroFactor; + layer.plane.material.blendDst = ZeroFactor; + + layer.xrlayer = this._createXRLayer( layer ); + + const xrlayers = this._session.renderState.layers; + xrlayers.unshift( layer.xrlayer ); + this._session.updateRenderState( { layers: xrlayers } ); + + } else { + + renderTarget.isXRRenderTarget = false; + + } + + return plane; + + } + + /** + * Renders the XR layers that have been previously added to the scene. + * + * This method is usually called in your animation loop before rendering + * the actual scene via `renderer.render( scene, camera );`. + */ + renderLayers( ) { + + const translationObject = new Vector3(); + const quaternionObject = new Quaternion(); + const renderer = this._renderer; + + const wasPresenting = this.isPresenting; + const rendererOutputTarget = renderer.getOutputRenderTarget(); + const rendererFramebufferTarget = renderer._frameBufferTarget; + this.isPresenting = false; + + const rendererSize = new Vector2(); + renderer.getSize( rendererSize ); + const rendererQuad = renderer._quad; + + for ( const layer of this._layers ) { + + layer.renderTarget.isXRRenderTarget = this._session !== null; + layer.renderTarget.hasExternalTextures = layer.renderTarget.isXRRenderTarget; + + if ( layer.renderTarget.isXRRenderTarget && this._supportsLayers ) { + + layer.xrlayer.transform = new XRRigidTransform( layer.plane.getWorldPosition( translationObject ), layer.plane.getWorldQuaternion( quaternionObject ) ); + + const glSubImage = this._glBinding.getSubImage( layer.xrlayer, this._xrFrame ); + renderer.backend.setXRRenderTargetTextures( + layer.renderTarget, + glSubImage.colorTexture, + undefined ); + + renderer._setXRLayerSize( layer.renderTarget.width, layer.renderTarget.height ); + renderer.setOutputRenderTarget( layer.renderTarget ); + renderer.setRenderTarget( null ); + renderer._frameBufferTarget = null; + + this._frameBufferTargets || ( this._frameBufferTargets = new WeakMap() ); + const { frameBufferTarget, quad } = this._frameBufferTargets.get( layer.renderTarget ) || { frameBufferTarget: null, quad: null }; + if ( ! frameBufferTarget ) { + + renderer._quad = new QuadMesh( new NodeMaterial() ); + this._frameBufferTargets.set( layer.renderTarget, { frameBufferTarget: renderer._getFrameBufferTarget(), quad: renderer._quad } ); + + } else { + + renderer._frameBufferTarget = frameBufferTarget; + renderer._quad = quad; + + } + + layer.rendercall(); + + renderer._frameBufferTarget = null; + + } else { + + renderer.setRenderTarget( layer.renderTarget ); + layer.rendercall(); + + } + + } + + renderer.setRenderTarget( null ); + renderer.setOutputRenderTarget( rendererOutputTarget ); + renderer._frameBufferTarget = rendererFramebufferTarget; + renderer._setXRLayerSize( rendererSize.x, rendererSize.y ); + renderer._quad = rendererQuad; + this.isPresenting = wasPresenting; + + } + + + /** + * Returns the current XR session. + * + * @return {?XRSession} The XR session. Returns `null` when used outside a XR session. + */ + getSession() { + + return this._session; + + } + + /** + * After a XR session has been requested usually with one of the `*Button` modules, it + * is injected into the renderer with this method. This method triggers the start of + * the actual XR rendering. + * + * @async + * @param {XRSession} session - The XR session to set. + * @return {Promise} A Promise that resolves when the session has been set. + */ + async setSession( session ) { + + const renderer = this._renderer; + const backend = renderer.backend; + + this._gl = renderer.getContext(); + const gl = this._gl; + const attributes = gl.getContextAttributes(); + + this._session = session; + + if ( session !== null ) { + + if ( backend.isWebGPUBackend === true ) throw new Error( 'THREE.XRManager: XR is currently not supported with a WebGPU backend. Use WebGL by passing "{ forceWebGL: true }" to the constructor of the renderer.' ); + + session.addEventListener( 'select', this._onSessionEvent ); + session.addEventListener( 'selectstart', this._onSessionEvent ); + session.addEventListener( 'selectend', this._onSessionEvent ); + session.addEventListener( 'squeeze', this._onSessionEvent ); + session.addEventListener( 'squeezestart', this._onSessionEvent ); + session.addEventListener( 'squeezeend', this._onSessionEvent ); + session.addEventListener( 'end', this._onSessionEnd ); + session.addEventListener( 'inputsourceschange', this._onInputSourcesChange ); + + await backend.makeXRCompatible(); + + this._currentPixelRatio = renderer.getPixelRatio(); + renderer.getSize( this._currentSize ); + + this._currentAnimationContext = renderer._animation.getContext(); + this._currentAnimationLoop = renderer._animation.getAnimationLoop(); + renderer._animation.stop(); + + // + + if ( this._useLayers === true ) { + + // default path using XRWebGLBinding/XRProjectionLayer + + let depthFormat = null; + let depthType = null; + let glDepthFormat = null; + + if ( renderer.depth ) { + + glDepthFormat = renderer.stencil ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24; + depthFormat = renderer.stencil ? DepthStencilFormat : DepthFormat; + depthType = renderer.stencil ? UnsignedInt248Type : UnsignedIntType; + + } + + const projectionlayerInit = { + colorFormat: gl.RGBA8, + depthFormat: glDepthFormat, + scaleFactor: this._framebufferScaleFactor, + clearOnAccess: false + }; + + if ( this._useMultiviewIfPossible && renderer.hasFeature( 'OVR_multiview2' ) ) { + + projectionlayerInit.textureType = 'texture-array'; + this._useMultiview = true; + + } + + const glBinding = new XRWebGLBinding( session, gl ); + const glProjLayer = glBinding.createProjectionLayer( projectionlayerInit ); + const layersArray = [ glProjLayer ]; + + this._glBinding = glBinding; + this._glProjLayer = glProjLayer; + + renderer.setPixelRatio( 1 ); + renderer._setXRLayerSize( glProjLayer.textureWidth, glProjLayer.textureHeight ); + + const depth = this._useMultiview ? 2 : 1; + const depthTexture = new DepthTexture( glProjLayer.textureWidth, glProjLayer.textureHeight, depthType, undefined, undefined, undefined, undefined, undefined, undefined, depthFormat, depth ); + + this._xrRenderTarget = new XRRenderTarget( + glProjLayer.textureWidth, + glProjLayer.textureHeight, + { + format: RGBAFormat, + type: UnsignedByteType, + colorSpace: renderer.outputColorSpace, + depthTexture: depthTexture, + stencilBuffer: renderer.stencil, + samples: attributes.antialias ? 4 : 0, + resolveDepthBuffer: ( glProjLayer.ignoreDepthValues === false ), + resolveStencilBuffer: ( glProjLayer.ignoreDepthValues === false ), + depth: this._useMultiview ? 2 : 1, + multiview: this._useMultiview + } ); + + this._xrRenderTarget.hasExternalTextures = true; + this._xrRenderTarget.depth = this._useMultiview ? 2 : 1; + + this._supportsLayers = session.enabledFeatures.includes( 'layers' ); + + this._referenceSpace = await session.requestReferenceSpace( this.getReferenceSpaceType() ); + + if ( this._supportsLayers ) { + + // switch layers to native + for ( const layer of this._layers ) { + + // change material so it "punches" out a hole to show the XR Layer. + layer.plane.material = new MeshBasicMaterial( { color: 0xffffff, side: layer.type === 'cylinder' ? BackSide : FrontSide } ); + layer.plane.material.blending = CustomBlending; + layer.plane.material.blendEquation = AddEquation; + layer.plane.material.blendSrc = ZeroFactor; + layer.plane.material.blendDst = ZeroFactor; + + layer.xrlayer = this._createXRLayer( layer ); + + layersArray.unshift( layer.xrlayer ); + + } + + } + + session.updateRenderState( { layers: layersArray } ); + + } else { + + // fallback to XRWebGLLayer + + const layerInit = { + antialias: renderer.samples > 0, + alpha: true, + depth: renderer.depth, + stencil: renderer.stencil, + framebufferScaleFactor: this.getFramebufferScaleFactor() + }; + + const glBaseLayer = new XRWebGLLayer( session, gl, layerInit ); + this._glBaseLayer = glBaseLayer; + + session.updateRenderState( { baseLayer: glBaseLayer } ); + + renderer.setPixelRatio( 1 ); + renderer.setSize( glBaseLayer.framebufferWidth, glBaseLayer.framebufferHeight, false ); + + this._xrRenderTarget = new XRRenderTarget( + glBaseLayer.framebufferWidth, + glBaseLayer.framebufferHeight, + { + format: RGBAFormat, + type: UnsignedByteType, + colorSpace: renderer.outputColorSpace, + stencilBuffer: renderer.stencil, + resolveDepthBuffer: ( glBaseLayer.ignoreDepthValues === false ), + resolveStencilBuffer: ( glBaseLayer.ignoreDepthValues === false ), + } + ); + + this._referenceSpace = await session.requestReferenceSpace( this.getReferenceSpaceType() ); + + } + + // + + this.setFoveation( this.getFoveation() ); + + renderer._animation.setAnimationLoop( this._onAnimationFrame ); + renderer._animation.setContext( session ); + renderer._animation.start(); + + this.isPresenting = true; + + this.dispatchEvent( { type: 'sessionstart' } ); + + } + + } + + /** + * This method is called by the renderer per frame and updates the XR camera + * and it sub cameras based on the given camera. The given camera is the "user" + * camera created on application level and used for non-XR rendering. + * + * @param {PerspectiveCamera} camera - The camera. + */ + updateCamera( camera ) { + + const session = this._session; + + if ( session === null ) return; + + const depthNear = camera.near; + const depthFar = camera.far; + + const cameraXR = this._cameraXR; + const cameraL = this._cameraL; + const cameraR = this._cameraR; + + cameraXR.near = cameraR.near = cameraL.near = depthNear; + cameraXR.far = cameraR.far = cameraL.far = depthFar; + cameraXR.isMultiViewCamera = this._useMultiview; + + if ( this._currentDepthNear !== cameraXR.near || this._currentDepthFar !== cameraXR.far ) { + + // Note that the new renderState won't apply until the next frame. See #18320 + + session.updateRenderState( { + depthNear: cameraXR.near, + depthFar: cameraXR.far + } ); + + this._currentDepthNear = cameraXR.near; + this._currentDepthFar = cameraXR.far; + + } + + cameraL.layers.mask = camera.layers.mask | 0b010; + cameraR.layers.mask = camera.layers.mask | 0b100; + cameraXR.layers.mask = cameraL.layers.mask | cameraR.layers.mask; + + const parent = camera.parent; + const cameras = cameraXR.cameras; + + updateCamera( cameraXR, parent ); + + for ( let i = 0; i < cameras.length; i ++ ) { + + updateCamera( cameras[ i ], parent ); + + } + + // update projection matrix for proper view frustum culling + + if ( cameras.length === 2 ) { + + setProjectionFromUnion( cameraXR, cameraL, cameraR ); + + } else { + + // assume single camera setup (AR) + + cameraXR.projectionMatrix.copy( cameraL.projectionMatrix ); + + } + + // update user camera and its children + + updateUserCamera( camera, cameraXR, parent ); + + + } + + /** + * Returns a WebXR controller for the given controller index. + * + * @private + * @param {number} index - The controller index. + * @return {WebXRController} The XR controller. + */ + _getController( index ) { + + let controller = this._controllers[ index ]; + + if ( controller === undefined ) { + + controller = new WebXRController(); + this._controllers[ index ] = controller; + + } + + return controller; + + } + +} + +/** + * Assumes 2 cameras that are parallel and share an X-axis, and that + * the cameras' projection and world matrices have already been set. + * And that near and far planes are identical for both cameras. + * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765 + * + * @param {ArrayCamera} camera - The camera to update. + * @param {PerspectiveCamera} cameraL - The left camera. + * @param {PerspectiveCamera} cameraR - The right camera. + */ +function setProjectionFromUnion( camera, cameraL, cameraR ) { + + _cameraLPos.setFromMatrixPosition( cameraL.matrixWorld ); + _cameraRPos.setFromMatrixPosition( cameraR.matrixWorld ); + + const ipd = _cameraLPos.distanceTo( _cameraRPos ); + + const projL = cameraL.projectionMatrix.elements; + const projR = cameraR.projectionMatrix.elements; + + // VR systems will have identical far and near planes, and + // most likely identical top and bottom frustum extents. + // Use the left camera for these values. + const near = projL[ 14 ] / ( projL[ 10 ] - 1 ); + const far = projL[ 14 ] / ( projL[ 10 ] + 1 ); + const topFov = ( projL[ 9 ] + 1 ) / projL[ 5 ]; + const bottomFov = ( projL[ 9 ] - 1 ) / projL[ 5 ]; + + const leftFov = ( projL[ 8 ] - 1 ) / projL[ 0 ]; + const rightFov = ( projR[ 8 ] + 1 ) / projR[ 0 ]; + const left = near * leftFov; + const right = near * rightFov; + + // Calculate the new camera's position offset from the + // left camera. xOffset should be roughly half `ipd`. + const zOffset = ipd / ( - leftFov + rightFov ); + const xOffset = zOffset * - leftFov; + + // TODO: Better way to apply this offset? + cameraL.matrixWorld.decompose( camera.position, camera.quaternion, camera.scale ); + camera.translateX( xOffset ); + camera.translateZ( zOffset ); + camera.matrixWorld.compose( camera.position, camera.quaternion, camera.scale ); + camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); + + // Check if the projection uses an infinite far plane. + if ( projL[ 10 ] === - 1 ) { + + // Use the projection matrix from the left eye. + // The camera offset is sufficient to include the view volumes + // of both eyes (assuming symmetric projections). + camera.projectionMatrix.copy( cameraL.projectionMatrix ); + camera.projectionMatrixInverse.copy( cameraL.projectionMatrixInverse ); + + } else { + + // Find the union of the frustum values of the cameras and scale + // the values so that the near plane's position does not change in world space, + // although must now be relative to the new union camera. + const near2 = near + zOffset; + const far2 = far + zOffset; + const left2 = left - xOffset; + const right2 = right + ( ipd - xOffset ); + const top2 = topFov * far / far2 * near2; + const bottom2 = bottomFov * far / far2 * near2; + + camera.projectionMatrix.makePerspective( left2, right2, top2, bottom2, near2, far2 ); + camera.projectionMatrixInverse.copy( camera.projectionMatrix ).invert(); + + } + +} + +/** + * Updates the world matrices for the given camera based on the parent 3D object. + * + * @inner + * @param {Camera} camera - The camera to update. + * @param {Object3D} parent - The parent 3D object. + */ +function updateCamera( camera, parent ) { + + if ( parent === null ) { + + camera.matrixWorld.copy( camera.matrix ); + + } else { + + camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix ); + + } + + camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); + +} + +/** + * Updates the given camera with the transformation of the XR camera and parent object. + * + * @inner + * @param {Camera} camera - The camera to update. + * @param {ArrayCamera} cameraXR - The XR camera. + * @param {Object3D} parent - The parent 3D object. + */ +function updateUserCamera( camera, cameraXR, parent ) { + + if ( parent === null ) { + + camera.matrix.copy( cameraXR.matrixWorld ); + + } else { + + camera.matrix.copy( parent.matrixWorld ); + camera.matrix.invert(); + camera.matrix.multiply( cameraXR.matrixWorld ); + + } + + camera.matrix.decompose( camera.position, camera.quaternion, camera.scale ); + camera.updateMatrixWorld( true ); + + camera.projectionMatrix.copy( cameraXR.projectionMatrix ); + camera.projectionMatrixInverse.copy( cameraXR.projectionMatrixInverse ); + + if ( camera.isPerspectiveCamera ) { + + camera.fov = RAD2DEG * 2 * Math.atan( 1 / camera.projectionMatrix.elements[ 5 ] ); + camera.zoom = 1; + + } + +} + +function onSessionEvent( event ) { + + const controllerIndex = this._controllerInputSources.indexOf( event.inputSource ); + + if ( controllerIndex === - 1 ) { + + return; + + } + + const controller = this._controllers[ controllerIndex ]; + + if ( controller !== undefined ) { + + const referenceSpace = this.getReferenceSpace(); + + controller.update( event.inputSource, event.frame, referenceSpace ); + controller.dispatchEvent( { type: event.type, data: event.inputSource } ); + + } + +} + +function onSessionEnd() { + + const session = this._session; + const renderer = this._renderer; + + session.removeEventListener( 'select', this._onSessionEvent ); + session.removeEventListener( 'selectstart', this._onSessionEvent ); + session.removeEventListener( 'selectend', this._onSessionEvent ); + session.removeEventListener( 'squeeze', this._onSessionEvent ); + session.removeEventListener( 'squeezestart', this._onSessionEvent ); + session.removeEventListener( 'squeezeend', this._onSessionEvent ); + session.removeEventListener( 'end', this._onSessionEnd ); + session.removeEventListener( 'inputsourceschange', this._onInputSourcesChange ); + + for ( let i = 0; i < this._controllers.length; i ++ ) { + + const inputSource = this._controllerInputSources[ i ]; + + if ( inputSource === null ) continue; + + this._controllerInputSources[ i ] = null; + + this._controllers[ i ].disconnect( inputSource ); + + } + + this._currentDepthNear = null; + this._currentDepthFar = null; + + // restore framebuffer/rendering state + + renderer._resetXRState(); + + this._session = null; + this._xrRenderTarget = null; + + // switch layers back to emulated + if ( this._supportsLayers === true ) { + + for ( const layer of this._layers ) { + + // Recreate layer render target to reset state + layer.renderTarget = new XRRenderTarget( + layer.pixelwidth, + layer.pixelheight, + { + format: RGBAFormat, + type: UnsignedByteType, + depthTexture: new DepthTexture( + layer.pixelwidth, + layer.pixelheight, + layer.stencilBuffer ? UnsignedInt248Type : UnsignedIntType, + undefined, + undefined, + undefined, + undefined, + undefined, + undefined, + layer.stencilBuffer ? DepthStencilFormat : DepthFormat + ), + stencilBuffer: layer.stencilBuffer, + resolveDepthBuffer: false, + resolveStencilBuffer: false + } ); + + layer.renderTarget.isXRRenderTarget = false; + + layer.plane.material = layer.material; + layer.material.map = layer.renderTarget.texture; + layer.material.map.offset.y = 1; + layer.material.map.repeat.y = - 1; + delete layer.xrlayer; + + } + + } + + // + + this.isPresenting = false; + this._useMultiview = false; + + renderer._animation.stop(); + renderer._animation.setAnimationLoop( this._currentAnimationLoop ); + renderer._animation.setContext( this._currentAnimationContext ); + renderer._animation.start(); + + renderer.setPixelRatio( this._currentPixelRatio ); + renderer.setSize( this._currentSize.width, this._currentSize.height, false ); + + this.dispatchEvent( { type: 'sessionend' } ); + +} + +function onInputSourcesChange( event ) { + + const controllers = this._controllers; + const controllerInputSources = this._controllerInputSources; + + // Notify disconnected + + for ( let i = 0; i < event.removed.length; i ++ ) { + + const inputSource = event.removed[ i ]; + const index = controllerInputSources.indexOf( inputSource ); + + if ( index >= 0 ) { + + controllerInputSources[ index ] = null; + controllers[ index ].disconnect( inputSource ); + + } + + } + + // Notify connected + + for ( let i = 0; i < event.added.length; i ++ ) { + + const inputSource = event.added[ i ]; + + let controllerIndex = controllerInputSources.indexOf( inputSource ); + + if ( controllerIndex === - 1 ) { + + // Assign input source a controller that currently has no input source + + for ( let i = 0; i < controllers.length; i ++ ) { + + if ( i >= controllerInputSources.length ) { + + controllerInputSources.push( inputSource ); + controllerIndex = i; + break; + + } else if ( controllerInputSources[ i ] === null ) { + + controllerInputSources[ i ] = inputSource; + controllerIndex = i; + break; + + } + + } + + // If all controllers do currently receive input we ignore new ones + + if ( controllerIndex === - 1 ) break; + + } + + const controller = controllers[ controllerIndex ]; + + if ( controller ) { + + controller.connect( inputSource ); + + } + + } + +} + +// Creation method for native WebXR layers +function createXRLayer( layer ) { + + if ( layer.type === 'quad' ) { + + return this._glBinding.createQuadLayer( { + transform: new XRRigidTransform( layer.translation, layer.quaternion ), + width: layer.width / 2, + height: layer.height / 2, + space: this._referenceSpace, + viewPixelWidth: layer.pixelwidth, + viewPixelHeight: layer.pixelheight, + clearOnAccess: false + } ); + + } else { + + return this._glBinding.createCylinderLayer( { + transform: new XRRigidTransform( layer.translation, layer.quaternion ), + radius: layer.radius, + centralAngle: layer.centralAngle, + aspectRatio: layer.aspectRatio, + space: this._referenceSpace, + viewPixelWidth: layer.pixelwidth, + viewPixelHeight: layer.pixelheight, + clearOnAccess: false + } ); + + } + +} + +// Animation Loop + +function onAnimationFrame( time, frame ) { + + if ( frame === undefined ) return; + + const cameraXR = this._cameraXR; + const renderer = this._renderer; + const backend = renderer.backend; + + const glBaseLayer = this._glBaseLayer; + + const referenceSpace = this.getReferenceSpace(); + const pose = frame.getViewerPose( referenceSpace ); + + this._xrFrame = frame; + + if ( pose !== null ) { + + const views = pose.views; + + if ( this._glBaseLayer !== null ) { + + backend.setXRTarget( glBaseLayer.framebuffer ); + + } + + let cameraXRNeedsUpdate = false; + + // check if it's necessary to rebuild cameraXR's camera list + + if ( views.length !== cameraXR.cameras.length ) { + + cameraXR.cameras.length = 0; + cameraXRNeedsUpdate = true; + + } + + for ( let i = 0; i < views.length; i ++ ) { + + const view = views[ i ]; + + let viewport; + + if ( this._useLayers === true ) { + + const glSubImage = this._glBinding.getViewSubImage( this._glProjLayer, view ); + viewport = glSubImage.viewport; + + // For side-by-side projection, we only produce a single texture for both eyes. + if ( i === 0 ) { + + backend.setXRRenderTargetTextures( + this._xrRenderTarget, + glSubImage.colorTexture, + ( this._glProjLayer.ignoreDepthValues && ! this._useMultiview ) ? undefined : glSubImage.depthStencilTexture + ); + + } + + } else { + + viewport = glBaseLayer.getViewport( view ); + + } + + let camera = this._cameras[ i ]; + + if ( camera === undefined ) { + + camera = new PerspectiveCamera(); + camera.layers.enable( i ); + camera.viewport = new Vector4(); + this._cameras[ i ] = camera; + + } + + camera.matrix.fromArray( view.transform.matrix ); + camera.matrix.decompose( camera.position, camera.quaternion, camera.scale ); + camera.projectionMatrix.fromArray( view.projectionMatrix ); + camera.projectionMatrixInverse.copy( camera.projectionMatrix ).invert(); + camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height ); + + if ( i === 0 ) { + + cameraXR.matrix.copy( camera.matrix ); + cameraXR.matrix.decompose( cameraXR.position, cameraXR.quaternion, cameraXR.scale ); + + } + + if ( cameraXRNeedsUpdate === true ) { + + cameraXR.cameras.push( camera ); + + } + + } + + renderer.setOutputRenderTarget( this._xrRenderTarget ); + + } + + // + + for ( let i = 0; i < this._controllers.length; i ++ ) { + + const inputSource = this._controllerInputSources[ i ]; + const controller = this._controllers[ i ]; + + if ( inputSource !== null && controller !== undefined ) { + + controller.update( inputSource, frame, referenceSpace ); + + } + + } + + if ( this._currentAnimationLoop ) this._currentAnimationLoop( time, frame ); + + if ( frame.detectedPlanes ) { + + this.dispatchEvent( { type: 'planesdetected', data: frame } ); + + } + + this._xrFrame = null; + +} + +const _scene = /*@__PURE__*/ new Scene(); +const _drawingBufferSize$1 = /*@__PURE__*/ new Vector2(); +const _screen = /*@__PURE__*/ new Vector4(); +const _frustum = /*@__PURE__*/ new Frustum(); +const _frustumArray = /*@__PURE__*/ new FrustumArray(); + +const _projScreenMatrix = /*@__PURE__*/ new Matrix4(); +const _vector4 = /*@__PURE__*/ new Vector4(); + +/** + * Base class for renderers. + */ +class Renderer { + + /** + * Renderer options. + * + * @typedef {Object} Renderer~Options + * @property {boolean} [logarithmicDepthBuffer=false] - Whether logarithmic depth buffer is enabled or not. + * @property {boolean} [alpha=true] - Whether the default framebuffer (which represents the final contents of the canvas) should be transparent or opaque. + * @property {boolean} [depth=true] - Whether the default framebuffer should have a depth buffer or not. + * @property {boolean} [stencil=false] - Whether the default framebuffer should have a stencil buffer or not. + * @property {boolean} [antialias=false] - Whether MSAA as the default anti-aliasing should be enabled or not. + * @property {number} [samples=0] - When `antialias` is `true`, `4` samples are used by default. This parameter can set to any other integer value than 0 + * to overwrite the default. + * @property {?Function} [getFallback=null] - This callback function can be used to provide a fallback backend, if the primary backend can't be targeted. + * @property {number} [colorBufferType=HalfFloatType] - Defines the type of color buffers. The default `HalfFloatType` is recommend for best + * quality. To save memory and bandwidth, `UnsignedByteType` might be used. This will reduce rendering quality though. + * @property {boolean} [multiview=false] - If set to `true`, the renderer will use multiview during WebXR rendering if supported. + */ + + /** + * Constructs a new renderer. + * + * @param {Backend} backend - The backend the renderer is targeting (e.g. WebGPU or WebGL 2). + * @param {Renderer~Options} [parameters] - The configuration parameter. + + */ + constructor( backend, parameters = {} ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isRenderer = true; + + // + + const { + logarithmicDepthBuffer = false, + alpha = true, + depth = true, + stencil = false, + antialias = false, + samples = 0, + getFallback = null, + colorBufferType = HalfFloatType, + multiview = false + } = parameters; + + /** + * A reference to the canvas element the renderer is drawing to. + * This value of this property will automatically be created by + * the renderer. + * + * @type {HTMLCanvasElement|OffscreenCanvas} + */ + this.domElement = backend.getDomElement(); + + /** + * A reference to the current backend. + * + * @type {Backend} + */ + this.backend = backend; + + /** + * The number of MSAA samples. + * + * @type {number} + * @default 0 + */ + this.samples = samples || ( antialias === true ) ? 4 : 0; + + /** + * Whether the renderer should automatically clear the current rendering target + * before execute a `render()` call. The target can be the canvas (default framebuffer) + * or the current bound render target (custom framebuffer). + * + * @type {boolean} + * @default true + */ + this.autoClear = true; + + /** + * When `autoClear` is set to `true`, this property defines whether the renderer + * should clear the color buffer. + * + * @type {boolean} + * @default true + */ + this.autoClearColor = true; + + /** + * When `autoClear` is set to `true`, this property defines whether the renderer + * should clear the depth buffer. + * + * @type {boolean} + * @default true + */ + this.autoClearDepth = true; + + /** + * When `autoClear` is set to `true`, this property defines whether the renderer + * should clear the stencil buffer. + * + * @type {boolean} + * @default true + */ + this.autoClearStencil = true; + + /** + * Whether the default framebuffer should be transparent or opaque. + * + * @type {boolean} + * @default true + */ + this.alpha = alpha; + + /** + * Whether logarithmic depth buffer is enabled or not. + * + * @type {boolean} + * @default false + */ + this.logarithmicDepthBuffer = logarithmicDepthBuffer; + + /** + * Defines the output color space of the renderer. + * + * @type {string} + * @default SRGBColorSpace + */ + this.outputColorSpace = SRGBColorSpace; + + /** + * Defines the tone mapping of the renderer. + * + * @type {number} + * @default NoToneMapping + */ + this.toneMapping = NoToneMapping; + + /** + * Defines the tone mapping exposure. + * + * @type {number} + * @default 1 + */ + this.toneMappingExposure = 1.0; + + /** + * Whether the renderer should sort its render lists or not. + * + * Note: Sorting is used to attempt to properly render objects that have some degree of transparency. + * By definition, sorting objects may not work in all cases. Depending on the needs of application, + * it may be necessary to turn off sorting and use other methods to deal with transparency rendering + * e.g. manually determining each object's rendering order. + * + * @type {boolean} + * @default true + */ + this.sortObjects = true; + + /** + * Whether the default framebuffer should have a depth buffer or not. + * + * @type {boolean} + * @default true + */ + this.depth = depth; + + /** + * Whether the default framebuffer should have a stencil buffer or not. + * + * @type {boolean} + * @default false + */ + this.stencil = stencil; + + /** + * Holds a series of statistical information about the GPU memory + * and the rendering process. Useful for debugging and monitoring. + * + * @type {Info} + */ + this.info = new Info(); + + /** + * Stores override nodes for specific transformations or calculations. + * These nodes can be used to replace default behavior in the rendering pipeline. + * + * @type {Object} + * @property {?Node} modelViewMatrix - An override node for the model-view matrix. + * @property {?Node} modelNormalViewMatrix - An override node for the model normal view matrix. + */ + this.overrideNodes = { + modelViewMatrix: null, + modelNormalViewMatrix: null + }; + + /** + * The node library defines how certain library objects like materials, lights + * or tone mapping functions are mapped to node types. This is required since + * although instances of classes like `MeshBasicMaterial` or `PointLight` can + * be part of the scene graph, they are internally represented as nodes for + * further processing. + * + * @type {NodeLibrary} + */ + this.library = new NodeLibrary(); + + /** + * A map-like data structure for managing lights. + * + * @type {Lighting} + */ + this.lighting = new Lighting(); + + // internals + + /** + * This callback function can be used to provide a fallback backend, if the primary backend can't be targeted. + * + * @private + * @type {?Function} + */ + this._getFallback = getFallback; + + /** + * The renderer's pixel ratio. + * + * @private + * @type {number} + * @default 1 + */ + this._pixelRatio = 1; + + /** + * The width of the renderer's default framebuffer in logical pixel unit. + * + * @private + * @type {number} + */ + this._width = this.domElement.width; + + /** + * The height of the renderer's default framebuffer in logical pixel unit. + * + * @private + * @type {number} + */ + this._height = this.domElement.height; + + /** + * The viewport of the renderer in logical pixel unit. + * + * @private + * @type {Vector4} + */ + this._viewport = new Vector4( 0, 0, this._width, this._height ); + + /** + * The scissor rectangle of the renderer in logical pixel unit. + * + * @private + * @type {Vector4} + */ + this._scissor = new Vector4( 0, 0, this._width, this._height ); + + /** + * Whether the scissor test should be enabled or not. + * + * @private + * @type {boolean} + */ + this._scissorTest = false; + + /** + * A reference to a renderer module for managing shader attributes. + * + * @private + * @type {?Attributes} + * @default null + */ + this._attributes = null; + + /** + * A reference to a renderer module for managing geometries. + * + * @private + * @type {?Geometries} + * @default null + */ + this._geometries = null; + + /** + * A reference to a renderer module for managing node related logic. + * + * @private + * @type {?Nodes} + * @default null + */ + this._nodes = null; + + /** + * A reference to a renderer module for managing the internal animation loop. + * + * @private + * @type {?Animation} + * @default null + */ + this._animation = null; + + /** + * A reference to a renderer module for managing shader program bindings. + * + * @private + * @type {?Bindings} + * @default null + */ + this._bindings = null; + + /** + * A reference to a renderer module for managing render objects. + * + * @private + * @type {?RenderObjects} + * @default null + */ + this._objects = null; + + /** + * A reference to a renderer module for managing render and compute pipelines. + * + * @private + * @type {?Pipelines} + * @default null + */ + this._pipelines = null; + + /** + * A reference to a renderer module for managing render bundles. + * + * @private + * @type {?RenderBundles} + * @default null + */ + this._bundles = null; + + /** + * A reference to a renderer module for managing render lists. + * + * @private + * @type {?RenderLists} + * @default null + */ + this._renderLists = null; + + /** + * A reference to a renderer module for managing render contexts. + * + * @private + * @type {?RenderContexts} + * @default null + */ + this._renderContexts = null; + + /** + * A reference to a renderer module for managing textures. + * + * @private + * @type {?Textures} + * @default null + */ + this._textures = null; + + /** + * A reference to a renderer module for backgrounds. + * + * @private + * @type {?Background} + * @default null + */ + this._background = null; + + /** + * This fullscreen quad is used for internal render passes + * like the tone mapping and color space output pass. + * + * @private + * @type {QuadMesh} + */ + this._quad = new QuadMesh( new NodeMaterial() ); + this._quad.material.name = 'Renderer_output'; + + /** + * A reference to the current render context. + * + * @private + * @type {?RenderContext} + * @default null + */ + this._currentRenderContext = null; + + /** + * A custom sort function for the opaque render list. + * + * @private + * @type {?Function} + * @default null + */ + this._opaqueSort = null; + + /** + * A custom sort function for the transparent render list. + * + * @private + * @type {?Function} + * @default null + */ + this._transparentSort = null; + + /** + * The framebuffer target. + * + * @private + * @type {?RenderTarget} + * @default null + */ + this._frameBufferTarget = null; + + const alphaClear = this.alpha === true ? 0 : 1; + + /** + * The clear color value. + * + * @private + * @type {Color4} + */ + this._clearColor = new Color4( 0, 0, 0, alphaClear ); + + /** + * The clear depth value. + * + * @private + * @type {number} + * @default 1 + */ + this._clearDepth = 1; + + /** + * The clear stencil value. + * + * @private + * @type {number} + * @default 0 + */ + this._clearStencil = 0; + + /** + * The current render target. + * + * @private + * @type {?RenderTarget} + * @default null + */ + this._renderTarget = null; + + /** + * The active cube face. + * + * @private + * @type {number} + * @default 0 + */ + this._activeCubeFace = 0; + + /** + * The active mipmap level. + * + * @private + * @type {number} + * @default 0 + */ + this._activeMipmapLevel = 0; + + /** + * The current output render target. + * + * @private + * @type {?RenderTarget} + * @default null + */ + this._outputRenderTarget = null; + + /** + * The MRT setting. + * + * @private + * @type {?MRTNode} + * @default null + */ + this._mrt = null; + + /** + * This function defines how a render object is going + * to be rendered. + * + * @private + * @type {?Function} + * @default null + */ + this._renderObjectFunction = null; + + /** + * Used to keep track of the current render object function. + * + * @private + * @type {?Function} + * @default null + */ + this._currentRenderObjectFunction = null; + + /** + * Used to keep track of the current render bundle. + * + * @private + * @type {?RenderBundle} + * @default null + */ + this._currentRenderBundle = null; + + /** + * Next to `_renderObjectFunction()`, this function provides another hook + * for influencing the render process of a render object. It is meant for internal + * use and only relevant for `compileAsync()` right now. Instead of using + * the default logic of `_renderObjectDirect()` which actually draws the render object, + * a different function might be used which performs no draw but just the node + * and pipeline updates. + * + * @private + * @type {?Function} + * @default null + */ + this._handleObjectFunction = this._renderObjectDirect; + + /** + * Indicates whether the device has been lost or not. In WebGL terms, the device + * lost is considered as a context lost. When this is set to `true`, rendering + * isn't possible anymore. + * + * @private + * @type {boolean} + * @default false + */ + this._isDeviceLost = false; + + /** + * A callback function that defines what should happen when a device/context lost occurs. + * + * @type {Function} + */ + this.onDeviceLost = this._onDeviceLost; + + /** + * Defines the type of color buffers. The default `HalfFloatType` is recommend for + * best quality. To save memory and bandwidth, `UnsignedByteType` might be used. + * This will reduce rendering quality though. + * + * @private + * @type {number} + * @default HalfFloatType + */ + this._colorBufferType = colorBufferType; + + /** + * Whether the renderer has been initialized or not. + * + * @private + * @type {boolean} + * @default false + */ + this._initialized = false; + + /** + * A reference to the promise which initializes the renderer. + * + * @private + * @type {?Promise} + * @default null + */ + this._initPromise = null; + + /** + * An array of compilation promises which are used in `compileAsync()`. + * + * @private + * @type {?Array} + * @default null + */ + this._compilationPromises = null; + + /** + * Whether the renderer should render transparent render objects or not. + * + * @type {boolean} + * @default true + */ + this.transparent = true; + + /** + * Whether the renderer should render opaque render objects or not. + * + * @type {boolean} + * @default true + */ + this.opaque = true; + + /** + * Shadow map configuration + * @typedef {Object} ShadowMapConfig + * @property {boolean} enabled - Whether to globally enable shadows or not. + * @property {number} type - The shadow map type. + */ + + /** + * The renderer's shadow configuration. + * + * @type {ShadowMapConfig} + */ + this.shadowMap = { + enabled: false, + type: PCFShadowMap + }; + + /** + * XR configuration. + * @typedef {Object} XRConfig + * @property {boolean} enabled - Whether to globally enable XR or not. + */ + + /** + * The renderer's XR manager. + * + * @type {XRManager} + */ + this.xr = new XRManager( this, multiview ); + + /** + * Debug configuration. + * @typedef {Object} DebugConfig + * @property {boolean} checkShaderErrors - Whether shader errors should be checked or not. + * @property {?Function} onShaderError - A callback function that is executed when a shader error happens. Only supported with WebGL 2 right now. + * @property {Function} getShaderAsync - Allows the get the raw shader code for the given scene, camera and 3D object. + */ + + /** + * The renderer's debug configuration. + * + * @type {DebugConfig} + */ + this.debug = { + checkShaderErrors: true, + onShaderError: null, + getShaderAsync: async ( scene, camera, object ) => { + + await this.compileAsync( scene, camera ); + + const renderList = this._renderLists.get( scene, camera ); + const renderContext = this._renderContexts.get( scene, camera, this._renderTarget ); + + const material = scene.overrideMaterial || object.material; + + const renderObject = this._objects.get( object, material, scene, camera, renderList.lightsNode, renderContext, renderContext.clippingContext ); + + const { fragmentShader, vertexShader } = renderObject.getNodeBuilderState(); + + return { fragmentShader, vertexShader }; + + } + }; + + } + + /** + * Initializes the renderer so it is ready for usage. + * + * @async + * @return {Promise} A Promise that resolves when the renderer has been initialized. + */ + async init() { + + if ( this._initialized ) { + + throw new Error( 'Renderer: Backend has already been initialized.' ); + + } + + if ( this._initPromise !== null ) { + + return this._initPromise; + + } + + this._initPromise = new Promise( async ( resolve, reject ) => { + + let backend = this.backend; + + try { + + await backend.init( this ); + + } catch ( error ) { + + if ( this._getFallback !== null ) { + + // try the fallback + + try { + + this.backend = backend = this._getFallback( error ); + await backend.init( this ); + + } catch ( error ) { + + reject( error ); + return; + + } + + } else { + + reject( error ); + return; + + } + + } + + this._nodes = new Nodes( this, backend ); + this._animation = new Animation( this._nodes, this.info ); + this._attributes = new Attributes( backend ); + this._background = new Background( this, this._nodes ); + this._geometries = new Geometries( this._attributes, this.info ); + this._textures = new Textures( this, backend, this.info ); + this._pipelines = new Pipelines( backend, this._nodes ); + this._bindings = new Bindings( backend, this._nodes, this._textures, this._attributes, this._pipelines, this.info ); + this._objects = new RenderObjects( this, this._nodes, this._geometries, this._pipelines, this._bindings, this.info ); + this._renderLists = new RenderLists( this.lighting ); + this._bundles = new RenderBundles(); + this._renderContexts = new RenderContexts(); + + // + + this._animation.start(); + this._initialized = true; + + resolve( this ); + + } ); + + return this._initPromise; + + } + + /** + * The coordinate system of the renderer. The value of this property + * depends on the selected backend. Either `THREE.WebGLCoordinateSystem` or + * `THREE.WebGPUCoordinateSystem`. + * + * @readonly + * @type {number} + */ + get coordinateSystem() { + + return this.backend.coordinateSystem; + + } + + /** + * Compiles all materials in the given scene. This can be useful to avoid a + * phenomenon which is called "shader compilation stutter", which occurs when + * rendering an object with a new shader for the first time. + * + * If you want to add a 3D object to an existing scene, use the third optional + * parameter for applying the target scene. Note that the (target) scene's lighting + * and environment must be configured before calling this method. + * + * @async + * @param {Object3D} scene - The scene or 3D object to precompile. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {?Scene} targetScene - If the first argument is a 3D object, this parameter must represent the scene the 3D object is going to be added. + * @return {Promise} A Promise that resolves when the compile has been finished. + */ + async compileAsync( scene, camera, targetScene = null ) { + + if ( this._isDeviceLost === true ) return; + + if ( this._initialized === false ) await this.init(); + + // preserve render tree + + const nodeFrame = this._nodes.nodeFrame; + + const previousRenderId = nodeFrame.renderId; + const previousRenderContext = this._currentRenderContext; + const previousRenderObjectFunction = this._currentRenderObjectFunction; + const previousCompilationPromises = this._compilationPromises; + + // + + const sceneRef = ( scene.isScene === true ) ? scene : _scene; + + if ( targetScene === null ) targetScene = scene; + + const renderTarget = this._renderTarget; + const renderContext = this._renderContexts.get( targetScene, camera, renderTarget ); + const activeMipmapLevel = this._activeMipmapLevel; + + const compilationPromises = []; + + this._currentRenderContext = renderContext; + this._currentRenderObjectFunction = this.renderObject; + + this._handleObjectFunction = this._createObjectPipeline; + + this._compilationPromises = compilationPromises; + + nodeFrame.renderId ++; + + // + + nodeFrame.update(); + + // + + renderContext.depth = this.depth; + renderContext.stencil = this.stencil; + + if ( ! renderContext.clippingContext ) renderContext.clippingContext = new ClippingContext(); + renderContext.clippingContext.updateGlobal( sceneRef, camera ); + + // + + sceneRef.onBeforeRender( this, scene, camera, renderTarget ); + + // + + const renderList = this._renderLists.get( scene, camera ); + renderList.begin(); + + this._projectObject( scene, camera, 0, renderList, renderContext.clippingContext ); + + // include lights from target scene + if ( targetScene !== scene ) { + + targetScene.traverseVisible( function ( object ) { + + if ( object.isLight && object.layers.test( camera.layers ) ) { + + renderList.pushLight( object ); + + } + + } ); + + } + + renderList.finish(); + + // + + if ( renderTarget !== null ) { + + this._textures.updateRenderTarget( renderTarget, activeMipmapLevel ); + + const renderTargetData = this._textures.get( renderTarget ); + + renderContext.textures = renderTargetData.textures; + renderContext.depthTexture = renderTargetData.depthTexture; + + } else { + + renderContext.textures = null; + renderContext.depthTexture = null; + + } + + // + + this._background.update( sceneRef, renderList, renderContext ); + + // process render lists + + const opaqueObjects = renderList.opaque; + const transparentObjects = renderList.transparent; + const transparentDoublePassObjects = renderList.transparentDoublePass; + const lightsNode = renderList.lightsNode; + + if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode ); + if ( this.transparent === true && transparentObjects.length > 0 ) this._renderTransparents( transparentObjects, transparentDoublePassObjects, camera, sceneRef, lightsNode ); + + // restore render tree + + nodeFrame.renderId = previousRenderId; + + this._currentRenderContext = previousRenderContext; + this._currentRenderObjectFunction = previousRenderObjectFunction; + this._compilationPromises = previousCompilationPromises; + + this._handleObjectFunction = this._renderObjectDirect; + + // wait for all promises setup by backends awaiting compilation/linking/pipeline creation to complete + + await Promise.all( compilationPromises ); + + } + + /** + * Renders the scene in an async fashion. + * + * @async + * @param {Object3D} scene - The scene or 3D object to render. + * @param {Camera} camera - The camera. + * @return {Promise} A Promise that resolves when the render has been finished. + */ + async renderAsync( scene, camera ) { + + if ( this._initialized === false ) await this.init(); + + this._renderScene( scene, camera ); + + } + + /** + * Can be used to synchronize CPU operations with GPU tasks. So when this method is called, + * the CPU waits for the GPU to complete its operation (e.g. a compute task). + * + * @async + * @return {Promise} A Promise that resolves when synchronization has been finished. + */ + async waitForGPU() { + + await this.backend.waitForGPU(); + + } + + /** + * Enables or disables high precision for model-view and normal-view matrices. + * When enabled, will use CPU 64-bit precision for higher precision instead of GPU 32-bit for higher performance. + * + * NOTE: 64-bit precision is not compatible with `InstancedMesh` and `SkinnedMesh`. + * + * @param {boolean} value - Whether to enable or disable high precision. + * @type {boolean} + */ + set highPrecision( value ) { + + if ( value === true ) { + + this.overrideNodes.modelViewMatrix = highpModelViewMatrix; + this.overrideNodes.modelNormalViewMatrix = highpModelNormalViewMatrix; + + } else if ( this.highPrecision ) { + + this.overrideNodes.modelViewMatrix = null; + this.overrideNodes.modelNormalViewMatrix = null; + + } + + } + + /** + * Returns whether high precision is enabled or not. + * + * @return {boolean} Whether high precision is enabled or not. + * @type {boolean} + */ + get highPrecision() { + + return this.overrideNodes.modelViewMatrix === highpModelViewMatrix && this.overrideNodes.modelNormalViewMatrix === highpModelNormalViewMatrix; + + } + + /** + * Sets the given MRT configuration. + * + * @param {MRTNode} mrt - The MRT node to set. + * @return {Renderer} A reference to this renderer. + */ + setMRT( mrt ) { + + this._mrt = mrt; + + return this; + + } + + /** + * Returns the MRT configuration. + * + * @return {MRTNode} The MRT configuration. + */ + getMRT() { + + return this._mrt; + + } + + /** + * Returns the color buffer type. + * + * @return {number} The color buffer type. + */ + getColorBufferType() { + + return this._colorBufferType; + + } + + /** + * Default implementation of the device lost callback. + * + * @private + * @param {Object} info - Information about the context lost. + */ + _onDeviceLost( info ) { + + let errorMessage = `THREE.WebGPURenderer: ${info.api} Device Lost:\n\nMessage: ${info.message}`; + + if ( info.reason ) { + + errorMessage += `\nReason: ${info.reason}`; + + } + + console.error( errorMessage ); + + this._isDeviceLost = true; + + } + + /** + * Renders the given render bundle. + * + * @private + * @param {Object} bundle - Render bundle data. + * @param {Scene} sceneRef - The scene the render bundle belongs to. + * @param {LightsNode} lightsNode - The lights node. + */ + _renderBundle( bundle, sceneRef, lightsNode ) { + + const { bundleGroup, camera, renderList } = bundle; + + const renderContext = this._currentRenderContext; + + // + + const renderBundle = this._bundles.get( bundleGroup, camera ); + const renderBundleData = this.backend.get( renderBundle ); + + if ( renderBundleData.renderContexts === undefined ) renderBundleData.renderContexts = new Set(); + + // + + const needsUpdate = bundleGroup.version !== renderBundleData.version; + const renderBundleNeedsUpdate = renderBundleData.renderContexts.has( renderContext ) === false || needsUpdate; + + renderBundleData.renderContexts.add( renderContext ); + + if ( renderBundleNeedsUpdate ) { + + this.backend.beginBundle( renderContext ); + + if ( renderBundleData.renderObjects === undefined || needsUpdate ) { + + renderBundleData.renderObjects = []; + + } + + this._currentRenderBundle = renderBundle; + + const { + transparentDoublePass: transparentDoublePassObjects, + transparent: transparentObjects, + opaque: opaqueObjects + } = renderList; + + if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode ); + if ( this.transparent === true && transparentObjects.length > 0 ) this._renderTransparents( transparentObjects, transparentDoublePassObjects, camera, sceneRef, lightsNode ); + + this._currentRenderBundle = null; + + // + + this.backend.finishBundle( renderContext, renderBundle ); + + renderBundleData.version = bundleGroup.version; + + } else { + + const { renderObjects } = renderBundleData; + + for ( let i = 0, l = renderObjects.length; i < l; i ++ ) { + + const renderObject = renderObjects[ i ]; + + if ( this._nodes.needsRefresh( renderObject ) ) { + + this._nodes.updateBefore( renderObject ); + + this._nodes.updateForRender( renderObject ); + this._bindings.updateForRender( renderObject ); + + this._nodes.updateAfter( renderObject ); + + } + + } + + } + + this.backend.addBundle( renderContext, renderBundle ); + + } + + /** + * Renders the scene or 3D object with the given camera. This method can only be called + * if the renderer has been initialized. + * + * The target of the method is the default framebuffer (meaning the canvas) + * or alternatively a render target when specified via `setRenderTarget()`. + * + * @param {Object3D} scene - The scene or 3D object to render. + * @param {Camera} camera - The camera to render the scene with. + * @return {?Promise} A Promise that resolve when the scene has been rendered. + * Only returned when the renderer has not been initialized. + */ + render( scene, camera ) { + + if ( this._initialized === false ) { + + console.warn( 'THREE.Renderer: .render() called before the backend is initialized. Try using .renderAsync() instead.' ); + + return this.renderAsync( scene, camera ); + + } + + this._renderScene( scene, camera ); + + } + + /** + * Returns an internal render target which is used when computing the output tone mapping + * and color space conversion. Unlike in `WebGLRenderer`, this is done in a separate render + * pass and not inline to achieve more correct results. + * + * @private + * @return {?RenderTarget} The render target. The method returns `null` if no output conversion should be applied. + */ + _getFrameBufferTarget() { + + const { currentToneMapping, currentColorSpace } = this; + + const useToneMapping = currentToneMapping !== NoToneMapping; + const useColorSpace = currentColorSpace !== LinearSRGBColorSpace; + + if ( useToneMapping === false && useColorSpace === false ) return null; + + const { width, height } = this.getDrawingBufferSize( _drawingBufferSize$1 ); + const { depth, stencil } = this; + + let frameBufferTarget = this._frameBufferTarget; + + if ( frameBufferTarget === null ) { + + frameBufferTarget = new RenderTarget( width, height, { + depthBuffer: depth, + stencilBuffer: stencil, + type: this._colorBufferType, + format: RGBAFormat, + colorSpace: LinearSRGBColorSpace, + generateMipmaps: false, + minFilter: LinearFilter, + magFilter: LinearFilter, + samples: this.samples + } ); + + frameBufferTarget.isPostProcessingRenderTarget = true; + + this._frameBufferTarget = frameBufferTarget; + + } + + const outputRenderTarget = this.getOutputRenderTarget(); + + frameBufferTarget.depthBuffer = depth; + frameBufferTarget.stencilBuffer = stencil; + if ( outputRenderTarget !== null ) { + + frameBufferTarget.setSize( outputRenderTarget.width, outputRenderTarget.height, outputRenderTarget.depth ); + + } else { + + frameBufferTarget.setSize( width, height, 1 ); + + } + + frameBufferTarget.viewport.copy( this._viewport ); + frameBufferTarget.scissor.copy( this._scissor ); + frameBufferTarget.viewport.multiplyScalar( this._pixelRatio ); + frameBufferTarget.scissor.multiplyScalar( this._pixelRatio ); + frameBufferTarget.scissorTest = this._scissorTest; + frameBufferTarget.multiview = outputRenderTarget !== null ? outputRenderTarget.multiview : false; + frameBufferTarget.resolveDepthBuffer = outputRenderTarget !== null ? outputRenderTarget.resolveDepthBuffer : true; + + return frameBufferTarget; + + } + + /** + * Renders the scene or 3D object with the given camera. + * + * @private + * @param {Object3D} scene - The scene or 3D object to render. + * @param {Camera} camera - The camera to render the scene with. + * @param {boolean} [useFrameBufferTarget=true] - Whether to use a framebuffer target or not. + * @return {RenderContext} The current render context. + */ + _renderScene( scene, camera, useFrameBufferTarget = true ) { + + if ( this._isDeviceLost === true ) return; + + const frameBufferTarget = useFrameBufferTarget ? this._getFrameBufferTarget() : null; + + // preserve render tree + + const nodeFrame = this._nodes.nodeFrame; + + const previousRenderId = nodeFrame.renderId; + const previousRenderContext = this._currentRenderContext; + const previousRenderObjectFunction = this._currentRenderObjectFunction; + + // + + const sceneRef = ( scene.isScene === true ) ? scene : _scene; + + const outputRenderTarget = this._renderTarget || this._outputRenderTarget; + + const activeCubeFace = this._activeCubeFace; + const activeMipmapLevel = this._activeMipmapLevel; + + // + + let renderTarget; + + if ( frameBufferTarget !== null ) { + + renderTarget = frameBufferTarget; + + this.setRenderTarget( renderTarget ); + + } else { + + renderTarget = outputRenderTarget; + + } + + // + + const renderContext = this._renderContexts.get( scene, camera, renderTarget ); + + this._currentRenderContext = renderContext; + this._currentRenderObjectFunction = this._renderObjectFunction || this.renderObject; + + // + + this.info.calls ++; + this.info.render.calls ++; + this.info.render.frameCalls ++; + + nodeFrame.renderId = this.info.calls; + + // + + const coordinateSystem = this.coordinateSystem; + const xr = this.xr; + + if ( camera.coordinateSystem !== coordinateSystem && xr.isPresenting === false ) { + + camera.coordinateSystem = coordinateSystem; + camera.updateProjectionMatrix(); + + if ( camera.isArrayCamera ) { + + for ( const subCamera of camera.cameras ) { + + subCamera.coordinateSystem = coordinateSystem; + subCamera.updateProjectionMatrix(); + + } + + } + + } + + // + + if ( scene.matrixWorldAutoUpdate === true ) scene.updateMatrixWorld(); + + if ( camera.parent === null && camera.matrixWorldAutoUpdate === true ) camera.updateMatrixWorld(); + + if ( xr.enabled === true && xr.isPresenting === true ) { + + if ( xr.cameraAutoUpdate === true ) xr.updateCamera( camera ); + camera = xr.getCamera(); // use XR camera for rendering + + } + + // + + let viewport = this._viewport; + let scissor = this._scissor; + let pixelRatio = this._pixelRatio; + + if ( renderTarget !== null ) { + + viewport = renderTarget.viewport; + scissor = renderTarget.scissor; + pixelRatio = 1; + + } + + this.getDrawingBufferSize( _drawingBufferSize$1 ); + + _screen.set( 0, 0, _drawingBufferSize$1.width, _drawingBufferSize$1.height ); + + const minDepth = ( viewport.minDepth === undefined ) ? 0 : viewport.minDepth; + const maxDepth = ( viewport.maxDepth === undefined ) ? 1 : viewport.maxDepth; + + renderContext.viewportValue.copy( viewport ).multiplyScalar( pixelRatio ).floor(); + renderContext.viewportValue.width >>= activeMipmapLevel; + renderContext.viewportValue.height >>= activeMipmapLevel; + renderContext.viewportValue.minDepth = minDepth; + renderContext.viewportValue.maxDepth = maxDepth; + renderContext.viewport = renderContext.viewportValue.equals( _screen ) === false; + + renderContext.scissorValue.copy( scissor ).multiplyScalar( pixelRatio ).floor(); + renderContext.scissor = this._scissorTest && renderContext.scissorValue.equals( _screen ) === false; + renderContext.scissorValue.width >>= activeMipmapLevel; + renderContext.scissorValue.height >>= activeMipmapLevel; + + if ( ! renderContext.clippingContext ) renderContext.clippingContext = new ClippingContext(); + renderContext.clippingContext.updateGlobal( sceneRef, camera ); + + // + + sceneRef.onBeforeRender( this, scene, camera, renderTarget ); + + // + + const frustum = camera.isArrayCamera ? _frustumArray : _frustum; + + if ( ! camera.isArrayCamera ) { + + _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); + frustum.setFromProjectionMatrix( _projScreenMatrix, coordinateSystem ); + + } + + const renderList = this._renderLists.get( scene, camera ); + renderList.begin(); + + this._projectObject( scene, camera, 0, renderList, renderContext.clippingContext ); + + renderList.finish(); + + if ( this.sortObjects === true ) { + + renderList.sort( this._opaqueSort, this._transparentSort ); + + } + + // + + if ( renderTarget !== null ) { + + this._textures.updateRenderTarget( renderTarget, activeMipmapLevel ); + + const renderTargetData = this._textures.get( renderTarget ); + + renderContext.textures = renderTargetData.textures; + renderContext.depthTexture = renderTargetData.depthTexture; + renderContext.width = renderTargetData.width; + renderContext.height = renderTargetData.height; + renderContext.renderTarget = renderTarget; + renderContext.depth = renderTarget.depthBuffer; + renderContext.stencil = renderTarget.stencilBuffer; + + } else { + + renderContext.textures = null; + renderContext.depthTexture = null; + renderContext.width = this.domElement.width; + renderContext.height = this.domElement.height; + renderContext.depth = this.depth; + renderContext.stencil = this.stencil; + + } + + renderContext.width >>= activeMipmapLevel; + renderContext.height >>= activeMipmapLevel; + renderContext.activeCubeFace = activeCubeFace; + renderContext.activeMipmapLevel = activeMipmapLevel; + renderContext.occlusionQueryCount = renderList.occlusionQueryCount; + + // + + this._background.update( sceneRef, renderList, renderContext ); + + // + + renderContext.camera = camera; + this.backend.beginRender( renderContext ); + + // process render lists + + const { + bundles, + lightsNode, + transparentDoublePass: transparentDoublePassObjects, + transparent: transparentObjects, + opaque: opaqueObjects + } = renderList; + + if ( bundles.length > 0 ) this._renderBundles( bundles, sceneRef, lightsNode ); + if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode ); + if ( this.transparent === true && transparentObjects.length > 0 ) this._renderTransparents( transparentObjects, transparentDoublePassObjects, camera, sceneRef, lightsNode ); + + // finish render pass + + this.backend.finishRender( renderContext ); + + // restore render tree + + nodeFrame.renderId = previousRenderId; + + this._currentRenderContext = previousRenderContext; + this._currentRenderObjectFunction = previousRenderObjectFunction; + + // + + if ( frameBufferTarget !== null ) { + + this.setRenderTarget( outputRenderTarget, activeCubeFace, activeMipmapLevel ); + + this._renderOutput( renderTarget ); + + } + + // + + sceneRef.onAfterRender( this, scene, camera, renderTarget ); + + // + + return renderContext; + + } + + _setXRLayerSize( width, height ) { + + this._width = width; + this._height = height; + + this.setViewport( 0, 0, width, height ); + + } + + /** + * The output pass performs tone mapping and color space conversion. + * + * @private + * @param {RenderTarget} renderTarget - The current render target. + */ + _renderOutput( renderTarget ) { + + const quad = this._quad; + + if ( this._nodes.hasOutputChange( renderTarget.texture ) ) { + + quad.material.fragmentNode = this._nodes.getOutputNode( renderTarget.texture ); + quad.material.needsUpdate = true; + + } + + // a clear operation clears the intermediate renderTarget texture, but should not update the screen canvas. + + const currentAutoClear = this.autoClear; + const currentXR = this.xr.enabled; + + this.autoClear = false; + this.xr.enabled = false; + + this._renderScene( quad, quad.camera, false ); + + this.autoClear = currentAutoClear; + this.xr.enabled = currentXR; + + + } + + /** + * Returns the maximum available anisotropy for texture filtering. + * + * @return {number} The maximum available anisotropy. + */ + getMaxAnisotropy() { + + return this.backend.getMaxAnisotropy(); + + } + + /** + * Returns the active cube face. + * + * @return {number} The active cube face. + */ + getActiveCubeFace() { + + return this._activeCubeFace; + + } + + /** + * Returns the active mipmap level. + * + * @return {number} The active mipmap level. + */ + getActiveMipmapLevel() { + + return this._activeMipmapLevel; + + } + + /** + * Applications are advised to always define the animation loop + * with this method and not manually with `requestAnimationFrame()` + * for best compatibility. + * + * @async + * @param {?Function} callback - The application's animation loop. + * @return {Promise} A Promise that resolves when the set has been executed. + */ + async setAnimationLoop( callback ) { + + if ( this._initialized === false ) await this.init(); + + this._animation.setAnimationLoop( callback ); + + } + + /** + * Can be used to transfer buffer data from a storage buffer attribute + * from the GPU to the CPU in context of compute shaders. + * + * @async + * @param {StorageBufferAttribute} attribute - The storage buffer attribute. + * @return {Promise} A promise that resolves with the buffer data when the data are ready. + */ + async getArrayBufferAsync( attribute ) { + + return await this.backend.getArrayBufferAsync( attribute ); + + } + + /** + * Returns the rendering context. + * + * @return {GPUCanvasContext|WebGL2RenderingContext} The rendering context. + */ + getContext() { + + return this.backend.getContext(); + + } + + /** + * Returns the pixel ratio. + * + * @return {number} The pixel ratio. + */ + getPixelRatio() { + + return this._pixelRatio; + + } + + /** + * Returns the drawing buffer size in physical pixels. This method honors the pixel ratio. + * + * @param {Vector2} target - The method writes the result in this target object. + * @return {Vector2} The drawing buffer size. + */ + getDrawingBufferSize( target ) { + + return target.set( this._width * this._pixelRatio, this._height * this._pixelRatio ).floor(); + + } + + /** + * Returns the renderer's size in logical pixels. This method does not honor the pixel ratio. + * + * @param {Vector2} target - The method writes the result in this target object. + * @return {Vector2} The renderer's size in logical pixels. + */ + getSize( target ) { + + return target.set( this._width, this._height ); + + } + + /** + * Sets the given pixel ratio and resizes the canvas if necessary. + * + * @param {number} [value=1] - The pixel ratio. + */ + setPixelRatio( value = 1 ) { + + if ( this._pixelRatio === value ) return; + + this._pixelRatio = value; + + this.setSize( this._width, this._height, false ); + + } + + /** + * This method allows to define the drawing buffer size by specifying + * width, height and pixel ratio all at once. The size of the drawing + * buffer is computed with this formula: + * ```js + * size.x = width * pixelRatio; + * size.y = height * pixelRatio; + * ``` + * + * @param {number} width - The width in logical pixels. + * @param {number} height - The height in logical pixels. + * @param {number} pixelRatio - The pixel ratio. + */ + setDrawingBufferSize( width, height, pixelRatio ) { + + // Renderer can't be resized while presenting in XR. + if ( this.xr && this.xr.isPresenting ) return; + + this._width = width; + this._height = height; + + this._pixelRatio = pixelRatio; + + this.domElement.width = Math.floor( width * pixelRatio ); + this.domElement.height = Math.floor( height * pixelRatio ); + + this.setViewport( 0, 0, width, height ); + + if ( this._initialized ) this.backend.updateSize(); + + } + + /** + * Sets the size of the renderer. + * + * @param {number} width - The width in logical pixels. + * @param {number} height - The height in logical pixels. + * @param {boolean} [updateStyle=true] - Whether to update the `style` attribute of the canvas or not. + */ + setSize( width, height, updateStyle = true ) { + + // Renderer can't be resized while presenting in XR. + if ( this.xr && this.xr.isPresenting ) return; + + this._width = width; + this._height = height; + + this.domElement.width = Math.floor( width * this._pixelRatio ); + this.domElement.height = Math.floor( height * this._pixelRatio ); + + if ( updateStyle === true ) { + + this.domElement.style.width = width + 'px'; + this.domElement.style.height = height + 'px'; + + } + + this.setViewport( 0, 0, width, height ); + + if ( this._initialized ) this.backend.updateSize(); + + } + + /** + * Defines a manual sort function for the opaque render list. + * Pass `null` to use the default sort. + * + * @param {Function} method - The sort function. + */ + setOpaqueSort( method ) { + + this._opaqueSort = method; + + } + + /** + * Defines a manual sort function for the transparent render list. + * Pass `null` to use the default sort. + * + * @param {Function} method - The sort function. + */ + setTransparentSort( method ) { + + this._transparentSort = method; + + } + + /** + * Returns the scissor rectangle. + * + * @param {Vector4} target - The method writes the result in this target object. + * @return {Vector4} The scissor rectangle. + */ + getScissor( target ) { + + const scissor = this._scissor; + + target.x = scissor.x; + target.y = scissor.y; + target.width = scissor.width; + target.height = scissor.height; + + return target; + + } + + /** + * Defines the scissor rectangle. + * + * @param {number | Vector4} x - The horizontal coordinate for the lower left corner of the box in logical pixel unit. + * Instead of passing four arguments, the method also works with a single four-dimensional vector. + * @param {number} y - The vertical coordinate for the lower left corner of the box in logical pixel unit. + * @param {number} width - The width of the scissor box in logical pixel unit. + * @param {number} height - The height of the scissor box in logical pixel unit. + */ + setScissor( x, y, width, height ) { + + const scissor = this._scissor; + + if ( x.isVector4 ) { + + scissor.copy( x ); + + } else { + + scissor.set( x, y, width, height ); + + } + + } + + /** + * Returns the scissor test value. + * + * @return {boolean} Whether the scissor test should be enabled or not. + */ + getScissorTest() { + + return this._scissorTest; + + } + + /** + * Defines the scissor test. + * + * @param {boolean} boolean - Whether the scissor test should be enabled or not. + */ + setScissorTest( boolean ) { + + this._scissorTest = boolean; + + this.backend.setScissorTest( boolean ); + + } + + /** + * Returns the viewport definition. + * + * @param {Vector4} target - The method writes the result in this target object. + * @return {Vector4} The viewport definition. + */ + getViewport( target ) { + + return target.copy( this._viewport ); + + } + + /** + * Defines the viewport. + * + * @param {number | Vector4} x - The horizontal coordinate for the lower left corner of the viewport origin in logical pixel unit. + * @param {number} y - The vertical coordinate for the lower left corner of the viewport origin in logical pixel unit. + * @param {number} width - The width of the viewport in logical pixel unit. + * @param {number} height - The height of the viewport in logical pixel unit. + * @param {number} minDepth - The minimum depth value of the viewport. WebGPU only. + * @param {number} maxDepth - The maximum depth value of the viewport. WebGPU only. + */ + setViewport( x, y, width, height, minDepth = 0, maxDepth = 1 ) { + + const viewport = this._viewport; + + if ( x.isVector4 ) { + + viewport.copy( x ); + + } else { + + viewport.set( x, y, width, height ); + + } + + viewport.minDepth = minDepth; + viewport.maxDepth = maxDepth; + + } + + /** + * Returns the clear color. + * + * @param {Color} target - The method writes the result in this target object. + * @return {Color} The clear color. + */ + getClearColor( target ) { + + return target.copy( this._clearColor ); + + } + + /** + * Defines the clear color and optionally the clear alpha. + * + * @param {Color} color - The clear color. + * @param {number} [alpha=1] - The clear alpha. + */ + setClearColor( color, alpha = 1 ) { + + this._clearColor.set( color ); + this._clearColor.a = alpha; + + } + + /** + * Returns the clear alpha. + * + * @return {number} The clear alpha. + */ + getClearAlpha() { + + return this._clearColor.a; + + } + + /** + * Defines the clear alpha. + * + * @param {number} alpha - The clear alpha. + */ + setClearAlpha( alpha ) { + + this._clearColor.a = alpha; + + } + + /** + * Returns the clear depth. + * + * @return {number} The clear depth. + */ + getClearDepth() { + + return this._clearDepth; + + } + + /** + * Defines the clear depth. + * + * @param {number} depth - The clear depth. + */ + setClearDepth( depth ) { + + this._clearDepth = depth; + + } + + /** + * Returns the clear stencil. + * + * @return {number} The clear stencil. + */ + getClearStencil() { + + return this._clearStencil; + + } + + /** + * Defines the clear stencil. + * + * @param {number} stencil - The clear stencil. + */ + setClearStencil( stencil ) { + + this._clearStencil = stencil; + + } + + /** + * This method performs an occlusion query for the given 3D object. + * It returns `true` if the given 3D object is fully occluded by other + * 3D objects in the scene. + * + * @param {Object3D} object - The 3D object to test. + * @return {boolean} Whether the 3D object is fully occluded or not. + */ + isOccluded( object ) { + + const renderContext = this._currentRenderContext; + + return renderContext && this.backend.isOccluded( renderContext, object ); + + } + + /** + * Performs a manual clear operation. This method ignores `autoClear` properties. + * + * @param {boolean} [color=true] - Whether the color buffer should be cleared or not. + * @param {boolean} [depth=true] - Whether the depth buffer should be cleared or not. + * @param {boolean} [stencil=true] - Whether the stencil buffer should be cleared or not. + * @return {Promise} A Promise that resolves when the clear operation has been executed. + * Only returned when the renderer has not been initialized. + */ + clear( color = true, depth = true, stencil = true ) { + + if ( this._initialized === false ) { + + console.warn( 'THREE.Renderer: .clear() called before the backend is initialized. Try using .clearAsync() instead.' ); + + return this.clearAsync( color, depth, stencil ); + + } + + const renderTarget = this._renderTarget || this._getFrameBufferTarget(); + + let renderContext = null; + + if ( renderTarget !== null ) { + + this._textures.updateRenderTarget( renderTarget ); + + const renderTargetData = this._textures.get( renderTarget ); + + renderContext = this._renderContexts.getForClear( renderTarget ); + renderContext.textures = renderTargetData.textures; + renderContext.depthTexture = renderTargetData.depthTexture; + renderContext.width = renderTargetData.width; + renderContext.height = renderTargetData.height; + renderContext.renderTarget = renderTarget; + renderContext.depth = renderTarget.depthBuffer; + renderContext.stencil = renderTarget.stencilBuffer; + // #30329 + renderContext.clearColorValue = this.backend.getClearColor(); + renderContext.activeCubeFace = this.getActiveCubeFace(); + renderContext.activeMipmapLevel = this.getActiveMipmapLevel(); + + } + + this.backend.clear( color, depth, stencil, renderContext ); + + if ( renderTarget !== null && this._renderTarget === null ) { + + this._renderOutput( renderTarget ); + + } + + } + + /** + * Performs a manual clear operation of the color buffer. This method ignores `autoClear` properties. + * + * @return {Promise} A Promise that resolves when the clear operation has been executed. + * Only returned when the renderer has not been initialized. + */ + clearColor() { + + return this.clear( true, false, false ); + + } + + /** + * Performs a manual clear operation of the depth buffer. This method ignores `autoClear` properties. + * + * @return {Promise} A Promise that resolves when the clear operation has been executed. + * Only returned when the renderer has not been initialized. + */ + clearDepth() { + + return this.clear( false, true, false ); + + } + + /** + * Performs a manual clear operation of the stencil buffer. This method ignores `autoClear` properties. + * + * @return {Promise} A Promise that resolves when the clear operation has been executed. + * Only returned when the renderer has not been initialized. + */ + clearStencil() { + + return this.clear( false, false, true ); + + } + + /** + * Async version of {@link Renderer#clear}. + * + * @async + * @param {boolean} [color=true] - Whether the color buffer should be cleared or not. + * @param {boolean} [depth=true] - Whether the depth buffer should be cleared or not. + * @param {boolean} [stencil=true] - Whether the stencil buffer should be cleared or not. + * @return {Promise} A Promise that resolves when the clear operation has been executed. + */ + async clearAsync( color = true, depth = true, stencil = true ) { + + if ( this._initialized === false ) await this.init(); + + this.clear( color, depth, stencil ); + + } + + /** + * Async version of {@link Renderer#clearColor}. + * + * @async + * @return {Promise} A Promise that resolves when the clear operation has been executed. + */ + async clearColorAsync() { + + this.clearAsync( true, false, false ); + + } + + /** + * Async version of {@link Renderer#clearDepth}. + * + * @async + * @return {Promise} A Promise that resolves when the clear operation has been executed. + */ + async clearDepthAsync() { + + this.clearAsync( false, true, false ); + + } + + /** + * Async version of {@link Renderer#clearStencil}. + * + * @async + * @return {Promise} A Promise that resolves when the clear operation has been executed. + */ + async clearStencilAsync() { + + this.clearAsync( false, false, true ); + + } + + /** + * The current output tone mapping of the renderer. When a render target is set, + * the output tone mapping is always `NoToneMapping`. + * + * @type {number} + */ + get currentToneMapping() { + + return this.isOutputTarget ? this.toneMapping : NoToneMapping; + + } + + /** + * The current output color space of the renderer. When a render target is set, + * the output color space is always `LinearSRGBColorSpace`. + * + * @type {string} + */ + get currentColorSpace() { + + return this.isOutputTarget ? this.outputColorSpace : LinearSRGBColorSpace; + + } + + /** + * Returns `true` if the rendering settings are set to screen output. + * + * @returns {boolean} True if the current render target is the same of output render target or `null`, otherwise false. + */ + get isOutputTarget() { + + return this._renderTarget === this._outputRenderTarget || this._renderTarget === null; + + } + + /** + * Frees all internal resources of the renderer. Call this method if the renderer + * is no longer in use by your app. + */ + dispose() { + + this.info.dispose(); + this.backend.dispose(); + + this._animation.dispose(); + this._objects.dispose(); + this._pipelines.dispose(); + this._nodes.dispose(); + this._bindings.dispose(); + this._renderLists.dispose(); + this._renderContexts.dispose(); + this._textures.dispose(); + + if ( this._frameBufferTarget !== null ) this._frameBufferTarget.dispose(); + + Object.values( this.backend.timestampQueryPool ).forEach( queryPool => { + + if ( queryPool !== null ) queryPool.dispose(); + + } ); + + this.setRenderTarget( null ); + this.setAnimationLoop( null ); + + } + + /** + * Sets the given render target. Calling this method means the renderer does not + * target the default framebuffer (meaning the canvas) anymore but a custom framebuffer. + * Use `null` as the first argument to reset the state. + * + * @param {?RenderTarget} renderTarget - The render target to set. + * @param {number} [activeCubeFace=0] - The active cube face. + * @param {number} [activeMipmapLevel=0] - The active mipmap level. + */ + setRenderTarget( renderTarget, activeCubeFace = 0, activeMipmapLevel = 0 ) { + + this._renderTarget = renderTarget; + this._activeCubeFace = activeCubeFace; + this._activeMipmapLevel = activeMipmapLevel; + + } + + /** + * Returns the current render target. + * + * @return {?RenderTarget} The render target. Returns `null` if no render target is set. + */ + getRenderTarget() { + + return this._renderTarget; + + } + + /** + * Sets the output render target for the renderer. + * + * @param {Object} renderTarget - The render target to set as the output target. + */ + setOutputRenderTarget( renderTarget ) { + + this._outputRenderTarget = renderTarget; + + } + + /** + * Returns the current output target. + * + * @return {?RenderTarget} The current output render target. Returns `null` if no output target is set. + */ + getOutputRenderTarget() { + + return this._outputRenderTarget; + + } + + /** + * Resets the renderer to the initial state before WebXR started. + * + */ + _resetXRState() { + + this.backend.setXRTarget( null ); + this.setOutputRenderTarget( null ); + this.setRenderTarget( null ); + + this._frameBufferTarget.dispose(); + this._frameBufferTarget = null; + + } + + /** + * Callback for {@link Renderer#setRenderObjectFunction}. + * + * @callback renderObjectFunction + * @param {Object3D} object - The 3D object. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the object should be rendered with. + * @param {BufferGeometry} geometry - The object's geometry. + * @param {Material} material - The object's material. + * @param {?Object} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {LightsNode} lightsNode - The current lights node. + * @param {ClippingContext} clippingContext - The clipping context. + * @param {?string} [passId=null] - An optional ID for identifying the pass. + */ + + /** + * Sets the given render object function. Calling this method overwrites the default implementation + * which is {@link Renderer#renderObject}. Defining a custom function can be useful + * if you want to modify the way objects are rendered. For example you can define things like "every + * object that has material of a certain type should perform a pre-pass with a special overwrite material". + * The custom function must always call `renderObject()` in its implementation. + * + * Use `null` as the first argument to reset the state. + * + * @param {?renderObjectFunction} renderObjectFunction - The render object function. + */ + setRenderObjectFunction( renderObjectFunction ) { + + this._renderObjectFunction = renderObjectFunction; + + } + + /** + * Returns the current render object function. + * + * @return {?Function} The current render object function. Returns `null` if no function is set. + */ + getRenderObjectFunction() { + + return this._renderObjectFunction; + + } + + /** + * Execute a single or an array of compute nodes. This method can only be called + * if the renderer has been initialized. + * + * @param {Node|Array} computeNodes - The compute node(s). + * @return {Promise|undefined} A Promise that resolve when the compute has finished. Only returned when the renderer has not been initialized. + */ + compute( computeNodes ) { + + if ( this._isDeviceLost === true ) return; + + if ( this._initialized === false ) { + + console.warn( 'THREE.Renderer: .compute() called before the backend is initialized. Try using .computeAsync() instead.' ); + + return this.computeAsync( computeNodes ); + + } + + // + + const nodeFrame = this._nodes.nodeFrame; + + const previousRenderId = nodeFrame.renderId; + + // + + this.info.calls ++; + this.info.compute.calls ++; + this.info.compute.frameCalls ++; + + nodeFrame.renderId = this.info.calls; + + // + + const backend = this.backend; + const pipelines = this._pipelines; + const bindings = this._bindings; + const nodes = this._nodes; + + const computeList = Array.isArray( computeNodes ) ? computeNodes : [ computeNodes ]; + + if ( computeList[ 0 ] === undefined || computeList[ 0 ].isComputeNode !== true ) { + + throw new Error( 'THREE.Renderer: .compute() expects a ComputeNode.' ); + + } + + backend.beginCompute( computeNodes ); + + for ( const computeNode of computeList ) { + + // onInit + + if ( pipelines.has( computeNode ) === false ) { + + const dispose = () => { + + computeNode.removeEventListener( 'dispose', dispose ); + + pipelines.delete( computeNode ); + bindings.delete( computeNode ); + nodes.delete( computeNode ); + + }; + + computeNode.addEventListener( 'dispose', dispose ); + + // + + const onInitFn = computeNode.onInitFunction; + + if ( onInitFn !== null ) { + + onInitFn.call( computeNode, { renderer: this } ); + + } + + } + + nodes.updateForCompute( computeNode ); + bindings.updateForCompute( computeNode ); + + const computeBindings = bindings.getForCompute( computeNode ); + const computePipeline = pipelines.getForCompute( computeNode, computeBindings ); + + backend.compute( computeNodes, computeNode, computeBindings, computePipeline ); + + } + + backend.finishCompute( computeNodes ); + + // + + nodeFrame.renderId = previousRenderId; + + } + + /** + * Execute a single or an array of compute nodes. + * + * @async + * @param {Node|Array} computeNodes - The compute node(s). + * @return {Promise} A Promise that resolve when the compute has finished. + */ + async computeAsync( computeNodes ) { + + if ( this._initialized === false ) await this.init(); + + this.compute( computeNodes ); + + } + + /** + * Checks if the given feature is supported by the selected backend. + * + * @async + * @param {string} name - The feature's name. + * @return {Promise} A Promise that resolves with a bool that indicates whether the feature is supported or not. + */ + async hasFeatureAsync( name ) { + + if ( this._initialized === false ) await this.init(); + + return this.backend.hasFeature( name ); + + } + + async resolveTimestampsAsync( type = 'render' ) { + + if ( this._initialized === false ) await this.init(); + + return this.backend.resolveTimestampsAsync( type ); + + } + + /** + * Checks if the given feature is supported by the selected backend. If the + * renderer has not been initialized, this method always returns `false`. + * + * @param {string} name - The feature's name. + * @return {boolean} Whether the feature is supported or not. + */ + hasFeature( name ) { + + if ( this._initialized === false ) { + + console.warn( 'THREE.Renderer: .hasFeature() called before the backend is initialized. Try using .hasFeatureAsync() instead.' ); + + return false; + + } + + return this.backend.hasFeature( name ); + + } + + /** + * Returns `true` when the renderer has been initialized. + * + * @return {boolean} Whether the renderer has been initialized or not. + */ + hasInitialized() { + + return this._initialized; + + } + + /** + * Initializes the given textures. Useful for preloading a texture rather than waiting until first render + * (which can cause noticeable lags due to decode and GPU upload overhead). + * + * @async + * @param {Texture} texture - The texture. + * @return {Promise} A Promise that resolves when the texture has been initialized. + */ + async initTextureAsync( texture ) { + + if ( this._initialized === false ) await this.init(); + + this._textures.updateTexture( texture ); + + } + + /** + * Initializes the given texture. Useful for preloading a texture rather than waiting until first render + * (which can cause noticeable lags due to decode and GPU upload overhead). + * + * This method can only be used if the renderer has been initialized. + * + * @param {Texture} texture - The texture. + */ + initTexture( texture ) { + + if ( this._initialized === false ) { + + console.warn( 'THREE.Renderer: .initTexture() called before the backend is initialized. Try using .initTextureAsync() instead.' ); + + } + + this._textures.updateTexture( texture ); + + } + + /** + * Copies the current bound framebuffer into the given texture. + * + * @param {FramebufferTexture} framebufferTexture - The texture. + * @param {?Vector2|Vector4} [rectangle=null] - A two or four dimensional vector that defines the rectangular portion of the framebuffer that should be copied. + */ + copyFramebufferToTexture( framebufferTexture, rectangle = null ) { + + if ( rectangle !== null ) { + + if ( rectangle.isVector2 ) { + + rectangle = _vector4.set( rectangle.x, rectangle.y, framebufferTexture.image.width, framebufferTexture.image.height ).floor(); + + } else if ( rectangle.isVector4 ) { + + rectangle = _vector4.copy( rectangle ).floor(); + + } else { + + console.error( 'THREE.Renderer.copyFramebufferToTexture: Invalid rectangle.' ); + + return; + + } + + } else { + + rectangle = _vector4.set( 0, 0, framebufferTexture.image.width, framebufferTexture.image.height ); + + } + + // + + let renderContext = this._currentRenderContext; + let renderTarget; + + if ( renderContext !== null ) { + + renderTarget = renderContext.renderTarget; + + } else { + + renderTarget = this._renderTarget || this._getFrameBufferTarget(); + + if ( renderTarget !== null ) { + + this._textures.updateRenderTarget( renderTarget ); + + renderContext = this._textures.get( renderTarget ); + + } + + } + + // + + this._textures.updateTexture( framebufferTexture, { renderTarget } ); + + this.backend.copyFramebufferToTexture( framebufferTexture, renderContext, rectangle ); + + } + + /** + * Copies data of the given source texture into a destination texture. + * + * @param {Texture} srcTexture - The source texture. + * @param {Texture} dstTexture - The destination texture. + * @param {Box2|Box3} [srcRegion=null] - A bounding box which describes the source region. Can be two or three-dimensional. + * @param {Vector2|Vector3} [dstPosition=null] - A vector that represents the origin of the destination region. Can be two or three-dimensional. + * @param {number} [srcLevel=0] - The source mip level to copy from. + * @param {number} [dstLevel=0] - The destination mip level to copy to. + */ + copyTextureToTexture( srcTexture, dstTexture, srcRegion = null, dstPosition = null, srcLevel = 0, dstLevel = 0 ) { + + this._textures.updateTexture( srcTexture ); + this._textures.updateTexture( dstTexture ); + + this.backend.copyTextureToTexture( srcTexture, dstTexture, srcRegion, dstPosition, srcLevel, dstLevel ); + + } + + /** + * Reads pixel data from the given render target. + * + * @async + * @param {RenderTarget} renderTarget - The render target to read from. + * @param {number} x - The `x` coordinate of the copy region's origin. + * @param {number} y - The `y` coordinate of the copy region's origin. + * @param {number} width - The width of the copy region. + * @param {number} height - The height of the copy region. + * @param {number} [textureIndex=0] - The texture index of a MRT render target. + * @param {number} [faceIndex=0] - The active cube face index. + * @return {Promise} A Promise that resolves when the read has been finished. The resolve provides the read data as a typed array. + */ + async readRenderTargetPixelsAsync( renderTarget, x, y, width, height, textureIndex = 0, faceIndex = 0 ) { + + return this.backend.copyTextureToBuffer( renderTarget.textures[ textureIndex ], x, y, width, height, faceIndex ); + + } + + /** + * Analyzes the given 3D object's hierarchy and builds render lists from the + * processed hierarchy. + * + * @param {Object3D} object - The 3D object to process (usually a scene). + * @param {Camera} camera - The camera the object is rendered with. + * @param {number} groupOrder - The group order is derived from the `renderOrder` of groups and is used to group 3D objects within groups. + * @param {RenderList} renderList - The current render list. + * @param {ClippingContext} clippingContext - The current clipping context. + */ + _projectObject( object, camera, groupOrder, renderList, clippingContext ) { + + if ( object.visible === false ) return; + + const visible = object.layers.test( camera.layers ); + + if ( visible ) { + + if ( object.isGroup ) { + + groupOrder = object.renderOrder; + + if ( object.isClippingGroup && object.enabled ) clippingContext = clippingContext.getGroupContext( object ); + + } else if ( object.isLOD ) { + + if ( object.autoUpdate === true ) object.update( camera ); + + } else if ( object.isLight ) { + + renderList.pushLight( object ); + + } else if ( object.isSprite ) { + + const frustum = camera.isArrayCamera ? _frustumArray : _frustum; + + if ( ! object.frustumCulled || frustum.intersectsSprite( object, camera ) ) { + + if ( this.sortObjects === true ) { + + _vector4.setFromMatrixPosition( object.matrixWorld ).applyMatrix4( _projScreenMatrix ); + + } + + const { geometry, material } = object; + + if ( material.visible ) { + + renderList.push( object, geometry, material, groupOrder, _vector4.z, null, clippingContext ); + + } + + } + + } else if ( object.isLineLoop ) { + + console.error( 'THREE.Renderer: Objects of type THREE.LineLoop are not supported. Please use THREE.Line or THREE.LineSegments.' ); + + } else if ( object.isMesh || object.isLine || object.isPoints ) { + + const frustum = camera.isArrayCamera ? _frustumArray : _frustum; + + if ( ! object.frustumCulled || frustum.intersectsObject( object, camera ) ) { + + const { geometry, material } = object; + + if ( this.sortObjects === true ) { + + if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); + + _vector4 + .copy( geometry.boundingSphere.center ) + .applyMatrix4( object.matrixWorld ) + .applyMatrix4( _projScreenMatrix ); + + } + + if ( Array.isArray( material ) ) { + + const groups = geometry.groups; + + for ( let i = 0, l = groups.length; i < l; i ++ ) { + + const group = groups[ i ]; + const groupMaterial = material[ group.materialIndex ]; + + if ( groupMaterial && groupMaterial.visible ) { + + renderList.push( object, geometry, groupMaterial, groupOrder, _vector4.z, group, clippingContext ); + + } + + } + + } else if ( material.visible ) { + + renderList.push( object, geometry, material, groupOrder, _vector4.z, null, clippingContext ); + + } + + } + + } + + } + + if ( object.isBundleGroup === true && this.backend.beginBundle !== undefined ) { + + const baseRenderList = renderList; + + // replace render list + renderList = this._renderLists.get( object, camera ); + + renderList.begin(); + + baseRenderList.pushBundle( { + bundleGroup: object, + camera, + renderList, + } ); + + renderList.finish(); + + } + + const children = object.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + this._projectObject( children[ i ], camera, groupOrder, renderList, clippingContext ); + + } + + } + + /** + * Renders the given render bundles. + * + * @private + * @param {Array} bundles - Array with render bundle data. + * @param {Scene} sceneRef - The scene the render bundles belong to. + * @param {LightsNode} lightsNode - The current lights node. + */ + _renderBundles( bundles, sceneRef, lightsNode ) { + + for ( const bundle of bundles ) { + + this._renderBundle( bundle, sceneRef, lightsNode ); + + } + + } + + /** + * Renders the transparent objects from the given render lists. + * + * @private + * @param {Array} renderList - The transparent render list. + * @param {Array} doublePassList - The list of transparent objects which require a double pass (e.g. because of transmission). + * @param {Camera} camera - The camera the render list should be rendered with. + * @param {Scene} scene - The scene the render list belongs to. + * @param {LightsNode} lightsNode - The current lights node. + */ + _renderTransparents( renderList, doublePassList, camera, scene, lightsNode ) { + + if ( doublePassList.length > 0 ) { + + // render back side + + for ( const { material } of doublePassList ) { + + material.side = BackSide; + + } + + this._renderObjects( doublePassList, camera, scene, lightsNode, 'backSide' ); + + // render front side + + for ( const { material } of doublePassList ) { + + material.side = FrontSide; + + } + + this._renderObjects( renderList, camera, scene, lightsNode ); + + // restore + + for ( const { material } of doublePassList ) { + + material.side = DoubleSide; + + } + + } else { + + this._renderObjects( renderList, camera, scene, lightsNode ); + + } + + } + + /** + * Renders the objects from the given render list. + * + * @private + * @param {Array} renderList - The render list. + * @param {Camera} camera - The camera the render list should be rendered with. + * @param {Scene} scene - The scene the render list belongs to. + * @param {LightsNode} lightsNode - The current lights node. + * @param {?string} [passId=null] - An optional ID for identifying the pass. + */ + _renderObjects( renderList, camera, scene, lightsNode, passId = null ) { + + for ( let i = 0, il = renderList.length; i < il; i ++ ) { + + const { object, geometry, material, group, clippingContext } = renderList[ i ]; + + this._currentRenderObjectFunction( object, scene, camera, geometry, material, group, lightsNode, clippingContext, passId ); + + } + + } + + /** + * This method represents the default render object function that manages the render lifecycle + * of the object. + * + * @param {Object3D} object - The 3D object. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the object should be rendered with. + * @param {BufferGeometry} geometry - The object's geometry. + * @param {Material} material - The object's material. + * @param {?Object} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {LightsNode} lightsNode - The current lights node. + * @param {?ClippingContext} clippingContext - The clipping context. + * @param {?string} [passId=null] - An optional ID for identifying the pass. + */ + renderObject( object, scene, camera, geometry, material, group, lightsNode, clippingContext = null, passId = null ) { + + let overridePositionNode; + let overrideColorNode; + let overrideDepthNode; + + // + + object.onBeforeRender( this, scene, camera, geometry, material, group ); + + // + + if ( material.allowOverride === true && scene.overrideMaterial !== null ) { + + const overrideMaterial = scene.overrideMaterial; + + if ( material.positionNode && material.positionNode.isNode ) { + + overridePositionNode = overrideMaterial.positionNode; + overrideMaterial.positionNode = material.positionNode; + + } + + overrideMaterial.alphaTest = material.alphaTest; + overrideMaterial.alphaMap = material.alphaMap; + overrideMaterial.transparent = material.transparent || material.transmission > 0; + + if ( overrideMaterial.isShadowPassMaterial ) { + + overrideMaterial.side = material.shadowSide === null ? material.side : material.shadowSide; + + if ( material.depthNode && material.depthNode.isNode ) { + + overrideDepthNode = overrideMaterial.depthNode; + overrideMaterial.depthNode = material.depthNode; + + } + + if ( material.castShadowNode && material.castShadowNode.isNode ) { + + overrideColorNode = overrideMaterial.colorNode; + overrideMaterial.colorNode = material.castShadowNode; + + } + + if ( material.castShadowPositionNode && material.castShadowPositionNode.isNode ) { + + overridePositionNode = overrideMaterial.positionNode; + overrideMaterial.positionNode = material.castShadowPositionNode; + + } + + } + + material = overrideMaterial; + + } + + // + + if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) { + + material.side = BackSide; + this._handleObjectFunction( object, material, scene, camera, lightsNode, group, clippingContext, 'backSide' ); // create backSide pass id + + material.side = FrontSide; + this._handleObjectFunction( object, material, scene, camera, lightsNode, group, clippingContext, passId ); // use default pass id + + material.side = DoubleSide; + + } else { + + this._handleObjectFunction( object, material, scene, camera, lightsNode, group, clippingContext, passId ); + + } + + // + + if ( overridePositionNode !== undefined ) { + + scene.overrideMaterial.positionNode = overridePositionNode; + + } + + if ( overrideDepthNode !== undefined ) { + + scene.overrideMaterial.depthNode = overrideDepthNode; + + } + + if ( overrideColorNode !== undefined ) { + + scene.overrideMaterial.colorNode = overrideColorNode; + + } + + // + + object.onAfterRender( this, scene, camera, geometry, material, group ); + + } + + /** + * This method represents the default `_handleObjectFunction` implementation which creates + * a render object from the given data and performs the draw command with the selected backend. + * + * @private + * @param {Object3D} object - The 3D object. + * @param {Material} material - The object's material. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the object should be rendered with. + * @param {LightsNode} lightsNode - The current lights node. + * @param {?{start: number, count: number}} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {ClippingContext} clippingContext - The clipping context. + * @param {?string} [passId=null] - An optional ID for identifying the pass. + */ + _renderObjectDirect( object, material, scene, camera, lightsNode, group, clippingContext, passId ) { + + const renderObject = this._objects.get( object, material, scene, camera, lightsNode, this._currentRenderContext, clippingContext, passId ); + renderObject.drawRange = object.geometry.drawRange; + renderObject.group = group; + + // + + const needsRefresh = this._nodes.needsRefresh( renderObject ); + + if ( needsRefresh ) { + + this._nodes.updateBefore( renderObject ); + + this._geometries.updateForRender( renderObject ); + + this._nodes.updateForRender( renderObject ); + this._bindings.updateForRender( renderObject ); + + } + + this._pipelines.updateForRender( renderObject ); + + // + + if ( this._currentRenderBundle !== null ) { + + const renderBundleData = this.backend.get( this._currentRenderBundle ); + + renderBundleData.renderObjects.push( renderObject ); + + renderObject.bundle = this._currentRenderBundle.bundleGroup; + + } + + this.backend.draw( renderObject, this.info ); + + if ( needsRefresh ) this._nodes.updateAfter( renderObject ); + + } + + /** + * A different implementation for `_handleObjectFunction` which only makes sure the object is ready for rendering. + * Used in `compileAsync()`. + * + * @private + * @param {Object3D} object - The 3D object. + * @param {Material} material - The object's material. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the object should be rendered with. + * @param {LightsNode} lightsNode - The current lights node. + * @param {?{start: number, count: number}} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {ClippingContext} clippingContext - The clipping context. + * @param {?string} [passId=null] - An optional ID for identifying the pass. + */ + _createObjectPipeline( object, material, scene, camera, lightsNode, group, clippingContext, passId ) { + + const renderObject = this._objects.get( object, material, scene, camera, lightsNode, this._currentRenderContext, clippingContext, passId ); + renderObject.drawRange = object.geometry.drawRange; + renderObject.group = group; + + // + + this._nodes.updateBefore( renderObject ); + + this._geometries.updateForRender( renderObject ); + + this._nodes.updateForRender( renderObject ); + this._bindings.updateForRender( renderObject ); + + this._pipelines.getForRender( renderObject, this._compilationPromises ); + + this._nodes.updateAfter( renderObject ); + + } + + /** + * Alias for `compileAsync()`. + * + * @method + * @param {Object3D} scene - The scene or 3D object to precompile. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {Scene} targetScene - If the first argument is a 3D object, this parameter must represent the scene the 3D object is going to be added. + * @return {function(Object3D, Camera, ?Scene): Promise|undefined} A Promise that resolves when the compile has been finished. + */ + get compile() { + + return this.compileAsync; + + } + +} + +/** + * A binding represents the connection between a resource (like a texture, sampler + * or uniform buffer) and the resource definition in a shader stage. + * + * This module is an abstract base class for all concrete bindings types. + * + * @abstract + * @private + */ +class Binding { + + /** + * Constructs a new binding. + * + * @param {string} [name=''] - The binding's name. + */ + constructor( name = '' ) { + + /** + * The binding's name. + * + * @type {string} + */ + this.name = name; + + /** + * A bitmask that defines in what shader stages the + * binding's resource is accessible. + * + * @type {number} + */ + this.visibility = 0; + + } + + /** + * Makes sure binding's resource is visible for the given shader stage. + * + * @param {number} visibility - The shader stage. + */ + setVisibility( visibility ) { + + this.visibility |= visibility; + + } + + /** + * Clones the binding. + * + * @return {Binding} The cloned binding. + */ + clone() { + + return Object.assign( new this.constructor(), this ); + + } + +} + +/** + * This function is usually called with the length in bytes of an array buffer. + * It returns an padded value which ensure chunk size alignment according to STD140 layout. + * + * @function + * @param {number} floatLength - The buffer length. + * @return {number} The padded length. + */ +function getFloatLength( floatLength ) { + + // ensure chunk size alignment (STD140 layout) + + return floatLength + ( ( GPU_CHUNK_BYTES - ( floatLength % GPU_CHUNK_BYTES ) ) % GPU_CHUNK_BYTES ); + +} + +/** + * Represents a buffer binding type. + * + * @private + * @abstract + * @augments Binding + */ +class Buffer extends Binding { + + /** + * Constructs a new buffer. + * + * @param {string} name - The buffer's name. + * @param {TypedArray} [buffer=null] - The buffer. + */ + constructor( name, buffer = null ) { + + super( name ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBuffer = true; + + /** + * The bytes per element. + * + * @type {number} + */ + this.bytesPerElement = Float32Array.BYTES_PER_ELEMENT; + + /** + * A reference to the internal buffer. + * + * @private + * @type {TypedArray} + */ + this._buffer = buffer; + + } + + /** + * The buffer's byte length. + * + * @type {number} + * @readonly + */ + get byteLength() { + + return getFloatLength( this._buffer.byteLength ); + + } + + /** + * A reference to the internal buffer. + * + * @type {Float32Array} + * @readonly + */ + get buffer() { + + return this._buffer; + + } + + /** + * Updates the binding. + * + * @return {boolean} Whether the buffer has been updated and must be + * uploaded to the GPU. + */ + update() { + + return true; + + } + +} + +/** + * Represents a uniform buffer binding type. + * + * @private + * @augments Buffer + */ +class UniformBuffer extends Buffer { + + /** + * Constructs a new uniform buffer. + * + * @param {string} name - The buffer's name. + * @param {TypedArray} [buffer=null] - The buffer. + */ + constructor( name, buffer = null ) { + + super( name, buffer ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isUniformBuffer = true; + + } + +} + +let _id$4 = 0; + +/** + * A special form of uniform buffer binding type. + * It's buffer value is managed by a node object. + * + * @private + * @augments UniformBuffer + */ +class NodeUniformBuffer extends UniformBuffer { + + /** + * Constructs a new node-based uniform buffer. + * + * @param {BufferNode} nodeUniform - The uniform buffer node. + * @param {UniformGroupNode} groupNode - The uniform group node. + */ + constructor( nodeUniform, groupNode ) { + + super( 'UniformBuffer_' + _id$4 ++, nodeUniform ? nodeUniform.value : null ); + + /** + * The uniform buffer node. + * + * @type {BufferNode} + */ + this.nodeUniform = nodeUniform; + + /** + * The uniform group node. + * + * @type {UniformGroupNode} + */ + this.groupNode = groupNode; + + } + + /** + * The uniform buffer. + * + * @type {Float32Array} + */ + get buffer() { + + return this.nodeUniform.value; + + } + +} + +/** + * This class represents a uniform buffer binding but with + * an API that allows to maintain individual uniform objects. + * + * @private + * @augments UniformBuffer + */ +class UniformsGroup extends UniformBuffer { + + /** + * Constructs a new uniforms group. + * + * @param {string} name - The group's name. + */ + constructor( name ) { + + super( name ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isUniformsGroup = true; + + /** + * An array with the raw uniform values. + * + * @private + * @type {?Array} + * @default null + */ + this._values = null; + + /** + * An array of uniform objects. + * + * The order of uniforms in this array must match the order of uniforms in the shader. + * + * @type {Array} + */ + this.uniforms = []; + + } + + /** + * Adds a uniform to this group. + * + * @param {Uniform} uniform - The uniform to add. + * @return {UniformsGroup} A reference to this group. + */ + addUniform( uniform ) { + + this.uniforms.push( uniform ); + + return this; + + } + + /** + * Removes a uniform from this group. + * + * @param {Uniform} uniform - The uniform to remove. + * @return {UniformsGroup} A reference to this group. + */ + removeUniform( uniform ) { + + const index = this.uniforms.indexOf( uniform ); + + if ( index !== - 1 ) { + + this.uniforms.splice( index, 1 ); + + } + + return this; + + } + + /** + * An array with the raw uniform values. + * + * @type {Array} + */ + get values() { + + if ( this._values === null ) { + + this._values = Array.from( this.buffer ); + + } + + return this._values; + + } + + /** + * A Float32 array buffer with the uniform values. + * + * @type {Float32Array} + */ + get buffer() { + + let buffer = this._buffer; + + if ( buffer === null ) { + + const byteLength = this.byteLength; + + buffer = new Float32Array( new ArrayBuffer( byteLength ) ); + + this._buffer = buffer; + + } + + return buffer; + + } + + /** + * The byte length of the buffer with correct buffer alignment. + * + * @type {number} + */ + get byteLength() { + + const bytesPerElement = this.bytesPerElement; + + let offset = 0; // global buffer offset in bytes + + for ( let i = 0, l = this.uniforms.length; i < l; i ++ ) { + + const uniform = this.uniforms[ i ]; + + const boundary = uniform.boundary; + const itemSize = uniform.itemSize * bytesPerElement; // size of the uniform in bytes + + const chunkOffset = offset % GPU_CHUNK_BYTES; // offset in the current chunk + const chunkPadding = chunkOffset % boundary; // required padding to match boundary + const chunkStart = chunkOffset + chunkPadding; // start position in the current chunk for the data + + offset += chunkPadding; + + // Check for chunk overflow + if ( chunkStart !== 0 && ( GPU_CHUNK_BYTES - chunkStart ) < itemSize ) { + + // Add padding to the end of the chunk + offset += ( GPU_CHUNK_BYTES - chunkStart ); + + } + + uniform.offset = offset / bytesPerElement; + + offset += itemSize; + + } + + return Math.ceil( offset / GPU_CHUNK_BYTES ) * GPU_CHUNK_BYTES; + + } + + /** + * Updates this group by updating each uniform object of + * the internal uniform list. The uniform objects check if their + * values has actually changed so this method only returns + * `true` if there is a real value change. + * + * @return {boolean} Whether the uniforms have been updated and + * must be uploaded to the GPU. + */ + update() { + + let updated = false; + + for ( const uniform of this.uniforms ) { + + if ( this.updateByType( uniform ) === true ) { + + updated = true; + + } + + } + + return updated; + + } + + /** + * Updates a given uniform by calling an update method matching + * the uniforms type. + * + * @param {Uniform} uniform - The uniform to update. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateByType( uniform ) { + + if ( uniform.isNumberUniform ) return this.updateNumber( uniform ); + if ( uniform.isVector2Uniform ) return this.updateVector2( uniform ); + if ( uniform.isVector3Uniform ) return this.updateVector3( uniform ); + if ( uniform.isVector4Uniform ) return this.updateVector4( uniform ); + if ( uniform.isColorUniform ) return this.updateColor( uniform ); + if ( uniform.isMatrix3Uniform ) return this.updateMatrix3( uniform ); + if ( uniform.isMatrix4Uniform ) return this.updateMatrix4( uniform ); + + console.error( 'THREE.WebGPUUniformsGroup: Unsupported uniform type.', uniform ); + + } + + /** + * Updates a given Number uniform. + * + * @param {NumberUniform} uniform - The Number uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateNumber( uniform ) { + + let updated = false; + + const a = this.values; + const v = uniform.getValue(); + const offset = uniform.offset; + const type = uniform.getType(); + + if ( a[ offset ] !== v ) { + + const b = this._getBufferForType( type ); + + b[ offset ] = a[ offset ] = v; + updated = true; + + } + + return updated; + + } + + /** + * Updates a given Vector2 uniform. + * + * @param {Vector2Uniform} uniform - The Vector2 uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateVector2( uniform ) { + + let updated = false; + + const a = this.values; + const v = uniform.getValue(); + const offset = uniform.offset; + const type = uniform.getType(); + + if ( a[ offset + 0 ] !== v.x || a[ offset + 1 ] !== v.y ) { + + const b = this._getBufferForType( type ); + + b[ offset + 0 ] = a[ offset + 0 ] = v.x; + b[ offset + 1 ] = a[ offset + 1 ] = v.y; + + updated = true; + + } + + return updated; + + } + + /** + * Updates a given Vector3 uniform. + * + * @param {Vector3Uniform} uniform - The Vector3 uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateVector3( uniform ) { + + let updated = false; + + const a = this.values; + const v = uniform.getValue(); + const offset = uniform.offset; + const type = uniform.getType(); + + if ( a[ offset + 0 ] !== v.x || a[ offset + 1 ] !== v.y || a[ offset + 2 ] !== v.z ) { + + const b = this._getBufferForType( type ); + + b[ offset + 0 ] = a[ offset + 0 ] = v.x; + b[ offset + 1 ] = a[ offset + 1 ] = v.y; + b[ offset + 2 ] = a[ offset + 2 ] = v.z; + + updated = true; + + } + + return updated; + + } + + /** + * Updates a given Vector4 uniform. + * + * @param {Vector4Uniform} uniform - The Vector4 uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateVector4( uniform ) { + + let updated = false; + + const a = this.values; + const v = uniform.getValue(); + const offset = uniform.offset; + const type = uniform.getType(); + + if ( a[ offset + 0 ] !== v.x || a[ offset + 1 ] !== v.y || a[ offset + 2 ] !== v.z || a[ offset + 4 ] !== v.w ) { + + const b = this._getBufferForType( type ); + + b[ offset + 0 ] = a[ offset + 0 ] = v.x; + b[ offset + 1 ] = a[ offset + 1 ] = v.y; + b[ offset + 2 ] = a[ offset + 2 ] = v.z; + b[ offset + 3 ] = a[ offset + 3 ] = v.w; + + updated = true; + + } + + return updated; + + } + + /** + * Updates a given Color uniform. + * + * @param {ColorUniform} uniform - The Color uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateColor( uniform ) { + + let updated = false; + + const a = this.values; + const c = uniform.getValue(); + const offset = uniform.offset; + + if ( a[ offset + 0 ] !== c.r || a[ offset + 1 ] !== c.g || a[ offset + 2 ] !== c.b ) { + + const b = this.buffer; + + b[ offset + 0 ] = a[ offset + 0 ] = c.r; + b[ offset + 1 ] = a[ offset + 1 ] = c.g; + b[ offset + 2 ] = a[ offset + 2 ] = c.b; + + updated = true; + + } + + return updated; + + } + + /** + * Updates a given Matrix3 uniform. + * + * @param {Matrix3Uniform} uniform - The Matrix3 uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateMatrix3( uniform ) { + + let updated = false; + + const a = this.values; + const e = uniform.getValue().elements; + const offset = uniform.offset; + + if ( a[ offset + 0 ] !== e[ 0 ] || a[ offset + 1 ] !== e[ 1 ] || a[ offset + 2 ] !== e[ 2 ] || + a[ offset + 4 ] !== e[ 3 ] || a[ offset + 5 ] !== e[ 4 ] || a[ offset + 6 ] !== e[ 5 ] || + a[ offset + 8 ] !== e[ 6 ] || a[ offset + 9 ] !== e[ 7 ] || a[ offset + 10 ] !== e[ 8 ] ) { + + const b = this.buffer; + + b[ offset + 0 ] = a[ offset + 0 ] = e[ 0 ]; + b[ offset + 1 ] = a[ offset + 1 ] = e[ 1 ]; + b[ offset + 2 ] = a[ offset + 2 ] = e[ 2 ]; + b[ offset + 4 ] = a[ offset + 4 ] = e[ 3 ]; + b[ offset + 5 ] = a[ offset + 5 ] = e[ 4 ]; + b[ offset + 6 ] = a[ offset + 6 ] = e[ 5 ]; + b[ offset + 8 ] = a[ offset + 8 ] = e[ 6 ]; + b[ offset + 9 ] = a[ offset + 9 ] = e[ 7 ]; + b[ offset + 10 ] = a[ offset + 10 ] = e[ 8 ]; + + updated = true; + + } + + return updated; + + } + + /** + * Updates a given Matrix4 uniform. + * + * @param {Matrix4Uniform} uniform - The Matrix4 uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateMatrix4( uniform ) { + + let updated = false; + + const a = this.values; + const e = uniform.getValue().elements; + const offset = uniform.offset; + + if ( arraysEqual( a, e, offset ) === false ) { + + const b = this.buffer; + b.set( e, offset ); + setArray( a, e, offset ); + updated = true; + + } + + return updated; + + } + + /** + * Returns a typed array that matches the given data type. + * + * @param {string} type - The data type. + * @return {TypedArray} The typed array. + */ + _getBufferForType( type ) { + + if ( type === 'int' || type === 'ivec2' || type === 'ivec3' || type === 'ivec4' ) return new Int32Array( this.buffer.buffer ); + if ( type === 'uint' || type === 'uvec2' || type === 'uvec3' || type === 'uvec4' ) return new Uint32Array( this.buffer.buffer ); + return this.buffer; + + } + +} + +/** + * Sets the values of the second array to the first array. + * + * @private + * @param {TypedArray} a - The first array. + * @param {TypedArray} b - The second array. + * @param {number} offset - An index offset for the first array. + */ +function setArray( a, b, offset ) { + + for ( let i = 0, l = b.length; i < l; i ++ ) { + + a[ offset + i ] = b[ i ]; + + } + +} + +/** + * Returns `true` if the given arrays are equal. + * + * @private + * @param {TypedArray} a - The first array. + * @param {TypedArray} b - The second array. + * @param {number} offset - An index offset for the first array. + * @return {boolean} Whether the given arrays are equal or not. + */ +function arraysEqual( a, b, offset ) { + + for ( let i = 0, l = b.length; i < l; i ++ ) { + + if ( a[ offset + i ] !== b[ i ] ) return false; + + } + + return true; + +} + +let _id$3 = 0; + +/** + * A special form of uniforms group that represents + * the individual uniforms as node-based uniforms. + * + * @private + * @augments UniformsGroup + */ +class NodeUniformsGroup extends UniformsGroup { + + /** + * Constructs a new node-based uniforms group. + * + * @param {string} name - The group's name. + * @param {UniformGroupNode} groupNode - The uniform group node. + */ + constructor( name, groupNode ) { + + super( name ); + + /** + * The group's ID. + * + * @type {number} + */ + this.id = _id$3 ++; + + /** + * The uniform group node. + * + * @type {UniformGroupNode} + */ + this.groupNode = groupNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNodeUniformsGroup = true; + + } + +} + +let _id$2 = 0; + +/** + * Represents a sampled texture binding type. + * + * @private + * @augments Binding + */ +class SampledTexture extends Binding { + + /** + * Constructs a new sampled texture. + * + * @param {string} name - The sampled texture's name. + * @param {?Texture} texture - The texture this binding is referring to. + */ + constructor( name, texture ) { + + super( name ); + + /** + * This identifier. + * + * @type {number} + */ + this.id = _id$2 ++; + + /** + * The texture this binding is referring to. + * + * @type {?Texture} + */ + this.texture = texture; + + /** + * The binding's version. + * + * @type {number} + */ + this.version = texture ? texture.version : 0; + + /** + * Whether the texture is a storage texture or not. + * + * @type {boolean} + * @default false + */ + this.store = false; + + /** + * The binding's generation which is an additional version + * qualifier. + * + * @type {?number} + * @default null + */ + this.generation = null; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSampledTexture = true; + + } + + /** + * Returns `true` whether this binding requires an update for the + * given generation. + * + * @param {number} generation - The generation. + * @return {boolean} Whether an update is required or not. + */ + needsBindingsUpdate( generation ) { + + const { texture } = this; + + if ( generation !== this.generation ) { + + this.generation = generation; + + return true; + + } + + return texture.isVideoTexture; + + } + + /** + * Updates the binding. + * + * @return {boolean} Whether the texture has been updated and must be + * uploaded to the GPU. + */ + update() { + + const { texture, version } = this; + + if ( version !== texture.version ) { + + this.version = texture.version; + + return true; + + } + + return false; + + } + +} + +/** + * A special form of sampled texture binding type. + * It's texture value is managed by a node object. + * + * @private + * @augments SampledTexture + */ +class NodeSampledTexture extends SampledTexture { + + /** + * Constructs a new node-based sampled texture. + * + * @param {string} name - The textures's name. + * @param {TextureNode} textureNode - The texture node. + * @param {UniformGroupNode} groupNode - The uniform group node. + * @param {?string} [access=null] - The access type. + */ + constructor( name, textureNode, groupNode, access = null ) { + + super( name, textureNode ? textureNode.value : null ); + + /** + * The texture node. + * + * @type {TextureNode} + */ + this.textureNode = textureNode; + + /** + * The uniform group node. + * + * @type {UniformGroupNode} + */ + this.groupNode = groupNode; + + /** + * The access type. + * + * @type {?string} + * @default null + */ + this.access = access; + + } + + /** + * Overwrites the default to additionally check if the node value has changed. + * + * @param {number} generation - The generation. + * @return {boolean} Whether an update is required or not. + */ + needsBindingsUpdate( generation ) { + + return this.textureNode.value !== this.texture || super.needsBindingsUpdate( generation ); + + } + + /** + * Updates the binding. + * + * @return {boolean} Whether the texture has been updated and must be + * uploaded to the GPU. + */ + update() { + + const { textureNode } = this; + + if ( this.texture !== textureNode.value ) { + + this.texture = textureNode.value; + + return true; + + } + + return super.update(); + + } + +} + +/** + * A special form of sampled cube texture binding type. + * It's texture value is managed by a node object. + * + * @private + * @augments NodeSampledTexture + */ +class NodeSampledCubeTexture extends NodeSampledTexture { + + /** + * Constructs a new node-based sampled cube texture. + * + * @param {string} name - The textures's name. + * @param {TextureNode} textureNode - The texture node. + * @param {UniformGroupNode} groupNode - The uniform group node. + * @param {?string} [access=null] - The access type. + */ + constructor( name, textureNode, groupNode, access = null ) { + + super( name, textureNode, groupNode, access ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSampledCubeTexture = true; + + } + +} + +/** + * A special form of sampled 3D texture binding type. + * It's texture value is managed by a node object. + * + * @private + * @augments NodeSampledTexture + */ +class NodeSampledTexture3D extends NodeSampledTexture { + + /** + * Constructs a new node-based sampled 3D texture. + * + * @param {string} name - The textures's name. + * @param {TextureNode} textureNode - The texture node. + * @param {UniformGroupNode} groupNode - The uniform group node. + * @param {?string} [access=null] - The access type. + */ + constructor( name, textureNode, groupNode, access = null ) { + + super( name, textureNode, groupNode, access ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSampledTexture3D = true; + + } + +} + +const glslMethods = { + textureDimensions: 'textureSize', + equals: 'equal' +}; + +const precisionLib = { + low: 'lowp', + medium: 'mediump', + high: 'highp' +}; + +const supports$1 = { + swizzleAssign: true, + storageBuffer: false +}; + +const interpolationTypeMap = { + perspective: 'smooth', + linear: 'noperspective' +}; + +const interpolationModeMap = { + 'centroid': 'centroid', + 'flat first': 'flat', + 'flat either': 'flat' +}; + +const defaultPrecisions = ` +precision highp float; +precision highp int; +precision highp sampler2D; +precision highp sampler3D; +precision highp samplerCube; +precision highp sampler2DArray; + +precision highp usampler2D; +precision highp usampler3D; +precision highp usamplerCube; +precision highp usampler2DArray; + +precision highp isampler2D; +precision highp isampler3D; +precision highp isamplerCube; +precision highp isampler2DArray; + +precision lowp sampler2DShadow; +precision lowp sampler2DArrayShadow; +precision lowp samplerCubeShadow; +`; + +/** + * A node builder targeting GLSL. + * + * This module generates GLSL shader code from node materials and also + * generates the respective bindings and vertex buffer definitions. These + * data are later used by the renderer to create render and compute pipelines + * for render objects. + * + * @augments NodeBuilder + */ +class GLSLNodeBuilder extends NodeBuilder { + + /** + * Constructs a new GLSL node builder renderer. + * + * @param {Object3D} object - The 3D object. + * @param {Renderer} renderer - The renderer. + */ + constructor( object, renderer ) { + + super( object, renderer, new GLSLNodeParser() ); + + /** + * A dictionary holds for each shader stage ('vertex', 'fragment', 'compute') + * another dictionary which manages UBOs per group ('render','frame','object'). + * + * @type {Object>} + */ + this.uniformGroups = {}; + + /** + * An array that holds objects defining the varying and attribute data in + * context of Transform Feedback. + * + * @type {Array>} + */ + this.transforms = []; + + /** + * A dictionary that holds for each shader stage a Map of used extensions. + * + * @type {Object>} + */ + this.extensions = {}; + + /** + * A dictionary that holds for each shader stage an Array of used builtins. + * + * @type {Object>} + */ + this.builtins = { vertex: [], fragment: [], compute: [] }; + + } + + /** + * Checks if the given texture requires a manual conversion to the working color space. + * + * @param {Texture} texture - The texture to check. + * @return {boolean} Whether the given texture requires a conversion to working color space or not. + */ + needsToWorkingColorSpace( texture ) { + + return texture.isVideoTexture === true && texture.colorSpace !== NoColorSpace; + + } + + /** + * Returns the native shader method name for a given generic name. + * + * @param {string} method - The method name to resolve. + * @return {string} The resolved GLSL method name. + */ + getMethod( method ) { + + return glslMethods[ method ] || method; + + } + + /** + * Returns the output struct name. Not relevant for GLSL. + * + * @return {string} + */ + getOutputStructName() { + + return ''; + + } + + /** + * Builds the given shader node. + * + * @param {ShaderNodeInternal} shaderNode - The shader node. + * @return {string} The GLSL function code. + */ + buildFunctionCode( shaderNode ) { + + const layout = shaderNode.layout; + const flowData = this.flowShaderNode( shaderNode ); + + const parameters = []; + + for ( const input of layout.inputs ) { + + parameters.push( this.getType( input.type ) + ' ' + input.name ); + + } + + // + + const code = `${ this.getType( layout.type ) } ${ layout.name }( ${ parameters.join( ', ' ) } ) { + + ${ flowData.vars } + +${ flowData.code } + return ${ flowData.result }; + +}`; + + // + + return code; + + } + + /** + * Setups the Pixel Buffer Object (PBO) for the given storage + * buffer node. + * + * @param {StorageBufferNode} storageBufferNode - The storage buffer node. + */ + setupPBO( storageBufferNode ) { + + const attribute = storageBufferNode.value; + + if ( attribute.pbo === undefined ) { + + const originalArray = attribute.array; + const numElements = attribute.count * attribute.itemSize; + + const { itemSize } = attribute; + + const isInteger = attribute.array.constructor.name.toLowerCase().includes( 'int' ); + + let format = isInteger ? RedIntegerFormat : RedFormat; + + if ( itemSize === 2 ) { + + format = isInteger ? RGIntegerFormat : RGFormat; + + } else if ( itemSize === 3 ) { + + format = isInteger ? RGBIntegerFormat : RGBFormat; + + } else if ( itemSize === 4 ) { + + format = isInteger ? RGBAIntegerFormat : RGBAFormat; + + } + + const typeMap = { + Float32Array: FloatType, + Uint8Array: UnsignedByteType, + Uint16Array: UnsignedShortType, + Uint32Array: UnsignedIntType, + Int8Array: ByteType, + Int16Array: ShortType, + Int32Array: IntType, + Uint8ClampedArray: UnsignedByteType, + }; + + const width = Math.pow( 2, Math.ceil( Math.log2( Math.sqrt( numElements / itemSize ) ) ) ); + let height = Math.ceil( ( numElements / itemSize ) / width ); + if ( width * height * itemSize < numElements ) height ++; // Ensure enough space + + const newSize = width * height * itemSize; + + const newArray = new originalArray.constructor( newSize ); + + newArray.set( originalArray, 0 ); + + attribute.array = newArray; + + const pboTexture = new DataTexture( attribute.array, width, height, format, typeMap[ attribute.array.constructor.name ] || FloatType ); + pboTexture.needsUpdate = true; + pboTexture.isPBOTexture = true; + + const pbo = new TextureNode( pboTexture, null, null ); + pbo.setPrecision( 'high' ); + + attribute.pboNode = pbo; + attribute.pbo = pbo.value; + + this.getUniformFromNode( attribute.pboNode, 'texture', this.shaderStage, this.context.label ); + + } + + } + + /** + * Returns a GLSL snippet that represents the property name of the given node. + * + * @param {Node} node - The node. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The property name. + */ + getPropertyName( node, shaderStage = this.shaderStage ) { + + if ( node.isNodeUniform && node.node.isTextureNode !== true && node.node.isBufferNode !== true ) { + + return shaderStage.charAt( 0 ) + '_' + node.name; + + } + + return super.getPropertyName( node, shaderStage ); + + } + + /** + * Setups the Pixel Buffer Object (PBO) for the given storage + * buffer node. + * + * @param {StorageArrayElementNode} storageArrayElementNode - The storage array element node. + * @return {string} The property name. + */ + generatePBO( storageArrayElementNode ) { + + const { node, indexNode } = storageArrayElementNode; + const attribute = node.value; + + if ( this.renderer.backend.has( attribute ) ) { + + const attributeData = this.renderer.backend.get( attribute ); + attributeData.pbo = attribute.pbo; + + } + + const nodeUniform = this.getUniformFromNode( attribute.pboNode, 'texture', this.shaderStage, this.context.label ); + const textureName = this.getPropertyName( nodeUniform ); + + this.increaseUsage( indexNode ); // force cache generate to be used as index in x,y + const indexSnippet = indexNode.build( this, 'uint' ); + + const elementNodeData = this.getDataFromNode( storageArrayElementNode ); + + let propertyName = elementNodeData.propertyName; + + if ( propertyName === undefined ) { + + // property element + + const nodeVar = this.getVarFromNode( storageArrayElementNode ); + + propertyName = this.getPropertyName( nodeVar ); + + // property size + + const bufferNodeData = this.getDataFromNode( node ); + + let propertySizeName = bufferNodeData.propertySizeName; + + if ( propertySizeName === undefined ) { + + propertySizeName = propertyName + 'Size'; + + this.getVarFromNode( node, propertySizeName, 'uint' ); + + this.addLineFlowCode( `${ propertySizeName } = uint( textureSize( ${ textureName }, 0 ).x )`, storageArrayElementNode ); + + bufferNodeData.propertySizeName = propertySizeName; + + } + + // + + const { itemSize } = attribute; + + const channel = '.' + vectorComponents.join( '' ).slice( 0, itemSize ); + const uvSnippet = `ivec2(${indexSnippet} % ${ propertySizeName }, ${indexSnippet} / ${ propertySizeName })`; + + const snippet = this.generateTextureLoad( null, textureName, uvSnippet, null, '0' ); + + // + + + let prefix = 'vec4'; + + if ( attribute.pbo.type === UnsignedIntType ) { + + prefix = 'uvec4'; + + } else if ( attribute.pbo.type === IntType ) { + + prefix = 'ivec4'; + + } + + this.addLineFlowCode( `${ propertyName } = ${prefix}(${ snippet })${channel}`, storageArrayElementNode ); + + elementNodeData.propertyName = propertyName; + + } + + return propertyName; + + } + + /** + * Generates the GLSL snippet that reads a single texel from a texture without sampling or filtering. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvIndexSnippet - A GLSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A GLSL snippet that represents the 0-based texture array index to sample. + * @param {string} [levelSnippet='0u'] - A GLSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @return {string} The GLSL snippet. + */ + generateTextureLoad( texture, textureProperty, uvIndexSnippet, depthSnippet, levelSnippet = '0' ) { + + if ( depthSnippet ) { + + return `texelFetch( ${ textureProperty }, ivec3( ${ uvIndexSnippet }, ${ depthSnippet } ), ${ levelSnippet } )`; + + } else { + + return `texelFetch( ${ textureProperty }, ${ uvIndexSnippet }, ${ levelSnippet } )`; + + } + + } + + /** + * Generates the GLSL snippet for sampling/loading the given texture. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A GLSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A GLSL snippet that represents the 0-based texture array index to sample. + * @return {string} The GLSL snippet. + */ + generateTexture( texture, textureProperty, uvSnippet, depthSnippet ) { + + if ( texture.isDepthTexture ) { + + if ( depthSnippet ) uvSnippet = `vec4( ${ uvSnippet }, ${ depthSnippet } )`; + + return `texture( ${ textureProperty }, ${ uvSnippet } ).x`; + + } else { + + if ( depthSnippet ) uvSnippet = `vec3( ${ uvSnippet }, ${ depthSnippet } )`; + + return `texture( ${ textureProperty }, ${ uvSnippet } )`; + + } + + } + + /** + * Generates the GLSL snippet when sampling textures with explicit mip level. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A GLSL snippet that represents texture coordinates used for sampling. + * @param {string} levelSnippet - A GLSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @return {string} The GLSL snippet. + */ + generateTextureLevel( texture, textureProperty, uvSnippet, levelSnippet ) { + + return `textureLod( ${ textureProperty }, ${ uvSnippet }, ${ levelSnippet } )`; + + } + + /** + * Generates the GLSL snippet when sampling textures with a bias to the mip level. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A GLSL snippet that represents texture coordinates used for sampling. + * @param {string} biasSnippet - A GLSL snippet that represents the bias to apply to the mip level before sampling. + * @return {string} The GLSL snippet. + */ + generateTextureBias( texture, textureProperty, uvSnippet, biasSnippet ) { + + return `texture( ${ textureProperty }, ${ uvSnippet }, ${ biasSnippet } )`; + + } + + /** + * Generates the GLSL snippet for sampling/loading the given texture using explicit gradients. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A GLSL snippet that represents texture coordinates used for sampling. + * @param {Array} gradSnippet - An array holding both gradient GLSL snippets. + * @return {string} The GLSL snippet. + */ + generateTextureGrad( texture, textureProperty, uvSnippet, gradSnippet ) { + + return `textureGrad( ${ textureProperty }, ${ uvSnippet }, ${ gradSnippet[ 0 ] }, ${ gradSnippet[ 1 ] } )`; + + } + + /** + * Generates the GLSL snippet for sampling a depth texture and comparing the sampled depth values + * against a reference value. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A GLSL snippet that represents texture coordinates used for sampling. + * @param {string} compareSnippet - A GLSL snippet that represents the reference value. + * @param {?string} depthSnippet - A GLSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The GLSL snippet. + */ + generateTextureCompare( texture, textureProperty, uvSnippet, compareSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + if ( shaderStage === 'fragment' ) { + + if ( depthSnippet ) { + + return `texture( ${ textureProperty }, vec4( ${ uvSnippet }, ${ depthSnippet }, ${ compareSnippet } ) )`; + + } + + return `texture( ${ textureProperty }, vec3( ${ uvSnippet }, ${ compareSnippet } ) )`; + + } else { + + console.error( `WebGPURenderer: THREE.DepthTexture.compareFunction() does not support ${ shaderStage } shader.` ); + + } + + } + + /** + * Returns the variables of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the variables. + */ + getVars( shaderStage ) { + + const snippets = []; + + const vars = this.vars[ shaderStage ]; + + if ( vars !== undefined ) { + + for ( const variable of vars ) { + + snippets.push( `${ this.getVar( variable.type, variable.name, variable.count ) };` ); + + } + + } + + return snippets.join( '\n\t' ); + + } + + /** + * Returns the uniforms of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the uniforms. + */ + getUniforms( shaderStage ) { + + const uniforms = this.uniforms[ shaderStage ]; + + const bindingSnippets = []; + const uniformGroups = {}; + + for ( const uniform of uniforms ) { + + let snippet = null; + let group = false; + + if ( uniform.type === 'texture' || uniform.type === 'texture3D' ) { + + const texture = uniform.node.value; + + let typePrefix = ''; + + if ( texture.isDataTexture === true || texture.isData3DTexture === true ) { + + if ( texture.type === UnsignedIntType ) { + + typePrefix = 'u'; + + } else if ( texture.type === IntType ) { + + typePrefix = 'i'; + + } + + } + + if ( uniform.type === 'texture3D' && texture.isArrayTexture === false ) { + + snippet = `${typePrefix}sampler3D ${ uniform.name };`; + + } else if ( texture.compareFunction ) { + + if ( texture.isArrayTexture === true ) { + + snippet = `sampler2DArrayShadow ${ uniform.name };`; + + } else { + + snippet = `sampler2DShadow ${ uniform.name };`; + + } + + } else if ( texture.isArrayTexture === true || texture.isDataArrayTexture === true || texture.isCompressedArrayTexture === true ) { + + snippet = `${typePrefix}sampler2DArray ${ uniform.name };`; + + } else { + + snippet = `${typePrefix}sampler2D ${ uniform.name };`; + + } + + } else if ( uniform.type === 'cubeTexture' ) { + + snippet = `samplerCube ${ uniform.name };`; + + } else if ( uniform.type === 'buffer' ) { + + const bufferNode = uniform.node; + const bufferType = this.getType( bufferNode.bufferType ); + const bufferCount = bufferNode.bufferCount; + + const bufferCountSnippet = bufferCount > 0 ? bufferCount : ''; + snippet = `${bufferNode.name} {\n\t${ bufferType } ${ uniform.name }[${ bufferCountSnippet }];\n};\n`; + + } else { + + const vectorType = this.getVectorType( uniform.type ); + + snippet = `${ vectorType } ${ this.getPropertyName( uniform, shaderStage ) };`; + + group = true; + + } + + const precision = uniform.node.precision; + + if ( precision !== null ) { + + snippet = precisionLib[ precision ] + ' ' + snippet; + + } + + if ( group ) { + + snippet = '\t' + snippet; + + const groupName = uniform.groupNode.name; + const groupSnippets = uniformGroups[ groupName ] || ( uniformGroups[ groupName ] = [] ); + + groupSnippets.push( snippet ); + + } else { + + snippet = 'uniform ' + snippet; + + bindingSnippets.push( snippet ); + + } + + } + + let output = ''; + + for ( const name in uniformGroups ) { + + const groupSnippets = uniformGroups[ name ]; + + output += this._getGLSLUniformStruct( shaderStage + '_' + name, groupSnippets.join( '\n' ) ) + '\n'; + + } + + output += bindingSnippets.join( '\n' ); + + return output; + + } + + /** + * Returns the type for a given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + * @return {string} The type. + */ + getTypeFromAttribute( attribute ) { + + let nodeType = super.getTypeFromAttribute( attribute ); + + if ( /^[iu]/.test( nodeType ) && attribute.gpuType !== IntType ) { + + let dataAttribute = attribute; + + if ( attribute.isInterleavedBufferAttribute ) dataAttribute = attribute.data; + + const array = dataAttribute.array; + + if ( ( array instanceof Uint32Array || array instanceof Int32Array ) === false ) { + + nodeType = nodeType.slice( 1 ); + + } + + } + + return nodeType; + + } + + /** + * Returns the shader attributes of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the shader attributes. + */ + getAttributes( shaderStage ) { + + let snippet = ''; + + if ( shaderStage === 'vertex' || shaderStage === 'compute' ) { + + const attributes = this.getAttributesArray(); + + let location = 0; + + for ( const attribute of attributes ) { + + snippet += `layout( location = ${ location ++ } ) in ${ attribute.type } ${ attribute.name };\n`; + + } + + } + + return snippet; + + } + + /** + * Returns the members of the given struct type node as a GLSL string. + * + * @param {StructTypeNode} struct - The struct type node. + * @return {string} The GLSL snippet that defines the struct members. + */ + getStructMembers( struct ) { + + const snippets = []; + + for ( const member of struct.members ) { + + snippets.push( `\t${ member.type } ${ member.name };` ); + + } + + return snippets.join( '\n' ); + + } + + /** + * Returns the structs of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the structs. + */ + getStructs( shaderStage ) { + + const snippets = []; + const structs = this.structs[ shaderStage ]; + + const outputSnippet = []; + + for ( const struct of structs ) { + + if ( struct.output ) { + + for ( const member of struct.members ) { + + outputSnippet.push( `layout( location = ${ member.index } ) out ${ member.type } ${ member.name };` ); + + } + + } else { + + let snippet = 'struct ' + struct.name + ' {\n'; + snippet += this.getStructMembers( struct ); + snippet += '\n};\n'; + + snippets.push( snippet ); + + } + + } + + if ( outputSnippet.length === 0 ) { + + outputSnippet.push( 'layout( location = 0 ) out vec4 fragColor;' ); + + } + + return '\n' + outputSnippet.join( '\n' ) + '\n\n' + snippets.join( '\n' ); + + } + + /** + * Returns the varyings of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the varyings. + */ + getVaryings( shaderStage ) { + + let snippet = ''; + + const varyings = this.varyings; + + if ( shaderStage === 'vertex' || shaderStage === 'compute' ) { + + for ( const varying of varyings ) { + + if ( shaderStage === 'compute' ) varying.needsInterpolation = true; + + const type = this.getType( varying.type ); + + if ( varying.needsInterpolation ) { + + if ( varying.interpolationType ) { + + const interpolationType = interpolationTypeMap[ varying.interpolationType ] || varying.interpolationType; + const sampling = interpolationModeMap[ varying.interpolationSampling ] || ''; + + snippet += `${ interpolationType } ${ sampling } out ${ type } ${ varying.name };\n`; + + } else { + + const flat = type.includes( 'int' ) || type.includes( 'uv' ) || type.includes( 'iv' ) ? 'flat ' : ''; + + snippet += `${ flat }out ${ type } ${ varying.name };\n`; + + } + + } else { + + snippet += `${type} ${varying.name};\n`; // generate variable (no varying required) + + } + + } + + } else if ( shaderStage === 'fragment' ) { + + for ( const varying of varyings ) { + + if ( varying.needsInterpolation ) { + + const type = this.getType( varying.type ); + + if ( varying.interpolationType ) { + + const interpolationType = interpolationTypeMap[ varying.interpolationType ] || varying.interpolationType; + const sampling = interpolationModeMap[ varying.interpolationSampling ] || ''; + + snippet += `${ interpolationType } ${ sampling } in ${ type } ${ varying.name };\n`; + + + } else { + + const flat = type.includes( 'int' ) || type.includes( 'uv' ) || type.includes( 'iv' ) ? 'flat ' : ''; + + snippet += `${ flat }in ${ type } ${ varying.name };\n`; + + } + + } + + } + + } + + for ( const builtin of this.builtins[ shaderStage ] ) { + + snippet += `${builtin};\n`; + + } + + return snippet; + + } + + /** + * Returns the vertex index builtin. + * + * @return {string} The vertex index. + */ + getVertexIndex() { + + return 'uint( gl_VertexID )'; + + } + + /** + * Returns the instance index builtin. + * + * @return {string} The instance index. + */ + getInstanceIndex() { + + return 'uint( gl_InstanceID )'; + + } + + /** + * Returns the invocation local index builtin. + * + * @return {string} The invocation local index. + */ + getInvocationLocalIndex() { + + const workgroupSize = this.object.workgroupSize; + + const size = workgroupSize.reduce( ( acc, curr ) => acc * curr, 1 ); + + return `uint( gl_InstanceID ) % ${size}u`; + + } + + /** + * Returns the draw index builtin. + * + * @return {?string} The drawIndex shader string. Returns `null` if `WEBGL_multi_draw` isn't supported by the device. + */ + getDrawIndex() { + + const extensions = this.renderer.backend.extensions; + + if ( extensions.has( 'WEBGL_multi_draw' ) ) { + + return 'uint( gl_DrawID )'; + + } + + return null; + + } + + /** + * Returns the front facing builtin. + * + * @return {string} The front facing builtin. + */ + getFrontFacing() { + + return 'gl_FrontFacing'; + + } + + /** + * Returns the frag coord builtin. + * + * @return {string} The frag coord builtin. + */ + getFragCoord() { + + return 'gl_FragCoord.xy'; + + } + + /** + * Returns the frag depth builtin. + * + * @return {string} The frag depth builtin. + */ + getFragDepth() { + + return 'gl_FragDepth'; + + } + + /** + * Enables the given extension. + * + * @param {string} name - The extension name. + * @param {string} behavior - The extension behavior. + * @param {string} [shaderStage=this.shaderStage] - The shader stage. + */ + enableExtension( name, behavior, shaderStage = this.shaderStage ) { + + const map = this.extensions[ shaderStage ] || ( this.extensions[ shaderStage ] = new Map() ); + + if ( map.has( name ) === false ) { + + map.set( name, { + name, + behavior + } ); + + } + + } + + /** + * Returns the enabled extensions of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the enabled extensions. + */ + getExtensions( shaderStage ) { + + const snippets = []; + + if ( shaderStage === 'vertex' ) { + + const ext = this.renderer.backend.extensions; + const isBatchedMesh = this.object.isBatchedMesh; + + if ( isBatchedMesh && ext.has( 'WEBGL_multi_draw' ) ) { + + this.enableExtension( 'GL_ANGLE_multi_draw', 'require', shaderStage ); + + } + + } + + const extensions = this.extensions[ shaderStage ]; + + if ( extensions !== undefined ) { + + for ( const { name, behavior } of extensions.values() ) { + + snippets.push( `#extension ${name} : ${behavior}` ); + + } + + } + + return snippets.join( '\n' ); + + } + + /** + * Returns the clip distances builtin. + * + * @return {string} The clip distances builtin. + */ + getClipDistance() { + + return 'gl_ClipDistance'; + + } + + /** + * Whether the requested feature is available or not. + * + * @param {string} name - The requested feature. + * @return {boolean} Whether the requested feature is supported or not. + */ + isAvailable( name ) { + + let result = supports$1[ name ]; + + if ( result === undefined ) { + + let extensionName; + + result = false; + + switch ( name ) { + + case 'float32Filterable': + extensionName = 'OES_texture_float_linear'; + break; + + case 'clipDistance': + extensionName = 'WEBGL_clip_cull_distance'; + break; + + } + + if ( extensionName !== undefined ) { + + const extensions = this.renderer.backend.extensions; + + if ( extensions.has( extensionName ) ) { + + extensions.get( extensionName ); + result = true; + + } + + } + + supports$1[ name ] = result; + + } + + return result; + + } + + /** + * Whether to flip texture data along its vertical axis or not. + * + * @return {boolean} Returns always `true` in context of GLSL. + */ + isFlipY() { + + return true; + + } + + /** + * Enables hardware clipping. + * + * @param {string} planeCount - The clipping plane count. + */ + enableHardwareClipping( planeCount ) { + + this.enableExtension( 'GL_ANGLE_clip_cull_distance', 'require' ); + + this.builtins[ 'vertex' ].push( `out float gl_ClipDistance[ ${ planeCount } ]` ); + + } + + /** + * Enables multiview. + */ + enableMultiview() { + + this.enableExtension( 'GL_OVR_multiview2', 'require', 'fragment' ); + this.enableExtension( 'GL_OVR_multiview2', 'require', 'vertex' ); + + this.builtins[ 'vertex' ].push( 'layout(num_views = 2) in' ); + + } + + /** + * Registers a transform in context of Transform Feedback. + * + * @param {string} varyingName - The varying name. + * @param {AttributeNode} attributeNode - The attribute node. + */ + registerTransform( varyingName, attributeNode ) { + + this.transforms.push( { varyingName, attributeNode } ); + + } + + /** + * Returns the transforms of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the transforms. + */ + getTransforms( /* shaderStage */ ) { + + const transforms = this.transforms; + + let snippet = ''; + + for ( let i = 0; i < transforms.length; i ++ ) { + + const transform = transforms[ i ]; + const attributeName = this.getPropertyName( transform.attributeNode ); + + if ( attributeName ) snippet += `${ transform.varyingName } = ${ attributeName };\n\t`; + + } + + return snippet; + + } + + /** + * Returns a GLSL struct based on the given name and variables. + * + * @private + * @param {string} name - The struct name. + * @param {string} vars - The struct variables. + * @return {string} The GLSL snippet representing a struct. + */ + _getGLSLUniformStruct( name, vars ) { + + return ` +layout( std140 ) uniform ${name} { +${vars} +};`; + + } + + /** + * Returns a GLSL vertex shader based on the given shader data. + * + * @private + * @param {Object} shaderData - The shader data. + * @return {string} The vertex shader. + */ + _getGLSLVertexCode( shaderData ) { + + return `#version 300 es + +${ this.getSignature() } + +// extensions +${shaderData.extensions} + +// precision +${ defaultPrecisions } + +// uniforms +${shaderData.uniforms} + +// varyings +${shaderData.varyings} + +// attributes +${shaderData.attributes} + +// codes +${shaderData.codes} + +void main() { + + // vars + ${shaderData.vars} + + // transforms + ${shaderData.transforms} + + // flow + ${shaderData.flow} + + gl_PointSize = 1.0; + +} +`; + + } + + /** + * Returns a GLSL fragment shader based on the given shader data. + * + * @private + * @param {Object} shaderData - The shader data. + * @return {string} The vertex shader. + */ + _getGLSLFragmentCode( shaderData ) { + + return `#version 300 es + +${ this.getSignature() } + +// extensions +${shaderData.extensions} + +// precision +${ defaultPrecisions } + +// uniforms +${shaderData.uniforms} + +// varyings +${shaderData.varyings} + +// codes +${shaderData.codes} + +// structs +${shaderData.structs} + +void main() { + + // vars + ${shaderData.vars} + + // flow + ${shaderData.flow} + +} +`; + + } + + /** + * Controls the code build of the shader stages. + */ + buildCode() { + + const shadersData = this.material !== null ? { fragment: {}, vertex: {} } : { compute: {} }; + + this.sortBindingGroups(); + + for ( const shaderStage in shadersData ) { + + let flow = '// code\n\n'; + flow += this.flowCode[ shaderStage ]; + + const flowNodes = this.flowNodes[ shaderStage ]; + const mainNode = flowNodes[ flowNodes.length - 1 ]; + + for ( const node of flowNodes ) { + + const flowSlotData = this.getFlowData( node/*, shaderStage*/ ); + const slotName = node.name; + + if ( slotName ) { + + if ( flow.length > 0 ) flow += '\n'; + + flow += `\t// flow -> ${ slotName }\n\t`; + + } + + flow += `${ flowSlotData.code }\n\t`; + + if ( node === mainNode && shaderStage !== 'compute' ) { + + flow += '// result\n\t'; + + if ( shaderStage === 'vertex' ) { + + flow += 'gl_Position = '; + flow += `${ flowSlotData.result };`; + + } else if ( shaderStage === 'fragment' ) { + + if ( ! node.outputNode.isOutputStructNode ) { + + flow += 'fragColor = '; + flow += `${ flowSlotData.result };`; + + } + + } + + } + + } + + const stageData = shadersData[ shaderStage ]; + + stageData.extensions = this.getExtensions( shaderStage ); + stageData.uniforms = this.getUniforms( shaderStage ); + stageData.attributes = this.getAttributes( shaderStage ); + stageData.varyings = this.getVaryings( shaderStage ); + stageData.vars = this.getVars( shaderStage ); + stageData.structs = this.getStructs( shaderStage ); + stageData.codes = this.getCodes( shaderStage ); + stageData.transforms = this.getTransforms( shaderStage ); + stageData.flow = flow; + + } + + if ( this.material !== null ) { + + this.vertexShader = this._getGLSLVertexCode( shadersData.vertex ); + this.fragmentShader = this._getGLSLFragmentCode( shadersData.fragment ); + + } else { + + this.computeShader = this._getGLSLVertexCode( shadersData.compute ); + + } + + } + + /** + * This method is one of the more important ones since it's responsible + * for generating a matching binding instance for the given uniform node. + * + * These bindings are later used in the renderer to create bind groups + * and layouts. + * + * @param {UniformNode} node - The uniform node. + * @param {string} type - The node data type. + * @param {string} shaderStage - The shader stage. + * @param {?string} [name=null] - An optional uniform name. + * @return {NodeUniform} The node uniform object. + */ + getUniformFromNode( node, type, shaderStage, name = null ) { + + const uniformNode = super.getUniformFromNode( node, type, shaderStage, name ); + const nodeData = this.getDataFromNode( node, shaderStage, this.globalCache ); + + let uniformGPU = nodeData.uniformGPU; + + if ( uniformGPU === undefined ) { + + const group = node.groupNode; + const groupName = group.name; + + const bindings = this.getBindGroupArray( groupName, shaderStage ); + + if ( type === 'texture' ) { + + uniformGPU = new NodeSampledTexture( uniformNode.name, uniformNode.node, group ); + bindings.push( uniformGPU ); + + } else if ( type === 'cubeTexture' ) { + + uniformGPU = new NodeSampledCubeTexture( uniformNode.name, uniformNode.node, group ); + bindings.push( uniformGPU ); + + } else if ( type === 'texture3D' ) { + + uniformGPU = new NodeSampledTexture3D( uniformNode.name, uniformNode.node, group ); + bindings.push( uniformGPU ); + + } else if ( type === 'buffer' ) { + + node.name = `NodeBuffer_${ node.id }`; + uniformNode.name = `buffer${ node.id }`; + + const buffer = new NodeUniformBuffer( node, group ); + buffer.name = node.name; + + bindings.push( buffer ); + + uniformGPU = buffer; + + } else { + + const uniformsStage = this.uniformGroups[ shaderStage ] || ( this.uniformGroups[ shaderStage ] = {} ); + + let uniformsGroup = uniformsStage[ groupName ]; + + if ( uniformsGroup === undefined ) { + + uniformsGroup = new NodeUniformsGroup( shaderStage + '_' + groupName, group ); + //uniformsGroup.setVisibility( gpuShaderStageLib[ shaderStage ] ); + + uniformsStage[ groupName ] = uniformsGroup; + + bindings.push( uniformsGroup ); + + } + + uniformGPU = this.getNodeUniform( uniformNode, type ); + + uniformsGroup.addUniform( uniformGPU ); + + } + + nodeData.uniformGPU = uniformGPU; + + } + + return uniformNode; + + } + +} + +let _vector2 = null; +let _color4 = null; + +/** + * Most of the rendering related logic is implemented in the + * {@link Renderer} module and related management components. + * Sometimes it is required though to execute commands which are + * specific to the current 3D backend (which is WebGPU or WebGL 2). + * This abstract base class defines an interface that encapsulates + * all backend-related logic. Derived classes for each backend must + * implement the interface. + * + * @abstract + * @private + */ +class Backend { + + /** + * Constructs a new backend. + * + * @param {Object} parameters - An object holding parameters for the backend. + */ + constructor( parameters = {} ) { + + /** + * The parameters of the backend. + * + * @type {Object} + */ + this.parameters = Object.assign( {}, parameters ); + + /** + * This weak map holds backend-specific data of objects + * like textures, attributes or render targets. + * + * @type {WeakMap} + */ + this.data = new WeakMap(); + + /** + * A reference to the renderer. + * + * @type {?Renderer} + * @default null + */ + this.renderer = null; + + /** + * A reference to the canvas element the renderer is drawing to. + * + * @type {?(HTMLCanvasElement|OffscreenCanvas)} + * @default null + */ + this.domElement = null; + + /** + * A reference to the timestamp query pool. + * + * @type {{render: ?TimestampQueryPool, compute: ?TimestampQueryPool}} + */ + this.timestampQueryPool = { + 'render': null, + 'compute': null + }; + + /** + * Whether to track timestamps with a Timestamp Query API or not. + * + * @type {boolean} + * @default false + */ + this.trackTimestamp = ( parameters.trackTimestamp === true ); + + } + + /** + * Initializes the backend so it is ready for usage. Concrete backends + * are supposed to implement their rendering context creation and related + * operations in this method. + * + * @async + * @param {Renderer} renderer - The renderer. + * @return {Promise} A Promise that resolves when the backend has been initialized. + */ + async init( renderer ) { + + this.renderer = renderer; + + } + + /** + * The coordinate system of the backend. + * + * @abstract + * @type {number} + * @readonly + */ + get coordinateSystem() {} + + // render context + + /** + * This method is executed at the beginning of a render call and + * can be used by the backend to prepare the state for upcoming + * draw calls. + * + * @abstract + * @param {RenderContext} renderContext - The render context. + */ + beginRender( /*renderContext*/ ) {} + + /** + * This method is executed at the end of a render call and + * can be used by the backend to finalize work after draw + * calls. + * + * @abstract + * @param {RenderContext} renderContext - The render context. + */ + finishRender( /*renderContext*/ ) {} + + /** + * This method is executed at the beginning of a compute call and + * can be used by the backend to prepare the state for upcoming + * compute tasks. + * + * @abstract + * @param {Node|Array} computeGroup - The compute node(s). + */ + beginCompute( /*computeGroup*/ ) {} + + /** + * This method is executed at the end of a compute call and + * can be used by the backend to finalize work after compute + * tasks. + * + * @abstract + * @param {Node|Array} computeGroup - The compute node(s). + */ + finishCompute( /*computeGroup*/ ) {} + + // render object + + /** + * Executes a draw command for the given render object. + * + * @abstract + * @param {RenderObject} renderObject - The render object to draw. + * @param {Info} info - Holds a series of statistical information about the GPU memory and the rendering process. + */ + draw( /*renderObject, info*/ ) { } + + // compute node + + /** + * Executes a compute command for the given compute node. + * + * @abstract + * @param {Node|Array} computeGroup - The group of compute nodes of a compute call. Can be a single compute node. + * @param {Node} computeNode - The compute node. + * @param {Array} bindings - The bindings. + * @param {ComputePipeline} computePipeline - The compute pipeline. + */ + compute( /*computeGroup, computeNode, computeBindings, computePipeline*/ ) { } + + // program + + /** + * Creates a shader program from the given programmable stage. + * + * @abstract + * @param {ProgrammableStage} program - The programmable stage. + */ + createProgram( /*program*/ ) { } + + /** + * Destroys the shader program of the given programmable stage. + * + * @abstract + * @param {ProgrammableStage} program - The programmable stage. + */ + destroyProgram( /*program*/ ) { } + + // bindings + + /** + * Creates bindings from the given bind group definition. + * + * @abstract + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + createBindings( /*bindGroup, bindings, cacheIndex, version*/ ) { } + + /** + * Updates the given bind group definition. + * + * @abstract + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + updateBindings( /*bindGroup, bindings, cacheIndex, version*/ ) { } + + /** + * Updates a buffer binding. + * + * @abstract + * @param {Buffer} binding - The buffer binding to update. + */ + updateBinding( /*binding*/ ) { } + + // pipeline + + /** + * Creates a render pipeline for the given render object. + * + * @abstract + * @param {RenderObject} renderObject - The render object. + * @param {Array} promises - An array of compilation promises which are used in `compileAsync()`. + */ + createRenderPipeline( /*renderObject, promises*/ ) { } + + /** + * Creates a compute pipeline for the given compute node. + * + * @abstract + * @param {ComputePipeline} computePipeline - The compute pipeline. + * @param {Array} bindings - The bindings. + */ + createComputePipeline( /*computePipeline, bindings*/ ) { } + + // cache key + + /** + * Returns `true` if the render pipeline requires an update. + * + * @abstract + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the render pipeline requires an update or not. + */ + needsRenderUpdate( /*renderObject*/ ) { } + + /** + * Returns a cache key that is used to identify render pipelines. + * + * @abstract + * @param {RenderObject} renderObject - The render object. + * @return {string} The cache key. + */ + getRenderCacheKey( /*renderObject*/ ) { } + + // node builder + + /** + * Returns a node builder for the given render object. + * + * @abstract + * @param {RenderObject} renderObject - The render object. + * @param {Renderer} renderer - The renderer. + * @return {NodeBuilder} The node builder. + */ + createNodeBuilder( /*renderObject, renderer*/ ) { } + + // textures + + /** + * Creates a GPU sampler for the given texture. + * + * @abstract + * @param {Texture} texture - The texture to create the sampler for. + */ + createSampler( /*texture*/ ) { } + + /** + * Destroys the GPU sampler for the given texture. + * + * @abstract + * @param {Texture} texture - The texture to destroy the sampler for. + */ + destroySampler( /*texture*/ ) {} + + /** + * Creates a default texture for the given texture that can be used + * as a placeholder until the actual texture is ready for usage. + * + * @abstract + * @param {Texture} texture - The texture to create a default texture for. + */ + createDefaultTexture( /*texture*/ ) { } + + /** + * Defines a texture on the GPU for the given texture object. + * + * @abstract + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + createTexture( /*texture, options={}*/ ) { } + + /** + * Uploads the updated texture data to the GPU. + * + * @abstract + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + updateTexture( /*texture, options = {}*/ ) { } + + /** + * Generates mipmaps for the given texture. + * + * @abstract + * @param {Texture} texture - The texture. + */ + generateMipmaps( /*texture*/ ) { } + + /** + * Destroys the GPU data for the given texture object. + * + * @abstract + * @param {Texture} texture - The texture. + */ + destroyTexture( /*texture*/ ) { } + + /** + * Returns texture data as a typed array. + * + * @abstract + * @async + * @param {Texture} texture - The texture to copy. + * @param {number} x - The x coordinate of the copy origin. + * @param {number} y - The y coordinate of the copy origin. + * @param {number} width - The width of the copy. + * @param {number} height - The height of the copy. + * @param {number} faceIndex - The face index. + * @return {Promise} A Promise that resolves with a typed array when the copy operation has finished. + */ + async copyTextureToBuffer( /*texture, x, y, width, height, faceIndex*/ ) {} + + /** + * Copies data of the given source texture to the given destination texture. + * + * @abstract + * @param {Texture} srcTexture - The source texture. + * @param {Texture} dstTexture - The destination texture. + * @param {?(Box3|Box2)} [srcRegion=null] - The region of the source texture to copy. + * @param {?(Vector2|Vector3)} [dstPosition=null] - The destination position of the copy. + * @param {number} [srcLevel=0] - The source mip level to copy from. + * @param {number} [dstLevel=0] - The destination mip level to copy to. + */ + copyTextureToTexture( /*srcTexture, dstTexture, srcRegion = null, dstPosition = null, srcLevel = 0, dstLevel = 0*/ ) {} + + /** + * Copies the current bound framebuffer to the given texture. + * + * @abstract + * @param {Texture} texture - The destination texture. + * @param {RenderContext} renderContext - The render context. + * @param {Vector4} rectangle - A four dimensional vector defining the origin and dimension of the copy. + */ + copyFramebufferToTexture( /*texture, renderContext, rectangle*/ ) {} + + // attributes + + /** + * Creates the GPU buffer of a shader attribute. + * + * @abstract + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createAttribute( /*attribute*/ ) { } + + /** + * Creates the GPU buffer of an indexed shader attribute. + * + * @abstract + * @param {BufferAttribute} attribute - The indexed buffer attribute. + */ + createIndexAttribute( /*attribute*/ ) { } + + /** + * Creates the GPU buffer of a storage attribute. + * + * @abstract + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createStorageAttribute( /*attribute*/ ) { } + + /** + * Updates the GPU buffer of a shader attribute. + * + * @abstract + * @param {BufferAttribute} attribute - The buffer attribute to update. + */ + updateAttribute( /*attribute*/ ) { } + + /** + * Destroys the GPU buffer of a shader attribute. + * + * @abstract + * @param {BufferAttribute} attribute - The buffer attribute to destroy. + */ + destroyAttribute( /*attribute*/ ) { } + + // canvas + + /** + * Returns the backend's rendering context. + * + * @abstract + * @return {Object} The rendering context. + */ + getContext() { } + + /** + * Backends can use this method if they have to run + * logic when the renderer gets resized. + * + * @abstract + */ + updateSize() { } + + /** + * Updates the viewport with the values from the given render context. + * + * @abstract + * @param {RenderContext} renderContext - The render context. + */ + updateViewport( /*renderContext*/ ) {} + + // utils + + /** + * Returns `true` if the given 3D object is fully occluded by other + * 3D objects in the scene. Backends must implement this method by using + * a Occlusion Query API. + * + * @abstract + * @param {RenderContext} renderContext - The render context. + * @param {Object3D} object - The 3D object to test. + * @return {boolean} Whether the 3D object is fully occluded or not. + */ + isOccluded( /*renderContext, object*/ ) {} + + /** + * Resolves the time stamp for the given render context and type. + * + * @async + * @abstract + * @param {string} [type='render'] - The type of the time stamp. + * @return {Promise} A Promise that resolves with the time stamp. + */ + async resolveTimestampsAsync( type = 'render' ) { + + if ( ! this.trackTimestamp ) { + + warnOnce( 'WebGPURenderer: Timestamp tracking is disabled.' ); + return; + + } + + const queryPool = this.timestampQueryPool[ type ]; + if ( ! queryPool ) { + + warnOnce( `WebGPURenderer: No timestamp query pool for type '${type}' found.` ); + return; + + } + + const duration = await queryPool.resolveQueriesAsync(); + + this.renderer.info[ type ].timestamp = duration; + + return duration; + + } + + /** + * Can be used to synchronize CPU operations with GPU tasks. So when this method is called, + * the CPU waits for the GPU to complete its operation (e.g. a compute task). + * + * @async + * @abstract + * @return {Promise} A Promise that resolves when synchronization has been finished. + */ + async waitForGPU() {} + + /** + * This method performs a readback operation by moving buffer data from + * a storage buffer attribute from the GPU to the CPU. + * + * @async + * @param {StorageBufferAttribute} attribute - The storage buffer attribute. + * @return {Promise} A promise that resolves with the buffer data when the data are ready. + */ + async getArrayBufferAsync( /* attribute */ ) {} + + /** + * Checks if the given feature is supported by the backend. + * + * @async + * @abstract + * @param {string} name - The feature's name. + * @return {Promise} A Promise that resolves with a bool that indicates whether the feature is supported or not. + */ + async hasFeatureAsync( /*name*/ ) { } + + /** + * Checks if the given feature is supported by the backend. + * + * @abstract + * @param {string} name - The feature's name. + * @return {boolean} Whether the feature is supported or not. + */ + hasFeature( /*name*/ ) {} + + /** + * Returns the maximum anisotropy texture filtering value. + * + * @abstract + * @return {number} The maximum anisotropy texture filtering value. + */ + getMaxAnisotropy() {} + + /** + * Returns the drawing buffer size. + * + * @return {Vector2} The drawing buffer size. + */ + getDrawingBufferSize() { + + _vector2 = _vector2 || new Vector2(); + + return this.renderer.getDrawingBufferSize( _vector2 ); + + } + + /** + * Defines the scissor test. + * + * @abstract + * @param {boolean} boolean - Whether the scissor test should be enabled or not. + */ + setScissorTest( /*boolean*/ ) { } + + /** + * Returns the clear color and alpha into a single + * color object. + * + * @return {Color4} The clear color. + */ + getClearColor() { + + const renderer = this.renderer; + + _color4 = _color4 || new Color4(); + + renderer.getClearColor( _color4 ); + + _color4.getRGB( _color4 ); + + return _color4; + + } + + /** + * Returns the DOM element. If no DOM element exists, the backend + * creates a new one. + * + * @return {HTMLCanvasElement} The DOM element. + */ + getDomElement() { + + let domElement = this.domElement; + + if ( domElement === null ) { + + domElement = ( this.parameters.canvas !== undefined ) ? this.parameters.canvas : createCanvasElement(); + + // OffscreenCanvas does not have setAttribute, see #22811 + if ( 'setAttribute' in domElement ) domElement.setAttribute( 'data-engine', `three.js r${REVISION} webgpu` ); + + this.domElement = domElement; + + } + + return domElement; + + } + + /** + * Sets a dictionary for the given object into the + * internal data structure. + * + * @param {Object} object - The object. + * @param {Object} value - The dictionary to set. + */ + set( object, value ) { + + this.data.set( object, value ); + + } + + /** + * Returns the dictionary for the given object. + * + * @param {Object} object - The object. + * @return {Object} The object's dictionary. + */ + get( object ) { + + let map = this.data.get( object ); + + if ( map === undefined ) { + + map = {}; + this.data.set( object, map ); + + } + + return map; + + } + + /** + * Checks if the given object has a dictionary + * with data defined. + * + * @param {Object} object - The object. + * @return {boolean} Whether a dictionary for the given object as been defined or not. + */ + has( object ) { + + return this.data.has( object ); + + } + + /** + * Deletes an object from the internal data structure. + * + * @param {Object} object - The object to delete. + */ + delete( object ) { + + this.data.delete( object ); + + } + + /** + * Frees internal resources. + * + * @abstract + */ + dispose() { } + +} + +let _id$1 = 0; + +/** + * This module is internally used in context of compute shaders. + * This type of shader is not natively supported in WebGL 2 and + * thus implemented via Transform Feedback. `DualAttributeData` + * manages the related data. + * + * @private + */ +class DualAttributeData { + + constructor( attributeData, dualBuffer ) { + + this.buffers = [ attributeData.bufferGPU, dualBuffer ]; + this.type = attributeData.type; + this.bufferType = attributeData.bufferType; + this.pbo = attributeData.pbo; + this.byteLength = attributeData.byteLength; + this.bytesPerElement = attributeData.BYTES_PER_ELEMENT; + this.version = attributeData.version; + this.isInteger = attributeData.isInteger; + this.activeBufferIndex = 0; + this.baseId = attributeData.id; + + } + + + get id() { + + return `${ this.baseId }|${ this.activeBufferIndex }`; + + } + + get bufferGPU() { + + return this.buffers[ this.activeBufferIndex ]; + + } + + get transformBuffer() { + + return this.buffers[ this.activeBufferIndex ^ 1 ]; + + } + + switchBuffers() { + + this.activeBufferIndex ^= 1; + + } + +} + +/** + * A WebGL 2 backend utility module for managing shader attributes. + * + * @private + */ +class WebGLAttributeUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGLBackend} backend - The WebGL 2 backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGL 2 backend. + * + * @type {WebGLBackend} + */ + this.backend = backend; + + } + + /** + * Creates the GPU buffer for the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + * @param {GLenum } bufferType - A flag that indicates the buffer type and thus binding point target. + */ + createAttribute( attribute, bufferType ) { + + const backend = this.backend; + const { gl } = backend; + + const array = attribute.array; + const usage = attribute.usage || gl.STATIC_DRAW; + + const bufferAttribute = attribute.isInterleavedBufferAttribute ? attribute.data : attribute; + const bufferData = backend.get( bufferAttribute ); + + let bufferGPU = bufferData.bufferGPU; + + if ( bufferGPU === undefined ) { + + bufferGPU = this._createBuffer( gl, bufferType, array, usage ); + + bufferData.bufferGPU = bufferGPU; + bufferData.bufferType = bufferType; + bufferData.version = bufferAttribute.version; + + } + + //attribute.onUploadCallback(); + + let type; + + if ( array instanceof Float32Array ) { + + type = gl.FLOAT; + + } else if ( array instanceof Uint16Array ) { + + if ( attribute.isFloat16BufferAttribute ) { + + type = gl.HALF_FLOAT; + + } else { + + type = gl.UNSIGNED_SHORT; + + } + + } else if ( array instanceof Int16Array ) { + + type = gl.SHORT; + + } else if ( array instanceof Uint32Array ) { + + type = gl.UNSIGNED_INT; + + } else if ( array instanceof Int32Array ) { + + type = gl.INT; + + } else if ( array instanceof Int8Array ) { + + type = gl.BYTE; + + } else if ( array instanceof Uint8Array ) { + + type = gl.UNSIGNED_BYTE; + + } else if ( array instanceof Uint8ClampedArray ) { + + type = gl.UNSIGNED_BYTE; + + } else { + + throw new Error( 'THREE.WebGLBackend: Unsupported buffer data format: ' + array ); + + } + + let attributeData = { + bufferGPU, + bufferType, + type, + byteLength: array.byteLength, + bytesPerElement: array.BYTES_PER_ELEMENT, + version: attribute.version, + pbo: attribute.pbo, + isInteger: type === gl.INT || type === gl.UNSIGNED_INT || attribute.gpuType === IntType, + id: _id$1 ++ + }; + + if ( attribute.isStorageBufferAttribute || attribute.isStorageInstancedBufferAttribute ) { + + // create buffer for transform feedback use + const bufferGPUDual = this._createBuffer( gl, bufferType, array, usage ); + attributeData = new DualAttributeData( attributeData, bufferGPUDual ); + + } + + backend.set( attribute, attributeData ); + + } + + /** + * Updates the GPU buffer of the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + updateAttribute( attribute ) { + + const backend = this.backend; + const { gl } = backend; + + const array = attribute.array; + const bufferAttribute = attribute.isInterleavedBufferAttribute ? attribute.data : attribute; + const bufferData = backend.get( bufferAttribute ); + const bufferType = bufferData.bufferType; + const updateRanges = attribute.isInterleavedBufferAttribute ? attribute.data.updateRanges : attribute.updateRanges; + + gl.bindBuffer( bufferType, bufferData.bufferGPU ); + + if ( updateRanges.length === 0 ) { + + // Not using update ranges + + gl.bufferSubData( bufferType, 0, array ); + + } else { + + for ( let i = 0, l = updateRanges.length; i < l; i ++ ) { + + const range = updateRanges[ i ]; + gl.bufferSubData( bufferType, range.start * array.BYTES_PER_ELEMENT, + array, range.start, range.count ); + + } + + bufferAttribute.clearUpdateRanges(); + + } + + gl.bindBuffer( bufferType, null ); + + bufferData.version = bufferAttribute.version; + + } + + /** + * Destroys the GPU buffer of the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + destroyAttribute( attribute ) { + + const backend = this.backend; + const { gl } = backend; + + if ( attribute.isInterleavedBufferAttribute ) { + + backend.delete( attribute.data ); + + } + + const attributeData = backend.get( attribute ); + + gl.deleteBuffer( attributeData.bufferGPU ); + + backend.delete( attribute ); + + } + + /** + * This method performs a readback operation by moving buffer data from + * a storage buffer attribute from the GPU to the CPU. + * + * @async + * @param {StorageBufferAttribute} attribute - The storage buffer attribute. + * @return {Promise} A promise that resolves with the buffer data when the data are ready. + */ + async getArrayBufferAsync( attribute ) { + + const backend = this.backend; + const { gl } = backend; + + const bufferAttribute = attribute.isInterleavedBufferAttribute ? attribute.data : attribute; + const { bufferGPU } = backend.get( bufferAttribute ); + + const array = attribute.array; + const byteLength = array.byteLength; + + gl.bindBuffer( gl.COPY_READ_BUFFER, bufferGPU ); + + const writeBuffer = gl.createBuffer(); + + gl.bindBuffer( gl.COPY_WRITE_BUFFER, writeBuffer ); + gl.bufferData( gl.COPY_WRITE_BUFFER, byteLength, gl.STREAM_READ ); + + gl.copyBufferSubData( gl.COPY_READ_BUFFER, gl.COPY_WRITE_BUFFER, 0, 0, byteLength ); + + await backend.utils._clientWaitAsync(); + + const dstBuffer = new attribute.array.constructor( array.length ); + + // Ensure the buffer is bound before reading + gl.bindBuffer( gl.COPY_WRITE_BUFFER, writeBuffer ); + + gl.getBufferSubData( gl.COPY_WRITE_BUFFER, 0, dstBuffer ); + + gl.deleteBuffer( writeBuffer ); + + gl.bindBuffer( gl.COPY_READ_BUFFER, null ); + gl.bindBuffer( gl.COPY_WRITE_BUFFER, null ); + + return dstBuffer.buffer; + + } + + /** + * Creates a WebGL buffer with the given data. + * + * @private + * @param {WebGL2RenderingContext} gl - The rendering context. + * @param {GLenum } bufferType - A flag that indicates the buffer type and thus binding point target. + * @param {TypedArray} array - The array of the buffer attribute. + * @param {GLenum} usage - The usage. + * @return {WebGLBuffer} The WebGL buffer. + */ + _createBuffer( gl, bufferType, array, usage ) { + + const bufferGPU = gl.createBuffer(); + + gl.bindBuffer( bufferType, bufferGPU ); + gl.bufferData( bufferType, array, usage ); + gl.bindBuffer( bufferType, null ); + + return bufferGPU; + + } + +} + +let equationToGL, factorToGL; + +/** + * A WebGL 2 backend utility module for managing the WebGL state. + * + * The major goal of this module is to reduce the number of state changes + * by caching the WEbGL state with a series of variables. In this way, the + * renderer only executes state change commands when necessary which + * improves the overall performance. + * + * @private + */ +class WebGLState { + + /** + * Constructs a new utility object. + * + * @param {WebGLBackend} backend - The WebGL 2 backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGL 2 backend. + * + * @type {WebGLBackend} + */ + this.backend = backend; + + /** + * A reference to the rendering context. + * + * @type {WebGL2RenderingContext} + */ + this.gl = this.backend.gl; + + // Below properties are intended to cache + // the WebGL state and are not explicitly + // documented for convenience reasons. + + this.enabled = {}; + this.currentFlipSided = null; + this.currentCullFace = null; + this.currentProgram = null; + this.currentBlendingEnabled = false; + this.currentBlending = null; + this.currentBlendSrc = null; + this.currentBlendDst = null; + this.currentBlendSrcAlpha = null; + this.currentBlendDstAlpha = null; + this.currentPremultipledAlpha = null; + this.currentPolygonOffsetFactor = null; + this.currentPolygonOffsetUnits = null; + this.currentColorMask = null; + this.currentDepthFunc = null; + this.currentDepthMask = null; + this.currentStencilFunc = null; + this.currentStencilRef = null; + this.currentStencilFuncMask = null; + this.currentStencilFail = null; + this.currentStencilZFail = null; + this.currentStencilZPass = null; + this.currentStencilMask = null; + this.currentLineWidth = null; + this.currentClippingPlanes = 0; + + this.currentVAO = null; + this.currentIndex = null; + + this.currentBoundFramebuffers = {}; + this.currentDrawbuffers = new WeakMap(); + + this.maxTextures = this.gl.getParameter( this.gl.MAX_TEXTURE_IMAGE_UNITS ); + this.currentTextureSlot = null; + this.currentBoundTextures = {}; + this.currentBoundBufferBases = {}; + + + this._init(); + + } + + /** + * Inits the state of the utility. + * + * @private + */ + _init() { + + const gl = this.gl; + + // Store only WebGL constants here. + + equationToGL = { + [ AddEquation ]: gl.FUNC_ADD, + [ SubtractEquation ]: gl.FUNC_SUBTRACT, + [ ReverseSubtractEquation ]: gl.FUNC_REVERSE_SUBTRACT + }; + + factorToGL = { + [ ZeroFactor ]: gl.ZERO, + [ OneFactor ]: gl.ONE, + [ SrcColorFactor ]: gl.SRC_COLOR, + [ SrcAlphaFactor ]: gl.SRC_ALPHA, + [ SrcAlphaSaturateFactor ]: gl.SRC_ALPHA_SATURATE, + [ DstColorFactor ]: gl.DST_COLOR, + [ DstAlphaFactor ]: gl.DST_ALPHA, + [ OneMinusSrcColorFactor ]: gl.ONE_MINUS_SRC_COLOR, + [ OneMinusSrcAlphaFactor ]: gl.ONE_MINUS_SRC_ALPHA, + [ OneMinusDstColorFactor ]: gl.ONE_MINUS_DST_COLOR, + [ OneMinusDstAlphaFactor ]: gl.ONE_MINUS_DST_ALPHA + }; + + const scissorParam = gl.getParameter( gl.SCISSOR_BOX ); + const viewportParam = gl.getParameter( gl.VIEWPORT ); + + this.currentScissor = new Vector4().fromArray( scissorParam ); + this.currentViewport = new Vector4().fromArray( viewportParam ); + + this._tempVec4 = new Vector4(); + + } + + /** + * Enables the given WebGL capability. + * + * This method caches the capability state so + * `gl.enable()` is only called when necessary. + * + * @param {GLenum} id - The capability to enable. + */ + enable( id ) { + + const { enabled } = this; + + if ( enabled[ id ] !== true ) { + + this.gl.enable( id ); + enabled[ id ] = true; + + } + + } + + /** + * Disables the given WebGL capability. + * + * This method caches the capability state so + * `gl.disable()` is only called when necessary. + * + * @param {GLenum} id - The capability to enable. + */ + disable( id ) { + + const { enabled } = this; + + if ( enabled[ id ] !== false ) { + + this.gl.disable( id ); + enabled[ id ] = false; + + } + + } + + /** + * Specifies whether polygons are front- or back-facing + * by setting the winding orientation. + * + * This method caches the state so `gl.frontFace()` is only + * called when necessary. + * + * @param {boolean} flipSided - Whether triangles flipped their sides or not. + */ + setFlipSided( flipSided ) { + + if ( this.currentFlipSided !== flipSided ) { + + const { gl } = this; + + if ( flipSided ) { + + gl.frontFace( gl.CW ); + + } else { + + gl.frontFace( gl.CCW ); + + } + + this.currentFlipSided = flipSided; + + } + + } + + /** + * Specifies whether or not front- and/or back-facing + * polygons can be culled. + * + * This method caches the state so `gl.cullFace()` is only + * called when necessary. + * + * @param {number} cullFace - Defines which polygons are candidates for culling. + */ + setCullFace( cullFace ) { + + const { gl } = this; + + if ( cullFace !== CullFaceNone ) { + + this.enable( gl.CULL_FACE ); + + if ( cullFace !== this.currentCullFace ) { + + if ( cullFace === CullFaceBack ) { + + gl.cullFace( gl.BACK ); + + } else if ( cullFace === CullFaceFront ) { + + gl.cullFace( gl.FRONT ); + + } else { + + gl.cullFace( gl.FRONT_AND_BACK ); + + } + + } + + } else { + + this.disable( gl.CULL_FACE ); + + } + + this.currentCullFace = cullFace; + + } + + /** + * Specifies the width of line primitives. + * + * This method caches the state so `gl.lineWidth()` is only + * called when necessary. + * + * @param {number} width - The line width. + */ + setLineWidth( width ) { + + const { currentLineWidth, gl } = this; + + if ( width !== currentLineWidth ) { + + gl.lineWidth( width ); + + this.currentLineWidth = width; + + } + + } + + /** + * Defines the blending. + * + * This method caches the state so `gl.blendEquation()`, `gl.blendEquationSeparate()`, + * `gl.blendFunc()` and `gl.blendFuncSeparate()` are only called when necessary. + * + * @param {number} blending - The blending type. + * @param {number} blendEquation - The blending equation. + * @param {number} blendSrc - Only relevant for custom blending. The RGB source blending factor. + * @param {number} blendDst - Only relevant for custom blending. The RGB destination blending factor. + * @param {number} blendEquationAlpha - Only relevant for custom blending. The blending equation for alpha. + * @param {number} blendSrcAlpha - Only relevant for custom blending. The alpha source blending factor. + * @param {number} blendDstAlpha - Only relevant for custom blending. The alpha destination blending factor. + * @param {boolean} premultipliedAlpha - Whether premultiplied alpha is enabled or not. + */ + setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) { + + const { gl } = this; + + if ( blending === NoBlending ) { + + if ( this.currentBlendingEnabled === true ) { + + this.disable( gl.BLEND ); + this.currentBlendingEnabled = false; + + } + + return; + + } + + if ( this.currentBlendingEnabled === false ) { + + this.enable( gl.BLEND ); + this.currentBlendingEnabled = true; + + } + + if ( blending !== CustomBlending ) { + + if ( blending !== this.currentBlending || premultipliedAlpha !== this.currentPremultipledAlpha ) { + + if ( this.currentBlendEquation !== AddEquation || this.currentBlendEquationAlpha !== AddEquation ) { + + gl.blendEquation( gl.FUNC_ADD ); + + this.currentBlendEquation = AddEquation; + this.currentBlendEquationAlpha = AddEquation; + + } + + if ( premultipliedAlpha ) { + + switch ( blending ) { + + case NormalBlending: + gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); + break; + + case AdditiveBlending: + gl.blendFunc( gl.ONE, gl.ONE ); + break; + + case SubtractiveBlending: + gl.blendFuncSeparate( gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE ); + break; + + case MultiplyBlending: + gl.blendFuncSeparate( gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA ); + break; + + default: + console.error( 'THREE.WebGLState: Invalid blending: ', blending ); + break; + + } + + } else { + + switch ( blending ) { + + case NormalBlending: + gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); + break; + + case AdditiveBlending: + gl.blendFunc( gl.SRC_ALPHA, gl.ONE ); + break; + + case SubtractiveBlending: + gl.blendFuncSeparate( gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE ); + break; + + case MultiplyBlending: + gl.blendFunc( gl.ZERO, gl.SRC_COLOR ); + break; + + default: + console.error( 'THREE.WebGLState: Invalid blending: ', blending ); + break; + + } + + } + + this.currentBlendSrc = null; + this.currentBlendDst = null; + this.currentBlendSrcAlpha = null; + this.currentBlendDstAlpha = null; + + this.currentBlending = blending; + this.currentPremultipledAlpha = premultipliedAlpha; + + } + + return; + + } + + // custom blending + + blendEquationAlpha = blendEquationAlpha || blendEquation; + blendSrcAlpha = blendSrcAlpha || blendSrc; + blendDstAlpha = blendDstAlpha || blendDst; + + if ( blendEquation !== this.currentBlendEquation || blendEquationAlpha !== this.currentBlendEquationAlpha ) { + + gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] ); + + this.currentBlendEquation = blendEquation; + this.currentBlendEquationAlpha = blendEquationAlpha; + + } + + if ( blendSrc !== this.currentBlendSrc || blendDst !== this.currentBlendDst || blendSrcAlpha !== this.currentBlendSrcAlpha || blendDstAlpha !== this.currentBlendDstAlpha ) { + + gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] ); + + this.currentBlendSrc = blendSrc; + this.currentBlendDst = blendDst; + this.currentBlendSrcAlpha = blendSrcAlpha; + this.currentBlendDstAlpha = blendDstAlpha; + + } + + this.currentBlending = blending; + this.currentPremultipledAlpha = false; + + } + + /** + * Specifies whether colors can be written when rendering + * into a framebuffer or not. + * + * This method caches the state so `gl.colorMask()` is only + * called when necessary. + * + * @param {boolean} colorMask - The color mask. + */ + setColorMask( colorMask ) { + + if ( this.currentColorMask !== colorMask ) { + + this.gl.colorMask( colorMask, colorMask, colorMask, colorMask ); + this.currentColorMask = colorMask; + + } + + } + + /** + * Specifies whether the depth test is enabled or not. + * + * @param {boolean} depthTest - Whether the depth test is enabled or not. + */ + setDepthTest( depthTest ) { + + const { gl } = this; + + if ( depthTest ) { + + this.enable( gl.DEPTH_TEST ); + + } else { + + this.disable( gl.DEPTH_TEST ); + + } + + } + + /** + * Specifies whether depth values can be written when rendering + * into a framebuffer or not. + * + * This method caches the state so `gl.depthMask()` is only + * called when necessary. + * + * @param {boolean} depthMask - The depth mask. + */ + setDepthMask( depthMask ) { + + if ( this.currentDepthMask !== depthMask ) { + + this.gl.depthMask( depthMask ); + this.currentDepthMask = depthMask; + + } + + } + + /** + * Specifies the depth compare function. + * + * This method caches the state so `gl.depthFunc()` is only + * called when necessary. + * + * @param {number} depthFunc - The depth compare function. + */ + setDepthFunc( depthFunc ) { + + if ( this.currentDepthFunc !== depthFunc ) { + + const { gl } = this; + + switch ( depthFunc ) { + + case NeverDepth: + + gl.depthFunc( gl.NEVER ); + break; + + case AlwaysDepth: + + gl.depthFunc( gl.ALWAYS ); + break; + + case LessDepth: + + gl.depthFunc( gl.LESS ); + break; + + case LessEqualDepth: + + gl.depthFunc( gl.LEQUAL ); + break; + + case EqualDepth: + + gl.depthFunc( gl.EQUAL ); + break; + + case GreaterEqualDepth: + + gl.depthFunc( gl.GEQUAL ); + break; + + case GreaterDepth: + + gl.depthFunc( gl.GREATER ); + break; + + case NotEqualDepth: + + gl.depthFunc( gl.NOTEQUAL ); + break; + + default: + + gl.depthFunc( gl.LEQUAL ); + + } + + this.currentDepthFunc = depthFunc; + + } + + } + + /** + * Specifies the scissor box. + * + * @param {number} x - The x-coordinate of the lower left corner of the viewport. + * @param {number} y - The y-coordinate of the lower left corner of the viewport. + * @param {number} width - The width of the viewport. + * @param {number} height - The height of the viewport. + * + */ + scissor( x, y, width, height ) { + + const scissor = this._tempVec4.set( x, y, width, height ); + + if ( this.currentScissor.equals( scissor ) === false ) { + + const { gl } = this; + + gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); + this.currentScissor.copy( scissor ); + + } + + } + + /** + * Specifies the viewport. + * + * @param {number} x - The x-coordinate of the lower left corner of the viewport. + * @param {number} y - The y-coordinate of the lower left corner of the viewport. + * @param {number} width - The width of the viewport. + * @param {number} height - The height of the viewport. + * + */ + viewport( x, y, width, height ) { + + const viewport = this._tempVec4.set( x, y, width, height ); + + if ( this.currentViewport.equals( viewport ) === false ) { + + const { gl } = this; + + gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); + this.currentViewport.copy( viewport ); + + } + + } + + /** + * Defines the scissor test. + * + * @param {boolean} boolean - Whether the scissor test should be enabled or not. + */ + setScissorTest( boolean ) { + + const gl = this.gl; + + if ( boolean ) { + + gl.enable( gl.SCISSOR_TEST ); + + } else { + + gl.disable( gl.SCISSOR_TEST ); + + } + + } + + /** + * Specifies whether the stencil test is enabled or not. + * + * @param {boolean} stencilTest - Whether the stencil test is enabled or not. + */ + setStencilTest( stencilTest ) { + + const { gl } = this; + + if ( stencilTest ) { + + this.enable( gl.STENCIL_TEST ); + + } else { + + this.disable( gl.STENCIL_TEST ); + + } + + } + + /** + * Specifies whether stencil values can be written when rendering + * into a framebuffer or not. + * + * This method caches the state so `gl.stencilMask()` is only + * called when necessary. + * + * @param {boolean} stencilMask - The stencil mask. + */ + setStencilMask( stencilMask ) { + + if ( this.currentStencilMask !== stencilMask ) { + + this.gl.stencilMask( stencilMask ); + this.currentStencilMask = stencilMask; + + } + + } + + /** + * Specifies whether the stencil test functions. + * + * This method caches the state so `gl.stencilFunc()` is only + * called when necessary. + * + * @param {number} stencilFunc - The stencil compare function. + * @param {number} stencilRef - The reference value for the stencil test. + * @param {number} stencilMask - A bit-wise mask that is used to AND the reference value and the stored stencil value when the test is done. + */ + setStencilFunc( stencilFunc, stencilRef, stencilMask ) { + + if ( this.currentStencilFunc !== stencilFunc || + this.currentStencilRef !== stencilRef || + this.currentStencilFuncMask !== stencilMask ) { + + this.gl.stencilFunc( stencilFunc, stencilRef, stencilMask ); + + this.currentStencilFunc = stencilFunc; + this.currentStencilRef = stencilRef; + this.currentStencilFuncMask = stencilMask; + + } + + } + + /** + * Specifies whether the stencil test operation. + * + * This method caches the state so `gl.stencilOp()` is only + * called when necessary. + * + * @param {number} stencilFail - The function to use when the stencil test fails. + * @param {number} stencilZFail - The function to use when the stencil test passes, but the depth test fail. + * @param {number} stencilZPass - The function to use when both the stencil test and the depth test pass, + * or when the stencil test passes and there is no depth buffer or depth testing is disabled. + */ + setStencilOp( stencilFail, stencilZFail, stencilZPass ) { + + if ( this.currentStencilFail !== stencilFail || + this.currentStencilZFail !== stencilZFail || + this.currentStencilZPass !== stencilZPass ) { + + this.gl.stencilOp( stencilFail, stencilZFail, stencilZPass ); + + this.currentStencilFail = stencilFail; + this.currentStencilZFail = stencilZFail; + this.currentStencilZPass = stencilZPass; + + } + + } + + /** + * Configures the WebGL state for the given material. + * + * @param {Material} material - The material to configure the state for. + * @param {number} frontFaceCW - Whether the front faces are counter-clockwise or not. + * @param {number} hardwareClippingPlanes - The number of hardware clipping planes. + */ + setMaterial( material, frontFaceCW, hardwareClippingPlanes ) { + + const { gl } = this; + + material.side === DoubleSide + ? this.disable( gl.CULL_FACE ) + : this.enable( gl.CULL_FACE ); + + let flipSided = ( material.side === BackSide ); + if ( frontFaceCW ) flipSided = ! flipSided; + + this.setFlipSided( flipSided ); + + ( material.blending === NormalBlending && material.transparent === false ) + ? this.setBlending( NoBlending ) + : this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha ); + + this.setDepthFunc( material.depthFunc ); + this.setDepthTest( material.depthTest ); + this.setDepthMask( material.depthWrite ); + this.setColorMask( material.colorWrite ); + + const stencilWrite = material.stencilWrite; + this.setStencilTest( stencilWrite ); + if ( stencilWrite ) { + + this.setStencilMask( material.stencilWriteMask ); + this.setStencilFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask ); + this.setStencilOp( material.stencilFail, material.stencilZFail, material.stencilZPass ); + + } + + this.setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); + + material.alphaToCoverage === true && this.backend.renderer.samples > 1 + ? this.enable( gl.SAMPLE_ALPHA_TO_COVERAGE ) + : this.disable( gl.SAMPLE_ALPHA_TO_COVERAGE ); + + if ( hardwareClippingPlanes > 0 ) { + + if ( this.currentClippingPlanes !== hardwareClippingPlanes ) { + + const CLIP_DISTANCE0_WEBGL = 0x3000; + + for ( let i = 0; i < 8; i ++ ) { + + if ( i < hardwareClippingPlanes ) { + + this.enable( CLIP_DISTANCE0_WEBGL + i ); + + } else { + + this.disable( CLIP_DISTANCE0_WEBGL + i ); + + } + + } + + } + + } + + } + + /** + * Specifies the polygon offset. + * + * This method caches the state so `gl.polygonOffset()` is only + * called when necessary. + * + * @param {boolean} polygonOffset - Whether polygon offset is enabled or not. + * @param {number} factor - The scale factor for the variable depth offset for each polygon. + * @param {number} units - The multiplier by which an implementation-specific value is multiplied with to create a constant depth offset. + */ + setPolygonOffset( polygonOffset, factor, units ) { + + const { gl } = this; + + if ( polygonOffset ) { + + this.enable( gl.POLYGON_OFFSET_FILL ); + + if ( this.currentPolygonOffsetFactor !== factor || this.currentPolygonOffsetUnits !== units ) { + + gl.polygonOffset( factor, units ); + + this.currentPolygonOffsetFactor = factor; + this.currentPolygonOffsetUnits = units; + + } + + } else { + + this.disable( gl.POLYGON_OFFSET_FILL ); + + } + + } + + /** + * Defines the usage of the given WebGL program. + * + * This method caches the state so `gl.useProgram()` is only + * called when necessary. + * + * @param {WebGLProgram} program - The WebGL program to use. + * @return {boolean} Whether a program change has been executed or not. + */ + useProgram( program ) { + + if ( this.currentProgram !== program ) { + + this.gl.useProgram( program ); + + this.currentProgram = program; + + return true; + + } + + return false; + + } + + /** + * Sets the vertex state by binding the given VAO and element buffer. + * + * @param {WebGLVertexArrayObject} vao - The VAO. + * @param {WebGLBuffer} indexBuffer - The index buffer. + * @return {boolean} Whether a vertex state has been changed or not. + */ + setVertexState( vao, indexBuffer = null ) { + + const gl = this.gl; + + if ( this.currentVAO !== vao || this.currentIndex !== indexBuffer ) { + + gl.bindVertexArray( vao ); + + if ( indexBuffer !== null ) { + + gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, indexBuffer ); + + } + + this.currentVAO = vao; + this.currentIndex = indexBuffer; + + return true; + + } + + return false; + + } + + /** + * Resets the vertex array state by resetting the VAO and element buffer. + */ + resetVertexState() { + + const gl = this.gl; + + gl.bindVertexArray( null ); + gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, null ); + + this.currentVAO = null; + this.currentIndex = null; + + } + + // framebuffer + + + /** + * Binds the given framebuffer. + * + * This method caches the state so `gl.bindFramebuffer()` is only + * called when necessary. + * + * @param {number} target - The binding point (target). + * @param {WebGLFramebuffer} framebuffer - The WebGL framebuffer to bind. + * @return {boolean} Whether a bind has been executed or not. + */ + bindFramebuffer( target, framebuffer ) { + + const { gl, currentBoundFramebuffers } = this; + + if ( currentBoundFramebuffers[ target ] !== framebuffer ) { + + gl.bindFramebuffer( target, framebuffer ); + + currentBoundFramebuffers[ target ] = framebuffer; + + // gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER + + if ( target === gl.DRAW_FRAMEBUFFER ) { + + currentBoundFramebuffers[ gl.FRAMEBUFFER ] = framebuffer; + + } + + if ( target === gl.FRAMEBUFFER ) { + + currentBoundFramebuffers[ gl.DRAW_FRAMEBUFFER ] = framebuffer; + + } + + return true; + + } + + return false; + + } + + /** + * Defines draw buffers to which fragment colors are written into. + * Configures the MRT setup of custom framebuffers. + * + * This method caches the state so `gl.drawBuffers()` is only + * called when necessary. + * + * @param {RenderContext} renderContext - The render context. + * @param {WebGLFramebuffer} framebuffer - The WebGL framebuffer. + */ + drawBuffers( renderContext, framebuffer ) { + + const { gl } = this; + + let drawBuffers = []; + + let needsUpdate = false; + + if ( renderContext.textures !== null ) { + + drawBuffers = this.currentDrawbuffers.get( framebuffer ); + + if ( drawBuffers === undefined ) { + + drawBuffers = []; + this.currentDrawbuffers.set( framebuffer, drawBuffers ); + + } + + + const textures = renderContext.textures; + + if ( drawBuffers.length !== textures.length || drawBuffers[ 0 ] !== gl.COLOR_ATTACHMENT0 ) { + + for ( let i = 0, il = textures.length; i < il; i ++ ) { + + drawBuffers[ i ] = gl.COLOR_ATTACHMENT0 + i; + + } + + drawBuffers.length = textures.length; + + needsUpdate = true; + + } + + + } else { + + if ( drawBuffers[ 0 ] !== gl.BACK ) { + + drawBuffers[ 0 ] = gl.BACK; + + needsUpdate = true; + + } + + } + + if ( needsUpdate ) { + + gl.drawBuffers( drawBuffers ); + + } + + } + + + // texture + + /** + * Makes the given texture unit active. + * + * This method caches the state so `gl.activeTexture()` is only + * called when necessary. + * + * @param {number} webglSlot - The texture unit to make active. + */ + activeTexture( webglSlot ) { + + const { gl, currentTextureSlot, maxTextures } = this; + + if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1; + + if ( currentTextureSlot !== webglSlot ) { + + gl.activeTexture( webglSlot ); + this.currentTextureSlot = webglSlot; + + } + + } + + /** + * Binds the given WebGL texture to a target. + * + * This method caches the state so `gl.bindTexture()` is only + * called when necessary. + * + * @param {number} webglType - The binding point (target). + * @param {WebGLTexture} webglTexture - The WebGL texture to bind. + * @param {number} webglSlot - The texture. + */ + bindTexture( webglType, webglTexture, webglSlot ) { + + const { gl, currentTextureSlot, currentBoundTextures, maxTextures } = this; + + if ( webglSlot === undefined ) { + + if ( currentTextureSlot === null ) { + + webglSlot = gl.TEXTURE0 + maxTextures - 1; + + } else { + + webglSlot = currentTextureSlot; + + } + + } + + let boundTexture = currentBoundTextures[ webglSlot ]; + + if ( boundTexture === undefined ) { + + boundTexture = { type: undefined, texture: undefined }; + currentBoundTextures[ webglSlot ] = boundTexture; + + } + + if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) { + + if ( currentTextureSlot !== webglSlot ) { + + gl.activeTexture( webglSlot ); + this.currentTextureSlot = webglSlot; + + } + + gl.bindTexture( webglType, webglTexture ); + + boundTexture.type = webglType; + boundTexture.texture = webglTexture; + + } + + } + + /** + * Binds a given WebGL buffer to a given binding point (target) at a given index. + * + * This method caches the state so `gl.bindBufferBase()` is only + * called when necessary. + * + * @param {number} target - The target for the bind operation. + * @param {number} index - The index of the target. + * @param {WebGLBuffer} buffer - The WebGL buffer. + * @return {boolean} Whether a bind has been executed or not. + */ + bindBufferBase( target, index, buffer ) { + + const { gl } = this; + + const key = `${target}-${index}`; + + if ( this.currentBoundBufferBases[ key ] !== buffer ) { + + gl.bindBufferBase( target, index, buffer ); + this.currentBoundBufferBases[ key ] = buffer; + + return true; + + } + + return false; + + } + + + /** + * Unbinds the current bound texture. + * + * This method caches the state so `gl.bindTexture()` is only + * called when necessary. + */ + unbindTexture() { + + const { gl, currentTextureSlot, currentBoundTextures } = this; + + const boundTexture = currentBoundTextures[ currentTextureSlot ]; + + if ( boundTexture !== undefined && boundTexture.type !== undefined ) { + + gl.bindTexture( boundTexture.type, null ); + + boundTexture.type = undefined; + boundTexture.texture = undefined; + + } + + } + +} + +/** + * A WebGL 2 backend utility module with common helpers. + * + * @private + */ +class WebGLUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGLBackend} backend - The WebGL 2 backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGL 2 backend. + * + * @type {WebGLBackend} + */ + this.backend = backend; + + /** + * A reference to the rendering context. + * + * @type {WebGL2RenderingContext} + */ + this.gl = this.backend.gl; + + /** + * A reference to a backend module holding extension-related + * utility functions. + * + * @type {WebGLExtensions} + */ + this.extensions = backend.extensions; + + } + + /** + * Converts the given three.js constant into a WebGL constant. + * The method currently supports the conversion of texture formats + * and types. + * + * @param {number} p - The three.js constant. + * @param {string} [colorSpace=NoColorSpace] - The color space. + * @return {?number} The corresponding WebGL constant. + */ + convert( p, colorSpace = NoColorSpace ) { + + const { gl, extensions } = this; + + let extension; + + const transfer = ColorManagement.getTransfer( colorSpace ); + + if ( p === UnsignedByteType ) return gl.UNSIGNED_BYTE; + if ( p === UnsignedShort4444Type ) return gl.UNSIGNED_SHORT_4_4_4_4; + if ( p === UnsignedShort5551Type ) return gl.UNSIGNED_SHORT_5_5_5_1; + if ( p === UnsignedInt5999Type ) return gl.UNSIGNED_INT_5_9_9_9_REV; + + if ( p === ByteType ) return gl.BYTE; + if ( p === ShortType ) return gl.SHORT; + if ( p === UnsignedShortType ) return gl.UNSIGNED_SHORT; + if ( p === IntType ) return gl.INT; + if ( p === UnsignedIntType ) return gl.UNSIGNED_INT; + if ( p === FloatType ) return gl.FLOAT; + + if ( p === HalfFloatType ) { + + return gl.HALF_FLOAT; + + } + + if ( p === AlphaFormat ) return gl.ALPHA; + if ( p === RGBFormat ) return gl.RGB; + if ( p === RGBAFormat ) return gl.RGBA; + if ( p === DepthFormat ) return gl.DEPTH_COMPONENT; + if ( p === DepthStencilFormat ) return gl.DEPTH_STENCIL; + + // WebGL2 formats. + + if ( p === RedFormat ) return gl.RED; + if ( p === RedIntegerFormat ) return gl.RED_INTEGER; + if ( p === RGFormat ) return gl.RG; + if ( p === RGIntegerFormat ) return gl.RG_INTEGER; + if ( p === RGBAIntegerFormat ) return gl.RGBA_INTEGER; + + // S3TC + + if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) { + + if ( transfer === SRGBTransfer ) { + + extension = extensions.get( 'WEBGL_compressed_texture_s3tc_srgb' ); + + if ( extension !== null ) { + + if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_S3TC_DXT1_EXT; + if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT; + if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT; + if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT; + + } else { + + return null; + + } + + } else { + + extension = extensions.get( 'WEBGL_compressed_texture_s3tc' ); + + if ( extension !== null ) { + + if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; + if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; + if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; + if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; + + } else { + + return null; + + } + + } + + } + + // PVRTC + + if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' ); + + if ( extension !== null ) { + + if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; + if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; + if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; + if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; + + } else { + + return null; + + } + + } + + // ETC + + if ( p === RGB_ETC1_Format || p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_etc' ); + + if ( extension !== null ) { + + if ( p === RGB_ETC1_Format || p === RGB_ETC2_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ETC2 : extension.COMPRESSED_RGB8_ETC2; + if ( p === RGBA_ETC2_EAC_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ETC2_EAC : extension.COMPRESSED_RGBA8_ETC2_EAC; + + } else { + + return null; + + } + + } + + // ASTC + + if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || + p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || + p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || + p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || + p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_astc' ); + + if ( extension !== null ) { + + if ( p === RGBA_ASTC_4x4_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR : extension.COMPRESSED_RGBA_ASTC_4x4_KHR; + if ( p === RGBA_ASTC_5x4_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR : extension.COMPRESSED_RGBA_ASTC_5x4_KHR; + if ( p === RGBA_ASTC_5x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR : extension.COMPRESSED_RGBA_ASTC_5x5_KHR; + if ( p === RGBA_ASTC_6x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR : extension.COMPRESSED_RGBA_ASTC_6x5_KHR; + if ( p === RGBA_ASTC_6x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR : extension.COMPRESSED_RGBA_ASTC_6x6_KHR; + if ( p === RGBA_ASTC_8x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR : extension.COMPRESSED_RGBA_ASTC_8x5_KHR; + if ( p === RGBA_ASTC_8x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR : extension.COMPRESSED_RGBA_ASTC_8x6_KHR; + if ( p === RGBA_ASTC_8x8_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR : extension.COMPRESSED_RGBA_ASTC_8x8_KHR; + if ( p === RGBA_ASTC_10x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR : extension.COMPRESSED_RGBA_ASTC_10x5_KHR; + if ( p === RGBA_ASTC_10x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR : extension.COMPRESSED_RGBA_ASTC_10x6_KHR; + if ( p === RGBA_ASTC_10x8_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR : extension.COMPRESSED_RGBA_ASTC_10x8_KHR; + if ( p === RGBA_ASTC_10x10_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR : extension.COMPRESSED_RGBA_ASTC_10x10_KHR; + if ( p === RGBA_ASTC_12x10_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR : extension.COMPRESSED_RGBA_ASTC_12x10_KHR; + if ( p === RGBA_ASTC_12x12_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR : extension.COMPRESSED_RGBA_ASTC_12x12_KHR; + + } else { + + return null; + + } + + } + + // BPTC + + if ( p === RGBA_BPTC_Format ) { + + extension = extensions.get( 'EXT_texture_compression_bptc' ); + + if ( extension !== null ) { + + if ( p === RGBA_BPTC_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB_ALPHA_BPTC_UNORM_EXT : extension.COMPRESSED_RGBA_BPTC_UNORM_EXT; + + } else { + + return null; + + } + + } + + // RGTC + + if ( p === RED_RGTC1_Format || p === SIGNED_RED_RGTC1_Format || p === RED_GREEN_RGTC2_Format || p === SIGNED_RED_GREEN_RGTC2_Format ) { + + extension = extensions.get( 'EXT_texture_compression_rgtc' ); + + if ( extension !== null ) { + + if ( p === RGBA_BPTC_Format ) return extension.COMPRESSED_RED_RGTC1_EXT; + if ( p === SIGNED_RED_RGTC1_Format ) return extension.COMPRESSED_SIGNED_RED_RGTC1_EXT; + if ( p === RED_GREEN_RGTC2_Format ) return extension.COMPRESSED_RED_GREEN_RGTC2_EXT; + if ( p === SIGNED_RED_GREEN_RGTC2_Format ) return extension.COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT; + + } else { + + return null; + + } + + } + + // + + if ( p === UnsignedInt248Type ) { + + return gl.UNSIGNED_INT_24_8; + + } + + // if "p" can't be resolved, assume the user defines a WebGL constant as a string (fallback/workaround for packed RGB formats) + + return ( gl[ p ] !== undefined ) ? gl[ p ] : null; + + } + + /** + * This method can be used to synchronize the CPU with the GPU by waiting until + * ongoing GPU commands have been completed. + * + * @private + * @return {Promise} A promise that resolves when all ongoing GPU commands have been completed. + */ + _clientWaitAsync() { + + const { gl } = this; + + const sync = gl.fenceSync( gl.SYNC_GPU_COMMANDS_COMPLETE, 0 ); + + gl.flush(); + + return new Promise( ( resolve, reject ) => { + + function test() { + + const res = gl.clientWaitSync( sync, gl.SYNC_FLUSH_COMMANDS_BIT, 0 ); + + if ( res === gl.WAIT_FAILED ) { + + gl.deleteSync( sync ); + + reject(); + return; + + } + + if ( res === gl.TIMEOUT_EXPIRED ) { + + requestAnimationFrame( test ); + return; + + } + + gl.deleteSync( sync ); + + resolve(); + + } + + test(); + + } ); + + } + +} + +let initialized = false, wrappingToGL, filterToGL, compareToGL; + +/** + * A WebGL 2 backend utility module for managing textures. + * + * @private + */ +class WebGLTextureUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGLBackend} backend - The WebGL 2 backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGL 2 backend. + * + * @type {WebGLBackend} + */ + this.backend = backend; + + /** + * A reference to the rendering context. + * + * @type {WebGL2RenderingContext} + */ + this.gl = backend.gl; + + /** + * A reference to a backend module holding extension-related + * utility functions. + * + * @type {WebGLExtensions} + */ + this.extensions = backend.extensions; + + /** + * A dictionary for managing default textures. The key + * is the binding point (target), the value the WEbGL texture object. + * + * @type {Object} + */ + this.defaultTextures = {}; + + if ( initialized === false ) { + + this._init(); + + initialized = true; + + } + + } + + /** + * Inits the state of the utility. + * + * @private + */ + _init() { + + const gl = this.gl; + + // Store only WebGL constants here. + + wrappingToGL = { + [ RepeatWrapping ]: gl.REPEAT, + [ ClampToEdgeWrapping ]: gl.CLAMP_TO_EDGE, + [ MirroredRepeatWrapping ]: gl.MIRRORED_REPEAT + }; + + filterToGL = { + [ NearestFilter ]: gl.NEAREST, + [ NearestMipmapNearestFilter ]: gl.NEAREST_MIPMAP_NEAREST, + [ NearestMipmapLinearFilter ]: gl.NEAREST_MIPMAP_LINEAR, + + [ LinearFilter ]: gl.LINEAR, + [ LinearMipmapNearestFilter ]: gl.LINEAR_MIPMAP_NEAREST, + [ LinearMipmapLinearFilter ]: gl.LINEAR_MIPMAP_LINEAR + }; + + compareToGL = { + [ NeverCompare ]: gl.NEVER, + [ AlwaysCompare ]: gl.ALWAYS, + [ LessCompare ]: gl.LESS, + [ LessEqualCompare ]: gl.LEQUAL, + [ EqualCompare ]: gl.EQUAL, + [ GreaterEqualCompare ]: gl.GEQUAL, + [ GreaterCompare ]: gl.GREATER, + [ NotEqualCompare ]: gl.NOTEQUAL + }; + + } + + /** + * Returns the native texture type for the given texture. + * + * @param {Texture} texture - The texture. + * @return {GLenum} The native texture type. + */ + getGLTextureType( texture ) { + + const { gl } = this; + + let glTextureType; + + if ( texture.isCubeTexture === true ) { + + glTextureType = gl.TEXTURE_CUBE_MAP; + + } else if ( texture.isArrayTexture === true || texture.isDataArrayTexture === true || texture.isCompressedArrayTexture === true ) { + + glTextureType = gl.TEXTURE_2D_ARRAY; + + } else if ( texture.isData3DTexture === true ) { // TODO: isCompressed3DTexture, wait for #26642 + + glTextureType = gl.TEXTURE_3D; + + } else { + + glTextureType = gl.TEXTURE_2D; + + + } + + return glTextureType; + + } + + /** + * Returns the native texture type for the given texture. + * + * @param {?string} internalFormatName - The internal format name. When `null`, the internal format is derived from the subsequent parameters. + * @param {GLenum} glFormat - The WebGL format. + * @param {GLenum} glType - The WebGL type. + * @param {string} colorSpace - The texture's color space. + * @param {boolean} [forceLinearTransfer=false] - Whether to force a linear transfer or not. + * @return {GLenum} The internal format. + */ + getInternalFormat( internalFormatName, glFormat, glType, colorSpace, forceLinearTransfer = false ) { + + const { gl, extensions } = this; + + if ( internalFormatName !== null ) { + + if ( gl[ internalFormatName ] !== undefined ) return gl[ internalFormatName ]; + + console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' ); + + } + + let internalFormat = glFormat; + + if ( glFormat === gl.RED ) { + + if ( glType === gl.FLOAT ) internalFormat = gl.R32F; + if ( glType === gl.HALF_FLOAT ) internalFormat = gl.R16F; + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.R8; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.R16; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.R32UI; + if ( glType === gl.BYTE ) internalFormat = gl.R8I; + if ( glType === gl.SHORT ) internalFormat = gl.R16I; + if ( glType === gl.INT ) internalFormat = gl.R32I; + + } + + if ( glFormat === gl.RED_INTEGER ) { + + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.R8UI; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.R16UI; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.R32UI; + if ( glType === gl.BYTE ) internalFormat = gl.R8I; + if ( glType === gl.SHORT ) internalFormat = gl.R16I; + if ( glType === gl.INT ) internalFormat = gl.R32I; + + } + + if ( glFormat === gl.RG ) { + + if ( glType === gl.FLOAT ) internalFormat = gl.RG32F; + if ( glType === gl.HALF_FLOAT ) internalFormat = gl.RG16F; + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RG8; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RG16; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RG32UI; + if ( glType === gl.BYTE ) internalFormat = gl.RG8I; + if ( glType === gl.SHORT ) internalFormat = gl.RG16I; + if ( glType === gl.INT ) internalFormat = gl.RG32I; + + } + + if ( glFormat === gl.RG_INTEGER ) { + + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RG8UI; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RG16UI; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RG32UI; + if ( glType === gl.BYTE ) internalFormat = gl.RG8I; + if ( glType === gl.SHORT ) internalFormat = gl.RG16I; + if ( glType === gl.INT ) internalFormat = gl.RG32I; + + } + + if ( glFormat === gl.RGB ) { + + const transfer = forceLinearTransfer ? LinearTransfer : ColorManagement.getTransfer( colorSpace ); + + if ( glType === gl.FLOAT ) internalFormat = gl.RGB32F; + if ( glType === gl.HALF_FLOAT ) internalFormat = gl.RGB16F; + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RGB8; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RGB16; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RGB32UI; + if ( glType === gl.BYTE ) internalFormat = gl.RGB8I; + if ( glType === gl.SHORT ) internalFormat = gl.RGB16I; + if ( glType === gl.INT ) internalFormat = gl.RGB32I; + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = ( transfer === SRGBTransfer ) ? gl.SRGB8 : gl.RGB8; + if ( glType === gl.UNSIGNED_SHORT_5_6_5 ) internalFormat = gl.RGB565; + if ( glType === gl.UNSIGNED_SHORT_5_5_5_1 ) internalFormat = gl.RGB5_A1; + if ( glType === gl.UNSIGNED_SHORT_4_4_4_4 ) internalFormat = gl.RGB4; + if ( glType === gl.UNSIGNED_INT_5_9_9_9_REV ) internalFormat = gl.RGB9_E5; + + } + + if ( glFormat === gl.RGB_INTEGER ) { + + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RGB8UI; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RGB16UI; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RGB32UI; + if ( glType === gl.BYTE ) internalFormat = gl.RGB8I; + if ( glType === gl.SHORT ) internalFormat = gl.RGB16I; + if ( glType === gl.INT ) internalFormat = gl.RGB32I; + + } + + if ( glFormat === gl.RGBA ) { + + const transfer = forceLinearTransfer ? LinearTransfer : ColorManagement.getTransfer( colorSpace ); + + if ( glType === gl.FLOAT ) internalFormat = gl.RGBA32F; + if ( glType === gl.HALF_FLOAT ) internalFormat = gl.RGBA16F; + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RGBA8; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RGBA16; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RGBA32UI; + if ( glType === gl.BYTE ) internalFormat = gl.RGBA8I; + if ( glType === gl.SHORT ) internalFormat = gl.RGBA16I; + if ( glType === gl.INT ) internalFormat = gl.RGBA32I; + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = ( transfer === SRGBTransfer ) ? gl.SRGB8_ALPHA8 : gl.RGBA8; + if ( glType === gl.UNSIGNED_SHORT_4_4_4_4 ) internalFormat = gl.RGBA4; + if ( glType === gl.UNSIGNED_SHORT_5_5_5_1 ) internalFormat = gl.RGB5_A1; + + } + + if ( glFormat === gl.RGBA_INTEGER ) { + + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RGBA8UI; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RGBA16UI; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RGBA32UI; + if ( glType === gl.BYTE ) internalFormat = gl.RGBA8I; + if ( glType === gl.SHORT ) internalFormat = gl.RGBA16I; + if ( glType === gl.INT ) internalFormat = gl.RGBA32I; + + } + + if ( glFormat === gl.DEPTH_COMPONENT ) { + + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.DEPTH_COMPONENT16; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.DEPTH_COMPONENT24; + if ( glType === gl.FLOAT ) internalFormat = gl.DEPTH_COMPONENT32F; + + } + + if ( glFormat === gl.DEPTH_STENCIL ) { + + if ( glType === gl.UNSIGNED_INT_24_8 ) internalFormat = gl.DEPTH24_STENCIL8; + + } + + if ( internalFormat === gl.R16F || internalFormat === gl.R32F || + internalFormat === gl.RG16F || internalFormat === gl.RG32F || + internalFormat === gl.RGBA16F || internalFormat === gl.RGBA32F ) { + + extensions.get( 'EXT_color_buffer_float' ); + + } + + return internalFormat; + + } + + /** + * Sets the texture parameters for the given texture. + * + * @param {GLenum} textureType - The texture type. + * @param {Texture} texture - The texture. + */ + setTextureParameters( textureType, texture ) { + + const { gl, extensions, backend } = this; + + const workingPrimaries = ColorManagement.getPrimaries( ColorManagement.workingColorSpace ); + const texturePrimaries = texture.colorSpace === NoColorSpace ? null : ColorManagement.getPrimaries( texture.colorSpace ); + const unpackConversion = texture.colorSpace === NoColorSpace || workingPrimaries === texturePrimaries ? gl.NONE : gl.BROWSER_DEFAULT_WEBGL; + + gl.pixelStorei( gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); + gl.pixelStorei( gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); + gl.pixelStorei( gl.UNPACK_ALIGNMENT, texture.unpackAlignment ); + gl.pixelStorei( gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, unpackConversion ); + + gl.texParameteri( textureType, gl.TEXTURE_WRAP_S, wrappingToGL[ texture.wrapS ] ); + gl.texParameteri( textureType, gl.TEXTURE_WRAP_T, wrappingToGL[ texture.wrapT ] ); + + if ( textureType === gl.TEXTURE_3D || textureType === gl.TEXTURE_2D_ARRAY ) { + + // WebGL 2 does not support wrapping for depth 2D array textures + if ( ! texture.isArrayTexture ) { + + gl.texParameteri( textureType, gl.TEXTURE_WRAP_R, wrappingToGL[ texture.wrapR ] ); + + } + + } + + gl.texParameteri( textureType, gl.TEXTURE_MAG_FILTER, filterToGL[ texture.magFilter ] ); + + + const hasMipmaps = texture.mipmaps !== undefined && texture.mipmaps.length > 0; + + // follow WebGPU backend mapping for texture filtering + const minFilter = texture.minFilter === LinearFilter && hasMipmaps ? LinearMipmapLinearFilter : texture.minFilter; + + gl.texParameteri( textureType, gl.TEXTURE_MIN_FILTER, filterToGL[ minFilter ] ); + + if ( texture.compareFunction ) { + + gl.texParameteri( textureType, gl.TEXTURE_COMPARE_MODE, gl.COMPARE_REF_TO_TEXTURE ); + gl.texParameteri( textureType, gl.TEXTURE_COMPARE_FUNC, compareToGL[ texture.compareFunction ] ); + + } + + if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { + + if ( texture.magFilter === NearestFilter ) return; + if ( texture.minFilter !== NearestMipmapLinearFilter && texture.minFilter !== LinearMipmapLinearFilter ) return; + if ( texture.type === FloatType && extensions.has( 'OES_texture_float_linear' ) === false ) return; // verify extension for WebGL 1 and WebGL 2 + + if ( texture.anisotropy > 1 ) { + + const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); + gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, backend.getMaxAnisotropy() ) ); + + } + + } + + } + + /** + * Creates a default texture for the given texture that can be used + * as a placeholder until the actual texture is ready for usage. + * + * @param {Texture} texture - The texture to create a default texture for. + */ + createDefaultTexture( texture ) { + + const { gl, backend, defaultTextures } = this; + + + const glTextureType = this.getGLTextureType( texture ); + + let textureGPU = defaultTextures[ glTextureType ]; + + if ( textureGPU === undefined ) { + + textureGPU = gl.createTexture(); + + backend.state.bindTexture( glTextureType, textureGPU ); + gl.texParameteri( glTextureType, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); + gl.texParameteri( glTextureType, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); + + // gl.texImage2D( glTextureType, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data ); + + defaultTextures[ glTextureType ] = textureGPU; + + } + + backend.set( texture, { + textureGPU, + glTextureType, + isDefault: true + } ); + + } + + /** + * Defines a texture on the GPU for the given texture object. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + * @return {undefined} + */ + createTexture( texture, options ) { + + const { gl, backend } = this; + const { levels, width, height, depth } = options; + + const glFormat = backend.utils.convert( texture.format, texture.colorSpace ); + const glType = backend.utils.convert( texture.type ); + const glInternalFormat = this.getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace, texture.isVideoTexture ); + + const textureGPU = gl.createTexture(); + const glTextureType = this.getGLTextureType( texture ); + + backend.state.bindTexture( glTextureType, textureGPU ); + + this.setTextureParameters( glTextureType, texture ); + + if ( texture.isArrayTexture || texture.isDataArrayTexture || texture.isCompressedArrayTexture ) { + + gl.texStorage3D( gl.TEXTURE_2D_ARRAY, levels, glInternalFormat, width, height, depth ); + + } else if ( texture.isData3DTexture ) { + + gl.texStorage3D( gl.TEXTURE_3D, levels, glInternalFormat, width, height, depth ); + + } else if ( ! texture.isVideoTexture ) { + + gl.texStorage2D( glTextureType, levels, glInternalFormat, width, height ); + + } + + backend.set( texture, { + textureGPU, + glTextureType, + glFormat, + glType, + glInternalFormat + } ); + + } + + /** + * Uploads texture buffer data to the GPU memory. + * + * @param {WebGLBuffer} buffer - The buffer data. + * @param {Texture} texture - The texture, + */ + copyBufferToTexture( buffer, texture ) { + + const { gl, backend } = this; + + const { textureGPU, glTextureType, glFormat, glType } = backend.get( texture ); + + const { width, height } = texture.source.data; + + gl.bindBuffer( gl.PIXEL_UNPACK_BUFFER, buffer ); + + backend.state.bindTexture( glTextureType, textureGPU ); + + gl.pixelStorei( gl.UNPACK_FLIP_Y_WEBGL, false ); + gl.pixelStorei( gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, false ); + gl.texSubImage2D( glTextureType, 0, 0, 0, width, height, glFormat, glType, 0 ); + + gl.bindBuffer( gl.PIXEL_UNPACK_BUFFER, null ); + + backend.state.unbindTexture(); + // debug + // const framebuffer = gl.createFramebuffer(); + // gl.bindFramebuffer( gl.FRAMEBUFFER, framebuffer ); + // gl.framebufferTexture2D( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, glTextureType, textureGPU, 0 ); + + // const readout = new Float32Array( width * height * 4 ); + + // const altFormat = gl.getParameter( gl.IMPLEMENTATION_COLOR_READ_FORMAT ); + // const altType = gl.getParameter( gl.IMPLEMENTATION_COLOR_READ_TYPE ); + + // gl.readPixels( 0, 0, width, height, altFormat, altType, readout ); + // gl.bindFramebuffer( gl.FRAMEBUFFER, null ); + // console.log( readout ); + + } + + /** + * Uploads the updated texture data to the GPU. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + updateTexture( texture, options ) { + + const { gl } = this; + const { width, height } = options; + const { textureGPU, glTextureType, glFormat, glType, glInternalFormat } = this.backend.get( texture ); + + if ( texture.isRenderTargetTexture || ( textureGPU === undefined /* unsupported texture format */ ) ) + return; + + const getImage = ( source ) => { + + if ( source.isDataTexture ) { + + return source.image.data; + + } else if ( ( typeof HTMLImageElement !== 'undefined' && source instanceof HTMLImageElement ) || + ( typeof HTMLCanvasElement !== 'undefined' && source instanceof HTMLCanvasElement ) || + ( typeof ImageBitmap !== 'undefined' && source instanceof ImageBitmap ) || + source instanceof OffscreenCanvas ) { + + return source; + + } + + return source.data; + + }; + + this.backend.state.bindTexture( glTextureType, textureGPU ); + + this.setTextureParameters( glTextureType, texture ); + + if ( texture.isCompressedTexture ) { + + const mipmaps = texture.mipmaps; + const image = options.image; + + for ( let i = 0; i < mipmaps.length; i ++ ) { + + const mipmap = mipmaps[ i ]; + + if ( texture.isCompressedArrayTexture ) { + + + if ( texture.format !== gl.RGBA ) { + + if ( glFormat !== null ) { + + gl.compressedTexSubImage3D( gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, mipmap.data ); + + } else { + + console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' ); + + } + + } else { + + gl.texSubImage3D( gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, glType, mipmap.data ); + + } + + } else { + + if ( glFormat !== null ) { + + gl.compressedTexSubImage2D( gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data ); + + } else { + + console.warn( 'Unsupported compressed texture format' ); + + } + + } + + } + + + } else if ( texture.isCubeTexture ) { + + const images = options.images; + + for ( let i = 0; i < 6; i ++ ) { + + const image = getImage( images[ i ] ); + + gl.texSubImage2D( gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, width, height, glFormat, glType, image ); + + } + + } else if ( texture.isDataArrayTexture || texture.isArrayTexture ) { + + const image = options.image; + + gl.texSubImage3D( gl.TEXTURE_2D_ARRAY, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data ); + + } else if ( texture.isData3DTexture ) { + + const image = options.image; + + gl.texSubImage3D( gl.TEXTURE_3D, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data ); + + } else if ( texture.isVideoTexture ) { + + texture.update(); + + gl.texImage2D( glTextureType, 0, glInternalFormat, glFormat, glType, options.image ); + + + } else { + + const image = getImage( options.image ); + + gl.texSubImage2D( glTextureType, 0, 0, 0, width, height, glFormat, glType, image ); + + } + + } + + /** + * Generates mipmaps for the given texture. + * + * @param {Texture} texture - The texture. + */ + generateMipmaps( texture ) { + + const { gl, backend } = this; + const { textureGPU, glTextureType } = backend.get( texture ); + + backend.state.bindTexture( glTextureType, textureGPU ); + gl.generateMipmap( glTextureType ); + + } + + /** + * Deallocates the render buffers of the given render target. + * + * @param {RenderTarget} renderTarget - The render target. + */ + deallocateRenderBuffers( renderTarget ) { + + const { gl, backend } = this; + + // remove framebuffer reference + if ( renderTarget ) { + + const renderContextData = backend.get( renderTarget ); + + renderContextData.renderBufferStorageSetup = undefined; + + if ( renderContextData.framebuffers ) { + + for ( const cacheKey in renderContextData.framebuffers ) { + + gl.deleteFramebuffer( renderContextData.framebuffers[ cacheKey ] ); + + } + + delete renderContextData.framebuffers; + + } + + if ( renderContextData.depthRenderbuffer ) { + + gl.deleteRenderbuffer( renderContextData.depthRenderbuffer ); + delete renderContextData.depthRenderbuffer; + + } + + if ( renderContextData.stencilRenderbuffer ) { + + gl.deleteRenderbuffer( renderContextData.stencilRenderbuffer ); + delete renderContextData.stencilRenderbuffer; + + } + + if ( renderContextData.msaaFrameBuffer ) { + + gl.deleteFramebuffer( renderContextData.msaaFrameBuffer ); + delete renderContextData.msaaFrameBuffer; + + } + + if ( renderContextData.msaaRenderbuffers ) { + + for ( let i = 0; i < renderContextData.msaaRenderbuffers.length; i ++ ) { + + gl.deleteRenderbuffer( renderContextData.msaaRenderbuffers[ i ] ); + + } + + delete renderContextData.msaaRenderbuffers; + + } + + } + + } + + /** + * Destroys the GPU data for the given texture object. + * + * @param {Texture} texture - The texture. + */ + destroyTexture( texture ) { + + const { gl, backend } = this; + const { textureGPU, renderTarget } = backend.get( texture ); + + this.deallocateRenderBuffers( renderTarget ); + gl.deleteTexture( textureGPU ); + + backend.delete( texture ); + + } + + /** + * Copies data of the given source texture to the given destination texture. + * + * @param {Texture} srcTexture - The source texture. + * @param {Texture} dstTexture - The destination texture. + * @param {?(Box3|Box2)} [srcRegion=null] - The region of the source texture to copy. + * @param {?(Vector2|Vector3)} [dstPosition=null] - The destination position of the copy. + * @param {number} [srcLevel=0] - The source mip level to copy from. + * @param {number} [dstLevel=0] - The destination mip level to copy to. + */ + copyTextureToTexture( srcTexture, dstTexture, srcRegion = null, dstPosition = null, srcLevel = 0, dstLevel = 0 ) { + + const { gl, backend } = this; + const { state } = this.backend; + + const { textureGPU: dstTextureGPU, glTextureType, glType, glFormat } = backend.get( dstTexture ); + + state.bindTexture( glTextureType, dstTextureGPU ); + + // gather the necessary dimensions to copy + let width, height, depth, minX, minY, minZ; + let dstX, dstY, dstZ; + const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[ dstLevel ] : srcTexture.image; + + if ( srcRegion !== null ) { + + width = srcRegion.max.x - srcRegion.min.x; + height = srcRegion.max.y - srcRegion.min.y; + depth = srcRegion.isBox3 ? srcRegion.max.z - srcRegion.min.z : 1; + minX = srcRegion.min.x; + minY = srcRegion.min.y; + minZ = srcRegion.isBox3 ? srcRegion.min.z : 0; + + } else { + + const levelScale = Math.pow( 2, - srcLevel ); + width = Math.floor( image.width * levelScale ); + height = Math.floor( image.height * levelScale ); + + if ( srcTexture.isDataArrayTexture || srcTexture.isArrayTexture ) { + + depth = image.depth; + + } else if ( srcTexture.isData3DTexture ) { + + depth = Math.floor( image.depth * levelScale ); + + } else { + + depth = 1; + + } + + minX = 0; + minY = 0; + minZ = 0; + + } + + if ( dstPosition !== null ) { + + dstX = dstPosition.x; + dstY = dstPosition.y; + dstZ = dstPosition.z; + + } else { + + dstX = 0; + dstY = 0; + dstZ = 0; + + } + + + gl.pixelStorei( gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY ); + gl.pixelStorei( gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha ); + gl.pixelStorei( gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment ); + + // used for copying data from cpu + const currentUnpackRowLen = gl.getParameter( gl.UNPACK_ROW_LENGTH ); + const currentUnpackImageHeight = gl.getParameter( gl.UNPACK_IMAGE_HEIGHT ); + const currentUnpackSkipPixels = gl.getParameter( gl.UNPACK_SKIP_PIXELS ); + const currentUnpackSkipRows = gl.getParameter( gl.UNPACK_SKIP_ROWS ); + const currentUnpackSkipImages = gl.getParameter( gl.UNPACK_SKIP_IMAGES ); + + gl.pixelStorei( gl.UNPACK_ROW_LENGTH, image.width ); + gl.pixelStorei( gl.UNPACK_IMAGE_HEIGHT, image.height ); + gl.pixelStorei( gl.UNPACK_SKIP_PIXELS, minX ); + gl.pixelStorei( gl.UNPACK_SKIP_ROWS, minY ); + gl.pixelStorei( gl.UNPACK_SKIP_IMAGES, minZ ); + + // set up the src texture + const isDst3D = dstTexture.isDataArrayTexture || dstTexture.isData3DTexture || dstTexture.isArrayTexture; + if ( srcTexture.isRenderTargetTexture || srcTexture.isDepthTexture ) { + + const srcTextureData = backend.get( srcTexture ); + const dstTextureData = backend.get( dstTexture ); + + const srcRenderContextData = backend.get( srcTextureData.renderTarget ); + const dstRenderContextData = backend.get( dstTextureData.renderTarget ); + + const srcFramebuffer = srcRenderContextData.framebuffers[ srcTextureData.cacheKey ]; + const dstFramebuffer = dstRenderContextData.framebuffers[ dstTextureData.cacheKey ]; + + state.bindFramebuffer( gl.READ_FRAMEBUFFER, srcFramebuffer ); + state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, dstFramebuffer ); + + let mask = gl.COLOR_BUFFER_BIT; + + if ( srcTexture.isDepthTexture ) mask = gl.DEPTH_BUFFER_BIT; + + gl.blitFramebuffer( minX, minY, width, height, dstX, dstY, width, height, mask, gl.NEAREST ); + + state.bindFramebuffer( gl.READ_FRAMEBUFFER, null ); + state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, null ); + + } else { + + if ( isDst3D ) { + + // copy data into the 3d texture + if ( srcTexture.isDataTexture || srcTexture.isData3DTexture ) { + + gl.texSubImage3D( glTextureType, dstLevel, dstX, dstY, dstZ, width, height, depth, glFormat, glType, image.data ); + + } else if ( dstTexture.isCompressedArrayTexture ) { + + gl.compressedTexSubImage3D( glTextureType, dstLevel, dstX, dstY, dstZ, width, height, depth, glFormat, image.data ); + + } else { + + gl.texSubImage3D( glTextureType, dstLevel, dstX, dstY, dstZ, width, height, depth, glFormat, glType, image ); + + } + + } else { + + // copy data into the 2d texture + if ( srcTexture.isDataTexture ) { + + gl.texSubImage2D( glTextureType, dstLevel, dstX, dstY, width, height, glFormat, glType, image.data ); + + } else if ( srcTexture.isCompressedTexture ) { + + gl.compressedTexSubImage2D( glTextureType, dstLevel, dstX, dstY, image.width, image.height, glFormat, image.data ); + + } else { + + gl.texSubImage2D( glTextureType, dstLevel, dstX, dstY, width, height, glFormat, glType, image ); + + } + + } + + } + + // reset values + gl.pixelStorei( gl.UNPACK_ROW_LENGTH, currentUnpackRowLen ); + gl.pixelStorei( gl.UNPACK_IMAGE_HEIGHT, currentUnpackImageHeight ); + gl.pixelStorei( gl.UNPACK_SKIP_PIXELS, currentUnpackSkipPixels ); + gl.pixelStorei( gl.UNPACK_SKIP_ROWS, currentUnpackSkipRows ); + gl.pixelStorei( gl.UNPACK_SKIP_IMAGES, currentUnpackSkipImages ); + + // Generate mipmaps only when copying level 0 + if ( dstLevel === 0 && dstTexture.generateMipmaps ) { + + gl.generateMipmap( glTextureType ); + + } + + state.unbindTexture(); + + } + + + /** + * Copies the current bound framebuffer to the given texture. + * + * @param {Texture} texture - The destination texture. + * @param {RenderContext} renderContext - The render context. + * @param {Vector4} rectangle - A four dimensional vector defining the origin and dimension of the copy. + */ + copyFramebufferToTexture( texture, renderContext, rectangle ) { + + const { gl } = this; + const { state } = this.backend; + + const { textureGPU } = this.backend.get( texture ); + + const { x, y, z: width, w: height } = rectangle; + + const requireDrawFrameBuffer = texture.isDepthTexture === true || ( renderContext.renderTarget && renderContext.renderTarget.samples > 0 ); + + const srcHeight = renderContext.renderTarget ? renderContext.renderTarget.height : this.backend.getDrawingBufferSize().y; + + if ( requireDrawFrameBuffer ) { + + const partial = ( x !== 0 || y !== 0 ); + let mask; + let attachment; + + if ( texture.isDepthTexture === true ) { + + mask = gl.DEPTH_BUFFER_BIT; + attachment = gl.DEPTH_ATTACHMENT; + + if ( renderContext.stencil ) { + + mask |= gl.STENCIL_BUFFER_BIT; + + } + + } else { + + mask = gl.COLOR_BUFFER_BIT; + attachment = gl.COLOR_ATTACHMENT0; + + } + + if ( partial ) { + + const renderTargetContextData = this.backend.get( renderContext.renderTarget ); + + const fb = renderTargetContextData.framebuffers[ renderContext.getCacheKey() ]; + const msaaFrameBuffer = renderTargetContextData.msaaFrameBuffer; + + state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, fb ); + state.bindFramebuffer( gl.READ_FRAMEBUFFER, msaaFrameBuffer ); + + const flippedY = srcHeight - y - height; + + gl.blitFramebuffer( x, flippedY, x + width, flippedY + height, x, flippedY, x + width, flippedY + height, mask, gl.NEAREST ); + + state.bindFramebuffer( gl.READ_FRAMEBUFFER, fb ); + + state.bindTexture( gl.TEXTURE_2D, textureGPU ); + + gl.copyTexSubImage2D( gl.TEXTURE_2D, 0, 0, 0, x, flippedY, width, height ); + + state.unbindTexture(); + + } else { + + const fb = gl.createFramebuffer(); + + state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, fb ); + + gl.framebufferTexture2D( gl.DRAW_FRAMEBUFFER, attachment, gl.TEXTURE_2D, textureGPU, 0 ); + gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, gl.NEAREST ); + + gl.deleteFramebuffer( fb ); + + } + + } else { + + state.bindTexture( gl.TEXTURE_2D, textureGPU ); + gl.copyTexSubImage2D( gl.TEXTURE_2D, 0, 0, 0, x, srcHeight - height - y, width, height ); + + state.unbindTexture(); + + } + + if ( texture.generateMipmaps ) this.generateMipmaps( texture ); + + this.backend._setFramebuffer( renderContext ); + + } + + /** + * SetupS storage for internal depth/stencil buffers and bind to correct framebuffer. + * + * @param {WebGLRenderbuffer} renderbuffer - The render buffer. + * @param {RenderContext} renderContext - The render context. + * @param {number} samples - The MSAA sample count. + * @param {boolean} [useMultisampledRTT=false] - Whether to use WEBGL_multisampled_render_to_texture or not. + */ + setupRenderBufferStorage( renderbuffer, renderContext, samples, useMultisampledRTT = false ) { + + const { gl } = this; + const renderTarget = renderContext.renderTarget; + + const { depthTexture, depthBuffer, stencilBuffer, width, height } = renderTarget; + + gl.bindRenderbuffer( gl.RENDERBUFFER, renderbuffer ); + + if ( depthBuffer && ! stencilBuffer ) { + + let glInternalFormat = gl.DEPTH_COMPONENT24; + + if ( useMultisampledRTT === true ) { + + const multisampledRTTExt = this.extensions.get( 'WEBGL_multisampled_render_to_texture' ); + + multisampledRTTExt.renderbufferStorageMultisampleEXT( gl.RENDERBUFFER, renderTarget.samples, glInternalFormat, width, height ); + + } else if ( samples > 0 ) { + + if ( depthTexture && depthTexture.isDepthTexture ) { + + if ( depthTexture.type === gl.FLOAT ) { + + glInternalFormat = gl.DEPTH_COMPONENT32F; + + } + + } + + gl.renderbufferStorageMultisample( gl.RENDERBUFFER, samples, glInternalFormat, width, height ); + + } else { + + gl.renderbufferStorage( gl.RENDERBUFFER, glInternalFormat, width, height ); + + } + + gl.framebufferRenderbuffer( gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, renderbuffer ); + + } else if ( depthBuffer && stencilBuffer ) { + + if ( samples > 0 ) { + + gl.renderbufferStorageMultisample( gl.RENDERBUFFER, samples, gl.DEPTH24_STENCIL8, width, height ); + + } else { + + gl.renderbufferStorage( gl.RENDERBUFFER, gl.DEPTH_STENCIL, width, height ); + + } + + + gl.framebufferRenderbuffer( gl.FRAMEBUFFER, gl.DEPTH_STENCIL_ATTACHMENT, gl.RENDERBUFFER, renderbuffer ); + + } + + } + + /** + * Returns texture data as a typed array. + * + * @async + * @param {Texture} texture - The texture to copy. + * @param {number} x - The x coordinate of the copy origin. + * @param {number} y - The y coordinate of the copy origin. + * @param {number} width - The width of the copy. + * @param {number} height - The height of the copy. + * @param {number} faceIndex - The face index. + * @return {Promise} A Promise that resolves with a typed array when the copy operation has finished. + */ + async copyTextureToBuffer( texture, x, y, width, height, faceIndex ) { + + const { backend, gl } = this; + + const { textureGPU, glFormat, glType } = this.backend.get( texture ); + + const fb = gl.createFramebuffer(); + + gl.bindFramebuffer( gl.READ_FRAMEBUFFER, fb ); + + const target = texture.isCubeTexture ? gl.TEXTURE_CUBE_MAP_POSITIVE_X + faceIndex : gl.TEXTURE_2D; + + gl.framebufferTexture2D( gl.READ_FRAMEBUFFER, gl.COLOR_ATTACHMENT0, target, textureGPU, 0 ); + + const typedArrayType = this._getTypedArrayType( glType ); + const bytesPerTexel = this._getBytesPerTexel( glType, glFormat ); + + const elementCount = width * height; + const byteLength = elementCount * bytesPerTexel; + + const buffer = gl.createBuffer(); + + gl.bindBuffer( gl.PIXEL_PACK_BUFFER, buffer ); + gl.bufferData( gl.PIXEL_PACK_BUFFER, byteLength, gl.STREAM_READ ); + gl.readPixels( x, y, width, height, glFormat, glType, 0 ); + gl.bindBuffer( gl.PIXEL_PACK_BUFFER, null ); + + await backend.utils._clientWaitAsync(); + + const dstBuffer = new typedArrayType( byteLength / typedArrayType.BYTES_PER_ELEMENT ); + + gl.bindBuffer( gl.PIXEL_PACK_BUFFER, buffer ); + gl.getBufferSubData( gl.PIXEL_PACK_BUFFER, 0, dstBuffer ); + gl.bindBuffer( gl.PIXEL_PACK_BUFFER, null ); + + gl.deleteFramebuffer( fb ); + + return dstBuffer; + + } + + /** + * Returns the corresponding typed array type for the given WebGL data type. + * + * @private + * @param {GLenum} glType - The WebGL data type. + * @return {TypedArray.constructor} The typed array type. + */ + _getTypedArrayType( glType ) { + + const { gl } = this; + + if ( glType === gl.UNSIGNED_BYTE ) return Uint8Array; + + if ( glType === gl.UNSIGNED_SHORT_4_4_4_4 ) return Uint16Array; + if ( glType === gl.UNSIGNED_SHORT_5_5_5_1 ) return Uint16Array; + if ( glType === gl.UNSIGNED_SHORT_5_6_5 ) return Uint16Array; + if ( glType === gl.UNSIGNED_SHORT ) return Uint16Array; + if ( glType === gl.UNSIGNED_INT ) return Uint32Array; + + if ( glType === gl.HALF_FLOAT ) return Uint16Array; + if ( glType === gl.FLOAT ) return Float32Array; + + throw new Error( `Unsupported WebGL type: ${glType}` ); + + } + + /** + * Returns the bytes-per-texel value for the given WebGL data type and texture format. + * + * @private + * @param {GLenum} glType - The WebGL data type. + * @param {GLenum} glFormat - The WebGL texture format. + * @return {number} The bytes-per-texel. + */ + _getBytesPerTexel( glType, glFormat ) { + + const { gl } = this; + + let bytesPerComponent = 0; + + if ( glType === gl.UNSIGNED_BYTE ) bytesPerComponent = 1; + + if ( glType === gl.UNSIGNED_SHORT_4_4_4_4 || + glType === gl.UNSIGNED_SHORT_5_5_5_1 || + glType === gl.UNSIGNED_SHORT_5_6_5 || + glType === gl.UNSIGNED_SHORT || + glType === gl.HALF_FLOAT ) bytesPerComponent = 2; + + if ( glType === gl.UNSIGNED_INT || + glType === gl.FLOAT ) bytesPerComponent = 4; + + if ( glFormat === gl.RGBA ) return bytesPerComponent * 4; + if ( glFormat === gl.RGB ) return bytesPerComponent * 3; + if ( glFormat === gl.ALPHA ) return bytesPerComponent; + + } + +} + +/** + * A WebGL 2 backend utility module for managing extensions. + * + * @private + */ +class WebGLExtensions { + + /** + * Constructs a new utility object. + * + * @param {WebGLBackend} backend - The WebGL 2 backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGL 2 backend. + * + * @type {WebGLBackend} + */ + this.backend = backend; + + /** + * A reference to the rendering context. + * + * @type {WebGL2RenderingContext} + */ + this.gl = this.backend.gl; + + /** + * A list with all the supported WebGL extensions. + * + * @type {Array} + */ + this.availableExtensions = this.gl.getSupportedExtensions(); + + /** + * A dictionary with requested WebGL extensions. + * The key is the name of the extension, the value + * the requested extension object. + * + * @type {Object} + */ + this.extensions = {}; + + } + + /** + * Returns the extension object for the given extension name. + * + * @param {string} name - The extension name. + * @return {Object} The extension object. + */ + get( name ) { + + let extension = this.extensions[ name ]; + + if ( extension === undefined ) { + + extension = this.gl.getExtension( name ); + + this.extensions[ name ] = extension; + + } + + return extension; + + } + + /** + * Returns `true` if the requested extension is available. + * + * @param {string} name - The extension name. + * @return {boolean} Whether the given extension is available or not. + */ + has( name ) { + + return this.availableExtensions.includes( name ); + + } + +} + +/** + * A WebGL 2 backend utility module for managing the device's capabilities. + * + * @private + */ +class WebGLCapabilities { + + /** + * Constructs a new utility object. + * + * @param {WebGLBackend} backend - The WebGL 2 backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGL 2 backend. + * + * @type {WebGLBackend} + */ + this.backend = backend; + + /** + * This value holds the cached max anisotropy value. + * + * @type {?number} + * @default null + */ + this.maxAnisotropy = null; + + } + + /** + * Returns the maximum anisotropy texture filtering value. This value + * depends on the device and is reported by the `EXT_texture_filter_anisotropic` + * WebGL extension. + * + * @return {number} The maximum anisotropy texture filtering value. + */ + getMaxAnisotropy() { + + if ( this.maxAnisotropy !== null ) return this.maxAnisotropy; + + const gl = this.backend.gl; + const extensions = this.backend.extensions; + + if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { + + const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); + + this.maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT ); + + } else { + + this.maxAnisotropy = 0; + + } + + return this.maxAnisotropy; + + } + +} + +const GLFeatureName = { + + 'WEBGL_multi_draw': 'WEBGL_multi_draw', + 'WEBGL_compressed_texture_astc': 'texture-compression-astc', + 'WEBGL_compressed_texture_etc': 'texture-compression-etc2', + 'WEBGL_compressed_texture_etc1': 'texture-compression-etc1', + 'WEBGL_compressed_texture_pvrtc': 'texture-compression-pvrtc', + 'WEBKIT_WEBGL_compressed_texture_pvrtc': 'texture-compression-pvrtc', + 'WEBGL_compressed_texture_s3tc': 'texture-compression-bc', + 'EXT_texture_compression_bptc': 'texture-compression-bptc', + 'EXT_disjoint_timer_query_webgl2': 'timestamp-query', + 'OVR_multiview2': 'OVR_multiview2' + +}; + +class WebGLBufferRenderer { + + constructor( backend ) { + + this.gl = backend.gl; + this.extensions = backend.extensions; + this.info = backend.renderer.info; + this.mode = null; + this.index = 0; + this.type = null; + this.object = null; + + } + + render( start, count ) { + + const { gl, mode, object, type, info, index } = this; + + if ( index !== 0 ) { + + gl.drawElements( mode, count, type, start ); + + } else { + + gl.drawArrays( mode, start, count ); + + } + + info.update( object, count, 1 ); + + } + + renderInstances( start, count, primcount ) { + + const { gl, mode, type, index, object, info } = this; + + if ( primcount === 0 ) return; + + if ( index !== 0 ) { + + gl.drawElementsInstanced( mode, count, type, start, primcount ); + + } else { + + gl.drawArraysInstanced( mode, start, count, primcount ); + + } + + info.update( object, count, primcount ); + + } + + renderMultiDraw( starts, counts, drawCount ) { + + const { extensions, mode, object, info } = this; + + if ( drawCount === 0 ) return; + + const extension = extensions.get( 'WEBGL_multi_draw' ); + + if ( extension === null ) { + + for ( let i = 0; i < drawCount; i ++ ) { + + this.render( starts[ i ], counts[ i ] ); + + } + + } else { + + if ( this.index !== 0 ) { + + extension.multiDrawElementsWEBGL( mode, counts, 0, this.type, starts, 0, drawCount ); + + } else { + + extension.multiDrawArraysWEBGL( mode, starts, 0, counts, 0, drawCount ); + + } + + let elementCount = 0; + for ( let i = 0; i < drawCount; i ++ ) { + + elementCount += counts[ i ]; + + } + + info.update( object, elementCount, 1 ); + + } + + } + + renderMultiDrawInstances( starts, counts, drawCount, primcount ) { + + const { extensions, mode, object, info } = this; + + if ( drawCount === 0 ) return; + + const extension = extensions.get( 'WEBGL_multi_draw' ); + + if ( extension === null ) { + + for ( let i = 0; i < drawCount; i ++ ) { + + this.renderInstances( starts[ i ], counts[ i ], primcount[ i ] ); + + } + + } else { + + if ( this.index !== 0 ) { + + extension.multiDrawElementsInstancedWEBGL( mode, counts, 0, this.type, starts, 0, primcount, 0, drawCount ); + + } else { + + extension.multiDrawArraysInstancedWEBGL( mode, starts, 0, counts, 0, primcount, 0, drawCount ); + + } + + let elementCount = 0; + for ( let i = 0; i < drawCount; i ++ ) { + + elementCount += counts[ i ] * primcount[ i ]; + + } + + info.update( object, elementCount, 1 ); + + } + + } + + // + +} + +/** + * Abstract base class of a timestamp query pool. + * + * @abstract + */ +class TimestampQueryPool { + + /** + * Creates a new timestamp query pool. + * + * @param {number} [maxQueries=256] - Maximum number of queries this pool can hold. + */ + constructor( maxQueries = 256 ) { + + /** + * Whether to track timestamps or not. + * + * @type {boolean} + * @default true + */ + this.trackTimestamp = true; + + /** + * Maximum number of queries this pool can hold. + * + * @type {number} + * @default 256 + */ + this.maxQueries = maxQueries; + + /** + * How many queries allocated so far. + * + * @type {number} + * @default 0 + */ + this.currentQueryIndex = 0; + + /** + * Tracks offsets for different contexts. + * + * @type {Map} + */ + this.queryOffsets = new Map(); + + /** + * Whether the pool has been disposed or not. + * + * @type {boolean} + * @default false + */ + this.isDisposed = false; + + /** + * TODO + * + * @type {number} + * @default 0 + */ + this.lastValue = 0; + + /** + * TODO + * + * @type {boolean} + * @default false + */ + this.pendingResolve = false; + + } + + /** + * Allocate queries for a specific renderContext. + * + * @abstract + * @param {Object} renderContext - The render context to allocate queries for. + * @returns {?number} + */ + allocateQueriesForContext( /* renderContext */ ) {} + + /** + * Resolve all timestamps and return data (or process them). + * + * @abstract + * @async + * @returns {Promise|number} The resolved timestamp value. + */ + async resolveQueriesAsync() {} + + /** + * Dispose of the query pool. + * + * @abstract + */ + dispose() {} + +} + +/** + * Manages a pool of WebGL timestamp queries for performance measurement. + * Handles creation, execution, and resolution of timer queries using WebGL extensions. + * + * @augments TimestampQueryPool + */ +class WebGLTimestampQueryPool extends TimestampQueryPool { + + /** + * Creates a new WebGL timestamp query pool. + * + * @param {WebGLRenderingContext|WebGL2RenderingContext} gl - The WebGL context. + * @param {string} type - The type identifier for this query pool. + * @param {number} [maxQueries=2048] - Maximum number of queries this pool can hold. + */ + constructor( gl, type, maxQueries = 2048 ) { + + super( maxQueries ); + + this.gl = gl; + this.type = type; + + // Check for timer query extensions + this.ext = gl.getExtension( 'EXT_disjoint_timer_query_webgl2' ) || + gl.getExtension( 'EXT_disjoint_timer_query' ); + + if ( ! this.ext ) { + + console.warn( 'EXT_disjoint_timer_query not supported; timestamps will be disabled.' ); + this.trackTimestamp = false; + return; + + } + + // Create query objects + this.queries = []; + for ( let i = 0; i < this.maxQueries; i ++ ) { + + this.queries.push( gl.createQuery() ); + + } + + this.activeQuery = null; + this.queryStates = new Map(); // Track state of each query: 'inactive', 'started', 'ended' + + } + + /** + * Allocates a pair of queries for a given render context. + * + * @param {Object} renderContext - The render context to allocate queries for. + * @returns {?number} The base offset for the allocated queries, or null if allocation failed. + */ + allocateQueriesForContext( renderContext ) { + + if ( ! this.trackTimestamp ) return null; + + // Check if we have enough space for a new query pair + if ( this.currentQueryIndex + 2 > this.maxQueries ) { + + warnOnce( `WebGPUTimestampQueryPool [${ this.type }]: Maximum number of queries exceeded, when using trackTimestamp it is necessary to resolves the queries via renderer.resolveTimestampsAsync( THREE.TimestampQuery.${ this.type.toUpperCase() } ).` ); + return null; + + } + + const baseOffset = this.currentQueryIndex; + this.currentQueryIndex += 2; + + // Initialize query states + this.queryStates.set( baseOffset, 'inactive' ); + this.queryOffsets.set( renderContext.id, baseOffset ); + + return baseOffset; + + } + + /** + * Begins a timestamp query for the specified render context. + * + * @param {Object} renderContext - The render context to begin timing for. + */ + beginQuery( renderContext ) { + + if ( ! this.trackTimestamp || this.isDisposed ) { + + return; + + } + + const baseOffset = this.queryOffsets.get( renderContext.id ); + if ( baseOffset == null ) { + + return; + + } + + // Don't start a new query if there's an active one + if ( this.activeQuery !== null ) { + + return; + + } + + const query = this.queries[ baseOffset ]; + if ( ! query ) { + + return; + + } + + try { + + // Only begin if query is inactive + if ( this.queryStates.get( baseOffset ) === 'inactive' ) { + + this.gl.beginQuery( this.ext.TIME_ELAPSED_EXT, query ); + this.activeQuery = baseOffset; + this.queryStates.set( baseOffset, 'started' ); + + } + + } catch ( error ) { + + console.error( 'Error in beginQuery:', error ); + this.activeQuery = null; + this.queryStates.set( baseOffset, 'inactive' ); + + } + + } + + /** + * Ends the active timestamp query for the specified render context. + * + * @param {Object} renderContext - The render context to end timing for. + * @param {string} renderContext.id - Unique identifier for the render context. + */ + endQuery( renderContext ) { + + if ( ! this.trackTimestamp || this.isDisposed ) { + + return; + + } + + const baseOffset = this.queryOffsets.get( renderContext.id ); + if ( baseOffset == null ) { + + return; + + } + + // Only end if this is the active query + if ( this.activeQuery !== baseOffset ) { + + return; + + } + + try { + + this.gl.endQuery( this.ext.TIME_ELAPSED_EXT ); + this.queryStates.set( baseOffset, 'ended' ); + this.activeQuery = null; + + } catch ( error ) { + + console.error( 'Error in endQuery:', error ); + // Reset state on error + this.queryStates.set( baseOffset, 'inactive' ); + this.activeQuery = null; + + } + + } + + /** + * Asynchronously resolves all completed queries and returns the total duration. + * + * @async + * @returns {Promise} The total duration in milliseconds, or the last valid value if resolution fails. + */ + async resolveQueriesAsync() { + + if ( ! this.trackTimestamp || this.pendingResolve ) { + + return this.lastValue; + + } + + this.pendingResolve = true; + + try { + + // Wait for all ended queries to complete + const resolvePromises = []; + + for ( const [ baseOffset, state ] of this.queryStates ) { + + if ( state === 'ended' ) { + + const query = this.queries[ baseOffset ]; + resolvePromises.push( this.resolveQuery( query ) ); + + } + + } + + if ( resolvePromises.length === 0 ) { + + return this.lastValue; + + } + + const results = await Promise.all( resolvePromises ); + const totalDuration = results.reduce( ( acc, val ) => acc + val, 0 ); + + // Store the last valid result + this.lastValue = totalDuration; + + // Reset states + this.currentQueryIndex = 0; + this.queryOffsets.clear(); + this.queryStates.clear(); + this.activeQuery = null; + + return totalDuration; + + } catch ( error ) { + + console.error( 'Error resolving queries:', error ); + return this.lastValue; + + } finally { + + this.pendingResolve = false; + + } + + } + + /** + * Resolves a single query, checking for completion and disjoint operation. + * + * @async + * @param {WebGLQuery} query - The query object to resolve. + * @returns {Promise} The elapsed time in milliseconds. + */ + async resolveQuery( query ) { + + return new Promise( ( resolve ) => { + + if ( this.isDisposed ) { + + resolve( this.lastValue ); + return; + + } + + let timeoutId; + let isResolved = false; + + const cleanup = () => { + + if ( timeoutId ) { + + clearTimeout( timeoutId ); + timeoutId = null; + + } + + }; + + const finalizeResolution = ( value ) => { + + if ( ! isResolved ) { + + isResolved = true; + cleanup(); + resolve( value ); + + } + + }; + + const checkQuery = () => { + + if ( this.isDisposed ) { + + finalizeResolution( this.lastValue ); + return; + + } + + try { + + // Check if the GPU timer was disjoint (i.e., timing was unreliable) + const disjoint = this.gl.getParameter( this.ext.GPU_DISJOINT_EXT ); + if ( disjoint ) { + + finalizeResolution( this.lastValue ); + return; + + } + + const available = this.gl.getQueryParameter( query, this.gl.QUERY_RESULT_AVAILABLE ); + if ( ! available ) { + + timeoutId = setTimeout( checkQuery, 1 ); + return; + + } + + const elapsed = this.gl.getQueryParameter( query, this.gl.QUERY_RESULT ); + resolve( Number( elapsed ) / 1e6 ); // Convert nanoseconds to milliseconds + + } catch ( error ) { + + console.error( 'Error checking query:', error ); + resolve( this.lastValue ); + + } + + }; + + checkQuery(); + + } ); + + } + + /** + * Releases all resources held by this query pool. + * This includes deleting all query objects and clearing internal state. + */ + dispose() { + + if ( this.isDisposed ) { + + return; + + } + + this.isDisposed = true; + + if ( ! this.trackTimestamp ) return; + + for ( const query of this.queries ) { + + this.gl.deleteQuery( query ); + + } + + this.queries = []; + this.queryStates.clear(); + this.queryOffsets.clear(); + this.lastValue = 0; + this.activeQuery = null; + + } + +} + +const _drawingBufferSize = /*@__PURE__*/ new Vector2(); + +/** + * A backend implementation targeting WebGL 2. + * + * @private + * @augments Backend + */ +class WebGLBackend extends Backend { + + /** + * WebGLBackend options. + * + * @typedef {Object} WebGLBackend~Options + * @property {boolean} [logarithmicDepthBuffer=false] - Whether logarithmic depth buffer is enabled or not. + * @property {boolean} [alpha=true] - Whether the default framebuffer (which represents the final contents of the canvas) should be transparent or opaque. + * @property {boolean} [depth=true] - Whether the default framebuffer should have a depth buffer or not. + * @property {boolean} [stencil=false] - Whether the default framebuffer should have a stencil buffer or not. + * @property {boolean} [antialias=false] - Whether MSAA as the default anti-aliasing should be enabled or not. + * @property {number} [samples=0] - When `antialias` is `true`, `4` samples are used by default. Set this parameter to any other integer value than 0 to overwrite the default. + * @property {boolean} [forceWebGL=false] - If set to `true`, the renderer uses a WebGL 2 backend no matter if WebGPU is supported or not. + * @property {WebGL2RenderingContext} [context=undefined] - A WebGL 2 rendering context. + */ + + /** + * Constructs a new WebGPU backend. + * + * @param {WebGLBackend~Options} [parameters] - The configuration parameter. + */ + constructor( parameters = {} ) { + + super( parameters ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWebGLBackend = true; + + /** + * A reference to a backend module holding shader attribute-related + * utility functions. + * + * @type {?WebGLAttributeUtils} + * @default null + */ + this.attributeUtils = null; + + /** + * A reference to a backend module holding extension-related + * utility functions. + * + * @type {?WebGLExtensions} + * @default null + */ + this.extensions = null; + + /** + * A reference to a backend module holding capability-related + * utility functions. + * + * @type {?WebGLCapabilities} + * @default null + */ + this.capabilities = null; + + /** + * A reference to a backend module holding texture-related + * utility functions. + * + * @type {?WebGLTextureUtils} + * @default null + */ + this.textureUtils = null; + + /** + * A reference to a backend module holding renderer-related + * utility functions. + * + * @type {?WebGLBufferRenderer} + * @default null + */ + this.bufferRenderer = null; + + /** + * A reference to the rendering context. + * + * @type {?WebGL2RenderingContext} + * @default null + */ + this.gl = null; + + /** + * A reference to a backend module holding state-related + * utility functions. + * + * @type {?WebGLState} + * @default null + */ + this.state = null; + + /** + * A reference to a backend module holding common + * utility functions. + * + * @type {?WebGLUtils} + * @default null + */ + this.utils = null; + + /** + * Dictionary for caching VAOs. + * + * @type {Object} + */ + this.vaoCache = {}; + + /** + * Dictionary for caching transform feedback objects. + * + * @type {Object} + */ + this.transformFeedbackCache = {}; + + /** + * Controls if `gl.RASTERIZER_DISCARD` should be enabled or not. + * Only relevant when using compute shaders. + * + * @type {boolean} + * @default false + */ + this.discard = false; + + /** + * A reference to the `EXT_disjoint_timer_query_webgl2` extension. `null` if the + * device does not support the extension. + * + * @type {?EXTDisjointTimerQueryWebGL2} + * @default null + */ + this.disjoint = null; + + /** + * A reference to the `KHR_parallel_shader_compile` extension. `null` if the + * device does not support the extension. + * + * @type {?KHRParallelShaderCompile} + * @default null + */ + this.parallel = null; + + /** + * A reference to the current render context. + * + * @private + * @type {RenderContext} + * @default null + */ + this._currentContext = null; + + /** + * A unique collection of bindings. + * + * @private + * @type {WeakSet} + */ + this._knownBindings = new WeakSet(); + + + /** + * Whether the device supports framebuffers invalidation or not. + * + * @private + * @type {boolean} + */ + this._supportsInvalidateFramebuffer = typeof navigator === 'undefined' ? false : /OculusBrowser/g.test( navigator.userAgent ); + + /** + * The target framebuffer when rendering with + * the WebXR device API. + * + * @private + * @type {WebGLFramebuffer} + * @default null + */ + this._xrFramebuffer = null; + + } + + /** + * Initializes the backend so it is ready for usage. + * + * @param {Renderer} renderer - The renderer. + */ + init( renderer ) { + + super.init( renderer ); + + // + + const parameters = this.parameters; + + const contextAttributes = { + antialias: renderer.samples > 0, + alpha: true, // always true for performance reasons + depth: renderer.depth, + stencil: renderer.stencil + }; + + const glContext = ( parameters.context !== undefined ) ? parameters.context : renderer.domElement.getContext( 'webgl2', contextAttributes ); + + function onContextLost( event ) { + + event.preventDefault(); + + const contextLossInfo = { + api: 'WebGL', + message: event.statusMessage || 'Unknown reason', + reason: null, + originalEvent: event + }; + + renderer.onDeviceLost( contextLossInfo ); + + } + + this._onContextLost = onContextLost; + + renderer.domElement.addEventListener( 'webglcontextlost', onContextLost, false ); + + this.gl = glContext; + + this.extensions = new WebGLExtensions( this ); + this.capabilities = new WebGLCapabilities( this ); + this.attributeUtils = new WebGLAttributeUtils( this ); + this.textureUtils = new WebGLTextureUtils( this ); + this.bufferRenderer = new WebGLBufferRenderer( this ); + + this.state = new WebGLState( this ); + this.utils = new WebGLUtils( this ); + + this.extensions.get( 'EXT_color_buffer_float' ); + this.extensions.get( 'WEBGL_clip_cull_distance' ); + this.extensions.get( 'OES_texture_float_linear' ); + this.extensions.get( 'EXT_color_buffer_half_float' ); + this.extensions.get( 'WEBGL_multisampled_render_to_texture' ); + this.extensions.get( 'WEBGL_render_shared_exponent' ); + this.extensions.get( 'WEBGL_multi_draw' ); + this.extensions.get( 'OVR_multiview2' ); + + this.disjoint = this.extensions.get( 'EXT_disjoint_timer_query_webgl2' ); + this.parallel = this.extensions.get( 'KHR_parallel_shader_compile' ); + + } + + /** + * The coordinate system of the backend. + * + * @type {number} + * @readonly + */ + get coordinateSystem() { + + return WebGLCoordinateSystem; + + } + + /** + * This method performs a readback operation by moving buffer data from + * a storage buffer attribute from the GPU to the CPU. + * + * @async + * @param {StorageBufferAttribute} attribute - The storage buffer attribute. + * @return {Promise} A promise that resolves with the buffer data when the data are ready. + */ + async getArrayBufferAsync( attribute ) { + + return await this.attributeUtils.getArrayBufferAsync( attribute ); + + } + + /** + * Can be used to synchronize CPU operations with GPU tasks. So when this method is called, + * the CPU waits for the GPU to complete its operation (e.g. a compute task). + * + * @async + * @return {Promise} A Promise that resolves when synchronization has been finished. + */ + async waitForGPU() { + + await this.utils._clientWaitAsync(); + + } + + /** + * Ensures the backend is XR compatible. + * + * @async + * @return {Promise} A Promise that resolve when the renderer is XR compatible. + */ + async makeXRCompatible() { + + const attributes = this.gl.getContextAttributes(); + + if ( attributes.xrCompatible !== true ) { + + await this.gl.makeXRCompatible(); + + } + + } + /** + * Sets the XR rendering destination. + * + * @param {WebGLFramebuffer} xrFramebuffer - The XR framebuffer. + */ + setXRTarget( xrFramebuffer ) { + + this._xrFramebuffer = xrFramebuffer; + + } + + /** + * Configures the given XR render target with external textures. + * + * This method is only relevant when using the WebXR Layers API. + * + * @param {XRRenderTarget} renderTarget - The XR render target. + * @param {WebGLTexture} colorTexture - A native color texture. + * @param {?WebGLTexture} [depthTexture=null] - A native depth texture. + */ + setXRRenderTargetTextures( renderTarget, colorTexture, depthTexture = null ) { + + const gl = this.gl; + + this.set( renderTarget.texture, { textureGPU: colorTexture, glInternalFormat: gl.RGBA8 } ); // see #24698 why RGBA8 and not SRGB8_ALPHA8 is used + + if ( depthTexture !== null ) { + + const glInternalFormat = renderTarget.stencilBuffer ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24; + + this.set( renderTarget.depthTexture, { textureGPU: depthTexture, glInternalFormat: glInternalFormat } ); + + // The multisample_render_to_texture extension doesn't work properly if there + // are midframe flushes and an external depth texture. + if ( ( this.extensions.has( 'WEBGL_multisampled_render_to_texture' ) === true ) && renderTarget.autoAllocateDepthBuffer === true && renderTarget.multiview === false ) { + + console.warn( 'THREE.WebGLBackend: Render-to-texture extension was disabled because an external texture was provided' ); + + } + + renderTarget.autoAllocateDepthBuffer = false; + + } + + } + + /** + * Inits a time stamp query for the given render context. + * + * @param {RenderContext} renderContext - The render context. + */ + initTimestampQuery( renderContext ) { + + if ( ! this.disjoint || ! this.trackTimestamp ) return; + + const type = renderContext.isComputeNode ? 'compute' : 'render'; + + if ( ! this.timestampQueryPool[ type ] ) { + + // TODO: Variable maxQueries? + this.timestampQueryPool[ type ] = new WebGLTimestampQueryPool( this.gl, type, 2048 ); + + } + + const timestampQueryPool = this.timestampQueryPool[ type ]; + + const baseOffset = timestampQueryPool.allocateQueriesForContext( renderContext ); + + if ( baseOffset !== null ) { + + timestampQueryPool.beginQuery( renderContext ); + + } + + } + + // timestamp utils + + /** + * Prepares the timestamp buffer. + * + * @param {RenderContext} renderContext - The render context. + */ + prepareTimestampBuffer( renderContext ) { + + if ( ! this.disjoint || ! this.trackTimestamp ) return; + + const type = renderContext.isComputeNode ? 'compute' : 'render'; + const timestampQueryPool = this.timestampQueryPool[ type ]; + + timestampQueryPool.endQuery( renderContext ); + + } + + + /** + * Returns the backend's rendering context. + * + * @return {WebGL2RenderingContext} The rendering context. + */ + getContext() { + + return this.gl; + + } + + /** + * This method is executed at the beginning of a render call and prepares + * the WebGL state for upcoming render calls + * + * @param {RenderContext} renderContext - The render context. + */ + beginRender( renderContext ) { + + const { state } = this; + const renderContextData = this.get( renderContext ); + + // + + if ( renderContext.viewport ) { + + this.updateViewport( renderContext ); + + } else { + + const { width, height } = this.getDrawingBufferSize( _drawingBufferSize ); + state.viewport( 0, 0, width, height ); + + } + + if ( renderContext.scissor ) { + + const { x, y, width, height } = renderContext.scissorValue; + + state.scissor( x, renderContext.height - height - y, width, height ); + + } + + // + + this.initTimestampQuery( renderContext ); + + renderContextData.previousContext = this._currentContext; + this._currentContext = renderContext; + + this._setFramebuffer( renderContext ); + this.clear( renderContext.clearColor, renderContext.clearDepth, renderContext.clearStencil, renderContext, false ); + + const occlusionQueryCount = renderContext.occlusionQueryCount; + + if ( occlusionQueryCount > 0 ) { + + // Get a reference to the array of objects with queries. The renderContextData property + // can be changed by another render pass before the async reading of all previous queries complete + renderContextData.currentOcclusionQueries = renderContextData.occlusionQueries; + renderContextData.currentOcclusionQueryObjects = renderContextData.occlusionQueryObjects; + + renderContextData.lastOcclusionObject = null; + renderContextData.occlusionQueries = new Array( occlusionQueryCount ); + renderContextData.occlusionQueryObjects = new Array( occlusionQueryCount ); + renderContextData.occlusionQueryIndex = 0; + + } + + } + + /** + * This method is executed at the end of a render call and finalizes work + * after draw calls. + * + * @param {RenderContext} renderContext - The render context. + */ + finishRender( renderContext ) { + + const { gl, state } = this; + const renderContextData = this.get( renderContext ); + const previousContext = renderContextData.previousContext; + + state.resetVertexState(); + + const occlusionQueryCount = renderContext.occlusionQueryCount; + + if ( occlusionQueryCount > 0 ) { + + if ( occlusionQueryCount > renderContextData.occlusionQueryIndex ) { + + gl.endQuery( gl.ANY_SAMPLES_PASSED ); + + } + + this.resolveOccludedAsync( renderContext ); + + } + + const textures = renderContext.textures; + + if ( textures !== null ) { + + for ( let i = 0; i < textures.length; i ++ ) { + + const texture = textures[ i ]; + + if ( texture.generateMipmaps ) { + + this.generateMipmaps( texture ); + + } + + } + + } + + this._currentContext = previousContext; + + if ( renderContext.textures !== null && renderContext.renderTarget ) { + + const renderTargetContextData = this.get( renderContext.renderTarget ); + + const { resolveDepthBuffer, samples } = renderContext.renderTarget; + + if ( samples > 0 && this._useMultisampledExtension( renderContext.renderTarget ) === false ) { + + const fb = renderTargetContextData.framebuffers[ renderContext.getCacheKey() ]; + + const mask = gl.COLOR_BUFFER_BIT; + + const msaaFrameBuffer = renderTargetContextData.msaaFrameBuffer; + + const textures = renderContext.textures; + + state.bindFramebuffer( gl.READ_FRAMEBUFFER, msaaFrameBuffer ); + state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, fb ); + + for ( let i = 0; i < textures.length; i ++ ) { + + // TODO Add support for MRT + + if ( renderContext.scissor ) { + + const { x, y, width, height } = renderContext.scissorValue; + + const viewY = renderContext.height - height - y; + + gl.blitFramebuffer( x, viewY, x + width, viewY + height, x, viewY, x + width, viewY + height, mask, gl.NEAREST ); + + if ( this._supportsInvalidateFramebuffer === true ) { + + gl.invalidateSubFramebuffer( gl.READ_FRAMEBUFFER, renderTargetContextData.invalidationArray, x, viewY, width, height ); + + } + + } else { + + gl.blitFramebuffer( 0, 0, renderContext.width, renderContext.height, 0, 0, renderContext.width, renderContext.height, mask, gl.NEAREST ); + + if ( this._supportsInvalidateFramebuffer === true ) { + + gl.invalidateFramebuffer( gl.READ_FRAMEBUFFER, renderTargetContextData.invalidationArray ); + + } + + } + + } + + } else if ( resolveDepthBuffer === false ) { + + const fb = renderTargetContextData.framebuffers[ renderContext.getCacheKey() ]; + state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, fb ); + gl.invalidateFramebuffer( gl.DRAW_FRAMEBUFFER, renderTargetContextData.depthInvalidationArray ); + + } + + } + + if ( previousContext !== null ) { + + this._setFramebuffer( previousContext ); + + if ( previousContext.viewport ) { + + this.updateViewport( previousContext ); + + } else { + + const { width, height } = this.getDrawingBufferSize( _drawingBufferSize ); + state.viewport( 0, 0, width, height ); + + } + + } + + this.prepareTimestampBuffer( renderContext ); + + } + + /** + * This method processes the result of occlusion queries and writes it + * into render context data. + * + * @async + * @param {RenderContext} renderContext - The render context. + */ + resolveOccludedAsync( renderContext ) { + + const renderContextData = this.get( renderContext ); + + // handle occlusion query results + + const { currentOcclusionQueries, currentOcclusionQueryObjects } = renderContextData; + + if ( currentOcclusionQueries && currentOcclusionQueryObjects ) { + + const occluded = new WeakSet(); + const { gl } = this; + + renderContextData.currentOcclusionQueryObjects = null; + renderContextData.currentOcclusionQueries = null; + + const check = () => { + + let completed = 0; + + // check all queries and requeue as appropriate + for ( let i = 0; i < currentOcclusionQueries.length; i ++ ) { + + const query = currentOcclusionQueries[ i ]; + + if ( query === null ) continue; + + if ( gl.getQueryParameter( query, gl.QUERY_RESULT_AVAILABLE ) ) { + + if ( gl.getQueryParameter( query, gl.QUERY_RESULT ) === 0 ) occluded.add( currentOcclusionQueryObjects[ i ] ); + + currentOcclusionQueries[ i ] = null; + gl.deleteQuery( query ); + + completed ++; + + } + + } + + if ( completed < currentOcclusionQueries.length ) { + + requestAnimationFrame( check ); + + } else { + + renderContextData.occluded = occluded; + + } + + }; + + check(); + + } + + } + + /** + * Returns `true` if the given 3D object is fully occluded by other + * 3D objects in the scene. + * + * @param {RenderContext} renderContext - The render context. + * @param {Object3D} object - The 3D object to test. + * @return {boolean} Whether the 3D object is fully occluded or not. + */ + isOccluded( renderContext, object ) { + + const renderContextData = this.get( renderContext ); + + return renderContextData.occluded && renderContextData.occluded.has( object ); + + } + + /** + * Updates the viewport with the values from the given render context. + * + * @param {RenderContext} renderContext - The render context. + */ + updateViewport( renderContext ) { + + const { state } = this; + const { x, y, width, height } = renderContext.viewportValue; + + state.viewport( x, renderContext.height - height - y, width, height ); + + } + + /** + * Defines the scissor test. + * + * @param {boolean} boolean - Whether the scissor test should be enabled or not. + */ + setScissorTest( boolean ) { + + const state = this.state; + + state.setScissorTest( boolean ); + + } + + /** + * Returns the clear color and alpha into a single + * color object. + * + * @return {Color4} The clear color. + */ + getClearColor() { + + const clearColor = super.getClearColor(); + + // Since the canvas is always created with alpha: true, + // WebGL must always premultiply the clear color. + + clearColor.r *= clearColor.a; + clearColor.g *= clearColor.a; + clearColor.b *= clearColor.a; + + return clearColor; + + } + + /** + * Performs a clear operation. + * + * @param {boolean} color - Whether the color buffer should be cleared or not. + * @param {boolean} depth - Whether the depth buffer should be cleared or not. + * @param {boolean} stencil - Whether the stencil buffer should be cleared or not. + * @param {?Object} [descriptor=null] - The render context of the current set render target. + * @param {boolean} [setFrameBuffer=true] - TODO. + */ + clear( color, depth, stencil, descriptor = null, setFrameBuffer = true ) { + + const { gl, renderer } = this; + + if ( descriptor === null ) { + + const clearColor = this.getClearColor(); + + descriptor = { + textures: null, + clearColorValue: clearColor + }; + + } + + // + + let clear = 0; + + if ( color ) clear |= gl.COLOR_BUFFER_BIT; + if ( depth ) clear |= gl.DEPTH_BUFFER_BIT; + if ( stencil ) clear |= gl.STENCIL_BUFFER_BIT; + + if ( clear !== 0 ) { + + let clearColor; + + if ( descriptor.clearColorValue ) { + + clearColor = descriptor.clearColorValue; + + } else { + + clearColor = this.getClearColor(); + + } + + const clearDepth = renderer.getClearDepth(); + const clearStencil = renderer.getClearStencil(); + + if ( depth ) this.state.setDepthMask( true ); + + if ( descriptor.textures === null ) { + + gl.clearColor( clearColor.r, clearColor.g, clearColor.b, clearColor.a ); + gl.clear( clear ); + + } else { + + if ( setFrameBuffer ) this._setFramebuffer( descriptor ); + + if ( color ) { + + for ( let i = 0; i < descriptor.textures.length; i ++ ) { + + if ( i === 0 ) { + + gl.clearBufferfv( gl.COLOR, i, [ clearColor.r, clearColor.g, clearColor.b, clearColor.a ] ); + + } else { + + gl.clearBufferfv( gl.COLOR, i, [ 0, 0, 0, 1 ] ); + + } + + } + + } + + if ( depth && stencil ) { + + gl.clearBufferfi( gl.DEPTH_STENCIL, 0, clearDepth, clearStencil ); + + } else if ( depth ) { + + gl.clearBufferfv( gl.DEPTH, 0, [ clearDepth ] ); + + } else if ( stencil ) { + + gl.clearBufferiv( gl.STENCIL, 0, [ clearStencil ] ); + + } + + } + + } + + } + + /** + * This method is executed at the beginning of a compute call and + * prepares the state for upcoming compute tasks. + * + * @param {Node|Array} computeGroup - The compute node(s). + */ + beginCompute( computeGroup ) { + + const { state, gl } = this; + + state.bindFramebuffer( gl.FRAMEBUFFER, null ); + this.initTimestampQuery( computeGroup ); + + } + + /** + * Executes a compute command for the given compute node. + * + * @param {Node|Array} computeGroup - The group of compute nodes of a compute call. Can be a single compute node. + * @param {Node} computeNode - The compute node. + * @param {Array} bindings - The bindings. + * @param {ComputePipeline} pipeline - The compute pipeline. + */ + compute( computeGroup, computeNode, bindings, pipeline ) { + + const { state, gl } = this; + + if ( this.discard === false ) { + + // required here to handle async behaviour of render.compute() + gl.enable( gl.RASTERIZER_DISCARD ); + this.discard = true; + + } + + const { programGPU, transformBuffers, attributes } = this.get( pipeline ); + + const vaoKey = this._getVaoKey( attributes ); + + const vaoGPU = this.vaoCache[ vaoKey ]; + + if ( vaoGPU === undefined ) { + + this._createVao( attributes ); + + } else { + + state.setVertexState( vaoGPU ); + + } + + state.useProgram( programGPU ); + + this._bindUniforms( bindings ); + + const transformFeedbackGPU = this._getTransformFeedback( transformBuffers ); + + gl.bindTransformFeedback( gl.TRANSFORM_FEEDBACK, transformFeedbackGPU ); + gl.beginTransformFeedback( gl.POINTS ); + + if ( attributes[ 0 ].isStorageInstancedBufferAttribute ) { + + gl.drawArraysInstanced( gl.POINTS, 0, 1, computeNode.count ); + + } else { + + gl.drawArrays( gl.POINTS, 0, computeNode.count ); + + } + + gl.endTransformFeedback(); + gl.bindTransformFeedback( gl.TRANSFORM_FEEDBACK, null ); + + // switch active buffers + + for ( let i = 0; i < transformBuffers.length; i ++ ) { + + const dualAttributeData = transformBuffers[ i ]; + + if ( dualAttributeData.pbo ) { + + this.textureUtils.copyBufferToTexture( dualAttributeData.transformBuffer, dualAttributeData.pbo ); + + } + + dualAttributeData.switchBuffers(); + + + } + + } + + /** + * This method is executed at the end of a compute call and + * finalizes work after compute tasks. + * + * @param {Node|Array} computeGroup - The compute node(s). + */ + finishCompute( computeGroup ) { + + const gl = this.gl; + + this.discard = false; + + gl.disable( gl.RASTERIZER_DISCARD ); + + this.prepareTimestampBuffer( computeGroup ); + + if ( this._currentContext ) { + + this._setFramebuffer( this._currentContext ); + + } + + } + + /** + * Internal to determine if the current render target is a render target array with depth 2D array texture. + * + * @param {RenderContext} renderContext - The render context. + * @return {boolean} Whether the render target is a render target array with depth 2D array texture. + * + * @private + */ + _isRenderCameraDepthArray( renderContext ) { + + return renderContext.depthTexture && renderContext.depthTexture.isArrayTexture && renderContext.camera.isArrayCamera; + + } + + /** + * Executes a draw command for the given render object. + * + * @param {RenderObject} renderObject - The render object to draw. + * @param {Info} info - Holds a series of statistical information about the GPU memory and the rendering process. + */ + draw( renderObject/*, info*/ ) { + + const { object, pipeline, material, context, hardwareClippingPlanes } = renderObject; + const { programGPU } = this.get( pipeline ); + + const { gl, state } = this; + + const contextData = this.get( context ); + + const drawParams = renderObject.getDrawParameters(); + + if ( drawParams === null ) return; + + // + + this._bindUniforms( renderObject.getBindings() ); + + const frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 ); + + state.setMaterial( material, frontFaceCW, hardwareClippingPlanes ); + + state.useProgram( programGPU ); + + // vertex state + + const renderObjectData = this.get( renderObject ); + + let vaoGPU = renderObjectData.staticVao; + + if ( vaoGPU === undefined || renderObjectData.geometryId !== renderObject.geometry.id ) { + + const vaoKey = this._getVaoKey( renderObject.getAttributes() ); + + vaoGPU = this.vaoCache[ vaoKey ]; + + if ( vaoGPU === undefined ) { + + let staticVao; + + ( { vaoGPU, staticVao } = this._createVao( renderObject.getAttributes() ) ); + + if ( staticVao ) { + + renderObjectData.staticVao = vaoGPU; + renderObjectData.geometryId = renderObject.geometry.id; + + } + + } + + } + + const index = renderObject.getIndex(); + const indexGPU = ( index !== null ) ? this.get( index ).bufferGPU : null; + + state.setVertexState( vaoGPU, indexGPU ); + + // + + const lastObject = contextData.lastOcclusionObject; + + if ( lastObject !== object && lastObject !== undefined ) { + + if ( lastObject !== null && lastObject.occlusionTest === true ) { + + gl.endQuery( gl.ANY_SAMPLES_PASSED ); + + contextData.occlusionQueryIndex ++; + + } + + if ( object.occlusionTest === true ) { + + const query = gl.createQuery(); + + gl.beginQuery( gl.ANY_SAMPLES_PASSED, query ); + + contextData.occlusionQueries[ contextData.occlusionQueryIndex ] = query; + contextData.occlusionQueryObjects[ contextData.occlusionQueryIndex ] = object; + + } + + contextData.lastOcclusionObject = object; + + } + + // + const renderer = this.bufferRenderer; + + if ( object.isPoints ) renderer.mode = gl.POINTS; + else if ( object.isLineSegments ) renderer.mode = gl.LINES; + else if ( object.isLine ) renderer.mode = gl.LINE_STRIP; + else if ( object.isLineLoop ) renderer.mode = gl.LINE_LOOP; + else { + + if ( material.wireframe === true ) { + + state.setLineWidth( material.wireframeLinewidth * this.renderer.getPixelRatio() ); + renderer.mode = gl.LINES; + + } else { + + renderer.mode = gl.TRIANGLES; + + } + + } + + // + + const { vertexCount, instanceCount } = drawParams; + let { firstVertex } = drawParams; + + renderer.object = object; + + if ( index !== null ) { + + firstVertex *= index.array.BYTES_PER_ELEMENT; + + const indexData = this.get( index ); + + renderer.index = index.count; + renderer.type = indexData.type; + + } else { + + renderer.index = 0; + + } + + const draw = () => { + + if ( object.isBatchedMesh ) { + + if ( object._multiDrawInstances !== null ) { + + // @deprecated, r174 + warnOnce( 'THREE.WebGLBackend: renderMultiDrawInstances has been deprecated and will be removed in r184. Append to renderMultiDraw arguments and use indirection.' ); + renderer.renderMultiDrawInstances( object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount, object._multiDrawInstances ); + + } else if ( ! this.hasFeature( 'WEBGL_multi_draw' ) ) { + + warnOnce( 'THREE.WebGLRenderer: WEBGL_multi_draw not supported.' ); + + } else { + + renderer.renderMultiDraw( object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount ); + + } + + } else if ( instanceCount > 1 ) { + + renderer.renderInstances( firstVertex, vertexCount, instanceCount ); + + } else { + + renderer.render( firstVertex, vertexCount ); + + } + + }; + + if ( renderObject.camera.isArrayCamera === true && renderObject.camera.cameras.length > 0 && renderObject.camera.isMultiViewCamera === false ) { + + const cameraData = this.get( renderObject.camera ); + const cameras = renderObject.camera.cameras; + const cameraIndex = renderObject.getBindingGroup( 'cameraIndex' ).bindings[ 0 ]; + + if ( cameraData.indexesGPU === undefined || cameraData.indexesGPU.length !== cameras.length ) { + + const data = new Uint32Array( [ 0, 0, 0, 0 ] ); + const indexesGPU = []; + + for ( let i = 0, len = cameras.length; i < len; i ++ ) { + + const bufferGPU = gl.createBuffer(); + + data[ 0 ] = i; + + gl.bindBuffer( gl.UNIFORM_BUFFER, bufferGPU ); + gl.bufferData( gl.UNIFORM_BUFFER, data, gl.STATIC_DRAW ); + + indexesGPU.push( bufferGPU ); + + } + + cameraData.indexesGPU = indexesGPU; // TODO: Create a global library for this + + } + + const cameraIndexData = this.get( cameraIndex ); + const pixelRatio = this.renderer.getPixelRatio(); + + const renderTarget = this._currentContext.renderTarget; + const isRenderCameraDepthArray = this._isRenderCameraDepthArray( this._currentContext ); + const prevActiveCubeFace = this._currentContext.activeCubeFace; + + if ( isRenderCameraDepthArray ) { + + // Clear the depth texture + const textureData = this.get( renderTarget.depthTexture ); + + if ( textureData.clearedRenderId !== this.renderer._nodes.nodeFrame.renderId ) { + + textureData.clearedRenderId = this.renderer._nodes.nodeFrame.renderId; + + const { stencilBuffer } = renderTarget; + + for ( let i = 0, len = cameras.length; i < len; i ++ ) { + + this.renderer._activeCubeFace = i; + this._currentContext.activeCubeFace = i; + + this._setFramebuffer( this._currentContext ); + this.clear( false, true, stencilBuffer, this._currentContext, false ); + + } + + this.renderer._activeCubeFace = prevActiveCubeFace; + this._currentContext.activeCubeFace = prevActiveCubeFace; + + } + + } + + for ( let i = 0, len = cameras.length; i < len; i ++ ) { + + const subCamera = cameras[ i ]; + + if ( object.layers.test( subCamera.layers ) ) { + + if ( isRenderCameraDepthArray ) { + + // Update the active layer + this.renderer._activeCubeFace = i; + this._currentContext.activeCubeFace = i; + + this._setFramebuffer( this._currentContext ); + + } + + const vp = subCamera.viewport; + + if ( vp !== undefined ) { + + const x = vp.x * pixelRatio; + const y = vp.y * pixelRatio; + const width = vp.width * pixelRatio; + const height = vp.height * pixelRatio; + + state.viewport( + Math.floor( x ), + Math.floor( renderObject.context.height - height - y ), + Math.floor( width ), + Math.floor( height ) + ); + + } + + state.bindBufferBase( gl.UNIFORM_BUFFER, cameraIndexData.index, cameraData.indexesGPU[ i ] ); + + draw(); + + } + + this._currentContext.activeCubeFace = prevActiveCubeFace; + this.renderer._activeCubeFace = prevActiveCubeFace; + + } + + } else { + + draw(); + + } + + } + + /** + * Explain why always null is returned. + * + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the render pipeline requires an update or not. + */ + needsRenderUpdate( /*renderObject*/ ) { + + return false; + + } + + /** + * Explain why no cache key is computed. + * + * @param {RenderObject} renderObject - The render object. + * @return {string} The cache key. + */ + getRenderCacheKey( /*renderObject*/ ) { + + return ''; + + } + + // textures + + /** + * Creates a default texture for the given texture that can be used + * as a placeholder until the actual texture is ready for usage. + * + * @param {Texture} texture - The texture to create a default texture for. + */ + createDefaultTexture( texture ) { + + this.textureUtils.createDefaultTexture( texture ); + + } + + /** + * Defines a texture on the GPU for the given texture object. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + createTexture( texture, options ) { + + this.textureUtils.createTexture( texture, options ); + + } + + /** + * Uploads the updated texture data to the GPU. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + updateTexture( texture, options ) { + + this.textureUtils.updateTexture( texture, options ); + + } + + /** + * Generates mipmaps for the given texture. + * + * @param {Texture} texture - The texture. + */ + generateMipmaps( texture ) { + + this.textureUtils.generateMipmaps( texture ); + + } + + /** + * Destroys the GPU data for the given texture object. + * + * @param {Texture} texture - The texture. + */ + destroyTexture( texture ) { + + this.textureUtils.destroyTexture( texture ); + + } + + /** + * Returns texture data as a typed array. + * + * @async + * @param {Texture} texture - The texture to copy. + * @param {number} x - The x coordinate of the copy origin. + * @param {number} y - The y coordinate of the copy origin. + * @param {number} width - The width of the copy. + * @param {number} height - The height of the copy. + * @param {number} faceIndex - The face index. + * @return {Promise} A Promise that resolves with a typed array when the copy operation has finished. + */ + async copyTextureToBuffer( texture, x, y, width, height, faceIndex ) { + + return this.textureUtils.copyTextureToBuffer( texture, x, y, width, height, faceIndex ); + + } + + /** + * This method does nothing since WebGL 2 has no concept of samplers. + * + * @param {Texture} texture - The texture to create the sampler for. + */ + createSampler( /*texture*/ ) { + + //console.warn( 'Abstract class.' ); + + } + + /** + * This method does nothing since WebGL 2 has no concept of samplers. + * + * @param {Texture} texture - The texture to destroy the sampler for. + */ + destroySampler( /*texture*/ ) {} + + // node builder + + /** + * Returns a node builder for the given render object. + * + * @param {RenderObject} object - The render object. + * @param {Renderer} renderer - The renderer. + * @return {GLSLNodeBuilder} The node builder. + */ + createNodeBuilder( object, renderer ) { + + return new GLSLNodeBuilder( object, renderer ); + + } + + // program + + /** + * Creates a shader program from the given programmable stage. + * + * @param {ProgrammableStage} program - The programmable stage. + */ + createProgram( program ) { + + const gl = this.gl; + const { stage, code } = program; + + const shader = stage === 'fragment' ? gl.createShader( gl.FRAGMENT_SHADER ) : gl.createShader( gl.VERTEX_SHADER ); + + gl.shaderSource( shader, code ); + gl.compileShader( shader ); + + this.set( program, { + shaderGPU: shader + } ); + + } + + /** + * Destroys the shader program of the given programmable stage. + * + * @param {ProgrammableStage} program - The programmable stage. + */ + destroyProgram( program ) { + + this.delete( program ); + + } + + /** + * Creates a render pipeline for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @param {Array} promises - An array of compilation promises which are used in `compileAsync()`. + */ + createRenderPipeline( renderObject, promises ) { + + const gl = this.gl; + const pipeline = renderObject.pipeline; + + // Program + + const { fragmentProgram, vertexProgram } = pipeline; + + const programGPU = gl.createProgram(); + + const fragmentShader = this.get( fragmentProgram ).shaderGPU; + const vertexShader = this.get( vertexProgram ).shaderGPU; + + gl.attachShader( programGPU, fragmentShader ); + gl.attachShader( programGPU, vertexShader ); + gl.linkProgram( programGPU ); + + this.set( pipeline, { + programGPU, + fragmentShader, + vertexShader + } ); + + if ( promises !== null && this.parallel ) { + + const p = new Promise( ( resolve /*, reject*/ ) => { + + const parallel = this.parallel; + const checkStatus = () => { + + if ( gl.getProgramParameter( programGPU, parallel.COMPLETION_STATUS_KHR ) ) { + + this._completeCompile( renderObject, pipeline ); + resolve(); + + } else { + + requestAnimationFrame( checkStatus ); + + } + + }; + + checkStatus(); + + } ); + + promises.push( p ); + + return; + + } + + this._completeCompile( renderObject, pipeline ); + + } + + /** + * Formats the source code of error messages. + * + * @private + * @param {string} string - The code. + * @param {number} errorLine - The error line. + * @return {string} The formatted code. + */ + _handleSource( string, errorLine ) { + + const lines = string.split( '\n' ); + const lines2 = []; + + const from = Math.max( errorLine - 6, 0 ); + const to = Math.min( errorLine + 6, lines.length ); + + for ( let i = from; i < to; i ++ ) { + + const line = i + 1; + lines2.push( `${line === errorLine ? '>' : ' '} ${line}: ${lines[ i ]}` ); + + } + + return lines2.join( '\n' ); + + } + + /** + * Gets the shader compilation errors from the info log. + * + * @private + * @param {WebGL2RenderingContext} gl - The rendering context. + * @param {WebGLShader} shader - The WebGL shader object. + * @param {string} type - The shader type. + * @return {string} The shader errors. + */ + _getShaderErrors( gl, shader, type ) { + + const status = gl.getShaderParameter( shader, gl.COMPILE_STATUS ); + const errors = gl.getShaderInfoLog( shader ).trim(); + + if ( status && errors === '' ) return ''; + + const errorMatches = /ERROR: 0:(\d+)/.exec( errors ); + if ( errorMatches ) { + + const errorLine = parseInt( errorMatches[ 1 ] ); + return type.toUpperCase() + '\n\n' + errors + '\n\n' + this._handleSource( gl.getShaderSource( shader ), errorLine ); + + } else { + + return errors; + + } + + } + + /** + * Logs shader compilation errors. + * + * @private + * @param {WebGLProgram} programGPU - The WebGL program. + * @param {WebGLShader} glFragmentShader - The fragment shader as a native WebGL shader object. + * @param {WebGLShader} glVertexShader - The vertex shader as a native WebGL shader object. + */ + _logProgramError( programGPU, glFragmentShader, glVertexShader ) { + + if ( this.renderer.debug.checkShaderErrors ) { + + const gl = this.gl; + + const programLog = gl.getProgramInfoLog( programGPU ).trim(); + + if ( gl.getProgramParameter( programGPU, gl.LINK_STATUS ) === false ) { + + + if ( typeof this.renderer.debug.onShaderError === 'function' ) { + + this.renderer.debug.onShaderError( gl, programGPU, glVertexShader, glFragmentShader ); + + } else { + + // default error reporting + + const vertexErrors = this._getShaderErrors( gl, glVertexShader, 'vertex' ); + const fragmentErrors = this._getShaderErrors( gl, glFragmentShader, 'fragment' ); + + console.error( + 'THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + + 'VALIDATE_STATUS ' + gl.getProgramParameter( programGPU, gl.VALIDATE_STATUS ) + '\n\n' + + 'Program Info Log: ' + programLog + '\n' + + vertexErrors + '\n' + + fragmentErrors + ); + + } + + } else if ( programLog !== '' ) { + + console.warn( 'THREE.WebGLProgram: Program Info Log:', programLog ); + + } + + } + + } + + /** + * Completes the shader program setup for the given render object. + * + * @private + * @param {RenderObject} renderObject - The render object. + * @param {RenderPipeline} pipeline - The render pipeline. + */ + _completeCompile( renderObject, pipeline ) { + + const { state, gl } = this; + const pipelineData = this.get( pipeline ); + const { programGPU, fragmentShader, vertexShader } = pipelineData; + + if ( gl.getProgramParameter( programGPU, gl.LINK_STATUS ) === false ) { + + this._logProgramError( programGPU, fragmentShader, vertexShader ); + + } + + state.useProgram( programGPU ); + + // Bindings + + const bindings = renderObject.getBindings(); + + this._setupBindings( bindings, programGPU ); + + // + + this.set( pipeline, { + programGPU + } ); + + } + + /** + * Creates a compute pipeline for the given compute node. + * + * @param {ComputePipeline} computePipeline - The compute pipeline. + * @param {Array} bindings - The bindings. + */ + createComputePipeline( computePipeline, bindings ) { + + const { state, gl } = this; + + // Program + + const fragmentProgram = { + stage: 'fragment', + code: '#version 300 es\nprecision highp float;\nvoid main() {}' + }; + + this.createProgram( fragmentProgram ); + + const { computeProgram } = computePipeline; + + const programGPU = gl.createProgram(); + + const fragmentShader = this.get( fragmentProgram ).shaderGPU; + const vertexShader = this.get( computeProgram ).shaderGPU; + + const transforms = computeProgram.transforms; + + const transformVaryingNames = []; + const transformAttributeNodes = []; + + for ( let i = 0; i < transforms.length; i ++ ) { + + const transform = transforms[ i ]; + + transformVaryingNames.push( transform.varyingName ); + transformAttributeNodes.push( transform.attributeNode ); + + } + + gl.attachShader( programGPU, fragmentShader ); + gl.attachShader( programGPU, vertexShader ); + + gl.transformFeedbackVaryings( + programGPU, + transformVaryingNames, + gl.SEPARATE_ATTRIBS + ); + + gl.linkProgram( programGPU ); + + if ( gl.getProgramParameter( programGPU, gl.LINK_STATUS ) === false ) { + + this._logProgramError( programGPU, fragmentShader, vertexShader ); + + + } + + state.useProgram( programGPU ); + + // Bindings + + this._setupBindings( bindings, programGPU ); + + const attributeNodes = computeProgram.attributes; + const attributes = []; + const transformBuffers = []; + + for ( let i = 0; i < attributeNodes.length; i ++ ) { + + const attribute = attributeNodes[ i ].node.attribute; + + attributes.push( attribute ); + + if ( ! this.has( attribute ) ) this.attributeUtils.createAttribute( attribute, gl.ARRAY_BUFFER ); + + } + + for ( let i = 0; i < transformAttributeNodes.length; i ++ ) { + + const attribute = transformAttributeNodes[ i ].attribute; + + if ( ! this.has( attribute ) ) this.attributeUtils.createAttribute( attribute, gl.ARRAY_BUFFER ); + + const attributeData = this.get( attribute ); + + transformBuffers.push( attributeData ); + + } + + // + + this.set( computePipeline, { + programGPU, + transformBuffers, + attributes + } ); + + } + + /** + * Creates bindings from the given bind group definition. + * + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + createBindings( bindGroup, bindings /*, cacheIndex, version*/ ) { + + if ( this._knownBindings.has( bindings ) === false ) { + + this._knownBindings.add( bindings ); + + let uniformBuffers = 0; + let textures = 0; + + for ( const bindGroup of bindings ) { + + this.set( bindGroup, { + textures: textures, + uniformBuffers: uniformBuffers + } ); + + for ( const binding of bindGroup.bindings ) { + + if ( binding.isUniformBuffer ) uniformBuffers ++; + if ( binding.isSampledTexture ) textures ++; + + } + + } + + } + + this.updateBindings( bindGroup, bindings ); + + } + + /** + * Updates the given bind group definition. + * + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + updateBindings( bindGroup /*, bindings, cacheIndex, version*/ ) { + + const { gl } = this; + + const bindGroupData = this.get( bindGroup ); + + let i = bindGroupData.uniformBuffers; + let t = bindGroupData.textures; + + for ( const binding of bindGroup.bindings ) { + + if ( binding.isUniformsGroup || binding.isUniformBuffer ) { + + const data = binding.buffer; + const bufferGPU = gl.createBuffer(); + + gl.bindBuffer( gl.UNIFORM_BUFFER, bufferGPU ); + gl.bufferData( gl.UNIFORM_BUFFER, data, gl.DYNAMIC_DRAW ); + + this.set( binding, { + index: i ++, + bufferGPU + } ); + + } else if ( binding.isSampledTexture ) { + + const { textureGPU, glTextureType } = this.get( binding.texture ); + + this.set( binding, { + index: t ++, + textureGPU, + glTextureType + } ); + + } + + } + + } + + /** + * Updates a buffer binding. + * + * @param {Buffer} binding - The buffer binding to update. + */ + updateBinding( binding ) { + + const gl = this.gl; + + if ( binding.isUniformsGroup || binding.isUniformBuffer ) { + + const bindingData = this.get( binding ); + const bufferGPU = bindingData.bufferGPU; + const data = binding.buffer; + + gl.bindBuffer( gl.UNIFORM_BUFFER, bufferGPU ); + gl.bufferData( gl.UNIFORM_BUFFER, data, gl.DYNAMIC_DRAW ); + + } + + } + + // attributes + + /** + * Creates the GPU buffer of an indexed shader attribute. + * + * @param {BufferAttribute} attribute - The indexed buffer attribute. + */ + createIndexAttribute( attribute ) { + + const gl = this.gl; + + this.attributeUtils.createAttribute( attribute, gl.ELEMENT_ARRAY_BUFFER ); + + } + + /** + * Creates the GPU buffer of a shader attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createAttribute( attribute ) { + + if ( this.has( attribute ) ) return; + + const gl = this.gl; + + this.attributeUtils.createAttribute( attribute, gl.ARRAY_BUFFER ); + + } + + /** + * Creates the GPU buffer of a storage attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createStorageAttribute( attribute ) { + + if ( this.has( attribute ) ) return; + + const gl = this.gl; + + this.attributeUtils.createAttribute( attribute, gl.ARRAY_BUFFER ); + + } + + /** + * Updates the GPU buffer of a shader attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute to update. + */ + updateAttribute( attribute ) { + + this.attributeUtils.updateAttribute( attribute ); + + } + + /** + * Destroys the GPU buffer of a shader attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute to destroy. + */ + destroyAttribute( attribute ) { + + this.attributeUtils.destroyAttribute( attribute ); + + } + + /** + * Checks if the given feature is supported by the backend. + * + * @param {string} name - The feature's name. + * @return {boolean} Whether the feature is supported or not. + */ + hasFeature( name ) { + + const keysMatching = Object.keys( GLFeatureName ).filter( key => GLFeatureName[ key ] === name ); + + const extensions = this.extensions; + + for ( let i = 0; i < keysMatching.length; i ++ ) { + + if ( extensions.has( keysMatching[ i ] ) ) return true; + + } + + return false; + + } + + /** + * Returns the maximum anisotropy texture filtering value. + * + * @return {number} The maximum anisotropy texture filtering value. + */ + getMaxAnisotropy() { + + return this.capabilities.getMaxAnisotropy(); + + } + + /** + * Copies data of the given source texture to the given destination texture. + * + * @param {Texture} srcTexture - The source texture. + * @param {Texture} dstTexture - The destination texture. + * @param {?(Box3|Box2)} [srcRegion=null] - The region of the source texture to copy. + * @param {?(Vector2|Vector3)} [dstPosition=null] - The destination position of the copy. + * @param {number} [srcLevel=0] - The source mip level to copy from. + * @param {number} [dstLevel=0] - The destination mip level to copy to. + */ + copyTextureToTexture( srcTexture, dstTexture, srcRegion = null, dstPosition = null, srcLevel = 0, dstLevel = 0 ) { + + this.textureUtils.copyTextureToTexture( srcTexture, dstTexture, srcRegion, dstPosition, srcLevel, dstLevel ); + + } + + /** + * Copies the current bound framebuffer to the given texture. + * + * @param {Texture} texture - The destination texture. + * @param {RenderContext} renderContext - The render context. + * @param {Vector4} rectangle - A four dimensional vector defining the origin and dimension of the copy. + */ + copyFramebufferToTexture( texture, renderContext, rectangle ) { + + this.textureUtils.copyFramebufferToTexture( texture, renderContext, rectangle ); + + } + + /** + * Configures the active framebuffer from the given render context. + * + * @private + * @param {RenderContext} descriptor - The render context. + */ + _setFramebuffer( descriptor ) { + + const { gl, state } = this; + + let currentFrameBuffer = null; + + if ( descriptor.textures !== null ) { + + const renderTarget = descriptor.renderTarget; + const renderTargetContextData = this.get( renderTarget ); + const { samples, depthBuffer, stencilBuffer } = renderTarget; + + const isCube = renderTarget.isWebGLCubeRenderTarget === true; + const isRenderTarget3D = renderTarget.isRenderTarget3D === true; + const isRenderTargetArray = renderTarget.depth > 1; + const isXRRenderTarget = renderTarget.isXRRenderTarget === true; + const hasExternalTextures = ( isXRRenderTarget === true && renderTarget.hasExternalTextures === true ); + + let msaaFb = renderTargetContextData.msaaFrameBuffer; + let depthRenderbuffer = renderTargetContextData.depthRenderbuffer; + const multisampledRTTExt = this.extensions.get( 'WEBGL_multisampled_render_to_texture' ); + const multiviewExt = this.extensions.get( 'OVR_multiview2' ); + const useMultisampledRTT = this._useMultisampledExtension( renderTarget ); + const cacheKey = getCacheKey( descriptor ); + + let fb; + + if ( isCube ) { + + renderTargetContextData.cubeFramebuffers || ( renderTargetContextData.cubeFramebuffers = {} ); + + fb = renderTargetContextData.cubeFramebuffers[ cacheKey ]; + + } else if ( isXRRenderTarget && hasExternalTextures === false ) { + + fb = this._xrFramebuffer; + + } else { + + renderTargetContextData.framebuffers || ( renderTargetContextData.framebuffers = {} ); + + fb = renderTargetContextData.framebuffers[ cacheKey ]; + + } + + if ( fb === undefined ) { + + fb = gl.createFramebuffer(); + + state.bindFramebuffer( gl.FRAMEBUFFER, fb ); + + const textures = descriptor.textures; + const depthInvalidationArray = []; + + if ( isCube ) { + + renderTargetContextData.cubeFramebuffers[ cacheKey ] = fb; + + const { textureGPU } = this.get( textures[ 0 ] ); + + const cubeFace = this.renderer._activeCubeFace; + + gl.framebufferTexture2D( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_CUBE_MAP_POSITIVE_X + cubeFace, textureGPU, 0 ); + + } else { + + renderTargetContextData.framebuffers[ cacheKey ] = fb; + + for ( let i = 0; i < textures.length; i ++ ) { + + const texture = textures[ i ]; + const textureData = this.get( texture ); + textureData.renderTarget = descriptor.renderTarget; + textureData.cacheKey = cacheKey; // required for copyTextureToTexture() + + const attachment = gl.COLOR_ATTACHMENT0 + i; + + if ( renderTarget.multiview ) { + + multiviewExt.framebufferTextureMultisampleMultiviewOVR( gl.FRAMEBUFFER, attachment, textureData.textureGPU, 0, samples, 0, 2 ); + + } else if ( isRenderTarget3D || isRenderTargetArray ) { + + const layer = this.renderer._activeCubeFace; + + gl.framebufferTextureLayer( gl.FRAMEBUFFER, attachment, textureData.textureGPU, 0, layer ); + + } else { + + if ( hasExternalTextures && useMultisampledRTT ) { + + multisampledRTTExt.framebufferTexture2DMultisampleEXT( gl.FRAMEBUFFER, attachment, gl.TEXTURE_2D, textureData.textureGPU, 0, samples ); + + } else { + + gl.framebufferTexture2D( gl.FRAMEBUFFER, attachment, gl.TEXTURE_2D, textureData.textureGPU, 0 ); + + } + + } + + } + + state.drawBuffers( descriptor, fb ); + + } + + if ( renderTarget.isXRRenderTarget && renderTarget.autoAllocateDepthBuffer === true ) { + + const renderbuffer = gl.createRenderbuffer(); + this.textureUtils.setupRenderBufferStorage( renderbuffer, descriptor, 0, useMultisampledRTT ); + renderTargetContextData.xrDepthRenderbuffer = renderbuffer; + depthInvalidationArray.push( stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT ); + + } else { + + if ( descriptor.depthTexture !== null ) { + + depthInvalidationArray.push( stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT ); + + const textureData = this.get( descriptor.depthTexture ); + const depthStyle = stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT; + textureData.renderTarget = descriptor.renderTarget; + textureData.cacheKey = cacheKey; // required for copyTextureToTexture() + + if ( renderTarget.multiview ) { + + multiviewExt.framebufferTextureMultisampleMultiviewOVR( gl.FRAMEBUFFER, depthStyle, textureData.textureGPU, 0, samples, 0, 2 ); + + } else if ( hasExternalTextures && useMultisampledRTT ) { + + multisampledRTTExt.framebufferTexture2DMultisampleEXT( gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, textureData.textureGPU, 0, samples ); + + } else { + + if ( descriptor.depthTexture.isArrayTexture ) { + + const layer = this.renderer._activeCubeFace; + + gl.framebufferTextureLayer( gl.FRAMEBUFFER, depthStyle, textureData.textureGPU, 0, layer ); + + } else { + + gl.framebufferTexture2D( gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, textureData.textureGPU, 0 ); + + } + + } + + } + + } + + renderTargetContextData.depthInvalidationArray = depthInvalidationArray; + + + } else { + + const isRenderCameraDepthArray = this._isRenderCameraDepthArray( descriptor ); + + if ( isRenderCameraDepthArray ) { + + state.bindFramebuffer( gl.FRAMEBUFFER, fb ); + + const layer = this.renderer._activeCubeFace; + + const depthData = this.get( descriptor.depthTexture ); + const depthStyle = stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT; + gl.framebufferTextureLayer( + gl.FRAMEBUFFER, + depthStyle, + depthData.textureGPU, + 0, + layer + ); + + } + + // rebind external XR textures + + if ( ( isXRRenderTarget && hasExternalTextures ) || renderTarget.multiview ) { + + state.bindFramebuffer( gl.FRAMEBUFFER, fb ); + + // rebind color + + const textureData = this.get( descriptor.textures[ 0 ] ); + + if ( renderTarget.multiview ) { + + multiviewExt.framebufferTextureMultisampleMultiviewOVR( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, textureData.textureGPU, 0, samples, 0, 2 ); + + } else if ( useMultisampledRTT ) { + + multisampledRTTExt.framebufferTexture2DMultisampleEXT( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, textureData.textureGPU, 0, samples ); + + } else { + + gl.framebufferTexture2D( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, textureData.textureGPU, 0 ); + + } + + // rebind depth + + const depthStyle = stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT; + + if ( renderTarget.autoAllocateDepthBuffer === true ) { + + const renderbuffer = renderTargetContextData.xrDepthRenderbuffer; + gl.bindRenderbuffer( gl.RENDERBUFFER, renderbuffer ); + gl.framebufferRenderbuffer( gl.FRAMEBUFFER, depthStyle, gl.RENDERBUFFER, renderbuffer ); + + } else { + + const textureData = this.get( descriptor.depthTexture ); + + if ( renderTarget.multiview ) { + + multiviewExt.framebufferTextureMultisampleMultiviewOVR( gl.FRAMEBUFFER, depthStyle, textureData.textureGPU, 0, samples, 0, 2 ); + + } else if ( useMultisampledRTT ) { + + multisampledRTTExt.framebufferTexture2DMultisampleEXT( gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, textureData.textureGPU, 0, samples ); + + } else { + + gl.framebufferTexture2D( gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, textureData.textureGPU, 0 ); + + } + + } + + } + + } + + if ( samples > 0 && useMultisampledRTT === false && ! renderTarget.multiview ) { + + if ( msaaFb === undefined ) { + + const invalidationArray = []; + + msaaFb = gl.createFramebuffer(); + + state.bindFramebuffer( gl.FRAMEBUFFER, msaaFb ); + + const msaaRenderbuffers = []; + + const textures = descriptor.textures; + + for ( let i = 0; i < textures.length; i ++ ) { + + msaaRenderbuffers[ i ] = gl.createRenderbuffer(); + + gl.bindRenderbuffer( gl.RENDERBUFFER, msaaRenderbuffers[ i ] ); + + invalidationArray.push( gl.COLOR_ATTACHMENT0 + i ); + + if ( depthBuffer ) { + + const depthStyle = stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT; + invalidationArray.push( depthStyle ); + + } + + const texture = descriptor.textures[ i ]; + const textureData = this.get( texture ); + + gl.renderbufferStorageMultisample( gl.RENDERBUFFER, samples, textureData.glInternalFormat, descriptor.width, descriptor.height ); + gl.framebufferRenderbuffer( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0 + i, gl.RENDERBUFFER, msaaRenderbuffers[ i ] ); + + + } + + renderTargetContextData.msaaFrameBuffer = msaaFb; + renderTargetContextData.msaaRenderbuffers = msaaRenderbuffers; + + if ( depthRenderbuffer === undefined ) { + + depthRenderbuffer = gl.createRenderbuffer(); + this.textureUtils.setupRenderBufferStorage( depthRenderbuffer, descriptor, samples ); + + renderTargetContextData.depthRenderbuffer = depthRenderbuffer; + + const depthStyle = stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT; + invalidationArray.push( depthStyle ); + + } + + renderTargetContextData.invalidationArray = invalidationArray; + + } + + currentFrameBuffer = renderTargetContextData.msaaFrameBuffer; + + } else { + + currentFrameBuffer = fb; + + } + + } + + state.bindFramebuffer( gl.FRAMEBUFFER, currentFrameBuffer ); + + } + + /** + * Computes the VAO key for the given index and attributes. + * + * @private + * @param {Array} attributes - An array of buffer attributes. + * @return {string} The VAO key. + */ + _getVaoKey( attributes ) { + + let key = ''; + + for ( let i = 0; i < attributes.length; i ++ ) { + + const attributeData = this.get( attributes[ i ] ); + + key += ':' + attributeData.id; + + } + + return key; + + } + + /** + * Creates a VAO from the index and attributes. + * + * @private + * @param {Array} attributes - An array of buffer attributes. + * @return {Object} The VAO data. + */ + _createVao( attributes ) { + + const { gl } = this; + + const vaoGPU = gl.createVertexArray(); + let key = ''; + + let staticVao = true; + + gl.bindVertexArray( vaoGPU ); + + for ( let i = 0; i < attributes.length; i ++ ) { + + const attribute = attributes[ i ]; + const attributeData = this.get( attribute ); + + key += ':' + attributeData.id; + + gl.bindBuffer( gl.ARRAY_BUFFER, attributeData.bufferGPU ); + gl.enableVertexAttribArray( i ); + + if ( attribute.isStorageBufferAttribute || attribute.isStorageInstancedBufferAttribute ) staticVao = false; + + let stride, offset; + + if ( attribute.isInterleavedBufferAttribute === true ) { + + stride = attribute.data.stride * attributeData.bytesPerElement; + offset = attribute.offset * attributeData.bytesPerElement; + + } else { + + stride = 0; + offset = 0; + + } + + if ( attributeData.isInteger ) { + + gl.vertexAttribIPointer( i, attribute.itemSize, attributeData.type, stride, offset ); + + } else { + + gl.vertexAttribPointer( i, attribute.itemSize, attributeData.type, attribute.normalized, stride, offset ); + + } + + if ( attribute.isInstancedBufferAttribute && ! attribute.isInterleavedBufferAttribute ) { + + gl.vertexAttribDivisor( i, attribute.meshPerAttribute ); + + } else if ( attribute.isInterleavedBufferAttribute && attribute.data.isInstancedInterleavedBuffer ) { + + gl.vertexAttribDivisor( i, attribute.data.meshPerAttribute ); + + } + + } + + gl.bindBuffer( gl.ARRAY_BUFFER, null ); + + this.vaoCache[ key ] = vaoGPU; + + return { vaoGPU, staticVao }; + + } + + /** + * Creates a transform feedback from the given transform buffers. + * + * @private + * @param {Array} transformBuffers - The transform buffers. + * @return {WebGLTransformFeedback} The transform feedback. + */ + _getTransformFeedback( transformBuffers ) { + + let key = ''; + + for ( let i = 0; i < transformBuffers.length; i ++ ) { + + key += ':' + transformBuffers[ i ].id; + + } + + let transformFeedbackGPU = this.transformFeedbackCache[ key ]; + + if ( transformFeedbackGPU !== undefined ) { + + return transformFeedbackGPU; + + } + + const { gl } = this; + + transformFeedbackGPU = gl.createTransformFeedback(); + + gl.bindTransformFeedback( gl.TRANSFORM_FEEDBACK, transformFeedbackGPU ); + + for ( let i = 0; i < transformBuffers.length; i ++ ) { + + const attributeData = transformBuffers[ i ]; + + gl.bindBufferBase( gl.TRANSFORM_FEEDBACK_BUFFER, i, attributeData.transformBuffer ); + + } + + gl.bindTransformFeedback( gl.TRANSFORM_FEEDBACK, null ); + + this.transformFeedbackCache[ key ] = transformFeedbackGPU; + + return transformFeedbackGPU; + + } + + /** + * Setups the given bindings. + * + * @private + * @param {Array} bindings - The bindings. + * @param {WebGLProgram} programGPU - The WebGL program. + */ + _setupBindings( bindings, programGPU ) { + + const gl = this.gl; + + for ( const bindGroup of bindings ) { + + for ( const binding of bindGroup.bindings ) { + + const bindingData = this.get( binding ); + const index = bindingData.index; + + if ( binding.isUniformsGroup || binding.isUniformBuffer ) { + + const location = gl.getUniformBlockIndex( programGPU, binding.name ); + gl.uniformBlockBinding( programGPU, location, index ); + + } else if ( binding.isSampledTexture ) { + + const location = gl.getUniformLocation( programGPU, binding.name ); + gl.uniform1i( location, index ); + + } + + } + + } + + } + + /** + * Binds the given uniforms. + * + * @private + * @param {Array} bindings - The bindings. + */ + _bindUniforms( bindings ) { + + const { gl, state } = this; + + for ( const bindGroup of bindings ) { + + for ( const binding of bindGroup.bindings ) { + + const bindingData = this.get( binding ); + const index = bindingData.index; + + if ( binding.isUniformsGroup || binding.isUniformBuffer ) { + + // TODO USE bindBufferRange to group multiple uniform buffers + state.bindBufferBase( gl.UNIFORM_BUFFER, index, bindingData.bufferGPU ); + + } else if ( binding.isSampledTexture ) { + + state.bindTexture( bindingData.glTextureType, bindingData.textureGPU, gl.TEXTURE0 + index ); + + } + + } + + } + + } + + /** + * Returns `true` if the `WEBGL_multisampled_render_to_texture` extension + * should be used when MSAA is enabled. + * + * @private + * @param {RenderTarget} renderTarget - The render target that should be multisampled. + * @return {boolean} Whether to use the `WEBGL_multisampled_render_to_texture` extension for MSAA or not. + */ + _useMultisampledExtension( renderTarget ) { + + if ( renderTarget.multiview === true ) { + + return true; + + } + + return renderTarget.samples > 0 && this.extensions.has( 'WEBGL_multisampled_render_to_texture' ) === true && renderTarget.autoAllocateDepthBuffer !== false; + + } + + /** + * Frees internal resources. + */ + dispose() { + + const extension = this.extensions.get( 'WEBGL_lose_context' ); + if ( extension ) extension.loseContext(); + + this.renderer.domElement.removeEventListener( 'webglcontextlost', this._onContextLost ); + + } + +} + +const GPUPrimitiveTopology = { + PointList: 'point-list', + LineList: 'line-list', + LineStrip: 'line-strip', + TriangleList: 'triangle-list', + TriangleStrip: 'triangle-strip', +}; + +const GPUCompareFunction = { + Never: 'never', + Less: 'less', + Equal: 'equal', + LessEqual: 'less-equal', + Greater: 'greater', + NotEqual: 'not-equal', + GreaterEqual: 'greater-equal', + Always: 'always' +}; + +const GPUStoreOp = { + Store: 'store' }; + +const GPULoadOp = { + Load: 'load', + Clear: 'clear' +}; + +const GPUFrontFace = { + CCW: 'ccw' }; + +const GPUCullMode = { + None: 'none', + Front: 'front', + Back: 'back' +}; + +const GPUIndexFormat = { + Uint16: 'uint16', + Uint32: 'uint32' +}; + +const GPUTextureFormat = { + + // 8-bit formats + + R8Unorm: 'r8unorm', + R8Snorm: 'r8snorm', + R8Uint: 'r8uint', + R8Sint: 'r8sint', + + // 16-bit formats + + R16Uint: 'r16uint', + R16Sint: 'r16sint', + R16Float: 'r16float', + RG8Unorm: 'rg8unorm', + RG8Snorm: 'rg8snorm', + RG8Uint: 'rg8uint', + RG8Sint: 'rg8sint', + + // 32-bit formats + + R32Uint: 'r32uint', + R32Sint: 'r32sint', + R32Float: 'r32float', + RG16Uint: 'rg16uint', + RG16Sint: 'rg16sint', + RG16Float: 'rg16float', + RGBA8Unorm: 'rgba8unorm', + RGBA8UnormSRGB: 'rgba8unorm-srgb', + RGBA8Snorm: 'rgba8snorm', + RGBA8Uint: 'rgba8uint', + RGBA8Sint: 'rgba8sint', + BGRA8Unorm: 'bgra8unorm', + BGRA8UnormSRGB: 'bgra8unorm-srgb', + // Packed 32-bit formats + RGB9E5UFloat: 'rgb9e5ufloat', + RGB10A2Unorm: 'rgb10a2unorm', + RG11B10UFloat: 'rgb10a2unorm', + + // 64-bit formats + + RG32Uint: 'rg32uint', + RG32Sint: 'rg32sint', + RG32Float: 'rg32float', + RGBA16Uint: 'rgba16uint', + RGBA16Sint: 'rgba16sint', + RGBA16Float: 'rgba16float', + + // 128-bit formats + + RGBA32Uint: 'rgba32uint', + RGBA32Sint: 'rgba32sint', + RGBA32Float: 'rgba32float', + + Depth16Unorm: 'depth16unorm', + Depth24Plus: 'depth24plus', + Depth24PlusStencil8: 'depth24plus-stencil8', + Depth32Float: 'depth32float', + + // 'depth32float-stencil8' extension + + Depth32FloatStencil8: 'depth32float-stencil8', + + // BC compressed formats usable if 'texture-compression-bc' is both + // supported by the device/user agent and enabled in requestDevice. + + BC1RGBAUnorm: 'bc1-rgba-unorm', + BC1RGBAUnormSRGB: 'bc1-rgba-unorm-srgb', + BC2RGBAUnorm: 'bc2-rgba-unorm', + BC2RGBAUnormSRGB: 'bc2-rgba-unorm-srgb', + BC3RGBAUnorm: 'bc3-rgba-unorm', + BC3RGBAUnormSRGB: 'bc3-rgba-unorm-srgb', + BC4RUnorm: 'bc4-r-unorm', + BC4RSnorm: 'bc4-r-snorm', + BC5RGUnorm: 'bc5-rg-unorm', + BC5RGSnorm: 'bc5-rg-snorm', + BC6HRGBUFloat: 'bc6h-rgb-ufloat', + BC6HRGBFloat: 'bc6h-rgb-float', + BC7RGBAUnorm: 'bc7-rgba-unorm', + BC7RGBAUnormSRGB: 'bc7-rgba-srgb', + + // ETC2 compressed formats usable if 'texture-compression-etc2' is both + // supported by the device/user agent and enabled in requestDevice. + + ETC2RGB8Unorm: 'etc2-rgb8unorm', + ETC2RGB8UnormSRGB: 'etc2-rgb8unorm-srgb', + ETC2RGB8A1Unorm: 'etc2-rgb8a1unorm', + ETC2RGB8A1UnormSRGB: 'etc2-rgb8a1unorm-srgb', + ETC2RGBA8Unorm: 'etc2-rgba8unorm', + ETC2RGBA8UnormSRGB: 'etc2-rgba8unorm-srgb', + EACR11Unorm: 'eac-r11unorm', + EACR11Snorm: 'eac-r11snorm', + EACRG11Unorm: 'eac-rg11unorm', + EACRG11Snorm: 'eac-rg11snorm', + + // ASTC compressed formats usable if 'texture-compression-astc' is both + // supported by the device/user agent and enabled in requestDevice. + + ASTC4x4Unorm: 'astc-4x4-unorm', + ASTC4x4UnormSRGB: 'astc-4x4-unorm-srgb', + ASTC5x4Unorm: 'astc-5x4-unorm', + ASTC5x4UnormSRGB: 'astc-5x4-unorm-srgb', + ASTC5x5Unorm: 'astc-5x5-unorm', + ASTC5x5UnormSRGB: 'astc-5x5-unorm-srgb', + ASTC6x5Unorm: 'astc-6x5-unorm', + ASTC6x5UnormSRGB: 'astc-6x5-unorm-srgb', + ASTC6x6Unorm: 'astc-6x6-unorm', + ASTC6x6UnormSRGB: 'astc-6x6-unorm-srgb', + ASTC8x5Unorm: 'astc-8x5-unorm', + ASTC8x5UnormSRGB: 'astc-8x5-unorm-srgb', + ASTC8x6Unorm: 'astc-8x6-unorm', + ASTC8x6UnormSRGB: 'astc-8x6-unorm-srgb', + ASTC8x8Unorm: 'astc-8x8-unorm', + ASTC8x8UnormSRGB: 'astc-8x8-unorm-srgb', + ASTC10x5Unorm: 'astc-10x5-unorm', + ASTC10x5UnormSRGB: 'astc-10x5-unorm-srgb', + ASTC10x6Unorm: 'astc-10x6-unorm', + ASTC10x6UnormSRGB: 'astc-10x6-unorm-srgb', + ASTC10x8Unorm: 'astc-10x8-unorm', + ASTC10x8UnormSRGB: 'astc-10x8-unorm-srgb', + ASTC10x10Unorm: 'astc-10x10-unorm', + ASTC10x10UnormSRGB: 'astc-10x10-unorm-srgb', + ASTC12x10Unorm: 'astc-12x10-unorm', + ASTC12x10UnormSRGB: 'astc-12x10-unorm-srgb', + ASTC12x12Unorm: 'astc-12x12-unorm', + ASTC12x12UnormSRGB: 'astc-12x12-unorm-srgb', + +}; + +const GPUAddressMode = { + ClampToEdge: 'clamp-to-edge', + Repeat: 'repeat', + MirrorRepeat: 'mirror-repeat' +}; + +const GPUFilterMode = { + Linear: 'linear', + Nearest: 'nearest' +}; + +const GPUBlendFactor = { + Zero: 'zero', + One: 'one', + Src: 'src', + OneMinusSrc: 'one-minus-src', + SrcAlpha: 'src-alpha', + OneMinusSrcAlpha: 'one-minus-src-alpha', + Dst: 'dst', + OneMinusDst: 'one-minus-dst', + DstAlpha: 'dst-alpha', + OneMinusDstAlpha: 'one-minus-dst-alpha', + SrcAlphaSaturated: 'src-alpha-saturated', + Constant: 'constant', + OneMinusConstant: 'one-minus-constant' +}; + +const GPUBlendOperation = { + Add: 'add', + Subtract: 'subtract', + ReverseSubtract: 'reverse-subtract', + Min: 'min', + Max: 'max' +}; + +const GPUColorWriteFlags = { + None: 0, + All: 0xF +}; + +const GPUStencilOperation = { + Keep: 'keep', + Zero: 'zero', + Replace: 'replace', + Invert: 'invert', + IncrementClamp: 'increment-clamp', + DecrementClamp: 'decrement-clamp', + IncrementWrap: 'increment-wrap', + DecrementWrap: 'decrement-wrap' +}; + +const GPUBufferBindingType = { + Storage: 'storage', + ReadOnlyStorage: 'read-only-storage' +}; + +const GPUStorageTextureAccess = { + WriteOnly: 'write-only', + ReadOnly: 'read-only', + ReadWrite: 'read-write', +}; + +const GPUSamplerBindingType = { + NonFiltering: 'non-filtering', + Comparison: 'comparison' +}; + +const GPUTextureSampleType = { + Float: 'float', + UnfilterableFloat: 'unfilterable-float', + Depth: 'depth', + SInt: 'sint', + UInt: 'uint' +}; + +const GPUTextureDimension = { + TwoD: '2d', + ThreeD: '3d' +}; + +const GPUTextureViewDimension = { + TwoD: '2d', + TwoDArray: '2d-array', + Cube: 'cube', + ThreeD: '3d' +}; + +const GPUTextureAspect = { + All: 'all' }; + +const GPUInputStepMode = { + Vertex: 'vertex', + Instance: 'instance' +}; + +const GPUFeatureName = { + DepthClipControl: 'depth-clip-control', + Depth32FloatStencil8: 'depth32float-stencil8', + TextureCompressionBC: 'texture-compression-bc', + TextureCompressionETC2: 'texture-compression-etc2', + TextureCompressionASTC: 'texture-compression-astc', + TimestampQuery: 'timestamp-query', + IndirectFirstInstance: 'indirect-first-instance', + ShaderF16: 'shader-f16', + RG11B10UFloat: 'rg11b10ufloat-renderable', + BGRA8UNormStorage: 'bgra8unorm-storage', + Float32Filterable: 'float32-filterable', + ClipDistances: 'clip-distances', + DualSourceBlending: 'dual-source-blending', + Subgroups: 'subgroups' +}; + +/** + * Represents a sampler binding type. + * + * @private + * @augments Binding + */ +class Sampler extends Binding { + + /** + * Constructs a new sampler. + * + * @param {string} name - The samplers's name. + * @param {?Texture} texture - The texture this binding is referring to. + */ + constructor( name, texture ) { + + super( name ); + + /** + * The texture the sampler is referring to. + * + * @type {?Texture} + */ + this.texture = texture; + + /** + * The binding's version. + * + * @type {number} + */ + this.version = texture ? texture.version : 0; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSampler = true; + + } + +} + +/** + * A special form of sampler binding type. + * It's texture value is managed by a node object. + * + * @private + * @augments Sampler + */ +class NodeSampler extends Sampler { + + /** + * Constructs a new node-based sampler. + * + * @param {string} name - The samplers's name. + * @param {TextureNode} textureNode - The texture node. + * @param {UniformGroupNode} groupNode - The uniform group node. + */ + constructor( name, textureNode, groupNode ) { + + super( name, textureNode ? textureNode.value : null ); + + /** + * The texture node. + * + * @type {TextureNode} + */ + this.textureNode = textureNode; + + /** + * The uniform group node. + * + * @type {UniformGroupNode} + */ + this.groupNode = groupNode; + + } + + /** + * Updates the texture value of this sampler. + */ + update() { + + this.texture = this.textureNode.value; + + } + +} + +/** + * Represents a storage buffer binding type. + * + * @private + * @augments Buffer + */ +class StorageBuffer extends Buffer { + + /** + * Constructs a new uniform buffer. + * + * @param {string} name - The buffer's name. + * @param {BufferAttribute} attribute - The buffer attribute. + */ + constructor( name, attribute ) { + + super( name, attribute ? attribute.array : null ); + + /** + * This flag can be used for type testing. + * + * @type {BufferAttribute} + */ + this.attribute = attribute; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageBuffer = true; + + } + +} + +let _id = 0; + +/** + * A special form of storage buffer binding type. + * It's buffer value is managed by a node object. + * + * @private + * @augments StorageBuffer + */ +class NodeStorageBuffer extends StorageBuffer { + + /** + * Constructs a new node-based storage buffer. + * + * @param {StorageBufferNode} nodeUniform - The storage buffer node. + * @param {UniformGroupNode} groupNode - The uniform group node. + */ + constructor( nodeUniform, groupNode ) { + + super( 'StorageBuffer_' + _id ++, nodeUniform ? nodeUniform.value : null ); + + /** + * The node uniform. + * + * @type {StorageBufferNode} + */ + this.nodeUniform = nodeUniform; + + /** + * The access type. + * + * @type {string} + */ + this.access = nodeUniform ? nodeUniform.access : NodeAccess.READ_WRITE; + + /** + * The uniform group node. + * + * @type {UniformGroupNode} + */ + this.groupNode = groupNode; + + } + + /** + * The storage buffer. + * + * @type {BufferAttribute} + */ + get buffer() { + + return this.nodeUniform.value; + + } + +} + +/** + * A WebGPU backend utility module used by {@link WebGPUTextureUtils}. + * + * @private + */ +class WebGPUTexturePassUtils extends DataMap { + + /** + * Constructs a new utility object. + * + * @param {GPUDevice} device - The WebGPU device. + */ + constructor( device ) { + + super(); + + /** + * The WebGPU device. + * + * @type {GPUDevice} + */ + this.device = device; + + const mipmapVertexSource = ` +struct VarysStruct { + @builtin( position ) Position: vec4, + @location( 0 ) vTex : vec2 +}; + +@vertex +fn main( @builtin( vertex_index ) vertexIndex : u32 ) -> VarysStruct { + + var Varys : VarysStruct; + + var pos = array< vec2, 4 >( + vec2( -1.0, 1.0 ), + vec2( 1.0, 1.0 ), + vec2( -1.0, -1.0 ), + vec2( 1.0, -1.0 ) + ); + + var tex = array< vec2, 4 >( + vec2( 0.0, 0.0 ), + vec2( 1.0, 0.0 ), + vec2( 0.0, 1.0 ), + vec2( 1.0, 1.0 ) + ); + + Varys.vTex = tex[ vertexIndex ]; + Varys.Position = vec4( pos[ vertexIndex ], 0.0, 1.0 ); + + return Varys; + +} +`; + + const mipmapFragmentSource = ` +@group( 0 ) @binding( 0 ) +var imgSampler : sampler; + +@group( 0 ) @binding( 1 ) +var img : texture_2d; + +@fragment +fn main( @location( 0 ) vTex : vec2 ) -> @location( 0 ) vec4 { + + return textureSample( img, imgSampler, vTex ); + +} +`; + + const flipYFragmentSource = ` +@group( 0 ) @binding( 0 ) +var imgSampler : sampler; + +@group( 0 ) @binding( 1 ) +var img : texture_2d; + +@fragment +fn main( @location( 0 ) vTex : vec2 ) -> @location( 0 ) vec4 { + + return textureSample( img, imgSampler, vec2( vTex.x, 1.0 - vTex.y ) ); + +} +`; + + /** + * The mipmap GPU sampler. + * + * @type {GPUSampler} + */ + this.mipmapSampler = device.createSampler( { minFilter: GPUFilterMode.Linear } ); + + /** + * The flipY GPU sampler. + * + * @type {GPUSampler} + */ + this.flipYSampler = device.createSampler( { minFilter: GPUFilterMode.Nearest } ); //@TODO?: Consider using textureLoad() + + /** + * A cache for GPU render pipelines used for copy/transfer passes. + * Every texture format requires a unique pipeline. + * + * @type {Object} + */ + this.transferPipelines = {}; + + /** + * A cache for GPU render pipelines used for flipY passes. + * Every texture format requires a unique pipeline. + * + * @type {Object} + */ + this.flipYPipelines = {}; + + /** + * The mipmap vertex shader module. + * + * @type {GPUShaderModule} + */ + this.mipmapVertexShaderModule = device.createShaderModule( { + label: 'mipmapVertex', + code: mipmapVertexSource + } ); + + /** + * The mipmap fragment shader module. + * + * @type {GPUShaderModule} + */ + this.mipmapFragmentShaderModule = device.createShaderModule( { + label: 'mipmapFragment', + code: mipmapFragmentSource + } ); + + /** + * The flipY fragment shader module. + * + * @type {GPUShaderModule} + */ + this.flipYFragmentShaderModule = device.createShaderModule( { + label: 'flipYFragment', + code: flipYFragmentSource + } ); + + } + + /** + * Returns a render pipeline for the internal copy render pass. The pass + * requires a unique render pipeline for each texture format. + * + * @param {string} format - The GPU texture format + * @return {GPURenderPipeline} The GPU render pipeline. + */ + getTransferPipeline( format ) { + + let pipeline = this.transferPipelines[ format ]; + + if ( pipeline === undefined ) { + + pipeline = this.device.createRenderPipeline( { + label: `mipmap-${ format }`, + vertex: { + module: this.mipmapVertexShaderModule, + entryPoint: 'main' + }, + fragment: { + module: this.mipmapFragmentShaderModule, + entryPoint: 'main', + targets: [ { format } ] + }, + primitive: { + topology: GPUPrimitiveTopology.TriangleStrip, + stripIndexFormat: GPUIndexFormat.Uint32 + }, + layout: 'auto' + } ); + + this.transferPipelines[ format ] = pipeline; + + } + + return pipeline; + + } + + /** + * Returns a render pipeline for the flipY render pass. The pass + * requires a unique render pipeline for each texture format. + * + * @param {string} format - The GPU texture format + * @return {GPURenderPipeline} The GPU render pipeline. + */ + getFlipYPipeline( format ) { + + let pipeline = this.flipYPipelines[ format ]; + + if ( pipeline === undefined ) { + + pipeline = this.device.createRenderPipeline( { + label: `flipY-${ format }`, + vertex: { + module: this.mipmapVertexShaderModule, + entryPoint: 'main' + }, + fragment: { + module: this.flipYFragmentShaderModule, + entryPoint: 'main', + targets: [ { format } ] + }, + primitive: { + topology: GPUPrimitiveTopology.TriangleStrip, + stripIndexFormat: GPUIndexFormat.Uint32 + }, + layout: 'auto' + } ); + + this.flipYPipelines[ format ] = pipeline; + + } + + return pipeline; + + } + + /** + * Flip the contents of the given GPU texture along its vertical axis. + * + * @param {GPUTexture} textureGPU - The GPU texture object. + * @param {Object} textureGPUDescriptor - The texture descriptor. + * @param {number} [baseArrayLayer=0] - The index of the first array layer accessible to the texture view. + */ + flipY( textureGPU, textureGPUDescriptor, baseArrayLayer = 0 ) { + + const format = textureGPUDescriptor.format; + const { width, height } = textureGPUDescriptor.size; + + const transferPipeline = this.getTransferPipeline( format ); + const flipYPipeline = this.getFlipYPipeline( format ); + + const tempTexture = this.device.createTexture( { + size: { width, height, depthOrArrayLayers: 1 }, + format, + usage: GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.TEXTURE_BINDING + } ); + + const srcView = textureGPU.createView( { + baseMipLevel: 0, + mipLevelCount: 1, + dimension: GPUTextureViewDimension.TwoD, + baseArrayLayer + } ); + + const dstView = tempTexture.createView( { + baseMipLevel: 0, + mipLevelCount: 1, + dimension: GPUTextureViewDimension.TwoD, + baseArrayLayer: 0 + } ); + + const commandEncoder = this.device.createCommandEncoder( {} ); + + const pass = ( pipeline, sourceView, destinationView ) => { + + const bindGroupLayout = pipeline.getBindGroupLayout( 0 ); // @TODO: Consider making this static. + + const bindGroup = this.device.createBindGroup( { + layout: bindGroupLayout, + entries: [ { + binding: 0, + resource: this.flipYSampler + }, { + binding: 1, + resource: sourceView + } ] + } ); + + const passEncoder = commandEncoder.beginRenderPass( { + colorAttachments: [ { + view: destinationView, + loadOp: GPULoadOp.Clear, + storeOp: GPUStoreOp.Store, + clearValue: [ 0, 0, 0, 0 ] + } ] + } ); + + passEncoder.setPipeline( pipeline ); + passEncoder.setBindGroup( 0, bindGroup ); + passEncoder.draw( 4, 1, 0, 0 ); + passEncoder.end(); + + }; + + pass( transferPipeline, srcView, dstView ); + pass( flipYPipeline, dstView, srcView ); + + this.device.queue.submit( [ commandEncoder.finish() ] ); + + tempTexture.destroy(); + + } + + /** + * Generates mipmaps for the given GPU texture. + * + * @param {GPUTexture} textureGPU - The GPU texture object. + * @param {Object} textureGPUDescriptor - The texture descriptor. + * @param {number} [baseArrayLayer=0] - The index of the first array layer accessible to the texture view. + */ + generateMipmaps( textureGPU, textureGPUDescriptor, baseArrayLayer = 0 ) { + + const textureData = this.get( textureGPU ); + + if ( textureData.useCount === undefined ) { + + textureData.useCount = 0; + textureData.layers = []; + + } + + const passes = textureData.layers[ baseArrayLayer ] || this._mipmapCreateBundles( textureGPU, textureGPUDescriptor, baseArrayLayer ); + + const commandEncoder = this.device.createCommandEncoder( {} ); + + this._mipmapRunBundles( commandEncoder, passes ); + + this.device.queue.submit( [ commandEncoder.finish() ] ); + + if ( textureData.useCount !== 0 ) textureData.layers[ baseArrayLayer ] = passes; + + textureData.useCount ++; + + } + + /** + * Since multiple copy render passes are required to generate mipmaps, the passes + * are managed as render bundles to improve performance. + * + * @param {GPUTexture} textureGPU - The GPU texture object. + * @param {Object} textureGPUDescriptor - The texture descriptor. + * @param {number} baseArrayLayer - The index of the first array layer accessible to the texture view. + * @return {Array} An array of render bundles. + */ + _mipmapCreateBundles( textureGPU, textureGPUDescriptor, baseArrayLayer ) { + + const pipeline = this.getTransferPipeline( textureGPUDescriptor.format ); + + const bindGroupLayout = pipeline.getBindGroupLayout( 0 ); // @TODO: Consider making this static. + + let srcView = textureGPU.createView( { + baseMipLevel: 0, + mipLevelCount: 1, + dimension: GPUTextureViewDimension.TwoD, + baseArrayLayer + } ); + + const passes = []; + + for ( let i = 1; i < textureGPUDescriptor.mipLevelCount; i ++ ) { + + const bindGroup = this.device.createBindGroup( { + layout: bindGroupLayout, + entries: [ { + binding: 0, + resource: this.mipmapSampler + }, { + binding: 1, + resource: srcView + } ] + } ); + + const dstView = textureGPU.createView( { + baseMipLevel: i, + mipLevelCount: 1, + dimension: GPUTextureViewDimension.TwoD, + baseArrayLayer + } ); + + const passDescriptor = { + colorAttachments: [ { + view: dstView, + loadOp: GPULoadOp.Clear, + storeOp: GPUStoreOp.Store, + clearValue: [ 0, 0, 0, 0 ] + } ] + }; + + const passEncoder = this.device.createRenderBundleEncoder( { + colorFormats: [ textureGPUDescriptor.format ] + } ); + + passEncoder.setPipeline( pipeline ); + passEncoder.setBindGroup( 0, bindGroup ); + passEncoder.draw( 4, 1, 0, 0 ); + + passes.push( { + renderBundles: [ passEncoder.finish() ], + passDescriptor + } ); + + srcView = dstView; + + } + + return passes; + + } + + /** + * Executes the render bundles. + * + * @param {GPUCommandEncoder} commandEncoder - The GPU command encoder. + * @param {Array} passes - An array of render bundles. + */ + _mipmapRunBundles( commandEncoder, passes ) { + + const levels = passes.length; + + for ( let i = 0; i < levels; i ++ ) { + + const pass = passes[ i ]; + + const passEncoder = commandEncoder.beginRenderPass( pass.passDescriptor ); + + passEncoder.executeBundles( pass.renderBundles ); + + passEncoder.end(); + + } + + } + +} + +const _compareToWebGPU = { + [ NeverCompare ]: 'never', + [ LessCompare ]: 'less', + [ EqualCompare ]: 'equal', + [ LessEqualCompare ]: 'less-equal', + [ GreaterCompare ]: 'greater', + [ GreaterEqualCompare ]: 'greater-equal', + [ AlwaysCompare ]: 'always', + [ NotEqualCompare ]: 'not-equal' +}; + +const _flipMap = [ 0, 1, 3, 2, 4, 5 ]; + +/** + * A WebGPU backend utility module for managing textures. + * + * @private + */ +class WebGPUTextureUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGPUBackend} backend - The WebGPU backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGPU backend. + * + * @type {WebGPUBackend} + */ + this.backend = backend; + + /** + * A reference to the pass utils. + * + * @type {?WebGPUTexturePassUtils} + * @default null + */ + this._passUtils = null; + + /** + * A dictionary for managing default textures. The key + * is the texture format, the value the texture object. + * + * @type {Object} + */ + this.defaultTexture = {}; + + /** + * A dictionary for managing default cube textures. The key + * is the texture format, the value the texture object. + * + * @type {Object} + */ + this.defaultCubeTexture = {}; + + /** + * A default video frame. + * + * @type {?VideoFrame} + * @default null + */ + this.defaultVideoFrame = null; + + /** + * Represents the color attachment of the default framebuffer. + * + * @type {?GPUTexture} + * @default null + */ + this.colorBuffer = null; + + /** + * Represents the depth attachment of the default framebuffer. + * + * @type {DepthTexture} + */ + this.depthTexture = new DepthTexture(); + this.depthTexture.name = 'depthBuffer'; + + } + + /** + * Creates a GPU sampler for the given texture. + * + * @param {Texture} texture - The texture to create the sampler for. + */ + createSampler( texture ) { + + const backend = this.backend; + const device = backend.device; + + const textureGPU = backend.get( texture ); + + const samplerDescriptorGPU = { + addressModeU: this._convertAddressMode( texture.wrapS ), + addressModeV: this._convertAddressMode( texture.wrapT ), + addressModeW: this._convertAddressMode( texture.wrapR ), + magFilter: this._convertFilterMode( texture.magFilter ), + minFilter: this._convertFilterMode( texture.minFilter ), + mipmapFilter: this._convertFilterMode( texture.minFilter ), + maxAnisotropy: 1 + }; + + // anisotropy can only be used when all filter modes are set to linear. + + if ( samplerDescriptorGPU.magFilter === GPUFilterMode.Linear && samplerDescriptorGPU.minFilter === GPUFilterMode.Linear && samplerDescriptorGPU.mipmapFilter === GPUFilterMode.Linear ) { + + samplerDescriptorGPU.maxAnisotropy = texture.anisotropy; + + } + + if ( texture.isDepthTexture && texture.compareFunction !== null ) { + + samplerDescriptorGPU.compare = _compareToWebGPU[ texture.compareFunction ]; + + } + + textureGPU.sampler = device.createSampler( samplerDescriptorGPU ); + + } + + /** + * Creates a default texture for the given texture that can be used + * as a placeholder until the actual texture is ready for usage. + * + * @param {Texture} texture - The texture to create a default texture for. + */ + createDefaultTexture( texture ) { + + let textureGPU; + + const format = getFormat( texture ); + + if ( texture.isCubeTexture ) { + + textureGPU = this._getDefaultCubeTextureGPU( format ); + + } else if ( texture.isVideoTexture ) { + + this.backend.get( texture ).externalTexture = this._getDefaultVideoFrame(); + + } else { + + textureGPU = this._getDefaultTextureGPU( format ); + + } + + this.backend.get( texture ).texture = textureGPU; + + } + + /** + * Defines a texture on the GPU for the given texture object. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + createTexture( texture, options = {} ) { + + const backend = this.backend; + const textureData = backend.get( texture ); + + if ( textureData.initialized ) { + + throw new Error( 'WebGPUTextureUtils: Texture already initialized.' ); + + } + + if ( options.needsMipmaps === undefined ) options.needsMipmaps = false; + if ( options.levels === undefined ) options.levels = 1; + if ( options.depth === undefined ) options.depth = 1; + + const { width, height, depth, levels } = options; + + if ( texture.isFramebufferTexture ) { + + if ( options.renderTarget ) { + + options.format = this.backend.utils.getCurrentColorFormat( options.renderTarget ); + + } else { + + options.format = this.backend.utils.getPreferredCanvasFormat(); + + } + + } + + const dimension = this._getDimension( texture ); + const format = texture.internalFormat || options.format || getFormat( texture, backend.device ); + + textureData.format = format; + + const { samples, primarySamples, isMSAA } = backend.utils.getTextureSampleData( texture ); + + let usage = GPUTextureUsage.TEXTURE_BINDING | GPUTextureUsage.COPY_DST | GPUTextureUsage.COPY_SRC; + + if ( texture.isStorageTexture === true ) { + + usage |= GPUTextureUsage.STORAGE_BINDING; + + } + + if ( texture.isCompressedTexture !== true && texture.isCompressedArrayTexture !== true ) { + + usage |= GPUTextureUsage.RENDER_ATTACHMENT; + + } + + const textureDescriptorGPU = { + label: texture.name, + size: { + width: width, + height: height, + depthOrArrayLayers: depth, + }, + mipLevelCount: levels, + sampleCount: primarySamples, + dimension: dimension, + format: format, + usage: usage + }; + + // texture creation + + if ( texture.isVideoTexture ) { + + const video = texture.source.data; + const videoFrame = new VideoFrame( video ); + + textureDescriptorGPU.size.width = videoFrame.displayWidth; + textureDescriptorGPU.size.height = videoFrame.displayHeight; + + videoFrame.close(); + + textureData.externalTexture = video; + + } else { + + if ( format === undefined ) { + + console.warn( 'WebGPURenderer: Texture format not supported.' ); + + this.createDefaultTexture( texture ); + return; + + } + + if ( texture.isCubeTexture ) { + + textureDescriptorGPU.textureBindingViewDimension = GPUTextureViewDimension.Cube; + + } + + textureData.texture = backend.device.createTexture( textureDescriptorGPU ); + + } + + if ( isMSAA ) { + + const msaaTextureDescriptorGPU = Object.assign( {}, textureDescriptorGPU ); + + msaaTextureDescriptorGPU.label = msaaTextureDescriptorGPU.label + '-msaa'; + msaaTextureDescriptorGPU.sampleCount = samples; + + textureData.msaaTexture = backend.device.createTexture( msaaTextureDescriptorGPU ); + + } + + textureData.initialized = true; + + textureData.textureDescriptorGPU = textureDescriptorGPU; + + } + + /** + * Destroys the GPU data for the given texture object. + * + * @param {Texture} texture - The texture. + */ + destroyTexture( texture ) { + + const backend = this.backend; + const textureData = backend.get( texture ); + + if ( textureData.texture !== undefined ) textureData.texture.destroy(); + + if ( textureData.msaaTexture !== undefined ) textureData.msaaTexture.destroy(); + + backend.delete( texture ); + + } + + /** + * Destroys the GPU sampler for the given texture. + * + * @param {Texture} texture - The texture to destroy the sampler for. + */ + destroySampler( texture ) { + + const backend = this.backend; + const textureData = backend.get( texture ); + + delete textureData.sampler; + + } + + /** + * Generates mipmaps for the given texture. + * + * @param {Texture} texture - The texture. + */ + generateMipmaps( texture ) { + + const textureData = this.backend.get( texture ); + + if ( texture.isCubeTexture ) { + + for ( let i = 0; i < 6; i ++ ) { + + this._generateMipmaps( textureData.texture, textureData.textureDescriptorGPU, i ); + + } + + } else { + + const depth = texture.image.depth || 1; + + for ( let i = 0; i < depth; i ++ ) { + + this._generateMipmaps( textureData.texture, textureData.textureDescriptorGPU, i ); + + } + + } + + } + + /** + * Returns the color buffer representing the color + * attachment of the default framebuffer. + * + * @return {GPUTexture} The color buffer. + */ + getColorBuffer() { + + if ( this.colorBuffer ) this.colorBuffer.destroy(); + + const backend = this.backend; + const { width, height } = backend.getDrawingBufferSize(); + + this.colorBuffer = backend.device.createTexture( { + label: 'colorBuffer', + size: { + width: width, + height: height, + depthOrArrayLayers: 1 + }, + sampleCount: backend.utils.getSampleCount( backend.renderer.samples ), + format: backend.utils.getPreferredCanvasFormat(), + usage: GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.COPY_SRC + } ); + + return this.colorBuffer; + + } + + /** + * Returns the depth buffer representing the depth + * attachment of the default framebuffer. + * + * @param {boolean} [depth=true] - Whether depth is enabled or not. + * @param {boolean} [stencil=false] - Whether stencil is enabled or not. + * @return {GPUTexture} The depth buffer. + */ + getDepthBuffer( depth = true, stencil = false ) { + + const backend = this.backend; + const { width, height } = backend.getDrawingBufferSize(); + + const depthTexture = this.depthTexture; + const depthTextureGPU = backend.get( depthTexture ).texture; + + let format, type; + + if ( stencil ) { + + format = DepthStencilFormat; + type = UnsignedInt248Type; + + } else if ( depth ) { + + format = DepthFormat; + type = UnsignedIntType; + + } + + if ( depthTextureGPU !== undefined ) { + + if ( depthTexture.image.width === width && depthTexture.image.height === height && depthTexture.format === format && depthTexture.type === type ) { + + return depthTextureGPU; + + } + + this.destroyTexture( depthTexture ); + + } + + depthTexture.name = 'depthBuffer'; + depthTexture.format = format; + depthTexture.type = type; + depthTexture.image.width = width; + depthTexture.image.height = height; + + this.createTexture( depthTexture, { width, height } ); + + return backend.get( depthTexture ).texture; + + } + + /** + * Uploads the updated texture data to the GPU. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + updateTexture( texture, options ) { + + const textureData = this.backend.get( texture ); + + const { textureDescriptorGPU } = textureData; + + if ( texture.isRenderTargetTexture || ( textureDescriptorGPU === undefined /* unsupported texture format */ ) ) + return; + + // transfer texture data + + if ( texture.isDataTexture ) { + + this._copyBufferToTexture( options.image, textureData.texture, textureDescriptorGPU, 0, texture.flipY ); + + } else if ( texture.isArrayTexture || texture.isDataArrayTexture || texture.isData3DTexture ) { + + for ( let i = 0; i < options.image.depth; i ++ ) { + + this._copyBufferToTexture( options.image, textureData.texture, textureDescriptorGPU, i, texture.flipY, i ); + + } + + } else if ( texture.isCompressedTexture || texture.isCompressedArrayTexture ) { + + this._copyCompressedBufferToTexture( texture.mipmaps, textureData.texture, textureDescriptorGPU ); + + } else if ( texture.isCubeTexture ) { + + this._copyCubeMapToTexture( options.images, textureData.texture, textureDescriptorGPU, texture.flipY, texture.premultiplyAlpha ); + + } else if ( texture.isVideoTexture ) { + + const video = texture.source.data; + + textureData.externalTexture = video; + + } else { + + this._copyImageToTexture( options.image, textureData.texture, textureDescriptorGPU, 0, texture.flipY, texture.premultiplyAlpha ); + + } + + // + + textureData.version = texture.version; + + if ( texture.onUpdate ) texture.onUpdate( texture ); + + } + + /** + * Returns texture data as a typed array. + * + * @async + * @param {Texture} texture - The texture to copy. + * @param {number} x - The x coordinate of the copy origin. + * @param {number} y - The y coordinate of the copy origin. + * @param {number} width - The width of the copy. + * @param {number} height - The height of the copy. + * @param {number} faceIndex - The face index. + * @return {Promise} A Promise that resolves with a typed array when the copy operation has finished. + */ + async copyTextureToBuffer( texture, x, y, width, height, faceIndex ) { + + const device = this.backend.device; + + const textureData = this.backend.get( texture ); + const textureGPU = textureData.texture; + const format = textureData.textureDescriptorGPU.format; + const bytesPerTexel = this._getBytesPerTexel( format ); + + let bytesPerRow = width * bytesPerTexel; + bytesPerRow = Math.ceil( bytesPerRow / 256 ) * 256; // Align to 256 bytes + + const readBuffer = device.createBuffer( + { + size: width * height * bytesPerTexel, + usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ + } + ); + + const encoder = device.createCommandEncoder(); + + encoder.copyTextureToBuffer( + { + texture: textureGPU, + origin: { x, y, z: faceIndex }, + }, + { + buffer: readBuffer, + bytesPerRow: bytesPerRow + }, + { + width: width, + height: height + } + + ); + + const typedArrayType = this._getTypedArrayType( format ); + + device.queue.submit( [ encoder.finish() ] ); + + await readBuffer.mapAsync( GPUMapMode.READ ); + + const buffer = readBuffer.getMappedRange(); + + return new typedArrayType( buffer ); + + } + + /** + * Returns the default GPU texture for the given format. + * + * @private + * @param {string} format - The GPU format. + * @return {GPUTexture} The GPU texture. + */ + _getDefaultTextureGPU( format ) { + + let defaultTexture = this.defaultTexture[ format ]; + + if ( defaultTexture === undefined ) { + + const texture = new Texture(); + texture.minFilter = NearestFilter; + texture.magFilter = NearestFilter; + + this.createTexture( texture, { width: 1, height: 1, format } ); + + this.defaultTexture[ format ] = defaultTexture = texture; + + } + + return this.backend.get( defaultTexture ).texture; + + } + + /** + * Returns the default GPU cube texture for the given format. + * + * @private + * @param {string} format - The GPU format. + * @return {GPUTexture} The GPU texture. + */ + _getDefaultCubeTextureGPU( format ) { + + let defaultCubeTexture = this.defaultTexture[ format ]; + + if ( defaultCubeTexture === undefined ) { + + const texture = new CubeTexture(); + texture.minFilter = NearestFilter; + texture.magFilter = NearestFilter; + + this.createTexture( texture, { width: 1, height: 1, depth: 6 } ); + + this.defaultCubeTexture[ format ] = defaultCubeTexture = texture; + + } + + return this.backend.get( defaultCubeTexture ).texture; + + } + + /** + * Returns the default video frame used as default data in context of video textures. + * + * @private + * @return {VideoFrame} The video frame. + */ + _getDefaultVideoFrame() { + + let defaultVideoFrame = this.defaultVideoFrame; + + if ( defaultVideoFrame === null ) { + + const init = { + timestamp: 0, + codedWidth: 1, + codedHeight: 1, + format: 'RGBA', + }; + + this.defaultVideoFrame = defaultVideoFrame = new VideoFrame( new Uint8Array( [ 0, 0, 0, 0xff ] ), init ); + + } + + return defaultVideoFrame; + + } + + /** + * Uploads cube texture image data to the GPU memory. + * + * @private + * @param {Array} images - The cube image data. + * @param {GPUTexture} textureGPU - The GPU texture. + * @param {Object} textureDescriptorGPU - The GPU texture descriptor. + * @param {boolean} flipY - Whether to flip texture data along their vertical axis or not. + * @param {boolean} premultiplyAlpha - Whether the texture should have its RGB channels premultiplied by the alpha channel or not. + */ + _copyCubeMapToTexture( images, textureGPU, textureDescriptorGPU, flipY, premultiplyAlpha ) { + + for ( let i = 0; i < 6; i ++ ) { + + const image = images[ i ]; + + const flipIndex = flipY === true ? _flipMap[ i ] : i; + + if ( image.isDataTexture ) { + + this._copyBufferToTexture( image.image, textureGPU, textureDescriptorGPU, flipIndex, flipY ); + + } else { + + this._copyImageToTexture( image, textureGPU, textureDescriptorGPU, flipIndex, flipY, premultiplyAlpha ); + + } + + } + + } + + /** + * Uploads texture image data to the GPU memory. + * + * @private + * @param {HTMLImageElement|ImageBitmap|HTMLCanvasElement} image - The image data. + * @param {GPUTexture} textureGPU - The GPU texture. + * @param {Object} textureDescriptorGPU - The GPU texture descriptor. + * @param {number} originDepth - The origin depth. + * @param {boolean} flipY - Whether to flip texture data along their vertical axis or not. + * @param {boolean} premultiplyAlpha - Whether the texture should have its RGB channels premultiplied by the alpha channel or not. + */ + _copyImageToTexture( image, textureGPU, textureDescriptorGPU, originDepth, flipY, premultiplyAlpha ) { + + const device = this.backend.device; + + device.queue.copyExternalImageToTexture( + { + source: image, + flipY: flipY + }, { + texture: textureGPU, + mipLevel: 0, + origin: { x: 0, y: 0, z: originDepth }, + premultipliedAlpha: premultiplyAlpha + }, { + width: image.width, + height: image.height, + depthOrArrayLayers: 1 + } + ); + + } + + /** + * Returns the pass utils singleton. + * + * @private + * @return {WebGPUTexturePassUtils} The utils instance. + */ + _getPassUtils() { + + let passUtils = this._passUtils; + + if ( passUtils === null ) { + + this._passUtils = passUtils = new WebGPUTexturePassUtils( this.backend.device ); + + } + + return passUtils; + + } + + /** + * Generates mipmaps for the given GPU texture. + * + * @private + * @param {GPUTexture} textureGPU - The GPU texture object. + * @param {Object} textureDescriptorGPU - The texture descriptor. + * @param {number} [baseArrayLayer=0] - The index of the first array layer accessible to the texture view. + */ + _generateMipmaps( textureGPU, textureDescriptorGPU, baseArrayLayer = 0 ) { + + this._getPassUtils().generateMipmaps( textureGPU, textureDescriptorGPU, baseArrayLayer ); + + } + + /** + * Flip the contents of the given GPU texture along its vertical axis. + * + * @private + * @param {GPUTexture} textureGPU - The GPU texture object. + * @param {Object} textureDescriptorGPU - The texture descriptor. + * @param {number} [originDepth=0] - The origin depth. + */ + _flipY( textureGPU, textureDescriptorGPU, originDepth = 0 ) { + + this._getPassUtils().flipY( textureGPU, textureDescriptorGPU, originDepth ); + + } + + /** + * Uploads texture buffer data to the GPU memory. + * + * @private + * @param {Object} image - An object defining the image buffer data. + * @param {GPUTexture} textureGPU - The GPU texture. + * @param {Object} textureDescriptorGPU - The GPU texture descriptor. + * @param {number} originDepth - The origin depth. + * @param {boolean} flipY - Whether to flip texture data along their vertical axis or not. + * @param {number} [depth=0] - TODO. + */ + _copyBufferToTexture( image, textureGPU, textureDescriptorGPU, originDepth, flipY, depth = 0 ) { + + // @TODO: Consider to use GPUCommandEncoder.copyBufferToTexture() + // @TODO: Consider to support valid buffer layouts with other formats like RGB + + const device = this.backend.device; + + const data = image.data; + + const bytesPerTexel = this._getBytesPerTexel( textureDescriptorGPU.format ); + const bytesPerRow = image.width * bytesPerTexel; + + device.queue.writeTexture( + { + texture: textureGPU, + mipLevel: 0, + origin: { x: 0, y: 0, z: originDepth } + }, + data, + { + offset: image.width * image.height * bytesPerTexel * depth, + bytesPerRow + }, + { + width: image.width, + height: image.height, + depthOrArrayLayers: 1 + } ); + + if ( flipY === true ) { + + this._flipY( textureGPU, textureDescriptorGPU, originDepth ); + + } + + } + + /** + * Uploads compressed texture data to the GPU memory. + * + * @private + * @param {Array} mipmaps - An array with mipmap data. + * @param {GPUTexture} textureGPU - The GPU texture. + * @param {Object} textureDescriptorGPU - The GPU texture descriptor. + */ + _copyCompressedBufferToTexture( mipmaps, textureGPU, textureDescriptorGPU ) { + + // @TODO: Consider to use GPUCommandEncoder.copyBufferToTexture() + + const device = this.backend.device; + + const blockData = this._getBlockData( textureDescriptorGPU.format ); + const isArrayTexture = textureDescriptorGPU.size.depthOrArrayLayers > 1; + + for ( let i = 0; i < mipmaps.length; i ++ ) { + + const mipmap = mipmaps[ i ]; + + const width = mipmap.width; + const height = mipmap.height; + const depth = isArrayTexture ? textureDescriptorGPU.size.depthOrArrayLayers : 1; + + const bytesPerRow = Math.ceil( width / blockData.width ) * blockData.byteLength; + const bytesPerImage = bytesPerRow * Math.ceil( height / blockData.height ); + + for ( let j = 0; j < depth; j ++ ) { + + device.queue.writeTexture( + { + texture: textureGPU, + mipLevel: i, + origin: { x: 0, y: 0, z: j } + }, + mipmap.data, + { + offset: j * bytesPerImage, + bytesPerRow, + rowsPerImage: Math.ceil( height / blockData.height ) + }, + { + width: Math.ceil( width / blockData.width ) * blockData.width, + height: Math.ceil( height / blockData.height ) * blockData.height, + depthOrArrayLayers: 1 + } + ); + + } + + } + + } + + /** + * This method is only relevant for compressed texture formats. It returns a block + * data descriptor for the given GPU compressed texture format. + * + * @private + * @param {string} format - The GPU compressed texture format. + * @return {Object} The block data descriptor. + */ + _getBlockData( format ) { + + if ( format === GPUTextureFormat.BC1RGBAUnorm || format === GPUTextureFormat.BC1RGBAUnormSRGB ) return { byteLength: 8, width: 4, height: 4 }; // DXT1 + if ( format === GPUTextureFormat.BC2RGBAUnorm || format === GPUTextureFormat.BC2RGBAUnormSRGB ) return { byteLength: 16, width: 4, height: 4 }; // DXT3 + if ( format === GPUTextureFormat.BC3RGBAUnorm || format === GPUTextureFormat.BC3RGBAUnormSRGB ) return { byteLength: 16, width: 4, height: 4 }; // DXT5 + if ( format === GPUTextureFormat.BC4RUnorm || format === GPUTextureFormat.BC4RSnorm ) return { byteLength: 8, width: 4, height: 4 }; // RGTC1 + if ( format === GPUTextureFormat.BC5RGUnorm || format === GPUTextureFormat.BC5RGSnorm ) return { byteLength: 16, width: 4, height: 4 }; // RGTC2 + if ( format === GPUTextureFormat.BC6HRGBUFloat || format === GPUTextureFormat.BC6HRGBFloat ) return { byteLength: 16, width: 4, height: 4 }; // BPTC (float) + if ( format === GPUTextureFormat.BC7RGBAUnorm || format === GPUTextureFormat.BC7RGBAUnormSRGB ) return { byteLength: 16, width: 4, height: 4 }; // BPTC (unorm) + + if ( format === GPUTextureFormat.ETC2RGB8Unorm || format === GPUTextureFormat.ETC2RGB8UnormSRGB ) return { byteLength: 8, width: 4, height: 4 }; + if ( format === GPUTextureFormat.ETC2RGB8A1Unorm || format === GPUTextureFormat.ETC2RGB8A1UnormSRGB ) return { byteLength: 8, width: 4, height: 4 }; + if ( format === GPUTextureFormat.ETC2RGBA8Unorm || format === GPUTextureFormat.ETC2RGBA8UnormSRGB ) return { byteLength: 16, width: 4, height: 4 }; + if ( format === GPUTextureFormat.EACR11Unorm ) return { byteLength: 8, width: 4, height: 4 }; + if ( format === GPUTextureFormat.EACR11Snorm ) return { byteLength: 8, width: 4, height: 4 }; + if ( format === GPUTextureFormat.EACRG11Unorm ) return { byteLength: 16, width: 4, height: 4 }; + if ( format === GPUTextureFormat.EACRG11Snorm ) return { byteLength: 16, width: 4, height: 4 }; + + if ( format === GPUTextureFormat.ASTC4x4Unorm || format === GPUTextureFormat.ASTC4x4UnormSRGB ) return { byteLength: 16, width: 4, height: 4 }; + if ( format === GPUTextureFormat.ASTC5x4Unorm || format === GPUTextureFormat.ASTC5x4UnormSRGB ) return { byteLength: 16, width: 5, height: 4 }; + if ( format === GPUTextureFormat.ASTC5x5Unorm || format === GPUTextureFormat.ASTC5x5UnormSRGB ) return { byteLength: 16, width: 5, height: 5 }; + if ( format === GPUTextureFormat.ASTC6x5Unorm || format === GPUTextureFormat.ASTC6x5UnormSRGB ) return { byteLength: 16, width: 6, height: 5 }; + if ( format === GPUTextureFormat.ASTC6x6Unorm || format === GPUTextureFormat.ASTC6x6UnormSRGB ) return { byteLength: 16, width: 6, height: 6 }; + if ( format === GPUTextureFormat.ASTC8x5Unorm || format === GPUTextureFormat.ASTC8x5UnormSRGB ) return { byteLength: 16, width: 8, height: 5 }; + if ( format === GPUTextureFormat.ASTC8x6Unorm || format === GPUTextureFormat.ASTC8x6UnormSRGB ) return { byteLength: 16, width: 8, height: 6 }; + if ( format === GPUTextureFormat.ASTC8x8Unorm || format === GPUTextureFormat.ASTC8x8UnormSRGB ) return { byteLength: 16, width: 8, height: 8 }; + if ( format === GPUTextureFormat.ASTC10x5Unorm || format === GPUTextureFormat.ASTC10x5UnormSRGB ) return { byteLength: 16, width: 10, height: 5 }; + if ( format === GPUTextureFormat.ASTC10x6Unorm || format === GPUTextureFormat.ASTC10x6UnormSRGB ) return { byteLength: 16, width: 10, height: 6 }; + if ( format === GPUTextureFormat.ASTC10x8Unorm || format === GPUTextureFormat.ASTC10x8UnormSRGB ) return { byteLength: 16, width: 10, height: 8 }; + if ( format === GPUTextureFormat.ASTC10x10Unorm || format === GPUTextureFormat.ASTC10x10UnormSRGB ) return { byteLength: 16, width: 10, height: 10 }; + if ( format === GPUTextureFormat.ASTC12x10Unorm || format === GPUTextureFormat.ASTC12x10UnormSRGB ) return { byteLength: 16, width: 12, height: 10 }; + if ( format === GPUTextureFormat.ASTC12x12Unorm || format === GPUTextureFormat.ASTC12x12UnormSRGB ) return { byteLength: 16, width: 12, height: 12 }; + + } + + /** + * Converts the three.js uv wrapping constants to GPU address mode constants. + * + * @private + * @param {number} value - The three.js constant defining a uv wrapping mode. + * @return {string} The GPU address mode. + */ + _convertAddressMode( value ) { + + let addressMode = GPUAddressMode.ClampToEdge; + + if ( value === RepeatWrapping ) { + + addressMode = GPUAddressMode.Repeat; + + } else if ( value === MirroredRepeatWrapping ) { + + addressMode = GPUAddressMode.MirrorRepeat; + + } + + return addressMode; + + } + + /** + * Converts the three.js filter constants to GPU filter constants. + * + * @private + * @param {number} value - The three.js constant defining a filter mode. + * @return {string} The GPU filter mode. + */ + _convertFilterMode( value ) { + + let filterMode = GPUFilterMode.Linear; + + if ( value === NearestFilter || value === NearestMipmapNearestFilter || value === NearestMipmapLinearFilter ) { + + filterMode = GPUFilterMode.Nearest; + + } + + return filterMode; + + } + + /** + * Returns the bytes-per-texel value for the given GPU texture format. + * + * @private + * @param {string} format - The GPU texture format. + * @return {number} The bytes-per-texel. + */ + _getBytesPerTexel( format ) { + + // 8-bit formats + if ( format === GPUTextureFormat.R8Unorm || + format === GPUTextureFormat.R8Snorm || + format === GPUTextureFormat.R8Uint || + format === GPUTextureFormat.R8Sint ) return 1; + + // 16-bit formats + if ( format === GPUTextureFormat.R16Uint || + format === GPUTextureFormat.R16Sint || + format === GPUTextureFormat.R16Float || + format === GPUTextureFormat.RG8Unorm || + format === GPUTextureFormat.RG8Snorm || + format === GPUTextureFormat.RG8Uint || + format === GPUTextureFormat.RG8Sint ) return 2; + + // 32-bit formats + if ( format === GPUTextureFormat.R32Uint || + format === GPUTextureFormat.R32Sint || + format === GPUTextureFormat.R32Float || + format === GPUTextureFormat.RG16Uint || + format === GPUTextureFormat.RG16Sint || + format === GPUTextureFormat.RG16Float || + format === GPUTextureFormat.RGBA8Unorm || + format === GPUTextureFormat.RGBA8UnormSRGB || + format === GPUTextureFormat.RGBA8Snorm || + format === GPUTextureFormat.RGBA8Uint || + format === GPUTextureFormat.RGBA8Sint || + format === GPUTextureFormat.BGRA8Unorm || + format === GPUTextureFormat.BGRA8UnormSRGB || + // Packed 32-bit formats + format === GPUTextureFormat.RGB9E5UFloat || + format === GPUTextureFormat.RGB10A2Unorm || + format === GPUTextureFormat.RG11B10UFloat || + format === GPUTextureFormat.Depth32Float || + format === GPUTextureFormat.Depth24Plus || + format === GPUTextureFormat.Depth24PlusStencil8 || + format === GPUTextureFormat.Depth32FloatStencil8 ) return 4; + + // 64-bit formats + if ( format === GPUTextureFormat.RG32Uint || + format === GPUTextureFormat.RG32Sint || + format === GPUTextureFormat.RG32Float || + format === GPUTextureFormat.RGBA16Uint || + format === GPUTextureFormat.RGBA16Sint || + format === GPUTextureFormat.RGBA16Float ) return 8; + + // 128-bit formats + if ( format === GPUTextureFormat.RGBA32Uint || + format === GPUTextureFormat.RGBA32Sint || + format === GPUTextureFormat.RGBA32Float ) return 16; + + + } + + /** + * Returns the corresponding typed array type for the given GPU texture format. + * + * @private + * @param {string} format - The GPU texture format. + * @return {TypedArray.constructor} The typed array type. + */ + _getTypedArrayType( format ) { + + if ( format === GPUTextureFormat.R8Uint ) return Uint8Array; + if ( format === GPUTextureFormat.R8Sint ) return Int8Array; + if ( format === GPUTextureFormat.R8Unorm ) return Uint8Array; + if ( format === GPUTextureFormat.R8Snorm ) return Int8Array; + if ( format === GPUTextureFormat.RG8Uint ) return Uint8Array; + if ( format === GPUTextureFormat.RG8Sint ) return Int8Array; + if ( format === GPUTextureFormat.RG8Unorm ) return Uint8Array; + if ( format === GPUTextureFormat.RG8Snorm ) return Int8Array; + if ( format === GPUTextureFormat.RGBA8Uint ) return Uint8Array; + if ( format === GPUTextureFormat.RGBA8Sint ) return Int8Array; + if ( format === GPUTextureFormat.RGBA8Unorm ) return Uint8Array; + if ( format === GPUTextureFormat.RGBA8Snorm ) return Int8Array; + + + if ( format === GPUTextureFormat.R16Uint ) return Uint16Array; + if ( format === GPUTextureFormat.R16Sint ) return Int16Array; + if ( format === GPUTextureFormat.RG16Uint ) return Uint16Array; + if ( format === GPUTextureFormat.RG16Sint ) return Int16Array; + if ( format === GPUTextureFormat.RGBA16Uint ) return Uint16Array; + if ( format === GPUTextureFormat.RGBA16Sint ) return Int16Array; + if ( format === GPUTextureFormat.R16Float ) return Uint16Array; + if ( format === GPUTextureFormat.RG16Float ) return Uint16Array; + if ( format === GPUTextureFormat.RGBA16Float ) return Uint16Array; + + + if ( format === GPUTextureFormat.R32Uint ) return Uint32Array; + if ( format === GPUTextureFormat.R32Sint ) return Int32Array; + if ( format === GPUTextureFormat.R32Float ) return Float32Array; + if ( format === GPUTextureFormat.RG32Uint ) return Uint32Array; + if ( format === GPUTextureFormat.RG32Sint ) return Int32Array; + if ( format === GPUTextureFormat.RG32Float ) return Float32Array; + if ( format === GPUTextureFormat.RGBA32Uint ) return Uint32Array; + if ( format === GPUTextureFormat.RGBA32Sint ) return Int32Array; + if ( format === GPUTextureFormat.RGBA32Float ) return Float32Array; + + if ( format === GPUTextureFormat.BGRA8Unorm ) return Uint8Array; + if ( format === GPUTextureFormat.BGRA8UnormSRGB ) return Uint8Array; + if ( format === GPUTextureFormat.RGB10A2Unorm ) return Uint32Array; + if ( format === GPUTextureFormat.RGB9E5UFloat ) return Uint32Array; + if ( format === GPUTextureFormat.RG11B10UFloat ) return Uint32Array; + + if ( format === GPUTextureFormat.Depth32Float ) return Float32Array; + if ( format === GPUTextureFormat.Depth24Plus ) return Uint32Array; + if ( format === GPUTextureFormat.Depth24PlusStencil8 ) return Uint32Array; + if ( format === GPUTextureFormat.Depth32FloatStencil8 ) return Float32Array; + + } + + /** + * Returns the GPU dimensions for the given texture. + * + * @private + * @param {Texture} texture - The texture. + * @return {string} The GPU dimension. + */ + _getDimension( texture ) { + + let dimension; + + if ( texture.isData3DTexture ) { + + dimension = GPUTextureDimension.ThreeD; + + } else { + + dimension = GPUTextureDimension.TwoD; + + } + + return dimension; + + } + +} + +/** + * Returns the GPU format for the given texture. + * + * @param {Texture} texture - The texture. + * @param {?GPUDevice} [device=null] - The GPU device which is used for feature detection. + * It is not necessary to apply the device for most formats. + * @return {string} The GPU format. + */ +function getFormat( texture, device = null ) { + + const format = texture.format; + const type = texture.type; + const colorSpace = texture.colorSpace; + const transfer = ColorManagement.getTransfer( colorSpace ); + + let formatGPU; + + if ( texture.isCompressedTexture === true || texture.isCompressedArrayTexture === true ) { + + switch ( format ) { + + case RGBA_S3TC_DXT1_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.BC1RGBAUnormSRGB : GPUTextureFormat.BC1RGBAUnorm; + break; + + case RGBA_S3TC_DXT3_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.BC2RGBAUnormSRGB : GPUTextureFormat.BC2RGBAUnorm; + break; + + case RGBA_S3TC_DXT5_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.BC3RGBAUnormSRGB : GPUTextureFormat.BC3RGBAUnorm; + break; + + case RGB_ETC2_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ETC2RGB8UnormSRGB : GPUTextureFormat.ETC2RGB8Unorm; + break; + + case RGBA_ETC2_EAC_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ETC2RGBA8UnormSRGB : GPUTextureFormat.ETC2RGBA8Unorm; + break; + + case RGBA_ASTC_4x4_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC4x4UnormSRGB : GPUTextureFormat.ASTC4x4Unorm; + break; + + case RGBA_ASTC_5x4_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC5x4UnormSRGB : GPUTextureFormat.ASTC5x4Unorm; + break; + + case RGBA_ASTC_5x5_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC5x5UnormSRGB : GPUTextureFormat.ASTC5x5Unorm; + break; + + case RGBA_ASTC_6x5_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC6x5UnormSRGB : GPUTextureFormat.ASTC6x5Unorm; + break; + + case RGBA_ASTC_6x6_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC6x6UnormSRGB : GPUTextureFormat.ASTC6x6Unorm; + break; + + case RGBA_ASTC_8x5_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC8x5UnormSRGB : GPUTextureFormat.ASTC8x5Unorm; + break; + + case RGBA_ASTC_8x6_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC8x6UnormSRGB : GPUTextureFormat.ASTC8x6Unorm; + break; + + case RGBA_ASTC_8x8_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC8x8UnormSRGB : GPUTextureFormat.ASTC8x8Unorm; + break; + + case RGBA_ASTC_10x5_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC10x5UnormSRGB : GPUTextureFormat.ASTC10x5Unorm; + break; + + case RGBA_ASTC_10x6_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC10x6UnormSRGB : GPUTextureFormat.ASTC10x6Unorm; + break; + + case RGBA_ASTC_10x8_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC10x8UnormSRGB : GPUTextureFormat.ASTC10x8Unorm; + break; + + case RGBA_ASTC_10x10_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC10x10UnormSRGB : GPUTextureFormat.ASTC10x10Unorm; + break; + + case RGBA_ASTC_12x10_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC12x10UnormSRGB : GPUTextureFormat.ASTC12x10Unorm; + break; + + case RGBA_ASTC_12x12_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC12x12UnormSRGB : GPUTextureFormat.ASTC12x12Unorm; + break; + + case RGBAFormat: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.RGBA8UnormSRGB : GPUTextureFormat.RGBA8Unorm; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture format.', format ); + + } + + } else { + + switch ( format ) { + + case RGBAFormat: + + switch ( type ) { + + case ByteType: + formatGPU = GPUTextureFormat.RGBA8Snorm; + break; + + case ShortType: + formatGPU = GPUTextureFormat.RGBA16Sint; + break; + + case UnsignedShortType: + formatGPU = GPUTextureFormat.RGBA16Uint; + break; + case UnsignedIntType: + formatGPU = GPUTextureFormat.RGBA32Uint; + break; + + case IntType: + formatGPU = GPUTextureFormat.RGBA32Sint; + break; + + case UnsignedByteType: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.RGBA8UnormSRGB : GPUTextureFormat.RGBA8Unorm; + break; + + case HalfFloatType: + formatGPU = GPUTextureFormat.RGBA16Float; + break; + + case FloatType: + formatGPU = GPUTextureFormat.RGBA32Float; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RGBAFormat.', type ); + + } + + break; + + case RGBFormat: + + switch ( type ) { + + case UnsignedInt5999Type: + formatGPU = GPUTextureFormat.RGB9E5UFloat; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RGBFormat.', type ); + + } + + break; + + case RedFormat: + + switch ( type ) { + + case ByteType: + formatGPU = GPUTextureFormat.R8Snorm; + break; + + case ShortType: + formatGPU = GPUTextureFormat.R16Sint; + break; + + case UnsignedShortType: + formatGPU = GPUTextureFormat.R16Uint; + break; + + case UnsignedIntType: + formatGPU = GPUTextureFormat.R32Uint; + break; + + case IntType: + formatGPU = GPUTextureFormat.R32Sint; + break; + + case UnsignedByteType: + formatGPU = GPUTextureFormat.R8Unorm; + break; + + case HalfFloatType: + formatGPU = GPUTextureFormat.R16Float; + break; + + case FloatType: + formatGPU = GPUTextureFormat.R32Float; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RedFormat.', type ); + + } + + break; + + case RGFormat: + + switch ( type ) { + + case ByteType: + formatGPU = GPUTextureFormat.RG8Snorm; + break; + + case ShortType: + formatGPU = GPUTextureFormat.RG16Sint; + break; + + case UnsignedShortType: + formatGPU = GPUTextureFormat.RG16Uint; + break; + + case UnsignedIntType: + formatGPU = GPUTextureFormat.RG32Uint; + break; + + case IntType: + formatGPU = GPUTextureFormat.RG32Sint; + break; + + case UnsignedByteType: + formatGPU = GPUTextureFormat.RG8Unorm; + break; + + case HalfFloatType: + formatGPU = GPUTextureFormat.RG16Float; + break; + + case FloatType: + formatGPU = GPUTextureFormat.RG32Float; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RGFormat.', type ); + + } + + break; + + case DepthFormat: + + switch ( type ) { + + case UnsignedShortType: + formatGPU = GPUTextureFormat.Depth16Unorm; + break; + + case UnsignedIntType: + formatGPU = GPUTextureFormat.Depth24Plus; + break; + + case FloatType: + formatGPU = GPUTextureFormat.Depth32Float; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with DepthFormat.', type ); + + } + + break; + + case DepthStencilFormat: + + switch ( type ) { + + case UnsignedInt248Type: + formatGPU = GPUTextureFormat.Depth24PlusStencil8; + break; + + case FloatType: + + if ( device && device.features.has( GPUFeatureName.Depth32FloatStencil8 ) === false ) { + + console.error( 'WebGPURenderer: Depth textures with DepthStencilFormat + FloatType can only be used with the "depth32float-stencil8" GPU feature.' ); + + } + + formatGPU = GPUTextureFormat.Depth32FloatStencil8; + + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with DepthStencilFormat.', type ); + + } + + break; + + case RedIntegerFormat: + + switch ( type ) { + + case IntType: + formatGPU = GPUTextureFormat.R32Sint; + break; + + case UnsignedIntType: + formatGPU = GPUTextureFormat.R32Uint; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RedIntegerFormat.', type ); + + } + + break; + + case RGIntegerFormat: + + switch ( type ) { + + case IntType: + formatGPU = GPUTextureFormat.RG32Sint; + break; + + case UnsignedIntType: + formatGPU = GPUTextureFormat.RG32Uint; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RGIntegerFormat.', type ); + + } + + break; + + case RGBAIntegerFormat: + + switch ( type ) { + + case IntType: + formatGPU = GPUTextureFormat.RGBA32Sint; + break; + + case UnsignedIntType: + formatGPU = GPUTextureFormat.RGBA32Uint; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RGBAIntegerFormat.', type ); + + } + + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture format.', format ); + + } + + } + + return formatGPU; + +} + +const declarationRegexp = /^[fn]*\s*([a-z_0-9]+)?\s*\(([\s\S]*?)\)\s*[\-\>]*\s*([a-z_0-9]+(?:<[\s\S]+?>)?)/i; +const propertiesRegexp = /([a-z_0-9]+)\s*:\s*([a-z_0-9]+(?:<[\s\S]+?>)?)/ig; + +const wgslTypeLib$1 = { + 'f32': 'float', + 'i32': 'int', + 'u32': 'uint', + 'bool': 'bool', + + 'vec2': 'vec2', + 'vec2': 'ivec2', + 'vec2': 'uvec2', + 'vec2': 'bvec2', + + 'vec2f': 'vec2', + 'vec2i': 'ivec2', + 'vec2u': 'uvec2', + 'vec2b': 'bvec2', + + 'vec3': 'vec3', + 'vec3': 'ivec3', + 'vec3': 'uvec3', + 'vec3': 'bvec3', + + 'vec3f': 'vec3', + 'vec3i': 'ivec3', + 'vec3u': 'uvec3', + 'vec3b': 'bvec3', + + 'vec4': 'vec4', + 'vec4': 'ivec4', + 'vec4': 'uvec4', + 'vec4': 'bvec4', + + 'vec4f': 'vec4', + 'vec4i': 'ivec4', + 'vec4u': 'uvec4', + 'vec4b': 'bvec4', + + 'mat2x2': 'mat2', + 'mat2x2f': 'mat2', + + 'mat3x3': 'mat3', + 'mat3x3f': 'mat3', + + 'mat4x4': 'mat4', + 'mat4x4f': 'mat4', + + 'sampler': 'sampler', + + 'texture_1d': 'texture', + + 'texture_2d': 'texture', + 'texture_2d_array': 'texture', + 'texture_multisampled_2d': 'cubeTexture', + + 'texture_depth_2d': 'depthTexture', + 'texture_depth_2d_array': 'depthTexture', + 'texture_depth_multisampled_2d': 'depthTexture', + 'texture_depth_cube': 'depthTexture', + 'texture_depth_cube_array': 'depthTexture', + + 'texture_3d': 'texture3D', + + 'texture_cube': 'cubeTexture', + 'texture_cube_array': 'cubeTexture', + + 'texture_storage_1d': 'storageTexture', + 'texture_storage_2d': 'storageTexture', + 'texture_storage_2d_array': 'storageTexture', + 'texture_storage_3d': 'storageTexture' + +}; + +const parse = ( source ) => { + + source = source.trim(); + + const declaration = source.match( declarationRegexp ); + + if ( declaration !== null && declaration.length === 4 ) { + + const inputsCode = declaration[ 2 ]; + const propsMatches = []; + let match = null; + + while ( ( match = propertiesRegexp.exec( inputsCode ) ) !== null ) { + + propsMatches.push( { name: match[ 1 ], type: match[ 2 ] } ); + + } + + // Process matches to correctly pair names and types + const inputs = []; + for ( let i = 0; i < propsMatches.length; i ++ ) { + + const { name, type } = propsMatches[ i ]; + + let resolvedType = type; + + if ( resolvedType.startsWith( 'ptr' ) ) { + + resolvedType = 'pointer'; + + } else { + + if ( resolvedType.startsWith( 'texture' ) ) { + + resolvedType = type.split( '<' )[ 0 ]; + + } + + resolvedType = wgslTypeLib$1[ resolvedType ]; + + } + + inputs.push( new NodeFunctionInput( resolvedType, name ) ); + + } + + const blockCode = source.substring( declaration[ 0 ].length ); + const outputType = declaration[ 3 ] || 'void'; + + const name = declaration[ 1 ] !== undefined ? declaration[ 1 ] : ''; + const type = wgslTypeLib$1[ outputType ] || outputType; + + return { + type, + inputs, + name, + inputsCode, + blockCode, + outputType + }; + + } else { + + throw new Error( 'FunctionNode: Function is not a WGSL code.' ); + + } + +}; + +/** + * This class represents a WSL node function. + * + * @augments NodeFunction + */ +class WGSLNodeFunction extends NodeFunction { + + /** + * Constructs a new WGSL node function. + * + * @param {string} source - The WGSL source. + */ + constructor( source ) { + + const { type, inputs, name, inputsCode, blockCode, outputType } = parse( source ); + + super( type, inputs, name ); + + this.inputsCode = inputsCode; + this.blockCode = blockCode; + this.outputType = outputType; + + } + + /** + * This method returns the WGSL code of the node function. + * + * @param {string} [name=this.name] - The function's name. + * @return {string} The shader code. + */ + getCode( name = this.name ) { + + const outputType = this.outputType !== 'void' ? '-> ' + this.outputType : ''; + + return `fn ${ name } ( ${ this.inputsCode.trim() } ) ${ outputType }` + this.blockCode; + + } + +} + +/** + * A WGSL node parser. + * + * @augments NodeParser + */ +class WGSLNodeParser extends NodeParser { + + /** + * The method parses the given WGSL code an returns a node function. + * + * @param {string} source - The WGSL code. + * @return {WGSLNodeFunction} A node function. + */ + parseFunction( source ) { + + return new WGSLNodeFunction( source ); + + } + +} + +// GPUShaderStage is not defined in browsers not supporting WebGPU +const GPUShaderStage = ( typeof self !== 'undefined' ) ? self.GPUShaderStage : { VERTEX: 1, FRAGMENT: 2, COMPUTE: 4 }; + +const accessNames = { + [ NodeAccess.READ_ONLY ]: 'read', + [ NodeAccess.WRITE_ONLY ]: 'write', + [ NodeAccess.READ_WRITE ]: 'read_write' +}; + +const wrapNames = { + [ RepeatWrapping ]: 'repeat', + [ ClampToEdgeWrapping ]: 'clamp', + [ MirroredRepeatWrapping ]: 'mirror' +}; + +const gpuShaderStageLib = { + 'vertex': GPUShaderStage ? GPUShaderStage.VERTEX : 1, + 'fragment': GPUShaderStage ? GPUShaderStage.FRAGMENT : 2, + 'compute': GPUShaderStage ? GPUShaderStage.COMPUTE : 4 +}; + +const supports = { + instance: true, + swizzleAssign: false, + storageBuffer: true +}; + +const wgslFnOpLib = { + '^^': 'tsl_xor' +}; + +const wgslTypeLib = { + float: 'f32', + int: 'i32', + uint: 'u32', + bool: 'bool', + color: 'vec3', + + vec2: 'vec2', + ivec2: 'vec2', + uvec2: 'vec2', + bvec2: 'vec2', + + vec3: 'vec3', + ivec3: 'vec3', + uvec3: 'vec3', + bvec3: 'vec3', + + vec4: 'vec4', + ivec4: 'vec4', + uvec4: 'vec4', + bvec4: 'vec4', + + mat2: 'mat2x2', + mat3: 'mat3x3', + mat4: 'mat4x4' +}; + +const wgslCodeCache = {}; + +const wgslPolyfill = { + tsl_xor: new CodeNode( 'fn tsl_xor( a : bool, b : bool ) -> bool { return ( a || b ) && !( a && b ); }' ), + mod_float: new CodeNode( 'fn tsl_mod_float( x : f32, y : f32 ) -> f32 { return x - y * floor( x / y ); }' ), + mod_vec2: new CodeNode( 'fn tsl_mod_vec2( x : vec2f, y : vec2f ) -> vec2f { return x - y * floor( x / y ); }' ), + mod_vec3: new CodeNode( 'fn tsl_mod_vec3( x : vec3f, y : vec3f ) -> vec3f { return x - y * floor( x / y ); }' ), + mod_vec4: new CodeNode( 'fn tsl_mod_vec4( x : vec4f, y : vec4f ) -> vec4f { return x - y * floor( x / y ); }' ), + equals_bool: new CodeNode( 'fn tsl_equals_bool( a : bool, b : bool ) -> bool { return a == b; }' ), + equals_bvec2: new CodeNode( 'fn tsl_equals_bvec2( a : vec2f, b : vec2f ) -> vec2 { return vec2( a.x == b.x, a.y == b.y ); }' ), + equals_bvec3: new CodeNode( 'fn tsl_equals_bvec3( a : vec3f, b : vec3f ) -> vec3 { return vec3( a.x == b.x, a.y == b.y, a.z == b.z ); }' ), + equals_bvec4: new CodeNode( 'fn tsl_equals_bvec4( a : vec4f, b : vec4f ) -> vec4 { return vec4( a.x == b.x, a.y == b.y, a.z == b.z, a.w == b.w ); }' ), + repeatWrapping_float: new CodeNode( 'fn tsl_repeatWrapping_float( coord: f32 ) -> f32 { return fract( coord ); }' ), + mirrorWrapping_float: new CodeNode( 'fn tsl_mirrorWrapping_float( coord: f32 ) -> f32 { let mirrored = fract( coord * 0.5 ) * 2.0; return 1.0 - abs( 1.0 - mirrored ); }' ), + clampWrapping_float: new CodeNode( 'fn tsl_clampWrapping_float( coord: f32 ) -> f32 { return clamp( coord, 0.0, 1.0 ); }' ), + biquadraticTexture: new CodeNode( /* wgsl */` +fn tsl_biquadraticTexture( map : texture_2d, coord : vec2f, iRes : vec2u, level : u32 ) -> vec4f { + + let res = vec2f( iRes ); + + let uvScaled = coord * res; + let uvWrapping = ( ( uvScaled % res ) + res ) % res; + + // https://www.shadertoy.com/view/WtyXRy + + let uv = uvWrapping - 0.5; + let iuv = floor( uv ); + let f = fract( uv ); + + let rg1 = textureLoad( map, vec2u( iuv + vec2( 0.5, 0.5 ) ) % iRes, level ); + let rg2 = textureLoad( map, vec2u( iuv + vec2( 1.5, 0.5 ) ) % iRes, level ); + let rg3 = textureLoad( map, vec2u( iuv + vec2( 0.5, 1.5 ) ) % iRes, level ); + let rg4 = textureLoad( map, vec2u( iuv + vec2( 1.5, 1.5 ) ) % iRes, level ); + + return mix( mix( rg1, rg2, f.x ), mix( rg3, rg4, f.x ), f.y ); + +} +` ) +}; + +const wgslMethods = { + dFdx: 'dpdx', + dFdy: '- dpdy', + mod_float: 'tsl_mod_float', + mod_vec2: 'tsl_mod_vec2', + mod_vec3: 'tsl_mod_vec3', + mod_vec4: 'tsl_mod_vec4', + equals_bool: 'tsl_equals_bool', + equals_bvec2: 'tsl_equals_bvec2', + equals_bvec3: 'tsl_equals_bvec3', + equals_bvec4: 'tsl_equals_bvec4', + inversesqrt: 'inverseSqrt', + bitcast: 'bitcast' +}; + +// WebGPU issue: does not support pow() with negative base on Windows + +if ( typeof navigator !== 'undefined' && /Windows/g.test( navigator.userAgent ) ) { + + wgslPolyfill.pow_float = new CodeNode( 'fn tsl_pow_float( a : f32, b : f32 ) -> f32 { return select( -pow( -a, b ), pow( a, b ), a > 0.0 ); }' ); + wgslPolyfill.pow_vec2 = new CodeNode( 'fn tsl_pow_vec2( a : vec2f, b : vec2f ) -> vec2f { return vec2f( tsl_pow_float( a.x, b.x ), tsl_pow_float( a.y, b.y ) ); }', [ wgslPolyfill.pow_float ] ); + wgslPolyfill.pow_vec3 = new CodeNode( 'fn tsl_pow_vec3( a : vec3f, b : vec3f ) -> vec3f { return vec3f( tsl_pow_float( a.x, b.x ), tsl_pow_float( a.y, b.y ), tsl_pow_float( a.z, b.z ) ); }', [ wgslPolyfill.pow_float ] ); + wgslPolyfill.pow_vec4 = new CodeNode( 'fn tsl_pow_vec4( a : vec4f, b : vec4f ) -> vec4f { return vec4f( tsl_pow_float( a.x, b.x ), tsl_pow_float( a.y, b.y ), tsl_pow_float( a.z, b.z ), tsl_pow_float( a.w, b.w ) ); }', [ wgslPolyfill.pow_float ] ); + + wgslMethods.pow_float = 'tsl_pow_float'; + wgslMethods.pow_vec2 = 'tsl_pow_vec2'; + wgslMethods.pow_vec3 = 'tsl_pow_vec3'; + wgslMethods.pow_vec4 = 'tsl_pow_vec4'; + +} + +// + +let diagnostics = ''; + +if ( ( typeof navigator !== 'undefined' && /Firefox|Deno/g.test( navigator.userAgent ) ) !== true ) { + + diagnostics += 'diagnostic( off, derivative_uniformity );\n'; + +} + +/** + * A node builder targeting WGSL. + * + * This module generates WGSL shader code from node materials and also + * generates the respective bindings and vertex buffer definitions. These + * data are later used by the renderer to create render and compute pipelines + * for render objects. + * + * @augments NodeBuilder + */ +class WGSLNodeBuilder extends NodeBuilder { + + /** + * Constructs a new WGSL node builder renderer. + * + * @param {Object3D} object - The 3D object. + * @param {Renderer} renderer - The renderer. + */ + constructor( object, renderer ) { + + super( object, renderer, new WGSLNodeParser() ); + + /** + * A dictionary that holds for each shader stage ('vertex', 'fragment', 'compute') + * another dictionary which manages UBOs per group ('render','frame','object'). + * + * @type {Object>} + */ + this.uniformGroups = {}; + + /** + * A dictionary that holds for each shader stage a Map of builtins. + * + * @type {Object>} + */ + this.builtins = {}; + + /** + * A dictionary that holds for each shader stage a Set of directives. + * + * @type {Object>} + */ + this.directives = {}; + + /** + * A map for managing scope arrays. Only relevant for when using + * {@link WorkgroupInfoNode} in context of compute shaders. + * + * @type {Map} + */ + this.scopedArrays = new Map(); + + } + + /** + * Checks if the given texture requires a manual conversion to the working color space. + * + * @param {Texture} texture - The texture to check. + * @return {boolean} Whether the given texture requires a conversion to working color space or not. + */ + needsToWorkingColorSpace( texture ) { + + return texture.isVideoTexture === true && texture.colorSpace !== NoColorSpace; + + } + + /** + * Generates the WGSL snippet for sampled textures. + * + * @private + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + _generateTextureSample( texture, textureProperty, uvSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + if ( shaderStage === 'fragment' ) { + + if ( depthSnippet ) { + + return `textureSample( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ depthSnippet } )`; + + } else { + + return `textureSample( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet } )`; + + } + + } else { + + return this._generateTextureSampleLevel( texture, textureProperty, uvSnippet, '0', depthSnippet ); + + } + + } + + /** + * Generates the WGSL snippet when sampling video textures. + * + * @private + * @param {string} textureProperty - The name of the video texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + _generateVideoSample( textureProperty, uvSnippet, shaderStage = this.shaderStage ) { + + if ( shaderStage === 'fragment' ) { + + return `textureSampleBaseClampToEdge( ${ textureProperty }, ${ textureProperty }_sampler, vec2( ${ uvSnippet }.x, 1.0 - ${ uvSnippet }.y ) )`; + + } else { + + console.error( `WebGPURenderer: THREE.VideoTexture does not support ${ shaderStage } shader.` ); + + } + + } + + /** + * Generates the WGSL snippet when sampling textures with explicit mip level. + * + * @private + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {string} levelSnippet - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @param {string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @return {string} The WGSL snippet. + */ + _generateTextureSampleLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet ) { + + if ( this.isUnfilterable( texture ) === false ) { + + return `textureSampleLevel( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ levelSnippet } )`; + + } else if ( this.isFilteredTexture( texture ) ) { + + return this.generateFilteredTexture( texture, textureProperty, uvSnippet, levelSnippet ); + + } else { + + return this.generateTextureLod( texture, textureProperty, uvSnippet, depthSnippet, levelSnippet ); + + } + + } + + /** + * Generates a wrap function used in context of textures. + * + * @param {Texture} texture - The texture to generate the function for. + * @return {string} The name of the generated function. + */ + generateWrapFunction( texture ) { + + const functionName = `tsl_coord_${ wrapNames[ texture.wrapS ] }S_${ wrapNames[ texture.wrapT ] }_${ texture.isData3DTexture ? '3d' : '2d' }T`; + + let nodeCode = wgslCodeCache[ functionName ]; + + if ( nodeCode === undefined ) { + + const includes = []; + + // For 3D textures, use vec3f; for texture arrays, keep vec2f since array index is separate + const coordType = texture.isData3DTexture ? 'vec3f' : 'vec2f'; + let code = `fn ${ functionName }( coord : ${ coordType } ) -> ${ coordType } {\n\n\treturn ${ coordType }(\n`; + + const addWrapSnippet = ( wrap, axis ) => { + + if ( wrap === RepeatWrapping ) { + + includes.push( wgslPolyfill.repeatWrapping_float ); + + code += `\t\ttsl_repeatWrapping_float( coord.${ axis } )`; + + } else if ( wrap === ClampToEdgeWrapping ) { + + includes.push( wgslPolyfill.clampWrapping_float ); + + code += `\t\ttsl_clampWrapping_float( coord.${ axis } )`; + + } else if ( wrap === MirroredRepeatWrapping ) { + + includes.push( wgslPolyfill.mirrorWrapping_float ); + + code += `\t\ttsl_mirrorWrapping_float( coord.${ axis } )`; + + } else { + + code += `\t\tcoord.${ axis }`; + + console.warn( `WebGPURenderer: Unsupported texture wrap type "${ wrap }" for vertex shader.` ); + + } + + }; + + addWrapSnippet( texture.wrapS, 'x' ); + + code += ',\n'; + + addWrapSnippet( texture.wrapT, 'y' ); + + if ( texture.isData3DTexture ) { + + code += ',\n'; + addWrapSnippet( texture.wrapR, 'z' ); + + } + + code += '\n\t);\n\n}\n'; + + wgslCodeCache[ functionName ] = nodeCode = new CodeNode( code, includes ); + + } + + nodeCode.build( this ); + + return functionName; + + } + + /** + * Generates the array declaration string. + * + * @param {string} type - The type. + * @param {?number} [count] - The count. + * @return {string} The generated value as a shader string. + */ + generateArrayDeclaration( type, count ) { + + return `array< ${ this.getType( type ) }, ${ count } >`; + + } + + /** + * Generates a WGSL variable that holds the texture dimension of the given texture. + * It also returns information about the number of layers (elements) of an arrayed + * texture as well as the cube face count of cube textures. + * + * @param {Texture} texture - The texture to generate the function for. + * @param {string} textureProperty - The name of the video texture uniform in the shader. + * @param {string} levelSnippet - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @return {string} The name of the dimension variable. + */ + generateTextureDimension( texture, textureProperty, levelSnippet ) { + + const textureData = this.getDataFromNode( texture, this.shaderStage, this.globalCache ); + + if ( textureData.dimensionsSnippet === undefined ) textureData.dimensionsSnippet = {}; + + let textureDimensionNode = textureData.dimensionsSnippet[ levelSnippet ]; + + if ( textureData.dimensionsSnippet[ levelSnippet ] === undefined ) { + + let textureDimensionsParams; + let dimensionType; + + const { primarySamples } = this.renderer.backend.utils.getTextureSampleData( texture ); + const isMultisampled = primarySamples > 1; + + if ( texture.isData3DTexture ) { + + dimensionType = 'vec3'; + + } else { + + // Regular 2D textures, depth textures, etc. + dimensionType = 'vec2'; + + } + + // Build parameters string based on texture type and multisampling + if ( isMultisampled || texture.isVideoTexture || texture.isStorageTexture ) { + + textureDimensionsParams = textureProperty; + + } else { + + textureDimensionsParams = `${textureProperty}${levelSnippet ? `, u32( ${ levelSnippet } )` : ''}`; + + } + + textureDimensionNode = new VarNode( new ExpressionNode( `textureDimensions( ${ textureDimensionsParams } )`, dimensionType ) ); + + textureData.dimensionsSnippet[ levelSnippet ] = textureDimensionNode; + + if ( texture.isArrayTexture || texture.isDataArrayTexture || texture.isData3DTexture ) { + + textureData.arrayLayerCount = new VarNode( + new ExpressionNode( + `textureNumLayers(${textureProperty})`, + 'u32' + ) + ); + + } + + // For cube textures, we know it's always 6 faces + if ( texture.isTextureCube ) { + + textureData.cubeFaceCount = new VarNode( + new ExpressionNode( '6u', 'u32' ) + ); + + } + + } + + return textureDimensionNode.build( this ); + + } + + /** + * Generates the WGSL snippet for a manual filtered texture. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {string} levelSnippet - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @return {string} The WGSL snippet. + */ + generateFilteredTexture( texture, textureProperty, uvSnippet, levelSnippet = '0u' ) { + + this._include( 'biquadraticTexture' ); + + const wrapFunction = this.generateWrapFunction( texture ); + const textureDimension = this.generateTextureDimension( texture, textureProperty, levelSnippet ); + + return `tsl_biquadraticTexture( ${ textureProperty }, ${ wrapFunction }( ${ uvSnippet } ), ${ textureDimension }, u32( ${ levelSnippet } ) )`; + + } + + /** + * Generates the WGSL snippet for a texture lookup with explicit level-of-detail. + * Since it's a lookup, no sampling or filtering is applied. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [levelSnippet='0u'] - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @return {string} The WGSL snippet. + */ + generateTextureLod( texture, textureProperty, uvSnippet, depthSnippet, levelSnippet = '0u' ) { + + const wrapFunction = this.generateWrapFunction( texture ); + const textureDimension = this.generateTextureDimension( texture, textureProperty, levelSnippet ); + + const vecType = texture.isData3DTexture ? 'vec3' : 'vec2'; + const coordSnippet = `${ vecType }( ${ wrapFunction }( ${ uvSnippet } ) * ${ vecType }( ${ textureDimension } ) )`; + + return this.generateTextureLoad( texture, textureProperty, coordSnippet, depthSnippet, levelSnippet ); + + } + + /** + * Generates the WGSL snippet that reads a single texel from a texture without sampling or filtering. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvIndexSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [levelSnippet='0u'] - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @return {string} The WGSL snippet. + */ + generateTextureLoad( texture, textureProperty, uvIndexSnippet, depthSnippet, levelSnippet = '0u' ) { + + let snippet; + + if ( texture.isVideoTexture === true ) { + + snippet = `textureLoad( ${ textureProperty }, ${ uvIndexSnippet } )`; + + } else if ( depthSnippet ) { + + snippet = `textureLoad( ${ textureProperty }, ${ uvIndexSnippet }, ${ depthSnippet }, u32( ${ levelSnippet } ) )`; + + } else { + + snippet = `textureLoad( ${ textureProperty }, ${ uvIndexSnippet }, u32( ${ levelSnippet } ) )`; + + if ( this.renderer.backend.compatibilityMode && texture.isDepthTexture ) { + + snippet += '.x'; + + } + + } + + return snippet; + + } + + /** + * Generates the WGSL snippet that writes a single texel to a texture. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvIndexSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} valueSnippet - A WGSL snippet that represent the new texel value. + * @return {string} The WGSL snippet. + */ + generateTextureStore( texture, textureProperty, uvIndexSnippet, depthSnippet, valueSnippet ) { + + let snippet; + + if ( depthSnippet ) { + + snippet = `textureStore( ${ textureProperty }, ${ uvIndexSnippet }, ${ depthSnippet }, ${ valueSnippet } )`; + + } else { + + snippet = `textureStore( ${ textureProperty }, ${ uvIndexSnippet }, ${ valueSnippet } )`; + + } + + return snippet; + + } + + /** + * Returns `true` if the sampled values of the given texture should be compared against a reference value. + * + * @param {Texture} texture - The texture. + * @return {boolean} Whether the sampled values of the given texture should be compared against a reference value or not. + */ + isSampleCompare( texture ) { + + return texture.isDepthTexture === true && texture.compareFunction !== null; + + } + + /** + * Returns `true` if the given texture is unfilterable. + * + * @param {Texture} texture - The texture. + * @return {boolean} Whether the given texture is unfilterable or not. + */ + isUnfilterable( texture ) { + + return this.getComponentTypeFromTexture( texture ) !== 'float' || + ( ! this.isAvailable( 'float32Filterable' ) && texture.isDataTexture === true && texture.type === FloatType ) || + ( this.isSampleCompare( texture ) === false && texture.minFilter === NearestFilter && texture.magFilter === NearestFilter ) || + this.renderer.backend.utils.getTextureSampleData( texture ).primarySamples > 1; + + } + + /** + * Generates the WGSL snippet for sampling/loading the given texture. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + generateTexture( texture, textureProperty, uvSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + let snippet = null; + + if ( texture.isVideoTexture === true ) { + + snippet = this._generateVideoSample( textureProperty, uvSnippet, shaderStage ); + + } else if ( this.isUnfilterable( texture ) ) { + + snippet = this.generateTextureLod( texture, textureProperty, uvSnippet, depthSnippet, '0', shaderStage ); + + } else { + + snippet = this._generateTextureSample( texture, textureProperty, uvSnippet, depthSnippet, shaderStage ); + + } + + return snippet; + + } + + /** + * Generates the WGSL snippet for sampling/loading the given texture using explicit gradients. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {Array} gradSnippet - An array holding both gradient WGSL snippets. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + generateTextureGrad( texture, textureProperty, uvSnippet, gradSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + if ( shaderStage === 'fragment' ) { + + // TODO handle i32 or u32 --> uvSnippet, array_index: A, ddx, ddy + return `textureSampleGrad( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ gradSnippet[ 0 ] }, ${ gradSnippet[ 1 ] } )`; + + } else { + + console.error( `WebGPURenderer: THREE.TextureNode.gradient() does not support ${ shaderStage } shader.` ); + + } + + } + + /** + * Generates the WGSL snippet for sampling a depth texture and comparing the sampled depth values + * against a reference value. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {string} compareSnippet - A WGSL snippet that represents the reference value. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + generateTextureCompare( texture, textureProperty, uvSnippet, compareSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + if ( shaderStage === 'fragment' ) { + + if ( texture.isDepthTexture === true && texture.isArrayTexture === true ) { + + return `textureSampleCompare( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ depthSnippet }, ${ compareSnippet } )`; + + } + + return `textureSampleCompare( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ compareSnippet } )`; + + } else { + + console.error( `WebGPURenderer: THREE.DepthTexture.compareFunction() does not support ${ shaderStage } shader.` ); + + } + + } + + /** + * Generates the WGSL snippet when sampling textures with explicit mip level. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {string} levelSnippet - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + generateTextureLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + let snippet = null; + + if ( texture.isVideoTexture === true ) { + + snippet = this._generateVideoSample( textureProperty, uvSnippet, shaderStage ); + + } else { + + snippet = this._generateTextureSampleLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet ); + + } + + return snippet; + + } + + /** + * Generates the WGSL snippet when sampling textures with a bias to the mip level. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {string} biasSnippet - A WGSL snippet that represents the bias to apply to the mip level before sampling. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + generateTextureBias( texture, textureProperty, uvSnippet, biasSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + if ( shaderStage === 'fragment' ) { + + return `textureSampleBias( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ biasSnippet } )`; + + } else { + + console.error( `WebGPURenderer: THREE.TextureNode.biasNode does not support ${ shaderStage } shader.` ); + + } + + } + + /** + * Returns a WGSL snippet that represents the property name of the given node. + * + * @param {Node} node - The node. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The property name. + */ + getPropertyName( node, shaderStage = this.shaderStage ) { + + if ( node.isNodeVarying === true && node.needsInterpolation === true ) { + + if ( shaderStage === 'vertex' ) { + + return `varyings.${ node.name }`; + + } + + } else if ( node.isNodeUniform === true ) { + + const name = node.name; + const type = node.type; + + if ( type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'texture3D' ) { + + return name; + + } else if ( type === 'buffer' || type === 'storageBuffer' || type === 'indirectStorageBuffer' ) { + + if ( this.isCustomStruct( node ) ) { + + return name; + + } + + return name + '.value'; + + } else { + + return node.groupNode.name + '.' + name; + + } + + } + + return super.getPropertyName( node ); + + } + + /** + * Returns the output struct name. + * + * @return {string} The name of the output struct. + */ + getOutputStructName() { + + return 'output'; + + } + + /** + * Returns the native shader operator name for a given generic name. + * + * @param {string} op - The operator name to resolve. + * @return {?string} The resolved operator name. + */ + getFunctionOperator( op ) { + + const fnOp = wgslFnOpLib[ op ]; + + if ( fnOp !== undefined ) { + + this._include( fnOp ); + + return fnOp; + + } + + return null; + + } + + /** + * Returns the node access for the given node and shader stage. + * + * @param {StorageTextureNode|StorageBufferNode} node - The storage node. + * @param {string} shaderStage - The shader stage. + * @return {string} The node access. + */ + getNodeAccess( node, shaderStage ) { + + if ( shaderStage !== 'compute' ) + return NodeAccess.READ_ONLY; + + return node.access; + + } + + /** + * Returns A WGSL snippet representing the storage access. + * + * @param {StorageTextureNode|StorageBufferNode} node - The storage node. + * @param {string} shaderStage - The shader stage. + * @return {string} The WGSL snippet representing the storage access. + */ + getStorageAccess( node, shaderStage ) { + + return accessNames[ this.getNodeAccess( node, shaderStage ) ]; + + } + + /** + * This method is one of the more important ones since it's responsible + * for generating a matching binding instance for the given uniform node. + * + * These bindings are later used in the renderer to create bind groups + * and layouts. + * + * @param {UniformNode} node - The uniform node. + * @param {string} type - The node data type. + * @param {string} shaderStage - The shader stage. + * @param {?string} [name=null] - An optional uniform name. + * @return {NodeUniform} The node uniform object. + */ + getUniformFromNode( node, type, shaderStage, name = null ) { + + const uniformNode = super.getUniformFromNode( node, type, shaderStage, name ); + const nodeData = this.getDataFromNode( node, shaderStage, this.globalCache ); + + if ( nodeData.uniformGPU === undefined ) { + + let uniformGPU; + + const group = node.groupNode; + const groupName = group.name; + + const bindings = this.getBindGroupArray( groupName, shaderStage ); + + if ( type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'texture3D' ) { + + let texture = null; + + const access = this.getNodeAccess( node, shaderStage ); + + if ( type === 'texture' || type === 'storageTexture' ) { + + texture = new NodeSampledTexture( uniformNode.name, uniformNode.node, group, access ); + + } else if ( type === 'cubeTexture' ) { + + texture = new NodeSampledCubeTexture( uniformNode.name, uniformNode.node, group, access ); + + } else if ( type === 'texture3D' ) { + + texture = new NodeSampledTexture3D( uniformNode.name, uniformNode.node, group, access ); + + } + + texture.store = node.isStorageTextureNode === true; + texture.setVisibility( gpuShaderStageLib[ shaderStage ] ); + + if ( this.isUnfilterable( node.value ) === false && texture.store === false ) { + + const sampler = new NodeSampler( `${ uniformNode.name }_sampler`, uniformNode.node, group ); + sampler.setVisibility( gpuShaderStageLib[ shaderStage ] ); + + bindings.push( sampler, texture ); + + uniformGPU = [ sampler, texture ]; + + } else { + + bindings.push( texture ); + + uniformGPU = [ texture ]; + + } + + } else if ( type === 'buffer' || type === 'storageBuffer' || type === 'indirectStorageBuffer' ) { + + const bufferClass = type === 'buffer' ? NodeUniformBuffer : NodeStorageBuffer; + + const buffer = new bufferClass( node, group ); + buffer.setVisibility( gpuShaderStageLib[ shaderStage ] ); + + bindings.push( buffer ); + + uniformGPU = buffer; + + uniformNode.name = name ? name : 'NodeBuffer_' + uniformNode.id; + + } else { + + const uniformsStage = this.uniformGroups[ shaderStage ] || ( this.uniformGroups[ shaderStage ] = {} ); + + let uniformsGroup = uniformsStage[ groupName ]; + + if ( uniformsGroup === undefined ) { + + uniformsGroup = new NodeUniformsGroup( groupName, group ); + uniformsGroup.setVisibility( gpuShaderStageLib[ shaderStage ] ); + + uniformsStage[ groupName ] = uniformsGroup; + + bindings.push( uniformsGroup ); + + } + + uniformGPU = this.getNodeUniform( uniformNode, type ); + + uniformsGroup.addUniform( uniformGPU ); + + } + + nodeData.uniformGPU = uniformGPU; + + } + + return uniformNode; + + } + + /** + * This method should be used whenever builtins are required in nodes. + * The internal builtins data structure will make sure builtins are + * defined in the WGSL source. + * + * @param {string} name - The builtin name. + * @param {string} property - The property name. + * @param {string} type - The node data type. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The property name. + */ + getBuiltin( name, property, type, shaderStage = this.shaderStage ) { + + const map = this.builtins[ shaderStage ] || ( this.builtins[ shaderStage ] = new Map() ); + + if ( map.has( name ) === false ) { + + map.set( name, { + name, + property, + type + } ); + + } + + return property; + + } + + /** + * Returns `true` if the given builtin is defined in the given shader stage. + * + * @param {string} name - The builtin name. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {boolean} Whether the given builtin is defined in the given shader stage or not. + */ + hasBuiltin( name, shaderStage = this.shaderStage ) { + + return ( this.builtins[ shaderStage ] !== undefined && this.builtins[ shaderStage ].has( name ) ); + + } + + /** + * Returns the vertex index builtin. + * + * @return {string} The vertex index. + */ + getVertexIndex() { + + if ( this.shaderStage === 'vertex' ) { + + return this.getBuiltin( 'vertex_index', 'vertexIndex', 'u32', 'attribute' ); + + } + + return 'vertexIndex'; + + } + + /** + * Builds the given shader node. + * + * @param {ShaderNodeInternal} shaderNode - The shader node. + * @return {string} The WGSL function code. + */ + buildFunctionCode( shaderNode ) { + + const layout = shaderNode.layout; + const flowData = this.flowShaderNode( shaderNode ); + + const parameters = []; + + for ( const input of layout.inputs ) { + + parameters.push( input.name + ' : ' + this.getType( input.type ) ); + + } + + // + + let code = `fn ${ layout.name }( ${ parameters.join( ', ' ) } ) -> ${ this.getType( layout.type ) } { +${ flowData.vars } +${ flowData.code } +`; + + if ( flowData.result ) { + + code += `\treturn ${ flowData.result };\n`; + + } + + code += '\n}\n'; + + // + + return code; + + } + + /** + * Returns the instance index builtin. + * + * @return {string} The instance index. + */ + getInstanceIndex() { + + if ( this.shaderStage === 'vertex' ) { + + return this.getBuiltin( 'instance_index', 'instanceIndex', 'u32', 'attribute' ); + + } + + return 'instanceIndex'; + + } + + /** + * Returns the invocation local index builtin. + * + * @return {string} The invocation local index. + */ + getInvocationLocalIndex() { + + return this.getBuiltin( 'local_invocation_index', 'invocationLocalIndex', 'u32', 'attribute' ); + + } + + /** + * Returns the subgroup size builtin. + * + * @return {string} The subgroup size. + */ + getSubgroupSize() { + + this.enableSubGroups(); + + return this.getBuiltin( 'subgroup_size', 'subgroupSize', 'u32', 'attribute' ); + + } + + /** + * Returns the invocation subgroup index builtin. + * + * @return {string} The invocation subgroup index. + */ + getInvocationSubgroupIndex() { + + this.enableSubGroups(); + + return this.getBuiltin( 'subgroup_invocation_id', 'invocationSubgroupIndex', 'u32', 'attribute' ); + + } + + /** + * Returns the subgroup index builtin. + * + * @return {string} The subgroup index. + */ + getSubgroupIndex() { + + this.enableSubGroups(); + + return this.getBuiltin( 'subgroup_id', 'subgroupIndex', 'u32', 'attribute' ); + + } + + /** + * Overwritten as a NOP since this method is intended for the WebGL 2 backend. + * + * @return {null} Null. + */ + getDrawIndex() { + + return null; + + } + + /** + * Returns the front facing builtin. + * + * @return {string} The front facing builtin. + */ + getFrontFacing() { + + return this.getBuiltin( 'front_facing', 'isFront', 'bool' ); + + } + + /** + * Returns the frag coord builtin. + * + * @return {string} The frag coord builtin. + */ + getFragCoord() { + + return this.getBuiltin( 'position', 'fragCoord', 'vec4' ) + '.xy'; + + } + + /** + * Returns the frag depth builtin. + * + * @return {string} The frag depth builtin. + */ + getFragDepth() { + + return 'output.' + this.getBuiltin( 'frag_depth', 'depth', 'f32', 'output' ); + + } + + /** + * Returns the clip distances builtin. + * + * @return {string} The clip distances builtin. + */ + getClipDistance() { + + return 'varyings.hw_clip_distances'; + + } + + /** + * Whether to flip texture data along its vertical axis or not. + * + * @return {boolean} Returns always `false` in context of WGSL. + */ + isFlipY() { + + return false; + + } + + /** + * Enables the given directive for the given shader stage. + * + * @param {string} name - The directive name. + * @param {string} [shaderStage=this.shaderStage] - The shader stage to enable the directive for. + */ + enableDirective( name, shaderStage = this.shaderStage ) { + + const stage = this.directives[ shaderStage ] || ( this.directives[ shaderStage ] = new Set() ); + stage.add( name ); + + } + + /** + * Returns the directives of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} A WGSL snippet that enables the directives of the given stage. + */ + getDirectives( shaderStage ) { + + const snippets = []; + const directives = this.directives[ shaderStage ]; + + if ( directives !== undefined ) { + + for ( const directive of directives ) { + + snippets.push( `enable ${directive};` ); + + } + + } + + return snippets.join( '\n' ); + + } + + /** + * Enables the 'subgroups' directive. + */ + enableSubGroups() { + + this.enableDirective( 'subgroups' ); + + } + + /** + * Enables the 'subgroups-f16' directive. + */ + enableSubgroupsF16() { + + this.enableDirective( 'subgroups-f16' ); + + } + + /** + * Enables the 'clip_distances' directive. + */ + enableClipDistances() { + + this.enableDirective( 'clip_distances' ); + + } + + /** + * Enables the 'f16' directive. + */ + enableShaderF16() { + + this.enableDirective( 'f16' ); + + } + + /** + * Enables the 'dual_source_blending' directive. + */ + enableDualSourceBlending() { + + this.enableDirective( 'dual_source_blending' ); + + } + + /** + * Enables hardware clipping. + * + * @param {string} planeCount - The clipping plane count. + */ + enableHardwareClipping( planeCount ) { + + this.enableClipDistances(); + this.getBuiltin( 'clip_distances', 'hw_clip_distances', `array`, 'vertex' ); + + } + + /** + * Returns the builtins of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} A WGSL snippet that represents the builtins of the given stage. + */ + getBuiltins( shaderStage ) { + + const snippets = []; + const builtins = this.builtins[ shaderStage ]; + + if ( builtins !== undefined ) { + + for ( const { name, property, type } of builtins.values() ) { + + snippets.push( `@builtin( ${name} ) ${property} : ${type}` ); + + } + + } + + return snippets.join( ',\n\t' ); + + } + + /** + * This method should be used when a new scoped buffer is used in context of + * compute shaders. It adds the array to the internal data structure which is + * later used to generate the respective WGSL. + * + * @param {string} name - The array name. + * @param {string} scope - The scope. + * @param {string} bufferType - The buffer type. + * @param {string} bufferCount - The buffer count. + * @return {string} The array name. + */ + getScopedArray( name, scope, bufferType, bufferCount ) { + + if ( this.scopedArrays.has( name ) === false ) { + + this.scopedArrays.set( name, { + name, + scope, + bufferType, + bufferCount + } ); + + } + + return name; + + } + + /** + * Returns the scoped arrays of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string|undefined} The WGSL snippet that defines the scoped arrays. + * Returns `undefined` when used in the vertex or fragment stage. + */ + getScopedArrays( shaderStage ) { + + if ( shaderStage !== 'compute' ) { + + return; + + } + + const snippets = []; + + for ( const { name, scope, bufferType, bufferCount } of this.scopedArrays.values() ) { + + const type = this.getType( bufferType ); + + snippets.push( `var<${scope}> ${name}: array< ${type}, ${bufferCount} >;` ); + + } + + return snippets.join( '\n' ); + + } + + /** + * Returns the shader attributes of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The WGSL snippet that defines the shader attributes. + */ + getAttributes( shaderStage ) { + + const snippets = []; + + if ( shaderStage === 'compute' ) { + + this.getBuiltin( 'global_invocation_id', 'globalId', 'vec3', 'attribute' ); + this.getBuiltin( 'workgroup_id', 'workgroupId', 'vec3', 'attribute' ); + this.getBuiltin( 'local_invocation_id', 'localId', 'vec3', 'attribute' ); + this.getBuiltin( 'num_workgroups', 'numWorkgroups', 'vec3', 'attribute' ); + + if ( this.renderer.hasFeature( 'subgroups' ) ) { + + this.enableDirective( 'subgroups', shaderStage ); + this.getBuiltin( 'subgroup_size', 'subgroupSize', 'u32', 'attribute' ); + + } + + } + + if ( shaderStage === 'vertex' || shaderStage === 'compute' ) { + + const builtins = this.getBuiltins( 'attribute' ); + + if ( builtins ) snippets.push( builtins ); + + const attributes = this.getAttributesArray(); + + for ( let index = 0, length = attributes.length; index < length; index ++ ) { + + const attribute = attributes[ index ]; + const name = attribute.name; + const type = this.getType( attribute.type ); + + snippets.push( `@location( ${index} ) ${ name } : ${ type }` ); + + } + + } + + return snippets.join( ',\n\t' ); + + } + + /** + * Returns the members of the given struct type node as a WGSL string. + * + * @param {StructTypeNode} struct - The struct type node. + * @return {string} The WGSL snippet that defines the struct members. + */ + getStructMembers( struct ) { + + const snippets = []; + + for ( const member of struct.members ) { + + const prefix = struct.output ? '@location( ' + member.index + ' ) ' : ''; + + let type = this.getType( member.type ); + + if ( member.atomic ) { + + type = 'atomic< ' + type + ' >'; + + } + + snippets.push( `\t${ prefix + member.name } : ${ type }` ); + + } + + if ( struct.output ) { + + snippets.push( `\t${ this.getBuiltins( 'output' ) }` ); + + } + + return snippets.join( ',\n' ); + + } + + /** + * Returns the structs of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The WGSL snippet that defines the structs. + */ + getStructs( shaderStage ) { + + let result = ''; + + const structs = this.structs[ shaderStage ]; + + if ( structs.length > 0 ) { + + const snippets = []; + + for ( const struct of structs ) { + + let snippet = `struct ${ struct.name } {\n`; + snippet += this.getStructMembers( struct ); + snippet += '\n};'; + + snippets.push( snippet ); + + } + + result = '\n' + snippets.join( '\n\n' ) + '\n'; + + } + + return result; + + } + + /** + * Returns a WGSL string representing a variable. + * + * @param {string} type - The variable's type. + * @param {string} name - The variable's name. + * @param {?number} [count=null] - The array length. + * @return {string} The WGSL snippet that defines a variable. + */ + getVar( type, name, count = null ) { + + let snippet = `var ${ name } : `; + + if ( count !== null ) { + + snippet += this.generateArrayDeclaration( type, count ); + + } else { + + snippet += this.getType( type ); + + } + + return snippet; + + } + + /** + * Returns the variables of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The WGSL snippet that defines the variables. + */ + getVars( shaderStage ) { + + const snippets = []; + const vars = this.vars[ shaderStage ]; + + if ( vars !== undefined ) { + + for ( const variable of vars ) { + + snippets.push( `\t${ this.getVar( variable.type, variable.name, variable.count ) };` ); + + } + + } + + return `\n${ snippets.join( '\n' ) }\n`; + + } + + /** + * Returns the varyings of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The WGSL snippet that defines the varyings. + */ + getVaryings( shaderStage ) { + + const snippets = []; + + if ( shaderStage === 'vertex' ) { + + this.getBuiltin( 'position', 'Vertex', 'vec4', 'vertex' ); + + } + + if ( shaderStage === 'vertex' || shaderStage === 'fragment' ) { + + const varyings = this.varyings; + const vars = this.vars[ shaderStage ]; + + for ( let index = 0; index < varyings.length; index ++ ) { + + const varying = varyings[ index ]; + + if ( varying.needsInterpolation ) { + + let attributesSnippet = `@location( ${index} )`; + + if ( varying.interpolationType ) { + + const samplingSnippet = varying.interpolationSampling !== null ? `, ${ varying.interpolationSampling } )` : ' )'; + + attributesSnippet += ` @interpolate( ${ varying.interpolationType }${ samplingSnippet }`; + + // Otherwise, optimize interpolation when sensible + + } else if ( /^(int|uint|ivec|uvec)/.test( varying.type ) ) { + + attributesSnippet += ` @interpolate( ${ this.renderer.backend.compatibilityMode ? 'flat, either' : 'flat' } )`; + + } + + snippets.push( `${ attributesSnippet } ${ varying.name } : ${ this.getType( varying.type ) }` ); + + } else if ( shaderStage === 'vertex' && vars.includes( varying ) === false ) { + + vars.push( varying ); + + } + + } + + } + + const builtins = this.getBuiltins( shaderStage ); + + if ( builtins ) snippets.push( builtins ); + + const code = snippets.join( ',\n\t' ); + + return shaderStage === 'vertex' ? this._getWGSLStruct( 'VaryingsStruct', '\t' + code ) : code; + + } + + isCustomStruct( nodeUniform ) { + + const attribute = nodeUniform.value; + const bufferNode = nodeUniform.node; + + const isAttributeStructType = ( attribute.isBufferAttribute || attribute.isInstancedBufferAttribute ) && bufferNode.structTypeNode !== null; + + const isStructArray = + ( bufferNode.value && bufferNode.value.array ) && + ( typeof bufferNode.value.itemSize === 'number' && bufferNode.value.array.length > bufferNode.value.itemSize ); + + return isAttributeStructType && ! isStructArray; + + } + + /** + * Returns the uniforms of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The WGSL snippet that defines the uniforms. + */ + getUniforms( shaderStage ) { + + const uniforms = this.uniforms[ shaderStage ]; + + const bindingSnippets = []; + const bufferSnippets = []; + const structSnippets = []; + const uniformGroups = {}; + + for ( const uniform of uniforms ) { + + const groupName = uniform.groupNode.name; + const uniformIndexes = this.bindingsIndexes[ groupName ]; + + if ( uniform.type === 'texture' || uniform.type === 'cubeTexture' || uniform.type === 'storageTexture' || uniform.type === 'texture3D' ) { + + const texture = uniform.node.value; + + if ( this.isUnfilterable( texture ) === false && uniform.node.isStorageTextureNode !== true ) { + + if ( this.isSampleCompare( texture ) ) { + + bindingSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var ${ uniform.name }_sampler : sampler_comparison;` ); + + } else { + + bindingSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var ${ uniform.name }_sampler : sampler;` ); + + } + + } + + let textureType; + + let multisampled = ''; + + const { primarySamples } = this.renderer.backend.utils.getTextureSampleData( texture ); + + if ( primarySamples > 1 ) { + + multisampled = '_multisampled'; + + } + + if ( texture.isCubeTexture === true ) { + + textureType = 'texture_cube'; + + } else if ( texture.isDepthTexture === true ) { + + if ( this.renderer.backend.compatibilityMode && texture.compareFunction === null ) { + + textureType = `texture${ multisampled }_2d`; + + } else { + + textureType = `texture_depth${ multisampled }_2d${ texture.isArrayTexture === true ? '_array' : '' }`; + + } + + } else if ( texture.isArrayTexture === true || texture.isDataArrayTexture === true || texture.isCompressedArrayTexture === true ) { + + textureType = 'texture_2d_array'; + + } else if ( texture.isVideoTexture === true ) { + + textureType = 'texture_external'; + + } else if ( texture.isData3DTexture === true ) { + + textureType = 'texture_3d'; + + } else if ( uniform.node.isStorageTextureNode === true ) { + + const format = getFormat( texture ); + const access = this.getStorageAccess( uniform.node, shaderStage ); + + textureType = `texture_storage_2d<${ format }, ${ access }>`; + + } else { + + const componentPrefix = this.getComponentTypeFromTexture( texture ).charAt( 0 ); + + textureType = `texture${ multisampled }_2d<${ componentPrefix }32>`; + + } + + bindingSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var ${ uniform.name } : ${ textureType };` ); + + } else if ( uniform.type === 'buffer' || uniform.type === 'storageBuffer' || uniform.type === 'indirectStorageBuffer' ) { + + const bufferNode = uniform.node; + const bufferType = this.getType( bufferNode.getNodeType( this ) ); + const bufferCount = bufferNode.bufferCount; + const bufferCountSnippet = bufferCount > 0 && uniform.type === 'buffer' ? ', ' + bufferCount : ''; + const bufferAccessMode = bufferNode.isStorageBufferNode ? `storage, ${ this.getStorageAccess( bufferNode, shaderStage ) }` : 'uniform'; + + if ( this.isCustomStruct( uniform ) ) { + + bufferSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var<${ bufferAccessMode }> ${ uniform.name } : ${ bufferType };` ); + + } else { + + const bufferTypeSnippet = bufferNode.isAtomic ? `atomic<${ bufferType }>` : `${ bufferType }`; + const bufferSnippet = `\tvalue : array< ${ bufferTypeSnippet }${ bufferCountSnippet } >`; + + bufferSnippets.push( this._getWGSLStructBinding( uniform.name, bufferSnippet, bufferAccessMode, uniformIndexes.binding ++, uniformIndexes.group ) ); + + } + + } else { + + const vectorType = this.getType( this.getVectorType( uniform.type ) ); + const groupName = uniform.groupNode.name; + + const group = uniformGroups[ groupName ] || ( uniformGroups[ groupName ] = { + index: uniformIndexes.binding ++, + id: uniformIndexes.group, + snippets: [] + } ); + + group.snippets.push( `\t${ uniform.name } : ${ vectorType }` ); + + } + + } + + for ( const name in uniformGroups ) { + + const group = uniformGroups[ name ]; + + structSnippets.push( this._getWGSLStructBinding( name, group.snippets.join( ',\n' ), 'uniform', group.index, group.id ) ); + + } + + let code = bindingSnippets.join( '\n' ); + code += bufferSnippets.join( '\n' ); + code += structSnippets.join( '\n' ); + + return code; + + } + + /** + * Controls the code build of the shader stages. + */ + buildCode() { + + const shadersData = this.material !== null ? { fragment: {}, vertex: {} } : { compute: {} }; + + this.sortBindingGroups(); + + for ( const shaderStage in shadersData ) { + + this.shaderStage = shaderStage; + + const stageData = shadersData[ shaderStage ]; + stageData.uniforms = this.getUniforms( shaderStage ); + stageData.attributes = this.getAttributes( shaderStage ); + stageData.varyings = this.getVaryings( shaderStage ); + stageData.structs = this.getStructs( shaderStage ); + stageData.vars = this.getVars( shaderStage ); + stageData.codes = this.getCodes( shaderStage ); + stageData.directives = this.getDirectives( shaderStage ); + stageData.scopedArrays = this.getScopedArrays( shaderStage ); + + // + + let flow = '// code\n\n'; + flow += this.flowCode[ shaderStage ]; + + const flowNodes = this.flowNodes[ shaderStage ]; + const mainNode = flowNodes[ flowNodes.length - 1 ]; + + const outputNode = mainNode.outputNode; + const isOutputStruct = ( outputNode !== undefined && outputNode.isOutputStructNode === true ); + + for ( const node of flowNodes ) { + + const flowSlotData = this.getFlowData( node/*, shaderStage*/ ); + const slotName = node.name; + + if ( slotName ) { + + if ( flow.length > 0 ) flow += '\n'; + + flow += `\t// flow -> ${ slotName }\n`; + + } + + flow += `${ flowSlotData.code }\n\t`; + + if ( node === mainNode && shaderStage !== 'compute' ) { + + flow += '// result\n\n\t'; + + if ( shaderStage === 'vertex' ) { + + flow += `varyings.Vertex = ${ flowSlotData.result };`; + + } else if ( shaderStage === 'fragment' ) { + + if ( isOutputStruct ) { + + stageData.returnType = outputNode.getNodeType( this ); + stageData.structs += 'var output : ' + stageData.returnType + ';'; + + flow += `return ${ flowSlotData.result };`; + + } else { + + let structSnippet = '\t@location(0) color: vec4'; + + const builtins = this.getBuiltins( 'output' ); + + if ( builtins ) structSnippet += ',\n\t' + builtins; + + stageData.returnType = 'OutputStruct'; + stageData.structs += this._getWGSLStruct( 'OutputStruct', structSnippet ); + stageData.structs += '\nvar output : OutputStruct;'; + + flow += `output.color = ${ flowSlotData.result };\n\n\treturn output;`; + + } + + } + + } + + } + + stageData.flow = flow; + + } + + this.shaderStage = null; + + if ( this.material !== null ) { + + this.vertexShader = this._getWGSLVertexCode( shadersData.vertex ); + this.fragmentShader = this._getWGSLFragmentCode( shadersData.fragment ); + + } else { + + this.computeShader = this._getWGSLComputeCode( shadersData.compute, ( this.object.workgroupSize || [ 64 ] ).join( ', ' ) ); + + } + + } + + /** + * Returns the native shader method name for a given generic name. + * + * @param {string} method - The method name to resolve. + * @param {?string} [output=null] - An optional output. + * @return {string} The resolved WGSL method name. + */ + getMethod( method, output = null ) { + + let wgslMethod; + + if ( output !== null ) { + + wgslMethod = this._getWGSLMethod( method + '_' + output ); + + } + + if ( wgslMethod === undefined ) { + + wgslMethod = this._getWGSLMethod( method ); + + } + + return wgslMethod || method; + + } + + /** + * Returns the WGSL type of the given node data type. + * + * @param {string} type - The node data type. + * @return {string} The WGSL type. + */ + getType( type ) { + + return wgslTypeLib[ type ] || type; + + } + + /** + * Whether the requested feature is available or not. + * + * @param {string} name - The requested feature. + * @return {boolean} Whether the requested feature is supported or not. + */ + isAvailable( name ) { + + let result = supports[ name ]; + + if ( result === undefined ) { + + if ( name === 'float32Filterable' ) { + + result = this.renderer.hasFeature( 'float32-filterable' ); + + } else if ( name === 'clipDistance' ) { + + result = this.renderer.hasFeature( 'clip-distances' ); + + } + + supports[ name ] = result; + + } + + return result; + + } + + /** + * Returns the native shader method name for a given generic name. + * + * @private + * @param {string} method - The method name to resolve. + * @return {string} The resolved WGSL method name. + */ + _getWGSLMethod( method ) { + + if ( wgslPolyfill[ method ] !== undefined ) { + + this._include( method ); + + } + + return wgslMethods[ method ]; + + } + + /** + * Includes the given method name into the current + * function node. + * + * @private + * @param {string} name - The method name to include. + * @return {CodeNode} The respective code node. + */ + _include( name ) { + + const codeNode = wgslPolyfill[ name ]; + codeNode.build( this ); + + if ( this.currentFunctionNode !== null ) { + + this.currentFunctionNode.includes.push( codeNode ); + + } + + return codeNode; + + } + + /** + * Returns a WGSL vertex shader based on the given shader data. + * + * @private + * @param {Object} shaderData - The shader data. + * @return {string} The vertex shader. + */ + _getWGSLVertexCode( shaderData ) { + + return `${ this.getSignature() } +// directives +${shaderData.directives} + +// structs +${shaderData.structs} + +// uniforms +${shaderData.uniforms} + +// varyings +${shaderData.varyings} +var varyings : VaryingsStruct; + +// codes +${shaderData.codes} + +@vertex +fn main( ${shaderData.attributes} ) -> VaryingsStruct { + + // vars + ${shaderData.vars} + + // flow + ${shaderData.flow} + + return varyings; + +} +`; + + } + + /** + * Returns a WGSL fragment shader based on the given shader data. + * + * @private + * @param {Object} shaderData - The shader data. + * @return {string} The vertex shader. + */ + _getWGSLFragmentCode( shaderData ) { + + return `${ this.getSignature() } +// global +${ diagnostics } + +// structs +${shaderData.structs} + +// uniforms +${shaderData.uniforms} + +// codes +${shaderData.codes} + +@fragment +fn main( ${shaderData.varyings} ) -> ${shaderData.returnType} { + + // vars + ${shaderData.vars} + + // flow + ${shaderData.flow} + +} +`; + + } + + /** + * Returns a WGSL compute shader based on the given shader data. + * + * @private + * @param {Object} shaderData - The shader data. + * @param {string} workgroupSize - The workgroup size. + * @return {string} The vertex shader. + */ + _getWGSLComputeCode( shaderData, workgroupSize ) { + + return `${ this.getSignature() } +// directives +${shaderData.directives} + +// system +var instanceIndex : u32; + +// locals +${shaderData.scopedArrays} + +// structs +${shaderData.structs} + +// uniforms +${shaderData.uniforms} + +// codes +${shaderData.codes} + +@compute @workgroup_size( ${workgroupSize} ) +fn main( ${shaderData.attributes} ) { + + // system + instanceIndex = globalId.x + globalId.y * numWorkgroups.x * u32(${workgroupSize}) + globalId.z * numWorkgroups.x * numWorkgroups.y * u32(${workgroupSize}); + + // vars + ${shaderData.vars} + + // flow + ${shaderData.flow} + +} +`; + + } + + /** + * Returns a WGSL struct based on the given name and variables. + * + * @private + * @param {string} name - The struct name. + * @param {string} vars - The struct variables. + * @return {string} The WGSL snippet representing a struct. + */ + _getWGSLStruct( name, vars ) { + + return ` +struct ${name} { +${vars} +};`; + + } + + /** + * Returns a WGSL struct binding. + * + * @private + * @param {string} name - The struct name. + * @param {string} vars - The struct variables. + * @param {string} access - The access. + * @param {number} [binding=0] - The binding index. + * @param {number} [group=0] - The group index. + * @return {string} The WGSL snippet representing a struct binding. + */ + _getWGSLStructBinding( name, vars, access, binding = 0, group = 0 ) { + + const structName = name + 'Struct'; + const structSnippet = this._getWGSLStruct( structName, vars ); + + return `${structSnippet} +@binding( ${ binding } ) @group( ${ group } ) +var<${access}> ${ name } : ${ structName };`; + + } + +} + +/** + * A WebGPU backend utility module with common helpers. + * + * @private + */ +class WebGPUUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGPUBackend} backend - The WebGPU backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGPU backend. + * + * @type {WebGPUBackend} + */ + this.backend = backend; + + } + + /** + * Returns the depth/stencil GPU format for the given render context. + * + * @param {RenderContext} renderContext - The render context. + * @return {string} The depth/stencil GPU texture format. + */ + getCurrentDepthStencilFormat( renderContext ) { + + let format; + + if ( renderContext.depthTexture !== null ) { + + format = this.getTextureFormatGPU( renderContext.depthTexture ); + + } else if ( renderContext.depth && renderContext.stencil ) { + + format = GPUTextureFormat.Depth24PlusStencil8; + + } else if ( renderContext.depth ) { + + format = GPUTextureFormat.Depth24Plus; + + } + + return format; + + } + + /** + * Returns the GPU format for the given texture. + * + * @param {Texture} texture - The texture. + * @return {string} The GPU texture format. + */ + getTextureFormatGPU( texture ) { + + return this.backend.get( texture ).format; + + } + + /** + * Returns an object that defines the multi-sampling state of the given texture. + * + * @param {Texture} texture - The texture. + * @return {Object} The multi-sampling state. + */ + getTextureSampleData( texture ) { + + let samples; + + if ( texture.isFramebufferTexture ) { + + samples = 1; + + } else if ( texture.isDepthTexture && ! texture.renderTarget ) { + + const renderer = this.backend.renderer; + const renderTarget = renderer.getRenderTarget(); + + samples = renderTarget ? renderTarget.samples : renderer.samples; + + } else if ( texture.renderTarget ) { + + samples = texture.renderTarget.samples; + + } + + samples = samples || 1; + + const isMSAA = samples > 1 && texture.renderTarget !== null && ( texture.isDepthTexture !== true && texture.isFramebufferTexture !== true ); + const primarySamples = isMSAA ? 1 : samples; + + return { samples, primarySamples, isMSAA }; + + } + + /** + * Returns the default color attachment's GPU format of the current render context. + * + * @param {RenderContext} renderContext - The render context. + * @return {string} The GPU texture format of the default color attachment. + */ + getCurrentColorFormat( renderContext ) { + + let format; + + if ( renderContext.textures !== null ) { + + format = this.getTextureFormatGPU( renderContext.textures[ 0 ] ); + + } else { + + format = this.getPreferredCanvasFormat(); // default context format + + } + + return format; + + } + + /** + * Returns the output color space of the current render context. + * + * @param {RenderContext} renderContext - The render context. + * @return {string} The output color space. + */ + getCurrentColorSpace( renderContext ) { + + if ( renderContext.textures !== null ) { + + return renderContext.textures[ 0 ].colorSpace; + + } + + return this.backend.renderer.outputColorSpace; + + } + + /** + * Returns GPU primitive topology for the given object and material. + * + * @param {Object3D} object - The 3D object. + * @param {Material} material - The material. + * @return {string} The GPU primitive topology. + */ + getPrimitiveTopology( object, material ) { + + if ( object.isPoints ) return GPUPrimitiveTopology.PointList; + else if ( object.isLineSegments || ( object.isMesh && material.wireframe === true ) ) return GPUPrimitiveTopology.LineList; + else if ( object.isLine ) return GPUPrimitiveTopology.LineStrip; + else if ( object.isMesh ) return GPUPrimitiveTopology.TriangleList; + + } + + /** + * Returns a modified sample count from the given sample count value. + * + * That is required since WebGPU does not support arbitrary sample counts. + * + * @param {number} sampleCount - The input sample count. + * @return {number} The (potentially updated) output sample count. + */ + getSampleCount( sampleCount ) { + + let count = 1; + + if ( sampleCount > 1 ) { + + // WebGPU only supports power-of-two sample counts and 2 is not a valid value + count = Math.pow( 2, Math.floor( Math.log2( sampleCount ) ) ); + + if ( count === 2 ) { + + count = 4; + + } + + } + + return count; + + } + + /** + * Returns the sample count of the given render context. + * + * @param {RenderContext} renderContext - The render context. + * @return {number} The sample count. + */ + getSampleCountRenderContext( renderContext ) { + + if ( renderContext.textures !== null ) { + + return this.getSampleCount( renderContext.sampleCount ); + + } + + return this.getSampleCount( this.backend.renderer.samples ); + + } + + /** + * Returns the preferred canvas format. + * + * There is a separate method for this so it's possible to + * honor edge cases for specific devices. + * + * @return {string} The GPU texture format of the canvas. + */ + getPreferredCanvasFormat() { + + const outputType = this.backend.parameters.outputType; + + if ( outputType === undefined ) { + + return navigator.gpu.getPreferredCanvasFormat(); + + } else if ( outputType === UnsignedByteType ) { + + return GPUTextureFormat.BGRA8Unorm; + + } else if ( outputType === HalfFloatType ) { + + return GPUTextureFormat.RGBA16Float; + + } else { + + throw new Error( 'Unsupported outputType' ); + + } + + } + +} + +const typedArraysToVertexFormatPrefix = new Map( [ + [ Int8Array, [ 'sint8', 'snorm8' ]], + [ Uint8Array, [ 'uint8', 'unorm8' ]], + [ Int16Array, [ 'sint16', 'snorm16' ]], + [ Uint16Array, [ 'uint16', 'unorm16' ]], + [ Int32Array, [ 'sint32', 'snorm32' ]], + [ Uint32Array, [ 'uint32', 'unorm32' ]], + [ Float32Array, [ 'float32', ]], +] ); + +const typedAttributeToVertexFormatPrefix = new Map( [ + [ Float16BufferAttribute, [ 'float16', ]], +] ); + +const typeArraysToVertexFormatPrefixForItemSize1 = new Map( [ + [ Int32Array, 'sint32' ], + [ Int16Array, 'sint32' ], // patch for INT16 + [ Uint32Array, 'uint32' ], + [ Uint16Array, 'uint32' ], // patch for UINT16 + [ Float32Array, 'float32' ] +] ); + +/** + * A WebGPU backend utility module for managing shader attributes. + * + * @private + */ +class WebGPUAttributeUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGPUBackend} backend - The WebGPU backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGPU backend. + * + * @type {WebGPUBackend} + */ + this.backend = backend; + + } + + /** + * Creates the GPU buffer for the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + * @param {GPUBufferUsage} usage - A flag that indicates how the buffer may be used after its creation. + */ + createAttribute( attribute, usage ) { + + const bufferAttribute = this._getBufferAttribute( attribute ); + + const backend = this.backend; + const bufferData = backend.get( bufferAttribute ); + + let buffer = bufferData.buffer; + + if ( buffer === undefined ) { + + const device = backend.device; + + let array = bufferAttribute.array; + + // patch for INT16 and UINT16 + if ( attribute.normalized === false ) { + + if ( array.constructor === Int16Array || array.constructor === Int8Array ) { + + array = new Int32Array( array ); + + } else if ( array.constructor === Uint16Array || array.constructor === Uint8Array ) { + + array = new Uint32Array( array ); + + if ( usage & GPUBufferUsage.INDEX ) { + + for ( let i = 0; i < array.length; i ++ ) { + + if ( array[ i ] === 0xffff ) array[ i ] = 0xffffffff; // use correct primitive restart index + + } + + } + + } + + } + + bufferAttribute.array = array; + + if ( ( bufferAttribute.isStorageBufferAttribute || bufferAttribute.isStorageInstancedBufferAttribute ) && bufferAttribute.itemSize === 3 ) { + + array = new array.constructor( bufferAttribute.count * 4 ); + + for ( let i = 0; i < bufferAttribute.count; i ++ ) { + + array.set( bufferAttribute.array.subarray( i * 3, i * 3 + 3 ), i * 4 ); + + } + + // Update BufferAttribute + bufferAttribute.itemSize = 4; + bufferAttribute.array = array; + + bufferData._force3to4BytesAlignment = true; + + } + + // ensure 4 byte alignment + const byteLength = array.byteLength; + const size = byteLength + ( ( 4 - ( byteLength % 4 ) ) % 4 ); + + buffer = device.createBuffer( { + label: bufferAttribute.name, + size: size, + usage: usage, + mappedAtCreation: true + } ); + + new array.constructor( buffer.getMappedRange() ).set( array ); + + buffer.unmap(); + + bufferData.buffer = buffer; + + } + + } + + /** + * Updates the GPU buffer of the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + updateAttribute( attribute ) { + + const bufferAttribute = this._getBufferAttribute( attribute ); + + const backend = this.backend; + const device = backend.device; + + const bufferData = backend.get( bufferAttribute ); + const buffer = backend.get( bufferAttribute ).buffer; + + let array = bufferAttribute.array; + + // if storage buffer ensure 4 byte alignment + if ( bufferData._force3to4BytesAlignment === true ) { + + array = new array.constructor( bufferAttribute.count * 4 ); + + for ( let i = 0; i < bufferAttribute.count; i ++ ) { + + array.set( bufferAttribute.array.subarray( i * 3, i * 3 + 3 ), i * 4 ); + + } + + bufferAttribute.array = array; + + } + + + const isTypedArray = this._isTypedArray( array ); + const updateRanges = bufferAttribute.updateRanges; + + if ( updateRanges.length === 0 ) { + + // Not using update ranges + + device.queue.writeBuffer( + buffer, + 0, + array, + 0 + ); + + } else { + + const byteOffsetFactor = isTypedArray ? 1 : array.BYTES_PER_ELEMENT; + + for ( let i = 0, l = updateRanges.length; i < l; i ++ ) { + + const range = updateRanges[ i ]; + let dataOffset, size; + + if ( bufferData._force3to4BytesAlignment === true ) { + + const vertexStart = Math.floor( range.start / 3 ); + const vertexCount = Math.ceil( range.count / 3 ); + dataOffset = vertexStart * 4 * byteOffsetFactor; + size = vertexCount * 4 * byteOffsetFactor; + + } else { + + dataOffset = range.start * byteOffsetFactor; + size = range.count * byteOffsetFactor; + + } + + const bufferOffset = dataOffset * ( isTypedArray ? array.BYTES_PER_ELEMENT : 1 ); // bufferOffset is always in bytes + + device.queue.writeBuffer( + buffer, + bufferOffset, + array, + dataOffset, + size + ); + + } + + bufferAttribute.clearUpdateRanges(); + + } + + } + + /** + * This method creates the vertex buffer layout data which are + * require when creating a render pipeline for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @return {Array} An array holding objects which describe the vertex buffer layout. + */ + createShaderVertexBuffers( renderObject ) { + + const attributes = renderObject.getAttributes(); + const vertexBuffers = new Map(); + + for ( let slot = 0; slot < attributes.length; slot ++ ) { + + const geometryAttribute = attributes[ slot ]; + const bytesPerElement = geometryAttribute.array.BYTES_PER_ELEMENT; + const bufferAttribute = this._getBufferAttribute( geometryAttribute ); + + let vertexBufferLayout = vertexBuffers.get( bufferAttribute ); + + if ( vertexBufferLayout === undefined ) { + + let arrayStride, stepMode; + + if ( geometryAttribute.isInterleavedBufferAttribute === true ) { + + arrayStride = geometryAttribute.data.stride * bytesPerElement; + stepMode = geometryAttribute.data.isInstancedInterleavedBuffer ? GPUInputStepMode.Instance : GPUInputStepMode.Vertex; + + } else { + + arrayStride = geometryAttribute.itemSize * bytesPerElement; + stepMode = geometryAttribute.isInstancedBufferAttribute ? GPUInputStepMode.Instance : GPUInputStepMode.Vertex; + + } + + // patch for INT16 and UINT16 + if ( geometryAttribute.normalized === false && ( geometryAttribute.array.constructor === Int16Array || geometryAttribute.array.constructor === Uint16Array ) ) { + + arrayStride = 4; + + } + + vertexBufferLayout = { + arrayStride, + attributes: [], + stepMode + }; + + vertexBuffers.set( bufferAttribute, vertexBufferLayout ); + + } + + const format = this._getVertexFormat( geometryAttribute ); + const offset = ( geometryAttribute.isInterleavedBufferAttribute === true ) ? geometryAttribute.offset * bytesPerElement : 0; + + vertexBufferLayout.attributes.push( { + shaderLocation: slot, + offset, + format + } ); + + } + + return Array.from( vertexBuffers.values() ); + + } + + /** + * Destroys the GPU buffer of the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + destroyAttribute( attribute ) { + + const backend = this.backend; + const data = backend.get( this._getBufferAttribute( attribute ) ); + + data.buffer.destroy(); + + backend.delete( attribute ); + + } + + /** + * This method performs a readback operation by moving buffer data from + * a storage buffer attribute from the GPU to the CPU. + * + * @async + * @param {StorageBufferAttribute} attribute - The storage buffer attribute. + * @return {Promise} A promise that resolves with the buffer data when the data are ready. + */ + async getArrayBufferAsync( attribute ) { + + const backend = this.backend; + const device = backend.device; + + const data = backend.get( this._getBufferAttribute( attribute ) ); + const bufferGPU = data.buffer; + const size = bufferGPU.size; + + const readBufferGPU = device.createBuffer( { + label: `${ attribute.name }_readback`, + size, + usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ + } ); + + const cmdEncoder = device.createCommandEncoder( { + label: `readback_encoder_${ attribute.name }` + } ); + + cmdEncoder.copyBufferToBuffer( + bufferGPU, + 0, + readBufferGPU, + 0, + size + ); + + const gpuCommands = cmdEncoder.finish(); + device.queue.submit( [ gpuCommands ] ); + + await readBufferGPU.mapAsync( GPUMapMode.READ ); + + const arrayBuffer = readBufferGPU.getMappedRange(); + + const dstBuffer = new attribute.array.constructor( arrayBuffer.slice( 0 ) ); + + readBufferGPU.unmap(); + + return dstBuffer.buffer; + + } + + /** + * Returns the vertex format of the given buffer attribute. + * + * @private + * @param {BufferAttribute} geometryAttribute - The buffer attribute. + * @return {string|undefined} The vertex format (e.g. 'float32x3'). + */ + _getVertexFormat( geometryAttribute ) { + + const { itemSize, normalized } = geometryAttribute; + const ArrayType = geometryAttribute.array.constructor; + const AttributeType = geometryAttribute.constructor; + + let format; + + if ( itemSize === 1 ) { + + format = typeArraysToVertexFormatPrefixForItemSize1.get( ArrayType ); + + } else { + + const prefixOptions = typedAttributeToVertexFormatPrefix.get( AttributeType ) || typedArraysToVertexFormatPrefix.get( ArrayType ); + const prefix = prefixOptions[ normalized ? 1 : 0 ]; + + if ( prefix ) { + + const bytesPerUnit = ArrayType.BYTES_PER_ELEMENT * itemSize; + const paddedBytesPerUnit = Math.floor( ( bytesPerUnit + 3 ) / 4 ) * 4; + const paddedItemSize = paddedBytesPerUnit / ArrayType.BYTES_PER_ELEMENT; + + if ( paddedItemSize % 1 ) { + + throw new Error( 'THREE.WebGPUAttributeUtils: Bad vertex format item size.' ); + + } + + format = `${prefix}x${paddedItemSize}`; + + } + + } + + if ( ! format ) { + + console.error( 'THREE.WebGPUAttributeUtils: Vertex format not supported yet.' ); + + } + + return format; + + } + + /** + * Returns `true` if the given array is a typed array. + * + * @private + * @param {any} array - The array. + * @return {boolean} Whether the given array is a typed array or not. + */ + _isTypedArray( array ) { + + return ArrayBuffer.isView( array ) && ! ( array instanceof DataView ); + + } + + /** + * Utility method for handling interleaved buffer attributes correctly. + * To process them, their `InterleavedBuffer` is returned. + * + * @private + * @param {BufferAttribute} attribute - The attribute. + * @return {BufferAttribute|InterleavedBuffer} + */ + _getBufferAttribute( attribute ) { + + if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; + + return attribute; + + } + +} + +/** + * A WebGPU backend utility module for managing bindings. + * + * When reading the documentation it's helpful to keep in mind that + * all class definitions starting with 'GPU*' are modules from the + * WebGPU API. So for example `BindGroup` is a class from the engine + * whereas `GPUBindGroup` is a class from WebGPU. + * + * @private + */ +class WebGPUBindingUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGPUBackend} backend - The WebGPU backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGPU backend. + * + * @type {WebGPUBackend} + */ + this.backend = backend; + + /** + * A cache for managing bind group layouts. + * + * @type {WeakMap,GPUBindGroupLayout>} + */ + this.bindGroupLayoutCache = new WeakMap(); + + } + + /** + * Creates a GPU bind group layout for the given bind group. + * + * @param {BindGroup} bindGroup - The bind group. + * @return {GPUBindGroupLayout} The GPU bind group layout. + */ + createBindingsLayout( bindGroup ) { + + const backend = this.backend; + const device = backend.device; + + const entries = []; + + let index = 0; + + for ( const binding of bindGroup.bindings ) { + + const bindingGPU = { + binding: index ++, + visibility: binding.visibility + }; + + if ( binding.isUniformBuffer || binding.isStorageBuffer ) { + + const buffer = {}; // GPUBufferBindingLayout + + if ( binding.isStorageBuffer ) { + + if ( binding.visibility & 4 ) { + + // compute + + if ( binding.access === NodeAccess.READ_WRITE || binding.access === NodeAccess.WRITE_ONLY ) { + + buffer.type = GPUBufferBindingType.Storage; + + } else { + + buffer.type = GPUBufferBindingType.ReadOnlyStorage; + + } + + } else { + + buffer.type = GPUBufferBindingType.ReadOnlyStorage; + + } + + } + + bindingGPU.buffer = buffer; + + } else if ( binding.isSampler ) { + + const sampler = {}; // GPUSamplerBindingLayout + + if ( binding.texture.isDepthTexture ) { + + if ( binding.texture.compareFunction !== null ) { + + sampler.type = GPUSamplerBindingType.Comparison; + + } else if ( backend.compatibilityMode ) { + + sampler.type = GPUSamplerBindingType.NonFiltering; + + } + + } + + bindingGPU.sampler = sampler; + + } else if ( binding.isSampledTexture && binding.texture.isVideoTexture ) { + + bindingGPU.externalTexture = {}; // GPUExternalTextureBindingLayout + + } else if ( binding.isSampledTexture && binding.store ) { + + const storageTexture = {}; // GPUStorageTextureBindingLayout + storageTexture.format = this.backend.get( binding.texture ).texture.format; + + const access = binding.access; + + if ( access === NodeAccess.READ_WRITE ) { + + storageTexture.access = GPUStorageTextureAccess.ReadWrite; + + } else if ( access === NodeAccess.WRITE_ONLY ) { + + storageTexture.access = GPUStorageTextureAccess.WriteOnly; + + } else { + + storageTexture.access = GPUStorageTextureAccess.ReadOnly; + + } + + bindingGPU.storageTexture = storageTexture; + + } else if ( binding.isSampledTexture ) { + + const texture = {}; // GPUTextureBindingLayout + + const { primarySamples } = backend.utils.getTextureSampleData( binding.texture ); + + if ( primarySamples > 1 ) { + + texture.multisampled = true; + + if ( ! binding.texture.isDepthTexture ) { + + texture.sampleType = GPUTextureSampleType.UnfilterableFloat; + + } + + } + + if ( binding.texture.isDepthTexture ) { + + if ( backend.compatibilityMode && binding.texture.compareFunction === null ) { + + texture.sampleType = GPUTextureSampleType.UnfilterableFloat; + + } else { + + texture.sampleType = GPUTextureSampleType.Depth; + + } + + } else if ( binding.texture.isDataTexture || binding.texture.isDataArrayTexture || binding.texture.isData3DTexture ) { + + const type = binding.texture.type; + + if ( type === IntType ) { + + texture.sampleType = GPUTextureSampleType.SInt; + + } else if ( type === UnsignedIntType ) { + + texture.sampleType = GPUTextureSampleType.UInt; + + } else if ( type === FloatType ) { + + if ( this.backend.hasFeature( 'float32-filterable' ) ) { + + texture.sampleType = GPUTextureSampleType.Float; + + } else { + + texture.sampleType = GPUTextureSampleType.UnfilterableFloat; + + } + + } + + } + + if ( binding.isSampledCubeTexture ) { + + texture.viewDimension = GPUTextureViewDimension.Cube; + + } else if ( binding.texture.isArrayTexture || binding.texture.isDataArrayTexture || binding.texture.isCompressedArrayTexture ) { + + texture.viewDimension = GPUTextureViewDimension.TwoDArray; + + } else if ( binding.isSampledTexture3D ) { + + texture.viewDimension = GPUTextureViewDimension.ThreeD; + + } + + bindingGPU.texture = texture; + + } else { + + console.error( `WebGPUBindingUtils: Unsupported binding "${ binding }".` ); + + } + + entries.push( bindingGPU ); + + } + + return device.createBindGroupLayout( { entries } ); + + } + + /** + * Creates bindings from the given bind group definition. + * + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + createBindings( bindGroup, bindings, cacheIndex, version = 0 ) { + + const { backend, bindGroupLayoutCache } = this; + const bindingsData = backend.get( bindGroup ); + + // setup (static) binding layout and (dynamic) binding group + + let bindLayoutGPU = bindGroupLayoutCache.get( bindGroup.bindingsReference ); + + if ( bindLayoutGPU === undefined ) { + + bindLayoutGPU = this.createBindingsLayout( bindGroup ); + bindGroupLayoutCache.set( bindGroup.bindingsReference, bindLayoutGPU ); + + } + + let bindGroupGPU; + + if ( cacheIndex > 0 ) { + + if ( bindingsData.groups === undefined ) { + + bindingsData.groups = []; + bindingsData.versions = []; + + } + + if ( bindingsData.versions[ cacheIndex ] === version ) { + + bindGroupGPU = bindingsData.groups[ cacheIndex ]; + + } + + } + + if ( bindGroupGPU === undefined ) { + + bindGroupGPU = this.createBindGroup( bindGroup, bindLayoutGPU ); + + if ( cacheIndex > 0 ) { + + bindingsData.groups[ cacheIndex ] = bindGroupGPU; + bindingsData.versions[ cacheIndex ] = version; + + } + + } + + bindingsData.group = bindGroupGPU; + bindingsData.layout = bindLayoutGPU; + + } + + /** + * Updates a buffer binding. + * + * @param {Buffer} binding - The buffer binding to update. + */ + updateBinding( binding ) { + + const backend = this.backend; + const device = backend.device; + + const buffer = binding.buffer; + const bufferGPU = backend.get( binding ).buffer; + + device.queue.writeBuffer( bufferGPU, 0, buffer, 0 ); + + } + + /** + * Creates a GPU bind group for the camera index. + * + * @param {Uint32Array} data - The index data. + * @param {GPUBindGroupLayout} layout - The GPU bind group layout. + * @return {GPUBindGroup} The GPU bind group. + */ + createBindGroupIndex( data, layout ) { + + const backend = this.backend; + const device = backend.device; + + const usage = GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST; + const index = data[ 0 ]; + + const buffer = device.createBuffer( { + label: 'bindingCameraIndex_' + index, + size: 16, // uint(4) * 4 + usage: usage + } ); + + device.queue.writeBuffer( buffer, 0, data, 0 ); + + const entries = [ { binding: 0, resource: { buffer } } ]; + + return device.createBindGroup( { + label: 'bindGroupCameraIndex_' + index, + layout, + entries + } ); + + } + + /** + * Creates a GPU bind group for the given bind group and GPU layout. + * + * @param {BindGroup} bindGroup - The bind group. + * @param {GPUBindGroupLayout} layoutGPU - The GPU bind group layout. + * @return {GPUBindGroup} The GPU bind group. + */ + createBindGroup( bindGroup, layoutGPU ) { + + const backend = this.backend; + const device = backend.device; + + let bindingPoint = 0; + const entriesGPU = []; + + for ( const binding of bindGroup.bindings ) { + + if ( binding.isUniformBuffer ) { + + const bindingData = backend.get( binding ); + + if ( bindingData.buffer === undefined ) { + + const byteLength = binding.byteLength; + + const usage = GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST; + + const bufferGPU = device.createBuffer( { + label: 'bindingBuffer_' + binding.name, + size: byteLength, + usage: usage + } ); + + bindingData.buffer = bufferGPU; + + } + + entriesGPU.push( { binding: bindingPoint, resource: { buffer: bindingData.buffer } } ); + + } else if ( binding.isStorageBuffer ) { + + const bindingData = backend.get( binding ); + + if ( bindingData.buffer === undefined ) { + + const attribute = binding.attribute; + //const usage = GPUBufferUsage.STORAGE | GPUBufferUsage.VERTEX | /*GPUBufferUsage.COPY_SRC |*/ GPUBufferUsage.COPY_DST; + + //backend.attributeUtils.createAttribute( attribute, usage ); // @TODO: Move it to universal renderer + + bindingData.buffer = backend.get( attribute ).buffer; + + } + + entriesGPU.push( { binding: bindingPoint, resource: { buffer: bindingData.buffer } } ); + + } else if ( binding.isSampler ) { + + const textureGPU = backend.get( binding.texture ); + + entriesGPU.push( { binding: bindingPoint, resource: textureGPU.sampler } ); + + } else if ( binding.isSampledTexture ) { + + const textureData = backend.get( binding.texture ); + + let resourceGPU; + + if ( textureData.externalTexture !== undefined ) { + + resourceGPU = device.importExternalTexture( { source: textureData.externalTexture } ); + + } else { + + const mipLevelCount = binding.store ? 1 : textureData.texture.mipLevelCount; + const propertyName = `view-${ textureData.texture.width }-${ textureData.texture.height }-${ mipLevelCount }`; + + resourceGPU = textureData[ propertyName ]; + + if ( resourceGPU === undefined ) { + + const aspectGPU = GPUTextureAspect.All; + + let dimensionViewGPU; + + if ( binding.isSampledCubeTexture ) { + + dimensionViewGPU = GPUTextureViewDimension.Cube; + + } else if ( binding.isSampledTexture3D ) { + + dimensionViewGPU = GPUTextureViewDimension.ThreeD; + + } else if ( binding.texture.isArrayTexture || binding.texture.isDataArrayTexture || binding.texture.isCompressedArrayTexture ) { + + dimensionViewGPU = GPUTextureViewDimension.TwoDArray; + + } else { + + dimensionViewGPU = GPUTextureViewDimension.TwoD; + + } + + resourceGPU = textureData[ propertyName ] = textureData.texture.createView( { aspect: aspectGPU, dimension: dimensionViewGPU, mipLevelCount } ); + + } + + } + + entriesGPU.push( { binding: bindingPoint, resource: resourceGPU } ); + + } + + bindingPoint ++; + + } + + return device.createBindGroup( { + label: 'bindGroup_' + bindGroup.name, + layout: layoutGPU, + entries: entriesGPU + } ); + + } + +} + +/** + * A WebGPU backend utility module for managing pipelines. + * + * @private + */ +class WebGPUPipelineUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGPUBackend} backend - The WebGPU backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGPU backend. + * + * @type {WebGPUBackend} + */ + this.backend = backend; + + /** + * A Weak Map that tracks the active pipeline for render or compute passes. + * + * @private + * @type {WeakMap<(GPURenderPassEncoder|GPUComputePassEncoder),(GPURenderPipeline|GPUComputePipeline)>} + */ + this._activePipelines = new WeakMap(); + + } + + /** + * Sets the given pipeline for the given pass. The method makes sure to only set the + * pipeline when necessary. + * + * @param {(GPURenderPassEncoder|GPUComputePassEncoder)} pass - The pass encoder. + * @param {(GPURenderPipeline|GPUComputePipeline)} pipeline - The pipeline. + */ + setPipeline( pass, pipeline ) { + + const currentPipeline = this._activePipelines.get( pass ); + + if ( currentPipeline !== pipeline ) { + + pass.setPipeline( pipeline ); + + this._activePipelines.set( pass, pipeline ); + + } + + } + + /** + * Returns the sample count derived from the given render context. + * + * @private + * @param {RenderContext} renderContext - The render context. + * @return {number} The sample count. + */ + _getSampleCount( renderContext ) { + + return this.backend.utils.getSampleCountRenderContext( renderContext ); + + } + + /** + * Creates a render pipeline for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @param {Array} promises - An array of compilation promises which are used in `compileAsync()`. + */ + createRenderPipeline( renderObject, promises ) { + + const { object, material, geometry, pipeline } = renderObject; + const { vertexProgram, fragmentProgram } = pipeline; + + const backend = this.backend; + const device = backend.device; + const utils = backend.utils; + + const pipelineData = backend.get( pipeline ); + + // bind group layouts + + const bindGroupLayouts = []; + + for ( const bindGroup of renderObject.getBindings() ) { + + const bindingsData = backend.get( bindGroup ); + + bindGroupLayouts.push( bindingsData.layout ); + + } + + // vertex buffers + + const vertexBuffers = backend.attributeUtils.createShaderVertexBuffers( renderObject ); + + // blending + + let blending; + + if ( material.blending !== NoBlending && ( material.blending !== NormalBlending || material.transparent !== false ) ) { + + blending = this._getBlending( material ); + + } + + // stencil + + let stencilFront = {}; + + if ( material.stencilWrite === true ) { + + stencilFront = { + compare: this._getStencilCompare( material ), + failOp: this._getStencilOperation( material.stencilFail ), + depthFailOp: this._getStencilOperation( material.stencilZFail ), + passOp: this._getStencilOperation( material.stencilZPass ) + }; + + } + + const colorWriteMask = this._getColorWriteMask( material ); + + const targets = []; + + if ( renderObject.context.textures !== null ) { + + const textures = renderObject.context.textures; + + for ( let i = 0; i < textures.length; i ++ ) { + + const colorFormat = utils.getTextureFormatGPU( textures[ i ] ); + + targets.push( { + format: colorFormat, + blend: blending, + writeMask: colorWriteMask + } ); + + } + + } else { + + const colorFormat = utils.getCurrentColorFormat( renderObject.context ); + + targets.push( { + format: colorFormat, + blend: blending, + writeMask: colorWriteMask + } ); + + } + + const vertexModule = backend.get( vertexProgram ).module; + const fragmentModule = backend.get( fragmentProgram ).module; + + const primitiveState = this._getPrimitiveState( object, geometry, material ); + const depthCompare = this._getDepthCompare( material ); + const depthStencilFormat = utils.getCurrentDepthStencilFormat( renderObject.context ); + + const sampleCount = this._getSampleCount( renderObject.context ); + + const pipelineDescriptor = { + label: `renderPipeline_${ material.name || material.type }_${ material.id }`, + vertex: Object.assign( {}, vertexModule, { buffers: vertexBuffers } ), + fragment: Object.assign( {}, fragmentModule, { targets } ), + primitive: primitiveState, + multisample: { + count: sampleCount, + alphaToCoverageEnabled: material.alphaToCoverage && sampleCount > 1 + }, + layout: device.createPipelineLayout( { + bindGroupLayouts + } ) + }; + + + const depthStencil = {}; + const renderDepth = renderObject.context.depth; + const renderStencil = renderObject.context.stencil; + + if ( renderDepth === true || renderStencil === true ) { + + if ( renderDepth === true ) { + + depthStencil.format = depthStencilFormat; + depthStencil.depthWriteEnabled = material.depthWrite; + depthStencil.depthCompare = depthCompare; + + } + + if ( renderStencil === true ) { + + depthStencil.stencilFront = stencilFront; + depthStencil.stencilBack = {}; // three.js does not provide an API to configure the back function (gl.stencilFuncSeparate() was never used) + depthStencil.stencilReadMask = material.stencilFuncMask; + depthStencil.stencilWriteMask = material.stencilWriteMask; + + } + + if ( material.polygonOffset === true ) { + + depthStencil.depthBias = material.polygonOffsetUnits; + depthStencil.depthBiasSlopeScale = material.polygonOffsetFactor; + depthStencil.depthBiasClamp = 0; // three.js does not provide an API to configure this value + + } + + pipelineDescriptor.depthStencil = depthStencil; + + } + + + if ( promises === null ) { + + pipelineData.pipeline = device.createRenderPipeline( pipelineDescriptor ); + + } else { + + const p = new Promise( ( resolve /*, reject*/ ) => { + + device.createRenderPipelineAsync( pipelineDescriptor ).then( pipeline => { + + pipelineData.pipeline = pipeline; + resolve(); + + } ); + + } ); + + promises.push( p ); + + } + + } + + /** + * Creates GPU render bundle encoder for the given render context. + * + * @param {RenderContext} renderContext - The render context. + * @param {?string} [label='renderBundleEncoder'] - The label. + * @return {GPURenderBundleEncoder} The GPU render bundle encoder. + */ + createBundleEncoder( renderContext, label = 'renderBundleEncoder' ) { + + const backend = this.backend; + const { utils, device } = backend; + + const depthStencilFormat = utils.getCurrentDepthStencilFormat( renderContext ); + const colorFormat = utils.getCurrentColorFormat( renderContext ); + const sampleCount = this._getSampleCount( renderContext ); + + const descriptor = { + label: label, + colorFormats: [ colorFormat ], + depthStencilFormat, + sampleCount + }; + + return device.createRenderBundleEncoder( descriptor ); + + } + + /** + * Creates a compute pipeline for the given compute node. + * + * @param {ComputePipeline} pipeline - The compute pipeline. + * @param {Array} bindings - The bindings. + */ + createComputePipeline( pipeline, bindings ) { + + const backend = this.backend; + const device = backend.device; + + const computeProgram = backend.get( pipeline.computeProgram ).module; + + const pipelineGPU = backend.get( pipeline ); + + // bind group layouts + + const bindGroupLayouts = []; + + for ( const bindingsGroup of bindings ) { + + const bindingsData = backend.get( bindingsGroup ); + + bindGroupLayouts.push( bindingsData.layout ); + + } + + pipelineGPU.pipeline = device.createComputePipeline( { + compute: computeProgram, + layout: device.createPipelineLayout( { + bindGroupLayouts + } ) + } ); + + } + + /** + * Returns the blending state as a descriptor object required + * for the pipeline creation. + * + * @private + * @param {Material} material - The material. + * @return {Object} The blending state. + */ + _getBlending( material ) { + + let color, alpha; + + const blending = material.blending; + const blendSrc = material.blendSrc; + const blendDst = material.blendDst; + const blendEquation = material.blendEquation; + + + if ( blending === CustomBlending ) { + + const blendSrcAlpha = material.blendSrcAlpha !== null ? material.blendSrcAlpha : blendSrc; + const blendDstAlpha = material.blendDstAlpha !== null ? material.blendDstAlpha : blendDst; + const blendEquationAlpha = material.blendEquationAlpha !== null ? material.blendEquationAlpha : blendEquation; + + color = { + srcFactor: this._getBlendFactor( blendSrc ), + dstFactor: this._getBlendFactor( blendDst ), + operation: this._getBlendOperation( blendEquation ) + }; + + alpha = { + srcFactor: this._getBlendFactor( blendSrcAlpha ), + dstFactor: this._getBlendFactor( blendDstAlpha ), + operation: this._getBlendOperation( blendEquationAlpha ) + }; + + } else { + + const premultipliedAlpha = material.premultipliedAlpha; + + const setBlend = ( srcRGB, dstRGB, srcAlpha, dstAlpha ) => { + + color = { + srcFactor: srcRGB, + dstFactor: dstRGB, + operation: GPUBlendOperation.Add + }; + + alpha = { + srcFactor: srcAlpha, + dstFactor: dstAlpha, + operation: GPUBlendOperation.Add + }; + + }; + + if ( premultipliedAlpha ) { + + switch ( blending ) { + + case NormalBlending: + setBlend( GPUBlendFactor.One, GPUBlendFactor.OneMinusSrcAlpha, GPUBlendFactor.One, GPUBlendFactor.OneMinusSrcAlpha ); + break; + + case AdditiveBlending: + setBlend( GPUBlendFactor.One, GPUBlendFactor.One, GPUBlendFactor.One, GPUBlendFactor.One ); + break; + + case SubtractiveBlending: + setBlend( GPUBlendFactor.Zero, GPUBlendFactor.OneMinusSrc, GPUBlendFactor.Zero, GPUBlendFactor.One ); + break; + + case MultiplyBlending: + setBlend( GPUBlendFactor.Zero, GPUBlendFactor.Src, GPUBlendFactor.Zero, GPUBlendFactor.SrcAlpha ); + break; + + } + + } else { + + switch ( blending ) { + + case NormalBlending: + setBlend( GPUBlendFactor.SrcAlpha, GPUBlendFactor.OneMinusSrcAlpha, GPUBlendFactor.One, GPUBlendFactor.OneMinusSrcAlpha ); + break; + + case AdditiveBlending: + setBlend( GPUBlendFactor.SrcAlpha, GPUBlendFactor.One, GPUBlendFactor.SrcAlpha, GPUBlendFactor.One ); + break; + + case SubtractiveBlending: + setBlend( GPUBlendFactor.Zero, GPUBlendFactor.OneMinusSrc, GPUBlendFactor.Zero, GPUBlendFactor.One ); + break; + + case MultiplyBlending: + setBlend( GPUBlendFactor.Zero, GPUBlendFactor.Src, GPUBlendFactor.Zero, GPUBlendFactor.Src ); + break; + + } + + } + + } + + if ( color !== undefined && alpha !== undefined ) { + + return { color, alpha }; + + } else { + + console.error( 'THREE.WebGPURenderer: Invalid blending: ', blending ); + + } + + } + /** + * Returns the GPU blend factor which is required for the pipeline creation. + * + * @private + * @param {number} blend - The blend factor as a three.js constant. + * @return {string} The GPU blend factor. + */ + _getBlendFactor( blend ) { + + let blendFactor; + + switch ( blend ) { + + case ZeroFactor: + blendFactor = GPUBlendFactor.Zero; + break; + + case OneFactor: + blendFactor = GPUBlendFactor.One; + break; + + case SrcColorFactor: + blendFactor = GPUBlendFactor.Src; + break; + + case OneMinusSrcColorFactor: + blendFactor = GPUBlendFactor.OneMinusSrc; + break; + + case SrcAlphaFactor: + blendFactor = GPUBlendFactor.SrcAlpha; + break; + + case OneMinusSrcAlphaFactor: + blendFactor = GPUBlendFactor.OneMinusSrcAlpha; + break; + + case DstColorFactor: + blendFactor = GPUBlendFactor.Dst; + break; + + case OneMinusDstColorFactor: + blendFactor = GPUBlendFactor.OneMinusDst; + break; + + case DstAlphaFactor: + blendFactor = GPUBlendFactor.DstAlpha; + break; + + case OneMinusDstAlphaFactor: + blendFactor = GPUBlendFactor.OneMinusDstAlpha; + break; + + case SrcAlphaSaturateFactor: + blendFactor = GPUBlendFactor.SrcAlphaSaturated; + break; + + case BlendColorFactor: + blendFactor = GPUBlendFactor.Constant; + break; + + case OneMinusBlendColorFactor: + blendFactor = GPUBlendFactor.OneMinusConstant; + break; + + default: + console.error( 'THREE.WebGPURenderer: Blend factor not supported.', blend ); + + } + + return blendFactor; + + } + + /** + * Returns the GPU stencil compare function which is required for the pipeline creation. + * + * @private + * @param {Material} material - The material. + * @return {string} The GPU stencil compare function. + */ + _getStencilCompare( material ) { + + let stencilCompare; + + const stencilFunc = material.stencilFunc; + + switch ( stencilFunc ) { + + case NeverStencilFunc: + stencilCompare = GPUCompareFunction.Never; + break; + + case AlwaysStencilFunc: + stencilCompare = GPUCompareFunction.Always; + break; + + case LessStencilFunc: + stencilCompare = GPUCompareFunction.Less; + break; + + case LessEqualStencilFunc: + stencilCompare = GPUCompareFunction.LessEqual; + break; + + case EqualStencilFunc: + stencilCompare = GPUCompareFunction.Equal; + break; + + case GreaterEqualStencilFunc: + stencilCompare = GPUCompareFunction.GreaterEqual; + break; + + case GreaterStencilFunc: + stencilCompare = GPUCompareFunction.Greater; + break; + + case NotEqualStencilFunc: + stencilCompare = GPUCompareFunction.NotEqual; + break; + + default: + console.error( 'THREE.WebGPURenderer: Invalid stencil function.', stencilFunc ); + + } + + return stencilCompare; + + } + + /** + * Returns the GPU stencil operation which is required for the pipeline creation. + * + * @private + * @param {number} op - A three.js constant defining the stencil operation. + * @return {string} The GPU stencil operation. + */ + _getStencilOperation( op ) { + + let stencilOperation; + + switch ( op ) { + + case KeepStencilOp: + stencilOperation = GPUStencilOperation.Keep; + break; + + case ZeroStencilOp: + stencilOperation = GPUStencilOperation.Zero; + break; + + case ReplaceStencilOp: + stencilOperation = GPUStencilOperation.Replace; + break; + + case InvertStencilOp: + stencilOperation = GPUStencilOperation.Invert; + break; + + case IncrementStencilOp: + stencilOperation = GPUStencilOperation.IncrementClamp; + break; + + case DecrementStencilOp: + stencilOperation = GPUStencilOperation.DecrementClamp; + break; + + case IncrementWrapStencilOp: + stencilOperation = GPUStencilOperation.IncrementWrap; + break; + + case DecrementWrapStencilOp: + stencilOperation = GPUStencilOperation.DecrementWrap; + break; + + default: + console.error( 'THREE.WebGPURenderer: Invalid stencil operation.', stencilOperation ); + + } + + return stencilOperation; + + } + + /** + * Returns the GPU blend operation which is required for the pipeline creation. + * + * @private + * @param {number} blendEquation - A three.js constant defining the blend equation. + * @return {string} The GPU blend operation. + */ + _getBlendOperation( blendEquation ) { + + let blendOperation; + + switch ( blendEquation ) { + + case AddEquation: + blendOperation = GPUBlendOperation.Add; + break; + + case SubtractEquation: + blendOperation = GPUBlendOperation.Subtract; + break; + + case ReverseSubtractEquation: + blendOperation = GPUBlendOperation.ReverseSubtract; + break; + + case MinEquation: + blendOperation = GPUBlendOperation.Min; + break; + + case MaxEquation: + blendOperation = GPUBlendOperation.Max; + break; + + default: + console.error( 'THREE.WebGPUPipelineUtils: Blend equation not supported.', blendEquation ); + + } + + return blendOperation; + + } + + /** + * Returns the primitive state as a descriptor object required + * for the pipeline creation. + * + * @private + * @param {Object3D} object - The 3D object. + * @param {BufferGeometry} geometry - The geometry. + * @param {Material} material - The material. + * @return {Object} The primitive state. + */ + _getPrimitiveState( object, geometry, material ) { + + const descriptor = {}; + const utils = this.backend.utils; + + descriptor.topology = utils.getPrimitiveTopology( object, material ); + + if ( geometry.index !== null && object.isLine === true && object.isLineSegments !== true ) { + + descriptor.stripIndexFormat = ( geometry.index.array instanceof Uint16Array ) ? GPUIndexFormat.Uint16 : GPUIndexFormat.Uint32; + + } + + switch ( material.side ) { + + case FrontSide: + descriptor.frontFace = GPUFrontFace.CCW; + descriptor.cullMode = GPUCullMode.Back; + break; + + case BackSide: + descriptor.frontFace = GPUFrontFace.CCW; + descriptor.cullMode = GPUCullMode.Front; + break; + + case DoubleSide: + descriptor.frontFace = GPUFrontFace.CCW; + descriptor.cullMode = GPUCullMode.None; + break; + + default: + console.error( 'THREE.WebGPUPipelineUtils: Unknown material.side value.', material.side ); + break; + + } + + return descriptor; + + } + + /** + * Returns the GPU color write mask which is required for the pipeline creation. + * + * @private + * @param {Material} material - The material. + * @return {string} The GPU color write mask. + */ + _getColorWriteMask( material ) { + + return ( material.colorWrite === true ) ? GPUColorWriteFlags.All : GPUColorWriteFlags.None; + + } + + /** + * Returns the GPU depth compare function which is required for the pipeline creation. + * + * @private + * @param {Material} material - The material. + * @return {string} The GPU depth compare function. + */ + _getDepthCompare( material ) { + + let depthCompare; + + if ( material.depthTest === false ) { + + depthCompare = GPUCompareFunction.Always; + + } else { + + const depthFunc = material.depthFunc; + + switch ( depthFunc ) { + + case NeverDepth: + depthCompare = GPUCompareFunction.Never; + break; + + case AlwaysDepth: + depthCompare = GPUCompareFunction.Always; + break; + + case LessDepth: + depthCompare = GPUCompareFunction.Less; + break; + + case LessEqualDepth: + depthCompare = GPUCompareFunction.LessEqual; + break; + + case EqualDepth: + depthCompare = GPUCompareFunction.Equal; + break; + + case GreaterEqualDepth: + depthCompare = GPUCompareFunction.GreaterEqual; + break; + + case GreaterDepth: + depthCompare = GPUCompareFunction.Greater; + break; + + case NotEqualDepth: + depthCompare = GPUCompareFunction.NotEqual; + break; + + default: + console.error( 'THREE.WebGPUPipelineUtils: Invalid depth function.', depthFunc ); + + } + + } + + return depthCompare; + + } + +} + +/** + * Manages a pool of WebGPU timestamp queries for performance measurement. + * Extends the base TimestampQueryPool to provide WebGPU-specific implementation. + * + * @augments TimestampQueryPool + */ +class WebGPUTimestampQueryPool extends TimestampQueryPool { + + /** + * Creates a new WebGPU timestamp query pool. + * + * @param {GPUDevice} device - The WebGPU device to create queries on. + * @param {string} type - The type identifier for this query pool. + * @param {number} [maxQueries=2048] - Maximum number of queries this pool can hold. + */ + constructor( device, type, maxQueries = 2048 ) { + + super( maxQueries ); + this.device = device; + this.type = type; + + this.querySet = this.device.createQuerySet( { + type: 'timestamp', + count: this.maxQueries, + label: `queryset_global_timestamp_${type}` + } ); + + const bufferSize = this.maxQueries * 8; + this.resolveBuffer = this.device.createBuffer( { + label: `buffer_timestamp_resolve_${type}`, + size: bufferSize, + usage: GPUBufferUsage.QUERY_RESOLVE | GPUBufferUsage.COPY_SRC + } ); + + this.resultBuffer = this.device.createBuffer( { + label: `buffer_timestamp_result_${type}`, + size: bufferSize, + usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ + } ); + + } + + /** + * Allocates a pair of queries for a given render context. + * + * @param {Object} renderContext - The render context to allocate queries for. + * @returns {?number} The base offset for the allocated queries, or null if allocation failed. + */ + allocateQueriesForContext( renderContext ) { + + if ( ! this.trackTimestamp || this.isDisposed ) return null; + + if ( this.currentQueryIndex + 2 > this.maxQueries ) { + + warnOnce( `WebGPUTimestampQueryPool [${ this.type }]: Maximum number of queries exceeded, when using trackTimestamp it is necessary to resolves the queries via renderer.resolveTimestampsAsync( THREE.TimestampQuery.${ this.type.toUpperCase() } ).` ); + return null; + + } + + const baseOffset = this.currentQueryIndex; + this.currentQueryIndex += 2; + + this.queryOffsets.set( renderContext.id, baseOffset ); + return baseOffset; + + } + + /** + * Asynchronously resolves all pending queries and returns the total duration. + * If there's already a pending resolve operation, returns that promise instead. + * + * @async + * @returns {Promise} The total duration in milliseconds, or the last valid value if resolution fails. + */ + async resolveQueriesAsync() { + + if ( ! this.trackTimestamp || this.currentQueryIndex === 0 || this.isDisposed ) { + + return this.lastValue; + + } + + if ( this.pendingResolve ) { + + return this.pendingResolve; + + } + + this.pendingResolve = this._resolveQueries(); + + try { + + const result = await this.pendingResolve; + return result; + + } finally { + + this.pendingResolve = null; + + } + + } + + /** + * Internal method to resolve queries and calculate total duration. + * + * @async + * @private + * @returns {Promise} The total duration in milliseconds. + */ + async _resolveQueries() { + + if ( this.isDisposed ) { + + return this.lastValue; + + } + + try { + + if ( this.resultBuffer.mapState !== 'unmapped' ) { + + return this.lastValue; + + } + + const currentOffsets = new Map( this.queryOffsets ); + const queryCount = this.currentQueryIndex; + const bytesUsed = queryCount * 8; + + // Reset state before GPU work + this.currentQueryIndex = 0; + this.queryOffsets.clear(); + + const commandEncoder = this.device.createCommandEncoder(); + + commandEncoder.resolveQuerySet( + this.querySet, + 0, + queryCount, + this.resolveBuffer, + 0 + ); + + commandEncoder.copyBufferToBuffer( + this.resolveBuffer, + 0, + this.resultBuffer, + 0, + bytesUsed + ); + + const commandBuffer = commandEncoder.finish(); + this.device.queue.submit( [ commandBuffer ] ); + + if ( this.resultBuffer.mapState !== 'unmapped' ) { + + return this.lastValue; + + } + + // Create and track the mapping operation + await this.resultBuffer.mapAsync( GPUMapMode.READ, 0, bytesUsed ); + + if ( this.isDisposed ) { + + if ( this.resultBuffer.mapState === 'mapped' ) { + + this.resultBuffer.unmap(); + + } + + return this.lastValue; + + } + + const times = new BigUint64Array( this.resultBuffer.getMappedRange( 0, bytesUsed ) ); + let totalDuration = 0; + + for ( const [ , baseOffset ] of currentOffsets ) { + + const startTime = times[ baseOffset ]; + const endTime = times[ baseOffset + 1 ]; + const duration = Number( endTime - startTime ) / 1e6; + totalDuration += duration; + + } + + this.resultBuffer.unmap(); + this.lastValue = totalDuration; + + return totalDuration; + + } catch ( error ) { + + console.error( 'Error resolving queries:', error ); + if ( this.resultBuffer.mapState === 'mapped' ) { + + this.resultBuffer.unmap(); + + } + + return this.lastValue; + + } + + } + + /** + * Dispose of the query pool. + * + * @async + * @returns {Promise} A Promise that resolves when the dispose has been executed. + */ + async dispose() { + + if ( this.isDisposed ) { + + return; + + } + + this.isDisposed = true; + + // Wait for pending resolve operation + if ( this.pendingResolve ) { + + try { + + await this.pendingResolve; + + } catch ( error ) { + + console.error( 'Error waiting for pending resolve:', error ); + + } + + } + + // Ensure buffer is unmapped before destroying + if ( this.resultBuffer && this.resultBuffer.mapState === 'mapped' ) { + + try { + + this.resultBuffer.unmap(); + + } catch ( error ) { + + console.error( 'Error unmapping buffer:', error ); + + } + + } + + // Destroy resources + if ( this.querySet ) { + + this.querySet.destroy(); + this.querySet = null; + + } + + if ( this.resolveBuffer ) { + + this.resolveBuffer.destroy(); + this.resolveBuffer = null; + + } + + if ( this.resultBuffer ) { + + this.resultBuffer.destroy(); + this.resultBuffer = null; + + } + + this.queryOffsets.clear(); + this.pendingResolve = null; + + } + +} + +/*// debugger tools +import 'https://greggman.github.io/webgpu-avoid-redundant-state-setting/webgpu-check-redundant-state-setting.js'; +//*/ + + +/** + * A backend implementation targeting WebGPU. + * + * @private + * @augments Backend + */ +class WebGPUBackend extends Backend { + + /** + * WebGPUBackend options. + * + * @typedef {Object} WebGPUBackend~Options + * @property {boolean} [logarithmicDepthBuffer=false] - Whether logarithmic depth buffer is enabled or not. + * @property {boolean} [alpha=true] - Whether the default framebuffer (which represents the final contents of the canvas) should be transparent or opaque. + * @property {boolean} [compatibilityMode=false] - Whether the backend should be in compatibility mode or not. + * @property {boolean} [depth=true] - Whether the default framebuffer should have a depth buffer or not. + * @property {boolean} [stencil=false] - Whether the default framebuffer should have a stencil buffer or not. + * @property {boolean} [antialias=false] - Whether MSAA as the default anti-aliasing should be enabled or not. + * @property {number} [samples=0] - When `antialias` is `true`, `4` samples are used by default. Set this parameter to any other integer value than 0 to overwrite the default. + * @property {boolean} [forceWebGL=false] - If set to `true`, the renderer uses a WebGL 2 backend no matter if WebGPU is supported or not. + * @property {boolean} [trackTimestamp=false] - Whether to track timestamps with a Timestamp Query API or not. + * @property {string} [powerPreference=undefined] - The power preference. + * @property {Object} [requiredLimits=undefined] - Specifies the limits that are required by the device request. The request will fail if the adapter cannot provide these limits. + * @property {GPUDevice} [device=undefined] - If there is an existing GPU device on app level, it can be passed to the renderer as a parameter. + * @property {number} [outputType=undefined] - Texture type for output to canvas. By default, device's preferred format is used; other formats may incur overhead. + */ + + /** + * Constructs a new WebGPU backend. + * + * @param {WebGPUBackend~Options} [parameters] - The configuration parameter. + */ + constructor( parameters = {} ) { + + super( parameters ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWebGPUBackend = true; + + // some parameters require default values other than "undefined" + this.parameters.alpha = ( parameters.alpha === undefined ) ? true : parameters.alpha; + this.parameters.compatibilityMode = ( parameters.compatibilityMode === undefined ) ? false : parameters.compatibilityMode; + + this.parameters.requiredLimits = ( parameters.requiredLimits === undefined ) ? {} : parameters.requiredLimits; + + /** + * Indicates whether the backend is in compatibility mode or not. + * @type {boolean} + * @default false + */ + this.compatibilityMode = this.parameters.compatibilityMode; + + /** + * A reference to the device. + * + * @type {?GPUDevice} + * @default null + */ + this.device = null; + + /** + * A reference to the context. + * + * @type {?GPUCanvasContext} + * @default null + */ + this.context = null; + + /** + * A reference to the color attachment of the default framebuffer. + * + * @type {?GPUTexture} + * @default null + */ + this.colorBuffer = null; + + /** + * A reference to the default render pass descriptor. + * + * @type {?Object} + * @default null + */ + this.defaultRenderPassdescriptor = null; + + /** + * A reference to a backend module holding common utility functions. + * + * @type {WebGPUUtils} + */ + this.utils = new WebGPUUtils( this ); + + /** + * A reference to a backend module holding shader attribute-related + * utility functions. + * + * @type {WebGPUAttributeUtils} + */ + this.attributeUtils = new WebGPUAttributeUtils( this ); + + /** + * A reference to a backend module holding shader binding-related + * utility functions. + * + * @type {WebGPUBindingUtils} + */ + this.bindingUtils = new WebGPUBindingUtils( this ); + + /** + * A reference to a backend module holding shader pipeline-related + * utility functions. + * + * @type {WebGPUPipelineUtils} + */ + this.pipelineUtils = new WebGPUPipelineUtils( this ); + + /** + * A reference to a backend module holding shader texture-related + * utility functions. + * + * @type {WebGPUTextureUtils} + */ + this.textureUtils = new WebGPUTextureUtils( this ); + + /** + * A map that manages the resolve buffers for occlusion queries. + * + * @type {Map} + */ + this.occludedResolveCache = new Map(); + + } + + /** + * Initializes the backend so it is ready for usage. + * + * @async + * @param {Renderer} renderer - The renderer. + * @return {Promise} A Promise that resolves when the backend has been initialized. + */ + async init( renderer ) { + + await super.init( renderer ); + + // + + const parameters = this.parameters; + + // create the device if it is not passed with parameters + + let device; + + if ( parameters.device === undefined ) { + + const adapterOptions = { + powerPreference: parameters.powerPreference, + featureLevel: parameters.compatibilityMode ? 'compatibility' : undefined + }; + + const adapter = ( typeof navigator !== 'undefined' ) ? await navigator.gpu.requestAdapter( adapterOptions ) : null; + + if ( adapter === null ) { + + throw new Error( 'WebGPUBackend: Unable to create WebGPU adapter.' ); + + } + + // feature support + + const features = Object.values( GPUFeatureName ); + + const supportedFeatures = []; + + for ( const name of features ) { + + if ( adapter.features.has( name ) ) { + + supportedFeatures.push( name ); + + } + + } + + const deviceDescriptor = { + requiredFeatures: supportedFeatures, + requiredLimits: parameters.requiredLimits + }; + + device = await adapter.requestDevice( deviceDescriptor ); + + } else { + + device = parameters.device; + + } + + device.lost.then( ( info ) => { + + const deviceLossInfo = { + api: 'WebGPU', + message: info.message || 'Unknown reason', + reason: info.reason || null, + originalEvent: info + }; + + renderer.onDeviceLost( deviceLossInfo ); + + } ); + + const context = ( parameters.context !== undefined ) ? parameters.context : renderer.domElement.getContext( 'webgpu' ); + + this.device = device; + this.context = context; + + const alphaMode = parameters.alpha ? 'premultiplied' : 'opaque'; + + this.trackTimestamp = this.trackTimestamp && this.hasFeature( GPUFeatureName.TimestampQuery ); + + this.context.configure( { + device: this.device, + format: this.utils.getPreferredCanvasFormat(), + usage: GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.COPY_SRC, + alphaMode: alphaMode + } ); + + this.updateSize(); + + } + + /** + * The coordinate system of the backend. + * + * @type {number} + * @readonly + */ + get coordinateSystem() { + + return WebGPUCoordinateSystem; + + } + + /** + * This method performs a readback operation by moving buffer data from + * a storage buffer attribute from the GPU to the CPU. + * + * @async + * @param {StorageBufferAttribute} attribute - The storage buffer attribute. + * @return {Promise} A promise that resolves with the buffer data when the data are ready. + */ + async getArrayBufferAsync( attribute ) { + + return await this.attributeUtils.getArrayBufferAsync( attribute ); + + } + + /** + * Returns the backend's rendering context. + * + * @return {GPUCanvasContext} The rendering context. + */ + getContext() { + + return this.context; + + } + + /** + * Returns the default render pass descriptor. + * + * In WebGPU, the default framebuffer must be configured + * like custom framebuffers so the backend needs a render + * pass descriptor even when rendering directly to screen. + * + * @private + * @return {Object} The render pass descriptor. + */ + _getDefaultRenderPassDescriptor() { + + let descriptor = this.defaultRenderPassdescriptor; + + if ( descriptor === null ) { + + const renderer = this.renderer; + + descriptor = { + colorAttachments: [ { + view: null + } ], + }; + + if ( this.renderer.depth === true || this.renderer.stencil === true ) { + + descriptor.depthStencilAttachment = { + view: this.textureUtils.getDepthBuffer( renderer.depth, renderer.stencil ).createView() + }; + + } + + const colorAttachment = descriptor.colorAttachments[ 0 ]; + + if ( this.renderer.samples > 0 ) { + + colorAttachment.view = this.colorBuffer.createView(); + + } else { + + colorAttachment.resolveTarget = undefined; + + } + + this.defaultRenderPassdescriptor = descriptor; + + } + + const colorAttachment = descriptor.colorAttachments[ 0 ]; + + if ( this.renderer.samples > 0 ) { + + colorAttachment.resolveTarget = this.context.getCurrentTexture().createView(); + + } else { + + colorAttachment.view = this.context.getCurrentTexture().createView(); + + } + + return descriptor; + + } + + /** + * Internal to determine if the current render target is a render target array with depth 2D array texture. + * + * @param {RenderContext} renderContext - The render context. + * @return {boolean} Whether the render target is a render target array with depth 2D array texture. + * + * @private + */ + _isRenderCameraDepthArray( renderContext ) { + + return renderContext.depthTexture && renderContext.depthTexture.image.depth > 1 && renderContext.camera.isArrayCamera; + + } + + /** + * Returns the render pass descriptor for the given render context. + * + * @private + * @param {RenderContext} renderContext - The render context. + * @param {Object} colorAttachmentsConfig - Configuration object for the color attachments. + * @return {Object} The render pass descriptor. + */ + _getRenderPassDescriptor( renderContext, colorAttachmentsConfig = {} ) { + + const renderTarget = renderContext.renderTarget; + const renderTargetData = this.get( renderTarget ); + + let descriptors = renderTargetData.descriptors; + + if ( descriptors === undefined || + renderTargetData.width !== renderTarget.width || + renderTargetData.height !== renderTarget.height || + renderTargetData.dimensions !== renderTarget.dimensions || + renderTargetData.activeMipmapLevel !== renderContext.activeMipmapLevel || + renderTargetData.activeCubeFace !== renderContext.activeCubeFace || + renderTargetData.samples !== renderTarget.samples + ) { + + descriptors = {}; + + renderTargetData.descriptors = descriptors; + + // dispose + + const onDispose = () => { + + renderTarget.removeEventListener( 'dispose', onDispose ); + this.delete( renderTarget ); + + }; + + if ( renderTarget.hasEventListener( 'dispose', onDispose ) === false ) { + + renderTarget.addEventListener( 'dispose', onDispose ); + + } + + } + + const cacheKey = renderContext.getCacheKey(); + let descriptorBase = descriptors[ cacheKey ]; + + if ( descriptorBase === undefined ) { + + const textures = renderContext.textures; + const textureViews = []; + + let sliceIndex; + + const isRenderCameraDepthArray = this._isRenderCameraDepthArray( renderContext ); + + for ( let i = 0; i < textures.length; i ++ ) { + + const textureData = this.get( textures[ i ] ); + + const viewDescriptor = { + label: `colorAttachment_${ i }`, + baseMipLevel: renderContext.activeMipmapLevel, + mipLevelCount: 1, + baseArrayLayer: renderContext.activeCubeFace, + arrayLayerCount: 1, + dimension: GPUTextureViewDimension.TwoD + }; + + if ( renderTarget.isRenderTarget3D ) { + + sliceIndex = renderContext.activeCubeFace; + + viewDescriptor.baseArrayLayer = 0; + viewDescriptor.dimension = GPUTextureViewDimension.ThreeD; + viewDescriptor.depthOrArrayLayers = textures[ i ].image.depth; + + } else if ( renderTarget.isRenderTarget && textures[ i ].image.depth > 1 ) { + + if ( isRenderCameraDepthArray === true ) { + + const cameras = renderContext.camera.cameras; + for ( let layer = 0; layer < cameras.length; layer ++ ) { + + const layerViewDescriptor = { + ...viewDescriptor, + baseArrayLayer: layer, + arrayLayerCount: 1, + dimension: GPUTextureViewDimension.TwoD + }; + const textureView = textureData.texture.createView( layerViewDescriptor ); + textureViews.push( { + view: textureView, + resolveTarget: undefined, + depthSlice: undefined + } ); + + } + + } else { + + viewDescriptor.dimension = GPUTextureViewDimension.TwoDArray; + viewDescriptor.depthOrArrayLayers = textures[ i ].image.depth; + + } + + } + + if ( isRenderCameraDepthArray !== true ) { + + const textureView = textureData.texture.createView( viewDescriptor ); + + let view, resolveTarget; + + if ( textureData.msaaTexture !== undefined ) { + + view = textureData.msaaTexture.createView(); + resolveTarget = textureView; + + } else { + + view = textureView; + resolveTarget = undefined; + + } + + textureViews.push( { + view, + resolveTarget, + depthSlice: sliceIndex + } ); + + } + + } + + descriptorBase = { textureViews }; + + if ( renderContext.depth ) { + + const depthTextureData = this.get( renderContext.depthTexture ); + const options = {}; + if ( renderContext.depthTexture.isArrayTexture ) { + + options.dimension = GPUTextureViewDimension.TwoD; + options.arrayLayerCount = 1; + options.baseArrayLayer = renderContext.activeCubeFace; + + } + + descriptorBase.depthStencilView = depthTextureData.texture.createView( options ); + + } + + descriptors[ cacheKey ] = descriptorBase; + + renderTargetData.width = renderTarget.width; + renderTargetData.height = renderTarget.height; + renderTargetData.samples = renderTarget.samples; + renderTargetData.activeMipmapLevel = renderContext.activeMipmapLevel; + renderTargetData.activeCubeFace = renderContext.activeCubeFace; + renderTargetData.dimensions = renderTarget.dimensions; + + } + + const descriptor = { + colorAttachments: [] + }; + + // Apply dynamic properties to cached views + for ( let i = 0; i < descriptorBase.textureViews.length; i ++ ) { + + const viewInfo = descriptorBase.textureViews[ i ]; + + let clearValue = { r: 0, g: 0, b: 0, a: 1 }; + if ( i === 0 && colorAttachmentsConfig.clearValue ) { + + clearValue = colorAttachmentsConfig.clearValue; + + } + + descriptor.colorAttachments.push( { + view: viewInfo.view, + depthSlice: viewInfo.depthSlice, + resolveTarget: viewInfo.resolveTarget, + loadOp: colorAttachmentsConfig.loadOp || GPULoadOp.Load, + storeOp: colorAttachmentsConfig.storeOp || GPUStoreOp.Store, + clearValue: clearValue + } ); + + } + + if ( descriptorBase.depthStencilView ) { + + descriptor.depthStencilAttachment = { + view: descriptorBase.depthStencilView + }; + + } + + return descriptor; + + } + + /** + * This method is executed at the beginning of a render call and prepares + * the WebGPU state for upcoming render calls + * + * @param {RenderContext} renderContext - The render context. + */ + beginRender( renderContext ) { + + const renderContextData = this.get( renderContext ); + + const device = this.device; + const occlusionQueryCount = renderContext.occlusionQueryCount; + + let occlusionQuerySet; + + if ( occlusionQueryCount > 0 ) { + + if ( renderContextData.currentOcclusionQuerySet ) renderContextData.currentOcclusionQuerySet.destroy(); + if ( renderContextData.currentOcclusionQueryBuffer ) renderContextData.currentOcclusionQueryBuffer.destroy(); + + // Get a reference to the array of objects with queries. The renderContextData property + // can be changed by another render pass before the buffer.mapAsyc() completes. + renderContextData.currentOcclusionQuerySet = renderContextData.occlusionQuerySet; + renderContextData.currentOcclusionQueryBuffer = renderContextData.occlusionQueryBuffer; + renderContextData.currentOcclusionQueryObjects = renderContextData.occlusionQueryObjects; + + // + + occlusionQuerySet = device.createQuerySet( { type: 'occlusion', count: occlusionQueryCount, label: `occlusionQuerySet_${ renderContext.id }` } ); + + renderContextData.occlusionQuerySet = occlusionQuerySet; + renderContextData.occlusionQueryIndex = 0; + renderContextData.occlusionQueryObjects = new Array( occlusionQueryCount ); + + renderContextData.lastOcclusionObject = null; + + } + + let descriptor; + + if ( renderContext.textures === null ) { + + descriptor = this._getDefaultRenderPassDescriptor(); + + } else { + + descriptor = this._getRenderPassDescriptor( renderContext, { loadOp: GPULoadOp.Load } ); + + } + + this.initTimestampQuery( renderContext, descriptor ); + + descriptor.occlusionQuerySet = occlusionQuerySet; + + const depthStencilAttachment = descriptor.depthStencilAttachment; + + if ( renderContext.textures !== null ) { + + const colorAttachments = descriptor.colorAttachments; + + for ( let i = 0; i < colorAttachments.length; i ++ ) { + + const colorAttachment = colorAttachments[ i ]; + + if ( renderContext.clearColor ) { + + colorAttachment.clearValue = i === 0 ? renderContext.clearColorValue : { r: 0, g: 0, b: 0, a: 1 }; + colorAttachment.loadOp = GPULoadOp.Clear; + + } else { + + colorAttachment.loadOp = GPULoadOp.Load; + + } + + colorAttachment.storeOp = GPUStoreOp.Store; + + } + + } else { + + const colorAttachment = descriptor.colorAttachments[ 0 ]; + + if ( renderContext.clearColor ) { + + colorAttachment.clearValue = renderContext.clearColorValue; + colorAttachment.loadOp = GPULoadOp.Clear; + + } else { + + colorAttachment.loadOp = GPULoadOp.Load; + + } + + colorAttachment.storeOp = GPUStoreOp.Store; + + } + + // + + if ( renderContext.depth ) { + + if ( renderContext.clearDepth ) { + + depthStencilAttachment.depthClearValue = renderContext.clearDepthValue; + depthStencilAttachment.depthLoadOp = GPULoadOp.Clear; + + } else { + + depthStencilAttachment.depthLoadOp = GPULoadOp.Load; + + } + + depthStencilAttachment.depthStoreOp = GPUStoreOp.Store; + + } + + if ( renderContext.stencil ) { + + if ( renderContext.clearStencil ) { + + depthStencilAttachment.stencilClearValue = renderContext.clearStencilValue; + depthStencilAttachment.stencilLoadOp = GPULoadOp.Clear; + + } else { + + depthStencilAttachment.stencilLoadOp = GPULoadOp.Load; + + } + + depthStencilAttachment.stencilStoreOp = GPUStoreOp.Store; + + } + + // + + const encoder = device.createCommandEncoder( { label: 'renderContext_' + renderContext.id } ); + + // shadow arrays - prepare bundle encoders for each camera in an array camera + + if ( this._isRenderCameraDepthArray( renderContext ) === true ) { + + const cameras = renderContext.camera.cameras; + + if ( ! renderContextData.layerDescriptors || renderContextData.layerDescriptors.length !== cameras.length ) { + + this._createDepthLayerDescriptors( renderContext, renderContextData, descriptor, cameras ); + + } else { + + this._updateDepthLayerDescriptors( renderContext, renderContextData, cameras ); + + } + + // Create bundle encoders for each layer + renderContextData.bundleEncoders = []; + renderContextData.bundleSets = []; + + // Create separate bundle encoders for each camera in the array + for ( let i = 0; i < cameras.length; i ++ ) { + + const bundleEncoder = this.pipelineUtils.createBundleEncoder( + renderContext, + 'renderBundleArrayCamera_' + i + ); + + // Initialize state tracking for this bundle + const bundleSets = { + attributes: {}, + bindingGroups: [], + pipeline: null, + index: null + }; + + renderContextData.bundleEncoders.push( bundleEncoder ); + renderContextData.bundleSets.push( bundleSets ); + + } + + // We'll complete the bundles in finishRender + renderContextData.currentPass = null; + + } else { + + const currentPass = encoder.beginRenderPass( descriptor ); + renderContextData.currentPass = currentPass; + + if ( renderContext.viewport ) { + + this.updateViewport( renderContext ); + + } + + if ( renderContext.scissor ) { + + const { x, y, width, height } = renderContext.scissorValue; + currentPass.setScissorRect( x, y, width, height ); + + } + + } + + // + + renderContextData.descriptor = descriptor; + renderContextData.encoder = encoder; + renderContextData.currentSets = { attributes: {}, bindingGroups: [], pipeline: null, index: null }; + renderContextData.renderBundles = []; + + } + + /** + * This method creates layer descriptors for each camera in an array camera + * to prepare for rendering to a depth array texture. + * + * @param {RenderContext} renderContext - The render context. + * @param {Object} renderContextData - The render context data. + * @param {Object} descriptor - The render pass descriptor. + * @param {ArrayCamera} cameras - The array camera. + * + * @private + */ + _createDepthLayerDescriptors( renderContext, renderContextData, descriptor, cameras ) { + + const depthStencilAttachment = descriptor.depthStencilAttachment; + renderContextData.layerDescriptors = []; + + const depthTextureData = this.get( renderContext.depthTexture ); + if ( ! depthTextureData.viewCache ) { + + depthTextureData.viewCache = []; + + } + + for ( let i = 0; i < cameras.length; i ++ ) { + + const layerDescriptor = { + ...descriptor, + colorAttachments: [ { + ...descriptor.colorAttachments[ 0 ], + view: descriptor.colorAttachments[ i ].view + } ] + }; + + if ( descriptor.depthStencilAttachment ) { + + const layerIndex = i; + + if ( ! depthTextureData.viewCache[ layerIndex ] ) { + + depthTextureData.viewCache[ layerIndex ] = depthTextureData.texture.createView( { + dimension: GPUTextureViewDimension.TwoD, + baseArrayLayer: i, + arrayLayerCount: 1 + } ); + + } + + layerDescriptor.depthStencilAttachment = { + view: depthTextureData.viewCache[ layerIndex ], + depthLoadOp: depthStencilAttachment.depthLoadOp || GPULoadOp.Clear, + depthStoreOp: depthStencilAttachment.depthStoreOp || GPUStoreOp.Store, + depthClearValue: depthStencilAttachment.depthClearValue || 1.0 + }; + + if ( renderContext.stencil ) { + + layerDescriptor.depthStencilAttachment.stencilLoadOp = depthStencilAttachment.stencilLoadOp; + layerDescriptor.depthStencilAttachment.stencilStoreOp = depthStencilAttachment.stencilStoreOp; + layerDescriptor.depthStencilAttachment.stencilClearValue = depthStencilAttachment.stencilClearValue; + + } + + } else { + + layerDescriptor.depthStencilAttachment = { ...depthStencilAttachment }; + + } + + renderContextData.layerDescriptors.push( layerDescriptor ); + + } + + } + + /** + * This method updates the layer descriptors for each camera in an array camera + * to prepare for rendering to a depth array texture. + * + * @param {RenderContext} renderContext - The render context. + * @param {Object} renderContextData - The render context data. + * @param {ArrayCamera} cameras - The array camera. + * + */ + _updateDepthLayerDescriptors( renderContext, renderContextData, cameras ) { + + for ( let i = 0; i < cameras.length; i ++ ) { + + const layerDescriptor = renderContextData.layerDescriptors[ i ]; + + if ( layerDescriptor.depthStencilAttachment ) { + + const depthAttachment = layerDescriptor.depthStencilAttachment; + + if ( renderContext.depth ) { + + if ( renderContext.clearDepth ) { + + depthAttachment.depthClearValue = renderContext.clearDepthValue; + depthAttachment.depthLoadOp = GPULoadOp.Clear; + + } else { + + depthAttachment.depthLoadOp = GPULoadOp.Load; + + } + + } + + if ( renderContext.stencil ) { + + if ( renderContext.clearStencil ) { + + depthAttachment.stencilClearValue = renderContext.clearStencilValue; + depthAttachment.stencilLoadOp = GPULoadOp.Clear; + + } else { + + depthAttachment.stencilLoadOp = GPULoadOp.Load; + + } + + } + + } + + } + + } + + /** + * This method is executed at the end of a render call and finalizes work + * after draw calls. + * + * @param {RenderContext} renderContext - The render context. + */ + finishRender( renderContext ) { + + const renderContextData = this.get( renderContext ); + const occlusionQueryCount = renderContext.occlusionQueryCount; + + if ( renderContextData.renderBundles.length > 0 ) { + + renderContextData.currentPass.executeBundles( renderContextData.renderBundles ); + + } + + if ( occlusionQueryCount > renderContextData.occlusionQueryIndex ) { + + renderContextData.currentPass.endOcclusionQuery(); + + } + + // shadow arrays - Execute bundles for each layer + + const encoder = renderContextData.encoder; + + if ( this._isRenderCameraDepthArray( renderContext ) === true ) { + + const bundles = []; + + for ( let i = 0; i < renderContextData.bundleEncoders.length; i ++ ) { + + const bundleEncoder = renderContextData.bundleEncoders[ i ]; + bundles.push( bundleEncoder.finish() ); + + } + + for ( let i = 0; i < renderContextData.layerDescriptors.length; i ++ ) { + + if ( i < bundles.length ) { + + const layerDescriptor = renderContextData.layerDescriptors[ i ]; + const renderPass = encoder.beginRenderPass( layerDescriptor ); + + if ( renderContext.viewport ) { + + const { x, y, width, height, minDepth, maxDepth } = renderContext.viewportValue; + renderPass.setViewport( x, y, width, height, minDepth, maxDepth ); + + } + + if ( renderContext.scissor ) { + + const { x, y, width, height } = renderContext.scissorValue; + renderPass.setScissorRect( x, y, width, height ); + + } + + renderPass.executeBundles( [ bundles[ i ] ] ); + + renderPass.end(); + + } + + } + + } else if ( renderContextData.currentPass ) { + + renderContextData.currentPass.end(); + + } + + if ( occlusionQueryCount > 0 ) { + + const bufferSize = occlusionQueryCount * 8; // 8 byte entries for query results + + // + + let queryResolveBuffer = this.occludedResolveCache.get( bufferSize ); + + if ( queryResolveBuffer === undefined ) { + + queryResolveBuffer = this.device.createBuffer( + { + size: bufferSize, + usage: GPUBufferUsage.QUERY_RESOLVE | GPUBufferUsage.COPY_SRC + } + ); + + this.occludedResolveCache.set( bufferSize, queryResolveBuffer ); + + } + + // + + const readBuffer = this.device.createBuffer( + { + size: bufferSize, + usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ + } + ); + + // two buffers required here - WebGPU doesn't allow usage of QUERY_RESOLVE & MAP_READ to be combined + renderContextData.encoder.resolveQuerySet( renderContextData.occlusionQuerySet, 0, occlusionQueryCount, queryResolveBuffer, 0 ); + renderContextData.encoder.copyBufferToBuffer( queryResolveBuffer, 0, readBuffer, 0, bufferSize ); + + renderContextData.occlusionQueryBuffer = readBuffer; + + // + + this.resolveOccludedAsync( renderContext ); + + } + + this.device.queue.submit( [ renderContextData.encoder.finish() ] ); + + + // + + if ( renderContext.textures !== null ) { + + const textures = renderContext.textures; + + for ( let i = 0; i < textures.length; i ++ ) { + + const texture = textures[ i ]; + + if ( texture.generateMipmaps === true ) { + + this.textureUtils.generateMipmaps( texture ); + + } + + } + + } + + } + + /** + * Returns `true` if the given 3D object is fully occluded by other + * 3D objects in the scene. + * + * @param {RenderContext} renderContext - The render context. + * @param {Object3D} object - The 3D object to test. + * @return {boolean} Whether the 3D object is fully occluded or not. + */ + isOccluded( renderContext, object ) { + + const renderContextData = this.get( renderContext ); + + return renderContextData.occluded && renderContextData.occluded.has( object ); + + } + + /** + * This method processes the result of occlusion queries and writes it + * into render context data. + * + * @async + * @param {RenderContext} renderContext - The render context. + * @return {Promise} A Promise that resolves when the occlusion query results have been processed. + */ + async resolveOccludedAsync( renderContext ) { + + const renderContextData = this.get( renderContext ); + + // handle occlusion query results + + const { currentOcclusionQueryBuffer, currentOcclusionQueryObjects } = renderContextData; + + if ( currentOcclusionQueryBuffer && currentOcclusionQueryObjects ) { + + const occluded = new WeakSet(); + + renderContextData.currentOcclusionQueryObjects = null; + renderContextData.currentOcclusionQueryBuffer = null; + + await currentOcclusionQueryBuffer.mapAsync( GPUMapMode.READ ); + + const buffer = currentOcclusionQueryBuffer.getMappedRange(); + const results = new BigUint64Array( buffer ); + + for ( let i = 0; i < currentOcclusionQueryObjects.length; i ++ ) { + + if ( results[ i ] === BigInt( 0 ) ) { + + occluded.add( currentOcclusionQueryObjects[ i ] ); + + } + + } + + currentOcclusionQueryBuffer.destroy(); + + renderContextData.occluded = occluded; + + } + + } + + /** + * Updates the viewport with the values from the given render context. + * + * @param {RenderContext} renderContext - The render context. + */ + updateViewport( renderContext ) { + + const { currentPass } = this.get( renderContext ); + const { x, y, width, height, minDepth, maxDepth } = renderContext.viewportValue; + + currentPass.setViewport( x, y, width, height, minDepth, maxDepth ); + + } + + /** + * Returns the clear color and alpha into a single + * color object. + * + * @return {Color4} The clear color. + */ + getClearColor() { + + const clearColor = super.getClearColor(); + + // only premultiply alpha when alphaMode is "premultiplied" + + if ( this.renderer.alpha === true ) { + + clearColor.r *= clearColor.a; + clearColor.g *= clearColor.a; + clearColor.b *= clearColor.a; + + } + + return clearColor; + + } + + /** + * Performs a clear operation. + * + * @param {boolean} color - Whether the color buffer should be cleared or not. + * @param {boolean} depth - Whether the depth buffer should be cleared or not. + * @param {boolean} stencil - Whether the stencil buffer should be cleared or not. + * @param {?RenderContext} [renderTargetContext=null] - The render context of the current set render target. + */ + clear( color, depth, stencil, renderTargetContext = null ) { + + const device = this.device; + const renderer = this.renderer; + + let colorAttachments = []; + let depthStencilAttachment; + let clearValue; + + let supportsDepth; + let supportsStencil; + + if ( color ) { + + const clearColor = this.getClearColor(); + clearValue = { r: clearColor.r, g: clearColor.g, b: clearColor.b, a: clearColor.a }; + + } + + if ( renderTargetContext === null ) { + + supportsDepth = renderer.depth; + supportsStencil = renderer.stencil; + + const descriptor = this._getDefaultRenderPassDescriptor(); + + if ( color ) { + + colorAttachments = descriptor.colorAttachments; + + const colorAttachment = colorAttachments[ 0 ]; + + colorAttachment.clearValue = clearValue; + colorAttachment.loadOp = GPULoadOp.Clear; + colorAttachment.storeOp = GPUStoreOp.Store; + + } + + if ( supportsDepth || supportsStencil ) { + + depthStencilAttachment = descriptor.depthStencilAttachment; + + } + + } else { + + supportsDepth = renderTargetContext.depth; + supportsStencil = renderTargetContext.stencil; + + const clearConfig = { + loadOp: color ? GPULoadOp.Clear : GPULoadOp.Load, + clearValue: color ? clearValue : undefined + }; + + if ( supportsDepth ) { + + clearConfig.depthLoadOp = depth ? GPULoadOp.Clear : GPULoadOp.Load; + clearConfig.depthClearValue = depth ? renderer.getClearDepth() : undefined; + clearConfig.depthStoreOp = GPUStoreOp.Store; + + } + + if ( supportsStencil ) { + + clearConfig.stencilLoadOp = stencil ? GPULoadOp.Clear : GPULoadOp.Load; + clearConfig.stencilClearValue = stencil ? renderer.getClearStencil() : undefined; + clearConfig.stencilStoreOp = GPUStoreOp.Store; + + } + + const descriptor = this._getRenderPassDescriptor( renderTargetContext, clearConfig ); + + colorAttachments = descriptor.colorAttachments; + depthStencilAttachment = descriptor.depthStencilAttachment; + + } + + if ( supportsDepth && depthStencilAttachment && depthStencilAttachment.depthLoadOp === undefined ) { + + if ( depth ) { + + depthStencilAttachment.depthLoadOp = GPULoadOp.Clear; + depthStencilAttachment.depthClearValue = renderer.getClearDepth(); + depthStencilAttachment.depthStoreOp = GPUStoreOp.Store; + + } else { + + depthStencilAttachment.depthLoadOp = GPULoadOp.Load; + depthStencilAttachment.depthStoreOp = GPUStoreOp.Store; + + } + + } + + // + + if ( supportsStencil && depthStencilAttachment && depthStencilAttachment.stencilLoadOp === undefined ) { + + if ( stencil ) { + + depthStencilAttachment.stencilLoadOp = GPULoadOp.Clear; + depthStencilAttachment.stencilClearValue = renderer.getClearStencil(); + depthStencilAttachment.stencilStoreOp = GPUStoreOp.Store; + + } else { + + depthStencilAttachment.stencilLoadOp = GPULoadOp.Load; + depthStencilAttachment.stencilStoreOp = GPUStoreOp.Store; + + } + + } + + // + + const encoder = device.createCommandEncoder( { label: 'clear' } ); + const currentPass = encoder.beginRenderPass( { + colorAttachments, + depthStencilAttachment + } ); + + currentPass.end(); + + device.queue.submit( [ encoder.finish() ] ); + + } + + // compute + + /** + * This method is executed at the beginning of a compute call and + * prepares the state for upcoming compute tasks. + * + * @param {Node|Array} computeGroup - The compute node(s). + */ + beginCompute( computeGroup ) { + + const groupGPU = this.get( computeGroup ); + + + const descriptor = { + label: 'computeGroup_' + computeGroup.id + }; + + this.initTimestampQuery( computeGroup, descriptor ); + + groupGPU.cmdEncoderGPU = this.device.createCommandEncoder( { label: 'computeGroup_' + computeGroup.id } ); + + groupGPU.passEncoderGPU = groupGPU.cmdEncoderGPU.beginComputePass( descriptor ); + + } + + /** + * Executes a compute command for the given compute node. + * + * @param {Node|Array} computeGroup - The group of compute nodes of a compute call. Can be a single compute node. + * @param {Node} computeNode - The compute node. + * @param {Array} bindings - The bindings. + * @param {ComputePipeline} pipeline - The compute pipeline. + */ + compute( computeGroup, computeNode, bindings, pipeline ) { + + const { passEncoderGPU } = this.get( computeGroup ); + + // pipeline + + const pipelineGPU = this.get( pipeline ).pipeline; + + this.pipelineUtils.setPipeline( passEncoderGPU, pipelineGPU ); + + // bind groups + + for ( let i = 0, l = bindings.length; i < l; i ++ ) { + + const bindGroup = bindings[ i ]; + const bindingsData = this.get( bindGroup ); + + passEncoderGPU.setBindGroup( i, bindingsData.group ); + + } + + const maxComputeWorkgroupsPerDimension = this.device.limits.maxComputeWorkgroupsPerDimension; + + const computeNodeData = this.get( computeNode ); + + if ( computeNodeData.dispatchSize === undefined ) computeNodeData.dispatchSize = { x: 0, y: 1, z: 1 }; + + const { dispatchSize } = computeNodeData; + + if ( computeNode.dispatchCount > maxComputeWorkgroupsPerDimension ) { + + dispatchSize.x = Math.min( computeNode.dispatchCount, maxComputeWorkgroupsPerDimension ); + dispatchSize.y = Math.ceil( computeNode.dispatchCount / maxComputeWorkgroupsPerDimension ); + + } else { + + dispatchSize.x = computeNode.dispatchCount; + + } + + passEncoderGPU.dispatchWorkgroups( + dispatchSize.x, + dispatchSize.y, + dispatchSize.z + ); + + } + + /** + * This method is executed at the end of a compute call and + * finalizes work after compute tasks. + * + * @param {Node|Array} computeGroup - The compute node(s). + */ + finishCompute( computeGroup ) { + + const groupData = this.get( computeGroup ); + + groupData.passEncoderGPU.end(); + + this.device.queue.submit( [ groupData.cmdEncoderGPU.finish() ] ); + + } + + /** + * Can be used to synchronize CPU operations with GPU tasks. So when this method is called, + * the CPU waits for the GPU to complete its operation (e.g. a compute task). + * + * @async + * @return {Promise} A Promise that resolves when synchronization has been finished. + */ + async waitForGPU() { + + await this.device.queue.onSubmittedWorkDone(); + + } + + // render object + + /** + * Executes a draw command for the given render object. + * + * @param {RenderObject} renderObject - The render object to draw. + * @param {Info} info - Holds a series of statistical information about the GPU memory and the rendering process. + */ + draw( renderObject, info ) { + + const { object, material, context, pipeline } = renderObject; + const bindings = renderObject.getBindings(); + const renderContextData = this.get( context ); + const pipelineGPU = this.get( pipeline ).pipeline; + + const index = renderObject.getIndex(); + const hasIndex = ( index !== null ); + + + const drawParams = renderObject.getDrawParameters(); + if ( drawParams === null ) return; + + // pipeline + + const setPipelineAndBindings = ( passEncoderGPU, currentSets ) => { + + // pipeline + this.pipelineUtils.setPipeline( passEncoderGPU, pipelineGPU ); + currentSets.pipeline = pipelineGPU; + + // bind groups + const currentBindingGroups = currentSets.bindingGroups; + for ( let i = 0, l = bindings.length; i < l; i ++ ) { + + const bindGroup = bindings[ i ]; + const bindingsData = this.get( bindGroup ); + if ( currentBindingGroups[ bindGroup.index ] !== bindGroup.id ) { + + passEncoderGPU.setBindGroup( bindGroup.index, bindingsData.group ); + currentBindingGroups[ bindGroup.index ] = bindGroup.id; + + } + + } + + // attributes + + // index + + if ( hasIndex === true ) { + + if ( currentSets.index !== index ) { + + const buffer = this.get( index ).buffer; + const indexFormat = ( index.array instanceof Uint16Array ) ? GPUIndexFormat.Uint16 : GPUIndexFormat.Uint32; + + passEncoderGPU.setIndexBuffer( buffer, indexFormat ); + + currentSets.index = index; + + } + + } + // vertex buffers + + const vertexBuffers = renderObject.getVertexBuffers(); + + for ( let i = 0, l = vertexBuffers.length; i < l; i ++ ) { + + const vertexBuffer = vertexBuffers[ i ]; + + if ( currentSets.attributes[ i ] !== vertexBuffer ) { + + const buffer = this.get( vertexBuffer ).buffer; + passEncoderGPU.setVertexBuffer( i, buffer ); + + currentSets.attributes[ i ] = vertexBuffer; + + } + + } + // stencil + + if ( context.stencil === true && material.stencilWrite === true && renderContextData.currentStencilRef !== material.stencilRef ) { + + passEncoderGPU.setStencilReference( material.stencilRef ); + renderContextData.currentStencilRef = material.stencilRef; + + } + + + }; + + // Define draw function + const draw = ( passEncoderGPU, currentSets ) => { + + setPipelineAndBindings( passEncoderGPU, currentSets ); + + if ( object.isBatchedMesh === true ) { + + const starts = object._multiDrawStarts; + const counts = object._multiDrawCounts; + const drawCount = object._multiDrawCount; + const drawInstances = object._multiDrawInstances; + + if ( drawInstances !== null ) { + + // @deprecated, r174 + warnOnce( 'THREE.WebGPUBackend: renderMultiDrawInstances has been deprecated and will be removed in r184. Append to renderMultiDraw arguments and use indirection.' ); + + } + + for ( let i = 0; i < drawCount; i ++ ) { + + const count = drawInstances ? drawInstances[ i ] : 1; + const firstInstance = count > 1 ? 0 : i; + + if ( hasIndex === true ) { + + passEncoderGPU.drawIndexed( counts[ i ], count, starts[ i ] / index.array.BYTES_PER_ELEMENT, 0, firstInstance ); + + } else { + + passEncoderGPU.draw( counts[ i ], count, starts[ i ], firstInstance ); + + } + + info.update( object, counts[ i ], count ); + + } + + } else if ( hasIndex === true ) { + + const { vertexCount: indexCount, instanceCount, firstVertex: firstIndex } = drawParams; + + const indirect = renderObject.getIndirect(); + + if ( indirect !== null ) { + + const buffer = this.get( indirect ).buffer; + + passEncoderGPU.drawIndexedIndirect( buffer, 0 ); + + } else { + + passEncoderGPU.drawIndexed( indexCount, instanceCount, firstIndex, 0, 0 ); + + } + + info.update( object, indexCount, instanceCount ); + + } else { + + const { vertexCount, instanceCount, firstVertex } = drawParams; + + const indirect = renderObject.getIndirect(); + + if ( indirect !== null ) { + + const buffer = this.get( indirect ).buffer; + + passEncoderGPU.drawIndirect( buffer, 0 ); + + } else { + + passEncoderGPU.draw( vertexCount, instanceCount, firstVertex, 0 ); + + } + + info.update( object, vertexCount, instanceCount ); + + } + + }; + + if ( renderObject.camera.isArrayCamera && renderObject.camera.cameras.length > 0 ) { + + const cameraData = this.get( renderObject.camera ); + const cameras = renderObject.camera.cameras; + const cameraIndex = renderObject.getBindingGroup( 'cameraIndex' ); + + if ( cameraData.indexesGPU === undefined || cameraData.indexesGPU.length !== cameras.length ) { + + const bindingsData = this.get( cameraIndex ); + const indexesGPU = []; + + const data = new Uint32Array( [ 0, 0, 0, 0 ] ); + + for ( let i = 0, len = cameras.length; i < len; i ++ ) { + + data[ 0 ] = i; + + const bindGroupIndex = this.bindingUtils.createBindGroupIndex( data, bindingsData.layout ); + + indexesGPU.push( bindGroupIndex ); + + } + + cameraData.indexesGPU = indexesGPU; // TODO: Create a global library for this + + } + + const pixelRatio = this.renderer.getPixelRatio(); + + for ( let i = 0, len = cameras.length; i < len; i ++ ) { + + const subCamera = cameras[ i ]; + + if ( object.layers.test( subCamera.layers ) ) { + + const vp = subCamera.viewport; + + + + let pass = renderContextData.currentPass; + let sets = renderContextData.currentSets; + if ( renderContextData.bundleEncoders ) { + + const bundleEncoder = renderContextData.bundleEncoders[ i ]; + const bundleSets = renderContextData.bundleSets[ i ]; + pass = bundleEncoder; + sets = bundleSets; + + } + + + + if ( vp ) { + + pass.setViewport( + Math.floor( vp.x * pixelRatio ), + Math.floor( vp.y * pixelRatio ), + Math.floor( vp.width * pixelRatio ), + Math.floor( vp.height * pixelRatio ), + context.viewportValue.minDepth, + context.viewportValue.maxDepth + ); + + } + + + // Set camera index binding for this layer + if ( cameraIndex && cameraData.indexesGPU ) { + + pass.setBindGroup( cameraIndex.index, cameraData.indexesGPU[ i ] ); + sets.bindingGroups[ cameraIndex.index ] = cameraIndex.id; + + } + + draw( pass, sets ); + + + } + + } + + } else { + + // Regular single camera rendering + if ( renderContextData.currentPass ) { + + // Handle occlusion queries + if ( renderContextData.occlusionQuerySet !== undefined ) { + + const lastObject = renderContextData.lastOcclusionObject; + if ( lastObject !== object ) { + + if ( lastObject !== null && lastObject.occlusionTest === true ) { + + renderContextData.currentPass.endOcclusionQuery(); + renderContextData.occlusionQueryIndex ++; + + } + + if ( object.occlusionTest === true ) { + + renderContextData.currentPass.beginOcclusionQuery( renderContextData.occlusionQueryIndex ); + renderContextData.occlusionQueryObjects[ renderContextData.occlusionQueryIndex ] = object; + + } + + renderContextData.lastOcclusionObject = object; + + } + + } + + draw( renderContextData.currentPass, renderContextData.currentSets ); + + } + + } + + } + + // cache key + + /** + * Returns `true` if the render pipeline requires an update. + * + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the render pipeline requires an update or not. + */ + needsRenderUpdate( renderObject ) { + + const data = this.get( renderObject ); + + const { object, material } = renderObject; + + const utils = this.utils; + + const sampleCount = utils.getSampleCountRenderContext( renderObject.context ); + const colorSpace = utils.getCurrentColorSpace( renderObject.context ); + const colorFormat = utils.getCurrentColorFormat( renderObject.context ); + const depthStencilFormat = utils.getCurrentDepthStencilFormat( renderObject.context ); + const primitiveTopology = utils.getPrimitiveTopology( object, material ); + + let needsUpdate = false; + + if ( data.material !== material || data.materialVersion !== material.version || + data.transparent !== material.transparent || data.blending !== material.blending || data.premultipliedAlpha !== material.premultipliedAlpha || + data.blendSrc !== material.blendSrc || data.blendDst !== material.blendDst || data.blendEquation !== material.blendEquation || + data.blendSrcAlpha !== material.blendSrcAlpha || data.blendDstAlpha !== material.blendDstAlpha || data.blendEquationAlpha !== material.blendEquationAlpha || + data.colorWrite !== material.colorWrite || data.depthWrite !== material.depthWrite || data.depthTest !== material.depthTest || data.depthFunc !== material.depthFunc || + data.stencilWrite !== material.stencilWrite || data.stencilFunc !== material.stencilFunc || + data.stencilFail !== material.stencilFail || data.stencilZFail !== material.stencilZFail || data.stencilZPass !== material.stencilZPass || + data.stencilFuncMask !== material.stencilFuncMask || data.stencilWriteMask !== material.stencilWriteMask || + data.side !== material.side || data.alphaToCoverage !== material.alphaToCoverage || + data.sampleCount !== sampleCount || data.colorSpace !== colorSpace || + data.colorFormat !== colorFormat || data.depthStencilFormat !== depthStencilFormat || + data.primitiveTopology !== primitiveTopology || + data.clippingContextCacheKey !== renderObject.clippingContextCacheKey + ) { + + data.material = material; data.materialVersion = material.version; + data.transparent = material.transparent; data.blending = material.blending; data.premultipliedAlpha = material.premultipliedAlpha; + data.blendSrc = material.blendSrc; data.blendDst = material.blendDst; data.blendEquation = material.blendEquation; + data.blendSrcAlpha = material.blendSrcAlpha; data.blendDstAlpha = material.blendDstAlpha; data.blendEquationAlpha = material.blendEquationAlpha; + data.colorWrite = material.colorWrite; + data.depthWrite = material.depthWrite; data.depthTest = material.depthTest; data.depthFunc = material.depthFunc; + data.stencilWrite = material.stencilWrite; data.stencilFunc = material.stencilFunc; + data.stencilFail = material.stencilFail; data.stencilZFail = material.stencilZFail; data.stencilZPass = material.stencilZPass; + data.stencilFuncMask = material.stencilFuncMask; data.stencilWriteMask = material.stencilWriteMask; + data.side = material.side; data.alphaToCoverage = material.alphaToCoverage; + data.sampleCount = sampleCount; + data.colorSpace = colorSpace; + data.colorFormat = colorFormat; + data.depthStencilFormat = depthStencilFormat; + data.primitiveTopology = primitiveTopology; + data.clippingContextCacheKey = renderObject.clippingContextCacheKey; + + needsUpdate = true; + + } + + return needsUpdate; + + } + + /** + * Returns a cache key that is used to identify render pipelines. + * + * @param {RenderObject} renderObject - The render object. + * @return {string} The cache key. + */ + getRenderCacheKey( renderObject ) { + + const { object, material } = renderObject; + + const utils = this.utils; + const renderContext = renderObject.context; + + return [ + material.transparent, material.blending, material.premultipliedAlpha, + material.blendSrc, material.blendDst, material.blendEquation, + material.blendSrcAlpha, material.blendDstAlpha, material.blendEquationAlpha, + material.colorWrite, + material.depthWrite, material.depthTest, material.depthFunc, + material.stencilWrite, material.stencilFunc, + material.stencilFail, material.stencilZFail, material.stencilZPass, + material.stencilFuncMask, material.stencilWriteMask, + material.side, + utils.getSampleCountRenderContext( renderContext ), + utils.getCurrentColorSpace( renderContext ), utils.getCurrentColorFormat( renderContext ), utils.getCurrentDepthStencilFormat( renderContext ), + utils.getPrimitiveTopology( object, material ), + renderObject.getGeometryCacheKey(), + renderObject.clippingContextCacheKey + ].join(); + + } + + // textures + + /** + * Creates a GPU sampler for the given texture. + * + * @param {Texture} texture - The texture to create the sampler for. + */ + createSampler( texture ) { + + this.textureUtils.createSampler( texture ); + + } + + /** + * Destroys the GPU sampler for the given texture. + * + * @param {Texture} texture - The texture to destroy the sampler for. + */ + destroySampler( texture ) { + + this.textureUtils.destroySampler( texture ); + + } + + /** + * Creates a default texture for the given texture that can be used + * as a placeholder until the actual texture is ready for usage. + * + * @param {Texture} texture - The texture to create a default texture for. + */ + createDefaultTexture( texture ) { + + this.textureUtils.createDefaultTexture( texture ); + + } + + /** + * Defines a texture on the GPU for the given texture object. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + createTexture( texture, options ) { + + this.textureUtils.createTexture( texture, options ); + + } + + /** + * Uploads the updated texture data to the GPU. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + updateTexture( texture, options ) { + + this.textureUtils.updateTexture( texture, options ); + + } + + /** + * Generates mipmaps for the given texture. + * + * @param {Texture} texture - The texture. + */ + generateMipmaps( texture ) { + + this.textureUtils.generateMipmaps( texture ); + + } + + /** + * Destroys the GPU data for the given texture object. + * + * @param {Texture} texture - The texture. + */ + destroyTexture( texture ) { + + this.textureUtils.destroyTexture( texture ); + + } + + /** + * Returns texture data as a typed array. + * + * @async + * @param {Texture} texture - The texture to copy. + * @param {number} x - The x coordinate of the copy origin. + * @param {number} y - The y coordinate of the copy origin. + * @param {number} width - The width of the copy. + * @param {number} height - The height of the copy. + * @param {number} faceIndex - The face index. + * @return {Promise} A Promise that resolves with a typed array when the copy operation has finished. + */ + async copyTextureToBuffer( texture, x, y, width, height, faceIndex ) { + + return this.textureUtils.copyTextureToBuffer( texture, x, y, width, height, faceIndex ); + + } + + /** + * Inits a time stamp query for the given render context. + * + * @param {RenderContext} renderContext - The render context. + * @param {Object} descriptor - The query descriptor. + */ + initTimestampQuery( renderContext, descriptor ) { + + if ( ! this.trackTimestamp ) return; + + const type = renderContext.isComputeNode ? 'compute' : 'render'; + + if ( ! this.timestampQueryPool[ type ] ) { + + // TODO: Variable maxQueries? + this.timestampQueryPool[ type ] = new WebGPUTimestampQueryPool( this.device, type, 2048 ); + + } + + const timestampQueryPool = this.timestampQueryPool[ type ]; + + const baseOffset = timestampQueryPool.allocateQueriesForContext( renderContext ); + + descriptor.timestampWrites = { + querySet: timestampQueryPool.querySet, + beginningOfPassWriteIndex: baseOffset, + endOfPassWriteIndex: baseOffset + 1, + }; + + } + + + // node builder + + /** + * Returns a node builder for the given render object. + * + * @param {RenderObject} object - The render object. + * @param {Renderer} renderer - The renderer. + * @return {WGSLNodeBuilder} The node builder. + */ + createNodeBuilder( object, renderer ) { + + return new WGSLNodeBuilder( object, renderer ); + + } + + // program + + /** + * Creates a shader program from the given programmable stage. + * + * @param {ProgrammableStage} program - The programmable stage. + */ + createProgram( program ) { + + const programGPU = this.get( program ); + + programGPU.module = { + module: this.device.createShaderModule( { code: program.code, label: program.stage + ( program.name !== '' ? `_${ program.name }` : '' ) } ), + entryPoint: 'main' + }; + + } + + /** + * Destroys the shader program of the given programmable stage. + * + * @param {ProgrammableStage} program - The programmable stage. + */ + destroyProgram( program ) { + + this.delete( program ); + + } + + // pipelines + + /** + * Creates a render pipeline for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @param {Array} promises - An array of compilation promises which are used in `compileAsync()`. + */ + createRenderPipeline( renderObject, promises ) { + + this.pipelineUtils.createRenderPipeline( renderObject, promises ); + + } + + /** + * Creates a compute pipeline for the given compute node. + * + * @param {ComputePipeline} computePipeline - The compute pipeline. + * @param {Array} bindings - The bindings. + */ + createComputePipeline( computePipeline, bindings ) { + + this.pipelineUtils.createComputePipeline( computePipeline, bindings ); + + } + + /** + * Prepares the state for encoding render bundles. + * + * @param {RenderContext} renderContext - The render context. + */ + beginBundle( renderContext ) { + + const renderContextData = this.get( renderContext ); + + renderContextData._currentPass = renderContextData.currentPass; + renderContextData._currentSets = renderContextData.currentSets; + + renderContextData.currentSets = { attributes: {}, bindingGroups: [], pipeline: null, index: null }; + renderContextData.currentPass = this.pipelineUtils.createBundleEncoder( renderContext ); + + } + + /** + * After processing render bundles this method finalizes related work. + * + * @param {RenderContext} renderContext - The render context. + * @param {RenderBundle} bundle - The render bundle. + */ + finishBundle( renderContext, bundle ) { + + const renderContextData = this.get( renderContext ); + + const bundleEncoder = renderContextData.currentPass; + const bundleGPU = bundleEncoder.finish(); + + this.get( bundle ).bundleGPU = bundleGPU; + + // restore render pass state + + renderContextData.currentSets = renderContextData._currentSets; + renderContextData.currentPass = renderContextData._currentPass; + + } + + /** + * Adds a render bundle to the render context data. + * + * @param {RenderContext} renderContext - The render context. + * @param {RenderBundle} bundle - The render bundle to add. + */ + addBundle( renderContext, bundle ) { + + const renderContextData = this.get( renderContext ); + + renderContextData.renderBundles.push( this.get( bundle ).bundleGPU ); + + } + + // bindings + + /** + * Creates bindings from the given bind group definition. + * + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + createBindings( bindGroup, bindings, cacheIndex, version ) { + + this.bindingUtils.createBindings( bindGroup, bindings, cacheIndex, version ); + + } + + /** + * Updates the given bind group definition. + * + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + updateBindings( bindGroup, bindings, cacheIndex, version ) { + + this.bindingUtils.createBindings( bindGroup, bindings, cacheIndex, version ); + + } + + /** + * Updates a buffer binding. + * + * @param {Buffer} binding - The buffer binding to update. + */ + updateBinding( binding ) { + + this.bindingUtils.updateBinding( binding ); + + } + + // attributes + + /** + * Creates the buffer of an indexed shader attribute. + * + * @param {BufferAttribute} attribute - The indexed buffer attribute. + */ + createIndexAttribute( attribute ) { + + this.attributeUtils.createAttribute( attribute, GPUBufferUsage.INDEX | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST ); + + } + + /** + * Creates the GPU buffer of a shader attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createAttribute( attribute ) { + + this.attributeUtils.createAttribute( attribute, GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST ); + + } + + /** + * Creates the GPU buffer of a storage attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createStorageAttribute( attribute ) { + + this.attributeUtils.createAttribute( attribute, GPUBufferUsage.STORAGE | GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST ); + + } + + /** + * Creates the GPU buffer of an indirect storage attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createIndirectStorageAttribute( attribute ) { + + this.attributeUtils.createAttribute( attribute, GPUBufferUsage.STORAGE | GPUBufferUsage.INDIRECT | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST ); + + } + + /** + * Updates the GPU buffer of a shader attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute to update. + */ + updateAttribute( attribute ) { + + this.attributeUtils.updateAttribute( attribute ); + + } + + /** + * Destroys the GPU buffer of a shader attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute to destroy. + */ + destroyAttribute( attribute ) { + + this.attributeUtils.destroyAttribute( attribute ); + + } + + // canvas + + /** + * Triggers an update of the default render pass descriptor. + */ + updateSize() { + + this.colorBuffer = this.textureUtils.getColorBuffer(); + this.defaultRenderPassdescriptor = null; + + } + + // utils public + + /** + * Returns the maximum anisotropy texture filtering value. + * + * @return {number} The maximum anisotropy texture filtering value. + */ + getMaxAnisotropy() { + + return 16; + + } + + /** + * Checks if the given feature is supported by the backend. + * + * @param {string} name - The feature's name. + * @return {boolean} Whether the feature is supported or not. + */ + hasFeature( name ) { + + return this.device.features.has( name ); + + } + + /** + * Copies data of the given source texture to the given destination texture. + * + * @param {Texture} srcTexture - The source texture. + * @param {Texture} dstTexture - The destination texture. + * @param {?(Box3|Box2)} [srcRegion=null] - The region of the source texture to copy. + * @param {?(Vector2|Vector3)} [dstPosition=null] - The destination position of the copy. + * @param {number} [srcLevel=0] - The mipmap level to copy. + * @param {number} [dstLevel=0] - The destination mip level to copy to. + */ + copyTextureToTexture( srcTexture, dstTexture, srcRegion = null, dstPosition = null, srcLevel = 0, dstLevel = 0 ) { + + let dstX = 0; + let dstY = 0; + let dstZ = 0; + + let srcX = 0; + let srcY = 0; + let srcZ = 0; + + let srcWidth = srcTexture.image.width; + let srcHeight = srcTexture.image.height; + let srcDepth = 1; + + + if ( srcRegion !== null ) { + + if ( srcRegion.isBox3 === true ) { + + srcX = srcRegion.min.x; + srcY = srcRegion.min.y; + srcZ = srcRegion.min.z; + srcWidth = srcRegion.max.x - srcRegion.min.x; + srcHeight = srcRegion.max.y - srcRegion.min.y; + srcDepth = srcRegion.max.z - srcRegion.min.z; + + } else { + + // Assume it's a Box2 + srcX = srcRegion.min.x; + srcY = srcRegion.min.y; + srcWidth = srcRegion.max.x - srcRegion.min.x; + srcHeight = srcRegion.max.y - srcRegion.min.y; + srcDepth = 1; + + } + + } + + + if ( dstPosition !== null ) { + + dstX = dstPosition.x; + dstY = dstPosition.y; + dstZ = dstPosition.z || 0; + + } + + const encoder = this.device.createCommandEncoder( { label: 'copyTextureToTexture_' + srcTexture.id + '_' + dstTexture.id } ); + + const sourceGPU = this.get( srcTexture ).texture; + const destinationGPU = this.get( dstTexture ).texture; + + encoder.copyTextureToTexture( + { + texture: sourceGPU, + mipLevel: srcLevel, + origin: { x: srcX, y: srcY, z: srcZ } + }, + { + texture: destinationGPU, + mipLevel: dstLevel, + origin: { x: dstX, y: dstY, z: dstZ } + }, + [ + srcWidth, + srcHeight, + srcDepth + ] + ); + + this.device.queue.submit( [ encoder.finish() ] ); + + if ( dstLevel === 0 && dstTexture.generateMipmaps ) { + + this.textureUtils.generateMipmaps( dstTexture ); + + } + + } + + /** + * Copies the current bound framebuffer to the given texture. + * + * @param {Texture} texture - The destination texture. + * @param {RenderContext} renderContext - The render context. + * @param {Vector4} rectangle - A four dimensional vector defining the origin and dimension of the copy. + */ + copyFramebufferToTexture( texture, renderContext, rectangle ) { + + const renderContextData = this.get( renderContext ); + + let sourceGPU = null; + + if ( renderContext.renderTarget ) { + + if ( texture.isDepthTexture ) { + + sourceGPU = this.get( renderContext.depthTexture ).texture; + + } else { + + sourceGPU = this.get( renderContext.textures[ 0 ] ).texture; + + } + + } else { + + if ( texture.isDepthTexture ) { + + sourceGPU = this.textureUtils.getDepthBuffer( renderContext.depth, renderContext.stencil ); + + } else { + + sourceGPU = this.context.getCurrentTexture(); + + } + + } + + const destinationGPU = this.get( texture ).texture; + + if ( sourceGPU.format !== destinationGPU.format ) { + + console.error( 'WebGPUBackend: copyFramebufferToTexture: Source and destination formats do not match.', sourceGPU.format, destinationGPU.format ); + + return; + + } + + let encoder; + + if ( renderContextData.currentPass ) { + + renderContextData.currentPass.end(); + + encoder = renderContextData.encoder; + + } else { + + encoder = this.device.createCommandEncoder( { label: 'copyFramebufferToTexture_' + texture.id } ); + + } + + encoder.copyTextureToTexture( + { + texture: sourceGPU, + origin: [ rectangle.x, rectangle.y, 0 ], + }, + { + texture: destinationGPU + }, + [ + rectangle.z, + rectangle.w + ] + ); + + if ( renderContextData.currentPass ) { + + const { descriptor } = renderContextData; + + for ( let i = 0; i < descriptor.colorAttachments.length; i ++ ) { + + descriptor.colorAttachments[ i ].loadOp = GPULoadOp.Load; + + } + + if ( renderContext.depth ) descriptor.depthStencilAttachment.depthLoadOp = GPULoadOp.Load; + if ( renderContext.stencil ) descriptor.depthStencilAttachment.stencilLoadOp = GPULoadOp.Load; + + renderContextData.currentPass = encoder.beginRenderPass( descriptor ); + renderContextData.currentSets = { attributes: {}, bindingGroups: [], pipeline: null, index: null }; + + if ( renderContext.viewport ) { + + this.updateViewport( renderContext ); + + } + + if ( renderContext.scissor ) { + + const { x, y, width, height } = renderContext.scissorValue; + + renderContextData.currentPass.setScissorRect( x, y, width, height ); + + } + + } else { + + this.device.queue.submit( [ encoder.finish() ] ); + + } + + if ( texture.generateMipmaps ) { + + this.textureUtils.generateMipmaps( texture ); + + } + + } + +} + +/** + * A IES version of {@link SpotLight}. Can only be used with {@link WebGPURenderer}. + * + * @augments SpotLight + */ +class IESSpotLight extends SpotLight { + + /** + * Constructs a new IES spot light. + * + * @param {(number|Color|string)} [color=0xffffff] - The light's color. + * @param {number} [intensity=1] - The light's strength/intensity measured in candela (cd). + * @param {number} [distance=0] - Maximum range of the light. `0` means no limit. + * @param {number} [angle=Math.PI/3] - Maximum angle of light dispersion from its direction whose upper bound is `Math.PI/2`. + * @param {number} [penumbra=0] - Percent of the spotlight cone that is attenuated due to penumbra. Value range is `[0,1]`. + * @param {number} [decay=2] - The amount the light dims along the distance of the light. + */ + constructor( color, intensity, distance, angle, penumbra, decay ) { + + super( color, intensity, distance, angle, penumbra, decay ); + + /** + * TODO + * + * @type {?Texture} + * @default null + */ + this.iesMap = null; + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.iesMap = source.iesMap; + + return this; + + } + +} + +/** + * A projector light version of {@link SpotLight}. Can only be used with {@link WebGPURenderer}. + * + * @augments SpotLight + */ +class ProjectorLight extends SpotLight { + + /** + * Constructs a new projector light. + * + * @param {(number|Color|string)} [color=0xffffff] - The light's color. + * @param {number} [intensity=1] - The light's strength/intensity measured in candela (cd). + * @param {number} [distance=0] - Maximum range of the light. `0` means no limit. + * @param {number} [angle=Math.PI/3] - Maximum angle of light dispersion from its direction whose upper bound is `Math.PI/2`. + * @param {number} [penumbra=0] - Percent of the spotlight cone that is attenuated due to penumbra. Value range is `[0,1]`. + * @param {number} [decay=2] - The amount the light dims along the distance of the light. + */ + constructor( color, intensity, distance, angle, penumbra, decay ) { + + super( color, intensity, distance, angle, penumbra, decay ); + + /** + * Aspect ratio of the light. Set to `null` to use the texture aspect ratio. + * + * @type {number} + * @default null + */ + this.aspect = null; + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.aspect = source.aspect; + + return this; + + } + +} + +/** + * This version of a node library represents the standard version + * used in {@link WebGPURenderer}. It maps lights, tone mapping + * techniques and materials to node-based implementations. + * + * @private + * @augments NodeLibrary + */ +class StandardNodeLibrary extends NodeLibrary { + + /** + * Constructs a new standard node library. + */ + constructor() { + + super(); + + this.addMaterial( MeshPhongNodeMaterial, 'MeshPhongMaterial' ); + this.addMaterial( MeshStandardNodeMaterial, 'MeshStandardMaterial' ); + this.addMaterial( MeshPhysicalNodeMaterial, 'MeshPhysicalMaterial' ); + this.addMaterial( MeshToonNodeMaterial, 'MeshToonMaterial' ); + this.addMaterial( MeshBasicNodeMaterial, 'MeshBasicMaterial' ); + this.addMaterial( MeshLambertNodeMaterial, 'MeshLambertMaterial' ); + this.addMaterial( MeshNormalNodeMaterial, 'MeshNormalMaterial' ); + this.addMaterial( MeshMatcapNodeMaterial, 'MeshMatcapMaterial' ); + this.addMaterial( LineBasicNodeMaterial, 'LineBasicMaterial' ); + this.addMaterial( LineDashedNodeMaterial, 'LineDashedMaterial' ); + this.addMaterial( PointsNodeMaterial, 'PointsMaterial' ); + this.addMaterial( SpriteNodeMaterial, 'SpriteMaterial' ); + this.addMaterial( ShadowNodeMaterial, 'ShadowMaterial' ); + + this.addLight( PointLightNode, PointLight ); + this.addLight( DirectionalLightNode, DirectionalLight ); + this.addLight( RectAreaLightNode, RectAreaLight ); + this.addLight( SpotLightNode, SpotLight ); + this.addLight( AmbientLightNode, AmbientLight ); + this.addLight( HemisphereLightNode, HemisphereLight ); + this.addLight( LightProbeNode, LightProbe ); + this.addLight( IESSpotLightNode, IESSpotLight ); + this.addLight( ProjectorLightNode, ProjectorLight ); + + this.addToneMapping( linearToneMapping, LinearToneMapping ); + this.addToneMapping( reinhardToneMapping, ReinhardToneMapping ); + this.addToneMapping( cineonToneMapping, CineonToneMapping ); + this.addToneMapping( acesFilmicToneMapping, ACESFilmicToneMapping ); + this.addToneMapping( agxToneMapping, AgXToneMapping ); + this.addToneMapping( neutralToneMapping, NeutralToneMapping ); + + } + +} + +/* +const debugHandler = { + + get: function ( target, name ) { + + // Add |update + if ( /^(create|destroy)/.test( name ) ) console.log( 'WebGPUBackend.' + name ); + + return target[ name ]; + + } + +}; +*/ + +/** + * This renderer is the new alternative of `WebGLRenderer`. `WebGPURenderer` has the ability + * to target different backends. By default, the renderer tries to use a WebGPU backend if the + * browser supports WebGPU. If not, `WebGPURenderer` falls backs to a WebGL 2 backend. + * + * @augments Renderer + */ +class WebGPURenderer extends Renderer { + + /** + * WebGPURenderer options. + * + * @typedef {Object} WebGPURenderer~Options + * @property {boolean} [logarithmicDepthBuffer=false] - Whether logarithmic depth buffer is enabled or not. + * @property {boolean} [alpha=true] - Whether the default framebuffer (which represents the final contents of the canvas) should be transparent or opaque. + * @property {boolean} [depth=true] - Whether the default framebuffer should have a depth buffer or not. + * @property {boolean} [stencil=false] - Whether the default framebuffer should have a stencil buffer or not. + * @property {boolean} [antialias=false] - Whether MSAA as the default anti-aliasing should be enabled or not. + * @property {number} [samples=0] - When `antialias` is `true`, `4` samples are used by default. Set this parameter to any other integer value than 0 to overwrite the default. + * @property {boolean} [forceWebGL=false] - If set to `true`, the renderer uses a WebGL 2 backend no matter if WebGPU is supported or not. + * @property {boolean} [multiview=false] - If set to `true`, the renderer will use multiview during WebXR rendering if supported. + * @property {number} [outputType=undefined] - Texture type for output to canvas. By default, device's preferred format is used; other formats may incur overhead. + * @property {number} [colorBufferType=HalfFloatType] - Defines the type of color buffers. The default `HalfFloatType` is recommend for best + * quality. To save memory and bandwidth, `UnsignedByteType` might be used. This will reduce rendering quality though. + */ + + /** + * Constructs a new WebGPU renderer. + * + * @param {WebGPURenderer~Options} [parameters] - The configuration parameter. + */ + constructor( parameters = {} ) { + + let BackendClass; + + if ( parameters.forceWebGL ) { + + BackendClass = WebGLBackend; + + } else { + + BackendClass = WebGPUBackend; + + parameters.getFallback = () => { + + console.warn( 'THREE.WebGPURenderer: WebGPU is not available, running under WebGL2 backend.' ); + + return new WebGLBackend( parameters ); + + }; + + } + + const backend = new BackendClass( parameters ); + + //super( new Proxy( backend, debugHandler ) ); + super( backend, parameters ); + + /** + * The generic default value is overwritten with the + * standard node library for type mapping. + * + * @type {StandardNodeLibrary} + */ + this.library = new StandardNodeLibrary(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWebGPURenderer = true; + + if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { + + __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); + + } + + } + +} + +/** + * A specialized group which enables applications access to the + * Render Bundle API of WebGPU. The group with all its descendant nodes + * are considered as one render bundle and processed as such by + * the renderer. + * + * This module is only fully supported by `WebGPURenderer` with a WebGPU backend. + * With a WebGL backend, the group can technically be rendered but without + * any performance improvements. + * + * @augments Group + */ +class BundleGroup extends Group { + + /** + * Constructs a new bundle group. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBundleGroup = true; + + /** + * This property is only relevant for detecting types + * during serialization/deserialization. It should always + * match the class name. + * + * @type {string} + * @readonly + * @default 'BundleGroup' + */ + this.type = 'BundleGroup'; + + /** + * Whether the bundle is static or not. When set to `true`, the structure + * is assumed to be static and does not change. E.g. no new objects are + * added to the group + * + * If a change is required, an update can still be forced by setting the + * `needsUpdate` flag to `true`. + * + * @type {boolean} + * @default true + */ + this.static = true; + + /** + * The bundle group's version. + * + * @type {number} + * @readonly + * @default 0 + */ + this.version = 0; + + } + + /** + * Set this property to `true` when the bundle group has changed. + * + * @type {boolean} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + if ( value === true ) this.version ++; + + } + +} + +/** + * This module is responsible to manage the post processing setups in apps. + * You usually create a single instance of this class and use it to define + * the output of your post processing effect chain. + * ```js + * const postProcessing = new PostProcessing( renderer ); + * + * const scenePass = pass( scene, camera ); + * + * postProcessing.outputNode = scenePass; + * ``` + * + * Note: This module can only be used with `WebGPURenderer`. + */ +class PostProcessing { + + /** + * Constructs a new post processing management module. + * + * @param {Renderer} renderer - A reference to the renderer. + * @param {Node} outputNode - An optional output node. + */ + constructor( renderer, outputNode = vec4( 0, 0, 1, 1 ) ) { + + /** + * A reference to the renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * A node which defines the final output of the post + * processing. This is usually the last node in a chain + * of effect nodes. + * + * @type {Node} + */ + this.outputNode = outputNode; + + /** + * Whether the default output tone mapping and color + * space transformation should be enabled or not. + * + * It is enabled by default by it must be disabled when + * effects must be executed after tone mapping and color + * space conversion. A typical example is FXAA which + * requires sRGB input. + * + * When set to `false`, the app must control the output + * transformation with `RenderOutputNode`. + * + * ```js + * const outputPass = renderOutput( scenePass ); + * ``` + * + * @type {boolean} + */ + this.outputColorTransform = true; + + /** + * Must be set to `true` when the output node changes. + * + * @type {Node} + */ + this.needsUpdate = true; + + const material = new NodeMaterial(); + material.name = 'PostProcessing'; + + /** + * The full screen quad that is used to render + * the effects. + * + * @private + * @type {QuadMesh} + */ + this._quadMesh = new QuadMesh( material ); + + } + + /** + * When `PostProcessing` is used to apply post processing effects, + * the application must use this version of `render()` inside + * its animation loop (not the one from the renderer). + */ + render() { + + this._update(); + + const renderer = this.renderer; + + const toneMapping = renderer.toneMapping; + const outputColorSpace = renderer.outputColorSpace; + + renderer.toneMapping = NoToneMapping; + renderer.outputColorSpace = LinearSRGBColorSpace; + + // + + const currentXR = renderer.xr.enabled; + renderer.xr.enabled = false; + + this._quadMesh.render( renderer ); + + renderer.xr.enabled = currentXR; + + // + + renderer.toneMapping = toneMapping; + renderer.outputColorSpace = outputColorSpace; + + } + + /** + * Frees internal resources. + */ + dispose() { + + this._quadMesh.material.dispose(); + + } + + /** + * Updates the state of the module. + * + * @private + */ + _update() { + + if ( this.needsUpdate === true ) { + + const renderer = this.renderer; + + const toneMapping = renderer.toneMapping; + const outputColorSpace = renderer.outputColorSpace; + + this._quadMesh.material.fragmentNode = this.outputColorTransform === true ? renderOutput( this.outputNode, toneMapping, outputColorSpace ) : this.outputNode.context( { toneMapping, outputColorSpace } ); + this._quadMesh.material.needsUpdate = true; + + this.needsUpdate = false; + + } + + } + + /** + * When `PostProcessing` is used to apply post processing effects, + * the application must use this version of `renderAsync()` inside + * its animation loop (not the one from the renderer). + * + * @async + * @return {Promise} A Promise that resolves when the render has been finished. + */ + async renderAsync() { + + this._update(); + + const renderer = this.renderer; + + const toneMapping = renderer.toneMapping; + const outputColorSpace = renderer.outputColorSpace; + + renderer.toneMapping = NoToneMapping; + renderer.outputColorSpace = LinearSRGBColorSpace; + + // + + const currentXR = renderer.xr.enabled; + renderer.xr.enabled = false; + + await this._quadMesh.renderAsync( renderer ); + + renderer.xr.enabled = currentXR; + + // + + renderer.toneMapping = toneMapping; + renderer.outputColorSpace = outputColorSpace; + + } + +} + +/** + * This special type of texture is intended for compute shaders. + * It can be used to compute the data of a texture with a compute shader. + * + * Note: This type of texture can only be used with `WebGPURenderer` + * and a WebGPU backend. + * + * @augments Texture + */ +class StorageTexture extends Texture { + + /** + * Constructs a new storage texture. + * + * @param {number} [width=1] - The storage texture's width. + * @param {number} [height=1] - The storage texture's height. + */ + constructor( width = 1, height = 1 ) { + + super(); + + /** + * The image object which just represents the texture's dimension. + * + * @type {{width: number, height: number}} + */ + this.image = { width, height }; + + /** + * The default `magFilter` for storage textures is `THREE.LinearFilter`. + * + * @type {number} + */ + this.magFilter = LinearFilter; + + /** + * The default `minFilter` for storage textures is `THREE.LinearFilter`. + * + * @type {number} + */ + this.minFilter = LinearFilter; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageTexture = true; + + } + +} + +/** + * This special type of buffer attribute is intended for compute shaders. + * It can be used to encode draw parameters for indirect draw calls. + * + * Note: This type of buffer attribute can only be used with `WebGPURenderer` + * and a WebGPU backend. + * + * @augments StorageBufferAttribute + */ +class IndirectStorageBufferAttribute extends StorageBufferAttribute { + + /** + * Constructs a new storage buffer attribute. + * + * @param {number|Uint32Array} count - The item count. It is also valid to pass a `Uint32Array` as an argument. + * The subsequent parameter is then obsolete. + * @param {number} itemSize - The item size. + */ + constructor( count, itemSize ) { + + super( count, itemSize, Uint32Array ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isIndirectStorageBufferAttribute = true; + + } + +} + +/** + * A loader for loading node objects in the three.js JSON Object/Scene format. + * + * @augments Loader + */ +class NodeLoader extends Loader { + + /** + * Constructs a new node loader. + * + * @param {LoadingManager} [manager] - A reference to a loading manager. + */ + constructor( manager ) { + + super( manager ); + + /** + * Represents a dictionary of textures. + * + * @type {Object} + */ + this.textures = {}; + + /** + * Represents a dictionary of node types. + * + * @type {Object} + */ + this.nodes = {}; + + } + + /** + * Loads the node definitions from the given URL. + * + * @param {string} url - The path/URL of the file to be loaded. + * @param {Function} onLoad - Will be called when load completes. + * @param {Function} onProgress - Will be called while load progresses. + * @param {Function} onError - Will be called when errors are thrown during the loading process. + */ + load( url, onLoad, onProgress, onError ) { + + const loader = new FileLoader( this.manager ); + loader.setPath( this.path ); + loader.setRequestHeader( this.requestHeader ); + loader.setWithCredentials( this.withCredentials ); + loader.load( url, ( text ) => { + + try { + + onLoad( this.parse( JSON.parse( text ) ) ); + + } catch ( e ) { + + if ( onError ) { + + onError( e ); + + } else { + + console.error( e ); + + } + + this.manager.itemError( url ); + + } + + }, onProgress, onError ); + + } + + /** + * Parse the node dependencies for the loaded node. + * + * @param {Array} [json] - The JSON definition + * @return {Object} A dictionary with node dependencies. + */ + parseNodes( json ) { + + const nodes = {}; + + if ( json !== undefined ) { + + for ( const nodeJSON of json ) { + + const { uuid, type } = nodeJSON; + + nodes[ uuid ] = this.createNodeFromType( type ); + nodes[ uuid ].uuid = uuid; + + } + + const meta = { nodes, textures: this.textures }; + + for ( const nodeJSON of json ) { + + nodeJSON.meta = meta; + + const node = nodes[ nodeJSON.uuid ]; + node.deserialize( nodeJSON ); + + delete nodeJSON.meta; + + } + + } + + return nodes; + + } + + /** + * Parses the node from the given JSON. + * + * @param {Object} json - The JSON definition + * @param {string} json.type - The node type. + * @param {string} json.uuid - The node UUID. + * @param {Array} [json.nodes] - The node dependencies. + * @param {Object} [json.meta] - The meta data. + * @return {Node} The parsed node. + */ + parse( json ) { + + const node = this.createNodeFromType( json.type ); + node.uuid = json.uuid; + + const nodes = this.parseNodes( json.nodes ); + const meta = { nodes, textures: this.textures }; + + json.meta = meta; + + node.deserialize( json ); + + delete json.meta; + + return node; + + } + + /** + * Defines the dictionary of textures. + * + * @param {Object} value - The texture library defines as ``. + * @return {NodeLoader} A reference to this loader. + */ + setTextures( value ) { + + this.textures = value; + return this; + + } + + /** + * Defines the dictionary of node types. + * + * @param {Object} value - The node library defined as ``. + * @return {NodeLoader} A reference to this loader. + */ + setNodes( value ) { + + this.nodes = value; + return this; + + } + + /** + * Creates a node object from the given type. + * + * @param {string} type - The node type. + * @return {Node} The created node instance. + */ + createNodeFromType( type ) { + + if ( this.nodes[ type ] === undefined ) { + + console.error( 'THREE.NodeLoader: Node type not found:', type ); + return float(); + + } + + return nodeObject( new this.nodes[ type ]() ); + + } + +} + +/** + * A special type of material loader for loading node materials. + * + * @augments MaterialLoader + */ +class NodeMaterialLoader extends MaterialLoader { + + /** + * Constructs a new node material loader. + * + * @param {LoadingManager} [manager] - A reference to a loading manager. + */ + constructor( manager ) { + + super( manager ); + + /** + * Represents a dictionary of node types. + * + * @type {Object} + */ + this.nodes = {}; + + /** + * Represents a dictionary of node material types. + * + * @type {Object} + */ + this.nodeMaterials = {}; + + } + + /** + * Parses the node material from the given JSON. + * + * @param {Object} json - The JSON definition + * @return {NodeMaterial}. The parsed material. + */ + parse( json ) { + + const material = super.parse( json ); + + const nodes = this.nodes; + const inputNodes = json.inputNodes; + + for ( const property in inputNodes ) { + + const uuid = inputNodes[ property ]; + + material[ property ] = nodes[ uuid ]; + + } + + return material; + + } + + /** + * Defines the dictionary of node types. + * + * @param {Object} value - The node library defined as ``. + * @return {NodeLoader} A reference to this loader. + */ + setNodes( value ) { + + this.nodes = value; + return this; + + } + + /** + * Defines the dictionary of node material types. + * + * @param {Object} value - The node material library defined as ``. + * @return {NodeLoader} A reference to this loader. + */ + setNodeMaterials( value ) { + + this.nodeMaterials = value; + return this; + + } + + /** + * Creates a node material from the given type. + * + * @param {string} type - The node material type. + * @return {Node} The created node material instance. + */ + createMaterialFromType( type ) { + + const materialClass = this.nodeMaterials[ type ]; + + if ( materialClass !== undefined ) { + + return new materialClass(); + + } + + return super.createMaterialFromType( type ); + + } + +} + +/** + * A special type of object loader for loading 3D objects using + * node materials. + * + * @augments ObjectLoader + */ +class NodeObjectLoader extends ObjectLoader { + + /** + * Constructs a new node object loader. + * + * @param {LoadingManager} [manager] - A reference to a loading manager. + */ + constructor( manager ) { + + super( manager ); + + /** + * Represents a dictionary of node types. + * + * @type {Object} + */ + this.nodes = {}; + + /** + * Represents a dictionary of node material types. + * + * @type {Object} + */ + this.nodeMaterials = {}; + + /** + * A reference to hold the `nodes` JSON property. + * + * @private + * @type {?Object[]} + */ + this._nodesJSON = null; + + } + + /** + * Defines the dictionary of node types. + * + * @param {Object} value - The node library defined as ``. + * @return {NodeObjectLoader} A reference to this loader. + */ + setNodes( value ) { + + this.nodes = value; + return this; + + } + + /** + * Defines the dictionary of node material types. + * + * @param {Object} value - The node material library defined as ``. + * @return {NodeObjectLoader} A reference to this loader. + */ + setNodeMaterials( value ) { + + this.nodeMaterials = value; + return this; + + } + + /** + * Parses the node objects from the given JSON. + * + * @param {Object} json - The JSON definition + * @param {Function} onLoad - The onLoad callback function. + * @return {Object3D}. The parsed 3D object. + */ + parse( json, onLoad ) { + + this._nodesJSON = json.nodes; + + const data = super.parse( json, onLoad ); + + this._nodesJSON = null; // dispose + + return data; + + } + + /** + * Parses the node objects from the given JSON and textures. + * + * @param {Object[]} json - The JSON definition + * @param {Object} textures - The texture library. + * @return {Object}. The parsed nodes. + */ + parseNodes( json, textures ) { + + if ( json !== undefined ) { + + const loader = new NodeLoader(); + loader.setNodes( this.nodes ); + loader.setTextures( textures ); + + return loader.parseNodes( json ); + + } + + return {}; + + } + + /** + * Parses the node objects from the given JSON and textures. + * + * @param {Object} json - The JSON definition + * @param {Object} textures - The texture library. + * @return {Object}. The parsed materials. + */ + parseMaterials( json, textures ) { + + const materials = {}; + + if ( json !== undefined ) { + + const nodes = this.parseNodes( this._nodesJSON, textures ); + + const loader = new NodeMaterialLoader(); + loader.setTextures( textures ); + loader.setNodes( nodes ); + loader.setNodeMaterials( this.nodeMaterials ); + + for ( let i = 0, l = json.length; i < l; i ++ ) { + + const data = json[ i ]; + + materials[ data.uuid ] = loader.parse( data ); + + } + + } + + return materials; + + } + +} + +/** + * In earlier three.js versions, clipping was defined globally + * on the renderer or on material level. This special version of + * `THREE.Group` allows to encode the clipping state into the scene + * graph. Meaning if you create an instance of this group, all + * descendant 3D objects will be affected by the respective clipping + * planes. + * + * Note: `ClippingGroup` can only be used with `WebGPURenderer`. + * + * @augments Group + */ +class ClippingGroup extends Group { + + /** + * Constructs a new clipping group. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isClippingGroup = true; + + /** + * An array with clipping planes. + * + * @type {Array} + */ + this.clippingPlanes = []; + + /** + * Whether clipping should be enabled or not. + * + * @type {boolean} + * @default true + */ + this.enabled = true; + + /** + * Whether the intersection of the clipping planes is used to clip objects, rather than their union. + * + * @type {boolean} + * @default false + */ + this.clipIntersection = false; + + /** + * Whether shadows should be clipped or not. + * + * @type {boolean} + * @default false + */ + this.clipShadows = false; + + } + +} + +export { ACESFilmicToneMapping, AONode, AddEquation, AddOperation, AdditiveBlending, AgXToneMapping, AlphaFormat, AlwaysCompare, AlwaysDepth, AlwaysStencilFunc, AmbientLight, AmbientLightNode, AnalyticLightNode, ArrayCamera, ArrayElementNode, ArrayNode, AssignNode, AttributeNode, BackSide, BasicEnvironmentNode, BasicShadowMap, BatchNode, BoxGeometry, BufferAttribute, BufferAttributeNode, BufferGeometry, BufferNode, BumpMapNode, BundleGroup, BypassNode, ByteType, CacheNode, Camera, CineonToneMapping, ClampToEdgeWrapping, ClippingGroup, CodeNode, Color, ColorManagement, ColorSpaceNode, ComputeNode, ConstNode, ContextNode, ConvertNode, CubeCamera, CubeReflectionMapping, CubeRefractionMapping, CubeTexture, CubeTextureNode, CubeUVReflectionMapping, CullFaceBack, CullFaceFront, CullFaceNone, CustomBlending, CylinderGeometry, DataArrayTexture, DataTexture, DebugNode, DecrementStencilOp, DecrementWrapStencilOp, DepthFormat, DepthStencilFormat, DepthTexture, DirectionalLight, DirectionalLightNode, DoubleSide, DstAlphaFactor, DstColorFactor, DynamicDrawUsage, EnvironmentNode, EqualCompare, EqualDepth, EqualStencilFunc, EquirectUVNode, EquirectangularReflectionMapping, EquirectangularRefractionMapping, Euler, EventDispatcher, ExpressionNode, FileLoader, Float16BufferAttribute, Float32BufferAttribute, FloatType, FramebufferTexture, FrontFacingNode, FrontSide, Frustum, FrustumArray, FunctionCallNode, FunctionNode, FunctionOverloadingNode, GLSLNodeParser, GreaterCompare, GreaterDepth, GreaterEqualCompare, GreaterEqualDepth, GreaterEqualStencilFunc, GreaterStencilFunc, Group, HalfFloatType, HemisphereLight, HemisphereLightNode, IESSpotLight, IESSpotLightNode, IncrementStencilOp, IncrementWrapStencilOp, IndexNode, IndirectStorageBufferAttribute, InstanceNode, InstancedBufferAttribute, InstancedInterleavedBuffer, InstancedMeshNode, IntType, InterleavedBuffer, InterleavedBufferAttribute, InvertStencilOp, IrradianceNode, JoinNode, KeepStencilOp, LessCompare, LessDepth, LessEqualCompare, LessEqualDepth, LessEqualStencilFunc, LessStencilFunc, LightProbe, LightProbeNode, Lighting, LightingContextNode, LightingModel, LightingNode, LightsNode, Line2NodeMaterial, LineBasicMaterial, LineBasicNodeMaterial, LineDashedMaterial, LineDashedNodeMaterial, LinearFilter, LinearMipMapLinearFilter, LinearMipmapLinearFilter, LinearMipmapNearestFilter, LinearSRGBColorSpace, LinearToneMapping, LinearTransfer, Loader, LoopNode, MRTNode, MatcapUVNode, Material, MaterialLoader, MaterialNode, MaterialReferenceNode, MathUtils, Matrix2, Matrix3, Matrix4, MaxEquation, MaxMipLevelNode, MemberNode, Mesh, MeshBasicMaterial, MeshBasicNodeMaterial, MeshLambertMaterial, MeshLambertNodeMaterial, MeshMatcapMaterial, MeshMatcapNodeMaterial, MeshNormalMaterial, MeshNormalNodeMaterial, MeshPhongMaterial, MeshPhongNodeMaterial, MeshPhysicalMaterial, MeshPhysicalNodeMaterial, MeshSSSNodeMaterial, MeshStandardMaterial, MeshStandardNodeMaterial, MeshToonMaterial, MeshToonNodeMaterial, MinEquation, MirroredRepeatWrapping, MixOperation, ModelNode, MorphNode, MultiplyBlending, MultiplyOperation, NearestFilter, NearestMipmapLinearFilter, NearestMipmapNearestFilter, NeutralToneMapping, NeverCompare, NeverDepth, NeverStencilFunc, NoBlending, NoColorSpace, NoToneMapping, Node, NodeAccess, NodeAttribute, NodeBuilder, NodeCache, NodeCode, NodeFrame, NodeFunctionInput, NodeLoader, NodeMaterial, NodeMaterialLoader, NodeMaterialObserver, NodeObjectLoader, NodeShaderStage, NodeType, NodeUniform, NodeUpdateType, NodeUtils, NodeVar, NodeVarying, NormalBlending, NormalMapNode, NotEqualCompare, NotEqualDepth, NotEqualStencilFunc, Object3D, Object3DNode, ObjectLoader, ObjectSpaceNormalMap, OneFactor, OneMinusDstAlphaFactor, OneMinusDstColorFactor, OneMinusSrcAlphaFactor, OneMinusSrcColorFactor, OrthographicCamera, OutputStructNode, PCFShadowMap, PMREMGenerator, PMREMNode, ParameterNode, PassNode, PerspectiveCamera, PhongLightingModel, PhysicalLightingModel, Plane, PlaneGeometry, PointLight, PointLightNode, PointUVNode, PointsMaterial, PointsNodeMaterial, PostProcessing, PosterizeNode, ProjectorLight, ProjectorLightNode, PropertyNode, QuadMesh, Quaternion, RED_GREEN_RGTC2_Format, RED_RGTC1_Format, REVISION, RGBAFormat, RGBAIntegerFormat, RGBA_ASTC_10x10_Format, RGBA_ASTC_10x5_Format, RGBA_ASTC_10x6_Format, RGBA_ASTC_10x8_Format, RGBA_ASTC_12x10_Format, RGBA_ASTC_12x12_Format, RGBA_ASTC_4x4_Format, RGBA_ASTC_5x4_Format, RGBA_ASTC_5x5_Format, RGBA_ASTC_6x5_Format, RGBA_ASTC_6x6_Format, RGBA_ASTC_8x5_Format, RGBA_ASTC_8x6_Format, RGBA_ASTC_8x8_Format, RGBA_BPTC_Format, RGBA_ETC2_EAC_Format, RGBA_PVRTC_2BPPV1_Format, RGBA_PVRTC_4BPPV1_Format, RGBA_S3TC_DXT1_Format, RGBA_S3TC_DXT3_Format, RGBA_S3TC_DXT5_Format, RGBFormat, RGBIntegerFormat, RGB_ETC1_Format, RGB_ETC2_Format, RGB_PVRTC_2BPPV1_Format, RGB_PVRTC_4BPPV1_Format, RGB_S3TC_DXT1_Format, RGFormat, RGIntegerFormat, RTTNode, RangeNode, RectAreaLight, RectAreaLightNode, RedFormat, RedIntegerFormat, ReferenceNode, ReflectorNode, ReinhardToneMapping, RemapNode, RenderOutputNode, RenderTarget, RendererReferenceNode, RendererUtils, RepeatWrapping, ReplaceStencilOp, ReverseSubtractEquation, RotateNode, SIGNED_RED_GREEN_RGTC2_Format, SIGNED_RED_RGTC1_Format, SRGBColorSpace, SRGBTransfer, Scene, SceneNode, ScreenNode, ScriptableNode, ScriptableValueNode, SetNode, ShadowBaseNode, ShadowMaterial, ShadowNode, ShadowNodeMaterial, ShortType, SkinningNode, Sphere, SphereGeometry, SplitNode, SpotLight, SpotLightNode, SpriteMaterial, SpriteNodeMaterial, SpriteSheetUVNode, SrcAlphaFactor, SrcAlphaSaturateFactor, SrcColorFactor, StackNode, StaticDrawUsage, StorageArrayElementNode, StorageBufferAttribute, StorageBufferNode, StorageInstancedBufferAttribute, StorageTexture, StorageTextureNode, StructNode, StructTypeNode, SubtractEquation, SubtractiveBlending, TSL, TangentSpaceNormalMap, TempNode, Texture, Texture3DNode, TextureNode, TextureSizeNode, ToneMappingNode, ToonOutlinePassNode, TriplanarTexturesNode, UVMapping, Uint16BufferAttribute, Uint32BufferAttribute, UniformArrayNode, UniformGroupNode, UniformNode, UnsignedByteType, UnsignedInt248Type, UnsignedInt5999Type, UnsignedIntType, UnsignedShort4444Type, UnsignedShort5551Type, UnsignedShortType, UserDataNode, VSMShadowMap, VarNode, VaryingNode, Vector2, Vector3, Vector4, VertexColorNode, ViewportDepthNode, ViewportDepthTextureNode, ViewportSharedTextureNode, ViewportTextureNode, VolumeNodeMaterial, WebGLCoordinateSystem, WebGLCubeRenderTarget, WebGPUCoordinateSystem, WebGPURenderer, WebXRController, ZeroFactor, ZeroStencilOp, createCanvasElement, defaultBuildStages, defaultShaderStages, shaderStages, vectorComponents }; diff --git a/devtools/panel/build/three.webgpu.nodes.js b/devtools/panel/build/three.webgpu.nodes.js new file mode 100644 index 00000000000000..78b450c044ed3b --- /dev/null +++ b/devtools/panel/build/three.webgpu.nodes.js @@ -0,0 +1,73484 @@ +/** + * @license + * Copyright 2010-2025 Three.js Authors + * SPDX-License-Identifier: MIT + */ +import { Color, Vector2, Vector3, Vector4, Matrix2, Matrix3, Matrix4, EventDispatcher, MathUtils, WebGLCoordinateSystem, WebGPUCoordinateSystem, ColorManagement, SRGBTransfer, NoToneMapping, StaticDrawUsage, InterleavedBuffer, InterleavedBufferAttribute, DynamicDrawUsage, NoColorSpace, Texture, UnsignedIntType, IntType, NearestFilter, Sphere, BackSide, Euler, CubeTexture, CubeReflectionMapping, CubeRefractionMapping, TangentSpaceNormalMap, ObjectSpaceNormalMap, InstancedInterleavedBuffer, InstancedBufferAttribute, DataArrayTexture, FloatType, FramebufferTexture, LinearMipmapLinearFilter, DepthTexture, Material, NormalBlending, LineBasicMaterial, LineDashedMaterial, NoBlending, MeshNormalMaterial, SRGBColorSpace, WebGLCubeRenderTarget, BoxGeometry, Mesh, Scene, LinearFilter, CubeCamera, EquirectangularReflectionMapping, EquirectangularRefractionMapping, AddOperation, MixOperation, MultiplyOperation, MeshBasicMaterial, MeshLambertMaterial, MeshPhongMaterial, OrthographicCamera, PerspectiveCamera, RenderTarget, LinearSRGBColorSpace, RGBAFormat, HalfFloatType, CubeUVReflectionMapping, BufferGeometry, BufferAttribute, MeshStandardMaterial, MeshPhysicalMaterial, MeshToonMaterial, MeshMatcapMaterial, SpriteMaterial, PointsMaterial, ShadowMaterial, Uint32BufferAttribute, Uint16BufferAttribute, arrayNeedsUint32, DoubleSide, Camera, DepthStencilFormat, DepthFormat, UnsignedInt248Type, UnsignedByteType, Plane, Object3D, LinearMipMapLinearFilter, Float32BufferAttribute, UVMapping, VSMShadowMap, LessCompare, RGFormat, BasicShadowMap, SphereGeometry, LinearMipmapNearestFilter, NearestMipmapLinearFilter, Float16BufferAttribute, REVISION, ArrayCamera, PlaneGeometry, FrontSide, CustomBlending, AddEquation, ZeroFactor, CylinderGeometry, Quaternion, WebXRController, RAD2DEG, PCFShadowMap, FrustumArray, Frustum, DataTexture, RedIntegerFormat, RedFormat, ShortType, ByteType, UnsignedShortType, RGIntegerFormat, RGBIntegerFormat, RGBFormat, RGBAIntegerFormat, warnOnce, createCanvasElement, ReverseSubtractEquation, SubtractEquation, OneMinusDstAlphaFactor, OneMinusDstColorFactor, OneMinusSrcAlphaFactor, OneMinusSrcColorFactor, DstAlphaFactor, DstColorFactor, SrcAlphaSaturateFactor, SrcAlphaFactor, SrcColorFactor, OneFactor, CullFaceNone, CullFaceBack, CullFaceFront, MultiplyBlending, SubtractiveBlending, AdditiveBlending, NotEqualDepth, GreaterDepth, GreaterEqualDepth, EqualDepth, LessEqualDepth, LessDepth, AlwaysDepth, NeverDepth, UnsignedShort4444Type, UnsignedShort5551Type, UnsignedInt5999Type, AlphaFormat, RGB_S3TC_DXT1_Format, RGBA_S3TC_DXT1_Format, RGBA_S3TC_DXT3_Format, RGBA_S3TC_DXT5_Format, RGB_PVRTC_4BPPV1_Format, RGB_PVRTC_2BPPV1_Format, RGBA_PVRTC_4BPPV1_Format, RGBA_PVRTC_2BPPV1_Format, RGB_ETC1_Format, RGB_ETC2_Format, RGBA_ETC2_EAC_Format, RGBA_ASTC_4x4_Format, RGBA_ASTC_5x4_Format, RGBA_ASTC_5x5_Format, RGBA_ASTC_6x5_Format, RGBA_ASTC_6x6_Format, RGBA_ASTC_8x5_Format, RGBA_ASTC_8x6_Format, RGBA_ASTC_8x8_Format, RGBA_ASTC_10x5_Format, RGBA_ASTC_10x6_Format, RGBA_ASTC_10x8_Format, RGBA_ASTC_10x10_Format, RGBA_ASTC_12x10_Format, RGBA_ASTC_12x12_Format, RGBA_BPTC_Format, RED_RGTC1_Format, SIGNED_RED_RGTC1_Format, RED_GREEN_RGTC2_Format, SIGNED_RED_GREEN_RGTC2_Format, MirroredRepeatWrapping, ClampToEdgeWrapping, RepeatWrapping, NearestMipmapNearestFilter, NotEqualCompare, GreaterCompare, GreaterEqualCompare, EqualCompare, LessEqualCompare, AlwaysCompare, NeverCompare, LinearTransfer, NotEqualStencilFunc, GreaterStencilFunc, GreaterEqualStencilFunc, EqualStencilFunc, LessEqualStencilFunc, LessStencilFunc, AlwaysStencilFunc, NeverStencilFunc, DecrementWrapStencilOp, IncrementWrapStencilOp, DecrementStencilOp, IncrementStencilOp, InvertStencilOp, ReplaceStencilOp, ZeroStencilOp, KeepStencilOp, MaxEquation, MinEquation, SpotLight, PointLight, DirectionalLight, RectAreaLight, AmbientLight, HemisphereLight, LightProbe, LinearToneMapping, ReinhardToneMapping, CineonToneMapping, ACESFilmicToneMapping, AgXToneMapping, NeutralToneMapping, Group, Loader, FileLoader, MaterialLoader, ObjectLoader } from './three.core.js'; +export { AdditiveAnimationBlendMode, AnimationAction, AnimationClip, AnimationLoader, AnimationMixer, AnimationObjectGroup, AnimationUtils, ArcCurve, ArrowHelper, AttachedBindMode, Audio, AudioAnalyser, AudioContext, AudioListener, AudioLoader, AxesHelper, BasicDepthPacking, BatchedMesh, Bone, BooleanKeyframeTrack, Box2, Box3, Box3Helper, BoxHelper, BufferGeometryLoader, Cache, CameraHelper, CanvasTexture, CapsuleGeometry, CatmullRomCurve3, CircleGeometry, Clock, ColorKeyframeTrack, CompressedArrayTexture, CompressedCubeTexture, CompressedTexture, CompressedTextureLoader, ConeGeometry, ConstantAlphaFactor, ConstantColorFactor, Controls, CubeTextureLoader, CubicBezierCurve, CubicBezierCurve3, CubicInterpolant, CullFaceFrontBack, Curve, CurvePath, CustomToneMapping, Cylindrical, Data3DTexture, DataTextureLoader, DataUtils, DefaultLoadingManager, DetachedBindMode, DirectionalLightHelper, DiscreteInterpolant, DodecahedronGeometry, DynamicCopyUsage, DynamicReadUsage, EdgesGeometry, EllipseCurve, ExtrudeGeometry, Fog, FogExp2, GLBufferAttribute, GLSL1, GLSL3, GridHelper, HemisphereLightHelper, IcosahedronGeometry, ImageBitmapLoader, ImageLoader, ImageUtils, InstancedBufferGeometry, InstancedMesh, Int16BufferAttribute, Int32BufferAttribute, Int8BufferAttribute, Interpolant, InterpolateDiscrete, InterpolateLinear, InterpolateSmooth, InterpolationSamplingMode, InterpolationSamplingType, KeyframeTrack, LOD, LatheGeometry, Layers, Light, Line, Line3, LineCurve, LineCurve3, LineLoop, LineSegments, LinearInterpolant, LinearMipMapNearestFilter, LoaderUtils, LoadingManager, LoopOnce, LoopPingPong, LoopRepeat, MOUSE, MeshDepthMaterial, MeshDistanceMaterial, NearestMipMapLinearFilter, NearestMipMapNearestFilter, NormalAnimationBlendMode, NumberKeyframeTrack, OctahedronGeometry, OneMinusConstantAlphaFactor, OneMinusConstantColorFactor, PCFSoftShadowMap, Path, PlaneHelper, PointLightHelper, Points, PolarGridHelper, PolyhedronGeometry, PositionalAudio, PropertyBinding, PropertyMixer, QuadraticBezierCurve, QuadraticBezierCurve3, QuaternionKeyframeTrack, QuaternionLinearInterpolant, RGBADepthPacking, RGBDepthPacking, RGB_BPTC_SIGNED_Format, RGB_BPTC_UNSIGNED_Format, RGDepthPacking, RawShaderMaterial, Ray, Raycaster, RenderTarget3D, RingGeometry, ShaderMaterial, Shape, ShapeGeometry, ShapePath, ShapeUtils, Skeleton, SkeletonHelper, SkinnedMesh, Source, Spherical, SphericalHarmonics3, SplineCurve, SpotLightHelper, Sprite, StaticCopyUsage, StaticReadUsage, StereoCamera, StreamCopyUsage, StreamDrawUsage, StreamReadUsage, StringKeyframeTrack, TOUCH, TetrahedronGeometry, TextureLoader, TextureUtils, TimestampQuery, TorusGeometry, TorusKnotGeometry, Triangle, TriangleFanDrawMode, TriangleStripDrawMode, TrianglesDrawMode, TubeGeometry, Uint8BufferAttribute, Uint8ClampedBufferAttribute, Uniform, UniformsGroup, VectorKeyframeTrack, VideoFrameTexture, VideoTexture, WebGL3DRenderTarget, WebGLArrayRenderTarget, WebGLRenderTarget, WireframeGeometry, WrapAroundEnding, ZeroCurvatureEnding, ZeroSlopeEnding } from './three.core.js'; + +const refreshUniforms = [ + 'alphaMap', + 'alphaTest', + 'anisotropy', + 'anisotropyMap', + 'anisotropyRotation', + 'aoMap', + 'aoMapIntensity', + 'attenuationColor', + 'attenuationDistance', + 'bumpMap', + 'clearcoat', + 'clearcoatMap', + 'clearcoatNormalMap', + 'clearcoatNormalScale', + 'clearcoatRoughness', + 'color', + 'dispersion', + 'displacementMap', + 'emissive', + 'emissiveIntensity', + 'emissiveMap', + 'envMap', + 'envMapIntensity', + 'gradientMap', + 'ior', + 'iridescence', + 'iridescenceIOR', + 'iridescenceMap', + 'iridescenceThicknessMap', + 'lightMap', + 'lightMapIntensity', + 'map', + 'matcap', + 'metalness', + 'metalnessMap', + 'normalMap', + 'normalScale', + 'opacity', + 'roughness', + 'roughnessMap', + 'sheen', + 'sheenColor', + 'sheenColorMap', + 'sheenRoughnessMap', + 'shininess', + 'specular', + 'specularColor', + 'specularColorMap', + 'specularIntensity', + 'specularIntensityMap', + 'specularMap', + 'thickness', + 'transmission', + 'transmissionMap' +]; + +/** + * This class is used by {@link WebGPURenderer} as management component. + * It's primary purpose is to determine whether render objects require a + * refresh right before they are going to be rendered or not. + */ +class NodeMaterialObserver { + + /** + * Constructs a new node material observer. + * + * @param {NodeBuilder} builder - The node builder. + */ + constructor( builder ) { + + /** + * A node material can be used by more than one render object so the + * monitor must maintain a list of render objects. + * + * @type {WeakMap} + */ + this.renderObjects = new WeakMap(); + + /** + * Whether the material uses node objects or not. + * + * @type {boolean} + */ + this.hasNode = this.containsNode( builder ); + + /** + * Whether the node builder's 3D object is animated or not. + * + * @type {boolean} + */ + this.hasAnimation = builder.object.isSkinnedMesh === true; + + /** + * A list of all possible material uniforms + * + * @type {Array} + */ + this.refreshUniforms = refreshUniforms; + + /** + * Holds the current render ID from the node frame. + * + * @type {number} + * @default 0 + */ + this.renderId = 0; + + } + + /** + * Returns `true` if the given render object is verified for the first time of this observer. + * + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the given render object is verified for the first time of this observer. + */ + firstInitialization( renderObject ) { + + const hasInitialized = this.renderObjects.has( renderObject ); + + if ( hasInitialized === false ) { + + this.getRenderObjectData( renderObject ); + + return true; + + } + + return false; + + } + + /** + * Returns `true` if the current rendering produces motion vectors. + * + * @param {Renderer} renderer - The renderer. + * @return {boolean} Whether the current rendering produces motion vectors or not. + */ + needsVelocity( renderer ) { + + const mrt = renderer.getMRT(); + + return ( mrt !== null && mrt.has( 'velocity' ) ); + + } + + /** + * Returns monitoring data for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @return {Object} The monitoring data. + */ + getRenderObjectData( renderObject ) { + + let data = this.renderObjects.get( renderObject ); + + if ( data === undefined ) { + + const { geometry, material, object } = renderObject; + + data = { + material: this.getMaterialData( material ), + geometry: { + id: geometry.id, + attributes: this.getAttributesData( geometry.attributes ), + indexVersion: geometry.index ? geometry.index.version : null, + drawRange: { start: geometry.drawRange.start, count: geometry.drawRange.count } + }, + worldMatrix: object.matrixWorld.clone() + }; + + if ( object.center ) { + + data.center = object.center.clone(); + + } + + if ( object.morphTargetInfluences ) { + + data.morphTargetInfluences = object.morphTargetInfluences.slice(); + + } + + if ( renderObject.bundle !== null ) { + + data.version = renderObject.bundle.version; + + } + + if ( data.material.transmission > 0 ) { + + const { width, height } = renderObject.context; + + data.bufferWidth = width; + data.bufferHeight = height; + + } + + this.renderObjects.set( renderObject, data ); + + } + + return data; + + } + + /** + * Returns an attribute data structure holding the attributes versions for + * monitoring. + * + * @param {Object} attributes - The geometry attributes. + * @return {Object} An object for monitoring the versions of attributes. + */ + getAttributesData( attributes ) { + + const attributesData = {}; + + for ( const name in attributes ) { + + const attribute = attributes[ name ]; + + attributesData[ name ] = { + version: attribute.version + }; + + } + + return attributesData; + + } + + /** + * Returns `true` if the node builder's material uses + * node properties. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {boolean} Whether the node builder's material uses node properties or not. + */ + containsNode( builder ) { + + const material = builder.material; + + for ( const property in material ) { + + if ( material[ property ] && material[ property ].isNode ) + return true; + + } + + if ( builder.renderer.overrideNodes.modelViewMatrix !== null || builder.renderer.overrideNodes.modelNormalViewMatrix !== null ) + return true; + + return false; + + } + + /** + * Returns a material data structure holding the material property values for + * monitoring. + * + * @param {Material} material - The material. + * @return {Object} An object for monitoring material properties. + */ + getMaterialData( material ) { + + const data = {}; + + for ( const property of this.refreshUniforms ) { + + const value = material[ property ]; + + if ( value === null || value === undefined ) continue; + + if ( typeof value === 'object' && value.clone !== undefined ) { + + if ( value.isTexture === true ) { + + data[ property ] = { id: value.id, version: value.version }; + + } else { + + data[ property ] = value.clone(); + + } + + } else { + + data[ property ] = value; + + } + + } + + return data; + + } + + /** + * Returns `true` if the given render object has not changed its state. + * + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the given render object has changed its state or not. + */ + equals( renderObject ) { + + const { object, material, geometry } = renderObject; + + const renderObjectData = this.getRenderObjectData( renderObject ); + + // world matrix + + if ( renderObjectData.worldMatrix.equals( object.matrixWorld ) !== true ) { + + renderObjectData.worldMatrix.copy( object.matrixWorld ); + + return false; + + } + + // material + + const materialData = renderObjectData.material; + + for ( const property in materialData ) { + + const value = materialData[ property ]; + const mtlValue = material[ property ]; + + if ( value.equals !== undefined ) { + + if ( value.equals( mtlValue ) === false ) { + + value.copy( mtlValue ); + + return false; + + } + + } else if ( mtlValue.isTexture === true ) { + + if ( value.id !== mtlValue.id || value.version !== mtlValue.version ) { + + value.id = mtlValue.id; + value.version = mtlValue.version; + + return false; + + } + + } else if ( value !== mtlValue ) { + + materialData[ property ] = mtlValue; + + return false; + + } + + } + + if ( materialData.transmission > 0 ) { + + const { width, height } = renderObject.context; + + if ( renderObjectData.bufferWidth !== width || renderObjectData.bufferHeight !== height ) { + + renderObjectData.bufferWidth = width; + renderObjectData.bufferHeight = height; + + return false; + + } + + } + + // geometry + + const storedGeometryData = renderObjectData.geometry; + const attributes = geometry.attributes; + const storedAttributes = storedGeometryData.attributes; + + const storedAttributeNames = Object.keys( storedAttributes ); + const currentAttributeNames = Object.keys( attributes ); + + if ( storedGeometryData.id !== geometry.id ) { + + storedGeometryData.id = geometry.id; + return false; + + } + + if ( storedAttributeNames.length !== currentAttributeNames.length ) { + + renderObjectData.geometry.attributes = this.getAttributesData( attributes ); + return false; + + } + + // compare each attribute + + for ( const name of storedAttributeNames ) { + + const storedAttributeData = storedAttributes[ name ]; + const attribute = attributes[ name ]; + + if ( attribute === undefined ) { + + // attribute was removed + delete storedAttributes[ name ]; + return false; + + } + + if ( storedAttributeData.version !== attribute.version ) { + + storedAttributeData.version = attribute.version; + return false; + + } + + } + + // check index + + const index = geometry.index; + const storedIndexVersion = storedGeometryData.indexVersion; + const currentIndexVersion = index ? index.version : null; + + if ( storedIndexVersion !== currentIndexVersion ) { + + storedGeometryData.indexVersion = currentIndexVersion; + return false; + + } + + // check drawRange + + if ( storedGeometryData.drawRange.start !== geometry.drawRange.start || storedGeometryData.drawRange.count !== geometry.drawRange.count ) { + + storedGeometryData.drawRange.start = geometry.drawRange.start; + storedGeometryData.drawRange.count = geometry.drawRange.count; + return false; + + } + + // morph targets + + if ( renderObjectData.morphTargetInfluences ) { + + let morphChanged = false; + + for ( let i = 0; i < renderObjectData.morphTargetInfluences.length; i ++ ) { + + if ( renderObjectData.morphTargetInfluences[ i ] !== object.morphTargetInfluences[ i ] ) { + + morphChanged = true; + + } + + } + + if ( morphChanged ) return true; + + } + + // center + + if ( renderObjectData.center ) { + + if ( renderObjectData.center.equals( object.center ) === false ) { + + renderObjectData.center.copy( object.center ); + + return true; + + } + + } + + // bundle + + if ( renderObject.bundle !== null ) { + + renderObjectData.version = renderObject.bundle.version; + + } + + return true; + + } + + /** + * Checks if the given render object requires a refresh. + * + * @param {RenderObject} renderObject - The render object. + * @param {NodeFrame} nodeFrame - The current node frame. + * @return {boolean} Whether the given render object requires a refresh or not. + */ + needsRefresh( renderObject, nodeFrame ) { + + if ( this.hasNode || this.hasAnimation || this.firstInitialization( renderObject ) || this.needsVelocity( nodeFrame.renderer ) ) + return true; + + const { renderId } = nodeFrame; + + if ( this.renderId !== renderId ) { + + this.renderId = renderId; + + return true; + + } + + const isStatic = renderObject.object.static === true; + const isBundle = renderObject.bundle !== null && renderObject.bundle.static === true && this.getRenderObjectData( renderObject ).version === renderObject.bundle.version; + + if ( isStatic || isBundle ) + return false; + + const notEqual = this.equals( renderObject ) !== true; + + return notEqual; + + } + +} + +// cyrb53 (c) 2018 bryc (github.com/bryc). License: Public domain. Attribution appreciated. +// A fast and simple 64-bit (or 53-bit) string hash function with decent collision resistance. +// Largely inspired by MurmurHash2/3, but with a focus on speed/simplicity. +// See https://stackoverflow.com/questions/7616461/generate-a-hash-from-string-in-javascript/52171480#52171480 +// https://github.com/bryc/code/blob/master/jshash/experimental/cyrb53.js +function cyrb53( value, seed = 0 ) { + + let h1 = 0xdeadbeef ^ seed, h2 = 0x41c6ce57 ^ seed; + + if ( value instanceof Array ) { + + for ( let i = 0, val; i < value.length; i ++ ) { + + val = value[ i ]; + h1 = Math.imul( h1 ^ val, 2654435761 ); + h2 = Math.imul( h2 ^ val, 1597334677 ); + + } + + } else { + + for ( let i = 0, ch; i < value.length; i ++ ) { + + ch = value.charCodeAt( i ); + h1 = Math.imul( h1 ^ ch, 2654435761 ); + h2 = Math.imul( h2 ^ ch, 1597334677 ); + + } + + } + + h1 = Math.imul( h1 ^ ( h1 >>> 16 ), 2246822507 ); + h1 ^= Math.imul( h2 ^ ( h2 >>> 13 ), 3266489909 ); + h2 = Math.imul( h2 ^ ( h2 >>> 16 ), 2246822507 ); + h2 ^= Math.imul( h1 ^ ( h1 >>> 13 ), 3266489909 ); + + return 4294967296 * ( 2097151 & h2 ) + ( h1 >>> 0 ); + +} + +/** + * Computes a hash for the given string. + * + * @method + * @param {string} str - The string to be hashed. + * @return {number} The hash. + */ +const hashString = ( str ) => cyrb53( str ); + +/** + * Computes a hash for the given array. + * + * @method + * @param {Array} array - The array to be hashed. + * @return {number} The hash. + */ +const hashArray = ( array ) => cyrb53( array ); + +/** + * Computes a hash for the given list of parameters. + * + * @method + * @param {...number} params - A list of parameters. + * @return {number} The hash. + */ +const hash$1 = ( ...params ) => cyrb53( params ); + +/** + * Computes a cache key for the given node. + * + * @method + * @param {Object|Node} object - The object to be hashed. + * @param {boolean} [force=false] - Whether to force a cache key computation or not. + * @return {number} The hash. + */ +function getCacheKey$1( object, force = false ) { + + const values = []; + + if ( object.isNode === true ) { + + values.push( object.id ); + object = object.getSelf(); + + } + + for ( const { property, childNode } of getNodeChildren( object ) ) { + + values.push( cyrb53( property.slice( 0, - 4 ) ), childNode.getCacheKey( force ) ); + + } + + return cyrb53( values ); + +} + +/** + * This generator function can be used to iterate over the node children + * of the given object. + * + * @generator + * @param {Object} node - The object to be hashed. + * @param {boolean} [toJSON=false] - Whether to return JSON or not. + * @yields {Object} A result node holding the property, index (if available) and the child node. + */ +function* getNodeChildren( node, toJSON = false ) { + + for ( const property in node ) { + + // Ignore private properties. + if ( property.startsWith( '_' ) === true ) continue; + + const object = node[ property ]; + + if ( Array.isArray( object ) === true ) { + + for ( let i = 0; i < object.length; i ++ ) { + + const child = object[ i ]; + + if ( child && ( child.isNode === true || toJSON && typeof child.toJSON === 'function' ) ) { + + yield { property, index: i, childNode: child }; + + } + + } + + } else if ( object && object.isNode === true ) { + + yield { property, childNode: object }; + + } else if ( typeof object === 'object' ) { + + for ( const subProperty in object ) { + + const child = object[ subProperty ]; + + if ( child && ( child.isNode === true || toJSON && typeof child.toJSON === 'function' ) ) { + + yield { property, index: subProperty, childNode: child }; + + } + + } + + } + + } + +} + +const typeFromLength = /*@__PURE__*/ new Map( [ + [ 1, 'float' ], + [ 2, 'vec2' ], + [ 3, 'vec3' ], + [ 4, 'vec4' ], + [ 9, 'mat3' ], + [ 16, 'mat4' ] +] ); + +const dataFromObject = /*@__PURE__*/ new WeakMap(); + +/** + * Returns the data type for the given the length. + * + * @method + * @param {number} length - The length. + * @return {string} The data type. + */ +function getTypeFromLength( length ) { + + return typeFromLength.get( length ); + +} + +/** + * Returns the typed array for the given data type. + * + * @method + * @param {string} type - The data type. + * @return {TypedArray} The typed array. + */ +function getTypedArrayFromType( type ) { + + // Handle component type for vectors and matrices + if ( /[iu]?vec\d/.test( type ) ) { + + // Handle int vectors + if ( type.startsWith( 'ivec' ) ) return Int32Array; + // Handle uint vectors + if ( type.startsWith( 'uvec' ) ) return Uint32Array; + // Default to float vectors + return Float32Array; + + } + + // Handle matrices (always float) + if ( /mat\d/.test( type ) ) return Float32Array; + + // Basic types + if ( /float/.test( type ) ) return Float32Array; + if ( /uint/.test( type ) ) return Uint32Array; + if ( /int/.test( type ) ) return Int32Array; + + throw new Error( `THREE.NodeUtils: Unsupported type: ${type}` ); + +} + +/** + * Returns the length for the given data type. + * + * @method + * @param {string} type - The data type. + * @return {number} The length. + */ +function getLengthFromType( type ) { + + if ( /float|int|uint/.test( type ) ) return 1; + if ( /vec2/.test( type ) ) return 2; + if ( /vec3/.test( type ) ) return 3; + if ( /vec4/.test( type ) ) return 4; + if ( /mat2/.test( type ) ) return 4; + if ( /mat3/.test( type ) ) return 9; + if ( /mat4/.test( type ) ) return 16; + + console.error( 'THREE.TSL: Unsupported type:', type ); + +} + +/** + * Returns the gpu memory length for the given data type. + * + * @method + * @param {string} type - The data type. + * @return {number} The length. + */ +function getMemoryLengthFromType( type ) { + + if ( /float|int|uint/.test( type ) ) return 1; + if ( /vec2/.test( type ) ) return 2; + if ( /vec3/.test( type ) ) return 3; + if ( /vec4/.test( type ) ) return 4; + if ( /mat2/.test( type ) ) return 4; + if ( /mat3/.test( type ) ) return 12; + if ( /mat4/.test( type ) ) return 16; + + console.error( 'THREE.TSL: Unsupported type:', type ); + +} + +/** + * Returns the byte boundary for the given data type. + * + * @method + * @param {string} type - The data type. + * @return {number} The byte boundary. + */ +function getByteBoundaryFromType( type ) { + + if ( /float|int|uint/.test( type ) ) return 4; + if ( /vec2/.test( type ) ) return 8; + if ( /vec3/.test( type ) ) return 16; + if ( /vec4/.test( type ) ) return 16; + if ( /mat2/.test( type ) ) return 8; + if ( /mat3/.test( type ) ) return 48; + if ( /mat4/.test( type ) ) return 64; + + console.error( 'THREE.TSL: Unsupported type:', type ); + +} + +/** + * Returns the data type for the given value. + * + * @method + * @param {any} value - The value. + * @return {?string} The data type. + */ +function getValueType( value ) { + + if ( value === undefined || value === null ) return null; + + const typeOf = typeof value; + + if ( value.isNode === true ) { + + return 'node'; + + } else if ( typeOf === 'number' ) { + + return 'float'; + + } else if ( typeOf === 'boolean' ) { + + return 'bool'; + + } else if ( typeOf === 'string' ) { + + return 'string'; + + } else if ( typeOf === 'function' ) { + + return 'shader'; + + } else if ( value.isVector2 === true ) { + + return 'vec2'; + + } else if ( value.isVector3 === true ) { + + return 'vec3'; + + } else if ( value.isVector4 === true ) { + + return 'vec4'; + + } else if ( value.isMatrix2 === true ) { + + return 'mat2'; + + } else if ( value.isMatrix3 === true ) { + + return 'mat3'; + + } else if ( value.isMatrix4 === true ) { + + return 'mat4'; + + } else if ( value.isColor === true ) { + + return 'color'; + + } else if ( value instanceof ArrayBuffer ) { + + return 'ArrayBuffer'; + + } + + return null; + +} + +/** + * Returns the value/object for the given data type and parameters. + * + * @method + * @param {string} type - The given type. + * @param {...any} params - A parameter list. + * @return {any} The value/object. + */ +function getValueFromType( type, ...params ) { + + const last4 = type ? type.slice( - 4 ) : undefined; + + if ( params.length === 1 ) { // ensure same behaviour as in NodeBuilder.format() + + if ( last4 === 'vec2' ) params = [ params[ 0 ], params[ 0 ] ]; + else if ( last4 === 'vec3' ) params = [ params[ 0 ], params[ 0 ], params[ 0 ] ]; + else if ( last4 === 'vec4' ) params = [ params[ 0 ], params[ 0 ], params[ 0 ], params[ 0 ] ]; + + } + + if ( type === 'color' ) { + + return new Color( ...params ); + + } else if ( last4 === 'vec2' ) { + + return new Vector2( ...params ); + + } else if ( last4 === 'vec3' ) { + + return new Vector3( ...params ); + + } else if ( last4 === 'vec4' ) { + + return new Vector4( ...params ); + + } else if ( last4 === 'mat2' ) { + + return new Matrix2( ...params ); + + } else if ( last4 === 'mat3' ) { + + return new Matrix3( ...params ); + + } else if ( last4 === 'mat4' ) { + + return new Matrix4( ...params ); + + } else if ( type === 'bool' ) { + + return params[ 0 ] || false; + + } else if ( ( type === 'float' ) || ( type === 'int' ) || ( type === 'uint' ) ) { + + return params[ 0 ] || 0; + + } else if ( type === 'string' ) { + + return params[ 0 ] || ''; + + } else if ( type === 'ArrayBuffer' ) { + + return base64ToArrayBuffer( params[ 0 ] ); + + } + + return null; + +} + +/** + * Gets the object data that can be shared between different rendering steps. + * + * @param {Object} object - The object to get the data for. + * @return {Object} The object data. + */ +function getDataFromObject( object ) { + + let data = dataFromObject.get( object ); + + if ( data === undefined ) { + + data = {}; + dataFromObject.set( object, data ); + + } + + return data; + +} + +/** + * Converts the given array buffer to a Base64 string. + * + * @method + * @param {ArrayBuffer} arrayBuffer - The array buffer. + * @return {string} The Base64 string. + */ +function arrayBufferToBase64( arrayBuffer ) { + + let chars = ''; + + const array = new Uint8Array( arrayBuffer ); + + for ( let i = 0; i < array.length; i ++ ) { + + chars += String.fromCharCode( array[ i ] ); + + } + + return btoa( chars ); + +} + +/** + * Converts the given Base64 string to an array buffer. + * + * @method + * @param {string} base64 - The Base64 string. + * @return {ArrayBuffer} The array buffer. + */ +function base64ToArrayBuffer( base64 ) { + + return Uint8Array.from( atob( base64 ), c => c.charCodeAt( 0 ) ).buffer; + +} + +var NodeUtils = /*#__PURE__*/Object.freeze( { + __proto__: null, + arrayBufferToBase64: arrayBufferToBase64, + base64ToArrayBuffer: base64ToArrayBuffer, + getByteBoundaryFromType: getByteBoundaryFromType, + getCacheKey: getCacheKey$1, + getDataFromObject: getDataFromObject, + getLengthFromType: getLengthFromType, + getMemoryLengthFromType: getMemoryLengthFromType, + getNodeChildren: getNodeChildren, + getTypeFromLength: getTypeFromLength, + getTypedArrayFromType: getTypedArrayFromType, + getValueFromType: getValueFromType, + getValueType: getValueType, + hash: hash$1, + hashArray: hashArray, + hashString: hashString +} ); + +/** + * Possible shader stages. + * + * @property {string} VERTEX The vertex shader stage. + * @property {string} FRAGMENT The fragment shader stage. + */ +const NodeShaderStage = { + VERTEX: 'vertex', + FRAGMENT: 'fragment' +}; + +/** + * Update types of a node. + * + * @property {string} NONE The update method is not executed. + * @property {string} FRAME The update method is executed per frame. + * @property {string} RENDER The update method is executed per render. A frame might be produced by multiple render calls so this value allows more detailed updates than FRAME. + * @property {string} OBJECT The update method is executed per {@link Object3D} that uses the node for rendering. + */ +const NodeUpdateType = { + NONE: 'none', + FRAME: 'frame', + RENDER: 'render', + OBJECT: 'object' +}; + +/** + * Data types of a node. + * + * @property {string} BOOLEAN Boolean type. + * @property {string} INTEGER Integer type. + * @property {string} FLOAT Float type. + * @property {string} VECTOR2 Two-dimensional vector type. + * @property {string} VECTOR3 Three-dimensional vector type. + * @property {string} VECTOR4 Four-dimensional vector type. + * @property {string} MATRIX2 2x2 matrix type. + * @property {string} MATRIX3 3x3 matrix type. + * @property {string} MATRIX4 4x4 matrix type. + */ +const NodeType = { + BOOLEAN: 'bool', + INTEGER: 'int', + FLOAT: 'float', + VECTOR2: 'vec2', + VECTOR3: 'vec3', + VECTOR4: 'vec4', + MATRIX2: 'mat2', + MATRIX3: 'mat3', + MATRIX4: 'mat4' +}; + +/** + * Access types of a node. These are relevant for compute and storage usage. + * + * @property {string} READ_ONLY Read-only access + * @property {string} WRITE_ONLY Write-only access. + * @property {string} READ_WRITE Read and write access. + */ +const NodeAccess = { + READ_ONLY: 'readOnly', + WRITE_ONLY: 'writeOnly', + READ_WRITE: 'readWrite', +}; + +const defaultShaderStages = [ 'fragment', 'vertex' ]; +const defaultBuildStages = [ 'setup', 'analyze', 'generate' ]; +const shaderStages = [ ...defaultShaderStages, 'compute' ]; +const vectorComponents = [ 'x', 'y', 'z', 'w' ]; + +const _parentBuildStage = { + analyze: 'setup', + generate: 'analyze' +}; + +let _nodeId = 0; + +/** + * Base class for all nodes. + * + * @augments EventDispatcher + */ +class Node extends EventDispatcher { + + static get type() { + + return 'Node'; + + } + + /** + * Constructs a new node. + * + * @param {?string} nodeType - The node type. + */ + constructor( nodeType = null ) { + + super(); + + /** + * The node type. This represents the result type of the node (e.g. `float` or `vec3`). + * + * @type {?string} + * @default null + */ + this.nodeType = nodeType; + + /** + * The update type of the node's {@link Node#update} method. Possible values are listed in {@link NodeUpdateType}. + * + * @type {string} + * @default 'none' + */ + this.updateType = NodeUpdateType.NONE; + + /** + * The update type of the node's {@link Node#updateBefore} method. Possible values are listed in {@link NodeUpdateType}. + * + * @type {string} + * @default 'none' + */ + this.updateBeforeType = NodeUpdateType.NONE; + + /** + * The update type of the node's {@link Node#updateAfter} method. Possible values are listed in {@link NodeUpdateType}. + * + * @type {string} + * @default 'none' + */ + this.updateAfterType = NodeUpdateType.NONE; + + /** + * The UUID of the node. + * + * @type {string} + * @readonly + */ + this.uuid = MathUtils.generateUUID(); + + /** + * The version of the node. The version automatically is increased when {@link Node#needsUpdate} is set to `true`. + * + * @type {number} + * @readonly + * @default 0 + */ + this.version = 0; + + /** + * Whether this node is global or not. This property is relevant for the internal + * node caching system. All nodes which should be declared just once should + * set this flag to `true` (a typical example is {@link AttributeNode}). + * + * @type {boolean} + * @default false + */ + this.global = false; + + /** + * Create a list of parents for this node during the build process. + * + * @type {boolean} + * @default false + */ + this.parents = false; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNode = true; + + // private + + /** + * The cache key of this node. + * + * @private + * @type {?number} + * @default null + */ + this._cacheKey = null; + + /** + * The cache key 's version. + * + * @private + * @type {number} + * @default 0 + */ + this._cacheKeyVersion = 0; + + Object.defineProperty( this, 'id', { value: _nodeId ++ } ); + + } + + /** + * Set this property to `true` when the node should be regenerated. + * + * @type {boolean} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + if ( value === true ) { + + this.version ++; + + } + + } + + /** + * The type of the class. The value is usually the constructor name. + * + * @type {string} + * @readonly + */ + get type() { + + return this.constructor.type; + + } + + /** + * Convenient method for defining {@link Node#update}. + * + * @param {Function} callback - The update method. + * @param {string} updateType - The update type. + * @return {Node} A reference to this node. + */ + onUpdate( callback, updateType ) { + + this.updateType = updateType; + this.update = callback.bind( this.getSelf() ); + + return this; + + } + + /** + * Convenient method for defining {@link Node#update}. Similar to {@link Node#onUpdate}, but + * this method automatically sets the update type to `FRAME`. + * + * @param {Function} callback - The update method. + * @return {Node} A reference to this node. + */ + onFrameUpdate( callback ) { + + return this.onUpdate( callback, NodeUpdateType.FRAME ); + + } + + /** + * Convenient method for defining {@link Node#update}. Similar to {@link Node#onUpdate}, but + * this method automatically sets the update type to `RENDER`. + * + * @param {Function} callback - The update method. + * @return {Node} A reference to this node. + */ + onRenderUpdate( callback ) { + + return this.onUpdate( callback, NodeUpdateType.RENDER ); + + } + + /** + * Convenient method for defining {@link Node#update}. Similar to {@link Node#onUpdate}, but + * this method automatically sets the update type to `OBJECT`. + * + * @param {Function} callback - The update method. + * @return {Node} A reference to this node. + */ + onObjectUpdate( callback ) { + + return this.onUpdate( callback, NodeUpdateType.OBJECT ); + + } + + /** + * Convenient method for defining {@link Node#updateReference}. + * + * @param {Function} callback - The update method. + * @return {Node} A reference to this node. + */ + onReference( callback ) { + + this.updateReference = callback.bind( this.getSelf() ); + + return this; + + } + + /** + * The `this` reference might point to a Proxy so this method can be used + * to get the reference to the actual node instance. + * + * @return {Node} A reference to the node. + */ + getSelf() { + + // Returns non-node object. + + return this.self || this; + + } + + /** + * Nodes might refer to other objects like materials. This method allows to dynamically update the reference + * to such objects based on a given state (e.g. the current node frame or builder). + * + * @param {any} state - This method can be invocated in different contexts so `state` can refer to any object type. + * @return {any} The updated reference. + */ + updateReference( /*state*/ ) { + + return this; + + } + + /** + * By default this method returns the value of the {@link Node#global} flag. This method + * can be overwritten in derived classes if an analytical way is required to determine the + * global cache referring to the current shader-stage. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {boolean} Whether this node is global or not. + */ + isGlobal( /*builder*/ ) { + + return this.global; + + } + + /** + * Generator function that can be used to iterate over the child nodes. + * + * @generator + * @yields {Node} A child node. + */ + * getChildren() { + + for ( const { childNode } of getNodeChildren( this ) ) { + + yield childNode; + + } + + } + + /** + * Calling this method dispatches the `dispose` event. This event can be used + * to register event listeners for clean up tasks. + */ + dispose() { + + this.dispatchEvent( { type: 'dispose' } ); + + } + + /** + * Callback for {@link Node#traverse}. + * + * @callback traverseCallback + * @param {Node} node - The current node. + */ + + /** + * Can be used to traverse through the node's hierarchy. + * + * @param {traverseCallback} callback - A callback that is executed per node. + */ + traverse( callback ) { + + callback( this ); + + for ( const childNode of this.getChildren() ) { + + childNode.traverse( callback ); + + } + + } + + /** + * Returns the cache key for this node. + * + * @param {boolean} [force=false] - When set to `true`, a recomputation of the cache key is forced. + * @return {number} The cache key of the node. + */ + getCacheKey( force = false ) { + + force = force || this.version !== this._cacheKeyVersion; + + if ( force === true || this._cacheKey === null ) { + + this._cacheKey = hash$1( getCacheKey$1( this, force ), this.customCacheKey() ); + this._cacheKeyVersion = this.version; + + } + + return this._cacheKey; + + } + + /** + * Generate a custom cache key for this node. + * + * @return {number} The cache key of the node. + */ + customCacheKey() { + + return 0; + + } + + /** + * Returns the references to this node which is by default `this`. + * + * @return {Node} A reference to this node. + */ + getScope() { + + return this; + + } + + /** + * Returns the hash of the node which is used to identify the node. By default it's + * the {@link Node#uuid} however derived node classes might have to overwrite this method + * depending on their implementation. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The hash. + */ + getHash( /*builder*/ ) { + + return this.uuid; + + } + + /** + * Returns the update type of {@link Node#update}. + * + * @return {NodeUpdateType} The update type. + */ + getUpdateType() { + + return this.updateType; + + } + + /** + * Returns the update type of {@link Node#updateBefore}. + * + * @return {NodeUpdateType} The update type. + */ + getUpdateBeforeType() { + + return this.updateBeforeType; + + } + + /** + * Returns the update type of {@link Node#updateAfter}. + * + * @return {NodeUpdateType} The update type. + */ + getUpdateAfterType() { + + return this.updateAfterType; + + } + + /** + * Certain types are composed of multiple elements. For example a `vec3` + * is composed of three `float` values. This method returns the type of + * these elements. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The type of the node. + */ + getElementType( builder ) { + + const type = this.getNodeType( builder ); + const elementType = builder.getElementType( type ); + + return elementType; + + } + + /** + * Returns the node member type for the given name. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} name - The name of the member. + * @return {string} The type of the node. + */ + getMemberType( /*builder, name*/ ) { + + return 'void'; + + } + + /** + * Returns the node's type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The type of the node. + */ + getNodeType( builder ) { + + const nodeProperties = builder.getNodeProperties( this ); + + if ( nodeProperties.outputNode ) { + + return nodeProperties.outputNode.getNodeType( builder ); + + } + + return this.nodeType; + + } + + /** + * This method is used during the build process of a node and ensures + * equal nodes are not built multiple times but just once. For example if + * `attribute( 'uv' )` is used multiple times by the user, the build + * process makes sure to process just the first node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The shared node if possible. Otherwise `this` is returned. + */ + getShared( builder ) { + + const hash = this.getHash( builder ); + const nodeFromHash = builder.getNodeFromHash( hash ); + + return nodeFromHash || this; + + } + + /** + * Represents the setup stage which is the first step of the build process, see {@link Node#build} method. + * This method is often overwritten in derived modules to prepare the node which is used as the output/result. + * The output node must be returned in the `return` statement. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {?Node} The output node. + */ + setup( builder ) { + + const nodeProperties = builder.getNodeProperties( this ); + + let index = 0; + + for ( const childNode of this.getChildren() ) { + + nodeProperties[ 'node' + index ++ ] = childNode; + + } + + // return a outputNode if exists or null + + return nodeProperties.outputNode || null; + + } + + /** + * Represents the analyze stage which is the second step of the build process, see {@link Node#build} method. + * This stage analyzes the node hierarchy and ensures descendent nodes are built. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {?Node} output - The target output node. + */ + analyze( builder, output = null ) { + + const usageCount = builder.increaseUsage( this ); + + if ( this.parents === true ) { + + const nodeData = builder.getDataFromNode( this, 'any' ); + nodeData.stages = nodeData.stages || {}; + nodeData.stages[ builder.shaderStage ] = nodeData.stages[ builder.shaderStage ] || []; + nodeData.stages[ builder.shaderStage ].push( output ); + + } + + if ( usageCount === 1 ) { + + // node flow children + + const nodeProperties = builder.getNodeProperties( this ); + + for ( const childNode of Object.values( nodeProperties ) ) { + + if ( childNode && childNode.isNode === true ) { + + childNode.build( builder, this ); + + } + + } + + } + + } + + /** + * Represents the generate stage which is the third step of the build process, see {@link Node#build} method. + * This state builds the output node and returns the resulting shader string. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {?string} output - Can be used to define the output type. + * @return {?string} The generated shader string. + */ + generate( builder, output ) { + + const { outputNode } = builder.getNodeProperties( this ); + + if ( outputNode && outputNode.isNode === true ) { + + return outputNode.build( builder, output ); + + } + + } + + /** + * The method can be implemented to update the node's internal state before it is used to render an object. + * The {@link Node#updateBeforeType} property defines how often the update is executed. + * + * @abstract + * @param {NodeFrame} frame - A reference to the current node frame. + * @return {?boolean} An optional bool that indicates whether the implementation actually performed an update or not (e.g. due to caching). + */ + updateBefore( /*frame*/ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * The method can be implemented to update the node's internal state after it was used to render an object. + * The {@link Node#updateAfterType} property defines how often the update is executed. + * + * @abstract + * @param {NodeFrame} frame - A reference to the current node frame. + * @return {?boolean} An optional bool that indicates whether the implementation actually performed an update or not (e.g. due to caching). + */ + updateAfter( /*frame*/ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * The method can be implemented to update the node's internal state when it is used to render an object. + * The {@link Node#updateType} property defines how often the update is executed. + * + * @abstract + * @param {NodeFrame} frame - A reference to the current node frame. + * @return {?boolean} An optional bool that indicates whether the implementation actually performed an update or not (e.g. due to caching). + */ + update( /*frame*/ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * This method performs the build of a node. The behavior and return value depend on the current build stage: + * - **setup**: Prepares the node and its children for the build process. This process can also create new nodes. Returns the node itself or a variant. + * - **analyze**: Analyzes the node hierarchy for optimizations in the code generation stage. Returns `null`. + * - **generate**: Generates the shader code for the node. Returns the generated shader string. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string|Node|null} [output=null] - Can be used to define the output type. + * @return {Node|string|null} The result of the build process, depending on the build stage. + */ + build( builder, output = null ) { + + const refNode = this.getShared( builder ); + + if ( this !== refNode ) { + + return refNode.build( builder, output ); + + } + + // + + const nodeData = builder.getDataFromNode( this ); + nodeData.buildStages = nodeData.buildStages || {}; + nodeData.buildStages[ builder.buildStage ] = true; + + const parentBuildStage = _parentBuildStage[ builder.buildStage ]; + + if ( parentBuildStage && nodeData.buildStages[ parentBuildStage ] !== true ) { + + // force parent build stage (setup or analyze) + + const previousBuildStage = builder.getBuildStage(); + + builder.setBuildStage( parentBuildStage ); + + this.build( builder ); + + builder.setBuildStage( previousBuildStage ); + + } + + // + + builder.addNode( this ); + builder.addChain( this ); + + /* Build stages expected results: + - "setup" -> Node + - "analyze" -> null + - "generate" -> String + */ + let result = null; + + const buildStage = builder.getBuildStage(); + + if ( buildStage === 'setup' ) { + + this.updateReference( builder ); + + const properties = builder.getNodeProperties( this ); + + if ( properties.initialized !== true ) { + + //const stackNodesBeforeSetup = builder.stack.nodes.length; + + properties.initialized = true; + properties.outputNode = this.setup( builder ) || properties.outputNode || null; + + /*if ( isNodeOutput && builder.stack.nodes.length !== stackNodesBeforeSetup ) { + + // !! no outputNode !! + //outputNode = builder.stack; + + }*/ + + for ( const childNode of Object.values( properties ) ) { + + if ( childNode && childNode.isNode === true ) { + + if ( childNode.parents === true ) { + + const childProperties = builder.getNodeProperties( childNode ); + childProperties.parents = childProperties.parents || []; + childProperties.parents.push( this ); + + } + + childNode.build( builder ); + + } + + } + + } + + result = properties.outputNode; + + } else if ( buildStage === 'analyze' ) { + + this.analyze( builder, output ); + + } else if ( buildStage === 'generate' ) { + + const isGenerateOnce = this.generate.length === 1; + + if ( isGenerateOnce ) { + + const type = this.getNodeType( builder ); + const nodeData = builder.getDataFromNode( this ); + + result = nodeData.snippet; + + if ( result === undefined ) { + + if ( nodeData.generated === undefined ) { + + nodeData.generated = true; + + result = this.generate( builder ) || ''; + + nodeData.snippet = result; + + } else { + + console.warn( 'THREE.Node: Recursion detected.', this ); + + result = ''; + + } + + } else if ( nodeData.flowCodes !== undefined && builder.context.nodeBlock !== undefined ) { + + builder.addFlowCodeHierarchy( this, builder.context.nodeBlock ); + + } + + result = builder.format( result, type, output ); + + } else { + + result = this.generate( builder, output ) || ''; + + } + + } + + builder.removeChain( this ); + builder.addSequentialNode( this ); + + return result; + + } + + /** + * Returns the child nodes as a JSON object. + * + * @return {Array} An iterable list of serialized child objects as JSON. + */ + getSerializeChildren() { + + return getNodeChildren( this ); + + } + + /** + * Serializes the node to JSON. + * + * @param {Object} json - The output JSON object. + */ + serialize( json ) { + + const nodeChildren = this.getSerializeChildren(); + + const inputNodes = {}; + + for ( const { property, index, childNode } of nodeChildren ) { + + if ( index !== undefined ) { + + if ( inputNodes[ property ] === undefined ) { + + inputNodes[ property ] = Number.isInteger( index ) ? [] : {}; + + } + + inputNodes[ property ][ index ] = childNode.toJSON( json.meta ).uuid; + + } else { + + inputNodes[ property ] = childNode.toJSON( json.meta ).uuid; + + } + + } + + if ( Object.keys( inputNodes ).length > 0 ) { + + json.inputNodes = inputNodes; + + } + + } + + /** + * Deserializes the node from the given JSON. + * + * @param {Object} json - The JSON object. + */ + deserialize( json ) { + + if ( json.inputNodes !== undefined ) { + + const nodes = json.meta.nodes; + + for ( const property in json.inputNodes ) { + + if ( Array.isArray( json.inputNodes[ property ] ) ) { + + const inputArray = []; + + for ( const uuid of json.inputNodes[ property ] ) { + + inputArray.push( nodes[ uuid ] ); + + } + + this[ property ] = inputArray; + + } else if ( typeof json.inputNodes[ property ] === 'object' ) { + + const inputObject = {}; + + for ( const subProperty in json.inputNodes[ property ] ) { + + const uuid = json.inputNodes[ property ][ subProperty ]; + + inputObject[ subProperty ] = nodes[ uuid ]; + + } + + this[ property ] = inputObject; + + } else { + + const uuid = json.inputNodes[ property ]; + + this[ property ] = nodes[ uuid ]; + + } + + } + + } + + } + + /** + * Serializes the node into the three.js JSON Object/Scene format. + * + * @param {?Object} meta - An optional JSON object that already holds serialized data from other scene objects. + * @return {Object} The serialized node. + */ + toJSON( meta ) { + + const { uuid, type } = this; + const isRoot = ( meta === undefined || typeof meta === 'string' ); + + if ( isRoot ) { + + meta = { + textures: {}, + images: {}, + nodes: {} + }; + + } + + // serialize + + let data = meta.nodes[ uuid ]; + + if ( data === undefined ) { + + data = { + uuid, + type, + meta, + metadata: { + version: 4.7, + type: 'Node', + generator: 'Node.toJSON' + } + }; + + if ( isRoot !== true ) meta.nodes[ data.uuid ] = data; + + this.serialize( data ); + + delete data.meta; + + } + + // TODO: Copied from Object3D.toJSON + + function extractFromCache( cache ) { + + const values = []; + + for ( const key in cache ) { + + const data = cache[ key ]; + delete data.metadata; + values.push( data ); + + } + + return values; + + } + + if ( isRoot ) { + + const textures = extractFromCache( meta.textures ); + const images = extractFromCache( meta.images ); + const nodes = extractFromCache( meta.nodes ); + + if ( textures.length > 0 ) data.textures = textures; + if ( images.length > 0 ) data.images = images; + if ( nodes.length > 0 ) data.nodes = nodes; + + } + + return data; + + } + +} + +/** + * Base class for representing element access on an array-like + * node data structures. + * + * @augments Node + */ +class ArrayElementNode extends Node { // @TODO: If extending from TempNode it breaks webgpu_compute + + static get type() { + + return 'ArrayElementNode'; + + } + + /** + * Constructs an array element node. + * + * @param {Node} node - The array-like node. + * @param {Node} indexNode - The index node that defines the element access. + */ + constructor( node, indexNode ) { + + super(); + + /** + * The array-like node. + * + * @type {Node} + */ + this.node = node; + + /** + * The index node that defines the element access. + * + * @type {Node} + */ + this.indexNode = indexNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isArrayElementNode = true; + + } + + /** + * This method is overwritten since the node type is inferred from the array-like node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.node.getElementType( builder ); + + } + + generate( builder ) { + + const indexType = this.indexNode.getNodeType( builder ); + + const nodeSnippet = this.node.build( builder ); + const indexSnippet = this.indexNode.build( builder, ! builder.isVector( indexType ) && builder.isInteger( indexType ) ? indexType : 'uint' ); + + return `${ nodeSnippet }[ ${ indexSnippet } ]`; + + } + +} + +/** + * This module is part of the TSL core and usually not used in app level code. + * It represents a convert operation during the shader generation process + * meaning it converts the data type of a node to a target data type. + * + * @augments Node + */ +class ConvertNode extends Node { + + static get type() { + + return 'ConvertNode'; + + } + + /** + * Constructs a new convert node. + * + * @param {Node} node - The node which type should be converted. + * @param {string} convertTo - The target node type. Multiple types can be defined by separating them with a `|` sign. + */ + constructor( node, convertTo ) { + + super(); + + /** + * The node which type should be converted. + * + * @type {Node} + */ + this.node = node; + + /** + * The target node type. Multiple types can be defined by separating them with a `|` sign. + * + * @type {string} + */ + this.convertTo = convertTo; + + } + + /** + * This method is overwritten since the implementation tries to infer the best + * matching type from the {@link ConvertNode#convertTo} property. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + const requestType = this.node.getNodeType( builder ); + + let convertTo = null; + + for ( const overloadingType of this.convertTo.split( '|' ) ) { + + if ( convertTo === null || builder.getTypeLength( requestType ) === builder.getTypeLength( overloadingType ) ) { + + convertTo = overloadingType; + + } + + } + + return convertTo; + + } + + serialize( data ) { + + super.serialize( data ); + + data.convertTo = this.convertTo; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.convertTo = data.convertTo; + + } + + generate( builder, output ) { + + const node = this.node; + const type = this.getNodeType( builder ); + + const snippet = node.build( builder, type ); + + return builder.format( snippet, type, output ); + + } + +} + +/** + * This module uses cache management to create temporary variables + * if the node is used more than once to prevent duplicate calculations. + * + * The class acts as a base class for many other nodes types. + * + * @augments Node + */ +class TempNode extends Node { + + static get type() { + + return 'TempNode'; + + } + + /** + * Constructs a temp node. + * + * @param {?string} nodeType - The node type. + */ + constructor( nodeType = null ) { + + super( nodeType ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isTempNode = true; + + } + + /** + * Whether this node is used more than once in context of other nodes. + * + * @param {NodeBuilder} builder - The node builder. + * @return {boolean} A flag that indicates if there is more than one dependency to other nodes. + */ + hasDependencies( builder ) { + + return builder.getDataFromNode( this ).usageCount > 1; + + } + + build( builder, output ) { + + const buildStage = builder.getBuildStage(); + + if ( buildStage === 'generate' ) { + + const type = builder.getVectorType( this.getNodeType( builder, output ) ); + const nodeData = builder.getDataFromNode( this ); + + if ( nodeData.propertyName !== undefined ) { + + return builder.format( nodeData.propertyName, type, output ); + + } else if ( type !== 'void' && output !== 'void' && this.hasDependencies( builder ) ) { + + const snippet = super.build( builder, type ); + + const nodeVar = builder.getVarFromNode( this, null, type ); + const propertyName = builder.getPropertyName( nodeVar ); + + builder.addLineFlowCode( `${ propertyName } = ${ snippet }`, this ); + + nodeData.snippet = snippet; + nodeData.propertyName = propertyName; + + return builder.format( nodeData.propertyName, type, output ); + + } + + } + + return super.build( builder, output ); + + } + +} + +/** + * This module is part of the TSL core and usually not used in app level code. + * It represents a join operation during the shader generation process. + * For example in can compose/join two single floats into a `vec2` type. + * + * @augments TempNode + */ +class JoinNode extends TempNode { + + static get type() { + + return 'JoinNode'; + + } + + /** + * Constructs a new join node. + * + * @param {Array} nodes - An array of nodes that should be joined. + * @param {?string} [nodeType=null] - The node type. + */ + constructor( nodes = [], nodeType = null ) { + + super( nodeType ); + + /** + * An array of nodes that should be joined. + * + * @type {Array} + */ + this.nodes = nodes; + + } + + /** + * This method is overwritten since the node type must be inferred from the + * joined data length if not explicitly defined. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + if ( this.nodeType !== null ) { + + return builder.getVectorType( this.nodeType ); + + } + + return builder.getTypeFromLength( this.nodes.reduce( ( count, cur ) => count + builder.getTypeLength( cur.getNodeType( builder ) ), 0 ) ); + + } + + generate( builder, output ) { + + const type = this.getNodeType( builder ); + const maxLength = builder.getTypeLength( type ); + + const nodes = this.nodes; + + const primitiveType = builder.getComponentType( type ); + + const snippetValues = []; + + let length = 0; + + for ( const input of nodes ) { + + if ( length >= maxLength ) { + + console.error( `THREE.TSL: Length of parameters exceeds maximum length of function '${ type }()' type.` ); + break; + + } + + let inputType = input.getNodeType( builder ); + let inputTypeLength = builder.getTypeLength( inputType ); + let inputSnippet; + + if ( length + inputTypeLength > maxLength ) { + + console.error( `THREE.TSL: Length of '${ type }()' data exceeds maximum length of output type.` ); + + inputTypeLength = maxLength - length; + inputType = builder.getTypeFromLength( inputTypeLength ); + + } + + length += inputTypeLength; + inputSnippet = input.build( builder, inputType ); + + const inputPrimitiveType = builder.getComponentType( inputType ); + + if ( inputPrimitiveType !== primitiveType ) { + + inputSnippet = builder.format( inputSnippet, inputPrimitiveType, primitiveType ); + + } + + snippetValues.push( inputSnippet ); + + } + + const snippet = `${ builder.getType( type ) }( ${ snippetValues.join( ', ' ) } )`; + + return builder.format( snippet, type, output ); + + } + +} + +const _stringVectorComponents = vectorComponents.join( '' ); + +/** + * This module is part of the TSL core and usually not used in app level code. + * `SplitNode` represents a property access operation which means it is + * used to implement any `.xyzw`, `.rgba` and `stpq` usage on node objects. + * For example: + * ```js + * const redValue = color.r; + * ``` + * + * @augments Node + */ +class SplitNode extends Node { + + static get type() { + + return 'SplitNode'; + + } + + /** + * Constructs a new split node. + * + * @param {Node} node - The node that should be accessed. + * @param {string} [components='x'] - The components that should be accessed. + */ + constructor( node, components = 'x' ) { + + super(); + + /** + * The node that should be accessed. + * + * @type {Node} + */ + this.node = node; + + /** + * The components that should be accessed. + * + * @type {string} + */ + this.components = components; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSplitNode = true; + + } + + /** + * Returns the vector length which is computed based on the requested components. + * + * @return {number} The vector length. + */ + getVectorLength() { + + let vectorLength = this.components.length; + + for ( const c of this.components ) { + + vectorLength = Math.max( vectorComponents.indexOf( c ) + 1, vectorLength ); + + } + + return vectorLength; + + } + + /** + * Returns the component type of the node's type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The component type. + */ + getComponentType( builder ) { + + return builder.getComponentType( this.node.getNodeType( builder ) ); + + } + + /** + * This method is overwritten since the node type is inferred from requested components. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return builder.getTypeFromLength( this.components.length, this.getComponentType( builder ) ); + + } + + generate( builder, output ) { + + const node = this.node; + const nodeTypeLength = builder.getTypeLength( node.getNodeType( builder ) ); + + let snippet = null; + + if ( nodeTypeLength > 1 ) { + + let type = null; + + const componentsLength = this.getVectorLength(); + + if ( componentsLength >= nodeTypeLength ) { + + // needed expand the input node + + type = builder.getTypeFromLength( this.getVectorLength(), this.getComponentType( builder ) ); + + } + + const nodeSnippet = node.build( builder, type ); + + if ( this.components.length === nodeTypeLength && this.components === _stringVectorComponents.slice( 0, this.components.length ) ) { + + // unnecessary swizzle + + snippet = builder.format( nodeSnippet, type, output ); + + } else { + + snippet = builder.format( `${nodeSnippet}.${this.components}`, this.getNodeType( builder ), output ); + + } + + } else { + + // ignore .components if .node returns float/integer + + snippet = node.build( builder, output ); + + } + + return snippet; + + } + + serialize( data ) { + + super.serialize( data ); + + data.components = this.components; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.components = data.components; + + } + +} + +/** + * This module is part of the TSL core and usually not used in app level code. + * `SetNode` represents a set operation which means it is used to implement any + * `setXYZW()`, `setRGBA()` and `setSTPQ()` method invocations on node objects. + * For example: + * ```js + * materialLine.colorNode = color( 0, 0, 0 ).setR( float( 1 ) ); + * ``` + * + * @augments TempNode + */ +class SetNode extends TempNode { + + static get type() { + + return 'SetNode'; + + } + + /** + * Constructs a new set node. + * + * @param {Node} sourceNode - The node that should be updated. + * @param {string} components - The components that should be updated. + * @param {Node} targetNode - The value node. + */ + constructor( sourceNode, components, targetNode ) { + + super(); + + /** + * The node that should be updated. + * + * @type {Node} + */ + this.sourceNode = sourceNode; + + /** + * The components that should be updated. + * + * @type {string} + */ + this.components = components; + + /** + * The value node. + * + * @type {Node} + */ + this.targetNode = targetNode; + + } + + /** + * This method is overwritten since the node type is inferred from {@link SetNode#sourceNode}. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.sourceNode.getNodeType( builder ); + + } + + generate( builder ) { + + const { sourceNode, components, targetNode } = this; + + const sourceType = this.getNodeType( builder ); + + const componentType = builder.getComponentType( targetNode.getNodeType( builder ) ); + const targetType = builder.getTypeFromLength( components.length, componentType ); + + const targetSnippet = targetNode.build( builder, targetType ); + const sourceSnippet = sourceNode.build( builder, sourceType ); + + const length = builder.getTypeLength( sourceType ); + const snippetValues = []; + + for ( let i = 0; i < length; i ++ ) { + + const component = vectorComponents[ i ]; + + if ( component === components[ 0 ] ) { + + snippetValues.push( targetSnippet ); + + i += components.length - 1; + + } else { + + snippetValues.push( sourceSnippet + '.' + component ); + + } + + } + + return `${ builder.getType( sourceType ) }( ${ snippetValues.join( ', ' ) } )`; + + } + +} + +/** + * This module is part of the TSL core and usually not used in app level code. + * It represents a flip operation during the shader generation process + * meaning it flips normalized values with the following formula: + * ``` + * x = 1 - x; + * ``` + * `FlipNode` is internally used to implement any `flipXYZW()`, `flipRGBA()` and + * `flipSTPQ()` method invocations on node objects. For example: + * ```js + * uvNode = uvNode.flipY(); + * ``` + * + * @augments TempNode + */ +class FlipNode extends TempNode { + + static get type() { + + return 'FlipNode'; + + } + + /** + * Constructs a new flip node. + * + * @param {Node} sourceNode - The node which component(s) should be flipped. + * @param {string} components - The components that should be flipped e.g. `'x'` or `'xy'`. + */ + constructor( sourceNode, components ) { + + super(); + + /** + * The node which component(s) should be flipped. + * + * @type {Node} + */ + this.sourceNode = sourceNode; + + /** + * The components that should be flipped e.g. `'x'` or `'xy'`. + * + * @type {string} + */ + this.components = components; + + } + + /** + * This method is overwritten since the node type is inferred from the source node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.sourceNode.getNodeType( builder ); + + } + + generate( builder ) { + + const { components, sourceNode } = this; + + const sourceType = this.getNodeType( builder ); + const sourceSnippet = sourceNode.build( builder ); + + const sourceCache = builder.getVarFromNode( this ); + const sourceProperty = builder.getPropertyName( sourceCache ); + + builder.addLineFlowCode( sourceProperty + ' = ' + sourceSnippet, this ); + + const length = builder.getTypeLength( sourceType ); + const snippetValues = []; + + let componentIndex = 0; + + for ( let i = 0; i < length; i ++ ) { + + const component = vectorComponents[ i ]; + + if ( component === components[ componentIndex ] ) { + + snippetValues.push( '1.0 - ' + ( sourceProperty + '.' + component ) ); + + componentIndex ++; + + } else { + + snippetValues.push( sourceProperty + '.' + component ); + + } + + } + + return `${ builder.getType( sourceType ) }( ${ snippetValues.join( ', ' ) } )`; + + } + +} + +/** + * Base class for representing data input nodes. + * + * @augments Node + */ +class InputNode extends Node { + + static get type() { + + return 'InputNode'; + + } + + /** + * Constructs a new input node. + * + * @param {any} value - The value of this node. This can be any JS primitive, functions, array buffers or even three.js objects (vector, matrices, colors). + * @param {?string} nodeType - The node type. If no explicit type is defined, the node tries to derive the type from its value. + */ + constructor( value, nodeType = null ) { + + super( nodeType ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isInputNode = true; + + /** + * The value of this node. This can be any JS primitive, functions, array buffers or even three.js objects (vector, matrices, colors). + * + * @type {any} + */ + this.value = value; + + /** + * The precision of the value in the shader. + * + * @type {?('low'|'medium'|'high')} + * @default null + */ + this.precision = null; + + } + + getNodeType( /*builder*/ ) { + + if ( this.nodeType === null ) { + + return getValueType( this.value ); + + } + + return this.nodeType; + + } + + /** + * Returns the input type of the node which is by default the node type. Derived modules + * might overwrite this method and use a fixed type or compute one analytically. + * + * A typical example for different input and node types are textures. The input type of a + * normal RGBA texture is `texture` whereas its node type is `vec4`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( builder ) { + + return this.getNodeType( builder ); + + } + + /** + * Sets the precision to the given value. The method can be + * overwritten in derived classes if the final precision must be computed + * analytically. + * + * @param {('low'|'medium'|'high')} precision - The precision of the input value in the shader. + * @return {InputNode} A reference to this node. + */ + setPrecision( precision ) { + + this.precision = precision; + + return this; + + } + + serialize( data ) { + + super.serialize( data ); + + data.value = this.value; + + if ( this.value && this.value.toArray ) data.value = this.value.toArray(); + + data.valueType = getValueType( this.value ); + data.nodeType = this.nodeType; + + if ( data.valueType === 'ArrayBuffer' ) data.value = arrayBufferToBase64( data.value ); + + data.precision = this.precision; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.nodeType = data.nodeType; + this.value = Array.isArray( data.value ) ? getValueFromType( data.valueType, ...data.value ) : data.value; + + this.precision = data.precision || null; + + if ( this.value && this.value.fromArray ) this.value = this.value.fromArray( data.value ); + + } + + generate( /*builder, output*/ ) { + + console.warn( 'Abstract function.' ); + + } + +} + +const _regNum = /float|u?int/; + +/** + * Class for representing a constant value in the shader. + * + * @augments InputNode + */ +class ConstNode extends InputNode { + + static get type() { + + return 'ConstNode'; + + } + + /** + * Constructs a new input node. + * + * @param {any} value - The value of this node. Usually a JS primitive or three.js object (vector, matrix, color). + * @param {?string} nodeType - The node type. If no explicit type is defined, the node tries to derive the type from its value. + */ + constructor( value, nodeType = null ) { + + super( value, nodeType ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isConstNode = true; + + } + + /** + * Generates the shader string of the value with the current node builder. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The generated value as a shader string. + */ + generateConst( builder ) { + + return builder.generateConst( this.getNodeType( builder ), this.value ); + + } + + generate( builder, output ) { + + const type = this.getNodeType( builder ); + + if ( _regNum.test( type ) && _regNum.test( output ) ) { + + return builder.generateConst( output, this.value ); + + } + + return builder.format( this.generateConst( builder ), type, output ); + + } + +} + +/** + * Base class for representing member access on an object-like + * node data structures. + * + * @augments Node + */ +class MemberNode extends Node { + + static get type() { + + return 'MemberNode'; + + } + + /** + * Constructs an array element node. + * + * @param {Node} node - The array-like node. + * @param {string} property - The property name. + */ + constructor( node, property ) { + + super(); + + /** + * The array-like node. + * + * @type {Node} + */ + this.node = node; + + /** + * The property name. + * + * @type {Node} + */ + this.property = property; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMemberNode = true; + + } + + getNodeType( builder ) { + + return this.node.getMemberType( builder, this.property ); + + } + + generate( builder ) { + + const propertyName = this.node.build( builder ); + + return propertyName + '.' + this.property; + + } + +} + +let currentStack = null; + +const NodeElements = new Map(); + +function addMethodChaining( name, nodeElement ) { + + if ( NodeElements.has( name ) ) { + + console.warn( `THREE.TSL: Redefinition of method chaining '${ name }'.` ); + return; + + } + + if ( typeof nodeElement !== 'function' ) throw new Error( `THREE.TSL: Node element ${ name } is not a function` ); + + NodeElements.set( name, nodeElement ); + +} + +const parseSwizzle = ( props ) => props.replace( /r|s/g, 'x' ).replace( /g|t/g, 'y' ).replace( /b|p/g, 'z' ).replace( /a|q/g, 'w' ); +const parseSwizzleAndSort = ( props ) => parseSwizzle( props ).split( '' ).sort().join( '' ); + +const shaderNodeHandler = { + + setup( NodeClosure, params ) { + + const inputs = params.shift(); + + return NodeClosure( nodeObjects( inputs ), ...params ); + + }, + + get( node, prop, nodeObj ) { + + if ( typeof prop === 'string' && node[ prop ] === undefined ) { + + if ( node.isStackNode !== true && prop === 'assign' ) { + + return ( ...params ) => { + + currentStack.assign( nodeObj, ...params ); + + return nodeObj; + + }; + + } else if ( NodeElements.has( prop ) ) { + + const nodeElement = NodeElements.get( prop ); + + return node.isStackNode ? ( ...params ) => nodeObj.add( nodeElement( ...params ) ) : ( ...params ) => nodeElement( nodeObj, ...params ); + + } else if ( prop === 'self' ) { + + return node; + + } else if ( prop.endsWith( 'Assign' ) && NodeElements.has( prop.slice( 0, prop.length - 'Assign'.length ) ) ) { + + const nodeElement = NodeElements.get( prop.slice( 0, prop.length - 'Assign'.length ) ); + + return node.isStackNode ? ( ...params ) => nodeObj.assign( params[ 0 ], nodeElement( ...params ) ) : ( ...params ) => nodeObj.assign( nodeElement( nodeObj, ...params ) ); + + } else if ( /^[xyzwrgbastpq]{1,4}$/.test( prop ) === true ) { + + // accessing properties ( swizzle ) + + prop = parseSwizzle( prop ); + + return nodeObject( new SplitNode( nodeObj, prop ) ); + + } else if ( /^set[XYZWRGBASTPQ]{1,4}$/.test( prop ) === true ) { + + // set properties ( swizzle ) and sort to xyzw sequence + + prop = parseSwizzleAndSort( prop.slice( 3 ).toLowerCase() ); + + return ( value ) => nodeObject( new SetNode( node, prop, nodeObject( value ) ) ); + + } else if ( /^flip[XYZWRGBASTPQ]{1,4}$/.test( prop ) === true ) { + + // set properties ( swizzle ) and sort to xyzw sequence + + prop = parseSwizzleAndSort( prop.slice( 4 ).toLowerCase() ); + + return () => nodeObject( new FlipNode( nodeObject( node ), prop ) ); + + } else if ( prop === 'width' || prop === 'height' || prop === 'depth' ) { + + // accessing property + + if ( prop === 'width' ) prop = 'x'; + else if ( prop === 'height' ) prop = 'y'; + else if ( prop === 'depth' ) prop = 'z'; + + return nodeObject( new SplitNode( node, prop ) ); + + } else if ( /^\d+$/.test( prop ) === true ) { + + // accessing array + + return nodeObject( new ArrayElementNode( nodeObj, new ConstNode( Number( prop ), 'uint' ) ) ); + + } else if ( /^get$/.test( prop ) === true ) { + + // accessing properties + + return ( value ) => nodeObject( new MemberNode( nodeObj, value ) ); + + } + + } + + return Reflect.get( node, prop, nodeObj ); + + }, + + set( node, prop, value, nodeObj ) { + + if ( typeof prop === 'string' && node[ prop ] === undefined ) { + + // setting properties + + if ( /^[xyzwrgbastpq]{1,4}$/.test( prop ) === true || prop === 'width' || prop === 'height' || prop === 'depth' || /^\d+$/.test( prop ) === true ) { + + nodeObj[ prop ].assign( value ); + + return true; + + } + + } + + return Reflect.set( node, prop, value, nodeObj ); + + } + +}; + +const nodeObjectsCacheMap = new WeakMap(); +const nodeBuilderFunctionsCacheMap = new WeakMap(); + +const ShaderNodeObject = function ( obj, altType = null ) { + + const type = getValueType( obj ); + + if ( type === 'node' ) { + + let nodeObject = nodeObjectsCacheMap.get( obj ); + + if ( nodeObject === undefined ) { + + nodeObject = new Proxy( obj, shaderNodeHandler ); + + nodeObjectsCacheMap.set( obj, nodeObject ); + nodeObjectsCacheMap.set( nodeObject, nodeObject ); + + } + + return nodeObject; + + } else if ( ( altType === null && ( type === 'float' || type === 'boolean' ) ) || ( type && type !== 'shader' && type !== 'string' ) ) { + + return nodeObject( getConstNode( obj, altType ) ); + + } else if ( type === 'shader' ) { + + return Fn( obj ); + + } + + return obj; + +}; + +const ShaderNodeObjects = function ( objects, altType = null ) { + + for ( const name in objects ) { + + objects[ name ] = nodeObject( objects[ name ], altType ); + + } + + return objects; + +}; + +const ShaderNodeArray = function ( array, altType = null ) { + + const len = array.length; + + for ( let i = 0; i < len; i ++ ) { + + array[ i ] = nodeObject( array[ i ], altType ); + + } + + return array; + +}; + +const ShaderNodeProxy = function ( NodeClass, scope = null, factor = null, settings = null ) { + + const assignNode = ( node ) => nodeObject( settings !== null ? Object.assign( node, settings ) : node ); + + let fn, name = scope, minParams, maxParams; + + function verifyParamsLimit( params ) { + + let tslName; + + if ( name ) tslName = /[a-z]/i.test( name ) ? name + '()' : name; + else tslName = NodeClass.type; + + if ( minParams !== undefined && params.length < minParams ) { + + console.error( `THREE.TSL: "${ tslName }" parameter length is less than minimum required.` ); + + return params.concat( new Array( minParams - params.length ).fill( 0 ) ); + + } else if ( maxParams !== undefined && params.length > maxParams ) { + + console.error( `THREE.TSL: "${ tslName }" parameter length exceeds limit.` ); + + return params.slice( 0, maxParams ); + + } + + return params; + + } + + if ( scope === null ) { + + fn = ( ...params ) => { + + return assignNode( new NodeClass( ...nodeArray( verifyParamsLimit( params ) ) ) ); + + }; + + } else if ( factor !== null ) { + + factor = nodeObject( factor ); + + fn = ( ...params ) => { + + return assignNode( new NodeClass( scope, ...nodeArray( verifyParamsLimit( params ) ), factor ) ); + + }; + + } else { + + fn = ( ...params ) => { + + return assignNode( new NodeClass( scope, ...nodeArray( verifyParamsLimit( params ) ) ) ); + + }; + + } + + fn.setParameterLength = ( ...params ) => { + + if ( params.length === 1 ) minParams = maxParams = params[ 0 ]; + else if ( params.length === 2 ) [ minParams, maxParams ] = params; + + return fn; + + }; + + fn.setName = ( value ) => { + + name = value; + + return fn; + + }; + + return fn; + +}; + +const ShaderNodeImmutable = function ( NodeClass, ...params ) { + + return nodeObject( new NodeClass( ...nodeArray( params ) ) ); + +}; + +class ShaderCallNodeInternal extends Node { + + constructor( shaderNode, inputNodes ) { + + super(); + + this.shaderNode = shaderNode; + this.inputNodes = inputNodes; + + this.isShaderCallNodeInternal = true; + + } + + getNodeType( builder ) { + + return this.shaderNode.nodeType || this.getOutputNode( builder ).getNodeType( builder ); + + } + + getMemberType( builder, name ) { + + return this.getOutputNode( builder ).getMemberType( builder, name ); + + } + + call( builder ) { + + const { shaderNode, inputNodes } = this; + + const properties = builder.getNodeProperties( shaderNode ); + const onceNS = shaderNode.namespace && shaderNode.namespace === builder.namespace ? builder.getNamespace( 'once' ) : 'once'; + + if ( properties[ onceNS ] ) { + + return properties[ onceNS ]; + + } + + // + + let result = null; + + if ( shaderNode.layout ) { + + let functionNodesCacheMap = nodeBuilderFunctionsCacheMap.get( builder.constructor ); + + if ( functionNodesCacheMap === undefined ) { + + functionNodesCacheMap = new WeakMap(); + + nodeBuilderFunctionsCacheMap.set( builder.constructor, functionNodesCacheMap ); + + } + + let functionNode = functionNodesCacheMap.get( shaderNode ); + + if ( functionNode === undefined ) { + + functionNode = nodeObject( builder.buildFunctionNode( shaderNode ) ); + + functionNodesCacheMap.set( shaderNode, functionNode ); + + } + + builder.addInclude( functionNode ); + + result = nodeObject( functionNode.call( inputNodes ) ); + + } else { + + const jsFunc = shaderNode.jsFunc; + const outputNode = inputNodes !== null || jsFunc.length > 1 ? jsFunc( inputNodes || [], builder ) : jsFunc( builder ); + + result = nodeObject( outputNode ); + + } + + if ( shaderNode.once ) { + + properties[ onceNS ] = result; + + } + + return result; + + } + + setupOutput( builder ) { + + builder.addStack(); + + builder.stack.outputNode = this.call( builder ); + + return builder.removeStack(); + + } + + getOutputNode( builder ) { + + const properties = builder.getNodeProperties( this ); + const outputNamespace = builder.getOutputNamespace(); + + properties[ outputNamespace ] = properties[ outputNamespace ] || this.setupOutput( builder ); + + return properties[ outputNamespace ]; + + } + + build( builder, output = null ) { + + let result = null; + + const buildStage = builder.getBuildStage(); + const properties = builder.getNodeProperties( this ); + + const outputNamespace = builder.getOutputNamespace(); + const outputNode = this.getOutputNode( builder ); + + if ( buildStage === 'setup' ) { + + const initializedNamespace = builder.getNamespace( 'initialized' ); + + if ( properties[ initializedNamespace ] !== true ) { + + properties[ initializedNamespace ] = true; + + properties[ outputNamespace ] = this.getOutputNode( builder ); + properties[ outputNamespace ].build( builder ); + + } + + result = properties[ outputNamespace ]; + + } else if ( buildStage === 'analyze' ) { + + outputNode.build( builder, output ); + + } else if ( buildStage === 'generate' ) { + + result = outputNode.build( builder, output ) || ''; + + } + + return result; + + } + +} + +class ShaderNodeInternal extends Node { + + constructor( jsFunc, nodeType ) { + + super( nodeType ); + + this.jsFunc = jsFunc; + this.layout = null; + + this.global = true; + + this.once = false; + this.namespace = null; + + } + + setLayout( layout ) { + + this.layout = layout; + + return this; + + } + + call( inputs = null ) { + + nodeObjects( inputs ); + + return nodeObject( new ShaderCallNodeInternal( this, inputs ) ); + + } + + setup() { + + return this.call(); + + } + +} + +const bools = [ false, true ]; +const uints = [ 0, 1, 2, 3 ]; +const ints = [ - 1, - 2 ]; +const floats = [ 0.5, 1.5, 1 / 3, 1e-6, 1e6, Math.PI, Math.PI * 2, 1 / Math.PI, 2 / Math.PI, 1 / ( Math.PI * 2 ), Math.PI / 2 ]; + +const boolsCacheMap = new Map(); +for ( const bool of bools ) boolsCacheMap.set( bool, new ConstNode( bool ) ); + +const uintsCacheMap = new Map(); +for ( const uint of uints ) uintsCacheMap.set( uint, new ConstNode( uint, 'uint' ) ); + +const intsCacheMap = new Map( [ ...uintsCacheMap ].map( el => new ConstNode( el.value, 'int' ) ) ); +for ( const int of ints ) intsCacheMap.set( int, new ConstNode( int, 'int' ) ); + +const floatsCacheMap = new Map( [ ...intsCacheMap ].map( el => new ConstNode( el.value ) ) ); +for ( const float of floats ) floatsCacheMap.set( float, new ConstNode( float ) ); +for ( const float of floats ) floatsCacheMap.set( - float, new ConstNode( - float ) ); + +const cacheMaps = { bool: boolsCacheMap, uint: uintsCacheMap, ints: intsCacheMap, float: floatsCacheMap }; + +const constNodesCacheMap = new Map( [ ...boolsCacheMap, ...floatsCacheMap ] ); + +const getConstNode = ( value, type ) => { + + if ( constNodesCacheMap.has( value ) ) { + + return constNodesCacheMap.get( value ); + + } else if ( value.isNode === true ) { + + return value; + + } else { + + return new ConstNode( value, type ); + + } + +}; + +const safeGetNodeType = ( node ) => { + + try { + + return node.getNodeType(); + + } catch ( _ ) { + + return undefined; + + } + +}; + +const ConvertType = function ( type, cacheMap = null ) { + + return ( ...params ) => { + + if ( params.length === 0 || ( ! [ 'bool', 'float', 'int', 'uint' ].includes( type ) && params.every( param => typeof param !== 'object' ) ) ) { + + params = [ getValueFromType( type, ...params ) ]; + + } + + if ( params.length === 1 && cacheMap !== null && cacheMap.has( params[ 0 ] ) ) { + + return nodeObject( cacheMap.get( params[ 0 ] ) ); + + } + + if ( params.length === 1 ) { + + const node = getConstNode( params[ 0 ], type ); + if ( safeGetNodeType( node ) === type ) return nodeObject( node ); + return nodeObject( new ConvertNode( node, type ) ); + + } + + const nodes = params.map( param => getConstNode( param ) ); + return nodeObject( new JoinNode( nodes, type ) ); + + }; + +}; + +// exports + +const defined = ( v ) => typeof v === 'object' && v !== null ? v.value : v; // TODO: remove boolean conversion and defined function + +// utils + +const getConstNodeType = ( value ) => ( value !== undefined && value !== null ) ? ( value.nodeType || value.convertTo || ( typeof value === 'string' ? value : null ) ) : null; + +// shader node base + +function ShaderNode( jsFunc, nodeType ) { + + return new Proxy( new ShaderNodeInternal( jsFunc, nodeType ), shaderNodeHandler ); + +} + +const nodeObject = ( val, altType = null ) => /* new */ ShaderNodeObject( val, altType ); +const nodeObjects = ( val, altType = null ) => new ShaderNodeObjects( val, altType ); +const nodeArray = ( val, altType = null ) => new ShaderNodeArray( val, altType ); +const nodeProxy = ( ...params ) => new ShaderNodeProxy( ...params ); +const nodeImmutable = ( ...params ) => new ShaderNodeImmutable( ...params ); + +let fnId = 0; + +const Fn = ( jsFunc, layout = null ) => { + + let nodeType = null; + + if ( layout !== null ) { + + if ( typeof layout === 'object' ) { + + nodeType = layout.return; + + } else { + + if ( typeof layout === 'string' ) { + + nodeType = layout; + + } else { + + console.error( 'THREE.TSL: Invalid layout type.' ); + + } + + layout = null; + + } + + } + + const shaderNode = new ShaderNode( jsFunc, nodeType ); + + const fn = ( ...params ) => { + + let inputs; + + nodeObjects( params ); + + const isArrayAsParameter = params[ 0 ] && ( params[ 0 ].isNode || Object.getPrototypeOf( params[ 0 ] ) !== Object.prototype ); + + if ( isArrayAsParameter ) { + + inputs = [ ...params ]; + + } else { + + inputs = params[ 0 ]; + + } + + const fnCall = shaderNode.call( inputs ); + + if ( nodeType === 'void' ) fnCall.toStack(); + + return fnCall; + + }; + + fn.shaderNode = shaderNode; + fn.id = shaderNode.id; + + fn.getNodeType = ( ...params ) => shaderNode.getNodeType( ...params ); + fn.getCacheKey = ( ...params ) => shaderNode.getCacheKey( ...params ); + + fn.setLayout = ( layout ) => { + + shaderNode.setLayout( layout ); + + return fn; + + }; + + fn.once = ( namespace = null ) => { + + shaderNode.once = true; + shaderNode.namespace = namespace; + + return fn; + + }; + + if ( layout !== null ) { + + if ( typeof layout.inputs !== 'object' ) { + + const fullLayout = { + name: 'fn' + fnId ++, + type: nodeType, + inputs: [] + }; + + for ( const name in layout ) { + + if ( name === 'return' ) continue; + + fullLayout.inputs.push( { + name: name, + type: layout[ name ] + } ); + + } + + layout = fullLayout; + + } + + fn.setLayout( layout ); + + } + + return fn; + +}; + +// + +const setCurrentStack = ( stack ) => { + + currentStack = stack; + +}; + +const getCurrentStack = () => currentStack; + +/** + * Represent a conditional node using if/else statements. + * + * ```js + * If( condition, function ) + * .ElseIf( condition, function ) + * .Else( function ) + * ``` + * @tsl + * @function + * @param {...any} params - The parameters for the conditional node. + * @returns {StackNode} The conditional node. + */ +const If = ( ...params ) => currentStack.If( ...params ); + +/** + * Represent a conditional node using switch/case statements. + * + * ```js + * Switch( value ) + * .Case( 1, function ) + * .Case( 2, 3, 4, function ) + * .Default( function ) + * ``` + * @tsl + * @function + * @param {...any} params - The parameters for the conditional node. + * @returns {StackNode} The conditional node. + */ +const Switch = ( ...params ) => currentStack.Switch( ...params ); + +/** + * Add the given node to the current stack. + * + * @param {Node} node - The node to add. + * @returns {Node} The node that was added to the stack. + */ +function Stack( node ) { + + if ( currentStack ) currentStack.add( node ); + + return node; + +} + +addMethodChaining( 'toStack', Stack ); + +// types + +const color = new ConvertType( 'color' ); + +const float = new ConvertType( 'float', cacheMaps.float ); +const int = new ConvertType( 'int', cacheMaps.ints ); +const uint = new ConvertType( 'uint', cacheMaps.uint ); +const bool = new ConvertType( 'bool', cacheMaps.bool ); + +const vec2 = new ConvertType( 'vec2' ); +const ivec2 = new ConvertType( 'ivec2' ); +const uvec2 = new ConvertType( 'uvec2' ); +const bvec2 = new ConvertType( 'bvec2' ); + +const vec3 = new ConvertType( 'vec3' ); +const ivec3 = new ConvertType( 'ivec3' ); +const uvec3 = new ConvertType( 'uvec3' ); +const bvec3 = new ConvertType( 'bvec3' ); + +const vec4 = new ConvertType( 'vec4' ); +const ivec4 = new ConvertType( 'ivec4' ); +const uvec4 = new ConvertType( 'uvec4' ); +const bvec4 = new ConvertType( 'bvec4' ); + +const mat2 = new ConvertType( 'mat2' ); +const mat3 = new ConvertType( 'mat3' ); +const mat4 = new ConvertType( 'mat4' ); + +const string = ( value = '' ) => nodeObject( new ConstNode( value, 'string' ) ); +const arrayBuffer = ( value ) => nodeObject( new ConstNode( value, 'ArrayBuffer' ) ); + +addMethodChaining( 'toColor', color ); +addMethodChaining( 'toFloat', float ); +addMethodChaining( 'toInt', int ); +addMethodChaining( 'toUint', uint ); +addMethodChaining( 'toBool', bool ); +addMethodChaining( 'toVec2', vec2 ); +addMethodChaining( 'toIVec2', ivec2 ); +addMethodChaining( 'toUVec2', uvec2 ); +addMethodChaining( 'toBVec2', bvec2 ); +addMethodChaining( 'toVec3', vec3 ); +addMethodChaining( 'toIVec3', ivec3 ); +addMethodChaining( 'toUVec3', uvec3 ); +addMethodChaining( 'toBVec3', bvec3 ); +addMethodChaining( 'toVec4', vec4 ); +addMethodChaining( 'toIVec4', ivec4 ); +addMethodChaining( 'toUVec4', uvec4 ); +addMethodChaining( 'toBVec4', bvec4 ); +addMethodChaining( 'toMat2', mat2 ); +addMethodChaining( 'toMat3', mat3 ); +addMethodChaining( 'toMat4', mat4 ); + +// basic nodes + +const element = /*@__PURE__*/ nodeProxy( ArrayElementNode ).setParameterLength( 2 ); +const convert = ( node, types ) => nodeObject( new ConvertNode( nodeObject( node ), types ) ); +const split = ( node, channels ) => nodeObject( new SplitNode( nodeObject( node ), channels ) ); + +addMethodChaining( 'element', element ); +addMethodChaining( 'convert', convert ); + +// deprecated + +/** + * @tsl + * @function + * @deprecated since r176. Use {@link Stack} instead. + * + * @param {Node} node - The node to add. + * @returns {Function} + */ +const append = ( node ) => { // @deprecated, r176 + + console.warn( 'THREE.TSL: append() has been renamed to Stack().' ); + return Stack( node ); + +}; + +addMethodChaining( 'append', ( node ) => { // @deprecated, r176 + + console.warn( 'THREE.TSL: .append() has been renamed to .toStack().' ); + return Stack( node ); + +} ); + +/** + * @tsl + * @function + * @deprecated since r168. Use {@link Fn} instead. + * + * @param {...any} params + * @returns {Function} + */ +const tslFn = ( ...params ) => { // @deprecated, r168 + + console.warn( 'THREE.TSL: tslFn() has been renamed to Fn().' ); + return Fn( ...params ); + +}; + +/** + * This class represents a shader property. It can be used + * to explicitly define a property and assign a value to it. + * + * ```js + * const threshold = property( 'float', 'threshold' ).assign( THRESHOLD ); + *``` + * `PropertyNode` is used by the engine to predefined common material properties + * for TSL code. + * + * @augments Node + */ +class PropertyNode extends Node { + + static get type() { + + return 'PropertyNode'; + + } + + /** + * Constructs a new property node. + * + * @param {string} nodeType - The type of the node. + * @param {?string} [name=null] - The name of the property in the shader. + * @param {boolean} [varying=false] - Whether this property is a varying or not. + */ + constructor( nodeType, name = null, varying = false ) { + + super( nodeType ); + + /** + * The name of the property in the shader. If no name is defined, + * the node system auto-generates one. + * + * @type {?string} + * @default null + */ + this.name = name; + + /** + * Whether this property is a varying or not. + * + * @type {boolean} + * @default false + */ + this.varying = varying; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPropertyNode = true; + + /** + * This flag is used for global cache. + * + * @type {boolean} + * @default true + */ + this.global = true; + + } + + getHash( builder ) { + + return this.name || super.getHash( builder ); + + } + + generate( builder ) { + + let nodeVar; + + if ( this.varying === true ) { + + nodeVar = builder.getVaryingFromNode( this, this.name ); + nodeVar.needsInterpolation = true; + + } else { + + nodeVar = builder.getVarFromNode( this, this.name ); + + } + + return builder.getPropertyName( nodeVar ); + + } + +} + +/** + * TSL function for creating a property node. + * + * @tsl + * @function + * @param {string} type - The type of the node. + * @param {?string} [name=null] - The name of the property in the shader. + * @returns {PropertyNode} + */ +const property = ( type, name ) => nodeObject( new PropertyNode( type, name ) ); + +/** + * TSL function for creating a varying property node. + * + * @tsl + * @function + * @param {string} type - The type of the node. + * @param {?string} [name=null] - The name of the varying in the shader. + * @returns {PropertyNode} + */ +const varyingProperty = ( type, name ) => nodeObject( new PropertyNode( type, name, true ) ); + +/** + * TSL object that represents the shader variable `DiffuseColor`. + * + * @tsl + * @type {PropertyNode} + */ +const diffuseColor = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec4', 'DiffuseColor' ); + +/** + * TSL object that represents the shader variable `EmissiveColor`. + * + * @tsl + * @type {PropertyNode} + */ +const emissive = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec3', 'EmissiveColor' ); + +/** + * TSL object that represents the shader variable `Roughness`. + * + * @tsl + * @type {PropertyNode} + */ +const roughness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Roughness' ); + +/** + * TSL object that represents the shader variable `Metalness`. + * + * @tsl + * @type {PropertyNode} + */ +const metalness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Metalness' ); + +/** + * TSL object that represents the shader variable `Clearcoat`. + * + * @tsl + * @type {PropertyNode} + */ +const clearcoat = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Clearcoat' ); + +/** + * TSL object that represents the shader variable `ClearcoatRoughness`. + * + * @tsl + * @type {PropertyNode} + */ +const clearcoatRoughness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'ClearcoatRoughness' ); + +/** + * TSL object that represents the shader variable `Sheen`. + * + * @tsl + * @type {PropertyNode} + */ +const sheen = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec3', 'Sheen' ); + +/** + * TSL object that represents the shader variable `SheenRoughness`. + * + * @tsl + * @type {PropertyNode} + */ +const sheenRoughness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'SheenRoughness' ); + +/** + * TSL object that represents the shader variable `Iridescence`. + * + * @tsl + * @type {PropertyNode} + */ +const iridescence = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Iridescence' ); + +/** + * TSL object that represents the shader variable `IridescenceIOR`. + * + * @tsl + * @type {PropertyNode} + */ +const iridescenceIOR = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'IridescenceIOR' ); + +/** + * TSL object that represents the shader variable `IridescenceThickness`. + * + * @tsl + * @type {PropertyNode} + */ +const iridescenceThickness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'IridescenceThickness' ); + +/** + * TSL object that represents the shader variable `AlphaT`. + * + * @tsl + * @type {PropertyNode} + */ +const alphaT = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'AlphaT' ); + +/** + * TSL object that represents the shader variable `Anisotropy`. + * + * @tsl + * @type {PropertyNode} + */ +const anisotropy = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Anisotropy' ); + +/** + * TSL object that represents the shader variable `AnisotropyT`. + * + * @tsl + * @type {PropertyNode} + */ +const anisotropyT = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec3', 'AnisotropyT' ); + +/** + * TSL object that represents the shader variable `AnisotropyB`. + * + * @tsl + * @type {PropertyNode} + */ +const anisotropyB = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec3', 'AnisotropyB' ); + +/** + * TSL object that represents the shader variable `SpecularColor`. + * + * @tsl + * @type {PropertyNode} + */ +const specularColor = /*@__PURE__*/ nodeImmutable( PropertyNode, 'color', 'SpecularColor' ); + +/** + * TSL object that represents the shader variable `SpecularF90`. + * + * @tsl + * @type {PropertyNode} + */ +const specularF90 = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'SpecularF90' ); + +/** + * TSL object that represents the shader variable `Shininess`. + * + * @tsl + * @type {PropertyNode} + */ +const shininess = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Shininess' ); + +/** + * TSL object that represents the shader variable `Output`. + * + * @tsl + * @type {PropertyNode} + */ +const output = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec4', 'Output' ); + +/** + * TSL object that represents the shader variable `dashSize`. + * + * @tsl + * @type {PropertyNode} + */ +const dashSize = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'dashSize' ); + +/** + * TSL object that represents the shader variable `gapSize`. + * + * @tsl + * @type {PropertyNode} + */ +const gapSize = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'gapSize' ); + +/** + * TSL object that represents the shader variable `pointWidth`. + * + * @tsl + * @type {PropertyNode} + */ +const pointWidth = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'pointWidth' ); + +/** + * TSL object that represents the shader variable `IOR`. + * + * @tsl + * @type {PropertyNode} + */ +const ior = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'IOR' ); + +/** + * TSL object that represents the shader variable `Transmission`. + * + * @tsl + * @type {PropertyNode} + */ +const transmission = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Transmission' ); + +/** + * TSL object that represents the shader variable `Thickness`. + * + * @tsl + * @type {PropertyNode} + */ +const thickness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Thickness' ); + +/** + * TSL object that represents the shader variable `AttenuationDistance`. + * + * @tsl + * @type {PropertyNode} + */ +const attenuationDistance = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'AttenuationDistance' ); + +/** + * TSL object that represents the shader variable `AttenuationColor`. + * + * @tsl + * @type {PropertyNode} + */ +const attenuationColor = /*@__PURE__*/ nodeImmutable( PropertyNode, 'color', 'AttenuationColor' ); + +/** + * TSL object that represents the shader variable `Dispersion`. + * + * @tsl + * @type {PropertyNode} + */ +const dispersion = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Dispersion' ); + +/** + * This node can be used to group single instances of {@link UniformNode} + * and manage them as a uniform buffer. + * + * In most cases, the predefined nodes `objectGroup`, `renderGroup` and `frameGroup` + * will be used when defining the {@link UniformNode#groupNode} property. + * + * - `objectGroup`: Uniform buffer per object. + * - `renderGroup`: Shared uniform buffer, updated once per render call. + * - `frameGroup`: Shared uniform buffer, updated once per frame. + * + * @augments Node + */ +class UniformGroupNode extends Node { + + static get type() { + + return 'UniformGroupNode'; + + } + + /** + * Constructs a new uniform group node. + * + * @param {string} name - The name of the uniform group node. + * @param {boolean} [shared=false] - Whether this uniform group node is shared or not. + * @param {number} [order=1] - Influences the internal sorting. + */ + constructor( name, shared = false, order = 1 ) { + + super( 'string' ); + + /** + * The name of the uniform group node. + * + * @type {string} + */ + this.name = name; + + /** + * Whether this uniform group node is shared or not. + * + * @type {boolean} + * @default false + */ + this.shared = shared; + + /** + * Influences the internal sorting. + * TODO: Add details when this property should be changed. + * + * @type {number} + * @default 1 + */ + this.order = order; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isUniformGroup = true; + + } + + serialize( data ) { + + super.serialize( data ); + + data.name = this.name; + data.version = this.version; + data.shared = this.shared; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.name = data.name; + this.version = data.version; + this.shared = data.shared; + + } + +} + +/** + * TSL function for creating a uniform group node with the given name. + * + * @tsl + * @function + * @param {string} name - The name of the uniform group node. + * @returns {UniformGroupNode} + */ +const uniformGroup = ( name ) => new UniformGroupNode( name ); + +/** + * TSL function for creating a shared uniform group node with the given name and order. + * + * @tsl + * @function + * @param {string} name - The name of the uniform group node. + * @param {number} [order=0] - Influences the internal sorting. + * @returns {UniformGroupNode} + */ +const sharedUniformGroup = ( name, order = 0 ) => new UniformGroupNode( name, true, order ); + +/** + * TSL object that represents a shared uniform group node which is updated once per frame. + * + * @tsl + * @type {UniformGroupNode} + */ +const frameGroup = /*@__PURE__*/ sharedUniformGroup( 'frame' ); + +/** + * TSL object that represents a shared uniform group node which is updated once per render. + * + * @tsl + * @type {UniformGroupNode} + */ +const renderGroup = /*@__PURE__*/ sharedUniformGroup( 'render' ); + +/** + * TSL object that represents a uniform group node which is updated once per object. + * + * @tsl + * @type {UniformGroupNode} + */ +const objectGroup = /*@__PURE__*/ uniformGroup( 'object' ); + +/** + * Class for representing a uniform. + * + * @augments InputNode + */ +class UniformNode extends InputNode { + + static get type() { + + return 'UniformNode'; + + } + + /** + * Constructs a new uniform node. + * + * @param {any} value - The value of this node. Usually a JS primitive or three.js object (vector, matrix, color, texture). + * @param {?string} nodeType - The node type. If no explicit type is defined, the node tries to derive the type from its value. + */ + constructor( value, nodeType = null ) { + + super( value, nodeType ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isUniformNode = true; + + /** + * The name or label of the uniform. + * + * @type {string} + * @default '' + */ + this.name = ''; + + /** + * The uniform group of this uniform. By default, uniforms are + * managed per object but they might belong to a shared group + * which is updated per frame or render call. + * + * @type {UniformGroupNode} + */ + this.groupNode = objectGroup; + + } + + /** + * Sets the {@link UniformNode#name} property. + * + * @param {string} name - The name of the uniform. + * @return {UniformNode} A reference to this node. + */ + label( name ) { + + this.name = name; + + return this; + + } + + /** + * Sets the {@link UniformNode#groupNode} property. + * + * @param {UniformGroupNode} group - The uniform group. + * @return {UniformNode} A reference to this node. + */ + setGroup( group ) { + + this.groupNode = group; + + return this; + + } + + /** + * Returns the {@link UniformNode#groupNode}. + * + * @return {UniformGroupNode} The uniform group. + */ + getGroup() { + + return this.groupNode; + + } + + /** + * By default, this method returns the result of {@link Node#getHash} but derived + * classes might overwrite this method with a different implementation. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The uniform hash. + */ + getUniformHash( builder ) { + + return this.getHash( builder ); + + } + + onUpdate( callback, updateType ) { + + const self = this.getSelf(); + + callback = callback.bind( self ); + + return super.onUpdate( ( frame ) => { + + const value = callback( frame, self ); + + if ( value !== undefined ) { + + this.value = value; + + } + + }, updateType ); + + } + + generate( builder, output ) { + + const type = this.getNodeType( builder ); + + const hash = this.getUniformHash( builder ); + + let sharedNode = builder.getNodeFromHash( hash ); + + if ( sharedNode === undefined ) { + + builder.setHashNode( this, hash ); + + sharedNode = this; + + } + + const sharedNodeType = sharedNode.getInputType( builder ); + + const nodeUniform = builder.getUniformFromNode( sharedNode, sharedNodeType, builder.shaderStage, this.name || builder.context.label ); + const propertyName = builder.getPropertyName( nodeUniform ); + + if ( builder.context.label !== undefined ) delete builder.context.label; + + return builder.format( propertyName, type, output ); + + } + +} + +/** + * TSL function for creating a uniform node. + * + * @tsl + * @function + * @param {any} arg1 - The value of this node. Usually a JS primitive or three.js object (vector, matrix, color, texture). + * @param {string} [arg2] - The node type. If no explicit type is defined, the node tries to derive the type from its value. + * @returns {UniformNode} + */ +const uniform = ( arg1, arg2 ) => { + + const nodeType = getConstNodeType( arg2 || arg1 ); + + // @TODO: get ConstNode from .traverse() in the future + const value = ( arg1 && arg1.isNode === true ) ? ( arg1.node && arg1.node.value ) || arg1.value : arg1; + + return nodeObject( new UniformNode( value, nodeType ) ); + +}; + +/** + * ArrayNode represents a collection of nodes, typically created using the {@link array} function. + * ```js + * const colors = array( [ + * vec3( 1, 0, 0 ), + * vec3( 0, 1, 0 ), + * vec3( 0, 0, 1 ) + * ] ); + * + * const redColor = tintColors.element( 0 ); + * + * @augments TempNode + */ +class ArrayNode extends TempNode { + + static get type() { + + return 'ArrayNode'; + + } + + /** + * Constructs a new array node. + * + * @param {?string} nodeType - The data type of the elements. + * @param {number} count - Size of the array. + * @param {?Array} [values=null] - Array default values. + */ + constructor( nodeType, count, values = null ) { + + super( nodeType ); + + /** + * Array size. + * + * @type {number} + */ + this.count = count; + + /** + * Array default values. + * + * @type {?Array} + */ + this.values = values; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isArrayNode = true; + + } + + /** + * Returns the node's type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The type of the node. + */ + getNodeType( builder ) { + + if ( this.nodeType === null ) { + + this.nodeType = this.values[ 0 ].getNodeType( builder ); + + } + + return this.nodeType; + + } + + /** + * Returns the node's type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The type of the node. + */ + getElementType( builder ) { + + return this.getNodeType( builder ); + + } + + /** + * This method builds the output node and returns the resulting array as a shader string. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The generated shader string. + */ + generate( builder ) { + + const type = this.getNodeType( builder ); + + return builder.generateArray( type, this.count, this.values ); + + } + +} + +/** + * TSL function for creating an array node. + * + * @tsl + * @function + * @param {string|Array} nodeTypeOrValues - A string representing the element type (e.g., 'vec3') + * or an array containing the default values (e.g., [ vec3() ]). + * @param {?number} [count] - Size of the array. + * @returns {ArrayNode} + */ +const array = ( ...params ) => { + + let node; + + if ( params.length === 1 ) { + + const values = params[ 0 ]; + + node = new ArrayNode( null, values.length, values ); + + } else { + + const nodeType = params[ 0 ]; + const count = params[ 1 ]; + + node = new ArrayNode( nodeType, count ); + + } + + return nodeObject( node ); + +}; + +addMethodChaining( 'toArray', ( node, count ) => array( Array( count ).fill( node ) ) ); + +/** + * These node represents an assign operation. Meaning a node is assigned + * to another node. + * + * @augments TempNode + */ +class AssignNode extends TempNode { + + static get type() { + + return 'AssignNode'; + + } + + /** + * Constructs a new assign node. + * + * @param {Node} targetNode - The target node. + * @param {Node} sourceNode - The source type. + */ + constructor( targetNode, sourceNode ) { + + super(); + + /** + * The target node. + * + * @type {Node} + */ + this.targetNode = targetNode; + + /** + * The source node. + * + * @type {Node} + */ + this.sourceNode = sourceNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isAssignNode = true; + + } + + /** + * Whether this node is used more than once in context of other nodes. This method + * is overwritten since it always returns `false` (assigns are unique). + * + * @return {boolean} A flag that indicates if there is more than one dependency to other nodes. Always `false`. + */ + hasDependencies() { + + return false; + + } + + getNodeType( builder, output ) { + + return output !== 'void' ? this.targetNode.getNodeType( builder ) : 'void'; + + } + + /** + * Whether a split is required when assigning source to target. This can happen when the component length of + * target and source data type does not match. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {boolean} Whether a split is required when assigning source to target. + */ + needsSplitAssign( builder ) { + + const { targetNode } = this; + + if ( builder.isAvailable( 'swizzleAssign' ) === false && targetNode.isSplitNode && targetNode.components.length > 1 ) { + + const targetLength = builder.getTypeLength( targetNode.node.getNodeType( builder ) ); + const assignDifferentVector = vectorComponents.join( '' ).slice( 0, targetLength ) !== targetNode.components; + + return assignDifferentVector; + + } + + return false; + + } + + setup( builder ) { + + const { targetNode, sourceNode } = this; + + const properties = builder.getNodeProperties( this ); + properties.sourceNode = sourceNode; + properties.targetNode = targetNode.context( { assign: true } ); + + } + + generate( builder, output ) { + + const { targetNode, sourceNode } = builder.getNodeProperties( this ); + + const needsSplitAssign = this.needsSplitAssign( builder ); + + const targetType = targetNode.getNodeType( builder ); + + const target = targetNode.build( builder ); + const source = sourceNode.build( builder, targetType ); + + const sourceType = sourceNode.getNodeType( builder ); + + const nodeData = builder.getDataFromNode( this ); + + // + + let snippet; + + if ( nodeData.initialized === true ) { + + if ( output !== 'void' ) { + + snippet = target; + + } + + } else if ( needsSplitAssign ) { + + const sourceVar = builder.getVarFromNode( this, null, targetType ); + const sourceProperty = builder.getPropertyName( sourceVar ); + + builder.addLineFlowCode( `${ sourceProperty } = ${ source }`, this ); + + const splitNode = targetNode.node; + const splitTargetNode = splitNode.node.context( { assign: true } ); + + const targetRoot = splitTargetNode.build( builder ); + + for ( let i = 0; i < splitNode.components.length; i ++ ) { + + const component = splitNode.components[ i ]; + + builder.addLineFlowCode( `${ targetRoot }.${ component } = ${ sourceProperty }[ ${ i } ]`, this ); + + } + + if ( output !== 'void' ) { + + snippet = target; + + } + + } else { + + snippet = `${ target } = ${ source }`; + + if ( output === 'void' || sourceType === 'void' ) { + + builder.addLineFlowCode( snippet, this ); + + if ( output !== 'void' ) { + + snippet = target; + + } + + } + + } + + nodeData.initialized = true; + + return builder.format( snippet, targetType, output ); + + } + +} + +/** + * TSL function for creating an assign node. + * + * @tsl + * @function + * @param {Node} targetNode - The target node. + * @param {Node} sourceNode - The source type. + * @returns {AssignNode} + */ +const assign = /*@__PURE__*/ nodeProxy( AssignNode ).setParameterLength( 2 ); + +addMethodChaining( 'assign', assign ); + +/** + * This module represents the call of a {@link FunctionNode}. Developers are usually not confronted + * with this module since they use the predefined TSL syntax `wgslFn` and `glslFn` which encapsulate + * this logic. + * + * @augments TempNode + */ +class FunctionCallNode extends TempNode { + + static get type() { + + return 'FunctionCallNode'; + + } + + /** + * Constructs a new function call node. + * + * @param {?FunctionNode} functionNode - The function node. + * @param {Object} [parameters={}] - The parameters for the function call. + */ + constructor( functionNode = null, parameters = {} ) { + + super(); + + /** + * The function node. + * + * @type {?FunctionNode} + * @default null + */ + this.functionNode = functionNode; + + /** + * The parameters of the function call. + * + * @type {Object} + * @default {} + */ + this.parameters = parameters; + + } + + /** + * Sets the parameters of the function call node. + * + * @param {Object} parameters - The parameters to set. + * @return {FunctionCallNode} A reference to this node. + */ + setParameters( parameters ) { + + this.parameters = parameters; + + return this; + + } + + /** + * Returns the parameters of the function call node. + * + * @return {Object} The parameters of this node. + */ + getParameters() { + + return this.parameters; + + } + + getNodeType( builder ) { + + return this.functionNode.getNodeType( builder ); + + } + + generate( builder ) { + + const params = []; + + const functionNode = this.functionNode; + + const inputs = functionNode.getInputs( builder ); + const parameters = this.parameters; + + const generateInput = ( node, inputNode ) => { + + const type = inputNode.type; + const pointer = type === 'pointer'; + + let output; + + if ( pointer ) output = '&' + node.build( builder ); + else output = node.build( builder, type ); + + return output; + + }; + + if ( Array.isArray( parameters ) ) { + + if ( parameters.length > inputs.length ) { + + console.error( 'THREE.TSL: The number of provided parameters exceeds the expected number of inputs in \'Fn()\'.' ); + + parameters.length = inputs.length; + + } else if ( parameters.length < inputs.length ) { + + console.error( 'THREE.TSL: The number of provided parameters is less than the expected number of inputs in \'Fn()\'.' ); + + while ( parameters.length < inputs.length ) { + + parameters.push( float( 0 ) ); + + } + + } + + for ( let i = 0; i < parameters.length; i ++ ) { + + params.push( generateInput( parameters[ i ], inputs[ i ] ) ); + + } + + } else { + + for ( const inputNode of inputs ) { + + const node = parameters[ inputNode.name ]; + + if ( node !== undefined ) { + + params.push( generateInput( node, inputNode ) ); + + } else { + + console.error( `THREE.TSL: Input '${ inputNode.name }' not found in \'Fn()\'.` ); + + params.push( generateInput( float( 0 ), inputNode ) ); + + } + + } + + } + + const functionName = functionNode.build( builder, 'property' ); + + return `${ functionName }( ${ params.join( ', ' ) } )`; + + } + +} + +const call = ( func, ...params ) => { + + params = params.length > 1 || ( params[ 0 ] && params[ 0 ].isNode === true ) ? nodeArray( params ) : nodeObjects( params[ 0 ] ); + + return nodeObject( new FunctionCallNode( nodeObject( func ), params ) ); + +}; + +addMethodChaining( 'call', call ); + +const _vectorOperators = { + '==': 'equal', + '!=': 'notEqual', + '<': 'lessThan', + '>': 'greaterThan', + '<=': 'lessThanEqual', + '>=': 'greaterThanEqual', + '%': 'mod' +}; + +/** + * This node represents basic mathematical and logical operations like addition, + * subtraction or comparisons (e.g. `equal()`). + * + * @augments TempNode + */ +class OperatorNode extends TempNode { + + static get type() { + + return 'OperatorNode'; + + } + + /** + * Constructs a new operator node. + * + * @param {string} op - The operator. + * @param {Node} aNode - The first input. + * @param {Node} bNode - The second input. + * @param {...Node} params - Additional input parameters. + */ + constructor( op, aNode, bNode, ...params ) { + + super(); + + if ( params.length > 0 ) { + + let finalOp = new OperatorNode( op, aNode, bNode ); + + for ( let i = 0; i < params.length - 1; i ++ ) { + + finalOp = new OperatorNode( op, finalOp, params[ i ] ); + + } + + aNode = finalOp; + bNode = params[ params.length - 1 ]; + + } + + /** + * The operator. + * + * @type {string} + */ + this.op = op; + + /** + * The first input. + * + * @type {Node} + */ + this.aNode = aNode; + + /** + * The second input. + * + * @type {Node} + */ + this.bNode = bNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isOperatorNode = true; + + } + + /** + * Returns the operator method name. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} output - The output type. + * @returns {string} The operator method name. + */ + getOperatorMethod( builder, output ) { + + return builder.getMethod( _vectorOperators[ this.op ], output ); + + } + + /** + * This method is overwritten since the node type is inferred from the operator + * and the input node types. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + const op = this.op; + + const aNode = this.aNode; + const bNode = this.bNode; + + const typeA = aNode.getNodeType( builder ); + const typeB = bNode ? bNode.getNodeType( builder ) : null; + + if ( typeA === 'void' || typeB === 'void' ) { + + return 'void'; + + } else if ( op === '%' ) { + + return typeA; + + } else if ( op === '~' || op === '&' || op === '|' || op === '^' || op === '>>' || op === '<<' ) { + + return builder.getIntegerType( typeA ); + + } else if ( op === '!' || op === '&&' || op === '||' || op === '^^' ) { + + return 'bool'; + + } else if ( op === '==' || op === '!=' || op === '<' || op === '>' || op === '<=' || op === '>=' ) { + + const typeLength = Math.max( builder.getTypeLength( typeA ), builder.getTypeLength( typeB ) ); + + return typeLength > 1 ? `bvec${ typeLength }` : 'bool'; + + } else { + + // Handle matrix operations + + if ( builder.isMatrix( typeA ) ) { + + if ( typeB === 'float' ) { + + return typeA; // matrix * scalar = matrix + + } else if ( builder.isVector( typeB ) ) { + + return builder.getVectorFromMatrix( typeA ); // matrix * vector + + } else if ( builder.isMatrix( typeB ) ) { + + return typeA; // matrix * matrix + + } + + } else if ( builder.isMatrix( typeB ) ) { + + if ( typeA === 'float' ) { + + return typeB; // scalar * matrix = matrix + + } else if ( builder.isVector( typeA ) ) { + + return builder.getVectorFromMatrix( typeB ); // vector * matrix + + } + + } + + // Handle non-matrix cases + + if ( builder.getTypeLength( typeB ) > builder.getTypeLength( typeA ) ) { + + // anytype x anytype: use the greater length vector + + return typeB; + + } + + return typeA; + + } + + } + + generate( builder, output ) { + + const op = this.op; + + const { aNode, bNode } = this; + + const type = this.getNodeType( builder ); + + let typeA = null; + let typeB = null; + + if ( type !== 'void' ) { + + typeA = aNode.getNodeType( builder ); + typeB = bNode ? bNode.getNodeType( builder ) : null; + + if ( op === '<' || op === '>' || op === '<=' || op === '>=' || op === '==' || op === '!=' ) { + + if ( builder.isVector( typeA ) ) { + + typeB = typeA; + + } else if ( builder.isVector( typeB ) ) { + + typeA = typeB; + + } else if ( typeA !== typeB ) { + + typeA = typeB = 'float'; + + } + + } else if ( op === '>>' || op === '<<' ) { + + typeA = type; + typeB = builder.changeComponentType( typeB, 'uint' ); + + } else if ( op === '%' ) { + + typeA = type; + typeB = builder.isInteger( typeA ) && builder.isInteger( typeB ) ? typeB : typeA; + + } else if ( builder.isMatrix( typeA ) ) { + + if ( typeB === 'float' ) { + + // Keep matrix type for typeA, but ensure typeB stays float + + typeB = 'float'; + + } else if ( builder.isVector( typeB ) ) { + + // matrix x vector + typeB = builder.getVectorFromMatrix( typeA ); + + } else if ( builder.isMatrix( typeB ) ) ; else { + + typeA = typeB = type; + + } + + } else if ( builder.isMatrix( typeB ) ) { + + if ( typeA === 'float' ) { + + // Keep matrix type for typeB, but ensure typeA stays float + + typeA = 'float'; + + } else if ( builder.isVector( typeA ) ) { + + // vector x matrix + + typeA = builder.getVectorFromMatrix( typeB ); + + } else { + + typeA = typeB = type; + + } + + } else { + + // anytype x anytype + + typeA = typeB = type; + + } + + } else { + + typeA = typeB = type; + + } + + const a = aNode.build( builder, typeA ); + const b = bNode ? bNode.build( builder, typeB ) : null; + + const fnOpSnippet = builder.getFunctionOperator( op ); + + if ( output !== 'void' ) { + + const isGLSL = builder.renderer.coordinateSystem === WebGLCoordinateSystem; + + if ( op === '==' || op === '!=' || op === '<' || op === '>' || op === '<=' || op === '>=' ) { + + if ( isGLSL ) { + + if ( builder.isVector( typeA ) ) { + + return builder.format( `${ this.getOperatorMethod( builder, output ) }( ${ a }, ${ b } )`, type, output ); + + } else { + + return builder.format( `( ${ a } ${ op } ${ b } )`, type, output ); + + } + + } else { + + // WGSL + + return builder.format( `( ${ a } ${ op } ${ b } )`, type, output ); + + } + + } else if ( op === '%' ) { + + if ( builder.isInteger( typeB ) ) { + + return builder.format( `( ${ a } % ${ b } )`, type, output ); + + } else { + + return builder.format( `${ this.getOperatorMethod( builder, type ) }( ${ a }, ${ b } )`, type, output ); + + } + + } else if ( op === '!' || op === '~' ) { + + return builder.format( `(${op}${a})`, typeA, output ); + + } else if ( fnOpSnippet ) { + + return builder.format( `${ fnOpSnippet }( ${ a }, ${ b } )`, type, output ); + + } else { + + // Handle matrix operations + + if ( builder.isMatrix( typeA ) && typeB === 'float' ) { + + return builder.format( `( ${ b } ${ op } ${ a } )`, type, output ); + + } else if ( typeA === 'float' && builder.isMatrix( typeB ) ) { + + return builder.format( `${ a } ${ op } ${ b }`, type, output ); + + } else { + + let snippet = `( ${ a } ${ op } ${ b } )`; + + if ( ! isGLSL && type === 'bool' && builder.isVector( typeA ) && builder.isVector( typeB ) ) { + + snippet = `all${ snippet }`; + + } + + return builder.format( snippet, type, output ); + + } + + } + + } else if ( typeA !== 'void' ) { + + if ( fnOpSnippet ) { + + return builder.format( `${ fnOpSnippet }( ${ a }, ${ b } )`, type, output ); + + } else { + + if ( builder.isMatrix( typeA ) && typeB === 'float' ) { + + return builder.format( `${ b } ${ op } ${ a }`, type, output ); + + } else { + + return builder.format( `${ a } ${ op } ${ b }`, type, output ); + + } + + } + + } + + } + + serialize( data ) { + + super.serialize( data ); + + data.op = this.op; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.op = data.op; + + } + +} + +/** + * Returns the addition of two or more value. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @param {...Node} params - Additional input parameters. + * @returns {OperatorNode} + */ +const add = /*@__PURE__*/ nodeProxy( OperatorNode, '+' ).setParameterLength( 2, Infinity ).setName( 'add' ); + +/** + * Returns the subtraction of two or more value. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @param {...Node} params - Additional input parameters. + * @returns {OperatorNode} + */ +const sub = /*@__PURE__*/ nodeProxy( OperatorNode, '-' ).setParameterLength( 2, Infinity ).setName( 'sub' ); + +/** + * Returns the multiplication of two or more value. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @param {...Node} params - Additional input parameters. + * @returns {OperatorNode} + */ +const mul = /*@__PURE__*/ nodeProxy( OperatorNode, '*' ).setParameterLength( 2, Infinity ).setName( 'mul' ); + +/** + * Returns the division of two or more value. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @param {...Node} params - Additional input parameters. + * @returns {OperatorNode} + */ +const div = /*@__PURE__*/ nodeProxy( OperatorNode, '/' ).setParameterLength( 2, Infinity ).setName( 'div' ); + +/** + * Computes the remainder of dividing the first node by the second one. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const mod = /*@__PURE__*/ nodeProxy( OperatorNode, '%' ).setParameterLength( 2 ).setName( 'mod' ); + +/** + * Checks if two nodes are equal. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const equal = /*@__PURE__*/ nodeProxy( OperatorNode, '==' ).setParameterLength( 2 ).setName( 'equal' ); + +/** + * Checks if two nodes are not equal. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const notEqual = /*@__PURE__*/ nodeProxy( OperatorNode, '!=' ).setParameterLength( 2 ).setName( 'notEqual' ); + +/** + * Checks if the first node is less than the second. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const lessThan = /*@__PURE__*/ nodeProxy( OperatorNode, '<' ).setParameterLength( 2 ).setName( 'lessThan' ); + +/** + * Checks if the first node is greater than the second. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const greaterThan = /*@__PURE__*/ nodeProxy( OperatorNode, '>' ).setParameterLength( 2 ).setName( 'greaterThan' ); + +/** + * Checks if the first node is less than or equal to the second. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const lessThanEqual = /*@__PURE__*/ nodeProxy( OperatorNode, '<=' ).setParameterLength( 2 ).setName( 'lessThanEqual' ); + +/** + * Checks if the first node is greater than or equal to the second. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const greaterThanEqual = /*@__PURE__*/ nodeProxy( OperatorNode, '>=' ).setParameterLength( 2 ).setName( 'greaterThanEqual' ); + +/** + * Performs a logical AND operation on multiple nodes. + * + * @tsl + * @function + * @param {...Node} nodes - The input nodes to be combined using AND. + * @returns {OperatorNode} + */ +const and = /*@__PURE__*/ nodeProxy( OperatorNode, '&&' ).setParameterLength( 2, Infinity ).setName( 'and' ); + +/** + * Performs a logical OR operation on multiple nodes. + * + * @tsl + * @function + * @param {...Node} nodes - The input nodes to be combined using OR. + * @returns {OperatorNode} + */ +const or = /*@__PURE__*/ nodeProxy( OperatorNode, '||' ).setParameterLength( 2, Infinity ).setName( 'or' ); + +/** + * Performs logical NOT on a node. + * + * @tsl + * @function + * @param {Node} value - The value. + * @returns {OperatorNode} + */ +const not = /*@__PURE__*/ nodeProxy( OperatorNode, '!' ).setParameterLength( 1 ).setName( 'not' ); + +/** + * Performs logical XOR on two nodes. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const xor = /*@__PURE__*/ nodeProxy( OperatorNode, '^^' ).setParameterLength( 2 ).setName( 'xor' ); + +/** + * Performs bitwise AND on two nodes. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const bitAnd = /*@__PURE__*/ nodeProxy( OperatorNode, '&' ).setParameterLength( 2 ).setName( 'bitAnd' ); + +/** + * Performs bitwise NOT on a node. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const bitNot = /*@__PURE__*/ nodeProxy( OperatorNode, '~' ).setParameterLength( 2 ).setName( 'bitNot' ); + +/** + * Performs bitwise OR on two nodes. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const bitOr = /*@__PURE__*/ nodeProxy( OperatorNode, '|' ).setParameterLength( 2 ).setName( 'bitOr' ); + +/** + * Performs bitwise XOR on two nodes. + * + * @tsl + * @function + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const bitXor = /*@__PURE__*/ nodeProxy( OperatorNode, '^' ).setParameterLength( 2 ).setName( 'bitXor' ); + +/** + * Shifts a node to the left. + * + * @tsl + * @function + * @param {Node} a - The node to shift. + * @param {Node} b - The value to shift. + * @returns {OperatorNode} + */ +const shiftLeft = /*@__PURE__*/ nodeProxy( OperatorNode, '<<' ).setParameterLength( 2 ).setName( 'shiftLeft' ); + +/** + * Shifts a node to the right. + * + * @tsl + * @function + * @param {Node} a - The node to shift. + * @param {Node} b - The value to shift. + * @returns {OperatorNode} + */ +const shiftRight = /*@__PURE__*/ nodeProxy( OperatorNode, '>>' ).setParameterLength( 2 ).setName( 'shiftRight' ); + +/** + * Increments a node by 1. + * + * @tsl + * @function + * @param {Node} a - The node to increment. + * @returns {OperatorNode} + */ +const incrementBefore = Fn( ( [ a ] ) => { + + a.addAssign( 1 ); + return a; + +} ); + +/** + * Decrements a node by 1. + * + * @tsl + * @function + * @param {Node} a - The node to decrement. + * @returns {OperatorNode} + */ +const decrementBefore = Fn( ( [ a ] ) => { + + a.subAssign( 1 ); + return a; + +} ); + +/** + * Increments a node by 1 and returns the previous value. + * + * @tsl + * @function + * @param {Node} a - The node to increment. + * @returns {OperatorNode} + */ +const increment = /*@__PURE__*/ Fn( ( [ a ] ) => { + + const temp = int( a ).toConst(); + a.addAssign( 1 ); + return temp; + +} ); + +/** + * Decrements a node by 1 and returns the previous value. + * + * @tsl + * @function + * @param {Node} a - The node to decrement. + * @returns {OperatorNode} + */ +const decrement = /*@__PURE__*/ Fn( ( [ a ] ) => { + + const temp = int( a ).toConst(); + a.subAssign( 1 ); + return temp; + +} ); + +addMethodChaining( 'add', add ); +addMethodChaining( 'sub', sub ); +addMethodChaining( 'mul', mul ); +addMethodChaining( 'div', div ); +addMethodChaining( 'mod', mod ); +addMethodChaining( 'equal', equal ); +addMethodChaining( 'notEqual', notEqual ); +addMethodChaining( 'lessThan', lessThan ); +addMethodChaining( 'greaterThan', greaterThan ); +addMethodChaining( 'lessThanEqual', lessThanEqual ); +addMethodChaining( 'greaterThanEqual', greaterThanEqual ); +addMethodChaining( 'and', and ); +addMethodChaining( 'or', or ); +addMethodChaining( 'not', not ); +addMethodChaining( 'xor', xor ); +addMethodChaining( 'bitAnd', bitAnd ); +addMethodChaining( 'bitNot', bitNot ); +addMethodChaining( 'bitOr', bitOr ); +addMethodChaining( 'bitXor', bitXor ); +addMethodChaining( 'shiftLeft', shiftLeft ); +addMethodChaining( 'shiftRight', shiftRight ); + +addMethodChaining( 'incrementBefore', incrementBefore ); +addMethodChaining( 'decrementBefore', decrementBefore ); +addMethodChaining( 'increment', increment ); +addMethodChaining( 'decrement', decrement ); + +/** + * @tsl + * @function + * @deprecated since r168. Use {@link mod} instead. + * + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const remainder = ( a, b ) => { // @deprecated, r168 + + console.warn( 'THREE.TSL: "remainder()" is deprecated. Use "mod( int( ... ) )" instead.' ); + return mod( a, b ); + +}; + +/** + * @tsl + * @function + * @deprecated since r175. Use {@link mod} instead. + * + * @param {Node} a - The first input. + * @param {Node} b - The second input. + * @returns {OperatorNode} + */ +const modInt = ( a, b ) => { // @deprecated, r175 + + console.warn( 'THREE.TSL: "modInt()" is deprecated. Use "mod( int( ... ) )" instead.' ); + return mod( int( a ), int( b ) ); + +}; + +addMethodChaining( 'remainder', remainder ); +addMethodChaining( 'modInt', modInt ); + +/** + * This node represents a variety of mathematical methods available in shaders. + * They are divided into three categories: + * + * - Methods with one input like `sin`, `cos` or `normalize`. + * - Methods with two inputs like `dot`, `cross` or `pow`. + * - Methods with three inputs like `mix`, `clamp` or `smoothstep`. + * + * @augments TempNode + */ +class MathNode extends TempNode { + + static get type() { + + return 'MathNode'; + + } + + /** + * Constructs a new math node. + * + * @param {string} method - The method name. + * @param {Node} aNode - The first input. + * @param {?Node} [bNode=null] - The second input. + * @param {?Node} [cNode=null] - The third input. + */ + constructor( method, aNode, bNode = null, cNode = null ) { + + super(); + + // Allow the max() and min() functions to take an arbitrary number of arguments. + + if ( ( method === MathNode.MAX || method === MathNode.MIN ) && arguments.length > 3 ) { + + let finalOp = new MathNode( method, aNode, bNode ); + + for ( let i = 2; i < arguments.length - 1; i ++ ) { + + finalOp = new MathNode( method, finalOp, arguments[ i ] ); + + } + + aNode = finalOp; + bNode = arguments[ arguments.length - 1 ]; + cNode = null; + + } + + /** + * The method name. + * + * @type {string} + */ + this.method = method; + + /** + * The first input. + * + * @type {Node} + */ + this.aNode = aNode; + + /** + * The second input. + * + * @type {?Node} + * @default null + */ + this.bNode = bNode; + + /** + * The third input. + * + * @type {?Node} + * @default null + */ + this.cNode = cNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMathNode = true; + + } + + /** + * The input type is inferred from the node types of the input nodes. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( builder ) { + + const aType = this.aNode.getNodeType( builder ); + const bType = this.bNode ? this.bNode.getNodeType( builder ) : null; + const cType = this.cNode ? this.cNode.getNodeType( builder ) : null; + + const aLen = builder.isMatrix( aType ) ? 0 : builder.getTypeLength( aType ); + const bLen = builder.isMatrix( bType ) ? 0 : builder.getTypeLength( bType ); + const cLen = builder.isMatrix( cType ) ? 0 : builder.getTypeLength( cType ); + + if ( aLen > bLen && aLen > cLen ) { + + return aType; + + } else if ( bLen > cLen ) { + + return bType; + + } else if ( cLen > aLen ) { + + return cType; + + } + + return aType; + + } + + /** + * The selected method as well as the input type determine the node type of this node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + const method = this.method; + + if ( method === MathNode.LENGTH || method === MathNode.DISTANCE || method === MathNode.DOT ) { + + return 'float'; + + } else if ( method === MathNode.CROSS ) { + + return 'vec3'; + + } else if ( method === MathNode.ALL || method === MathNode.ANY ) { + + return 'bool'; + + } else if ( method === MathNode.EQUALS ) { + + return builder.changeComponentType( this.aNode.getNodeType( builder ), 'bool' ); + + } else { + + return this.getInputType( builder ); + + } + + } + + setup( builder ) { + + const { aNode, bNode, method } = this; + + let outputNode = null; + + if ( method === MathNode.ONE_MINUS ) { + + outputNode = sub( 1.0, aNode ); + + } else if ( method === MathNode.RECIPROCAL ) { + + outputNode = div( 1.0, aNode ); + + } else if ( method === MathNode.DIFFERENCE ) { + + outputNode = abs( sub( aNode, bNode ) ); + + } else if ( method === MathNode.TRANSFORM_DIRECTION ) { + + // dir can be either a direction vector or a normal vector + // upper-left 3x3 of matrix is assumed to be orthogonal + + let tA = aNode; + let tB = bNode; + + if ( builder.isMatrix( tA.getNodeType( builder ) ) ) { + + tB = vec4( vec3( tB ), 0.0 ); + + } else { + + tA = vec4( vec3( tA ), 0.0 ); + + } + + const mulNode = mul( tA, tB ).xyz; + + outputNode = normalize( mulNode ); + + } + + if ( outputNode !== null ) { + + return outputNode; + + } else { + + return super.setup( builder ); + + } + + } + + generate( builder, output ) { + + const properties = builder.getNodeProperties( this ); + + if ( properties.outputNode ) { + + return super.generate( builder, output ); + + } + + let method = this.method; + + const type = this.getNodeType( builder ); + const inputType = this.getInputType( builder ); + + const a = this.aNode; + const b = this.bNode; + const c = this.cNode; + + const coordinateSystem = builder.renderer.coordinateSystem; + + if ( method === MathNode.NEGATE ) { + + return builder.format( '( - ' + a.build( builder, inputType ) + ' )', type, output ); + + } else { + + const params = []; + + if ( method === MathNode.CROSS ) { + + params.push( + a.build( builder, type ), + b.build( builder, type ) + ); + + } else if ( coordinateSystem === WebGLCoordinateSystem && method === MathNode.STEP ) { + + params.push( + a.build( builder, builder.getTypeLength( a.getNodeType( builder ) ) === 1 ? 'float' : inputType ), + b.build( builder, inputType ) + ); + + } else if ( coordinateSystem === WebGLCoordinateSystem && ( method === MathNode.MIN || method === MathNode.MAX ) ) { + + params.push( + a.build( builder, inputType ), + b.build( builder, builder.getTypeLength( b.getNodeType( builder ) ) === 1 ? 'float' : inputType ) + ); + + } else if ( method === MathNode.REFRACT ) { + + params.push( + a.build( builder, inputType ), + b.build( builder, inputType ), + c.build( builder, 'float' ) + ); + + } else if ( method === MathNode.MIX ) { + + params.push( + a.build( builder, inputType ), + b.build( builder, inputType ), + c.build( builder, builder.getTypeLength( c.getNodeType( builder ) ) === 1 ? 'float' : inputType ) + ); + + } else { + + if ( coordinateSystem === WebGPUCoordinateSystem && method === MathNode.ATAN && b !== null ) { + + method = 'atan2'; + + } + + if ( builder.shaderStage !== 'fragment' && ( method === MathNode.DFDX || method === MathNode.DFDY ) ) { + + console.warn( `THREE.TSL: '${ method }' is not supported in the ${ builder.shaderStage } stage.` ); + + method = '/*' + method + '*/'; + + } + + params.push( a.build( builder, inputType ) ); + if ( b !== null ) params.push( b.build( builder, inputType ) ); + if ( c !== null ) params.push( c.build( builder, inputType ) ); + + } + + return builder.format( `${ builder.getMethod( method, type ) }( ${params.join( ', ' )} )`, type, output ); + + } + + } + + serialize( data ) { + + super.serialize( data ); + + data.method = this.method; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.method = data.method; + + } + +} + +// 1 input + +MathNode.ALL = 'all'; +MathNode.ANY = 'any'; + +MathNode.RADIANS = 'radians'; +MathNode.DEGREES = 'degrees'; +MathNode.EXP = 'exp'; +MathNode.EXP2 = 'exp2'; +MathNode.LOG = 'log'; +MathNode.LOG2 = 'log2'; +MathNode.SQRT = 'sqrt'; +MathNode.INVERSE_SQRT = 'inversesqrt'; +MathNode.FLOOR = 'floor'; +MathNode.CEIL = 'ceil'; +MathNode.NORMALIZE = 'normalize'; +MathNode.FRACT = 'fract'; +MathNode.SIN = 'sin'; +MathNode.COS = 'cos'; +MathNode.TAN = 'tan'; +MathNode.ASIN = 'asin'; +MathNode.ACOS = 'acos'; +MathNode.ATAN = 'atan'; +MathNode.ABS = 'abs'; +MathNode.SIGN = 'sign'; +MathNode.LENGTH = 'length'; +MathNode.NEGATE = 'negate'; +MathNode.ONE_MINUS = 'oneMinus'; +MathNode.DFDX = 'dFdx'; +MathNode.DFDY = 'dFdy'; +MathNode.ROUND = 'round'; +MathNode.RECIPROCAL = 'reciprocal'; +MathNode.TRUNC = 'trunc'; +MathNode.FWIDTH = 'fwidth'; +MathNode.TRANSPOSE = 'transpose'; + +// 2 inputs + +MathNode.BITCAST = 'bitcast'; +MathNode.EQUALS = 'equals'; +MathNode.MIN = 'min'; +MathNode.MAX = 'max'; +MathNode.STEP = 'step'; +MathNode.REFLECT = 'reflect'; +MathNode.DISTANCE = 'distance'; +MathNode.DIFFERENCE = 'difference'; +MathNode.DOT = 'dot'; +MathNode.CROSS = 'cross'; +MathNode.POW = 'pow'; +MathNode.TRANSFORM_DIRECTION = 'transformDirection'; + +// 3 inputs + +MathNode.MIX = 'mix'; +MathNode.CLAMP = 'clamp'; +MathNode.REFRACT = 'refract'; +MathNode.SMOOTHSTEP = 'smoothstep'; +MathNode.FACEFORWARD = 'faceforward'; + +// 1 inputs + +/** + * A small value used to handle floating-point precision errors. + * + * @tsl + * @type {Node} + */ +const EPSILON = /*@__PURE__*/ float( 1e-6 ); + +/** + * Represents infinity. + * + * @tsl + * @type {Node} + */ +const INFINITY = /*@__PURE__*/ float( 1e6 ); + +/** + * Represents PI. + * + * @tsl + * @type {Node} + */ +const PI = /*@__PURE__*/ float( Math.PI ); + +/** + * Represents PI * 2. + * + * @tsl + * @type {Node} + */ +const PI2 = /*@__PURE__*/ float( Math.PI * 2 ); + +/** + * Returns `true` if all components of `x` are `true`. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const all = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ALL ).setParameterLength( 1 ); + +/** + * Returns `true` if any components of `x` are `true`. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const any = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ANY ).setParameterLength( 1 ); + +/** + * Converts a quantity in degrees to radians. + * + * @tsl + * @function + * @param {Node | number} x - The input in degrees. + * @returns {Node} + */ +const radians = /*@__PURE__*/ nodeProxy( MathNode, MathNode.RADIANS ).setParameterLength( 1 ); + +/** + * Convert a quantity in radians to degrees. + * + * @tsl + * @function + * @param {Node | number} x - The input in radians. + * @returns {Node} + */ +const degrees = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DEGREES ).setParameterLength( 1 ); + +/** + * Returns the natural exponentiation of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const exp = /*@__PURE__*/ nodeProxy( MathNode, MathNode.EXP ).setParameterLength( 1 ); + +/** + * Returns 2 raised to the power of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const exp2 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.EXP2 ).setParameterLength( 1 ); + +/** + * Returns the natural logarithm of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const log = /*@__PURE__*/ nodeProxy( MathNode, MathNode.LOG ).setParameterLength( 1 ); + +/** + * Returns the base 2 logarithm of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const log2 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.LOG2 ).setParameterLength( 1 ); + +/** + * Returns the square root of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const sqrt = /*@__PURE__*/ nodeProxy( MathNode, MathNode.SQRT ).setParameterLength( 1 ); + +/** + * Returns the inverse of the square root of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const inverseSqrt = /*@__PURE__*/ nodeProxy( MathNode, MathNode.INVERSE_SQRT ).setParameterLength( 1 ); + +/** + * Finds the nearest integer less than or equal to the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const floor = /*@__PURE__*/ nodeProxy( MathNode, MathNode.FLOOR ).setParameterLength( 1 ); + +/** + * Finds the nearest integer that is greater than or equal to the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const ceil = /*@__PURE__*/ nodeProxy( MathNode, MathNode.CEIL ).setParameterLength( 1 ); + +/** + * Calculates the unit vector in the same direction as the original vector. + * + * @tsl + * @function + * @param {Node} x - The input vector. + * @returns {Node} + */ +const normalize = /*@__PURE__*/ nodeProxy( MathNode, MathNode.NORMALIZE ).setParameterLength( 1 ); + +/** + * Computes the fractional part of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const fract = /*@__PURE__*/ nodeProxy( MathNode, MathNode.FRACT ).setParameterLength( 1 ); + +/** + * Returns the sine of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const sin = /*@__PURE__*/ nodeProxy( MathNode, MathNode.SIN ).setParameterLength( 1 ); + +/** + * Returns the cosine of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const cos = /*@__PURE__*/ nodeProxy( MathNode, MathNode.COS ).setParameterLength( 1 ); + +/** + * Returns the tangent of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const tan = /*@__PURE__*/ nodeProxy( MathNode, MathNode.TAN ).setParameterLength( 1 ); + +/** + * Returns the arcsine of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const asin = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ASIN ).setParameterLength( 1 ); + +/** + * Returns the arccosine of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const acos = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ACOS ).setParameterLength( 1 ); + +/** + * Returns the arc-tangent of the parameter. + * If two parameters are provided, the result is `atan2(y/x)`. + * + * @tsl + * @function + * @param {Node | number} y - The y parameter. + * @param {?(Node | number)} x - The x parameter. + * @returns {Node} + */ +const atan = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ATAN ).setParameterLength( 1, 2 ); + +/** + * Returns the absolute value of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const abs = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ABS ).setParameterLength( 1 ); + +/** + * Extracts the sign of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const sign = /*@__PURE__*/ nodeProxy( MathNode, MathNode.SIGN ).setParameterLength( 1 ); + +/** + * Calculates the length of a vector. + * + * @tsl + * @function + * @param {Node} x - The parameter. + * @returns {Node} + */ +const length = /*@__PURE__*/ nodeProxy( MathNode, MathNode.LENGTH ).setParameterLength( 1 ); + +/** + * Negates the value of the parameter (-x). + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const negate = /*@__PURE__*/ nodeProxy( MathNode, MathNode.NEGATE ).setParameterLength( 1 ); + +/** + * Return `1` minus the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const oneMinus = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ONE_MINUS ).setParameterLength( 1 ); + +/** + * Returns the partial derivative of the parameter with respect to x. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const dFdx = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DFDX ).setParameterLength( 1 ); + +/** + * Returns the partial derivative of the parameter with respect to y. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const dFdy = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DFDY ).setParameterLength( 1 ); + +/** + * Rounds the parameter to the nearest integer. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const round = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ROUND ).setParameterLength( 1 ); + +/** + * Returns the reciprocal of the parameter `(1/x)`. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const reciprocal = /*@__PURE__*/ nodeProxy( MathNode, MathNode.RECIPROCAL ).setParameterLength( 1 ); + +/** + * Truncates the parameter, removing the fractional part. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const trunc = /*@__PURE__*/ nodeProxy( MathNode, MathNode.TRUNC ).setParameterLength( 1 ); + +/** + * Returns the sum of the absolute derivatives in x and y. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @returns {Node} + */ +const fwidth = /*@__PURE__*/ nodeProxy( MathNode, MathNode.FWIDTH ).setParameterLength( 1 ); + +/** + * Returns the transpose of a matrix. + * + * @tsl + * @function + * @param {Node} x - The parameter. + * @returns {Node} + */ +const transpose = /*@__PURE__*/ nodeProxy( MathNode, MathNode.TRANSPOSE ).setParameterLength( 1 ); + +// 2 inputs + +/** + * Reinterpret the bit representation of a value in one type as a value in another type. + * + * @tsl + * @function + * @param {Node | number} x - The parameter. + * @param {string} y - The new type. + * @returns {Node} + */ +const bitcast = /*@__PURE__*/ nodeProxy( MathNode, MathNode.BITCAST ).setParameterLength( 2 ); + +/** + * Returns `true` if `x` equals `y`. + * + * @tsl + * @function + * @param {Node | number} x - The first parameter. + * @param {Node | number} y - The second parameter. + * @deprecated since r175. Use {@link equal} instead. + * @returns {Node} + */ +const equals = ( x, y ) => { // @deprecated, r172 + + console.warn( 'THREE.TSL: "equals" is deprecated. Use "equal" inside a vector instead, like: "bvec*( equal( ... ) )"' ); + return equal( x, y ); + +}; + +/** + * Returns the least of the given values. + * + * @tsl + * @function + * @param {...(Node | number)} values - The values to compare. + * @returns {Node} + */ +const min$1 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.MIN ).setParameterLength( 2, Infinity ); + +/** + * Returns the greatest of the given values. + * + * @tsl + * @function + * @param {...(Node | number)} values - The values to compare. + * @returns {Node} + */ +const max$1 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.MAX ).setParameterLength( 2, Infinity ); + +/** + * Generate a step function by comparing two values. + * + * @tsl + * @function + * @param {Node | number} x - The y parameter. + * @param {Node | number} y - The x parameter. + * @returns {Node} + */ +const step = /*@__PURE__*/ nodeProxy( MathNode, MathNode.STEP ).setParameterLength( 2 ); + +/** + * Calculates the reflection direction for an incident vector. + * + * @tsl + * @function + * @param {Node} I - The incident vector. + * @param {Node} N - The normal vector. + * @returns {Node} + */ +const reflect = /*@__PURE__*/ nodeProxy( MathNode, MathNode.REFLECT ).setParameterLength( 2 ); + +/** + * Calculates the distance between two points. + * + * @tsl + * @function + * @param {Node} x - The first point. + * @param {Node} y - The second point. + * @returns {Node} + */ +const distance = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DISTANCE ).setParameterLength( 2 ); + +/** + * Calculates the absolute difference between two values. + * + * @tsl + * @function + * @param {Node | number} x - The first parameter. + * @param {Node | number} y - The second parameter. + * @returns {Node} + */ +const difference = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DIFFERENCE ).setParameterLength( 2 ); + +/** + * Calculates the dot product of two vectors. + * + * @tsl + * @function + * @param {Node} x - The first vector. + * @param {Node} y - The second vector. + * @returns {Node} + */ +const dot = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DOT ).setParameterLength( 2 ); + +/** + * Calculates the cross product of two vectors. + * + * @tsl + * @function + * @param {Node} x - The first vector. + * @param {Node} y - The second vector. + * @returns {Node} + */ +const cross = /*@__PURE__*/ nodeProxy( MathNode, MathNode.CROSS ).setParameterLength( 2 ); + +/** + * Return the value of the first parameter raised to the power of the second one. + * + * @tsl + * @function + * @param {Node | number} x - The first parameter. + * @param {Node | number} y - The second parameter. + * @returns {Node} + */ +const pow = /*@__PURE__*/ nodeProxy( MathNode, MathNode.POW ).setParameterLength( 2 ); + +/** + * Returns the square of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The first parameter. + * @returns {Node} + */ +const pow2 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.POW, 2 ).setParameterLength( 1 ); + +/** + * Returns the cube of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The first parameter. + * @returns {Node} + */ +const pow3 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.POW, 3 ).setParameterLength( 1 ); + +/** + * Returns the fourth power of the parameter. + * + * @tsl + * @function + * @param {Node | number} x - The first parameter. + * @returns {Node} + */ +const pow4 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.POW, 4 ).setParameterLength( 1 ); + +/** + * Transforms the direction of a vector by a matrix and then normalizes the result. + * + * @tsl + * @function + * @param {Node} direction - The direction vector. + * @param {Node} matrix - The transformation matrix. + * @returns {Node} + */ +const transformDirection = /*@__PURE__*/ nodeProxy( MathNode, MathNode.TRANSFORM_DIRECTION ).setParameterLength( 2 ); + +/** + * Returns the cube root of a number. + * + * @tsl + * @function + * @param {Node | number} a - The first parameter. + * @returns {Node} + */ +const cbrt = ( a ) => mul( sign( a ), pow( abs( a ), 1.0 / 3.0 ) ); + +/** + * Calculate the squared length of a vector. + * + * @tsl + * @function + * @param {Node} a - The vector. + * @returns {Node} + */ +const lengthSq = ( a ) => dot( a, a ); + +/** + * Linearly interpolates between two values. + * + * @tsl + * @function + * @param {Node | number} a - The first parameter. + * @param {Node | number} b - The second parameter. + * @param {Node | number} t - The interpolation value. + * @returns {Node} + */ +const mix = /*@__PURE__*/ nodeProxy( MathNode, MathNode.MIX ).setParameterLength( 3 ); + +/** + * Constrains a value to lie between two further values. + * + * @tsl + * @function + * @param {Node | number} value - The value to constrain. + * @param {Node | number} [low=0] - The lower bound. + * @param {Node | number} [high=1] - The upper bound. + * @returns {Node} + */ +const clamp = ( value, low = 0, high = 1 ) => nodeObject( new MathNode( MathNode.CLAMP, nodeObject( value ), nodeObject( low ), nodeObject( high ) ) ); + +/** + * Constrains a value between `0` and `1`. + * + * @tsl + * @function + * @param {Node | number} value - The value to constrain. + * @returns {Node} + */ +const saturate = ( value ) => clamp( value ); + +/** + * Calculates the refraction direction for an incident vector. + * + * @tsl + * @function + * @param {Node} I - The incident vector. + * @param {Node} N - The normal vector. + * @param {Node} eta - The ratio of indices of refraction. + * @returns {Node} + */ +const refract = /*@__PURE__*/ nodeProxy( MathNode, MathNode.REFRACT ).setParameterLength( 3 ); + +/** + * Performs a Hermite interpolation between two values. + * + * @tsl + * @function + * @param {Node | number} low - The value of the lower edge of the Hermite function. + * @param {Node | number} high - The value of the upper edge of the Hermite function. + * @param {Node | number} x - The source value for interpolation. + * @returns {Node} + */ +const smoothstep = /*@__PURE__*/ nodeProxy( MathNode, MathNode.SMOOTHSTEP ).setParameterLength( 3 ); + +/** + * Returns a vector pointing in the same direction as another. + * + * @tsl + * @function + * @param {Node} N - The vector to orient. + * @param {Node} I - The incident vector. + * @param {Node} Nref - The reference vector. + * @returns {Node} + */ +const faceForward = /*@__PURE__*/ nodeProxy( MathNode, MathNode.FACEFORWARD ).setParameterLength( 3 ); + +/** + * Returns a random value for the given uv. + * + * @tsl + * @function + * @param {Node} uv - The uv node. + * @returns {Node} + */ +const rand = /*@__PURE__*/ Fn( ( [ uv ] ) => { + + const a = 12.9898, b = 78.233, c = 43758.5453; + const dt = dot( uv.xy, vec2( a, b ) ), sn = mod( dt, PI ); + + return fract( sin( sn ).mul( c ) ); + +} ); + +/** + * Alias for `mix()` with a different parameter order. + * + * @tsl + * @function + * @param {Node | number} t - The interpolation value. + * @param {Node | number} e1 - The first parameter. + * @param {Node | number} e2 - The second parameter. + * @returns {Node} + */ +const mixElement = ( t, e1, e2 ) => mix( e1, e2, t ); + +/** + * Alias for `smoothstep()` with a different parameter order. + * + * @tsl + * @function + * @param {Node | number} x - The source value for interpolation. + * @param {Node | number} low - The value of the lower edge of the Hermite function. + * @param {Node | number} high - The value of the upper edge of the Hermite function. + * @returns {Node} + */ +const smoothstepElement = ( x, low, high ) => smoothstep( low, high, x ); + +/** + * Returns the arc-tangent of the quotient of its parameters. + * + * @tsl + * @function + * @deprecated since r172. Use {@link atan} instead. + * + * @param {Node | number} y - The y parameter. + * @param {Node | number} x - The x parameter. + * @returns {Node} + */ +const atan2 = ( y, x ) => { // @deprecated, r172 + + console.warn( 'THREE.TSL: "atan2" is overloaded. Use "atan" instead.' ); + return atan( y, x ); + +}; + +// GLSL alias function + +const faceforward = faceForward; +const inversesqrt = inverseSqrt; + +// Method chaining + +addMethodChaining( 'all', all ); +addMethodChaining( 'any', any ); +addMethodChaining( 'equals', equals ); + +addMethodChaining( 'radians', radians ); +addMethodChaining( 'degrees', degrees ); +addMethodChaining( 'exp', exp ); +addMethodChaining( 'exp2', exp2 ); +addMethodChaining( 'log', log ); +addMethodChaining( 'log2', log2 ); +addMethodChaining( 'sqrt', sqrt ); +addMethodChaining( 'inverseSqrt', inverseSqrt ); +addMethodChaining( 'floor', floor ); +addMethodChaining( 'ceil', ceil ); +addMethodChaining( 'normalize', normalize ); +addMethodChaining( 'fract', fract ); +addMethodChaining( 'sin', sin ); +addMethodChaining( 'cos', cos ); +addMethodChaining( 'tan', tan ); +addMethodChaining( 'asin', asin ); +addMethodChaining( 'acos', acos ); +addMethodChaining( 'atan', atan ); +addMethodChaining( 'abs', abs ); +addMethodChaining( 'sign', sign ); +addMethodChaining( 'length', length ); +addMethodChaining( 'lengthSq', lengthSq ); +addMethodChaining( 'negate', negate ); +addMethodChaining( 'oneMinus', oneMinus ); +addMethodChaining( 'dFdx', dFdx ); +addMethodChaining( 'dFdy', dFdy ); +addMethodChaining( 'round', round ); +addMethodChaining( 'reciprocal', reciprocal ); +addMethodChaining( 'trunc', trunc ); +addMethodChaining( 'fwidth', fwidth ); +addMethodChaining( 'atan2', atan2 ); +addMethodChaining( 'min', min$1 ); +addMethodChaining( 'max', max$1 ); +addMethodChaining( 'step', step ); +addMethodChaining( 'reflect', reflect ); +addMethodChaining( 'distance', distance ); +addMethodChaining( 'dot', dot ); +addMethodChaining( 'cross', cross ); +addMethodChaining( 'pow', pow ); +addMethodChaining( 'pow2', pow2 ); +addMethodChaining( 'pow3', pow3 ); +addMethodChaining( 'pow4', pow4 ); +addMethodChaining( 'transformDirection', transformDirection ); +addMethodChaining( 'mix', mixElement ); +addMethodChaining( 'clamp', clamp ); +addMethodChaining( 'refract', refract ); +addMethodChaining( 'smoothstep', smoothstepElement ); +addMethodChaining( 'faceForward', faceForward ); +addMethodChaining( 'difference', difference ); +addMethodChaining( 'saturate', saturate ); +addMethodChaining( 'cbrt', cbrt ); +addMethodChaining( 'transpose', transpose ); +addMethodChaining( 'rand', rand ); + +/** + * Represents a logical `if/else` statement. Can be used as an alternative + * to the `If()`/`Else()` syntax. + * + * The corresponding TSL `select()` looks like so: + * ```js + * velocity = position.greaterThanEqual( limit ).select( velocity.negate(), velocity ); + * ``` + * The `select()` method is called in a chaining fashion on a condition. The parameter nodes of `select()` + * determine the outcome of the entire statement. + * + * @augments Node + */ +class ConditionalNode extends Node { + + static get type() { + + return 'ConditionalNode'; + + } + + /** + * Constructs a new conditional node. + * + * @param {Node} condNode - The node that defines the condition. + * @param {Node} ifNode - The node that is evaluate when the condition ends up `true`. + * @param {?Node} [elseNode=null] - The node that is evaluate when the condition ends up `false`. + */ + constructor( condNode, ifNode, elseNode = null ) { + + super(); + + /** + * The node that defines the condition. + * + * @type {Node} + */ + this.condNode = condNode; + + /** + * The node that is evaluate when the condition ends up `true`. + * + * @type {Node} + */ + this.ifNode = ifNode; + + /** + * The node that is evaluate when the condition ends up `false`. + * + * @type {?Node} + * @default null + */ + this.elseNode = elseNode; + + } + + /** + * This method is overwritten since the node type is inferred from the if/else + * nodes. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + const { ifNode, elseNode } = builder.getNodeProperties( this ); + + if ( ifNode === undefined ) { + + // fallback setup + + this.setup( builder ); + + return this.getNodeType( builder ); + + } + + const ifType = ifNode.getNodeType( builder ); + + if ( elseNode !== null ) { + + const elseType = elseNode.getNodeType( builder ); + + if ( builder.getTypeLength( elseType ) > builder.getTypeLength( ifType ) ) { + + return elseType; + + } + + } + + return ifType; + + } + + setup( builder ) { + + const condNode = this.condNode.cache(); + const ifNode = this.ifNode.cache(); + const elseNode = this.elseNode ? this.elseNode.cache() : null; + + // + + const currentNodeBlock = builder.context.nodeBlock; + + builder.getDataFromNode( ifNode ).parentNodeBlock = currentNodeBlock; + if ( elseNode !== null ) builder.getDataFromNode( elseNode ).parentNodeBlock = currentNodeBlock; + + // + + const properties = builder.getNodeProperties( this ); + properties.condNode = condNode; + properties.ifNode = ifNode.context( { nodeBlock: ifNode } ); + properties.elseNode = elseNode ? elseNode.context( { nodeBlock: elseNode } ) : null; + + } + + generate( builder, output ) { + + const type = this.getNodeType( builder ); + + const nodeData = builder.getDataFromNode( this ); + + if ( nodeData.nodeProperty !== undefined ) { + + return nodeData.nodeProperty; + + } + + const { condNode, ifNode, elseNode } = builder.getNodeProperties( this ); + + const functionNode = builder.currentFunctionNode; + const needsOutput = output !== 'void'; + const nodeProperty = needsOutput ? property( type ).build( builder ) : ''; + + nodeData.nodeProperty = nodeProperty; + + const nodeSnippet = condNode.build( builder, 'bool' ); + + builder.addFlowCode( `\n${ builder.tab }if ( ${ nodeSnippet } ) {\n\n` ).addFlowTab(); + + let ifSnippet = ifNode.build( builder, type ); + + if ( ifSnippet ) { + + if ( needsOutput ) { + + ifSnippet = nodeProperty + ' = ' + ifSnippet + ';'; + + } else { + + ifSnippet = 'return ' + ifSnippet + ';'; + + if ( functionNode === null ) { + + console.warn( 'THREE.TSL: Return statement used in an inline \'Fn()\'. Define a layout struct to allow return values.' ); + + ifSnippet = '// ' + ifSnippet; + + } + + } + + } + + builder.removeFlowTab().addFlowCode( builder.tab + '\t' + ifSnippet + '\n\n' + builder.tab + '}' ); + + if ( elseNode !== null ) { + + builder.addFlowCode( ' else {\n\n' ).addFlowTab(); + + let elseSnippet = elseNode.build( builder, type ); + + if ( elseSnippet ) { + + if ( needsOutput ) { + + elseSnippet = nodeProperty + ' = ' + elseSnippet + ';'; + + } else { + + elseSnippet = 'return ' + elseSnippet + ';'; + + if ( functionNode === null ) { + + console.warn( 'THREE.TSL: Return statement used in an inline \'Fn()\'. Define a layout struct to allow return values.' ); + + elseSnippet = '// ' + elseSnippet; + + } + + } + + } + + builder.removeFlowTab().addFlowCode( builder.tab + '\t' + elseSnippet + '\n\n' + builder.tab + '}\n\n' ); + + } else { + + builder.addFlowCode( '\n\n' ); + + } + + return builder.format( nodeProperty, type, output ); + + } + +} + +/** + * TSL function for creating a conditional node. + * + * @tsl + * @function + * @param {Node} condNode - The node that defines the condition. + * @param {Node} ifNode - The node that is evaluate when the condition ends up `true`. + * @param {?Node} [elseNode=null] - The node that is evaluate when the condition ends up `false`. + * @returns {ConditionalNode} + */ +const select = /*@__PURE__*/ nodeProxy( ConditionalNode ).setParameterLength( 2, 3 ); + +addMethodChaining( 'select', select ); + +// Deprecated + +/** + * @tsl + * @function + * @deprecated since r168. Use {@link select} instead. + * + * @param {...any} params + * @returns {ConditionalNode} + */ +const cond = ( ...params ) => { // @deprecated, r168 + + console.warn( 'THREE.TSL: cond() has been renamed to select().' ); + return select( ...params ); + +}; + +addMethodChaining( 'cond', cond ); + +/** + * This node can be used as a context management component for another node. + * {@link NodeBuilder} performs its node building process in a specific context and + * this node allows the modify the context. A typical use case is to overwrite `getUV()` e.g.: + * + * ```js + *node.context( { getUV: () => customCoord } ); + *``` + * @augments Node + */ +class ContextNode extends Node { + + static get type() { + + return 'ContextNode'; + + } + + /** + * Constructs a new context node. + * + * @param {Node} node - The node whose context should be modified. + * @param {Object} [value={}] - The modified context data. + */ + constructor( node, value = {} ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isContextNode = true; + + /** + * The node whose context should be modified. + * + * @type {Node} + */ + this.node = node; + + /** + * The modified context data. + * + * @type {Object} + * @default {} + */ + this.value = value; + + } + + /** + * This method is overwritten to ensure it returns the reference to {@link ContextNode#node}. + * + * @return {Node} A reference to {@link ContextNode#node}. + */ + getScope() { + + return this.node.getScope(); + + } + + /** + * This method is overwritten to ensure it returns the type of {@link ContextNode#node}. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.node.getNodeType( builder ); + + } + + analyze( builder ) { + + const previousContext = builder.getContext(); + + builder.setContext( { ...builder.context, ...this.value } ); + + this.node.build( builder ); + + builder.setContext( previousContext ); + + } + + setup( builder ) { + + const previousContext = builder.getContext(); + + builder.setContext( { ...builder.context, ...this.value } ); + + this.node.build( builder ); + + builder.setContext( previousContext ); + + } + + generate( builder, output ) { + + const previousContext = builder.getContext(); + + builder.setContext( { ...builder.context, ...this.value } ); + + const snippet = this.node.build( builder, output ); + + builder.setContext( previousContext ); + + return snippet; + + } + +} + +/** + * TSL function for creating a context node. + * + * @tsl + * @function + * @param {Node} node - The node whose context should be modified. + * @param {Object} [value={}] - The modified context data. + * @returns {ContextNode} + */ +const context = /*@__PURE__*/ nodeProxy( ContextNode ).setParameterLength( 1, 2 ); + +/** + * TSL function for defining a label context value for a given node. + * + * @tsl + * @function + * @param {Node} node - The node whose context should be modified. + * @param {string} name - The name/label to set. + * @returns {ContextNode} + */ +const label = ( node, name ) => context( node, { label: name } ); + +addMethodChaining( 'context', context ); +addMethodChaining( 'label', label ); + +/** + * Class for representing shader variables as nodes. Variables are created from + * existing nodes like the following: + * + * ```js + * const depth = sampleDepth( uvNode ).toVar( 'depth' ); + * ``` + * + * @augments Node + */ +class VarNode extends Node { + + static get type() { + + return 'VarNode'; + + } + + /** + * Constructs a new variable node. + * + * @param {Node} node - The node for which a variable should be created. + * @param {?string} [name=null] - The name of the variable in the shader. + * @param {boolean} [readOnly=false] - The read-only flag. + */ + constructor( node, name = null, readOnly = false ) { + + super(); + + /** + * The node for which a variable should be created. + * + * @type {Node} + */ + this.node = node; + + /** + * The name of the variable in the shader. If no name is defined, + * the node system auto-generates one. + * + * @type {?string} + * @default null + */ + this.name = name; + + /** + * `VarNode` sets this property to `true` by default. + * + * @type {boolean} + * @default true + */ + this.global = true; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVarNode = true; + + /** + * + * The read-only flag. + * + * @type {boolean} + * @default false + */ + this.readOnly = readOnly; + + /** + * + * Add this flag to the node system to indicate that this node require parents. + * + * @type {boolean} + * @default true + */ + this.parents = true; + + } + + getMemberType( builder, name ) { + + return this.node.getMemberType( builder, name ); + + } + + getElementType( builder ) { + + return this.node.getElementType( builder ); + + } + + getNodeType( builder ) { + + return this.node.getNodeType( builder ); + + } + + generate( builder ) { + + const { node, name, readOnly } = this; + const { renderer } = builder; + + const isWebGPUBackend = renderer.backend.isWebGPUBackend === true; + + let isDeterministic = false; + let shouldTreatAsReadOnly = false; + + if ( readOnly ) { + + isDeterministic = builder.isDeterministic( node ); + + shouldTreatAsReadOnly = isWebGPUBackend ? readOnly : isDeterministic; + + } + + const vectorType = builder.getVectorType( this.getNodeType( builder ) ); + const snippet = node.build( builder, vectorType ); + + const nodeVar = builder.getVarFromNode( this, name, vectorType, undefined, shouldTreatAsReadOnly ); + + const propertyName = builder.getPropertyName( nodeVar ); + + let declarationPrefix = propertyName; + + if ( shouldTreatAsReadOnly ) { + + if ( isWebGPUBackend ) { + + declarationPrefix = isDeterministic + ? `const ${ propertyName }` + : `let ${ propertyName }`; + + } else { + + const count = builder.getArrayCount( node ); + + declarationPrefix = `const ${ builder.getVar( nodeVar.type, propertyName, count ) }`; + + } + + } + + builder.addLineFlowCode( `${ declarationPrefix } = ${ snippet }`, this ); + + return propertyName; + + } + +} + +/** + * TSL function for creating a var node. + * + * @tsl + * @function + * @param {Node} node - The node for which a variable should be created. + * @param {?string} name - The name of the variable in the shader. + * @returns {VarNode} + */ +const createVar = /*@__PURE__*/ nodeProxy( VarNode ); + +/** + * TSL function for creating a var node. + * + * @tsl + * @function + * @param {Node} node - The node for which a variable should be created. + * @param {?string} name - The name of the variable in the shader. + * @returns {VarNode} + */ +const Var = ( node, name = null ) => createVar( node, name ).toStack(); + +/** + * TSL function for creating a const node. + * + * @tsl + * @function + * @param {Node} node - The node for which a constant should be created. + * @param {?string} name - The name of the constant in the shader. + * @returns {VarNode} + */ +const Const = ( node, name = null ) => createVar( node, name, true ).toStack(); + +// Method chaining + +addMethodChaining( 'toVar', Var ); +addMethodChaining( 'toConst', Const ); + +// Deprecated + +/** + * @tsl + * @function + * @deprecated since r170. Use `Var( node )` or `node.toVar()` instead. + * + * @param {any} node + * @returns {VarNode} + */ +const temp = ( node ) => { // @deprecated, r170 + + console.warn( 'TSL: "temp( node )" is deprecated. Use "Var( node )" or "node.toVar()" instead.' ); + + return createVar( node ); + +}; + +addMethodChaining( 'temp', temp ); + +/** + * Class for representing shader varyings as nodes. Varyings are create from + * existing nodes like the following: + * + * ```js + * const positionLocal = positionGeometry.toVarying( 'vPositionLocal' ); + * ``` + * + * @augments Node + */ +class VaryingNode extends Node { + + static get type() { + + return 'VaryingNode'; + + } + + /** + * Constructs a new varying node. + * + * @param {Node} node - The node for which a varying should be created. + * @param {?string} name - The name of the varying in the shader. + */ + constructor( node, name = null ) { + + super(); + + /** + * The node for which a varying should be created. + * + * @type {Node} + */ + this.node = node; + + /** + * The name of the varying in the shader. If no name is defined, + * the node system auto-generates one. + * + * @type {?string} + * @default null + */ + this.name = name; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVaryingNode = true; + + /** + * The interpolation type of the varying data. + * + * @type {?string} + * @default null + */ + this.interpolationType = null; + + /** + * The interpolation sampling type of varying data. + * + * @type {?string} + * @default null + */ + this.interpolationSampling = null; + + /** + * This flag is used for global cache. + * + * @type {boolean} + * @default true + */ + this.global = true; + + } + + /** + * Defines the interpolation type of the varying. + * + * @param {string} type - The interpolation type. + * @param {?string} sampling - The interpolation sampling type + * @return {VaryingNode} A reference to this node. + */ + setInterpolation( type, sampling = null ) { + + this.interpolationType = type; + this.interpolationSampling = sampling; + + return this; + + } + + getHash( builder ) { + + return this.name || super.getHash( builder ); + + } + + getNodeType( builder ) { + + // VaryingNode is auto type + + return this.node.getNodeType( builder ); + + } + + /** + * This method performs the setup of a varying node with the current node builder. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {NodeVarying} The node varying from the node builder. + */ + setupVarying( builder ) { + + const properties = builder.getNodeProperties( this ); + + let varying = properties.varying; + + if ( varying === undefined ) { + + const name = this.name; + const type = this.getNodeType( builder ); + const interpolationType = this.interpolationType; + const interpolationSampling = this.interpolationSampling; + + properties.varying = varying = builder.getVaryingFromNode( this, name, type, interpolationType, interpolationSampling ); + properties.node = this.node; + + } + + // this property can be used to check if the varying can be optimized for a variable + varying.needsInterpolation || ( varying.needsInterpolation = ( builder.shaderStage === 'fragment' ) ); + + return varying; + + } + + setup( builder ) { + + this.setupVarying( builder ); + + builder.flowNodeFromShaderStage( NodeShaderStage.VERTEX, this.node ); + + } + + analyze( builder ) { + + this.setupVarying( builder ); + + builder.flowNodeFromShaderStage( NodeShaderStage.VERTEX, this.node ); + + } + + generate( builder ) { + + const properties = builder.getNodeProperties( this ); + const varying = this.setupVarying( builder ); + + if ( properties.propertyName === undefined ) { + + const type = this.getNodeType( builder ); + const propertyName = builder.getPropertyName( varying, NodeShaderStage.VERTEX ); + + // force node run in vertex stage + builder.flowNodeFromShaderStage( NodeShaderStage.VERTEX, this.node, type, propertyName ); + + properties.propertyName = propertyName; + + } + + return builder.getPropertyName( varying ); + + } + +} + +/** + * TSL function for creating a varying node. + * + * @tsl + * @function + * @param {Node} node - The node for which a varying should be created. + * @param {?string} name - The name of the varying in the shader. + * @returns {VaryingNode} + */ +const varying = /*@__PURE__*/ nodeProxy( VaryingNode ).setParameterLength( 1, 2 ); + +/** + * Computes a node in the vertex stage. + * + * @tsl + * @function + * @param {Node} node - The node which should be executed in the vertex stage. + * @returns {VaryingNode} + */ +const vertexStage = ( node ) => varying( node ); + +addMethodChaining( 'toVarying', varying ); +addMethodChaining( 'toVertexStage', vertexStage ); + +// Deprecated + +addMethodChaining( 'varying', ( ...params ) => { // @deprecated, r173 + + console.warn( 'THREE.TSL: .varying() has been renamed to .toVarying().' ); + return varying( ...params ); + +} ); + +addMethodChaining( 'vertexStage', ( ...params ) => { // @deprecated, r173 + + console.warn( 'THREE.TSL: .vertexStage() has been renamed to .toVertexStage().' ); + return varying( ...params ); + +} ); + +/** + * Converts the given color value from sRGB to linear-sRGB color space. + * + * @tsl + * @function + * @param {Node} color - The sRGB color. + * @return {Node} The linear-sRGB color. + */ +const sRGBTransferEOTF = /*@__PURE__*/ Fn( ( [ color ] ) => { + + const a = color.mul( 0.9478672986 ).add( 0.0521327014 ).pow( 2.4 ); + const b = color.mul( 0.0773993808 ); + const factor = color.lessThanEqual( 0.04045 ); + + const rgbResult = mix( a, b, factor ); + + return rgbResult; + +} ).setLayout( { + name: 'sRGBTransferEOTF', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' } + ] +} ); + +/** + * Converts the given color value from linear-sRGB to sRGB color space. + * + * @tsl + * @function + * @param {Node} color - The linear-sRGB color. + * @return {Node} The sRGB color. + */ +const sRGBTransferOETF = /*@__PURE__*/ Fn( ( [ color ] ) => { + + const a = color.pow( 0.41666 ).mul( 1.055 ).sub( 0.055 ); + const b = color.mul( 12.92 ); + const factor = color.lessThanEqual( 0.0031308 ); + + const rgbResult = mix( a, b, factor ); + + return rgbResult; + +} ).setLayout( { + name: 'sRGBTransferOETF', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' } + ] +} ); + +const WORKING_COLOR_SPACE = 'WorkingColorSpace'; +const OUTPUT_COLOR_SPACE = 'OutputColorSpace'; + +/** + * This node represents a color space conversion. Meaning it converts + * a color value from a source to a target color space. + * + * @augments TempNode + */ +class ColorSpaceNode extends TempNode { + + static get type() { + + return 'ColorSpaceNode'; + + } + + /** + * Constructs a new color space node. + * + * @param {Node} colorNode - Represents the color to convert. + * @param {string} source - The source color space. + * @param {string} target - The target color space. + */ + constructor( colorNode, source, target ) { + + super( 'vec4' ); + + /** + * Represents the color to convert. + * + * @type {Node} + */ + this.colorNode = colorNode; + + /** + * The source color space. + * + * @type {string} + */ + this.source = source; + + /** + * The target color space. + * + * @type {string} + */ + this.target = target; + + } + + /** + * This method resolves the constants `WORKING_COLOR_SPACE` and + * `OUTPUT_COLOR_SPACE` based on the current configuration of the + * color management and renderer. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} colorSpace - The color space to resolve. + * @return {string} The resolved color space. + */ + resolveColorSpace( builder, colorSpace ) { + + if ( colorSpace === WORKING_COLOR_SPACE ) { + + return ColorManagement.workingColorSpace; + + } else if ( colorSpace === OUTPUT_COLOR_SPACE ) { + + return builder.context.outputColorSpace || builder.renderer.outputColorSpace; + + } + + return colorSpace; + + } + + setup( builder ) { + + const { colorNode } = this; + + const source = this.resolveColorSpace( builder, this.source ); + const target = this.resolveColorSpace( builder, this.target ); + + let outputNode = colorNode; + + if ( ColorManagement.enabled === false || source === target || ! source || ! target ) { + + return outputNode; + + } + + if ( ColorManagement.getTransfer( source ) === SRGBTransfer ) { + + outputNode = vec4( sRGBTransferEOTF( outputNode.rgb ), outputNode.a ); + + } + + if ( ColorManagement.getPrimaries( source ) !== ColorManagement.getPrimaries( target ) ) { + + outputNode = vec4( + mat3( ColorManagement._getMatrix( new Matrix3(), source, target ) ).mul( outputNode.rgb ), + outputNode.a + ); + + } + + if ( ColorManagement.getTransfer( target ) === SRGBTransfer ) { + + outputNode = vec4( sRGBTransferOETF( outputNode.rgb ), outputNode.a ); + + } + + return outputNode; + + } + +} + +/** + * TSL function for converting a given color node from the current working color space to the given color space. + * + * @tsl + * @function + * @param {Node} node - Represents the node to convert. + * @param {string} targetColorSpace - The target color space. + * @returns {ColorSpaceNode} + */ +const workingToColorSpace = ( node, targetColorSpace ) => nodeObject( new ColorSpaceNode( nodeObject( node ), WORKING_COLOR_SPACE, targetColorSpace ) ); + +/** + * TSL function for converting a given color node from the given color space to the current working color space. + * + * @tsl + * @function + * @param {Node} node - Represents the node to convert. + * @param {string} sourceColorSpace - The source color space. + * @returns {ColorSpaceNode} + */ +const colorSpaceToWorking = ( node, sourceColorSpace ) => nodeObject( new ColorSpaceNode( nodeObject( node ), sourceColorSpace, WORKING_COLOR_SPACE ) ); + +/** + * TSL function for converting a given color node from one color space to another one. + * + * @tsl + * @function + * @param {Node} node - Represents the node to convert. + * @param {string} sourceColorSpace - The source color space. + * @param {string} targetColorSpace - The target color space. + * @returns {ColorSpaceNode} + */ +const convertColorSpace = ( node, sourceColorSpace, targetColorSpace ) => nodeObject( new ColorSpaceNode( nodeObject( node ), sourceColorSpace, targetColorSpace ) ); + +addMethodChaining( 'workingToColorSpace', workingToColorSpace ); +addMethodChaining( 'colorSpaceToWorking', colorSpaceToWorking ); + +// TODO: Avoid duplicated code and ues only ReferenceBaseNode or ReferenceNode + +/** + * This class is only relevant if the referenced property is array-like. + * In this case, `ReferenceElementNode` allows to refer to a specific + * element inside the data structure via an index. + * + * @augments ArrayElementNode + */ +const ReferenceElementNode$1 = class ReferenceElementNode extends ArrayElementNode { + + static get type() { + + return 'ReferenceElementNode'; + + } + + /** + * Constructs a new reference element node. + * + * @param {ReferenceBaseNode} referenceNode - The reference node. + * @param {Node} indexNode - The index node that defines the element access. + */ + constructor( referenceNode, indexNode ) { + + super( referenceNode, indexNode ); + + /** + * Similar to {@link ReferenceBaseNode#reference}, an additional + * property references to the current node. + * + * @type {?ReferenceBaseNode} + * @default null + */ + this.referenceNode = referenceNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isReferenceElementNode = true; + + } + + /** + * This method is overwritten since the node type is inferred from + * the uniform type of the reference node. + * + * @return {string} The node type. + */ + getNodeType() { + + return this.referenceNode.uniformType; + + } + + generate( builder ) { + + const snippet = super.generate( builder ); + const arrayType = this.referenceNode.getNodeType(); + const elementType = this.getNodeType(); + + return builder.format( snippet, arrayType, elementType ); + + } + +}; + +/** + * Base class for nodes which establishes a reference to a property of another object. + * In this way, the value of the node is automatically linked to the value of + * referenced object. Reference nodes internally represent the linked value + * as a uniform. + * + * @augments Node + */ +class ReferenceBaseNode extends Node { + + static get type() { + + return 'ReferenceBaseNode'; + + } + + /** + * Constructs a new reference base node. + * + * @param {string} property - The name of the property the node refers to. + * @param {string} uniformType - The uniform type that should be used to represent the property value. + * @param {?Object} [object=null] - The object the property belongs to. + * @param {?number} [count=null] - When the linked property is an array-like, this parameter defines its length. + */ + constructor( property, uniformType, object = null, count = null ) { + + super(); + + /** + * The name of the property the node refers to. + * + * @type {string} + */ + this.property = property; + + /** + * The uniform type that should be used to represent the property value. + * + * @type {string} + */ + this.uniformType = uniformType; + + /** + * The object the property belongs to. + * + * @type {?Object} + * @default null + */ + this.object = object; + + /** + * When the linked property is an array, this parameter defines its length. + * + * @type {?number} + * @default null + */ + this.count = count; + + /** + * The property name might have dots so nested properties can be referred. + * The hierarchy of the names is stored inside this array. + * + * @type {Array} + */ + this.properties = property.split( '.' ); + + /** + * Points to the current referred object. This property exists next to {@link ReferenceNode#object} + * since the final reference might be updated from calling code. + * + * @type {?Object} + * @default null + */ + this.reference = object; + + /** + * The uniform node that holds the value of the reference node. + * + * @type {UniformNode} + * @default null + */ + this.node = null; + + /** + * The uniform group of the internal uniform. + * + * @type {UniformGroupNode} + * @default null + */ + this.group = null; + + /** + * Overwritten since reference nodes are updated per object. + * + * @type {string} + * @default 'object' + */ + this.updateType = NodeUpdateType.OBJECT; + + } + + /** + * Sets the uniform group for this reference node. + * + * @param {UniformGroupNode} group - The uniform group to set. + * @return {ReferenceBaseNode} A reference to this node. + */ + setGroup( group ) { + + this.group = group; + + return this; + + } + + /** + * When the referred property is array-like, this method can be used + * to access elements via an index node. + * + * @param {IndexNode} indexNode - indexNode. + * @return {ReferenceElementNode} A reference to an element. + */ + element( indexNode ) { + + return nodeObject( new ReferenceElementNode$1( this, nodeObject( indexNode ) ) ); + + } + + /** + * Sets the node type which automatically defines the internal + * uniform type. + * + * @param {string} uniformType - The type to set. + */ + setNodeType( uniformType ) { + + const node = uniform( null, uniformType ).getSelf(); + + if ( this.group !== null ) { + + node.setGroup( this.group ); + + } + + this.node = node; + + } + + /** + * This method is overwritten since the node type is inferred from + * the type of the reference node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + if ( this.node === null ) { + + this.updateReference( builder ); + this.updateValue(); + + } + + return this.node.getNodeType( builder ); + + } + + /** + * Returns the property value from the given referred object. + * + * @param {Object} [object=this.reference] - The object to retrieve the property value from. + * @return {any} The value. + */ + getValueFromReference( object = this.reference ) { + + const { properties } = this; + + let value = object[ properties[ 0 ] ]; + + for ( let i = 1; i < properties.length; i ++ ) { + + value = value[ properties[ i ] ]; + + } + + return value; + + } + + /** + * Allows to update the reference based on the given state. The state is only + * evaluated {@link ReferenceBaseNode#object} is not set. + * + * @param {(NodeFrame|NodeBuilder)} state - The current state. + * @return {Object} The updated reference. + */ + updateReference( state ) { + + this.reference = this.object !== null ? this.object : state.object; + + return this.reference; + + } + + /** + * The output of the reference node is the internal uniform node. + * + * @return {UniformNode} The output node. + */ + setup() { + + this.updateValue(); + + return this.node; + + } + + /** + * Overwritten to update the internal uniform value. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( /*frame*/ ) { + + this.updateValue(); + + } + + /** + * Retrieves the value from the referred object property and uses it + * to updated the internal uniform. + */ + updateValue() { + + if ( this.node === null ) this.setNodeType( this.uniformType ); + + const value = this.getValueFromReference(); + + if ( Array.isArray( value ) ) { + + this.node.array = value; + + } else { + + this.node.value = value; + + } + + } + +} + +/** + * TSL function for creating a reference base node. + * + * @tsl + * @function + * @param {string} name - The name of the property the node refers to. + * @param {string} type - The uniform type that should be used to represent the property value. + * @param {Object} object - The object the property belongs to. + * @returns {ReferenceBaseNode} + */ +const reference$1 = ( name, type, object ) => nodeObject( new ReferenceBaseNode( name, type, object ) ); + +/** + * This node is a special type of reference node which is intended + * for linking renderer properties with node values. + * ```js + * const exposureNode = rendererReference( 'toneMappingExposure', 'float', renderer ); + * ``` + * When changing `renderer.toneMappingExposure`, the node value of `exposureNode` will + * automatically be updated. + * + * @augments ReferenceBaseNode + */ +class RendererReferenceNode extends ReferenceBaseNode { + + static get type() { + + return 'RendererReferenceNode'; + + } + + /** + * Constructs a new renderer reference node. + * + * @param {string} property - The name of the property the node refers to. + * @param {string} inputType - The uniform type that should be used to represent the property value. + * @param {?Renderer} [renderer=null] - The renderer the property belongs to. When no renderer is set, + * the node refers to the renderer of the current state. + */ + constructor( property, inputType, renderer = null ) { + + super( property, inputType, renderer ); + + /** + * The renderer the property belongs to. When no renderer is set, + * the node refers to the renderer of the current state. + * + * @type {?Renderer} + * @default null + */ + this.renderer = renderer; + + this.setGroup( renderGroup ); + + } + + /** + * Updates the reference based on the given state. The state is only evaluated + * {@link RendererReferenceNode#renderer} is not set. + * + * @param {(NodeFrame|NodeBuilder)} state - The current state. + * @return {Object} The updated reference. + */ + updateReference( state ) { + + this.reference = this.renderer !== null ? this.renderer : state.renderer; + + return this.reference; + + } + +} + +/** + * TSL function for creating a renderer reference node. + * + * @tsl + * @function + * @param {string} name - The name of the property the node refers to. + * @param {string} type - The uniform type that should be used to represent the property value. + * @param {?Renderer} [renderer=null] - The renderer the property belongs to. When no renderer is set, + * the node refers to the renderer of the current state. + * @returns {RendererReferenceNode} + */ +const rendererReference = ( name, type, renderer = null ) => nodeObject( new RendererReferenceNode( name, type, renderer ) ); + +/** + * This node represents a tone mapping operation. + * + * @augments TempNode + */ +class ToneMappingNode extends TempNode { + + static get type() { + + return 'ToneMappingNode'; + + } + + /** + * Constructs a new tone mapping node. + * + * @param {number} toneMapping - The tone mapping type. + * @param {Node} exposureNode - The tone mapping exposure. + * @param {Node} [colorNode=null] - The color node to process. + */ + constructor( toneMapping, exposureNode = toneMappingExposure, colorNode = null ) { + + super( 'vec3' ); + + /** + * The tone mapping type. + * + * @type {number} + */ + this.toneMapping = toneMapping; + + /** + * The tone mapping exposure. + * + * @type {Node} + * @default null + */ + this.exposureNode = exposureNode; + + /** + * Represents the color to process. + * + * @type {?Node} + * @default null + */ + this.colorNode = colorNode; + + } + + /** + * Overwrites the default `customCacheKey()` implementation by including the tone + * mapping type into the cache key. + * + * @return {number} The hash. + */ + customCacheKey() { + + return hash$1( this.toneMapping ); + + } + + setup( builder ) { + + const colorNode = this.colorNode || builder.context.color; + const toneMapping = this.toneMapping; + + if ( toneMapping === NoToneMapping ) return colorNode; + + let outputNode = null; + + const toneMappingFn = builder.renderer.library.getToneMappingFunction( toneMapping ); + + if ( toneMappingFn !== null ) { + + outputNode = vec4( toneMappingFn( colorNode.rgb, this.exposureNode ), colorNode.a ); + + } else { + + console.error( 'ToneMappingNode: Unsupported Tone Mapping configuration.', toneMapping ); + + outputNode = colorNode; + + } + + return outputNode; + + } + +} + +/** + * TSL function for creating a tone mapping node. + * + * @tsl + * @function + * @param {number} mapping - The tone mapping type. + * @param {Node | number} exposure - The tone mapping exposure. + * @param {Node | Color} color - The color node to process. + * @returns {ToneMappingNode} + */ +const toneMapping = ( mapping, exposure, color ) => nodeObject( new ToneMappingNode( mapping, nodeObject( exposure ), nodeObject( color ) ) ); + +/** + * TSL object that represents the global tone mapping exposure of the renderer. + * + * @tsl + * @type {RendererReferenceNode} + */ +const toneMappingExposure = /*@__PURE__*/ rendererReference( 'toneMappingExposure', 'float' ); + +addMethodChaining( 'toneMapping', ( color, mapping, exposure ) => toneMapping( mapping, exposure, color ) ); + +/** + * In earlier `three.js` versions it was only possible to define attribute data + * on geometry level. With `BufferAttributeNode`, it is also possible to do this + * on the node level. + * ```js + * const geometry = new THREE.PlaneGeometry(); + * const positionAttribute = geometry.getAttribute( 'position' ); + * + * const colors = []; + * for ( let i = 0; i < position.count; i ++ ) { + * colors.push( 1, 0, 0 ); + * } + * + * material.colorNode = bufferAttribute( new THREE.Float32BufferAttribute( colors, 3 ) ); + * ``` + * This new approach is especially interesting when geometry data are generated via + * compute shaders. The below line converts a storage buffer into an attribute node. + * ```js + * material.positionNode = positionBuffer.toAttribute(); + * ``` + * @augments InputNode + */ +class BufferAttributeNode extends InputNode { + + static get type() { + + return 'BufferAttributeNode'; + + } + + /** + * Constructs a new buffer attribute node. + * + * @param {BufferAttribute|InterleavedBuffer|TypedArray} value - The attribute data. + * @param {?string} [bufferType=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [bufferStride=0] - The buffer stride. + * @param {number} [bufferOffset=0] - The buffer offset. + */ + constructor( value, bufferType = null, bufferStride = 0, bufferOffset = 0 ) { + + super( value, bufferType ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBufferNode = true; + + /** + * The buffer type (e.g. `'vec3'`). + * + * @type {?string} + * @default null + */ + this.bufferType = bufferType; + + /** + * The buffer stride. + * + * @type {number} + * @default 0 + */ + this.bufferStride = bufferStride; + + /** + * The buffer offset. + * + * @type {number} + * @default 0 + */ + this.bufferOffset = bufferOffset; + + /** + * The usage property. Set this to `THREE.DynamicDrawUsage` via `.setUsage()`, + * if you are planning to update the attribute data per frame. + * + * @type {number} + * @default StaticDrawUsage + */ + this.usage = StaticDrawUsage; + + /** + * Whether the attribute is instanced or not. + * + * @type {boolean} + * @default false + */ + this.instanced = false; + + /** + * A reference to the buffer attribute. + * + * @type {?BufferAttribute} + * @default null + */ + this.attribute = null; + + /** + * `BufferAttributeNode` sets this property to `true` by default. + * + * @type {boolean} + * @default true + */ + this.global = true; + + if ( value && value.isBufferAttribute === true ) { + + this.attribute = value; + this.usage = value.usage; + this.instanced = value.isInstancedBufferAttribute; + + } + + } + + /** + * This method is overwritten since the attribute data might be shared + * and thus the hash should be shared as well. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The hash. + */ + getHash( builder ) { + + if ( this.bufferStride === 0 && this.bufferOffset === 0 ) { + + let bufferData = builder.globalCache.getData( this.value ); + + if ( bufferData === undefined ) { + + bufferData = { + node: this + }; + + builder.globalCache.setData( this.value, bufferData ); + + } + + return bufferData.node.uuid; + + } + + return this.uuid; + + } + + /** + * This method is overwritten since the node type is inferred from + * the buffer attribute. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + if ( this.bufferType === null ) { + + this.bufferType = builder.getTypeFromAttribute( this.attribute ); + + } + + return this.bufferType; + + } + + /** + * Depending on which value was passed to the node, `setup()` behaves + * differently. If no instance of `BufferAttribute` was passed, the method + * creates an internal attribute and configures it respectively. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + if ( this.attribute !== null ) return; + + const type = this.getNodeType( builder ); + const array = this.value; + const itemSize = builder.getTypeLength( type ); + const stride = this.bufferStride || itemSize; + const offset = this.bufferOffset; + + const buffer = array.isInterleavedBuffer === true ? array : new InterleavedBuffer( array, stride ); + const bufferAttribute = new InterleavedBufferAttribute( buffer, itemSize, offset ); + + buffer.setUsage( this.usage ); + + this.attribute = bufferAttribute; + this.attribute.isInstancedBufferAttribute = this.instanced; // @TODO: Add a possible: InstancedInterleavedBufferAttribute + + } + + /** + * Generates the code snippet of the buffer attribute node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The generated code snippet. + */ + generate( builder ) { + + const nodeType = this.getNodeType( builder ); + + const nodeAttribute = builder.getBufferAttributeFromNode( this, nodeType ); + const propertyName = builder.getPropertyName( nodeAttribute ); + + let output = null; + + if ( builder.shaderStage === 'vertex' || builder.shaderStage === 'compute' ) { + + this.name = propertyName; + + output = propertyName; + + } else { + + const nodeVarying = varying( this ); + + output = nodeVarying.build( builder, nodeType ); + + } + + return output; + + } + + /** + * Overwrites the default implementation to return a fixed value `'bufferAttribute'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return 'bufferAttribute'; + + } + + /** + * Sets the `usage` property to the given value. + * + * @param {number} value - The usage to set. + * @return {BufferAttributeNode} A reference to this node. + */ + setUsage( value ) { + + this.usage = value; + + if ( this.attribute && this.attribute.isBufferAttribute === true ) { + + this.attribute.usage = value; + + } + + return this; + + } + + /** + * Sets the `instanced` property to the given value. + * + * @param {boolean} value - The value to set. + * @return {BufferAttributeNode} A reference to this node. + */ + setInstanced( value ) { + + this.instanced = value; + + return this; + + } + +} + +/** + * TSL function for creating a buffer attribute node. + * + * @tsl + * @function + * @param {BufferAttribute|InterleavedBuffer|TypedArray} array - The attribute data. + * @param {?string} [type=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [stride=0] - The buffer stride. + * @param {number} [offset=0] - The buffer offset. + * @returns {BufferAttributeNode} + */ +const bufferAttribute = ( array, type = null, stride = 0, offset = 0 ) => nodeObject( new BufferAttributeNode( array, type, stride, offset ) ); + +/** + * TSL function for creating a buffer attribute node but with dynamic draw usage. + * Use this function if attribute data are updated per frame. + * + * @tsl + * @function + * @param {BufferAttribute|InterleavedBuffer|TypedArray} array - The attribute data. + * @param {?string} [type=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [stride=0] - The buffer stride. + * @param {number} [offset=0] - The buffer offset. + * @returns {BufferAttributeNode} + */ +const dynamicBufferAttribute = ( array, type = null, stride = 0, offset = 0 ) => bufferAttribute( array, type, stride, offset ).setUsage( DynamicDrawUsage ); + +/** + * TSL function for creating a buffer attribute node but with enabled instancing + * + * @tsl + * @function + * @param {BufferAttribute|InterleavedBuffer|TypedArray} array - The attribute data. + * @param {?string} [type=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [stride=0] - The buffer stride. + * @param {number} [offset=0] - The buffer offset. + * @returns {BufferAttributeNode} + */ +const instancedBufferAttribute = ( array, type = null, stride = 0, offset = 0 ) => bufferAttribute( array, type, stride, offset ).setInstanced( true ); + +/** + * TSL function for creating a buffer attribute node but with dynamic draw usage and enabled instancing + * + * @tsl + * @function + * @param {BufferAttribute|InterleavedBuffer|TypedArray} array - The attribute data. + * @param {?string} [type=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [stride=0] - The buffer stride. + * @param {number} [offset=0] - The buffer offset. + * @returns {BufferAttributeNode} + */ +const instancedDynamicBufferAttribute = ( array, type = null, stride = 0, offset = 0 ) => dynamicBufferAttribute( array, type, stride, offset ).setInstanced( true ); + +addMethodChaining( 'toAttribute', ( bufferNode ) => bufferAttribute( bufferNode.value ) ); + +/** + * TODO + * + * @augments Node + */ +class ComputeNode extends Node { + + static get type() { + + return 'ComputeNode'; + + } + + /** + * Constructs a new compute node. + * + * @param {Node} computeNode - TODO + * @param {number} count - TODO. + * @param {Array} [workgroupSize=[64]] - TODO. + */ + constructor( computeNode, count, workgroupSize = [ 64 ] ) { + + super( 'void' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isComputeNode = true; + + /** + * TODO + * + * @type {Node} + */ + this.computeNode = computeNode; + + /** + * TODO + * + * @type {number} + */ + this.count = count; + + /** + * TODO + * + * @type {Array} + * @default [64] + */ + this.workgroupSize = workgroupSize; + + /** + * TODO + * + * @type {number} + */ + this.dispatchCount = 0; + + /** + * TODO + * + * @type {number} + */ + this.version = 1; + + /** + * The name or label of the uniform. + * + * @type {string} + * @default '' + */ + this.name = ''; + + /** + * The `updateBeforeType` is set to `NodeUpdateType.OBJECT` since {@link ComputeNode#updateBefore} + * is executed once per object by default. + * + * @type {string} + * @default 'object' + */ + this.updateBeforeType = NodeUpdateType.OBJECT; + + /** + * TODO + * + * @type {?Function} + */ + this.onInitFunction = null; + + this.updateDispatchCount(); + + } + + /** + * Executes the `dispose` event for this node. + */ + dispose() { + + this.dispatchEvent( { type: 'dispose' } ); + + } + + /** + * Sets the {@link ComputeNode#name} property. + * + * @param {string} name - The name of the uniform. + * @return {ComputeNode} A reference to this node. + */ + label( name ) { + + this.name = name; + + return this; + + } + + /** + * TODO + */ + updateDispatchCount() { + + const { count, workgroupSize } = this; + + let size = workgroupSize[ 0 ]; + + for ( let i = 1; i < workgroupSize.length; i ++ ) + size *= workgroupSize[ i ]; + + this.dispatchCount = Math.ceil( count / size ); + + } + + /** + * TODO + * + * @param {Function} callback - TODO. + * @return {ComputeNode} A reference to this node. + */ + onInit( callback ) { + + this.onInitFunction = callback; + + return this; + + } + + /** + * The method execute the compute for this node. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + updateBefore( { renderer } ) { + + renderer.compute( this ); + + } + + setup( builder ) { + + const result = this.computeNode.build( builder ); + + if ( result ) { + + const properties = builder.getNodeProperties( this ); + properties.outputComputeNode = result.outputNode; + + result.outputNode = null; + + } + + return result; + + } + + generate( builder, output ) { + + const { shaderStage } = builder; + + if ( shaderStage === 'compute' ) { + + const snippet = this.computeNode.build( builder, 'void' ); + + if ( snippet !== '' ) { + + builder.addLineFlowCode( snippet, this ); + + } + + } else { + + const properties = builder.getNodeProperties( this ); + const outputComputeNode = properties.outputComputeNode; + + if ( outputComputeNode ) { + + return outputComputeNode.build( builder, output ); + + } + + } + + } + +} + +/** + * TSL function for creating a compute node. + * + * @tsl + * @function + * @param {Node} node - TODO + * @param {number} count - TODO. + * @param {Array} [workgroupSize=[64]] - TODO. + * @returns {AtomicFunctionNode} + */ +const compute = ( node, count, workgroupSize ) => nodeObject( new ComputeNode( nodeObject( node ), count, workgroupSize ) ); + +addMethodChaining( 'compute', compute ); + +/** + * This node can be used as a cache management component for another node. + * Caching is in general used by default in {@link NodeBuilder} but this node + * allows the usage of a shared parent cache during the build process. + * + * @augments Node + */ +class CacheNode extends Node { + + static get type() { + + return 'CacheNode'; + + } + + /** + * Constructs a new cache node. + * + * @param {Node} node - The node that should be cached. + * @param {boolean} [parent=true] - Whether this node refers to a shared parent cache or not. + */ + constructor( node, parent = true ) { + + super(); + + /** + * The node that should be cached. + * + * @type {Node} + */ + this.node = node; + + /** + * Whether this node refers to a shared parent cache or not. + * + * @type {boolean} + * @default true + */ + this.parent = parent; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCacheNode = true; + + } + + getNodeType( builder ) { + + const previousCache = builder.getCache(); + const cache = builder.getCacheFromNode( this, this.parent ); + + builder.setCache( cache ); + + const nodeType = this.node.getNodeType( builder ); + + builder.setCache( previousCache ); + + return nodeType; + + } + + build( builder, ...params ) { + + const previousCache = builder.getCache(); + const cache = builder.getCacheFromNode( this, this.parent ); + + builder.setCache( cache ); + + const data = this.node.build( builder, ...params ); + + builder.setCache( previousCache ); + + return data; + + } + +} + +/** + * TSL function for creating a cache node. + * + * @tsl + * @function + * @param {Node} node - The node that should be cached. + * @param {boolean} [parent] - Whether this node refers to a shared parent cache or not. + * @returns {CacheNode} + */ +const cache = ( node, parent ) => nodeObject( new CacheNode( nodeObject( node ), parent ) ); + +/** + * Assigns a namespace to the given node by updating its context. + * + * Important for TSL functions that use `.once( namespace )` to ensure that the namespace will run twice, + * once when the node is build in the specific namespace and once when the node is built in the others namespace. + * + * This is useful for nodes like `positionWorld` that need to be re-updated if used in `material.positionNode` and outside of it in the same material. + * + * @param {Object} node - The node to which the namespace will be assigned. + * @param {string} namespace - The namespace to be assigned to the node. + * @returns {Object} The updated node with the new namespace in its context. + */ +const namespace = ( node, namespace ) => node.context( { namespace } ); + +addMethodChaining( 'cache', cache ); + +/** + * The class generates the code of a given node but returns another node in the output. + * This can be used to call a method or node that does not return a value, i.e. + * type `void` on an input where returning a value is required. Example: + * + * ```js + * material.colorNode = myColor.bypass( runVoidFn() ) + *``` + * + * @augments Node + */ +class BypassNode extends Node { + + static get type() { + + return 'BypassNode'; + + } + + /** + * Constructs a new bypass node. + * + * @param {Node} outputNode - The output node. + * @param {Node} callNode - The call node. + */ + constructor( outputNode, callNode ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBypassNode = true; + + /** + * The output node. + * + * @type {Node} + */ + this.outputNode = outputNode; + + /** + * The call node. + * + * @type {Node} + */ + this.callNode = callNode; + + } + + getNodeType( builder ) { + + return this.outputNode.getNodeType( builder ); + + } + + generate( builder ) { + + const snippet = this.callNode.build( builder, 'void' ); + + if ( snippet !== '' ) { + + builder.addLineFlowCode( snippet, this ); + + } + + return this.outputNode.build( builder ); + + } + +} + +/** + * TSL function for creating a bypass node. + * + * @tsl + * @function + * @param {Node} outputNode - The output node. + * @param {Node} callNode - The call node. + * @returns {BypassNode} + */ +const bypass = /*@__PURE__*/ nodeProxy( BypassNode ).setParameterLength( 2 ); + +addMethodChaining( 'bypass', bypass ); + +/** + * This node allows to remap a node value from one range into another. E.g a value of + * `0.4` in the range `[ 0.3, 0.5 ]` should be remapped into the normalized range `[ 0, 1 ]`. + * `RemapNode` takes care of that and converts the original value of `0.4` to `0.5`. + * + * @augments Node + */ +class RemapNode extends Node { + + static get type() { + + return 'RemapNode'; + + } + + /** + * Constructs a new remap node. + * + * @param {Node} node - The node that should be remapped. + * @param {Node} inLowNode - The source or current lower bound of the range. + * @param {Node} inHighNode - The source or current upper bound of the range. + * @param {Node} [outLowNode=float(0)] - The target lower bound of the range. + * @param {Node} [outHighNode=float(1)] - The target upper bound of the range. + */ + constructor( node, inLowNode, inHighNode, outLowNode = float( 0 ), outHighNode = float( 1 ) ) { + + super(); + + /** + * The node that should be remapped. + * + * @type {Node} + */ + this.node = node; + + /** + * The source or current lower bound of the range. + * + * @type {Node} + */ + this.inLowNode = inLowNode; + + /** + * The source or current upper bound of the range. + * + * @type {Node} + */ + this.inHighNode = inHighNode; + + /** + * The target lower bound of the range. + * + * @type {Node} + * @default float(0) + */ + this.outLowNode = outLowNode; + + /** + * The target upper bound of the range. + * + * @type {Node} + * @default float(1) + */ + this.outHighNode = outHighNode; + + /** + * Whether the node value should be clamped before + * remapping it to the target range. + * + * @type {boolean} + * @default true + */ + this.doClamp = true; + + } + + setup() { + + const { node, inLowNode, inHighNode, outLowNode, outHighNode, doClamp } = this; + + let t = node.sub( inLowNode ).div( inHighNode.sub( inLowNode ) ); + + if ( doClamp === true ) t = t.clamp(); + + return t.mul( outHighNode.sub( outLowNode ) ).add( outLowNode ); + + } + +} + +/** + * TSL function for creating a remap node. + * + * @tsl + * @function + * @param {Node} node - The node that should be remapped. + * @param {Node} inLowNode - The source or current lower bound of the range. + * @param {Node} inHighNode - The source or current upper bound of the range. + * @param {?Node} [outLowNode=float(0)] - The target lower bound of the range. + * @param {?Node} [outHighNode=float(1)] - The target upper bound of the range. + * @returns {RemapNode} + */ +const remap = /*@__PURE__*/ nodeProxy( RemapNode, null, null, { doClamp: false } ).setParameterLength( 3, 5 ); + +/** + * TSL function for creating a remap node, but with enabled clamping. + * + * @tsl + * @function + * @param {Node} node - The node that should be remapped. + * @param {Node} inLowNode - The source or current lower bound of the range. + * @param {Node} inHighNode - The source or current upper bound of the range. + * @param {?Node} [outLowNode=float(0)] - The target lower bound of the range. + * @param {?Node} [outHighNode=float(1)] - The target upper bound of the range. + * @returns {RemapNode} + */ +const remapClamp = /*@__PURE__*/ nodeProxy( RemapNode ).setParameterLength( 3, 5 ); + +addMethodChaining( 'remap', remap ); +addMethodChaining( 'remapClamp', remapClamp ); + +/** + * This class can be used to implement basic expressions in shader code. + * Basic examples for that are `return`, `continue` or `discard` statements. + * + * @augments Node + */ +class ExpressionNode extends Node { + + static get type() { + + return 'ExpressionNode'; + + } + + /** + * Constructs a new expression node. + * + * @param {string} [snippet=''] - The native code snippet. + * @param {string} [nodeType='void'] - The node type. + */ + constructor( snippet = '', nodeType = 'void' ) { + + super( nodeType ); + + /** + * The native code snippet. + * + * @type {string} + * @default '' + */ + this.snippet = snippet; + + } + + generate( builder, output ) { + + const type = this.getNodeType( builder ); + const snippet = this.snippet; + + if ( type === 'void' ) { + + builder.addLineFlowCode( snippet, this ); + + } else { + + return builder.format( snippet, type, output ); + + } + + } + +} + +/** + * TSL function for creating an expression node. + * + * @tsl + * @function + * @param {string} [snippet] - The native code snippet. + * @param {?string} [nodeType='void'] - The node type. + * @returns {ExpressionNode} + */ +const expression = /*@__PURE__*/ nodeProxy( ExpressionNode ).setParameterLength( 1, 2 ); + +/** + * Represents a `discard` shader operation in TSL. + * + * @tsl + * @function + * @param {?ConditionalNode} conditional - An optional conditional node. It allows to decide whether the discard should be executed or not. + * @return {Node} The `discard` expression. + */ +const Discard = ( conditional ) => ( conditional ? select( conditional, expression( 'discard' ) ) : expression( 'discard' ) ).toStack(); + +/** + * Represents a `return` shader operation in TSL. + * + * @tsl + * @function + * @return {ExpressionNode} The `return` expression. + */ +const Return = () => expression( 'return' ).toStack(); + +addMethodChaining( 'discard', Discard ); + +/** + * Normally, tone mapping and color conversion happens automatically + * before outputting pixel too the default (screen) framebuffer. In certain + * post processing setups this happens to late because certain effects + * require e.g. sRGB input. For such scenarios, `RenderOutputNode` can be used + * to apply tone mapping and color space conversion at an arbitrary point + * in the effect chain. + * + * When applying tone mapping and color space conversion manually with this node, + * you have to set {@link PostProcessing#outputColorTransform} to `false`. + * + * ```js + * const postProcessing = new PostProcessing( renderer ); + * postProcessing.outputColorTransform = false; + * + * const scenePass = pass( scene, camera ); + * const outputPass = renderOutput( scenePass ); + * + * postProcessing.outputNode = outputPass; + * ``` + * + * @augments TempNode + */ +class RenderOutputNode extends TempNode { + + static get type() { + + return 'RenderOutputNode'; + + } + + /** + * Constructs a new render output node. + * + * @param {Node} colorNode - The color node to process. + * @param {?number} toneMapping - The tone mapping type. + * @param {?string} outputColorSpace - The output color space. + */ + constructor( colorNode, toneMapping, outputColorSpace ) { + + super( 'vec4' ); + + /** + * The color node to process. + * + * @type {Node} + */ + this.colorNode = colorNode; + + /** + * The tone mapping type. + * + * @type {?number} + */ + this.toneMapping = toneMapping; + + /** + * The output color space. + * + * @type {?string} + */ + this.outputColorSpace = outputColorSpace; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isRenderOutputNode = true; + + } + + setup( { context } ) { + + let outputNode = this.colorNode || context.color; + + // tone mapping + + const toneMapping = ( this.toneMapping !== null ? this.toneMapping : context.toneMapping ) || NoToneMapping; + const outputColorSpace = ( this.outputColorSpace !== null ? this.outputColorSpace : context.outputColorSpace ) || NoColorSpace; + + if ( toneMapping !== NoToneMapping ) { + + outputNode = outputNode.toneMapping( toneMapping ); + + } + + // working to output color space + + if ( outputColorSpace !== NoColorSpace && outputColorSpace !== ColorManagement.workingColorSpace ) { + + outputNode = outputNode.workingToColorSpace( outputColorSpace ); + + } + + return outputNode; + + } + +} + +/** + * TSL function for creating a posterize node. + * + * @tsl + * @function + * @param {Node} color - The color node to process. + * @param {?number} [toneMapping=null] - The tone mapping type. + * @param {?string} [outputColorSpace=null] - The output color space. + * @returns {RenderOutputNode} + */ +const renderOutput = ( color, toneMapping = null, outputColorSpace = null ) => nodeObject( new RenderOutputNode( nodeObject( color ), toneMapping, outputColorSpace ) ); + +addMethodChaining( 'renderOutput', renderOutput ); + +class DebugNode extends TempNode { + + static get type() { + + return 'DebugNode'; + + } + + constructor( node, callback = null ) { + + super(); + + this.node = node; + this.callback = callback; + + } + + getNodeType( builder ) { + + return this.node.getNodeType( builder ); + + } + + setup( builder ) { + + return this.node.build( builder ); + + } + + analyze( builder ) { + + return this.node.build( builder ); + + } + + generate( builder ) { + + const callback = this.callback; + const snippet = this.node.build( builder ); + + const title = '--- TSL debug - ' + builder.shaderStage + ' shader ---'; + const border = '-'.repeat( title.length ); + + let code = ''; + code += '// #' + title + '#\n'; + code += builder.flow.code.replace( /^\t/mg, '' ) + '\n'; + code += '/* ... */ ' + snippet + ' /* ... */\n'; + code += '// #' + border + '#\n'; + + if ( callback !== null ) { + + callback( builder, code ); + + } else { + + console.log( code ); + + } + + return snippet; + + } + +} + +/** + * TSL function for creating a debug node. + * + * @tsl + * @function + * @param {Node} node - The node to debug. + * @param {?Function} [callback=null] - Optional callback function to handle the debug output. + * @returns {DebugNode} + */ +const debug = ( node, callback = null ) => nodeObject( new DebugNode( nodeObject( node ), callback ) ); + +addMethodChaining( 'debug', debug ); + +// Non-PURE exports list, side-effects are required here. +// TSL Base Syntax + + +function addNodeElement( name/*, nodeElement*/ ) { + + console.warn( 'THREE.TSL: AddNodeElement has been removed in favor of tree-shaking. Trying add', name ); + +} + +/** + * Base class for representing shader attributes as nodes. + * + * @augments Node + */ +class AttributeNode extends Node { + + static get type() { + + return 'AttributeNode'; + + } + + /** + * Constructs a new attribute node. + * + * @param {string} attributeName - The name of the attribute. + * @param {?string} nodeType - The node type. + */ + constructor( attributeName, nodeType = null ) { + + super( nodeType ); + + /** + * `AttributeNode` sets this property to `true` by default. + * + * @type {boolean} + * @default true + */ + this.global = true; + + this._attributeName = attributeName; + + } + + getHash( builder ) { + + return this.getAttributeName( builder ); + + } + + getNodeType( builder ) { + + let nodeType = this.nodeType; + + if ( nodeType === null ) { + + const attributeName = this.getAttributeName( builder ); + + if ( builder.hasGeometryAttribute( attributeName ) ) { + + const attribute = builder.geometry.getAttribute( attributeName ); + + nodeType = builder.getTypeFromAttribute( attribute ); + + } else { + + nodeType = 'float'; + + } + + } + + return nodeType; + + } + + /** + * Sets the attribute name to the given value. The method can be + * overwritten in derived classes if the final name must be computed + * analytically. + * + * @param {string} attributeName - The name of the attribute. + * @return {AttributeNode} A reference to this node. + */ + setAttributeName( attributeName ) { + + this._attributeName = attributeName; + + return this; + + } + + /** + * Returns the attribute name of this node. The method can be + * overwritten in derived classes if the final name must be computed + * analytically. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The attribute name. + */ + getAttributeName( /*builder*/ ) { + + return this._attributeName; + + } + + generate( builder ) { + + const attributeName = this.getAttributeName( builder ); + const nodeType = this.getNodeType( builder ); + const geometryAttribute = builder.hasGeometryAttribute( attributeName ); + + if ( geometryAttribute === true ) { + + const attribute = builder.geometry.getAttribute( attributeName ); + const attributeType = builder.getTypeFromAttribute( attribute ); + + const nodeAttribute = builder.getAttribute( attributeName, attributeType ); + + if ( builder.shaderStage === 'vertex' ) { + + return builder.format( nodeAttribute.name, attributeType, nodeType ); + + } else { + + const nodeVarying = varying( this ); + + return nodeVarying.build( builder, nodeType ); + + } + + } else { + + console.warn( `AttributeNode: Vertex attribute "${ attributeName }" not found on geometry.` ); + + return builder.generateConst( nodeType ); + + } + + } + + serialize( data ) { + + super.serialize( data ); + + data.global = this.global; + data._attributeName = this._attributeName; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.global = data.global; + this._attributeName = data._attributeName; + + } + +} + +/** + * TSL function for creating an attribute node. + * + * @tsl + * @function + * @param {string} name - The name of the attribute. + * @param {?string} [nodeType=null] - The node type. + * @returns {AttributeNode} + */ +const attribute = ( name, nodeType = null ) => nodeObject( new AttributeNode( name, nodeType ) ); + +/** + * TSL function for creating an uv attribute node with the given index. + * + * @tsl + * @function + * @param {number} [index=0] - The uv index. + * @return {AttributeNode} The uv attribute node. + */ +const uv = ( index = 0 ) => attribute( 'uv' + ( index > 0 ? index : '' ), 'vec2' ); + +/** + * A node that represents the dimensions of a texture. The texture size is + * retrieved in the shader via built-in shader functions like `textureDimensions()` + * or `textureSize()`. + * + * @augments Node + */ +class TextureSizeNode extends Node { + + static get type() { + + return 'TextureSizeNode'; + + } + + /** + * Constructs a new texture size node. + * + * @param {TextureNode} textureNode - A texture node which size should be retrieved. + * @param {?Node} [levelNode=null] - A level node which defines the requested mip. + */ + constructor( textureNode, levelNode = null ) { + + super( 'uvec2' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isTextureSizeNode = true; + + /** + * A texture node which size should be retrieved. + * + * @type {TextureNode} + */ + this.textureNode = textureNode; + + /** + * A level node which defines the requested mip. + * + * @type {Node} + * @default null + */ + this.levelNode = levelNode; + + } + + generate( builder, output ) { + + const textureProperty = this.textureNode.build( builder, 'property' ); + const level = this.levelNode === null ? '0' : this.levelNode.build( builder, 'int' ); + + return builder.format( `${ builder.getMethod( 'textureDimensions' ) }( ${ textureProperty }, ${ level } )`, this.getNodeType( builder ), output ); + + } + +} + +/** + * TSL function for creating a texture size node. + * + * @tsl + * @function + * @param {TextureNode} textureNode - A texture node which size should be retrieved. + * @param {?Node} [levelNode=null] - A level node which defines the requested mip. + * @returns {TextureSizeNode} + */ +const textureSize = /*@__PURE__*/ nodeProxy( TextureSizeNode ).setParameterLength( 1, 2 ); + +/** + * A special type of uniform node that computes the + * maximum mipmap level for a given texture node. + * + * ```js + * const level = maxMipLevel( textureNode ); + * ``` + * + * @augments UniformNode + */ +class MaxMipLevelNode extends UniformNode { + + static get type() { + + return 'MaxMipLevelNode'; + + } + + /** + * Constructs a new max mip level node. + * + * @param {TextureNode} textureNode - The texture node to compute the max mip level for. + */ + constructor( textureNode ) { + + super( 0 ); + + /** + * The texture node to compute the max mip level for. + * + * @private + * @type {TextureNode} + */ + this._textureNode = textureNode; + + /** + * The `updateType` is set to `NodeUpdateType.FRAME` since the node updates + * the texture once per frame in its {@link MaxMipLevelNode#update} method. + * + * @type {string} + * @default 'frame' + */ + this.updateType = NodeUpdateType.FRAME; + + } + + /** + * The texture node to compute the max mip level for. + * + * @readonly + * @type {TextureNode} + */ + get textureNode() { + + return this._textureNode; + + } + + /** + * The texture. + * + * @readonly + * @type {Texture} + */ + get texture() { + + return this._textureNode.value; + + } + + update() { + + const texture = this.texture; + const images = texture.images; + const image = ( images && images.length > 0 ) ? ( ( images[ 0 ] && images[ 0 ].image ) || images[ 0 ] ) : texture.image; + + if ( image && image.width !== undefined ) { + + const { width, height } = image; + + this.value = Math.log2( Math.max( width, height ) ); + + } + + } + +} + +/** + * TSL function for creating a max mip level node. + * + * @tsl + * @function + * @param {TextureNode} textureNode - The texture node to compute the max mip level for. + * @returns {MaxMipLevelNode} + */ +const maxMipLevel = /*@__PURE__*/ nodeProxy( MaxMipLevelNode ).setParameterLength( 1 ); + +const EmptyTexture$1 = /*@__PURE__*/ new Texture(); + +/** + * This type of uniform node represents a 2D texture. + * + * @augments UniformNode + */ +class TextureNode extends UniformNode { + + static get type() { + + return 'TextureNode'; + + } + + /** + * Constructs a new texture node. + * + * @param {Texture} [value=EmptyTexture] - The texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + */ + constructor( value = EmptyTexture$1, uvNode = null, levelNode = null, biasNode = null ) { + + super( value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isTextureNode = true; + + /** + * Represents the texture coordinates. + * + * @type {?Node} + * @default null + */ + this.uvNode = uvNode; + + /** + * Represents the mip level that should be selected. + * + * @type {?Node} + * @default null + */ + this.levelNode = levelNode; + + /** + * Represents the bias to be applied during level-of-detail computation. + * + * @type {?Node} + * @default null + */ + this.biasNode = biasNode; + + /** + * Represents a reference value a texture sample is compared to. + * + * @type {?Node} + * @default null + */ + this.compareNode = null; + + /** + * When using texture arrays, the depth node defines the layer to select. + * + * @type {?Node} + * @default null + */ + this.depthNode = null; + + /** + * When defined, a texture is sampled using explicit gradients. + * + * @type {?Array>} + * @default null + */ + this.gradNode = null; + + /** + * Whether texture values should be sampled or fetched. + * + * @type {boolean} + * @default true + */ + this.sampler = true; + + /** + * Whether the uv transformation matrix should be + * automatically updated or not. Use `setUpdateMatrix()` + * if you want to change the value of the property. + * + * @type {boolean} + * @default false + */ + this.updateMatrix = false; + + /** + * By default the `update()` method is not executed. `setUpdateMatrix()` + * sets the value to `frame` when the uv transformation matrix should + * automatically be updated. + * + * @type {string} + * @default 'none' + */ + this.updateType = NodeUpdateType.NONE; + + /** + * The reference node. + * + * @type {?Node} + * @default null + */ + this.referenceNode = null; + + /** + * The texture value is stored in a private property. + * + * @private + * @type {Texture} + */ + this._value = value; + + /** + * The uniform node that represents the uv transformation matrix. + * + * @private + * @type {?UniformNode} + */ + this._matrixUniform = null; + + this.setUpdateMatrix( uvNode === null ); + + } + + set value( value ) { + + if ( this.referenceNode ) { + + this.referenceNode.value = value; + + } else { + + this._value = value; + + } + + } + + /** + * The texture value. + * + * @type {Texture} + */ + get value() { + + return this.referenceNode ? this.referenceNode.value : this._value; + + } + + /** + * Overwritten since the uniform hash is defined by the texture's UUID. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The uniform hash. + */ + getUniformHash( /*builder*/ ) { + + return this.value.uuid; + + } + + /** + * Overwritten since the node type is inferred from the texture type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( /*builder*/ ) { + + if ( this.value.isDepthTexture === true ) return 'float'; + + if ( this.value.type === UnsignedIntType ) { + + return 'uvec4'; + + } else if ( this.value.type === IntType ) { + + return 'ivec4'; + + } + + return 'vec4'; + + } + + /** + * Overwrites the default implementation to return a fixed value `'texture'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return 'texture'; + + } + + /** + * Returns a default uvs based on the current texture's channel. + * + * @return {AttributeNode} The default uvs. + */ + getDefaultUV() { + + return uv( this.value.channel ); + + } + + /** + * Overwritten to always return the texture reference of the node. + * + * @param {any} state - This method can be invocated in different contexts so `state` can refer to any object type. + * @return {Texture} The texture reference. + */ + updateReference( /*state*/ ) { + + return this.value; + + } + + /** + * Transforms the given uv node with the texture transformation matrix. + * + * @param {Node} uvNode - The uv node to transform. + * @return {Node} The transformed uv node. + */ + getTransformedUV( uvNode ) { + + if ( this._matrixUniform === null ) this._matrixUniform = uniform( this.value.matrix ); + + return this._matrixUniform.mul( vec3( uvNode, 1 ) ).xy; + + } + + /** + * Defines whether the uv transformation matrix should automatically be updated or not. + * + * @param {boolean} value - The update toggle. + * @return {TextureNode} A reference to this node. + */ + setUpdateMatrix( value ) { + + this.updateMatrix = value; + this.updateType = value ? NodeUpdateType.OBJECT : NodeUpdateType.NONE; + + return this; + + } + + /** + * Setups the uv node. Depending on the backend as well as texture's image and type, it might be necessary + * to modify the uv node for correct sampling. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} uvNode - The uv node to setup. + * @return {Node} The updated uv node. + */ + setupUV( builder, uvNode ) { + + const texture = this.value; + + if ( builder.isFlipY() && ( ( texture.image instanceof ImageBitmap && texture.flipY === true ) || texture.isRenderTargetTexture === true || texture.isFramebufferTexture === true || texture.isDepthTexture === true ) ) { + + if ( this.sampler ) { + + uvNode = uvNode.flipY(); + + } else { + + uvNode = uvNode.setY( int( textureSize( this, this.levelNode ).y ).sub( uvNode.y ).sub( 1 ) ); + + } + + } + + return uvNode; + + } + + /** + * Setups texture node by preparing the internal nodes for code generation. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + const properties = builder.getNodeProperties( this ); + properties.referenceNode = this.referenceNode; + + // + + const texture = this.value; + + if ( ! texture || texture.isTexture !== true ) { + + throw new Error( 'THREE.TSL: `texture( value )` function expects a valid instance of THREE.Texture().' ); + + } + + // + + let uvNode = this.uvNode; + + if ( ( uvNode === null || builder.context.forceUVContext === true ) && builder.context.getUV ) { + + uvNode = builder.context.getUV( this, builder ); + + } + + if ( ! uvNode ) uvNode = this.getDefaultUV(); + + if ( this.updateMatrix === true ) { + + uvNode = this.getTransformedUV( uvNode ); + + } + + uvNode = this.setupUV( builder, uvNode ); + + // + + let levelNode = this.levelNode; + + if ( levelNode === null && builder.context.getTextureLevel ) { + + levelNode = builder.context.getTextureLevel( this ); + + } + + // + + properties.uvNode = uvNode; + properties.levelNode = levelNode; + properties.biasNode = this.biasNode; + properties.compareNode = this.compareNode; + properties.gradNode = this.gradNode; + properties.depthNode = this.depthNode; + + } + + /** + * Generates the uv code snippet. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} uvNode - The uv node to generate code for. + * @return {string} The generated code snippet. + */ + generateUV( builder, uvNode ) { + + return uvNode.build( builder, this.sampler === true ? 'vec2' : 'ivec2' ); + + } + + /** + * Generates the snippet for the texture sampling. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} textureProperty - The texture property. + * @param {string} uvSnippet - The uv snippet. + * @param {?string} levelSnippet - The level snippet. + * @param {?string} biasSnippet - The bias snippet. + * @param {?string} depthSnippet - The depth snippet. + * @param {?string} compareSnippet - The compare snippet. + * @param {?Array} gradSnippet - The grad snippet. + * @return {string} The generated code snippet. + */ + generateSnippet( builder, textureProperty, uvSnippet, levelSnippet, biasSnippet, depthSnippet, compareSnippet, gradSnippet ) { + + const texture = this.value; + + let snippet; + + if ( levelSnippet ) { + + snippet = builder.generateTextureLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet ); + + } else if ( biasSnippet ) { + + snippet = builder.generateTextureBias( texture, textureProperty, uvSnippet, biasSnippet, depthSnippet ); + + } else if ( gradSnippet ) { + + snippet = builder.generateTextureGrad( texture, textureProperty, uvSnippet, gradSnippet, depthSnippet ); + + } else if ( compareSnippet ) { + + snippet = builder.generateTextureCompare( texture, textureProperty, uvSnippet, compareSnippet, depthSnippet ); + + } else if ( this.sampler === false ) { + + snippet = builder.generateTextureLoad( texture, textureProperty, uvSnippet, depthSnippet ); + + } else { + + snippet = builder.generateTexture( texture, textureProperty, uvSnippet, depthSnippet ); + + } + + return snippet; + + } + + /** + * Generates the code snippet of the texture node. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} output - The current output. + * @return {string} The generated code snippet. + */ + generate( builder, output ) { + + const texture = this.value; + + const properties = builder.getNodeProperties( this ); + const textureProperty = super.generate( builder, 'property' ); + + if ( /^sampler/.test( output ) ) { + + return textureProperty + '_sampler'; + + } else if ( builder.isReference( output ) ) { + + return textureProperty; + + } else { + + const nodeData = builder.getDataFromNode( this ); + + let propertyName = nodeData.propertyName; + + if ( propertyName === undefined ) { + + const { uvNode, levelNode, biasNode, compareNode, depthNode, gradNode } = properties; + + const uvSnippet = this.generateUV( builder, uvNode ); + const levelSnippet = levelNode ? levelNode.build( builder, 'float' ) : null; + const biasSnippet = biasNode ? biasNode.build( builder, 'float' ) : null; + const depthSnippet = depthNode ? depthNode.build( builder, 'int' ) : null; + const compareSnippet = compareNode ? compareNode.build( builder, 'float' ) : null; + const gradSnippet = gradNode ? [ gradNode[ 0 ].build( builder, 'vec2' ), gradNode[ 1 ].build( builder, 'vec2' ) ] : null; + + const nodeVar = builder.getVarFromNode( this ); + + propertyName = builder.getPropertyName( nodeVar ); + + const snippet = this.generateSnippet( builder, textureProperty, uvSnippet, levelSnippet, biasSnippet, depthSnippet, compareSnippet, gradSnippet ); + + builder.addLineFlowCode( `${propertyName} = ${snippet}`, this ); + + nodeData.snippet = snippet; + nodeData.propertyName = propertyName; + + } + + let snippet = propertyName; + const nodeType = this.getNodeType( builder ); + + if ( builder.needsToWorkingColorSpace( texture ) ) { + + snippet = colorSpaceToWorking( expression( snippet, nodeType ), texture.colorSpace ).setup( builder ).build( builder, nodeType ); + + } + + return builder.format( snippet, nodeType, output ); + + } + + } + + /** + * Sets the sampler value. + * + * @param {boolean} value - The sampler value to set. + * @return {TextureNode} A reference to this texture node. + */ + setSampler( value ) { + + this.sampler = value; + + return this; + + } + + /** + * Returns the sampler value. + * + * @return {boolean} The sampler value. + */ + getSampler() { + + return this.sampler; + + } + + // @TODO: Move to TSL + + /** + * @function + * @deprecated since r172. Use {@link TextureNode#sample} instead. + * + * @param {Node} uvNode - The uv node. + * @return {TextureNode} A texture node representing the texture sample. + */ + uv( uvNode ) { // @deprecated, r172 + + console.warn( 'THREE.TextureNode: .uv() has been renamed. Use .sample() instead.' ); + + return this.sample( uvNode ); + + } + + /** + * Samples the texture with the given uv node. + * + * @param {Node} uvNode - The uv node. + * @return {TextureNode} A texture node representing the texture sample. + */ + sample( uvNode ) { + + const textureNode = this.clone(); + textureNode.uvNode = nodeObject( uvNode ); + textureNode.referenceNode = this.getSelf(); + + return nodeObject( textureNode ); + + } + + /** + * Samples a blurred version of the texture by defining an internal bias. + * + * @param {Node} amountNode - How blurred the texture should be. + * @return {TextureNode} A texture node representing the texture sample. + */ + blur( amountNode ) { + + const textureNode = this.clone(); + textureNode.biasNode = nodeObject( amountNode ).mul( maxMipLevel( textureNode ) ); + textureNode.referenceNode = this.getSelf(); + + const map = textureNode.value; + + if ( textureNode.generateMipmaps === false && ( map && map.generateMipmaps === false || map.minFilter === NearestFilter || map.magFilter === NearestFilter ) ) { + + console.warn( 'THREE.TSL: texture().blur() requires mipmaps and sampling. Use .generateMipmaps=true and .minFilter/.magFilter=THREE.LinearFilter in the Texture.' ); + + textureNode.biasNode = null; + + } + + return nodeObject( textureNode ); + + } + + /** + * Samples a specific mip of the texture. + * + * @param {Node} levelNode - The mip level to sample. + * @return {TextureNode} A texture node representing the texture sample. + */ + level( levelNode ) { + + const textureNode = this.clone(); + textureNode.levelNode = nodeObject( levelNode ); + textureNode.referenceNode = this.getSelf(); + + return nodeObject( textureNode ); + + } + + /** + * Returns the texture size of the requested level. + * + * @param {Node} levelNode - The level to compute the size for. + * @return {TextureSizeNode} The texture size. + */ + size( levelNode ) { + + return textureSize( this, levelNode ); + + } + + /** + * Samples the texture with the given bias. + * + * @param {Node} biasNode - The bias node. + * @return {TextureNode} A texture node representing the texture sample. + */ + bias( biasNode ) { + + const textureNode = this.clone(); + textureNode.biasNode = nodeObject( biasNode ); + textureNode.referenceNode = this.getSelf(); + + return nodeObject( textureNode ); + + } + + /** + * Samples the texture by executing a compare operation. + * + * @param {Node} compareNode - The node that defines the compare value. + * @return {TextureNode} A texture node representing the texture sample. + */ + compare( compareNode ) { + + const textureNode = this.clone(); + textureNode.compareNode = nodeObject( compareNode ); + textureNode.referenceNode = this.getSelf(); + + return nodeObject( textureNode ); + + } + + /** + * Samples the texture using an explicit gradient. + * + * @param {Node} gradNodeX - The gradX node. + * @param {Node} gradNodeY - The gradY node. + * @return {TextureNode} A texture node representing the texture sample. + */ + grad( gradNodeX, gradNodeY ) { + + const textureNode = this.clone(); + textureNode.gradNode = [ nodeObject( gradNodeX ), nodeObject( gradNodeY ) ]; + textureNode.referenceNode = this.getSelf(); + + return nodeObject( textureNode ); + + } + + /** + * Samples the texture by defining a depth node. + * + * @param {Node} depthNode - The depth node. + * @return {TextureNode} A texture node representing the texture sample. + */ + depth( depthNode ) { + + const textureNode = this.clone(); + textureNode.depthNode = nodeObject( depthNode ); + textureNode.referenceNode = this.getSelf(); + + return nodeObject( textureNode ); + + } + + // -- + + serialize( data ) { + + super.serialize( data ); + + data.value = this.value.toJSON( data.meta ).uuid; + data.sampler = this.sampler; + data.updateMatrix = this.updateMatrix; + data.updateType = this.updateType; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.value = data.meta.textures[ data.value ]; + this.sampler = data.sampler; + this.updateMatrix = data.updateMatrix; + this.updateType = data.updateType; + + } + + /** + * The update is used to implement the update of the uv transformation matrix. + */ + update() { + + const texture = this.value; + const matrixUniform = this._matrixUniform; + + if ( matrixUniform !== null ) matrixUniform.value = texture.matrix; + + if ( texture.matrixAutoUpdate === true ) { + + texture.updateMatrix(); + + } + + } + + /** + * Clones the texture node. + * + * @return {TextureNode} The cloned texture node. + */ + clone() { + + const newNode = new this.constructor( this.value, this.uvNode, this.levelNode, this.biasNode ); + newNode.sampler = this.sampler; + newNode.depthNode = this.depthNode; + newNode.compareNode = this.compareNode; + newNode.gradNode = this.gradNode; + + return newNode; + + } + +} + +/** + * TSL function for creating a texture node. + * + * @tsl + * @function + * @param {?Texture} value - The texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + * @returns {TextureNode} + */ +const textureBase = /*@__PURE__*/ nodeProxy( TextureNode ).setParameterLength( 1, 4 ).setName( 'texture' ); + +/** + * TSL function for creating a texture node or sample a texture node already existing. + * + * @tsl + * @function + * @param {?Texture|TextureNode} [value=EmptyTexture] - The texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + * @returns {TextureNode} + */ +const texture = ( value = EmptyTexture$1, uvNode = null, levelNode = null, biasNode = null ) => { + + let textureNode; + + if ( value && value.isTextureNode === true ) { + + textureNode = nodeObject( value.clone() ); + textureNode.referenceNode = value.getSelf(); // Ensure the reference is set to the original node + + if ( uvNode !== null ) textureNode.uvNode = nodeObject( uvNode ); + if ( levelNode !== null ) textureNode.levelNode = nodeObject( levelNode ); + if ( biasNode !== null ) textureNode.biasNode = nodeObject( biasNode ); + + } else { + + textureNode = textureBase( value, uvNode, levelNode, biasNode ); + + } + + return textureNode; + +}; + +/** + * TSL function for creating a uniform texture node. + * + * @tsl + * @function + * @param {?Texture} value - The texture. + * @returns {TextureNode} + */ +const uniformTexture = ( value = EmptyTexture$1 ) => texture( value ); + +/** + * TSL function for creating a texture node that fetches/loads texels without interpolation. + * + * @tsl + * @function + * @param {?Texture|TextureNode} [value=EmptyTexture] - The texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + * @returns {TextureNode} + */ +const textureLoad = ( ...params ) => texture( ...params ).setSampler( false ); + +//export const textureLevel = ( value, uv, level ) => texture( value, uv ).level( level ); + +/** + * Converts a texture or texture node to a sampler. + * + * @tsl + * @function + * @param {TextureNode|Texture} value - The texture or texture node to convert. + * @returns {Node} + */ +const sampler = ( value ) => ( value.isNode === true ? value : texture( value ) ).convert( 'sampler' ); + +/** + * Converts a texture or texture node to a sampler comparison. + * + * @tsl + * @function + * @param {TextureNode|Texture} value - The texture or texture node to convert. + * @returns {Node} + */ +const samplerComparison = ( value ) => ( value.isNode === true ? value : texture( value ) ).convert( 'samplerComparison' ); + +/** + * A special type of uniform node which represents array-like data + * as uniform buffers. The access usually happens via `element()` + * which returns an instance of {@link ArrayElementNode}. For example: + * + * ```js + * const bufferNode = buffer( array, 'mat4', count ); + * const matrixNode = bufferNode.element( index ); // access a matrix from the buffer + * ``` + * In general, it is recommended to use the more managed {@link UniformArrayNode} + * since it handles more input types and automatically cares about buffer paddings. + * + * @augments UniformNode + */ +class BufferNode extends UniformNode { + + static get type() { + + return 'BufferNode'; + + } + + /** + * Constructs a new buffer node. + * + * @param {Array} value - Array-like buffer data. + * @param {string} bufferType - The data type of the buffer. + * @param {number} [bufferCount=0] - The count of buffer elements. + */ + constructor( value, bufferType, bufferCount = 0 ) { + + super( value, bufferType ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBufferNode = true; + + /** + * The data type of the buffer. + * + * @type {string} + */ + this.bufferType = bufferType; + + /** + * The uniform node that holds the value of the reference node. + * + * @type {number} + * @default 0 + */ + this.bufferCount = bufferCount; + + } + + /** + * The data type of the buffer elements. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The element type. + */ + getElementType( builder ) { + + return this.getNodeType( builder ); + + } + + /** + * Overwrites the default implementation to return a fixed value `'buffer'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return 'buffer'; + + } + +} + +/** + * TSL function for creating a buffer node. + * + * @tsl + * @function + * @param {Array} value - Array-like buffer data. + * @param {string} type - The data type of a buffer element. + * @param {number} count - The count of buffer elements. + * @returns {BufferNode} + */ +const buffer = ( value, type, count ) => nodeObject( new BufferNode( value, type, count ) ); + +/** + * Represents the element access on uniform array nodes. + * + * @augments ArrayElementNode + */ +class UniformArrayElementNode extends ArrayElementNode { + + static get type() { + + return 'UniformArrayElementNode'; + + } + + /** + * Constructs a new buffer node. + * + * @param {UniformArrayNode} uniformArrayNode - The uniform array node to access. + * @param {IndexNode} indexNode - The index data that define the position of the accessed element in the array. + */ + constructor( uniformArrayNode, indexNode ) { + + super( uniformArrayNode, indexNode ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isArrayBufferElementNode = true; + + } + + generate( builder ) { + + const snippet = super.generate( builder ); + const type = this.getNodeType(); + const paddedType = this.node.getPaddedType(); + + return builder.format( snippet, paddedType, type ); + + } + +} + +/** + * Similar to {@link BufferNode} this module represents array-like data as + * uniform buffers. Unlike {@link BufferNode}, it can handle more common + * data types in the array (e.g `three.js` primitives) and automatically + * manage buffer padding. It should be the first choice when working with + * uniforms buffers. + * ```js + * const tintColors = uniformArray( [ + * new Color( 1, 0, 0 ), + * new Color( 0, 1, 0 ), + * new Color( 0, 0, 1 ) + * ], 'color' ); + * + * const redColor = tintColors.element( 0 ); + * + * @augments BufferNode + */ +class UniformArrayNode extends BufferNode { + + static get type() { + + return 'UniformArrayNode'; + + } + + /** + * Constructs a new uniform array node. + * + * @param {Array} value - Array holding the buffer data. + * @param {?string} [elementType=null] - The data type of a buffer element. + */ + constructor( value, elementType = null ) { + + super( null ); + + /** + * Array holding the buffer data. Unlike {@link BufferNode}, the array can + * hold number primitives as well as three.js objects like vectors, matrices + * or colors. + * + * @type {Array} + */ + this.array = value; + + /** + * The data type of an array element. + * + * @type {string} + */ + this.elementType = elementType === null ? getValueType( value[ 0 ] ) : elementType; + + /** + * The padded type. Uniform buffers must conform to a certain buffer layout + * so a separate type is computed to ensure correct buffer size. + * + * @type {string} + */ + this.paddedType = this.getPaddedType(); + + /** + * Overwritten since uniform array nodes are updated per render. + * + * @type {string} + * @default 'render' + */ + this.updateType = NodeUpdateType.RENDER; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isArrayBufferNode = true; + + } + + /** + * This method is overwritten since the node type is inferred from the + * {@link UniformArrayNode#paddedType}. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( /*builder*/ ) { + + return this.paddedType; + + } + + /** + * The data type of the array elements. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The element type. + */ + getElementType() { + + return this.elementType; + + } + + /** + * Returns the padded type based on the element type. + * + * @return {string} The padded type. + */ + getPaddedType() { + + const elementType = this.elementType; + + let paddedType = 'vec4'; + + if ( elementType === 'mat2' ) { + + paddedType = 'mat2'; + + } else if ( /mat/.test( elementType ) === true ) { + + paddedType = 'mat4'; + + } else if ( elementType.charAt( 0 ) === 'i' ) { + + paddedType = 'ivec4'; + + } else if ( elementType.charAt( 0 ) === 'u' ) { + + paddedType = 'uvec4'; + + } + + return paddedType; + + } + + /** + * The update makes sure to correctly transfer the data from the (complex) objects + * in the array to the internal, correctly padded value buffer. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( /*frame*/ ) { + + const { array, value } = this; + + const elementType = this.elementType; + + if ( elementType === 'float' || elementType === 'int' || elementType === 'uint' ) { + + for ( let i = 0; i < array.length; i ++ ) { + + const index = i * 4; + + value[ index ] = array[ i ]; + + } + + } else if ( elementType === 'color' ) { + + for ( let i = 0; i < array.length; i ++ ) { + + const index = i * 4; + const vector = array[ i ]; + + value[ index ] = vector.r; + value[ index + 1 ] = vector.g; + value[ index + 2 ] = vector.b || 0; + //value[ index + 3 ] = vector.a || 0; + + } + + } else if ( elementType === 'mat2' ) { + + for ( let i = 0; i < array.length; i ++ ) { + + const index = i * 4; + const matrix = array[ i ]; + + value[ index ] = matrix.elements[ 0 ]; + value[ index + 1 ] = matrix.elements[ 1 ]; + value[ index + 2 ] = matrix.elements[ 2 ]; + value[ index + 3 ] = matrix.elements[ 3 ]; + + } + + } else if ( elementType === 'mat3' ) { + + for ( let i = 0; i < array.length; i ++ ) { + + const index = i * 16; + const matrix = array[ i ]; + + value[ index ] = matrix.elements[ 0 ]; + value[ index + 1 ] = matrix.elements[ 1 ]; + value[ index + 2 ] = matrix.elements[ 2 ]; + + value[ index + 4 ] = matrix.elements[ 3 ]; + value[ index + 5 ] = matrix.elements[ 4 ]; + value[ index + 6 ] = matrix.elements[ 5 ]; + + value[ index + 8 ] = matrix.elements[ 6 ]; + value[ index + 9 ] = matrix.elements[ 7 ]; + value[ index + 10 ] = matrix.elements[ 8 ]; + + value[ index + 15 ] = 1; + + } + + } else if ( elementType === 'mat4' ) { + + for ( let i = 0; i < array.length; i ++ ) { + + const index = i * 16; + const matrix = array[ i ]; + + for ( let i = 0; i < matrix.elements.length; i ++ ) { + + value[ index + i ] = matrix.elements[ i ]; + + } + + } + + } else { + + for ( let i = 0; i < array.length; i ++ ) { + + const index = i * 4; + const vector = array[ i ]; + + value[ index ] = vector.x; + value[ index + 1 ] = vector.y; + value[ index + 2 ] = vector.z || 0; + value[ index + 3 ] = vector.w || 0; + + } + + } + + } + + /** + * Implement the value buffer creation based on the array data. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @return {null} + */ + setup( builder ) { + + const length = this.array.length; + const elementType = this.elementType; + + let arrayType = Float32Array; + + const paddedType = this.paddedType; + const paddedElementLength = builder.getTypeLength( paddedType ); + + if ( elementType.charAt( 0 ) === 'i' ) arrayType = Int32Array; + if ( elementType.charAt( 0 ) === 'u' ) arrayType = Uint32Array; + + this.value = new arrayType( length * paddedElementLength ); + this.bufferCount = length; + this.bufferType = paddedType; + + return super.setup( builder ); + + } + + /** + * Overwrites the default `element()` method to provide element access + * based on {@link UniformArrayNode}. + * + * @param {IndexNode} indexNode - The index node. + * @return {UniformArrayElementNode} + */ + element( indexNode ) { + + return nodeObject( new UniformArrayElementNode( this, nodeObject( indexNode ) ) ); + + } + +} + +/** + * TSL function for creating an uniform array node. + * + * @tsl + * @function + * @param {Array} values - Array-like data. + * @param {?string} [nodeType] - The data type of the array elements. + * @returns {UniformArrayNode} + */ +const uniformArray = ( values, nodeType ) => nodeObject( new UniformArrayNode( values, nodeType ) ); + +/** + * @tsl + * @function + * @deprecated since r168. Use {@link uniformArray} instead. + * + * @param {Array} values - Array-like data. + * @param {string} nodeType - The data type of the array elements. + * @returns {UniformArrayNode} + */ +const uniforms = ( values, nodeType ) => { // @deprecated, r168 + + console.warn( 'THREE.TSL: uniforms() has been renamed to uniformArray().' ); + return nodeObject( new UniformArrayNode( values, nodeType ) ); + +}; + +/** + * The node allows to set values for built-in shader variables. That is + * required for features like hardware-accelerated vertex clipping. + * + * @augments Node + */ +class BuiltinNode extends Node { + + /** + * Constructs a new builtin node. + * + * @param {string} name - The name of the built-in shader variable. + */ + constructor( name ) { + + super( 'float' ); + + /** + * The name of the built-in shader variable. + * + * @type {string} + */ + this.name = name; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBuiltinNode = true; + + } + + /** + * Generates the code snippet of the builtin node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The generated code snippet. + */ + generate( /* builder */ ) { + + return this.name; + + } + +} + +/** + * TSL function for creating a builtin node. + * + * @tsl + * @function + * @param {string} name - The name of the built-in shader variable. + * @returns {BuiltinNode} + */ +const builtin = nodeProxy( BuiltinNode ).setParameterLength( 1 ); + +/** + * TSL object that represents the current `index` value of the camera if used ArrayCamera. + * + * @tsl + * @type {UniformNode} + */ +const cameraIndex = /*@__PURE__*/ uniform( 0, 'uint' ).label( 'u_cameraIndex' ).setGroup( sharedUniformGroup( 'cameraIndex' ) ).toVarying( 'v_cameraIndex' ); + +/** + * TSL object that represents the `near` value of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraNear = /*@__PURE__*/ uniform( 'float' ).label( 'cameraNear' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.near ); + +/** + * TSL object that represents the `far` value of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraFar = /*@__PURE__*/ uniform( 'float' ).label( 'cameraFar' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.far ); + +/** + * TSL object that represents the projection matrix of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraProjectionMatrix = /*@__PURE__*/ ( Fn( ( { camera } ) => { + + let cameraProjectionMatrix; + + if ( camera.isArrayCamera && camera.cameras.length > 0 ) { + + const matrices = []; + + for ( const subCamera of camera.cameras ) { + + matrices.push( subCamera.projectionMatrix ); + + } + + const cameraProjectionMatrices = uniformArray( matrices ).setGroup( renderGroup ).label( 'cameraProjectionMatrices' ); + + cameraProjectionMatrix = cameraProjectionMatrices.element( camera.isMultiViewCamera ? builtin( 'gl_ViewID_OVR' ) : cameraIndex ).toVar( 'cameraProjectionMatrix' ); + + } else { + + cameraProjectionMatrix = uniform( 'mat4' ).label( 'cameraProjectionMatrix' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.projectionMatrix ); + + } + + return cameraProjectionMatrix; + +} ).once() )(); + +/** + * TSL object that represents the inverse projection matrix of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraProjectionMatrixInverse = /*@__PURE__*/ ( Fn( ( { camera } ) => { + + let cameraProjectionMatrixInverse; + + if ( camera.isArrayCamera && camera.cameras.length > 0 ) { + + const matrices = []; + + for ( const subCamera of camera.cameras ) { + + matrices.push( subCamera.projectionMatrixInverse ); + + } + + const cameraProjectionMatricesInverse = uniformArray( matrices ).setGroup( renderGroup ).label( 'cameraProjectionMatricesInverse' ); + + cameraProjectionMatrixInverse = cameraProjectionMatricesInverse.element( camera.isMultiViewCamera ? builtin( 'gl_ViewID_OVR' ) : cameraIndex ).toVar( 'cameraProjectionMatrixInverse' ); + + } else { + + cameraProjectionMatrixInverse = uniform( 'mat4' ).label( 'cameraProjectionMatrixInverse' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.projectionMatrixInverse ); + + } + + return cameraProjectionMatrixInverse; + +} ).once() )(); + +/** + * TSL object that represents the view matrix of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraViewMatrix = /*@__PURE__*/ ( Fn( ( { camera } ) => { + + let cameraViewMatrix; + + if ( camera.isArrayCamera && camera.cameras.length > 0 ) { + + const matrices = []; + + for ( const subCamera of camera.cameras ) { + + matrices.push( subCamera.matrixWorldInverse ); + + } + + const cameraViewMatrices = uniformArray( matrices ).setGroup( renderGroup ).label( 'cameraViewMatrices' ); + + cameraViewMatrix = cameraViewMatrices.element( camera.isMultiViewCamera ? builtin( 'gl_ViewID_OVR' ) : cameraIndex ).toVar( 'cameraViewMatrix' ); + + } else { + + cameraViewMatrix = uniform( 'mat4' ).label( 'cameraViewMatrix' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.matrixWorldInverse ); + + } + + return cameraViewMatrix; + +} ).once() )(); + +/** + * TSL object that represents the world matrix of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraWorldMatrix = /*@__PURE__*/ uniform( 'mat4' ).label( 'cameraWorldMatrix' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.matrixWorld ); + +/** + * TSL object that represents the normal matrix of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraNormalMatrix = /*@__PURE__*/ uniform( 'mat3' ).label( 'cameraNormalMatrix' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.normalMatrix ); + +/** + * TSL object that represents the position in world space of the camera used for the current render. + * + * @tsl + * @type {UniformNode} + */ +const cameraPosition = /*@__PURE__*/ uniform( new Vector3() ).label( 'cameraPosition' ).setGroup( renderGroup ).onRenderUpdate( ( { camera }, self ) => self.value.setFromMatrixPosition( camera.matrixWorld ) ); + +const _sphere = /*@__PURE__*/ new Sphere(); + +/** + * This node can be used to access transformation related metrics of 3D objects. + * Depending on the selected scope, a different metric is represented as a uniform + * in the shader. The following scopes are supported: + * + * - `POSITION`: The object's position in world space. + * - `VIEW_POSITION`: The object's position in view/camera space. + * - `DIRECTION`: The object's direction in world space. + * - `SCALE`: The object's scale in world space. + * - `WORLD_MATRIX`: The object's matrix in world space. + * + * @augments Node + */ +class Object3DNode extends Node { + + static get type() { + + return 'Object3DNode'; + + } + + /** + * Constructs a new object 3D node. + * + * @param {('position'|'viewPosition'|'direction'|'scale'|'worldMatrix')} scope - The node represents a different type of transformation depending on the scope. + * @param {?Object3D} [object3d=null] - The 3D object. + */ + constructor( scope, object3d = null ) { + + super(); + + /** + * The node reports a different type of transformation depending on the scope. + * + * @type {('position'|'viewPosition'|'direction'|'scale'|'worldMatrix')} + */ + this.scope = scope; + + /** + * The 3D object. + * + * @type {?Object3D} + * @default null + */ + this.object3d = object3d; + + /** + * Overwritten since this type of node is updated per object. + * + * @type {string} + * @default 'object' + */ + this.updateType = NodeUpdateType.OBJECT; + + /** + * Holds the value of the node as a uniform. + * + * @type {UniformNode} + */ + this.uniformNode = new UniformNode( null ); + + } + + /** + * Overwritten since the node type is inferred from the scope. + * + * @return {string} The node type. + */ + getNodeType() { + + const scope = this.scope; + + if ( scope === Object3DNode.WORLD_MATRIX ) { + + return 'mat4'; + + } else if ( scope === Object3DNode.POSITION || scope === Object3DNode.VIEW_POSITION || scope === Object3DNode.DIRECTION || scope === Object3DNode.SCALE ) { + + return 'vec3'; + + } else if ( scope === Object3DNode.RADIUS ) { + + return 'float'; + + } + + } + + /** + * Updates the uniform value depending on the scope. + * + * @param {NodeFrame} frame - The current node frame. + */ + update( frame ) { + + const object = this.object3d; + const uniformNode = this.uniformNode; + const scope = this.scope; + + if ( scope === Object3DNode.WORLD_MATRIX ) { + + uniformNode.value = object.matrixWorld; + + } else if ( scope === Object3DNode.POSITION ) { + + uniformNode.value = uniformNode.value || new Vector3(); + + uniformNode.value.setFromMatrixPosition( object.matrixWorld ); + + } else if ( scope === Object3DNode.SCALE ) { + + uniformNode.value = uniformNode.value || new Vector3(); + + uniformNode.value.setFromMatrixScale( object.matrixWorld ); + + } else if ( scope === Object3DNode.DIRECTION ) { + + uniformNode.value = uniformNode.value || new Vector3(); + + object.getWorldDirection( uniformNode.value ); + + } else if ( scope === Object3DNode.VIEW_POSITION ) { + + const camera = frame.camera; + + uniformNode.value = uniformNode.value || new Vector3(); + uniformNode.value.setFromMatrixPosition( object.matrixWorld ); + + uniformNode.value.applyMatrix4( camera.matrixWorldInverse ); + + } else if ( scope === Object3DNode.RADIUS ) { + + const geometry = frame.object.geometry; + + if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); + + _sphere.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld ); + + uniformNode.value = _sphere.radius; + + } + + } + + /** + * Generates the code snippet of the uniform node. The node type of the uniform + * node also depends on the selected scope. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The generated code snippet. + */ + generate( builder ) { + + const scope = this.scope; + + if ( scope === Object3DNode.WORLD_MATRIX ) { + + this.uniformNode.nodeType = 'mat4'; + + } else if ( scope === Object3DNode.POSITION || scope === Object3DNode.VIEW_POSITION || scope === Object3DNode.DIRECTION || scope === Object3DNode.SCALE ) { + + this.uniformNode.nodeType = 'vec3'; + + } else if ( scope === Object3DNode.RADIUS ) { + + this.uniformNode.nodeType = 'float'; + + } + + return this.uniformNode.build( builder ); + + } + + serialize( data ) { + + super.serialize( data ); + + data.scope = this.scope; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.scope = data.scope; + + } + +} + +Object3DNode.WORLD_MATRIX = 'worldMatrix'; +Object3DNode.POSITION = 'position'; +Object3DNode.SCALE = 'scale'; +Object3DNode.VIEW_POSITION = 'viewPosition'; +Object3DNode.DIRECTION = 'direction'; +Object3DNode.RADIUS = 'radius'; + +/** + * TSL function for creating an object 3D node that represents the object's direction in world space. + * + * @tsl + * @function + * @param {?Object3D} [object3d] - The 3D object. + * @returns {Object3DNode} + */ +const objectDirection = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.DIRECTION ).setParameterLength( 1 ); + +/** + * TSL function for creating an object 3D node that represents the object's world matrix. + * + * @tsl + * @function + * @param {?Object3D} [object3d] - The 3D object. + * @returns {Object3DNode} + */ +const objectWorldMatrix = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.WORLD_MATRIX ).setParameterLength( 1 ); + +/** + * TSL function for creating an object 3D node that represents the object's position in world space. + * + * @tsl + * @function + * @param {?Object3D} [object3d] - The 3D object. + * @returns {Object3DNode} + */ +const objectPosition = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.POSITION ).setParameterLength( 1 ); + +/** + * TSL function for creating an object 3D node that represents the object's scale in world space. + * + * @tsl + * @function + * @param {?Object3D} [object3d] - The 3D object. + * @returns {Object3DNode} + */ +const objectScale = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.SCALE ).setParameterLength( 1 ); + +/** + * TSL function for creating an object 3D node that represents the object's position in view/camera space. + * + * @tsl + * @function + * @param {?Object3D} [object3d] - The 3D object. + * @returns {Object3DNode} + */ +const objectViewPosition = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.VIEW_POSITION ).setParameterLength( 1 ); + +/** + * TSL function for creating an object 3D node that represents the object's radius. + * + * @tsl + * @function + * @param {?Object3D} [object3d] - The 3D object. + * @returns {Object3DNode} + */ +const objectRadius = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.RADIUS ).setParameterLength( 1 ); + +/** + * This type of node is a specialized version of `Object3DNode` + * with larger set of model related metrics. Unlike `Object3DNode`, + * `ModelNode` extracts the reference to the 3D object from the + * current node frame state. + * + * @augments Object3DNode + */ +class ModelNode extends Object3DNode { + + static get type() { + + return 'ModelNode'; + + } + + /** + * Constructs a new object model node. + * + * @param {('position'|'viewPosition'|'direction'|'scale'|'worldMatrix')} scope - The node represents a different type of transformation depending on the scope. + */ + constructor( scope ) { + + super( scope ); + + } + + /** + * Extracts the model reference from the frame state and then + * updates the uniform value depending on the scope. + * + * @param {NodeFrame} frame - The current node frame. + */ + update( frame ) { + + this.object3d = frame.object; + + super.update( frame ); + + } + +} + +/** + * TSL object that represents the object's direction in world space. + * + * @tsl + * @type {ModelNode} + */ +const modelDirection = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.DIRECTION ); + +/** + * TSL object that represents the object's world matrix. + * + * @tsl + * @type {ModelNode} + */ +const modelWorldMatrix = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.WORLD_MATRIX ); + +/** + * TSL object that represents the object's position in world space. + * + * @tsl + * @type {ModelNode} + */ +const modelPosition = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.POSITION ); + +/** + * TSL object that represents the object's scale in world space. + * + * @tsl + * @type {ModelNode} + */ +const modelScale = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.SCALE ); + +/** + * TSL object that represents the object's position in view/camera space. + * + * @tsl + * @type {ModelNode} + */ +const modelViewPosition = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.VIEW_POSITION ); + +/** + * TSL object that represents the object's radius. + * + * @tsl + * @type {ModelNode} + */ +const modelRadius = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.RADIUS ); + +/** + * TSL object that represents the object's normal matrix. + * + * @tsl + * @type {UniformNode} + */ +const modelNormalMatrix = /*@__PURE__*/ uniform( new Matrix3() ).onObjectUpdate( ( { object }, self ) => self.value.getNormalMatrix( object.matrixWorld ) ); + +/** + * TSL object that represents the object's inverse world matrix. + * + * @tsl + * @type {UniformNode} + */ +const modelWorldMatrixInverse = /*@__PURE__*/ uniform( new Matrix4() ).onObjectUpdate( ( { object }, self ) => self.value.copy( object.matrixWorld ).invert() ); + +/** + * TSL object that represents the object's model view matrix. + * + * @tsl + * @type {Node} + */ +const modelViewMatrix = /*@__PURE__*/ ( Fn( ( builder ) => { + + return builder.renderer.overrideNodes.modelViewMatrix || mediumpModelViewMatrix; + +} ).once() )().toVar( 'modelViewMatrix' ); + +// GPU Precision + +/** + * TSL object that represents the object's model view in `mediump` precision. + * + * @tsl + * @type {Node} + */ +const mediumpModelViewMatrix = /*@__PURE__*/ cameraViewMatrix.mul( modelWorldMatrix ); + +// CPU Precision + +/** + * TSL object that represents the object's model view in `highp` precision + * which is achieved by computing the matrix in JS and not in the shader. + * + * @tsl + * @type {Node} + */ +const highpModelViewMatrix = /*@__PURE__*/ ( Fn( ( builder ) => { + + builder.context.isHighPrecisionModelViewMatrix = true; + + return uniform( 'mat4' ).onObjectUpdate( ( { object, camera } ) => { + + return object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); + + } ); + +} ).once() )().toVar( 'highpModelViewMatrix' ); + +/** + * TSL object that represents the object's model normal view in `highp` precision + * which is achieved by computing the matrix in JS and not in the shader. + * + * @tsl + * @type {Node} + */ +const highpModelNormalViewMatrix = /*@__PURE__*/ ( Fn( ( builder ) => { + + const isHighPrecisionModelViewMatrix = builder.context.isHighPrecisionModelViewMatrix; + + return uniform( 'mat3' ).onObjectUpdate( ( { object, camera } ) => { + + if ( isHighPrecisionModelViewMatrix !== true ) { + + object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); + + } + + return object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); + + } ); + +} ).once() )().toVar( 'highpModelNormalViewMatrix' ); + +/** + * TSL object that represents the position attribute of the current rendered object. + * + * @tsl + * @type {AttributeNode} + */ +const positionGeometry = /*@__PURE__*/ attribute( 'position', 'vec3' ); + +/** + * TSL object that represents the vertex position in local space of the current rendered object. + * + * @tsl + * @type {AttributeNode} + */ +const positionLocal = /*@__PURE__*/ positionGeometry.toVarying( 'positionLocal' ); + +/** + * TSL object that represents the previous vertex position in local space of the current rendered object. + * Used in context of {@link VelocityNode} for rendering motion vectors. + * + * @tsl + * @type {AttributeNode} + */ +const positionPrevious = /*@__PURE__*/ positionGeometry.toVarying( 'positionPrevious' ); + +/** + * TSL object that represents the vertex position in world space of the current rendered object. + * + * @tsl + * @type {VaryingNode} + */ +const positionWorld = /*@__PURE__*/ ( Fn( ( builder ) => { + + return modelWorldMatrix.mul( positionLocal ).xyz.toVarying( builder.getNamespace( 'v_positionWorld' ) ); + +}, 'vec3' ).once( 'POSITION' ) )(); + +/** + * TSL object that represents the position world direction of the current rendered object. + * + * @tsl + * @type {Node} + */ +const positionWorldDirection = /*@__PURE__*/ ( Fn( ( builder ) => { + + const vertexPWD = positionLocal.transformDirection( modelWorldMatrix ).toVarying( builder.getNamespace( 'v_positionWorldDirection' ) ); + + return vertexPWD.normalize().toVar( 'positionWorldDirection' ); + +}, 'vec3' ).once( 'POSITION' ) )(); + +/** + * TSL object that represents the vertex position in view space of the current rendered object. + * + * @tsl + * @type {VaryingNode} + */ +const positionView = /*@__PURE__*/ ( Fn( ( builder ) => { + + return builder.context.setupPositionView().toVarying( builder.getNamespace( 'v_positionView' ) ); + +}, 'vec3' ).once( 'POSITION' ) )(); + +/** + * TSL object that represents the position view direction of the current rendered object. + * + * @tsl + * @type {VaryingNode} + */ +const positionViewDirection = /*@__PURE__*/ positionView.negate().toVarying( 'v_positionViewDirection' ).normalize().toVar( 'positionViewDirection' ); + +/** + * This node can be used to evaluate whether a primitive is front or back facing. + * + * @augments Node + */ +class FrontFacingNode extends Node { + + static get type() { + + return 'FrontFacingNode'; + + } + + /** + * Constructs a new front facing node. + */ + constructor() { + + super( 'bool' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isFrontFacingNode = true; + + } + + generate( builder ) { + + const { renderer, material } = builder; + + if ( renderer.coordinateSystem === WebGLCoordinateSystem ) { + + if ( material.side === BackSide ) { + + return 'false'; + + } + + } + + return builder.getFrontFacing(); + + } + +} + +/** + * TSL object that represents whether a primitive is front or back facing + * + * @tsl + * @type {FrontFacingNode} + */ +const frontFacing = /*@__PURE__*/ nodeImmutable( FrontFacingNode ); + +/** + * TSL object that represents the front facing status as a number instead of a bool. + * `1` means front facing, `-1` means back facing. + * + * @tsl + * @type {Node} + */ +const faceDirection = /*@__PURE__*/ float( frontFacing ).mul( 2.0 ).sub( 1.0 ); + +/** + * TSL object that represents the normal attribute of the current rendered object. + * + * @tsl + * @type {Node} + */ +const normalGeometry = /*@__PURE__*/ attribute( 'normal', 'vec3' ); + +/** + * TSL object that represents the vertex normal in local space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const normalLocal = /*@__PURE__*/ ( Fn( ( builder ) => { + + if ( builder.geometry.hasAttribute( 'normal' ) === false ) { + + console.warn( 'THREE.TSL: Vertex attribute "normal" not found on geometry.' ); + + return vec3( 0, 1, 0 ); + + } + + return normalGeometry; + +}, 'vec3' ).once() )().toVar( 'normalLocal' ); + +/** + * TSL object that represents the flat vertex normal in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const normalFlat = /*@__PURE__*/ positionView.dFdx().cross( positionView.dFdy() ).normalize().toVar( 'normalFlat' ); + +/** + * TSL object that represents the vertex normal in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const normalView = /*@__PURE__*/ ( Fn( ( builder ) => { + + let node; + + if ( builder.material.flatShading === true ) { + + node = normalFlat; + + } else { + + node = varying( transformNormalToView( normalLocal ), 'v_normalView' ).normalize(); + + } + + return node; + +}, 'vec3' ).once() )().toVar( 'normalView' ); + +/** + * TSL object that represents the vertex normal in world space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const normalWorld = /*@__PURE__*/ ( Fn( ( builder ) => { + + let normal = normalView.transformDirection( cameraViewMatrix ); + + if ( builder.material.flatShading !== true ) { + + normal = varying( normal, 'v_normalWorld' ); + + } + + return normal; + +}, 'vec3' ).once() )().normalize().toVar( 'normalWorld' ); + +/** + * TSL object that represents the transformed vertex normal in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedNormalView = /*@__PURE__*/ ( Fn( ( builder ) => { + + // Use getUV context to avoid side effects from nodes overwriting getUV in the context (e.g. EnvironmentNode) + + let node = builder.context.setupNormal().context( { getUV: null } ); + + if ( builder.material.flatShading !== true ) node = node.mul( faceDirection ); + + return node; + +}, 'vec3' ).once() )().toVar( 'transformedNormalView' ); + +/** + * TSL object that represents the transformed vertex normal in world space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedNormalWorld = /*@__PURE__*/ transformedNormalView.transformDirection( cameraViewMatrix ).toVar( 'transformedNormalWorld' ); + +/** + * TSL object that represents the transformed clearcoat vertex normal in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedClearcoatNormalView = /*@__PURE__*/ ( Fn( ( builder ) => { + + // Use getUV context to avoid side effects from nodes overwriting getUV in the context (e.g. EnvironmentNode) + + let node = builder.context.setupClearcoatNormal().context( { getUV: null } ); + + if ( builder.material.flatShading !== true ) node = node.mul( faceDirection ); + + return node; + +}, 'vec3' ).once() )().toVar( 'transformedClearcoatNormalView' ); + +/** + * Transforms the normal with the given matrix. + * + * @tsl + * @function + * @param {Node} normal - The normal. + * @param {Node} [matrix=modelWorldMatrix] - The matrix. + * @return {Node} The transformed normal. + */ +const transformNormal = /*@__PURE__*/ Fn( ( [ normal, matrix = modelWorldMatrix ] ) => { + + const m = mat3( matrix ); + + const transformedNormal = normal.div( vec3( m[ 0 ].dot( m[ 0 ] ), m[ 1 ].dot( m[ 1 ] ), m[ 2 ].dot( m[ 2 ] ) ) ); + + return m.mul( transformedNormal ).xyz; + +} ); + +/** + * Transforms the given normal from local to view space. + * + * @tsl + * @function + * @param {Node} normal - The normal. + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The transformed normal. + */ +const transformNormalToView = /*@__PURE__*/ Fn( ( [ normal ], builder ) => { + + const modelNormalViewMatrix = builder.renderer.overrideNodes.modelNormalViewMatrix; + + if ( modelNormalViewMatrix !== null ) { + + return modelNormalViewMatrix.transformDirection( normal ); + + } + + // + + const transformedNormal = modelNormalMatrix.mul( normal ); + + return cameraViewMatrix.transformDirection( transformedNormal ); + +} ); + +const _e1$1 = /*@__PURE__*/ new Euler(); +const _m1$1 = /*@__PURE__*/ new Matrix4(); + +/** + * TSL object that represents the refraction ratio of the material used for rendering the current object. + * + * @tsl + * @type {UniformNode} + */ +const materialRefractionRatio = /*@__PURE__*/ uniform( 0 ).onReference( ( { material } ) => material ).onObjectUpdate( ( { material } ) => material.refractionRatio ); + +/** + * TSL object that represents the intensity of environment maps of PBR materials. + * When `material.envMap` is set, the value is `material.envMapIntensity` otherwise `scene.environmentIntensity`. + * + * @tsl + * @type {Node} + */ +const materialEnvIntensity = /*@__PURE__*/ uniform( 1 ).onReference( ( { material } ) => material ).onObjectUpdate( function ( { material, scene } ) { + + return material.envMap ? material.envMapIntensity : scene.environmentIntensity; + +} ); + +/** + * TSL object that represents the rotation of environment maps. + * When `material.envMap` is set, the value is `material.envMapRotation`. `scene.environmentRotation` controls the + * rotation of `scene.environment` instead. + * + * @tsl + * @type {Node} + */ +const materialEnvRotation = /*@__PURE__*/ uniform( new Matrix4() ).onReference( function ( frame ) { + + return frame.material; + +} ).onObjectUpdate( function ( { material, scene } ) { + + const rotation = ( scene.environment !== null && material.envMap === null ) ? scene.environmentRotation : material.envMapRotation; + + if ( rotation ) { + + _e1$1.copy( rotation ); + + _m1$1.makeRotationFromEuler( _e1$1 ); + + } else { + + _m1$1.identity(); + + } + + return _m1$1; + +} ); + +/** + * The reflect vector in view space. + * + * @tsl + * @type {Node} + */ +const reflectView = /*@__PURE__*/ positionViewDirection.negate().reflect( transformedNormalView ); + +/** + * The refract vector in view space. + * + * @tsl + * @type {Node} + */ +const refractView = /*@__PURE__*/ positionViewDirection.negate().refract( transformedNormalView, materialRefractionRatio ); + +/** + * Used for sampling cube maps when using cube reflection mapping. + * + * @tsl + * @type {Node} + */ +const reflectVector = /*@__PURE__*/ reflectView.transformDirection( cameraViewMatrix ).toVar( 'reflectVector' ); + +/** + * Used for sampling cube maps when using cube refraction mapping. + * + * @tsl + * @type {Node} + */ +const refractVector = /*@__PURE__*/ refractView.transformDirection( cameraViewMatrix ).toVar( 'reflectVector' ); + +const EmptyTexture = /*@__PURE__*/ new CubeTexture(); + +/** + * This type of uniform node represents a cube texture. + * + * @augments TextureNode + */ +class CubeTextureNode extends TextureNode { + + static get type() { + + return 'CubeTextureNode'; + + } + + /** + * Constructs a new cube texture node. + * + * @param {CubeTexture} value - The cube texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + */ + constructor( value, uvNode = null, levelNode = null, biasNode = null ) { + + super( value, uvNode, levelNode, biasNode ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCubeTextureNode = true; + + } + + /** + * Overwrites the default implementation to return a fixed value `'cubeTexture'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return 'cubeTexture'; + + } + + /** + * Returns a default uvs based on the mapping type of the cube texture. + * + * @return {Node} The default uv attribute. + */ + getDefaultUV() { + + const texture = this.value; + + if ( texture.mapping === CubeReflectionMapping ) { + + return reflectVector; + + } else if ( texture.mapping === CubeRefractionMapping ) { + + return refractVector; + + } else { + + console.error( 'THREE.CubeTextureNode: Mapping "%s" not supported.', texture.mapping ); + + return vec3( 0, 0, 0 ); + + } + + } + + /** + * Overwritten with an empty implementation since the `updateMatrix` flag is ignored + * for cube textures. The uv transformation matrix is not applied to cube textures. + * + * @param {boolean} value - The update toggle. + */ + setUpdateMatrix( /*updateMatrix*/ ) { } // Ignore .updateMatrix for CubeTextureNode + + /** + * Setups the uv node. Depending on the backend as well as the texture type, it might be necessary + * to modify the uv node for correct sampling. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} uvNode - The uv node to setup. + * @return {Node} The updated uv node. + */ + setupUV( builder, uvNode ) { + + const texture = this.value; + + if ( builder.renderer.coordinateSystem === WebGPUCoordinateSystem || ! texture.isRenderTargetTexture ) { + + uvNode = vec3( uvNode.x.negate(), uvNode.yz ); + + } + + return materialEnvRotation.mul( uvNode ); + + } + + /** + * Generates the uv code snippet. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} cubeUV - The uv node to generate code for. + * @return {string} The generated code snippet. + */ + generateUV( builder, cubeUV ) { + + return cubeUV.build( builder, 'vec3' ); + + } + +} + +/** + * TSL function for creating a cube texture node. + * + * @tsl + * @function + * @param {CubeTexture} value - The cube texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + * @returns {CubeTextureNode} + */ +const cubeTextureBase = /*@__PURE__*/ nodeProxy( CubeTextureNode ).setParameterLength( 1, 4 ).setName( 'cubeTexture' ); + +/** + * TSL function for creating a cube texture uniform node. + * + * @tsl + * @function + * @param {?CubeTexture|CubeTextureNode} [value=EmptyTexture] - The cube texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Node} [biasNode=null] - The bias node. + * @returns {CubeTextureNode} + */ +const cubeTexture = ( value = EmptyTexture, uvNode = null, levelNode = null, biasNode = null ) => { + + let textureNode; + + if ( value && value.isCubeTextureNode === true ) { + + textureNode = nodeObject( value.clone() ); + textureNode.referenceNode = value.getSelf(); // Ensure the reference is set to the original node + + if ( uvNode !== null ) textureNode.uvNode = nodeObject( uvNode ); + if ( levelNode !== null ) textureNode.levelNode = nodeObject( levelNode ); + if ( biasNode !== null ) textureNode.biasNode = nodeObject( biasNode ); + + } else { + + textureNode = cubeTextureBase( value, uvNode, levelNode, biasNode ); + + } + + return textureNode; + +}; + +/** + * TSL function for creating a uniform cube texture node. + * + * @tsl + * @function + * @param {?CubeTexture} [value=EmptyTexture] - The cube texture. + * @returns {CubeTextureNode} + */ +const uniformCubeTexture = ( value = EmptyTexture ) => cubeTextureBase( value ); + +// TODO: Avoid duplicated code and ues only ReferenceBaseNode or ReferenceNode + +/** + * This class is only relevant if the referenced property is array-like. + * In this case, `ReferenceElementNode` allows to refer to a specific + * element inside the data structure via an index. + * + * @augments ArrayElementNode + */ +class ReferenceElementNode extends ArrayElementNode { + + static get type() { + + return 'ReferenceElementNode'; + + } + + /** + * Constructs a new reference element node. + * + * @param {?ReferenceNode} referenceNode - The reference node. + * @param {Node} indexNode - The index node that defines the element access. + */ + constructor( referenceNode, indexNode ) { + + super( referenceNode, indexNode ); + + /** + * Similar to {@link ReferenceNode#reference}, an additional + * property references to the current node. + * + * @type {?ReferenceNode} + * @default null + */ + this.referenceNode = referenceNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isReferenceElementNode = true; + + } + + /** + * This method is overwritten since the node type is inferred from + * the uniform type of the reference node. + * + * @return {string} The node type. + */ + getNodeType() { + + return this.referenceNode.uniformType; + + } + + generate( builder ) { + + const snippet = super.generate( builder ); + const arrayType = this.referenceNode.getNodeType(); + const elementType = this.getNodeType(); + + return builder.format( snippet, arrayType, elementType ); + + } + +} + +/** + * This type of node establishes a reference to a property of another object. + * In this way, the value of the node is automatically linked to the value of + * referenced object. Reference nodes internally represent the linked value + * as a uniform. + * + * @augments Node + */ +class ReferenceNode extends Node { + + static get type() { + + return 'ReferenceNode'; + + } + + /** + * Constructs a new reference node. + * + * @param {string} property - The name of the property the node refers to. + * @param {string} uniformType - The uniform type that should be used to represent the property value. + * @param {?Object} [object=null] - The object the property belongs to. + * @param {?number} [count=null] - When the linked property is an array-like, this parameter defines its length. + */ + constructor( property, uniformType, object = null, count = null ) { + + super(); + + /** + * The name of the property the node refers to. + * + * @type {string} + */ + this.property = property; + + /** + * The uniform type that should be used to represent the property value. + * + * @type {string} + */ + this.uniformType = uniformType; + + /** + * The object the property belongs to. + * + * @type {?Object} + * @default null + */ + this.object = object; + + /** + * When the linked property is an array, this parameter defines its length. + * + * @type {?number} + * @default null + */ + this.count = count; + + /** + * The property name might have dots so nested properties can be referred. + * The hierarchy of the names is stored inside this array. + * + * @type {Array} + */ + this.properties = property.split( '.' ); + + /** + * Points to the current referred object. This property exists next to {@link ReferenceNode#object} + * since the final reference might be updated from calling code. + * + * @type {?Object} + * @default null + */ + this.reference = object; + + /** + * The uniform node that holds the value of the reference node. + * + * @type {UniformNode} + * @default null + */ + this.node = null; + + /** + * The uniform group of the internal uniform. + * + * @type {UniformGroupNode} + * @default null + */ + this.group = null; + + /** + * An optional label of the internal uniform node. + * + * @type {?string} + * @default null + */ + this.name = null; + + /** + * Overwritten since reference nodes are updated per object. + * + * @type {string} + * @default 'object' + */ + this.updateType = NodeUpdateType.OBJECT; + + } + + /** + * When the referred property is array-like, this method can be used + * to access elements via an index node. + * + * @param {IndexNode} indexNode - indexNode. + * @return {ReferenceElementNode} A reference to an element. + */ + element( indexNode ) { + + return nodeObject( new ReferenceElementNode( this, nodeObject( indexNode ) ) ); + + } + + /** + * Sets the uniform group for this reference node. + * + * @param {UniformGroupNode} group - The uniform group to set. + * @return {ReferenceNode} A reference to this node. + */ + setGroup( group ) { + + this.group = group; + + return this; + + } + + /** + * Sets the label for the internal uniform. + * + * @param {string} name - The label to set. + * @return {ReferenceNode} A reference to this node. + */ + label( name ) { + + this.name = name; + + return this; + + } + + /** + * Sets the node type which automatically defines the internal + * uniform type. + * + * @param {string} uniformType - The type to set. + */ + setNodeType( uniformType ) { + + let node = null; + + if ( this.count !== null ) { + + node = buffer( null, uniformType, this.count ); + + } else if ( Array.isArray( this.getValueFromReference() ) ) { + + node = uniformArray( null, uniformType ); + + } else if ( uniformType === 'texture' ) { + + node = texture( null ); + + } else if ( uniformType === 'cubeTexture' ) { + + node = cubeTexture( null ); + + } else { + + node = uniform( null, uniformType ); + + } + + if ( this.group !== null ) { + + node.setGroup( this.group ); + + } + + if ( this.name !== null ) node.label( this.name ); + + this.node = node.getSelf(); + + } + + /** + * This method is overwritten since the node type is inferred from + * the type of the reference node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + if ( this.node === null ) { + + this.updateReference( builder ); + this.updateValue(); + + } + + return this.node.getNodeType( builder ); + + } + + /** + * Returns the property value from the given referred object. + * + * @param {Object} [object=this.reference] - The object to retrieve the property value from. + * @return {any} The value. + */ + getValueFromReference( object = this.reference ) { + + const { properties } = this; + + let value = object[ properties[ 0 ] ]; + + for ( let i = 1; i < properties.length; i ++ ) { + + value = value[ properties[ i ] ]; + + } + + return value; + + } + + /** + * Allows to update the reference based on the given state. The state is only + * evaluated {@link ReferenceNode#object} is not set. + * + * @param {(NodeFrame|NodeBuilder)} state - The current state. + * @return {Object} The updated reference. + */ + updateReference( state ) { + + this.reference = this.object !== null ? this.object : state.object; + + return this.reference; + + } + + /** + * The output of the reference node is the internal uniform node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {UniformNode} The output node. + */ + setup( /* builder */ ) { + + this.updateValue(); + + return this.node; + + } + + /** + * Overwritten to update the internal uniform value. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( /*frame*/ ) { + + this.updateValue(); + + } + + /** + * Retrieves the value from the referred object property and uses it + * to updated the internal uniform. + */ + updateValue() { + + if ( this.node === null ) this.setNodeType( this.uniformType ); + + const value = this.getValueFromReference(); + + if ( Array.isArray( value ) ) { + + this.node.array = value; + + } else { + + this.node.value = value; + + } + + } + +} + +/** + * TSL function for creating a reference node. + * + * @tsl + * @function + * @param {string} name - The name of the property the node refers to. + * @param {string} type - The uniform type that should be used to represent the property value. + * @param {?Object} [object] - The object the property belongs to. + * @returns {ReferenceNode} + */ +const reference = ( name, type, object ) => nodeObject( new ReferenceNode( name, type, object ) ); + +/** + * TSL function for creating a reference node. Use this function if you want need a reference + * to an array-like property that should be represented as a uniform buffer. + * + * @tsl + * @function + * @param {string} name - The name of the property the node refers to. + * @param {string} type - The uniform type that should be used to represent the property value. + * @param {number} count - The number of value inside the array-like object. + * @param {Object} object - An array-like object the property belongs to. + * @returns {ReferenceNode} + */ +const referenceBuffer = ( name, type, count, object ) => nodeObject( new ReferenceNode( name, type, object, count ) ); + +/** + * This node is a special type of reference node which is intended + * for linking material properties with node values. + * ```js + * const opacityNode = materialReference( 'opacity', 'float', material ); + * ``` + * When changing `material.opacity`, the node value of `opacityNode` will + * automatically be updated. + * + * @augments ReferenceNode + */ +class MaterialReferenceNode extends ReferenceNode { + + static get type() { + + return 'MaterialReferenceNode'; + + } + + /** + * Constructs a new material reference node. + * + * @param {string} property - The name of the property the node refers to. + * @param {string} inputType - The uniform type that should be used to represent the property value. + * @param {?Material} [material=null] - The material the property belongs to. When no material is set, + * the node refers to the material of the current rendered object. + */ + constructor( property, inputType, material = null ) { + + super( property, inputType, material ); + + /** + * The material the property belongs to. When no material is set, + * the node refers to the material of the current rendered object. + * + * @type {?Material} + * @default null + */ + this.material = material; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMaterialReferenceNode = true; + + } + + /** + * Updates the reference based on the given state. The state is only evaluated + * {@link MaterialReferenceNode#material} is not set. + * + * @param {(NodeFrame|NodeBuilder)} state - The current state. + * @return {Object} The updated reference. + */ + updateReference( state ) { + + this.reference = this.material !== null ? this.material : state.material; + + return this.reference; + + } + +} + +/** + * TSL function for creating a material reference node. + * + * @tsl + * @function + * @param {string} name - The name of the property the node refers to. + * @param {string} type - The uniform type that should be used to represent the property value. + * @param {?Material} [material=null] - The material the property belongs to. + * When no material is set, the node refers to the material of the current rendered object. + * @returns {MaterialReferenceNode} + */ +const materialReference = ( name, type, material = null ) => nodeObject( new MaterialReferenceNode( name, type, material ) ); + +/** + * TSL object that represents the tangent attribute of the current rendered object. + * + * @tsl + * @type {Node} + */ +const tangentGeometry = /*@__PURE__*/ Fn( ( builder ) => { + + if ( builder.geometry.hasAttribute( 'tangent' ) === false ) { + + builder.geometry.computeTangents(); + + } + + return attribute( 'tangent', 'vec4' ); + +} )(); + +/** + * TSL object that represents the vertex tangent in local space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const tangentLocal = /*@__PURE__*/ tangentGeometry.xyz.toVar( 'tangentLocal' ); + +/** + * TSL object that represents the vertex tangent in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const tangentView = /*@__PURE__*/ modelViewMatrix.mul( vec4( tangentLocal, 0 ) ).xyz.toVarying( 'v_tangentView' ).normalize().toVar( 'tangentView' ); + +/** + * TSL object that represents the vertex tangent in world space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const tangentWorld = /*@__PURE__*/ tangentView.transformDirection( cameraViewMatrix ).toVarying( 'v_tangentWorld' ).normalize().toVar( 'tangentWorld' ); + +/** + * TSL object that represents the transformed vertex tangent in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedTangentView = /*@__PURE__*/ tangentView.toVar( 'transformedTangentView' ); + +/** + * TSL object that represents the transformed vertex tangent in world space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedTangentWorld = /*@__PURE__*/ transformedTangentView.transformDirection( cameraViewMatrix ).normalize().toVar( 'transformedTangentWorld' ); + +/** + * Returns the bitangent node and assigns it to a varying if the material is not flat shaded. + * + * @tsl + * @private + * @param {Node} crossNormalTangent - The cross product of the normal and tangent vectors. + * @param {string} varyingName - The name of the varying to assign the bitangent to. + * @returns {Node} The bitangent node. + */ +const getBitangent = /*@__PURE__*/ Fn( ( [ crossNormalTangent, varyingName ], builder ) => { + + let bitangent = crossNormalTangent.mul( tangentGeometry.w ).xyz; + + if ( builder.material.flatShading !== true ) { + + bitangent = varying( bitangent, varyingName ); + + } + + return bitangent; + +} ).once(); + +/** + * TSL object that represents the bitangent attribute of the current rendered object. + * + * @tsl + * @type {Node} + */ +const bitangentGeometry = /*@__PURE__*/ getBitangent( normalGeometry.cross( tangentGeometry ), 'v_bitangentGeometry' ).normalize().toVar( 'bitangentGeometry' ); + +/** + * TSL object that represents the vertex bitangent in local space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const bitangentLocal = /*@__PURE__*/ getBitangent( normalLocal.cross( tangentLocal ), 'v_bitangentLocal' ).normalize().toVar( 'bitangentLocal' ); + +/** + * TSL object that represents the vertex bitangent in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const bitangentView = getBitangent( normalView.cross( tangentView ), 'v_bitangentView' ).normalize().toVar( 'bitangentView' ); + +/** + * TSL object that represents the vertex bitangent in world space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const bitangentWorld = /*@__PURE__*/ getBitangent( normalWorld.cross( tangentWorld ), 'v_bitangentWorld' ).normalize().toVar( 'bitangentWorld' ); + +/** + * TSL object that represents the transformed vertex bitangent in view space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedBitangentView = /*@__PURE__*/ getBitangent( transformedNormalView.cross( transformedTangentView ), 'v_transformedBitangentView' ).normalize().toVar( 'transformedBitangentView' ); + +/** + * TSL object that represents the transformed vertex bitangent in world space of the current rendered object. + * + * @tsl + * @type {Node} + */ +const transformedBitangentWorld = /*@__PURE__*/ transformedBitangentView.transformDirection( cameraViewMatrix ).normalize().toVar( 'transformedBitangentWorld' ); + +/** + * TSL object that represents the TBN matrix in view space. + * + * @tsl + * @type {Node} + */ +const TBNViewMatrix = /*@__PURE__*/ mat3( tangentView, bitangentView, normalView ); + +/** + * TSL object that represents the parallax direction. + * + * @tsl + * @type {Node} + */ +const parallaxDirection = /*@__PURE__*/ positionViewDirection.mul( TBNViewMatrix )/*.normalize()*/; + +/** + * TSL function for computing parallax uv coordinates. + * + * @tsl + * @function + * @param {Node} uv - A uv node. + * @param {Node} scale - A scale node. + * @returns {Node} Parallax uv coordinates. + */ +const parallaxUV = ( uv, scale ) => uv.sub( parallaxDirection.mul( scale ) ); + +/** + * TSL function for computing bent normals. + * + * @tsl + * @function + * @returns {Node} Bent normals. + */ +const transformedBentNormalView = /*@__PURE__*/ ( () => { + + // https://google.github.io/filament/Filament.md.html#lighting/imagebasedlights/anisotropy + + let bentNormal = anisotropyB.cross( positionViewDirection ); + bentNormal = bentNormal.cross( anisotropyB ).normalize(); + bentNormal = mix( bentNormal, transformedNormalView, anisotropy.mul( roughness.oneMinus() ).oneMinus().pow2().pow2() ).normalize(); + + return bentNormal; + + +} )(); + +// Normal Mapping Without Precomputed Tangents +// http://www.thetenthplanet.de/archives/1180 + +const perturbNormal2Arb = /*@__PURE__*/ Fn( ( inputs ) => { + + const { eye_pos, surf_norm, mapN, uv } = inputs; + + const q0 = eye_pos.dFdx(); + const q1 = eye_pos.dFdy(); + const st0 = uv.dFdx(); + const st1 = uv.dFdy(); + + const N = surf_norm; // normalized + + const q1perp = q1.cross( N ); + const q0perp = N.cross( q0 ); + + const T = q1perp.mul( st0.x ).add( q0perp.mul( st1.x ) ); + const B = q1perp.mul( st0.y ).add( q0perp.mul( st1.y ) ); + + const det = T.dot( T ).max( B.dot( B ) ); + const scale = faceDirection.mul( det.inverseSqrt() ); + + return add( T.mul( mapN.x, scale ), B.mul( mapN.y, scale ), N.mul( mapN.z ) ).normalize(); + +} ); + +/** + * This class can be used for applying normals maps to materials. + * + * ```js + * material.normalNode = normalMap( texture( normalTex ) ); + * ``` + * + * @augments TempNode + */ +class NormalMapNode extends TempNode { + + static get type() { + + return 'NormalMapNode'; + + } + + /** + * Constructs a new normal map node. + * + * @param {Node} node - Represents the normal map data. + * @param {?Node} [scaleNode=null] - Controls the intensity of the effect. + */ + constructor( node, scaleNode = null ) { + + super( 'vec3' ); + + /** + * Represents the normal map data. + * + * @type {Node} + */ + this.node = node; + + /** + * Controls the intensity of the effect. + * + * @type {?Node} + * @default null + */ + this.scaleNode = scaleNode; + + /** + * The normal map type. + * + * @type {(TangentSpaceNormalMap|ObjectSpaceNormalMap)} + * @default TangentSpaceNormalMap + */ + this.normalMapType = TangentSpaceNormalMap; + + } + + setup( builder ) { + + const { normalMapType, scaleNode } = this; + + let normalMap = this.node.mul( 2.0 ).sub( 1.0 ); + + if ( scaleNode !== null ) { + + normalMap = vec3( normalMap.xy.mul( scaleNode ), normalMap.z ); + + } + + let outputNode = null; + + if ( normalMapType === ObjectSpaceNormalMap ) { + + outputNode = transformNormalToView( normalMap ); + + } else if ( normalMapType === TangentSpaceNormalMap ) { + + const tangent = builder.hasGeometryAttribute( 'tangent' ); + + if ( tangent === true ) { + + outputNode = TBNViewMatrix.mul( normalMap ).normalize(); + + } else { + + outputNode = perturbNormal2Arb( { + eye_pos: positionView, + surf_norm: normalView, + mapN: normalMap, + uv: uv() + } ); + + } + + } + + return outputNode; + + } + +} + +/** + * TSL function for creating a normal map node. + * + * @tsl + * @function + * @param {Node} node - Represents the normal map data. + * @param {?Node} [scaleNode=null] - Controls the intensity of the effect. + * @returns {NormalMapNode} + */ +const normalMap = /*@__PURE__*/ nodeProxy( NormalMapNode ).setParameterLength( 1, 2 ); + +// Bump Mapping Unparametrized Surfaces on the GPU by Morten S. Mikkelsen +// https://mmikk.github.io/papers3d/mm_sfgrad_bump.pdf + +const dHdxy_fwd = Fn( ( { textureNode, bumpScale } ) => { + + // It's used to preserve the same TextureNode instance + const sampleTexture = ( callback ) => textureNode.cache().context( { getUV: ( texNode ) => callback( texNode.uvNode || uv() ), forceUVContext: true } ); + + const Hll = float( sampleTexture( ( uvNode ) => uvNode ) ); + + return vec2( + float( sampleTexture( ( uvNode ) => uvNode.add( uvNode.dFdx() ) ) ).sub( Hll ), + float( sampleTexture( ( uvNode ) => uvNode.add( uvNode.dFdy() ) ) ).sub( Hll ) + ).mul( bumpScale ); + +} ); + +// Evaluate the derivative of the height w.r.t. screen-space using forward differencing (listing 2) + +const perturbNormalArb = Fn( ( inputs ) => { + + const { surf_pos, surf_norm, dHdxy } = inputs; + + // normalize is done to ensure that the bump map looks the same regardless of the texture's scale + const vSigmaX = surf_pos.dFdx().normalize(); + const vSigmaY = surf_pos.dFdy().normalize(); + const vN = surf_norm; // normalized + + const R1 = vSigmaY.cross( vN ); + const R2 = vN.cross( vSigmaX ); + + const fDet = vSigmaX.dot( R1 ).mul( faceDirection ); + + const vGrad = fDet.sign().mul( dHdxy.x.mul( R1 ).add( dHdxy.y.mul( R2 ) ) ); + + return fDet.abs().mul( surf_norm ).sub( vGrad ).normalize(); + +} ); + +/** + * This class can be used for applying bump maps to materials. + * + * ```js + * material.normalNode = bumpMap( texture( bumpTex ) ); + * ``` + * + * @augments TempNode + */ +class BumpMapNode extends TempNode { + + static get type() { + + return 'BumpMapNode'; + + } + + /** + * Constructs a new bump map node. + * + * @param {Node} textureNode - Represents the bump map data. + * @param {?Node} [scaleNode=null] - Controls the intensity of the bump effect. + */ + constructor( textureNode, scaleNode = null ) { + + super( 'vec3' ); + + /** + * Represents the bump map data. + * + * @type {Node} + */ + this.textureNode = textureNode; + + /** + * Controls the intensity of the bump effect. + * + * @type {?Node} + * @default null + */ + this.scaleNode = scaleNode; + + } + + setup() { + + const bumpScale = this.scaleNode !== null ? this.scaleNode : 1; + const dHdxy = dHdxy_fwd( { textureNode: this.textureNode, bumpScale } ); + + return perturbNormalArb( { + surf_pos: positionView, + surf_norm: normalView, + dHdxy + } ); + + } + +} + +/** + * TSL function for creating a bump map node. + * + * @tsl + * @function + * @param {Node} textureNode - Represents the bump map data. + * @param {?Node} [scaleNode=null] - Controls the intensity of the bump effect. + * @returns {BumpMapNode} + */ +const bumpMap = /*@__PURE__*/ nodeProxy( BumpMapNode ).setParameterLength( 1, 2 ); + +const _propertyCache = new Map(); + +/** + * This class should simplify the node access to material properties. + * It internal uses reference nodes to make sure changes to material + * properties are automatically reflected to predefined TSL objects + * like e.g. `materialColor`. + * + * @augments Node + */ +class MaterialNode extends Node { + + static get type() { + + return 'MaterialNode'; + + } + + /** + * Constructs a new material node. + * + * @param {string} scope - The scope defines what kind of material property is referred by the node. + */ + constructor( scope ) { + + super(); + + /** + * The scope defines what material property is referred by the node. + * + * @type {string} + */ + this.scope = scope; + + } + + /** + * Returns a cached reference node for the given property and type. + * + * @param {string} property - The name of the material property. + * @param {string} type - The uniform type of the property. + * @return {MaterialReferenceNode} A material reference node representing the property access. + */ + getCache( property, type ) { + + let node = _propertyCache.get( property ); + + if ( node === undefined ) { + + node = materialReference( property, type ); + + _propertyCache.set( property, node ); + + } + + return node; + + } + + /** + * Returns a float-typed material reference node for the given property name. + * + * @param {string} property - The name of the material property. + * @return {MaterialReferenceNode} A material reference node representing the property access. + */ + getFloat( property ) { + + return this.getCache( property, 'float' ); + + } + + /** + * Returns a color-typed material reference node for the given property name. + * + * @param {string} property - The name of the material property. + * @return {MaterialReferenceNode} A material reference node representing the property access. + */ + getColor( property ) { + + return this.getCache( property, 'color' ); + + } + + /** + * Returns a texture-typed material reference node for the given property name. + * + * @param {string} property - The name of the material property. + * @return {MaterialReferenceNode} A material reference node representing the property access. + */ + getTexture( property ) { + + return this.getCache( property === 'map' ? 'map' : property + 'Map', 'texture' ); + + } + + /** + * The node setup is done depending on the selected scope. Multiple material properties + * might be grouped into a single node composition if they logically belong together. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The node representing the selected scope. + */ + setup( builder ) { + + const material = builder.context.material; + const scope = this.scope; + + let node = null; + + if ( scope === MaterialNode.COLOR ) { + + const colorNode = material.color !== undefined ? this.getColor( scope ) : vec3(); + + if ( material.map && material.map.isTexture === true ) { + + node = colorNode.mul( this.getTexture( 'map' ) ); + + } else { + + node = colorNode; + + } + + } else if ( scope === MaterialNode.OPACITY ) { + + const opacityNode = this.getFloat( scope ); + + if ( material.alphaMap && material.alphaMap.isTexture === true ) { + + node = opacityNode.mul( this.getTexture( 'alpha' ) ); + + } else { + + node = opacityNode; + + } + + } else if ( scope === MaterialNode.SPECULAR_STRENGTH ) { + + if ( material.specularMap && material.specularMap.isTexture === true ) { + + node = this.getTexture( 'specular' ).r; + + } else { + + node = float( 1 ); + + } + + } else if ( scope === MaterialNode.SPECULAR_INTENSITY ) { + + const specularIntensityNode = this.getFloat( scope ); + + if ( material.specularIntensityMap && material.specularIntensityMap.isTexture === true ) { + + node = specularIntensityNode.mul( this.getTexture( scope ).a ); + + } else { + + node = specularIntensityNode; + + } + + } else if ( scope === MaterialNode.SPECULAR_COLOR ) { + + const specularColorNode = this.getColor( scope ); + + if ( material.specularColorMap && material.specularColorMap.isTexture === true ) { + + node = specularColorNode.mul( this.getTexture( scope ).rgb ); + + } else { + + node = specularColorNode; + + } + + } else if ( scope === MaterialNode.ROUGHNESS ) { // TODO: cleanup similar branches + + const roughnessNode = this.getFloat( scope ); + + if ( material.roughnessMap && material.roughnessMap.isTexture === true ) { + + node = roughnessNode.mul( this.getTexture( scope ).g ); + + } else { + + node = roughnessNode; + + } + + } else if ( scope === MaterialNode.METALNESS ) { + + const metalnessNode = this.getFloat( scope ); + + if ( material.metalnessMap && material.metalnessMap.isTexture === true ) { + + node = metalnessNode.mul( this.getTexture( scope ).b ); + + } else { + + node = metalnessNode; + + } + + } else if ( scope === MaterialNode.EMISSIVE ) { + + const emissiveIntensityNode = this.getFloat( 'emissiveIntensity' ); + const emissiveNode = this.getColor( scope ).mul( emissiveIntensityNode ); + + if ( material.emissiveMap && material.emissiveMap.isTexture === true ) { + + node = emissiveNode.mul( this.getTexture( scope ) ); + + } else { + + node = emissiveNode; + + } + + } else if ( scope === MaterialNode.NORMAL ) { + + if ( material.normalMap ) { + + node = normalMap( this.getTexture( 'normal' ), this.getCache( 'normalScale', 'vec2' ) ); + node.normalMapType = material.normalMapType; + + } else if ( material.bumpMap ) { + + node = bumpMap( this.getTexture( 'bump' ).r, this.getFloat( 'bumpScale' ) ); + + } else { + + node = normalView; + + } + + } else if ( scope === MaterialNode.CLEARCOAT ) { + + const clearcoatNode = this.getFloat( scope ); + + if ( material.clearcoatMap && material.clearcoatMap.isTexture === true ) { + + node = clearcoatNode.mul( this.getTexture( scope ).r ); + + } else { + + node = clearcoatNode; + + } + + } else if ( scope === MaterialNode.CLEARCOAT_ROUGHNESS ) { + + const clearcoatRoughnessNode = this.getFloat( scope ); + + if ( material.clearcoatRoughnessMap && material.clearcoatRoughnessMap.isTexture === true ) { + + node = clearcoatRoughnessNode.mul( this.getTexture( scope ).r ); + + } else { + + node = clearcoatRoughnessNode; + + } + + } else if ( scope === MaterialNode.CLEARCOAT_NORMAL ) { + + if ( material.clearcoatNormalMap ) { + + node = normalMap( this.getTexture( scope ), this.getCache( scope + 'Scale', 'vec2' ) ); + + } else { + + node = normalView; + + } + + } else if ( scope === MaterialNode.SHEEN ) { + + const sheenNode = this.getColor( 'sheenColor' ).mul( this.getFloat( 'sheen' ) ); // Move this mul() to CPU + + if ( material.sheenColorMap && material.sheenColorMap.isTexture === true ) { + + node = sheenNode.mul( this.getTexture( 'sheenColor' ).rgb ); + + } else { + + node = sheenNode; + + } + + } else if ( scope === MaterialNode.SHEEN_ROUGHNESS ) { + + const sheenRoughnessNode = this.getFloat( scope ); + + if ( material.sheenRoughnessMap && material.sheenRoughnessMap.isTexture === true ) { + + node = sheenRoughnessNode.mul( this.getTexture( scope ).a ); + + } else { + + node = sheenRoughnessNode; + + } + + node = node.clamp( 0.07, 1.0 ); + + } else if ( scope === MaterialNode.ANISOTROPY ) { + + if ( material.anisotropyMap && material.anisotropyMap.isTexture === true ) { + + const anisotropyPolar = this.getTexture( scope ); + const anisotropyMat = mat2( materialAnisotropyVector.x, materialAnisotropyVector.y, materialAnisotropyVector.y.negate(), materialAnisotropyVector.x ); + + node = anisotropyMat.mul( anisotropyPolar.rg.mul( 2.0 ).sub( vec2( 1.0 ) ).normalize().mul( anisotropyPolar.b ) ); + + } else { + + node = materialAnisotropyVector; + + } + + } else if ( scope === MaterialNode.IRIDESCENCE_THICKNESS ) { + + const iridescenceThicknessMaximum = reference( '1', 'float', material.iridescenceThicknessRange ); + + if ( material.iridescenceThicknessMap ) { + + const iridescenceThicknessMinimum = reference( '0', 'float', material.iridescenceThicknessRange ); + + node = iridescenceThicknessMaximum.sub( iridescenceThicknessMinimum ).mul( this.getTexture( scope ).g ).add( iridescenceThicknessMinimum ); + + } else { + + node = iridescenceThicknessMaximum; + + } + + } else if ( scope === MaterialNode.TRANSMISSION ) { + + const transmissionNode = this.getFloat( scope ); + + if ( material.transmissionMap ) { + + node = transmissionNode.mul( this.getTexture( scope ).r ); + + } else { + + node = transmissionNode; + + } + + } else if ( scope === MaterialNode.THICKNESS ) { + + const thicknessNode = this.getFloat( scope ); + + if ( material.thicknessMap ) { + + node = thicknessNode.mul( this.getTexture( scope ).g ); + + } else { + + node = thicknessNode; + + } + + } else if ( scope === MaterialNode.IOR ) { + + node = this.getFloat( scope ); + + } else if ( scope === MaterialNode.LIGHT_MAP ) { + + node = this.getTexture( scope ).rgb.mul( this.getFloat( 'lightMapIntensity' ) ); + + } else if ( scope === MaterialNode.AO ) { + + node = this.getTexture( scope ).r.sub( 1.0 ).mul( this.getFloat( 'aoMapIntensity' ) ).add( 1.0 ); + + } else if ( scope === MaterialNode.LINE_DASH_OFFSET ) { + + node = ( material.dashOffset ) ? this.getFloat( scope ) : float( 0 ); + + } else { + + const outputType = this.getNodeType( builder ); + + node = this.getCache( scope, outputType ); + + } + + return node; + + } + +} + +MaterialNode.ALPHA_TEST = 'alphaTest'; +MaterialNode.COLOR = 'color'; +MaterialNode.OPACITY = 'opacity'; +MaterialNode.SHININESS = 'shininess'; +MaterialNode.SPECULAR = 'specular'; +MaterialNode.SPECULAR_STRENGTH = 'specularStrength'; +MaterialNode.SPECULAR_INTENSITY = 'specularIntensity'; +MaterialNode.SPECULAR_COLOR = 'specularColor'; +MaterialNode.REFLECTIVITY = 'reflectivity'; +MaterialNode.ROUGHNESS = 'roughness'; +MaterialNode.METALNESS = 'metalness'; +MaterialNode.NORMAL = 'normal'; +MaterialNode.CLEARCOAT = 'clearcoat'; +MaterialNode.CLEARCOAT_ROUGHNESS = 'clearcoatRoughness'; +MaterialNode.CLEARCOAT_NORMAL = 'clearcoatNormal'; +MaterialNode.EMISSIVE = 'emissive'; +MaterialNode.ROTATION = 'rotation'; +MaterialNode.SHEEN = 'sheen'; +MaterialNode.SHEEN_ROUGHNESS = 'sheenRoughness'; +MaterialNode.ANISOTROPY = 'anisotropy'; +MaterialNode.IRIDESCENCE = 'iridescence'; +MaterialNode.IRIDESCENCE_IOR = 'iridescenceIOR'; +MaterialNode.IRIDESCENCE_THICKNESS = 'iridescenceThickness'; +MaterialNode.IOR = 'ior'; +MaterialNode.TRANSMISSION = 'transmission'; +MaterialNode.THICKNESS = 'thickness'; +MaterialNode.ATTENUATION_DISTANCE = 'attenuationDistance'; +MaterialNode.ATTENUATION_COLOR = 'attenuationColor'; +MaterialNode.LINE_SCALE = 'scale'; +MaterialNode.LINE_DASH_SIZE = 'dashSize'; +MaterialNode.LINE_GAP_SIZE = 'gapSize'; +MaterialNode.LINE_WIDTH = 'linewidth'; +MaterialNode.LINE_DASH_OFFSET = 'dashOffset'; +MaterialNode.POINT_SIZE = 'size'; +MaterialNode.DISPERSION = 'dispersion'; +MaterialNode.LIGHT_MAP = 'light'; +MaterialNode.AO = 'ao'; + +/** + * TSL object that represents alpha test of the current material. + * + * @tsl + * @type {Node} + */ +const materialAlphaTest = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ALPHA_TEST ); + +/** + * TSL object that represents the diffuse color of the current material. + * The value is composed via `color` * `map`. + * + * @tsl + * @type {Node} + */ +const materialColor = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.COLOR ); + +/** + * TSL object that represents the shininess of the current material. + * + * @tsl + * @type {Node} + */ +const materialShininess = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SHININESS ); + +/** + * TSL object that represents the emissive color of the current material. + * The value is composed via `emissive` * `emissiveIntensity` * `emissiveMap`. + * + * @tsl + * @type {Node} + */ +const materialEmissive = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.EMISSIVE ); + +/** + * TSL object that represents the opacity of the current material. + * The value is composed via `opacity` * `alphaMap`. + * + * @tsl + * @type {Node} + */ +const materialOpacity = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.OPACITY ); + +/** + * TSL object that represents the specular of the current material. + * + * @tsl + * @type {Node} + */ +const materialSpecular = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SPECULAR ); + +/** + * TSL object that represents the specular intensity of the current material. + * The value is composed via `specularIntensity` * `specularMap.a`. + * + * @tsl + * @type {Node} + */ +const materialSpecularIntensity = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SPECULAR_INTENSITY ); + +/** + * TSL object that represents the specular color of the current material. + * The value is composed via `specularColor` * `specularMap.rgb`. + * + * @tsl + * @type {Node} + */ +const materialSpecularColor = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SPECULAR_COLOR ); + +/** + * TSL object that represents the specular strength of the current material. + * The value is composed via `specularMap.r`. + * + * @tsl + * @type {Node} + */ +const materialSpecularStrength = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SPECULAR_STRENGTH ); + +/** + * TSL object that represents the reflectivity of the current material. + * + * @tsl + * @type {Node} + */ +const materialReflectivity = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.REFLECTIVITY ); + +/** + * TSL object that represents the roughness of the current material. + * The value is composed via `roughness` * `roughnessMap.g`. + * + * @tsl + * @type {Node} + */ +const materialRoughness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ROUGHNESS ); + +/** + * TSL object that represents the metalness of the current material. + * The value is composed via `metalness` * `metalnessMap.b`. + * + * @tsl + * @type {Node} + */ +const materialMetalness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.METALNESS ); + +/** + * TSL object that represents the normal of the current material. + * The value will be either `normalMap` * `normalScale`, `bumpMap` * `bumpScale` or `normalView`. + * + * @tsl + * @type {Node} + */ +const materialNormal = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.NORMAL ); + +/** + * TSL object that represents the clearcoat of the current material. + * The value is composed via `clearcoat` * `clearcoatMap.r` + * + * @tsl + * @type {Node} + */ +const materialClearcoat = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.CLEARCOAT ); + +/** + * TSL object that represents the clearcoat roughness of the current material. + * The value is composed via `clearcoatRoughness` * `clearcoatRoughnessMap.r`. + * + * @tsl + * @type {Node} + */ +const materialClearcoatRoughness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.CLEARCOAT_ROUGHNESS ); + +/** + * TSL object that represents the clearcoat normal of the current material. + * The value will be either `clearcoatNormalMap` or `normalView`. + * + * @tsl + * @type {Node} + */ +const materialClearcoatNormal = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.CLEARCOAT_NORMAL ); + +/** + * TSL object that represents the rotation of the current sprite material. + * + * @tsl + * @type {Node} + */ +const materialRotation = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ROTATION ); + +/** + * TSL object that represents the sheen color of the current material. + * The value is composed via `sheen` * `sheenColor` * `sheenColorMap`. + * + * @tsl + * @type {Node} + */ +const materialSheen = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SHEEN ); + +/** + * TSL object that represents the sheen roughness of the current material. + * The value is composed via `sheenRoughness` * `sheenRoughnessMap.a`. + * + * @tsl + * @type {Node} + */ +const materialSheenRoughness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SHEEN_ROUGHNESS ); + +/** + * TSL object that represents the anisotropy of the current material. + * + * @tsl + * @type {Node} + */ +const materialAnisotropy = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ANISOTROPY ); + +/** + * TSL object that represents the iridescence of the current material. + * + * @tsl + * @type {Node} + */ +const materialIridescence = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.IRIDESCENCE ); + +/** + * TSL object that represents the iridescence IOR of the current material. + * + * @tsl + * @type {Node} + */ +const materialIridescenceIOR = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.IRIDESCENCE_IOR ); + +/** + * TSL object that represents the iridescence thickness of the current material. + * + * @tsl + * @type {Node} + */ +const materialIridescenceThickness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.IRIDESCENCE_THICKNESS ); + +/** + * TSL object that represents the transmission of the current material. + * The value is composed via `transmission` * `transmissionMap.r`. + * + * @tsl + * @type {Node} + */ +const materialTransmission = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.TRANSMISSION ); + +/** + * TSL object that represents the thickness of the current material. + * The value is composed via `thickness` * `thicknessMap.g`. + * + * @tsl + * @type {Node} + */ +const materialThickness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.THICKNESS ); + +/** + * TSL object that represents the IOR of the current material. + * + * @tsl + * @type {Node} + */ +const materialIOR = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.IOR ); + +/** + * TSL object that represents the attenuation distance of the current material. + * + * @tsl + * @type {Node} + */ +const materialAttenuationDistance = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ATTENUATION_DISTANCE ); + +/** + * TSL object that represents the attenuation color of the current material. + * + * @tsl + * @type {Node} + */ +const materialAttenuationColor = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ATTENUATION_COLOR ); + +/** + * TSL object that represents the scale of the current dashed line material. + * + * @tsl + * @type {Node} + */ +const materialLineScale = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_SCALE ); + +/** + * TSL object that represents the dash size of the current dashed line material. + * + * @tsl + * @type {Node} + */ +const materialLineDashSize = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_DASH_SIZE ); + +/** + * TSL object that represents the gap size of the current dashed line material. + * + * @tsl + * @type {Node} + */ +const materialLineGapSize = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_GAP_SIZE ); + +/** + * TSL object that represents the line width of the current line material. + * + * @tsl + * @type {Node} + */ +const materialLineWidth = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_WIDTH ); + +/** + * TSL object that represents the dash offset of the current line material. + * + * @tsl + * @type {Node} + */ +const materialLineDashOffset = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_DASH_OFFSET ); + +/** + * TSL object that represents the point size of the current points material. + * + * @tsl + * @type {Node} + */ +const materialPointSize = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.POINT_SIZE ); + +/** + * TSL object that represents the dispersion of the current material. + * + * @tsl + * @type {Node} + */ +const materialDispersion = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.DISPERSION ); + +/** + * TSL object that represents the light map of the current material. + * The value is composed via `lightMapIntensity` * `lightMap.rgb`. + * + * @tsl + * @type {Node} + */ +const materialLightMap = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LIGHT_MAP ); + +/** + * TSL object that represents the ambient occlusion map of the current material. + * The value is composed via `aoMap.r` - 1 * `aoMapIntensity` + 1. + * + * @tsl + * @type {Node} + */ +const materialAO = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.AO ); + +/** + * TSL object that represents the anisotropy vector of the current material. + * + * @tsl + * @type {Node} + */ +const materialAnisotropyVector = /*@__PURE__*/ uniform( new Vector2() ).onReference( function ( frame ) { + + return frame.material; + +} ).onRenderUpdate( function ( { material } ) { + + this.value.set( material.anisotropy * Math.cos( material.anisotropyRotation ), material.anisotropy * Math.sin( material.anisotropyRotation ) ); + +} ); + +/** + * TSL object that represents the position in clip space after the model-view-projection transform of the current rendered object. + * + * @tsl + * @type {VaryingNode} + */ +const modelViewProjection = /*@__PURE__*/ ( Fn( ( builder ) => { + + return builder.context.setupModelViewProjection(); + +}, 'vec4' ).once() )().toVarying( 'v_modelViewProjection' ); + +/** + * This class represents shader indices of different types. The following predefined node + * objects cover frequent use cases: + * + * - `vertexIndex`: The index of a vertex within a mesh. + * - `instanceIndex`: The index of either a mesh instance or an invocation of a compute shader. + * - `drawIndex`: The index of a draw call. + * - `invocationLocalIndex`: The index of a compute invocation within the scope of a workgroup load. + * - `invocationSubgroupIndex`: The index of a compute invocation within the scope of a subgroup. + * - `subgroupIndex`: The index of the subgroup the current compute invocation belongs to. + * + * @augments Node + */ +class IndexNode extends Node { + + static get type() { + + return 'IndexNode'; + + } + + /** + * Constructs a new index node. + * + * @param {('vertex'|'instance'|'subgroup'|'invocationLocal'|'invocationSubgroup'|'draw')} scope - The scope of the index node. + */ + constructor( scope ) { + + super( 'uint' ); + + /** + * The scope of the index node. + * + * @type {string} + */ + this.scope = scope; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isIndexNode = true; + + } + + generate( builder ) { + + const nodeType = this.getNodeType( builder ); + const scope = this.scope; + + let propertyName; + + if ( scope === IndexNode.VERTEX ) { + + propertyName = builder.getVertexIndex(); + + } else if ( scope === IndexNode.INSTANCE ) { + + propertyName = builder.getInstanceIndex(); + + } else if ( scope === IndexNode.DRAW ) { + + propertyName = builder.getDrawIndex(); + + } else if ( scope === IndexNode.INVOCATION_LOCAL ) { + + propertyName = builder.getInvocationLocalIndex(); + + } else if ( scope === IndexNode.INVOCATION_SUBGROUP ) { + + propertyName = builder.getInvocationSubgroupIndex(); + + } else if ( scope === IndexNode.SUBGROUP ) { + + propertyName = builder.getSubgroupIndex(); + + } else { + + throw new Error( 'THREE.IndexNode: Unknown scope: ' + scope ); + + } + + let output; + + if ( builder.shaderStage === 'vertex' || builder.shaderStage === 'compute' ) { + + output = propertyName; + + } else { + + const nodeVarying = varying( this ); + + output = nodeVarying.build( builder, nodeType ); + + } + + return output; + + } + +} + +IndexNode.VERTEX = 'vertex'; +IndexNode.INSTANCE = 'instance'; +IndexNode.SUBGROUP = 'subgroup'; +IndexNode.INVOCATION_LOCAL = 'invocationLocal'; +IndexNode.INVOCATION_SUBGROUP = 'invocationSubgroup'; +IndexNode.DRAW = 'draw'; + +/** + * TSL object that represents the index of a vertex within a mesh. + * + * @tsl + * @type {IndexNode} + */ +const vertexIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.VERTEX ); + +/** + * TSL object that represents the index of either a mesh instance or an invocation of a compute shader. + * + * @tsl + * @type {IndexNode} + */ +const instanceIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.INSTANCE ); + +/** + * TSL object that represents the index of the subgroup the current compute invocation belongs to. + * + * @tsl + * @type {IndexNode} + */ +const subgroupIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.SUBGROUP ); + +/** + * TSL object that represents the index of a compute invocation within the scope of a subgroup. + * + * @tsl + * @type {IndexNode} + */ +const invocationSubgroupIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.INVOCATION_SUBGROUP ); + +/** + * TSL object that represents the index of a compute invocation within the scope of a workgroup load. + * + * @tsl + * @type {IndexNode} + */ +const invocationLocalIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.INVOCATION_LOCAL ); + +/** + * TSL object that represents the index of a draw call. + * + * @tsl + * @type {IndexNode} + */ +const drawIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.DRAW ); + +/** + * This node implements the vertex shader logic which is required + * when rendering 3D objects via instancing. The code makes sure + * vertex positions, normals and colors can be modified via instanced + * data. + * + * @augments Node + */ +class InstanceNode extends Node { + + static get type() { + + return 'InstanceNode'; + + } + + /** + * Constructs a new instance node. + * + * @param {number} count - The number of instances. + * @param {InstancedBufferAttribute} instanceMatrix - Instanced buffer attribute representing the instance transformations. + * @param {?InstancedBufferAttribute} instanceColor - Instanced buffer attribute representing the instance colors. + */ + constructor( count, instanceMatrix, instanceColor = null ) { + + super( 'void' ); + + /** + * The number of instances. + * + * @type {number} + */ + this.count = count; + + /** + * Instanced buffer attribute representing the transformation of instances. + * + * @type {InstancedBufferAttribute} + */ + this.instanceMatrix = instanceMatrix; + + /** + * Instanced buffer attribute representing the color of instances. + * + * @type {InstancedBufferAttribute} + */ + this.instanceColor = instanceColor; + + /** + * The node that represents the instance matrix data. + * + * @type {?Node} + */ + this.instanceMatrixNode = null; + + /** + * The node that represents the instance color data. + * + * @type {?Node} + * @default null + */ + this.instanceColorNode = null; + + /** + * The update type is set to `frame` since an update + * of instanced buffer data must be checked per frame. + * + * @type {string} + * @default 'frame' + */ + this.updateType = NodeUpdateType.FRAME; + + /** + * A reference to a buffer that is used by `instanceMatrixNode`. + * + * @type {?InstancedInterleavedBuffer} + */ + this.buffer = null; + + /** + * A reference to a buffer that is used by `instanceColorNode`. + * + * @type {?InstancedBufferAttribute} + */ + this.bufferColor = null; + + } + + /** + * Setups the internal buffers and nodes and assigns the transformed vertex data + * to predefined node variables for accumulation. That follows the same patterns + * like with morph and skinning nodes. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + const { count, instanceMatrix, instanceColor } = this; + + let { instanceMatrixNode, instanceColorNode } = this; + + if ( instanceMatrixNode === null ) { + + // Both WebGPU and WebGL backends have UBO max limited to 64kb. Matrix count number bigger than 1000 ( 16 * 4 * 1000 = 64kb ) will fallback to attribute. + + if ( count <= 1000 ) { + + instanceMatrixNode = buffer( instanceMatrix.array, 'mat4', Math.max( count, 1 ) ).element( instanceIndex ); + + } else { + + const buffer = new InstancedInterleavedBuffer( instanceMatrix.array, 16, 1 ); + + this.buffer = buffer; + + const bufferFn = instanceMatrix.usage === DynamicDrawUsage ? instancedDynamicBufferAttribute : instancedBufferAttribute; + + const instanceBuffers = [ + // F.Signature -> bufferAttribute( array, type, stride, offset ) + bufferFn( buffer, 'vec4', 16, 0 ), + bufferFn( buffer, 'vec4', 16, 4 ), + bufferFn( buffer, 'vec4', 16, 8 ), + bufferFn( buffer, 'vec4', 16, 12 ) + ]; + + instanceMatrixNode = mat4( ...instanceBuffers ); + + } + + this.instanceMatrixNode = instanceMatrixNode; + + } + + if ( instanceColor && instanceColorNode === null ) { + + const buffer = new InstancedBufferAttribute( instanceColor.array, 3 ); + + const bufferFn = instanceColor.usage === DynamicDrawUsage ? instancedDynamicBufferAttribute : instancedBufferAttribute; + + this.bufferColor = buffer; + + instanceColorNode = vec3( bufferFn( buffer, 'vec3', 3, 0 ) ); + + this.instanceColorNode = instanceColorNode; + + } + + // POSITION + + const instancePosition = instanceMatrixNode.mul( positionLocal ).xyz; + positionLocal.assign( instancePosition ); + + // NORMAL + + if ( builder.hasGeometryAttribute( 'normal' ) ) { + + const instanceNormal = transformNormal( normalLocal, instanceMatrixNode ); + + // ASSIGNS + + normalLocal.assign( instanceNormal ); + + } + + // COLOR + + if ( this.instanceColorNode !== null ) { + + varyingProperty( 'vec3', 'vInstanceColor' ).assign( this.instanceColorNode ); + + } + + } + + /** + * Checks if the internal buffers required an update. + * + * @param {NodeFrame} frame - The current node frame. + */ + update( /*frame*/ ) { + + if ( this.instanceMatrix.usage !== DynamicDrawUsage && this.buffer !== null && this.instanceMatrix.version !== this.buffer.version ) { + + this.buffer.version = this.instanceMatrix.version; + + } + + if ( this.instanceColor && this.instanceColor.usage !== DynamicDrawUsage && this.bufferColor !== null && this.instanceColor.version !== this.bufferColor.version ) { + + this.bufferColor.version = this.instanceColor.version; + + } + + } + +} + +/** + * TSL function for creating an instance node. + * + * @tsl + * @function + * @param {number} count - The number of instances. + * @param {InstancedBufferAttribute} instanceMatrix - Instanced buffer attribute representing the instance transformations. + * @param {?InstancedBufferAttribute} instanceColor - Instanced buffer attribute representing the instance colors. + * @returns {InstanceNode} + */ +const instance = /*@__PURE__*/ nodeProxy( InstanceNode ).setParameterLength( 2, 3 ); + +/** + * This is a special version of `InstanceNode` which requires the usage of {@link InstancedMesh}. + * It allows an easier setup of the instance node. + * + * @augments InstanceNode + */ +class InstancedMeshNode extends InstanceNode { + + static get type() { + + return 'InstancedMeshNode'; + + } + + /** + * Constructs a new instanced mesh node. + * + * @param {InstancedMesh} instancedMesh - The instanced mesh. + */ + constructor( instancedMesh ) { + + const { count, instanceMatrix, instanceColor } = instancedMesh; + + super( count, instanceMatrix, instanceColor ); + + /** + * A reference to the instanced mesh. + * + * @type {InstancedMesh} + */ + this.instancedMesh = instancedMesh; + + } + +} + +/** + * TSL function for creating an instanced mesh node. + * + * @tsl + * @function + * @param {InstancedMesh} instancedMesh - The instancedMesh. + * @returns {InstancedMeshNode} + */ +const instancedMesh = /*@__PURE__*/ nodeProxy( InstancedMeshNode ).setParameterLength( 1 ); + +/** + * This node implements the vertex shader logic which is required + * when rendering 3D objects via batching. `BatchNode` must be used + * with instances of {@link BatchedMesh}. + * + * @augments Node + */ +class BatchNode extends Node { + + static get type() { + + return 'BatchNode'; + + } + + /** + * Constructs a new batch node. + * + * @param {BatchedMesh} batchMesh - A reference to batched mesh. + */ + constructor( batchMesh ) { + + super( 'void' ); + + /** + * A reference to batched mesh. + * + * @type {BatchedMesh} + */ + this.batchMesh = batchMesh; + + /** + * The batching index node. + * + * @type {?IndexNode} + * @default null + */ + this.batchingIdNode = null; + + } + + /** + * Setups the internal buffers and nodes and assigns the transformed vertex data + * to predefined node variables for accumulation. That follows the same patterns + * like with morph and skinning nodes. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + if ( this.batchingIdNode === null ) { + + if ( builder.getDrawIndex() === null ) { + + this.batchingIdNode = instanceIndex; + + } else { + + this.batchingIdNode = drawIndex; + + } + + } + + const getIndirectIndex = Fn( ( [ id ] ) => { + + const size = int( textureSize( textureLoad( this.batchMesh._indirectTexture ), 0 ).x ); + const x = int( id ).mod( size ); + const y = int( id ).div( size ); + return textureLoad( this.batchMesh._indirectTexture, ivec2( x, y ) ).x; + + } ).setLayout( { + name: 'getIndirectIndex', + type: 'uint', + inputs: [ + { name: 'id', type: 'int' } + ] + } ); + + const indirectId = getIndirectIndex( int( this.batchingIdNode ) ); + + const matricesTexture = this.batchMesh._matricesTexture; + + const size = int( textureSize( textureLoad( matricesTexture ), 0 ).x ); + const j = float( indirectId ).mul( 4 ).toInt().toVar(); + + const x = j.mod( size ); + const y = j.div( size ); + const batchingMatrix = mat4( + textureLoad( matricesTexture, ivec2( x, y ) ), + textureLoad( matricesTexture, ivec2( x.add( 1 ), y ) ), + textureLoad( matricesTexture, ivec2( x.add( 2 ), y ) ), + textureLoad( matricesTexture, ivec2( x.add( 3 ), y ) ) + ); + + + const colorsTexture = this.batchMesh._colorsTexture; + + if ( colorsTexture !== null ) { + + const getBatchingColor = Fn( ( [ id ] ) => { + + const size = int( textureSize( textureLoad( colorsTexture ), 0 ).x ); + const j = id; + const x = j.mod( size ); + const y = j.div( size ); + return textureLoad( colorsTexture, ivec2( x, y ) ).rgb; + + } ).setLayout( { + name: 'getBatchingColor', + type: 'vec3', + inputs: [ + { name: 'id', type: 'int' } + ] + } ); + + const color = getBatchingColor( indirectId ); + + varyingProperty( 'vec3', 'vBatchColor' ).assign( color ); + + } + + const bm = mat3( batchingMatrix ); + + positionLocal.assign( batchingMatrix.mul( positionLocal ) ); + + const transformedNormal = normalLocal.div( vec3( bm[ 0 ].dot( bm[ 0 ] ), bm[ 1 ].dot( bm[ 1 ] ), bm[ 2 ].dot( bm[ 2 ] ) ) ); + + const batchingNormal = bm.mul( transformedNormal ).xyz; + + normalLocal.assign( batchingNormal ); + + if ( builder.hasGeometryAttribute( 'tangent' ) ) { + + tangentLocal.mulAssign( bm ); + + } + + } + +} + +/** + * TSL function for creating a batch node. + * + * @tsl + * @function + * @param {BatchedMesh} batchMesh - A reference to batched mesh. + * @returns {BatchNode} + */ +const batch = /*@__PURE__*/ nodeProxy( BatchNode ).setParameterLength( 1 ); + +/** + * This class enables element access on instances of {@link StorageBufferNode}. + * In most cases, it is indirectly used when accessing elements with the + * {@link StorageBufferNode#element} method. + * + * ```js + * const position = positionStorage.element( instanceIndex ); + * ``` + * + * @augments ArrayElementNode + */ +class StorageArrayElementNode extends ArrayElementNode { + + static get type() { + + return 'StorageArrayElementNode'; + + } + + /** + * Constructs storage buffer element node. + * + * @param {StorageBufferNode} storageBufferNode - The storage buffer node. + * @param {Node} indexNode - The index node that defines the element access. + */ + constructor( storageBufferNode, indexNode ) { + + super( storageBufferNode, indexNode ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageArrayElementNode = true; + + } + + /** + * The storage buffer node. + * + * @param {Node} value + * @type {StorageBufferNode} + */ + set storageBufferNode( value ) { + + this.node = value; + + } + + get storageBufferNode() { + + return this.node; + + } + + getMemberType( builder, name ) { + + const structTypeNode = this.storageBufferNode.structTypeNode; + + if ( structTypeNode ) { + + return structTypeNode.getMemberType( builder, name ); + + } + + return 'void'; + + } + + setup( builder ) { + + if ( builder.isAvailable( 'storageBuffer' ) === false ) { + + if ( this.node.isPBO === true ) { + + builder.setupPBO( this.node ); + + } + + } + + return super.setup( builder ); + + } + + generate( builder, output ) { + + let snippet; + + const isAssignContext = builder.context.assign; + + // + + if ( builder.isAvailable( 'storageBuffer' ) === false ) { + + if ( this.node.isPBO === true && isAssignContext !== true && ( this.node.value.isInstancedBufferAttribute || builder.shaderStage !== 'compute' ) ) { + + snippet = builder.generatePBO( this ); + + } else { + + snippet = this.node.build( builder ); + + } + + } else { + + snippet = super.generate( builder ); + + } + + if ( isAssignContext !== true ) { + + const type = this.getNodeType( builder ); + + snippet = builder.format( snippet, type, output ); + + } + + return snippet; + + } + +} + +/** + * TSL function for creating a storage element node. + * + * @tsl + * @function + * @param {StorageBufferNode} storageBufferNode - The storage buffer node. + * @param {Node} indexNode - The index node that defines the element access. + * @returns {StorageArrayElementNode} + */ +const storageElement = /*@__PURE__*/ nodeProxy( StorageArrayElementNode ).setParameterLength( 2 ); + +/** + * This node is used in context of compute shaders and allows to define a + * storage buffer for data. A typical workflow is to create instances of + * this node with the convenience functions `attributeArray()` or `instancedArray()`, + * setup up a compute shader that writes into the buffers and then convert + * the storage buffers to attribute nodes for rendering. + * + * ```js + * const positionBuffer = instancedArray( particleCount, 'vec3' ); // the storage buffer node + * + * const computeInit = Fn( () => { // the compute shader + * + * const position = positionBuffer.element( instanceIndex ); + * + * // compute position data + * + * position.x = 1; + * position.y = 1; + * position.z = 1; + * + * } )().compute( particleCount ); + * + * const particleMaterial = new THREE.SpriteNodeMaterial(); + * particleMaterial.positionNode = positionBuffer.toAttribute(); + * + * renderer.computeAsync( computeInit ); + * + * ``` + * + * @augments BufferNode + */ +class StorageBufferNode extends BufferNode { + + static get type() { + + return 'StorageBufferNode'; + + } + + /** + * Constructs a new storage buffer node. + * + * @param {StorageBufferAttribute|StorageInstancedBufferAttribute|BufferAttribute} value - The buffer data. + * @param {?(string|Struct)} [bufferType=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [bufferCount=0] - The buffer count. + */ + constructor( value, bufferType = null, bufferCount = 0 ) { + + let nodeType, structTypeNode = null; + + if ( bufferType && bufferType.isStruct ) { + + nodeType = 'struct'; + structTypeNode = bufferType.layout; + + if ( value.isStorageBufferAttribute || value.isStorageInstancedBufferAttribute ) { + + bufferCount = value.count; + + } + + } else if ( bufferType === null && ( value.isStorageBufferAttribute || value.isStorageInstancedBufferAttribute ) ) { + + nodeType = getTypeFromLength( value.itemSize ); + bufferCount = value.count; + + } else { + + nodeType = bufferType; + + } + + super( value, nodeType, bufferCount ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageBufferNode = true; + + + /** + * The buffer struct type. + * + * @type {?StructTypeNode} + * @default null + */ + this.structTypeNode = structTypeNode; + + /** + * The access type of the texture node. + * + * @type {string} + * @default 'readWrite' + */ + this.access = NodeAccess.READ_WRITE; + + /** + * Whether the node is atomic or not. + * + * @type {boolean} + * @default false + */ + this.isAtomic = false; + + /** + * Whether the node represents a PBO or not. + * Only relevant for WebGL. + * + * @type {boolean} + * @default false + */ + this.isPBO = false; + + /** + * A reference to the internal buffer attribute node. + * + * @type {?BufferAttributeNode} + * @default null + */ + this._attribute = null; + + /** + * A reference to the internal varying node. + * + * @type {?VaryingNode} + * @default null + */ + this._varying = null; + + /** + * `StorageBufferNode` sets this property to `true` by default. + * + * @type {boolean} + * @default true + */ + this.global = true; + + if ( value.isStorageBufferAttribute !== true && value.isStorageInstancedBufferAttribute !== true ) { + + // TODO: Improve it, possibly adding a new property to the BufferAttribute to identify it as a storage buffer read-only attribute in Renderer + + if ( value.isInstancedBufferAttribute ) value.isStorageInstancedBufferAttribute = true; + else value.isStorageBufferAttribute = true; + + } + + } + + /** + * This method is overwritten since the buffer data might be shared + * and thus the hash should be shared as well. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The hash. + */ + getHash( builder ) { + + if ( this.bufferCount === 0 ) { + + let bufferData = builder.globalCache.getData( this.value ); + + if ( bufferData === undefined ) { + + bufferData = { + node: this + }; + + builder.globalCache.setData( this.value, bufferData ); + + } + + return bufferData.node.uuid; + + } + + return this.uuid; + + } + + /** + * Overwrites the default implementation to return a fixed value `'indirectStorageBuffer'` or `'storageBuffer'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return this.value.isIndirectStorageBufferAttribute ? 'indirectStorageBuffer' : 'storageBuffer'; + + } + + /** + * Enables element access with the given index node. + * + * @param {IndexNode} indexNode - The index node. + * @return {StorageArrayElementNode} A node representing the element access. + */ + element( indexNode ) { + + return storageElement( this, indexNode ); + + } + + /** + * Defines whether this node is a PBO or not. Only relevant for WebGL. + * + * @param {boolean} value - The value so set. + * @return {StorageBufferNode} A reference to this node. + */ + setPBO( value ) { + + this.isPBO = value; + + return this; + + } + + /** + * Returns the `isPBO` value. + * + * @return {boolean} Whether the node represents a PBO or not. + */ + getPBO() { + + return this.isPBO; + + } + + /** + * Defines the node access. + * + * @param {string} value - The node access. + * @return {StorageBufferNode} A reference to this node. + */ + setAccess( value ) { + + this.access = value; + + return this; + + } + + /** + * Convenience method for configuring a read-only node access. + * + * @return {StorageBufferNode} A reference to this node. + */ + toReadOnly() { + + return this.setAccess( NodeAccess.READ_ONLY ); + + } + + /** + * Defines whether the node is atomic or not. + * + * @param {boolean} value - The atomic flag. + * @return {StorageBufferNode} A reference to this node. + */ + setAtomic( value ) { + + this.isAtomic = value; + + return this; + + } + + /** + * Convenience method for making this node atomic. + * + * @return {StorageBufferNode} A reference to this node. + */ + toAtomic() { + + return this.setAtomic( true ); + + } + + /** + * Returns attribute data for this storage buffer node. + * + * @return {{attribute: BufferAttributeNode, varying: VaryingNode}} The attribute data. + */ + getAttributeData() { + + if ( this._attribute === null ) { + + this._attribute = bufferAttribute( this.value ); + this._varying = varying( this._attribute ); + + } + + return { + attribute: this._attribute, + varying: this._varying + }; + + } + + /** + * This method is overwritten since the node type from the availability of storage buffers + * and the attribute data. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + if ( this.structTypeNode !== null ) { + + return this.structTypeNode.getNodeType( builder ); + + } + + if ( builder.isAvailable( 'storageBuffer' ) || builder.isAvailable( 'indirectStorageBuffer' ) ) { + + return super.getNodeType( builder ); + + } + + const { attribute } = this.getAttributeData(); + + return attribute.getNodeType( builder ); + + } + + /** + * Returns the type of a member of the struct. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} name - The name of the member. + * @return {string} The type of the member. + */ + getMemberType( builder, name ) { + + if ( this.structTypeNode !== null ) { + + return this.structTypeNode.getMemberType( builder, name ); + + } + + return 'void'; + + } + + /** + * Generates the code snippet of the storage buffer node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The generated code snippet. + */ + generate( builder ) { + + if ( this.structTypeNode !== null ) this.structTypeNode.build( builder ); + + if ( builder.isAvailable( 'storageBuffer' ) || builder.isAvailable( 'indirectStorageBuffer' ) ) { + + return super.generate( builder ); + + } + + const { attribute, varying } = this.getAttributeData(); + + const output = varying.build( builder ); + + builder.registerTransform( output, attribute ); + + return output; + + } + +} + +/** + * TSL function for creating a storage buffer node. + * + * @tsl + * @function + * @param {StorageBufferAttribute|StorageInstancedBufferAttribute|BufferAttribute} value - The buffer data. + * @param {?(string|Struct)} [type=null] - The buffer type (e.g. `'vec3'`). + * @param {number} [count=0] - The buffer count. + * @returns {StorageBufferNode} + */ +const storage = ( value, type = null, count = 0 ) => nodeObject( new StorageBufferNode( value, type, count ) ); + +/** + * @tsl + * @function + * @deprecated since r171. Use `storage().setPBO( true )` instead. + * + * @param {StorageBufferAttribute|StorageInstancedBufferAttribute|BufferAttribute} value - The buffer data. + * @param {?string} type - The buffer type (e.g. `'vec3'`). + * @param {number} count - The buffer count. + * @returns {StorageBufferNode} + */ +const storageObject = ( value, type, count ) => { // @deprecated, r171 + + console.warn( 'THREE.TSL: "storageObject()" is deprecated. Use "storage().setPBO( true )" instead.' ); + + return storage( value, type, count ).setPBO( true ); + +}; + +const _frameId = new WeakMap(); + +/** + * This node implements the vertex transformation shader logic which is required + * for skinning/skeletal animation. + * + * @augments Node + */ +class SkinningNode extends Node { + + static get type() { + + return 'SkinningNode'; + + } + + /** + * Constructs a new skinning node. + * + * @param {SkinnedMesh} skinnedMesh - The skinned mesh. + */ + constructor( skinnedMesh ) { + + super( 'void' ); + + /** + * The skinned mesh. + * + * @type {SkinnedMesh} + */ + this.skinnedMesh = skinnedMesh; + + /** + * The update type overwritten since skinning nodes are updated per object. + * + * @type {string} + */ + this.updateType = NodeUpdateType.OBJECT; + + // + + /** + * The skin index attribute. + * + * @type {AttributeNode} + */ + this.skinIndexNode = attribute( 'skinIndex', 'uvec4' ); + + /** + * The skin weight attribute. + * + * @type {AttributeNode} + */ + this.skinWeightNode = attribute( 'skinWeight', 'vec4' ); + + /** + * The bind matrix node. + * + * @type {Node} + */ + this.bindMatrixNode = reference( 'bindMatrix', 'mat4' ); + + /** + * The bind matrix inverse node. + * + * @type {Node} + */ + this.bindMatrixInverseNode = reference( 'bindMatrixInverse', 'mat4' ); + + /** + * The bind matrices as a uniform buffer node. + * + * @type {Node} + */ + this.boneMatricesNode = referenceBuffer( 'skeleton.boneMatrices', 'mat4', skinnedMesh.skeleton.bones.length ); + + /** + * The current vertex position in local space. + * + * @type {Node} + */ + this.positionNode = positionLocal; + + /** + * The result of vertex position in local space. + * + * @type {Node} + */ + this.toPositionNode = positionLocal; + + /** + * The previous bind matrices as a uniform buffer node. + * Required for computing motion vectors. + * + * @type {?Node} + * @default null + */ + this.previousBoneMatricesNode = null; + + } + + /** + * Transforms the given vertex position via skinning. + * + * @param {Node} [boneMatrices=this.boneMatricesNode] - The bone matrices + * @param {Node} [position=this.positionNode] - The vertex position in local space. + * @return {Node} The transformed vertex position. + */ + getSkinnedPosition( boneMatrices = this.boneMatricesNode, position = this.positionNode ) { + + const { skinIndexNode, skinWeightNode, bindMatrixNode, bindMatrixInverseNode } = this; + + const boneMatX = boneMatrices.element( skinIndexNode.x ); + const boneMatY = boneMatrices.element( skinIndexNode.y ); + const boneMatZ = boneMatrices.element( skinIndexNode.z ); + const boneMatW = boneMatrices.element( skinIndexNode.w ); + + // POSITION + + const skinVertex = bindMatrixNode.mul( position ); + + const skinned = add( + boneMatX.mul( skinWeightNode.x ).mul( skinVertex ), + boneMatY.mul( skinWeightNode.y ).mul( skinVertex ), + boneMatZ.mul( skinWeightNode.z ).mul( skinVertex ), + boneMatW.mul( skinWeightNode.w ).mul( skinVertex ) + ); + + return bindMatrixInverseNode.mul( skinned ).xyz; + + } + + /** + * Transforms the given vertex normal via skinning. + * + * @param {Node} [boneMatrices=this.boneMatricesNode] - The bone matrices + * @param {Node} [normal=normalLocal] - The vertex normal in local space. + * @return {Node} The transformed vertex normal. + */ + getSkinnedNormal( boneMatrices = this.boneMatricesNode, normal = normalLocal ) { + + const { skinIndexNode, skinWeightNode, bindMatrixNode, bindMatrixInverseNode } = this; + + const boneMatX = boneMatrices.element( skinIndexNode.x ); + const boneMatY = boneMatrices.element( skinIndexNode.y ); + const boneMatZ = boneMatrices.element( skinIndexNode.z ); + const boneMatW = boneMatrices.element( skinIndexNode.w ); + + // NORMAL + + let skinMatrix = add( + skinWeightNode.x.mul( boneMatX ), + skinWeightNode.y.mul( boneMatY ), + skinWeightNode.z.mul( boneMatZ ), + skinWeightNode.w.mul( boneMatW ) + ); + + skinMatrix = bindMatrixInverseNode.mul( skinMatrix ).mul( bindMatrixNode ); + + return skinMatrix.transformDirection( normal ).xyz; + + } + + /** + * Computes the transformed/skinned vertex position of the previous frame. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The skinned position from the previous frame. + */ + getPreviousSkinnedPosition( builder ) { + + const skinnedMesh = builder.object; + + if ( this.previousBoneMatricesNode === null ) { + + skinnedMesh.skeleton.previousBoneMatrices = new Float32Array( skinnedMesh.skeleton.boneMatrices ); + + this.previousBoneMatricesNode = referenceBuffer( 'skeleton.previousBoneMatrices', 'mat4', skinnedMesh.skeleton.bones.length ); + + } + + return this.getSkinnedPosition( this.previousBoneMatricesNode, positionPrevious ); + + } + + /** + * Returns `true` if bone matrices from the previous frame are required. Relevant + * when computing motion vectors with {@link VelocityNode}. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {boolean} Whether bone matrices from the previous frame are required or not. + */ + needsPreviousBoneMatrices( builder ) { + + const mrt = builder.renderer.getMRT(); + + return ( mrt && mrt.has( 'velocity' ) ) || getDataFromObject( builder.object ).useVelocity === true; + + } + + /** + * Setups the skinning node by assigning the transformed vertex data to predefined node variables. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The transformed vertex position. + */ + setup( builder ) { + + if ( this.needsPreviousBoneMatrices( builder ) ) { + + positionPrevious.assign( this.getPreviousSkinnedPosition( builder ) ); + + } + + const skinPosition = this.getSkinnedPosition(); + + if ( this.toPositionNode ) this.toPositionNode.assign( skinPosition ); + + // + + if ( builder.hasGeometryAttribute( 'normal' ) ) { + + const skinNormal = this.getSkinnedNormal(); + + normalLocal.assign( skinNormal ); + + if ( builder.hasGeometryAttribute( 'tangent' ) ) { + + tangentLocal.assign( skinNormal ); + + } + + } + + return skinPosition; + + } + + /** + * Generates the code snippet of the skinning node. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} output - The current output. + * @return {string} The generated code snippet. + */ + generate( builder, output ) { + + if ( output !== 'void' ) { + + return super.generate( builder, output ); + + } + + } + + /** + * Updates the state of the skinned mesh by updating the skeleton once per frame. + * + * @param {NodeFrame} frame - The current node frame. + */ + update( frame ) { + + const skeleton = frame.object && frame.object.skeleton ? frame.object.skeleton : this.skinnedMesh.skeleton; + + if ( _frameId.get( skeleton ) === frame.frameId ) return; + + _frameId.set( skeleton, frame.frameId ); + + if ( this.previousBoneMatricesNode !== null ) skeleton.previousBoneMatrices.set( skeleton.boneMatrices ); + + skeleton.update(); + + } + +} + +/** + * TSL function for creating a skinning node. + * + * @tsl + * @function + * @param {SkinnedMesh} skinnedMesh - The skinned mesh. + * @returns {SkinningNode} + */ +const skinning = ( skinnedMesh ) => nodeObject( new SkinningNode( skinnedMesh ) ); + +/** + * TSL function for computing skinning. + * + * @tsl + * @function + * @param {SkinnedMesh} skinnedMesh - The skinned mesh. + * @param {Node} [toPosition=null] - The target position. + * @returns {SkinningNode} + */ +const computeSkinning = ( skinnedMesh, toPosition = null ) => { + + const node = new SkinningNode( skinnedMesh ); + node.positionNode = storage( new InstancedBufferAttribute( skinnedMesh.geometry.getAttribute( 'position' ).array, 3 ), 'vec3' ).setPBO( true ).toReadOnly().element( instanceIndex ).toVar(); + node.skinIndexNode = storage( new InstancedBufferAttribute( new Uint32Array( skinnedMesh.geometry.getAttribute( 'skinIndex' ).array ), 4 ), 'uvec4' ).setPBO( true ).toReadOnly().element( instanceIndex ).toVar(); + node.skinWeightNode = storage( new InstancedBufferAttribute( skinnedMesh.geometry.getAttribute( 'skinWeight' ).array, 4 ), 'vec4' ).setPBO( true ).toReadOnly().element( instanceIndex ).toVar(); + node.bindMatrixNode = uniform( skinnedMesh.bindMatrix, 'mat4' ); + node.bindMatrixInverseNode = uniform( skinnedMesh.bindMatrixInverse, 'mat4' ); + node.boneMatricesNode = buffer( skinnedMesh.skeleton.boneMatrices, 'mat4', skinnedMesh.skeleton.bones.length ); + node.toPositionNode = toPosition; + + return nodeObject( node ); + +}; + +/** + * This module offers a variety of ways to implement loops in TSL. In it's basic form it's: + * ```js + * Loop( count, ( { i } ) => { + * + * } ); + * ``` + * However, it is also possible to define a start and end ranges, data types and loop conditions: + * ```js + * Loop( { start: int( 0 ), end: int( 10 ), type: 'int', condition: '<' }, ( { i } ) => { + * + * } ); + *``` + * Nested loops can be defined in a compacted form: + * ```js + * Loop( 10, 5, ( { i, j } ) => { + * + * } ); + * ``` + * Loops that should run backwards can be defined like so: + * ```js + * Loop( { start: 10 }, () => {} ); + * ``` + * It is possible to execute with boolean values, similar to the `while` syntax. + * ```js + * const value = float( 0 ).toVar(); + * + * Loop( value.lessThan( 10 ), () => { + * + * value.addAssign( 1 ); + * + * } ); + * ``` + * The module also provides `Break()` and `Continue()` TSL expression for loop control. + * @augments Node + */ +class LoopNode extends Node { + + static get type() { + + return 'LoopNode'; + + } + + /** + * Constructs a new loop node. + * + * @param {Array} params - Depending on the loop type, array holds different parameterization values for the loop. + */ + constructor( params = [] ) { + + super(); + + this.params = params; + + } + + /** + * Returns a loop variable name based on an index. The pattern is + * `0` = `i`, `1`= `j`, `2`= `k` and so on. + * + * @param {number} index - The index. + * @return {string} The loop variable name. + */ + getVarName( index ) { + + return String.fromCharCode( 'i'.charCodeAt( 0 ) + index ); + + } + + /** + * Returns properties about this node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Object} The node properties. + */ + getProperties( builder ) { + + const properties = builder.getNodeProperties( this ); + + if ( properties.stackNode !== undefined ) return properties; + + // + + const inputs = {}; + + for ( let i = 0, l = this.params.length - 1; i < l; i ++ ) { + + const param = this.params[ i ]; + + const name = ( param.isNode !== true && param.name ) || this.getVarName( i ); + const type = ( param.isNode !== true && param.type ) || 'int'; + + inputs[ name ] = expression( name, type ); + + } + + const stack = builder.addStack(); // TODO: cache() it + + properties.returnsNode = this.params[ this.params.length - 1 ]( inputs, builder ); + properties.stackNode = stack; + + const baseParam = this.params[ 0 ]; + + if ( baseParam.isNode !== true && typeof baseParam.update === 'function' ) { + + properties.updateNode = Fn( this.params[ 0 ].update )( inputs ); + + } + + builder.removeStack(); + + return properties; + + } + + /** + * This method is overwritten since the node type is inferred based on the loop configuration. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + const { returnsNode } = this.getProperties( builder ); + + return returnsNode ? returnsNode.getNodeType( builder ) : 'void'; + + } + + setup( builder ) { + + // setup properties + + this.getProperties( builder ); + + } + + generate( builder ) { + + const properties = this.getProperties( builder ); + + const params = this.params; + const stackNode = properties.stackNode; + + for ( let i = 0, l = params.length - 1; i < l; i ++ ) { + + const param = params[ i ]; + + let isWhile = false, start = null, end = null, name = null, type = null, condition = null, update = null; + + if ( param.isNode ) { + + if ( param.getNodeType( builder ) === 'bool' ) { + + isWhile = true; + type = 'bool'; + end = param.build( builder, type ); + + } else { + + type = 'int'; + name = this.getVarName( i ); + start = '0'; + end = param.build( builder, type ); + condition = '<'; + + } + + } else { + + type = param.type || 'int'; + name = param.name || this.getVarName( i ); + start = param.start; + end = param.end; + condition = param.condition; + update = param.update; + + if ( typeof start === 'number' ) start = builder.generateConst( type, start ); + else if ( start && start.isNode ) start = start.build( builder, type ); + + if ( typeof end === 'number' ) end = builder.generateConst( type, end ); + else if ( end && end.isNode ) end = end.build( builder, type ); + + if ( start !== undefined && end === undefined ) { + + start = start + ' - 1'; + end = '0'; + condition = '>='; + + } else if ( end !== undefined && start === undefined ) { + + start = '0'; + condition = '<'; + + } + + if ( condition === undefined ) { + + if ( Number( start ) > Number( end ) ) { + + condition = '>='; + + } else { + + condition = '<'; + + } + + } + + } + + let loopSnippet; + + if ( isWhile ) { + + loopSnippet = `while ( ${ end } )`; + + } else { + + const internalParam = { start, end }; + + // + + const startSnippet = internalParam.start; + const endSnippet = internalParam.end; + + let updateSnippet; + + const deltaOperator = () => condition.includes( '<' ) ? '+=' : '-='; + + if ( update !== undefined && update !== null ) { + + switch ( typeof update ) { + + case 'function': + + const flow = builder.flowStagesNode( properties.updateNode, 'void' ); + const snippet = flow.code.replace( /\t|;/g, '' ); + + updateSnippet = snippet; + + break; + + case 'number': + + updateSnippet = name + ' ' + deltaOperator() + ' ' + builder.generateConst( type, update ); + + break; + + case 'string': + + updateSnippet = name + ' ' + update; + + break; + + default: + + if ( update.isNode ) { + + updateSnippet = name + ' ' + deltaOperator() + ' ' + update.build( builder ); + + } else { + + console.error( 'THREE.TSL: \'Loop( { update: ... } )\' is not a function, string or number.' ); + + updateSnippet = 'break /* invalid update */'; + + } + + } + + } else { + + if ( type === 'int' || type === 'uint' ) { + + update = condition.includes( '<' ) ? '++' : '--'; + + } else { + + update = deltaOperator() + ' 1.'; + + } + + updateSnippet = name + ' ' + update; + + } + + const declarationSnippet = builder.getVar( type, name ) + ' = ' + startSnippet; + const conditionalSnippet = name + ' ' + condition + ' ' + endSnippet; + + loopSnippet = `for ( ${ declarationSnippet }; ${ conditionalSnippet }; ${ updateSnippet } )`; + + } + + builder.addFlowCode( ( i === 0 ? '\n' : '' ) + builder.tab + loopSnippet + ' {\n\n' ).addFlowTab(); + + } + + const stackSnippet = stackNode.build( builder, 'void' ); + + const returnsSnippet = properties.returnsNode ? properties.returnsNode.build( builder ) : ''; + + builder.removeFlowTab().addFlowCode( '\n' + builder.tab + stackSnippet ); + + for ( let i = 0, l = this.params.length - 1; i < l; i ++ ) { + + builder.addFlowCode( ( i === 0 ? '' : builder.tab ) + '}\n\n' ).removeFlowTab(); + + } + + builder.addFlowTab(); + + return returnsSnippet; + + } + +} + +/** + * TSL function for creating a loop node. + * + * @tsl + * @function + * @param {...any} params - A list of parameters. + * @returns {LoopNode} + */ +const Loop = ( ...params ) => nodeObject( new LoopNode( nodeArray( params, 'int' ) ) ).toStack(); + +/** + * TSL function for creating a `Continue()` expression. + * + * @tsl + * @function + * @returns {ExpressionNode} + */ +const Continue = () => expression( 'continue' ).toStack(); + +/** + * TSL function for creating a `Break()` expression. + * + * @tsl + * @function + * @returns {ExpressionNode} + */ +const Break = () => expression( 'break' ).toStack(); + +// Deprecated + +/** + * @tsl + * @function + * @deprecated since r168. Use {@link Loop} instead. + * + * @param {...any} params + * @returns {LoopNode} + */ +const loop = ( ...params ) => { // @deprecated, r168 + + console.warn( 'THREE.TSL: loop() has been renamed to Loop().' ); + return Loop( ...params ); + +}; + +const _morphTextures = /*@__PURE__*/ new WeakMap(); +const _morphVec4 = /*@__PURE__*/ new Vector4(); + +const getMorph = /*@__PURE__*/ Fn( ( { bufferMap, influence, stride, width, depth, offset } ) => { + + const texelIndex = int( vertexIndex ).mul( stride ).add( offset ); + + const y = texelIndex.div( width ); + const x = texelIndex.sub( y.mul( width ) ); + + const bufferAttrib = textureLoad( bufferMap, ivec2( x, y ) ).depth( depth ).xyz; + + return bufferAttrib.mul( influence ); + +} ); + +function getEntry( geometry ) { + + const hasMorphPosition = geometry.morphAttributes.position !== undefined; + const hasMorphNormals = geometry.morphAttributes.normal !== undefined; + const hasMorphColors = geometry.morphAttributes.color !== undefined; + + // instead of using attributes, the WebGL 2 code path encodes morph targets + // into an array of data textures. Each layer represents a single morph target. + + const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; + const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; + + let entry = _morphTextures.get( geometry ); + + if ( entry === undefined || entry.count !== morphTargetsCount ) { + + if ( entry !== undefined ) entry.texture.dispose(); + + const morphTargets = geometry.morphAttributes.position || []; + const morphNormals = geometry.morphAttributes.normal || []; + const morphColors = geometry.morphAttributes.color || []; + + let vertexDataCount = 0; + + if ( hasMorphPosition === true ) vertexDataCount = 1; + if ( hasMorphNormals === true ) vertexDataCount = 2; + if ( hasMorphColors === true ) vertexDataCount = 3; + + let width = geometry.attributes.position.count * vertexDataCount; + let height = 1; + + const maxTextureSize = 4096; // @TODO: Use 'capabilities.maxTextureSize' + + if ( width > maxTextureSize ) { + + height = Math.ceil( width / maxTextureSize ); + width = maxTextureSize; + + } + + const buffer = new Float32Array( width * height * 4 * morphTargetsCount ); + + const bufferTexture = new DataArrayTexture( buffer, width, height, morphTargetsCount ); + bufferTexture.type = FloatType; + bufferTexture.needsUpdate = true; + + // fill buffer + + const vertexDataStride = vertexDataCount * 4; + + for ( let i = 0; i < morphTargetsCount; i ++ ) { + + const morphTarget = morphTargets[ i ]; + const morphNormal = morphNormals[ i ]; + const morphColor = morphColors[ i ]; + + const offset = width * height * 4 * i; + + for ( let j = 0; j < morphTarget.count; j ++ ) { + + const stride = j * vertexDataStride; + + if ( hasMorphPosition === true ) { + + _morphVec4.fromBufferAttribute( morphTarget, j ); + + buffer[ offset + stride + 0 ] = _morphVec4.x; + buffer[ offset + stride + 1 ] = _morphVec4.y; + buffer[ offset + stride + 2 ] = _morphVec4.z; + buffer[ offset + stride + 3 ] = 0; + + } + + if ( hasMorphNormals === true ) { + + _morphVec4.fromBufferAttribute( morphNormal, j ); + + buffer[ offset + stride + 4 ] = _morphVec4.x; + buffer[ offset + stride + 5 ] = _morphVec4.y; + buffer[ offset + stride + 6 ] = _morphVec4.z; + buffer[ offset + stride + 7 ] = 0; + + } + + if ( hasMorphColors === true ) { + + _morphVec4.fromBufferAttribute( morphColor, j ); + + buffer[ offset + stride + 8 ] = _morphVec4.x; + buffer[ offset + stride + 9 ] = _morphVec4.y; + buffer[ offset + stride + 10 ] = _morphVec4.z; + buffer[ offset + stride + 11 ] = ( morphColor.itemSize === 4 ) ? _morphVec4.w : 1; + + } + + } + + } + + entry = { + count: morphTargetsCount, + texture: bufferTexture, + stride: vertexDataCount, + size: new Vector2( width, height ) + }; + + _morphTextures.set( geometry, entry ); + + function disposeTexture() { + + bufferTexture.dispose(); + + _morphTextures.delete( geometry ); + + geometry.removeEventListener( 'dispose', disposeTexture ); + + } + + geometry.addEventListener( 'dispose', disposeTexture ); + + } + + return entry; + +} + +/** + * This node implements the vertex transformation shader logic which is required + * for morph target animation. + * + * @augments Node + */ +class MorphNode extends Node { + + static get type() { + + return 'MorphNode'; + + } + + /** + * Constructs a new morph node. + * + * @param {Mesh} mesh - The mesh holding the morph targets. + */ + constructor( mesh ) { + + super( 'void' ); + + /** + * The mesh holding the morph targets. + * + * @type {Mesh} + */ + this.mesh = mesh; + + /** + * A uniform node which represents the morph base influence value. + * + * @type {UniformNode} + */ + this.morphBaseInfluence = uniform( 1 ); + + /** + * The update type overwritten since morph nodes are updated per object. + * + * @type {string} + */ + this.updateType = NodeUpdateType.OBJECT; + + } + + /** + * Setups the morph node by assigning the transformed vertex data to predefined node variables. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + const { geometry } = builder; + + const hasMorphPosition = geometry.morphAttributes.position !== undefined; + const hasMorphNormals = geometry.hasAttribute( 'normal' ) && geometry.morphAttributes.normal !== undefined; + + const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; + const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; + + // nodes + + const { texture: bufferMap, stride, size } = getEntry( geometry ); + + if ( hasMorphPosition === true ) positionLocal.mulAssign( this.morphBaseInfluence ); + if ( hasMorphNormals === true ) normalLocal.mulAssign( this.morphBaseInfluence ); + + const width = int( size.width ); + + Loop( morphTargetsCount, ( { i } ) => { + + const influence = float( 0 ).toVar(); + + if ( this.mesh.count > 1 && ( this.mesh.morphTexture !== null && this.mesh.morphTexture !== undefined ) ) { + + influence.assign( textureLoad( this.mesh.morphTexture, ivec2( int( i ).add( 1 ), int( instanceIndex ) ) ).r ); + + } else { + + influence.assign( reference( 'morphTargetInfluences', 'float' ).element( i ).toVar() ); + + } + + If( influence.notEqual( 0 ), () => { + + if ( hasMorphPosition === true ) { + + positionLocal.addAssign( getMorph( { + bufferMap, + influence, + stride, + width, + depth: i, + offset: int( 0 ) + } ) ); + + } + + if ( hasMorphNormals === true ) { + + normalLocal.addAssign( getMorph( { + bufferMap, + influence, + stride, + width, + depth: i, + offset: int( 1 ) + } ) ); + + } + + } ); + + } ); + + } + + /** + * Updates the state of the morphed mesh by updating the base influence. + * + * @param {NodeFrame} frame - The current node frame. + */ + update( /*frame*/ ) { + + const morphBaseInfluence = this.morphBaseInfluence; + + if ( this.mesh.geometry.morphTargetsRelative ) { + + morphBaseInfluence.value = 1; + + } else { + + morphBaseInfluence.value = 1 - this.mesh.morphTargetInfluences.reduce( ( a, b ) => a + b, 0 ); + + } + + } + +} + +/** + * TSL function for creating a morph node. + * + * @tsl + * @function + * @param {Mesh} mesh - The mesh holding the morph targets. + * @returns {MorphNode} + */ +const morphReference = /*@__PURE__*/ nodeProxy( MorphNode ).setParameterLength( 1 ); + +/** + * Base class for lighting nodes. + * + * @augments Node + */ +class LightingNode extends Node { + + static get type() { + + return 'LightingNode'; + + } + + /** + * Constructs a new lighting node. + */ + constructor() { + + super( 'vec3' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLightingNode = true; + + } + +} + +/** + * A generic class that can be used by nodes which contribute + * ambient occlusion to the scene. E.g. an ambient occlusion map + * node can be used as input for this module. Used in {@link NodeMaterial}. + * + * @augments LightingNode + */ +class AONode extends LightingNode { + + static get type() { + + return 'AONode'; + + } + + /** + * Constructs a new AO node. + * + * @param {?Node} [aoNode=null] - The ambient occlusion node. + */ + constructor( aoNode = null ) { + + super(); + + /** + * The ambient occlusion node. + * + * @type {?Node} + * @default null + */ + this.aoNode = aoNode; + + } + + setup( builder ) { + + builder.context.ambientOcclusion.mulAssign( this.aoNode ); + + } + +} + +/** + * `LightingContextNode` represents an extension of the {@link ContextNode} module + * by adding lighting specific context data. It represents the runtime context of + * {@link LightsNode}. + * + * @augments ContextNode + */ +class LightingContextNode extends ContextNode { + + static get type() { + + return 'LightingContextNode'; + + } + + /** + * Constructs a new lighting context node. + * + * @param {LightsNode} lightsNode - The lights node. + * @param {?LightingModel} [lightingModel=null] - The current lighting model. + * @param {?Node} [backdropNode=null] - A backdrop node. + * @param {?Node} [backdropAlphaNode=null] - A backdrop alpha node. + */ + constructor( lightsNode, lightingModel = null, backdropNode = null, backdropAlphaNode = null ) { + + super( lightsNode ); + + /** + * The current lighting model. + * + * @type {?LightingModel} + * @default null + */ + this.lightingModel = lightingModel; + + /** + * A backdrop node. + * + * @type {?Node} + * @default null + */ + this.backdropNode = backdropNode; + + /** + * A backdrop alpha node. + * + * @type {?Node} + * @default null + */ + this.backdropAlphaNode = backdropAlphaNode; + + this._value = null; + + } + + /** + * Returns a lighting context object. + * + * @return {{ + * radiance: Node, + * irradiance: Node, + * iblIrradiance: Node, + * ambientOcclusion: Node, + * reflectedLight: {directDiffuse: Node, directSpecular: Node, indirectDiffuse: Node, indirectSpecular: Node}, + * backdrop: Node, + * backdropAlpha: Node + * }} The lighting context object. + */ + getContext() { + + const { backdropNode, backdropAlphaNode } = this; + + const directDiffuse = vec3().toVar( 'directDiffuse' ), + directSpecular = vec3().toVar( 'directSpecular' ), + indirectDiffuse = vec3().toVar( 'indirectDiffuse' ), + indirectSpecular = vec3().toVar( 'indirectSpecular' ); + + const reflectedLight = { + directDiffuse, + directSpecular, + indirectDiffuse, + indirectSpecular + }; + + const context = { + radiance: vec3().toVar( 'radiance' ), + irradiance: vec3().toVar( 'irradiance' ), + iblIrradiance: vec3().toVar( 'iblIrradiance' ), + ambientOcclusion: float( 1 ).toVar( 'ambientOcclusion' ), + reflectedLight, + backdrop: backdropNode, + backdropAlpha: backdropAlphaNode + }; + + return context; + + } + + setup( builder ) { + + this.value = this._value || ( this._value = this.getContext() ); + this.value.lightingModel = this.lightingModel || builder.context.lightingModel; + + return super.setup( builder ); + + } + +} + +const lightingContext = /*@__PURE__*/ nodeProxy( LightingContextNode ); + +/** + * A generic class that can be used by nodes which contribute + * irradiance to the scene. E.g. a light map node can be used + * as input for this module. Used in {@link NodeMaterial}. + * + * @augments LightingNode + */ +class IrradianceNode extends LightingNode { + + static get type() { + + return 'IrradianceNode'; + + } + + /** + * Constructs a new irradiance node. + * + * @param {Node} node - A node contributing irradiance. + */ + constructor( node ) { + + super(); + + /** + * A node contributing irradiance. + * + * @type {Node} + */ + this.node = node; + + } + + setup( builder ) { + + builder.context.irradiance.addAssign( this.node ); + + } + +} + +let screenSizeVec, viewportVec; + +/** + * This node provides a collection of screen related metrics. + * Depending on {@link ScreenNode#scope}, the nodes can represent + * resolution or viewport data as well as fragment or uv coordinates. + * + * @augments Node + */ +class ScreenNode extends Node { + + static get type() { + + return 'ScreenNode'; + + } + + /** + * Constructs a new screen node. + * + * @param {('coordinate'|'viewport'|'size'|'uv')} scope - The node's scope. + */ + constructor( scope ) { + + super(); + + /** + * The node represents different metric depending on which scope is selected. + * + * - `ScreenNode.COORDINATE`: Window-relative coordinates of the current fragment according to WebGPU standards. + * - `ScreenNode.VIEWPORT`: The current viewport defined as a four-dimensional vector. + * - `ScreenNode.SIZE`: The dimensions of the current bound framebuffer. + * - `ScreenNode.UV`: Normalized coordinates. + * + * @type {('coordinate'|'viewport'|'size'|'uv')} + */ + this.scope = scope; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isViewportNode = true; + + } + + /** + * This method is overwritten since the node type depends on the selected scope. + * + * @return {('vec2'|'vec4')} The node type. + */ + getNodeType() { + + if ( this.scope === ScreenNode.VIEWPORT ) return 'vec4'; + else return 'vec2'; + + } + + /** + * This method is overwritten since the node's update type depends on the selected scope. + * + * @return {NodeUpdateType} The update type. + */ + getUpdateType() { + + let updateType = NodeUpdateType.NONE; + + if ( this.scope === ScreenNode.SIZE || this.scope === ScreenNode.VIEWPORT ) { + + updateType = NodeUpdateType.RENDER; + + } + + this.updateType = updateType; + + return updateType; + + } + + /** + * `ScreenNode` implements {@link Node#update} to retrieve viewport and size information + * from the current renderer. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( { renderer } ) { + + const renderTarget = renderer.getRenderTarget(); + + if ( this.scope === ScreenNode.VIEWPORT ) { + + if ( renderTarget !== null ) { + + viewportVec.copy( renderTarget.viewport ); + + } else { + + renderer.getViewport( viewportVec ); + + viewportVec.multiplyScalar( renderer.getPixelRatio() ); + + } + + } else { + + if ( renderTarget !== null ) { + + screenSizeVec.width = renderTarget.width; + screenSizeVec.height = renderTarget.height; + + } else { + + renderer.getDrawingBufferSize( screenSizeVec ); + + } + + } + + } + + setup( /*builder*/ ) { + + const scope = this.scope; + + let output = null; + + if ( scope === ScreenNode.SIZE ) { + + output = uniform( screenSizeVec || ( screenSizeVec = new Vector2() ) ); + + } else if ( scope === ScreenNode.VIEWPORT ) { + + output = uniform( viewportVec || ( viewportVec = new Vector4() ) ); + + } else { + + output = vec2( screenCoordinate.div( screenSize ) ); + + } + + return output; + + } + + generate( builder ) { + + if ( this.scope === ScreenNode.COORDINATE ) { + + let coord = builder.getFragCoord(); + + if ( builder.isFlipY() ) { + + // follow webgpu standards + + const size = builder.getNodeProperties( screenSize ).outputNode.build( builder ); + + coord = `${ builder.getType( 'vec2' ) }( ${ coord }.x, ${ size }.y - ${ coord }.y )`; + + } + + return coord; + + } + + return super.generate( builder ); + + } + +} + +ScreenNode.COORDINATE = 'coordinate'; +ScreenNode.VIEWPORT = 'viewport'; +ScreenNode.SIZE = 'size'; +ScreenNode.UV = 'uv'; + +// Screen + +/** + * TSL object that represents normalized screen coordinates, unitless in `[0, 1]`. + * + * @tsl + * @type {ScreenNode} + */ +const screenUV = /*@__PURE__*/ nodeImmutable( ScreenNode, ScreenNode.UV ); + +/** + * TSL object that represents the screen resolution in physical pixel units. + * + * @tsl + * @type {ScreenNode} + */ +const screenSize = /*@__PURE__*/ nodeImmutable( ScreenNode, ScreenNode.SIZE ); + +/** + * TSL object that represents the current `x`/`y` pixel position on the screen in physical pixel units. + * + * @tsl + * @type {ScreenNode} + */ +const screenCoordinate = /*@__PURE__*/ nodeImmutable( ScreenNode, ScreenNode.COORDINATE ); + +// Viewport + +/** + * TSL object that represents the viewport rectangle as `x`, `y`, `width` and `height` in physical pixel units. + * + * @tsl + * @type {ScreenNode} + */ +const viewport = /*@__PURE__*/ nodeImmutable( ScreenNode, ScreenNode.VIEWPORT ); + +/** + * TSL object that represents the viewport resolution in physical pixel units. + * + * @tsl + * @type {ScreenNode} + */ +const viewportSize = viewport.zw; + +/** + * TSL object that represents the current `x`/`y` pixel position on the viewport in physical pixel units. + * + * @tsl + * @type {ScreenNode} + */ +const viewportCoordinate = /*@__PURE__*/ screenCoordinate.sub( viewport.xy ); + +/** + * TSL object that represents normalized viewport coordinates, unitless in `[0, 1]`. + * + * @tsl + * @type {ScreenNode} + */ +const viewportUV = /*@__PURE__*/ viewportCoordinate.div( viewportSize ); + +// Deprecated + +/** + * @deprecated since r169. Use {@link screenSize} instead. + */ +const viewportResolution = /*@__PURE__*/ ( Fn( () => { // @deprecated, r169 + + console.warn( 'THREE.TSL: "viewportResolution" is deprecated. Use "screenSize" instead.' ); + + return screenSize; + +}, 'vec2' ).once() )(); + +/** + * @tsl + * @deprecated since r168. Use {@link screenUV} instead. + * @type {Node} + */ +const viewportTopLeft = /*@__PURE__*/ ( Fn( () => { // @deprecated, r168 + + console.warn( 'THREE.TSL: "viewportTopLeft" is deprecated. Use "screenUV" instead.' ); + + return screenUV; + +}, 'vec2' ).once() )(); + +/** + * @tsl + * @deprecated since r168. Use `screenUV.flipY()` instead. + * @type {Node} + */ +const viewportBottomLeft = /*@__PURE__*/ ( Fn( () => { // @deprecated, r168 + + console.warn( 'THREE.TSL: "viewportBottomLeft" is deprecated. Use "screenUV.flipY()" instead.' ); + + return screenUV.flipY(); + +}, 'vec2' ).once() )(); + +const _size$4 = /*@__PURE__*/ new Vector2(); + +/** + * A special type of texture node which represents the data of the current viewport + * as a texture. The module extracts data from the current bound framebuffer with + * a copy operation so no extra render pass is required to produce the texture data + * (which is good for performance). `ViewportTextureNode` can be used as an input for a + * variety of effects like refractive or transmissive materials. + * + * @augments TextureNode + */ +class ViewportTextureNode extends TextureNode { + + static get type() { + + return 'ViewportTextureNode'; + + } + + /** + * Constructs a new viewport texture node. + * + * @param {Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Texture} [framebufferTexture=null] - A framebuffer texture holding the viewport data. If not provided, a framebuffer texture is created automatically. + */ + constructor( uvNode = screenUV, levelNode = null, framebufferTexture = null ) { + + if ( framebufferTexture === null ) { + + framebufferTexture = new FramebufferTexture(); + framebufferTexture.minFilter = LinearMipmapLinearFilter; + + } + + super( framebufferTexture, uvNode, levelNode ); + + /** + * Whether to generate mipmaps or not. + * + * @type {boolean} + * @default false + */ + this.generateMipmaps = false; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isOutputTextureNode = true; + + /** + * The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node renders the + * scene once per frame in its {@link ViewportTextureNode#updateBefore} method. + * + * @type {string} + * @default 'frame' + */ + this.updateBeforeType = NodeUpdateType.FRAME; + + } + + updateBefore( frame ) { + + const renderer = frame.renderer; + renderer.getDrawingBufferSize( _size$4 ); + + // + + const framebufferTexture = this.value; + + if ( framebufferTexture.image.width !== _size$4.width || framebufferTexture.image.height !== _size$4.height ) { + + framebufferTexture.image.width = _size$4.width; + framebufferTexture.image.height = _size$4.height; + framebufferTexture.needsUpdate = true; + + } + + // + + const currentGenerateMipmaps = framebufferTexture.generateMipmaps; + framebufferTexture.generateMipmaps = this.generateMipmaps; + + renderer.copyFramebufferToTexture( framebufferTexture ); + + framebufferTexture.generateMipmaps = currentGenerateMipmaps; + + } + + clone() { + + const viewportTextureNode = new this.constructor( this.uvNode, this.levelNode, this.value ); + viewportTextureNode.generateMipmaps = this.generateMipmaps; + + return viewportTextureNode; + + } + +} + +/** + * TSL function for creating a viewport texture node. + * + * @tsl + * @function + * @param {?Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Texture} [framebufferTexture=null] - A framebuffer texture holding the viewport data. If not provided, a framebuffer texture is created automatically. + * @returns {ViewportTextureNode} + */ +const viewportTexture = /*@__PURE__*/ nodeProxy( ViewportTextureNode ).setParameterLength( 0, 3 ); + +/** + * TSL function for creating a viewport texture node with enabled mipmap generation. + * + * @tsl + * @function + * @param {?Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @param {?Texture} [framebufferTexture=null] - A framebuffer texture holding the viewport data. If not provided, a framebuffer texture is created automatically. + * @returns {ViewportTextureNode} + */ +const viewportMipTexture = /*@__PURE__*/ nodeProxy( ViewportTextureNode, null, null, { generateMipmaps: true } ).setParameterLength( 0, 3 ); + +let sharedDepthbuffer = null; + +/** + * Represents the depth of the current viewport as a texture. This module + * can be used in combination with viewport texture to achieve effects + * that require depth evaluation. + * + * @augments ViewportTextureNode + */ +class ViewportDepthTextureNode extends ViewportTextureNode { + + static get type() { + + return 'ViewportDepthTextureNode'; + + } + + /** + * Constructs a new viewport depth texture node. + * + * @param {Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + */ + constructor( uvNode = screenUV, levelNode = null ) { + + if ( sharedDepthbuffer === null ) { + + sharedDepthbuffer = new DepthTexture(); + + } + + super( uvNode, levelNode, sharedDepthbuffer ); + + } + +} + +/** + * TSL function for a viewport depth texture node. + * + * @tsl + * @function + * @param {?Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @returns {ViewportDepthTextureNode} + */ +const viewportDepthTexture = /*@__PURE__*/ nodeProxy( ViewportDepthTextureNode ).setParameterLength( 0, 2 ); + +/** + * This node offers a collection of features in context of the depth logic in the fragment shader. + * Depending on {@link ViewportDepthNode#scope}, it can be used to define a depth value for the current + * fragment or for depth evaluation purposes. + * + * @augments Node + */ +class ViewportDepthNode extends Node { + + static get type() { + + return 'ViewportDepthNode'; + + } + + /** + * Constructs a new viewport depth node. + * + * @param {('depth'|'depthBase'|'linearDepth')} scope - The node's scope. + * @param {?Node} [valueNode=null] - The value node. + */ + constructor( scope, valueNode = null ) { + + super( 'float' ); + + /** + * The node behaves differently depending on which scope is selected. + * + * - `ViewportDepthNode.DEPTH_BASE`: Allows to define a value for the current fragment's depth. + * - `ViewportDepthNode.DEPTH`: Represents the depth value for the current fragment (`valueNode` is ignored). + * - `ViewportDepthNode.LINEAR_DEPTH`: Represents the linear (orthographic) depth value of the current fragment. + * If a `valueNode` is set, the scope can be used to convert perspective depth data to linear data. + * + * @type {('depth'|'depthBase'|'linearDepth')} + */ + this.scope = scope; + + /** + * Can be used to define a custom depth value. + * The property is ignored in the `ViewportDepthNode.DEPTH` scope. + * + * @type {?Node} + * @default null + */ + this.valueNode = valueNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isViewportDepthNode = true; + + } + + generate( builder ) { + + const { scope } = this; + + if ( scope === ViewportDepthNode.DEPTH_BASE ) { + + return builder.getFragDepth(); + + } + + return super.generate( builder ); + + } + + setup( { camera } ) { + + const { scope } = this; + const value = this.valueNode; + + let node = null; + + if ( scope === ViewportDepthNode.DEPTH_BASE ) { + + if ( value !== null ) { + + node = depthBase().assign( value ); + + } + + } else if ( scope === ViewportDepthNode.DEPTH ) { + + if ( camera.isPerspectiveCamera ) { + + node = viewZToPerspectiveDepth( positionView.z, cameraNear, cameraFar ); + + } else { + + node = viewZToOrthographicDepth( positionView.z, cameraNear, cameraFar ); + + } + + } else if ( scope === ViewportDepthNode.LINEAR_DEPTH ) { + + if ( value !== null ) { + + if ( camera.isPerspectiveCamera ) { + + const viewZ = perspectiveDepthToViewZ( value, cameraNear, cameraFar ); + + node = viewZToOrthographicDepth( viewZ, cameraNear, cameraFar ); + + } else { + + node = value; + + } + + } else { + + node = viewZToOrthographicDepth( positionView.z, cameraNear, cameraFar ); + + } + + } + + return node; + + } + +} + +ViewportDepthNode.DEPTH_BASE = 'depthBase'; +ViewportDepthNode.DEPTH = 'depth'; +ViewportDepthNode.LINEAR_DEPTH = 'linearDepth'; + +// NOTE: viewZ, the z-coordinate in camera space, is negative for points in front of the camera + +/** + * TSL function for converting a viewZ value to an orthographic depth value. + * + * @tsl + * @function + * @param {Node} viewZ - The viewZ node. + * @param {Node} near - The camera's near value. + * @param {Node} far - The camera's far value. + * @returns {Node} + */ +const viewZToOrthographicDepth = ( viewZ, near, far ) => viewZ.add( near ).div( near.sub( far ) ); + +/** + * TSL function for converting an orthographic depth value to a viewZ value. + * + * @tsl + * @function + * @param {Node} depth - The orthographic depth. + * @param {Node} near - The camera's near value. + * @param {Node} far - The camera's far value. + * @returns {Node} + */ +const orthographicDepthToViewZ = ( depth, near, far ) => near.sub( far ).mul( depth ).sub( near ); + +/** + * TSL function for converting a viewZ value to a perspective depth value. + * + * Note: {link https://twitter.com/gonnavis/status/1377183786949959682}. + * + * @tsl + * @function + * @param {Node} viewZ - The viewZ node. + * @param {Node} near - The camera's near value. + * @param {Node} far - The camera's far value. + * @returns {Node} + */ +const viewZToPerspectiveDepth = ( viewZ, near, far ) => near.add( viewZ ).mul( far ).div( far.sub( near ).mul( viewZ ) ); + +/** + * TSL function for converting a perspective depth value to a viewZ value. + * + * @tsl + * @function + * @param {Node} depth - The perspective depth. + * @param {Node} near - The camera's near value. + * @param {Node} far - The camera's far value. + * @returns {Node} + */ +const perspectiveDepthToViewZ = ( depth, near, far ) => near.mul( far ).div( far.sub( near ).mul( depth ).sub( far ) ); + +/** + * TSL function for converting a viewZ value to a logarithmic depth value. + * + * @tsl + * @function + * @param {Node} viewZ - The viewZ node. + * @param {Node} near - The camera's near value. + * @param {Node} far - The camera's far value. + * @returns {Node} + */ +const viewZToLogarithmicDepth = ( viewZ, near, far ) => { + + // NOTE: viewZ must be negative--see explanation at the end of this comment block. + // The final logarithmic depth formula used here is adapted from one described in an + // article by Thatcher Ulrich (see http://tulrich.com/geekstuff/log_depth_buffer.txt), + // which was an improvement upon an earlier formula one described in an + // Outerra article (https://outerra.blogspot.com/2009/08/logarithmic-z-buffer.html). + // Ulrich's formula is the following: + // z = K * log( w / cameraNear ) / log( cameraFar / cameraNear ) + // where K = 2^k - 1, and k is the number of bits in the depth buffer. + // The Outerra variant ignored the camera near plane (it assumed it was 0) and instead + // opted for a "C-constant" for resolution adjustment of objects near the camera. + // Outerra states: "Notice that the 'C' variant doesn’t use a near plane distance, it has it + // set at 0" (quote from https://outerra.blogspot.com/2012/11/maximizing-depth-buffer-range-and.html). + // Ulrich's variant has the benefit of constant relative precision over the whole near-far range. + // It was debated here whether Outerra's "C-constant" or Ulrich's "near plane" variant should + // be used, and ultimately Ulrich's "near plane" version was chosen. + // Outerra eventually made another improvement to their original "C-constant" variant, + // but it still does not incorporate the camera near plane (for this version, + // see https://outerra.blogspot.com/2013/07/logarithmic-depth-buffer-optimizations.html). + // Here we make 4 changes to Ulrich's formula: + // 1. Clamp the camera near plane so we don't divide by 0. + // 2. Use log2 instead of log to avoid an extra multiply (shaders implement log using log2). + // 3. Assume K is 1 (K = maximum value in depth buffer; see Ulrich's formula above). + // 4. To maintain consistency with the functions "viewZToOrthographicDepth" and "viewZToPerspectiveDepth", + // we modify the formula here to use 'viewZ' instead of 'w'. The other functions expect a negative viewZ, + // so we do the same here, hence the 'viewZ.negate()' call. + // For visual representation of this depth curve, see https://www.desmos.com/calculator/uyqk0vex1u + near = near.max( 1e-6 ).toVar(); + const numerator = log2( viewZ.negate().div( near ) ); + const denominator = log2( far.div( near ) ); + return numerator.div( denominator ); + +}; + +/** + * TSL function for converting a logarithmic depth value to a viewZ value. + * + * @tsl + * @function + * @param {Node} depth - The logarithmic depth. + * @param {Node} near - The camera's near value. + * @param {Node} far - The camera's far value. + * @returns {Node} + */ +const logarithmicDepthToViewZ = ( depth, near, far ) => { + + // NOTE: we add a 'negate()' call to the return value here to maintain consistency with + // the functions "orthographicDepthToViewZ" and "perspectiveDepthToViewZ" (they return + // a negative viewZ). + const exponent = depth.mul( log( far.div( near ) ) ); + return float( Math.E ).pow( exponent ).mul( near ).negate(); + +}; + +/** + * TSL function for defining a value for the current fragment's depth. + * + * @tsl + * @function + * @param {Node} value - The depth value to set. + * @returns {ViewportDepthNode} + */ +const depthBase = /*@__PURE__*/ nodeProxy( ViewportDepthNode, ViewportDepthNode.DEPTH_BASE ); + +/** + * TSL object that represents the depth value for the current fragment. + * + * @tsl + * @type {ViewportDepthNode} + */ +const depth = /*@__PURE__*/ nodeImmutable( ViewportDepthNode, ViewportDepthNode.DEPTH ); + +/** + * TSL function for converting a perspective depth value to linear depth. + * + * @tsl + * @function + * @param {?Node} [value=null] - The perspective depth. If `null` is provided, the current fragment's depth is used. + * @returns {ViewportDepthNode} + */ +const linearDepth = /*@__PURE__*/ nodeProxy( ViewportDepthNode, ViewportDepthNode.LINEAR_DEPTH ).setParameterLength( 0, 1 ); + +/** + * TSL object that represents the linear (orthographic) depth value of the current fragment + * + * @tsl + * @type {ViewportDepthNode} + */ +const viewportLinearDepth = /*@__PURE__*/ linearDepth( viewportDepthTexture() ); + +depth.assign = ( value ) => depthBase( value ); + +/** + * This node is used in {@link NodeMaterial} to setup the clipping + * which can happen hardware-accelerated (if supported) and optionally + * use alpha-to-coverage for anti-aliasing clipped edges. + * + * @augments Node + */ +class ClippingNode extends Node { + + static get type() { + + return 'ClippingNode'; + + } + + /** + * Constructs a new clipping node. + * + * @param {('default'|'hardware'|'alphaToCoverage')} [scope='default'] - The node's scope. Similar to other nodes, + * the selected scope influences the behavior of the node and what type of code is generated. + */ + constructor( scope = ClippingNode.DEFAULT ) { + + super(); + + /** + * The node's scope. Similar to other nodes, the selected scope influences + * the behavior of the node and what type of code is generated. + * + * @type {('default'|'hardware'|'alphaToCoverage')} + */ + this.scope = scope; + + } + + /** + * Setups the node depending on the selected scope. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The result node. + */ + setup( builder ) { + + super.setup( builder ); + + const clippingContext = builder.clippingContext; + const { intersectionPlanes, unionPlanes } = clippingContext; + + this.hardwareClipping = builder.material.hardwareClipping; + + if ( this.scope === ClippingNode.ALPHA_TO_COVERAGE ) { + + return this.setupAlphaToCoverage( intersectionPlanes, unionPlanes ); + + } else if ( this.scope === ClippingNode.HARDWARE ) { + + return this.setupHardwareClipping( unionPlanes, builder ); + + } else { + + return this.setupDefault( intersectionPlanes, unionPlanes ); + + } + + } + + /** + * Setups alpha to coverage. + * + * @param {Array} intersectionPlanes - The intersection planes. + * @param {Array} unionPlanes - The union planes. + * @return {Node} The result node. + */ + setupAlphaToCoverage( intersectionPlanes, unionPlanes ) { + + return Fn( () => { + + const distanceToPlane = float().toVar( 'distanceToPlane' ); + const distanceGradient = float().toVar( 'distanceToGradient' ); + + const clipOpacity = float( 1 ).toVar( 'clipOpacity' ); + + const numUnionPlanes = unionPlanes.length; + + if ( this.hardwareClipping === false && numUnionPlanes > 0 ) { + + const clippingPlanes = uniformArray( unionPlanes ); + + Loop( numUnionPlanes, ( { i } ) => { + + const plane = clippingPlanes.element( i ); + + distanceToPlane.assign( positionView.dot( plane.xyz ).negate().add( plane.w ) ); + distanceGradient.assign( distanceToPlane.fwidth().div( 2.0 ) ); + + clipOpacity.mulAssign( smoothstep( distanceGradient.negate(), distanceGradient, distanceToPlane ) ); + + } ); + + } + + const numIntersectionPlanes = intersectionPlanes.length; + + if ( numIntersectionPlanes > 0 ) { + + const clippingPlanes = uniformArray( intersectionPlanes ); + const intersectionClipOpacity = float( 1 ).toVar( 'intersectionClipOpacity' ); + + Loop( numIntersectionPlanes, ( { i } ) => { + + const plane = clippingPlanes.element( i ); + + distanceToPlane.assign( positionView.dot( plane.xyz ).negate().add( plane.w ) ); + distanceGradient.assign( distanceToPlane.fwidth().div( 2.0 ) ); + + intersectionClipOpacity.mulAssign( smoothstep( distanceGradient.negate(), distanceGradient, distanceToPlane ).oneMinus() ); + + } ); + + clipOpacity.mulAssign( intersectionClipOpacity.oneMinus() ); + + } + + diffuseColor.a.mulAssign( clipOpacity ); + + diffuseColor.a.equal( 0.0 ).discard(); + + } )(); + + } + + /** + * Setups the default clipping. + * + * @param {Array} intersectionPlanes - The intersection planes. + * @param {Array} unionPlanes - The union planes. + * @return {Node} The result node. + */ + setupDefault( intersectionPlanes, unionPlanes ) { + + return Fn( () => { + + const numUnionPlanes = unionPlanes.length; + + if ( this.hardwareClipping === false && numUnionPlanes > 0 ) { + + const clippingPlanes = uniformArray( unionPlanes ); + + Loop( numUnionPlanes, ( { i } ) => { + + const plane = clippingPlanes.element( i ); + positionView.dot( plane.xyz ).greaterThan( plane.w ).discard(); + + } ); + + } + + const numIntersectionPlanes = intersectionPlanes.length; + + if ( numIntersectionPlanes > 0 ) { + + const clippingPlanes = uniformArray( intersectionPlanes ); + const clipped = bool( true ).toVar( 'clipped' ); + + Loop( numIntersectionPlanes, ( { i } ) => { + + const plane = clippingPlanes.element( i ); + clipped.assign( positionView.dot( plane.xyz ).greaterThan( plane.w ).and( clipped ) ); + + } ); + + clipped.discard(); + + } + + } )(); + + } + + /** + * Setups hardware clipping. + * + * @param {Array} unionPlanes - The union planes. + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The result node. + */ + setupHardwareClipping( unionPlanes, builder ) { + + const numUnionPlanes = unionPlanes.length; + + builder.enableHardwareClipping( numUnionPlanes ); + + return Fn( () => { + + const clippingPlanes = uniformArray( unionPlanes ); + const hw_clip_distances = builtin( builder.getClipDistance() ); + + Loop( numUnionPlanes, ( { i } ) => { + + const plane = clippingPlanes.element( i ); + + const distance = positionView.dot( plane.xyz ).sub( plane.w ).negate(); + hw_clip_distances.element( i ).assign( distance ); + + } ); + + } )(); + + } + +} + +ClippingNode.ALPHA_TO_COVERAGE = 'alphaToCoverage'; +ClippingNode.DEFAULT = 'default'; +ClippingNode.HARDWARE = 'hardware'; + +/** + * TSL function for setting up the default clipping logic. + * + * @tsl + * @function + * @returns {ClippingNode} + */ +const clipping = () => nodeObject( new ClippingNode() ); + +/** + * TSL function for setting up alpha to coverage. + * + * @tsl + * @function + * @returns {ClippingNode} + */ +const clippingAlpha = () => nodeObject( new ClippingNode( ClippingNode.ALPHA_TO_COVERAGE ) ); + +/** + * TSL function for setting up hardware-based clipping. + * + * @tsl + * @function + * @returns {ClippingNode} + */ +const hardwareClipping = () => nodeObject( new ClippingNode( ClippingNode.HARDWARE ) ); + +// See: https://casual-effects.com/research/Wyman2017Hashed/index.html + +const ALPHA_HASH_SCALE = 0.05; // Derived from trials only, and may be changed. + +const hash2D = /*@__PURE__*/ Fn( ( [ value ] ) => { + + return fract( mul( 1.0e4, sin( mul( 17.0, value.x ).add( mul( 0.1, value.y ) ) ) ).mul( add( 0.1, abs( sin( mul( 13.0, value.y ).add( value.x ) ) ) ) ) ); + +} ); + +const hash3D = /*@__PURE__*/ Fn( ( [ value ] ) => { + + return hash2D( vec2( hash2D( value.xy ), value.z ) ); + +} ); + +const getAlphaHashThreshold = /*@__PURE__*/ Fn( ( [ position ] ) => { + + // Find the discretized derivatives of our coordinates + const maxDeriv = max$1( + length( dFdx( position.xyz ) ), + length( dFdy( position.xyz ) ) + ); + + const pixScale = float( 1 ).div( float( ALPHA_HASH_SCALE ).mul( maxDeriv ) ).toVar( 'pixScale' ); + + // Find two nearest log-discretized noise scales + const pixScales = vec2( + exp2( floor( log2( pixScale ) ) ), + exp2( ceil( log2( pixScale ) ) ) + ); + + // Compute alpha thresholds at our two noise scales + const alpha = vec2( + hash3D( floor( pixScales.x.mul( position.xyz ) ) ), + hash3D( floor( pixScales.y.mul( position.xyz ) ) ), + ); + + // Factor to interpolate lerp with + const lerpFactor = fract( log2( pixScale ) ); + + // Interpolate alpha threshold from noise at two scales + const x = add( mul( lerpFactor.oneMinus(), alpha.x ), mul( lerpFactor, alpha.y ) ); + + // Pass into CDF to compute uniformly distrib threshold + const a = min$1( lerpFactor, lerpFactor.oneMinus() ); + const cases = vec3( + x.mul( x ).div( mul( 2.0, a ).mul( sub( 1.0, a ) ) ), + x.sub( mul( 0.5, a ) ).div( sub( 1.0, a ) ), + sub( 1.0, sub( 1.0, x ).mul( sub( 1.0, x ) ).div( mul( 2.0, a ).mul( sub( 1.0, a ) ) ) ) ); + + // Find our final, uniformly distributed alpha threshold (ατ) + const threshold = x.lessThan( a.oneMinus() ).select( x.lessThan( a ).select( cases.x, cases.y ), cases.z ); + + // Avoids ατ == 0. Could also do ατ =1-ατ + return clamp( threshold, 1.0e-6, 1.0 ); + +} ).setLayout( { + name: 'getAlphaHashThreshold', + type: 'float', + inputs: [ + { name: 'position', type: 'vec3' } + ] +} ); + +/** + * An attribute node for representing vertex colors. + * + * @augments AttributeNode + */ +class VertexColorNode extends AttributeNode { + + static get type() { + + return 'VertexColorNode'; + + } + + /** + * Constructs a new vertex color node. + * + * @param {number} index - The attribute index. + */ + constructor( index ) { + + super( null, 'vec4' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVertexColorNode = true; + + /** + * The attribute index to enable more than one sets of vertex colors. + * + * @type {number} + * @default 0 + */ + this.index = index; + + } + + /** + * Overwrites the default implementation by honoring the attribute index. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The attribute name. + */ + getAttributeName( /*builder*/ ) { + + const index = this.index; + + return 'color' + ( index > 0 ? index : '' ); + + } + + generate( builder ) { + + const attributeName = this.getAttributeName( builder ); + const geometryAttribute = builder.hasGeometryAttribute( attributeName ); + + let result; + + if ( geometryAttribute === true ) { + + result = super.generate( builder ); + + } else { + + // Vertex color fallback should be white + result = builder.generateConst( this.nodeType, new Vector4( 1, 1, 1, 1 ) ); + + } + + return result; + + } + + serialize( data ) { + + super.serialize( data ); + + data.index = this.index; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.index = data.index; + + } + +} + +/** + * TSL function for creating a reference node. + * + * @tsl + * @function + * @param {number} [index=0] - The attribute index. + * @returns {VertexColorNode} + */ +const vertexColor = ( index = 0 ) => nodeObject( new VertexColorNode( index ) ); + +/** + * Base class for all node materials. + * + * @augments Material + */ +class NodeMaterial extends Material { + + static get type() { + + return 'NodeMaterial'; + + } + + /** + * Represents the type of the node material. + * + * @type {string} + */ + get type() { + + return this.constructor.type; + + } + + set type( _value ) { /* */ } + + /** + * Constructs a new node material. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNodeMaterial = true; + + /** + * Whether this material is affected by fog or not. + * + * @type {boolean} + * @default true + */ + this.fog = true; + + /** + * Whether this material is affected by lights or not. + * + * @type {boolean} + * @default false + */ + this.lights = false; + + /** + * Whether this material uses hardware clipping or not. + * This property is managed by the engine and should not be + * modified by apps. + * + * @type {boolean} + * @default false + */ + this.hardwareClipping = false; + + /** + * Node materials which set their `lights` property to `true` + * are affected by all lights of the scene. Sometimes selective + * lighting is wanted which means only _some_ lights in the scene + * affect a material. This can be achieved by creating an instance + * of {@link LightsNode} with a list of selective + * lights and assign the node to this property. + * + * ```js + * const customLightsNode = lights( [ light1, light2 ] ); + * material.lightsNode = customLightsNode; + * ``` + * + * @type {?LightsNode} + * @default null + */ + this.lightsNode = null; + + /** + * The environment of node materials can be defined by an environment + * map assigned to the `envMap` property or by `Scene.environment` + * if the node material is a PBR material. This node property allows to overwrite + * the default behavior and define the environment with a custom node. + * + * ```js + * material.envNode = pmremTexture( renderTarget.texture ); + * ``` + * + * @type {?Node} + * @default null + */ + this.envNode = null; + + /** + * The lighting of node materials might be influenced by ambient occlusion. + * The default AO is inferred from an ambient occlusion map assigned to `aoMap` + * and the respective `aoMapIntensity`. This node property allows to overwrite + * the default and define the ambient occlusion with a custom node instead. + * + * If you don't want to overwrite the diffuse color but modify the existing + * values instead, use {@link materialAO}. + * + * @type {?Node} + * @default null + */ + this.aoNode = null; + + /** + * The diffuse color of node materials is by default inferred from the + * `color` and `map` properties. This node property allows to overwrite the default + * and define the diffuse color with a node instead. + * + * ```js + * material.colorNode = color( 0xff0000 ); // define red color + * ``` + * + * If you don't want to overwrite the diffuse color but modify the existing + * values instead, use {@link materialColor}. + * + * ```js + * material.colorNode = materialColor.mul( color( 0xff0000 ) ); // give diffuse colors a red tint + * ``` + * + * @type {?Node} + * @default null + */ + this.colorNode = null; + + /** + * The normals of node materials are by default inferred from the `normalMap`/`normalScale` + * or `bumpMap`/`bumpScale` properties. This node property allows to overwrite the default + * and define the normals with a node instead. + * + * If you don't want to overwrite the normals but modify the existing values instead, + * use {@link materialNormal}. + * + * @type {?Node} + * @default null + */ + this.normalNode = null; + + /** + * The opacity of node materials is by default inferred from the `opacity` + * and `alphaMap` properties. This node property allows to overwrite the default + * and define the opacity with a node instead. + * + * If you don't want to overwrite the normals but modify the existing + * value instead, use {@link materialOpacity}. + * + * @type {?Node} + * @default null + */ + this.opacityNode = null; + + /** + * This node can be used to implement a variety of filter-like effects. The idea is + * to store the current rendering into a texture e.g. via `viewportSharedTexture()`, use it + * to create an arbitrary effect and then assign the node composition to this property. + * Everything behind the object using this material will now be affected by a filter. + * + * ```js + * const material = new NodeMaterial() + * material.transparent = true; + * + * // everything behind the object will be monochromatic + * material.backdropNode = saturation( viewportSharedTexture().rgb, 0 ); + * ``` + * + * Backdrop computations are part of the lighting so only lit materials can use this property. + * + * @type {?Node} + * @default null + */ + this.backdropNode = null; + + /** + * This node allows to modulate the influence of `backdropNode` to the outgoing light. + * + * @type {?Node} + * @default null + */ + this.backdropAlphaNode = null; + + /** + * The alpha test of node materials is by default inferred from the `alphaTest` + * property. This node property allows to overwrite the default and define the + * alpha test with a node instead. + * + * If you don't want to overwrite the alpha test but modify the existing + * value instead, use {@link materialAlphaTest}. + * + * @type {?Node} + * @default null + */ + this.alphaTestNode = null; + + + /** + * Discards the fragment if the mask value is `false`. + * + * @type {?Node} + * @default null + */ + this.maskNode = null; + + /** + * The local vertex positions are computed based on multiple factors like the + * attribute data, morphing or skinning. This node property allows to overwrite + * the default and define local vertex positions with nodes instead. + * + * If you don't want to overwrite the vertex positions but modify the existing + * values instead, use {@link positionLocal}. + * + *```js + * material.positionNode = positionLocal.add( displace ); + * ``` + * + * @type {?Node} + * @default null + */ + this.positionNode = null; + + /** + * This node property is intended for logic which modifies geometry data once or per animation step. + * Apps usually place such logic randomly in initialization routines or in the animation loop. + * `geometryNode` is intended as a dedicated API so there is an intended spot where geometry modifications + * can be implemented. + * + * The idea is to assign a `Fn` definition that holds the geometry modification logic. A typical example + * would be a GPU based particle system that provides a node material for usage on app level. The particle + * simulation would be implemented as compute shaders and managed inside a `Fn` function. This function is + * eventually assigned to `geometryNode`. + * + * @type {?Function} + * @default null + */ + this.geometryNode = null; + + /** + * Allows to overwrite depth values in the fragment shader. + * + * @type {?Node} + * @default null + */ + this.depthNode = null; + + /** + * Allows to overwrite the position used for shadow map rendering which + * is by default {@link positionWorld}, the vertex position + * in world space. + * + * @type {?Node} + * @default null + */ + this.receivedShadowPositionNode = null; + + /** + * Allows to overwrite the geometry position used for shadow map projection which + * is by default {@link positionLocal}, the vertex position in local space. + * + * @type {?Node} + * @default null + */ + this.castShadowPositionNode = null; + + /** + * This node can be used to influence how an object using this node material + * receive shadows. + * + * ```js + * const totalShadows = float( 1 ).toVar(); + * material.receivedShadowNode = Fn( ( [ shadow ] ) => { + * totalShadows.mulAssign( shadow ); + * //return float( 1 ); // bypass received shadows + * return shadow.mix( color( 0xff0000 ), 1 ); // modify shadow color + * } ); + * + * @type {?(Function|FunctionNode)} + * @default null + */ + this.receivedShadowNode = null; + + /** + * This node can be used to influence how an object using this node material + * casts shadows. To apply a color to shadows, you can simply do: + * + * ```js + * material.castShadowNode = vec4( 1, 0, 0, 1 ); + * ``` + * + * Which can be nice to fake colored shadows of semi-transparent objects. It + * is also common to use the property with `Fn` function so checks are performed + * per fragment. + * + * ```js + * materialCustomShadow.castShadowNode = Fn( () => { + * hash( vertexIndex ).greaterThan( 0.5 ).discard(); + * return materialColor; + * } )(); + * ``` + * + * @type {?Node} + * @default null + */ + this.castShadowNode = null; + + /** + * This node can be used to define the final output of the material. + * + * TODO: Explain the differences to `fragmentNode`. + * + * @type {?Node} + * @default null + */ + this.outputNode = null; + + /** + * MRT configuration is done on renderer or pass level. This node allows to + * overwrite what values are written into MRT targets on material level. This + * can be useful for implementing selective FX features that should only affect + * specific objects. + * + * @type {?MRTNode} + * @default null + */ + this.mrtNode = null; + + /** + * This node property can be used if you need complete freedom in implementing + * the fragment shader. Assigning a node will replace the built-in material + * logic used in the fragment stage. + * + * @type {?Node} + * @default null + */ + this.fragmentNode = null; + + /** + * This node property can be used if you need complete freedom in implementing + * the vertex shader. Assigning a node will replace the built-in material logic + * used in the vertex stage. + * + * @type {?Node} + * @default null + */ + this.vertexNode = null; + + // Deprecated properties + + Object.defineProperty( this, 'shadowPositionNode', { // @deprecated, r176 + + get: () => { + + return this.receivedShadowPositionNode; + + }, + + set: ( value ) => { + + console.warn( 'THREE.NodeMaterial: ".shadowPositionNode" was renamed to ".receivedShadowPositionNode".' ); + + this.receivedShadowPositionNode = value; + + } + + } ); + + } + + /** + * Allows to define a custom cache key that influence the material key computation + * for render objects. + * + * @return {string} The custom cache key. + */ + customProgramCacheKey() { + + return this.type + getCacheKey$1( this ); + + } + + /** + * Builds this material with the given node builder. + * + * @param {NodeBuilder} builder - The current node builder. + */ + build( builder ) { + + this.setup( builder ); + + } + + /** + * Setups a node material observer with the given builder. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {NodeMaterialObserver} The node material observer. + */ + setupObserver( builder ) { + + return new NodeMaterialObserver( builder ); + + } + + /** + * Setups the vertex and fragment stage of this node material. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + builder.context.setupNormal = () => this.setupNormal( builder ); + builder.context.setupPositionView = () => this.setupPositionView( builder ); + builder.context.setupModelViewProjection = () => this.setupModelViewProjection( builder ); + + const renderer = builder.renderer; + const renderTarget = renderer.getRenderTarget(); + + // < VERTEX STAGE > + + builder.addStack(); + + const mvp = this.setupVertex( builder ); + + const vertexNode = this.vertexNode || mvp; + + builder.stack.outputNode = vertexNode; + + this.setupHardwareClipping( builder ); + + if ( this.geometryNode !== null ) { + + builder.stack.outputNode = builder.stack.outputNode.bypass( this.geometryNode ); + + } + + builder.addFlow( 'vertex', builder.removeStack() ); + + // < FRAGMENT STAGE > + + builder.addStack(); + + let resultNode; + + const clippingNode = this.setupClipping( builder ); + + if ( this.depthWrite === true || this.depthTest === true ) { + + // only write depth if depth buffer is configured + + if ( renderTarget !== null ) { + + if ( renderTarget.depthBuffer === true ) this.setupDepth( builder ); + + } else { + + if ( renderer.depth === true ) this.setupDepth( builder ); + + } + + } + + if ( this.fragmentNode === null ) { + + this.setupDiffuseColor( builder ); + this.setupVariants( builder ); + + const outgoingLightNode = this.setupLighting( builder ); + + if ( clippingNode !== null ) builder.stack.add( clippingNode ); + + // force unsigned floats - useful for RenderTargets + + const basicOutput = vec4( outgoingLightNode, diffuseColor.a ).max( 0 ); + + resultNode = this.setupOutput( builder, basicOutput ); + + // OUTPUT NODE + + output.assign( resultNode ); + + // + + const isCustomOutput = this.outputNode !== null; + + if ( isCustomOutput ) resultNode = this.outputNode; + + // MRT + + if ( renderTarget !== null ) { + + const mrt = renderer.getMRT(); + const materialMRT = this.mrtNode; + + if ( mrt !== null ) { + + if ( isCustomOutput ) output.assign( resultNode ); + + resultNode = mrt; + + if ( materialMRT !== null ) { + + resultNode = mrt.merge( materialMRT ); + + } + + } else if ( materialMRT !== null ) { + + resultNode = materialMRT; + + } + + } + + } else { + + let fragmentNode = this.fragmentNode; + + if ( fragmentNode.isOutputStructNode !== true ) { + + fragmentNode = vec4( fragmentNode ); + + } + + resultNode = this.setupOutput( builder, fragmentNode ); + + } + + builder.stack.outputNode = resultNode; + + builder.addFlow( 'fragment', builder.removeStack() ); + + // < OBSERVER > + + builder.observer = this.setupObserver( builder ); + + } + + /** + * Setups the clipping node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {ClippingNode} The clipping node. + */ + setupClipping( builder ) { + + if ( builder.clippingContext === null ) return null; + + const { unionPlanes, intersectionPlanes } = builder.clippingContext; + + let result = null; + + if ( unionPlanes.length > 0 || intersectionPlanes.length > 0 ) { + + const samples = builder.renderer.samples; + + if ( this.alphaToCoverage && samples > 1 ) { + + // to be added to flow when the color/alpha value has been determined + result = clippingAlpha(); + + } else { + + builder.stack.add( clipping() ); + + } + + } + + return result; + + } + + /** + * Setups the hardware clipping if available on the current device. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupHardwareClipping( builder ) { + + this.hardwareClipping = false; + + if ( builder.clippingContext === null ) return; + + const candidateCount = builder.clippingContext.unionPlanes.length; + + // 8 planes supported by WebGL ANGLE_clip_cull_distance and WebGPU clip-distances + + if ( candidateCount > 0 && candidateCount <= 8 && builder.isAvailable( 'clipDistance' ) ) { + + builder.stack.add( hardwareClipping() ); + + this.hardwareClipping = true; + + } + + return; + + } + + /** + * Setups the depth of this material. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupDepth( builder ) { + + const { renderer, camera } = builder; + + // Depth + + let depthNode = this.depthNode; + + if ( depthNode === null ) { + + const mrt = renderer.getMRT(); + + if ( mrt && mrt.has( 'depth' ) ) { + + depthNode = mrt.get( 'depth' ); + + } else if ( renderer.logarithmicDepthBuffer === true ) { + + if ( camera.isPerspectiveCamera ) { + + depthNode = viewZToLogarithmicDepth( positionView.z, cameraNear, cameraFar ); + + } else { + + depthNode = viewZToOrthographicDepth( positionView.z, cameraNear, cameraFar ); + + } + + } + + } + + if ( depthNode !== null ) { + + depth.assign( depthNode ).toStack(); + + } + + } + + /** + * Setups the position node in view space. This method exists + * so derived node materials can modify the implementation e.g. sprite materials. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The position in view space. + */ + setupPositionView( /*builder*/ ) { + + return modelViewMatrix.mul( positionLocal ).xyz; + + } + + /** + * Setups the position in clip space. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The position in view space. + */ + setupModelViewProjection( /*builder*/ ) { + + return cameraProjectionMatrix.mul( positionView ); + + } + + /** + * Setups the logic for the vertex stage. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The position in clip space. + */ + setupVertex( builder ) { + + builder.addStack(); + + this.setupPosition( builder ); + + builder.context.vertex = builder.removeStack(); + + return modelViewProjection; + + } + + /** + * Setups the computation of the position in local space. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The position in local space. + */ + setupPosition( builder ) { + + const { object, geometry } = builder; + + if ( geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color ) { + + morphReference( object ).toStack(); + + } + + if ( object.isSkinnedMesh === true ) { + + skinning( object ).toStack(); + + } + + if ( this.displacementMap ) { + + const displacementMap = materialReference( 'displacementMap', 'texture' ); + const displacementScale = materialReference( 'displacementScale', 'float' ); + const displacementBias = materialReference( 'displacementBias', 'float' ); + + positionLocal.addAssign( normalLocal.normalize().mul( ( displacementMap.x.mul( displacementScale ).add( displacementBias ) ) ) ); + + } + + if ( object.isBatchedMesh ) { + + batch( object ).toStack(); + + } + + if ( ( object.isInstancedMesh && object.instanceMatrix && object.instanceMatrix.isInstancedBufferAttribute === true ) ) { + + instancedMesh( object ).toStack(); + + } + + if ( this.positionNode !== null ) { + + positionLocal.assign( namespace( this.positionNode, 'POSITION' ) ); + + } + + return positionLocal; + + } + + /** + * Setups the computation of the material's diffuse color. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {BufferGeometry} geometry - The geometry. + */ + setupDiffuseColor( { object, geometry } ) { + + // MASK + + if ( this.maskNode !== null ) { + + // Discard if the mask is `false` + + bool( this.maskNode ).not().discard(); + + } + + // COLOR + + let colorNode = this.colorNode ? vec4( this.colorNode ) : materialColor; + + // VERTEX COLORS + + if ( this.vertexColors === true && geometry.hasAttribute( 'color' ) ) { + + colorNode = colorNode.mul( vertexColor() ); + + } + + // INSTANCED COLORS + + if ( object.instanceColor ) { + + const instanceColor = varyingProperty( 'vec3', 'vInstanceColor' ); + + colorNode = instanceColor.mul( colorNode ); + + } + + if ( object.isBatchedMesh && object._colorsTexture ) { + + const batchColor = varyingProperty( 'vec3', 'vBatchColor' ); + + colorNode = batchColor.mul( colorNode ); + + } + + // DIFFUSE COLOR + + diffuseColor.assign( colorNode ); + + // OPACITY + + const opacityNode = this.opacityNode ? float( this.opacityNode ) : materialOpacity; + diffuseColor.a.assign( diffuseColor.a.mul( opacityNode ) ); + + // ALPHA TEST + + let alphaTestNode = null; + + if ( this.alphaTestNode !== null || this.alphaTest > 0 ) { + + alphaTestNode = this.alphaTestNode !== null ? float( this.alphaTestNode ) : materialAlphaTest; + + diffuseColor.a.lessThanEqual( alphaTestNode ).discard(); + + } + + // ALPHA HASH + + if ( this.alphaHash === true ) { + + diffuseColor.a.lessThan( getAlphaHashThreshold( positionLocal ) ).discard(); + + } + + // OPAQUE + + const isOpaque = this.transparent === false && this.blending === NormalBlending && this.alphaToCoverage === false; + + if ( isOpaque ) { + + diffuseColor.a.assign( 1.0 ); + + } else if ( alphaTestNode === null ) { + + diffuseColor.a.lessThanEqual( 0 ).discard(); + + } + + } + + /** + * Abstract interface method that can be implemented by derived materials + * to setup material-specific node variables. + * + * @abstract + * @param {NodeBuilder} builder - The current node builder. + */ + setupVariants( /*builder*/ ) { + + // Interface function. + + } + + /** + * Setups the outgoing light node variable + * + * @return {Node} The outgoing light node. + */ + setupOutgoingLight() { + + return ( this.lights === true ) ? vec3( 0 ) : diffuseColor.rgb; + + } + + /** + * Setups the normal node from the material. + * + * @return {Node} The normal node. + */ + setupNormal() { + + return this.normalNode ? vec3( this.normalNode ) : materialNormal; + + } + + /** + * Setups the environment node from the material. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The environment node. + */ + setupEnvironment( /*builder*/ ) { + + let node = null; + + if ( this.envNode ) { + + node = this.envNode; + + } else if ( this.envMap ) { + + node = this.envMap.isCubeTexture ? materialReference( 'envMap', 'cubeTexture' ) : materialReference( 'envMap', 'texture' ); + + } + + return node; + + } + + /** + * Setups the light map node from the material. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The light map node. + */ + setupLightMap( builder ) { + + let node = null; + + if ( builder.material.lightMap ) { + + node = new IrradianceNode( materialLightMap ); + + } + + return node; + + } + + /** + * Setups the lights node based on the scene, environment and material. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {LightsNode} The lights node. + */ + setupLights( builder ) { + + const materialLightsNode = []; + + // + + const envNode = this.setupEnvironment( builder ); + + if ( envNode && envNode.isLightingNode ) { + + materialLightsNode.push( envNode ); + + } + + const lightMapNode = this.setupLightMap( builder ); + + if ( lightMapNode && lightMapNode.isLightingNode ) { + + materialLightsNode.push( lightMapNode ); + + } + + if ( this.aoNode !== null || builder.material.aoMap ) { + + const aoNode = this.aoNode !== null ? this.aoNode : materialAO; + + materialLightsNode.push( new AONode( aoNode ) ); + + } + + let lightsN = this.lightsNode || builder.lightsNode; + + if ( materialLightsNode.length > 0 ) { + + lightsN = builder.renderer.lighting.createNode( [ ...lightsN.getLights(), ...materialLightsNode ] ); + + } + + return lightsN; + + } + + /** + * This method should be implemented by most derived materials + * since it defines the material's lighting model. + * + * @abstract + * @param {NodeBuilder} builder - The current node builder. + * @return {LightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + // Interface function. + + } + + /** + * Setups the outgoing light node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The outgoing light node. + */ + setupLighting( builder ) { + + const { material } = builder; + const { backdropNode, backdropAlphaNode, emissiveNode } = this; + + // OUTGOING LIGHT + + const lights = this.lights === true || this.lightsNode !== null; + + const lightsNode = lights ? this.setupLights( builder ) : null; + + let outgoingLightNode = this.setupOutgoingLight( builder ); + + if ( lightsNode && lightsNode.getScope().hasLights ) { + + const lightingModel = this.setupLightingModel( builder ) || null; + + outgoingLightNode = lightingContext( lightsNode, lightingModel, backdropNode, backdropAlphaNode ); + + } else if ( backdropNode !== null ) { + + outgoingLightNode = vec3( backdropAlphaNode !== null ? mix( outgoingLightNode, backdropNode, backdropAlphaNode ) : backdropNode ); + + } + + // EMISSIVE + + if ( ( emissiveNode && emissiveNode.isNode === true ) || ( material.emissive && material.emissive.isColor === true ) ) { + + emissive.assign( vec3( emissiveNode ? emissiveNode : materialEmissive ) ); + + outgoingLightNode = outgoingLightNode.add( emissive ); + + } + + return outgoingLightNode; + + } + + /** + * Setup the fog. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} outputNode - The existing output node. + * @return {Node} The output node. + */ + setupFog( builder, outputNode ) { + + const fogNode = builder.fogNode; + + if ( fogNode ) { + + output.assign( outputNode ); + + outputNode = vec4( fogNode ); + + } + + return outputNode; + + } + + /** + * Setups the output node. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} outputNode - The existing output node. + * @return {Node} The output node. + */ + setupOutput( builder, outputNode ) { + + // FOG + + if ( this.fog === true ) { + + outputNode = this.setupFog( builder, outputNode ); + + } + + return outputNode; + + } + + /** + * Most classic material types have a node pendant e.g. for `MeshBasicMaterial` + * there is `MeshBasicNodeMaterial`. This utility method is intended for + * defining all material properties of the classic type in the node type. + * + * @param {Material} material - The material to copy properties with their values to this node material. + */ + setDefaultValues( material ) { + + // This approach is to reuse the native refreshUniforms* + // and turn available the use of features like transmission and environment in core + + for ( const property in material ) { + + const value = material[ property ]; + + if ( this[ property ] === undefined ) { + + this[ property ] = value; + + if ( value && value.clone ) this[ property ] = value.clone(); + + } + + } + + const descriptors = Object.getOwnPropertyDescriptors( material.constructor.prototype ); + + for ( const key in descriptors ) { + + if ( Object.getOwnPropertyDescriptor( this.constructor.prototype, key ) === undefined && + descriptors[ key ].get !== undefined ) { + + Object.defineProperty( this.constructor.prototype, key, descriptors[ key ] ); + + } + + } + + } + + /** + * Serializes this material to JSON. + * + * @param {?(Object|string)} meta - The meta information for serialization. + * @return {Object} The serialized node. + */ + toJSON( meta ) { + + const isRoot = ( meta === undefined || typeof meta === 'string' ); + + if ( isRoot ) { + + meta = { + textures: {}, + images: {}, + nodes: {} + }; + + } + + const data = Material.prototype.toJSON.call( this, meta ); + const nodeChildren = getNodeChildren( this ); + + data.inputNodes = {}; + + for ( const { property, childNode } of nodeChildren ) { + + data.inputNodes[ property ] = childNode.toJSON( meta ).uuid; + + } + + // TODO: Copied from Object3D.toJSON + + function extractFromCache( cache ) { + + const values = []; + + for ( const key in cache ) { + + const data = cache[ key ]; + delete data.metadata; + values.push( data ); + + } + + return values; + + } + + if ( isRoot ) { + + const textures = extractFromCache( meta.textures ); + const images = extractFromCache( meta.images ); + const nodes = extractFromCache( meta.nodes ); + + if ( textures.length > 0 ) data.textures = textures; + if ( images.length > 0 ) data.images = images; + if ( nodes.length > 0 ) data.nodes = nodes; + + } + + return data; + + } + + /** + * Copies the properties of the given node material to this instance. + * + * @param {NodeMaterial} source - The material to copy. + * @return {NodeMaterial} A reference to this node material. + */ + copy( source ) { + + this.lightsNode = source.lightsNode; + this.envNode = source.envNode; + + this.colorNode = source.colorNode; + this.normalNode = source.normalNode; + this.opacityNode = source.opacityNode; + this.backdropNode = source.backdropNode; + this.backdropAlphaNode = source.backdropAlphaNode; + this.alphaTestNode = source.alphaTestNode; + this.maskNode = source.maskNode; + + this.positionNode = source.positionNode; + this.geometryNode = source.geometryNode; + + this.depthNode = source.depthNode; + this.receivedShadowPositionNode = source.receivedShadowPositionNode; + this.castShadowPositionNode = source.castShadowPositionNode; + this.receivedShadowNode = source.receivedShadowNode; + this.castShadowNode = source.castShadowNode; + + this.outputNode = source.outputNode; + this.mrtNode = source.mrtNode; + + this.fragmentNode = source.fragmentNode; + this.vertexNode = source.vertexNode; + + return super.copy( source ); + + } + +} + +const _defaultValues$d = /*@__PURE__*/ new LineBasicMaterial(); + +/** + * Node material version of {@link LineBasicMaterial}. + * + * @augments NodeMaterial + */ +class LineBasicNodeMaterial extends NodeMaterial { + + static get type() { + + return 'LineBasicNodeMaterial'; + + } + + /** + * Constructs a new line basic node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLineBasicNodeMaterial = true; + + this.setDefaultValues( _defaultValues$d ); + + this.setValues( parameters ); + + } + +} + +const _defaultValues$c = /*@__PURE__*/ new LineDashedMaterial(); + +/** + * Node material version of {@link LineDashedMaterial}. + * + * @augments NodeMaterial + */ +class LineDashedNodeMaterial extends NodeMaterial { + + static get type() { + + return 'LineDashedNodeMaterial'; + + } + + /** + * Constructs a new line dashed node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLineDashedNodeMaterial = true; + + this.setDefaultValues( _defaultValues$c ); + + /** + * The dash offset. + * + * @type {number} + * @default 0 + */ + this.dashOffset = 0; + + /** + * The offset of dash materials is by default inferred from the `dashOffset` + * property. This node property allows to overwrite the default + * and define the offset with a node instead. + * + * If you don't want to overwrite the offset but modify the existing + * value instead, use {@link materialLineDashOffset}. + * + * @type {?Node} + * @default null + */ + this.offsetNode = null; + + /** + * The scale of dash materials is by default inferred from the `scale` + * property. This node property allows to overwrite the default + * and define the scale with a node instead. + * + * If you don't want to overwrite the scale but modify the existing + * value instead, use {@link materialLineScale}. + * + * @type {?Node} + * @default null + */ + this.dashScaleNode = null; + + /** + * The dash size of dash materials is by default inferred from the `dashSize` + * property. This node property allows to overwrite the default + * and define the dash size with a node instead. + * + * If you don't want to overwrite the dash size but modify the existing + * value instead, use {@link materialLineDashSize}. + * + * @type {?Node} + * @default null + */ + this.dashSizeNode = null; + + /** + * The gap size of dash materials is by default inferred from the `gapSize` + * property. This node property allows to overwrite the default + * and define the gap size with a node instead. + * + * If you don't want to overwrite the gap size but modify the existing + * value instead, use {@link materialLineGapSize}. + * + * @type {?Node} + * @default null + */ + this.gapSizeNode = null; + + this.setValues( parameters ); + + } + + /** + * Setups the dash specific node variables. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupVariants( /* builder */ ) { + + const offsetNode = this.offsetNode ? float( this.offsetNode ) : materialLineDashOffset; + const dashScaleNode = this.dashScaleNode ? float( this.dashScaleNode ) : materialLineScale; + const dashSizeNode = this.dashSizeNode ? float( this.dashSizeNode ) : materialLineDashSize; + const gapSizeNode = this.gapSizeNode ? float( this.gapSizeNode ) : materialLineGapSize; + + dashSize.assign( dashSizeNode ); + gapSize.assign( gapSizeNode ); + + const vLineDistance = varying( attribute( 'lineDistance' ).mul( dashScaleNode ) ); + const vLineDistanceOffset = offsetNode ? vLineDistance.add( offsetNode ) : vLineDistance; + + vLineDistanceOffset.mod( dashSize.add( gapSize ) ).greaterThan( dashSize ).discard(); + + } + +} + +let _sharedFramebuffer = null; + +/** + * `ViewportTextureNode` creates an internal texture for each node instance. This module + * shares a texture across all instances of `ViewportSharedTextureNode`. It should + * be the first choice when using data of the default/screen framebuffer for performance reasons. + * + * @augments ViewportTextureNode + */ +class ViewportSharedTextureNode extends ViewportTextureNode { + + static get type() { + + return 'ViewportSharedTextureNode'; + + } + + /** + * Constructs a new viewport shared texture node. + * + * @param {Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + */ + constructor( uvNode = screenUV, levelNode = null ) { + + if ( _sharedFramebuffer === null ) { + + _sharedFramebuffer = new FramebufferTexture(); + + } + + super( uvNode, levelNode, _sharedFramebuffer ); + + } + + updateReference() { + + return this; + + } + +} + +/** + * TSL function for creating a shared viewport texture node. + * + * @tsl + * @function + * @param {?Node} [uvNode=screenUV] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @returns {ViewportSharedTextureNode} + */ +const viewportSharedTexture = /*@__PURE__*/ nodeProxy( ViewportSharedTextureNode ).setParameterLength( 0, 2 ); + +const _defaultValues$b = /*@__PURE__*/ new LineDashedMaterial(); + +/** + * This node material can be used to render lines with a size larger than one + * by representing them as instanced meshes. + * + * @augments NodeMaterial + */ +class Line2NodeMaterial extends NodeMaterial { + + static get type() { + + return 'Line2NodeMaterial'; + + } + + /** + * Constructs a new node material for wide line rendering. + * + * @param {Object} [parameters={}] - The configuration parameter. + */ + constructor( parameters = {} ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isLine2NodeMaterial = true; + + this.setDefaultValues( _defaultValues$b ); + + /** + * Whether vertex colors should be used or not. + * + * @type {boolean} + * @default false + */ + this.useColor = parameters.vertexColors; + + /** + * The dash offset. + * + * @type {number} + * @default 0 + */ + this.dashOffset = 0; + + /** + * The line width. + * + * @type {number} + * @default 0 + */ + this.lineWidth = 1; + + /** + * Defines the lines color. + * + * @type {?Node} + * @default null + */ + this.lineColorNode = null; + + /** + * Defines the offset. + * + * @type {?Node} + * @default null + */ + this.offsetNode = null; + + /** + * Defines the dash scale. + * + * @type {?Node} + * @default null + */ + this.dashScaleNode = null; + + /** + * Defines the dash size. + * + * @type {?Node} + * @default null + */ + this.dashSizeNode = null; + + /** + * Defines the gap size. + * + * @type {?Node} + * @default null + */ + this.gapSizeNode = null; + + /** + * Blending is set to `NoBlending` since transparency + * is not supported, yet. + * + * @type {number} + * @default 0 + */ + this.blending = NoBlending; + + this._useDash = parameters.dashed; + this._useAlphaToCoverage = true; + this._useWorldUnits = false; + + this.setValues( parameters ); + + } + + /** + * Setups the vertex and fragment stage of this node material. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + const { renderer } = builder; + + const useAlphaToCoverage = this._useAlphaToCoverage; + const useColor = this.useColor; + const useDash = this._useDash; + const useWorldUnits = this._useWorldUnits; + + const trimSegment = Fn( ( { start, end } ) => { + + const a = cameraProjectionMatrix.element( 2 ).element( 2 ); // 3nd entry in 3th column + const b = cameraProjectionMatrix.element( 3 ).element( 2 ); // 3nd entry in 4th column + const nearEstimate = b.mul( - 0.5 ).div( a ); + + const alpha = nearEstimate.sub( start.z ).div( end.z.sub( start.z ) ); + + return vec4( mix( start.xyz, end.xyz, alpha ), end.w ); + + } ).setLayout( { + name: 'trimSegment', + type: 'vec4', + inputs: [ + { name: 'start', type: 'vec4' }, + { name: 'end', type: 'vec4' } + ] + } ); + + this.vertexNode = Fn( () => { + + const instanceStart = attribute( 'instanceStart' ); + const instanceEnd = attribute( 'instanceEnd' ); + + // camera space + + const start = vec4( modelViewMatrix.mul( vec4( instanceStart, 1.0 ) ) ).toVar( 'start' ); + const end = vec4( modelViewMatrix.mul( vec4( instanceEnd, 1.0 ) ) ).toVar( 'end' ); + + if ( useDash ) { + + const dashScaleNode = this.dashScaleNode ? float( this.dashScaleNode ) : materialLineScale; + const offsetNode = this.offsetNode ? float( this.offsetNode ) : materialLineDashOffset; + + const instanceDistanceStart = attribute( 'instanceDistanceStart' ); + const instanceDistanceEnd = attribute( 'instanceDistanceEnd' ); + + let lineDistance = positionGeometry.y.lessThan( 0.5 ).select( dashScaleNode.mul( instanceDistanceStart ), dashScaleNode.mul( instanceDistanceEnd ) ); + lineDistance = lineDistance.add( offsetNode ); + + varyingProperty( 'float', 'lineDistance' ).assign( lineDistance ); + + } + + if ( useWorldUnits ) { + + varyingProperty( 'vec3', 'worldStart' ).assign( start.xyz ); + varyingProperty( 'vec3', 'worldEnd' ).assign( end.xyz ); + + } + + const aspect = viewport.z.div( viewport.w ); + + // special case for perspective projection, and segments that terminate either in, or behind, the camera plane + // clearly the gpu firmware has a way of addressing this issue when projecting into ndc space + // but we need to perform ndc-space calculations in the shader, so we must address this issue directly + // perhaps there is a more elegant solution -- WestLangley + + const perspective = cameraProjectionMatrix.element( 2 ).element( 3 ).equal( - 1 ); // 4th entry in the 3rd column + + If( perspective, () => { + + If( start.z.lessThan( 0.0 ).and( end.z.greaterThan( 0.0 ) ), () => { + + end.assign( trimSegment( { start: start, end: end } ) ); + + } ).ElseIf( end.z.lessThan( 0.0 ).and( start.z.greaterThanEqual( 0.0 ) ), () => { + + start.assign( trimSegment( { start: end, end: start } ) ); + + } ); + + } ); + + // clip space + const clipStart = cameraProjectionMatrix.mul( start ); + const clipEnd = cameraProjectionMatrix.mul( end ); + + // ndc space + const ndcStart = clipStart.xyz.div( clipStart.w ); + const ndcEnd = clipEnd.xyz.div( clipEnd.w ); + + // direction + const dir = ndcEnd.xy.sub( ndcStart.xy ).toVar(); + + // account for clip-space aspect ratio + dir.x.assign( dir.x.mul( aspect ) ); + dir.assign( dir.normalize() ); + + const clip = vec4().toVar(); + + if ( useWorldUnits ) { + + // get the offset direction as perpendicular to the view vector + + const worldDir = end.xyz.sub( start.xyz ).normalize(); + const tmpFwd = mix( start.xyz, end.xyz, 0.5 ).normalize(); + const worldUp = worldDir.cross( tmpFwd ).normalize(); + const worldFwd = worldDir.cross( worldUp ); + + const worldPos = varyingProperty( 'vec4', 'worldPos' ); + + worldPos.assign( positionGeometry.y.lessThan( 0.5 ).select( start, end ) ); + + // height offset + const hw = materialLineWidth.mul( 0.5 ); + worldPos.addAssign( vec4( positionGeometry.x.lessThan( 0.0 ).select( worldUp.mul( hw ), worldUp.mul( hw ).negate() ), 0 ) ); + + // don't extend the line if we're rendering dashes because we + // won't be rendering the endcaps + if ( ! useDash ) { + + // cap extension + worldPos.addAssign( vec4( positionGeometry.y.lessThan( 0.5 ).select( worldDir.mul( hw ).negate(), worldDir.mul( hw ) ), 0 ) ); + + // add width to the box + worldPos.addAssign( vec4( worldFwd.mul( hw ), 0 ) ); + + // endcaps + If( positionGeometry.y.greaterThan( 1.0 ).or( positionGeometry.y.lessThan( 0.0 ) ), () => { + + worldPos.subAssign( vec4( worldFwd.mul( 2.0 ).mul( hw ), 0 ) ); + + } ); + + } + + // project the worldpos + clip.assign( cameraProjectionMatrix.mul( worldPos ) ); + + // shift the depth of the projected points so the line + // segments overlap neatly + const clipPose = vec3().toVar(); + + clipPose.assign( positionGeometry.y.lessThan( 0.5 ).select( ndcStart, ndcEnd ) ); + clip.z.assign( clipPose.z.mul( clip.w ) ); + + } else { + + const offset = vec2( dir.y, dir.x.negate() ).toVar( 'offset' ); + + // undo aspect ratio adjustment + dir.x.assign( dir.x.div( aspect ) ); + offset.x.assign( offset.x.div( aspect ) ); + + // sign flip + offset.assign( positionGeometry.x.lessThan( 0.0 ).select( offset.negate(), offset ) ); + + // endcaps + If( positionGeometry.y.lessThan( 0.0 ), () => { + + offset.assign( offset.sub( dir ) ); + + } ).ElseIf( positionGeometry.y.greaterThan( 1.0 ), () => { + + offset.assign( offset.add( dir ) ); + + } ); + + // adjust for linewidth + offset.assign( offset.mul( materialLineWidth ) ); + + // adjust for clip-space to screen-space conversion // maybe resolution should be based on viewport ... + offset.assign( offset.div( viewport.w ) ); + + // select end + clip.assign( positionGeometry.y.lessThan( 0.5 ).select( clipStart, clipEnd ) ); + + // back to clip space + offset.assign( offset.mul( clip.w ) ); + + clip.assign( clip.add( vec4( offset, 0, 0 ) ) ); + + } + + return clip; + + } )(); + + const closestLineToLine = Fn( ( { p1, p2, p3, p4 } ) => { + + const p13 = p1.sub( p3 ); + const p43 = p4.sub( p3 ); + + const p21 = p2.sub( p1 ); + + const d1343 = p13.dot( p43 ); + const d4321 = p43.dot( p21 ); + const d1321 = p13.dot( p21 ); + const d4343 = p43.dot( p43 ); + const d2121 = p21.dot( p21 ); + + const denom = d2121.mul( d4343 ).sub( d4321.mul( d4321 ) ); + const numer = d1343.mul( d4321 ).sub( d1321.mul( d4343 ) ); + + const mua = numer.div( denom ).clamp(); + const mub = d1343.add( d4321.mul( mua ) ).div( d4343 ).clamp(); + + return vec2( mua, mub ); + + } ); + + this.colorNode = Fn( () => { + + const vUv = uv(); + + if ( useDash ) { + + const dashSizeNode = this.dashSizeNode ? float( this.dashSizeNode ) : materialLineDashSize; + const gapSizeNode = this.gapSizeNode ? float( this.gapSizeNode ) : materialLineGapSize; + + dashSize.assign( dashSizeNode ); + gapSize.assign( gapSizeNode ); + + const vLineDistance = varyingProperty( 'float', 'lineDistance' ); + + vUv.y.lessThan( - 1 ).or( vUv.y.greaterThan( 1.0 ) ).discard(); // discard endcaps + vLineDistance.mod( dashSize.add( gapSize ) ).greaterThan( dashSize ).discard(); // todo - FIX + + } + + const alpha = float( 1 ).toVar( 'alpha' ); + + if ( useWorldUnits ) { + + const worldStart = varyingProperty( 'vec3', 'worldStart' ); + const worldEnd = varyingProperty( 'vec3', 'worldEnd' ); + + // Find the closest points on the view ray and the line segment + const rayEnd = varyingProperty( 'vec4', 'worldPos' ).xyz.normalize().mul( 1e5 ); + const lineDir = worldEnd.sub( worldStart ); + const params = closestLineToLine( { p1: worldStart, p2: worldEnd, p3: vec3( 0.0, 0.0, 0.0 ), p4: rayEnd } ); + + const p1 = worldStart.add( lineDir.mul( params.x ) ); + const p2 = rayEnd.mul( params.y ); + const delta = p1.sub( p2 ); + const len = delta.length(); + const norm = len.div( materialLineWidth ); + + if ( ! useDash ) { + + if ( useAlphaToCoverage && renderer.samples > 1 ) { + + const dnorm = norm.fwidth(); + alpha.assign( smoothstep( dnorm.negate().add( 0.5 ), dnorm.add( 0.5 ), norm ).oneMinus() ); + + } else { + + norm.greaterThan( 0.5 ).discard(); + + } + + } + + } else { + + // round endcaps + + if ( useAlphaToCoverage && renderer.samples > 1 ) { + + const a = vUv.x; + const b = vUv.y.greaterThan( 0.0 ).select( vUv.y.sub( 1.0 ), vUv.y.add( 1.0 ) ); + + const len2 = a.mul( a ).add( b.mul( b ) ); + + const dlen = float( len2.fwidth() ).toVar( 'dlen' ); + + If( vUv.y.abs().greaterThan( 1.0 ), () => { + + alpha.assign( smoothstep( dlen.oneMinus(), dlen.add( 1 ), len2 ).oneMinus() ); + + } ); + + } else { + + If( vUv.y.abs().greaterThan( 1.0 ), () => { + + const a = vUv.x; + const b = vUv.y.greaterThan( 0.0 ).select( vUv.y.sub( 1.0 ), vUv.y.add( 1.0 ) ); + const len2 = a.mul( a ).add( b.mul( b ) ); + + len2.greaterThan( 1.0 ).discard(); + + } ); + + } + + } + + let lineColorNode; + + if ( this.lineColorNode ) { + + lineColorNode = this.lineColorNode; + + } else { + + if ( useColor ) { + + const instanceColorStart = attribute( 'instanceColorStart' ); + const instanceColorEnd = attribute( 'instanceColorEnd' ); + + const instanceColor = positionGeometry.y.lessThan( 0.5 ).select( instanceColorStart, instanceColorEnd ); + + lineColorNode = instanceColor.mul( materialColor ); + + } else { + + lineColorNode = materialColor; + + } + + } + + return vec4( lineColorNode, alpha ); + + } )(); + + if ( this.transparent ) { + + const opacityNode = this.opacityNode ? float( this.opacityNode ) : materialOpacity; + + this.outputNode = vec4( this.colorNode.rgb.mul( opacityNode ).add( viewportSharedTexture().rgb.mul( opacityNode.oneMinus() ) ), this.colorNode.a ); + + } + + super.setup( builder ); + + } + + /** + * Whether the lines should sized in world units or not. + * When set to `false` the unit is pixel. + * + * @type {boolean} + * @default false + */ + get worldUnits() { + + return this._useWorldUnits; + + } + + set worldUnits( value ) { + + if ( this._useWorldUnits !== value ) { + + this._useWorldUnits = value; + this.needsUpdate = true; + + } + + } + + /** + * Whether the lines should be dashed or not. + * + * @type {boolean} + * @default false + */ + get dashed() { + + return this._useDash; + + } + + set dashed( value ) { + + if ( this._useDash !== value ) { + + this._useDash = value; + this.needsUpdate = true; + + } + + } + + /** + * Whether alpha to coverage should be used or not. + * + * @type {boolean} + * @default true + */ + get alphaToCoverage() { + + return this._useAlphaToCoverage; + + } + + set alphaToCoverage( value ) { + + if ( this._useAlphaToCoverage !== value ) { + + this._useAlphaToCoverage = value; + this.needsUpdate = true; + + } + + } + +} + +/** + * Packs a direction vector into a color value. + * + * @tsl + * @function + * @param {Node} node - The direction to pack. + * @return {Node} The color. + */ +const directionToColor = ( node ) => nodeObject( node ).mul( 0.5 ).add( 0.5 ); + +/** + * Unpacks a color value into a direction vector. + * + * @tsl + * @function + * @param {Node} node - The color to unpack. + * @return {Node} The direction. + */ +const colorToDirection = ( node ) => nodeObject( node ).mul( 2.0 ).sub( 1 ); + +const _defaultValues$a = /*@__PURE__*/ new MeshNormalMaterial(); + +/** + * Node material version of {@link MeshNormalMaterial}. + * + * @augments NodeMaterial + */ +class MeshNormalNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshNormalNodeMaterial'; + + } + + /** + * Constructs a new mesh normal node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshNormalNodeMaterial = true; + + this.setDefaultValues( _defaultValues$a ); + + this.setValues( parameters ); + + } + + /** + * Overwrites the default implementation by computing the diffuse color + * based on the normal data. + */ + setupDiffuseColor() { + + const opacityNode = this.opacityNode ? float( this.opacityNode ) : materialOpacity; + + // By convention, a normal packed to RGB is in sRGB color space. Convert it to working color space. + + diffuseColor.assign( colorSpaceToWorking( vec4( directionToColor( transformedNormalView ), opacityNode ), SRGBColorSpace ) ); + + } + +} + +/** + * Can be used to compute texture coordinates for projecting an + * equirectangular texture onto a mesh for using it as the scene's + * background. + * + * ```js + * scene.backgroundNode = texture( equirectTexture, equirectUV() ); + * ``` + * + * @augments TempNode + */ +class EquirectUVNode extends TempNode { + + static get type() { + + return 'EquirectUVNode'; + + } + + /** + * Constructs a new equirect uv node. + * + * @param {Node} [dirNode=positionWorldDirection] - A direction vector for sampling which is by default `positionWorldDirection`. + */ + constructor( dirNode = positionWorldDirection ) { + + super( 'vec2' ); + + /** + * A direction vector for sampling why is by default `positionWorldDirection`. + * + * @type {Node} + */ + this.dirNode = dirNode; + + } + + setup() { + + const dir = this.dirNode; + + const u = dir.z.atan( dir.x ).mul( 1 / ( Math.PI * 2 ) ).add( 0.5 ); + const v = dir.y.clamp( - 1, 1.0 ).asin().mul( 1 / Math.PI ).add( 0.5 ); + + return vec2( u, v ); + + } + +} + +/** + * TSL function for creating an equirect uv node. + * + * @tsl + * @function + * @param {?Node} [dirNode=positionWorldDirection] - A direction vector for sampling which is by default `positionWorldDirection`. + * @returns {EquirectUVNode} + */ +const equirectUV = /*@__PURE__*/ nodeProxy( EquirectUVNode ).setParameterLength( 0, 1 ); + +// @TODO: Consider rename WebGLCubeRenderTarget to just CubeRenderTarget + +/** + * This class represents a cube render target. It is a special version + * of `WebGLCubeRenderTarget` which is compatible with `WebGPURenderer`. + * + * @augments WebGLCubeRenderTarget + */ +class CubeRenderTarget extends WebGLCubeRenderTarget { + + /** + * Constructs a new cube render target. + * + * @param {number} [size=1] - The size of the render target. + * @param {RenderTarget~Options} [options] - The configuration object. + */ + constructor( size = 1, options = {} ) { + + super( size, options ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCubeRenderTarget = true; + + } + + /** + * Converts the given equirectangular texture to a cube map. + * + * @param {Renderer} renderer - The renderer. + * @param {Texture} texture - The equirectangular texture. + * @return {CubeRenderTarget} A reference to this cube render target. + */ + fromEquirectangularTexture( renderer, texture$1 ) { + + const currentMinFilter = texture$1.minFilter; + const currentGenerateMipmaps = texture$1.generateMipmaps; + + texture$1.generateMipmaps = true; + + this.texture.type = texture$1.type; + this.texture.colorSpace = texture$1.colorSpace; + + this.texture.generateMipmaps = texture$1.generateMipmaps; + this.texture.minFilter = texture$1.minFilter; + this.texture.magFilter = texture$1.magFilter; + + const geometry = new BoxGeometry( 5, 5, 5 ); + + const uvNode = equirectUV( positionWorldDirection ); + + const material = new NodeMaterial(); + material.colorNode = texture( texture$1, uvNode, 0 ); + material.side = BackSide; + material.blending = NoBlending; + + const mesh = new Mesh( geometry, material ); + + const scene = new Scene(); + scene.add( mesh ); + + // Avoid blurred poles + if ( texture$1.minFilter === LinearMipmapLinearFilter ) texture$1.minFilter = LinearFilter; + + const camera = new CubeCamera( 1, 10, this ); + + const currentMRT = renderer.getMRT(); + renderer.setMRT( null ); + + camera.update( renderer, scene ); + + renderer.setMRT( currentMRT ); + + texture$1.minFilter = currentMinFilter; + texture$1.currentGenerateMipmaps = currentGenerateMipmaps; + + mesh.geometry.dispose(); + mesh.material.dispose(); + + return this; + + } + +} + +const _cache$1 = new WeakMap(); + +/** + * This node can be used to automatically convert environment maps in the + * equirectangular format into the cube map format. + * + * @augments TempNode + */ +class CubeMapNode extends TempNode { + + static get type() { + + return 'CubeMapNode'; + + } + + /** + * Constructs a new cube map node. + * + * @param {Node} envNode - The node representing the environment map. + */ + constructor( envNode ) { + + super( 'vec3' ); + + /** + * The node representing the environment map. + * + * @type {Node} + */ + this.envNode = envNode; + + /** + * A reference to the internal cube texture. + * + * @private + * @type {?CubeTexture} + * @default null + */ + this._cubeTexture = null; + + /** + * A reference to the internal cube texture node. + * + * @private + * @type {CubeTextureNode} + */ + this._cubeTextureNode = cubeTexture( null ); + + const defaultTexture = new CubeTexture(); + defaultTexture.isRenderTargetTexture = true; + + /** + * A default cube texture that acts as a placeholder. + * It is used when the conversion from equirectangular to cube + * map has not finished yet for a given texture. + * + * @private + * @type {CubeTexture} + */ + this._defaultTexture = defaultTexture; + + /** + * The `updateBeforeType` is set to `NodeUpdateType.RENDER` since the node updates + * the texture once per render in its {@link CubeMapNode#updateBefore} method. + * + * @type {string} + * @default 'render' + */ + this.updateBeforeType = NodeUpdateType.RENDER; + + } + + updateBefore( frame ) { + + const { renderer, material } = frame; + + const envNode = this.envNode; + + if ( envNode.isTextureNode || envNode.isMaterialReferenceNode ) { + + const texture = ( envNode.isTextureNode ) ? envNode.value : material[ envNode.property ]; + + if ( texture && texture.isTexture ) { + + const mapping = texture.mapping; + + if ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ) { + + // check for converted cubemap map + + if ( _cache$1.has( texture ) ) { + + const cubeMap = _cache$1.get( texture ); + + mapTextureMapping( cubeMap, texture.mapping ); + this._cubeTexture = cubeMap; + + } else { + + // create cube map from equirectangular map + + const image = texture.image; + + if ( isEquirectangularMapReady$1( image ) ) { + + const renderTarget = new CubeRenderTarget( image.height ); + renderTarget.fromEquirectangularTexture( renderer, texture ); + + mapTextureMapping( renderTarget.texture, texture.mapping ); + this._cubeTexture = renderTarget.texture; + + _cache$1.set( texture, renderTarget.texture ); + + texture.addEventListener( 'dispose', onTextureDispose ); + + } else { + + // default cube texture as fallback when equirectangular texture is not yet loaded + + this._cubeTexture = this._defaultTexture; + + } + + } + + // + + this._cubeTextureNode.value = this._cubeTexture; + + } else { + + // envNode already refers to a cube map + + this._cubeTextureNode = this.envNode; + + } + + } + + } + + } + + setup( builder ) { + + this.updateBefore( builder ); + + return this._cubeTextureNode; + + } + +} + +/** + * Returns true if the given equirectangular image has been fully loaded + * and is ready for further processing. + * + * @private + * @param {Image} image - The equirectangular image to check. + * @return {boolean} Whether the image is ready or not. + */ +function isEquirectangularMapReady$1( image ) { + + if ( image === null || image === undefined ) return false; + + return image.height > 0; + +} + +/** + * This function is executed when `dispose()` is called on the equirectangular + * texture. In this case, the generated cube map with its render target + * is deleted as well. + * + * @private + * @param {Object} event - The event object. + */ +function onTextureDispose( event ) { + + const texture = event.target; + + texture.removeEventListener( 'dispose', onTextureDispose ); + + const renderTarget = _cache$1.get( texture ); + + if ( renderTarget !== undefined ) { + + _cache$1.delete( texture ); + + renderTarget.dispose(); + + } + +} + +/** + * This function makes sure the generated cube map uses the correct + * texture mapping that corresponds to the equirectangular original. + * + * @private + * @param {Texture} texture - The cube texture. + * @param {number} mapping - The original texture mapping. + */ +function mapTextureMapping( texture, mapping ) { + + if ( mapping === EquirectangularReflectionMapping ) { + + texture.mapping = CubeReflectionMapping; + + } else if ( mapping === EquirectangularRefractionMapping ) { + + texture.mapping = CubeRefractionMapping; + + } + +} + +/** + * TSL function for creating a cube map node. + * + * @tsl + * @function + * @param {Node} envNode - The node representing the environment map. + * @returns {CubeMapNode} + */ +const cubeMapNode = /*@__PURE__*/ nodeProxy( CubeMapNode ).setParameterLength( 1 ); + +/** + * Represents a basic model for Image-based lighting (IBL). The environment + * is defined via environment maps in the equirectangular or cube map format. + * `BasicEnvironmentNode` is intended for non-PBR materials like {@link MeshBasicNodeMaterial} + * or {@link MeshPhongNodeMaterial}. + * + * @augments LightingNode + */ +class BasicEnvironmentNode extends LightingNode { + + static get type() { + + return 'BasicEnvironmentNode'; + + } + + /** + * Constructs a new basic environment node. + * + * @param {Node} [envNode=null] - A node representing the environment. + */ + constructor( envNode = null ) { + + super(); + + /** + * A node representing the environment. + * + * @type {Node} + * @default null + */ + this.envNode = envNode; + + } + + setup( builder ) { + + // environment property is used in the finish() method of BasicLightingModel + + builder.context.environment = cubeMapNode( this.envNode ); + + } + +} + +/** + * A specific version of {@link IrradianceNode} that is only relevant + * for {@link MeshBasicNodeMaterial}. Since the material is unlit, it + * requires a special scaling factor for the light map. + * + * @augments LightingNode + */ +class BasicLightMapNode extends LightingNode { + + static get type() { + + return 'BasicLightMapNode'; + + } + + /** + * Constructs a new basic light map node. + * + * @param {?Node} [lightMapNode=null] - The light map node. + */ + constructor( lightMapNode = null ) { + + super(); + + /** + * The light map node. + * + * @type {?Node} + */ + this.lightMapNode = lightMapNode; + + } + + setup( builder ) { + + // irradianceLightMap property is used in the indirectDiffuse() method of BasicLightingModel + + const RECIPROCAL_PI = float( 1 / Math.PI ); + + builder.context.irradianceLightMap = this.lightMapNode.mul( RECIPROCAL_PI ); + + } + +} + +/** + * Abstract class for implementing lighting models. The module defines + * multiple methods that concrete lighting models can implement. These + * methods are executed at different points during the light evaluation + * process. + */ +class LightingModel { + + /** + * This method is intended for setting up lighting model and context data + * which are later used in the evaluation process. + * + * @abstract + * @param {NodeBuilder} builder - The current node builder. + */ + start( builder ) { + + // lights ( direct ) + + builder.lightsNode.setupLights( builder, builder.lightsNode.getLightNodes( builder ) ); + + // indirect + + this.indirect( builder ); + + } + + /** + * This method is intended for executing final tasks like final updates + * to the outgoing light. + * + * @abstract + * @param {NodeBuilder} builder - The current node builder. + */ + finish( /*builder*/ ) { } + + /** + * This method is intended for implementing the direct light term and + * executed during the build process of directional, point and spot light nodes. + * + * @abstract + * @param {Object} lightData - The light data. + * @param {NodeBuilder} builder - The current node builder. + */ + direct( /*lightData, builder*/ ) { } + + /** + * This method is intended for implementing the direct light term for + * rect area light nodes. + * + * @abstract + * @param {Object} lightData - The light data. + * @param {NodeBuilder} builder - The current node builder. + */ + directRectArea( /*lightData, builder*/ ) {} + + /** + * This method is intended for implementing the indirect light term. + * + * @abstract + * @param {NodeBuilder} builder - The current node builder. + */ + indirect( /*builder*/ ) { } + + /** + * This method is intended for implementing the ambient occlusion term. + * Unlike other methods, this method must be called manually by the lighting + * model in its indirect term. + * + * @abstract + * @param {NodeBuilder} builder - The current node builder. + */ + ambientOcclusion( /*input, stack, builder*/ ) { } + +} + +/** + * Represents the lighting model for unlit materials. The only light contribution + * is baked indirect lighting modulated with ambient occlusion and the material's + * diffuse color. Environment mapping is supported. Used in {@link MeshBasicNodeMaterial}. + * + * @augments LightingModel + */ +class BasicLightingModel extends LightingModel { + + /** + * Constructs a new basic lighting model. + */ + constructor() { + + super(); + + } + + /** + * Implements the baked indirect lighting with its modulation. + * + * @param {NodeBuilder} builder - The current node builder. + */ + indirect( { context } ) { + + const ambientOcclusion = context.ambientOcclusion; + const reflectedLight = context.reflectedLight; + const irradianceLightMap = context.irradianceLightMap; + + reflectedLight.indirectDiffuse.assign( vec4( 0.0 ) ); + + // accumulation (baked indirect lighting only) + + if ( irradianceLightMap ) { + + reflectedLight.indirectDiffuse.addAssign( irradianceLightMap ); + + } else { + + reflectedLight.indirectDiffuse.addAssign( vec4( 1.0, 1.0, 1.0, 0.0 ) ); + + } + + // modulation + + reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion ); + + reflectedLight.indirectDiffuse.mulAssign( diffuseColor.rgb ); + + } + + /** + * Implements the environment mapping. + * + * @param {NodeBuilder} builder - The current node builder. + */ + finish( builder ) { + + const { material, context } = builder; + + const outgoingLight = context.outgoingLight; + const envNode = builder.context.environment; + + if ( envNode ) { + + switch ( material.combine ) { + + case MultiplyOperation: + outgoingLight.rgb.assign( mix( outgoingLight.rgb, outgoingLight.rgb.mul( envNode.rgb ), materialSpecularStrength.mul( materialReflectivity ) ) ); + break; + + case MixOperation: + outgoingLight.rgb.assign( mix( outgoingLight.rgb, envNode.rgb, materialSpecularStrength.mul( materialReflectivity ) ) ); + break; + + case AddOperation: + outgoingLight.rgb.addAssign( envNode.rgb.mul( materialSpecularStrength.mul( materialReflectivity ) ) ); + break; + + default: + console.warn( 'THREE.BasicLightingModel: Unsupported .combine value:', material.combine ); + break; + + } + + } + + } + +} + +const _defaultValues$9 = /*@__PURE__*/ new MeshBasicMaterial(); + +/** + * Node material version of {@link MeshBasicMaterial}. + * + * @augments NodeMaterial + */ +class MeshBasicNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshBasicNodeMaterial'; + + } + + /** + * Constructs a new mesh basic node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshBasicNodeMaterial = true; + + /** + * Although the basic material is by definition unlit, we set + * this property to `true` since we use a lighting model to compute + * the outgoing light of the fragment shader. + * + * @type {boolean} + * @default true + */ + this.lights = true; + + this.setDefaultValues( _defaultValues$9 ); + + this.setValues( parameters ); + + } + + /** + * Basic materials are not affected by normal and bump maps so we + * return by default {@link normalView}. + * + * @return {Node} The normal node. + */ + setupNormal() { + + return normalView; // see #28839 + + } + + /** + * Overwritten since this type of material uses {@link BasicEnvironmentNode} + * to implement the default environment mapping. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {?BasicEnvironmentNode} The environment node. + */ + setupEnvironment( builder ) { + + const envNode = super.setupEnvironment( builder ); + + return envNode ? new BasicEnvironmentNode( envNode ) : null; + + } + + /** + * This method must be overwritten since light maps are evaluated + * with a special scaling factor for basic materials. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {?BasicLightMapNode} The light map node. + */ + setupLightMap( builder ) { + + let node = null; + + if ( builder.material.lightMap ) { + + node = new BasicLightMapNode( materialLightMap ); + + } + + return node; + + } + + /** + * The material overwrites this method because `lights` is set to `true` but + * we still want to return the diffuse color as the outgoing light. + * + * @return {Node} The outgoing light node. + */ + setupOutgoingLight() { + + return diffuseColor.rgb; + + } + + /** + * Setups the lighting model. + * + * @return {BasicLightingModel} The lighting model. + */ + setupLightingModel() { + + return new BasicLightingModel(); + + } + +} + +const F_Schlick = /*@__PURE__*/ Fn( ( { f0, f90, dotVH } ) => { + + // Original approximation by Christophe Schlick '94 + // float fresnel = pow( 1.0 - dotVH, 5.0 ); + + // Optimized variant (presented by Epic at SIGGRAPH '13) + // https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf + const fresnel = dotVH.mul( - 5.55473 ).sub( 6.98316 ).mul( dotVH ).exp2(); + + return f0.mul( fresnel.oneMinus() ).add( f90.mul( fresnel ) ); + +} ); // validated + +const BRDF_Lambert = /*@__PURE__*/ Fn( ( inputs ) => { + + return inputs.diffuseColor.mul( 1 / Math.PI ); // punctual light + +} ); // validated + +const G_BlinnPhong_Implicit = () => float( 0.25 ); + +const D_BlinnPhong = /*@__PURE__*/ Fn( ( { dotNH } ) => { + + return shininess.mul( float( 0.5 ) ).add( 1.0 ).mul( float( 1 / Math.PI ) ).mul( dotNH.pow( shininess ) ); + +} ); + +const BRDF_BlinnPhong = /*@__PURE__*/ Fn( ( { lightDirection } ) => { + + const halfDir = lightDirection.add( positionViewDirection ).normalize(); + + const dotNH = transformedNormalView.dot( halfDir ).clamp(); + const dotVH = positionViewDirection.dot( halfDir ).clamp(); + + const F = F_Schlick( { f0: specularColor, f90: 1.0, dotVH } ); + const G = G_BlinnPhong_Implicit(); + const D = D_BlinnPhong( { dotNH } ); + + return F.mul( G ).mul( D ); + +} ); + +/** + * Represents the lighting model for a phong material. Used in {@link MeshPhongNodeMaterial}. + * + * @augments BasicLightingModel + */ +class PhongLightingModel extends BasicLightingModel { + + /** + * Constructs a new phong lighting model. + * + * @param {boolean} [specular=true] - Whether specular is supported or not. + */ + constructor( specular = true ) { + + super(); + + /** + * Whether specular is supported or not. Set this to `false` if you are + * looking for a Lambert-like material meaning a material for non-shiny + * surfaces, without specular highlights. + * + * @type {boolean} + * @default true + */ + this.specular = specular; + + } + + /** + * Implements the direct lighting. The specular portion is optional an can be controlled + * with the {@link PhongLightingModel#specular} flag. + * + * @param {Object} lightData - The light data. + */ + direct( { lightDirection, lightColor, reflectedLight } ) { + + const dotNL = transformedNormalView.dot( lightDirection ).clamp(); + const irradiance = dotNL.mul( lightColor ); + + reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) ); + + if ( this.specular === true ) { + + reflectedLight.directSpecular.addAssign( irradiance.mul( BRDF_BlinnPhong( { lightDirection } ) ).mul( materialSpecularStrength ) ); + + } + + } + + /** + * Implements the indirect lighting. + * + * @param {NodeBuilder} builder - The current node builder. + */ + indirect( builder ) { + + const { ambientOcclusion, irradiance, reflectedLight } = builder.context; + + reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) ); + + reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion ); + + } + +} + +const _defaultValues$8 = /*@__PURE__*/ new MeshLambertMaterial(); + +/** + * Node material version of {@link MeshLambertMaterial}. + * + * @augments NodeMaterial + */ +class MeshLambertNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshLambertNodeMaterial'; + + } + + /** + * Constructs a new mesh lambert node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshLambertNodeMaterial = true; + + /** + * Set to `true` because lambert materials react on lights. + * + * @type {boolean} + * @default true + */ + this.lights = true; + + this.setDefaultValues( _defaultValues$8 ); + + this.setValues( parameters ); + + } + + /** + * Overwritten since this type of material uses {@link BasicEnvironmentNode} + * to implement the default environment mapping. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {?BasicEnvironmentNode} The environment node. + */ + setupEnvironment( builder ) { + + const envNode = super.setupEnvironment( builder ); + + return envNode ? new BasicEnvironmentNode( envNode ) : null; + + } + + /** + * Setups the lighting model. + * + * @return {PhongLightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new PhongLightingModel( false ); // ( specular ) -> force lambert + + } + +} + +const _defaultValues$7 = /*@__PURE__*/ new MeshPhongMaterial(); + +/** + * Node material version of {@link MeshPhongMaterial}. + * + * @augments NodeMaterial + */ +class MeshPhongNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshPhongNodeMaterial'; + + } + + /** + * Constructs a new mesh lambert node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshPhongNodeMaterial = true; + + /** + * Set to `true` because phong materials react on lights. + * + * @type {boolean} + * @default true + */ + this.lights = true; + + /** + * The shininess of phong materials is by default inferred from the `shininess` + * property. This node property allows to overwrite the default + * and define the shininess with a node instead. + * + * If you don't want to overwrite the shininess but modify the existing + * value instead, use {@link materialShininess}. + * + * @type {?Node} + * @default null + */ + this.shininessNode = null; + + /** + * The specular color of phong materials is by default inferred from the + * `specular` property. This node property allows to overwrite the default + * and define the specular color with a node instead. + * + * If you don't want to overwrite the specular color but modify the existing + * value instead, use {@link materialSpecular}. + * + * @type {?Node} + * @default null + */ + this.specularNode = null; + + this.setDefaultValues( _defaultValues$7 ); + + this.setValues( parameters ); + + } + + /** + * Overwritten since this type of material uses {@link BasicEnvironmentNode} + * to implement the default environment mapping. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {?BasicEnvironmentNode} The environment node. + */ + setupEnvironment( builder ) { + + const envNode = super.setupEnvironment( builder ); + + return envNode ? new BasicEnvironmentNode( envNode ) : null; + + } + + /** + * Setups the lighting model. + * + * @return {PhongLightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new PhongLightingModel(); + + } + + /** + * Setups the phong specific node variables. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupVariants( /*builder*/ ) { + + // SHININESS + + const shininessNode = ( this.shininessNode ? float( this.shininessNode ) : materialShininess ).max( 1e-4 ); // to prevent pow( 0.0, 0.0 ) + + shininess.assign( shininessNode ); + + // SPECULAR COLOR + + const specularNode = this.specularNode || materialSpecular; + + specularColor.assign( specularNode ); + + } + + copy( source ) { + + this.shininessNode = source.shininessNode; + this.specularNode = source.specularNode; + + return super.copy( source ); + + } + +} + +const getGeometryRoughness = /*@__PURE__*/ Fn( ( builder ) => { + + if ( builder.geometry.hasAttribute( 'normal' ) === false ) { + + return float( 0 ); + + } + + const dxy = normalView.dFdx().abs().max( normalView.dFdy().abs() ); + const geometryRoughness = dxy.x.max( dxy.y ).max( dxy.z ); + + return geometryRoughness; + +} ); + +const getRoughness = /*@__PURE__*/ Fn( ( inputs ) => { + + const { roughness } = inputs; + + const geometryRoughness = getGeometryRoughness(); + + let roughnessFactor = roughness.max( 0.0525 ); // 0.0525 corresponds to the base mip of a 256 cubemap. + roughnessFactor = roughnessFactor.add( geometryRoughness ); + roughnessFactor = roughnessFactor.min( 1.0 ); + + return roughnessFactor; + +} ); + +// Moving Frostbite to Physically Based Rendering 3.0 - page 12, listing 2 +// https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf +const V_GGX_SmithCorrelated = /*@__PURE__*/ Fn( ( { alpha, dotNL, dotNV } ) => { + + const a2 = alpha.pow2(); + + const gv = dotNL.mul( a2.add( a2.oneMinus().mul( dotNV.pow2() ) ).sqrt() ); + const gl = dotNV.mul( a2.add( a2.oneMinus().mul( dotNL.pow2() ) ).sqrt() ); + + return div( 0.5, gv.add( gl ).max( EPSILON ) ); + +} ).setLayout( { + name: 'V_GGX_SmithCorrelated', + type: 'float', + inputs: [ + { name: 'alpha', type: 'float' }, + { name: 'dotNL', type: 'float' }, + { name: 'dotNV', type: 'float' } + ] +} ); // validated + +// https://google.github.io/filament/Filament.md.html#materialsystem/anisotropicmodel/anisotropicspecularbrdf + +const V_GGX_SmithCorrelated_Anisotropic = /*@__PURE__*/ Fn( ( { alphaT, alphaB, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL } ) => { + + const gv = dotNL.mul( vec3( alphaT.mul( dotTV ), alphaB.mul( dotBV ), dotNV ).length() ); + const gl = dotNV.mul( vec3( alphaT.mul( dotTL ), alphaB.mul( dotBL ), dotNL ).length() ); + const v = div( 0.5, gv.add( gl ) ); + + return v.saturate(); + +} ).setLayout( { + name: 'V_GGX_SmithCorrelated_Anisotropic', + type: 'float', + inputs: [ + { name: 'alphaT', type: 'float', qualifier: 'in' }, + { name: 'alphaB', type: 'float', qualifier: 'in' }, + { name: 'dotTV', type: 'float', qualifier: 'in' }, + { name: 'dotBV', type: 'float', qualifier: 'in' }, + { name: 'dotTL', type: 'float', qualifier: 'in' }, + { name: 'dotBL', type: 'float', qualifier: 'in' }, + { name: 'dotNV', type: 'float', qualifier: 'in' }, + { name: 'dotNL', type: 'float', qualifier: 'in' } + ] +} ); + +// Microfacet Models for Refraction through Rough Surfaces - equation (33) +// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html +// alpha is "roughness squared" in Disney’s reparameterization +const D_GGX = /*@__PURE__*/ Fn( ( { alpha, dotNH } ) => { + + const a2 = alpha.pow2(); + + const denom = dotNH.pow2().mul( a2.oneMinus() ).oneMinus(); // avoid alpha = 0 with dotNH = 1 + + return a2.div( denom.pow2() ).mul( 1 / Math.PI ); + +} ).setLayout( { + name: 'D_GGX', + type: 'float', + inputs: [ + { name: 'alpha', type: 'float' }, + { name: 'dotNH', type: 'float' } + ] +} ); // validated + +const RECIPROCAL_PI = /*@__PURE__*/ float( 1 / Math.PI ); + +// https://google.github.io/filament/Filament.md.html#materialsystem/anisotropicmodel/anisotropicspecularbrdf + +const D_GGX_Anisotropic = /*@__PURE__*/ Fn( ( { alphaT, alphaB, dotNH, dotTH, dotBH } ) => { + + const a2 = alphaT.mul( alphaB ); + const v = vec3( alphaB.mul( dotTH ), alphaT.mul( dotBH ), a2.mul( dotNH ) ); + const v2 = v.dot( v ); + const w2 = a2.div( v2 ); + + return RECIPROCAL_PI.mul( a2.mul( w2.pow2() ) ); + +} ).setLayout( { + name: 'D_GGX_Anisotropic', + type: 'float', + inputs: [ + { name: 'alphaT', type: 'float', qualifier: 'in' }, + { name: 'alphaB', type: 'float', qualifier: 'in' }, + { name: 'dotNH', type: 'float', qualifier: 'in' }, + { name: 'dotTH', type: 'float', qualifier: 'in' }, + { name: 'dotBH', type: 'float', qualifier: 'in' } + ] +} ); + +// GGX Distribution, Schlick Fresnel, GGX_SmithCorrelated Visibility +const BRDF_GGX = /*@__PURE__*/ Fn( ( inputs ) => { + + const { lightDirection, f0, f90, roughness, f, USE_IRIDESCENCE, USE_ANISOTROPY } = inputs; + + const normalView = inputs.normalView || transformedNormalView; + + const alpha = roughness.pow2(); // UE4's roughness + + const halfDir = lightDirection.add( positionViewDirection ).normalize(); + + const dotNL = normalView.dot( lightDirection ).clamp(); + const dotNV = normalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV + const dotNH = normalView.dot( halfDir ).clamp(); + const dotVH = positionViewDirection.dot( halfDir ).clamp(); + + let F = F_Schlick( { f0, f90, dotVH } ); + let V, D; + + if ( defined( USE_IRIDESCENCE ) ) { + + F = iridescence.mix( F, f ); + + } + + if ( defined( USE_ANISOTROPY ) ) { + + const dotTL = anisotropyT.dot( lightDirection ); + const dotTV = anisotropyT.dot( positionViewDirection ); + const dotTH = anisotropyT.dot( halfDir ); + const dotBL = anisotropyB.dot( lightDirection ); + const dotBV = anisotropyB.dot( positionViewDirection ); + const dotBH = anisotropyB.dot( halfDir ); + + V = V_GGX_SmithCorrelated_Anisotropic( { alphaT, alphaB: alpha, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL } ); + D = D_GGX_Anisotropic( { alphaT, alphaB: alpha, dotNH, dotTH, dotBH } ); + + } else { + + V = V_GGX_SmithCorrelated( { alpha, dotNL, dotNV } ); + D = D_GGX( { alpha, dotNH } ); + + } + + return F.mul( V ).mul( D ); + +} ); // validated + +// Analytical approximation of the DFG LUT, one half of the +// split-sum approximation used in indirect specular lighting. +// via 'environmentBRDF' from "Physically Based Shading on Mobile" +// https://www.unrealengine.com/blog/physically-based-shading-on-mobile +const DFGApprox = /*@__PURE__*/ Fn( ( { roughness, dotNV } ) => { + + const c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 ); + + const c1 = vec4( 1, 0.0425, 1.04, - 0.04 ); + + const r = roughness.mul( c0 ).add( c1 ); + + const a004 = r.x.mul( r.x ).min( dotNV.mul( - 9.28 ).exp2() ).mul( r.x ).add( r.y ); + + const fab = vec2( - 1.04, 1.04 ).mul( a004 ).add( r.zw ); + + return fab; + +} ).setLayout( { + name: 'DFGApprox', + type: 'vec2', + inputs: [ + { name: 'roughness', type: 'float' }, + { name: 'dotNV', type: 'vec3' } + ] +} ); + +const EnvironmentBRDF = /*@__PURE__*/ Fn( ( inputs ) => { + + const { dotNV, specularColor, specularF90, roughness } = inputs; + + const fab = DFGApprox( { dotNV, roughness } ); + return specularColor.mul( fab.x ).add( specularF90.mul( fab.y ) ); + +} ); + +const Schlick_to_F0 = /*@__PURE__*/ Fn( ( { f, f90, dotVH } ) => { + + const x = dotVH.oneMinus().saturate(); + const x2 = x.mul( x ); + const x5 = x.mul( x2, x2 ).clamp( 0, .9999 ); + + return f.sub( vec3( f90 ).mul( x5 ) ).div( x5.oneMinus() ); + +} ).setLayout( { + name: 'Schlick_to_F0', + type: 'vec3', + inputs: [ + { name: 'f', type: 'vec3' }, + { name: 'f90', type: 'float' }, + { name: 'dotVH', type: 'float' } + ] +} ); + +// https://github.com/google/filament/blob/master/shaders/src/brdf.fs +const D_Charlie = /*@__PURE__*/ Fn( ( { roughness, dotNH } ) => { + + const alpha = roughness.pow2(); + + // Estevez and Kulla 2017, "Production Friendly Microfacet Sheen BRDF" + const invAlpha = float( 1.0 ).div( alpha ); + const cos2h = dotNH.pow2(); + const sin2h = cos2h.oneMinus().max( 0.0078125 ); // 2^(-14/2), so sin2h^2 > 0 in fp16 + + return float( 2.0 ).add( invAlpha ).mul( sin2h.pow( invAlpha.mul( 0.5 ) ) ).div( 2.0 * Math.PI ); + +} ).setLayout( { + name: 'D_Charlie', + type: 'float', + inputs: [ + { name: 'roughness', type: 'float' }, + { name: 'dotNH', type: 'float' } + ] +} ); + +// https://github.com/google/filament/blob/master/shaders/src/brdf.fs +const V_Neubelt = /*@__PURE__*/ Fn( ( { dotNV, dotNL } ) => { + + // Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886" + return float( 1.0 ).div( float( 4.0 ).mul( dotNL.add( dotNV ).sub( dotNL.mul( dotNV ) ) ) ); + +} ).setLayout( { + name: 'V_Neubelt', + type: 'float', + inputs: [ + { name: 'dotNV', type: 'float' }, + { name: 'dotNL', type: 'float' } + ] +} ); + +const BRDF_Sheen = /*@__PURE__*/ Fn( ( { lightDirection } ) => { + + const halfDir = lightDirection.add( positionViewDirection ).normalize(); + + const dotNL = transformedNormalView.dot( lightDirection ).clamp(); + const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); + const dotNH = transformedNormalView.dot( halfDir ).clamp(); + + const D = D_Charlie( { roughness: sheenRoughness, dotNH } ); + const V = V_Neubelt( { dotNV, dotNL } ); + + return sheen.mul( D ).mul( V ); + +} ); + +// Rect Area Light + +// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines +// by Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt +// code: https://github.com/selfshadow/ltc_code/ + +const LTC_Uv = /*@__PURE__*/ Fn( ( { N, V, roughness } ) => { + + const LUT_SIZE = 64.0; + const LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE; + const LUT_BIAS = 0.5 / LUT_SIZE; + + const dotNV = N.dot( V ).saturate(); + + // texture parameterized by sqrt( GGX alpha ) and sqrt( 1 - cos( theta ) ) + const uv = vec2( roughness, dotNV.oneMinus().sqrt() ); + + uv.assign( uv.mul( LUT_SCALE ).add( LUT_BIAS ) ); + + return uv; + +} ).setLayout( { + name: 'LTC_Uv', + type: 'vec2', + inputs: [ + { name: 'N', type: 'vec3' }, + { name: 'V', type: 'vec3' }, + { name: 'roughness', type: 'float' } + ] +} ); + +const LTC_ClippedSphereFormFactor = /*@__PURE__*/ Fn( ( { f } ) => { + + // Real-Time Area Lighting: a Journey from Research to Production (p.102) + // An approximation of the form factor of a horizon-clipped rectangle. + + const l = f.length(); + + return max$1( l.mul( l ).add( f.z ).div( l.add( 1.0 ) ), 0 ); + +} ).setLayout( { + name: 'LTC_ClippedSphereFormFactor', + type: 'float', + inputs: [ + { name: 'f', type: 'vec3' } + ] +} ); + +const LTC_EdgeVectorFormFactor = /*@__PURE__*/ Fn( ( { v1, v2 } ) => { + + const x = v1.dot( v2 ); + const y = x.abs().toVar(); + + // rational polynomial approximation to theta / sin( theta ) / 2PI + const a = y.mul( 0.0145206 ).add( 0.4965155 ).mul( y ).add( 0.8543985 ).toVar(); + const b = y.add( 4.1616724 ).mul( y ).add( 3.4175940 ).toVar(); + const v = a.div( b ); + + const theta_sintheta = x.greaterThan( 0.0 ).select( v, max$1( x.mul( x ).oneMinus(), 1e-7 ).inverseSqrt().mul( 0.5 ).sub( v ) ); + + return v1.cross( v2 ).mul( theta_sintheta ); + +} ).setLayout( { + name: 'LTC_EdgeVectorFormFactor', + type: 'vec3', + inputs: [ + { name: 'v1', type: 'vec3' }, + { name: 'v2', type: 'vec3' } + ] +} ); + +const LTC_Evaluate = /*@__PURE__*/ Fn( ( { N, V, P, mInv, p0, p1, p2, p3 } ) => { + + // bail if point is on back side of plane of light + // assumes ccw winding order of light vertices + const v1 = p1.sub( p0 ).toVar(); + const v2 = p3.sub( p0 ).toVar(); + + const lightNormal = v1.cross( v2 ); + const result = vec3().toVar(); + + If( lightNormal.dot( P.sub( p0 ) ).greaterThanEqual( 0.0 ), () => { + + // construct orthonormal basis around N + const T1 = V.sub( N.mul( V.dot( N ) ) ).normalize(); + const T2 = N.cross( T1 ).negate(); // negated from paper; possibly due to a different handedness of world coordinate system + + // compute transform + const mat = mInv.mul( mat3( T1, T2, N ).transpose() ).toVar(); + + // transform rect + // & project rect onto sphere + const coords0 = mat.mul( p0.sub( P ) ).normalize().toVar(); + const coords1 = mat.mul( p1.sub( P ) ).normalize().toVar(); + const coords2 = mat.mul( p2.sub( P ) ).normalize().toVar(); + const coords3 = mat.mul( p3.sub( P ) ).normalize().toVar(); + + // calculate vector form factor + const vectorFormFactor = vec3( 0 ).toVar(); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords0, v2: coords1 } ) ); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords1, v2: coords2 } ) ); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords2, v2: coords3 } ) ); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords3, v2: coords0 } ) ); + + // adjust for horizon clipping + result.assign( vec3( LTC_ClippedSphereFormFactor( { f: vectorFormFactor } ) ) ); + + } ); + + return result; + +} ).setLayout( { + name: 'LTC_Evaluate', + type: 'vec3', + inputs: [ + { name: 'N', type: 'vec3' }, + { name: 'V', type: 'vec3' }, + { name: 'P', type: 'vec3' }, + { name: 'mInv', type: 'mat3' }, + { name: 'p0', type: 'vec3' }, + { name: 'p1', type: 'vec3' }, + { name: 'p2', type: 'vec3' }, + { name: 'p3', type: 'vec3' } + ] +} ); + +const LTC_Evaluate_Volume = /*@__PURE__*/ Fn( ( { P, p0, p1, p2, p3 } ) => { + + // bail if point is on back side of plane of light + // assumes ccw winding order of light vertices + const v1 = p1.sub( p0 ).toVar(); + const v2 = p3.sub( p0 ).toVar(); + + const lightNormal = v1.cross( v2 ); + const result = vec3().toVar(); + + If( lightNormal.dot( P.sub( p0 ) ).greaterThanEqual( 0.0 ), () => { + + // transform rect + // & project rect onto sphere + const coords0 = p0.sub( P ).normalize().toVar(); + const coords1 = p1.sub( P ).normalize().toVar(); + const coords2 = p2.sub( P ).normalize().toVar(); + const coords3 = p3.sub( P ).normalize().toVar(); + + // calculate vector form factor + const vectorFormFactor = vec3( 0 ).toVar(); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords0, v2: coords1 } ) ); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords1, v2: coords2 } ) ); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords2, v2: coords3 } ) ); + vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords3, v2: coords0 } ) ); + + // adjust for horizon clipping + result.assign( vec3( LTC_ClippedSphereFormFactor( { f: vectorFormFactor.abs() } ) ) ); + + } ); + + return result; + +} ).setLayout( { + name: 'LTC_Evaluate', + type: 'vec3', + inputs: [ + { name: 'P', type: 'vec3' }, + { name: 'p0', type: 'vec3' }, + { name: 'p1', type: 'vec3' }, + { name: 'p2', type: 'vec3' }, + { name: 'p3', type: 'vec3' } + ] +} ); + +// Mipped Bicubic Texture Filtering by N8 +// https://www.shadertoy.com/view/Dl2SDW + +const bC = 1.0 / 6.0; + +const w0 = ( a ) => mul( bC, mul( a, mul( a, a.negate().add( 3.0 ) ).sub( 3.0 ) ).add( 1.0 ) ); + +const w1 = ( a ) => mul( bC, mul( a, mul( a, mul( 3.0, a ).sub( 6.0 ) ) ).add( 4.0 ) ); + +const w2 = ( a ) => mul( bC, mul( a, mul( a, mul( - 3, a ).add( 3.0 ) ).add( 3.0 ) ).add( 1.0 ) ); + +const w3 = ( a ) => mul( bC, pow( a, 3 ) ); + +const g0 = ( a ) => w0( a ).add( w1( a ) ); + +const g1 = ( a ) => w2( a ).add( w3( a ) ); + +// h0 and h1 are the two offset functions +const h0 = ( a ) => add( - 1, w1( a ).div( w0( a ).add( w1( a ) ) ) ); + +const h1 = ( a ) => add( 1.0, w3( a ).div( w2( a ).add( w3( a ) ) ) ); + +const bicubic = ( textureNode, texelSize, lod ) => { + + const uv = textureNode.uvNode; + const uvScaled = mul( uv, texelSize.zw ).add( 0.5 ); + + const iuv = floor( uvScaled ); + const fuv = fract( uvScaled ); + + const g0x = g0( fuv.x ); + const g1x = g1( fuv.x ); + const h0x = h0( fuv.x ); + const h1x = h1( fuv.x ); + const h0y = h0( fuv.y ); + const h1y = h1( fuv.y ); + + const p0 = vec2( iuv.x.add( h0x ), iuv.y.add( h0y ) ).sub( 0.5 ).mul( texelSize.xy ); + const p1 = vec2( iuv.x.add( h1x ), iuv.y.add( h0y ) ).sub( 0.5 ).mul( texelSize.xy ); + const p2 = vec2( iuv.x.add( h0x ), iuv.y.add( h1y ) ).sub( 0.5 ).mul( texelSize.xy ); + const p3 = vec2( iuv.x.add( h1x ), iuv.y.add( h1y ) ).sub( 0.5 ).mul( texelSize.xy ); + + const a = g0( fuv.y ).mul( add( g0x.mul( textureNode.sample( p0 ).level( lod ) ), g1x.mul( textureNode.sample( p1 ).level( lod ) ) ) ); + const b = g1( fuv.y ).mul( add( g0x.mul( textureNode.sample( p2 ).level( lod ) ), g1x.mul( textureNode.sample( p3 ).level( lod ) ) ) ); + + return a.add( b ); + +}; + +/** + * Applies mipped bicubic texture filtering to the given texture node. + * + * @tsl + * @function + * @param {TextureNode} textureNode - The texture node that should be filtered. + * @param {Node} [lodNode=float(3)] - Defines the LOD to sample from. + * @return {Node} The filtered texture sample. + */ +const textureBicubic = /*@__PURE__*/ Fn( ( [ textureNode, lodNode = float( 3 ) ] ) => { + + const fLodSize = vec2( textureNode.size( int( lodNode ) ) ); + const cLodSize = vec2( textureNode.size( int( lodNode.add( 1.0 ) ) ) ); + const fLodSizeInv = div( 1.0, fLodSize ); + const cLodSizeInv = div( 1.0, cLodSize ); + const fSample = bicubic( textureNode, vec4( fLodSizeInv, fLodSize ), floor( lodNode ) ); + const cSample = bicubic( textureNode, vec4( cLodSizeInv, cLodSize ), ceil( lodNode ) ); + + return fract( lodNode ).mix( fSample, cSample ); + +} ); + +// +// Transmission +// + +const getVolumeTransmissionRay = /*@__PURE__*/ Fn( ( [ n, v, thickness, ior, modelMatrix ] ) => { + + // Direction of refracted light. + const refractionVector = vec3( refract( v.negate(), normalize( n ), div( 1.0, ior ) ) ); + + // Compute rotation-independent scaling of the model matrix. + const modelScale = vec3( + length( modelMatrix[ 0 ].xyz ), + length( modelMatrix[ 1 ].xyz ), + length( modelMatrix[ 2 ].xyz ) + ); + + // The thickness is specified in local space. + return normalize( refractionVector ).mul( thickness.mul( modelScale ) ); + +} ).setLayout( { + name: 'getVolumeTransmissionRay', + type: 'vec3', + inputs: [ + { name: 'n', type: 'vec3' }, + { name: 'v', type: 'vec3' }, + { name: 'thickness', type: 'float' }, + { name: 'ior', type: 'float' }, + { name: 'modelMatrix', type: 'mat4' } + ] +} ); + +const applyIorToRoughness = /*@__PURE__*/ Fn( ( [ roughness, ior ] ) => { + + // Scale roughness with IOR so that an IOR of 1.0 results in no microfacet refraction and + // an IOR of 1.5 results in the default amount of microfacet refraction. + return roughness.mul( clamp( ior.mul( 2.0 ).sub( 2.0 ), 0.0, 1.0 ) ); + +} ).setLayout( { + name: 'applyIorToRoughness', + type: 'float', + inputs: [ + { name: 'roughness', type: 'float' }, + { name: 'ior', type: 'float' } + ] +} ); + +const viewportBackSideTexture = /*@__PURE__*/ viewportMipTexture(); +const viewportFrontSideTexture = /*@__PURE__*/ viewportMipTexture(); + +const getTransmissionSample = /*@__PURE__*/ Fn( ( [ fragCoord, roughness, ior ], { material } ) => { + + const vTexture = material.side === BackSide ? viewportBackSideTexture : viewportFrontSideTexture; + + const transmissionSample = vTexture.sample( fragCoord ); + //const transmissionSample = viewportMipTexture( fragCoord ); + + const lod = log2( screenSize.x ).mul( applyIorToRoughness( roughness, ior ) ); + + return textureBicubic( transmissionSample, lod ); + +} ); + +const volumeAttenuation = /*@__PURE__*/ Fn( ( [ transmissionDistance, attenuationColor, attenuationDistance ] ) => { + + If( attenuationDistance.notEqual( 0 ), () => { + + // Compute light attenuation using Beer's law. + const attenuationCoefficient = log( attenuationColor ).negate().div( attenuationDistance ); + const transmittance = exp( attenuationCoefficient.negate().mul( transmissionDistance ) ); + + return transmittance; + + } ); + + // Attenuation distance is +∞, i.e. the transmitted color is not attenuated at all. + return vec3( 1.0 ); + +} ).setLayout( { + name: 'volumeAttenuation', + type: 'vec3', + inputs: [ + { name: 'transmissionDistance', type: 'float' }, + { name: 'attenuationColor', type: 'vec3' }, + { name: 'attenuationDistance', type: 'float' } + ] +} ); + +const getIBLVolumeRefraction = /*@__PURE__*/ Fn( ( [ n, v, roughness, diffuseColor, specularColor, specularF90, position, modelMatrix, viewMatrix, projMatrix, ior, thickness, attenuationColor, attenuationDistance, dispersion ] ) => { + + let transmittedLight, transmittance; + + if ( dispersion ) { + + transmittedLight = vec4().toVar(); + transmittance = vec3().toVar(); + + const halfSpread = ior.sub( 1.0 ).mul( dispersion.mul( 0.025 ) ); + const iors = vec3( ior.sub( halfSpread ), ior, ior.add( halfSpread ) ); + + Loop( { start: 0, end: 3 }, ( { i } ) => { + + const ior = iors.element( i ); + + const transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix ); + const refractedRayExit = position.add( transmissionRay ); + + // Project refracted vector on the framebuffer, while mapping to normalized device coordinates. + const ndcPos = projMatrix.mul( viewMatrix.mul( vec4( refractedRayExit, 1.0 ) ) ); + const refractionCoords = vec2( ndcPos.xy.div( ndcPos.w ) ).toVar(); + refractionCoords.addAssign( 1.0 ); + refractionCoords.divAssign( 2.0 ); + refractionCoords.assign( vec2( refractionCoords.x, refractionCoords.y.oneMinus() ) ); // webgpu + + // Sample framebuffer to get pixel the refracted ray hits. + const transmissionSample = getTransmissionSample( refractionCoords, roughness, ior ); + + transmittedLight.element( i ).assign( transmissionSample.element( i ) ); + transmittedLight.a.addAssign( transmissionSample.a ); + + transmittance.element( i ).assign( diffuseColor.element( i ).mul( volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance ).element( i ) ) ); + + } ); + + transmittedLight.a.divAssign( 3.0 ); + + } else { + + const transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix ); + const refractedRayExit = position.add( transmissionRay ); + + // Project refracted vector on the framebuffer, while mapping to normalized device coordinates. + const ndcPos = projMatrix.mul( viewMatrix.mul( vec4( refractedRayExit, 1.0 ) ) ); + const refractionCoords = vec2( ndcPos.xy.div( ndcPos.w ) ).toVar(); + refractionCoords.addAssign( 1.0 ); + refractionCoords.divAssign( 2.0 ); + refractionCoords.assign( vec2( refractionCoords.x, refractionCoords.y.oneMinus() ) ); // webgpu + + // Sample framebuffer to get pixel the refracted ray hits. + transmittedLight = getTransmissionSample( refractionCoords, roughness, ior ); + transmittance = diffuseColor.mul( volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance ) ); + + } + + const attenuatedColor = transmittance.rgb.mul( transmittedLight.rgb ); + const dotNV = n.dot( v ).clamp(); + + // Get the specular component. + const F = vec3( EnvironmentBRDF( { // n, v, specularColor, specularF90, roughness + dotNV, + specularColor, + specularF90, + roughness + } ) ); + + // As less light is transmitted, the opacity should be increased. This simple approximation does a decent job + // of modulating a CSS background, and has no effect when the buffer is opaque, due to a solid object or clear color. + const transmittanceFactor = transmittance.r.add( transmittance.g, transmittance.b ).div( 3.0 ); + + return vec4( F.oneMinus().mul( attenuatedColor ), transmittedLight.a.oneMinus().mul( transmittanceFactor ).oneMinus() ); + +} ); + +// +// Iridescence +// + +// XYZ to linear-sRGB color space +const XYZ_TO_REC709 = /*@__PURE__*/ mat3( + 3.2404542, - 0.969266, 0.0556434, + - 1.5371385, 1.8760108, - 0.2040259, + - 0.4985314, 0.0415560, 1.0572252 +); + +// Assume air interface for top +// Note: We don't handle the case fresnel0 == 1 +const Fresnel0ToIor = ( fresnel0 ) => { + + const sqrtF0 = fresnel0.sqrt(); + return vec3( 1.0 ).add( sqrtF0 ).div( vec3( 1.0 ).sub( sqrtF0 ) ); + +}; + +// ior is a value between 1.0 and 3.0. 1.0 is air interface +const IorToFresnel0 = ( transmittedIor, incidentIor ) => { + + return transmittedIor.sub( incidentIor ).div( transmittedIor.add( incidentIor ) ).pow2(); + +}; + +// Fresnel equations for dielectric/dielectric interfaces. +// Ref: https://belcour.github.io/blog/research/2017/05/01/brdf-thin-film.html +// Evaluation XYZ sensitivity curves in Fourier space +const evalSensitivity = ( OPD, shift ) => { + + const phase = OPD.mul( 2.0 * Math.PI * 1.0e-9 ); + const val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 ); + const pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 ); + const VAR = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 ); + + const x = float( 9.7470e-14 * Math.sqrt( 2.0 * Math.PI * 4.5282e+09 ) ).mul( phase.mul( 2.2399e+06 ).add( shift.x ).cos() ).mul( phase.pow2().mul( - 45282e5 ).exp() ); + + let xyz = val.mul( VAR.mul( 2.0 * Math.PI ).sqrt() ).mul( pos.mul( phase ).add( shift ).cos() ).mul( phase.pow2().negate().mul( VAR ).exp() ); + xyz = vec3( xyz.x.add( x ), xyz.y, xyz.z ).div( 1.0685e-7 ); + + const rgb = XYZ_TO_REC709.mul( xyz ); + + return rgb; + +}; + +const evalIridescence = /*@__PURE__*/ Fn( ( { outsideIOR, eta2, cosTheta1, thinFilmThickness, baseF0 } ) => { + + // Force iridescenceIOR -> outsideIOR when thinFilmThickness -> 0.0 + const iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) ); + // Evaluate the cosTheta on the base layer (Snell law) + const sinTheta2Sq = outsideIOR.div( iridescenceIOR ).pow2().mul( cosTheta1.pow2().oneMinus() ); + + // Handle TIR: + const cosTheta2Sq = sinTheta2Sq.oneMinus(); + + If( cosTheta2Sq.lessThan( 0 ), () => { + + return vec3( 1.0 ); + + } ); + + const cosTheta2 = cosTheta2Sq.sqrt(); + + // First interface + const R0 = IorToFresnel0( iridescenceIOR, outsideIOR ); + const R12 = F_Schlick( { f0: R0, f90: 1.0, dotVH: cosTheta1 } ); + //const R21 = R12; + const T121 = R12.oneMinus(); + const phi12 = iridescenceIOR.lessThan( outsideIOR ).select( Math.PI, 0.0 ); + const phi21 = float( Math.PI ).sub( phi12 ); + + // Second interface + const baseIOR = Fresnel0ToIor( baseF0.clamp( 0.0, 0.9999 ) ); // guard against 1.0 + const R1 = IorToFresnel0( baseIOR, iridescenceIOR.toVec3() ); + const R23 = F_Schlick( { f0: R1, f90: 1.0, dotVH: cosTheta2 } ); + const phi23 = vec3( + baseIOR.x.lessThan( iridescenceIOR ).select( Math.PI, 0.0 ), + baseIOR.y.lessThan( iridescenceIOR ).select( Math.PI, 0.0 ), + baseIOR.z.lessThan( iridescenceIOR ).select( Math.PI, 0.0 ) + ); + + // Phase shift + const OPD = iridescenceIOR.mul( thinFilmThickness, cosTheta2, 2.0 ); + const phi = vec3( phi21 ).add( phi23 ); + + // Compound terms + const R123 = R12.mul( R23 ).clamp( 1e-5, 0.9999 ); + const r123 = R123.sqrt(); + const Rs = T121.pow2().mul( R23 ).div( vec3( 1.0 ).sub( R123 ) ); + + // Reflectance term for m = 0 (DC term amplitude) + const C0 = R12.add( Rs ); + const I = C0.toVar(); + + // Reflectance term for m > 0 (pairs of diracs) + const Cm = Rs.sub( T121 ).toVar(); + + Loop( { start: 1, end: 2, condition: '<=', name: 'm' }, ( { m } ) => { + + Cm.mulAssign( r123 ); + const Sm = evalSensitivity( float( m ).mul( OPD ), float( m ).mul( phi ) ).mul( 2.0 ); + I.addAssign( Cm.mul( Sm ) ); + + } ); + + // Since out of gamut colors might be produced, negative color values are clamped to 0. + return I.max( vec3( 0.0 ) ); + +} ).setLayout( { + name: 'evalIridescence', + type: 'vec3', + inputs: [ + { name: 'outsideIOR', type: 'float' }, + { name: 'eta2', type: 'float' }, + { name: 'cosTheta1', type: 'float' }, + { name: 'thinFilmThickness', type: 'float' }, + { name: 'baseF0', type: 'vec3' } + ] +} ); + +// +// Sheen +// + +// This is a curve-fit approximation to the "Charlie sheen" BRDF integrated over the hemisphere from +// Estevez and Kulla 2017, "Production Friendly Microfacet Sheen BRDF". The analysis can be found +// in the Sheen section of https://drive.google.com/file/d/1T0D1VSyR4AllqIJTQAraEIzjlb5h4FKH/view?usp=sharing +const IBLSheenBRDF = /*@__PURE__*/ Fn( ( { normal, viewDir, roughness } ) => { + + const dotNV = normal.dot( viewDir ).saturate(); + + const r2 = roughness.pow2(); + + const a = select( + roughness.lessThan( 0.25 ), + float( - 339.2 ).mul( r2 ).add( float( 161.4 ).mul( roughness ) ).sub( 25.9 ), + float( - 8.48 ).mul( r2 ).add( float( 14.3 ).mul( roughness ) ).sub( 9.95 ) + ); + + const b = select( + roughness.lessThan( 0.25 ), + float( 44.0 ).mul( r2 ).sub( float( 23.7 ).mul( roughness ) ).add( 3.26 ), + float( 1.97 ).mul( r2 ).sub( float( 3.27 ).mul( roughness ) ).add( 0.72 ) + ); + + const DG = select( roughness.lessThan( 0.25 ), 0.0, float( 0.1 ).mul( roughness ).sub( 0.025 ) ).add( a.mul( dotNV ).add( b ).exp() ); + + return DG.mul( 1.0 / Math.PI ).saturate(); + +} ); + +const clearcoatF0 = vec3( 0.04 ); +const clearcoatF90 = float( 1 ); + + +/** + * Represents the lighting model for a PBR material. + * + * @augments LightingModel + */ +class PhysicalLightingModel extends LightingModel { + + /** + * Constructs a new physical lighting model. + * + * @param {boolean} [clearcoat=false] - Whether clearcoat is supported or not. + * @param {boolean} [sheen=false] - Whether sheen is supported or not. + * @param {boolean} [iridescence=false] - Whether iridescence is supported or not. + * @param {boolean} [anisotropy=false] - Whether anisotropy is supported or not. + * @param {boolean} [transmission=false] - Whether transmission is supported or not. + * @param {boolean} [dispersion=false] - Whether dispersion is supported or not. + */ + constructor( clearcoat = false, sheen = false, iridescence = false, anisotropy = false, transmission = false, dispersion = false ) { + + super(); + + /** + * Whether clearcoat is supported or not. + * + * @type {boolean} + * @default false + */ + this.clearcoat = clearcoat; + + /** + * Whether sheen is supported or not. + * + * @type {boolean} + * @default false + */ + this.sheen = sheen; + + /** + * Whether iridescence is supported or not. + * + * @type {boolean} + * @default false + */ + this.iridescence = iridescence; + + /** + * Whether anisotropy is supported or not. + * + * @type {boolean} + * @default false + */ + this.anisotropy = anisotropy; + + /** + * Whether transmission is supported or not. + * + * @type {boolean} + * @default false + */ + this.transmission = transmission; + + /** + * Whether dispersion is supported or not. + * + * @type {boolean} + * @default false + */ + this.dispersion = dispersion; + + /** + * The clear coat radiance. + * + * @type {?Node} + * @default null + */ + this.clearcoatRadiance = null; + + /** + * The clear coat specular direct. + * + * @type {?Node} + * @default null + */ + this.clearcoatSpecularDirect = null; + + /** + * The clear coat specular indirect. + * + * @type {?Node} + * @default null + */ + this.clearcoatSpecularIndirect = null; + + /** + * The sheen specular direct. + * + * @type {?Node} + * @default null + */ + this.sheenSpecularDirect = null; + + /** + * The sheen specular indirect. + * + * @type {?Node} + * @default null + */ + this.sheenSpecularIndirect = null; + + /** + * The iridescence Fresnel. + * + * @type {?Node} + * @default null + */ + this.iridescenceFresnel = null; + + /** + * The iridescence F0. + * + * @type {?Node} + * @default null + */ + this.iridescenceF0 = null; + + } + + /** + * Depending on what features are requested, the method prepares certain node variables + * which are later used for lighting computations. + * + * @param {NodeBuilder} builder - The current node builder. + */ + start( builder ) { + + if ( this.clearcoat === true ) { + + this.clearcoatRadiance = vec3().toVar( 'clearcoatRadiance' ); + this.clearcoatSpecularDirect = vec3().toVar( 'clearcoatSpecularDirect' ); + this.clearcoatSpecularIndirect = vec3().toVar( 'clearcoatSpecularIndirect' ); + + } + + if ( this.sheen === true ) { + + this.sheenSpecularDirect = vec3().toVar( 'sheenSpecularDirect' ); + this.sheenSpecularIndirect = vec3().toVar( 'sheenSpecularIndirect' ); + + } + + if ( this.iridescence === true ) { + + const dotNVi = transformedNormalView.dot( positionViewDirection ).clamp(); + + this.iridescenceFresnel = evalIridescence( { + outsideIOR: float( 1.0 ), + eta2: iridescenceIOR, + cosTheta1: dotNVi, + thinFilmThickness: iridescenceThickness, + baseF0: specularColor + } ); + + this.iridescenceF0 = Schlick_to_F0( { f: this.iridescenceFresnel, f90: 1.0, dotVH: dotNVi } ); + + } + + if ( this.transmission === true ) { + + const position = positionWorld; + const v = cameraPosition.sub( positionWorld ).normalize(); // TODO: Create Node for this, same issue in MaterialX + const n = transformedNormalWorld; + + const context = builder.context; + + context.backdrop = getIBLVolumeRefraction( + n, + v, + roughness, + diffuseColor, + specularColor, + specularF90, // specularF90 + position, // positionWorld + modelWorldMatrix, // modelMatrix + cameraViewMatrix, // viewMatrix + cameraProjectionMatrix, // projMatrix + ior, + thickness, + attenuationColor, + attenuationDistance, + this.dispersion ? dispersion : null + ); + + context.backdropAlpha = transmission; + + diffuseColor.a.mulAssign( mix( 1, context.backdrop.a, transmission ) ); + + } + + super.start( builder ); + + } + + // Fdez-Agüera's "Multiple-Scattering Microfacet Model for Real-Time Image Based Lighting" + // Approximates multi-scattering in order to preserve energy. + // http://www.jcgt.org/published/0008/01/03/ + + computeMultiscattering( singleScatter, multiScatter, specularF90 ) { + + const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV + + const fab = DFGApprox( { roughness, dotNV } ); + + const Fr = this.iridescenceF0 ? iridescence.mix( specularColor, this.iridescenceF0 ) : specularColor; + + const FssEss = Fr.mul( fab.x ).add( specularF90.mul( fab.y ) ); + + const Ess = fab.x.add( fab.y ); + const Ems = Ess.oneMinus(); + + const Favg = specularColor.add( specularColor.oneMinus().mul( 0.047619 ) ); // 1/21 + const Fms = FssEss.mul( Favg ).div( Ems.mul( Favg ).oneMinus() ); + + singleScatter.addAssign( FssEss ); + multiScatter.addAssign( Fms.mul( Ems ) ); + + } + + /** + * Implements the direct light. + * + * @param {Object} lightData - The light data. + * @param {NodeBuilder} builder - The current node builder. + */ + direct( { lightDirection, lightColor, reflectedLight } ) { + + const dotNL = transformedNormalView.dot( lightDirection ).clamp(); + const irradiance = dotNL.mul( lightColor ); + + if ( this.sheen === true ) { + + this.sheenSpecularDirect.addAssign( irradiance.mul( BRDF_Sheen( { lightDirection } ) ) ); + + } + + if ( this.clearcoat === true ) { + + const dotNLcc = transformedClearcoatNormalView.dot( lightDirection ).clamp(); + const ccIrradiance = dotNLcc.mul( lightColor ); + + this.clearcoatSpecularDirect.addAssign( ccIrradiance.mul( BRDF_GGX( { lightDirection, f0: clearcoatF0, f90: clearcoatF90, roughness: clearcoatRoughness, normalView: transformedClearcoatNormalView } ) ) ); + + } + + reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) ); + + reflectedLight.directSpecular.addAssign( irradiance.mul( BRDF_GGX( { lightDirection, f0: specularColor, f90: 1, roughness, iridescence: this.iridescence, f: this.iridescenceFresnel, USE_IRIDESCENCE: this.iridescence, USE_ANISOTROPY: this.anisotropy } ) ) ); + + } + + /** + * This method is intended for implementing the direct light term for + * rect area light nodes. + * + * @param {Object} input - The input data. + * @param {NodeBuilder} builder - The current node builder. + */ + directRectArea( { lightColor, lightPosition, halfWidth, halfHeight, reflectedLight, ltc_1, ltc_2 } ) { + + const p0 = lightPosition.add( halfWidth ).sub( halfHeight ); // counterclockwise; light shines in local neg z direction + const p1 = lightPosition.sub( halfWidth ).sub( halfHeight ); + const p2 = lightPosition.sub( halfWidth ).add( halfHeight ); + const p3 = lightPosition.add( halfWidth ).add( halfHeight ); + + const N = transformedNormalView; + const V = positionViewDirection; + const P = positionView.toVar(); + + const uv = LTC_Uv( { N, V, roughness } ); + + const t1 = ltc_1.sample( uv ).toVar(); + const t2 = ltc_2.sample( uv ).toVar(); + + const mInv = mat3( + vec3( t1.x, 0, t1.y ), + vec3( 0, 1, 0 ), + vec3( t1.z, 0, t1.w ) + ).toVar(); + + // LTC Fresnel Approximation by Stephen Hill + // http://blog.selfshadow.com/publications/s2016-advances/s2016_ltc_fresnel.pdf + const fresnel = specularColor.mul( t2.x ).add( specularColor.oneMinus().mul( t2.y ) ).toVar(); + + reflectedLight.directSpecular.addAssign( lightColor.mul( fresnel ).mul( LTC_Evaluate( { N, V, P, mInv, p0, p1, p2, p3 } ) ) ); + + reflectedLight.directDiffuse.addAssign( lightColor.mul( diffuseColor ).mul( LTC_Evaluate( { N, V, P, mInv: mat3( 1, 0, 0, 0, 1, 0, 0, 0, 1 ), p0, p1, p2, p3 } ) ) ); + + } + + /** + * Implements the indirect lighting. + * + * @param {NodeBuilder} builder - The current node builder. + */ + indirect( builder ) { + + this.indirectDiffuse( builder ); + this.indirectSpecular( builder ); + this.ambientOcclusion( builder ); + + } + + /** + * Implements the indirect diffuse term. + * + * @param {NodeBuilder} builder - The current node builder. + */ + indirectDiffuse( builder ) { + + const { irradiance, reflectedLight } = builder.context; + + reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) ); + + } + + /** + * Implements the indirect specular term. + * + * @param {NodeBuilder} builder - The current node builder. + */ + indirectSpecular( builder ) { + + const { radiance, iblIrradiance, reflectedLight } = builder.context; + + if ( this.sheen === true ) { + + this.sheenSpecularIndirect.addAssign( iblIrradiance.mul( + sheen, + IBLSheenBRDF( { + normal: transformedNormalView, + viewDir: positionViewDirection, + roughness: sheenRoughness + } ) + ) ); + + } + + if ( this.clearcoat === true ) { + + const dotNVcc = transformedClearcoatNormalView.dot( positionViewDirection ).clamp(); + + const clearcoatEnv = EnvironmentBRDF( { + dotNV: dotNVcc, + specularColor: clearcoatF0, + specularF90: clearcoatF90, + roughness: clearcoatRoughness + } ); + + this.clearcoatSpecularIndirect.addAssign( this.clearcoatRadiance.mul( clearcoatEnv ) ); + + } + + // Both indirect specular and indirect diffuse light accumulate here + + const singleScattering = vec3().toVar( 'singleScattering' ); + const multiScattering = vec3().toVar( 'multiScattering' ); + const cosineWeightedIrradiance = iblIrradiance.mul( 1 / Math.PI ); + + this.computeMultiscattering( singleScattering, multiScattering, specularF90 ); + + const totalScattering = singleScattering.add( multiScattering ); + + const diffuse = diffuseColor.mul( totalScattering.r.max( totalScattering.g ).max( totalScattering.b ).oneMinus() ); + + reflectedLight.indirectSpecular.addAssign( radiance.mul( singleScattering ) ); + reflectedLight.indirectSpecular.addAssign( multiScattering.mul( cosineWeightedIrradiance ) ); + + reflectedLight.indirectDiffuse.addAssign( diffuse.mul( cosineWeightedIrradiance ) ); + + } + + /** + * Implements the ambient occlusion term. + * + * @param {NodeBuilder} builder - The current node builder. + */ + ambientOcclusion( builder ) { + + const { ambientOcclusion, reflectedLight } = builder.context; + + const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV + + const aoNV = dotNV.add( ambientOcclusion ); + const aoExp = roughness.mul( - 16 ).oneMinus().negate().exp2(); + + const aoNode = ambientOcclusion.sub( aoNV.pow( aoExp ).oneMinus() ).clamp(); + + if ( this.clearcoat === true ) { + + this.clearcoatSpecularIndirect.mulAssign( ambientOcclusion ); + + } + + if ( this.sheen === true ) { + + this.sheenSpecularIndirect.mulAssign( ambientOcclusion ); + + } + + reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion ); + reflectedLight.indirectSpecular.mulAssign( aoNode ); + + } + + /** + * Used for final lighting accumulations depending on the requested features. + * + * @param {NodeBuilder} builder - The current node builder. + */ + finish( { context } ) { + + const { outgoingLight } = context; + + if ( this.clearcoat === true ) { + + const dotNVcc = transformedClearcoatNormalView.dot( positionViewDirection ).clamp(); + + const Fcc = F_Schlick( { + dotVH: dotNVcc, + f0: clearcoatF0, + f90: clearcoatF90 + } ); + + const clearcoatLight = outgoingLight.mul( clearcoat.mul( Fcc ).oneMinus() ).add( this.clearcoatSpecularDirect.add( this.clearcoatSpecularIndirect ).mul( clearcoat ) ); + + outgoingLight.assign( clearcoatLight ); + + } + + if ( this.sheen === true ) { + + const sheenEnergyComp = sheen.r.max( sheen.g ).max( sheen.b ).mul( 0.157 ).oneMinus(); + const sheenLight = outgoingLight.mul( sheenEnergyComp ).add( this.sheenSpecularDirect, this.sheenSpecularIndirect ); + + outgoingLight.assign( sheenLight ); + + } + + } + +} + +// These defines must match with PMREMGenerator + +const cubeUV_r0 = /*@__PURE__*/ float( 1.0 ); +const cubeUV_m0 = /*@__PURE__*/ float( - 2 ); +const cubeUV_r1 = /*@__PURE__*/ float( 0.8 ); +const cubeUV_m1 = /*@__PURE__*/ float( - 1 ); +const cubeUV_r4 = /*@__PURE__*/ float( 0.4 ); +const cubeUV_m4 = /*@__PURE__*/ float( 2.0 ); +const cubeUV_r5 = /*@__PURE__*/ float( 0.305 ); +const cubeUV_m5 = /*@__PURE__*/ float( 3.0 ); +const cubeUV_r6 = /*@__PURE__*/ float( 0.21 ); +const cubeUV_m6 = /*@__PURE__*/ float( 4.0 ); + +const cubeUV_minMipLevel = /*@__PURE__*/ float( 4.0 ); +const cubeUV_minTileSize = /*@__PURE__*/ float( 16.0 ); + +// These shader functions convert between the UV coordinates of a single face of +// a cubemap, the 0-5 integer index of a cube face, and the direction vector for +// sampling a textureCube (not generally normalized ). + +const getFace = /*@__PURE__*/ Fn( ( [ direction ] ) => { + + const absDirection = vec3( abs( direction ) ).toVar(); + const face = float( - 1 ).toVar(); + + If( absDirection.x.greaterThan( absDirection.z ), () => { + + If( absDirection.x.greaterThan( absDirection.y ), () => { + + face.assign( select( direction.x.greaterThan( 0.0 ), 0.0, 3.0 ) ); + + } ).Else( () => { + + face.assign( select( direction.y.greaterThan( 0.0 ), 1.0, 4.0 ) ); + + } ); + + } ).Else( () => { + + If( absDirection.z.greaterThan( absDirection.y ), () => { + + face.assign( select( direction.z.greaterThan( 0.0 ), 2.0, 5.0 ) ); + + } ).Else( () => { + + face.assign( select( direction.y.greaterThan( 0.0 ), 1.0, 4.0 ) ); + + } ); + + } ); + + return face; + +} ).setLayout( { + name: 'getFace', + type: 'float', + inputs: [ + { name: 'direction', type: 'vec3' } + ] +} ); + +// RH coordinate system; PMREM face-indexing convention +const getUV = /*@__PURE__*/ Fn( ( [ direction, face ] ) => { + + const uv = vec2().toVar(); + + If( face.equal( 0.0 ), () => { + + uv.assign( vec2( direction.z, direction.y ).div( abs( direction.x ) ) ); // pos x + + } ).ElseIf( face.equal( 1.0 ), () => { + + uv.assign( vec2( direction.x.negate(), direction.z.negate() ).div( abs( direction.y ) ) ); // pos y + + } ).ElseIf( face.equal( 2.0 ), () => { + + uv.assign( vec2( direction.x.negate(), direction.y ).div( abs( direction.z ) ) ); // pos z + + } ).ElseIf( face.equal( 3.0 ), () => { + + uv.assign( vec2( direction.z.negate(), direction.y ).div( abs( direction.x ) ) ); // neg x + + } ).ElseIf( face.equal( 4.0 ), () => { + + uv.assign( vec2( direction.x.negate(), direction.z ).div( abs( direction.y ) ) ); // neg y + + } ).Else( () => { + + uv.assign( vec2( direction.x, direction.y ).div( abs( direction.z ) ) ); // neg z + + } ); + + return mul( 0.5, uv.add( 1.0 ) ); + +} ).setLayout( { + name: 'getUV', + type: 'vec2', + inputs: [ + { name: 'direction', type: 'vec3' }, + { name: 'face', type: 'float' } + ] +} ); + +const roughnessToMip = /*@__PURE__*/ Fn( ( [ roughness ] ) => { + + const mip = float( 0.0 ).toVar(); + + If( roughness.greaterThanEqual( cubeUV_r1 ), () => { + + mip.assign( cubeUV_r0.sub( roughness ).mul( cubeUV_m1.sub( cubeUV_m0 ) ).div( cubeUV_r0.sub( cubeUV_r1 ) ).add( cubeUV_m0 ) ); + + } ).ElseIf( roughness.greaterThanEqual( cubeUV_r4 ), () => { + + mip.assign( cubeUV_r1.sub( roughness ).mul( cubeUV_m4.sub( cubeUV_m1 ) ).div( cubeUV_r1.sub( cubeUV_r4 ) ).add( cubeUV_m1 ) ); + + } ).ElseIf( roughness.greaterThanEqual( cubeUV_r5 ), () => { + + mip.assign( cubeUV_r4.sub( roughness ).mul( cubeUV_m5.sub( cubeUV_m4 ) ).div( cubeUV_r4.sub( cubeUV_r5 ) ).add( cubeUV_m4 ) ); + + } ).ElseIf( roughness.greaterThanEqual( cubeUV_r6 ), () => { + + mip.assign( cubeUV_r5.sub( roughness ).mul( cubeUV_m6.sub( cubeUV_m5 ) ).div( cubeUV_r5.sub( cubeUV_r6 ) ).add( cubeUV_m5 ) ); + + } ).Else( () => { + + mip.assign( float( - 2 ).mul( log2( mul( 1.16, roughness ) ) ) ); // 1.16 = 1.79^0.25 + + } ); + + return mip; + +} ).setLayout( { + name: 'roughnessToMip', + type: 'float', + inputs: [ + { name: 'roughness', type: 'float' } + ] +} ); + +// RH coordinate system; PMREM face-indexing convention +const getDirection = /*@__PURE__*/ Fn( ( [ uv_immutable, face ] ) => { + + const uv = uv_immutable.toVar(); + uv.assign( mul( 2.0, uv ).sub( 1.0 ) ); + const direction = vec3( uv, 1.0 ).toVar(); + + If( face.equal( 0.0 ), () => { + + direction.assign( direction.zyx ); // ( 1, v, u ) pos x + + } ).ElseIf( face.equal( 1.0 ), () => { + + direction.assign( direction.xzy ); + direction.xz.mulAssign( - 1 ); // ( -u, 1, -v ) pos y + + } ).ElseIf( face.equal( 2.0 ), () => { + + direction.x.mulAssign( - 1 ); // ( -u, v, 1 ) pos z + + } ).ElseIf( face.equal( 3.0 ), () => { + + direction.assign( direction.zyx ); + direction.xz.mulAssign( - 1 ); // ( -1, v, -u ) neg x + + } ).ElseIf( face.equal( 4.0 ), () => { + + direction.assign( direction.xzy ); + direction.xy.mulAssign( - 1 ); // ( -u, -1, v ) neg y + + } ).ElseIf( face.equal( 5.0 ), () => { + + direction.z.mulAssign( - 1 ); // ( u, v, -1 ) neg zS + + } ); + + return direction; + +} ).setLayout( { + name: 'getDirection', + type: 'vec3', + inputs: [ + { name: 'uv', type: 'vec2' }, + { name: 'face', type: 'float' } + ] +} ); + +// + +const textureCubeUV = /*@__PURE__*/ Fn( ( [ envMap, sampleDir_immutable, roughness_immutable, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ] ) => { + + const roughness = float( roughness_immutable ); + const sampleDir = vec3( sampleDir_immutable ); + + const mip = clamp( roughnessToMip( roughness ), cubeUV_m0, CUBEUV_MAX_MIP ); + const mipF = fract( mip ); + const mipInt = floor( mip ); + const color0 = vec3( bilinearCubeUV( envMap, sampleDir, mipInt, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ) ).toVar(); + + If( mipF.notEqual( 0.0 ), () => { + + const color1 = vec3( bilinearCubeUV( envMap, sampleDir, mipInt.add( 1.0 ), CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ) ).toVar(); + + color0.assign( mix( color0, color1, mipF ) ); + + } ); + + return color0; + +} ); + +const bilinearCubeUV = /*@__PURE__*/ Fn( ( [ envMap, direction_immutable, mipInt_immutable, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ] ) => { + + const mipInt = float( mipInt_immutable ).toVar(); + const direction = vec3( direction_immutable ); + const face = float( getFace( direction ) ).toVar(); + const filterInt = float( max$1( cubeUV_minMipLevel.sub( mipInt ), 0.0 ) ).toVar(); + mipInt.assign( max$1( mipInt, cubeUV_minMipLevel ) ); + const faceSize = float( exp2( mipInt ) ).toVar(); + const uv = vec2( getUV( direction, face ).mul( faceSize.sub( 2.0 ) ).add( 1.0 ) ).toVar(); + + If( face.greaterThan( 2.0 ), () => { + + uv.y.addAssign( faceSize ); + face.subAssign( 3.0 ); + + } ); + + uv.x.addAssign( face.mul( faceSize ) ); + uv.x.addAssign( filterInt.mul( mul( 3.0, cubeUV_minTileSize ) ) ); + uv.y.addAssign( mul( 4.0, exp2( CUBEUV_MAX_MIP ).sub( faceSize ) ) ); + uv.x.mulAssign( CUBEUV_TEXEL_WIDTH ); + uv.y.mulAssign( CUBEUV_TEXEL_HEIGHT ); + + return envMap.sample( uv ).grad( vec2(), vec2() ); // disable anisotropic filtering + +} ); + +const getSample = /*@__PURE__*/ Fn( ( { envMap, mipInt, outputDirection, theta, axis, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) => { + + const cosTheta = cos( theta ); + + // Rodrigues' axis-angle rotation + const sampleDirection = outputDirection.mul( cosTheta ) + .add( axis.cross( outputDirection ).mul( sin( theta ) ) ) + .add( axis.mul( axis.dot( outputDirection ).mul( cosTheta.oneMinus() ) ) ); + + return bilinearCubeUV( envMap, sampleDirection, mipInt, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ); + +} ); + +const blur = /*@__PURE__*/ Fn( ( { n, latitudinal, poleAxis, outputDirection, weights, samples, dTheta, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) => { + + const axis = vec3( select( latitudinal, poleAxis, cross( poleAxis, outputDirection ) ) ).toVar(); + + If( axis.equal( vec3( 0.0 ) ), () => { + + axis.assign( vec3( outputDirection.z, 0.0, outputDirection.x.negate() ) ); + + } ); + + axis.assign( normalize( axis ) ); + + const gl_FragColor = vec3().toVar(); + gl_FragColor.addAssign( weights.element( 0 ).mul( getSample( { theta: 0.0, axis, outputDirection, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) ) ); + + Loop( { start: int( 1 ), end: n }, ( { i } ) => { + + If( i.greaterThanEqual( samples ), () => { + + Break(); + + } ); + + const theta = float( dTheta.mul( float( i ) ) ).toVar(); + gl_FragColor.addAssign( weights.element( i ).mul( getSample( { theta: theta.mul( - 1 ), axis, outputDirection, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) ) ); + gl_FragColor.addAssign( weights.element( i ).mul( getSample( { theta, axis, outputDirection, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) ) ); + + } ); + + return vec4( gl_FragColor, 1 ); + +} ); + +const LOD_MIN = 4; + +// The standard deviations (radians) associated with the extra mips. These are +// chosen to approximate a Trowbridge-Reitz distribution function times the +// geometric shadowing function. These sigma values squared must match the +// variance #defines in cube_uv_reflection_fragment.glsl.js. +const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ]; + +// The maximum length of the blur for loop. Smaller sigmas will use fewer +// samples and exit early, but not recompile the shader. +const MAX_SAMPLES = 20; + +const _flatCamera = /*@__PURE__*/ new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 ); +const _cubeCamera = /*@__PURE__*/ new PerspectiveCamera( 90, 1 ); +const _clearColor$2 = /*@__PURE__*/ new Color(); +let _oldTarget = null; +let _oldActiveCubeFace = 0; +let _oldActiveMipmapLevel = 0; + +// Golden Ratio +const PHI = ( 1 + Math.sqrt( 5 ) ) / 2; +const INV_PHI = 1 / PHI; + +// Vertices of a dodecahedron (except the opposites, which represent the +// same axis), used as axis directions evenly spread on a sphere. +const _axisDirections = [ + /*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ), + /*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ), + /*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ), + /*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ), + /*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ), + /*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ), + /*@__PURE__*/ new Vector3( - 1, 1, - 1 ), + /*@__PURE__*/ new Vector3( 1, 1, - 1 ), + /*@__PURE__*/ new Vector3( - 1, 1, 1 ), + /*@__PURE__*/ new Vector3( 1, 1, 1 ) +]; + +const _origin = /*@__PURE__*/ new Vector3(); + +// maps blur materials to their uniforms dictionary + +const _uniformsMap = new WeakMap(); + +// WebGPU Face indices +const _faceLib = [ + 3, 1, 5, + 0, 4, 2 +]; + +const _direction = /*@__PURE__*/ getDirection( uv(), attribute( 'faceIndex' ) ).normalize(); +const _outputDirection = /*@__PURE__*/ vec3( _direction.x, _direction.y, _direction.z ); + +/** + * This class generates a Prefiltered, Mipmapped Radiance Environment Map + * (PMREM) from a cubeMap environment texture. This allows different levels of + * blur to be quickly accessed based on material roughness. It is packed into a + * special CubeUV format that allows us to perform custom interpolation so that + * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap + * chain, it only goes down to the LOD_MIN level (above), and then creates extra + * even more filtered 'mips' at the same LOD_MIN resolution, associated with + * higher roughness levels. In this way we maintain resolution to smoothly + * interpolate diffuse lighting while limiting sampling computation. + * + * Paper: Fast, Accurate Image-Based Lighting: + * {@link https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view} +*/ +class PMREMGenerator { + + /** + * Constructs a new PMREM generator. + * + * @param {Renderer} renderer - The renderer. + */ + constructor( renderer ) { + + this._renderer = renderer; + this._pingPongRenderTarget = null; + + this._lodMax = 0; + this._cubeSize = 0; + this._lodPlanes = []; + this._sizeLods = []; + this._sigmas = []; + this._lodMeshes = []; + + this._blurMaterial = null; + this._cubemapMaterial = null; + this._equirectMaterial = null; + this._backgroundBox = null; + + } + + get _hasInitialized() { + + return this._renderer.hasInitialized(); + + } + + /** + * Generates a PMREM from a supplied Scene, which can be faster than using an + * image if networking bandwidth is low. Optional sigma specifies a blur radius + * in radians to be applied to the scene before PMREM generation. Optional near + * and far planes ensure the scene is rendered in its entirety. + * + * @param {Scene} scene - The scene to be captured. + * @param {number} [sigma=0] - The blur radius in radians. + * @param {number} [near=0.1] - The near plane distance. + * @param {number} [far=100] - The far plane distance. + * @param {Object} [options={}] - The configuration options. + * @param {number} [options.size=256] - The texture size of the PMREM. + * @param {Vector3} [options.renderTarget=origin] - The position of the internal cube camera that renders the scene. + * @param {?RenderTarget} [options.renderTarget=null] - The render target to use. + * @return {RenderTarget} The resulting PMREM. + * @see {@link PMREMGenerator#fromSceneAsync} + */ + fromScene( scene, sigma = 0, near = 0.1, far = 100, options = {} ) { + + const { + size = 256, + position = _origin, + renderTarget = null, + } = options; + + this._setSize( size ); + + if ( this._hasInitialized === false ) { + + console.warn( 'THREE.PMREMGenerator: .fromScene() called before the backend is initialized. Try using .fromSceneAsync() instead.' ); + + const cubeUVRenderTarget = renderTarget || this._allocateTarget(); + + options.renderTarget = cubeUVRenderTarget; + + this.fromSceneAsync( scene, sigma, near, far, options ); + + return cubeUVRenderTarget; + + } + + _oldTarget = this._renderer.getRenderTarget(); + _oldActiveCubeFace = this._renderer.getActiveCubeFace(); + _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); + + const cubeUVRenderTarget = renderTarget || this._allocateTarget(); + cubeUVRenderTarget.depthBuffer = true; + + this._init( cubeUVRenderTarget ); + + this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget, position ); + + if ( sigma > 0 ) { + + this._blur( cubeUVRenderTarget, 0, 0, sigma ); + + } + + this._applyPMREM( cubeUVRenderTarget ); + + this._cleanup( cubeUVRenderTarget ); + + return cubeUVRenderTarget; + + } + + /** + * Generates a PMREM from a supplied Scene, which can be faster than using an + * image if networking bandwidth is low. Optional sigma specifies a blur radius + * in radians to be applied to the scene before PMREM generation. Optional near + * and far planes ensure the scene is rendered in its entirety (the cubeCamera + * is placed at the origin). + * + * @param {Scene} scene - The scene to be captured. + * @param {number} [sigma=0] - The blur radius in radians. + * @param {number} [near=0.1] - The near plane distance. + * @param {number} [far=100] - The far plane distance. + * @param {Object} [options={}] - The configuration options. + * @param {number} [options.size=256] - The texture size of the PMREM. + * @param {Vector3} [options.position=origin] - The position of the internal cube camera that renders the scene. + * @param {?RenderTarget} [options.renderTarget=null] - The render target to use. + * @return {Promise} A Promise that resolve with the PMREM when the generation has been finished. + * @see {@link PMREMGenerator#fromScene} + */ + async fromSceneAsync( scene, sigma = 0, near = 0.1, far = 100, options = {} ) { + + if ( this._hasInitialized === false ) await this._renderer.init(); + + return this.fromScene( scene, sigma, near, far, options ); + + } + + /** + * Generates a PMREM from an equirectangular texture, which can be either LDR + * or HDR. The ideal input image size is 1k (1024 x 512), + * as this matches best with the 256 x 256 cubemap output. + * + * @param {Texture} equirectangular - The equirectangular texture to be converted. + * @param {?RenderTarget} [renderTarget=null] - The render target to use. + * @return {RenderTarget} The resulting PMREM. + * @see {@link PMREMGenerator#fromEquirectangularAsync} + */ + fromEquirectangular( equirectangular, renderTarget = null ) { + + if ( this._hasInitialized === false ) { + + console.warn( 'THREE.PMREMGenerator: .fromEquirectangular() called before the backend is initialized. Try using .fromEquirectangularAsync() instead.' ); + + this._setSizeFromTexture( equirectangular ); + + const cubeUVRenderTarget = renderTarget || this._allocateTarget(); + + this.fromEquirectangularAsync( equirectangular, cubeUVRenderTarget ); + + return cubeUVRenderTarget; + + } + + return this._fromTexture( equirectangular, renderTarget ); + + } + + /** + * Generates a PMREM from an equirectangular texture, which can be either LDR + * or HDR. The ideal input image size is 1k (1024 x 512), + * as this matches best with the 256 x 256 cubemap output. + * + * @param {Texture} equirectangular - The equirectangular texture to be converted. + * @param {?RenderTarget} [renderTarget=null] - The render target to use. + * @return {Promise} The resulting PMREM. + * @see {@link PMREMGenerator#fromEquirectangular} + */ + async fromEquirectangularAsync( equirectangular, renderTarget = null ) { + + if ( this._hasInitialized === false ) await this._renderer.init(); + + return this._fromTexture( equirectangular, renderTarget ); + + } + + /** + * Generates a PMREM from an cubemap texture, which can be either LDR + * or HDR. The ideal input cube size is 256 x 256, + * as this matches best with the 256 x 256 cubemap output. + * + * @param {Texture} cubemap - The cubemap texture to be converted. + * @param {?RenderTarget} [renderTarget=null] - The render target to use. + * @return {RenderTarget} The resulting PMREM. + * @see {@link PMREMGenerator#fromCubemapAsync} + */ + fromCubemap( cubemap, renderTarget = null ) { + + if ( this._hasInitialized === false ) { + + console.warn( 'THREE.PMREMGenerator: .fromCubemap() called before the backend is initialized. Try using .fromCubemapAsync() instead.' ); + + this._setSizeFromTexture( cubemap ); + + const cubeUVRenderTarget = renderTarget || this._allocateTarget(); + + this.fromCubemapAsync( cubemap, renderTarget ); + + return cubeUVRenderTarget; + + } + + return this._fromTexture( cubemap, renderTarget ); + + } + + /** + * Generates a PMREM from an cubemap texture, which can be either LDR + * or HDR. The ideal input cube size is 256 x 256, + * with the 256 x 256 cubemap output. + * + * @param {Texture} cubemap - The cubemap texture to be converted. + * @param {?RenderTarget} [renderTarget=null] - The render target to use. + * @return {Promise} The resulting PMREM. + * @see {@link PMREMGenerator#fromCubemap} + */ + async fromCubemapAsync( cubemap, renderTarget = null ) { + + if ( this._hasInitialized === false ) await this._renderer.init(); + + return this._fromTexture( cubemap, renderTarget ); + + } + + /** + * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during + * your texture's network fetch for increased concurrency. + * + * @returns {Promise} + */ + async compileCubemapShader() { + + if ( this._cubemapMaterial === null ) { + + this._cubemapMaterial = _getCubemapMaterial(); + await this._compileMaterial( this._cubemapMaterial ); + + } + + } + + /** + * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during + * your texture's network fetch for increased concurrency. + * + * @returns {Promise} + */ + async compileEquirectangularShader() { + + if ( this._equirectMaterial === null ) { + + this._equirectMaterial = _getEquirectMaterial(); + await this._compileMaterial( this._equirectMaterial ); + + } + + } + + /** + * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, + * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on + * one of them will cause any others to also become unusable. + */ + dispose() { + + this._dispose(); + + if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose(); + if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose(); + if ( this._backgroundBox !== null ) { + + this._backgroundBox.geometry.dispose(); + this._backgroundBox.material.dispose(); + + } + + } + + // private interface + + _setSizeFromTexture( texture ) { + + if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) { + + this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) ); + + } else { // Equirectangular + + this._setSize( texture.image.width / 4 ); + + } + + } + + _setSize( cubeSize ) { + + this._lodMax = Math.floor( Math.log2( cubeSize ) ); + this._cubeSize = Math.pow( 2, this._lodMax ); + + } + + _dispose() { + + if ( this._blurMaterial !== null ) this._blurMaterial.dispose(); + + if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose(); + + for ( let i = 0; i < this._lodPlanes.length; i ++ ) { + + this._lodPlanes[ i ].dispose(); + + } + + } + + _cleanup( outputTarget ) { + + this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel ); + outputTarget.scissorTest = false; + _setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height ); + + } + + _fromTexture( texture, renderTarget ) { + + this._setSizeFromTexture( texture ); + + _oldTarget = this._renderer.getRenderTarget(); + _oldActiveCubeFace = this._renderer.getActiveCubeFace(); + _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); + + const cubeUVRenderTarget = renderTarget || this._allocateTarget(); + this._init( cubeUVRenderTarget ); + this._textureToCubeUV( texture, cubeUVRenderTarget ); + this._applyPMREM( cubeUVRenderTarget ); + this._cleanup( cubeUVRenderTarget ); + + return cubeUVRenderTarget; + + } + + _allocateTarget() { + + const width = 3 * Math.max( this._cubeSize, 16 * 7 ); + const height = 4 * this._cubeSize; + + const cubeUVRenderTarget = _createRenderTarget( width, height ); + + return cubeUVRenderTarget; + + } + + _init( renderTarget ) { + + if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== renderTarget.width || this._pingPongRenderTarget.height !== renderTarget.height ) { + + if ( this._pingPongRenderTarget !== null ) { + + this._dispose(); + + } + + this._pingPongRenderTarget = _createRenderTarget( renderTarget.width, renderTarget.height ); + + const { _lodMax } = this; + ( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas, lodMeshes: this._lodMeshes } = _createPlanes( _lodMax ) ); + + this._blurMaterial = _getBlurShader( _lodMax, renderTarget.width, renderTarget.height ); + + } + + } + + async _compileMaterial( material ) { + + const tmpMesh = new Mesh( this._lodPlanes[ 0 ], material ); + await this._renderer.compile( tmpMesh, _flatCamera ); + + } + + _sceneToCubeUV( scene, near, far, cubeUVRenderTarget, position ) { + + const cubeCamera = _cubeCamera; + cubeCamera.near = near; + cubeCamera.far = far; + + // px, py, pz, nx, ny, nz + const upSign = [ 1, 1, 1, 1, - 1, 1 ]; + const forwardSign = [ 1, - 1, 1, - 1, 1, - 1 ]; + + const renderer = this._renderer; + + const originalAutoClear = renderer.autoClear; + + renderer.getClearColor( _clearColor$2 ); + + renderer.autoClear = false; + + let backgroundBox = this._backgroundBox; + + if ( backgroundBox === null ) { + + const backgroundMaterial = new MeshBasicMaterial( { + name: 'PMREM.Background', + side: BackSide, + depthWrite: false, + depthTest: false + } ); + + backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial ); + + } + + let useSolidColor = false; + const background = scene.background; + + if ( background ) { + + if ( background.isColor ) { + + backgroundBox.material.color.copy( background ); + scene.background = null; + useSolidColor = true; + + } + + } else { + + backgroundBox.material.color.copy( _clearColor$2 ); + useSolidColor = true; + + } + + renderer.setRenderTarget( cubeUVRenderTarget ); + + renderer.clear(); + + if ( useSolidColor ) { + + renderer.render( backgroundBox, cubeCamera ); + + } + + for ( let i = 0; i < 6; i ++ ) { + + const col = i % 3; + + if ( col === 0 ) { + + cubeCamera.up.set( 0, upSign[ i ], 0 ); + cubeCamera.position.set( position.x, position.y, position.z ); + cubeCamera.lookAt( position.x + forwardSign[ i ], position.y, position.z ); + + } else if ( col === 1 ) { + + cubeCamera.up.set( 0, 0, upSign[ i ] ); + cubeCamera.position.set( position.x, position.y, position.z ); + cubeCamera.lookAt( position.x, position.y + forwardSign[ i ], position.z ); + + + } else { + + cubeCamera.up.set( 0, upSign[ i ], 0 ); + cubeCamera.position.set( position.x, position.y, position.z ); + cubeCamera.lookAt( position.x, position.y, position.z + forwardSign[ i ] ); + + + } + + const size = this._cubeSize; + + _setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size ); + + renderer.render( scene, cubeCamera ); + + } + + renderer.autoClear = originalAutoClear; + scene.background = background; + + } + + _textureToCubeUV( texture, cubeUVRenderTarget ) { + + const renderer = this._renderer; + + const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ); + + if ( isCubeTexture ) { + + if ( this._cubemapMaterial === null ) { + + this._cubemapMaterial = _getCubemapMaterial( texture ); + + } + + } else { + + if ( this._equirectMaterial === null ) { + + this._equirectMaterial = _getEquirectMaterial( texture ); + + } + + } + + const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial; + material.fragmentNode.value = texture; + + const mesh = this._lodMeshes[ 0 ]; + mesh.material = material; + + const size = this._cubeSize; + + _setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size ); + + renderer.setRenderTarget( cubeUVRenderTarget ); + renderer.render( mesh, _flatCamera ); + + } + + _applyPMREM( cubeUVRenderTarget ) { + + const renderer = this._renderer; + const autoClear = renderer.autoClear; + renderer.autoClear = false; + const n = this._lodPlanes.length; + + for ( let i = 1; i < n; i ++ ) { + + const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] ); + + const poleAxis = _axisDirections[ ( n - i - 1 ) % _axisDirections.length ]; + + this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis ); + + } + + renderer.autoClear = autoClear; + + } + + /** + * This is a two-pass Gaussian blur for a cubemap. Normally this is done + * vertically and horizontally, but this breaks down on a cube. Here we apply + * the blur latitudinally (around the poles), and then longitudinally (towards + * the poles) to approximate the orthogonally-separable blur. It is least + * accurate at the poles, but still does a decent job. + * + * @private + * @param {RenderTarget} cubeUVRenderTarget - The cubemap render target. + * @param {number} lodIn - The input level-of-detail. + * @param {number} lodOut - The output level-of-detail. + * @param {number} sigma - The blur radius in radians. + * @param {Vector3} [poleAxis] - The pole axis. + */ + _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) { + + const pingPongRenderTarget = this._pingPongRenderTarget; + + this._halfBlur( + cubeUVRenderTarget, + pingPongRenderTarget, + lodIn, + lodOut, + sigma, + 'latitudinal', + poleAxis ); + + this._halfBlur( + pingPongRenderTarget, + cubeUVRenderTarget, + lodOut, + lodOut, + sigma, + 'longitudinal', + poleAxis ); + + } + + _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) { + + const renderer = this._renderer; + const blurMaterial = this._blurMaterial; + + if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) { + + console.error( 'blur direction must be either latitudinal or longitudinal!' ); + + } + + // Number of standard deviations at which to cut off the discrete approximation. + const STANDARD_DEVIATIONS = 3; + + const blurMesh = this._lodMeshes[ lodOut ]; + blurMesh.material = blurMaterial; + + const blurUniforms = _uniformsMap.get( blurMaterial ); + + const pixels = this._sizeLods[ lodIn ] - 1; + const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 ); + const sigmaPixels = sigmaRadians / radiansPerPixel; + const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES; + + if ( samples > MAX_SAMPLES ) { + + console.warn( `sigmaRadians, ${ + sigmaRadians}, is too large and will clip, as it requested ${ + samples} samples when the maximum is set to ${MAX_SAMPLES}` ); + + } + + const weights = []; + let sum = 0; + + for ( let i = 0; i < MAX_SAMPLES; ++ i ) { + + const x = i / sigmaPixels; + const weight = Math.exp( - x * x / 2 ); + weights.push( weight ); + + if ( i === 0 ) { + + sum += weight; + + } else if ( i < samples ) { + + sum += 2 * weight; + + } + + } + + for ( let i = 0; i < weights.length; i ++ ) { + + weights[ i ] = weights[ i ] / sum; + + } + + targetIn.texture.frame = ( targetIn.texture.frame || 0 ) + 1; + + blurUniforms.envMap.value = targetIn.texture; + blurUniforms.samples.value = samples; + blurUniforms.weights.array = weights; + blurUniforms.latitudinal.value = direction === 'latitudinal' ? 1 : 0; + + if ( poleAxis ) { + + blurUniforms.poleAxis.value = poleAxis; + + } + + const { _lodMax } = this; + blurUniforms.dTheta.value = radiansPerPixel; + blurUniforms.mipInt.value = _lodMax - lodIn; + + const outputSize = this._sizeLods[ lodOut ]; + const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 ); + const y = 4 * ( this._cubeSize - outputSize ); + + _setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize ); + renderer.setRenderTarget( targetOut ); + renderer.render( blurMesh, _flatCamera ); + + } + +} + +function _createPlanes( lodMax ) { + + const lodPlanes = []; + const sizeLods = []; + const sigmas = []; + const lodMeshes = []; + + let lod = lodMax; + + const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; + + for ( let i = 0; i < totalLods; i ++ ) { + + const sizeLod = Math.pow( 2, lod ); + sizeLods.push( sizeLod ); + let sigma = 1.0 / sizeLod; + + if ( i > lodMax - LOD_MIN ) { + + sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ]; + + } else if ( i === 0 ) { + + sigma = 0; + + } + + sigmas.push( sigma ); + + const texelSize = 1.0 / ( sizeLod - 2 ); + const min = - texelSize; + const max = 1 + texelSize; + const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ]; + + const cubeFaces = 6; + const vertices = 6; + const positionSize = 3; + const uvSize = 2; + const faceIndexSize = 1; + + const position = new Float32Array( positionSize * vertices * cubeFaces ); + const uv = new Float32Array( uvSize * vertices * cubeFaces ); + const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces ); + + for ( let face = 0; face < cubeFaces; face ++ ) { + + const x = ( face % 3 ) * 2 / 3 - 1; + const y = face > 2 ? 0 : - 1; + const coordinates = [ + x, y, 0, + x + 2 / 3, y, 0, + x + 2 / 3, y + 1, 0, + x, y, 0, + x + 2 / 3, y + 1, 0, + x, y + 1, 0 + ]; + + const faceIdx = _faceLib[ face ]; + position.set( coordinates, positionSize * vertices * faceIdx ); + uv.set( uv1, uvSize * vertices * faceIdx ); + const fill = [ faceIdx, faceIdx, faceIdx, faceIdx, faceIdx, faceIdx ]; + faceIndex.set( fill, faceIndexSize * vertices * faceIdx ); + + } + + const planes = new BufferGeometry(); + planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) ); + planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) ); + planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) ); + lodPlanes.push( planes ); + lodMeshes.push( new Mesh( planes, null ) ); + + if ( lod > LOD_MIN ) { + + lod --; + + } + + } + + return { lodPlanes, sizeLods, sigmas, lodMeshes }; + +} + +function _createRenderTarget( width, height ) { + + const params = { + magFilter: LinearFilter, + minFilter: LinearFilter, + generateMipmaps: false, + type: HalfFloatType, + format: RGBAFormat, + colorSpace: LinearSRGBColorSpace, + //depthBuffer: false + }; + + const cubeUVRenderTarget = new RenderTarget( width, height, params ); + cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; + cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; + cubeUVRenderTarget.texture.isPMREMTexture = true; + cubeUVRenderTarget.scissorTest = true; + return cubeUVRenderTarget; + +} + +function _setViewport( target, x, y, width, height ) { + + target.viewport.set( x, y, width, height ); + target.scissor.set( x, y, width, height ); + +} + +function _getMaterial( type ) { + + const material = new NodeMaterial(); + material.depthTest = false; + material.depthWrite = false; + material.blending = NoBlending; + material.name = `PMREM_${ type }`; + + return material; + +} + +function _getBlurShader( lodMax, width, height ) { + + const weights = uniformArray( new Array( MAX_SAMPLES ).fill( 0 ) ); + const poleAxis = uniform( new Vector3( 0, 1, 0 ) ); + const dTheta = uniform( 0 ); + const n = float( MAX_SAMPLES ); + const latitudinal = uniform( 0 ); // false, bool + const samples = uniform( 1 ); // int + const envMap = texture( null ); + const mipInt = uniform( 0 ); // int + const CUBEUV_TEXEL_WIDTH = float( 1 / width ); + const CUBEUV_TEXEL_HEIGHT = float( 1 / height ); + const CUBEUV_MAX_MIP = float( lodMax ); + + const materialUniforms = { + n, + latitudinal, + weights, + poleAxis, + outputDirection: _outputDirection, + dTheta, + samples, + envMap, + mipInt, + CUBEUV_TEXEL_WIDTH, + CUBEUV_TEXEL_HEIGHT, + CUBEUV_MAX_MIP + }; + + const material = _getMaterial( 'blur' ); + material.fragmentNode = blur( { ...materialUniforms, latitudinal: latitudinal.equal( 1 ) } ); + + _uniformsMap.set( material, materialUniforms ); + + return material; + +} + +function _getCubemapMaterial( envTexture ) { + + const material = _getMaterial( 'cubemap' ); + material.fragmentNode = cubeTexture( envTexture, _outputDirection ); + + return material; + +} + +function _getEquirectMaterial( envTexture ) { + + const material = _getMaterial( 'equirect' ); + material.fragmentNode = texture( envTexture, equirectUV( _outputDirection ), 0 ); + + return material; + +} + +const _cache = new WeakMap(); + +/** + * Generates the cubeUV size based on the given image height. + * + * @private + * @param {number} imageHeight - The image height. + * @return {{texelWidth: number,texelHeight: number, maxMip: number}} The result object. + */ +function _generateCubeUVSize( imageHeight ) { + + const maxMip = Math.log2( imageHeight ) - 2; + + const texelHeight = 1.0 / imageHeight; + + const texelWidth = 1.0 / ( 3 * Math.max( Math.pow( 2, maxMip ), 7 * 16 ) ); + + return { texelWidth, texelHeight, maxMip }; + +} + +/** + * Generates a PMREM from the given texture. + * + * @private + * @param {Texture} texture - The texture to create the PMREM for. + * @param {Renderer} renderer - The renderer. + * @param {PMREMGenerator} generator - The PMREM generator. + * @return {?Texture} The PMREM. + */ +function _getPMREMFromTexture( texture, renderer, generator ) { + + const cache = _getCache( renderer ); + + let cacheTexture = cache.get( texture ); + + const pmremVersion = cacheTexture !== undefined ? cacheTexture.pmremVersion : - 1; + + if ( pmremVersion !== texture.pmremVersion ) { + + const image = texture.image; + + if ( texture.isCubeTexture ) { + + if ( isCubeMapReady( image ) ) { + + cacheTexture = generator.fromCubemap( texture, cacheTexture ); + + } else { + + return null; + + } + + + } else { + + if ( isEquirectangularMapReady( image ) ) { + + cacheTexture = generator.fromEquirectangular( texture, cacheTexture ); + + } else { + + return null; + + } + + } + + cacheTexture.pmremVersion = texture.pmremVersion; + + cache.set( texture, cacheTexture ); + + } + + return cacheTexture.texture; + +} + +/** + * Returns a cache that stores generated PMREMs for the respective textures. + * A cache must be maintained per renderer since PMREMs are render target textures + * which can't be shared across render contexts. + * + * @private + * @param {Renderer} renderer - The renderer. + * @return {WeakMap} The PMREM cache. + */ +function _getCache( renderer ) { + + let rendererCache = _cache.get( renderer ); + + if ( rendererCache === undefined ) { + + rendererCache = new WeakMap(); + _cache.set( renderer, rendererCache ); + + } + + return rendererCache; + +} + +/** + * This node represents a PMREM which is a special type of preprocessed + * environment map intended for PBR materials. + * + * ```js + * const material = new MeshStandardNodeMaterial(); + * material.envNode = pmremTexture( envMap ); + * ``` + * + * @augments TempNode + */ +class PMREMNode extends TempNode { + + static get type() { + + return 'PMREMNode'; + + } + + /** + * Constructs a new function overloading node. + * + * @param {Texture} value - The input texture. + * @param {Node} [uvNode=null] - The uv node. + * @param {Node} [levelNode=null] - The level node. + */ + constructor( value, uvNode = null, levelNode = null ) { + + super( 'vec3' ); + + /** + * Reference to the input texture. + * + * @private + * @type {Texture} + */ + this._value = value; + + /** + * Reference to the generated PMREM. + * + * @private + * @type {Texture | null} + * @default null + */ + this._pmrem = null; + + /** + * The uv node. + * + * @type {Node} + */ + this.uvNode = uvNode; + + /** + * The level node. + * + * @type {Node} + */ + this.levelNode = levelNode; + + /** + * Reference to a PMREM generator. + * + * @private + * @type {?PMREMGenerator} + * @default null + */ + this._generator = null; + + const defaultTexture = new Texture(); + defaultTexture.isRenderTargetTexture = true; + + /** + * The texture node holding the generated PMREM. + * + * @private + * @type {TextureNode} + */ + this._texture = texture( defaultTexture ); + + /** + * A uniform representing the PMREM's width. + * + * @private + * @type {UniformNode} + */ + this._width = uniform( 0 ); + + /** + * A uniform representing the PMREM's height. + * + * @private + * @type {UniformNode} + */ + this._height = uniform( 0 ); + + /** + * A uniform representing the PMREM's max Mip. + * + * @private + * @type {UniformNode} + */ + this._maxMip = uniform( 0 ); + + /** + * The `updateBeforeType` is set to `NodeUpdateType.RENDER`. + * + * @type {string} + * @default 'render' + */ + this.updateBeforeType = NodeUpdateType.RENDER; + + } + + set value( value ) { + + this._value = value; + this._pmrem = null; + + } + + /** + * The node's texture value. + * + * @type {Texture} + */ + get value() { + + return this._value; + + } + + /** + * Uses the given PMREM texture to update internal values. + * + * @param {Texture} texture - The PMREM texture. + */ + updateFromTexture( texture ) { + + const cubeUVSize = _generateCubeUVSize( texture.image.height ); + + this._texture.value = texture; + this._width.value = cubeUVSize.texelWidth; + this._height.value = cubeUVSize.texelHeight; + this._maxMip.value = cubeUVSize.maxMip; + + } + + updateBefore( frame ) { + + let pmrem = this._pmrem; + + const pmremVersion = pmrem ? pmrem.pmremVersion : - 1; + const texture = this._value; + + if ( pmremVersion !== texture.pmremVersion ) { + + if ( texture.isPMREMTexture === true ) { + + pmrem = texture; + + } else { + + pmrem = _getPMREMFromTexture( texture, frame.renderer, this._generator ); + + } + + if ( pmrem !== null ) { + + this._pmrem = pmrem; + + this.updateFromTexture( pmrem ); + + } + + } + + } + + setup( builder ) { + + if ( this._generator === null ) { + + this._generator = new PMREMGenerator( builder.renderer ); + + } + + this.updateBefore( builder ); + + // + + let uvNode = this.uvNode; + + if ( uvNode === null && builder.context.getUV ) { + + uvNode = builder.context.getUV( this ); + + } + + // + + uvNode = materialEnvRotation.mul( vec3( uvNode.x, uvNode.y.negate(), uvNode.z ) ); + + // + + let levelNode = this.levelNode; + + if ( levelNode === null && builder.context.getTextureLevel ) { + + levelNode = builder.context.getTextureLevel( this ); + + } + + // + + return textureCubeUV( this._texture, uvNode, levelNode, this._width, this._height, this._maxMip ); + + } + + dispose() { + + super.dispose(); + + if ( this._generator !== null ) this._generator.dispose(); + + } + +} + +/** + * Returns `true` if the given cube map image has been fully loaded. + * + * @private + * @param {?Array<(Image|Object)>} [image] - The cube map image. + * @return {boolean} Whether the given cube map is ready or not. + */ +function isCubeMapReady( image ) { + + if ( image === null || image === undefined ) return false; + + let count = 0; + const length = 6; + + for ( let i = 0; i < length; i ++ ) { + + if ( image[ i ] !== undefined ) count ++; + + } + + return count === length; + + +} + +/** + * Returns `true` if the given equirectangular image has been fully loaded. + * + * @private + * @param {(Image|Object)} image - The equirectangular image. + * @return {boolean} Whether the given cube map is ready or not. + */ +function isEquirectangularMapReady( image ) { + + if ( image === null || image === undefined ) return false; + + return image.height > 0; + +} + +/** + * TSL function for creating a PMREM node. + * + * @tsl + * @function + * @param {Texture} value - The input texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @returns {PMREMNode} + */ +const pmremTexture = /*@__PURE__*/ nodeProxy( PMREMNode ).setParameterLength( 1, 3 ); + +const _envNodeCache = new WeakMap(); + +/** + * Represents a physical model for Image-based lighting (IBL). The environment + * is defined via environment maps in the equirectangular, cube map or cubeUV (PMREM) format. + * `EnvironmentNode` is intended for PBR materials like {@link MeshStandardNodeMaterial}. + * + * @augments LightingNode + */ +class EnvironmentNode extends LightingNode { + + static get type() { + + return 'EnvironmentNode'; + + } + + /** + * Constructs a new environment node. + * + * @param {Node} [envNode=null] - A node representing the environment. + */ + constructor( envNode = null ) { + + super(); + + /** + * A node representing the environment. + * + * @type {?Node} + * @default null + */ + this.envNode = envNode; + + } + + setup( builder ) { + + const { material } = builder; + + let envNode = this.envNode; + + if ( envNode.isTextureNode || envNode.isMaterialReferenceNode ) { + + const value = ( envNode.isTextureNode ) ? envNode.value : material[ envNode.property ]; + + let cacheEnvNode = _envNodeCache.get( value ); + + if ( cacheEnvNode === undefined ) { + + cacheEnvNode = pmremTexture( value ); + + _envNodeCache.set( value, cacheEnvNode ); + + } + + envNode = cacheEnvNode; + + } + + // + + const useAnisotropy = material.useAnisotropy === true || material.anisotropy > 0; + const radianceNormalView = useAnisotropy ? transformedBentNormalView : transformedNormalView; + + const radiance = envNode.context( createRadianceContext( roughness, radianceNormalView ) ).mul( materialEnvIntensity ); + const irradiance = envNode.context( createIrradianceContext( transformedNormalWorld ) ).mul( Math.PI ).mul( materialEnvIntensity ); + + const isolateRadiance = cache( radiance ); + const isolateIrradiance = cache( irradiance ); + + // + + builder.context.radiance.addAssign( isolateRadiance ); + + builder.context.iblIrradiance.addAssign( isolateIrradiance ); + + // + + const clearcoatRadiance = builder.context.lightingModel.clearcoatRadiance; + + if ( clearcoatRadiance ) { + + const clearcoatRadianceContext = envNode.context( createRadianceContext( clearcoatRoughness, transformedClearcoatNormalView ) ).mul( materialEnvIntensity ); + const isolateClearcoatRadiance = cache( clearcoatRadianceContext ); + + clearcoatRadiance.addAssign( isolateClearcoatRadiance ); + + } + + } + +} + +const createRadianceContext = ( roughnessNode, normalViewNode ) => { + + let reflectVec = null; + + return { + getUV: () => { + + if ( reflectVec === null ) { + + reflectVec = positionViewDirection.negate().reflect( normalViewNode ); + + // Mixing the reflection with the normal is more accurate and keeps rough objects from gathering light from behind their tangent plane. + reflectVec = roughnessNode.mul( roughnessNode ).mix( reflectVec, normalViewNode ).normalize(); + + reflectVec = reflectVec.transformDirection( cameraViewMatrix ); + + } + + return reflectVec; + + }, + getTextureLevel: () => { + + return roughnessNode; + + } + }; + +}; + +const createIrradianceContext = ( normalWorldNode ) => { + + return { + getUV: () => { + + return normalWorldNode; + + }, + getTextureLevel: () => { + + return float( 1.0 ); + + } + }; + +}; + +const _defaultValues$6 = /*@__PURE__*/ new MeshStandardMaterial(); + +/** + * Node material version of {@link MeshStandardMaterial}. + * + * @augments NodeMaterial + */ +class MeshStandardNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshStandardNodeMaterial'; + + } + + /** + * Constructs a new mesh standard node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshStandardNodeMaterial = true; + + /** + * Set to `true` because standard materials react on lights. + * + * @type {boolean} + * @default true + */ + this.lights = true; + + /** + * The emissive color of standard materials is by default inferred from the `emissive`, + * `emissiveIntensity` and `emissiveMap` properties. This node property allows to + * overwrite the default and define the emissive color with a node instead. + * + * If you don't want to overwrite the emissive color but modify the existing + * value instead, use {@link materialEmissive}. + * + * @type {?Node} + * @default null + */ + this.emissiveNode = null; + + /** + * The metalness of standard materials is by default inferred from the `metalness`, + * and `metalnessMap` properties. This node property allows to + * overwrite the default and define the metalness with a node instead. + * + * If you don't want to overwrite the metalness but modify the existing + * value instead, use {@link materialMetalness}. + * + * @type {?Node} + * @default null + */ + this.metalnessNode = null; + + /** + * The roughness of standard materials is by default inferred from the `roughness`, + * and `roughnessMap` properties. This node property allows to + * overwrite the default and define the roughness with a node instead. + * + * If you don't want to overwrite the roughness but modify the existing + * value instead, use {@link materialRoughness}. + * + * @type {?Node} + * @default null + */ + this.roughnessNode = null; + + this.setDefaultValues( _defaultValues$6 ); + + this.setValues( parameters ); + + } + + /** + * Overwritten since this type of material uses {@link EnvironmentNode} + * to implement the PBR (PMREM based) environment mapping. Besides, the + * method honors `Scene.environment`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {?EnvironmentNode} The environment node. + */ + setupEnvironment( builder ) { + + let envNode = super.setupEnvironment( builder ); + + if ( envNode === null && builder.environmentNode ) { + + envNode = builder.environmentNode; + + } + + return envNode ? new EnvironmentNode( envNode ) : null; + + } + + /** + * Setups the lighting model. + * + * @return {PhysicalLightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new PhysicalLightingModel(); + + } + + /** + * Setups the specular related node variables. + */ + setupSpecular() { + + const specularColorNode = mix( vec3( 0.04 ), diffuseColor.rgb, metalness ); + + specularColor.assign( specularColorNode ); + specularF90.assign( 1.0 ); + + } + + /** + * Setups the standard specific node variables. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupVariants() { + + // METALNESS + + const metalnessNode = this.metalnessNode ? float( this.metalnessNode ) : materialMetalness; + + metalness.assign( metalnessNode ); + + // ROUGHNESS + + let roughnessNode = this.roughnessNode ? float( this.roughnessNode ) : materialRoughness; + roughnessNode = getRoughness( { roughness: roughnessNode } ); + + roughness.assign( roughnessNode ); + + // SPECULAR COLOR + + this.setupSpecular(); + + // DIFFUSE COLOR + + diffuseColor.assign( vec4( diffuseColor.rgb.mul( metalnessNode.oneMinus() ), diffuseColor.a ) ); + + } + + copy( source ) { + + this.emissiveNode = source.emissiveNode; + + this.metalnessNode = source.metalnessNode; + this.roughnessNode = source.roughnessNode; + + return super.copy( source ); + + } + +} + +const _defaultValues$5 = /*@__PURE__*/ new MeshPhysicalMaterial(); + +/** + * Node material version of {@link MeshPhysicalMaterial}. + * + * @augments MeshStandardNodeMaterial + */ +class MeshPhysicalNodeMaterial extends MeshStandardNodeMaterial { + + static get type() { + + return 'MeshPhysicalNodeMaterial'; + + } + + /** + * Constructs a new mesh physical node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshPhysicalNodeMaterial = true; + + /** + * The clearcoat of physical materials is by default inferred from the `clearcoat` + * and `clearcoatMap` properties. This node property allows to overwrite the default + * and define the clearcoat with a node instead. + * + * If you don't want to overwrite the clearcoat but modify the existing + * value instead, use {@link materialClearcoat}. + * + * @type {?Node} + * @default null + */ + this.clearcoatNode = null; + + /** + * The clearcoat roughness of physical materials is by default inferred from the `clearcoatRoughness` + * and `clearcoatRoughnessMap` properties. This node property allows to overwrite the default + * and define the clearcoat roughness with a node instead. + * + * If you don't want to overwrite the clearcoat roughness but modify the existing + * value instead, use {@link materialClearcoatRoughness}. + * + * @type {?Node} + * @default null + */ + this.clearcoatRoughnessNode = null; + + /** + * The clearcoat normal of physical materials is by default inferred from the `clearcoatNormalMap` + * property. This node property allows to overwrite the default + * and define the clearcoat normal with a node instead. + * + * If you don't want to overwrite the clearcoat normal but modify the existing + * value instead, use {@link materialClearcoatNormal}. + * + * @type {?Node} + * @default null + */ + this.clearcoatNormalNode = null; + + /** + * The sheen of physical materials is by default inferred from the `sheen`, `sheenColor` + * and `sheenColorMap` properties. This node property allows to overwrite the default + * and define the sheen with a node instead. + * + * If you don't want to overwrite the sheen but modify the existing + * value instead, use {@link materialSheen}. + * + * @type {?Node} + * @default null + */ + this.sheenNode = null; + + /** + * The sheen roughness of physical materials is by default inferred from the `sheenRoughness` and + * `sheenRoughnessMap` properties. This node property allows to overwrite the default + * and define the sheen roughness with a node instead. + * + * If you don't want to overwrite the sheen roughness but modify the existing + * value instead, use {@link materialSheenRoughness}. + * + * @type {?Node} + * @default null + */ + this.sheenRoughnessNode = null; + + /** + * The iridescence of physical materials is by default inferred from the `iridescence` + * property. This node property allows to overwrite the default + * and define the iridescence with a node instead. + * + * If you don't want to overwrite the iridescence but modify the existing + * value instead, use {@link materialIridescence}. + * + * @type {?Node} + * @default null + */ + this.iridescenceNode = null; + + /** + * The iridescence IOR of physical materials is by default inferred from the `iridescenceIOR` + * property. This node property allows to overwrite the default + * and define the iridescence IOR with a node instead. + * + * If you don't want to overwrite the iridescence IOR but modify the existing + * value instead, use {@link materialIridescenceIOR}. + * + * @type {?Node} + * @default null + */ + this.iridescenceIORNode = null; + + /** + * The iridescence thickness of physical materials is by default inferred from the `iridescenceThicknessRange` + * and `iridescenceThicknessMap` properties. This node property allows to overwrite the default + * and define the iridescence thickness with a node instead. + * + * If you don't want to overwrite the iridescence thickness but modify the existing + * value instead, use {@link materialIridescenceThickness}. + * + * @type {?Node} + * @default null + */ + this.iridescenceThicknessNode = null; + + /** + * The specular intensity of physical materials is by default inferred from the `specularIntensity` + * and `specularIntensityMap` properties. This node property allows to overwrite the default + * and define the specular intensity with a node instead. + * + * If you don't want to overwrite the specular intensity but modify the existing + * value instead, use {@link materialSpecularIntensity}. + * + * @type {?Node} + * @default null + */ + this.specularIntensityNode = null; + + /** + * The specular color of physical materials is by default inferred from the `specularColor` + * and `specularColorMap` properties. This node property allows to overwrite the default + * and define the specular color with a node instead. + * + * If you don't want to overwrite the specular color but modify the existing + * value instead, use {@link materialSpecularColor}. + * + * @type {?Node} + * @default null + */ + this.specularColorNode = null; + + /** + * The ior of physical materials is by default inferred from the `ior` + * property. This node property allows to overwrite the default + * and define the ior with a node instead. + * + * If you don't want to overwrite the ior but modify the existing + * value instead, use {@link materialIOR}. + * + * @type {?Node} + * @default null + */ + this.iorNode = null; + + /** + * The transmission of physical materials is by default inferred from the `transmission` and + * `transmissionMap` properties. This node property allows to overwrite the default + * and define the transmission with a node instead. + * + * If you don't want to overwrite the transmission but modify the existing + * value instead, use {@link materialTransmission}. + * + * @type {?Node} + * @default null + */ + this.transmissionNode = null; + + /** + * The thickness of physical materials is by default inferred from the `thickness` and + * `thicknessMap` properties. This node property allows to overwrite the default + * and define the thickness with a node instead. + * + * If you don't want to overwrite the thickness but modify the existing + * value instead, use {@link materialThickness}. + * + * @type {?Node} + * @default null + */ + this.thicknessNode = null; + + /** + * The attenuation distance of physical materials is by default inferred from the + * `attenuationDistance` property. This node property allows to overwrite the default + * and define the attenuation distance with a node instead. + * + * If you don't want to overwrite the attenuation distance but modify the existing + * value instead, use {@link materialAttenuationDistance}. + * + * @type {?Node} + * @default null + */ + this.attenuationDistanceNode = null; + + /** + * The attenuation color of physical materials is by default inferred from the + * `attenuationColor` property. This node property allows to overwrite the default + * and define the attenuation color with a node instead. + * + * If you don't want to overwrite the attenuation color but modify the existing + * value instead, use {@link materialAttenuationColor}. + * + * @type {?Node} + * @default null + */ + this.attenuationColorNode = null; + + /** + * The dispersion of physical materials is by default inferred from the + * `dispersion` property. This node property allows to overwrite the default + * and define the dispersion with a node instead. + * + * If you don't want to overwrite the dispersion but modify the existing + * value instead, use {@link materialDispersion}. + * + * @type {?Node} + * @default null + */ + this.dispersionNode = null; + + /** + * The anisotropy of physical materials is by default inferred from the + * `anisotropy` property. This node property allows to overwrite the default + * and define the anisotropy with a node instead. + * + * If you don't want to overwrite the anisotropy but modify the existing + * value instead, use {@link materialAnisotropy}. + * + * @type {?Node} + * @default null + */ + this.anisotropyNode = null; + + this.setDefaultValues( _defaultValues$5 ); + + this.setValues( parameters ); + + } + + /** + * Whether the lighting model should use clearcoat or not. + * + * @type {boolean} + * @default true + */ + get useClearcoat() { + + return this.clearcoat > 0 || this.clearcoatNode !== null; + + } + + /** + * Whether the lighting model should use iridescence or not. + * + * @type {boolean} + * @default true + */ + get useIridescence() { + + return this.iridescence > 0 || this.iridescenceNode !== null; + + } + + /** + * Whether the lighting model should use sheen or not. + * + * @type {boolean} + * @default true + */ + get useSheen() { + + return this.sheen > 0 || this.sheenNode !== null; + + } + + /** + * Whether the lighting model should use anisotropy or not. + * + * @type {boolean} + * @default true + */ + get useAnisotropy() { + + return this.anisotropy > 0 || this.anisotropyNode !== null; + + } + + /** + * Whether the lighting model should use transmission or not. + * + * @type {boolean} + * @default true + */ + get useTransmission() { + + return this.transmission > 0 || this.transmissionNode !== null; + + } + + /** + * Whether the lighting model should use dispersion or not. + * + * @type {boolean} + * @default true + */ + get useDispersion() { + + return this.dispersion > 0 || this.dispersionNode !== null; + + } + + /** + * Setups the specular related node variables. + */ + setupSpecular() { + + const iorNode = this.iorNode ? float( this.iorNode ) : materialIOR; + + ior.assign( iorNode ); + specularColor.assign( mix( min$1( pow2( ior.sub( 1.0 ).div( ior.add( 1.0 ) ) ).mul( materialSpecularColor ), vec3( 1.0 ) ).mul( materialSpecularIntensity ), diffuseColor.rgb, metalness ) ); + specularF90.assign( mix( materialSpecularIntensity, 1.0, metalness ) ); + + } + + /** + * Setups the lighting model. + * + * @return {PhysicalLightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new PhysicalLightingModel( this.useClearcoat, this.useSheen, this.useIridescence, this.useAnisotropy, this.useTransmission, this.useDispersion ); + + } + + /** + * Setups the physical specific node variables. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupVariants( builder ) { + + super.setupVariants( builder ); + + // CLEARCOAT + + if ( this.useClearcoat ) { + + const clearcoatNode = this.clearcoatNode ? float( this.clearcoatNode ) : materialClearcoat; + const clearcoatRoughnessNode = this.clearcoatRoughnessNode ? float( this.clearcoatRoughnessNode ) : materialClearcoatRoughness; + + clearcoat.assign( clearcoatNode ); + clearcoatRoughness.assign( getRoughness( { roughness: clearcoatRoughnessNode } ) ); + + } + + // SHEEN + + if ( this.useSheen ) { + + const sheenNode = this.sheenNode ? vec3( this.sheenNode ) : materialSheen; + const sheenRoughnessNode = this.sheenRoughnessNode ? float( this.sheenRoughnessNode ) : materialSheenRoughness; + + sheen.assign( sheenNode ); + sheenRoughness.assign( sheenRoughnessNode ); + + } + + // IRIDESCENCE + + if ( this.useIridescence ) { + + const iridescenceNode = this.iridescenceNode ? float( this.iridescenceNode ) : materialIridescence; + const iridescenceIORNode = this.iridescenceIORNode ? float( this.iridescenceIORNode ) : materialIridescenceIOR; + const iridescenceThicknessNode = this.iridescenceThicknessNode ? float( this.iridescenceThicknessNode ) : materialIridescenceThickness; + + iridescence.assign( iridescenceNode ); + iridescenceIOR.assign( iridescenceIORNode ); + iridescenceThickness.assign( iridescenceThicknessNode ); + + } + + // ANISOTROPY + + if ( this.useAnisotropy ) { + + const anisotropyV = ( this.anisotropyNode ? vec2( this.anisotropyNode ) : materialAnisotropy ).toVar(); + + anisotropy.assign( anisotropyV.length() ); + + If( anisotropy.equal( 0.0 ), () => { + + anisotropyV.assign( vec2( 1.0, 0.0 ) ); + + } ).Else( () => { + + anisotropyV.divAssign( vec2( anisotropy ) ); + anisotropy.assign( anisotropy.saturate() ); + + } ); + + // Roughness along the anisotropy bitangent is the material roughness, while the tangent roughness increases with anisotropy. + alphaT.assign( anisotropy.pow2().mix( roughness.pow2(), 1.0 ) ); + + anisotropyT.assign( TBNViewMatrix[ 0 ].mul( anisotropyV.x ).add( TBNViewMatrix[ 1 ].mul( anisotropyV.y ) ) ); + anisotropyB.assign( TBNViewMatrix[ 1 ].mul( anisotropyV.x ).sub( TBNViewMatrix[ 0 ].mul( anisotropyV.y ) ) ); + + } + + // TRANSMISSION + + if ( this.useTransmission ) { + + const transmissionNode = this.transmissionNode ? float( this.transmissionNode ) : materialTransmission; + const thicknessNode = this.thicknessNode ? float( this.thicknessNode ) : materialThickness; + const attenuationDistanceNode = this.attenuationDistanceNode ? float( this.attenuationDistanceNode ) : materialAttenuationDistance; + const attenuationColorNode = this.attenuationColorNode ? vec3( this.attenuationColorNode ) : materialAttenuationColor; + + transmission.assign( transmissionNode ); + thickness.assign( thicknessNode ); + attenuationDistance.assign( attenuationDistanceNode ); + attenuationColor.assign( attenuationColorNode ); + + if ( this.useDispersion ) { + + const dispersionNode = this.dispersionNode ? float( this.dispersionNode ) : materialDispersion; + + dispersion.assign( dispersionNode ); + + } + + } + + } + + /** + * Setups the clearcoat normal node. + * + * @return {Node} The clearcoat normal. + */ + setupClearcoatNormal() { + + return this.clearcoatNormalNode ? vec3( this.clearcoatNormalNode ) : materialClearcoatNormal; + + } + + setup( builder ) { + + builder.context.setupClearcoatNormal = () => this.setupClearcoatNormal( builder ); + + super.setup( builder ); + + } + + copy( source ) { + + this.clearcoatNode = source.clearcoatNode; + this.clearcoatRoughnessNode = source.clearcoatRoughnessNode; + this.clearcoatNormalNode = source.clearcoatNormalNode; + + this.sheenNode = source.sheenNode; + this.sheenRoughnessNode = source.sheenRoughnessNode; + + this.iridescenceNode = source.iridescenceNode; + this.iridescenceIORNode = source.iridescenceIORNode; + this.iridescenceThicknessNode = source.iridescenceThicknessNode; + + this.specularIntensityNode = source.specularIntensityNode; + this.specularColorNode = source.specularColorNode; + + this.transmissionNode = source.transmissionNode; + this.thicknessNode = source.thicknessNode; + this.attenuationDistanceNode = source.attenuationDistanceNode; + this.attenuationColorNode = source.attenuationColorNode; + this.dispersionNode = source.dispersionNode; + + this.anisotropyNode = source.anisotropyNode; + + return super.copy( source ); + + } + +} + +/** + * Represents the lighting model for {@link MeshSSSNodeMaterial}. + * + * @augments PhysicalLightingModel + */ +class SSSLightingModel extends PhysicalLightingModel { + + /** + * Constructs a new physical lighting model. + * + * @param {boolean} [clearcoat=false] - Whether clearcoat is supported or not. + * @param {boolean} [sheen=false] - Whether sheen is supported or not. + * @param {boolean} [iridescence=false] - Whether iridescence is supported or not. + * @param {boolean} [anisotropy=false] - Whether anisotropy is supported or not. + * @param {boolean} [transmission=false] - Whether transmission is supported or not. + * @param {boolean} [dispersion=false] - Whether dispersion is supported or not. + * @param {boolean} [sss=false] - Whether SSS is supported or not. + */ + constructor( clearcoat = false, sheen = false, iridescence = false, anisotropy = false, transmission = false, dispersion = false, sss = false ) { + + super( clearcoat, sheen, iridescence, anisotropy, transmission, dispersion ); + + /** + * Whether the lighting model should use SSS or not. + * + * @type {boolean} + * @default false + */ + this.useSSS = sss; + + } + + /** + * Extends the default implementation with a SSS term. + * + * Reference: [Approximating Translucency for a Fast, Cheap and Convincing Subsurface Scattering Look]{@link https://colinbarrebrisebois.com/2011/03/07/gdc-2011-approximating-translucency-for-a-fast-cheap-and-convincing-subsurface-scattering-look/} + * + * @param {Object} input - The input data. + * @param {NodeBuilder} builder - The current node builder. + */ + direct( { lightDirection, lightColor, reflectedLight }, builder ) { + + if ( this.useSSS === true ) { + + const material = builder.material; + + const { thicknessColorNode, thicknessDistortionNode, thicknessAmbientNode, thicknessAttenuationNode, thicknessPowerNode, thicknessScaleNode } = material; + + const scatteringHalf = lightDirection.add( transformedNormalView.mul( thicknessDistortionNode ) ).normalize(); + const scatteringDot = float( positionViewDirection.dot( scatteringHalf.negate() ).saturate().pow( thicknessPowerNode ).mul( thicknessScaleNode ) ); + const scatteringIllu = vec3( scatteringDot.add( thicknessAmbientNode ).mul( thicknessColorNode ) ); + + reflectedLight.directDiffuse.addAssign( scatteringIllu.mul( thicknessAttenuationNode.mul( lightColor ) ) ); + + } + + super.direct( { lightDirection, lightColor, reflectedLight }, builder ); + + } + +} + +/** + * This node material is an experimental extension of {@link MeshPhysicalNodeMaterial} + * that implements a Subsurface scattering (SSS) term. + * + * @augments MeshPhysicalNodeMaterial + */ +class MeshSSSNodeMaterial extends MeshPhysicalNodeMaterial { + + static get type() { + + return 'MeshSSSNodeMaterial'; + + } + + /** + * Constructs a new mesh SSS node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super( parameters ); + + /** + * Represents the thickness color. + * + * @type {?Node} + * @default null + */ + this.thicknessColorNode = null; + + /** + * Represents the distortion factor. + * + * @type {?Node} + */ + this.thicknessDistortionNode = float( 0.1 ); + + /** + * Represents the thickness ambient factor. + * + * @type {?Node} + */ + this.thicknessAmbientNode = float( 0.0 ); + + /** + * Represents the thickness attenuation. + * + * @type {?Node} + */ + this.thicknessAttenuationNode = float( .1 ); + + /** + * Represents the thickness power. + * + * @type {?Node} + */ + this.thicknessPowerNode = float( 2.0 ); + + /** + * Represents the thickness scale. + * + * @type {?Node} + */ + this.thicknessScaleNode = float( 10.0 ); + + } + + /** + * Whether the lighting model should use SSS or not. + * + * @type {boolean} + * @default true + */ + get useSSS() { + + return this.thicknessColorNode !== null; + + } + + /** + * Setups the lighting model. + * + * @return {SSSLightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new SSSLightingModel( this.useClearcoat, this.useSheen, this.useIridescence, this.useAnisotropy, this.useTransmission, this.useDispersion, this.useSSS ); + + } + + copy( source ) { + + this.thicknessColorNode = source.thicknessColorNode; + this.thicknessDistortionNode = source.thicknessDistortionNode; + this.thicknessAmbientNode = source.thicknessAmbientNode; + this.thicknessAttenuationNode = source.thicknessAttenuationNode; + this.thicknessPowerNode = source.thicknessPowerNode; + this.thicknessScaleNode = source.thicknessScaleNode; + + return super.copy( source ); + + } + +} + +const getGradientIrradiance = /*@__PURE__*/ Fn( ( { normal, lightDirection, builder } ) => { + + // dotNL will be from -1.0 to 1.0 + const dotNL = normal.dot( lightDirection ); + const coord = vec2( dotNL.mul( 0.5 ).add( 0.5 ), 0.0 ); + + if ( builder.material.gradientMap ) { + + const gradientMap = materialReference( 'gradientMap', 'texture' ).context( { getUV: () => coord } ); + + return vec3( gradientMap.r ); + + } else { + + const fw = coord.fwidth().mul( 0.5 ); + + return mix( vec3( 0.7 ), vec3( 1.0 ), smoothstep( float( 0.7 ).sub( fw.x ), float( 0.7 ).add( fw.x ), coord.x ) ); + + } + +} ); + +/** + * Represents the lighting model for a toon material. Used in {@link MeshToonNodeMaterial}. + * + * @augments LightingModel + */ +class ToonLightingModel extends LightingModel { + + /** + * Implements the direct lighting. Instead of using a conventional smooth irradiance, the irradiance is + * reduced to a small number of discrete shades to create a comic-like, flat look. + * + * @param {Object} lightData - The light data. + * @param {NodeBuilder} builder - The current node builder. + */ + direct( { lightDirection, lightColor, reflectedLight }, builder ) { + + const irradiance = getGradientIrradiance( { normal: normalGeometry, lightDirection, builder } ).mul( lightColor ); + + reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) ); + + } + + /** + * Implements the indirect lighting. + * + * @param {NodeBuilder} builder - The current node builder. + */ + indirect( builder ) { + + const { ambientOcclusion, irradiance, reflectedLight } = builder.context; + + reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) ); + + reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion ); + + } + +} + +const _defaultValues$4 = /*@__PURE__*/ new MeshToonMaterial(); + +/** + * Node material version of {@link MeshToonMaterial}. + * + * @augments NodeMaterial + */ +class MeshToonNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshToonNodeMaterial'; + + } + + /** + * Constructs a new mesh toon node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshToonNodeMaterial = true; + + /** + * Set to `true` because toon materials react on lights. + * + * @type {boolean} + * @default true + */ + this.lights = true; + + this.setDefaultValues( _defaultValues$4 ); + + this.setValues( parameters ); + + } + + /** + * Setups the lighting model. + * + * @return {ToonLightingModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new ToonLightingModel(); + + } + +} + +/** + * Can be used to compute texture coordinates for projecting a + * matcap onto a mesh. Used by {@link MeshMatcapNodeMaterial}. + * + * @augments TempNode + */ +class MatcapUVNode extends TempNode { + + static get type() { + + return 'MatcapUVNode'; + + } + + /** + * Constructs a new matcap uv node. + */ + constructor() { + + super( 'vec2' ); + + } + + setup() { + + const x = vec3( positionViewDirection.z, 0, positionViewDirection.x.negate() ).normalize(); + const y = positionViewDirection.cross( x ); + + return vec2( x.dot( transformedNormalView ), y.dot( transformedNormalView ) ).mul( 0.495 ).add( 0.5 ); // 0.495 to remove artifacts caused by undersized matcap disks + + } + +} + +/** + * TSL function for creating a matcap uv node. + * + * @tsl + * @function + * @returns {MatcapUVNode} + */ +const matcapUV = /*@__PURE__*/ nodeImmutable( MatcapUVNode ); + +const _defaultValues$3 = /*@__PURE__*/ new MeshMatcapMaterial(); + +/** + * Node material version of {@link MeshMatcapMaterial}. + * + * @augments NodeMaterial + */ +class MeshMatcapNodeMaterial extends NodeMaterial { + + static get type() { + + return 'MeshMatcapNodeMaterial'; + + } + + /** + * Constructs a new mesh normal node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMeshMatcapNodeMaterial = true; + + this.setDefaultValues( _defaultValues$3 ); + + this.setValues( parameters ); + + } + + /** + * Setups the matcap specific node variables. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupVariants( builder ) { + + const uv = matcapUV; + + let matcapColor; + + if ( builder.material.matcap ) { + + matcapColor = materialReference( 'matcap', 'texture' ).context( { getUV: () => uv } ); + + } else { + + matcapColor = vec3( mix( 0.2, 0.8, uv.y ) ); // default if matcap is missing + + } + + diffuseColor.rgb.mulAssign( matcapColor.rgb ); + + } + +} + +/** + * Applies a rotation to the given position node. + * + * @augments TempNode + */ +class RotateNode extends TempNode { + + static get type() { + + return 'RotateNode'; + + } + + /** + * Constructs a new rotate node. + * + * @param {Node} positionNode - The position node. + * @param {Node} rotationNode - Represents the rotation that is applied to the position node. Depending + * on whether the position data are 2D or 3D, the rotation is expressed a single float value or an Euler value. + */ + constructor( positionNode, rotationNode ) { + + super(); + + /** + * The position node. + * + * @type {Node} + */ + this.positionNode = positionNode; + + /** + * Represents the rotation that is applied to the position node. + * Depending on whether the position data are 2D or 3D, the rotation is expressed a single float value or an Euler value. + * + * @type {Node} + */ + this.rotationNode = rotationNode; + + } + + /** + * The type of the {@link RotateNode#positionNode} defines the node's type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node's type. + */ + getNodeType( builder ) { + + return this.positionNode.getNodeType( builder ); + + } + + setup( builder ) { + + const { rotationNode, positionNode } = this; + + const nodeType = this.getNodeType( builder ); + + if ( nodeType === 'vec2' ) { + + const cosAngle = rotationNode.cos(); + const sinAngle = rotationNode.sin(); + + const rotationMatrix = mat2( + cosAngle, sinAngle, + sinAngle.negate(), cosAngle + ); + + return rotationMatrix.mul( positionNode ); + + } else { + + const rotation = rotationNode; + const rotationXMatrix = mat4( vec4( 1.0, 0.0, 0.0, 0.0 ), vec4( 0.0, cos( rotation.x ), sin( rotation.x ).negate(), 0.0 ), vec4( 0.0, sin( rotation.x ), cos( rotation.x ), 0.0 ), vec4( 0.0, 0.0, 0.0, 1.0 ) ); + const rotationYMatrix = mat4( vec4( cos( rotation.y ), 0.0, sin( rotation.y ), 0.0 ), vec4( 0.0, 1.0, 0.0, 0.0 ), vec4( sin( rotation.y ).negate(), 0.0, cos( rotation.y ), 0.0 ), vec4( 0.0, 0.0, 0.0, 1.0 ) ); + const rotationZMatrix = mat4( vec4( cos( rotation.z ), sin( rotation.z ).negate(), 0.0, 0.0 ), vec4( sin( rotation.z ), cos( rotation.z ), 0.0, 0.0 ), vec4( 0.0, 0.0, 1.0, 0.0 ), vec4( 0.0, 0.0, 0.0, 1.0 ) ); + + return rotationXMatrix.mul( rotationYMatrix ).mul( rotationZMatrix ).mul( vec4( positionNode, 1.0 ) ).xyz; + + } + + } + +} + +/** + * TSL function for creating a rotate node. + * + * @tsl + * @function + * @param {Node} positionNode - The position node. + * @param {Node} rotationNode - Represents the rotation that is applied to the position node. Depending + * on whether the position data are 2D or 3D, the rotation is expressed a single float value or an Euler value. + * @returns {RotateNode} + */ +const rotate = /*@__PURE__*/ nodeProxy( RotateNode ).setParameterLength( 2 ); + +const _defaultValues$2 = /*@__PURE__*/ new SpriteMaterial(); + +/** + * Node material version of {@link SpriteMaterial}. + * + * @augments NodeMaterial + */ +class SpriteNodeMaterial extends NodeMaterial { + + static get type() { + + return 'SpriteNodeMaterial'; + + } + + /** + * Constructs a new sprite node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSpriteNodeMaterial = true; + + this._useSizeAttenuation = true; + + /** + * This property makes it possible to define the position of the sprite with a + * node. That can be useful when the material is used with instanced rendering + * and node data are defined with an instanced attribute node: + * ```js + * const positionAttribute = new InstancedBufferAttribute( new Float32Array( positions ), 3 ); + * material.positionNode = instancedBufferAttribute( positionAttribute ); + * ``` + * Another possibility is to compute the instanced data with a compute shader: + * ```js + * const positionBuffer = instancedArray( particleCount, 'vec3' ); + * particleMaterial.positionNode = positionBuffer.toAttribute(); + * ``` + * + * @type {?Node} + * @default null + */ + this.positionNode = null; + + /** + * The rotation of sprite materials is by default inferred from the `rotation`, + * property. This node property allows to overwrite the default and define + * the rotation with a node instead. + * + * If you don't want to overwrite the rotation but modify the existing + * value instead, use {@link materialRotation}. + * + * @type {?Node} + * @default null + */ + this.rotationNode = null; + + /** + * This node property provides an additional way to scale sprites next to + * `Object3D.scale`. The scale transformation based in `Object3D.scale` + * is multiplied with the scale value of this node in the vertex shader. + * + * @type {?Node} + * @default null + */ + this.scaleNode = null; + + /** + * In Sprites, the transparent property is enabled by default. + * + * @type {boolean} + * @default true + */ + this.transparent = true; + + this.setDefaultValues( _defaultValues$2 ); + + this.setValues( parameters ); + + } + + /** + * Setups the position node in view space. This method implements + * the sprite specific vertex shader. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The position in view space. + */ + setupPositionView( builder ) { + + const { object, camera } = builder; + + const sizeAttenuation = this.sizeAttenuation; + + const { positionNode, rotationNode, scaleNode } = this; + + const mvPosition = modelViewMatrix.mul( vec3( positionNode || 0 ) ); + + let scale = vec2( modelWorldMatrix[ 0 ].xyz.length(), modelWorldMatrix[ 1 ].xyz.length() ); + + if ( scaleNode !== null ) { + + scale = scale.mul( vec2( scaleNode ) ); + + } + + if ( sizeAttenuation === false ) { + + if ( camera.isPerspectiveCamera ) { + + scale = scale.mul( mvPosition.z.negate() ); + + } else { + + const orthoScale = float( 2.0 ).div( cameraProjectionMatrix.element( 1 ).element( 1 ) ); + scale = scale.mul( orthoScale.mul( 2 ) ); + + } + + } + + let alignedPosition = positionGeometry.xy; + + if ( object.center && object.center.isVector2 === true ) { + + const center = reference$1( 'center', 'vec2', object ); + + alignedPosition = alignedPosition.sub( center.sub( 0.5 ) ); + + } + + alignedPosition = alignedPosition.mul( scale ); + + const rotation = float( rotationNode || materialRotation ); + + const rotatedPosition = rotate( alignedPosition, rotation ); + + return vec4( mvPosition.xy.add( rotatedPosition ), mvPosition.zw ); + + } + + copy( source ) { + + this.positionNode = source.positionNode; + this.rotationNode = source.rotationNode; + this.scaleNode = source.scaleNode; + + return super.copy( source ); + + } + + /** + * Whether to use size attenuation or not. + * + * @type {boolean} + * @default true + */ + get sizeAttenuation() { + + return this._useSizeAttenuation; + + } + + set sizeAttenuation( value ) { + + if ( this._useSizeAttenuation !== value ) { + + this._useSizeAttenuation = value; + this.needsUpdate = true; + + } + + } + +} + +const _defaultValues$1 = /*@__PURE__*/ new PointsMaterial(); + +/** + * Node material version of {@link PointsMaterial}. + * + * @augments SpriteNodeMaterial + */ +class PointsNodeMaterial extends SpriteNodeMaterial { + + static get type() { + + return 'PointsNodeMaterial'; + + } + + /** + * Constructs a new points node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This node property provides an additional way to set the point size. + * + * @type {?Node} + * @default null + */ + this.sizeNode = null; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPointsNodeMaterial = true; + + this.setDefaultValues( _defaultValues$1 ); + + this.setValues( parameters ); + + } + + setupPositionView() { + + const { positionNode } = this; + + return modelViewMatrix.mul( vec3( positionNode || positionLocal ) ).xyz; + + } + + setupVertex( builder ) { + + const mvp = super.setupVertex( builder ); + + // skip further processing if the material is not a node material + + if ( builder.material.isNodeMaterial !== true ) { + + return mvp; + + } + + // ndc space + + const { rotationNode, scaleNode, sizeNode } = this; + + const alignedPosition = positionGeometry.xy.toVar(); + const aspect = viewport.z.div( viewport.w ); + + // rotation + + if ( rotationNode && rotationNode.isNode ) { + + const rotation = float( rotationNode ); + + alignedPosition.assign( rotate( alignedPosition, rotation ) ); + + } + + // point size + + let pointSize = sizeNode !== null ? vec2( sizeNode ) : materialPointSize; + + if ( this.sizeAttenuation === true ) { + + pointSize = pointSize.mul( pointSize.div( positionView.z.negate() ) ); + + } + + // scale + + if ( scaleNode && scaleNode.isNode ) { + + pointSize = pointSize.mul( vec2( scaleNode ) ); + + } + + alignedPosition.mulAssign( pointSize.mul( 2 ) ); + + alignedPosition.assign( alignedPosition.div( viewport.z ) ); + alignedPosition.y.assign( alignedPosition.y.mul( aspect ) ); + + // back to clip space + alignedPosition.assign( alignedPosition.mul( mvp.w ) ); + + //clipPos.xy += offset; + mvp.addAssign( vec4( alignedPosition, 0, 0 ) ); + + return mvp; + + } + + /** + * Whether alpha to coverage should be used or not. + * + * @type {boolean} + * @default true + */ + get alphaToCoverage() { + + return this._useAlphaToCoverage; + + } + + set alphaToCoverage( value ) { + + if ( this._useAlphaToCoverage !== value ) { + + this._useAlphaToCoverage = value; + this.needsUpdate = true; + + } + + } + +} + +/** + * Represents lighting model for a shadow material. Used in {@link ShadowNodeMaterial}. + * + * @augments LightingModel + */ +class ShadowMaskModel extends LightingModel { + + /** + * Constructs a new shadow mask model. + */ + constructor() { + + super(); + + /** + * The shadow mask node. + * + * @type {Node} + */ + this.shadowNode = float( 1 ).toVar( 'shadowMask' ); + + } + + /** + * Only used to save the shadow mask. + * + * @param {Object} input - The input data. + */ + direct( { lightNode } ) { + + if ( lightNode.shadowNode !== null ) { + + this.shadowNode.mulAssign( lightNode.shadowNode ); + + } + + } + + /** + * Uses the shadow mask to produce the final color. + * + * @param {NodeBuilder} builder - The current node builder. + */ + finish( { context } ) { + + diffuseColor.a.mulAssign( this.shadowNode.oneMinus() ); + + context.outgoingLight.rgb.assign( diffuseColor.rgb ); // TODO: Optimize LightsNode to avoid this assignment + + } + +} + +const _defaultValues = /*@__PURE__*/ new ShadowMaterial(); + +/** + * Node material version of {@link ShadowMaterial}. + * + * @augments NodeMaterial + */ +class ShadowNodeMaterial extends NodeMaterial { + + static get type() { + + return 'ShadowNodeMaterial'; + + } + + /** + * Constructs a new shadow node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isShadowNodeMaterial = true; + + /** + * Set to `true` because so it's possible to implement + * the shadow mask effect. + * + * @type {boolean} + * @default true + */ + this.lights = true; + + /** + * Overwritten since shadow materials are transparent + * by default. + * + * @type {boolean} + * @default true + */ + this.transparent = true; + + this.setDefaultValues( _defaultValues ); + + this.setValues( parameters ); + + } + + /** + * Setups the lighting model. + * + * @return {ShadowMaskModel} The lighting model. + */ + setupLightingModel( /*builder*/ ) { + + return new ShadowMaskModel(); + + } + +} + +const scatteringDensity = property( 'vec3' ); +const linearDepthRay = property( 'vec3' ); +const outgoingRayLight = property( 'vec3' ); + +/** + * VolumetricLightingModel class extends the LightingModel to implement volumetric lighting effects. + * This model calculates the scattering and transmittance of light through a volumetric medium. + * It dynamically adjusts the direction of the ray based on the camera and object positions. + * The model supports custom scattering and depth nodes to enhance the lighting effects. + * + * @augments LightingModel + */ +class VolumetricLightingModel extends LightingModel { + + constructor() { + + super(); + + } + + start( builder ) { + + const { material, context } = builder; + + const startPos = property( 'vec3' ); + const endPos = property( 'vec3' ); + + // This approach dynamically changes the direction of the ray, + // prioritizing the ray from the camera to the object if it is inside the mesh, and from the object to the camera if it is far away. + + If( cameraPosition.sub( positionWorld ).length().greaterThan( modelRadius.mul( 2 ) ), () => { + + startPos.assign( cameraPosition ); + endPos.assign( positionWorld ); + + } ).Else( () => { + + startPos.assign( positionWorld ); + endPos.assign( cameraPosition ); + + } ); + + // + + const viewVector = endPos.sub( startPos ); + + const steps = uniform( 'int' ).onRenderUpdate( ( { material } ) => material.steps ); + const stepSize = viewVector.length().div( steps ).toVar(); + + const rayDir = viewVector.normalize().toVar(); // TODO: toVar() should be automatic here ( in loop ) + + const distTravelled = float( 0.0 ).toVar(); + const transmittance = vec3( 1 ).toVar(); + + if ( material.offsetNode ) { + + // reduce banding + + distTravelled.addAssign( material.offsetNode.mul( stepSize ) ); + + } + + Loop( steps, () => { + + const positionRay = startPos.add( rayDir.mul( distTravelled ) ); + const positionViewRay = cameraViewMatrix.mul( vec4( positionRay, 1 ) ).xyz; + + if ( material.depthNode !== null ) { + + linearDepthRay.assign( linearDepth( viewZToPerspectiveDepth( positionViewRay.z, cameraNear, cameraFar ) ) ); + + context.sceneDepthNode = linearDepth( material.depthNode ).toVar(); + + } + + context.positionWorld = positionRay; + context.shadowPositionWorld = positionRay; + context.positionView = positionViewRay; + + scatteringDensity.assign( 0 ); + + let scatteringNode; + + if ( material.scatteringNode ) { + + scatteringNode = material.scatteringNode( { + positionRay + } ); + + } + + super.start( builder ); + + if ( scatteringNode ) { + + scatteringDensity.mulAssign( scatteringNode ); + + } + + // beer's law + + const falloff = scatteringDensity.mul( .01 ).negate().mul( stepSize ).exp(); + transmittance.mulAssign( falloff ); + + // move along the ray + + distTravelled.addAssign( stepSize ); + + } ); + + outgoingRayLight.addAssign( transmittance.saturate().oneMinus() ); + + } + + scatteringLight( lightColor, builder ) { + + const sceneDepthNode = builder.context.sceneDepthNode; + + if ( sceneDepthNode ) { + + If( sceneDepthNode.greaterThanEqual( linearDepthRay ), () => { + + scatteringDensity.addAssign( lightColor ); + + } ); + + } else { + + scatteringDensity.addAssign( lightColor ); + + } + + } + + direct( { lightNode, lightColor }, builder ) { + + // Ignore lights with infinite distance + + if ( lightNode.light.distance === undefined ) return; + + // TODO: We need a viewportOpaque*() ( output, depth ) to fit with modern rendering approaches + + const directLight = lightColor.xyz.toVar(); + directLight.mulAssign( lightNode.shadowNode ); // it no should be necessary if used in the same render pass + + this.scatteringLight( directLight, builder ); + + } + + directRectArea( { lightColor, lightPosition, halfWidth, halfHeight }, builder ) { + + const p0 = lightPosition.add( halfWidth ).sub( halfHeight ); // counterclockwise; light shines in local neg z direction + const p1 = lightPosition.sub( halfWidth ).sub( halfHeight ); + const p2 = lightPosition.sub( halfWidth ).add( halfHeight ); + const p3 = lightPosition.add( halfWidth ).add( halfHeight ); + + const P = builder.context.positionView; + + const directLight = lightColor.xyz.mul( LTC_Evaluate_Volume( { P, p0, p1, p2, p3 } ) ).pow( 1.5 ); + + this.scatteringLight( directLight, builder ); + + } + + finish( builder ) { + + builder.context.outgoingLight.assign( outgoingRayLight ); + + } + +} + +/** + * Volume node material. + * + * @augments NodeMaterial + */ +class VolumeNodeMaterial extends NodeMaterial { + + static get type() { + + return 'VolumeNodeMaterial'; + + } + + /** + * Constructs a new volume node material. + * + * @param {Object} [parameters] - The configuration parameter. + */ + constructor( parameters ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVolumeNodeMaterial = true; + + /** + * Number of steps used for raymarching. + * + * @type {number} + * @default 25 + */ + this.steps = 25; + + /** + * Offsets the distance a ray has been traveled through a volume. + * Can be used to implement dithering to reduce banding. + * + * @type {Node} + * @default null + */ + this.offsetNode = null; + + /** + * Node used for scattering calculations. + * + * @type {Function|FunctionNode} + * @default null + */ + this.scatteringNode = null; + + this.lights = true; + + this.transparent = true; + this.side = BackSide; + + this.depthTest = false; + this.depthWrite = false; + + this.setValues( parameters ); + + } + + setupLightingModel() { + + return new VolumetricLightingModel(); + + } + +} + +/** + * This module manages the internal animation loop of the renderer. + * + * @private + */ +class Animation { + + /** + * Constructs a new animation loop management component. + * + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + * @param {Info} info - Renderer component for managing metrics and monitoring data. + */ + constructor( nodes, info ) { + + /** + * Renderer component for managing nodes related logic. + * + * @type {Nodes} + */ + this.nodes = nodes; + + /** + * Renderer component for managing metrics and monitoring data. + * + * @type {Info} + */ + this.info = info; + + /** + * A reference to the context from `requestAnimationFrame()` can + * be called (usually `window`). + * + * @type {?(Window|XRSession)} + */ + this._context = typeof self !== 'undefined' ? self : null; + + /** + * The user-defined animation loop. + * + * @type {?Function} + * @default null + */ + this._animationLoop = null; + + /** + * The requestId which is returned from the `requestAnimationFrame()` call. + * Can be used to cancel the stop the animation loop. + * + * @type {?number} + * @default null + */ + this._requestId = null; + + } + + /** + * Starts the internal animation loop. + */ + start() { + + const update = ( time, xrFrame ) => { + + this._requestId = this._context.requestAnimationFrame( update ); + + if ( this.info.autoReset === true ) this.info.reset(); + + this.nodes.nodeFrame.update(); + + this.info.frame = this.nodes.nodeFrame.frameId; + + if ( this._animationLoop !== null ) this._animationLoop( time, xrFrame ); + + }; + + update(); + + } + + /** + * Stops the internal animation loop. + */ + stop() { + + this._context.cancelAnimationFrame( this._requestId ); + + this._requestId = null; + + } + + /** + * Returns the user-level animation loop. + * + * @return {?Function} The animation loop. + */ + getAnimationLoop() { + + return this._animationLoop; + + } + + /** + * Defines the user-level animation loop. + * + * @param {?Function} callback - The animation loop. + */ + setAnimationLoop( callback ) { + + this._animationLoop = callback; + + } + + /** + * Returns the animation context. + * + * @return {Window|XRSession} The animation context. + */ + getContext() { + + return this._context; + + } + + /** + * Defines the context in which `requestAnimationFrame()` is executed. + * + * @param {Window|XRSession} context - The context to set. + */ + setContext( context ) { + + this._context = context; + + } + + /** + * Frees all internal resources and stops the animation loop. + */ + dispose() { + + this.stop(); + + } + +} + +/** + * Data structure for the renderer. It allows defining values + * with chained, hierarchical keys. Keys are meant to be + * objects since the module internally works with Weak Maps + * for performance reasons. + * + * @private + */ +class ChainMap { + + /** + * Constructs a new Chain Map. + */ + constructor() { + + /** + * The root Weak Map. + * + * @type {WeakMap} + */ + this.weakMap = new WeakMap(); + + } + + /** + * Returns the value for the given array of keys. + * + * @param {Array} keys - List of keys. + * @return {any} The value. Returns `undefined` if no value was found. + */ + get( keys ) { + + let map = this.weakMap; + + for ( let i = 0; i < keys.length - 1; i ++ ) { + + map = map.get( keys[ i ] ); + + if ( map === undefined ) return undefined; + + } + + return map.get( keys[ keys.length - 1 ] ); + + } + + /** + * Sets the value for the given keys. + * + * @param {Array} keys - List of keys. + * @param {any} value - The value to set. + * @return {ChainMap} A reference to this Chain Map. + */ + set( keys, value ) { + + let map = this.weakMap; + + for ( let i = 0; i < keys.length - 1; i ++ ) { + + const key = keys[ i ]; + + if ( map.has( key ) === false ) map.set( key, new WeakMap() ); + + map = map.get( key ); + + } + + map.set( keys[ keys.length - 1 ], value ); + + return this; + + } + + /** + * Deletes a value for the given keys. + * + * @param {Array} keys - The keys. + * @return {boolean} Returns `true` if the value has been removed successfully and `false` if the value has not be found. + */ + delete( keys ) { + + let map = this.weakMap; + + for ( let i = 0; i < keys.length - 1; i ++ ) { + + map = map.get( keys[ i ] ); + + if ( map === undefined ) return false; + + } + + return map.delete( keys[ keys.length - 1 ] ); + + } + +} + +let _id$9 = 0; + +function getKeys( obj ) { + + const keys = Object.keys( obj ); + + let proto = Object.getPrototypeOf( obj ); + + while ( proto ) { + + const descriptors = Object.getOwnPropertyDescriptors( proto ); + + for ( const key in descriptors ) { + + if ( descriptors[ key ] !== undefined ) { + + const descriptor = descriptors[ key ]; + + if ( descriptor && typeof descriptor.get === 'function' ) { + + keys.push( key ); + + } + + } + + } + + proto = Object.getPrototypeOf( proto ); + + } + + return keys; + +} + +/** + * A render object is the renderer's representation of single entity that gets drawn + * with a draw command. There is no unique mapping of render objects to 3D objects in the + * scene since render objects also depend from the used material, the current render context + * and the current scene's lighting. + * + * In general, the basic process of the renderer is: + * + * - Analyze the 3D objects in the scene and generate render lists containing render items. + * - Process the render lists by calling one or more render commands for each render item. + * - For each render command, request a render object and perform the draw. + * + * The module provides an interface to get data required for the draw command like the actual + * draw parameters or vertex buffers. It also holds a series of caching related methods since + * creating render objects should only be done when necessary. + * + * @private + */ +class RenderObject { + + /** + * Constructs a new render object. + * + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + * @param {Geometries} geometries - Renderer component for managing geometries. + * @param {Renderer} renderer - The renderer. + * @param {Object3D} object - The 3D object. + * @param {Material} material - The 3D object's material. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the object should be rendered with. + * @param {LightsNode} lightsNode - The lights node. + * @param {RenderContext} renderContext - The render context. + * @param {ClippingContext} clippingContext - The clipping context. + */ + constructor( nodes, geometries, renderer, object, material, scene, camera, lightsNode, renderContext, clippingContext ) { + + this.id = _id$9 ++; + + /** + * Renderer component for managing nodes related logic. + * + * @type {Nodes} + * @private + */ + this._nodes = nodes; + + /** + * Renderer component for managing geometries. + * + * @type {Geometries} + * @private + */ + this._geometries = geometries; + + /** + * The renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * The 3D object. + * + * @type {Object3D} + */ + this.object = object; + + /** + * The 3D object's material. + * + * @type {Material} + */ + this.material = material; + + /** + * The scene the 3D object belongs to. + * + * @type {Scene} + */ + this.scene = scene; + + /** + * The camera the 3D object should be rendered with. + * + * @type {Camera} + */ + this.camera = camera; + + /** + * The lights node. + * + * @type {LightsNode} + */ + this.lightsNode = lightsNode; + + /** + * The render context. + * + * @type {RenderContext} + */ + this.context = renderContext; + + /** + * The 3D object's geometry. + * + * @type {BufferGeometry} + */ + this.geometry = object.geometry; + + /** + * The render object's version. + * + * @type {number} + */ + this.version = material.version; + + /** + * The draw range of the geometry. + * + * @type {?Object} + * @default null + */ + this.drawRange = null; + + /** + * An array holding the buffer attributes + * of the render object. This entails attribute + * definitions on geometry and node level. + * + * @type {?Array} + * @default null + */ + this.attributes = null; + + /** + * A reference to a render pipeline the render + * object is processed with. + * + * @type {RenderPipeline} + * @default null + */ + this.pipeline = null; + + /** + * Only relevant for objects using + * multiple materials. This represents a group entry + * from the respective `BufferGeometry`. + * + * @type {?{start: number, count: number}} + * @default null + */ + this.group = null; + + /** + * An array holding the vertex buffers which can + * be buffer attributes but also interleaved buffers. + * + * @type {?Array} + * @default null + */ + this.vertexBuffers = null; + + /** + * The parameters for the draw command. + * + * @type {?Object} + * @default null + */ + this.drawParams = null; + + /** + * If this render object is used inside a render bundle, + * this property points to the respective bundle group. + * + * @type {?BundleGroup} + * @default null + */ + this.bundle = null; + + /** + * The clipping context. + * + * @type {ClippingContext} + */ + this.clippingContext = clippingContext; + + /** + * The clipping context's cache key. + * + * @type {string} + */ + this.clippingContextCacheKey = clippingContext !== null ? clippingContext.cacheKey : ''; + + /** + * The initial node cache key. + * + * @type {number} + */ + this.initialNodesCacheKey = this.getDynamicCacheKey(); + + /** + * The initial cache key. + * + * @type {number} + */ + this.initialCacheKey = this.getCacheKey(); + + /** + * The node builder state. + * + * @type {?NodeBuilderState} + * @private + * @default null + */ + this._nodeBuilderState = null; + + /** + * An array of bindings. + * + * @type {?Array} + * @private + * @default null + */ + this._bindings = null; + + /** + * Reference to the node material observer. + * + * @type {?NodeMaterialObserver} + * @private + * @default null + */ + this._monitor = null; + + /** + * An event listener which is defined by `RenderObjects`. It performs + * clean up tasks when `dispose()` on this render object. + * + * @method + */ + this.onDispose = null; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isRenderObject = true; + + /** + * An event listener which is executed when `dispose()` is called on + * the render object's material. + * + * @method + */ + this.onMaterialDispose = () => { + + this.dispose(); + + }; + + this.material.addEventListener( 'dispose', this.onMaterialDispose ); + + } + + /** + * Updates the clipping context. + * + * @param {ClippingContext} context - The clipping context to set. + */ + updateClipping( context ) { + + this.clippingContext = context; + + } + + /** + * Whether the clipping requires an update or not. + * + * @type {boolean} + * @readonly + */ + get clippingNeedsUpdate() { + + if ( this.clippingContext === null || this.clippingContext.cacheKey === this.clippingContextCacheKey ) return false; + + this.clippingContextCacheKey = this.clippingContext.cacheKey; + + return true; + + } + + /** + * The number of clipping planes defined in context of hardware clipping. + * + * @type {number} + * @readonly + */ + get hardwareClippingPlanes() { + + return this.material.hardwareClipping === true ? this.clippingContext.unionClippingCount : 0; + + } + + /** + * Returns the node builder state of this render object. + * + * @return {NodeBuilderState} The node builder state. + */ + getNodeBuilderState() { + + return this._nodeBuilderState || ( this._nodeBuilderState = this._nodes.getForRender( this ) ); + + } + + /** + * Returns the node material observer of this render object. + * + * @return {NodeMaterialObserver} The node material observer. + */ + getMonitor() { + + return this._monitor || ( this._monitor = this.getNodeBuilderState().observer ); + + } + + /** + * Returns an array of bind groups of this render object. + * + * @return {Array} The bindings. + */ + getBindings() { + + return this._bindings || ( this._bindings = this.getNodeBuilderState().createBindings() ); + + } + + /** + * Returns a binding group by group name of this render object. + * + * @param {string} name - The name of the binding group. + * @return {?BindGroup} The bindings. + */ + getBindingGroup( name ) { + + for ( const bindingGroup of this.getBindings() ) { + + if ( bindingGroup.name === name ) { + + return bindingGroup; + + } + + } + + } + + /** + * Returns the index of the render object's geometry. + * + * @return {?BufferAttribute} The index. Returns `null` for non-indexed geometries. + */ + getIndex() { + + return this._geometries.getIndex( this ); + + } + + /** + * Returns the indirect buffer attribute. + * + * @return {?BufferAttribute} The indirect attribute. `null` if no indirect drawing is used. + */ + getIndirect() { + + return this._geometries.getIndirect( this ); + + } + + /** + * Returns an array that acts as a key for identifying the render object in a chain map. + * + * @return {Array} An array with object references. + */ + getChainArray() { + + return [ this.object, this.material, this.context, this.lightsNode ]; + + } + + /** + * This method is used when the geometry of a 3D object has been exchanged and the + * respective render object now requires an update. + * + * @param {BufferGeometry} geometry - The geometry to set. + */ + setGeometry( geometry ) { + + this.geometry = geometry; + this.attributes = null; + + } + + /** + * Returns the buffer attributes of the render object. The returned array holds + * attribute definitions on geometry and node level. + * + * @return {Array} An array with buffer attributes. + */ + getAttributes() { + + if ( this.attributes !== null ) return this.attributes; + + const nodeAttributes = this.getNodeBuilderState().nodeAttributes; + const geometry = this.geometry; + + const attributes = []; + const vertexBuffers = new Set(); + + for ( const nodeAttribute of nodeAttributes ) { + + const attribute = nodeAttribute.node && nodeAttribute.node.attribute ? nodeAttribute.node.attribute : geometry.getAttribute( nodeAttribute.name ); + + if ( attribute === undefined ) continue; + + attributes.push( attribute ); + + const bufferAttribute = attribute.isInterleavedBufferAttribute ? attribute.data : attribute; + vertexBuffers.add( bufferAttribute ); + + } + + this.attributes = attributes; + this.vertexBuffers = Array.from( vertexBuffers.values() ); + + return attributes; + + } + + /** + * Returns the vertex buffers of the render object. + * + * @return {Array} An array with buffer attribute or interleaved buffers. + */ + getVertexBuffers() { + + if ( this.vertexBuffers === null ) this.getAttributes(); + + return this.vertexBuffers; + + } + + /** + * Returns the draw parameters for the render object. + * + * @return {?{vertexCount: number, firstVertex: number, instanceCount: number, firstInstance: number}} The draw parameters. + */ + getDrawParameters() { + + const { object, material, geometry, group, drawRange } = this; + + const drawParams = this.drawParams || ( this.drawParams = { + vertexCount: 0, + firstVertex: 0, + instanceCount: 0, + firstInstance: 0 + } ); + + const index = this.getIndex(); + const hasIndex = ( index !== null ); + + let instanceCount = 1; + + if ( geometry.isInstancedBufferGeometry === true ) { + + instanceCount = geometry.instanceCount; + + } else if ( object.count !== undefined ) { + + instanceCount = Math.max( 0, object.count ); + + } + + if ( instanceCount === 0 ) return null; + + drawParams.instanceCount = instanceCount; + + if ( object.isBatchedMesh === true ) return drawParams; + + let rangeFactor = 1; + + if ( material.wireframe === true && ! object.isPoints && ! object.isLineSegments && ! object.isLine && ! object.isLineLoop ) { + + rangeFactor = 2; + + } + + let firstVertex = drawRange.start * rangeFactor; + let lastVertex = ( drawRange.start + drawRange.count ) * rangeFactor; + + if ( group !== null ) { + + firstVertex = Math.max( firstVertex, group.start * rangeFactor ); + lastVertex = Math.min( lastVertex, ( group.start + group.count ) * rangeFactor ); + + } + + const position = geometry.attributes.position; + let itemCount = Infinity; + + if ( hasIndex ) { + + itemCount = index.count; + + } else if ( position !== undefined && position !== null ) { + + itemCount = position.count; + + } + + firstVertex = Math.max( firstVertex, 0 ); + lastVertex = Math.min( lastVertex, itemCount ); + + const count = lastVertex - firstVertex; + + if ( count < 0 || count === Infinity ) return null; + + drawParams.vertexCount = count; + drawParams.firstVertex = firstVertex; + + return drawParams; + + } + + /** + * Returns the render object's geometry cache key. + * + * The geometry cache key is part of the material cache key. + * + * @return {string} The geometry cache key. + */ + getGeometryCacheKey() { + + const { geometry } = this; + + let cacheKey = ''; + + for ( const name of Object.keys( geometry.attributes ).sort() ) { + + const attribute = geometry.attributes[ name ]; + + cacheKey += name + ','; + + if ( attribute.data ) cacheKey += attribute.data.stride + ','; + if ( attribute.offset ) cacheKey += attribute.offset + ','; + if ( attribute.itemSize ) cacheKey += attribute.itemSize + ','; + if ( attribute.normalized ) cacheKey += 'n,'; + + } + + // structural equality isn't sufficient for morph targets since the + // data are maintained in textures. only if the targets are all equal + // the texture and thus the instance of `MorphNode` can be shared. + + for ( const name of Object.keys( geometry.morphAttributes ).sort() ) { + + const targets = geometry.morphAttributes[ name ]; + + cacheKey += 'morph-' + name + ','; + + for ( let i = 0, l = targets.length; i < l; i ++ ) { + + const attribute = targets[ i ]; + + cacheKey += attribute.id + ','; + + } + + } + + if ( geometry.index ) { + + cacheKey += 'index,'; + + } + + return cacheKey; + + } + + /** + * Returns the render object's material cache key. + * + * The material cache key is part of the render object cache key. + * + * @return {number} The material cache key. + */ + getMaterialCacheKey() { + + const { object, material } = this; + + let cacheKey = material.customProgramCacheKey(); + + for ( const property of getKeys( material ) ) { + + if ( /^(is[A-Z]|_)|^(visible|version|uuid|name|opacity|userData)$/.test( property ) ) continue; + + const value = material[ property ]; + + let valueKey; + + if ( value !== null ) { + + // some material values require a formatting + + const type = typeof value; + + if ( type === 'number' ) { + + valueKey = value !== 0 ? '1' : '0'; // Convert to on/off, important for clearcoat, transmission, etc + + } else if ( type === 'object' ) { + + valueKey = '{'; + + if ( value.isTexture ) { + + valueKey += value.mapping; + + } + + valueKey += '}'; + + } else { + + valueKey = String( value ); + + } + + } else { + + valueKey = String( value ); + + } + + cacheKey += /*property + ':' +*/ valueKey + ','; + + } + + cacheKey += this.clippingContextCacheKey + ','; + + if ( object.geometry ) { + + cacheKey += this.getGeometryCacheKey(); + + } + + if ( object.skeleton ) { + + cacheKey += object.skeleton.bones.length + ','; + + } + + if ( object.isBatchedMesh ) { + + cacheKey += object._matricesTexture.uuid + ','; + + if ( object._colorsTexture !== null ) { + + cacheKey += object._colorsTexture.uuid + ','; + + } + + } + + if ( object.count > 1 ) { + + // TODO: https://github.com/mrdoob/three.js/pull/29066#issuecomment-2269400850 + + cacheKey += object.uuid + ','; + + } + + cacheKey += object.receiveShadow + ','; + + return hashString( cacheKey ); + + } + + /** + * Whether the geometry requires an update or not. + * + * @type {boolean} + * @readonly + */ + get needsGeometryUpdate() { + + return this.geometry.id !== this.object.geometry.id; + + } + + /** + * Whether the render object requires an update or not. + * + * Note: There are two distinct places where render objects are checked for an update. + * + * 1. In `RenderObjects.get()` which is executed when the render object is request. This + * method checks the `needsUpdate` flag and recreates the render object if necessary. + * 2. In `Renderer._renderObjectDirect()` right after getting the render object via + * `RenderObjects.get()`. The render object's NodeMaterialObserver is then used to detect + * a need for a refresh due to material, geometry or object related value changes. + * + * TODO: Investigate if it's possible to merge both steps so there is only a single place + * that performs the 'needsUpdate' check. + * + * @type {boolean} + * @readonly + */ + get needsUpdate() { + + return /*this.object.static !== true &&*/ ( this.initialNodesCacheKey !== this.getDynamicCacheKey() || this.clippingNeedsUpdate ); + + } + + /** + * Returns the dynamic cache key which represents a key that is computed per draw command. + * + * @return {number} The cache key. + */ + getDynamicCacheKey() { + + let cacheKey = 0; + + // `Nodes.getCacheKey()` returns an environment cache key which is not relevant when + // the renderer is inside a shadow pass. + + if ( this.material.isShadowPassMaterial !== true ) { + + cacheKey = this._nodes.getCacheKey( this.scene, this.lightsNode ); + + } + + if ( this.camera.isArrayCamera ) { + + cacheKey = hash$1( cacheKey, this.camera.cameras.length ); + + } + + if ( this.object.receiveShadow ) { + + cacheKey = hash$1( cacheKey, 1 ); + + } + + return cacheKey; + + } + + /** + * Returns the render object's cache key. + * + * @return {number} The cache key. + */ + getCacheKey() { + + return this.getMaterialCacheKey() + this.getDynamicCacheKey(); + + } + + /** + * Frees internal resources. + */ + dispose() { + + this.material.removeEventListener( 'dispose', this.onMaterialDispose ); + + this.onDispose(); + + } + +} + +const _chainKeys$5 = []; + +/** + * This module manages the render objects of the renderer. + * + * @private + */ +class RenderObjects { + + /** + * Constructs a new render object management component. + * + * @param {Renderer} renderer - The renderer. + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + * @param {Geometries} geometries - Renderer component for managing geometries. + * @param {Pipelines} pipelines - Renderer component for managing pipelines. + * @param {Bindings} bindings - Renderer component for managing bindings. + * @param {Info} info - Renderer component for managing metrics and monitoring data. + */ + constructor( renderer, nodes, geometries, pipelines, bindings, info ) { + + /** + * The renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * Renderer component for managing nodes related logic. + * + * @type {Nodes} + */ + this.nodes = nodes; + + /** + * Renderer component for managing geometries. + * + * @type {Geometries} + */ + this.geometries = geometries; + + /** + * Renderer component for managing pipelines. + * + * @type {Pipelines} + */ + this.pipelines = pipelines; + + /** + * Renderer component for managing bindings. + * + * @type {Bindings} + */ + this.bindings = bindings; + + /** + * Renderer component for managing metrics and monitoring data. + * + * @type {Info} + */ + this.info = info; + + /** + * A dictionary that manages render contexts in chain maps + * for each pass ID. + * + * @type {Object} + */ + this.chainMaps = {}; + + } + + /** + * Returns a render object for the given object and state data. + * + * @param {Object3D} object - The 3D object. + * @param {Material} material - The 3D object's material. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the 3D object should be rendered with. + * @param {LightsNode} lightsNode - The lights node. + * @param {RenderContext} renderContext - The render context. + * @param {ClippingContext} clippingContext - The clipping context. + * @param {string} [passId] - An optional ID for identifying the pass. + * @return {RenderObject} The render object. + */ + get( object, material, scene, camera, lightsNode, renderContext, clippingContext, passId ) { + + const chainMap = this.getChainMap( passId ); + + // reuse chainArray + _chainKeys$5[ 0 ] = object; + _chainKeys$5[ 1 ] = material; + _chainKeys$5[ 2 ] = renderContext; + _chainKeys$5[ 3 ] = lightsNode; + + let renderObject = chainMap.get( _chainKeys$5 ); + + if ( renderObject === undefined ) { + + renderObject = this.createRenderObject( this.nodes, this.geometries, this.renderer, object, material, scene, camera, lightsNode, renderContext, clippingContext, passId ); + + chainMap.set( _chainKeys$5, renderObject ); + + } else { + + renderObject.updateClipping( clippingContext ); + + if ( renderObject.needsGeometryUpdate ) { + + renderObject.setGeometry( object.geometry ); + + } + + if ( renderObject.version !== material.version || renderObject.needsUpdate ) { + + if ( renderObject.initialCacheKey !== renderObject.getCacheKey() ) { + + renderObject.dispose(); + + renderObject = this.get( object, material, scene, camera, lightsNode, renderContext, clippingContext, passId ); + + } else { + + renderObject.version = material.version; + + } + + } + + } + + _chainKeys$5.length = 0; + + return renderObject; + + } + + /** + * Returns a chain map for the given pass ID. + * + * @param {string} [passId='default'] - The pass ID. + * @return {ChainMap} The chain map. + */ + getChainMap( passId = 'default' ) { + + return this.chainMaps[ passId ] || ( this.chainMaps[ passId ] = new ChainMap() ); + + } + + /** + * Frees internal resources. + */ + dispose() { + + this.chainMaps = {}; + + } + + /** + * Factory method for creating render objects with the given list of parameters. + * + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + * @param {Geometries} geometries - Renderer component for managing geometries. + * @param {Renderer} renderer - The renderer. + * @param {Object3D} object - The 3D object. + * @param {Material} material - The object's material. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the object should be rendered with. + * @param {LightsNode} lightsNode - The lights node. + * @param {RenderContext} renderContext - The render context. + * @param {ClippingContext} clippingContext - The clipping context. + * @param {string} [passId] - An optional ID for identifying the pass. + * @return {RenderObject} The render object. + */ + createRenderObject( nodes, geometries, renderer, object, material, scene, camera, lightsNode, renderContext, clippingContext, passId ) { + + const chainMap = this.getChainMap( passId ); + + const renderObject = new RenderObject( nodes, geometries, renderer, object, material, scene, camera, lightsNode, renderContext, clippingContext ); + + renderObject.onDispose = () => { + + this.pipelines.delete( renderObject ); + this.bindings.delete( renderObject ); + this.nodes.delete( renderObject ); + + chainMap.delete( renderObject.getChainArray() ); + + }; + + return renderObject; + + } + + +} + +/** + * Data structure for the renderer. It is intended to manage + * data of objects in dictionaries. + * + * @private + */ +class DataMap { + + /** + * Constructs a new data map. + */ + constructor() { + + /** + * `DataMap` internally uses a weak map + * to manage its data. + * + * @type {WeakMap} + */ + this.data = new WeakMap(); + + } + + /** + * Returns the dictionary for the given object. + * + * @param {Object} object - The object. + * @return {Object} The dictionary. + */ + get( object ) { + + let map = this.data.get( object ); + + if ( map === undefined ) { + + map = {}; + this.data.set( object, map ); + + } + + return map; + + } + + /** + * Deletes the dictionary for the given object. + * + * @param {Object} object - The object. + * @return {?Object} The deleted dictionary. + */ + delete( object ) { + + let map = null; + + if ( this.data.has( object ) ) { + + map = this.data.get( object ); + + this.data.delete( object ); + + } + + return map; + + } + + /** + * Returns `true` if the given object has a dictionary defined. + * + * @param {Object} object - The object to test. + * @return {boolean} Whether a dictionary is defined or not. + */ + has( object ) { + + return this.data.has( object ); + + } + + /** + * Frees internal resources. + */ + dispose() { + + this.data = new WeakMap(); + + } + +} + +const AttributeType = { + VERTEX: 1, + INDEX: 2, + STORAGE: 3, + INDIRECT: 4 +}; + +// size of a chunk in bytes (STD140 layout) + +const GPU_CHUNK_BYTES = 16; + +// @TODO: Move to src/constants.js + +const BlendColorFactor = 211; +const OneMinusBlendColorFactor = 212; + +/** + * This renderer module manages geometry attributes. + * + * @private + * @augments DataMap + */ +class Attributes extends DataMap { + + /** + * Constructs a new attribute management component. + * + * @param {Backend} backend - The renderer's backend. + */ + constructor( backend ) { + + super(); + + /** + * The renderer's backend. + * + * @type {Backend} + */ + this.backend = backend; + + } + + /** + * Deletes the data for the given attribute. + * + * @param {BufferAttribute} attribute - The attribute. + * @return {Object|null} The deleted attribute data. + */ + delete( attribute ) { + + const attributeData = super.delete( attribute ); + + if ( attributeData !== null ) { + + this.backend.destroyAttribute( attribute ); + + } + + return attributeData; + + } + + /** + * Updates the given attribute. This method creates attribute buffers + * for new attributes and updates data for existing ones. + * + * @param {BufferAttribute} attribute - The attribute to update. + * @param {number} type - The attribute type. + */ + update( attribute, type ) { + + const data = this.get( attribute ); + + if ( data.version === undefined ) { + + if ( type === AttributeType.VERTEX ) { + + this.backend.createAttribute( attribute ); + + } else if ( type === AttributeType.INDEX ) { + + this.backend.createIndexAttribute( attribute ); + + } else if ( type === AttributeType.STORAGE ) { + + this.backend.createStorageAttribute( attribute ); + + } else if ( type === AttributeType.INDIRECT ) { + + this.backend.createIndirectStorageAttribute( attribute ); + + } + + data.version = this._getBufferAttribute( attribute ).version; + + } else { + + const bufferAttribute = this._getBufferAttribute( attribute ); + + if ( data.version < bufferAttribute.version || bufferAttribute.usage === DynamicDrawUsage ) { + + this.backend.updateAttribute( attribute ); + + data.version = bufferAttribute.version; + + } + + } + + } + + /** + * Utility method for handling interleaved buffer attributes correctly. + * To process them, their `InterleavedBuffer` is returned. + * + * @param {BufferAttribute} attribute - The attribute. + * @return {BufferAttribute|InterleavedBuffer} + */ + _getBufferAttribute( attribute ) { + + if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; + + return attribute; + + } + +} + +/** + * Returns the wireframe version for the given geometry. + * + * @private + * @function + * @param {BufferGeometry} geometry - The geometry. + * @return {number} The version. + */ +function getWireframeVersion( geometry ) { + + return ( geometry.index !== null ) ? geometry.index.version : geometry.attributes.position.version; + +} + +/** + * Returns a wireframe index attribute for the given geometry. + * + * @private + * @function + * @param {BufferGeometry} geometry - The geometry. + * @return {BufferAttribute} The wireframe index attribute. + */ +function getWireframeIndex( geometry ) { + + const indices = []; + + const geometryIndex = geometry.index; + const geometryPosition = geometry.attributes.position; + + if ( geometryIndex !== null ) { + + const array = geometryIndex.array; + + for ( let i = 0, l = array.length; i < l; i += 3 ) { + + const a = array[ i + 0 ]; + const b = array[ i + 1 ]; + const c = array[ i + 2 ]; + + indices.push( a, b, b, c, c, a ); + + } + + } else { + + const array = geometryPosition.array; + + for ( let i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) { + + const a = i + 0; + const b = i + 1; + const c = i + 2; + + indices.push( a, b, b, c, c, a ); + + } + + } + + const attribute = new ( arrayNeedsUint32( indices ) ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 ); + attribute.version = getWireframeVersion( geometry ); + + return attribute; + +} + +/** + * This renderer module manages geometries. + * + * @private + * @augments DataMap + */ +class Geometries extends DataMap { + + /** + * Constructs a new geometry management component. + * + * @param {Attributes} attributes - Renderer component for managing attributes. + * @param {Info} info - Renderer component for managing metrics and monitoring data. + */ + constructor( attributes, info ) { + + super(); + + /** + * Renderer component for managing attributes. + * + * @type {Attributes} + */ + this.attributes = attributes; + + /** + * Renderer component for managing metrics and monitoring data. + * + * @type {Info} + */ + this.info = info; + + /** + * Weak Map for managing attributes for wireframe rendering. + * + * @type {WeakMap} + */ + this.wireframes = new WeakMap(); + + /** + * This Weak Map is used to make sure buffer attributes are + * updated only once per render call. + * + * @type {WeakMap} + */ + this.attributeCall = new WeakMap(); + + } + + /** + * Returns `true` if the given render object has an initialized geometry. + * + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether if the given render object has an initialized geometry or not. + */ + has( renderObject ) { + + const geometry = renderObject.geometry; + + return super.has( geometry ) && this.get( geometry ).initialized === true; + + } + + /** + * Prepares the geometry of the given render object for rendering. + * + * @param {RenderObject} renderObject - The render object. + */ + updateForRender( renderObject ) { + + if ( this.has( renderObject ) === false ) this.initGeometry( renderObject ); + + this.updateAttributes( renderObject ); + + } + + /** + * Initializes the geometry of the given render object. + * + * @param {RenderObject} renderObject - The render object. + */ + initGeometry( renderObject ) { + + const geometry = renderObject.geometry; + const geometryData = this.get( geometry ); + + geometryData.initialized = true; + + this.info.memory.geometries ++; + + const onDispose = () => { + + this.info.memory.geometries --; + + const index = geometry.index; + const geometryAttributes = renderObject.getAttributes(); + + if ( index !== null ) { + + this.attributes.delete( index ); + + } + + for ( const geometryAttribute of geometryAttributes ) { + + this.attributes.delete( geometryAttribute ); + + } + + const wireframeAttribute = this.wireframes.get( geometry ); + + if ( wireframeAttribute !== undefined ) { + + this.attributes.delete( wireframeAttribute ); + + } + + geometry.removeEventListener( 'dispose', onDispose ); + + }; + + geometry.addEventListener( 'dispose', onDispose ); + + } + + /** + * Updates the geometry attributes of the given render object. + * + * @param {RenderObject} renderObject - The render object. + */ + updateAttributes( renderObject ) { + + // attributes + + const attributes = renderObject.getAttributes(); + + for ( const attribute of attributes ) { + + if ( attribute.isStorageBufferAttribute || attribute.isStorageInstancedBufferAttribute ) { + + this.updateAttribute( attribute, AttributeType.STORAGE ); + + } else { + + this.updateAttribute( attribute, AttributeType.VERTEX ); + + } + + } + + // indexes + + const index = this.getIndex( renderObject ); + + if ( index !== null ) { + + this.updateAttribute( index, AttributeType.INDEX ); + + } + + // indirect + + const indirect = renderObject.geometry.indirect; + + if ( indirect !== null ) { + + this.updateAttribute( indirect, AttributeType.INDIRECT ); + + } + + } + + /** + * Updates the given attribute. + * + * @param {BufferAttribute} attribute - The attribute to update. + * @param {number} type - The attribute type. + */ + updateAttribute( attribute, type ) { + + const callId = this.info.render.calls; + + if ( ! attribute.isInterleavedBufferAttribute ) { + + if ( this.attributeCall.get( attribute ) !== callId ) { + + this.attributes.update( attribute, type ); + + this.attributeCall.set( attribute, callId ); + + } + + } else { + + if ( this.attributeCall.get( attribute ) === undefined ) { + + this.attributes.update( attribute, type ); + + this.attributeCall.set( attribute, callId ); + + } else if ( this.attributeCall.get( attribute.data ) !== callId ) { + + this.attributes.update( attribute, type ); + + this.attributeCall.set( attribute.data, callId ); + + this.attributeCall.set( attribute, callId ); + + } + + } + + } + + /** + * Returns the indirect buffer attribute of the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @return {?BufferAttribute} The indirect attribute. `null` if no indirect drawing is used. + */ + getIndirect( renderObject ) { + + return renderObject.geometry.indirect; + + } + + /** + * Returns the index of the given render object's geometry. This is implemented + * in a method to return a wireframe index if necessary. + * + * @param {RenderObject} renderObject - The render object. + * @return {?BufferAttribute} The index. Returns `null` for non-indexed geometries. + */ + getIndex( renderObject ) { + + const { geometry, material } = renderObject; + + let index = geometry.index; + + if ( material.wireframe === true ) { + + const wireframes = this.wireframes; + + let wireframeAttribute = wireframes.get( geometry ); + + if ( wireframeAttribute === undefined ) { + + wireframeAttribute = getWireframeIndex( geometry ); + + wireframes.set( geometry, wireframeAttribute ); + + } else if ( wireframeAttribute.version !== getWireframeVersion( geometry ) ) { + + this.attributes.delete( wireframeAttribute ); + + wireframeAttribute = getWireframeIndex( geometry ); + + wireframes.set( geometry, wireframeAttribute ); + + } + + index = wireframeAttribute; + + } + + return index; + + } + +} + +/** + * This renderer module provides a series of statistical information + * about the GPU memory and the rendering process. Useful for debugging + * and monitoring. + */ +class Info { + + /** + * Constructs a new info component. + */ + constructor() { + + /** + * Whether frame related metrics should automatically + * be resetted or not. This property should be set to `false` + * by apps which manage their own animation loop. They must + * then call `renderer.info.reset()` once per frame manually. + * + * @type {boolean} + * @default true + */ + this.autoReset = true; + + /** + * The current frame ID. This ID is managed + * by `NodeFrame`. + * + * @type {number} + * @readonly + * @default 0 + */ + this.frame = 0; + + /** + * The number of render calls since the + * app has been started. + * + * @type {number} + * @readonly + * @default 0 + */ + this.calls = 0; + + /** + * Render related metrics. + * + * @type {Object} + * @readonly + * @property {number} calls - The number of render calls since the app has been started. + * @property {number} frameCalls - The number of render calls of the current frame. + * @property {number} drawCalls - The number of draw calls of the current frame. + * @property {number} triangles - The number of rendered triangle primitives of the current frame. + * @property {number} points - The number of rendered point primitives of the current frame. + * @property {number} lines - The number of rendered line primitives of the current frame. + * @property {number} timestamp - The timestamp of the frame when using `renderer.renderAsync()`. + */ + this.render = { + calls: 0, + frameCalls: 0, + drawCalls: 0, + triangles: 0, + points: 0, + lines: 0, + timestamp: 0, + }; + + /** + * Compute related metrics. + * + * @type {Object} + * @readonly + * @property {number} calls - The number of compute calls since the app has been started. + * @property {number} frameCalls - The number of compute calls of the current frame. + * @property {number} timestamp - The timestamp of the frame when using `renderer.computeAsync()`. + */ + this.compute = { + calls: 0, + frameCalls: 0, + timestamp: 0 + }; + + /** + * Memory related metrics. + * + * @type {Object} + * @readonly + * @property {number} geometries - The number of active geometries. + * @property {number} frameCalls - The number of active textures. + */ + this.memory = { + geometries: 0, + textures: 0 + }; + + } + + /** + * This method should be executed per draw call and updates the corresponding metrics. + * + * @param {Object3D} object - The 3D object that is going to be rendered. + * @param {number} count - The vertex or index count. + * @param {number} instanceCount - The instance count. + */ + update( object, count, instanceCount ) { + + this.render.drawCalls ++; + + if ( object.isMesh || object.isSprite ) { + + this.render.triangles += instanceCount * ( count / 3 ); + + } else if ( object.isPoints ) { + + this.render.points += instanceCount * count; + + } else if ( object.isLineSegments ) { + + this.render.lines += instanceCount * ( count / 2 ); + + } else if ( object.isLine ) { + + this.render.lines += instanceCount * ( count - 1 ); + + } else { + + console.error( 'THREE.WebGPUInfo: Unknown object type.' ); + + } + + } + + /** + * Resets frame related metrics. + */ + reset() { + + this.render.drawCalls = 0; + this.render.frameCalls = 0; + this.compute.frameCalls = 0; + + this.render.triangles = 0; + this.render.points = 0; + this.render.lines = 0; + + + } + + /** + * Performs a complete reset of the object. + */ + dispose() { + + this.reset(); + + this.calls = 0; + + this.render.calls = 0; + this.compute.calls = 0; + + this.render.timestamp = 0; + this.compute.timestamp = 0; + this.memory.geometries = 0; + this.memory.textures = 0; + + } + +} + +/** + * Abstract class for representing pipelines. + * + * @private + * @abstract + */ +class Pipeline { + + /** + * Constructs a new pipeline. + * + * @param {string} cacheKey - The pipeline's cache key. + */ + constructor( cacheKey ) { + + /** + * The pipeline's cache key. + * + * @type {string} + */ + this.cacheKey = cacheKey; + + /** + * How often the pipeline is currently in use. + * + * @type {number} + * @default 0 + */ + this.usedTimes = 0; + + } + +} + +/** + * Class for representing render pipelines. + * + * @private + * @augments Pipeline + */ +class RenderPipeline extends Pipeline { + + /** + * Constructs a new render pipeline. + * + * @param {string} cacheKey - The pipeline's cache key. + * @param {ProgrammableStage} vertexProgram - The pipeline's vertex shader. + * @param {ProgrammableStage} fragmentProgram - The pipeline's fragment shader. + */ + constructor( cacheKey, vertexProgram, fragmentProgram ) { + + super( cacheKey ); + + /** + * The pipeline's vertex shader. + * + * @type {ProgrammableStage} + */ + this.vertexProgram = vertexProgram; + + /** + * The pipeline's fragment shader. + * + * @type {ProgrammableStage} + */ + this.fragmentProgram = fragmentProgram; + + } + +} + +/** + * Class for representing compute pipelines. + * + * @private + * @augments Pipeline + */ +class ComputePipeline extends Pipeline { + + /** + * Constructs a new render pipeline. + * + * @param {string} cacheKey - The pipeline's cache key. + * @param {ProgrammableStage} computeProgram - The pipeline's compute shader. + */ + constructor( cacheKey, computeProgram ) { + + super( cacheKey ); + + /** + * The pipeline's compute shader. + * + * @type {ProgrammableStage} + */ + this.computeProgram = computeProgram; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isComputePipeline = true; + + } + +} + +let _id$8 = 0; + +/** + * Class for representing programmable stages which are vertex, + * fragment or compute shaders. Unlike fixed-function states (like blending), + * they represent the programmable part of a pipeline. + * + * @private + */ +class ProgrammableStage { + + /** + * Constructs a new programmable stage. + * + * @param {string} code - The shader code. + * @param {('vertex'|'fragment'|'compute')} stage - The type of stage. + * @param {string} name - The name of the shader. + * @param {?Array} [transforms=null] - The transforms (only relevant for compute stages with WebGL 2 which uses Transform Feedback). + * @param {?Array} [attributes=null] - The attributes (only relevant for compute stages with WebGL 2 which uses Transform Feedback). + */ + constructor( code, stage, name, transforms = null, attributes = null ) { + + /** + * The id of the programmable stage. + * + * @type {number} + */ + this.id = _id$8 ++; + + /** + * The shader code. + * + * @type {string} + */ + this.code = code; + + /** + * The type of stage. + * + * @type {string} + */ + this.stage = stage; + + /** + * The name of the stage. + * This is used for debugging purposes. + * + * @type {string} + */ + this.name = name; + + /** + * The transforms (only relevant for compute stages with WebGL 2 which uses Transform Feedback). + * + * @type {?Array} + */ + this.transforms = transforms; + + /** + * The attributes (only relevant for compute stages with WebGL 2 which uses Transform Feedback). + * + * @type {?Array} + */ + this.attributes = attributes; + + /** + * How often the programmable stage is currently in use. + * + * @type {number} + * @default 0 + */ + this.usedTimes = 0; + + } + +} + +/** + * This renderer module manages the pipelines of the renderer. + * + * @private + * @augments DataMap + */ +class Pipelines extends DataMap { + + /** + * Constructs a new pipeline management component. + * + * @param {Backend} backend - The renderer's backend. + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + */ + constructor( backend, nodes ) { + + super(); + + /** + * The renderer's backend. + * + * @type {Backend} + */ + this.backend = backend; + + /** + * Renderer component for managing nodes related logic. + * + * @type {Nodes} + */ + this.nodes = nodes; + + /** + * A references to the bindings management component. + * This reference will be set inside the `Bindings` + * constructor. + * + * @type {?Bindings} + * @default null + */ + this.bindings = null; + + /** + * Internal cache for maintaining pipelines. + * The key of the map is a cache key, the value the pipeline. + * + * @type {Map} + */ + this.caches = new Map(); + + /** + * This dictionary maintains for each shader stage type (vertex, + * fragment and compute) the programmable stage objects which + * represent the actual shader code. + * + * @type {Object} + */ + this.programs = { + vertex: new Map(), + fragment: new Map(), + compute: new Map() + }; + + } + + /** + * Returns a compute pipeline for the given compute node. + * + * @param {Node} computeNode - The compute node. + * @param {Array} bindings - The bindings. + * @return {ComputePipeline} The compute pipeline. + */ + getForCompute( computeNode, bindings ) { + + const { backend } = this; + + const data = this.get( computeNode ); + + if ( this._needsComputeUpdate( computeNode ) ) { + + const previousPipeline = data.pipeline; + + if ( previousPipeline ) { + + previousPipeline.usedTimes --; + previousPipeline.computeProgram.usedTimes --; + + } + + // get shader + + const nodeBuilderState = this.nodes.getForCompute( computeNode ); + + // programmable stage + + let stageCompute = this.programs.compute.get( nodeBuilderState.computeShader ); + + if ( stageCompute === undefined ) { + + if ( previousPipeline && previousPipeline.computeProgram.usedTimes === 0 ) this._releaseProgram( previousPipeline.computeProgram ); + + stageCompute = new ProgrammableStage( nodeBuilderState.computeShader, 'compute', computeNode.name, nodeBuilderState.transforms, nodeBuilderState.nodeAttributes ); + this.programs.compute.set( nodeBuilderState.computeShader, stageCompute ); + + backend.createProgram( stageCompute ); + + } + + // determine compute pipeline + + const cacheKey = this._getComputeCacheKey( computeNode, stageCompute ); + + let pipeline = this.caches.get( cacheKey ); + + if ( pipeline === undefined ) { + + if ( previousPipeline && previousPipeline.usedTimes === 0 ) this._releasePipeline( previousPipeline ); + + pipeline = this._getComputePipeline( computeNode, stageCompute, cacheKey, bindings ); + + } + + // keep track of all used times + + pipeline.usedTimes ++; + stageCompute.usedTimes ++; + + // + + data.version = computeNode.version; + data.pipeline = pipeline; + + } + + return data.pipeline; + + } + + /** + * Returns a render pipeline for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @param {?Array} [promises=null] - An array of compilation promises which is only relevant in context of `Renderer.compileAsync()`. + * @return {RenderPipeline} The render pipeline. + */ + getForRender( renderObject, promises = null ) { + + const { backend } = this; + + const data = this.get( renderObject ); + + if ( this._needsRenderUpdate( renderObject ) ) { + + const previousPipeline = data.pipeline; + + if ( previousPipeline ) { + + previousPipeline.usedTimes --; + previousPipeline.vertexProgram.usedTimes --; + previousPipeline.fragmentProgram.usedTimes --; + + } + + // get shader + + const nodeBuilderState = renderObject.getNodeBuilderState(); + + const name = renderObject.material ? renderObject.material.name : ''; + + // programmable stages + + let stageVertex = this.programs.vertex.get( nodeBuilderState.vertexShader ); + + if ( stageVertex === undefined ) { + + if ( previousPipeline && previousPipeline.vertexProgram.usedTimes === 0 ) this._releaseProgram( previousPipeline.vertexProgram ); + + stageVertex = new ProgrammableStage( nodeBuilderState.vertexShader, 'vertex', name ); + this.programs.vertex.set( nodeBuilderState.vertexShader, stageVertex ); + + backend.createProgram( stageVertex ); + + } + + let stageFragment = this.programs.fragment.get( nodeBuilderState.fragmentShader ); + + if ( stageFragment === undefined ) { + + if ( previousPipeline && previousPipeline.fragmentProgram.usedTimes === 0 ) this._releaseProgram( previousPipeline.fragmentProgram ); + + stageFragment = new ProgrammableStage( nodeBuilderState.fragmentShader, 'fragment', name ); + this.programs.fragment.set( nodeBuilderState.fragmentShader, stageFragment ); + + backend.createProgram( stageFragment ); + + } + + // determine render pipeline + + const cacheKey = this._getRenderCacheKey( renderObject, stageVertex, stageFragment ); + + let pipeline = this.caches.get( cacheKey ); + + if ( pipeline === undefined ) { + + if ( previousPipeline && previousPipeline.usedTimes === 0 ) this._releasePipeline( previousPipeline ); + + pipeline = this._getRenderPipeline( renderObject, stageVertex, stageFragment, cacheKey, promises ); + + } else { + + renderObject.pipeline = pipeline; + + } + + // keep track of all used times + + pipeline.usedTimes ++; + stageVertex.usedTimes ++; + stageFragment.usedTimes ++; + + // + + data.pipeline = pipeline; + + } + + return data.pipeline; + + } + + /** + * Deletes the pipeline for the given render object. + * + * @param {RenderObject} object - The render object. + * @return {?Object} The deleted dictionary. + */ + delete( object ) { + + const pipeline = this.get( object ).pipeline; + + if ( pipeline ) { + + // pipeline + + pipeline.usedTimes --; + + if ( pipeline.usedTimes === 0 ) this._releasePipeline( pipeline ); + + // programs + + if ( pipeline.isComputePipeline ) { + + pipeline.computeProgram.usedTimes --; + + if ( pipeline.computeProgram.usedTimes === 0 ) this._releaseProgram( pipeline.computeProgram ); + + } else { + + pipeline.fragmentProgram.usedTimes --; + pipeline.vertexProgram.usedTimes --; + + if ( pipeline.vertexProgram.usedTimes === 0 ) this._releaseProgram( pipeline.vertexProgram ); + if ( pipeline.fragmentProgram.usedTimes === 0 ) this._releaseProgram( pipeline.fragmentProgram ); + + } + + } + + return super.delete( object ); + + } + + /** + * Frees internal resources. + */ + dispose() { + + super.dispose(); + + this.caches = new Map(); + this.programs = { + vertex: new Map(), + fragment: new Map(), + compute: new Map() + }; + + } + + /** + * Updates the pipeline for the given render object. + * + * @param {RenderObject} renderObject - The render object. + */ + updateForRender( renderObject ) { + + this.getForRender( renderObject ); + + } + + /** + * Returns a compute pipeline for the given parameters. + * + * @private + * @param {Node} computeNode - The compute node. + * @param {ProgrammableStage} stageCompute - The programmable stage representing the compute shader. + * @param {string} cacheKey - The cache key. + * @param {Array} bindings - The bindings. + * @return {ComputePipeline} The compute pipeline. + */ + _getComputePipeline( computeNode, stageCompute, cacheKey, bindings ) { + + // check for existing pipeline + + cacheKey = cacheKey || this._getComputeCacheKey( computeNode, stageCompute ); + + let pipeline = this.caches.get( cacheKey ); + + if ( pipeline === undefined ) { + + pipeline = new ComputePipeline( cacheKey, stageCompute ); + + this.caches.set( cacheKey, pipeline ); + + this.backend.createComputePipeline( pipeline, bindings ); + + } + + return pipeline; + + } + + /** + * Returns a render pipeline for the given parameters. + * + * @private + * @param {RenderObject} renderObject - The render object. + * @param {ProgrammableStage} stageVertex - The programmable stage representing the vertex shader. + * @param {ProgrammableStage} stageFragment - The programmable stage representing the fragment shader. + * @param {string} cacheKey - The cache key. + * @param {?Array} promises - An array of compilation promises which is only relevant in context of `Renderer.compileAsync()`. + * @return {ComputePipeline} The compute pipeline. + */ + _getRenderPipeline( renderObject, stageVertex, stageFragment, cacheKey, promises ) { + + // check for existing pipeline + + cacheKey = cacheKey || this._getRenderCacheKey( renderObject, stageVertex, stageFragment ); + + let pipeline = this.caches.get( cacheKey ); + + if ( pipeline === undefined ) { + + pipeline = new RenderPipeline( cacheKey, stageVertex, stageFragment ); + + this.caches.set( cacheKey, pipeline ); + + renderObject.pipeline = pipeline; + + // The `promises` array is `null` by default and only set to an empty array when + // `Renderer.compileAsync()` is used. The next call actually fills the array with + // pending promises that resolve when the render pipelines are ready for rendering. + + this.backend.createRenderPipeline( renderObject, promises ); + + } + + return pipeline; + + } + + /** + * Computes a cache key representing a compute pipeline. + * + * @private + * @param {Node} computeNode - The compute node. + * @param {ProgrammableStage} stageCompute - The programmable stage representing the compute shader. + * @return {string} The cache key. + */ + _getComputeCacheKey( computeNode, stageCompute ) { + + return computeNode.id + ',' + stageCompute.id; + + } + + /** + * Computes a cache key representing a render pipeline. + * + * @private + * @param {RenderObject} renderObject - The render object. + * @param {ProgrammableStage} stageVertex - The programmable stage representing the vertex shader. + * @param {ProgrammableStage} stageFragment - The programmable stage representing the fragment shader. + * @return {string} The cache key. + */ + _getRenderCacheKey( renderObject, stageVertex, stageFragment ) { + + return stageVertex.id + ',' + stageFragment.id + ',' + this.backend.getRenderCacheKey( renderObject ); + + } + + /** + * Releases the given pipeline. + * + * @private + * @param {Pipeline} pipeline - The pipeline to release. + */ + _releasePipeline( pipeline ) { + + this.caches.delete( pipeline.cacheKey ); + + } + + /** + * Releases the shader program. + * + * @private + * @param {Object} program - The shader program to release. + */ + _releaseProgram( program ) { + + const code = program.code; + const stage = program.stage; + + this.programs[ stage ].delete( code ); + + } + + /** + * Returns `true` if the compute pipeline for the given compute node requires an update. + * + * @private + * @param {Node} computeNode - The compute node. + * @return {boolean} Whether the compute pipeline for the given compute node requires an update or not. + */ + _needsComputeUpdate( computeNode ) { + + const data = this.get( computeNode ); + + return data.pipeline === undefined || data.version !== computeNode.version; + + } + + /** + * Returns `true` if the render pipeline for the given render object requires an update. + * + * @private + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the render object for the given render object requires an update or not. + */ + _needsRenderUpdate( renderObject ) { + + const data = this.get( renderObject ); + + return data.pipeline === undefined || this.backend.needsRenderUpdate( renderObject ); + + } + +} + +/** + * This renderer module manages the bindings of the renderer. + * + * @private + * @augments DataMap + */ +class Bindings extends DataMap { + + /** + * Constructs a new bindings management component. + * + * @param {Backend} backend - The renderer's backend. + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + * @param {Textures} textures - Renderer component for managing textures. + * @param {Attributes} attributes - Renderer component for managing attributes. + * @param {Pipelines} pipelines - Renderer component for managing pipelines. + * @param {Info} info - Renderer component for managing metrics and monitoring data. + */ + constructor( backend, nodes, textures, attributes, pipelines, info ) { + + super(); + + /** + * The renderer's backend. + * + * @type {Backend} + */ + this.backend = backend; + + /** + * Renderer component for managing textures. + * + * @type {Textures} + */ + this.textures = textures; + + /** + * Renderer component for managing pipelines. + * + * @type {Pipelines} + */ + this.pipelines = pipelines; + + /** + * Renderer component for managing attributes. + * + * @type {Attributes} + */ + this.attributes = attributes; + + /** + * Renderer component for managing nodes related logic. + * + * @type {Nodes} + */ + this.nodes = nodes; + + /** + * Renderer component for managing metrics and monitoring data. + * + * @type {Info} + */ + this.info = info; + + this.pipelines.bindings = this; // assign bindings to pipelines + + } + + /** + * Returns the bind groups for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @return {Array} The bind groups. + */ + getForRender( renderObject ) { + + const bindings = renderObject.getBindings(); + + for ( const bindGroup of bindings ) { + + const groupData = this.get( bindGroup ); + + if ( groupData.bindGroup === undefined ) { + + // each object defines an array of bindings (ubos, textures, samplers etc.) + + this._init( bindGroup ); + + this.backend.createBindings( bindGroup, bindings, 0 ); + + groupData.bindGroup = bindGroup; + + } + + } + + return bindings; + + } + + /** + * Returns the bind groups for the given compute node. + * + * @param {Node} computeNode - The compute node. + * @return {Array} The bind groups. + */ + getForCompute( computeNode ) { + + const bindings = this.nodes.getForCompute( computeNode ).bindings; + + for ( const bindGroup of bindings ) { + + const groupData = this.get( bindGroup ); + + if ( groupData.bindGroup === undefined ) { + + this._init( bindGroup ); + + this.backend.createBindings( bindGroup, bindings, 0 ); + + groupData.bindGroup = bindGroup; + + } + + } + + return bindings; + + } + + /** + * Updates the bindings for the given compute node. + * + * @param {Node} computeNode - The compute node. + */ + updateForCompute( computeNode ) { + + this._updateBindings( this.getForCompute( computeNode ) ); + + } + + /** + * Updates the bindings for the given render object. + * + * @param {RenderObject} renderObject - The render object. + */ + updateForRender( renderObject ) { + + this._updateBindings( this.getForRender( renderObject ) ); + + } + + /** + * Updates the given array of bindings. + * + * @param {Array} bindings - The bind groups. + */ + _updateBindings( bindings ) { + + for ( const bindGroup of bindings ) { + + this._update( bindGroup, bindings ); + + } + + } + + /** + * Initializes the given bind group. + * + * @param {BindGroup} bindGroup - The bind group to initialize. + */ + _init( bindGroup ) { + + for ( const binding of bindGroup.bindings ) { + + if ( binding.isSampledTexture ) { + + this.textures.updateTexture( binding.texture ); + + } else if ( binding.isStorageBuffer ) { + + const attribute = binding.attribute; + const attributeType = attribute.isIndirectStorageBufferAttribute ? AttributeType.INDIRECT : AttributeType.STORAGE; + + this.attributes.update( attribute, attributeType ); + + } + + } + + } + + /** + * Updates the given bind group. + * + * @param {BindGroup} bindGroup - The bind group to update. + * @param {Array} bindings - The bind groups. + */ + _update( bindGroup, bindings ) { + + const { backend } = this; + + let needsBindingsUpdate = false; + let cacheBindings = true; + let cacheIndex = 0; + let version = 0; + + // iterate over all bindings and check if buffer updates or a new binding group is required + + for ( const binding of bindGroup.bindings ) { + + if ( binding.isNodeUniformsGroup ) { + + const updated = this.nodes.updateGroup( binding ); + + // every uniforms group is a uniform buffer. So if no update is required, + // we move one with the next binding. Otherwise the next if block will update the group. + + if ( updated === false ) continue; + + } + + if ( binding.isStorageBuffer ) { + + const attribute = binding.attribute; + const attributeType = attribute.isIndirectStorageBufferAttribute ? AttributeType.INDIRECT : AttributeType.STORAGE; + + this.attributes.update( attribute, attributeType ); + + + } + + if ( binding.isUniformBuffer ) { + + const updated = binding.update(); + + if ( updated ) { + + backend.updateBinding( binding ); + + } + + } else if ( binding.isSampler ) { + + binding.update(); + + } else if ( binding.isSampledTexture ) { + + const texturesTextureData = this.textures.get( binding.texture ); + + if ( binding.needsBindingsUpdate( texturesTextureData.generation ) ) needsBindingsUpdate = true; + + const updated = binding.update(); + + const texture = binding.texture; + + if ( updated ) { + + this.textures.updateTexture( texture ); + + } + + const textureData = backend.get( texture ); + + if ( textureData.externalTexture !== undefined || texturesTextureData.isDefaultTexture ) { + + cacheBindings = false; + + } else { + + cacheIndex = cacheIndex * 10 + texture.id; + version += texture.version; + + } + + if ( backend.isWebGPUBackend === true && textureData.texture === undefined && textureData.externalTexture === undefined ) { + + // TODO: Remove this once we found why updated === false isn't bound to a texture in the WebGPU backend + console.error( 'Bindings._update: binding should be available:', binding, updated, texture, binding.textureNode.value, needsBindingsUpdate ); + + this.textures.updateTexture( texture ); + needsBindingsUpdate = true; + + } + + if ( texture.isStorageTexture === true ) { + + const textureData = this.get( texture ); + + if ( binding.store === true ) { + + textureData.needsMipmap = true; + + } else if ( this.textures.needsMipmaps( texture ) && textureData.needsMipmap === true ) { + + this.backend.generateMipmaps( texture ); + + textureData.needsMipmap = false; + + } + + } + + } + + } + + if ( needsBindingsUpdate === true ) { + + this.backend.updateBindings( bindGroup, bindings, cacheBindings ? cacheIndex : 0, version ); + + } + + } + +} + +/** + * Default sorting function for opaque render items. + * + * @private + * @function + * @param {Object} a - The first render item. + * @param {Object} b - The second render item. + * @return {number} A numeric value which defines the sort order. + */ +function painterSortStable( a, b ) { + + if ( a.groupOrder !== b.groupOrder ) { + + return a.groupOrder - b.groupOrder; + + } else if ( a.renderOrder !== b.renderOrder ) { + + return a.renderOrder - b.renderOrder; + + } else if ( a.z !== b.z ) { + + return a.z - b.z; + + } else { + + return a.id - b.id; + + } + +} + +/** + * Default sorting function for transparent render items. + * + * @private + * @function + * @param {Object} a - The first render item. + * @param {Object} b - The second render item. + * @return {number} A numeric value which defines the sort order. + */ +function reversePainterSortStable( a, b ) { + + if ( a.groupOrder !== b.groupOrder ) { + + return a.groupOrder - b.groupOrder; + + } else if ( a.renderOrder !== b.renderOrder ) { + + return a.renderOrder - b.renderOrder; + + } else if ( a.z !== b.z ) { + + return b.z - a.z; + + } else { + + return a.id - b.id; + + } + +} + +/** + * Returns `true` if the given transparent material requires a double pass. + * + * @private + * @function + * @param {Material} material - The transparent material. + * @return {boolean} Whether the given material requires a double pass or not. + */ +function needsDoublePass( material ) { + + const hasTransmission = material.transmission > 0 || material.transmissionNode; + + return hasTransmission && material.side === DoubleSide && material.forceSinglePass === false; + +} + +/** + * When the renderer analyzes the scene at the beginning of a render call, + * it stores 3D object for further processing in render lists. Depending on the + * properties of a 3D objects (like their transformation or material state), the + * objects are maintained in ordered lists for the actual rendering. + * + * Render lists are unique per scene and camera combination. + * + * @private + * @augments Pipeline + */ +class RenderList { + + /** + * Constructs a render list. + * + * @param {Lighting} lighting - The lighting management component. + * @param {Scene} scene - The scene. + * @param {Camera} camera - The camera the scene is rendered with. + */ + constructor( lighting, scene, camera ) { + + /** + * 3D objects are transformed into render items and stored in this array. + * + * @type {Array} + */ + this.renderItems = []; + + /** + * The current render items index. + * + * @type {number} + * @default 0 + */ + this.renderItemsIndex = 0; + + /** + * A list with opaque render items. + * + * @type {Array} + */ + this.opaque = []; + + /** + * A list with transparent render items which require + * double pass rendering (e.g. transmissive objects). + * + * @type {Array} + */ + this.transparentDoublePass = []; + + /** + * A list with transparent render items. + * + * @type {Array} + */ + this.transparent = []; + + /** + * A list with transparent render bundle data. + * + * @type {Array} + */ + this.bundles = []; + + /** + * The render list's lights node. This node is later + * relevant for the actual analytical light nodes which + * compute the scene's lighting in the shader. + * + * @type {LightsNode} + */ + this.lightsNode = lighting.getNode( scene, camera ); + + /** + * The scene's lights stored in an array. This array + * is used to setup the lights node. + * + * @type {Array} + */ + this.lightsArray = []; + + /** + * The scene. + * + * @type {Scene} + */ + this.scene = scene; + + /** + * The camera the scene is rendered with. + * + * @type {Camera} + */ + this.camera = camera; + + /** + * How many objects perform occlusion query tests. + * + * @type {number} + * @default 0 + */ + this.occlusionQueryCount = 0; + + } + + /** + * This method is called right at the beginning of a render call + * before the scene is analyzed. It prepares the internal data + * structures for the upcoming render lists generation. + * + * @return {RenderList} A reference to this render list. + */ + begin() { + + this.renderItemsIndex = 0; + + this.opaque.length = 0; + this.transparentDoublePass.length = 0; + this.transparent.length = 0; + this.bundles.length = 0; + + this.lightsArray.length = 0; + + this.occlusionQueryCount = 0; + + return this; + + } + + /** + * Returns a render item for the giving render item state. The state is defined + * by a series of object-related parameters. + * + * The method avoids object creation by holding render items and reusing them in + * subsequent render calls (just with different property values). + * + * @param {Object3D} object - The 3D object. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} material - The 3D object's material. + * @param {number} groupOrder - The current group order. + * @param {number} z - Th 3D object's depth value (z value in clip space). + * @param {?number} group - {?Object} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {ClippingContext} clippingContext - The current clipping context. + * @return {Object} The render item. + */ + getNextRenderItem( object, geometry, material, groupOrder, z, group, clippingContext ) { + + let renderItem = this.renderItems[ this.renderItemsIndex ]; + + if ( renderItem === undefined ) { + + renderItem = { + id: object.id, + object: object, + geometry: geometry, + material: material, + groupOrder: groupOrder, + renderOrder: object.renderOrder, + z: z, + group: group, + clippingContext: clippingContext + }; + + this.renderItems[ this.renderItemsIndex ] = renderItem; + + } else { + + renderItem.id = object.id; + renderItem.object = object; + renderItem.geometry = geometry; + renderItem.material = material; + renderItem.groupOrder = groupOrder; + renderItem.renderOrder = object.renderOrder; + renderItem.z = z; + renderItem.group = group; + renderItem.clippingContext = clippingContext; + + } + + this.renderItemsIndex ++; + + return renderItem; + + } + + /** + * Pushes the given object as a render item to the internal render lists. + * The selected lists depend on the object properties. + * + * @param {Object3D} object - The 3D object. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} material - The 3D object's material. + * @param {number} groupOrder - The current group order. + * @param {number} z - Th 3D object's depth value (z value in clip space). + * @param {?number} group - {?Object} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {ClippingContext} clippingContext - The current clipping context. + */ + push( object, geometry, material, groupOrder, z, group, clippingContext ) { + + const renderItem = this.getNextRenderItem( object, geometry, material, groupOrder, z, group, clippingContext ); + + if ( object.occlusionTest === true ) this.occlusionQueryCount ++; + + if ( material.transparent === true || material.transmission > 0 ) { + + if ( needsDoublePass( material ) ) this.transparentDoublePass.push( renderItem ); + + this.transparent.push( renderItem ); + + } else { + + this.opaque.push( renderItem ); + + } + + } + + /** + * Inserts the given object as a render item at the start of the internal render lists. + * The selected lists depend on the object properties. + * + * @param {Object3D} object - The 3D object. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} material - The 3D object's material. + * @param {number} groupOrder - The current group order. + * @param {number} z - Th 3D object's depth value (z value in clip space). + * @param {?number} group - {?Object} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {ClippingContext} clippingContext - The current clipping context. + */ + unshift( object, geometry, material, groupOrder, z, group, clippingContext ) { + + const renderItem = this.getNextRenderItem( object, geometry, material, groupOrder, z, group, clippingContext ); + + if ( material.transparent === true || material.transmission > 0 ) { + + if ( needsDoublePass( material ) ) this.transparentDoublePass.unshift( renderItem ); + + this.transparent.unshift( renderItem ); + + } else { + + this.opaque.unshift( renderItem ); + + } + + } + + /** + * Pushes render bundle group data into the render list. + * + * @param {Object} group - Bundle group data. + */ + pushBundle( group ) { + + this.bundles.push( group ); + + } + + /** + * Pushes a light into the render list. + * + * @param {Light} light - The light. + */ + pushLight( light ) { + + this.lightsArray.push( light ); + + } + + /** + * Sorts the internal render lists. + * + * @param {?function(any, any): number} customOpaqueSort - A custom sort function for opaque objects. + * @param {?function(any, any): number} customTransparentSort - A custom sort function for transparent objects. + */ + sort( customOpaqueSort, customTransparentSort ) { + + if ( this.opaque.length > 1 ) this.opaque.sort( customOpaqueSort || painterSortStable ); + if ( this.transparentDoublePass.length > 1 ) this.transparentDoublePass.sort( customTransparentSort || reversePainterSortStable ); + if ( this.transparent.length > 1 ) this.transparent.sort( customTransparentSort || reversePainterSortStable ); + + } + + /** + * This method performs finalizing tasks right after the render lists + * have been generated. + */ + finish() { + + // update lights + + this.lightsNode.setLights( this.lightsArray ); + + // Clear references from inactive renderItems in the list + + for ( let i = this.renderItemsIndex, il = this.renderItems.length; i < il; i ++ ) { + + const renderItem = this.renderItems[ i ]; + + if ( renderItem.id === null ) break; + + renderItem.id = null; + renderItem.object = null; + renderItem.geometry = null; + renderItem.material = null; + renderItem.groupOrder = null; + renderItem.renderOrder = null; + renderItem.z = null; + renderItem.group = null; + renderItem.clippingContext = null; + + } + + } + +} + +const _chainKeys$4 = []; + +/** + * This renderer module manages the render lists which are unique + * per scene and camera combination. + * + * @private + */ +class RenderLists { + + /** + * Constructs a render lists management component. + * + * @param {Lighting} lighting - The lighting management component. + */ + constructor( lighting ) { + + /** + * The lighting management component. + * + * @type {Lighting} + */ + this.lighting = lighting; + + /** + * The internal chain map which holds the render lists. + * + * @type {ChainMap} + */ + this.lists = new ChainMap(); + + } + + /** + * Returns a render list for the given scene and camera. + * + * @param {Scene} scene - The scene. + * @param {Camera} camera - The camera. + * @return {RenderList} The render list. + */ + get( scene, camera ) { + + const lists = this.lists; + + _chainKeys$4[ 0 ] = scene; + _chainKeys$4[ 1 ] = camera; + + let list = lists.get( _chainKeys$4 ); + + if ( list === undefined ) { + + list = new RenderList( this.lighting, scene, camera ); + lists.set( _chainKeys$4, list ); + + } + + _chainKeys$4.length = 0; + + return list; + + } + + /** + * Frees all internal resources. + */ + dispose() { + + this.lists = new ChainMap(); + + } + +} + +let _id$7 = 0; + +/** + * Any render or compute command is executed in a specific context that defines + * the state of the renderer and its backend. Typical examples for such context + * data are the current clear values or data from the active framebuffer. This + * module is used to represent these contexts as objects. + * + * @private + */ +class RenderContext { + + /** + * Constructs a new render context. + */ + constructor() { + + /** + * The context's ID. + * + * @type {number} + */ + this.id = _id$7 ++; + + /** + * Whether the current active framebuffer has a color attachment. + * + * @type {boolean} + * @default true + */ + this.color = true; + + /** + * Whether the color attachment should be cleared or not. + * + * @type {boolean} + * @default true + */ + this.clearColor = true; + + /** + * The clear color value. + * + * @type {Object} + * @default true + */ + this.clearColorValue = { r: 0, g: 0, b: 0, a: 1 }; + + /** + * Whether the current active framebuffer has a depth attachment. + * + * @type {boolean} + * @default true + */ + this.depth = true; + + /** + * Whether the depth attachment should be cleared or not. + * + * @type {boolean} + * @default true + */ + this.clearDepth = true; + + /** + * The clear depth value. + * + * @type {number} + * @default 1 + */ + this.clearDepthValue = 1; + + /** + * Whether the current active framebuffer has a stencil attachment. + * + * @type {boolean} + * @default false + */ + this.stencil = false; + + /** + * Whether the stencil attachment should be cleared or not. + * + * @type {boolean} + * @default true + */ + this.clearStencil = true; + + /** + * The clear stencil value. + * + * @type {number} + * @default 1 + */ + this.clearStencilValue = 1; + + /** + * By default the viewport encloses the entire framebuffer If a smaller + * viewport is manually defined, this property is to `true` by the renderer. + * + * @type {boolean} + * @default false + */ + this.viewport = false; + + /** + * The viewport value. This value is in physical pixels meaning it incorporates + * the renderer's pixel ratio. The viewport property of render targets or + * the renderer is in logical pixels. + * + * @type {Vector4} + */ + this.viewportValue = new Vector4(); + + /** + * When the scissor test is active and scissor rectangle smaller than the + * framebuffers dimensions, this property is to `true` by the renderer. + * + * @type {boolean} + * @default false + */ + this.scissor = false; + + /** + * The scissor rectangle. + * + * @type {Vector4} + */ + this.scissorValue = new Vector4(); + + /** + * The active render target. + * + * @type {?RenderTarget} + * @default null + */ + this.renderTarget = null; + + /** + * The textures of the active render target. + * `null` when no render target is set. + * + * @type {?Array} + * @default null + */ + this.textures = null; + + /** + * The depth texture of the active render target. + * `null` when no render target is set. + * + * @type {?DepthTexture} + * @default null + */ + this.depthTexture = null; + + /** + * The active cube face. + * + * @type {number} + * @default 0 + */ + this.activeCubeFace = 0; + + /** + * The active mipmap level. + * + * @type {number} + * @default 0 + */ + this.activeMipmapLevel = 0; + + /** + * The number of MSAA samples. This value is always `1` when + * MSAA isn't used. + * + * @type {number} + * @default 1 + */ + this.sampleCount = 1; + + /** + * The active render target's width in physical pixels. + * + * @type {number} + * @default 0 + */ + this.width = 0; + + /** + * The active render target's height in physical pixels. + * + * @type {number} + * @default 0 + */ + this.height = 0; + + /** + * The occlusion query count. + * + * @type {number} + * @default 0 + */ + this.occlusionQueryCount = 0; + + /** + * The current clipping context. + * + * @type {?ClippingContext} + * @default null + */ + this.clippingContext = null; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isRenderContext = true; + + } + + /** + * Returns the cache key of this render context. + * + * @return {number} The cache key. + */ + getCacheKey() { + + return getCacheKey( this ); + + } + +} + +/** + * Computes a cache key for the given render context. This key + * should identify the render target state so it is possible to + * configure the correct attachments in the respective backend. + * + * @param {RenderContext} renderContext - The render context. + * @return {number} The cache key. + */ +function getCacheKey( renderContext ) { + + const { textures, activeCubeFace } = renderContext; + + const values = [ activeCubeFace ]; + + for ( const texture of textures ) { + + values.push( texture.id ); + + } + + return hashArray( values ); + +} + +const _chainKeys$3 = []; +const _defaultScene = /*@__PURE__*/ new Scene(); +const _defaultCamera = /*@__PURE__*/ new Camera(); + +/** + * This module manages the render contexts of the renderer. + * + * @private + */ +class RenderContexts { + + /** + * Constructs a new render context management component. + */ + constructor() { + + /** + * A dictionary that manages render contexts in chain maps + * for each attachment state. + * + * @type {Object} + */ + this.chainMaps = {}; + + } + + /** + * Returns a render context for the given scene, camera and render target. + * + * @param {Scene} scene - The scene. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {?RenderTarget} [renderTarget=null] - The active render target. + * @return {RenderContext} The render context. + */ + get( scene, camera, renderTarget = null ) { + + _chainKeys$3[ 0 ] = scene; + _chainKeys$3[ 1 ] = camera; + + let attachmentState; + + if ( renderTarget === null ) { + + attachmentState = 'default'; + + } else { + + const format = renderTarget.texture.format; + const count = renderTarget.textures.length; + + attachmentState = `${ count }:${ format }:${ renderTarget.samples }:${ renderTarget.depthBuffer }:${ renderTarget.stencilBuffer }`; + + } + + const chainMap = this._getChainMap( attachmentState ); + + let renderState = chainMap.get( _chainKeys$3 ); + + if ( renderState === undefined ) { + + renderState = new RenderContext(); + + chainMap.set( _chainKeys$3, renderState ); + + } + + _chainKeys$3.length = 0; + + if ( renderTarget !== null ) renderState.sampleCount = renderTarget.samples === 0 ? 1 : renderTarget.samples; + + return renderState; + + } + + /** + * Returns a render context intended for clear operations. + * + * @param {?RenderTarget} [renderTarget=null] - The active render target. + * @return {RenderContext} The render context. + */ + getForClear( renderTarget = null ) { + + return this.get( _defaultScene, _defaultCamera, renderTarget ); + + } + + /** + * Returns a chain map for the given attachment state. + * + * @private + * @param {string} attachmentState - The attachment state. + * @return {ChainMap} The chain map. + */ + _getChainMap( attachmentState ) { + + return this.chainMaps[ attachmentState ] || ( this.chainMaps[ attachmentState ] = new ChainMap() ); + + } + + /** + * Frees internal resources. + */ + dispose() { + + this.chainMaps = {}; + + } + +} + +const _size$3 = /*@__PURE__*/ new Vector3(); + +/** + * This module manages the textures of the renderer. + * + * @private + * @augments DataMap + */ +class Textures extends DataMap { + + /** + * Constructs a new texture management component. + * + * @param {Renderer} renderer - The renderer. + * @param {Backend} backend - The renderer's backend. + * @param {Info} info - Renderer component for managing metrics and monitoring data. + */ + constructor( renderer, backend, info ) { + + super(); + + /** + * The renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * The backend. + * + * @type {Backend} + */ + this.backend = backend; + + /** + * Renderer component for managing metrics and monitoring data. + * + * @type {Info} + */ + this.info = info; + + } + + /** + * Updates the given render target. Based on the given render target configuration, + * it updates the texture states representing the attachments of the framebuffer. + * + * @param {RenderTarget} renderTarget - The render target to update. + * @param {number} [activeMipmapLevel=0] - The active mipmap level. + */ + updateRenderTarget( renderTarget, activeMipmapLevel = 0 ) { + + const renderTargetData = this.get( renderTarget ); + + const sampleCount = renderTarget.samples === 0 ? 1 : renderTarget.samples; + const depthTextureMips = renderTargetData.depthTextureMips || ( renderTargetData.depthTextureMips = {} ); + + const textures = renderTarget.textures; + + const size = this.getSize( textures[ 0 ] ); + + const mipWidth = size.width >> activeMipmapLevel; + const mipHeight = size.height >> activeMipmapLevel; + + let depthTexture = renderTarget.depthTexture || depthTextureMips[ activeMipmapLevel ]; + const useDepthTexture = renderTarget.depthBuffer === true || renderTarget.stencilBuffer === true; + + let textureNeedsUpdate = false; + + if ( depthTexture === undefined && useDepthTexture ) { + + depthTexture = new DepthTexture(); + + depthTexture.format = renderTarget.stencilBuffer ? DepthStencilFormat : DepthFormat; + depthTexture.type = renderTarget.stencilBuffer ? UnsignedInt248Type : UnsignedIntType; // FloatType + depthTexture.image.width = mipWidth; + depthTexture.image.height = mipHeight; + depthTexture.image.depth = size.depth; + depthTexture.isArrayTexture = renderTarget.multiview === true && size.depth > 1; + + depthTextureMips[ activeMipmapLevel ] = depthTexture; + + } + + if ( renderTargetData.width !== size.width || size.height !== renderTargetData.height ) { + + textureNeedsUpdate = true; + + if ( depthTexture ) { + + depthTexture.needsUpdate = true; + depthTexture.image.width = mipWidth; + depthTexture.image.height = mipHeight; + depthTexture.image.depth = depthTexture.isArrayTexture ? depthTexture.image.depth : 1; + + } + + } + + renderTargetData.width = size.width; + renderTargetData.height = size.height; + renderTargetData.textures = textures; + renderTargetData.depthTexture = depthTexture || null; + renderTargetData.depth = renderTarget.depthBuffer; + renderTargetData.stencil = renderTarget.stencilBuffer; + renderTargetData.renderTarget = renderTarget; + + if ( renderTargetData.sampleCount !== sampleCount ) { + + textureNeedsUpdate = true; + + if ( depthTexture ) { + + depthTexture.needsUpdate = true; + + } + + renderTargetData.sampleCount = sampleCount; + + } + + // + + + const options = { sampleCount }; + + // XR render targets require no texture updates + + if ( renderTarget.isXRRenderTarget !== true ) { + + for ( let i = 0; i < textures.length; i ++ ) { + + const texture = textures[ i ]; + + if ( textureNeedsUpdate ) texture.needsUpdate = true; + + this.updateTexture( texture, options ); + + } + + if ( depthTexture ) { + + this.updateTexture( depthTexture, options ); + + } + + } + + // dispose handler + + if ( renderTargetData.initialized !== true ) { + + renderTargetData.initialized = true; + + // dispose + + const onDispose = () => { + + renderTarget.removeEventListener( 'dispose', onDispose ); + + for ( let i = 0; i < textures.length; i ++ ) { + + this._destroyTexture( textures[ i ] ); + + } + + if ( depthTexture ) { + + this._destroyTexture( depthTexture ); + + } + + this.delete( renderTarget ); + + }; + + renderTarget.addEventListener( 'dispose', onDispose ); + + } + + } + + /** + * Updates the given texture. Depending on the texture state, this method + * triggers the upload of texture data to the GPU memory. If the texture data are + * not yet ready for the upload, it uses default texture data for as a placeholder. + * + * @param {Texture} texture - The texture to update. + * @param {Object} [options={}] - The options. + */ + updateTexture( texture, options = {} ) { + + const textureData = this.get( texture ); + if ( textureData.initialized === true && textureData.version === texture.version ) return; + + const isRenderTarget = texture.isRenderTargetTexture || texture.isDepthTexture || texture.isFramebufferTexture; + const backend = this.backend; + + if ( isRenderTarget && textureData.initialized === true ) { + + // it's an update + + backend.destroySampler( texture ); + backend.destroyTexture( texture ); + + } + + // + + if ( texture.isFramebufferTexture ) { + + const renderTarget = this.renderer.getRenderTarget(); + + if ( renderTarget ) { + + texture.type = renderTarget.texture.type; + + } else { + + texture.type = UnsignedByteType; + + } + + } + + // + + const { width, height, depth } = this.getSize( texture ); + + options.width = width; + options.height = height; + options.depth = depth; + options.needsMipmaps = this.needsMipmaps( texture ); + options.levels = options.needsMipmaps ? this.getMipLevels( texture, width, height ) : 1; + + // + + if ( isRenderTarget || texture.isStorageTexture === true ) { + + backend.createSampler( texture ); + backend.createTexture( texture, options ); + + textureData.generation = texture.version; + + } else { + + const needsCreate = textureData.initialized !== true; + + if ( needsCreate ) backend.createSampler( texture ); + + if ( texture.version > 0 ) { + + const image = texture.image; + + if ( image === undefined ) { + + console.warn( 'THREE.Renderer: Texture marked for update but image is undefined.' ); + + } else if ( image.complete === false ) { + + console.warn( 'THREE.Renderer: Texture marked for update but image is incomplete.' ); + + } else { + + if ( texture.images ) { + + const images = []; + + for ( const image of texture.images ) { + + images.push( image ); + + } + + options.images = images; + + } else { + + options.image = image; + + } + + if ( textureData.isDefaultTexture === undefined || textureData.isDefaultTexture === true ) { + + backend.createTexture( texture, options ); + + textureData.isDefaultTexture = false; + textureData.generation = texture.version; + + } + + if ( texture.source.dataReady === true ) backend.updateTexture( texture, options ); + + if ( options.needsMipmaps && texture.mipmaps.length === 0 ) backend.generateMipmaps( texture ); + + } + + } else { + + // async update + + backend.createDefaultTexture( texture ); + + textureData.isDefaultTexture = true; + textureData.generation = texture.version; + + } + + } + + // dispose handler + + if ( textureData.initialized !== true ) { + + textureData.initialized = true; + textureData.generation = texture.version; + + // + + this.info.memory.textures ++; + + // dispose + + const onDispose = () => { + + texture.removeEventListener( 'dispose', onDispose ); + + this._destroyTexture( texture ); + + }; + + texture.addEventListener( 'dispose', onDispose ); + + } + + // + + textureData.version = texture.version; + + } + + /** + * Computes the size of the given texture and writes the result + * into the target vector. This vector is also returned by the + * method. + * + * If no texture data are available for the compute yet, the method + * returns default size values. + * + * @param {Texture} texture - The texture to compute the size for. + * @param {Vector3} target - The target vector. + * @return {Vector3} The target vector. + */ + getSize( texture, target = _size$3 ) { + + let image = texture.images ? texture.images[ 0 ] : texture.image; + + if ( image ) { + + if ( image.image !== undefined ) image = image.image; + + target.width = image.width || 1; + target.height = image.height || 1; + target.depth = texture.isCubeTexture ? 6 : ( image.depth || 1 ); + + } else { + + target.width = target.height = target.depth = 1; + + } + + return target; + + } + + /** + * Computes the number of mipmap levels for the given texture. + * + * @param {Texture} texture - The texture. + * @param {number} width - The texture's width. + * @param {number} height - The texture's height. + * @return {number} The number of mipmap levels. + */ + getMipLevels( texture, width, height ) { + + let mipLevelCount; + + if ( texture.isCompressedTexture ) { + + if ( texture.mipmaps ) { + + mipLevelCount = texture.mipmaps.length; + + } else { + + mipLevelCount = 1; + + } + + } else { + + mipLevelCount = Math.floor( Math.log2( Math.max( width, height ) ) ) + 1; + + } + + return mipLevelCount; + + } + + /** + * Returns `true` if the given texture requires mipmaps. + * + * @param {Texture} texture - The texture. + * @return {boolean} Whether mipmaps are required or not. + */ + needsMipmaps( texture ) { + + return texture.isCompressedTexture === true || texture.generateMipmaps; + + } + + /** + * Frees internal resource when the given texture isn't + * required anymore. + * + * @param {Texture} texture - The texture to destroy. + */ + _destroyTexture( texture ) { + + if ( this.has( texture ) === true ) { + + this.backend.destroySampler( texture ); + this.backend.destroyTexture( texture ); + + this.delete( texture ); + + this.info.memory.textures --; + + } + + } + +} + +/** + * A four-component version of {@link Color} which is internally + * used by the renderer to represents clear color with alpha as + * one object. + * + * @private + * @augments Color + */ +class Color4 extends Color { + + /** + * Constructs a new four-component color. + * You can also pass a single THREE.Color, hex or + * string argument to this constructor. + * + * @param {number|string} [r=1] - The red value. + * @param {number} [g=1] - The green value. + * @param {number} [b=1] - The blue value. + * @param {number} [a=1] - The alpha value. + */ + constructor( r, g, b, a = 1 ) { + + super( r, g, b ); + + this.a = a; + + } + + /** + * Overwrites the default to honor alpha. + * You can also pass a single THREE.Color, hex or + * string argument to this method. + * + * @param {number|string|Color} r - The red value. + * @param {number} g - The green value. + * @param {number} b - The blue value. + * @param {number} [a=1] - The alpha value. + * @return {Color4} A reference to this object. + */ + set( r, g, b, a = 1 ) { + + this.a = a; + + return super.set( r, g, b ); + + } + + /** + * Overwrites the default to honor alpha. + * + * @param {Color4} color - The color to copy. + * @return {Color4} A reference to this object. + */ + copy( color ) { + + if ( color.a !== undefined ) this.a = color.a; + + return super.copy( color ); + + } + + /** + * Overwrites the default to honor alpha. + * + * @return {Color4} The cloned color. + */ + clone() { + + return new this.constructor( this.r, this.g, this.b, this.a ); + + } + +} + +/** + * Special version of {@link PropertyNode} which is used for parameters. + * + * @augments PropertyNode + */ +class ParameterNode extends PropertyNode { + + static get type() { + + return 'ParameterNode'; + + } + + /** + * Constructs a new parameter node. + * + * @param {string} nodeType - The type of the node. + * @param {?string} [name=null] - The name of the parameter in the shader. + */ + constructor( nodeType, name = null ) { + + super( nodeType, name ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isParameterNode = true; + + } + + getHash() { + + return this.uuid; + + } + + generate() { + + return this.name; + + } + +} + +/** + * TSL function for creating a parameter node. + * + * @tsl + * @function + * @param {string} type - The type of the node. + * @param {?string} name - The name of the parameter in the shader. + * @returns {ParameterNode} + */ +const parameter = ( type, name ) => nodeObject( new ParameterNode( type, name ) ); + +/** + * Stack is a helper for Nodes that need to produce stack-based code instead of continuous flow. + * They are usually needed in cases like `If`, `Else`. + * + * @augments Node + */ +class StackNode extends Node { + + static get type() { + + return 'StackNode'; + + } + + /** + * Constructs a new stack node. + * + * @param {?StackNode} [parent=null] - The parent stack node. + */ + constructor( parent = null ) { + + super(); + + /** + * List of nodes. + * + * @type {Array} + */ + this.nodes = []; + + /** + * The output node. + * + * @type {?Node} + * @default null + */ + this.outputNode = null; + + /** + * The parent stack node. + * + * @type {?StackNode} + * @default null + */ + this.parent = parent; + + /** + * The current conditional node. + * + * @private + * @type {ConditionalNode} + * @default null + */ + this._currentCond = null; + + /** + * The expression node. Only + * relevant for Switch/Case. + * + * @private + * @type {Node} + * @default null + */ + this._expressionNode = null; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStackNode = true; + + } + + getNodeType( builder ) { + + return this.outputNode ? this.outputNode.getNodeType( builder ) : 'void'; + + } + + getMemberType( builder, name ) { + + return this.outputNode ? this.outputNode.getMemberType( builder, name ) : 'void'; + + } + + /** + * Adds a node to this stack. + * + * @param {Node} node - The node to add. + * @return {StackNode} A reference to this stack node. + */ + add( node ) { + + this.nodes.push( node ); + + return this; + + } + + /** + * Represent an `if` statement in TSL. + * + * @param {Node} boolNode - Represents the condition. + * @param {Function} method - TSL code which is executed if the condition evaluates to `true`. + * @return {StackNode} A reference to this stack node. + */ + If( boolNode, method ) { + + const methodNode = new ShaderNode( method ); + this._currentCond = select( boolNode, methodNode ); + + return this.add( this._currentCond ); + + } + + /** + * Represent an `elseif` statement in TSL. + * + * @param {Node} boolNode - Represents the condition. + * @param {Function} method - TSL code which is executed if the condition evaluates to `true`. + * @return {StackNode} A reference to this stack node. + */ + ElseIf( boolNode, method ) { + + const methodNode = new ShaderNode( method ); + const ifNode = select( boolNode, methodNode ); + + this._currentCond.elseNode = ifNode; + this._currentCond = ifNode; + + return this; + + } + + /** + * Represent an `else` statement in TSL. + * + * @param {Function} method - TSL code which is executed in the `else` case. + * @return {StackNode} A reference to this stack node. + */ + Else( method ) { + + this._currentCond.elseNode = new ShaderNode( method ); + + return this; + + } + + /** + * Represents a `switch` statement in TSL. + * + * @param {any} expression - Represents the expression. + * @param {Function} method - TSL code which is executed if the condition evaluates to `true`. + * @return {StackNode} A reference to this stack node. + */ + Switch( expression ) { + + this._expressionNode = nodeObject( expression ); + + return this; + + } + + /** + * Represents a `case` statement in TSL. The TSL version accepts an arbitrary numbers of values. + * The last parameter must be the callback method that should be executed in the `true` case. + * + * @param {...any} params - The values of the `Case()` statement as well as the callback method. + * @return {StackNode} A reference to this stack node. + */ + Case( ...params ) { + + const caseNodes = []; + + // extract case nodes from the parameter list + + if ( params.length >= 2 ) { + + for ( let i = 0; i < params.length - 1; i ++ ) { + + caseNodes.push( this._expressionNode.equal( nodeObject( params[ i ] ) ) ); + + } + + } else { + + throw new Error( 'TSL: Invalid parameter length. Case() requires at least two parameters.' ); + + } + + // extract method + + const method = params[ params.length - 1 ]; + const methodNode = new ShaderNode( method ); + + // chain multiple cases when using Case( 1, 2, 3, () => {} ) + + let caseNode = caseNodes[ 0 ]; + + for ( let i = 1; i < caseNodes.length; i ++ ) { + + caseNode = caseNode.or( caseNodes[ i ] ); + + } + + // build condition + + const condNode = select( caseNode, methodNode ); + + if ( this._currentCond === null ) { + + this._currentCond = condNode; + + return this.add( this._currentCond ); + + } else { + + this._currentCond.elseNode = condNode; + this._currentCond = condNode; + + return this; + + } + + } + + /** + * Represents the default code block of a Switch/Case statement. + * + * @param {Function} method - TSL code which is executed in the `else` case. + * @return {StackNode} A reference to this stack node. + */ + Default( method ) { + + this.Else( method ); + + return this; + + } + + build( builder, ...params ) { + + const previousStack = getCurrentStack(); + + setCurrentStack( this ); + + const buildStage = builder.buildStage; + + for ( const node of this.nodes ) { + + if ( buildStage === 'setup' ) { + + node.build( builder ); + + } else if ( buildStage === 'analyze' ) { + + node.build( builder, this ); + + } else if ( buildStage === 'generate' ) { + + const stages = builder.getDataFromNode( node, 'any' ).stages; + const parents = stages && stages[ builder.shaderStage ]; + + if ( node.isVarNode && parents && parents.length === 1 && parents[ 0 ] && parents[ 0 ].isStackNode ) { + + continue; // skip var nodes that are only used in .toVarying() + + } + + node.build( builder, 'void' ); + + } + + } + + setCurrentStack( previousStack ); + + return this.outputNode ? this.outputNode.build( builder, ...params ) : super.build( builder, ...params ); + + } + + // Deprecated + + /** + * @function + * @deprecated since r168. Use {@link StackNode#Else} instead. + * + * @param {...any} params + * @returns {StackNode} + */ + else( ...params ) { // @deprecated, r168 + + console.warn( 'THREE.TSL: .else() has been renamed to .Else().' ); + return this.Else( ...params ); + + } + + /** + * @deprecated since r168. Use {@link StackNode#ElseIf} instead. + * + * @param {...any} params + * @returns {StackNode} + */ + elseif( ...params ) { // @deprecated, r168 + + console.warn( 'THREE.TSL: .elseif() has been renamed to .ElseIf().' ); + return this.ElseIf( ...params ); + + } + +} + +/** + * TSL function for creating a stack node. + * + * @tsl + * @function + * @param {?StackNode} [parent=null] - The parent stack node. + * @returns {StackNode} + */ +const stack = /*@__PURE__*/ nodeProxy( StackNode ).setParameterLength( 0, 1 ); + +/** + * Generates a layout for struct members. + * This function takes an object representing struct members and returns an array of member layouts. + * Each member layout includes the member's name, type, and whether it is atomic. + * + * @param {Object.} members - An object where keys are member names and values are either types (as strings) or objects with type and atomic properties. + * @returns {Array.<{name: string, type: string, atomic: boolean}>} An array of member layouts. + */ +function getMembersLayout( members ) { + + return Object.entries( members ).map( ( [ name, value ] ) => { + + if ( typeof value === 'string' ) { + + return { name, type: value, atomic: false }; + + } + + return { name, type: value.type, atomic: value.atomic || false }; + + } ); + +} + +/** + * Represents a struct type node in the node-based system. + * This class is used to define and manage the layout and types of struct members. + * It extends the base Node class and provides methods to get the length of the struct, + * retrieve member types, and generate the struct type for a builder. + * + * @augments Node + */ +class StructTypeNode extends Node { + + static get type() { + + return 'StructTypeNode'; + + } + + /** + * Creates an instance of StructTypeNode. + * + * @param {Object} membersLayout - The layout of the members for the struct. + * @param {?string} [name=null] - The optional name of the struct. + */ + constructor( membersLayout, name = null ) { + + super( 'struct' ); + + /** + * The layout of the members for the struct + * + * @type {Array.<{name: string, type: string, atomic: boolean}>} + */ + this.membersLayout = getMembersLayout( membersLayout ); + + /** + * The name of the struct. + * + * @type {?string} + * @default null + */ + this.name = name; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStructLayoutNode = true; + + } + + /** + * Returns the length of the struct. + * The length is calculated by summing the lengths of the struct's members. + * + * @returns {number} The length of the struct. + */ + getLength() { + + const GPU_CHUNK_BYTES = 8; + const BYTES_PER_ELEMENT = Float32Array.BYTES_PER_ELEMENT; + + let offset = 0; // global buffer offset in bytes + + for ( const member of this.membersLayout ) { + + const type = member.type; + + const itemSize = getMemoryLengthFromType( type ) * BYTES_PER_ELEMENT; + const boundary = getByteBoundaryFromType( type ); + + const chunkOffset = offset % GPU_CHUNK_BYTES; // offset in the current chunk + const chunkPadding = chunkOffset % boundary; // required padding to match boundary + const chunkStart = chunkOffset + chunkPadding; // start position in the current chunk for the data + + offset += chunkPadding; + + // Check for chunk overflow + if ( chunkStart !== 0 && ( GPU_CHUNK_BYTES - chunkStart ) < itemSize ) { + + // Add padding to the end of the chunk + offset += ( GPU_CHUNK_BYTES - chunkStart ); + + } + + offset += itemSize; + + } + + return ( Math.ceil( offset / GPU_CHUNK_BYTES ) * GPU_CHUNK_BYTES ) / BYTES_PER_ELEMENT; + + } + + getMemberType( builder, name ) { + + const member = this.membersLayout.find( m => m.name === name ); + + return member ? member.type : 'void'; + + } + + getNodeType( builder ) { + + const structType = builder.getStructTypeFromNode( this, this.membersLayout, this.name ); + + return structType.name; + + } + + setup( builder ) { + + builder.addInclude( this ); + + } + + generate( builder ) { + + return this.getNodeType( builder ); + + } + +} + +/** + * StructNode allows to create custom structures with multiple members. + * This can also be used to define structures in attribute and uniform data. + * + * ```js + * // Define a custom struct + * const BoundingBox = struct( { min: 'vec3', max: 'vec3' } ); + * + * // Create a new instance of the struct + * const bb = BoundingBox( vec3( 0 ), vec3( 1 ) ); // style 1 + * const bb = BoundingBox( { min: vec3( 0 ), max: vec3( 1 ) } ); // style 2 + * + * // Access the struct members + * const min = bb.get( 'min' ); + * + * // Assign a new value to a member + * min.assign( vec3() ); + * ``` + * @augments Node + */ +class StructNode extends Node { + + static get type() { + + return 'StructNode'; + + } + + constructor( structLayoutNode, values ) { + + super( 'vec3' ); + + this.structLayoutNode = structLayoutNode; + this.values = values; + + this.isStructNode = true; + + } + + getNodeType( builder ) { + + return this.structLayoutNode.getNodeType( builder ); + + } + + getMemberType( builder, name ) { + + return this.structLayoutNode.getMemberType( builder, name ); + + } + + generate( builder ) { + + const nodeVar = builder.getVarFromNode( this ); + const structType = nodeVar.type; + const propertyName = builder.getPropertyName( nodeVar ); + + builder.addLineFlowCode( `${ propertyName } = ${ builder.generateStruct( structType, this.structLayoutNode.membersLayout, this.values ) }`, this ); + + return nodeVar.name; + + } + +} + +/** + * TSL function for creating a struct node. + * + * @tsl + * @function + * @param {Object} membersLayout - The layout of the struct members. + * @param {?string} [name=null] - The name of the struct. + * @returns {Function} The struct function. + */ +const struct = ( membersLayout, name = null ) => { + + const structLayout = new StructTypeNode( membersLayout, name ); + + const struct = ( ...params ) => { + + let values = null; + + if ( params.length > 0 ) { + + if ( params[ 0 ].isNode ) { + + values = {}; + + const names = Object.keys( membersLayout ); + + for ( let i = 0; i < params.length; i ++ ) { + + values[ names[ i ] ] = params[ i ]; + + } + + } else { + + values = params[ 0 ]; + + } + + } + + return nodeObject( new StructNode( structLayout, values ) ); + + }; + + struct.layout = structLayout; + struct.isStruct = true; + + return struct; + +}; + +/** + * This node can be used to define multiple outputs in a shader programs. + * + * @augments Node + */ +class OutputStructNode extends Node { + + static get type() { + + return 'OutputStructNode'; + + } + + /** + * Constructs a new output struct node. The constructor can be invoked with an + * arbitrary number of nodes representing the members. + * + * @param {...Node} members - A parameter list of nodes. + */ + constructor( ...members ) { + + super(); + + /** + * An array of nodes which defines the output. + * + * @type {Array} + */ + this.members = members; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isOutputStructNode = true; + + } + + getNodeType( builder ) { + + const properties = builder.getNodeProperties( this ); + + if ( properties.membersLayout === undefined ) { + + const members = this.members; + const membersLayout = []; + + for ( let i = 0; i < members.length; i ++ ) { + + const name = 'm' + i; + const type = members[ i ].getNodeType( builder ); + + membersLayout.push( { name, type, index: i } ); + + } + + properties.membersLayout = membersLayout; + properties.structType = builder.getOutputStructTypeFromNode( this, properties.membersLayout ); + + } + + return properties.structType.name; + + } + + generate( builder ) { + + const propertyName = builder.getOutputStructName(); + const members = this.members; + + const structPrefix = propertyName !== '' ? propertyName + '.' : ''; + + for ( let i = 0; i < members.length; i ++ ) { + + const snippet = members[ i ].build( builder ); + + builder.addLineFlowCode( `${ structPrefix }m${ i } = ${ snippet }`, this ); + + } + + return propertyName; + + } + +} + +/** + * TSL function for creating an output struct node. + * + * @tsl + * @function + * @param {...Node} members - A parameter list of nodes. + * @returns {OutputStructNode} + */ +const outputStruct = /*@__PURE__*/ nodeProxy( OutputStructNode ); + +/** + * Returns the MRT texture index for the given name. + * + * @param {Array} textures - The textures of a MRT-configured render target. + * @param {string} name - The name of the MRT texture which index is requested. + * @return {number} The texture index. + */ +function getTextureIndex( textures, name ) { + + for ( let i = 0; i < textures.length; i ++ ) { + + if ( textures[ i ].name === name ) { + + return i; + + } + + } + + return - 1; + +} + +/** + * This node can be used setup a MRT context for rendering. A typical MRT setup for + * post-processing is shown below: + * ```js + * const mrtNode = mrt( { + * output: output, + * normal: normalView + * } ) ); + * ``` + * The MRT output is defined as a dictionary. + * + * @augments OutputStructNode + */ +class MRTNode extends OutputStructNode { + + static get type() { + + return 'MRTNode'; + + } + + /** + * Constructs a new output struct node. + * + * @param {Object} outputNodes - The MRT outputs. + */ + constructor( outputNodes ) { + + super(); + + /** + * A dictionary representing the MRT outputs. The key + * is the name of the output, the value the node which produces + * the output result. + * + * @type {Object} + */ + this.outputNodes = outputNodes; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMRTNode = true; + + } + + /** + * Returns `true` if the MRT node has an output with the given name. + * + * @param {string} name - The name of the output. + * @return {NodeBuilder} Whether the MRT node has an output for the given name or not. + */ + has( name ) { + + return this.outputNodes[ name ] !== undefined; + + } + + /** + * Returns the output node for the given name. + * + * @param {string} name - The name of the output. + * @return {Node} The output node. + */ + get( name ) { + + return this.outputNodes[ name ]; + + } + + /** + * Merges the outputs of the given MRT node with the outputs of this node. + * + * @param {MRTNode} mrtNode - The MRT to merge. + * @return {MRTNode} A new MRT node with merged outputs.. + */ + merge( mrtNode ) { + + const outputs = { ...this.outputNodes, ...mrtNode.outputNodes }; + + return mrt( outputs ); + + } + + setup( builder ) { + + const outputNodes = this.outputNodes; + const mrt = builder.renderer.getRenderTarget(); + + const members = []; + + const textures = mrt.textures; + + for ( const name in outputNodes ) { + + const index = getTextureIndex( textures, name ); + + members[ index ] = vec4( outputNodes[ name ] ); + + } + + this.members = members; + + return super.setup( builder ); + + } + +} + +/** + * TSL function for creating a MRT node. + * + * @tsl + * @function + * @param {Object} outputNodes - The MRT outputs. + * @returns {MRTNode} + */ +const mrt = /*@__PURE__*/ nodeProxy( MRTNode ); + +/** + * Generates a hash value in the range `[0, 1]` from the given seed. + * + * @tsl + * @function + * @param {Node} seed - The seed. + * @return {Node} The hash value. + */ +const hash = /*@__PURE__*/ Fn( ( [ seed ] ) => { + + // Taken from https://www.shadertoy.com/view/XlGcRh, originally from pcg-random.org + + const state = seed.toUint().mul( 747796405 ).add( 2891336453 ); + const word = state.shiftRight( state.shiftRight( 28 ).add( 4 ) ).bitXor( state ).mul( 277803737 ); + const result = word.shiftRight( 22 ).bitXor( word ); + + return result.toFloat().mul( 1 / 2 ** 32 ); // Convert to range [0, 1) + +} ); + +/** + * A function that remaps the `[0,1]` interval into the `[0,1]` interval. + * The corners are mapped to `0` and the center to `1`. + * Reference: {@link https://iquilezles.org/articles/functions/}. + * + * @tsl + * @function + * @param {Node} x - The value to remap. + * @param {Node} k - Allows to control the remapping functions shape by rising the parabola to a power `k`. + * @return {Node} The remapped value. + */ +const parabola = ( x, k ) => pow( mul( 4.0, x.mul( sub( 1.0, x ) ) ), k ); + +/** + * A function that remaps the `[0,1]` interval into the `[0,1]` interval. + * Expands the sides and compresses the center, and keeps `0.5` mapped to `0.5`. + * Reference: {@link https://iquilezles.org/articles/functions/}. + * + * @tsl + * @function + * @param {Node} x - The value to remap. + * @param {Node} k - `k=1` is the identity curve,`k<1` produces the classic `gain()` shape, and `k>1` produces "s" shaped curves. + * @return {Node} The remapped value. + */ +const gain = ( x, k ) => x.lessThan( 0.5 ) ? parabola( x.mul( 2.0 ), k ).div( 2.0 ) : sub( 1.0, parabola( mul( sub( 1.0, x ), 2.0 ), k ).div( 2.0 ) ); + +/** + * A function that remaps the `[0,1]` interval into the `[0,1]` interval. + * A generalization of the `parabola()`. Keeps the corners mapped to 0 but allows the control of the shape one either side of the curve. + * Reference: {@link https://iquilezles.org/articles/functions/}. + * + * @tsl + * @function + * @param {Node} x - The value to remap. + * @param {Node} a - First control parameter. + * @param {Node} b - Second control parameter. + * @return {Node} The remapped value. + */ +const pcurve = ( x, a, b ) => pow( div( pow( x, a ), add( pow( x, a ), pow( sub( 1.0, x ), b ) ) ), 1.0 / a ); + +/** + * A phase shifted sinus curve that starts at zero and ends at zero, with bouncing behavior. + * Reference: {@link https://iquilezles.org/articles/functions/}. + * + * @tsl + * @function + * @param {Node} x - The value to compute the sin for. + * @param {Node} k - Controls the amount of bounces. + * @return {Node} The result value. + */ +const sinc = ( x, k ) => sin( PI.mul( k.mul( x ).sub( 1.0 ) ) ).div( PI.mul( k.mul( x ).sub( 1.0 ) ) ); + +// https://github.com/cabbibo/glsl-tri-noise-3d + + +const tri = /*@__PURE__*/ Fn( ( [ x ] ) => { + + return x.fract().sub( .5 ).abs(); + +} ).setLayout( { + name: 'tri', + type: 'float', + inputs: [ + { name: 'x', type: 'float' } + ] +} ); + +const tri3 = /*@__PURE__*/ Fn( ( [ p ] ) => { + + return vec3( tri( p.z.add( tri( p.y.mul( 1. ) ) ) ), tri( p.z.add( tri( p.x.mul( 1. ) ) ) ), tri( p.y.add( tri( p.x.mul( 1. ) ) ) ) ); + +} ).setLayout( { + name: 'tri3', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec3' } + ] +} ); + +/** + * Generates a noise value from the given position, speed and time parameters. + * + * @tsl + * @function + * @param {Node} position - The position. + * @param {Node} speed - The speed. + * @param {Node} time - The time. + * @return {Node} The generated noise. + */ +const triNoise3D = /*@__PURE__*/ Fn( ( [ position, speed, time ] ) => { + + const p = vec3( position ).toVar(); + const z = float( 1.4 ).toVar(); + const rz = float( 0.0 ).toVar(); + const bp = vec3( p ).toVar(); + + Loop( { start: float( 0.0 ), end: float( 3.0 ), type: 'float', condition: '<=' }, () => { + + const dg = vec3( tri3( bp.mul( 2.0 ) ) ).toVar(); + p.addAssign( dg.add( time.mul( float( 0.1 ).mul( speed ) ) ) ); + bp.mulAssign( 1.8 ); + z.mulAssign( 1.5 ); + p.mulAssign( 1.2 ); + + const t = float( tri( p.z.add( tri( p.x.add( tri( p.y ) ) ) ) ) ).toVar(); + rz.addAssign( t.div( z ) ); + bp.addAssign( 0.14 ); + + } ); + + return rz; + +} ).setLayout( { + name: 'triNoise3D', + type: 'float', + inputs: [ + { name: 'position', type: 'vec3' }, + { name: 'speed', type: 'float' }, + { name: 'time', type: 'float' } + ] +} ); + +/** + * This class allows to define multiple overloaded versions + * of the same function. Depending on the parameters of the function + * call, the node picks the best-fit overloaded version. + * + * @augments Node + */ +class FunctionOverloadingNode extends Node { + + static get type() { + + return 'FunctionOverloadingNode'; + + } + + /** + * Constructs a new function overloading node. + * + * @param {Array} functionNodes - Array of `Fn` function definitions. + * @param {...Node} parametersNodes - A list of parameter nodes. + */ + constructor( functionNodes = [], ...parametersNodes ) { + + super(); + + /** + * Array of `Fn` function definitions. + * + * @type {Array} + */ + this.functionNodes = functionNodes; + + /** + * A list of parameter nodes. + * + * @type {Array} + */ + this.parametersNodes = parametersNodes; + + /** + * The selected overloaded function call. + * + * @private + * @type {ShaderCallNodeInternal} + */ + this._candidateFnCall = null; + + /** + * This node is marked as global. + * + * @type {boolean} + * @default true + */ + this.global = true; + + } + + /** + * This method is overwritten since the node type is inferred from + * the function's return type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType() { + + return this.functionNodes[ 0 ].shaderNode.layout.type; + + } + + setup( builder ) { + + const params = this.parametersNodes; + + let candidateFnCall = this._candidateFnCall; + + if ( candidateFnCall === null ) { + + let candidateFn = null; + let candidateScore = - 1; + + for ( const functionNode of this.functionNodes ) { + + const shaderNode = functionNode.shaderNode; + const layout = shaderNode.layout; + + if ( layout === null ) { + + throw new Error( 'FunctionOverloadingNode: FunctionNode must be a layout.' ); + + } + + const inputs = layout.inputs; + + if ( params.length === inputs.length ) { + + let score = 0; + + for ( let i = 0; i < params.length; i ++ ) { + + const param = params[ i ]; + const input = inputs[ i ]; + + if ( param.getNodeType( builder ) === input.type ) { + + score ++; + + } else { + + score = 0; + + } + + } + + if ( score > candidateScore ) { + + candidateFn = functionNode; + candidateScore = score; + + } + + } + + } + + this._candidateFnCall = candidateFnCall = candidateFn( ...params ); + + } + + return candidateFnCall; + + } + +} + +const overloadingBaseFn = /*@__PURE__*/ nodeProxy( FunctionOverloadingNode ); + +/** + * TSL function for creating a function overloading node. + * + * @tsl + * @function + * @param {Array} functionNodes - Array of `Fn` function definitions. + * @returns {FunctionOverloadingNode} + */ +const overloadingFn = ( functionNodes ) => ( ...params ) => overloadingBaseFn( functionNodes, ...params ); + +/** + * Represents the elapsed time in seconds. + * + * @tsl + * @type {UniformNode} + */ +const time = /*@__PURE__*/ uniform( 0 ).setGroup( renderGroup ).onRenderUpdate( ( frame ) => frame.time ); + +/** + * Represents the delta time in seconds. + * + * @tsl + * @type {UniformNode} + */ +const deltaTime = /*@__PURE__*/ uniform( 0 ).setGroup( renderGroup ).onRenderUpdate( ( frame ) => frame.deltaTime ); + +/** + * Represents the current frame ID. + * + * @tsl + * @type {UniformNode} + */ +const frameId = /*@__PURE__*/ uniform( 0, 'uint' ).setGroup( renderGroup ).onRenderUpdate( ( frame ) => frame.frameId ); + +// Deprecated + +/** + * @tsl + * @function + * @deprecated since r170. Use {@link time} instead. + * + * @param {number} [timeScale=1] - The time scale. + * @returns {UniformNode} + */ +const timerLocal = ( timeScale = 1 ) => { // @deprecated, r170 + + console.warn( 'TSL: timerLocal() is deprecated. Use "time" instead.' ); + return time.mul( timeScale ); + +}; + +/** + * @tsl + * @function + * @deprecated since r170. Use {@link time} instead. + * + * @param {number} [timeScale=1] - The time scale. + * @returns {UniformNode} + */ +const timerGlobal = ( timeScale = 1 ) => { // @deprecated, r170 + + console.warn( 'TSL: timerGlobal() is deprecated. Use "time" instead.' ); + return time.mul( timeScale ); + +}; + +/** + * @tsl + * @function + * @deprecated since r170. Use {@link deltaTime} instead. + * + * @param {number} [timeScale=1] - The time scale. + * @returns {UniformNode} + */ +const timerDelta = ( timeScale = 1 ) => { // @deprecated, r170 + + console.warn( 'TSL: timerDelta() is deprecated. Use "deltaTime" instead.' ); + return deltaTime.mul( timeScale ); + +}; + +/** + * Generates a sine wave oscillation based on a timer. + * + * @tsl + * @function + * @param {Node} t - The timer to generate the oscillation with. + * @return {Node} The oscillation node. + */ +const oscSine = ( t = time ) => t.add( 0.75 ).mul( Math.PI * 2 ).sin().mul( 0.5 ).add( 0.5 ); + +/** + * Generates a square wave oscillation based on a timer. + * + * @tsl + * @function + * @param {Node} t - The timer to generate the oscillation with. + * @return {Node} The oscillation node. + */ +const oscSquare = ( t = time ) => t.fract().round(); + +/** + * Generates a triangle wave oscillation based on a timer. + * + * @tsl + * @function + * @param {Node} t - The timer to generate the oscillation with. + * @return {Node} The oscillation node. + */ +const oscTriangle = ( t = time ) => t.add( 0.5 ).fract().mul( 2 ).sub( 1 ).abs(); + +/** + * Generates a sawtooth wave oscillation based on a timer. + * + * @tsl + * @function + * @param {Node} t - The timer to generate the oscillation with. + * @return {Node} The oscillation node. + */ +const oscSawtooth = ( t = time ) => t.fract(); + +/** + * Rotates the given uv coordinates around a center point + * + * @tsl + * @function + * @param {Node} uv - The uv coordinates. + * @param {Node} rotation - The rotation defined in radians. + * @param {Node} center - The center of rotation + * @return {Node} The rotated uv coordinates. + */ +const rotateUV = /*@__PURE__*/ Fn( ( [ uv, rotation, center = vec2( 0.5 ) ] ) => { + + return rotate( uv.sub( center ), rotation ).add( center ); + +} ); + +/** + * Applies a spherical warping effect to the given uv coordinates. + * + * @tsl + * @function + * @param {Node} uv - The uv coordinates. + * @param {Node} strength - The strength of the effect. + * @param {Node} center - The center point + * @return {Node} The updated uv coordinates. + */ +const spherizeUV = /*@__PURE__*/ Fn( ( [ uv, strength, center = vec2( 0.5 ) ] ) => { + + const delta = uv.sub( center ); + const delta2 = delta.dot( delta ); + const delta4 = delta2.mul( delta2 ); + const deltaOffset = delta4.mul( strength ); + + return uv.add( delta.mul( deltaOffset ) ); + +} ); + +/** + * This can be used to achieve a billboarding behavior for flat meshes. That means they are + * oriented always towards the camera. + * + * ```js + * material.vertexNode = billboarding(); + * ``` + * + * @tsl + * @function + * @param {Object} config - The configuration object. + * @param {?Node} [config.position=null] - Can be used to define the vertex positions in world space. + * @param {boolean} [config.horizontal=true] - Whether to follow the camera rotation horizontally or not. + * @param {boolean} [config.vertical=false] - Whether to follow the camera rotation vertically or not. + * @return {Node} The updated vertex position in clip space. + */ +const billboarding = /*@__PURE__*/ Fn( ( { position = null, horizontal = true, vertical = false } ) => { + + let worldMatrix; + + if ( position !== null ) { + + worldMatrix = modelWorldMatrix.toVar(); + worldMatrix[ 3 ][ 0 ] = position.x; + worldMatrix[ 3 ][ 1 ] = position.y; + worldMatrix[ 3 ][ 2 ] = position.z; + + } else { + + worldMatrix = modelWorldMatrix; + + } + + const modelViewMatrix = cameraViewMatrix.mul( worldMatrix ); + + if ( defined( horizontal ) ) { + + modelViewMatrix[ 0 ][ 0 ] = modelWorldMatrix[ 0 ].length(); + modelViewMatrix[ 0 ][ 1 ] = 0; + modelViewMatrix[ 0 ][ 2 ] = 0; + + } + + if ( defined( vertical ) ) { + + modelViewMatrix[ 1 ][ 0 ] = 0; + modelViewMatrix[ 1 ][ 1 ] = modelWorldMatrix[ 1 ].length(); + modelViewMatrix[ 1 ][ 2 ] = 0; + + } + + modelViewMatrix[ 2 ][ 0 ] = 0; + modelViewMatrix[ 2 ][ 1 ] = 0; + modelViewMatrix[ 2 ][ 2 ] = 1; + + return cameraProjectionMatrix.mul( modelViewMatrix ).mul( positionLocal ); + +} ); + +/** + * A special version of a screen uv function that involves a depth comparison + * when computing the final uvs. The function mitigates visual errors when + * using viewport texture nodes for refraction purposes. Without this function + * objects in front of a refractive surface might appear on the refractive surface + * which is incorrect. + * + * @tsl + * @function + * @param {?Node} uv - Optional uv coordinates. By default `screenUV` is used. + * @return {Node} The update uv coordinates. + */ +const viewportSafeUV = /*@__PURE__*/ Fn( ( [ uv = null ] ) => { + + const depth = linearDepth(); + const depthDiff = linearDepth( viewportDepthTexture( uv ) ).sub( depth ); + const finalUV = depthDiff.lessThan( 0 ).select( screenUV, uv ); + + return finalUV; + +} ); + +/** + * Can be used to compute texture coordinates for animated sprite sheets. + * + * ```js + * const uvNode = spritesheetUV( vec2( 6, 6 ), uv(), time.mul( animationSpeed ) ); + * + * material.colorNode = texture( spriteSheet, uvNode ); + * ``` + * + * @augments Node + */ +class SpriteSheetUVNode extends Node { + + static get type() { + + return 'SpriteSheetUVNode'; + + } + + /** + * Constructs a new sprite sheet uv node. + * + * @param {Node} countNode - The node that defines the number of sprites in the x and y direction (e.g 6x6). + * @param {Node} [uvNode=uv()] - The uv node. + * @param {Node} [frameNode=float()] - The node that defines the current frame/sprite. + */ + constructor( countNode, uvNode = uv(), frameNode = float( 0 ) ) { + + super( 'vec2' ); + + /** + * The node that defines the number of sprites in the x and y direction (e.g 6x6). + * + * @type {Node} + */ + this.countNode = countNode; + + /** + * The uv node. + * + * @type {Node} + */ + this.uvNode = uvNode; + + /** + * The node that defines the current frame/sprite. + * + * @type {Node} + */ + this.frameNode = frameNode; + + } + + setup() { + + const { frameNode, uvNode, countNode } = this; + + const { width, height } = countNode; + + const frameNum = frameNode.mod( width.mul( height ) ).floor(); + + const column = frameNum.mod( width ); + const row = height.sub( frameNum.add( 1 ).div( width ).ceil() ); + + const scale = countNode.reciprocal(); + const uvFrameOffset = vec2( column, row ); + + return uvNode.add( uvFrameOffset ).mul( scale ); + + } + +} + +/** + * TSL function for creating a sprite sheet uv node. + * + * @tsl + * @function + * @param {Node} countNode - The node that defines the number of sprites in the x and y direction (e.g 6x6). + * @param {?Node} [uvNode=uv()] - The uv node. + * @param {?Node} [frameNode=float()] - The node that defines the current frame/sprite. + * @returns {SpriteSheetUVNode} + */ +const spritesheetUV = /*@__PURE__*/ nodeProxy( SpriteSheetUVNode ).setParameterLength( 3 ); + +/** + * Can be used for triplanar texture mapping. + * + * ```js + * material.colorNode = triplanarTexture( texture( diffuseMap ) ); + * ``` + * + * @augments Node + */ +class TriplanarTexturesNode extends Node { + + static get type() { + + return 'TriplanarTexturesNode'; + + } + + /** + * Constructs a new triplanar textures node. + * + * @param {Node} textureXNode - First texture node. + * @param {?Node} [textureYNode=null] - Second texture node. When not set, the shader will sample from `textureXNode` instead. + * @param {?Node} [textureZNode=null] - Third texture node. When not set, the shader will sample from `textureXNode` instead. + * @param {?Node} [scaleNode=float(1)] - The scale node. + * @param {?Node} [positionNode=positionLocal] - Vertex positions in local space. + * @param {?Node} [normalNode=normalLocal] - Normals in local space. + */ + constructor( textureXNode, textureYNode = null, textureZNode = null, scaleNode = float( 1 ), positionNode = positionLocal, normalNode = normalLocal ) { + + super( 'vec4' ); + + /** + * First texture node. + * + * @type {Node} + */ + this.textureXNode = textureXNode; + + /** + * Second texture node. When not set, the shader will sample from `textureXNode` instead. + * + * @type {?Node} + * @default null + */ + this.textureYNode = textureYNode; + + /** + * Third texture node. When not set, the shader will sample from `textureXNode` instead. + * + * @type {?Node} + * @default null + */ + this.textureZNode = textureZNode; + + /** + * The scale node. + * + * @type {Node} + * @default float(1) + */ + this.scaleNode = scaleNode; + + /** + * Vertex positions in local space. + * + * @type {Node} + * @default positionLocal + */ + this.positionNode = positionNode; + + /** + * Normals in local space. + * + * @type {Node} + * @default normalLocal + */ + this.normalNode = normalNode; + + } + + setup() { + + const { textureXNode, textureYNode, textureZNode, scaleNode, positionNode, normalNode } = this; + + // Ref: https://github.com/keijiro/StandardTriplanar + + // Blending factor of triplanar mapping + let bf = normalNode.abs().normalize(); + bf = bf.div( bf.dot( vec3( 1.0 ) ) ); + + // Triplanar mapping + const tx = positionNode.yz.mul( scaleNode ); + const ty = positionNode.zx.mul( scaleNode ); + const tz = positionNode.xy.mul( scaleNode ); + + // Base color + const textureX = textureXNode.value; + const textureY = textureYNode !== null ? textureYNode.value : textureX; + const textureZ = textureZNode !== null ? textureZNode.value : textureX; + + const cx = texture( textureX, tx ).mul( bf.x ); + const cy = texture( textureY, ty ).mul( bf.y ); + const cz = texture( textureZ, tz ).mul( bf.z ); + + return add( cx, cy, cz ); + + } + +} + +/** + * TSL function for creating a triplanar textures node. + * + * @tsl + * @function + * @param {Node} textureXNode - First texture node. + * @param {?Node} [textureYNode=null] - Second texture node. When not set, the shader will sample from `textureXNode` instead. + * @param {?Node} [textureZNode=null] - Third texture node. When not set, the shader will sample from `textureXNode` instead. + * @param {?Node} [scaleNode=float(1)] - The scale node. + * @param {?Node} [positionNode=positionLocal] - Vertex positions in local space. + * @param {?Node} [normalNode=normalLocal] - Normals in local space. + * @returns {TriplanarTexturesNode} + */ +const triplanarTextures = /*@__PURE__*/ nodeProxy( TriplanarTexturesNode ).setParameterLength( 1, 6 ); + +/** + * TSL function for creating a triplanar textures node. + * + * @tsl + * @function + * @param {Node} textureXNode - First texture node. + * @param {?Node} [textureYNode=null] - Second texture node. When not set, the shader will sample from `textureXNode` instead. + * @param {?Node} [textureZNode=null] - Third texture node. When not set, the shader will sample from `textureXNode` instead. + * @param {?Node} [scaleNode=float(1)] - The scale node. + * @param {?Node} [positionNode=positionLocal] - Vertex positions in local space. + * @param {?Node} [normalNode=normalLocal] - Normals in local space. + * @returns {TriplanarTexturesNode} + */ +const triplanarTexture = ( ...params ) => triplanarTextures( ...params ); + +const _reflectorPlane = new Plane(); +const _normal = new Vector3(); +const _reflectorWorldPosition = new Vector3(); +const _cameraWorldPosition = new Vector3(); +const _rotationMatrix = new Matrix4(); +const _lookAtPosition = new Vector3( 0, 0, - 1 ); +const clipPlane = new Vector4(); + +const _view = new Vector3(); +const _target = new Vector3(); +const _q = new Vector4(); + +const _size$2 = new Vector2(); + +const _defaultRT = new RenderTarget(); +const _defaultUV = screenUV.flipX(); + +_defaultRT.depthTexture = new DepthTexture( 1, 1 ); + +let _inReflector = false; + +/** + * This node can be used to implement mirror-like flat reflective surfaces. + * + * ```js + * const groundReflector = reflector(); + * material.colorNode = groundReflector; + * + * const plane = new Mesh( geometry, material ); + * plane.add( groundReflector.target ); + * ``` + * + * @augments TextureNode + */ +class ReflectorNode extends TextureNode { + + static get type() { + + return 'ReflectorNode'; + + } + + /** + * Constructs a new reflector node. + * + * @param {Object} [parameters={}] - An object holding configuration parameters. + * @param {Object3D} [parameters.target=new Object3D()] - The 3D object the reflector is linked to. + * @param {number} [parameters.resolution=1] - The resolution scale. + * @param {boolean} [parameters.generateMipmaps=false] - Whether mipmaps should be generated or not. + * @param {boolean} [parameters.bounces=true] - Whether reflectors can render other reflector nodes or not. + * @param {boolean} [parameters.depth=false] - Whether depth data should be generated or not. + * @param {TextureNode} [parameters.defaultTexture] - The default texture node. + * @param {ReflectorBaseNode} [parameters.reflector] - The reflector base node. + */ + constructor( parameters = {} ) { + + super( parameters.defaultTexture || _defaultRT.texture, _defaultUV ); + + /** + * A reference to the internal reflector base node which holds the actual implementation. + * + * @private + * @type {ReflectorBaseNode} + * @default ReflectorBaseNode + */ + this._reflectorBaseNode = parameters.reflector || new ReflectorBaseNode( this, parameters ); + + /** + * A reference to the internal depth node. + * + * @private + * @type {?Node} + * @default null + */ + this._depthNode = null; + + this.setUpdateMatrix( false ); + + } + + /** + * A reference to the internal reflector node. + * + * @type {ReflectorBaseNode} + */ + get reflector() { + + return this._reflectorBaseNode; + + } + + /** + * A reference to 3D object the reflector is linked to. + * + * @type {Object3D} + */ + get target() { + + return this._reflectorBaseNode.target; + + } + + /** + * Returns a node representing the mirror's depth. That can be used + * to implement more advanced reflection effects like distance attenuation. + * + * @return {Node} The depth node. + */ + getDepthNode() { + + if ( this._depthNode === null ) { + + if ( this._reflectorBaseNode.depth !== true ) { + + throw new Error( 'THREE.ReflectorNode: Depth node can only be requested when the reflector is created with { depth: true }. ' ); + + } + + this._depthNode = nodeObject( new ReflectorNode( { + defaultTexture: _defaultRT.depthTexture, + reflector: this._reflectorBaseNode + } ) ); + + } + + return this._depthNode; + + } + + setup( builder ) { + + // ignore if used in post-processing + if ( ! builder.object.isQuadMesh ) this._reflectorBaseNode.build( builder ); + + return super.setup( builder ); + + } + + clone() { + + const texture = new this.constructor( this.reflectorNode ); + texture._reflectorBaseNode = this._reflectorBaseNode; + + return texture; + + } + + /** + * Frees internal resources. Should be called when the node is no longer in use. + */ + dispose() { + + super.dispose(); + + this._reflectorBaseNode.dispose(); + + } + +} + +/** + * Holds the actual implementation of the reflector. + * + * TODO: Explain why `ReflectorBaseNode`. Originally the entire logic was implemented + * in `ReflectorNode`, see #29619. + * + * @private + * @augments Node + */ +class ReflectorBaseNode extends Node { + + static get type() { + + return 'ReflectorBaseNode'; + + } + + /** + * Constructs a new reflector base node. + * + * @param {TextureNode} textureNode - Represents the rendered reflections as a texture node. + * @param {Object} [parameters={}] - An object holding configuration parameters. + * @param {Object3D} [parameters.target=new Object3D()] - The 3D object the reflector is linked to. + * @param {number} [parameters.resolution=1] - The resolution scale. + * @param {boolean} [parameters.generateMipmaps=false] - Whether mipmaps should be generated or not. + * @param {boolean} [parameters.bounces=true] - Whether reflectors can render other reflector nodes or not. + * @param {boolean} [parameters.depth=false] - Whether depth data should be generated or not. + */ + constructor( textureNode, parameters = {} ) { + + super(); + + const { + target = new Object3D(), + resolution = 1, + generateMipmaps = false, + bounces = true, + depth = false + } = parameters; + + /** + * Represents the rendered reflections as a texture node. + * + * @type {TextureNode} + */ + this.textureNode = textureNode; + + /** + * The 3D object the reflector is linked to. + * + * @type {Object3D} + * @default {new Object3D()} + */ + this.target = target; + + /** + * The resolution scale. + * + * @type {number} + * @default {1} + */ + this.resolution = resolution; + + /** + * Whether mipmaps should be generated or not. + * + * @type {boolean} + * @default {false} + */ + this.generateMipmaps = generateMipmaps; + + /** + * Whether reflectors can render other reflector nodes or not. + * + * @type {boolean} + * @default {true} + */ + this.bounces = bounces; + + /** + * Whether depth data should be generated or not. + * + * @type {boolean} + * @default {false} + */ + this.depth = depth; + + /** + * The `updateBeforeType` is set to `NodeUpdateType.RENDER` when {@link ReflectorBaseNode#bounces} + * is `true`. Otherwise it's `NodeUpdateType.FRAME`. + * + * @type {string} + * @default 'render' + */ + this.updateBeforeType = bounces ? NodeUpdateType.RENDER : NodeUpdateType.FRAME; + + /** + * Weak map for managing virtual cameras. + * + * @type {WeakMap} + */ + this.virtualCameras = new WeakMap(); + + /** + * Weak map for managing render targets. + * + * @type {Map} + */ + this.renderTargets = new Map(); + + /** + * Force render even if reflector is facing away from camera. + * + * @type {boolean} + * @default {false} + */ + this.forceUpdate = false; + + /** + * Whether the reflector has been rendered or not. + * + * When the reflector is facing away from the camera, + * this flag is set to `false` and the texture will be empty(black). + * + * @type {boolean} + * @default {false} + */ + this.hasOutput = false; + + } + + /** + * Updates the resolution of the internal render target. + * + * @private + * @param {RenderTarget} renderTarget - The render target to resize. + * @param {Renderer} renderer - The renderer that is used to determine the new size. + */ + _updateResolution( renderTarget, renderer ) { + + const resolution = this.resolution; + + renderer.getDrawingBufferSize( _size$2 ); + + renderTarget.setSize( Math.round( _size$2.width * resolution ), Math.round( _size$2.height * resolution ) ); + + } + + setup( builder ) { + + this._updateResolution( _defaultRT, builder.renderer ); + + return super.setup( builder ); + + } + + /** + * Frees internal resources. Should be called when the node is no longer in use. + */ + dispose() { + + super.dispose(); + + for ( const renderTarget of this.renderTargets.values() ) { + + renderTarget.dispose(); + + } + + } + + /** + * Returns a virtual camera for the given camera. The virtual camera is used to + * render the scene from the reflector's view so correct reflections can be produced. + * + * @param {Camera} camera - The scene's camera. + * @return {Camera} The corresponding virtual camera. + */ + getVirtualCamera( camera ) { + + let virtualCamera = this.virtualCameras.get( camera ); + + if ( virtualCamera === undefined ) { + + virtualCamera = camera.clone(); + + this.virtualCameras.set( camera, virtualCamera ); + + } + + return virtualCamera; + + } + + /** + * Returns a render target for the given camera. The reflections are rendered + * into this render target. + * + * @param {Camera} camera - The scene's camera. + * @return {RenderTarget} The render target. + */ + getRenderTarget( camera ) { + + let renderTarget = this.renderTargets.get( camera ); + + if ( renderTarget === undefined ) { + + renderTarget = new RenderTarget( 0, 0, { type: HalfFloatType } ); + + if ( this.generateMipmaps === true ) { + + renderTarget.texture.minFilter = LinearMipMapLinearFilter; + renderTarget.texture.generateMipmaps = true; + + } + + if ( this.depth === true ) { + + renderTarget.depthTexture = new DepthTexture(); + + } + + this.renderTargets.set( camera, renderTarget ); + + } + + return renderTarget; + + } + + updateBefore( frame ) { + + if ( this.bounces === false && _inReflector ) return false; + + _inReflector = true; + + const { scene, camera, renderer, material } = frame; + const { target } = this; + + const virtualCamera = this.getVirtualCamera( camera ); + const renderTarget = this.getRenderTarget( virtualCamera ); + + renderer.getDrawingBufferSize( _size$2 ); + + this._updateResolution( renderTarget, renderer ); + + // + + _reflectorWorldPosition.setFromMatrixPosition( target.matrixWorld ); + _cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld ); + + _rotationMatrix.extractRotation( target.matrixWorld ); + + _normal.set( 0, 0, 1 ); + _normal.applyMatrix4( _rotationMatrix ); + + _view.subVectors( _reflectorWorldPosition, _cameraWorldPosition ); + + // Avoid rendering when reflector is facing away unless forcing an update + const isFacingAway = _view.dot( _normal ) > 0; + + let needsClear = false; + + if ( isFacingAway === true && this.forceUpdate === false ) { + + if ( this.hasOutput === false ) { + + _inReflector = false; + + return; + + } + + needsClear = true; + + } + + _view.reflect( _normal ).negate(); + _view.add( _reflectorWorldPosition ); + + _rotationMatrix.extractRotation( camera.matrixWorld ); + + _lookAtPosition.set( 0, 0, - 1 ); + _lookAtPosition.applyMatrix4( _rotationMatrix ); + _lookAtPosition.add( _cameraWorldPosition ); + + _target.subVectors( _reflectorWorldPosition, _lookAtPosition ); + _target.reflect( _normal ).negate(); + _target.add( _reflectorWorldPosition ); + + // + + virtualCamera.coordinateSystem = camera.coordinateSystem; + virtualCamera.position.copy( _view ); + virtualCamera.up.set( 0, 1, 0 ); + virtualCamera.up.applyMatrix4( _rotationMatrix ); + virtualCamera.up.reflect( _normal ); + virtualCamera.lookAt( _target ); + + virtualCamera.near = camera.near; + virtualCamera.far = camera.far; + + virtualCamera.updateMatrixWorld(); + virtualCamera.projectionMatrix.copy( camera.projectionMatrix ); + + // Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html + // Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf + _reflectorPlane.setFromNormalAndCoplanarPoint( _normal, _reflectorWorldPosition ); + _reflectorPlane.applyMatrix4( virtualCamera.matrixWorldInverse ); + + clipPlane.set( _reflectorPlane.normal.x, _reflectorPlane.normal.y, _reflectorPlane.normal.z, _reflectorPlane.constant ); + + const projectionMatrix = virtualCamera.projectionMatrix; + + _q.x = ( Math.sign( clipPlane.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ]; + _q.y = ( Math.sign( clipPlane.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ]; + _q.z = - 1; + _q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ]; + + // Calculate the scaled plane vector + clipPlane.multiplyScalar( 1.0 / clipPlane.dot( _q ) ); + + const clipBias = 0; + + // Replacing the third row of the projection matrix + projectionMatrix.elements[ 2 ] = clipPlane.x; + projectionMatrix.elements[ 6 ] = clipPlane.y; + projectionMatrix.elements[ 10 ] = ( renderer.coordinateSystem === WebGPUCoordinateSystem ) ? ( clipPlane.z - clipBias ) : ( clipPlane.z + 1.0 - clipBias ); + projectionMatrix.elements[ 14 ] = clipPlane.w; + + // + + this.textureNode.value = renderTarget.texture; + + if ( this.depth === true ) { + + this.textureNode.getDepthNode().value = renderTarget.depthTexture; + + } + + material.visible = false; + + const currentRenderTarget = renderer.getRenderTarget(); + const currentMRT = renderer.getMRT(); + const currentAutoClear = renderer.autoClear; + + renderer.setMRT( null ); + renderer.setRenderTarget( renderTarget ); + renderer.autoClear = true; + + if ( needsClear ) { + + renderer.clear(); + + this.hasOutput = false; + + } else { + + renderer.render( scene, virtualCamera ); + + this.hasOutput = true; + + } + + renderer.setMRT( currentMRT ); + renderer.setRenderTarget( currentRenderTarget ); + renderer.autoClear = currentAutoClear; + + material.visible = true; + + _inReflector = false; + + this.forceUpdate = false; + + } + +} + +/** + * TSL function for creating a reflector node. + * + * @tsl + * @function + * @param {Object} [parameters={}] - An object holding configuration parameters. + * @param {Object3D} [parameters.target=new Object3D()] - The 3D object the reflector is linked to. + * @param {number} [parameters.resolution=1] - The resolution scale. + * @param {boolean} [parameters.generateMipmaps=false] - Whether mipmaps should be generated or not. + * @param {boolean} [parameters.bounces=true] - Whether reflectors can render other reflector nodes or not. + * @param {boolean} [parameters.depth=false] - Whether depth data should be generated or not. + * @param {TextureNode} [parameters.defaultTexture] - The default texture node. + * @param {ReflectorBaseNode} [parameters.reflector] - The reflector base node. + * @returns {ReflectorNode} + */ +const reflector = ( parameters ) => nodeObject( new ReflectorNode( parameters ) ); + +const _camera = /*@__PURE__*/ new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 ); + +/** + * The purpose of this special geometry is to fill the entire viewport with a single triangle. + * + * Reference: {@link https://github.com/mrdoob/three.js/pull/21358} + * + * @private + * @augments BufferGeometry + */ +class QuadGeometry extends BufferGeometry { + + /** + * Constructs a new quad geometry. + * + * @param {boolean} [flipY=false] - Whether the uv coordinates should be flipped along the vertical axis or not. + */ + constructor( flipY = false ) { + + super(); + + const uv = flipY === false ? [ 0, - 1, 0, 1, 2, 1 ] : [ 0, 2, 0, 0, 2, 0 ]; + + this.setAttribute( 'position', new Float32BufferAttribute( [ - 1, 3, 0, - 1, - 1, 0, 3, - 1, 0 ], 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uv, 2 ) ); + + } + +} + +const _geometry = /*@__PURE__*/ new QuadGeometry(); + + +/** + * This module is a helper for passes which need to render a full + * screen effect which is quite common in context of post processing. + * + * The intended usage is to reuse a single quad mesh for rendering + * subsequent passes by just reassigning the `material` reference. + * + * Note: This module can only be used with `WebGPURenderer`. + * + * @augments Mesh + */ +class QuadMesh extends Mesh { + + /** + * Constructs a new quad mesh. + * + * @param {?Material} [material=null] - The material to render the quad mesh with. + */ + constructor( material = null ) { + + super( _geometry, material ); + + /** + * The camera to render the quad mesh with. + * + * @type {OrthographicCamera} + * @readonly + */ + this.camera = _camera; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isQuadMesh = true; + + } + + /** + * Async version of `render()`. + * + * @async + * @param {Renderer} renderer - The renderer. + * @return {Promise} A Promise that resolves when the render has been finished. + */ + async renderAsync( renderer ) { + + return renderer.renderAsync( this, _camera ); + + } + + /** + * Renders the quad mesh + * + * @param {Renderer} renderer - The renderer. + */ + render( renderer ) { + + renderer.render( this, _camera ); + + } + +} + +const _size$1 = /*@__PURE__*/ new Vector2(); + +/** + * `RTTNode` takes another node and uses it with a `QuadMesh` to render into a texture (RTT). + * This module is especially relevant in context of post processing where certain nodes require + * texture input for their effects. With the helper function `convertToTexture()` which is based + * on this module, the node system can automatically ensure texture input if required. + * + * @augments TextureNode + */ +class RTTNode extends TextureNode { + + static get type() { + + return 'RTTNode'; + + } + + /** + * Constructs a new RTT node. + * + * @param {Node} node - The node to render a texture with. + * @param {?number} [width=null] - The width of the internal render target. If not width is applied, the render target is automatically resized. + * @param {?number} [height=null] - The height of the internal render target. + * @param {Object} [options={type:HalfFloatType}] - The options for the internal render target. + */ + constructor( node, width = null, height = null, options = { type: HalfFloatType } ) { + + const renderTarget = new RenderTarget( width, height, options ); + + super( renderTarget.texture, uv() ); + + /** + * The node to render a texture with. + * + * @type {Node} + */ + this.node = node; + + /** + * The width of the internal render target. + * If not width is applied, the render target is automatically resized. + * + * @type {?number} + * @default null + */ + this.width = width; + + /** + * The height of the internal render target. + * + * @type {?number} + * @default null + */ + this.height = height; + + /** + * The pixel ratio + * + * @type {number} + * @default 1 + */ + this.pixelRatio = 1; + + /** + * The render target + * + * @type {RenderTarget} + */ + this.renderTarget = renderTarget; + + /** + * Whether the texture requires an update or not. + * + * @type {boolean} + * @default true + */ + this.textureNeedsUpdate = true; + + /** + * Whether the texture should automatically be updated or not. + * + * @type {boolean} + * @default true + */ + this.autoUpdate = true; + + /** + * The node which is used with the quad mesh for RTT. + * + * @private + * @type {Node} + * @default null + */ + this._rttNode = null; + + /** + * The internal quad mesh for RTT. + * + * @private + * @type {QuadMesh} + */ + this._quadMesh = new QuadMesh( new NodeMaterial() ); + + /** + * The `updateBeforeType` is set to `NodeUpdateType.RENDER` since the node updates + * the texture once per render in its {@link RTTNode#updateBefore} method. + * + * @type {string} + * @default 'render' + */ + this.updateBeforeType = NodeUpdateType.RENDER; + + } + + /** + * Whether the internal render target should automatically be resized or not. + * + * @type {boolean} + * @readonly + * @default true + */ + get autoSize() { + + return this.width === null; + + } + + setup( builder ) { + + this._rttNode = this.node.context( builder.getSharedContext() ); + this._quadMesh.material.name = 'RTT'; + this._quadMesh.material.needsUpdate = true; + + return super.setup( builder ); + + } + + /** + * Sets the size of the internal render target + * + * @param {number} width - The width to set. + * @param {number} height - The width to set. + */ + setSize( width, height ) { + + this.width = width; + this.height = height; + + const effectiveWidth = width * this.pixelRatio; + const effectiveHeight = height * this.pixelRatio; + + this.renderTarget.setSize( effectiveWidth, effectiveHeight ); + + this.textureNeedsUpdate = true; + + } + + /** + * Sets the pixel ratio. This will also resize the render target. + * + * @param {number} pixelRatio - The pixel ratio to set. + */ + setPixelRatio( pixelRatio ) { + + this.pixelRatio = pixelRatio; + + this.setSize( this.width, this.height ); + + } + + updateBefore( { renderer } ) { + + if ( this.textureNeedsUpdate === false && this.autoUpdate === false ) return; + + this.textureNeedsUpdate = false; + + // + + if ( this.autoSize === true ) { + + this.pixelRatio = renderer.getPixelRatio(); + + const size = renderer.getSize( _size$1 ); + + this.setSize( size.width, size.height ); + + } + + // + + this._quadMesh.material.fragmentNode = this._rttNode; + + // + + const currentRenderTarget = renderer.getRenderTarget(); + + renderer.setRenderTarget( this.renderTarget ); + + this._quadMesh.render( renderer ); + + renderer.setRenderTarget( currentRenderTarget ); + + } + + clone() { + + const newNode = new TextureNode( this.value, this.uvNode, this.levelNode ); + newNode.sampler = this.sampler; + newNode.referenceNode = this; + + return newNode; + + } + +} + +/** + * TSL function for creating a RTT node. + * + * @tsl + * @function + * @param {Node} node - The node to render a texture with. + * @param {?number} [width=null] - The width of the internal render target. If not width is applied, the render target is automatically resized. + * @param {?number} [height=null] - The height of the internal render target. + * @param {Object} [options={type:HalfFloatType}] - The options for the internal render target. + * @returns {RTTNode} + */ +const rtt = ( node, ...params ) => nodeObject( new RTTNode( nodeObject( node ), ...params ) ); + +/** + * TSL function for converting nodes to textures nodes. + * + * @tsl + * @function + * @param {Node} node - The node to render a texture with. + * @param {?number} [width=null] - The width of the internal render target. If not width is applied, the render target is automatically resized. + * @param {?number} [height=null] - The height of the internal render target. + * @param {Object} [options={type:HalfFloatType}] - The options for the internal render target. + * @returns {RTTNode} + */ +const convertToTexture = ( node, ...params ) => { + + if ( node.isTextureNode ) return node; + if ( node.isPassNode ) return node.getTextureNode(); + + return rtt( node, ...params ); + +}; + +/** + * Computes a position in view space based on a fragment's screen position expressed as uv coordinates, the fragments + * depth value and the camera's inverse projection matrix. + * + * @tsl + * @function + * @param {Node} screenPosition - The fragment's screen position expressed as uv coordinates. + * @param {Node} depth - The fragment's depth value. + * @param {Node} projectionMatrixInverse - The camera's inverse projection matrix. + * @return {Node} The fragments position in view space. + */ +const getViewPosition = /*@__PURE__*/ Fn( ( [ screenPosition, depth, projectionMatrixInverse ], builder ) => { + + let clipSpacePosition; + + if ( builder.renderer.coordinateSystem === WebGPUCoordinateSystem ) { + + screenPosition = vec2( screenPosition.x, screenPosition.y.oneMinus() ).mul( 2.0 ).sub( 1.0 ); + clipSpacePosition = vec4( vec3( screenPosition, depth ), 1.0 ); + + } else { + + clipSpacePosition = vec4( vec3( screenPosition.x, screenPosition.y.oneMinus(), depth ).mul( 2.0 ).sub( 1.0 ), 1.0 ); + + } + + const viewSpacePosition = vec4( projectionMatrixInverse.mul( clipSpacePosition ) ); + + return viewSpacePosition.xyz.div( viewSpacePosition.w ); + +} ); + +/** + * Computes a screen position expressed as uv coordinates based on a fragment's position in view space + * and the camera's projection matrix + * + * @tsl + * @function + * @param {Node} viewPosition - The fragments position in view space. + * @param {Node} projectionMatrix - The camera's projection matrix. + * @return {Node} The fragment's screen position expressed as uv coordinates. + */ +const getScreenPosition = /*@__PURE__*/ Fn( ( [ viewPosition, projectionMatrix ] ) => { + + const sampleClipPos = projectionMatrix.mul( vec4( viewPosition, 1.0 ) ); + const sampleUv = sampleClipPos.xy.div( sampleClipPos.w ).mul( 0.5 ).add( 0.5 ).toVar(); + return vec2( sampleUv.x, sampleUv.y.oneMinus() ); + +} ); + +/** + * Computes a normal vector based on depth data. Can be used as a fallback when no normal render + * target is available or if flat surface normals are required. + * + * @tsl + * @function + * @param {Node} uv - The texture coordinate. + * @param {DepthTexture} depthTexture - The depth texture. + * @param {Node} projectionMatrixInverse - The camera's inverse projection matrix. + * @return {Node} The computed normal vector. + */ +const getNormalFromDepth = /*@__PURE__*/ Fn( ( [ uv, depthTexture, projectionMatrixInverse ] ) => { + + const size = textureSize( textureLoad( depthTexture ) ); + const p = ivec2( uv.mul( size ) ).toVar(); + + const c0 = textureLoad( depthTexture, p ).toVar(); + + const l2 = textureLoad( depthTexture, p.sub( ivec2( 2, 0 ) ) ).toVar(); + const l1 = textureLoad( depthTexture, p.sub( ivec2( 1, 0 ) ) ).toVar(); + const r1 = textureLoad( depthTexture, p.add( ivec2( 1, 0 ) ) ).toVar(); + const r2 = textureLoad( depthTexture, p.add( ivec2( 2, 0 ) ) ).toVar(); + const b2 = textureLoad( depthTexture, p.add( ivec2( 0, 2 ) ) ).toVar(); + const b1 = textureLoad( depthTexture, p.add( ivec2( 0, 1 ) ) ).toVar(); + const t1 = textureLoad( depthTexture, p.sub( ivec2( 0, 1 ) ) ).toVar(); + const t2 = textureLoad( depthTexture, p.sub( ivec2( 0, 2 ) ) ).toVar(); + + const dl = abs( sub( float( 2 ).mul( l1 ).sub( l2 ), c0 ) ).toVar(); + const dr = abs( sub( float( 2 ).mul( r1 ).sub( r2 ), c0 ) ).toVar(); + const db = abs( sub( float( 2 ).mul( b1 ).sub( b2 ), c0 ) ).toVar(); + const dt = abs( sub( float( 2 ).mul( t1 ).sub( t2 ), c0 ) ).toVar(); + + const ce = getViewPosition( uv, c0, projectionMatrixInverse ).toVar(); + + const dpdx = dl.lessThan( dr ).select( ce.sub( getViewPosition( uv.sub( vec2( float( 1 ).div( size.x ), 0 ) ), l1, projectionMatrixInverse ) ), ce.negate().add( getViewPosition( uv.add( vec2( float( 1 ).div( size.x ), 0 ) ), r1, projectionMatrixInverse ) ) ); + const dpdy = db.lessThan( dt ).select( ce.sub( getViewPosition( uv.add( vec2( 0, float( 1 ).div( size.y ) ) ), b1, projectionMatrixInverse ) ), ce.negate().add( getViewPosition( uv.sub( vec2( 0, float( 1 ).div( size.y ) ) ), t1, projectionMatrixInverse ) ) ); + + return normalize( cross( dpdx, dpdy ) ); + +} ); + +/** + * This special type of instanced buffer attribute is intended for compute shaders. + * In earlier three.js versions it was only possible to update attribute data + * on the CPU via JavaScript and then upload the data to the GPU. With the + * new material system and renderer it is now possible to use compute shaders + * to compute the data for an attribute more efficiently on the GPU. + * + * The idea is to create an instance of this class and provide it as an input + * to {@link StorageBufferNode}. + * + * Note: This type of buffer attribute can only be used with `WebGPURenderer`. + * + * @augments InstancedBufferAttribute + */ +class StorageInstancedBufferAttribute extends InstancedBufferAttribute { + + /** + * Constructs a new storage instanced buffer attribute. + * + * @param {number|TypedArray} count - The item count. It is also valid to pass a typed array as an argument. + * The subsequent parameters are then obsolete. + * @param {number} itemSize - The item size. + * @param {TypedArray.constructor} [typeClass=Float32Array] - A typed array constructor. + */ + constructor( count, itemSize, typeClass = Float32Array ) { + + const array = ArrayBuffer.isView( count ) ? count : new typeClass( count * itemSize ); + + super( array, itemSize ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageInstancedBufferAttribute = true; + + } + +} + +/** + * This special type of buffer attribute is intended for compute shaders. + * In earlier three.js versions it was only possible to update attribute data + * on the CPU via JavaScript and then upload the data to the GPU. With the + * new material system and renderer it is now possible to use compute shaders + * to compute the data for an attribute more efficiently on the GPU. + * + * The idea is to create an instance of this class and provide it as an input + * to {@link StorageBufferNode}. + * + * Note: This type of buffer attribute can only be used with `WebGPURenderer`. + * + * @augments BufferAttribute + */ +class StorageBufferAttribute extends BufferAttribute { + + /** + * Constructs a new storage buffer attribute. + * + * @param {number|TypedArray} count - The item count. It is also valid to pass a typed array as an argument. + * The subsequent parameters are then obsolete. + * @param {number} itemSize - The item size. + * @param {TypedArray.constructor} [typeClass=Float32Array] - A typed array constructor. + */ + constructor( count, itemSize, typeClass = Float32Array ) { + + const array = ArrayBuffer.isView( count ) ? count : new typeClass( count * itemSize ); + + super( array, itemSize ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageBufferAttribute = true; + + } + +} + +/** + * TSL function for creating a storage buffer node with a configured `StorageBufferAttribute`. + * + * @tsl + * @function + * @param {number|TypedArray} count - The data count. It is also valid to pass a typed array as an argument. + * @param {string|Struct} [type='float'] - The data type. + * @returns {StorageBufferNode} + */ +const attributeArray = ( count, type = 'float' ) => { + + let itemSize, typedArray; + + if ( type.isStruct === true ) { + + itemSize = type.layout.getLength(); + typedArray = getTypedArrayFromType( 'float' ); + + } else { + + itemSize = getLengthFromType( type ); + typedArray = getTypedArrayFromType( type ); + + } + + const buffer = new StorageBufferAttribute( count, itemSize, typedArray ); + const node = storage( buffer, type, count ); + + return node; + +}; + +/** + * TSL function for creating a storage buffer node with a configured `StorageInstancedBufferAttribute`. + * + * @tsl + * @function + * @param {number|TypedArray} count - The data count. It is also valid to pass a typed array as an argument. + * @param {string|Struct} [type='float'] - The data type. + * @returns {StorageBufferNode} + */ +const instancedArray = ( count, type = 'float' ) => { + + let itemSize, typedArray; + + if ( type.isStruct === true ) { + + itemSize = type.layout.getLength(); + typedArray = getTypedArrayFromType( 'float' ); + + } else { + + itemSize = getLengthFromType( type ); + typedArray = getTypedArrayFromType( type ); + + } + + const buffer = new StorageInstancedBufferAttribute( count, itemSize, typedArray ); + const node = storage( buffer, type, count ); + + return node; + +}; + +/** + * A node for representing the uv coordinates of points. + * + * Can only be used with a WebGL backend. In WebGPU, point + * primitives always have the size of one pixel and can thus + * can't be used as sprite-like objects that display textures. + * + * @augments Node + */ +class PointUVNode extends Node { + + static get type() { + + return 'PointUVNode'; + + } + + /** + * Constructs a new point uv node. + */ + constructor() { + + super( 'vec2' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPointUVNode = true; + + } + + generate( /*builder*/ ) { + + return 'vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y )'; + + } + +} + +/** + * TSL object that represents the uv coordinates of points. + * + * @tsl + * @type {PointUVNode} + */ +const pointUV = /*@__PURE__*/ nodeImmutable( PointUVNode ); + +const _e1 = /*@__PURE__*/ new Euler(); +const _m1 = /*@__PURE__*/ new Matrix4(); + +/** + * This module allows access to a collection of scene properties. The following predefined TSL objects + * are available for easier use: + * + * - `backgroundBlurriness`: A node that represents the scene's background blurriness. + * - `backgroundIntensity`: A node that represents the scene's background intensity. + * - `backgroundRotation`: A node that represents the scene's background rotation. + * + * @augments Node + */ +class SceneNode extends Node { + + static get type() { + + return 'SceneNode'; + + } + + /** + * Constructs a new scene node. + * + * @param {('backgroundBlurriness'|'backgroundIntensity'|'backgroundRotation')} scope - The scope defines the type of scene property that is accessed. + * @param {?Scene} [scene=null] - A reference to the scene. + */ + constructor( scope = SceneNode.BACKGROUND_BLURRINESS, scene = null ) { + + super(); + + /** + * The scope defines the type of scene property that is accessed. + * + * @type {('backgroundBlurriness'|'backgroundIntensity'|'backgroundRotation')} + */ + this.scope = scope; + + /** + * A reference to the scene that is going to be accessed. + * + * @type {?Scene} + * @default null + */ + this.scene = scene; + + } + + /** + * Depending on the scope, the method returns a different type of node that represents + * the respective scene property. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The output node. + */ + setup( builder ) { + + const scope = this.scope; + const scene = this.scene !== null ? this.scene : builder.scene; + + let output; + + if ( scope === SceneNode.BACKGROUND_BLURRINESS ) { + + output = reference( 'backgroundBlurriness', 'float', scene ); + + } else if ( scope === SceneNode.BACKGROUND_INTENSITY ) { + + output = reference( 'backgroundIntensity', 'float', scene ); + + } else if ( scope === SceneNode.BACKGROUND_ROTATION ) { + + output = uniform( 'mat4' ).label( 'backgroundRotation' ).setGroup( renderGroup ).onRenderUpdate( () => { + + const background = scene.background; + + if ( background !== null && background.isTexture && background.mapping !== UVMapping ) { + + _e1.copy( scene.backgroundRotation ); + + // accommodate left-handed frame + _e1.x *= - 1; _e1.y *= - 1; _e1.z *= - 1; + + _m1.makeRotationFromEuler( _e1 ); + + } else { + + _m1.identity(); + + } + + return _m1; + + } ); + + } else { + + console.error( 'THREE.SceneNode: Unknown scope:', scope ); + + } + + return output; + + } + +} + +SceneNode.BACKGROUND_BLURRINESS = 'backgroundBlurriness'; +SceneNode.BACKGROUND_INTENSITY = 'backgroundIntensity'; +SceneNode.BACKGROUND_ROTATION = 'backgroundRotation'; + +/** + * TSL object that represents the scene's background blurriness. + * + * @tsl + * @type {SceneNode} + */ +const backgroundBlurriness = /*@__PURE__*/ nodeImmutable( SceneNode, SceneNode.BACKGROUND_BLURRINESS ); + +/** + * TSL object that represents the scene's background intensity. + * + * @tsl + * @type {SceneNode} + */ +const backgroundIntensity = /*@__PURE__*/ nodeImmutable( SceneNode, SceneNode.BACKGROUND_INTENSITY ); + +/** + * TSL object that represents the scene's background rotation. + * + * @tsl + * @type {SceneNode} + */ +const backgroundRotation = /*@__PURE__*/ nodeImmutable( SceneNode, SceneNode.BACKGROUND_ROTATION ); + +/** + * This special version of a texture node can be used to + * write data into a storage texture with a compute shader. + * + * ```js + * const storageTexture = new THREE.StorageTexture( width, height ); + * + * const computeTexture = Fn( ( { storageTexture } ) => { + * + * const posX = instanceIndex.mod( width ); + * const posY = instanceIndex.div( width ); + * const indexUV = uvec2( posX, posY ); + * + * // generate RGB values + * + * const r = 1; + * const g = 1; + * const b = 1; + * + * textureStore( storageTexture, indexUV, vec4( r, g, b, 1 ) ).toWriteOnly(); + * + * } ); + * + * const computeNode = computeTexture( { storageTexture } ).compute( width * height ); + * renderer.computeAsync( computeNode ); + * ``` + * + * This node can only be used with a WebGPU backend. + * + * @augments TextureNode + */ +class StorageTextureNode extends TextureNode { + + static get type() { + + return 'StorageTextureNode'; + + } + + /** + * Constructs a new storage texture node. + * + * @param {StorageTexture} value - The storage texture. + * @param {Node} uvNode - The uv node. + * @param {?Node} [storeNode=null] - The value node that should be stored in the texture. + */ + constructor( value, uvNode, storeNode = null ) { + + super( value, uvNode ); + + /** + * The value node that should be stored in the texture. + * + * @type {?Node} + * @default null + */ + this.storeNode = storeNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageTextureNode = true; + + /** + * The access type of the texture node. + * + * @type {string} + * @default 'writeOnly' + */ + this.access = NodeAccess.WRITE_ONLY; + + } + + /** + * Overwrites the default implementation to return a fixed value `'storageTexture'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return 'storageTexture'; + + } + + setup( builder ) { + + super.setup( builder ); + + const properties = builder.getNodeProperties( this ); + properties.storeNode = this.storeNode; + + return properties; + + } + + /** + * Defines the node access. + * + * @param {string} value - The node access. + * @return {StorageTextureNode} A reference to this node. + */ + setAccess( value ) { + + this.access = value; + return this; + + } + + /** + * Generates the code snippet of the storage node. If no `storeNode` + * is defined, the texture node is generated as normal texture. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {string} output - The current output. + * @return {string} The generated code snippet. + */ + generate( builder, output ) { + + let snippet; + + if ( this.storeNode !== null ) { + + snippet = this.generateStore( builder ); + + } else { + + snippet = super.generate( builder, output ); + + } + + return snippet; + + } + + /** + * Convenience method for configuring a read/write node access. + * + * @return {StorageTextureNode} A reference to this node. + */ + toReadWrite() { + + return this.setAccess( NodeAccess.READ_WRITE ); + + } + + /** + * Convenience method for configuring a read-only node access. + * + * @return {StorageTextureNode} A reference to this node. + */ + toReadOnly() { + + return this.setAccess( NodeAccess.READ_ONLY ); + + } + + /** + * Convenience method for configuring a write-only node access. + * + * @return {StorageTextureNode} A reference to this node. + */ + toWriteOnly() { + + return this.setAccess( NodeAccess.WRITE_ONLY ); + + } + + /** + * Generates the code snippet of the storage texture node. + * + * @param {NodeBuilder} builder - The current node builder. + */ + generateStore( builder ) { + + const properties = builder.getNodeProperties( this ); + + const { uvNode, storeNode, depthNode } = properties; + + const textureProperty = super.generate( builder, 'property' ); + const uvSnippet = uvNode.build( builder, 'uvec2' ); + const storeSnippet = storeNode.build( builder, 'vec4' ); + const depthSnippet = depthNode ? depthNode.build( builder, 'int' ) : null; + + const snippet = builder.generateTextureStore( builder, textureProperty, uvSnippet, depthSnippet, storeSnippet ); + + builder.addLineFlowCode( snippet, this ); + + } + + clone() { + + const newNode = super.clone(); + newNode.storeNode = this.storeNode; + return newNode; + + } + +} + +/** + * TSL function for creating a storage texture node. + * + * @tsl + * @function + * @param {StorageTexture} value - The storage texture. + * @param {?Node} uvNode - The uv node. + * @param {?Node} [storeNode=null] - The value node that should be stored in the texture. + * @returns {StorageTextureNode} + */ +const storageTexture = /*@__PURE__*/ nodeProxy( StorageTextureNode ).setParameterLength( 1, 3 ); + + +/** + * TODO: Explain difference to `storageTexture()`. + * + * @tsl + * @function + * @param {StorageTexture} value - The storage texture. + * @param {Node} uvNode - The uv node. + * @param {?Node} [storeNode=null] - The value node that should be stored in the texture. + * @returns {StorageTextureNode} + */ +const textureStore = ( value, uvNode, storeNode ) => { + + const node = storageTexture( value, uvNode, storeNode ); + + if ( storeNode !== null ) node.toStack(); + + return node; + +}; + +const normal = Fn( ( { texture, uv } ) => { + + const epsilon = 0.0001; + + const ret = vec3().toVar(); + + If( uv.x.lessThan( epsilon ), () => { + + ret.assign( vec3( 1, 0, 0 ) ); + + } ).ElseIf( uv.y.lessThan( epsilon ), () => { + + ret.assign( vec3( 0, 1, 0 ) ); + + } ).ElseIf( uv.z.lessThan( epsilon ), () => { + + ret.assign( vec3( 0, 0, 1 ) ); + + } ).ElseIf( uv.x.greaterThan( 1 - epsilon ), () => { + + ret.assign( vec3( - 1, 0, 0 ) ); + + } ).ElseIf( uv.y.greaterThan( 1 - epsilon ), () => { + + ret.assign( vec3( 0, - 1, 0 ) ); + + } ).ElseIf( uv.z.greaterThan( 1 - epsilon ), () => { + + ret.assign( vec3( 0, 0, - 1 ) ); + + } ).Else( () => { + + const step = 0.01; + + const x = texture.sample( uv.add( vec3( - 0.01, 0.0, 0.0 ) ) ).r.sub( texture.sample( uv.add( vec3( step, 0.0, 0.0 ) ) ).r ); + const y = texture.sample( uv.add( vec3( 0.0, - 0.01, 0.0 ) ) ).r.sub( texture.sample( uv.add( vec3( 0.0, step, 0.0 ) ) ).r ); + const z = texture.sample( uv.add( vec3( 0.0, 0.0, - 0.01 ) ) ).r.sub( texture.sample( uv.add( vec3( 0.0, 0.0, step ) ) ).r ); + + ret.assign( vec3( x, y, z ) ); + + } ); + + return ret.normalize(); + +} ); + +/** + * This type of uniform node represents a 3D texture. + * + * @augments TextureNode + */ +class Texture3DNode extends TextureNode { + + static get type() { + + return 'Texture3DNode'; + + } + + /** + * Constructs a new 3D texture node. + * + * @param {Data3DTexture} value - The 3D texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + */ + constructor( value, uvNode = null, levelNode = null ) { + + super( value, uvNode, levelNode ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isTexture3DNode = true; + + } + + /** + * Overwrites the default implementation to return a fixed value `'texture3D'`. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return 'texture3D'; + + } + + /** + * Returns a default uv node which is in context of 3D textures a three-dimensional + * uv node. + * + * @return {Node} The default uv node. + */ + getDefaultUV() { + + return vec3( 0.5, 0.5, 0.5 ); + + } + + /** + * Overwritten with an empty implementation since the `updateMatrix` flag is ignored + * for 3D textures. The uv transformation matrix is not applied to 3D textures. + * + * @param {boolean} value - The update toggle. + */ + setUpdateMatrix( /*value*/ ) { } // Ignore .updateMatrix for 3d TextureNode + + /** + * Overwrites the default implementation to return the unmodified uv node. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} uvNode - The uv node to setup. + * @return {Node} The unmodified uv node. + */ + setupUV( builder, uvNode ) { + + const texture = this.value; + + if ( builder.isFlipY() && ( texture.isRenderTargetTexture === true || texture.isFramebufferTexture === true ) ) { + + if ( this.sampler ) { + + uvNode = uvNode.flipY(); + + } else { + + uvNode = uvNode.setY( int( textureSize( this, this.levelNode ).y ).sub( uvNode.y ).sub( 1 ) ); + + } + + } + + return uvNode; + + } + + /** + * Generates the uv code snippet. + * + * @param {NodeBuilder} builder - The current node builder. + * @param {Node} uvNode - The uv node to generate code for. + * @return {string} The generated code snippet. + */ + generateUV( builder, uvNode ) { + + return uvNode.build( builder, 'vec3' ); + + } + + /** + * TODO. + * + * @param {Node} uvNode - The uv node . + * @return {Node} TODO. + */ + normal( uvNode ) { + + return normal( { texture: this, uv: uvNode } ); + + } + +} + +/** + * TSL function for creating a 3D texture node. + * + * @tsl + * @function + * @param {Data3DTexture} value - The 3D texture. + * @param {?Node} [uvNode=null] - The uv node. + * @param {?Node} [levelNode=null] - The level node. + * @returns {Texture3DNode} + */ +const texture3D = /*@__PURE__*/ nodeProxy( Texture3DNode ).setParameterLength( 1, 3 ); + +/** + * A special type of reference node that allows to link values in + * `userData` fields to node objects. + * ```js + * sprite.userData.rotation = 1; // stores individual rotation per sprite + * + * const material = new THREE.SpriteNodeMaterial(); + * material.rotationNode = userData( 'rotation', 'float' ); + * ``` + * Since `UserDataNode` is extended from {@link ReferenceNode}, the node value + * will automatically be updated when the `rotation` user data field changes. + * + * @augments ReferenceNode + */ +class UserDataNode extends ReferenceNode { + + static get type() { + + return 'UserDataNode'; + + } + + /** + * Constructs a new user data node. + * + * @param {string} property - The property name that should be referenced by the node. + * @param {string} inputType - The node data type of the reference. + * @param {?Object} [userData=null] - A reference to the `userData` object. If not provided, the `userData` property of the 3D object that uses the node material is evaluated. + */ + constructor( property, inputType, userData = null ) { + + super( property, inputType, userData ); + + /** + * A reference to the `userData` object. If not provided, the `userData` + * property of the 3D object that uses the node material is evaluated. + * + * @type {?Object} + * @default null + */ + this.userData = userData; + + } + + /** + * Overwritten to make sure {@link ReferenceNode#reference} points to the correct + * `userData` field. + * + * @param {(NodeFrame|NodeBuilder)} state - The current state to evaluate. + * @return {Object} A reference to the `userData` field. + */ + updateReference( state ) { + + this.reference = this.userData !== null ? this.userData : state.object.userData; + + return this.reference; + + } + +} + +/** + * TSL function for creating a user data node. + * + * @tsl + * @function + * @param {string} name - The property name that should be referenced by the node. + * @param {string} inputType - The node data type of the reference. + * @param {?Object} userData - A reference to the `userData` object. If not provided, the `userData` property of the 3D object that uses the node material is evaluated. + * @returns {UserDataNode} + */ +const userData = ( name, inputType, userData ) => nodeObject( new UserDataNode( name, inputType, userData ) ); + +const _objectData = new WeakMap(); + +/** + * A node for representing motion or velocity vectors. Foundation + * for advanced post processing effects like motion blur or TRAA. + * + * The node keeps track of the model, view and projection matrices + * of the previous frame and uses them to compute offsets in NDC space. + * These offsets represent the final velocity. + * + * @augments TempNode + */ +class VelocityNode extends TempNode { + + static get type() { + + return 'VelocityNode'; + + } + + /** + * Constructs a new vertex color node. + */ + constructor() { + + super( 'vec2' ); + + /** + * The current projection matrix. + * + * @type {?Matrix4} + * @default null + */ + this.projectionMatrix = null; + + /** + * Overwritten since velocity nodes are updated per object. + * + * @type {string} + * @default 'object' + */ + this.updateType = NodeUpdateType.OBJECT; + + /** + * Overwritten since velocity nodes save data after the update. + * + * @type {string} + * @default 'object' + */ + this.updateAfterType = NodeUpdateType.OBJECT; + + /** + * Uniform node representing the previous model matrix in world space. + * + * @type {UniformNode} + * @default null + */ + this.previousModelWorldMatrix = uniform( new Matrix4() ); + + /** + * Uniform node representing the previous projection matrix. + * + * @type {UniformNode} + * @default null + */ + this.previousProjectionMatrix = uniform( new Matrix4() ).setGroup( renderGroup ); + + /** + * Uniform node representing the previous view matrix. + * + * @type {UniformNode} + * @default null + */ + this.previousCameraViewMatrix = uniform( new Matrix4() ); + + } + + /** + * Sets the given projection matrix. + * + * @param {Matrix4} projectionMatrix - The projection matrix to set. + */ + setProjectionMatrix( projectionMatrix ) { + + this.projectionMatrix = projectionMatrix; + + } + + /** + * Updates velocity specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( { frameId, camera, object } ) { + + const previousModelMatrix = getPreviousMatrix( object ); + + this.previousModelWorldMatrix.value.copy( previousModelMatrix ); + + // + + const cameraData = getData( camera ); + + if ( cameraData.frameId !== frameId ) { + + cameraData.frameId = frameId; + + if ( cameraData.previousProjectionMatrix === undefined ) { + + cameraData.previousProjectionMatrix = new Matrix4(); + cameraData.previousCameraViewMatrix = new Matrix4(); + + cameraData.currentProjectionMatrix = new Matrix4(); + cameraData.currentCameraViewMatrix = new Matrix4(); + + cameraData.previousProjectionMatrix.copy( this.projectionMatrix || camera.projectionMatrix ); + cameraData.previousCameraViewMatrix.copy( camera.matrixWorldInverse ); + + } else { + + cameraData.previousProjectionMatrix.copy( cameraData.currentProjectionMatrix ); + cameraData.previousCameraViewMatrix.copy( cameraData.currentCameraViewMatrix ); + + } + + cameraData.currentProjectionMatrix.copy( this.projectionMatrix || camera.projectionMatrix ); + cameraData.currentCameraViewMatrix.copy( camera.matrixWorldInverse ); + + this.previousProjectionMatrix.value.copy( cameraData.previousProjectionMatrix ); + this.previousCameraViewMatrix.value.copy( cameraData.previousCameraViewMatrix ); + + } + + } + + /** + * Overwritten to updated velocity specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + updateAfter( { object } ) { + + getPreviousMatrix( object ).copy( object.matrixWorld ); + + } + + /** + * Implements the velocity computation based on the previous and current vertex data. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @return {Node} The motion vector. + */ + setup( /*builder*/ ) { + + const projectionMatrix = ( this.projectionMatrix === null ) ? cameraProjectionMatrix : uniform( this.projectionMatrix ); + + const previousModelViewMatrix = this.previousCameraViewMatrix.mul( this.previousModelWorldMatrix ); + + const clipPositionCurrent = projectionMatrix.mul( modelViewMatrix ).mul( positionLocal ); + const clipPositionPrevious = this.previousProjectionMatrix.mul( previousModelViewMatrix ).mul( positionPrevious ); + + const ndcPositionCurrent = clipPositionCurrent.xy.div( clipPositionCurrent.w ); + const ndcPositionPrevious = clipPositionPrevious.xy.div( clipPositionPrevious.w ); + + const velocity = sub( ndcPositionCurrent, ndcPositionPrevious ); + + return velocity; + + } + +} + +function getData( object ) { + + let objectData = _objectData.get( object ); + + if ( objectData === undefined ) { + + objectData = {}; + _objectData.set( object, objectData ); + + } + + return objectData; + +} + +function getPreviousMatrix( object, index = 0 ) { + + const objectData = getData( object ); + + let matrix = objectData[ index ]; + + if ( matrix === undefined ) { + + objectData[ index ] = matrix = new Matrix4(); + objectData[ index ].copy( object.matrixWorld ); + + } + + return matrix; + +} + +/** + * TSL object that represents the velocity of a render pass. + * + * @tsl + * @type {VelocityNode} + */ +const velocity = /*@__PURE__*/ nodeImmutable( VelocityNode ); + +/** + * Represents a "Color Burn" blend mode. + * + * It's designed to darken the base layer's colors based on the color of the blend layer. + * It significantly increases the contrast of the base layer, making the colors more vibrant and saturated. + * The darker the color in the blend layer, the stronger the darkening and contrast effect on the base layer. + * + * @tsl + * @function + * @param {Node} base - The base color. + * @param {Node} blend - The blend color. A white (#ffffff) blend color does not alter the base color. + * @return {Node} The result. + */ +const blendBurn = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { + + return min$1( 1.0, base.oneMinus().div( blend ) ).oneMinus(); + +} ).setLayout( { + name: 'blendBurn', + type: 'vec3', + inputs: [ + { name: 'base', type: 'vec3' }, + { name: 'blend', type: 'vec3' } + ] +} ); + +/** + * Represents a "Color Dodge" blend mode. + * + * It's designed to lighten the base layer's colors based on the color of the blend layer. + * It significantly increases the brightness of the base layer, making the colors lighter and more vibrant. + * The brighter the color in the blend layer, the stronger the lightening and contrast effect on the base layer. + * + * @tsl + * @function + * @param {Node} base - The base color. + * @param {Node} blend - The blend color. A black (#000000) blend color does not alter the base color. + * @return {Node} The result. + */ +const blendDodge = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { + + return min$1( base.div( blend.oneMinus() ), 1.0 ); + +} ).setLayout( { + name: 'blendDodge', + type: 'vec3', + inputs: [ + { name: 'base', type: 'vec3' }, + { name: 'blend', type: 'vec3' } + ] +} ); + +/** + * Represents a "Screen" blend mode. + * + * Similar to `blendDodge()`, this mode also lightens the base layer's colors based on the color of the blend layer. + * The "Screen" blend mode is better for general brightening whereas the "Dodge" results in more subtle and nuanced + * effects. + * + * @tsl + * @function + * @param {Node} base - The base color. + * @param {Node} blend - The blend color. A black (#000000) blend color does not alter the base color. + * @return {Node} The result. + */ +const blendScreen = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { + + return base.oneMinus().mul( blend.oneMinus() ).oneMinus(); + +} ).setLayout( { + name: 'blendScreen', + type: 'vec3', + inputs: [ + { name: 'base', type: 'vec3' }, + { name: 'blend', type: 'vec3' } + ] +} ); + +/** + * Represents a "Overlay" blend mode. + * + * It's designed to increase the contrast of the base layer based on the color of the blend layer. + * It amplifies the existing colors and contrast in the base layer, making lighter areas lighter and darker areas darker. + * The color of the blend layer significantly influences the resulting contrast and color shift in the base layer. + * + * @tsl + * @function + * @param {Node} base - The base color. + * @param {Node} blend - The blend color + * @return {Node} The result. + */ +const blendOverlay = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { + + return mix( base.mul( 2.0 ).mul( blend ), base.oneMinus().mul( 2.0 ).mul( blend.oneMinus() ).oneMinus(), step( 0.5, base ) ); + +} ).setLayout( { + name: 'blendOverlay', + type: 'vec3', + inputs: [ + { name: 'base', type: 'vec3' }, + { name: 'blend', type: 'vec3' } + ] +} ); + +/** + * This function blends two color based on their alpha values by replicating the behavior of `THREE.NormalBlending`. + * It assumes both input colors have non-premultiplied alpha. + * + * @tsl + * @function + * @param {Node} base - The base color. + * @param {Node} blend - The blend color + * @return {Node} The result. + */ +const blendColor = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { + + const outAlpha = blend.a.add( base.a.mul( blend.a.oneMinus() ) ); + + return vec4( blend.rgb.mul( blend.a ).add( base.rgb.mul( base.a ).mul( blend.a.oneMinus() ) ).div( outAlpha ), outAlpha ); + +} ).setLayout( { + name: 'blendColor', + type: 'vec4', + inputs: [ + { name: 'base', type: 'vec4' }, + { name: 'blend', type: 'vec4' } + ] +} ); + +/** + * Premultiplies the RGB channels of a color by its alpha channel. + * + * This function is useful for converting a non-premultiplied alpha color + * into a premultiplied alpha format, where the RGB values are scaled + * by the alpha value. Premultiplied alpha is often used in graphics + * rendering for certain operations, such as compositing and image processing. + * + * @tsl + * @function + * @param {Node} color - The input color with non-premultiplied alpha. + * @return {Node} The color with premultiplied alpha. + */ +const premult = /*@__PURE__*/ Fn( ( [ color ] ) => { + + return vec4( color.rgb.mul( color.a ), color.a ); + +}, { color: 'vec4', return: 'vec4' } ); + +/** + * Unpremultiplies the RGB channels of a color by its alpha channel. + * + * This function is useful for converting a premultiplied alpha color + * back into a non-premultiplied alpha format, where the RGB values are + * divided by the alpha value. Unpremultiplied alpha is often used in graphics + * rendering for certain operations, such as compositing and image processing. + * + * @tsl + * @function + * @param {Node} color - The input color with premultiplied alpha. + * @return {Node} The color with non-premultiplied alpha. + */ +const unpremult = /*@__PURE__*/ Fn( ( [ color ] ) => { + + If( color.a.equal( 0.0 ), () => vec4( 0.0 ) ); + + return vec4( color.rgb.div( color.a ), color.a ); + +}, { color: 'vec4', return: 'vec4' } ); + + +// Deprecated + +/** + * @tsl + * @function + * @deprecated since r171. Use {@link blendBurn} instead. + * + * @param {...any} params + * @returns {Function} + */ +const burn = ( ...params ) => { // @deprecated, r171 + + console.warn( 'THREE.TSL: "burn" has been renamed. Use "blendBurn" instead.' ); + return blendBurn( params ); + +}; + +/** + * @tsl + * @function + * @deprecated since r171. Use {@link blendDodge} instead. + * + * @param {...any} params + * @returns {Function} + */ +const dodge = ( ...params ) => { // @deprecated, r171 + + console.warn( 'THREE.TSL: "dodge" has been renamed. Use "blendDodge" instead.' ); + return blendDodge( params ); + +}; + +/** + * @tsl + * @function + * @deprecated since r171. Use {@link blendScreen} instead. + * + * @param {...any} params + * @returns {Function} + */ +const screen = ( ...params ) => { // @deprecated, r171 + + console.warn( 'THREE.TSL: "screen" has been renamed. Use "blendScreen" instead.' ); + return blendScreen( params ); + +}; + +/** + * @tsl + * @function + * @deprecated since r171. Use {@link blendOverlay} instead. + * + * @param {...any} params + * @returns {Function} + */ +const overlay = ( ...params ) => { // @deprecated, r171 + + console.warn( 'THREE.TSL: "overlay" has been renamed. Use "blendOverlay" instead.' ); + return blendOverlay( params ); + +}; + +/** + * Computes a grayscale value for the given RGB color value. + * + * @tsl + * @function + * @param {Node} color - The color value to compute the grayscale for. + * @return {Node} The grayscale color. + */ +const grayscale = /*@__PURE__*/ Fn( ( [ color ] ) => { + + return luminance( color.rgb ); + +} ); + +/** + * Super-saturates or desaturates the given RGB color. + * + * @tsl + * @function + * @param {Node} color - The input color. + * @param {Node} [adjustment=1] - Specifies the amount of the conversion. A value under `1` desaturates the color, a value over `1` super-saturates it. + * @return {Node} The saturated color. + */ +const saturation = /*@__PURE__*/ Fn( ( [ color, adjustment = float( 1 ) ] ) => { + + return adjustment.mix( luminance( color.rgb ), color.rgb ); + +} ); + +/** + * Selectively enhance the intensity of less saturated RGB colors. Can result + * in a more natural and visually appealing image with enhanced color depth + * compared to {@link ColorAdjustment#saturation}. + * + * @tsl + * @function + * @param {Node} color - The input color. + * @param {Node} [adjustment=1] - Controls the intensity of the vibrance effect. + * @return {Node} The updated color. + */ +const vibrance = /*@__PURE__*/ Fn( ( [ color, adjustment = float( 1 ) ] ) => { + + const average = add( color.r, color.g, color.b ).div( 3.0 ); + + const mx = color.r.max( color.g.max( color.b ) ); + const amt = mx.sub( average ).mul( adjustment ).mul( - 3 ); + + return mix( color.rgb, mx, amt ); + +} ); + +/** + * Updates the hue component of the given RGB color while preserving its luminance and saturation. + * + * @tsl + * @function + * @param {Node} color - The input color. + * @param {Node} [adjustment=1] - Defines the degree of hue rotation in radians. A positive value rotates the hue clockwise, while a negative value rotates it counterclockwise. + * @return {Node} The updated color. + */ +const hue = /*@__PURE__*/ Fn( ( [ color, adjustment = float( 1 ) ] ) => { + + const k = vec3( 0.57735, 0.57735, 0.57735 ); + + const cosAngle = adjustment.cos(); + + return vec3( color.rgb.mul( cosAngle ).add( k.cross( color.rgb ).mul( adjustment.sin() ).add( k.mul( dot( k, color.rgb ).mul( cosAngle.oneMinus() ) ) ) ) ); + +} ); + +/** + * Computes the luminance for the given RGB color value. + * + * @tsl + * @function + * @param {Node} color - The color value to compute the luminance for. + * @param {?Node} luminanceCoefficients - The luminance coefficients. By default predefined values of the current working color space are used. + * @return {Node} The luminance. + */ +const luminance = ( + color, + luminanceCoefficients = vec3( ColorManagement.getLuminanceCoefficients( new Vector3() ) ) +) => dot( color, luminanceCoefficients ); + +/** + * Color Decision List (CDL) v1.2 + * + * Compact representation of color grading information, defined by slope, offset, power, and + * saturation. The CDL should be typically be given input in a log space (such as LogC, ACEScc, + * or AgX Log), and will return output in the same space. Output may require clamping >=0. + * + * @tsl + * @function + * @param {Node} color Input (-Infinity < input < +Infinity) + * @param {Node} slope Slope (0 ≤ slope < +Infinity) + * @param {Node} offset Offset (-Infinity < offset < +Infinity; typically -1 < offset < 1) + * @param {Node} power Power (0 < power < +Infinity) + * @param {Node} saturation Saturation (0 ≤ saturation < +Infinity; typically 0 ≤ saturation < 4) + * @param {Node} luminanceCoefficients Luminance coefficients for saturation term, typically Rec. 709 + * @return {Node} Output, -Infinity < output < +Infinity + * + * References: + * - ASC CDL v1.2 + * - {@link https://blender.stackexchange.com/a/55239/43930} + * - {@link https://docs.acescentral.com/specifications/acescc/} + */ +const cdl = /*@__PURE__*/ Fn( ( [ + color, + slope = vec3( 1 ), + offset = vec3( 0 ), + power = vec3( 1 ), + saturation = float( 1 ), + // ASC CDL v1.2 explicitly requires Rec. 709 luminance coefficients. + luminanceCoefficients = vec3( ColorManagement.getLuminanceCoefficients( new Vector3(), LinearSRGBColorSpace ) ) +] ) => { + + // NOTE: The ASC CDL v1.2 defines a [0, 1] clamp on the slope+offset term, and another on the + // saturation term. Per the ACEScc specification and Filament, limits may be omitted to support + // values outside [0, 1], requiring a workaround for negative values in the power expression. + + const luma = color.rgb.dot( vec3( luminanceCoefficients ) ); + + const v = max$1( color.rgb.mul( slope ).add( offset ), 0.0 ).toVar(); + const pv = v.pow( power ).toVar(); + + If( v.r.greaterThan( 0.0 ), () => { v.r.assign( pv.r ); } ); // eslint-disable-line + If( v.g.greaterThan( 0.0 ), () => { v.g.assign( pv.g ); } ); // eslint-disable-line + If( v.b.greaterThan( 0.0 ), () => { v.b.assign( pv.b ); } ); // eslint-disable-line + + v.assign( luma.add( v.sub( luma ).mul( saturation ) ) ); + + return vec4( v.rgb, color.a ); + +} ); + +/** + * Represents a posterize effect which reduces the number of colors + * in an image, resulting in a more blocky and stylized appearance. + * + * @augments TempNode + */ +class PosterizeNode extends TempNode { + + static get type() { + + return 'PosterizeNode'; + + } + + /** + * Constructs a new posterize node. + * + * @param {Node} sourceNode - The input color. + * @param {Node} stepsNode - Controls the intensity of the posterization effect. A lower number results in a more blocky appearance. + */ + constructor( sourceNode, stepsNode ) { + + super(); + + /** + * The input color. + * + * @type {Node} + */ + this.sourceNode = sourceNode; + + /** + * Controls the intensity of the posterization effect. A lower number results in a more blocky appearance. + * + * @type {Node} + */ + this.stepsNode = stepsNode; + + } + + setup() { + + const { sourceNode, stepsNode } = this; + + return sourceNode.mul( stepsNode ).floor().div( stepsNode ); + + } + +} + +/** + * TSL function for creating a posterize node. + * + * @tsl + * @function + * @param {Node} sourceNode - The input color. + * @param {Node} stepsNode - Controls the intensity of the posterization effect. A lower number results in a more blocky appearance. + * @returns {PosterizeNode} + */ +const posterize = /*@__PURE__*/ nodeProxy( PosterizeNode ).setParameterLength( 2 ); + +const _size = /*@__PURE__*/ new Vector2(); + +/** + * Represents the texture of a pass node. + * + * @augments TextureNode + */ +class PassTextureNode extends TextureNode { + + static get type() { + + return 'PassTextureNode'; + + } + + /** + * Constructs a new pass texture node. + * + * @param {PassNode} passNode - The pass node. + * @param {Texture} texture - The output texture. + */ + constructor( passNode, texture ) { + + super( texture ); + + /** + * A reference to the pass node. + * + * @type {PassNode} + */ + this.passNode = passNode; + + this.setUpdateMatrix( false ); + + } + + setup( builder ) { + + if ( builder.object.isQuadMesh ) this.passNode.build( builder ); + + return super.setup( builder ); + + } + + clone() { + + return new this.constructor( this.passNode, this.value ); + + } + +} + +/** + * An extension of `PassTextureNode` which allows to manage more than one + * internal texture. Relevant for the `getPreviousTexture()` related API. + * + * @augments PassTextureNode + */ +class PassMultipleTextureNode extends PassTextureNode { + + static get type() { + + return 'PassMultipleTextureNode'; + + } + + /** + * Constructs a new pass texture node. + * + * @param {PassNode} passNode - The pass node. + * @param {string} textureName - The output texture name. + * @param {boolean} [previousTexture=false] - Whether previous frame data should be used or not. + */ + constructor( passNode, textureName, previousTexture = false ) { + + // null is passed to the super call since this class does not + // use an external texture for rendering pass data into. Instead + // the texture is managed by the pass node itself + + super( passNode, null ); + + /** + * The output texture name. + * + * @type {string} + */ + this.textureName = textureName; + + /** + * Whether previous frame data should be used or not. + * + * @type {boolean} + */ + this.previousTexture = previousTexture; + + } + + /** + * Updates the texture reference of this node. + */ + updateTexture() { + + this.value = this.previousTexture ? this.passNode.getPreviousTexture( this.textureName ) : this.passNode.getTexture( this.textureName ); + + } + + setup( builder ) { + + this.updateTexture(); + + return super.setup( builder ); + + } + + clone() { + + return new this.constructor( this.passNode, this.textureName, this.previousTexture ); + + } + +} + +/** + * Represents a render pass (sometimes called beauty pass) in context of post processing. + * This pass produces a render for the given scene and camera and can provide multiple outputs + * via MRT for further processing. + * + * ```js + * const postProcessing = new PostProcessing( renderer ); + * + * const scenePass = pass( scene, camera ); + * + * postProcessing.outputNode = scenePass; + * ``` + * + * @augments TempNode + */ +class PassNode extends TempNode { + + static get type() { + + return 'PassNode'; + + } + + /** + * Constructs a new pass node. + * + * @param {('color'|'depth')} scope - The scope of the pass. The scope determines whether the node outputs color or depth. + * @param {Scene} scene - A reference to the scene. + * @param {Camera} camera - A reference to the camera. + * @param {Object} options - Options for the internal render target. + */ + constructor( scope, scene, camera, options = {} ) { + + super( 'vec4' ); + + /** + * The scope of the pass. The scope determines whether the node outputs color or depth. + * + * @type {('color'|'depth')} + */ + this.scope = scope; + + /** + * A reference to the scene. + * + * @type {Scene} + */ + this.scene = scene; + + /** + * A reference to the camera. + * + * @type {Camera} + */ + this.camera = camera; + + /** + * Options for the internal render target. + * + * @type {Object} + */ + this.options = options; + + /** + * The pass's pixel ratio. Will be kept automatically kept in sync with the renderer's pixel ratio. + * + * @private + * @type {number} + * @default 1 + */ + this._pixelRatio = 1; + + /** + * The pass's pixel width. Will be kept automatically kept in sync with the renderer's width. + * @private + * @type {number} + * @default 1 + */ + this._width = 1; + + /** + * The pass's pixel height. Will be kept automatically kept in sync with the renderer's height. + * @private + * @type {number} + * @default 1 + */ + this._height = 1; + + const depthTexture = new DepthTexture(); + depthTexture.isRenderTargetTexture = true; + //depthTexture.type = FloatType; + depthTexture.name = 'depth'; + + const renderTarget = new RenderTarget( this._width * this._pixelRatio, this._height * this._pixelRatio, { type: HalfFloatType, ...options, } ); + renderTarget.texture.name = 'output'; + renderTarget.depthTexture = depthTexture; + + /** + * The pass's render target. + * + * @type {RenderTarget} + */ + this.renderTarget = renderTarget; + + /** + * A dictionary holding the internal result textures. + * + * @private + * @type {Object} + */ + this._textures = { + output: renderTarget.texture, + depth: depthTexture + }; + + /** + * A dictionary holding the internal texture nodes. + * + * @private + * @type {Object} + */ + this._textureNodes = {}; + + /** + * A dictionary holding the internal depth nodes. + * + * @private + * @type {Object} + */ + this._linearDepthNodes = {}; + + /** + * A dictionary holding the internal viewZ nodes. + * + * @private + * @type {Object} + */ + this._viewZNodes = {}; + + /** + * A dictionary holding the texture data of the previous frame. + * Used for computing velocity/motion vectors. + * + * @private + * @type {Object} + */ + this._previousTextures = {}; + + /** + * A dictionary holding the texture nodes of the previous frame. + * Used for computing velocity/motion vectors. + * + * @private + * @type {Object} + */ + this._previousTextureNodes = {}; + + /** + * The `near` property of the camera as a uniform. + * + * @private + * @type {UniformNode} + */ + this._cameraNear = uniform( 0 ); + + /** + * The `far` property of the camera as a uniform. + * + * @private + * @type {UniformNode} + */ + this._cameraFar = uniform( 0 ); + + /** + * A MRT node configuring the MRT settings. + * + * @private + * @type {?MRTNode} + * @default null + */ + this._mrt = null; + + this._layers = null; + + this._resolution = 1; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isPassNode = true; + + /** + * The `updateBeforeType` is set to `NodeUpdateType.FRAME` since the node renders the + * scene once per frame in its {@link PassNode#updateBefore} method. + * + * @type {string} + * @default 'frame' + */ + this.updateBeforeType = NodeUpdateType.FRAME; + + /** + * This flag is used for global cache. + * + * @type {boolean} + * @default true + */ + this.global = true; + + } + + /** + * Sets the resolution for the pass. + * The resolution is a factor that is multiplied with the renderer's width and height. + * + * @param {number} resolution - The resolution to set. A value of `1` means full resolution. + * @return {PassNode} A reference to this pass. + */ + setResolution( resolution ) { + + this._resolution = resolution; + + return this; + + } + + /** + * Gets the current resolution of the pass. + * + * @return {number} The current resolution. A value of `1` means full resolution. + * @default 1 + */ + getResolution() { + + return this._resolution; + + } + + setLayers( layers ) { + + this._layers = layers; + + return this; + + } + + getLayers() { + + return this._layers; + + } + + /** + * Sets the given MRT node to setup MRT for this pass. + * + * @param {MRTNode} mrt - The MRT object. + * @return {PassNode} A reference to this pass. + */ + setMRT( mrt ) { + + this._mrt = mrt; + + return this; + + } + + /** + * Returns the current MRT node. + * + * @return {MRTNode} The current MRT node. + */ + getMRT() { + + return this._mrt; + + } + + /** + * Returns the texture for the given output name. + * + * @param {string} name - The output name to get the texture for. + * @return {Texture} The texture. + */ + getTexture( name ) { + + let texture = this._textures[ name ]; + + if ( texture === undefined ) { + + const refTexture = this.renderTarget.texture; + + texture = refTexture.clone(); + texture.name = name; + + this._textures[ name ] = texture; + + this.renderTarget.textures.push( texture ); + + } + + return texture; + + } + + /** + * Returns the texture holding the data of the previous frame for the given output name. + * + * @param {string} name - The output name to get the texture for. + * @return {Texture} The texture holding the data of the previous frame. + */ + getPreviousTexture( name ) { + + let texture = this._previousTextures[ name ]; + + if ( texture === undefined ) { + + texture = this.getTexture( name ).clone(); + + this._previousTextures[ name ] = texture; + + } + + return texture; + + } + + /** + * Switches current and previous textures for the given output name. + * + * @param {string} name - The output name. + */ + toggleTexture( name ) { + + const prevTexture = this._previousTextures[ name ]; + + if ( prevTexture !== undefined ) { + + const texture = this._textures[ name ]; + + const index = this.renderTarget.textures.indexOf( texture ); + this.renderTarget.textures[ index ] = prevTexture; + + this._textures[ name ] = prevTexture; + this._previousTextures[ name ] = texture; + + this._textureNodes[ name ].updateTexture(); + this._previousTextureNodes[ name ].updateTexture(); + + } + + } + + /** + * Returns the texture node for the given output name. + * + * @param {string} [name='output'] - The output name to get the texture node for. + * @return {TextureNode} The texture node. + */ + getTextureNode( name = 'output' ) { + + let textureNode = this._textureNodes[ name ]; + + if ( textureNode === undefined ) { + + textureNode = nodeObject( new PassMultipleTextureNode( this, name ) ); + textureNode.updateTexture(); + this._textureNodes[ name ] = textureNode; + + } + + return textureNode; + + } + + /** + * Returns the previous texture node for the given output name. + * + * @param {string} [name='output'] - The output name to get the previous texture node for. + * @return {TextureNode} The previous texture node. + */ + getPreviousTextureNode( name = 'output' ) { + + let textureNode = this._previousTextureNodes[ name ]; + + if ( textureNode === undefined ) { + + if ( this._textureNodes[ name ] === undefined ) this.getTextureNode( name ); + + textureNode = nodeObject( new PassMultipleTextureNode( this, name, true ) ); + textureNode.updateTexture(); + this._previousTextureNodes[ name ] = textureNode; + + } + + return textureNode; + + } + + /** + * Returns a viewZ node of this pass. + * + * @param {string} [name='depth'] - The output name to get the viewZ node for. In most cases the default `'depth'` can be used however the parameter exists for custom depth outputs. + * @return {Node} The viewZ node. + */ + getViewZNode( name = 'depth' ) { + + let viewZNode = this._viewZNodes[ name ]; + + if ( viewZNode === undefined ) { + + const cameraNear = this._cameraNear; + const cameraFar = this._cameraFar; + + this._viewZNodes[ name ] = viewZNode = perspectiveDepthToViewZ( this.getTextureNode( name ), cameraNear, cameraFar ); + + } + + return viewZNode; + + } + + /** + * Returns a linear depth node of this pass. + * + * @param {string} [name='depth'] - The output name to get the linear depth node for. In most cases the default `'depth'` can be used however the parameter exists for custom depth outputs. + * @return {Node} The linear depth node. + */ + getLinearDepthNode( name = 'depth' ) { + + let linearDepthNode = this._linearDepthNodes[ name ]; + + if ( linearDepthNode === undefined ) { + + const cameraNear = this._cameraNear; + const cameraFar = this._cameraFar; + const viewZNode = this.getViewZNode( name ); + + // TODO: just if ( builder.camera.isPerspectiveCamera ) + + this._linearDepthNodes[ name ] = linearDepthNode = viewZToOrthographicDepth( viewZNode, cameraNear, cameraFar ); + + } + + return linearDepthNode; + + } + + setup( { renderer } ) { + + this.renderTarget.samples = this.options.samples === undefined ? renderer.samples : this.options.samples; + + // TODO: Disable MSAA for WebGL backend for now + if ( renderer.backend.isWebGLBackend === true ) { + + this.renderTarget.samples = 0; + + } + + this.renderTarget.texture.type = renderer.getColorBufferType(); + + return this.scope === PassNode.COLOR ? this.getTextureNode() : this.getLinearDepthNode(); + + } + + updateBefore( frame ) { + + const { renderer } = frame; + const { scene } = this; + + let camera; + let pixelRatio; + + const outputRenderTarget = renderer.getOutputRenderTarget(); + + if ( outputRenderTarget && outputRenderTarget.isXRRenderTarget === true ) { + + pixelRatio = 1; + camera = renderer.xr.getCamera(); + + renderer.xr.updateCamera( camera ); + + _size.set( outputRenderTarget.width, outputRenderTarget.height ); + + } else { + + camera = this.camera; + pixelRatio = renderer.getPixelRatio(); + + renderer.getSize( _size ); + + } + + this._pixelRatio = pixelRatio; + + this.setSize( _size.width, _size.height ); + + const currentRenderTarget = renderer.getRenderTarget(); + const currentMRT = renderer.getMRT(); + const currentMask = camera.layers.mask; + + this._cameraNear.value = camera.near; + this._cameraFar.value = camera.far; + + if ( this._layers !== null ) { + + camera.layers.mask = this._layers.mask; + + } + + for ( const name in this._previousTextures ) { + + this.toggleTexture( name ); + + } + + renderer.setRenderTarget( this.renderTarget ); + renderer.setMRT( this._mrt ); + + renderer.render( scene, camera ); + + renderer.setRenderTarget( currentRenderTarget ); + renderer.setMRT( currentMRT ); + + camera.layers.mask = currentMask; + + } + + /** + * Sets the size of the pass's render target. Honors the pixel ratio. + * + * @param {number} width - The width to set. + * @param {number} height - The height to set. + */ + setSize( width, height ) { + + this._width = width; + this._height = height; + + const effectiveWidth = this._width * this._pixelRatio * this._resolution; + const effectiveHeight = this._height * this._pixelRatio * this._resolution; + + this.renderTarget.setSize( effectiveWidth, effectiveHeight ); + + } + + /** + * Sets the pixel ratio the pass's render target and updates the size. + * + * @param {number} pixelRatio - The pixel ratio to set. + */ + setPixelRatio( pixelRatio ) { + + this._pixelRatio = pixelRatio; + + this.setSize( this._width, this._height ); + + } + + /** + * Frees internal resources. Should be called when the node is no longer in use. + */ + dispose() { + + this.renderTarget.dispose(); + + } + + +} + +/** + * @static + * @type {'color'} + * @default 'color' + */ +PassNode.COLOR = 'color'; + +/** + * @static + * @type {'depth'} + * @default 'depth' + */ +PassNode.DEPTH = 'depth'; + +/** + * TSL function for creating a pass node. + * + * @tsl + * @function + * @param {Scene} scene - A reference to the scene. + * @param {Camera} camera - A reference to the camera. + * @param {Object} options - Options for the internal render target. + * @returns {PassNode} + */ +const pass = ( scene, camera, options ) => nodeObject( new PassNode( PassNode.COLOR, scene, camera, options ) ); + +/** + * TSL function for creating a pass texture node. + * + * @tsl + * @function + * @param {PassNode} pass - The pass node. + * @param {Texture} texture - The output texture. + * @returns {PassTextureNode} + */ +const passTexture = ( pass, texture ) => nodeObject( new PassTextureNode( pass, texture ) ); + +/** + * TSL function for creating a depth pass node. + * + * @tsl + * @function + * @param {Scene} scene - A reference to the scene. + * @param {Camera} camera - A reference to the camera. + * @param {Object} options - Options for the internal render target. + * @returns {PassNode} + */ +const depthPass = ( scene, camera, options ) => nodeObject( new PassNode( PassNode.DEPTH, scene, camera, options ) ); + +/** + * Represents a render pass for producing a toon outline effect on compatible objects. + * Only 3D objects with materials of type `MeshToonMaterial` and `MeshToonNodeMaterial` + * will receive the outline. + * + * ```js + * const postProcessing = new PostProcessing( renderer ); + * + * const scenePass = toonOutlinePass( scene, camera ); + * + * postProcessing.outputNode = scenePass; + * ``` + * @augments PassNode + */ +class ToonOutlinePassNode extends PassNode { + + static get type() { + + return 'ToonOutlinePassNode'; + + } + + /** + * Constructs a new outline pass node. + * + * @param {Scene} scene - A reference to the scene. + * @param {Camera} camera - A reference to the camera. + * @param {Node} colorNode - Defines the outline's color. + * @param {Node} thicknessNode - Defines the outline's thickness. + * @param {Node} alphaNode - Defines the outline's alpha. + */ + constructor( scene, camera, colorNode, thicknessNode, alphaNode ) { + + super( PassNode.COLOR, scene, camera ); + + /** + * Defines the outline's color. + * + * @type {Node} + */ + this.colorNode = colorNode; + + /** + * Defines the outline's thickness. + * + * @type {Node} + */ + this.thicknessNode = thicknessNode; + + /** + * Defines the outline's alpha. + * + * @type {Node} + */ + this.alphaNode = alphaNode; + + /** + * An internal material cache. + * + * @private + * @type {WeakMap} + */ + this._materialCache = new WeakMap(); + + } + + updateBefore( frame ) { + + const { renderer } = frame; + + const currentRenderObjectFunction = renderer.getRenderObjectFunction(); + + renderer.setRenderObjectFunction( ( object, scene, camera, geometry, material, group, lightsNode, clippingContext ) => { + + // only render outline for supported materials + + if ( material.isMeshToonMaterial || material.isMeshToonNodeMaterial ) { + + if ( material.wireframe === false ) { + + const outlineMaterial = this._getOutlineMaterial( material ); + renderer.renderObject( object, scene, camera, geometry, outlineMaterial, group, lightsNode, clippingContext ); + + } + + } + + // default + + renderer.renderObject( object, scene, camera, geometry, material, group, lightsNode, clippingContext ); + + } ); + + super.updateBefore( frame ); + + renderer.setRenderObjectFunction( currentRenderObjectFunction ); + + } + + /** + * Creates the material used for outline rendering. + * + * @private + * @return {NodeMaterial} The outline material. + */ + _createMaterial() { + + const material = new NodeMaterial(); + material.isMeshToonOutlineMaterial = true; + material.name = 'Toon_Outline'; + material.side = BackSide; + + // vertex node + + const outlineNormal = normalLocal.negate(); + const mvp = cameraProjectionMatrix.mul( modelViewMatrix ); + + const ratio = float( 1.0 ); // TODO: support outline thickness ratio for each vertex + const pos = mvp.mul( vec4( positionLocal, 1.0 ) ); + const pos2 = mvp.mul( vec4( positionLocal.add( outlineNormal ), 1.0 ) ); + const norm = normalize( pos.sub( pos2 ) ); // NOTE: subtract pos2 from pos because BackSide objectNormal is negative + + material.vertexNode = pos.add( norm.mul( this.thicknessNode ).mul( pos.w ).mul( ratio ) ); + + // color node + + material.colorNode = vec4( this.colorNode, this.alphaNode ); + + return material; + + } + + /** + * For the given toon material, this method returns a corresponding + * outline material. + * + * @private + * @param {(MeshToonMaterial|MeshToonNodeMaterial)} originalMaterial - The toon material. + * @return {NodeMaterial} The outline material. + */ + _getOutlineMaterial( originalMaterial ) { + + let outlineMaterial = this._materialCache.get( originalMaterial ); + + if ( outlineMaterial === undefined ) { + + outlineMaterial = this._createMaterial(); + + this._materialCache.set( originalMaterial, outlineMaterial ); + + } + + return outlineMaterial; + + } + +} + +/** + * TSL function for creating a toon outline pass node. + * + * @tsl + * @function + * @param {Scene} scene - A reference to the scene. + * @param {Camera} camera - A reference to the camera. + * @param {Color} color - Defines the outline's color. + * @param {number} [thickness=0.003] - Defines the outline's thickness. + * @param {number} [alpha=1] - Defines the outline's alpha. + * @returns {ToonOutlinePassNode} + */ +const toonOutlinePass = ( scene, camera, color = new Color( 0, 0, 0 ), thickness = 0.003, alpha = 1 ) => nodeObject( new ToonOutlinePassNode( scene, camera, nodeObject( color ), nodeObject( thickness ), nodeObject( alpha ) ) ); + +/** + * Linear tone mapping, exposure only. + * + * @tsl + * @function + * @param {Node} color - The color that should be tone mapped. + * @param {Node} exposure - The exposure. + * @return {Node} The tone mapped color. + */ +const linearToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { + + return color.mul( exposure ).clamp(); + +} ).setLayout( { + name: 'linearToneMapping', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' }, + { name: 'exposure', type: 'float' } + ] +} ); + +/** + * Reinhard tone mapping. + * + * Reference: {@link https://www.cs.utah.edu/docs/techreports/2002/pdf/UUCS-02-001.pdf} + * + * @tsl + * @function + * @param {Node} color - The color that should be tone mapped. + * @param {Node} exposure - The exposure. + * @return {Node} The tone mapped color. + */ +const reinhardToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { + + color = color.mul( exposure ); + + return color.div( color.add( 1.0 ) ).clamp(); + +} ).setLayout( { + name: 'reinhardToneMapping', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' }, + { name: 'exposure', type: 'float' } + ] +} ); + +/** + * Cineon tone mapping. + * + * Reference: {@link http://filmicworlds.com/blog/filmic-tonemapping-operators/} + * + * @tsl + * @function + * @param {Node} color - The color that should be tone mapped. + * @param {Node} exposure - The exposure. + * @return {Node} The tone mapped color. + */ +const cineonToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { + + // filmic operator by Jim Hejl and Richard Burgess-Dawson + color = color.mul( exposure ); + color = color.sub( 0.004 ).max( 0.0 ); + + const a = color.mul( color.mul( 6.2 ).add( 0.5 ) ); + const b = color.mul( color.mul( 6.2 ).add( 1.7 ) ).add( 0.06 ); + + return a.div( b ).pow( 2.2 ); + +} ).setLayout( { + name: 'cineonToneMapping', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' }, + { name: 'exposure', type: 'float' } + ] +} ); + +// source: https://github.com/selfshadow/ltc_code/blob/master/webgl/shaders/ltc/ltc_blit.fs + +const RRTAndODTFit = /*@__PURE__*/ Fn( ( [ color ] ) => { + + const a = color.mul( color.add( 0.0245786 ) ).sub( 0.000090537 ); + const b = color.mul( color.add( 0.4329510 ).mul( 0.983729 ) ).add( 0.238081 ); + + return a.div( b ); + +} ); + +/** + * ACESFilmic tone mapping. + * + * Reference: {@link https://github.com/selfshadow/ltc_code/blob/master/webgl/shaders/ltc/ltc_blit.fs} + * + * @tsl + * @function + * @param {Node} color - The color that should be tone mapped. + * @param {Node} exposure - The exposure. + * @return {Node} The tone mapped color. + */ +const acesFilmicToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { + + // sRGB => XYZ => D65_2_D60 => AP1 => RRT_SAT + const ACESInputMat = mat3( + 0.59719, 0.35458, 0.04823, + 0.07600, 0.90834, 0.01566, + 0.02840, 0.13383, 0.83777 + ); + + // ODT_SAT => XYZ => D60_2_D65 => sRGB + const ACESOutputMat = mat3( + 1.60475, - 0.53108, - 0.07367, + - 0.10208, 1.10813, - 605e-5, + - 327e-5, - 0.07276, 1.07602 + ); + + color = color.mul( exposure ).div( 0.6 ); + + color = ACESInputMat.mul( color ); + + // Apply RRT and ODT + color = RRTAndODTFit( color ); + + color = ACESOutputMat.mul( color ); + + // Clamp to [0, 1] + return color.clamp(); + +} ).setLayout( { + name: 'acesFilmicToneMapping', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' }, + { name: 'exposure', type: 'float' } + ] +} ); + +const LINEAR_REC2020_TO_LINEAR_SRGB = /*@__PURE__*/ mat3( vec3( 1.6605, - 0.1246, - 0.0182 ), vec3( - 0.5876, 1.1329, - 0.1006 ), vec3( - 0.0728, - 83e-4, 1.1187 ) ); +const LINEAR_SRGB_TO_LINEAR_REC2020 = /*@__PURE__*/ mat3( vec3( 0.6274, 0.0691, 0.0164 ), vec3( 0.3293, 0.9195, 0.0880 ), vec3( 0.0433, 0.0113, 0.8956 ) ); + +const agxDefaultContrastApprox = /*@__PURE__*/ Fn( ( [ x_immutable ] ) => { + + const x = vec3( x_immutable ).toVar(); + const x2 = vec3( x.mul( x ) ).toVar(); + const x4 = vec3( x2.mul( x2 ) ).toVar(); + + return float( 15.5 ).mul( x4.mul( x2 ) ).sub( mul( 40.14, x4.mul( x ) ) ).add( mul( 31.96, x4 ).sub( mul( 6.868, x2.mul( x ) ) ).add( mul( 0.4298, x2 ).add( mul( 0.1191, x ).sub( 0.00232 ) ) ) ); + +} ); + +/** + * AgX tone mapping. + * + * @tsl + * @function + * @param {Node} color - The color that should be tone mapped. + * @param {Node} exposure - The exposure. + * @return {Node} The tone mapped color. + */ +const agxToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { + + const colortone = vec3( color ).toVar(); + const AgXInsetMatrix = mat3( vec3( 0.856627153315983, 0.137318972929847, 0.11189821299995 ), vec3( 0.0951212405381588, 0.761241990602591, 0.0767994186031903 ), vec3( 0.0482516061458583, 0.101439036467562, 0.811302368396859 ) ); + const AgXOutsetMatrix = mat3( vec3( 1.1271005818144368, - 0.1413297634984383, - 0.14132976349843826 ), vec3( - 0.11060664309660323, 1.157823702216272, - 0.11060664309660294 ), vec3( - 0.016493938717834573, - 0.016493938717834257, 1.2519364065950405 ) ); + const AgxMinEv = float( - 12.47393 ); + const AgxMaxEv = float( 4.026069 ); + colortone.mulAssign( exposure ); + colortone.assign( LINEAR_SRGB_TO_LINEAR_REC2020.mul( colortone ) ); + colortone.assign( AgXInsetMatrix.mul( colortone ) ); + colortone.assign( max$1( colortone, 1e-10 ) ); + colortone.assign( log2( colortone ) ); + colortone.assign( colortone.sub( AgxMinEv ).div( AgxMaxEv.sub( AgxMinEv ) ) ); + colortone.assign( clamp( colortone, 0.0, 1.0 ) ); + colortone.assign( agxDefaultContrastApprox( colortone ) ); + colortone.assign( AgXOutsetMatrix.mul( colortone ) ); + colortone.assign( pow( max$1( vec3( 0.0 ), colortone ), vec3( 2.2 ) ) ); + colortone.assign( LINEAR_REC2020_TO_LINEAR_SRGB.mul( colortone ) ); + colortone.assign( clamp( colortone, 0.0, 1.0 ) ); + + return colortone; + +} ).setLayout( { + name: 'agxToneMapping', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' }, + { name: 'exposure', type: 'float' } + ] +} ); + +/** + * Neutral tone mapping. + * + * Reference: {@link https://modelviewer.dev/examples/tone-mapping} + * + * @tsl + * @function + * @param {Node} color - The color that should be tone mapped. + * @param {Node} exposure - The exposure. + * @return {Node} The tone mapped color. + */ +const neutralToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { + + const StartCompression = float( 0.8 - 0.04 ); + const Desaturation = float( 0.15 ); + + color = color.mul( exposure ); + + const x = min$1( color.r, min$1( color.g, color.b ) ); + const offset = select( x.lessThan( 0.08 ), x.sub( mul( 6.25, x.mul( x ) ) ), 0.04 ); + + color.subAssign( offset ); + + const peak = max$1( color.r, max$1( color.g, color.b ) ); + + If( peak.lessThan( StartCompression ), () => { + + return color; + + } ); + + const d = sub( 1, StartCompression ); + const newPeak = sub( 1, d.mul( d ).div( peak.add( d.sub( StartCompression ) ) ) ); + color.mulAssign( newPeak.div( peak ) ); + const g = sub( 1, div( 1, Desaturation.mul( peak.sub( newPeak ) ).add( 1 ) ) ); + + return mix( color, vec3( newPeak ), g ); + +} ).setLayout( { + name: 'neutralToneMapping', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' }, + { name: 'exposure', type: 'float' } + ] +} ); + +/** + * This class represents native code sections. It is the base + * class for modules like {@link FunctionNode} which allows to implement + * functions with native shader languages. + * + * @augments Node + */ +class CodeNode extends Node { + + static get type() { + + return 'CodeNode'; + + } + + /** + * Constructs a new code node. + * + * @param {string} [code=''] - The native code. + * @param {Array} [includes=[]] - An array of includes. + * @param {('js'|'wgsl'|'glsl')} [language=''] - The used language. + */ + constructor( code = '', includes = [], language = '' ) { + + super( 'code' ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCodeNode = true; + + /** + * This flag is used for global cache. + * + * @type {boolean} + * @default true + */ + this.global = true; + + /** + * The native code. + * + * @type {string} + * @default '' + */ + this.code = code; + + /** + * An array of includes + * + * @type {Array} + * @default [] + */ + this.includes = includes; + + /** + * The used language. + * + * @type {('js'|'wgsl'|'glsl')} + * @default '' + */ + this.language = language; + + } + + /** + * Sets the includes of this code node. + * + * @param {Array} includes - The includes to set. + * @return {CodeNode} A reference to this node. + */ + setIncludes( includes ) { + + this.includes = includes; + + return this; + + } + + /** + * Returns the includes of this code node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Array} The includes. + */ + getIncludes( /*builder*/ ) { + + return this.includes; + + } + + generate( builder ) { + + const includes = this.getIncludes( builder ); + + for ( const include of includes ) { + + include.build( builder ); + + } + + const nodeCode = builder.getCodeFromNode( this, this.getNodeType( builder ) ); + nodeCode.code = this.code; + + return nodeCode.code; + + } + + serialize( data ) { + + super.serialize( data ); + + data.code = this.code; + data.language = this.language; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.code = data.code; + this.language = data.language; + + } + +} + +/** + * TSL function for creating a code node. + * + * @tsl + * @function + * @param {string} [code] - The native code. + * @param {?Array} [includes=[]] - An array of includes. + * @param {?('js'|'wgsl'|'glsl')} [language=''] - The used language. + * @returns {CodeNode} + */ +const code = /*@__PURE__*/ nodeProxy( CodeNode ).setParameterLength( 1, 3 ); + +/** + * TSL function for creating a JS code node. + * + * @tsl + * @function + * @param {string} src - The native code. + * @param {Array} includes - An array of includes. + * @returns {CodeNode} + */ +const js = ( src, includes ) => code( src, includes, 'js' ); + +/** + * TSL function for creating a WGSL code node. + * + * @tsl + * @function + * @param {string} src - The native code. + * @param {Array} includes - An array of includes. + * @returns {CodeNode} + */ +const wgsl = ( src, includes ) => code( src, includes, 'wgsl' ); + +/** + * TSL function for creating a GLSL code node. + * + * @tsl + * @function + * @param {string} src - The native code. + * @param {Array} includes - An array of includes. + * @returns {CodeNode} + */ +const glsl = ( src, includes ) => code( src, includes, 'glsl' ); + +/** + * This class represents a native shader function. It can be used to implement + * certain aspects of a node material with native shader code. There are two predefined + * TSL functions for easier usage. + * + * - `wgslFn`: Creates a WGSL function node. + * - `glslFn`: Creates a GLSL function node. + * + * A basic example with one include looks like so: + * + * ```js + * const desaturateWGSLFn = wgslFn( ` + * fn desaturate( color:vec3 ) -> vec3 { + * let lum = vec3( 0.299, 0.587, 0.114 ); + * return vec3( dot( lum, color ) ); + * }` + *); + * const someWGSLFn = wgslFn( ` + * fn someFn( color:vec3 ) -> vec3 { + * return desaturate( color ); + * } + * `, [ desaturateWGSLFn ] ); + * material.colorNode = someWGSLFn( { color: texture( map ) } ); + *``` + * @augments CodeNode + */ +class FunctionNode extends CodeNode { + + static get type() { + + return 'FunctionNode'; + + } + + /** + * Constructs a new function node. + * + * @param {string} [code=''] - The native code. + * @param {Array} [includes=[]] - An array of includes. + * @param {('js'|'wgsl'|'glsl')} [language=''] - The used language. + */ + constructor( code = '', includes = [], language = '' ) { + + super( code, includes, language ); + + } + + getNodeType( builder ) { + + return this.getNodeFunction( builder ).type; + + } + + /** + * Returns the inputs of this function node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Array} The inputs. + */ + getInputs( builder ) { + + return this.getNodeFunction( builder ).inputs; + + } + + /** + * Returns the node function for this function node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {NodeFunction} The node function. + */ + getNodeFunction( builder ) { + + const nodeData = builder.getDataFromNode( this ); + + let nodeFunction = nodeData.nodeFunction; + + if ( nodeFunction === undefined ) { + + nodeFunction = builder.parser.parseFunction( this.code ); + + nodeData.nodeFunction = nodeFunction; + + } + + return nodeFunction; + + } + + generate( builder, output ) { + + super.generate( builder ); + + const nodeFunction = this.getNodeFunction( builder ); + + const name = nodeFunction.name; + const type = nodeFunction.type; + + const nodeCode = builder.getCodeFromNode( this, type ); + + if ( name !== '' ) { + + // use a custom property name + + nodeCode.name = name; + + } + + const propertyName = builder.getPropertyName( nodeCode ); + + const code = this.getNodeFunction( builder ).getCode( propertyName ); + + nodeCode.code = code + '\n'; + + if ( output === 'property' ) { + + return propertyName; + + } else { + + return builder.format( `${ propertyName }()`, type, output ); + + } + + } + +} + +const nativeFn = ( code, includes = [], language = '' ) => { + + for ( let i = 0; i < includes.length; i ++ ) { + + const include = includes[ i ]; + + // TSL Function: glslFn, wgslFn + + if ( typeof include === 'function' ) { + + includes[ i ] = include.functionNode; + + } + + } + + const functionNode = nodeObject( new FunctionNode( code, includes, language ) ); + + const fn = ( ...params ) => functionNode.call( ...params ); + fn.functionNode = functionNode; + + return fn; + +}; + +const glslFn = ( code, includes ) => nativeFn( code, includes, 'glsl' ); +const wgslFn = ( code, includes ) => nativeFn( code, includes, 'wgsl' ); + +/** + * `ScriptableNode` uses this class to manage script inputs and outputs. + * + * @augments Node + */ +class ScriptableValueNode extends Node { + + static get type() { + + return 'ScriptableValueNode'; + + } + + /** + * Constructs a new scriptable node. + * + * @param {any} [value=null] - The value. + */ + constructor( value = null ) { + + super(); + + /** + * A reference to the value. + * + * @private + * @default null + */ + this._value = value; + + /** + * Depending on the type of `_value`, this property might cache parsed data. + * + * @private + * @default null + */ + this._cache = null; + + /** + * If this node represents an input, this property represents the input type. + * + * @type {?string} + * @default null + */ + this.inputType = null; + + /** + * If this node represents an output, this property represents the output type. + * + * @type {?string} + * @default null + */ + this.outputType = null; + + /** + * An event dispatcher for managing events. + * + * @type {EventDispatcher} + */ + this.events = new EventDispatcher(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isScriptableValueNode = true; + + } + + /** + * Whether this node represents an output or not. + * + * @type {boolean} + * @readonly + * @default true + */ + get isScriptableOutputNode() { + + return this.outputType !== null; + + } + + set value( val ) { + + if ( this._value === val ) return; + + if ( this._cache && this.inputType === 'URL' && this.value.value instanceof ArrayBuffer ) { + + URL.revokeObjectURL( this._cache ); + + this._cache = null; + + } + + this._value = val; + + this.events.dispatchEvent( { type: 'change' } ); + + this.refresh(); + + } + + /** + * The node's value. + * + * @type {any} + */ + get value() { + + return this._value; + + } + + /** + * Dispatches the `refresh` event. + */ + refresh() { + + this.events.dispatchEvent( { type: 'refresh' } ); + + } + + /** + * The `value` property usually represents a node or even binary data in form of array buffers. + * In this case, this method tries to return the actual value behind the complex type. + * + * @return {any} The value. + */ + getValue() { + + const value = this.value; + + if ( value && this._cache === null && this.inputType === 'URL' && value.value instanceof ArrayBuffer ) { + + this._cache = URL.createObjectURL( new Blob( [ value.value ] ) ); + + } else if ( value && value.value !== null && value.value !== undefined && ( + ( ( this.inputType === 'URL' || this.inputType === 'String' ) && typeof value.value === 'string' ) || + ( this.inputType === 'Number' && typeof value.value === 'number' ) || + ( this.inputType === 'Vector2' && value.value.isVector2 ) || + ( this.inputType === 'Vector3' && value.value.isVector3 ) || + ( this.inputType === 'Vector4' && value.value.isVector4 ) || + ( this.inputType === 'Color' && value.value.isColor ) || + ( this.inputType === 'Matrix3' && value.value.isMatrix3 ) || + ( this.inputType === 'Matrix4' && value.value.isMatrix4 ) + ) ) { + + return value.value; + + } + + return this._cache || value; + + } + + /** + * Overwritten since the node type is inferred from the value. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.value && this.value.isNode ? this.value.getNodeType( builder ) : 'float'; + + } + + setup() { + + return this.value && this.value.isNode ? this.value : float(); + + } + + serialize( data ) { + + super.serialize( data ); + + if ( this.value !== null ) { + + if ( this.inputType === 'ArrayBuffer' ) { + + data.value = arrayBufferToBase64( this.value ); + + } else { + + data.value = this.value ? this.value.toJSON( data.meta ).uuid : null; + + } + + } else { + + data.value = null; + + } + + data.inputType = this.inputType; + data.outputType = this.outputType; + + } + + deserialize( data ) { + + super.deserialize( data ); + + let value = null; + + if ( data.value !== null ) { + + if ( data.inputType === 'ArrayBuffer' ) { + + value = base64ToArrayBuffer( data.value ); + + } else if ( data.inputType === 'Texture' ) { + + value = data.meta.textures[ data.value ]; + + } else { + + value = data.meta.nodes[ data.value ] || null; + + } + + } + + this.value = value; + + this.inputType = data.inputType; + this.outputType = data.outputType; + + } + +} + +/** + * TSL function for creating a scriptable value node. + * + * @tsl + * @function + * @param {any} [value] - The value. + * @returns {ScriptableValueNode} + */ +const scriptableValue = /*@__PURE__*/ nodeProxy( ScriptableValueNode ).setParameterLength( 1 ); + +/** + * A Map-like data structure for managing resources of scriptable nodes. + * + * @augments Map + */ +class Resources extends Map { + + get( key, callback = null, ...params ) { + + if ( this.has( key ) ) return super.get( key ); + + if ( callback !== null ) { + + const value = callback( ...params ); + this.set( key, value ); + return value; + + } + + } + +} + +class Parameters { + + constructor( scriptableNode ) { + + this.scriptableNode = scriptableNode; + + } + + get parameters() { + + return this.scriptableNode.parameters; + + } + + get layout() { + + return this.scriptableNode.getLayout(); + + } + + getInputLayout( id ) { + + return this.scriptableNode.getInputLayout( id ); + + } + + get( name ) { + + const param = this.parameters[ name ]; + const value = param ? param.getValue() : null; + + return value; + + } + +} + +/** + * Defines the resources (e.g. namespaces) of scriptable nodes. + * + * @type {Resources} + */ +const ScriptableNodeResources = new Resources(); + +/** + * This type of node allows to implement nodes with custom scripts. The script + * section is represented as an instance of `CodeNode` written with JavaScript. + * The script itself must adhere to a specific structure. + * + * - main(): Executed once by default and every time `node.needsUpdate` is set. + * - layout: The layout object defines the script's interface (inputs and outputs). + * + * ```js + * ScriptableNodeResources.set( 'TSL', TSL ); + * + * const scriptableNode = scriptable( js( ` + * layout = { + * outputType: 'node', + * elements: [ + * { name: 'source', inputType: 'node' }, + * ] + * }; + * + * const { mul, oscSine } = TSL; + * + * function main() { + * const source = parameters.get( 'source' ) || float(); + * return mul( source, oscSine() ) ); + * } + * + * ` ) ); + * + * scriptableNode.setParameter( 'source', color( 1, 0, 0 ) ); + * + * const material = new THREE.MeshBasicNodeMaterial(); + * material.colorNode = scriptableNode; + * ``` + * + * @augments Node + */ +class ScriptableNode extends Node { + + static get type() { + + return 'ScriptableNode'; + + } + + /** + * Constructs a new scriptable node. + * + * @param {?CodeNode} [codeNode=null] - The code node. + * @param {Object} [parameters={}] - The parameters definition. + */ + constructor( codeNode = null, parameters = {} ) { + + super(); + + /** + * The code node. + * + * @type {?CodeNode} + * @default null + */ + this.codeNode = codeNode; + + /** + * The parameters definition. + * + * @type {Object} + * @default {} + */ + this.parameters = parameters; + + this._local = new Resources(); + this._output = scriptableValue( null ); + this._outputs = {}; + this._source = this.source; + this._method = null; + this._object = null; + this._value = null; + this._needsOutputUpdate = true; + + this.onRefresh = this.onRefresh.bind( this ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isScriptableNode = true; + + } + + /** + * The source code of the scriptable node. + * + * @type {string} + */ + get source() { + + return this.codeNode ? this.codeNode.code : ''; + + } + + /** + * Sets the reference of a local script variable. + * + * @param {string} name - The variable name. + * @param {Object} value - The reference to set. + * @return {Resources} The resource map + */ + setLocal( name, value ) { + + return this._local.set( name, value ); + + } + + /** + * Gets the value of a local script variable. + * + * @param {string} name - The variable name. + * @return {Object} The value. + */ + getLocal( name ) { + + return this._local.get( name ); + + } + + /** + * Event listener for the `refresh` event. + */ + onRefresh() { + + this._refresh(); + + } + + /** + * Returns an input from the layout with the given id/name. + * + * @param {string} id - The id/name of the input. + * @return {Object} The element entry. + */ + getInputLayout( id ) { + + for ( const element of this.getLayout() ) { + + if ( element.inputType && ( element.id === id || element.name === id ) ) { + + return element; + + } + + } + + } + + /** + * Returns an output from the layout with the given id/name. + * + * @param {string} id - The id/name of the output. + * @return {Object} The element entry. + */ + getOutputLayout( id ) { + + for ( const element of this.getLayout() ) { + + if ( element.outputType && ( element.id === id || element.name === id ) ) { + + return element; + + } + + } + + } + + /** + * Defines a script output for the given name and value. + * + * @param {string} name - The name of the output. + * @param {Node} value - The node value. + * @return {ScriptableNode} A reference to this node. + */ + setOutput( name, value ) { + + const outputs = this._outputs; + + if ( outputs[ name ] === undefined ) { + + outputs[ name ] = scriptableValue( value ); + + } else { + + outputs[ name ].value = value; + + } + + return this; + + } + + /** + * Returns a script output for the given name. + * + * @param {string} name - The name of the output. + * @return {ScriptableValueNode} The node value. + */ + getOutput( name ) { + + return this._outputs[ name ]; + + } + + /** + * Returns a parameter for the given name + * + * @param {string} name - The name of the parameter. + * @return {ScriptableValueNode} The node value. + */ + getParameter( name ) { + + return this.parameters[ name ]; + + } + + /** + * Sets a value for the given parameter name. + * + * @param {string} name - The parameter name. + * @param {any} value - The parameter value. + * @return {ScriptableNode} A reference to this node. + */ + setParameter( name, value ) { + + const parameters = this.parameters; + + if ( value && value.isScriptableNode ) { + + this.deleteParameter( name ); + + parameters[ name ] = value; + parameters[ name ].getDefaultOutput().events.addEventListener( 'refresh', this.onRefresh ); + + } else if ( value && value.isScriptableValueNode ) { + + this.deleteParameter( name ); + + parameters[ name ] = value; + parameters[ name ].events.addEventListener( 'refresh', this.onRefresh ); + + } else if ( parameters[ name ] === undefined ) { + + parameters[ name ] = scriptableValue( value ); + parameters[ name ].events.addEventListener( 'refresh', this.onRefresh ); + + } else { + + parameters[ name ].value = value; + + } + + return this; + + } + + /** + * Returns the value of this node which is the value of + * the default output. + * + * @return {Node} The value. + */ + getValue() { + + return this.getDefaultOutput().getValue(); + + } + + /** + * Deletes a parameter from the script. + * + * @param {string} name - The parameter to remove. + * @return {ScriptableNode} A reference to this node. + */ + deleteParameter( name ) { + + let valueNode = this.parameters[ name ]; + + if ( valueNode ) { + + if ( valueNode.isScriptableNode ) valueNode = valueNode.getDefaultOutput(); + + valueNode.events.removeEventListener( 'refresh', this.onRefresh ); + + } + + return this; + + } + + /** + * Deletes all parameters from the script. + * + * @return {ScriptableNode} A reference to this node. + */ + clearParameters() { + + for ( const name of Object.keys( this.parameters ) ) { + + this.deleteParameter( name ); + + } + + this.needsUpdate = true; + + return this; + + } + + /** + * Calls a function from the script. + * + * @param {string} name - The function name. + * @param {...any} params - A list of parameters. + * @return {any} The result of the function call. + */ + call( name, ...params ) { + + const object = this.getObject(); + const method = object[ name ]; + + if ( typeof method === 'function' ) { + + return method( ...params ); + + } + + } + + /** + * Asynchronously calls a function from the script. + * + * @param {string} name - The function name. + * @param {...any} params - A list of parameters. + * @return {Promise} The result of the function call. + */ + async callAsync( name, ...params ) { + + const object = this.getObject(); + const method = object[ name ]; + + if ( typeof method === 'function' ) { + + return method.constructor.name === 'AsyncFunction' ? await method( ...params ) : method( ...params ); + + } + + } + + /** + * Overwritten since the node types is inferred from the script's output. + * + * @param {NodeBuilder} builder - The current node builder + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.getDefaultOutputNode().getNodeType( builder ); + + } + + /** + * Refreshes the script node. + * + * @param {?string} [output=null] - An optional output. + */ + refresh( output = null ) { + + if ( output !== null ) { + + this.getOutput( output ).refresh(); + + } else { + + this._refresh(); + + } + + } + + /** + * Returns an object representation of the script. + * + * @return {Object} The result object. + */ + getObject() { + + if ( this.needsUpdate ) this.dispose(); + if ( this._object !== null ) return this._object; + + // + + const refresh = () => this.refresh(); + const setOutput = ( id, value ) => this.setOutput( id, value ); + + const parameters = new Parameters( this ); + + const THREE = ScriptableNodeResources.get( 'THREE' ); + const TSL = ScriptableNodeResources.get( 'TSL' ); + + const method = this.getMethod(); + const params = [ parameters, this._local, ScriptableNodeResources, refresh, setOutput, THREE, TSL ]; + + this._object = method( ...params ); + + const layout = this._object.layout; + + if ( layout ) { + + if ( layout.cache === false ) { + + this._local.clear(); + + } + + // default output + this._output.outputType = layout.outputType || null; + + if ( Array.isArray( layout.elements ) ) { + + for ( const element of layout.elements ) { + + const id = element.id || element.name; + + if ( element.inputType ) { + + if ( this.getParameter( id ) === undefined ) this.setParameter( id, null ); + + this.getParameter( id ).inputType = element.inputType; + + } + + if ( element.outputType ) { + + if ( this.getOutput( id ) === undefined ) this.setOutput( id, null ); + + this.getOutput( id ).outputType = element.outputType; + + } + + } + + } + + } + + return this._object; + + } + + deserialize( data ) { + + super.deserialize( data ); + + for ( const name in this.parameters ) { + + let valueNode = this.parameters[ name ]; + + if ( valueNode.isScriptableNode ) valueNode = valueNode.getDefaultOutput(); + + valueNode.events.addEventListener( 'refresh', this.onRefresh ); + + } + + } + + /** + * Returns the layout of the script. + * + * @return {Object} The script's layout. + */ + getLayout() { + + return this.getObject().layout; + + } + + /** + * Returns default node output of the script. + * + * @return {Node} The default node output. + */ + getDefaultOutputNode() { + + const output = this.getDefaultOutput().value; + + if ( output && output.isNode ) { + + return output; + + } + + return float(); + + } + + /** + * Returns default output of the script. + * + * @return {ScriptableValueNode} The default output. + */ + getDefaultOutput() { + + return this._exec()._output; + + } + + /** + * Returns a function created from the node's script. + * + * @return {Function} The function representing the node's code. + */ + getMethod() { + + if ( this.needsUpdate ) this.dispose(); + if ( this._method !== null ) return this._method; + + // + + const parametersProps = [ 'parameters', 'local', 'global', 'refresh', 'setOutput', 'THREE', 'TSL' ]; + const interfaceProps = [ 'layout', 'init', 'main', 'dispose' ]; + + const properties = interfaceProps.join( ', ' ); + const declarations = 'var ' + properties + '; var output = {};\n'; + const returns = '\nreturn { ...output, ' + properties + ' };'; + + const code = declarations + this.codeNode.code + returns; + + // + + this._method = new Function( ...parametersProps, code ); + + return this._method; + + } + + /** + * Frees all internal resources. + */ + dispose() { + + if ( this._method === null ) return; + + if ( this._object && typeof this._object.dispose === 'function' ) { + + this._object.dispose(); + + } + + this._method = null; + this._object = null; + this._source = null; + this._value = null; + this._needsOutputUpdate = true; + this._output.value = null; + this._outputs = {}; + + } + + setup() { + + return this.getDefaultOutputNode(); + + } + + getCacheKey( force ) { + + const values = [ hashString( this.source ), this.getDefaultOutputNode().getCacheKey( force ) ]; + + for ( const param in this.parameters ) { + + values.push( this.parameters[ param ].getCacheKey( force ) ); + + } + + return hashArray( values ); + + } + + set needsUpdate( value ) { + + if ( value === true ) this.dispose(); + + } + + get needsUpdate() { + + return this.source !== this._source; + + } + + /** + * Executes the `main` function of the script. + * + * @private + * @return {ScriptableNode} A reference to this node. + */ + _exec() { + + if ( this.codeNode === null ) return this; + + if ( this._needsOutputUpdate === true ) { + + this._value = this.call( 'main' ); + + this._needsOutputUpdate = false; + + } + + this._output.value = this._value; + + return this; + + } + + /** + * Executes the refresh. + * + * @private + */ + _refresh() { + + this.needsUpdate = true; + + this._exec(); + + this._output.refresh(); + + } + +} + +/** + * TSL function for creating a scriptable node. + * + * @tsl + * @function + * @param {CodeNode} [codeNode] - The code node. + * @param {?Object} [parameters={}] - The parameters definition. + * @returns {ScriptableNode} + */ +const scriptable = /*@__PURE__*/ nodeProxy( ScriptableNode ).setParameterLength( 1, 2 ); + +/** + * Returns a node that represents the `z` coordinate in view space + * for the current fragment. It's a different representation of the + * default depth value. + * + * This value can be part of a computation that defines how the fog + * density increases when moving away from the camera. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {Node} The viewZ node. + */ +function getViewZNode( builder ) { + + let viewZ; + + const getViewZ = builder.context.getViewZ; + + if ( getViewZ !== undefined ) { + + viewZ = getViewZ( this ); + + } + + return ( viewZ || positionView.z ).negate(); + +} + +/** + * Constructs a new range factor node. + * + * @tsl + * @function + * @param {Node} near - Defines the near value. + * @param {Node} far - Defines the far value. + */ +const rangeFogFactor = Fn( ( [ near, far ], builder ) => { + + const viewZ = getViewZNode( builder ); + + return smoothstep( near, far, viewZ ); + +} ); + +/** + * Represents an exponential squared fog. This type of fog gives + * a clear view near the camera and a faster than exponentially + * densening fog farther from the camera. + * + * @tsl + * @function + * @param {Node} density - Defines the fog density. + */ +const densityFogFactor = Fn( ( [ density ], builder ) => { + + const viewZ = getViewZNode( builder ); + + return density.mul( density, viewZ, viewZ ).negate().exp().oneMinus(); + +} ); + +/** + * This class can be used to configure a fog for the scene. + * Nodes of this type are assigned to `Scene.fogNode`. + * + * @tsl + * @function + * @param {Node} color - Defines the color of the fog. + * @param {Node} factor - Defines how the fog is factored in the scene. + */ +const fog = Fn( ( [ color, factor ] ) => { + + return vec4( factor.toFloat().mix( output.rgb, color.toVec3() ), output.a ); + +} ); + +// Deprecated + +/** + * @tsl + * @function + * @deprecated since r171. Use `fog( color, rangeFogFactor( near, far ) )` instead. + * + * @param {Node} color + * @param {Node} near + * @param {Node} far + * @returns {Function} + */ +function rangeFog( color, near, far ) { // @deprecated, r171 + + console.warn( 'THREE.TSL: "rangeFog( color, near, far )" is deprecated. Use "fog( color, rangeFogFactor( near, far ) )" instead.' ); + return fog( color, rangeFogFactor( near, far ) ); + +} + +/** + * @tsl + * @function + * @deprecated since r171. Use `fog( color, densityFogFactor( density ) )` instead. + * + * @param {Node} color + * @param {Node} density + * @returns {Function} + */ +function densityFog( color, density ) { // @deprecated, r171 + + console.warn( 'THREE.TSL: "densityFog( color, density )" is deprecated. Use "fog( color, densityFogFactor( density ) )" instead.' ); + return fog( color, densityFogFactor( density ) ); + +} + +let min = null; +let max = null; + +/** + * `RangeNode` generates random instanced attribute data in a defined range. + * An exemplary use case for this utility node is to generate random per-instance + * colors: + * ```js + * const material = new MeshBasicNodeMaterial(); + * material.colorNode = range( new Color( 0x000000 ), new Color( 0xFFFFFF ) ); + * const mesh = new InstancedMesh( geometry, material, count ); + * ``` + * @augments Node + */ +class RangeNode extends Node { + + static get type() { + + return 'RangeNode'; + + } + + /** + * Constructs a new range node. + * + * @param {Node} [minNode=float()] - A node defining the lower bound of the range. + * @param {Node} [maxNode=float()] - A node defining the upper bound of the range. + */ + constructor( minNode = float(), maxNode = float() ) { + + super(); + + /** + * A node defining the lower bound of the range. + * + * @type {Node} + * @default float() + */ + this.minNode = minNode; + + /** + * A node defining the upper bound of the range. + * + * @type {Node} + * @default float() + */ + this.maxNode = maxNode; + + } + + /** + * Returns the vector length which is computed based on the range definition. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {number} The vector length. + */ + getVectorLength( builder ) { + + const minLength = builder.getTypeLength( getValueType( this.minNode.value ) ); + const maxLength = builder.getTypeLength( getValueType( this.maxNode.value ) ); + + return minLength > maxLength ? minLength : maxLength; + + } + + /** + * This method is overwritten since the node type is inferred from range definition. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return builder.object.count > 1 ? builder.getTypeFromLength( this.getVectorLength( builder ) ) : 'float'; + + } + + setup( builder ) { + + const object = builder.object; + + let output = null; + + if ( object.count > 1 ) { + + const minValue = this.minNode.value; + const maxValue = this.maxNode.value; + + const minLength = builder.getTypeLength( getValueType( minValue ) ); + const maxLength = builder.getTypeLength( getValueType( maxValue ) ); + + min = min || new Vector4(); + max = max || new Vector4(); + + min.setScalar( 0 ); + max.setScalar( 0 ); + + if ( minLength === 1 ) min.setScalar( minValue ); + else if ( minValue.isColor ) min.set( minValue.r, minValue.g, minValue.b, 1 ); + else min.set( minValue.x, minValue.y, minValue.z || 0, minValue.w || 0 ); + + if ( maxLength === 1 ) max.setScalar( maxValue ); + else if ( maxValue.isColor ) max.set( maxValue.r, maxValue.g, maxValue.b, 1 ); + else max.set( maxValue.x, maxValue.y, maxValue.z || 0, maxValue.w || 0 ); + + const stride = 4; + + const length = stride * object.count; + const array = new Float32Array( length ); + + for ( let i = 0; i < length; i ++ ) { + + const index = i % stride; + + const minElementValue = min.getComponent( index ); + const maxElementValue = max.getComponent( index ); + + array[ i ] = MathUtils.lerp( minElementValue, maxElementValue, Math.random() ); + + } + + const nodeType = this.getNodeType( builder ); + + if ( object.count <= 4096 ) { + + output = buffer( array, 'vec4', object.count ).element( instanceIndex ).convert( nodeType ); + + } else { + + // TODO: Improve anonymous buffer attribute creation removing this part + const bufferAttribute = new InstancedBufferAttribute( array, 4 ); + builder.geometry.setAttribute( '__range' + this.id, bufferAttribute ); + + output = instancedBufferAttribute( bufferAttribute ).convert( nodeType ); + + } + + } else { + + output = float( 0 ); + + } + + return output; + + } + +} + +/** + * TSL function for creating a range node. + * + * @tsl + * @function + * @param {Node} [minNode=float()] - A node defining the lower bound of the range. + * @param {Node} [maxNode=float()] - A node defining the upper bound of the range. + * @returns {RangeNode} + */ +const range = /*@__PURE__*/ nodeProxy( RangeNode ).setParameterLength( 2 ); + +/** + * `ComputeBuiltinNode` represents a compute-scope builtin value that expose information + * about the currently running dispatch and/or the device it is running on. + * + * This node can only be used with a WebGPU backend. + * + * @augments Node + */ +class ComputeBuiltinNode extends Node { + + static get type() { + + return 'ComputeBuiltinNode'; + + } + + /** + * Constructs a new compute builtin node. + * + * @param {string} builtinName - The built-in name. + * @param {string} nodeType - The node type. + */ + constructor( builtinName, nodeType ) { + + super( nodeType ); + + /** + * The built-in name. + * + * @private + * @type {string} + */ + this._builtinName = builtinName; + + } + + /** + * This method is overwritten since hash is derived from the built-in name. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The hash. + */ + getHash( builder ) { + + return this.getBuiltinName( builder ); + + } + + /** + * This method is overwritten since the node type is simply derived from `nodeType`.. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( /*builder*/ ) { + + return this.nodeType; + + } + + /** + * Sets the builtin name. + * + * @param {string} builtinName - The built-in name. + * @return {ComputeBuiltinNode} A reference to this node. + */ + setBuiltinName( builtinName ) { + + this._builtinName = builtinName; + + return this; + + } + + /** + * Returns the builtin name. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The builtin name. + */ + getBuiltinName( /*builder*/ ) { + + return this._builtinName; + + } + + /** + * Whether the current node builder has the builtin or not. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {boolean} Whether the builder has the builtin or not. + */ + hasBuiltin( builder ) { + + return builder.hasBuiltin( this._builtinName ); + + } + + generate( builder, output ) { + + const builtinName = this.getBuiltinName( builder ); + const nodeType = this.getNodeType( builder ); + + if ( builder.shaderStage === 'compute' ) { + + return builder.format( builtinName, nodeType, output ); + + } else { + + console.warn( `ComputeBuiltinNode: Compute built-in value ${builtinName} can not be accessed in the ${builder.shaderStage} stage` ); + return builder.generateConst( nodeType ); + + } + + } + + serialize( data ) { + + super.serialize( data ); + + data.global = this.global; + data._builtinName = this._builtinName; + + } + + deserialize( data ) { + + super.deserialize( data ); + + this.global = data.global; + this._builtinName = data._builtinName; + + } + +} + +/** + * TSL function for creating a compute builtin node. + * + * @tsl + * @function + * @param {string} name - The built-in name. + * @param {string} nodeType - The node type. + * @returns {ComputeBuiltinNode} + */ +const computeBuiltin = ( name, nodeType ) => nodeObject( new ComputeBuiltinNode( name, nodeType ) ); + +/** + * Represents the number of workgroups dispatched by the compute shader. + * ```js + * // Run 512 invocations/threads with a workgroup size of 128. + * const computeFn = Fn(() => { + * + * // numWorkgroups.x = 4 + * storageBuffer.element(0).assign(numWorkgroups.x) + * + * })().compute(512, [128]); + * + * // Run 512 invocations/threads with the default workgroup size of 64. + * const computeFn = Fn(() => { + * + * // numWorkgroups.x = 8 + * storageBuffer.element(0).assign(numWorkgroups.x) + * + * })().compute(512); + * ``` + * + * @tsl + * @type {ComputeBuiltinNode} + */ +const numWorkgroups = /*@__PURE__*/ computeBuiltin( 'numWorkgroups', 'uvec3' ); + +/** + * Represents the 3-dimensional index of the workgroup the current compute invocation belongs to. + * ```js + * // Execute 12 compute threads with a workgroup size of 3. + * const computeFn = Fn( () => { + * + * If( workgroupId.x.mod( 2 ).equal( 0 ), () => { + * + * storageBuffer.element( instanceIndex ).assign( instanceIndex ); + * + * } ).Else( () => { + * + * storageBuffer.element( instanceIndex ).assign( 0 ); + * + * } ); + * + * } )().compute( 12, [ 3 ] ); + * + * // workgroupId.x = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]; + * // Buffer Output = [0, 1, 2, 0, 0, 0, 6, 7, 8, 0, 0, 0]; + * ``` + * + * @tsl + * @type {ComputeBuiltinNode} + */ +const workgroupId = /*@__PURE__*/ computeBuiltin( 'workgroupId', 'uvec3' ); + +/** + * A non-linearized 3-dimensional representation of the current invocation's position within a 3D global grid. + * + * @tsl + * @type {ComputeBuiltinNode} + */ +const globalId = /*@__PURE__*/ computeBuiltin( 'globalId', 'uvec3' ); +/** + * A non-linearized 3-dimensional representation of the current invocation's position within a 3D workgroup grid. + * + * @tsl + * @type {ComputeBuiltinNode} + */ +const localId = /*@__PURE__*/ computeBuiltin( 'localId', 'uvec3' ); + +/** + * A device dependent variable that exposes the size of the current invocation's subgroup. + * + * @tsl + * @type {ComputeBuiltinNode} + */ +const subgroupSize = /*@__PURE__*/ computeBuiltin( 'subgroupSize', 'uint' ); + +/** + * Represents a GPU control barrier that synchronizes compute operations within a given scope. + * + * This node can only be used with a WebGPU backend. + * + * @augments Node + */ +class BarrierNode extends Node { + + /** + * Constructs a new barrier node. + * + * @param {string} scope - The scope defines the behavior of the node. + */ + constructor( scope ) { + + super(); + + this.scope = scope; + + } + + generate( builder ) { + + const { scope } = this; + const { renderer } = builder; + + if ( renderer.backend.isWebGLBackend === true ) { + + builder.addFlowCode( `\t// ${scope}Barrier \n` ); + + } else { + + builder.addLineFlowCode( `${scope}Barrier()`, this ); + + } + + } + +} + +/** + * TSL function for creating a barrier node. + * + * @tsl + * @function + * @param {string} scope - The scope defines the behavior of the node.. + * @returns {BarrierNode} + */ +const barrier = nodeProxy( BarrierNode ); + +/** + * TSL function for creating a workgroup barrier. All compute shader + * invocations must wait for each invocation within a workgroup to + * complete before the barrier can be surpassed. + * + * @tsl + * @function + * @returns {BarrierNode} + */ +const workgroupBarrier = () => barrier( 'workgroup' ).toStack(); + +/** + * TSL function for creating a storage barrier. All invocations must + * wait for each access to variables within the 'storage' address space + * to complete before the barrier can be passed. + * + * @tsl + * @function + * @returns {BarrierNode} + */ +const storageBarrier = () => barrier( 'storage' ).toStack(); + +/** + * TSL function for creating a texture barrier. All invocations must + * wait for each access to variables within the 'texture' address space + * to complete before the barrier can be passed. + * + * @tsl + * @function + * @returns {BarrierNode} + */ +const textureBarrier = () => barrier( 'texture' ).toStack(); + +/** + * Represents an element of a 'workgroup' scoped buffer. + * + * @augments ArrayElementNode + */ +class WorkgroupInfoElementNode extends ArrayElementNode { + + /** + * Constructs a new workgroup info element node. + * + * @param {Node} workgroupInfoNode - The workgroup info node. + * @param {Node} indexNode - The index node that defines the element access. + */ + constructor( workgroupInfoNode, indexNode ) { + + super( workgroupInfoNode, indexNode ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWorkgroupInfoElementNode = true; + + } + + generate( builder, output ) { + + let snippet; + + const isAssignContext = builder.context.assign; + snippet = super.generate( builder ); + + if ( isAssignContext !== true ) { + + const type = this.getNodeType( builder ); + + snippet = builder.format( snippet, type, output ); + + } + + // TODO: Possibly activate clip distance index on index access rather than from clipping context + + return snippet; + + } + +} + +/** + * A node allowing the user to create a 'workgroup' scoped buffer within the + * context of a compute shader. Typically, workgroup scoped buffers are + * created to hold data that is transferred from a global storage scope into + * a local workgroup scope. For invocations within a workgroup, data + * access speeds on 'workgroup' scoped buffers can be significantly faster + * than similar access operations on globally accessible storage buffers. + * + * This node can only be used with a WebGPU backend. + * + * @augments Node + */ +class WorkgroupInfoNode extends Node { + + /** + * Constructs a new buffer scoped to type scope. + * + * @param {string} scope - TODO. + * @param {string} bufferType - The data type of a 'workgroup' scoped buffer element. + * @param {number} [bufferCount=0] - The number of elements in the buffer. + */ + constructor( scope, bufferType, bufferCount = 0 ) { + + super( bufferType ); + + /** + * The buffer type. + * + * @type {string} + */ + this.bufferType = bufferType; + + /** + * The buffer count. + * + * @type {number} + * @default 0 + */ + this.bufferCount = bufferCount; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWorkgroupInfoNode = true; + + /** + * The data type of the array buffer. + * + * @type {string} + */ + this.elementType = bufferType; + + /** + * TODO. + * + * @type {string} + */ + this.scope = scope; + + } + + /** + * Sets the name/label of this node. + * + * @param {string} name - The name to set. + * @return {WorkgroupInfoNode} A reference to this node. + */ + label( name ) { + + this.name = name; + + return this; + + } + + /** + * Sets the scope of this node. + * + * @param {string} scope - The scope to set. + * @return {WorkgroupInfoNode} A reference to this node. + */ + setScope( scope ) { + + this.scope = scope; + + return this; + + } + + + /** + * The data type of the array buffer. + * + * @return {string} The element type. + */ + getElementType() { + + return this.elementType; + + } + + /** + * Overwrites the default implementation since the input type + * is inferred from the scope. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( /*builder*/ ) { + + return `${this.scope}Array`; + + } + + /** + * This method can be used to access elements via an index node. + * + * @param {IndexNode} indexNode - indexNode. + * @return {WorkgroupInfoElementNode} A reference to an element. + */ + element( indexNode ) { + + return nodeObject( new WorkgroupInfoElementNode( this, indexNode ) ); + + } + + generate( builder ) { + + return builder.getScopedArray( this.name || `${this.scope}Array_${this.id}`, this.scope.toLowerCase(), this.bufferType, this.bufferCount ); + + } + +} + +/** + * TSL function for creating a workgroup info node. + * Creates a new 'workgroup' scoped array buffer. + * + * @tsl + * @function + * @param {string} type - The data type of a 'workgroup' scoped buffer element. + * @param {number} [count=0] - The number of elements in the buffer. + * @returns {WorkgroupInfoNode} + */ +const workgroupArray = ( type, count ) => nodeObject( new WorkgroupInfoNode( 'Workgroup', type, count ) ); + +/** + * `AtomicFunctionNode` represents any function that can operate on atomic variable types + * within a shader. In an atomic function, any modification to an atomic variable will + * occur as an indivisible step with a defined order relative to other modifications. + * Accordingly, even if multiple atomic functions are modifying an atomic variable at once + * atomic operations will not interfere with each other. + * + * This node can only be used with a WebGPU backend. + * + * @augments Node + */ +class AtomicFunctionNode extends Node { + + static get type() { + + return 'AtomicFunctionNode'; + + } + + /** + * Constructs a new atomic function node. + * + * @param {string} method - The signature of the atomic function to construct. + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + */ + constructor( method, pointerNode, valueNode ) { + + super( 'uint' ); + + /** + * The signature of the atomic function to construct. + * + * @type {string} + */ + this.method = method; + + /** + * An atomic variable or element of an atomic buffer. + * + * @type {Node} + */ + this.pointerNode = pointerNode; + + /** + * A value that modifies the atomic variable. + * + * @type {Node} + */ + this.valueNode = valueNode; + + /** + * Creates a list of the parents for this node for detecting if the node needs to return a value. + * + * @type {boolean} + * @default true + */ + this.parents = true; + + } + + /** + * Overwrites the default implementation to return the type of + * the pointer node. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The input type. + */ + getInputType( builder ) { + + return this.pointerNode.getNodeType( builder ); + + } + + /** + * Overwritten since the node type is inferred from the input type. + * + * @param {NodeBuilder} builder - The current node builder. + * @return {string} The node type. + */ + getNodeType( builder ) { + + return this.getInputType( builder ); + + } + + generate( builder ) { + + const properties = builder.getNodeProperties( this ); + const parents = properties.parents; + + const method = this.method; + + const type = this.getNodeType( builder ); + const inputType = this.getInputType( builder ); + + const a = this.pointerNode; + const b = this.valueNode; + + const params = []; + + params.push( `&${ a.build( builder, inputType ) }` ); + + if ( b !== null ) { + + params.push( b.build( builder, inputType ) ); + + + } + + const methodSnippet = `${ builder.getMethod( method, type ) }( ${ params.join( ', ' ) } )`; + const isVoid = parents.length === 1 && parents[ 0 ].isStackNode === true; + + if ( isVoid ) { + + builder.addLineFlowCode( methodSnippet, this ); + + } else { + + if ( properties.constNode === undefined ) { + + properties.constNode = expression( methodSnippet, type ).toConst(); + + } + + return properties.constNode.build( builder ); + + } + + } + +} + +AtomicFunctionNode.ATOMIC_LOAD = 'atomicLoad'; +AtomicFunctionNode.ATOMIC_STORE = 'atomicStore'; +AtomicFunctionNode.ATOMIC_ADD = 'atomicAdd'; +AtomicFunctionNode.ATOMIC_SUB = 'atomicSub'; +AtomicFunctionNode.ATOMIC_MAX = 'atomicMax'; +AtomicFunctionNode.ATOMIC_MIN = 'atomicMin'; +AtomicFunctionNode.ATOMIC_AND = 'atomicAnd'; +AtomicFunctionNode.ATOMIC_OR = 'atomicOr'; +AtomicFunctionNode.ATOMIC_XOR = 'atomicXor'; + +/** + * TSL function for creating an atomic function node. + * + * @tsl + * @function + * @param {string} method - The signature of the atomic function to construct. + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicNode = nodeProxy( AtomicFunctionNode ); + +/** + * TSL function for appending an atomic function call into the programmatic flow of a compute shader. + * + * @tsl + * @function + * @param {string} method - The signature of the atomic function to construct. + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicFunc = ( method, pointerNode, valueNode ) => { + + return atomicNode( method, pointerNode, valueNode ).toStack(); + +}; + +/** + * Loads the value stored in the atomic variable. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @returns {AtomicFunctionNode} + */ +const atomicLoad = ( pointerNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_LOAD, pointerNode, null ); + +/** + * Stores a value in the atomic variable. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicStore = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_STORE, pointerNode, valueNode ); + +/** + * Increments the value stored in the atomic variable. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicAdd = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_ADD, pointerNode, valueNode ); + +/** + * Decrements the value stored in the atomic variable. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicSub = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_SUB, pointerNode, valueNode ); + +/** + * Stores in an atomic variable the maximum between its current value and a parameter. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicMax = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_MAX, pointerNode, valueNode ); + +/** + * Stores in an atomic variable the minimum between its current value and a parameter. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicMin = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_MIN, pointerNode, valueNode ); + +/** + * Stores in an atomic variable the bitwise AND of its value with a parameter. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicAnd = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_AND, pointerNode, valueNode ); + +/** + * Stores in an atomic variable the bitwise OR of its value with a parameter. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicOr = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_OR, pointerNode, valueNode ); + +/** + * Stores in an atomic variable the bitwise XOR of its value with a parameter. + * + * @tsl + * @function + * @param {Node} pointerNode - An atomic variable or element of an atomic buffer. + * @param {Node} valueNode - The value that mutates the atomic variable. + * @returns {AtomicFunctionNode} + */ +const atomicXor = ( pointerNode, valueNode ) => atomicFunc( AtomicFunctionNode.ATOMIC_XOR, pointerNode, valueNode ); + +let uniformsLib; + +function getLightData( light ) { + + uniformsLib = uniformsLib || new WeakMap(); + + let uniforms = uniformsLib.get( light ); + + if ( uniforms === undefined ) uniformsLib.set( light, uniforms = {} ); + + return uniforms; + +} + +/** + * TSL function for getting a shadow matrix uniform node for the given light. + * + * @tsl + * @function + * @param {Light} light -The light source. + * @returns {UniformNode} The shadow matrix uniform node. + */ +function lightShadowMatrix( light ) { + + const data = getLightData( light ); + + return data.shadowMatrix || ( data.shadowMatrix = uniform( 'mat4' ).setGroup( renderGroup ).onRenderUpdate( ( frame ) => { + + if ( light.castShadow !== true || frame.renderer.shadowMap.enabled === false ) { + + light.shadow.updateMatrices( light ); + + } + + return light.shadow.matrix; + + } ) ); + +} + +/** + * TSL function for getting projected uv coordinates for the given light. + * Relevant when using maps with spot lights. + * + * @tsl + * @function + * @param {Light} light -The light source. + * @param {Node} [position=positionWorld] -The position to project. + * @returns {Node} The projected uvs. + */ +function lightProjectionUV( light, position = positionWorld ) { + + const spotLightCoord = lightShadowMatrix( light ).mul( position ); + const projectionUV = spotLightCoord.xyz.div( spotLightCoord.w ); + + return projectionUV; + +} + +/** + * TSL function for getting the position in world space for the given light. + * + * @tsl + * @function + * @param {Light} light -The light source. + * @returns {UniformNode} The light's position in world space. + */ +function lightPosition( light ) { + + const data = getLightData( light ); + + return data.position || ( data.position = uniform( new Vector3() ).setGroup( renderGroup ).onRenderUpdate( ( _, self ) => self.value.setFromMatrixPosition( light.matrixWorld ) ) ); + +} + +/** + * TSL function for getting the light target position in world space for the given light. + * + * @tsl + * @function + * @param {Light} light -The light source. + * @returns {UniformNode} The light target position in world space. + */ +function lightTargetPosition( light ) { + + const data = getLightData( light ); + + return data.targetPosition || ( data.targetPosition = uniform( new Vector3() ).setGroup( renderGroup ).onRenderUpdate( ( _, self ) => self.value.setFromMatrixPosition( light.target.matrixWorld ) ) ); + +} + +/** + * TSL function for getting the position in view space for the given light. + * + * @tsl + * @function + * @param {Light} light - The light source. + * @returns {UniformNode} The light's position in view space. + */ +function lightViewPosition( light ) { + + const data = getLightData( light ); + + return data.viewPosition || ( data.viewPosition = uniform( new Vector3() ).setGroup( renderGroup ).onRenderUpdate( ( { camera }, self ) => { + + self.value = self.value || new Vector3(); + self.value.setFromMatrixPosition( light.matrixWorld ); + + self.value.applyMatrix4( camera.matrixWorldInverse ); + + } ) ); + +} + +/** + * TSL function for getting the light target direction for the given light. + * + * @tsl + * @function + * @param {Light} light -The light source. + * @returns {Node} The light's target direction. + */ +const lightTargetDirection = ( light ) => cameraViewMatrix.transformDirection( lightPosition( light ).sub( lightTargetPosition( light ) ) ); + +const sortLights = ( lights ) => { + + return lights.sort( ( a, b ) => a.id - b.id ); + +}; + +const getLightNodeById = ( id, lightNodes ) => { + + for ( const lightNode of lightNodes ) { + + if ( lightNode.isAnalyticLightNode && lightNode.light.id === id ) { + + return lightNode; + + } + + } + + return null; + +}; + +const _lightsNodeRef = /*@__PURE__*/ new WeakMap(); +const _hashData = []; + +/** + * This node represents the scene's lighting and manages the lighting model's life cycle + * for the current build 3D object. It is responsible for computing the total outgoing + * light in a given lighting context. + * + * @augments Node + */ +class LightsNode extends Node { + + static get type() { + + return 'LightsNode'; + + } + + /** + * Constructs a new lights node. + */ + constructor() { + + super( 'vec3' ); + + /** + * A node representing the total diffuse light. + * + * @type {Node} + */ + this.totalDiffuseNode = vec3().toVar(); + + /** + * A node representing the total specular light. + * + * @type {Node} + */ + this.totalSpecularNode = vec3().toVar(); + + /** + * A node representing the outgoing light. + * + * @type {Node} + */ + this.outgoingLightNode = vec3().toVar(); + + /** + * An array representing the lights in the scene. + * + * @private + * @type {Array} + */ + this._lights = []; + + /** + * For each light in the scene, this node will create a + * corresponding light node. + * + * @private + * @type {?Array} + * @default null + */ + this._lightNodes = null; + + /** + * A hash for identifying the current light nodes setup. + * + * @private + * @type {?string} + * @default null + */ + this._lightNodesHash = null; + + /** + * `LightsNode` sets this property to `true` by default. + * + * @type {boolean} + * @default true + */ + this.global = true; + + } + + /** + * Overwrites the default {@link Node#customCacheKey} implementation by including + * light data into the cache key. + * + * @return {number} The custom cache key. + */ + customCacheKey() { + + const lights = this._lights; + + for ( let i = 0; i < lights.length; i ++ ) { + + const light = lights[ i ]; + + _hashData.push( light.id ); + _hashData.push( light.castShadow ? 1 : 0 ); + + if ( light.isSpotLight === true ) { + + const hashMap = ( light.map !== null ) ? light.map.id : - 1; + const hashColorNode = ( light.colorNode ) ? light.colorNode.getCacheKey() : - 1; + + _hashData.push( hashMap, hashColorNode ); + + } + + } + + const cacheKey = hashArray( _hashData ); + + _hashData.length = 0; + + return cacheKey; + + } + + /** + * Computes a hash value for identifying the current light nodes setup. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @return {string} The computed hash. + */ + getHash( builder ) { + + if ( this._lightNodesHash === null ) { + + if ( this._lightNodes === null ) this.setupLightsNode( builder ); + + const hash = []; + + for ( const lightNode of this._lightNodes ) { + + hash.push( lightNode.getSelf().getHash() ); + + } + + this._lightNodesHash = 'lights-' + hash.join( ',' ); + + } + + return this._lightNodesHash; + + } + + analyze( builder ) { + + const properties = builder.getNodeProperties( this ); + + for ( const node of properties.nodes ) { + + node.build( builder ); + + } + + properties.outputNode.build( builder ); + + } + + /** + * Creates lighting nodes for each scene light. This makes it possible to further + * process lights in the node system. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + */ + setupLightsNode( builder ) { + + const lightNodes = []; + + const previousLightNodes = this._lightNodes; + + const lights = sortLights( this._lights ); + const nodeLibrary = builder.renderer.library; + + for ( const light of lights ) { + + if ( light.isNode ) { + + lightNodes.push( nodeObject( light ) ); + + } else { + + let lightNode = null; + + if ( previousLightNodes !== null ) { + + lightNode = getLightNodeById( light.id, previousLightNodes ); // reuse existing light node + + } + + if ( lightNode === null ) { + + // find the corresponding node type for a given light + + const lightNodeClass = nodeLibrary.getLightNodeClass( light.constructor ); + + if ( lightNodeClass === null ) { + + console.warn( `LightsNode.setupNodeLights: Light node not found for ${ light.constructor.name }` ); + continue; + + } + + let lightNode = null; + + if ( ! _lightsNodeRef.has( light ) ) { + + lightNode = nodeObject( new lightNodeClass( light ) ); + _lightsNodeRef.set( light, lightNode ); + + } else { + + lightNode = _lightsNodeRef.get( light ); + + } + + lightNodes.push( lightNode ); + + } + + } + + } + + this._lightNodes = lightNodes; + + } + + /** + * Sets up a direct light in the lighting model. + * + * @param {Object} builder - The builder object containing the context and stack. + * @param {Object} lightNode - The light node. + * @param {Object} lightData - The light object containing color and direction properties. + */ + setupDirectLight( builder, lightNode, lightData ) { + + const { lightingModel, reflectedLight } = builder.context; + + lightingModel.direct( { + ...lightData, + lightNode, + reflectedLight + }, builder ); + + } + + setupDirectRectAreaLight( builder, lightNode, lightData ) { + + const { lightingModel, reflectedLight } = builder.context; + + lightingModel.directRectArea( { + ...lightData, + lightNode, + reflectedLight + }, builder ); + + } + + /** + * Setups the internal lights by building all respective + * light nodes. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @param {Array} lightNodes - An array of lighting nodes. + */ + setupLights( builder, lightNodes ) { + + for ( const lightNode of lightNodes ) { + + lightNode.build( builder ); + + } + + } + + getLightNodes( builder ) { + + if ( this._lightNodes === null ) this.setupLightsNode( builder ); + + return this._lightNodes; + + } + + /** + * The implementation makes sure that for each light in the scene + * there is a corresponding light node. By building the light nodes + * and evaluating the lighting model the outgoing light is computed. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @return {Node} A node representing the outgoing light. + */ + setup( builder ) { + + const currentLightsNode = builder.lightsNode; + + builder.lightsNode = this; + + // + + let outgoingLightNode = this.outgoingLightNode; + + const context = builder.context; + const lightingModel = context.lightingModel; + + const properties = builder.getNodeProperties( this ); + + if ( lightingModel ) { + + const { totalDiffuseNode, totalSpecularNode } = this; + + context.outgoingLight = outgoingLightNode; + + const stack = builder.addStack(); + + // + + properties.nodes = stack.nodes; + + // + + lightingModel.start( builder ); + + // + + const { backdrop, backdropAlpha } = context; + const { directDiffuse, directSpecular, indirectDiffuse, indirectSpecular } = context.reflectedLight; + + let totalDiffuse = directDiffuse.add( indirectDiffuse ); + + if ( backdrop !== null ) { + + if ( backdropAlpha !== null ) { + + totalDiffuse = vec3( backdropAlpha.mix( totalDiffuse, backdrop ) ); + + } else { + + totalDiffuse = vec3( backdrop ); + + } + + context.material.transparent = true; + + } + + totalDiffuseNode.assign( totalDiffuse ); + totalSpecularNode.assign( directSpecular.add( indirectSpecular ) ); + + outgoingLightNode.assign( totalDiffuseNode.add( totalSpecularNode ) ); + + // + + lightingModel.finish( builder ); + + // + + outgoingLightNode = outgoingLightNode.bypass( builder.removeStack() ); + + } else { + + properties.nodes = []; + + } + + // + + builder.lightsNode = currentLightsNode; + + return outgoingLightNode; + + } + + /** + * Configures this node with an array of lights. + * + * @param {Array} lights - An array of lights. + * @return {LightsNode} A reference to this node. + */ + setLights( lights ) { + + this._lights = lights; + + this._lightNodes = null; + this._lightNodesHash = null; + + return this; + + } + + /** + * Returns an array of the scene's lights. + * + * @return {Array} The scene's lights. + */ + getLights() { + + return this._lights; + + } + + /** + * Whether the scene has lights or not. + * + * @type {boolean} + */ + get hasLights() { + + return this._lights.length > 0; + + } + +} + +/** + * TSL function for creating an instance of `LightsNode` and configuring + * it with the given array of lights. + * + * @tsl + * @function + * @param {Array} lights - An array of lights. + * @return {LightsNode} The created lights node. + */ +const lights = ( lights = [] ) => nodeObject( new LightsNode() ).setLights( lights ); + +/** + * Base class for all shadow nodes. + * + * Shadow nodes encapsulate shadow related logic and are always coupled to lighting nodes. + * Lighting nodes might share the same shadow node type or use specific ones depending on + * their requirements. + * + * @augments Node + */ +class ShadowBaseNode extends Node { + + static get type() { + + return 'ShadowBaseNode'; + + } + + /** + * Constructs a new shadow base node. + * + * @param {Light} light - The shadow casting light. + */ + constructor( light ) { + + super(); + + /** + * The shadow casting light. + * + * @type {Light} + */ + this.light = light; + + /** + * Overwritten since shadows are updated by default per render. + * + * @type {string} + * @default 'render' + */ + this.updateBeforeType = NodeUpdateType.RENDER; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isShadowBaseNode = true; + + } + + /** + * Setups the shadow position node which is by default the predefined TSL node object `shadowPositionWorld`. + * + * @param {NodeBuilder} object - A configuration object that must at least hold a material reference. + */ + setupShadowPosition( { context, material } ) { + + // Use assign inside an Fn() + + shadowPositionWorld.assign( material.receivedShadowPositionNode || context.shadowPositionWorld || positionWorld ); + + } + +} + +/** + * TSL object that represents the vertex position in world space during the shadow pass. + * + * @tsl + * @type {Node} + */ +const shadowPositionWorld = /*@__PURE__*/ property( 'vec3', 'shadowPositionWorld' ); + +/** + * Saves the state of the given renderer and stores it into the given state object. + * + * If not state object is provided, the function creates one. + * + * @function + * @param {Renderer} renderer - The renderer. + * @param {Object} [state={}] - The state. + * @return {Object} The state. + */ +function saveRendererState( renderer, state = {} ) { + + state.toneMapping = renderer.toneMapping; + state.toneMappingExposure = renderer.toneMappingExposure; + state.outputColorSpace = renderer.outputColorSpace; + state.renderTarget = renderer.getRenderTarget(); + state.activeCubeFace = renderer.getActiveCubeFace(); + state.activeMipmapLevel = renderer.getActiveMipmapLevel(); + state.renderObjectFunction = renderer.getRenderObjectFunction(); + state.pixelRatio = renderer.getPixelRatio(); + state.mrt = renderer.getMRT(); + state.clearColor = renderer.getClearColor( state.clearColor || new Color() ); + state.clearAlpha = renderer.getClearAlpha(); + state.autoClear = renderer.autoClear; + state.scissorTest = renderer.getScissorTest(); + + return state; + +} + +/** + * Saves the state of the given renderer and stores it into the given state object. + * Besides, the function also resets the state of the renderer to its default values. + * + * If not state object is provided, the function creates one. + * + * @function + * @param {Renderer} renderer - The renderer. + * @param {Object} [state={}] - The state. + * @return {Object} The state. + */ +function resetRendererState( renderer, state ) { + + state = saveRendererState( renderer, state ); + + renderer.setMRT( null ); + renderer.setRenderObjectFunction( null ); + renderer.setClearColor( 0x000000, 1 ); + renderer.autoClear = true; + + return state; + +} + +/** + * Restores the state of the given renderer from the given state object. + * + * @function + * @param {Renderer} renderer - The renderer. + * @param {Object} state - The state to restore. + */ +function restoreRendererState( renderer, state ) { + + renderer.toneMapping = state.toneMapping; + renderer.toneMappingExposure = state.toneMappingExposure; + renderer.outputColorSpace = state.outputColorSpace; + renderer.setRenderTarget( state.renderTarget, state.activeCubeFace, state.activeMipmapLevel ); + renderer.setRenderObjectFunction( state.renderObjectFunction ); + renderer.setPixelRatio( state.pixelRatio ); + renderer.setMRT( state.mrt ); + renderer.setClearColor( state.clearColor, state.clearAlpha ); + renderer.autoClear = state.autoClear; + renderer.setScissorTest( state.scissorTest ); + +} + +/** + * Saves the state of the given scene and stores it into the given state object. + * + * If not state object is provided, the function creates one. + * + * @function + * @param {Scene} scene - The scene. + * @param {Object} [state={}] - The state. + * @return {Object} The state. + */ +function saveSceneState( scene, state = {} ) { + + state.background = scene.background; + state.backgroundNode = scene.backgroundNode; + state.overrideMaterial = scene.overrideMaterial; + + return state; + +} + +/** + * Saves the state of the given scene and stores it into the given state object. + * Besides, the function also resets the state of the scene to its default values. + * + * If not state object is provided, the function creates one. + * + * @function + * @param {Scene} scene - The scene. + * @param {Object} [state={}] - The state. + * @return {Object} The state. + */ +function resetSceneState( scene, state ) { + + state = saveSceneState( scene, state ); + + scene.background = null; + scene.backgroundNode = null; + scene.overrideMaterial = null; + + return state; + +} + +/** + * Restores the state of the given scene from the given state object. + * + * @function + * @param {Scene} scene - The scene. + * @param {Object} state - The state to restore. + */ +function restoreSceneState( scene, state ) { + + scene.background = state.background; + scene.backgroundNode = state.backgroundNode; + scene.overrideMaterial = state.overrideMaterial; + +} + +/** + * Saves the state of the given renderer and scene and stores it into the given state object. + * + * If not state object is provided, the function creates one. + * + * @function + * @param {Renderer} renderer - The renderer. + * @param {Scene} scene - The scene. + * @param {Object} [state={}] - The state. + * @return {Object} The state. + */ +function saveRendererAndSceneState( renderer, scene, state = {} ) { + + state = saveRendererState( renderer, state ); + state = saveSceneState( scene, state ); + + return state; + +} + +/** + * Saves the state of the given renderer and scene and stores it into the given state object. + * Besides, the function also resets the state of the renderer and scene to its default values. + * + * If not state object is provided, the function creates one. + * + * @function + * @param {Renderer} renderer - The renderer. + * @param {Scene} scene - The scene. + * @param {Object} [state={}] - The state. + * @return {Object} The state. + */ +function resetRendererAndSceneState( renderer, scene, state ) { + + state = resetRendererState( renderer, state ); + state = resetSceneState( scene, state ); + + return state; + +} + +/** + * Restores the state of the given renderer and scene from the given state object. + * + * @function + * @param {Renderer} renderer - The renderer. + * @param {Scene} scene - The scene. + * @param {Object} state - The state to restore. + */ +function restoreRendererAndSceneState( renderer, scene, state ) { + + restoreRendererState( renderer, state ); + restoreSceneState( scene, state ); + +} + +var RendererUtils = /*#__PURE__*/Object.freeze( { + __proto__: null, + resetRendererAndSceneState: resetRendererAndSceneState, + resetRendererState: resetRendererState, + resetSceneState: resetSceneState, + restoreRendererAndSceneState: restoreRendererAndSceneState, + restoreRendererState: restoreRendererState, + restoreSceneState: restoreSceneState, + saveRendererAndSceneState: saveRendererAndSceneState, + saveRendererState: saveRendererState, + saveSceneState: saveSceneState +} ); + +const shadowMaterialLib = /*@__PURE__*/ new WeakMap(); + +/** + * A shadow filtering function performing basic filtering. This is in fact an unfiltered version of the shadow map + * with a binary `[0,1]` result. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {DepthTexture} inputs.depthTexture - A reference to the shadow map's texture data. + * @param {Node} inputs.shadowCoord - The shadow coordinates. + * @return {Node} The filtering result. + */ +const BasicShadowFilter = /*@__PURE__*/ Fn( ( { depthTexture, shadowCoord, depthLayer } ) => { + + let basic = texture( depthTexture, shadowCoord.xy ).label( 't_basic' ); + + if ( depthTexture.isArrayTexture ) { + + basic = basic.depth( depthLayer ); + + } + + return basic.compare( shadowCoord.z ); + +} ); + +/** + * A shadow filtering function performing PCF filtering. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {DepthTexture} inputs.depthTexture - A reference to the shadow map's texture data. + * @param {Node} inputs.shadowCoord - The shadow coordinates. + * @param {LightShadow} inputs.shadow - The light shadow. + * @return {Node} The filtering result. + */ +const PCFShadowFilter = /*@__PURE__*/ Fn( ( { depthTexture, shadowCoord, shadow, depthLayer } ) => { + + const depthCompare = ( uv, compare ) => { + + let depth = texture( depthTexture, uv ); + + if ( depthTexture.isArrayTexture ) { + + depth = depth.depth( depthLayer ); + + } + + return depth.compare( compare ); + + }; + + const mapSize = reference( 'mapSize', 'vec2', shadow ).setGroup( renderGroup ); + const radius = reference( 'radius', 'float', shadow ).setGroup( renderGroup ); + + const texelSize = vec2( 1 ).div( mapSize ); + const dx0 = texelSize.x.negate().mul( radius ); + const dy0 = texelSize.y.negate().mul( radius ); + const dx1 = texelSize.x.mul( radius ); + const dy1 = texelSize.y.mul( radius ); + const dx2 = dx0.div( 2 ); + const dy2 = dy0.div( 2 ); + const dx3 = dx1.div( 2 ); + const dy3 = dy1.div( 2 ); + + return add( + depthCompare( shadowCoord.xy.add( vec2( dx0, dy0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( 0, dy0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx1, dy0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx2, dy2 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( 0, dy2 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx3, dy2 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx0, 0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx2, 0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy, shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx3, 0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx1, 0 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx2, dy3 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( 0, dy3 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx3, dy3 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx0, dy1 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( 0, dy1 ) ), shadowCoord.z ), + depthCompare( shadowCoord.xy.add( vec2( dx1, dy1 ) ), shadowCoord.z ) + ).mul( 1 / 17 ); + +} ); + +/** + * A shadow filtering function performing PCF soft filtering. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {DepthTexture} inputs.depthTexture - A reference to the shadow map's texture data. + * @param {Node} inputs.shadowCoord - The shadow coordinates. + * @param {LightShadow} inputs.shadow - The light shadow. + * @return {Node} The filtering result. + */ +const PCFSoftShadowFilter = /*@__PURE__*/ Fn( ( { depthTexture, shadowCoord, shadow, depthLayer } ) => { + + const depthCompare = ( uv, compare ) => { + + let depth = texture( depthTexture, uv ); + + if ( depthTexture.isArrayTexture ) { + + depth = depth.depth( depthLayer ); + + } + + return depth.compare( compare ); + + }; + + + const mapSize = reference( 'mapSize', 'vec2', shadow ).setGroup( renderGroup ); + + const texelSize = vec2( 1 ).div( mapSize ); + const dx = texelSize.x; + const dy = texelSize.y; + + const uv = shadowCoord.xy; + const f = fract( uv.mul( mapSize ).add( 0.5 ) ); + uv.subAssign( f.mul( texelSize ) ); + + return add( + depthCompare( uv, shadowCoord.z ), + depthCompare( uv.add( vec2( dx, 0 ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( 0, dy ) ), shadowCoord.z ), + depthCompare( uv.add( texelSize ), shadowCoord.z ), + mix( + depthCompare( uv.add( vec2( dx.negate(), 0 ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( dx.mul( 2 ), 0 ) ), shadowCoord.z ), + f.x + ), + mix( + depthCompare( uv.add( vec2( dx.negate(), dy ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( dx.mul( 2 ), dy ) ), shadowCoord.z ), + f.x + ), + mix( + depthCompare( uv.add( vec2( 0, dy.negate() ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( 0, dy.mul( 2 ) ) ), shadowCoord.z ), + f.y + ), + mix( + depthCompare( uv.add( vec2( dx, dy.negate() ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( dx, dy.mul( 2 ) ) ), shadowCoord.z ), + f.y + ), + mix( + mix( + depthCompare( uv.add( vec2( dx.negate(), dy.negate() ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( dx.mul( 2 ), dy.negate() ) ), shadowCoord.z ), + f.x + ), + mix( + depthCompare( uv.add( vec2( dx.negate(), dy.mul( 2 ) ) ), shadowCoord.z ), + depthCompare( uv.add( vec2( dx.mul( 2 ), dy.mul( 2 ) ) ), shadowCoord.z ), + f.x + ), + f.y + ) + ).mul( 1 / 9 ); + +} ); + +/** + * A shadow filtering function performing VSM filtering. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {DepthTexture} inputs.depthTexture - A reference to the shadow map's texture data. + * @param {Node} inputs.shadowCoord - The shadow coordinates. + * @return {Node} The filtering result. + */ +const VSMShadowFilter = /*@__PURE__*/ Fn( ( { depthTexture, shadowCoord, depthLayer } ) => { + + const occlusion = float( 1 ).toVar(); + + let distribution = texture( depthTexture ).sample( shadowCoord.xy ); + + if ( depthTexture.isArrayTexture ) { + + distribution = distribution.depth( depthLayer ); + + } + + distribution = distribution.rg; + + const hardShadow = step( shadowCoord.z, distribution.x ); + + If( hardShadow.notEqual( float( 1.0 ) ), () => { + + const distance = shadowCoord.z.sub( distribution.x ); + const variance = max$1( 0, distribution.y.mul( distribution.y ) ); + let softnessProbability = variance.div( variance.add( distance.mul( distance ) ) ); // Chebeyshevs inequality + softnessProbability = clamp( sub( softnessProbability, 0.3 ).div( 0.95 - 0.3 ) ); + occlusion.assign( clamp( max$1( hardShadow, softnessProbability ) ) ); + + } ); + + return occlusion; + +} ); + +// + +const linearDistance = /*@__PURE__*/ Fn( ( [ position, cameraNear, cameraFar ] ) => { + + let dist = positionWorld.sub( position ).length(); + dist = dist.sub( cameraNear ).div( cameraFar.sub( cameraNear ) ); + dist = dist.saturate(); // clamp to [ 0, 1 ] + + return dist; + +} ); + +const linearShadowDistance = ( light ) => { + + const camera = light.shadow.camera; + + const nearDistance = reference( 'near', 'float', camera ).setGroup( renderGroup ); + const farDistance = reference( 'far', 'float', camera ).setGroup( renderGroup ); + + const referencePosition = objectPosition( light ); + + return linearDistance( referencePosition, nearDistance, farDistance ); + +}; + +/** + * Retrieves or creates a shadow material for the given light source. + * + * This function checks if a shadow material already exists for the provided light. + * If not, it creates a new `NodeMaterial` configured for shadow rendering and stores it + * in the `shadowMaterialLib` for future use. + * + * @param {Light} light - The light source for which the shadow material is needed. + * If the light is a point light, a depth node is calculated + * using the linear shadow distance. + * @returns {NodeMaterial} The shadow material associated with the given light. + */ +const getShadowMaterial = ( light ) => { + + let material = shadowMaterialLib.get( light ); + + if ( material === undefined ) { + + const depthNode = light.isPointLight ? linearShadowDistance( light ) : null; + + material = new NodeMaterial(); + material.colorNode = vec4( 0, 0, 0, 1 ); + material.depthNode = depthNode; + material.isShadowPassMaterial = true; // Use to avoid other overrideMaterial override material.colorNode unintentionally when using material.shadowNode + material.name = 'ShadowMaterial'; + material.fog = false; + + shadowMaterialLib.set( light, material ); + + } + + return material; + +}; + +// + +const _shadowRenderObjectLibrary = /*@__PURE__*/ new ChainMap(); +const _shadowRenderObjectKeys = []; + +/** + * Creates a function to render shadow objects in a scene. + * + * @param {Renderer} renderer - The renderer. + * @param {LightShadow} shadow - The light shadow object containing shadow properties. + * @param {number} shadowType - The type of shadow map (e.g., BasicShadowMap). + * @param {boolean} useVelocity - Whether to use velocity data for rendering. + * @return {Function} A function that renders shadow objects. + * + * The returned function has the following parameters: + * @param {Object3D} object - The 3D object to render. + * @param {Scene} scene - The scene containing the object. + * @param {Camera} _camera - The camera used for rendering. + * @param {BufferGeometry} geometry - The geometry of the object. + * @param {Material} material - The material of the object. + * @param {Group} group - The group the object belongs to. + * @param {...any} params - Additional parameters for rendering. + */ +const getShadowRenderObjectFunction = ( renderer, shadow, shadowType, useVelocity ) => { + + _shadowRenderObjectKeys[ 0 ] = renderer; + _shadowRenderObjectKeys[ 1 ] = shadow; + + let renderObjectFunction = _shadowRenderObjectLibrary.get( _shadowRenderObjectKeys ); + + if ( renderObjectFunction === undefined || ( renderObjectFunction.shadowType !== shadowType || renderObjectFunction.useVelocity !== useVelocity ) ) { + + renderObjectFunction = ( object, scene, _camera, geometry, material, group, ...params ) => { + + if ( object.castShadow === true || ( object.receiveShadow && shadowType === VSMShadowMap ) ) { + + if ( useVelocity ) { + + getDataFromObject( object ).useVelocity = true; + + } + + object.onBeforeShadow( renderer, object, _camera, shadow.camera, geometry, scene.overrideMaterial, group ); + + renderer.renderObject( object, scene, _camera, geometry, material, group, ...params ); + + object.onAfterShadow( renderer, object, _camera, shadow.camera, geometry, scene.overrideMaterial, group ); + + } + + }; + + renderObjectFunction.shadowType = shadowType; + renderObjectFunction.useVelocity = useVelocity; + + _shadowRenderObjectLibrary.set( _shadowRenderObjectKeys, renderObjectFunction ); + + } + + _shadowRenderObjectKeys[ 0 ] = null; + _shadowRenderObjectKeys[ 1 ] = null; + + return renderObjectFunction; + +}; + +/** + * Represents the shader code for the first VSM render pass. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {Node} inputs.samples - The number of samples + * @param {Node} inputs.radius - The radius. + * @param {Node} inputs.size - The size. + * @param {TextureNode} inputs.shadowPass - A reference to the render target's depth data. + * @return {Node} The VSM output. + */ +const VSMPassVertical = /*@__PURE__*/ Fn( ( { samples, radius, size, shadowPass, depthLayer } ) => { + + const mean = float( 0 ).toVar( 'meanVertical' ); + const squaredMean = float( 0 ).toVar( 'squareMeanVertical' ); + + const uvStride = samples.lessThanEqual( float( 1 ) ).select( float( 0 ), float( 2 ).div( samples.sub( 1 ) ) ); + const uvStart = samples.lessThanEqual( float( 1 ) ).select( float( 0 ), float( - 1 ) ); + + Loop( { start: int( 0 ), end: int( samples ), type: 'int', condition: '<' }, ( { i } ) => { + + const uvOffset = uvStart.add( float( i ).mul( uvStride ) ); + + let depth = shadowPass.sample( add( screenCoordinate.xy, vec2( 0, uvOffset ).mul( radius ) ).div( size ) ); + + if ( shadowPass.value.isArrayTexture ) { + + depth = depth.depth( depthLayer ); + + } + + depth = depth.x; + + mean.addAssign( depth ); + squaredMean.addAssign( depth.mul( depth ) ); + + } ); + + mean.divAssign( samples ); + squaredMean.divAssign( samples ); + + const std_dev = sqrt( squaredMean.sub( mean.mul( mean ) ) ); + return vec2( mean, std_dev ); + +} ); + +/** + * Represents the shader code for the second VSM render pass. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {Node} inputs.samples - The number of samples + * @param {Node} inputs.radius - The radius. + * @param {Node} inputs.size - The size. + * @param {TextureNode} inputs.shadowPass - The result of the first VSM render pass. + * @return {Node} The VSM output. + */ +const VSMPassHorizontal = /*@__PURE__*/ Fn( ( { samples, radius, size, shadowPass, depthLayer } ) => { + + const mean = float( 0 ).toVar( 'meanHorizontal' ); + const squaredMean = float( 0 ).toVar( 'squareMeanHorizontal' ); + + const uvStride = samples.lessThanEqual( float( 1 ) ).select( float( 0 ), float( 2 ).div( samples.sub( 1 ) ) ); + const uvStart = samples.lessThanEqual( float( 1 ) ).select( float( 0 ), float( - 1 ) ); + + Loop( { start: int( 0 ), end: int( samples ), type: 'int', condition: '<' }, ( { i } ) => { + + const uvOffset = uvStart.add( float( i ).mul( uvStride ) ); + + let distribution = shadowPass.sample( add( screenCoordinate.xy, vec2( uvOffset, 0 ).mul( radius ) ).div( size ) ); + + if ( shadowPass.value.isArrayTexture ) { + + distribution = distribution.depth( depthLayer ); + + } + + mean.addAssign( distribution.x ); + squaredMean.addAssign( add( distribution.y.mul( distribution.y ), distribution.x.mul( distribution.x ) ) ); + + } ); + + mean.divAssign( samples ); + squaredMean.divAssign( samples ); + + const std_dev = sqrt( squaredMean.sub( mean.mul( mean ) ) ); + return vec2( mean, std_dev ); + +} ); + +const _shadowFilterLib = [ BasicShadowFilter, PCFShadowFilter, PCFSoftShadowFilter, VSMShadowFilter ]; + +// + +let _rendererState; +const _quadMesh = /*@__PURE__*/ new QuadMesh(); + +/** + * Represents the default shadow implementation for lighting nodes. + * + * @augments ShadowBaseNode + */ +class ShadowNode extends ShadowBaseNode { + + static get type() { + + return 'ShadowNode'; + + } + + /** + * Constructs a new shadow node. + * + * @param {Light} light - The shadow casting light. + * @param {?LightShadow} [shadow=null] - An optional light shadow. + */ + constructor( light, shadow = null ) { + + super( light ); + + /** + * The light shadow which defines the properties light's + * shadow. + * + * @type {?LightShadow} + * @default null + */ + this.shadow = shadow || light.shadow; + + /** + * A reference to the shadow map which is a render target. + * + * @type {?RenderTarget} + * @default null + */ + this.shadowMap = null; + + /** + * Only relevant for VSM shadows. Render target for the + * first VSM render pass. + * + * @type {?RenderTarget} + * @default null + */ + this.vsmShadowMapVertical = null; + + /** + * Only relevant for VSM shadows. Render target for the + * second VSM render pass. + * + * @type {?RenderTarget} + * @default null + */ + this.vsmShadowMapHorizontal = null; + + /** + * Only relevant for VSM shadows. Node material which + * is used to render the first VSM pass. + * + * @type {?NodeMaterial} + * @default null + */ + this.vsmMaterialVertical = null; + + /** + * Only relevant for VSM shadows. Node material which + * is used to render the second VSM pass. + * + * @type {?NodeMaterial} + * @default null + */ + this.vsmMaterialHorizontal = null; + + /** + * A reference to the output node which defines the + * final result of this shadow node. + * + * @type {?Node} + * @private + * @default null + */ + this._node = null; + + this._cameraFrameId = new WeakMap(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isShadowNode = true; + + /** + * This index can be used when overriding setupRenderTarget with a RenderTarget Array to specify the depth layer. + * + * @type {number} + * @readonly + * @default true + */ + this.depthLayer = 0; + + } + + /** + * Setups the shadow filtering. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @param {Object} inputs - A configuration object that defines the shadow filtering. + * @param {Function} inputs.filterFn - This function defines the filtering type of the shadow map e.g. PCF. + * @param {DepthTexture} inputs.depthTexture - A reference to the shadow map's texture data. + * @param {Node} inputs.shadowCoord - Shadow coordinates which are used to sample from the shadow map. + * @param {LightShadow} inputs.shadow - The light shadow. + * @return {Node} The result node of the shadow filtering. + */ + setupShadowFilter( builder, { filterFn, depthTexture, shadowCoord, shadow, depthLayer } ) { + + const frustumTest = shadowCoord.x.greaterThanEqual( 0 ) + .and( shadowCoord.x.lessThanEqual( 1 ) ) + .and( shadowCoord.y.greaterThanEqual( 0 ) ) + .and( shadowCoord.y.lessThanEqual( 1 ) ) + .and( shadowCoord.z.lessThanEqual( 1 ) ); + + const shadowNode = filterFn( { depthTexture, shadowCoord, shadow, depthLayer } ); + + return frustumTest.select( shadowNode, float( 1 ) ); + + } + + /** + * Setups the shadow coordinates. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @param {Node} shadowPosition - A node representing the shadow position. + * @return {Node} The shadow coordinates. + */ + setupShadowCoord( builder, shadowPosition ) { + + const { shadow } = this; + const { renderer } = builder; + + const bias = reference( 'bias', 'float', shadow ).setGroup( renderGroup ); + + let shadowCoord = shadowPosition; + let coordZ; + + if ( shadow.camera.isOrthographicCamera || renderer.logarithmicDepthBuffer !== true ) { + + shadowCoord = shadowCoord.xyz.div( shadowCoord.w ); + + coordZ = shadowCoord.z; + + if ( renderer.coordinateSystem === WebGPUCoordinateSystem ) { + + coordZ = coordZ.mul( 2 ).sub( 1 ); // WebGPU: Conversion [ 0, 1 ] to [ - 1, 1 ] + + } + + } else { + + const w = shadowCoord.w; + shadowCoord = shadowCoord.xy.div( w ); // <-- Only divide X/Y coords since we don't need Z + + // The normally available "cameraNear" and "cameraFar" nodes cannot be used here because they do not get + // updated to use the shadow camera. So, we have to declare our own "local" ones here. + // TODO: How do we get the cameraNear/cameraFar nodes to use the shadow camera so we don't have to declare local ones here? + const cameraNearLocal = reference( 'near', 'float', shadow.camera ).setGroup( renderGroup ); + const cameraFarLocal = reference( 'far', 'float', shadow.camera ).setGroup( renderGroup ); + + coordZ = viewZToLogarithmicDepth( w.negate(), cameraNearLocal, cameraFarLocal ); + + } + + shadowCoord = vec3( + shadowCoord.x, + shadowCoord.y.oneMinus(), // follow webgpu standards + coordZ.add( bias ) + ); + + return shadowCoord; + + } + + /** + * Returns the shadow filtering function for the given shadow type. + * + * @param {number} type - The shadow type. + * @return {Function} The filtering function. + */ + getShadowFilterFn( type ) { + + return _shadowFilterLib[ type ]; + + } + + + setupRenderTarget( shadow, builder ) { + + const depthTexture = new DepthTexture( shadow.mapSize.width, shadow.mapSize.height ); + depthTexture.name = 'ShadowDepthTexture'; + depthTexture.compareFunction = LessCompare; + + const shadowMap = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height ); + shadowMap.texture.name = 'ShadowMap'; + shadowMap.texture.type = shadow.mapType; + shadowMap.depthTexture = depthTexture; + + return { shadowMap, depthTexture }; + + } + + /** + * Setups the shadow output node. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @return {Node} The shadow output node. + */ + setupShadow( builder ) { + + const { renderer } = builder; + + const { light, shadow } = this; + + const shadowMapType = renderer.shadowMap.type; + + const { depthTexture, shadowMap } = this.setupRenderTarget( shadow, builder ); + + shadow.camera.updateProjectionMatrix(); + + // VSM + + if ( shadowMapType === VSMShadowMap && shadow.isPointLightShadow !== true ) { + + depthTexture.compareFunction = null; // VSM does not use textureSampleCompare()/texture2DCompare() + + if ( shadowMap.depth > 1 ) { + + if ( ! shadowMap._vsmShadowMapVertical ) { + + shadowMap._vsmShadowMapVertical = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height, { format: RGFormat, type: HalfFloatType, depth: shadowMap.depth, depthBuffer: false } ); + shadowMap._vsmShadowMapVertical.texture.name = 'VSMVertical'; + + } + + this.vsmShadowMapVertical = shadowMap._vsmShadowMapVertical; + + if ( ! shadowMap._vsmShadowMapHorizontal ) { + + shadowMap._vsmShadowMapHorizontal = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height, { format: RGFormat, type: HalfFloatType, depth: shadowMap.depth, depthBuffer: false } ); + shadowMap._vsmShadowMapHorizontal.texture.name = 'VSMHorizontal'; + + } + + this.vsmShadowMapHorizontal = shadowMap._vsmShadowMapHorizontal; + + } else { + + this.vsmShadowMapVertical = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height, { format: RGFormat, type: HalfFloatType, depthBuffer: false } ); + this.vsmShadowMapHorizontal = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height, { format: RGFormat, type: HalfFloatType, depthBuffer: false } ); + + } + + + let shadowPassVertical = texture( depthTexture ); + + if ( depthTexture.isArrayTexture ) { + + shadowPassVertical = shadowPassVertical.depth( this.depthLayer ); + + } + + let shadowPassHorizontal = texture( this.vsmShadowMapVertical.texture ); + + if ( depthTexture.isArrayTexture ) { + + shadowPassHorizontal = shadowPassHorizontal.depth( this.depthLayer ); + + } + + const samples = reference( 'blurSamples', 'float', shadow ).setGroup( renderGroup ); + const radius = reference( 'radius', 'float', shadow ).setGroup( renderGroup ); + const size = reference( 'mapSize', 'vec2', shadow ).setGroup( renderGroup ); + + let material = this.vsmMaterialVertical || ( this.vsmMaterialVertical = new NodeMaterial() ); + material.fragmentNode = VSMPassVertical( { samples, radius, size, shadowPass: shadowPassVertical, depthLayer: this.depthLayer } ).context( builder.getSharedContext() ); + material.name = 'VSMVertical'; + + material = this.vsmMaterialHorizontal || ( this.vsmMaterialHorizontal = new NodeMaterial() ); + material.fragmentNode = VSMPassHorizontal( { samples, radius, size, shadowPass: shadowPassHorizontal, depthLayer: this.depthLayer } ).context( builder.getSharedContext() ); + material.name = 'VSMHorizontal'; + + } + + // + + const shadowIntensity = reference( 'intensity', 'float', shadow ).setGroup( renderGroup ); + const normalBias = reference( 'normalBias', 'float', shadow ).setGroup( renderGroup ); + + const shadowPosition = lightShadowMatrix( light ).mul( shadowPositionWorld.add( transformedNormalWorld.mul( normalBias ) ) ); + const shadowCoord = this.setupShadowCoord( builder, shadowPosition ); + + // + + const filterFn = shadow.filterNode || this.getShadowFilterFn( renderer.shadowMap.type ) || null; + + if ( filterFn === null ) { + + throw new Error( 'THREE.WebGPURenderer: Shadow map type not supported yet.' ); + + } + + const shadowDepthTexture = ( shadowMapType === VSMShadowMap && shadow.isPointLightShadow !== true ) ? this.vsmShadowMapHorizontal.texture : depthTexture; + + const shadowNode = this.setupShadowFilter( builder, { filterFn, shadowTexture: shadowMap.texture, depthTexture: shadowDepthTexture, shadowCoord, shadow, depthLayer: this.depthLayer } ); + + let shadowColor = texture( shadowMap.texture, shadowCoord ); + + if ( depthTexture.isArrayTexture ) { + + shadowColor = shadowColor.depth( this.depthLayer ); + + } + + const shadowOutput = mix( 1, shadowNode.rgb.mix( shadowColor, 1 ), shadowIntensity.mul( shadowColor.a ) ).toVar(); + + this.shadowMap = shadowMap; + this.shadow.map = shadowMap; + + return shadowOutput; + + } + + /** + * The implementation performs the setup of the output node. An output is only + * produces if shadow mapping is globally enabled in the renderer. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @return {ShaderCallNodeInternal} The output node. + */ + setup( builder ) { + + if ( builder.renderer.shadowMap.enabled === false ) return; + + return Fn( () => { + + let node = this._node; + + this.setupShadowPosition( builder ); + + if ( node === null ) { + + this._node = node = this.setupShadow( builder ); + + } + + if ( builder.material.shadowNode ) { // @deprecated, r171 + + console.warn( 'THREE.NodeMaterial: ".shadowNode" is deprecated. Use ".castShadowNode" instead.' ); + + } + + if ( builder.material.receivedShadowNode ) { + + node = builder.material.receivedShadowNode( node ); + + } + + return node; + + } )(); + + } + + /** + * Renders the shadow. The logic of this function could be included + * into {@link ShadowNode#updateShadow} however more specialized shadow + * nodes might require a custom shadow map rendering. By having a + * dedicated method, it's easier to overwrite the default behavior. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + renderShadow( frame ) { + + const { shadow, shadowMap, light } = this; + const { renderer, scene } = frame; + + shadow.updateMatrices( light ); + + shadowMap.setSize( shadow.mapSize.width, shadow.mapSize.height, shadowMap.depth ); + + renderer.render( scene, shadow.camera ); + + } + + /** + * Updates the shadow. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + updateShadow( frame ) { + + const { shadowMap, light, shadow } = this; + const { renderer, scene, camera } = frame; + + const shadowType = renderer.shadowMap.type; + + const depthVersion = shadowMap.depthTexture.version; + this._depthVersionCached = depthVersion; + + const _shadowCameraLayer = shadow.camera.layers.mask; + + if ( ( shadow.camera.layers.mask & 0xFFFFFFFE ) === 0 ) { + + shadow.camera.layers.mask = camera.layers.mask; + + } + + const currentRenderObjectFunction = renderer.getRenderObjectFunction(); + + const currentMRT = renderer.getMRT(); + const useVelocity = currentMRT ? currentMRT.has( 'velocity' ) : false; + + _rendererState = resetRendererAndSceneState( renderer, scene, _rendererState ); + + scene.overrideMaterial = getShadowMaterial( light ); + + renderer.setRenderObjectFunction( getShadowRenderObjectFunction( renderer, shadow, shadowType, useVelocity ) ); + + renderer.setClearColor( 0x000000, 0 ); + + renderer.setRenderTarget( shadowMap ); + + this.renderShadow( frame ); + + renderer.setRenderObjectFunction( currentRenderObjectFunction ); + + // vsm blur pass + + if ( shadowType === VSMShadowMap && shadow.isPointLightShadow !== true ) { + + this.vsmPass( renderer ); + + } + + shadow.camera.layers.mask = _shadowCameraLayer; + + restoreRendererAndSceneState( renderer, scene, _rendererState ); + + } + + /** + * For VSM additional render passes are required. + * + * @param {Renderer} renderer - A reference to the current renderer. + */ + vsmPass( renderer ) { + + const { shadow } = this; + + const depth = this.shadowMap.depth; + this.vsmShadowMapVertical.setSize( shadow.mapSize.width, shadow.mapSize.height, depth ); + this.vsmShadowMapHorizontal.setSize( shadow.mapSize.width, shadow.mapSize.height, depth ); + + renderer.setRenderTarget( this.vsmShadowMapVertical ); + _quadMesh.material = this.vsmMaterialVertical; + _quadMesh.render( renderer ); + + renderer.setRenderTarget( this.vsmShadowMapHorizontal ); + _quadMesh.material = this.vsmMaterialHorizontal; + _quadMesh.render( renderer ); + + } + + /** + * Frees the internal resources of this shadow node. + */ + dispose() { + + this.shadowMap.dispose(); + this.shadowMap = null; + + if ( this.vsmShadowMapVertical !== null ) { + + this.vsmShadowMapVertical.dispose(); + this.vsmShadowMapVertical = null; + + this.vsmMaterialVertical.dispose(); + this.vsmMaterialVertical = null; + + } + + if ( this.vsmShadowMapHorizontal !== null ) { + + this.vsmShadowMapHorizontal.dispose(); + this.vsmShadowMapHorizontal = null; + + this.vsmMaterialHorizontal.dispose(); + this.vsmMaterialHorizontal = null; + + } + + super.dispose(); + + } + + /** + * The implementation performs the update of the shadow map if necessary. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + updateBefore( frame ) { + + const { shadow } = this; + + let needsUpdate = shadow.needsUpdate || shadow.autoUpdate; + + if ( needsUpdate ) { + + if ( this._cameraFrameId[ frame.camera ] === frame.frameId ) { + + needsUpdate = false; + + } + + this._cameraFrameId[ frame.camera ] = frame.frameId; + + } + + if ( needsUpdate ) { + + this.updateShadow( frame ); + + if ( this.shadowMap.depthTexture.version === this._depthVersionCached ) { + + shadow.needsUpdate = false; + + } + + } + + } + +} + +/** + * TSL function for creating an instance of `ShadowNode`. + * + * @tsl + * @function + * @param {Light} light - The shadow casting light. + * @param {?LightShadow} [shadow] - The light shadow. + * @return {ShadowNode} The created shadow node. + */ +const shadow = ( light, shadow ) => nodeObject( new ShadowNode( light, shadow ) ); + +const _clearColor$1 = /*@__PURE__*/ new Color(); + +// cubeToUV() maps a 3D direction vector suitable for cube texture mapping to a 2D +// vector suitable for 2D texture mapping. This code uses the following layout for the +// 2D texture: +// +// xzXZ +// y Y +// +// Y - Positive y direction +// y - Negative y direction +// X - Positive x direction +// x - Negative x direction +// Z - Positive z direction +// z - Negative z direction +// +// Source and test bed: +// https://gist.github.com/tschw/da10c43c467ce8afd0c4 + +const cubeToUV = /*@__PURE__*/ Fn( ( [ pos, texelSizeY ] ) => { + + const v = pos.toVar(); + + // Number of texels to avoid at the edge of each square + + const absV = abs( v ); + + // Intersect unit cube + + const scaleToCube = div( 1.0, max$1( absV.x, max$1( absV.y, absV.z ) ) ); + absV.mulAssign( scaleToCube ); + + // Apply scale to avoid seams + + // two texels less per square (one texel will do for NEAREST) + v.mulAssign( scaleToCube.mul( texelSizeY.mul( 2 ).oneMinus() ) ); + + // Unwrap + + // space: -1 ... 1 range for each square + // + // #X## dim := ( 4 , 2 ) + // # # center := ( 1 , 1 ) + + const planar = vec2( v.xy ).toVar(); + + const almostATexel = texelSizeY.mul( 1.5 ); + const almostOne = almostATexel.oneMinus(); + + If( absV.z.greaterThanEqual( almostOne ), () => { + + If( v.z.greaterThan( 0.0 ), () => { + + planar.x.assign( sub( 4.0, v.x ) ); + + } ); + + } ).ElseIf( absV.x.greaterThanEqual( almostOne ), () => { + + const signX = sign( v.x ); + planar.x.assign( v.z.mul( signX ).add( signX.mul( 2.0 ) ) ); + + } ).ElseIf( absV.y.greaterThanEqual( almostOne ), () => { + + const signY = sign( v.y ); + planar.x.assign( v.x.add( signY.mul( 2.0 ) ).add( 2.0 ) ); + planar.y.assign( v.z.mul( signY ).sub( 2.0 ) ); + + } ); + + // Transform to UV space + + // scale := 0.5 / dim + // translate := ( center + 0.5 ) / dim + return vec2( 0.125, 0.25 ).mul( planar ).add( vec2( 0.375, 0.75 ) ).flipY(); + +} ).setLayout( { + name: 'cubeToUV', + type: 'vec2', + inputs: [ + { name: 'pos', type: 'vec3' }, + { name: 'texelSizeY', type: 'float' } + ] +} ); + +const BasicPointShadowFilter = /*@__PURE__*/ Fn( ( { depthTexture, bd3D, dp, texelSize } ) => { + + return texture( depthTexture, cubeToUV( bd3D, texelSize.y ) ).compare( dp ); + +} ); + +const PointShadowFilter = /*@__PURE__*/ Fn( ( { depthTexture, bd3D, dp, texelSize, shadow } ) => { + + const radius = reference( 'radius', 'float', shadow ).setGroup( renderGroup ); + const offset = vec2( - 1, 1.0 ).mul( radius ).mul( texelSize.y ); + + return texture( depthTexture, cubeToUV( bd3D.add( offset.xyy ), texelSize.y ) ).compare( dp ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.yyy ), texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.xyx ), texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.yyx ), texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D, texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.xxy ), texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.yxy ), texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.xxx ), texelSize.y ) ).compare( dp ) ) + .add( texture( depthTexture, cubeToUV( bd3D.add( offset.yxx ), texelSize.y ) ).compare( dp ) ) + .mul( 1.0 / 9.0 ); + +} ); + +const pointShadowFilter = /*@__PURE__*/ Fn( ( { filterFn, depthTexture, shadowCoord, shadow } ) => { + + // for point lights, the uniform @vShadowCoord is re-purposed to hold + // the vector from the light to the world-space position of the fragment. + const lightToPosition = shadowCoord.xyz.toVar(); + const lightToPositionLength = lightToPosition.length(); + + const cameraNearLocal = uniform( 'float' ).setGroup( renderGroup ).onRenderUpdate( () => shadow.camera.near ); + const cameraFarLocal = uniform( 'float' ).setGroup( renderGroup ).onRenderUpdate( () => shadow.camera.far ); + const bias = reference( 'bias', 'float', shadow ).setGroup( renderGroup ); + const mapSize = uniform( shadow.mapSize ).setGroup( renderGroup ); + + const result = float( 1.0 ).toVar(); + + If( lightToPositionLength.sub( cameraFarLocal ).lessThanEqual( 0.0 ).and( lightToPositionLength.sub( cameraNearLocal ).greaterThanEqual( 0.0 ) ), () => { + + // dp = normalized distance from light to fragment position + const dp = lightToPositionLength.sub( cameraNearLocal ).div( cameraFarLocal.sub( cameraNearLocal ) ).toVar(); // need to clamp? + dp.addAssign( bias ); + + // bd3D = base direction 3D + const bd3D = lightToPosition.normalize(); + const texelSize = vec2( 1.0 ).div( mapSize.mul( vec2( 4.0, 2.0 ) ) ); + + // percentage-closer filtering + result.assign( filterFn( { depthTexture, bd3D, dp, texelSize, shadow } ) ); + + } ); + + return result; + +} ); + +const _viewport = /*@__PURE__*/ new Vector4(); +const _viewportSize = /*@__PURE__*/ new Vector2(); +const _shadowMapSize = /*@__PURE__*/ new Vector2(); + + +/** + * Represents the shadow implementation for point light nodes. + * + * @augments ShadowNode + */ +class PointShadowNode extends ShadowNode { + + static get type() { + + return 'PointShadowNode'; + + } + + /** + * Constructs a new point shadow node. + * + * @param {PointLight} light - The shadow casting point light. + * @param {?PointLightShadow} [shadow=null] - An optional point light shadow. + */ + constructor( light, shadow = null ) { + + super( light, shadow ); + + } + + /** + * Overwrites the default implementation to return point light shadow specific + * filtering functions. + * + * @param {number} type - The shadow type. + * @return {Function} The filtering function. + */ + getShadowFilterFn( type ) { + + return type === BasicShadowMap ? BasicPointShadowFilter : PointShadowFilter; + + } + + /** + * Overwrites the default implementation so the unaltered shadow position is used. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @param {Node} shadowPosition - A node representing the shadow position. + * @return {Node} The shadow coordinates. + */ + setupShadowCoord( builder, shadowPosition ) { + + return shadowPosition; + + } + + /** + * Overwrites the default implementation to only use point light specific + * shadow filter functions. + * + * @param {NodeBuilder} builder - A reference to the current node builder. + * @param {Object} inputs - A configuration object that defines the shadow filtering. + * @param {Function} inputs.filterFn - This function defines the filtering type of the shadow map e.g. PCF. + * @param {Texture} inputs.shadowTexture - A reference to the shadow map's texture. + * @param {DepthTexture} inputs.depthTexture - A reference to the shadow map's texture data. + * @param {Node} inputs.shadowCoord - Shadow coordinates which are used to sample from the shadow map. + * @param {LightShadow} inputs.shadow - The light shadow. + * @return {Node} The result node of the shadow filtering. + */ + setupShadowFilter( builder, { filterFn, shadowTexture, depthTexture, shadowCoord, shadow } ) { + + return pointShadowFilter( { filterFn, shadowTexture, depthTexture, shadowCoord, shadow } ); + + } + + /** + * Overwrites the default implementation with point light specific + * rendering code. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + renderShadow( frame ) { + + const { shadow, shadowMap, light } = this; + const { renderer, scene } = frame; + + const shadowFrameExtents = shadow.getFrameExtents(); + + _shadowMapSize.copy( shadow.mapSize ); + _shadowMapSize.multiply( shadowFrameExtents ); + + shadowMap.setSize( _shadowMapSize.width, _shadowMapSize.height ); + + _viewportSize.copy( shadow.mapSize ); + + // + + const previousAutoClear = renderer.autoClear; + + const previousClearColor = renderer.getClearColor( _clearColor$1 ); + const previousClearAlpha = renderer.getClearAlpha(); + + renderer.autoClear = false; + renderer.setClearColor( shadow.clearColor, shadow.clearAlpha ); + renderer.clear(); + + const viewportCount = shadow.getViewportCount(); + + for ( let vp = 0; vp < viewportCount; vp ++ ) { + + const viewport = shadow.getViewport( vp ); + + const x = _viewportSize.x * viewport.x; + const y = _shadowMapSize.y - _viewportSize.y - ( _viewportSize.y * viewport.y ); + + _viewport.set( + x, + y, + _viewportSize.x * viewport.z, + _viewportSize.y * viewport.w + ); + + shadowMap.viewport.copy( _viewport ); + + shadow.updateMatrices( light, vp ); + + renderer.render( scene, shadow.camera ); + + } + + // + + renderer.autoClear = previousAutoClear; + renderer.setClearColor( previousClearColor, previousClearAlpha ); + + } + +} + +/** + * TSL function for creating an instance of `PointShadowNode`. + * + * @tsl + * @function + * @param {PointLight} light - The shadow casting point light. + * @param {?PointLightShadow} [shadow=null] - An optional point light shadow. + * @return {PointShadowNode} The created point shadow node. + */ +const pointShadow = ( light, shadow ) => nodeObject( new PointShadowNode( light, shadow ) ); + +/** + * Base class for analytic light nodes. + * + * @augments LightingNode + */ +class AnalyticLightNode extends LightingNode { + + static get type() { + + return 'AnalyticLightNode'; + + } + + /** + * Constructs a new analytic light node. + * + * @param {?Light} [light=null] - The light source. + */ + constructor( light = null ) { + + super(); + + /** + * The light source. + * + * @type {?Light} + * @default null + */ + this.light = light; + + /** + * The light's color value. + * + * @type {Color} + */ + this.color = new Color(); + + /** + * The light's color node. Points to `colorNode` of the light source, if set. Otherwise + * it creates a uniform node based on {@link AnalyticLightNode#color}. + * + * @type {Node} + */ + this.colorNode = ( light && light.colorNode ) || uniform( this.color ).setGroup( renderGroup ); + + /** + * This property is used to retain a reference to the original value of {@link AnalyticLightNode#colorNode}. + * The final color node is represented by a different node when using shadows. + * + * @type {?Node} + * @default null + */ + this.baseColorNode = null; + + /** + * Represents the light's shadow. + * + * @type {?ShadowNode} + * @default null + */ + this.shadowNode = null; + + /** + * Represents the light's shadow color. + * + * @type {?Node} + * @default null + */ + this.shadowColorNode = null; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isAnalyticLightNode = true; + + /** + * Overwritten since analytic light nodes are updated + * once per frame. + * + * @type {string} + * @default 'frame' + */ + this.updateType = NodeUpdateType.FRAME; + + } + + getHash() { + + return this.light.uuid; + + } + + /** + * Returns a node representing a direction vector which points from the current + * position in view space to the light's position in view space. + * + * @param {NodeBuilder} builder - The builder object used for setting up the light. + * @return {Node} The light vector node. + */ + getLightVector( builder ) { + + return lightViewPosition( this.light ).sub( builder.context.positionView || positionView ); + + } + + /** + * Sets up the direct lighting for the analytic light node. + * + * @abstract + * @param {NodeBuilder} builder - The builder object used for setting up the light. + * @return {Object|undefined} The direct light data (color and direction). + */ + setupDirect( /*builder*/ ) { } + + /** + * Sets up the direct rect area lighting for the analytic light node. + * + * @abstract + * @param {NodeBuilder} builder - The builder object used for setting up the light. + * @return {Object|undefined} The direct rect area light data. + */ + setupDirectRectArea( /*builder*/ ) { } + + /** + * Setups the shadow node for this light. The method exists so concrete light classes + * can setup different types of shadow nodes. + * + * @return {ShadowNode} The created shadow node. + */ + setupShadowNode() { + + return shadow( this.light ); + + } + + /** + * Setups the shadow for this light. This method is only executed if the light + * cast shadows and the current build object receives shadows. It incorporates + * shadows into the lighting computation. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setupShadow( builder ) { + + const { renderer } = builder; + + if ( renderer.shadowMap.enabled === false ) return; + + let shadowColorNode = this.shadowColorNode; + + if ( shadowColorNode === null ) { + + const customShadowNode = this.light.shadow.shadowNode; + + let shadowNode; + + if ( customShadowNode !== undefined ) { + + shadowNode = nodeObject( customShadowNode ); + + } else { + + shadowNode = this.setupShadowNode(); + + } + + this.shadowNode = shadowNode; + + this.shadowColorNode = shadowColorNode = this.colorNode.mul( shadowNode ); + + this.baseColorNode = this.colorNode; + + } + + // + + this.colorNode = shadowColorNode; + + } + + /** + * Unlike most other nodes, lighting nodes do not return a output node in {@link Node#setup}. + * The main purpose of lighting nodes is to configure the current {@link LightingModel} and/or + * invocate the respective interface methods. + * + * @param {NodeBuilder} builder - The current node builder. + */ + setup( builder ) { + + this.colorNode = this.baseColorNode || this.colorNode; + + if ( this.light.castShadow ) { + + if ( builder.object.receiveShadow ) { + + this.setupShadow( builder ); + + } + + } else if ( this.shadowNode !== null ) { + + this.shadowNode.dispose(); + this.shadowNode = null; + this.shadowColorNode = null; + + } + + const directLightData = this.setupDirect( builder ); + const directRectAreaLightData = this.setupDirectRectArea( builder ); + + if ( directLightData ) { + + builder.lightsNode.setupDirectLight( builder, this, directLightData ); + + } + + if ( directRectAreaLightData ) { + + builder.lightsNode.setupDirectRectAreaLight( builder, this, directRectAreaLightData ); + + } + + } + + /** + * The update method is used to update light uniforms per frame. + * Potentially overwritten in concrete light nodes to update light + * specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( /*frame*/ ) { + + const { light } = this; + + this.color.copy( light.color ).multiplyScalar( light.intensity ); + + } + +} + +/** + * Represents a `discard` shader operation in TSL. + * + * @method + * @param {Object} inputs - The input parameter object. + * @param {Node} inputs.lightDistance - The distance of the light's position to the current fragment position. + * @param {Node} inputs.cutoffDistance - The light's cutoff distance. + * @param {Node} inputs.decayExponent - The light's decay exponent. + * @return {Node} The distance falloff. + */ +const getDistanceAttenuation = /*@__PURE__*/ Fn( ( { lightDistance, cutoffDistance, decayExponent } ) => { + + // based upon Frostbite 3 Moving to Physically-based Rendering + // page 32, equation 26: E[window1] + // https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf + const distanceFalloff = lightDistance.pow( decayExponent ).max( 0.01 ).reciprocal(); + + return cutoffDistance.greaterThan( 0 ).select( + distanceFalloff.mul( lightDistance.div( cutoffDistance ).pow4().oneMinus().clamp().pow2() ), + distanceFalloff + ); + +} ); // validated + +const directPointLight = ( { color, lightVector, cutoffDistance, decayExponent } ) => { + + const lightDirection = lightVector.normalize(); + const lightDistance = lightVector.length(); + + const attenuation = getDistanceAttenuation( { + lightDistance, + cutoffDistance, + decayExponent + } ); + + const lightColor = color.mul( attenuation ); + + return { lightDirection, lightColor }; + +}; + +/** + * Module for representing point lights as nodes. + * + * @augments AnalyticLightNode + */ +class PointLightNode extends AnalyticLightNode { + + static get type() { + + return 'PointLightNode'; + + } + + /** + * Constructs a new point light node. + * + * @param {?PointLight} [light=null] - The point light source. + */ + constructor( light = null ) { + + super( light ); + + /** + * Uniform node representing the cutoff distance. + * + * @type {UniformNode} + */ + this.cutoffDistanceNode = uniform( 0 ).setGroup( renderGroup ); + + /** + * Uniform node representing the decay exponent. + * + * @type {UniformNode} + */ + this.decayExponentNode = uniform( 2 ).setGroup( renderGroup ); + + } + + /** + * Overwritten to updated point light specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( frame ) { + + const { light } = this; + + super.update( frame ); + + this.cutoffDistanceNode.value = light.distance; + this.decayExponentNode.value = light.decay; + + } + + /** + * Overwritten to setup point light specific shadow. + * + * @return {PointShadowNode} + */ + setupShadowNode() { + + return pointShadow( this.light ); + + } + + setupDirect( builder ) { + + return directPointLight( { + color: this.colorNode, + lightVector: this.getLightVector( builder ), + cutoffDistance: this.cutoffDistanceNode, + decayExponent: this.decayExponentNode + } ); + + } + +} + +/** + * Creates a 2x2 checkerboard pattern that can be used as procedural texture data. + * + * @tsl + * @function + * @param {Node} coord - The uv coordinates. + * @return {Node} The result data. + */ +const checker = /*@__PURE__*/ Fn( ( [ coord = uv() ] ) => { + + const uv = coord.mul( 2.0 ); + + const cx = uv.x.floor(); + const cy = uv.y.floor(); + const result = cx.add( cy ).mod( 2.0 ); + + return result.sign(); + +} ); + +/** + * Generates a circle based on the uv coordinates. + * + * @tsl + * @function + * @param {Node} coord - The uv to generate the circle. + * @return {Node} The circle shape. + */ +const shapeCircle = Fn( ( [ coord = uv() ], { renderer, material } ) => { + + const len2 = lengthSq( coord.mul( 2 ).sub( 1 ) ); + + let alpha; + + if ( material.alphaToCoverage && renderer.samples > 1 ) { + + const dlen = float( len2.fwidth() ).toVar(); + + alpha = smoothstep( dlen.oneMinus(), dlen.add( 1 ), len2 ).oneMinus(); + + } else { + + alpha = select( len2.greaterThan( 1.0 ), 0, 1 ); + + } + + return alpha; + +} ); + +// Three.js Transpiler +// https://raw.githubusercontent.com/AcademySoftwareFoundation/MaterialX/main/libraries/stdlib/genglsl/lib/mx_noise.glsl + + + +const mx_select = /*@__PURE__*/ Fn( ( [ b_immutable, t_immutable, f_immutable ] ) => { + + const f = float( f_immutable ).toVar(); + const t = float( t_immutable ).toVar(); + const b = bool( b_immutable ).toVar(); + + return select( b, t, f ); + +} ).setLayout( { + name: 'mx_select', + type: 'float', + inputs: [ + { name: 'b', type: 'bool' }, + { name: 't', type: 'float' }, + { name: 'f', type: 'float' } + ] +} ); + +const mx_negate_if = /*@__PURE__*/ Fn( ( [ val_immutable, b_immutable ] ) => { + + const b = bool( b_immutable ).toVar(); + const val = float( val_immutable ).toVar(); + + return select( b, val.negate(), val ); + +} ).setLayout( { + name: 'mx_negate_if', + type: 'float', + inputs: [ + { name: 'val', type: 'float' }, + { name: 'b', type: 'bool' } + ] +} ); + +const mx_floor = /*@__PURE__*/ Fn( ( [ x_immutable ] ) => { + + const x = float( x_immutable ).toVar(); + + return int( floor( x ) ); + +} ).setLayout( { + name: 'mx_floor', + type: 'int', + inputs: [ + { name: 'x', type: 'float' } + ] +} ); + +const mx_floorfrac = /*@__PURE__*/ Fn( ( [ x_immutable, i ] ) => { + + const x = float( x_immutable ).toVar(); + i.assign( mx_floor( x ) ); + + return x.sub( float( i ) ); + +} ); + +const mx_bilerp_0 = /*@__PURE__*/ Fn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, s_immutable, t_immutable ] ) => { + + const t = float( t_immutable ).toVar(); + const s = float( s_immutable ).toVar(); + const v3 = float( v3_immutable ).toVar(); + const v2 = float( v2_immutable ).toVar(); + const v1 = float( v1_immutable ).toVar(); + const v0 = float( v0_immutable ).toVar(); + const s1 = float( sub( 1.0, s ) ).toVar(); + + return sub( 1.0, t ).mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ); + +} ).setLayout( { + name: 'mx_bilerp_0', + type: 'float', + inputs: [ + { name: 'v0', type: 'float' }, + { name: 'v1', type: 'float' }, + { name: 'v2', type: 'float' }, + { name: 'v3', type: 'float' }, + { name: 's', type: 'float' }, + { name: 't', type: 'float' } + ] +} ); + +const mx_bilerp_1 = /*@__PURE__*/ Fn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, s_immutable, t_immutable ] ) => { + + const t = float( t_immutable ).toVar(); + const s = float( s_immutable ).toVar(); + const v3 = vec3( v3_immutable ).toVar(); + const v2 = vec3( v2_immutable ).toVar(); + const v1 = vec3( v1_immutable ).toVar(); + const v0 = vec3( v0_immutable ).toVar(); + const s1 = float( sub( 1.0, s ) ).toVar(); + + return sub( 1.0, t ).mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ); + +} ).setLayout( { + name: 'mx_bilerp_1', + type: 'vec3', + inputs: [ + { name: 'v0', type: 'vec3' }, + { name: 'v1', type: 'vec3' }, + { name: 'v2', type: 'vec3' }, + { name: 'v3', type: 'vec3' }, + { name: 's', type: 'float' }, + { name: 't', type: 'float' } + ] +} ); + +const mx_bilerp = /*@__PURE__*/ overloadingFn( [ mx_bilerp_0, mx_bilerp_1 ] ); + +const mx_trilerp_0 = /*@__PURE__*/ Fn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, v4_immutable, v5_immutable, v6_immutable, v7_immutable, s_immutable, t_immutable, r_immutable ] ) => { + + const r = float( r_immutable ).toVar(); + const t = float( t_immutable ).toVar(); + const s = float( s_immutable ).toVar(); + const v7 = float( v7_immutable ).toVar(); + const v6 = float( v6_immutable ).toVar(); + const v5 = float( v5_immutable ).toVar(); + const v4 = float( v4_immutable ).toVar(); + const v3 = float( v3_immutable ).toVar(); + const v2 = float( v2_immutable ).toVar(); + const v1 = float( v1_immutable ).toVar(); + const v0 = float( v0_immutable ).toVar(); + const s1 = float( sub( 1.0, s ) ).toVar(); + const t1 = float( sub( 1.0, t ) ).toVar(); + const r1 = float( sub( 1.0, r ) ).toVar(); + + return r1.mul( t1.mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ) ).add( r.mul( t1.mul( v4.mul( s1 ).add( v5.mul( s ) ) ).add( t.mul( v6.mul( s1 ).add( v7.mul( s ) ) ) ) ) ); + +} ).setLayout( { + name: 'mx_trilerp_0', + type: 'float', + inputs: [ + { name: 'v0', type: 'float' }, + { name: 'v1', type: 'float' }, + { name: 'v2', type: 'float' }, + { name: 'v3', type: 'float' }, + { name: 'v4', type: 'float' }, + { name: 'v5', type: 'float' }, + { name: 'v6', type: 'float' }, + { name: 'v7', type: 'float' }, + { name: 's', type: 'float' }, + { name: 't', type: 'float' }, + { name: 'r', type: 'float' } + ] +} ); + +const mx_trilerp_1 = /*@__PURE__*/ Fn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, v4_immutable, v5_immutable, v6_immutable, v7_immutable, s_immutable, t_immutable, r_immutable ] ) => { + + const r = float( r_immutable ).toVar(); + const t = float( t_immutable ).toVar(); + const s = float( s_immutable ).toVar(); + const v7 = vec3( v7_immutable ).toVar(); + const v6 = vec3( v6_immutable ).toVar(); + const v5 = vec3( v5_immutable ).toVar(); + const v4 = vec3( v4_immutable ).toVar(); + const v3 = vec3( v3_immutable ).toVar(); + const v2 = vec3( v2_immutable ).toVar(); + const v1 = vec3( v1_immutable ).toVar(); + const v0 = vec3( v0_immutable ).toVar(); + const s1 = float( sub( 1.0, s ) ).toVar(); + const t1 = float( sub( 1.0, t ) ).toVar(); + const r1 = float( sub( 1.0, r ) ).toVar(); + + return r1.mul( t1.mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ) ).add( r.mul( t1.mul( v4.mul( s1 ).add( v5.mul( s ) ) ).add( t.mul( v6.mul( s1 ).add( v7.mul( s ) ) ) ) ) ); + +} ).setLayout( { + name: 'mx_trilerp_1', + type: 'vec3', + inputs: [ + { name: 'v0', type: 'vec3' }, + { name: 'v1', type: 'vec3' }, + { name: 'v2', type: 'vec3' }, + { name: 'v3', type: 'vec3' }, + { name: 'v4', type: 'vec3' }, + { name: 'v5', type: 'vec3' }, + { name: 'v6', type: 'vec3' }, + { name: 'v7', type: 'vec3' }, + { name: 's', type: 'float' }, + { name: 't', type: 'float' }, + { name: 'r', type: 'float' } + ] +} ); + +const mx_trilerp = /*@__PURE__*/ overloadingFn( [ mx_trilerp_0, mx_trilerp_1 ] ); + +const mx_gradient_float_0 = /*@__PURE__*/ Fn( ( [ hash_immutable, x_immutable, y_immutable ] ) => { + + const y = float( y_immutable ).toVar(); + const x = float( x_immutable ).toVar(); + const hash = uint( hash_immutable ).toVar(); + const h = uint( hash.bitAnd( uint( 7 ) ) ).toVar(); + const u = float( mx_select( h.lessThan( uint( 4 ) ), x, y ) ).toVar(); + const v = float( mul( 2.0, mx_select( h.lessThan( uint( 4 ) ), y, x ) ) ).toVar(); + + return mx_negate_if( u, bool( h.bitAnd( uint( 1 ) ) ) ).add( mx_negate_if( v, bool( h.bitAnd( uint( 2 ) ) ) ) ); + +} ).setLayout( { + name: 'mx_gradient_float_0', + type: 'float', + inputs: [ + { name: 'hash', type: 'uint' }, + { name: 'x', type: 'float' }, + { name: 'y', type: 'float' } + ] +} ); + +const mx_gradient_float_1 = /*@__PURE__*/ Fn( ( [ hash_immutable, x_immutable, y_immutable, z_immutable ] ) => { + + const z = float( z_immutable ).toVar(); + const y = float( y_immutable ).toVar(); + const x = float( x_immutable ).toVar(); + const hash = uint( hash_immutable ).toVar(); + const h = uint( hash.bitAnd( uint( 15 ) ) ).toVar(); + const u = float( mx_select( h.lessThan( uint( 8 ) ), x, y ) ).toVar(); + const v = float( mx_select( h.lessThan( uint( 4 ) ), y, mx_select( h.equal( uint( 12 ) ).or( h.equal( uint( 14 ) ) ), x, z ) ) ).toVar(); + + return mx_negate_if( u, bool( h.bitAnd( uint( 1 ) ) ) ).add( mx_negate_if( v, bool( h.bitAnd( uint( 2 ) ) ) ) ); + +} ).setLayout( { + name: 'mx_gradient_float_1', + type: 'float', + inputs: [ + { name: 'hash', type: 'uint' }, + { name: 'x', type: 'float' }, + { name: 'y', type: 'float' }, + { name: 'z', type: 'float' } + ] +} ); + +const mx_gradient_float = /*@__PURE__*/ overloadingFn( [ mx_gradient_float_0, mx_gradient_float_1 ] ); + +const mx_gradient_vec3_0 = /*@__PURE__*/ Fn( ( [ hash_immutable, x_immutable, y_immutable ] ) => { + + const y = float( y_immutable ).toVar(); + const x = float( x_immutable ).toVar(); + const hash = uvec3( hash_immutable ).toVar(); + + return vec3( mx_gradient_float( hash.x, x, y ), mx_gradient_float( hash.y, x, y ), mx_gradient_float( hash.z, x, y ) ); + +} ).setLayout( { + name: 'mx_gradient_vec3_0', + type: 'vec3', + inputs: [ + { name: 'hash', type: 'uvec3' }, + { name: 'x', type: 'float' }, + { name: 'y', type: 'float' } + ] +} ); + +const mx_gradient_vec3_1 = /*@__PURE__*/ Fn( ( [ hash_immutable, x_immutable, y_immutable, z_immutable ] ) => { + + const z = float( z_immutable ).toVar(); + const y = float( y_immutable ).toVar(); + const x = float( x_immutable ).toVar(); + const hash = uvec3( hash_immutable ).toVar(); + + return vec3( mx_gradient_float( hash.x, x, y, z ), mx_gradient_float( hash.y, x, y, z ), mx_gradient_float( hash.z, x, y, z ) ); + +} ).setLayout( { + name: 'mx_gradient_vec3_1', + type: 'vec3', + inputs: [ + { name: 'hash', type: 'uvec3' }, + { name: 'x', type: 'float' }, + { name: 'y', type: 'float' }, + { name: 'z', type: 'float' } + ] +} ); + +const mx_gradient_vec3 = /*@__PURE__*/ overloadingFn( [ mx_gradient_vec3_0, mx_gradient_vec3_1 ] ); + +const mx_gradient_scale2d_0 = /*@__PURE__*/ Fn( ( [ v_immutable ] ) => { + + const v = float( v_immutable ).toVar(); + + return mul( 0.6616, v ); + +} ).setLayout( { + name: 'mx_gradient_scale2d_0', + type: 'float', + inputs: [ + { name: 'v', type: 'float' } + ] +} ); + +const mx_gradient_scale3d_0 = /*@__PURE__*/ Fn( ( [ v_immutable ] ) => { + + const v = float( v_immutable ).toVar(); + + return mul( 0.9820, v ); + +} ).setLayout( { + name: 'mx_gradient_scale3d_0', + type: 'float', + inputs: [ + { name: 'v', type: 'float' } + ] +} ); + +const mx_gradient_scale2d_1 = /*@__PURE__*/ Fn( ( [ v_immutable ] ) => { + + const v = vec3( v_immutable ).toVar(); + + return mul( 0.6616, v ); + +} ).setLayout( { + name: 'mx_gradient_scale2d_1', + type: 'vec3', + inputs: [ + { name: 'v', type: 'vec3' } + ] +} ); + +const mx_gradient_scale2d = /*@__PURE__*/ overloadingFn( [ mx_gradient_scale2d_0, mx_gradient_scale2d_1 ] ); + +const mx_gradient_scale3d_1 = /*@__PURE__*/ Fn( ( [ v_immutable ] ) => { + + const v = vec3( v_immutable ).toVar(); + + return mul( 0.9820, v ); + +} ).setLayout( { + name: 'mx_gradient_scale3d_1', + type: 'vec3', + inputs: [ + { name: 'v', type: 'vec3' } + ] +} ); + +const mx_gradient_scale3d = /*@__PURE__*/ overloadingFn( [ mx_gradient_scale3d_0, mx_gradient_scale3d_1 ] ); + +const mx_rotl32 = /*@__PURE__*/ Fn( ( [ x_immutable, k_immutable ] ) => { + + const k = int( k_immutable ).toVar(); + const x = uint( x_immutable ).toVar(); + + return x.shiftLeft( k ).bitOr( x.shiftRight( int( 32 ).sub( k ) ) ); + +} ).setLayout( { + name: 'mx_rotl32', + type: 'uint', + inputs: [ + { name: 'x', type: 'uint' }, + { name: 'k', type: 'int' } + ] +} ); + +const mx_bjmix = /*@__PURE__*/ Fn( ( [ a, b, c ] ) => { + + a.subAssign( c ); + a.bitXorAssign( mx_rotl32( c, int( 4 ) ) ); + c.addAssign( b ); + b.subAssign( a ); + b.bitXorAssign( mx_rotl32( a, int( 6 ) ) ); + a.addAssign( c ); + c.subAssign( b ); + c.bitXorAssign( mx_rotl32( b, int( 8 ) ) ); + b.addAssign( a ); + a.subAssign( c ); + a.bitXorAssign( mx_rotl32( c, int( 16 ) ) ); + c.addAssign( b ); + b.subAssign( a ); + b.bitXorAssign( mx_rotl32( a, int( 19 ) ) ); + a.addAssign( c ); + c.subAssign( b ); + c.bitXorAssign( mx_rotl32( b, int( 4 ) ) ); + b.addAssign( a ); + +} ); + +const mx_bjfinal = /*@__PURE__*/ Fn( ( [ a_immutable, b_immutable, c_immutable ] ) => { + + const c = uint( c_immutable ).toVar(); + const b = uint( b_immutable ).toVar(); + const a = uint( a_immutable ).toVar(); + c.bitXorAssign( b ); + c.subAssign( mx_rotl32( b, int( 14 ) ) ); + a.bitXorAssign( c ); + a.subAssign( mx_rotl32( c, int( 11 ) ) ); + b.bitXorAssign( a ); + b.subAssign( mx_rotl32( a, int( 25 ) ) ); + c.bitXorAssign( b ); + c.subAssign( mx_rotl32( b, int( 16 ) ) ); + a.bitXorAssign( c ); + a.subAssign( mx_rotl32( c, int( 4 ) ) ); + b.bitXorAssign( a ); + b.subAssign( mx_rotl32( a, int( 14 ) ) ); + c.bitXorAssign( b ); + c.subAssign( mx_rotl32( b, int( 24 ) ) ); + + return c; + +} ).setLayout( { + name: 'mx_bjfinal', + type: 'uint', + inputs: [ + { name: 'a', type: 'uint' }, + { name: 'b', type: 'uint' }, + { name: 'c', type: 'uint' } + ] +} ); + +const mx_bits_to_01 = /*@__PURE__*/ Fn( ( [ bits_immutable ] ) => { + + const bits = uint( bits_immutable ).toVar(); + + return float( bits ).div( float( uint( int( 0xffffffff ) ) ) ); + +} ).setLayout( { + name: 'mx_bits_to_01', + type: 'float', + inputs: [ + { name: 'bits', type: 'uint' } + ] +} ); + +const mx_fade = /*@__PURE__*/ Fn( ( [ t_immutable ] ) => { + + const t = float( t_immutable ).toVar(); + + return t.mul( t ).mul( t ).mul( t.mul( t.mul( 6.0 ).sub( 15.0 ) ).add( 10.0 ) ); + +} ).setLayout( { + name: 'mx_fade', + type: 'float', + inputs: [ + { name: 't', type: 'float' } + ] +} ); + +const mx_hash_int_0 = /*@__PURE__*/ Fn( ( [ x_immutable ] ) => { + + const x = int( x_immutable ).toVar(); + const len = uint( uint( 1 ) ).toVar(); + const seed = uint( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ).toVar(); + + return mx_bjfinal( seed.add( uint( x ) ), seed, seed ); + +} ).setLayout( { + name: 'mx_hash_int_0', + type: 'uint', + inputs: [ + { name: 'x', type: 'int' } + ] +} ); + +const mx_hash_int_1 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable ] ) => { + + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const len = uint( uint( 2 ) ).toVar(); + const a = uint().toVar(), b = uint().toVar(), c = uint().toVar(); + a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) ); + a.addAssign( uint( x ) ); + b.addAssign( uint( y ) ); + + return mx_bjfinal( a, b, c ); + +} ).setLayout( { + name: 'mx_hash_int_1', + type: 'uint', + inputs: [ + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' } + ] +} ); + +const mx_hash_int_2 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable, z_immutable ] ) => { + + const z = int( z_immutable ).toVar(); + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const len = uint( uint( 3 ) ).toVar(); + const a = uint().toVar(), b = uint().toVar(), c = uint().toVar(); + a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) ); + a.addAssign( uint( x ) ); + b.addAssign( uint( y ) ); + c.addAssign( uint( z ) ); + + return mx_bjfinal( a, b, c ); + +} ).setLayout( { + name: 'mx_hash_int_2', + type: 'uint', + inputs: [ + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' }, + { name: 'z', type: 'int' } + ] +} ); + +const mx_hash_int_3 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable, z_immutable, xx_immutable ] ) => { + + const xx = int( xx_immutable ).toVar(); + const z = int( z_immutable ).toVar(); + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const len = uint( uint( 4 ) ).toVar(); + const a = uint().toVar(), b = uint().toVar(), c = uint().toVar(); + a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) ); + a.addAssign( uint( x ) ); + b.addAssign( uint( y ) ); + c.addAssign( uint( z ) ); + mx_bjmix( a, b, c ); + a.addAssign( uint( xx ) ); + + return mx_bjfinal( a, b, c ); + +} ).setLayout( { + name: 'mx_hash_int_3', + type: 'uint', + inputs: [ + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' }, + { name: 'z', type: 'int' }, + { name: 'xx', type: 'int' } + ] +} ); + +const mx_hash_int_4 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable, z_immutable, xx_immutable, yy_immutable ] ) => { + + const yy = int( yy_immutable ).toVar(); + const xx = int( xx_immutable ).toVar(); + const z = int( z_immutable ).toVar(); + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const len = uint( uint( 5 ) ).toVar(); + const a = uint().toVar(), b = uint().toVar(), c = uint().toVar(); + a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) ); + a.addAssign( uint( x ) ); + b.addAssign( uint( y ) ); + c.addAssign( uint( z ) ); + mx_bjmix( a, b, c ); + a.addAssign( uint( xx ) ); + b.addAssign( uint( yy ) ); + + return mx_bjfinal( a, b, c ); + +} ).setLayout( { + name: 'mx_hash_int_4', + type: 'uint', + inputs: [ + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' }, + { name: 'z', type: 'int' }, + { name: 'xx', type: 'int' }, + { name: 'yy', type: 'int' } + ] +} ); + +const mx_hash_int = /*@__PURE__*/ overloadingFn( [ mx_hash_int_0, mx_hash_int_1, mx_hash_int_2, mx_hash_int_3, mx_hash_int_4 ] ); + +const mx_hash_vec3_0 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable ] ) => { + + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const h = uint( mx_hash_int( x, y ) ).toVar(); + const result = uvec3().toVar(); + result.x.assign( h.bitAnd( int( 0xFF ) ) ); + result.y.assign( h.shiftRight( int( 8 ) ).bitAnd( int( 0xFF ) ) ); + result.z.assign( h.shiftRight( int( 16 ) ).bitAnd( int( 0xFF ) ) ); + + return result; + +} ).setLayout( { + name: 'mx_hash_vec3_0', + type: 'uvec3', + inputs: [ + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' } + ] +} ); + +const mx_hash_vec3_1 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable, z_immutable ] ) => { + + const z = int( z_immutable ).toVar(); + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const h = uint( mx_hash_int( x, y, z ) ).toVar(); + const result = uvec3().toVar(); + result.x.assign( h.bitAnd( int( 0xFF ) ) ); + result.y.assign( h.shiftRight( int( 8 ) ).bitAnd( int( 0xFF ) ) ); + result.z.assign( h.shiftRight( int( 16 ) ).bitAnd( int( 0xFF ) ) ); + + return result; + +} ).setLayout( { + name: 'mx_hash_vec3_1', + type: 'uvec3', + inputs: [ + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' }, + { name: 'z', type: 'int' } + ] +} ); + +const mx_hash_vec3 = /*@__PURE__*/ overloadingFn( [ mx_hash_vec3_0, mx_hash_vec3_1 ] ); + +const mx_perlin_noise_float_0 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec2( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(); + const fx = float( mx_floorfrac( p.x, X ) ).toVar(); + const fy = float( mx_floorfrac( p.y, Y ) ).toVar(); + const u = float( mx_fade( fx ) ).toVar(); + const v = float( mx_fade( fy ) ).toVar(); + const result = float( mx_bilerp( mx_gradient_float( mx_hash_int( X, Y ), fx, fy ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y ), fx.sub( 1.0 ), fy ), mx_gradient_float( mx_hash_int( X, Y.add( int( 1 ) ) ), fx, fy.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ) ), u, v ) ).toVar(); + + return mx_gradient_scale2d( result ); + +} ).setLayout( { + name: 'mx_perlin_noise_float_0', + type: 'float', + inputs: [ + { name: 'p', type: 'vec2' } + ] +} ); + +const mx_perlin_noise_float_1 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec3( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); + const fx = float( mx_floorfrac( p.x, X ) ).toVar(); + const fy = float( mx_floorfrac( p.y, Y ) ).toVar(); + const fz = float( mx_floorfrac( p.z, Z ) ).toVar(); + const u = float( mx_fade( fx ) ).toVar(); + const v = float( mx_fade( fy ) ).toVar(); + const w = float( mx_fade( fz ) ).toVar(); + const result = float( mx_trilerp( mx_gradient_float( mx_hash_int( X, Y, Z ), fx, fy, fz ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y, Z ), fx.sub( 1.0 ), fy, fz ), mx_gradient_float( mx_hash_int( X, Y.add( int( 1 ) ), Z ), fx, fy.sub( 1.0 ), fz ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz ), mx_gradient_float( mx_hash_int( X, Y, Z.add( int( 1 ) ) ), fx, fy, fz.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y, Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy, fz.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X, Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx, fy.sub( 1.0 ), fz.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz.sub( 1.0 ) ), u, v, w ) ).toVar(); + + return mx_gradient_scale3d( result ); + +} ).setLayout( { + name: 'mx_perlin_noise_float_1', + type: 'float', + inputs: [ + { name: 'p', type: 'vec3' } + ] +} ); + +const mx_perlin_noise_float = /*@__PURE__*/ overloadingFn( [ mx_perlin_noise_float_0, mx_perlin_noise_float_1 ] ); + +const mx_perlin_noise_vec3_0 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec2( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(); + const fx = float( mx_floorfrac( p.x, X ) ).toVar(); + const fy = float( mx_floorfrac( p.y, Y ) ).toVar(); + const u = float( mx_fade( fx ) ).toVar(); + const v = float( mx_fade( fy ) ).toVar(); + const result = vec3( mx_bilerp( mx_gradient_vec3( mx_hash_vec3( X, Y ), fx, fy ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y ), fx.sub( 1.0 ), fy ), mx_gradient_vec3( mx_hash_vec3( X, Y.add( int( 1 ) ) ), fx, fy.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ) ), u, v ) ).toVar(); + + return mx_gradient_scale2d( result ); + +} ).setLayout( { + name: 'mx_perlin_noise_vec3_0', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec2' } + ] +} ); + +const mx_perlin_noise_vec3_1 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec3( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); + const fx = float( mx_floorfrac( p.x, X ) ).toVar(); + const fy = float( mx_floorfrac( p.y, Y ) ).toVar(); + const fz = float( mx_floorfrac( p.z, Z ) ).toVar(); + const u = float( mx_fade( fx ) ).toVar(); + const v = float( mx_fade( fy ) ).toVar(); + const w = float( mx_fade( fz ) ).toVar(); + const result = vec3( mx_trilerp( mx_gradient_vec3( mx_hash_vec3( X, Y, Z ), fx, fy, fz ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y, Z ), fx.sub( 1.0 ), fy, fz ), mx_gradient_vec3( mx_hash_vec3( X, Y.add( int( 1 ) ), Z ), fx, fy.sub( 1.0 ), fz ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz ), mx_gradient_vec3( mx_hash_vec3( X, Y, Z.add( int( 1 ) ) ), fx, fy, fz.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y, Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy, fz.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X, Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx, fy.sub( 1.0 ), fz.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz.sub( 1.0 ) ), u, v, w ) ).toVar(); + + return mx_gradient_scale3d( result ); + +} ).setLayout( { + name: 'mx_perlin_noise_vec3_1', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec3' } + ] +} ); + +const mx_perlin_noise_vec3 = /*@__PURE__*/ overloadingFn( [ mx_perlin_noise_vec3_0, mx_perlin_noise_vec3_1 ] ); + +const mx_cell_noise_float_0 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = float( p_immutable ).toVar(); + const ix = int( mx_floor( p ) ).toVar(); + + return mx_bits_to_01( mx_hash_int( ix ) ); + +} ).setLayout( { + name: 'mx_cell_noise_float_0', + type: 'float', + inputs: [ + { name: 'p', type: 'float' } + ] +} ); + +const mx_cell_noise_float_1 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec2( p_immutable ).toVar(); + const ix = int( mx_floor( p.x ) ).toVar(); + const iy = int( mx_floor( p.y ) ).toVar(); + + return mx_bits_to_01( mx_hash_int( ix, iy ) ); + +} ).setLayout( { + name: 'mx_cell_noise_float_1', + type: 'float', + inputs: [ + { name: 'p', type: 'vec2' } + ] +} ); + +const mx_cell_noise_float_2 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec3( p_immutable ).toVar(); + const ix = int( mx_floor( p.x ) ).toVar(); + const iy = int( mx_floor( p.y ) ).toVar(); + const iz = int( mx_floor( p.z ) ).toVar(); + + return mx_bits_to_01( mx_hash_int( ix, iy, iz ) ); + +} ).setLayout( { + name: 'mx_cell_noise_float_2', + type: 'float', + inputs: [ + { name: 'p', type: 'vec3' } + ] +} ); + +const mx_cell_noise_float_3 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec4( p_immutable ).toVar(); + const ix = int( mx_floor( p.x ) ).toVar(); + const iy = int( mx_floor( p.y ) ).toVar(); + const iz = int( mx_floor( p.z ) ).toVar(); + const iw = int( mx_floor( p.w ) ).toVar(); + + return mx_bits_to_01( mx_hash_int( ix, iy, iz, iw ) ); + +} ).setLayout( { + name: 'mx_cell_noise_float_3', + type: 'float', + inputs: [ + { name: 'p', type: 'vec4' } + ] +} ); + +const mx_cell_noise_float$1 = /*@__PURE__*/ overloadingFn( [ mx_cell_noise_float_0, mx_cell_noise_float_1, mx_cell_noise_float_2, mx_cell_noise_float_3 ] ); + +const mx_cell_noise_vec3_0 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = float( p_immutable ).toVar(); + const ix = int( mx_floor( p ) ).toVar(); + + return vec3( mx_bits_to_01( mx_hash_int( ix, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, int( 2 ) ) ) ); + +} ).setLayout( { + name: 'mx_cell_noise_vec3_0', + type: 'vec3', + inputs: [ + { name: 'p', type: 'float' } + ] +} ); + +const mx_cell_noise_vec3_1 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec2( p_immutable ).toVar(); + const ix = int( mx_floor( p.x ) ).toVar(); + const iy = int( mx_floor( p.y ) ).toVar(); + + return vec3( mx_bits_to_01( mx_hash_int( ix, iy, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, int( 2 ) ) ) ); + +} ).setLayout( { + name: 'mx_cell_noise_vec3_1', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec2' } + ] +} ); + +const mx_cell_noise_vec3_2 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec3( p_immutable ).toVar(); + const ix = int( mx_floor( p.x ) ).toVar(); + const iy = int( mx_floor( p.y ) ).toVar(); + const iz = int( mx_floor( p.z ) ).toVar(); + + return vec3( mx_bits_to_01( mx_hash_int( ix, iy, iz, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, int( 2 ) ) ) ); + +} ).setLayout( { + name: 'mx_cell_noise_vec3_2', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec3' } + ] +} ); + +const mx_cell_noise_vec3_3 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { + + const p = vec4( p_immutable ).toVar(); + const ix = int( mx_floor( p.x ) ).toVar(); + const iy = int( mx_floor( p.y ) ).toVar(); + const iz = int( mx_floor( p.z ) ).toVar(); + const iw = int( mx_floor( p.w ) ).toVar(); + + return vec3( mx_bits_to_01( mx_hash_int( ix, iy, iz, iw, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, iw, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, iw, int( 2 ) ) ) ); + +} ).setLayout( { + name: 'mx_cell_noise_vec3_3', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec4' } + ] +} ); + +const mx_cell_noise_vec3 = /*@__PURE__*/ overloadingFn( [ mx_cell_noise_vec3_0, mx_cell_noise_vec3_1, mx_cell_noise_vec3_2, mx_cell_noise_vec3_3 ] ); + +const mx_fractal_noise_float$1 = /*@__PURE__*/ Fn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => { + + const diminish = float( diminish_immutable ).toVar(); + const lacunarity = float( lacunarity_immutable ).toVar(); + const octaves = int( octaves_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const result = float( 0.0 ).toVar(); + const amplitude = float( 1.0 ).toVar(); + + Loop( octaves, () => { + + result.addAssign( amplitude.mul( mx_perlin_noise_float( p ) ) ); + amplitude.mulAssign( diminish ); + p.mulAssign( lacunarity ); + + } ); + + return result; + +} ).setLayout( { + name: 'mx_fractal_noise_float', + type: 'float', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'octaves', type: 'int' }, + { name: 'lacunarity', type: 'float' }, + { name: 'diminish', type: 'float' } + ] +} ); + +const mx_fractal_noise_vec3$1 = /*@__PURE__*/ Fn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => { + + const diminish = float( diminish_immutable ).toVar(); + const lacunarity = float( lacunarity_immutable ).toVar(); + const octaves = int( octaves_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const result = vec3( 0.0 ).toVar(); + const amplitude = float( 1.0 ).toVar(); + + Loop( octaves, () => { + + result.addAssign( amplitude.mul( mx_perlin_noise_vec3( p ) ) ); + amplitude.mulAssign( diminish ); + p.mulAssign( lacunarity ); + + } ); + + return result; + +} ).setLayout( { + name: 'mx_fractal_noise_vec3', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'octaves', type: 'int' }, + { name: 'lacunarity', type: 'float' }, + { name: 'diminish', type: 'float' } + ] +} ); + +const mx_fractal_noise_vec2$1 = /*@__PURE__*/ Fn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => { + + const diminish = float( diminish_immutable ).toVar(); + const lacunarity = float( lacunarity_immutable ).toVar(); + const octaves = int( octaves_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + + return vec2( mx_fractal_noise_float$1( p, octaves, lacunarity, diminish ), mx_fractal_noise_float$1( p.add( vec3( int( 19 ), int( 193 ), int( 17 ) ) ), octaves, lacunarity, diminish ) ); + +} ).setLayout( { + name: 'mx_fractal_noise_vec2', + type: 'vec2', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'octaves', type: 'int' }, + { name: 'lacunarity', type: 'float' }, + { name: 'diminish', type: 'float' } + ] +} ); + +const mx_fractal_noise_vec4$1 = /*@__PURE__*/ Fn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => { + + const diminish = float( diminish_immutable ).toVar(); + const lacunarity = float( lacunarity_immutable ).toVar(); + const octaves = int( octaves_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const c = vec3( mx_fractal_noise_vec3$1( p, octaves, lacunarity, diminish ) ).toVar(); + const f = float( mx_fractal_noise_float$1( p.add( vec3( int( 19 ), int( 193 ), int( 17 ) ) ), octaves, lacunarity, diminish ) ).toVar(); + + return vec4( c, f ); + +} ).setLayout( { + name: 'mx_fractal_noise_vec4', + type: 'vec4', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'octaves', type: 'int' }, + { name: 'lacunarity', type: 'float' }, + { name: 'diminish', type: 'float' } + ] +} ); + +const mx_worley_distance_0 = /*@__PURE__*/ Fn( ( [ p_immutable, x_immutable, y_immutable, xoff_immutable, yoff_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const yoff = int( yoff_immutable ).toVar(); + const xoff = int( xoff_immutable ).toVar(); + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const p = vec2( p_immutable ).toVar(); + const tmp = vec3( mx_cell_noise_vec3( vec2( x.add( xoff ), y.add( yoff ) ) ) ).toVar(); + const off = vec2( tmp.x, tmp.y ).toVar(); + off.subAssign( 0.5 ); + off.mulAssign( jitter ); + off.addAssign( 0.5 ); + const cellpos = vec2( vec2( float( x ), float( y ) ).add( off ) ).toVar(); + const diff = vec2( cellpos.sub( p ) ).toVar(); + + If( metric.equal( int( 2 ) ), () => { + + return abs( diff.x ).add( abs( diff.y ) ); + + } ); + + If( metric.equal( int( 3 ) ), () => { + + return max$1( abs( diff.x ), abs( diff.y ) ); + + } ); + + return dot( diff, diff ); + +} ).setLayout( { + name: 'mx_worley_distance_0', + type: 'float', + inputs: [ + { name: 'p', type: 'vec2' }, + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' }, + { name: 'xoff', type: 'int' }, + { name: 'yoff', type: 'int' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_distance_1 = /*@__PURE__*/ Fn( ( [ p_immutable, x_immutable, y_immutable, z_immutable, xoff_immutable, yoff_immutable, zoff_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const zoff = int( zoff_immutable ).toVar(); + const yoff = int( yoff_immutable ).toVar(); + const xoff = int( xoff_immutable ).toVar(); + const z = int( z_immutable ).toVar(); + const y = int( y_immutable ).toVar(); + const x = int( x_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const off = vec3( mx_cell_noise_vec3( vec3( x.add( xoff ), y.add( yoff ), z.add( zoff ) ) ) ).toVar(); + off.subAssign( 0.5 ); + off.mulAssign( jitter ); + off.addAssign( 0.5 ); + const cellpos = vec3( vec3( float( x ), float( y ), float( z ) ).add( off ) ).toVar(); + const diff = vec3( cellpos.sub( p ) ).toVar(); + + If( metric.equal( int( 2 ) ), () => { + + return abs( diff.x ).add( abs( diff.y ) ).add( abs( diff.z ) ); + + } ); + + If( metric.equal( int( 3 ) ), () => { + + return max$1( max$1( abs( diff.x ), abs( diff.y ) ), abs( diff.z ) ); + + } ); + + return dot( diff, diff ); + +} ).setLayout( { + name: 'mx_worley_distance_1', + type: 'float', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'x', type: 'int' }, + { name: 'y', type: 'int' }, + { name: 'z', type: 'int' }, + { name: 'xoff', type: 'int' }, + { name: 'yoff', type: 'int' }, + { name: 'zoff', type: 'int' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_distance = /*@__PURE__*/ overloadingFn( [ mx_worley_distance_0, mx_worley_distance_1 ] ); + +const mx_worley_noise_float_0 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const p = vec2( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(); + const localpos = vec2( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ) ).toVar(); + const sqdist = float( 1e6 ).toVar(); + + Loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { + + const dist = float( mx_worley_distance( localpos, x, y, X, Y, jitter, metric ) ).toVar(); + sqdist.assign( min$1( sqdist, dist ) ); + + } ); + + } ); + + If( metric.equal( int( 0 ) ), () => { + + sqdist.assign( sqrt( sqdist ) ); + + } ); + + return sqdist; + +} ).setLayout( { + name: 'mx_worley_noise_float_0', + type: 'float', + inputs: [ + { name: 'p', type: 'vec2' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_noise_vec2_0 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const p = vec2( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(); + const localpos = vec2( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ) ).toVar(); + const sqdist = vec2( 1e6, 1e6 ).toVar(); + + Loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { + + const dist = float( mx_worley_distance( localpos, x, y, X, Y, jitter, metric ) ).toVar(); + + If( dist.lessThan( sqdist.x ), () => { + + sqdist.y.assign( sqdist.x ); + sqdist.x.assign( dist ); + + } ).ElseIf( dist.lessThan( sqdist.y ), () => { + + sqdist.y.assign( dist ); + + } ); + + } ); + + } ); + + If( metric.equal( int( 0 ) ), () => { + + sqdist.assign( sqrt( sqdist ) ); + + } ); + + return sqdist; + +} ).setLayout( { + name: 'mx_worley_noise_vec2_0', + type: 'vec2', + inputs: [ + { name: 'p', type: 'vec2' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_noise_vec3_0 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const p = vec2( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(); + const localpos = vec2( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ) ).toVar(); + const sqdist = vec3( 1e6, 1e6, 1e6 ).toVar(); + + Loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { + + const dist = float( mx_worley_distance( localpos, x, y, X, Y, jitter, metric ) ).toVar(); + + If( dist.lessThan( sqdist.x ), () => { + + sqdist.z.assign( sqdist.y ); + sqdist.y.assign( sqdist.x ); + sqdist.x.assign( dist ); + + } ).ElseIf( dist.lessThan( sqdist.y ), () => { + + sqdist.z.assign( sqdist.y ); + sqdist.y.assign( dist ); + + } ).ElseIf( dist.lessThan( sqdist.z ), () => { + + sqdist.z.assign( dist ); + + } ); + + } ); + + } ); + + If( metric.equal( int( 0 ) ), () => { + + sqdist.assign( sqrt( sqdist ) ); + + } ); + + return sqdist; + +} ).setLayout( { + name: 'mx_worley_noise_vec3_0', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec2' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_noise_float_1 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); + const localpos = vec3( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ), mx_floorfrac( p.z, Z ) ).toVar(); + const sqdist = float( 1e6 ).toVar(); + + Loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'z', condition: '<=' }, ( { z } ) => { + + const dist = float( mx_worley_distance( localpos, x, y, z, X, Y, Z, jitter, metric ) ).toVar(); + sqdist.assign( min$1( sqdist, dist ) ); + + } ); + + } ); + + } ); + + If( metric.equal( int( 0 ) ), () => { + + sqdist.assign( sqrt( sqdist ) ); + + } ); + + return sqdist; + +} ).setLayout( { + name: 'mx_worley_noise_float_1', + type: 'float', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_noise_float$1 = /*@__PURE__*/ overloadingFn( [ mx_worley_noise_float_0, mx_worley_noise_float_1 ] ); + +const mx_worley_noise_vec2_1 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); + const localpos = vec3( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ), mx_floorfrac( p.z, Z ) ).toVar(); + const sqdist = vec2( 1e6, 1e6 ).toVar(); + + Loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'z', condition: '<=' }, ( { z } ) => { + + const dist = float( mx_worley_distance( localpos, x, y, z, X, Y, Z, jitter, metric ) ).toVar(); + + If( dist.lessThan( sqdist.x ), () => { + + sqdist.y.assign( sqdist.x ); + sqdist.x.assign( dist ); + + } ).ElseIf( dist.lessThan( sqdist.y ), () => { + + sqdist.y.assign( dist ); + + } ); + + } ); + + } ); + + } ); + + If( metric.equal( int( 0 ) ), () => { + + sqdist.assign( sqrt( sqdist ) ); + + } ); + + return sqdist; + +} ).setLayout( { + name: 'mx_worley_noise_vec2_1', + type: 'vec2', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_noise_vec2$1 = /*@__PURE__*/ overloadingFn( [ mx_worley_noise_vec2_0, mx_worley_noise_vec2_1 ] ); + +const mx_worley_noise_vec3_1 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { + + const metric = int( metric_immutable ).toVar(); + const jitter = float( jitter_immutable ).toVar(); + const p = vec3( p_immutable ).toVar(); + const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); + const localpos = vec3( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ), mx_floorfrac( p.z, Z ) ).toVar(); + const sqdist = vec3( 1e6, 1e6, 1e6 ).toVar(); + + Loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { + + Loop( { start: - 1, end: int( 1 ), name: 'z', condition: '<=' }, ( { z } ) => { + + const dist = float( mx_worley_distance( localpos, x, y, z, X, Y, Z, jitter, metric ) ).toVar(); + + If( dist.lessThan( sqdist.x ), () => { + + sqdist.z.assign( sqdist.y ); + sqdist.y.assign( sqdist.x ); + sqdist.x.assign( dist ); + + } ).ElseIf( dist.lessThan( sqdist.y ), () => { + + sqdist.z.assign( sqdist.y ); + sqdist.y.assign( dist ); + + } ).ElseIf( dist.lessThan( sqdist.z ), () => { + + sqdist.z.assign( dist ); + + } ); + + } ); + + } ); + + } ); + + If( metric.equal( int( 0 ) ), () => { + + sqdist.assign( sqrt( sqdist ) ); + + } ); + + return sqdist; + +} ).setLayout( { + name: 'mx_worley_noise_vec3_1', + type: 'vec3', + inputs: [ + { name: 'p', type: 'vec3' }, + { name: 'jitter', type: 'float' }, + { name: 'metric', type: 'int' } + ] +} ); + +const mx_worley_noise_vec3$1 = /*@__PURE__*/ overloadingFn( [ mx_worley_noise_vec3_0, mx_worley_noise_vec3_1 ] ); + +// Three.js Transpiler +// https://github.com/AcademySoftwareFoundation/MaterialX/blob/main/libraries/stdlib/genglsl/lib/mx_hsv.glsl + + +const mx_hsvtorgb = /*@__PURE__*/ Fn( ( [ hsv ] ) => { + + const s = hsv.y; + const v = hsv.z; + + const result = vec3().toVar(); + + If( s.lessThan( 0.0001 ), () => { + + result.assign( vec3( v, v, v ) ); + + } ).Else( () => { + + let h = hsv.x; + h = h.sub( floor( h ) ).mul( 6.0 ).toVar(); // TODO: check what .toVar() is needed in node system cache + const hi = int( trunc( h ) ); + const f = h.sub( float( hi ) ); + const p = v.mul( s.oneMinus() ); + const q = v.mul( s.mul( f ).oneMinus() ); + const t = v.mul( s.mul( f.oneMinus() ).oneMinus() ); + + If( hi.equal( int( 0 ) ), () => { + + result.assign( vec3( v, t, p ) ); + + } ).ElseIf( hi.equal( int( 1 ) ), () => { + + result.assign( vec3( q, v, p ) ); + + } ).ElseIf( hi.equal( int( 2 ) ), () => { + + result.assign( vec3( p, v, t ) ); + + } ).ElseIf( hi.equal( int( 3 ) ), () => { + + result.assign( vec3( p, q, v ) ); + + } ).ElseIf( hi.equal( int( 4 ) ), () => { + + result.assign( vec3( t, p, v ) ); + + } ).Else( () => { + + result.assign( vec3( v, p, q ) ); + + } ); + + } ); + + return result; + +} ).setLayout( { + name: 'mx_hsvtorgb', + type: 'vec3', + inputs: [ + { name: 'hsv', type: 'vec3' } + ] +} ); + +const mx_rgbtohsv = /*@__PURE__*/ Fn( ( [ c_immutable ] ) => { + + const c = vec3( c_immutable ).toVar(); + const r = float( c.x ).toVar(); + const g = float( c.y ).toVar(); + const b = float( c.z ).toVar(); + const mincomp = float( min$1( r, min$1( g, b ) ) ).toVar(); + const maxcomp = float( max$1( r, max$1( g, b ) ) ).toVar(); + const delta = float( maxcomp.sub( mincomp ) ).toVar(); + const h = float().toVar(), s = float().toVar(), v = float().toVar(); + v.assign( maxcomp ); + + If( maxcomp.greaterThan( 0.0 ), () => { + + s.assign( delta.div( maxcomp ) ); + + } ).Else( () => { + + s.assign( 0.0 ); + + } ); + + If( s.lessThanEqual( 0.0 ), () => { + + h.assign( 0.0 ); + + } ).Else( () => { + + If( r.greaterThanEqual( maxcomp ), () => { + + h.assign( g.sub( b ).div( delta ) ); + + } ).ElseIf( g.greaterThanEqual( maxcomp ), () => { + + h.assign( add( 2.0, b.sub( r ).div( delta ) ) ); + + } ).Else( () => { + + h.assign( add( 4.0, r.sub( g ).div( delta ) ) ); + + } ); + + h.mulAssign( 1.0 / 6.0 ); + + If( h.lessThan( 0.0 ), () => { + + h.addAssign( 1.0 ); + + } ); + + } ); + + return vec3( h, s, v ); + +} ).setLayout( { + name: 'mx_rgbtohsv', + type: 'vec3', + inputs: [ + { name: 'c', type: 'vec3' } + ] +} ); + +// Three.js Transpiler +// https://github.com/AcademySoftwareFoundation/MaterialX/blob/main/libraries/stdlib/genglsl/lib/mx_transform_color.glsl + + +const mx_srgb_texture_to_lin_rec709 = /*@__PURE__*/ Fn( ( [ color_immutable ] ) => { + + const color = vec3( color_immutable ).toVar(); + const isAbove = bvec3( greaterThan( color, vec3( 0.04045 ) ) ).toVar(); + const linSeg = vec3( color.div( 12.92 ) ).toVar(); + const powSeg = vec3( pow( max$1( color.add( vec3( 0.055 ) ), vec3( 0.0 ) ).div( 1.055 ), vec3( 2.4 ) ) ).toVar(); + + return mix( linSeg, powSeg, isAbove ); + +} ).setLayout( { + name: 'mx_srgb_texture_to_lin_rec709', + type: 'vec3', + inputs: [ + { name: 'color', type: 'vec3' } + ] +} ); + +const mx_aastep = ( threshold, value ) => { + + threshold = float( threshold ); + value = float( value ); + + const afwidth = vec2( value.dFdx(), value.dFdy() ).length().mul( 0.70710678118654757 ); + + return smoothstep( threshold.sub( afwidth ), threshold.add( afwidth ), value ); + +}; + +const _ramp = ( a, b, uv, p ) => mix( a, b, uv[ p ].clamp() ); +const mx_ramplr = ( valuel, valuer, texcoord = uv() ) => _ramp( valuel, valuer, texcoord, 'x' ); +const mx_ramptb = ( valuet, valueb, texcoord = uv() ) => _ramp( valuet, valueb, texcoord, 'y' ); + +const _split = ( a, b, center, uv, p ) => mix( a, b, mx_aastep( center, uv[ p ] ) ); +const mx_splitlr = ( valuel, valuer, center, texcoord = uv() ) => _split( valuel, valuer, center, texcoord, 'x' ); +const mx_splittb = ( valuet, valueb, center, texcoord = uv() ) => _split( valuet, valueb, center, texcoord, 'y' ); + +const mx_transform_uv = ( uv_scale = 1, uv_offset = 0, uv_geo = uv() ) => uv_geo.mul( uv_scale ).add( uv_offset ); + +const mx_safepower = ( in1, in2 = 1 ) => { + + in1 = float( in1 ); + + return in1.abs().pow( in2 ).mul( in1.sign() ); + +}; + +const mx_contrast = ( input, amount = 1, pivot = .5 ) => float( input ).sub( pivot ).mul( amount ).add( pivot ); + +const mx_noise_float = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => mx_perlin_noise_float( texcoord.convert( 'vec2|vec3' ) ).mul( amplitude ).add( pivot ); +//export const mx_noise_vec2 = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => mx_perlin_noise_vec3( texcoord.convert( 'vec2|vec3' ) ).mul( amplitude ).add( pivot ); +const mx_noise_vec3 = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => mx_perlin_noise_vec3( texcoord.convert( 'vec2|vec3' ) ).mul( amplitude ).add( pivot ); +const mx_noise_vec4 = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => { + + texcoord = texcoord.convert( 'vec2|vec3' ); // overloading type + + const noise_vec4 = vec4( mx_perlin_noise_vec3( texcoord ), mx_perlin_noise_float( texcoord.add( vec2( 19, 73 ) ) ) ); + + return noise_vec4.mul( amplitude ).add( pivot ); + +}; + +const mx_worley_noise_float = ( texcoord = uv(), jitter = 1 ) => mx_worley_noise_float$1( texcoord.convert( 'vec2|vec3' ), jitter, int( 1 ) ); +const mx_worley_noise_vec2 = ( texcoord = uv(), jitter = 1 ) => mx_worley_noise_vec2$1( texcoord.convert( 'vec2|vec3' ), jitter, int( 1 ) ); +const mx_worley_noise_vec3 = ( texcoord = uv(), jitter = 1 ) => mx_worley_noise_vec3$1( texcoord.convert( 'vec2|vec3' ), jitter, int( 1 ) ); + +const mx_cell_noise_float = ( texcoord = uv() ) => mx_cell_noise_float$1( texcoord.convert( 'vec2|vec3' ) ); + +const mx_fractal_noise_float = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_float$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude ); +const mx_fractal_noise_vec2 = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_vec2$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude ); +const mx_fractal_noise_vec3 = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_vec3$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude ); +const mx_fractal_noise_vec4 = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_vec4$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude ); + +/** + * This computes a parallax corrected normal which is used for box-projected cube mapping (BPCEM). + * + * Reference: {@link https://devlog-martinsh.blogspot.com/2011/09/box-projected-cube-environment-mapping.html} + * + * ```js + * const uvNode = getParallaxCorrectNormal( reflectVector, vec3( 200, 100, 100 ), vec3( 0, - 50, 0 ) ); + * material.envNode = pmremTexture( renderTarget.texture, uvNode ); + * ``` + * + * @tsl + * @function + * @param {Node} normal - The normal to correct. + * @param {Node} cubeSize - The cube size should reflect the size of the environment (BPCEM is usually applied in closed environments like rooms). + * @param {Node} cubePos - The cube position. + * @return {Node} The parallax corrected normal. + */ +const getParallaxCorrectNormal = /*@__PURE__*/ Fn( ( [ normal, cubeSize, cubePos ] ) => { + + const nDir = normalize( normal ).toVar(); + const rbmax = sub( float( 0.5 ).mul( cubeSize.sub( cubePos ) ), positionWorld ).div( nDir ).toVar(); + const rbmin = sub( float( - 0.5 ).mul( cubeSize.sub( cubePos ) ), positionWorld ).div( nDir ).toVar(); + const rbminmax = vec3().toVar(); + rbminmax.x = nDir.x.greaterThan( float( 0 ) ).select( rbmax.x, rbmin.x ); + rbminmax.y = nDir.y.greaterThan( float( 0 ) ).select( rbmax.y, rbmin.y ); + rbminmax.z = nDir.z.greaterThan( float( 0 ) ).select( rbmax.z, rbmin.z ); + + const correction = min$1( min$1( rbminmax.x, rbminmax.y ), rbminmax.z ).toVar(); + const boxIntersection = positionWorld.add( nDir.mul( correction ) ).toVar(); + return boxIntersection.sub( cubePos ); + +} ); + +const getShIrradianceAt = /*@__PURE__*/ Fn( ( [ normal, shCoefficients ] ) => { + + // normal is assumed to have unit length + + const x = normal.x, y = normal.y, z = normal.z; + + // band 0 + let result = shCoefficients.element( 0 ).mul( 0.886227 ); + + // band 1 + result = result.add( shCoefficients.element( 1 ).mul( 2.0 * 0.511664 ).mul( y ) ); + result = result.add( shCoefficients.element( 2 ).mul( 2.0 * 0.511664 ).mul( z ) ); + result = result.add( shCoefficients.element( 3 ).mul( 2.0 * 0.511664 ).mul( x ) ); + + // band 2 + result = result.add( shCoefficients.element( 4 ).mul( 2.0 * 0.429043 ).mul( x ).mul( y ) ); + result = result.add( shCoefficients.element( 5 ).mul( 2.0 * 0.429043 ).mul( y ).mul( z ) ); + result = result.add( shCoefficients.element( 6 ).mul( z.mul( z ).mul( 0.743125 ).sub( 0.247708 ) ) ); + result = result.add( shCoefficients.element( 7 ).mul( 2.0 * 0.429043 ).mul( x ).mul( z ) ); + result = result.add( shCoefficients.element( 8 ).mul( 0.429043 ).mul( mul( x, x ).sub( mul( y, y ) ) ) ); + + return result; + +} ); + +// constants + +var TSL = /*#__PURE__*/Object.freeze( { + __proto__: null, + BRDF_GGX: BRDF_GGX, + BRDF_Lambert: BRDF_Lambert, + BasicPointShadowFilter: BasicPointShadowFilter, + BasicShadowFilter: BasicShadowFilter, + Break: Break, + Const: Const, + Continue: Continue, + DFGApprox: DFGApprox, + D_GGX: D_GGX, + Discard: Discard, + EPSILON: EPSILON, + F_Schlick: F_Schlick, + Fn: Fn, + INFINITY: INFINITY, + If: If, + Loop: Loop, + NodeAccess: NodeAccess, + NodeShaderStage: NodeShaderStage, + NodeType: NodeType, + NodeUpdateType: NodeUpdateType, + PCFShadowFilter: PCFShadowFilter, + PCFSoftShadowFilter: PCFSoftShadowFilter, + PI: PI, + PI2: PI2, + PointShadowFilter: PointShadowFilter, + Return: Return, + Schlick_to_F0: Schlick_to_F0, + ScriptableNodeResources: ScriptableNodeResources, + ShaderNode: ShaderNode, + Stack: Stack, + Switch: Switch, + TBNViewMatrix: TBNViewMatrix, + VSMShadowFilter: VSMShadowFilter, + V_GGX_SmithCorrelated: V_GGX_SmithCorrelated, + Var: Var, + abs: abs, + acesFilmicToneMapping: acesFilmicToneMapping, + acos: acos, + add: add, + addMethodChaining: addMethodChaining, + addNodeElement: addNodeElement, + agxToneMapping: agxToneMapping, + all: all, + alphaT: alphaT, + and: and, + anisotropy: anisotropy, + anisotropyB: anisotropyB, + anisotropyT: anisotropyT, + any: any, + append: append, + array: array, + arrayBuffer: arrayBuffer, + asin: asin, + assign: assign, + atan: atan, + atan2: atan2, + atomicAdd: atomicAdd, + atomicAnd: atomicAnd, + atomicFunc: atomicFunc, + atomicLoad: atomicLoad, + atomicMax: atomicMax, + atomicMin: atomicMin, + atomicOr: atomicOr, + atomicStore: atomicStore, + atomicSub: atomicSub, + atomicXor: atomicXor, + attenuationColor: attenuationColor, + attenuationDistance: attenuationDistance, + attribute: attribute, + attributeArray: attributeArray, + backgroundBlurriness: backgroundBlurriness, + backgroundIntensity: backgroundIntensity, + backgroundRotation: backgroundRotation, + batch: batch, + billboarding: billboarding, + bitAnd: bitAnd, + bitNot: bitNot, + bitOr: bitOr, + bitXor: bitXor, + bitangentGeometry: bitangentGeometry, + bitangentLocal: bitangentLocal, + bitangentView: bitangentView, + bitangentWorld: bitangentWorld, + bitcast: bitcast, + blendBurn: blendBurn, + blendColor: blendColor, + blendDodge: blendDodge, + blendOverlay: blendOverlay, + blendScreen: blendScreen, + blur: blur, + bool: bool, + buffer: buffer, + bufferAttribute: bufferAttribute, + bumpMap: bumpMap, + burn: burn, + bvec2: bvec2, + bvec3: bvec3, + bvec4: bvec4, + bypass: bypass, + cache: cache, + call: call, + cameraFar: cameraFar, + cameraIndex: cameraIndex, + cameraNear: cameraNear, + cameraNormalMatrix: cameraNormalMatrix, + cameraPosition: cameraPosition, + cameraProjectionMatrix: cameraProjectionMatrix, + cameraProjectionMatrixInverse: cameraProjectionMatrixInverse, + cameraViewMatrix: cameraViewMatrix, + cameraWorldMatrix: cameraWorldMatrix, + cbrt: cbrt, + cdl: cdl, + ceil: ceil, + checker: checker, + cineonToneMapping: cineonToneMapping, + clamp: clamp, + clearcoat: clearcoat, + clearcoatRoughness: clearcoatRoughness, + code: code, + color: color, + colorSpaceToWorking: colorSpaceToWorking, + colorToDirection: colorToDirection, + compute: compute, + computeSkinning: computeSkinning, + cond: cond, + context: context, + convert: convert, + convertColorSpace: convertColorSpace, + convertToTexture: convertToTexture, + cos: cos, + cross: cross, + cubeTexture: cubeTexture, + cubeTextureBase: cubeTextureBase, + cubeToUV: cubeToUV, + dFdx: dFdx, + dFdy: dFdy, + dashSize: dashSize, + debug: debug, + decrement: decrement, + decrementBefore: decrementBefore, + defaultBuildStages: defaultBuildStages, + defaultShaderStages: defaultShaderStages, + defined: defined, + degrees: degrees, + deltaTime: deltaTime, + densityFog: densityFog, + densityFogFactor: densityFogFactor, + depth: depth, + depthPass: depthPass, + difference: difference, + diffuseColor: diffuseColor, + directPointLight: directPointLight, + directionToColor: directionToColor, + dispersion: dispersion, + distance: distance, + div: div, + dodge: dodge, + dot: dot, + drawIndex: drawIndex, + dynamicBufferAttribute: dynamicBufferAttribute, + element: element, + emissive: emissive, + equal: equal, + equals: equals, + equirectUV: equirectUV, + exp: exp, + exp2: exp2, + expression: expression, + faceDirection: faceDirection, + faceForward: faceForward, + faceforward: faceforward, + float: float, + floor: floor, + fog: fog, + fract: fract, + frameGroup: frameGroup, + frameId: frameId, + frontFacing: frontFacing, + fwidth: fwidth, + gain: gain, + gapSize: gapSize, + getConstNodeType: getConstNodeType, + getCurrentStack: getCurrentStack, + getDirection: getDirection, + getDistanceAttenuation: getDistanceAttenuation, + getGeometryRoughness: getGeometryRoughness, + getNormalFromDepth: getNormalFromDepth, + getParallaxCorrectNormal: getParallaxCorrectNormal, + getRoughness: getRoughness, + getScreenPosition: getScreenPosition, + getShIrradianceAt: getShIrradianceAt, + getShadowMaterial: getShadowMaterial, + getShadowRenderObjectFunction: getShadowRenderObjectFunction, + getTextureIndex: getTextureIndex, + getViewPosition: getViewPosition, + globalId: globalId, + glsl: glsl, + glslFn: glslFn, + grayscale: grayscale, + greaterThan: greaterThan, + greaterThanEqual: greaterThanEqual, + hash: hash, + highpModelNormalViewMatrix: highpModelNormalViewMatrix, + highpModelViewMatrix: highpModelViewMatrix, + hue: hue, + increment: increment, + incrementBefore: incrementBefore, + instance: instance, + instanceIndex: instanceIndex, + instancedArray: instancedArray, + instancedBufferAttribute: instancedBufferAttribute, + instancedDynamicBufferAttribute: instancedDynamicBufferAttribute, + instancedMesh: instancedMesh, + int: int, + inverseSqrt: inverseSqrt, + inversesqrt: inversesqrt, + invocationLocalIndex: invocationLocalIndex, + invocationSubgroupIndex: invocationSubgroupIndex, + ior: ior, + iridescence: iridescence, + iridescenceIOR: iridescenceIOR, + iridescenceThickness: iridescenceThickness, + ivec2: ivec2, + ivec3: ivec3, + ivec4: ivec4, + js: js, + label: label, + length: length, + lengthSq: lengthSq, + lessThan: lessThan, + lessThanEqual: lessThanEqual, + lightPosition: lightPosition, + lightProjectionUV: lightProjectionUV, + lightShadowMatrix: lightShadowMatrix, + lightTargetDirection: lightTargetDirection, + lightTargetPosition: lightTargetPosition, + lightViewPosition: lightViewPosition, + lightingContext: lightingContext, + lights: lights, + linearDepth: linearDepth, + linearToneMapping: linearToneMapping, + localId: localId, + log: log, + log2: log2, + logarithmicDepthToViewZ: logarithmicDepthToViewZ, + loop: loop, + luminance: luminance, + mat2: mat2, + mat3: mat3, + mat4: mat4, + matcapUV: matcapUV, + materialAO: materialAO, + materialAlphaTest: materialAlphaTest, + materialAnisotropy: materialAnisotropy, + materialAnisotropyVector: materialAnisotropyVector, + materialAttenuationColor: materialAttenuationColor, + materialAttenuationDistance: materialAttenuationDistance, + materialClearcoat: materialClearcoat, + materialClearcoatNormal: materialClearcoatNormal, + materialClearcoatRoughness: materialClearcoatRoughness, + materialColor: materialColor, + materialDispersion: materialDispersion, + materialEmissive: materialEmissive, + materialEnvIntensity: materialEnvIntensity, + materialEnvRotation: materialEnvRotation, + materialIOR: materialIOR, + materialIridescence: materialIridescence, + materialIridescenceIOR: materialIridescenceIOR, + materialIridescenceThickness: materialIridescenceThickness, + materialLightMap: materialLightMap, + materialLineDashOffset: materialLineDashOffset, + materialLineDashSize: materialLineDashSize, + materialLineGapSize: materialLineGapSize, + materialLineScale: materialLineScale, + materialLineWidth: materialLineWidth, + materialMetalness: materialMetalness, + materialNormal: materialNormal, + materialOpacity: materialOpacity, + materialPointSize: materialPointSize, + materialReference: materialReference, + materialReflectivity: materialReflectivity, + materialRefractionRatio: materialRefractionRatio, + materialRotation: materialRotation, + materialRoughness: materialRoughness, + materialSheen: materialSheen, + materialSheenRoughness: materialSheenRoughness, + materialShininess: materialShininess, + materialSpecular: materialSpecular, + materialSpecularColor: materialSpecularColor, + materialSpecularIntensity: materialSpecularIntensity, + materialSpecularStrength: materialSpecularStrength, + materialThickness: materialThickness, + materialTransmission: materialTransmission, + max: max$1, + maxMipLevel: maxMipLevel, + mediumpModelViewMatrix: mediumpModelViewMatrix, + metalness: metalness, + min: min$1, + mix: mix, + mixElement: mixElement, + mod: mod, + modInt: modInt, + modelDirection: modelDirection, + modelNormalMatrix: modelNormalMatrix, + modelPosition: modelPosition, + modelRadius: modelRadius, + modelScale: modelScale, + modelViewMatrix: modelViewMatrix, + modelViewPosition: modelViewPosition, + modelViewProjection: modelViewProjection, + modelWorldMatrix: modelWorldMatrix, + modelWorldMatrixInverse: modelWorldMatrixInverse, + morphReference: morphReference, + mrt: mrt, + mul: mul, + mx_aastep: mx_aastep, + mx_cell_noise_float: mx_cell_noise_float, + mx_contrast: mx_contrast, + mx_fractal_noise_float: mx_fractal_noise_float, + mx_fractal_noise_vec2: mx_fractal_noise_vec2, + mx_fractal_noise_vec3: mx_fractal_noise_vec3, + mx_fractal_noise_vec4: mx_fractal_noise_vec4, + mx_hsvtorgb: mx_hsvtorgb, + mx_noise_float: mx_noise_float, + mx_noise_vec3: mx_noise_vec3, + mx_noise_vec4: mx_noise_vec4, + mx_ramplr: mx_ramplr, + mx_ramptb: mx_ramptb, + mx_rgbtohsv: mx_rgbtohsv, + mx_safepower: mx_safepower, + mx_splitlr: mx_splitlr, + mx_splittb: mx_splittb, + mx_srgb_texture_to_lin_rec709: mx_srgb_texture_to_lin_rec709, + mx_transform_uv: mx_transform_uv, + mx_worley_noise_float: mx_worley_noise_float, + mx_worley_noise_vec2: mx_worley_noise_vec2, + mx_worley_noise_vec3: mx_worley_noise_vec3, + namespace: namespace, + negate: negate, + neutralToneMapping: neutralToneMapping, + nodeArray: nodeArray, + nodeImmutable: nodeImmutable, + nodeObject: nodeObject, + nodeObjects: nodeObjects, + nodeProxy: nodeProxy, + normalFlat: normalFlat, + normalGeometry: normalGeometry, + normalLocal: normalLocal, + normalMap: normalMap, + normalView: normalView, + normalWorld: normalWorld, + normalize: normalize, + not: not, + notEqual: notEqual, + numWorkgroups: numWorkgroups, + objectDirection: objectDirection, + objectGroup: objectGroup, + objectPosition: objectPosition, + objectRadius: objectRadius, + objectScale: objectScale, + objectViewPosition: objectViewPosition, + objectWorldMatrix: objectWorldMatrix, + oneMinus: oneMinus, + or: or, + orthographicDepthToViewZ: orthographicDepthToViewZ, + oscSawtooth: oscSawtooth, + oscSine: oscSine, + oscSquare: oscSquare, + oscTriangle: oscTriangle, + output: output, + outputStruct: outputStruct, + overlay: overlay, + overloadingFn: overloadingFn, + parabola: parabola, + parallaxDirection: parallaxDirection, + parallaxUV: parallaxUV, + parameter: parameter, + pass: pass, + passTexture: passTexture, + pcurve: pcurve, + perspectiveDepthToViewZ: perspectiveDepthToViewZ, + pmremTexture: pmremTexture, + pointShadow: pointShadow, + pointUV: pointUV, + pointWidth: pointWidth, + positionGeometry: positionGeometry, + positionLocal: positionLocal, + positionPrevious: positionPrevious, + positionView: positionView, + positionViewDirection: positionViewDirection, + positionWorld: positionWorld, + positionWorldDirection: positionWorldDirection, + posterize: posterize, + pow: pow, + pow2: pow2, + pow3: pow3, + pow4: pow4, + premult: premult, + property: property, + radians: radians, + rand: rand, + range: range, + rangeFog: rangeFog, + rangeFogFactor: rangeFogFactor, + reciprocal: reciprocal, + reference: reference, + referenceBuffer: referenceBuffer, + reflect: reflect, + reflectVector: reflectVector, + reflectView: reflectView, + reflector: reflector, + refract: refract, + refractVector: refractVector, + refractView: refractView, + reinhardToneMapping: reinhardToneMapping, + remainder: remainder, + remap: remap, + remapClamp: remapClamp, + renderGroup: renderGroup, + renderOutput: renderOutput, + rendererReference: rendererReference, + rotate: rotate, + rotateUV: rotateUV, + roughness: roughness, + round: round, + rtt: rtt, + sRGBTransferEOTF: sRGBTransferEOTF, + sRGBTransferOETF: sRGBTransferOETF, + sampler: sampler, + samplerComparison: samplerComparison, + saturate: saturate, + saturation: saturation, + screen: screen, + screenCoordinate: screenCoordinate, + screenSize: screenSize, + screenUV: screenUV, + scriptable: scriptable, + scriptableValue: scriptableValue, + select: select, + setCurrentStack: setCurrentStack, + shaderStages: shaderStages, + shadow: shadow, + shadowPositionWorld: shadowPositionWorld, + shapeCircle: shapeCircle, + sharedUniformGroup: sharedUniformGroup, + sheen: sheen, + sheenRoughness: sheenRoughness, + shiftLeft: shiftLeft, + shiftRight: shiftRight, + shininess: shininess, + sign: sign, + sin: sin, + sinc: sinc, + skinning: skinning, + smoothstep: smoothstep, + smoothstepElement: smoothstepElement, + specularColor: specularColor, + specularF90: specularF90, + spherizeUV: spherizeUV, + split: split, + spritesheetUV: spritesheetUV, + sqrt: sqrt, + stack: stack, + step: step, + storage: storage, + storageBarrier: storageBarrier, + storageObject: storageObject, + storageTexture: storageTexture, + string: string, + struct: struct, + sub: sub, + subgroupIndex: subgroupIndex, + subgroupSize: subgroupSize, + tan: tan, + tangentGeometry: tangentGeometry, + tangentLocal: tangentLocal, + tangentView: tangentView, + tangentWorld: tangentWorld, + temp: temp, + texture: texture, + texture3D: texture3D, + textureBarrier: textureBarrier, + textureBicubic: textureBicubic, + textureCubeUV: textureCubeUV, + textureLoad: textureLoad, + textureSize: textureSize, + textureStore: textureStore, + thickness: thickness, + time: time, + timerDelta: timerDelta, + timerGlobal: timerGlobal, + timerLocal: timerLocal, + toneMapping: toneMapping, + toneMappingExposure: toneMappingExposure, + toonOutlinePass: toonOutlinePass, + transformDirection: transformDirection, + transformNormal: transformNormal, + transformNormalToView: transformNormalToView, + transformedBentNormalView: transformedBentNormalView, + transformedBitangentView: transformedBitangentView, + transformedBitangentWorld: transformedBitangentWorld, + transformedClearcoatNormalView: transformedClearcoatNormalView, + transformedNormalView: transformedNormalView, + transformedNormalWorld: transformedNormalWorld, + transformedTangentView: transformedTangentView, + transformedTangentWorld: transformedTangentWorld, + transmission: transmission, + transpose: transpose, + triNoise3D: triNoise3D, + triplanarTexture: triplanarTexture, + triplanarTextures: triplanarTextures, + trunc: trunc, + tslFn: tslFn, + uint: uint, + uniform: uniform, + uniformArray: uniformArray, + uniformCubeTexture: uniformCubeTexture, + uniformGroup: uniformGroup, + uniformTexture: uniformTexture, + uniforms: uniforms, + unpremult: unpremult, + userData: userData, + uv: uv, + uvec2: uvec2, + uvec3: uvec3, + uvec4: uvec4, + varying: varying, + varyingProperty: varyingProperty, + vec2: vec2, + vec3: vec3, + vec4: vec4, + vectorComponents: vectorComponents, + velocity: velocity, + vertexColor: vertexColor, + vertexIndex: vertexIndex, + vertexStage: vertexStage, + vibrance: vibrance, + viewZToLogarithmicDepth: viewZToLogarithmicDepth, + viewZToOrthographicDepth: viewZToOrthographicDepth, + viewZToPerspectiveDepth: viewZToPerspectiveDepth, + viewport: viewport, + viewportBottomLeft: viewportBottomLeft, + viewportCoordinate: viewportCoordinate, + viewportDepthTexture: viewportDepthTexture, + viewportLinearDepth: viewportLinearDepth, + viewportMipTexture: viewportMipTexture, + viewportResolution: viewportResolution, + viewportSafeUV: viewportSafeUV, + viewportSharedTexture: viewportSharedTexture, + viewportSize: viewportSize, + viewportTexture: viewportTexture, + viewportTopLeft: viewportTopLeft, + viewportUV: viewportUV, + wgsl: wgsl, + wgslFn: wgslFn, + workgroupArray: workgroupArray, + workgroupBarrier: workgroupBarrier, + workgroupId: workgroupId, + workingToColorSpace: workingToColorSpace, + xor: xor +} ); + +const _clearColor = /*@__PURE__*/ new Color4(); + +/** + * This renderer module manages the background. + * + * @private + * @augments DataMap + */ +class Background extends DataMap { + + /** + * Constructs a new background management component. + * + * @param {Renderer} renderer - The renderer. + * @param {Nodes} nodes - Renderer component for managing nodes related logic. + */ + constructor( renderer, nodes ) { + + super(); + + /** + * The renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * Renderer component for managing nodes related logic. + * + * @type {Nodes} + */ + this.nodes = nodes; + + } + + /** + * Updates the background for the given scene. Depending on how `Scene.background` + * or `Scene.backgroundNode` are configured, this method might configure a simple clear + * or add a mesh to the render list for rendering the background as a textured plane + * or skybox. + * + * @param {Scene} scene - The scene. + * @param {RenderList} renderList - The current render list. + * @param {RenderContext} renderContext - The current render context. + */ + update( scene, renderList, renderContext ) { + + const renderer = this.renderer; + const background = this.nodes.getBackgroundNode( scene ) || scene.background; + + let forceClear = false; + + if ( background === null ) { + + // no background settings, use clear color configuration from the renderer + + renderer._clearColor.getRGB( _clearColor ); + _clearColor.a = renderer._clearColor.a; + + } else if ( background.isColor === true ) { + + // background is an opaque color + + background.getRGB( _clearColor ); + _clearColor.a = 1; + + forceClear = true; + + } else if ( background.isNode === true ) { + + const sceneData = this.get( scene ); + const backgroundNode = background; + + _clearColor.copy( renderer._clearColor ); + + let backgroundMesh = sceneData.backgroundMesh; + + if ( backgroundMesh === undefined ) { + + const backgroundMeshNode = context( vec4( backgroundNode ).mul( backgroundIntensity ), { + // @TODO: Add Texture2D support using node context + getUV: () => backgroundRotation.mul( normalWorld ), + getTextureLevel: () => backgroundBlurriness + } ); + + let viewProj = modelViewProjection; + viewProj = viewProj.setZ( viewProj.w ); + + const nodeMaterial = new NodeMaterial(); + nodeMaterial.name = 'Background.material'; + nodeMaterial.side = BackSide; + nodeMaterial.depthTest = false; + nodeMaterial.depthWrite = false; + nodeMaterial.allowOverride = false; + nodeMaterial.fog = false; + nodeMaterial.lights = false; + nodeMaterial.vertexNode = viewProj; + nodeMaterial.colorNode = backgroundMeshNode; + + sceneData.backgroundMeshNode = backgroundMeshNode; + sceneData.backgroundMesh = backgroundMesh = new Mesh( new SphereGeometry( 1, 32, 32 ), nodeMaterial ); + backgroundMesh.frustumCulled = false; + backgroundMesh.name = 'Background.mesh'; + + backgroundMesh.onBeforeRender = function ( renderer, scene, camera ) { + + this.matrixWorld.copyPosition( camera.matrixWorld ); + + }; + + function onBackgroundDispose() { + + background.removeEventListener( 'dispose', onBackgroundDispose ); + + backgroundMesh.material.dispose(); + backgroundMesh.geometry.dispose(); + + } + + background.addEventListener( 'dispose', onBackgroundDispose ); + + } + + const backgroundCacheKey = backgroundNode.getCacheKey(); + + if ( sceneData.backgroundCacheKey !== backgroundCacheKey ) { + + sceneData.backgroundMeshNode.node = vec4( backgroundNode ).mul( backgroundIntensity ); + sceneData.backgroundMeshNode.needsUpdate = true; + + backgroundMesh.material.needsUpdate = true; + + sceneData.backgroundCacheKey = backgroundCacheKey; + + } + + renderList.unshift( backgroundMesh, backgroundMesh.geometry, backgroundMesh.material, 0, 0, null, null ); + + } else { + + console.error( 'THREE.Renderer: Unsupported background configuration.', background ); + + } + + // + + const environmentBlendMode = renderer.xr.getEnvironmentBlendMode(); + + if ( environmentBlendMode === 'additive' ) { + + _clearColor.set( 0, 0, 0, 1 ); + + } else if ( environmentBlendMode === 'alpha-blend' ) { + + _clearColor.set( 0, 0, 0, 0 ); + + } + + // + + if ( renderer.autoClear === true || forceClear === true ) { + + const clearColorValue = renderContext.clearColorValue; + + clearColorValue.r = _clearColor.r; + clearColorValue.g = _clearColor.g; + clearColorValue.b = _clearColor.b; + clearColorValue.a = _clearColor.a; + + // premultiply alpha + + if ( renderer.backend.isWebGLBackend === true || renderer.alpha === true ) { + + clearColorValue.r *= clearColorValue.a; + clearColorValue.g *= clearColorValue.a; + clearColorValue.b *= clearColorValue.a; + + } + + // + + renderContext.depthClearValue = renderer._clearDepth; + renderContext.stencilClearValue = renderer._clearStencil; + + renderContext.clearColor = renderer.autoClearColor === true; + renderContext.clearDepth = renderer.autoClearDepth === true; + renderContext.clearStencil = renderer.autoClearStencil === true; + + } else { + + renderContext.clearColor = false; + renderContext.clearDepth = false; + renderContext.clearStencil = false; + + } + + } + +} + +let _id$6 = 0; + +/** + * A bind group represents a collection of bindings and thus a collection + * or resources. Bind groups are assigned to pipelines to provide them + * with the required resources (like uniform buffers or textures). + * + * @private + */ +class BindGroup { + + /** + * Constructs a new bind group. + * + * @param {string} name - The bind group's name. + * @param {Array} bindings - An array of bindings. + * @param {number} index - The group index. + * @param {Array} bindingsReference - An array of reference bindings. + */ + constructor( name = '', bindings = [], index = 0, bindingsReference = [] ) { + + /** + * The bind group's name. + * + * @type {string} + */ + this.name = name; + + /** + * An array of bindings. + * + * @type {Array} + */ + this.bindings = bindings; + + /** + * The group index. + * + * @type {number} + */ + this.index = index; + + /** + * An array of reference bindings. + * + * @type {Array} + */ + this.bindingsReference = bindingsReference; + + /** + * The group's ID. + * + * @type {number} + */ + this.id = _id$6 ++; + + } + +} + +/** + * This module represents the state of a node builder after it was + * used to build the nodes for a render object. The state holds the + * results of the build for further processing in the renderer. + * + * Render objects with identical cache keys share the same node builder state. + * + * @private + */ +class NodeBuilderState { + + /** + * Constructs a new node builder state. + * + * @param {string} vertexShader - The native vertex shader code. + * @param {string} fragmentShader - The native fragment shader code. + * @param {string} computeShader - The native compute shader code. + * @param {Array} nodeAttributes - An array of node attributes. + * @param {Array} bindings - An array of bind groups. + * @param {Array} updateNodes - An array of nodes that implement their `update()` method. + * @param {Array} updateBeforeNodes - An array of nodes that implement their `updateBefore()` method. + * @param {Array} updateAfterNodes - An array of nodes that implement their `updateAfter()` method. + * @param {NodeMaterialObserver} observer - A node material observer. + * @param {Array} transforms - An array with transform attribute objects. Only relevant when using compute shaders with WebGL 2. + */ + constructor( vertexShader, fragmentShader, computeShader, nodeAttributes, bindings, updateNodes, updateBeforeNodes, updateAfterNodes, observer, transforms = [] ) { + + /** + * The native vertex shader code. + * + * @type {string} + */ + this.vertexShader = vertexShader; + + /** + * The native fragment shader code. + * + * @type {string} + */ + this.fragmentShader = fragmentShader; + + /** + * The native compute shader code. + * + * @type {string} + */ + this.computeShader = computeShader; + + /** + * An array with transform attribute objects. + * Only relevant when using compute shaders with WebGL 2. + * + * @type {Array} + */ + this.transforms = transforms; + + /** + * An array of node attributes representing + * the attributes of the shaders. + * + * @type {Array} + */ + this.nodeAttributes = nodeAttributes; + + /** + * An array of bind groups representing the uniform or storage + * buffers, texture or samplers of the shader. + * + * @type {Array} + */ + this.bindings = bindings; + + /** + * An array of nodes that implement their `update()` method. + * + * @type {Array} + */ + this.updateNodes = updateNodes; + + /** + * An array of nodes that implement their `updateBefore()` method. + * + * @type {Array} + */ + this.updateBeforeNodes = updateBeforeNodes; + + /** + * An array of nodes that implement their `updateAfter()` method. + * + * @type {Array} + */ + this.updateAfterNodes = updateAfterNodes; + + /** + * A node material observer. + * + * @type {NodeMaterialObserver} + */ + this.observer = observer; + + /** + * How often this state is used by render objects. + * + * @type {number} + */ + this.usedTimes = 0; + + } + + /** + * This method is used to create a array of bind groups based + * on the existing bind groups of this state. Shared groups are + * not cloned. + * + * @return {Array} A array of bind groups. + */ + createBindings() { + + const bindings = []; + + for ( const instanceGroup of this.bindings ) { + + const shared = instanceGroup.bindings[ 0 ].groupNode.shared; // All bindings in the group must have the same groupNode. + + if ( shared !== true ) { + + const bindingsGroup = new BindGroup( instanceGroup.name, [], instanceGroup.index, instanceGroup ); + bindings.push( bindingsGroup ); + + for ( const instanceBinding of instanceGroup.bindings ) { + + bindingsGroup.bindings.push( instanceBinding.clone() ); + + } + + } else { + + bindings.push( instanceGroup ); + + } + + } + + return bindings; + + } + +} + +/** + * {@link NodeBuilder} is going to create instances of this class during the build process + * of nodes. They represent the final shader attributes that are going to be generated + * by the builder. Arrays of node attributes is maintained in {@link NodeBuilder#attributes} + * and {@link NodeBuilder#bufferAttributes} for this purpose. + */ +class NodeAttribute { + + /** + * Constructs a new node attribute. + * + * @param {string} name - The name of the attribute. + * @param {string} type - The type of the attribute. + * @param {?Node} node - An optional reference to the node. + */ + constructor( name, type, node = null ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNodeAttribute = true; + + /** + * The name of the attribute. + * + * @type {string} + */ + this.name = name; + + /** + * The type of the attribute. + * + * @type {string} + */ + this.type = type; + + /** + * An optional reference to the node. + * + * @type {?Node} + * @default null + */ + this.node = node; + + } + +} + +/** + * {@link NodeBuilder} is going to create instances of this class during the build process + * of nodes. They represent the final shader uniforms that are going to be generated + * by the builder. A dictionary of node uniforms is maintained in {@link NodeBuilder#uniforms} + * for this purpose. + */ +class NodeUniform { + + /** + * Constructs a new node uniform. + * + * @param {string} name - The name of the uniform. + * @param {string} type - The type of the uniform. + * @param {UniformNode} node - An reference to the node. + */ + constructor( name, type, node ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNodeUniform = true; + + /** + * The name of the uniform. + * + * @type {string} + */ + this.name = name; + + /** + * The type of the uniform. + * + * @type {string} + */ + this.type = type; + + /** + * An reference to the node. + * + * @type {UniformNode} + */ + this.node = node.getSelf(); + + } + + /** + * The value of the uniform node. + * + * @type {any} + */ + get value() { + + return this.node.value; + + } + + set value( val ) { + + this.node.value = val; + + } + + /** + * The id of the uniform node. + * + * @type {number} + */ + get id() { + + return this.node.id; + + } + + /** + * The uniform node's group. + * + * @type {UniformGroupNode} + */ + get groupNode() { + + return this.node.groupNode; + + } + +} + +/** + * {@link NodeBuilder} is going to create instances of this class during the build process + * of nodes. They represent the final shader variables that are going to be generated + * by the builder. A dictionary of node variables is maintained in {@link NodeBuilder#vars} for + * this purpose. + */ +class NodeVar { + + /** + * Constructs a new node variable. + * + * @param {string} name - The name of the variable. + * @param {string} type - The type of the variable. + * @param {boolean} [readOnly=false] - The read-only flag. + * @param {?number} [count=null] - The size. + */ + constructor( name, type, readOnly = false, count = null ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNodeVar = true; + + /** + * The name of the variable. + * + * @type {string} + */ + this.name = name; + + /** + * The type of the variable. + * + * @type {string} + */ + this.type = type; + + /** + * The read-only flag. + * + * @type {boolean} + */ + this.readOnly = readOnly; + + /** + * The size. + * + * @type {?number} + */ + this.count = count; + + } + +} + +/** + * {@link NodeBuilder} is going to create instances of this class during the build process + * of nodes. They represent the final shader varyings that are going to be generated + * by the builder. An array of node varyings is maintained in {@link NodeBuilder#varyings} for + * this purpose. + * + * @augments NodeVar + */ +class NodeVarying extends NodeVar { + + /** + * Constructs a new node varying. + * + * @param {string} name - The name of the varying. + * @param {string} type - The type of the varying. + * @param {?string} interpolationType - The interpolation type of the varying. + * @param {?string} interpolationSampling - The interpolation sampling type of the varying. + */ + constructor( name, type, interpolationType = null, interpolationSampling = null ) { + + super( name, type ); + + /** + * Whether this varying requires interpolation or not. This property can be used + * to check if the varying can be optimized for a variable. + * + * @type {boolean} + * @default false + */ + this.needsInterpolation = false; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNodeVarying = true; + + /** + * The interpolation type of the varying data. + * + * @type {?string} + * @default null + */ + this.interpolationType = interpolationType; + + /** + * The interpolation sampling type of varying data. + * + * @type {?string} + * @default null + */ + this.interpolationSampling = interpolationSampling; + + } + +} + +/** + * {@link NodeBuilder} is going to create instances of this class during the build process + * of nodes. They represent user-defined, native shader code portions that are going to be + * injected by the builder. A dictionary of node codes is maintained in {@link NodeBuilder#codes} + * for this purpose. + */ +class NodeCode { + + /** + * Constructs a new code node. + * + * @param {string} name - The name of the code. + * @param {string} type - The node type. + * @param {string} [code=''] - The native shader code. + */ + constructor( name, type, code = '' ) { + + /** + * The name of the code. + * + * @type {string} + */ + this.name = name; + + /** + * The node type. + * + * @type {string} + */ + this.type = type; + + /** + * The native shader code. + * + * @type {string} + * @default '' + */ + this.code = code; + + Object.defineProperty( this, 'isNodeCode', { value: true } ); + + } + +} + +let _id$5 = 0; + +/** + * This utility class is used in {@link NodeBuilder} as an internal + * cache data structure for node data. + */ +class NodeCache { + + /** + * Constructs a new node cache. + * + * @param {?NodeCache} parent - A reference to a parent cache. + */ + constructor( parent = null ) { + + /** + * The id of the cache. + * + * @type {number} + * @readonly + */ + this.id = _id$5 ++; + + /** + * A weak map for managing node data. + * + * @type {WeakMap} + */ + this.nodesData = new WeakMap(); + + /** + * Reference to a parent node cache. + * + * @type {?NodeCache} + * @default null + */ + this.parent = parent; + + } + + /** + * Returns the data for the given node. + * + * @param {Node} node - The node. + * @return {?Object} The data for the node. + */ + getData( node ) { + + let data = this.nodesData.get( node ); + + if ( data === undefined && this.parent !== null ) { + + data = this.parent.getData( node ); + + } + + return data; + + } + + /** + * Sets the data for a given node. + * + * @param {Node} node - The node. + * @param {Object} data - The data that should be cached. + */ + setData( node, data ) { + + this.nodesData.set( node, data ); + + } + +} + +class StructType { + + constructor( name, members ) { + + this.name = name; + this.members = members; + this.output = false; + + } + +} + +/** + * Abstract base class for uniforms. + * + * @abstract + * @private + */ +class Uniform { + + /** + * Constructs a new uniform. + * + * @param {string} name - The uniform's name. + * @param {any} value - The uniform's value. + */ + constructor( name, value ) { + + /** + * The uniform's name. + * + * @type {string} + */ + this.name = name; + + /** + * The uniform's value. + * + * @type {any} + */ + this.value = value; + + /** + * Used to build the uniform buffer according to the STD140 layout. + * Derived uniforms will set this property to a data type specific + * value. + * + * @type {number} + */ + this.boundary = 0; + + /** + * The item size. Derived uniforms will set this property to a data + * type specific value. + * + * @type {number} + */ + this.itemSize = 0; + + /** + * This property is set by {@link UniformsGroup} and marks + * the start position in the uniform buffer. + * + * @type {number} + */ + this.offset = 0; + + } + + /** + * Sets the uniform's value. + * + * @param {any} value - The value to set. + */ + setValue( value ) { + + this.value = value; + + } + + /** + * Returns the uniform's value. + * + * @return {any} The value. + */ + getValue() { + + return this.value; + + } + +} + +/** + * Represents a Number uniform. + * + * @private + * @augments Uniform + */ +class NumberUniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {number} value - The uniform's value. + */ + constructor( name, value = 0 ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNumberUniform = true; + + this.boundary = 4; + this.itemSize = 1; + + } + +} + +/** + * Represents a Vector2 uniform. + * + * @private + * @augments Uniform + */ +class Vector2Uniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Vector2} value - The uniform's value. + */ + constructor( name, value = new Vector2() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVector2Uniform = true; + + this.boundary = 8; + this.itemSize = 2; + + } + +} + +/** + * Represents a Vector3 uniform. + * + * @private + * @augments Uniform + */ +class Vector3Uniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Vector3} value - The uniform's value. + */ + constructor( name, value = new Vector3() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVector3Uniform = true; + + this.boundary = 16; + this.itemSize = 3; + + } + +} + +/** + * Represents a Vector4 uniform. + * + * @private + * @augments Uniform + */ +class Vector4Uniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Vector4} value - The uniform's value. + */ + constructor( name, value = new Vector4() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isVector4Uniform = true; + + this.boundary = 16; + this.itemSize = 4; + + } + +} + +/** + * Represents a Color uniform. + * + * @private + * @augments Uniform + */ +class ColorUniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Color} value - The uniform's value. + */ + constructor( name, value = new Color() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isColorUniform = true; + + this.boundary = 16; + this.itemSize = 3; + + } + +} + +/** + * Represents a Matrix2 uniform. + * + * @private + * @augments Uniform + */ +class Matrix2Uniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Matrix2} value - The uniform's value. + */ + constructor( name, value = new Matrix2() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMatrix2Uniform = true; + + this.boundary = 8; + this.itemSize = 4; + + } + +} + + +/** + * Represents a Matrix3 uniform. + * + * @private + * @augments Uniform + */ +class Matrix3Uniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Matrix3} value - The uniform's value. + */ + constructor( name, value = new Matrix3() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMatrix3Uniform = true; + + this.boundary = 48; + this.itemSize = 12; + + } + +} + +/** + * Represents a Matrix4 uniform. + * + * @private + * @augments Uniform + */ +class Matrix4Uniform extends Uniform { + + /** + * Constructs a new Number uniform. + * + * @param {string} name - The uniform's name. + * @param {Matrix4} value - The uniform's value. + */ + constructor( name, value = new Matrix4() ) { + + super( name, value ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isMatrix4Uniform = true; + + this.boundary = 64; + this.itemSize = 16; + + } + +} + +/** + * A special form of Number uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments NumberUniform + */ +class NumberNodeUniform extends NumberUniform { + + /** + * Constructs a new node-based Number uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {number} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +/** + * A special form of Vector2 uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments Vector2Uniform + */ +class Vector2NodeUniform extends Vector2Uniform { + + /** + * Constructs a new node-based Vector2 uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Vector2} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +/** + * A special form of Vector3 uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments Vector3Uniform + */ +class Vector3NodeUniform extends Vector3Uniform { + + /** + * Constructs a new node-based Vector3 uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Vector3} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +/** + * A special form of Vector4 uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments Vector4Uniform + */ +class Vector4NodeUniform extends Vector4Uniform { + + /** + * Constructs a new node-based Vector4 uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Vector4} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +/** + * A special form of Color uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments ColorUniform + */ +class ColorNodeUniform extends ColorUniform { + + /** + * Constructs a new node-based Color uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Color} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + + +/** + * A special form of Matrix2 uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments Matrix2Uniform + */ +class Matrix2NodeUniform extends Matrix2Uniform { + + /** + * Constructs a new node-based Matrix2 uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Matrix2} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +/** + * A special form of Matrix3 uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments Matrix3Uniform + */ +class Matrix3NodeUniform extends Matrix3Uniform { + + /** + * Constructs a new node-based Matrix3 uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Matrix3} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +/** + * A special form of Matrix4 uniform binding type. + * It's value is managed by a node object. + * + * @private + * @augments Matrix4Uniform + */ +class Matrix4NodeUniform extends Matrix4Uniform { + + /** + * Constructs a new node-based Matrix4 uniform. + * + * @param {NodeUniform} nodeUniform - The node uniform. + */ + constructor( nodeUniform ) { + + super( nodeUniform.name, nodeUniform.value ); + + /** + * The node uniform. + * + * @type {NodeUniform} + */ + this.nodeUniform = nodeUniform; + + } + + /** + * Overwritten to return the value of the node uniform. + * + * @return {Matrix4} The value. + */ + getValue() { + + return this.nodeUniform.value; + + } + + /** + * Returns the node uniform data type. + * + * @return {string} The data type. + */ + getType() { + + return this.nodeUniform.type; + + } + +} + +const rendererCache = new WeakMap(); + +const typeFromArray = new Map( [ + [ Int8Array, 'int' ], + [ Int16Array, 'int' ], + [ Int32Array, 'int' ], + [ Uint8Array, 'uint' ], + [ Uint16Array, 'uint' ], + [ Uint32Array, 'uint' ], + [ Float32Array, 'float' ] +] ); + +const toFloat = ( value ) => { + + if ( /e/g.test( value ) ) { + + return String( value ).replace( /\+/g, '' ); + + } else { + + value = Number( value ); + + return value + ( value % 1 ? '' : '.0' ); + + } + +}; + +/** + * Base class for builders which generate a shader program based + * on a 3D object and its node material definition. + */ +class NodeBuilder { + + /** + * Constructs a new node builder. + * + * @param {Object3D} object - The 3D object. + * @param {Renderer} renderer - The current renderer. + * @param {NodeParser} parser - A reference to a node parser. + */ + constructor( object, renderer, parser ) { + + /** + * The 3D object. + * + * @type {Object3D} + */ + this.object = object; + + /** + * The material of the 3D object. + * + * @type {?Material} + */ + this.material = ( object && object.material ) || null; + + /** + * The geometry of the 3D object. + * + * @type {?BufferGeometry} + */ + this.geometry = ( object && object.geometry ) || null; + + /** + * The current renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * A reference to a node parser. + * + * @type {NodeParser} + */ + this.parser = parser; + + /** + * The scene the 3D object belongs to. + * + * @type {?Scene} + * @default null + */ + this.scene = null; + + /** + * The camera the 3D object is rendered with. + * + * @type {?Camera} + * @default null + */ + this.camera = null; + + /** + * A list of all nodes the builder is processing + * for this 3D object. + * + * @type {Array} + */ + this.nodes = []; + + /** + * A list of all sequential nodes. + * + * @type {Array} + */ + this.sequentialNodes = []; + + /** + * A list of all nodes which {@link Node#update} method should be executed. + * + * @type {Array} + */ + this.updateNodes = []; + + /** + * A list of all nodes which {@link Node#updateBefore} method should be executed. + * + * @type {Array} + */ + this.updateBeforeNodes = []; + + /** + * A list of all nodes which {@link Node#updateAfter} method should be executed. + * + * @type {Array} + */ + this.updateAfterNodes = []; + + /** + * A dictionary that assigns each node to a unique hash. + * + * @type {Object} + */ + this.hashNodes = {}; + + /** + * A reference to a node material observer. + * + * @type {?NodeMaterialObserver} + * @default null + */ + this.observer = null; + + /** + * A reference to the current lights node. + * + * @type {?LightsNode} + * @default null + */ + this.lightsNode = null; + + /** + * A reference to the current environment node. + * + * @type {?Node} + * @default null + */ + this.environmentNode = null; + + /** + * A reference to the current fog node. + * + * @type {?FogNode} + * @default null + */ + this.fogNode = null; + + /** + * The current clipping context. + * + * @type {?ClippingContext} + */ + this.clippingContext = null; + + /** + * The generated vertex shader. + * + * @type {?string} + */ + this.vertexShader = null; + + /** + * The generated fragment shader. + * + * @type {?string} + */ + this.fragmentShader = null; + + /** + * The generated compute shader. + * + * @type {?string} + */ + this.computeShader = null; + + /** + * Nodes used in the primary flow of code generation. + * + * @type {Object>} + */ + this.flowNodes = { vertex: [], fragment: [], compute: [] }; + + /** + * Nodes code from `.flowNodes`. + * + * @type {Object} + */ + this.flowCode = { vertex: '', fragment: '', compute: '' }; + + /** + * This dictionary holds the node uniforms of the builder. + * The uniforms are maintained in an array for each shader stage. + * + * @type {Object} + */ + this.uniforms = { vertex: [], fragment: [], compute: [], index: 0 }; + + /** + * This dictionary holds the output structs of the builder. + * The structs are maintained in an array for each shader stage. + * + * @type {Object} + */ + this.structs = { vertex: [], fragment: [], compute: [], index: 0 }; + + /** + * This dictionary holds the bindings for each shader stage. + * + * @type {Object} + */ + this.bindings = { vertex: {}, fragment: {}, compute: {} }; + + /** + * This dictionary maintains the binding indices per bind group. + * + * @type {Object} + */ + this.bindingsIndexes = {}; + + /** + * Reference to the array of bind groups. + * + * @type {?Array} + */ + this.bindGroups = null; + + /** + * This array holds the node attributes of this builder + * created via {@link AttributeNode}. + * + * @type {Array} + */ + this.attributes = []; + + /** + * This array holds the node attributes of this builder + * created via {@link BufferAttributeNode}. + * + * @type {Array} + */ + this.bufferAttributes = []; + + /** + * This array holds the node varyings of this builder. + * + * @type {Array} + */ + this.varyings = []; + + /** + * This dictionary holds the (native) node codes of this builder. + * The codes are maintained in an array for each shader stage. + * + * @type {Object>} + */ + this.codes = {}; + + /** + * This dictionary holds the node variables of this builder. + * The variables are maintained in an array for each shader stage. + * This dictionary is also used to count the number of variables + * according to their type (const, vars). + * + * @type {Object|number>} + */ + this.vars = {}; + + /** + * This dictionary holds the declarations for each shader stage. + * + * @type {Object} + */ + this.declarations = {}; + + /** + * Current code flow. + * All code generated in this stack will be stored in `.flow`. + * + * @type {{code: string}} + */ + this.flow = { code: '' }; + + /** + * A chain of nodes. + * Used to check recursive calls in node-graph. + * + * @type {Array} + */ + this.chaining = []; + + /** + * The current stack. + * This reflects the current process in the code block hierarchy, + * it is useful to know if the current process is inside a conditional for example. + * + * @type {StackNode} + */ + this.stack = stack(); + + /** + * List of stack nodes. + * The current stack hierarchy is stored in an array. + * + * @type {Array} + */ + this.stacks = []; + + /** + * A tab value. Used for shader string generation. + * + * @type {string} + * @default '\t' + */ + this.tab = '\t'; + + /** + * Reference to the current function node. + * + * @type {?FunctionNode} + * @default null + */ + this.currentFunctionNode = null; + + /** + * The builder's context. + * + * @type {Object} + */ + this.context = { + material: this.material + }; + + /** + * The builder's cache. + * + * @type {NodeCache} + */ + this.cache = new NodeCache(); + + /** + * Since the {@link NodeBuilder#cache} might be temporarily + * overwritten by other caches, this member retains the reference + * to the builder's own cache. + * + * @type {NodeCache} + * @default this.cache + */ + this.globalCache = this.cache; + + this.flowsData = new WeakMap(); + + /** + * The current shader stage. + * + * @type {?('vertex'|'fragment'|'compute'|'any')} + */ + this.shaderStage = null; + + /** + * The current build stage. + * + * @type {?('setup'|'analyze'|'generate')} + */ + this.buildStage = null; + + } + + /** + * Returns the bind groups of the current renderer. + * + * @return {ChainMap} The cache. + */ + getBindGroupsCache() { + + let bindGroupsCache = rendererCache.get( this.renderer ); + + if ( bindGroupsCache === undefined ) { + + bindGroupsCache = new ChainMap(); + + rendererCache.set( this.renderer, bindGroupsCache ); + + } + + return bindGroupsCache; + + } + + /** + * Factory method for creating an instance of {@link RenderTarget} with the given + * dimensions and options. + * + * @param {number} width - The width of the render target. + * @param {number} height - The height of the render target. + * @param {Object} options - The options of the render target. + * @return {RenderTarget} The render target. + */ + createRenderTarget( width, height, options ) { + + return new RenderTarget( width, height, options ); + + } + + /** + * Factory method for creating an instance of {@link CubeRenderTarget} with the given + * dimensions and options. + * + * @param {number} size - The size of the cube render target. + * @param {Object} options - The options of the cube render target. + * @return {CubeRenderTarget} The cube render target. + */ + createCubeRenderTarget( size, options ) { + + return new CubeRenderTarget( size, options ); + + } + + /** + * Whether the given node is included in the internal array of nodes or not. + * + * @param {Node} node - The node to test. + * @return {boolean} Whether the given node is included in the internal array of nodes or not. + */ + includes( node ) { + + return this.nodes.includes( node ); + + } + + /** + * Returns the output struct name which is required by + * {@link OutputStructNode}. + * + * @abstract + * @return {string} The name of the output struct. + */ + getOutputStructName() {} + + /** + * Returns a bind group for the given group name and binding. + * + * @private + * @param {string} groupName - The group name. + * @param {Array} bindings - List of bindings. + * @return {BindGroup} The bind group + */ + _getBindGroup( groupName, bindings ) { + + const bindGroupsCache = this.getBindGroupsCache(); + + // + + const bindingsArray = []; + + let sharedGroup = true; + + for ( const binding of bindings ) { + + bindingsArray.push( binding ); + + sharedGroup = sharedGroup && binding.groupNode.shared !== true; + + } + + // + + let bindGroup; + + if ( sharedGroup ) { + + bindGroup = bindGroupsCache.get( bindingsArray ); + + if ( bindGroup === undefined ) { + + bindGroup = new BindGroup( groupName, bindingsArray, this.bindingsIndexes[ groupName ].group, bindingsArray ); + + bindGroupsCache.set( bindingsArray, bindGroup ); + + } + + } else { + + bindGroup = new BindGroup( groupName, bindingsArray, this.bindingsIndexes[ groupName ].group, bindingsArray ); + + } + + return bindGroup; + + } + + /** + * Returns an array of node uniform groups for the given group name and shader stage. + * + * @param {string} groupName - The group name. + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {Array} The array of node uniform groups. + */ + getBindGroupArray( groupName, shaderStage ) { + + const bindings = this.bindings[ shaderStage ]; + + let bindGroup = bindings[ groupName ]; + + if ( bindGroup === undefined ) { + + if ( this.bindingsIndexes[ groupName ] === undefined ) { + + this.bindingsIndexes[ groupName ] = { binding: 0, group: Object.keys( this.bindingsIndexes ).length }; + + } + + bindings[ groupName ] = bindGroup = []; + + } + + return bindGroup; + + } + + /** + * Returns a list bindings of all shader stages separated by groups. + * + * @return {Array} The list of bindings. + */ + getBindings() { + + let bindingsGroups = this.bindGroups; + + if ( bindingsGroups === null ) { + + const groups = {}; + const bindings = this.bindings; + + for ( const shaderStage of shaderStages ) { + + for ( const groupName in bindings[ shaderStage ] ) { + + const uniforms = bindings[ shaderStage ][ groupName ]; + + const groupUniforms = groups[ groupName ] || ( groups[ groupName ] = [] ); + groupUniforms.push( ...uniforms ); + + } + + } + + bindingsGroups = []; + + for ( const groupName in groups ) { + + const group = groups[ groupName ]; + + const bindingsGroup = this._getBindGroup( groupName, group ); + + bindingsGroups.push( bindingsGroup ); + + } + + this.bindGroups = bindingsGroups; + + } + + return bindingsGroups; + + } + + /** + * Sorts the bind groups and updates {@link NodeBuilder#bindingsIndexes}. + */ + sortBindingGroups() { + + const bindingsGroups = this.getBindings(); + + bindingsGroups.sort( ( a, b ) => ( a.bindings[ 0 ].groupNode.order - b.bindings[ 0 ].groupNode.order ) ); + + for ( let i = 0; i < bindingsGroups.length; i ++ ) { + + const bindingGroup = bindingsGroups[ i ]; + this.bindingsIndexes[ bindingGroup.name ].group = i; + + bindingGroup.index = i; + + } + + } + + /** + * The builder maintains each node in a hash-based dictionary. + * This method sets the given node (value) with the given hash (key) into this dictionary. + * + * @param {Node} node - The node to add. + * @param {number} hash - The hash of the node. + */ + setHashNode( node, hash ) { + + this.hashNodes[ hash ] = node; + + } + + /** + * Adds a node to this builder. + * + * @param {Node} node - The node to add. + */ + addNode( node ) { + + if ( this.nodes.includes( node ) === false ) { + + this.nodes.push( node ); + + this.setHashNode( node, node.getHash( this ) ); + + } + + } + + /** + * It is used to add Nodes that will be used as FRAME and RENDER events, + * and need to follow a certain sequence in the calls to work correctly. + * This function should be called after 'setup()' in the 'build()' process to ensure that the child nodes are processed first. + * + * @param {Node} node - The node to add. + */ + addSequentialNode( node ) { + + if ( this.sequentialNodes.includes( node ) === false ) { + + this.sequentialNodes.push( node ); + + } + + } + + /** + * Checks the update types of nodes + */ + buildUpdateNodes() { + + for ( const node of this.nodes ) { + + const updateType = node.getUpdateType(); + + if ( updateType !== NodeUpdateType.NONE ) { + + this.updateNodes.push( node.getSelf() ); + + } + + } + + for ( const node of this.sequentialNodes ) { + + const updateBeforeType = node.getUpdateBeforeType(); + const updateAfterType = node.getUpdateAfterType(); + + if ( updateBeforeType !== NodeUpdateType.NONE ) { + + this.updateBeforeNodes.push( node.getSelf() ); + + } + + if ( updateAfterType !== NodeUpdateType.NONE ) { + + this.updateAfterNodes.push( node.getSelf() ); + + } + + } + + } + + /** + * A reference the current node which is the + * last node in the chain of nodes. + * + * @type {Node} + */ + get currentNode() { + + return this.chaining[ this.chaining.length - 1 ]; + + } + + /** + * Whether the given texture is filtered or not. + * + * @param {Texture} texture - The texture to check. + * @return {boolean} Whether the given texture is filtered or not. + */ + isFilteredTexture( texture ) { + + return ( texture.magFilter === LinearFilter || texture.magFilter === LinearMipmapNearestFilter || texture.magFilter === NearestMipmapLinearFilter || texture.magFilter === LinearMipmapLinearFilter || + texture.minFilter === LinearFilter || texture.minFilter === LinearMipmapNearestFilter || texture.minFilter === NearestMipmapLinearFilter || texture.minFilter === LinearMipmapLinearFilter ); + + } + + /** + * Adds the given node to the internal node chain. + * This is used to check recursive calls in node-graph. + * + * @param {Node} node - The node to add. + */ + addChain( node ) { + + /* + if ( this.chaining.indexOf( node ) !== - 1 ) { + + console.warn( 'Recursive node: ', node ); + + } + */ + + this.chaining.push( node ); + + } + + /** + * Removes the given node from the internal node chain. + * + * @param {Node} node - The node to remove. + */ + removeChain( node ) { + + const lastChain = this.chaining.pop(); + + if ( lastChain !== node ) { + + throw new Error( 'NodeBuilder: Invalid node chaining!' ); + + } + + } + + /** + * Returns the native shader method name for a given generic name. E.g. + * the method name `textureDimensions` matches the WGSL name but must be + * resolved to `textureSize` in GLSL. + * + * @abstract + * @param {string} method - The method name to resolve. + * @return {string} The resolved method name. + */ + getMethod( method ) { + + return method; + + } + + /** + * Returns a node for the given hash, see {@link NodeBuilder#setHashNode}. + * + * @param {number} hash - The hash of the node. + * @return {Node} The found node. + */ + getNodeFromHash( hash ) { + + return this.hashNodes[ hash ]; + + } + + /** + * Adds the Node to a target flow so that it can generate code in the 'generate' process. + * + * @param {('vertex'|'fragment'|'compute')} shaderStage - The shader stage. + * @param {Node} node - The node to add. + * @return {Node} The node. + */ + addFlow( shaderStage, node ) { + + this.flowNodes[ shaderStage ].push( node ); + + return node; + + } + + /** + * Sets builder's context. + * + * @param {Object} context - The context to set. + */ + setContext( context ) { + + this.context = context; + + } + + /** + * Returns the builder's current context. + * + * @return {Object} The builder's current context. + */ + getContext() { + + return this.context; + + } + + /** + * Gets a context used in shader construction that can be shared across different materials. + * This is necessary since the renderer cache can reuse shaders generated in one material and use them in another. + * + * @return {Object} The builder's current context without material. + */ + getSharedContext() { + + ( { ...this.context } ); + + return this.context; + + } + + /** + * Sets builder's cache. + * + * @param {NodeCache} cache - The cache to set. + */ + setCache( cache ) { + + this.cache = cache; + + } + + /** + * Returns the builder's current cache. + * + * @return {NodeCache} The builder's current cache. + */ + getCache() { + + return this.cache; + + } + + /** + * Returns a cache for the given node. + * + * @param {Node} node - The node. + * @param {boolean} [parent=true] - Whether this node refers to a shared parent cache or not. + * @return {NodeCache} The cache. + */ + getCacheFromNode( node, parent = true ) { + + const data = this.getDataFromNode( node ); + if ( data.cache === undefined ) data.cache = new NodeCache( parent ? this.getCache() : null ); + + return data.cache; + + } + + /** + * Whether the requested feature is available or not. + * + * @abstract + * @param {string} name - The requested feature. + * @return {boolean} Whether the requested feature is supported or not. + */ + isAvailable( /*name*/ ) { + + return false; + + } + + /** + * Returns the vertexIndex input variable as a native shader string. + * + * @abstract + * @return {string} The instanceIndex shader string. + */ + getVertexIndex() { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns the instanceIndex input variable as a native shader string. + * + * @abstract + * @return {string} The instanceIndex shader string. + */ + getInstanceIndex() { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns the drawIndex input variable as a native shader string. + * Only relevant for WebGL and its `WEBGL_multi_draw` extension. + * + * @abstract + * @return {?string} The drawIndex shader string. + */ + getDrawIndex() { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns the frontFacing input variable as a native shader string. + * + * @abstract + * @return {string} The frontFacing shader string. + */ + getFrontFacing() { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns the fragCoord input variable as a native shader string. + * + * @abstract + * @return {string} The fragCoord shader string. + */ + getFragCoord() { + + console.warn( 'Abstract function.' ); + + } + + /** + * Whether to flip texture data along its vertical axis or not. WebGL needs + * this method evaluate to `true`, WebGPU to `false`. + * + * @abstract + * @return {boolean} Whether to flip texture data along its vertical axis or not. + */ + isFlipY() { + + return false; + + } + + /** + * Calling this method increases the usage count for the given node by one. + * + * @param {Node} node - The node to increase the usage count for. + * @return {number} The updated usage count. + */ + increaseUsage( node ) { + + const nodeData = this.getDataFromNode( node ); + nodeData.usageCount = nodeData.usageCount === undefined ? 1 : nodeData.usageCount + 1; + + return nodeData.usageCount; + + } + + /** + * Generates a texture sample shader string for the given texture data. + * + * @abstract + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The texture property name. + * @param {string} uvSnippet - Snippet defining the texture coordinates. + * @return {string} The generated shader string. + */ + generateTexture( /* texture, textureProperty, uvSnippet */ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * Generates a texture LOD shader string for the given texture data. + * + * @abstract + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The texture property name. + * @param {string} uvSnippet - Snippet defining the texture coordinates. + * @param {?string} depthSnippet - Snippet defining the 0-based texture array index to sample. + * @param {string} levelSnippet - Snippet defining the mip level. + * @return {string} The generated shader string. + */ + generateTextureLod( /* texture, textureProperty, uvSnippet, depthSnippet, levelSnippet */ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * Generates the array declaration string. + * + * @param {string} type - The type. + * @param {?number} [count] - The count. + * @return {string} The generated value as a shader string. + */ + generateArrayDeclaration( type, count ) { + + return this.getType( type ) + '[ ' + count + ' ]'; + + } + + /** + * Generates the array shader string for the given type and value. + * + * @param {string} type - The type. + * @param {?number} [count] - The count. + * @param {?Array} [values=null] - The default values. + * @return {string} The generated value as a shader string. + */ + generateArray( type, count, values = null ) { + + let snippet = this.generateArrayDeclaration( type, count ) + '( '; + + for ( let i = 0; i < count; i ++ ) { + + const value = values ? values[ i ] : null; + + if ( value !== null ) { + + snippet += value.build( this, type ); + + } else { + + snippet += this.generateConst( type ); + + } + + if ( i < count - 1 ) snippet += ', '; + + } + + snippet += ' )'; + + return snippet; + + } + + /** + * Generates the struct shader string. + * + * @param {string} type - The type. + * @param {Array} [membersLayout] - The count. + * @param {?Array} [values=null] - The default values. + * @return {string} The generated value as a shader string. + */ + generateStruct( type, membersLayout, values = null ) { + + const snippets = []; + + for ( const member of membersLayout ) { + + const { name, type } = member; + + if ( values && values[ name ] && values[ name ].isNode ) { + + snippets.push( values[ name ].build( this, type ) ); + + } else { + + snippets.push( this.generateConst( type ) ); + + } + + } + + return type + '( ' + snippets.join( ', ' ) + ' )'; + + } + + + /** + * Generates the shader string for the given type and value. + * + * @param {string} type - The type. + * @param {?any} [value=null] - The value. + * @return {string} The generated value as a shader string. + */ + generateConst( type, value = null ) { + + if ( value === null ) { + + if ( type === 'float' || type === 'int' || type === 'uint' ) value = 0; + else if ( type === 'bool' ) value = false; + else if ( type === 'color' ) value = new Color(); + else if ( type === 'vec2' ) value = new Vector2(); + else if ( type === 'vec3' ) value = new Vector3(); + else if ( type === 'vec4' ) value = new Vector4(); + + } + + if ( type === 'float' ) return toFloat( value ); + if ( type === 'int' ) return `${ Math.round( value ) }`; + if ( type === 'uint' ) return value >= 0 ? `${ Math.round( value ) }u` : '0u'; + if ( type === 'bool' ) return value ? 'true' : 'false'; + if ( type === 'color' ) return `${ this.getType( 'vec3' ) }( ${ toFloat( value.r ) }, ${ toFloat( value.g ) }, ${ toFloat( value.b ) } )`; + + const typeLength = this.getTypeLength( type ); + + const componentType = this.getComponentType( type ); + + const generateConst = value => this.generateConst( componentType, value ); + + if ( typeLength === 2 ) { + + return `${ this.getType( type ) }( ${ generateConst( value.x ) }, ${ generateConst( value.y ) } )`; + + } else if ( typeLength === 3 ) { + + return `${ this.getType( type ) }( ${ generateConst( value.x ) }, ${ generateConst( value.y ) }, ${ generateConst( value.z ) } )`; + + } else if ( typeLength === 4 && type !== 'mat2' ) { + + return `${ this.getType( type ) }( ${ generateConst( value.x ) }, ${ generateConst( value.y ) }, ${ generateConst( value.z ) }, ${ generateConst( value.w ) } )`; + + } else if ( typeLength >= 4 && value && ( value.isMatrix2 || value.isMatrix3 || value.isMatrix4 ) ) { + + return `${ this.getType( type ) }( ${ value.elements.map( generateConst ).join( ', ' ) } )`; + + } else if ( typeLength > 4 ) { + + return `${ this.getType( type ) }()`; + + } + + throw new Error( `NodeBuilder: Type '${type}' not found in generate constant attempt.` ); + + } + + /** + * It might be necessary to convert certain data types to different ones + * so this method can be used to hide the conversion. + * + * @param {string} type - The type. + * @return {string} The updated type. + */ + getType( type ) { + + if ( type === 'color' ) return 'vec3'; + + return type; + + } + + /** + * Whether the given attribute name is defined in the geometry or not. + * + * @param {string} name - The attribute name. + * @return {boolean} Whether the given attribute name is defined in the geometry. + */ + hasGeometryAttribute( name ) { + + return this.geometry && this.geometry.getAttribute( name ) !== undefined; + + } + + /** + * Returns a node attribute for the given name and type. + * + * @param {string} name - The attribute's name. + * @param {string} type - The attribute's type. + * @return {NodeAttribute} The node attribute. + */ + getAttribute( name, type ) { + + const attributes = this.attributes; + + // find attribute + + for ( const attribute of attributes ) { + + if ( attribute.name === name ) { + + return attribute; + + } + + } + + // create a new if no exist + + const attribute = new NodeAttribute( name, type ); + + this.registerDeclaration( attribute ); + + attributes.push( attribute ); + + return attribute; + + } + + /** + * Returns for the given node and shader stage the property name for the shader. + * + * @param {Node} node - The node. + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {string} The property name. + */ + getPropertyName( node/*, shaderStage*/ ) { + + return node.name; + + } + + /** + * Whether the given type is a vector type or not. + * + * @param {string} type - The type to check. + * @return {boolean} Whether the given type is a vector type or not. + */ + isVector( type ) { + + return /vec\d/.test( type ); + + } + + /** + * Whether the given type is a matrix type or not. + * + * @param {string} type - The type to check. + * @return {boolean} Whether the given type is a matrix type or not. + */ + isMatrix( type ) { + + return /mat\d/.test( type ); + + } + + /** + * Whether the given type is a reference type or not. + * + * @param {string} type - The type to check. + * @return {boolean} Whether the given type is a reference type or not. + */ + isReference( type ) { + + return type === 'void' || type === 'property' || type === 'sampler' || type === 'samplerComparison' || type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'depthTexture' || type === 'texture3D'; + + } + + /** + * Checks if the given texture requires a manual conversion to the working color space. + * + * @abstract + * @param {Texture} texture - The texture to check. + * @return {boolean} Whether the given texture requires a conversion to working color space or not. + */ + needsToWorkingColorSpace( /*texture*/ ) { + + return false; + + } + + /** + * Returns the component type of a given texture. + * + * @param {Texture} texture - The texture. + * @return {string} The component type. + */ + getComponentTypeFromTexture( texture ) { + + const type = texture.type; + + if ( texture.isDataTexture ) { + + if ( type === IntType ) return 'int'; + if ( type === UnsignedIntType ) return 'uint'; + + } + + return 'float'; + + } + + /** + * Returns the element type for a given type. + * + * @param {string} type - The type. + * @return {string} The element type. + */ + getElementType( type ) { + + if ( type === 'mat2' ) return 'vec2'; + if ( type === 'mat3' ) return 'vec3'; + if ( type === 'mat4' ) return 'vec4'; + + return this.getComponentType( type ); + + } + + /** + * Returns the component type for a given type. + * + * @param {string} type - The type. + * @return {string} The component type. + */ + getComponentType( type ) { + + type = this.getVectorType( type ); + + if ( type === 'float' || type === 'bool' || type === 'int' || type === 'uint' ) return type; + + const componentType = /(b|i|u|)(vec|mat)([2-4])/.exec( type ); + + if ( componentType === null ) return null; + + if ( componentType[ 1 ] === 'b' ) return 'bool'; + if ( componentType[ 1 ] === 'i' ) return 'int'; + if ( componentType[ 1 ] === 'u' ) return 'uint'; + + return 'float'; + + } + + /** + * Returns the vector type for a given type. + * + * @param {string} type - The type. + * @return {string} The vector type. + */ + getVectorType( type ) { + + if ( type === 'color' ) return 'vec3'; + if ( type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'texture3D' ) return 'vec4'; + + return type; + + } + + /** + * Returns the data type for the given the length and component type. + * + * @param {number} length - The length. + * @param {string} [componentType='float'] - The component type. + * @return {string} The type. + */ + getTypeFromLength( length, componentType = 'float' ) { + + if ( length === 1 ) return componentType; + + let baseType = getTypeFromLength( length ); + const prefix = componentType === 'float' ? '' : componentType[ 0 ]; + + // fix edge case for mat2x2 being same size as vec4 + if ( /mat2/.test( componentType ) === true ) { + + baseType = baseType.replace( 'vec', 'mat' ); + + } + + return prefix + baseType; + + } + + /** + * Returns the type for a given typed array. + * + * @param {TypedArray} array - The typed array. + * @return {string} The type. + */ + getTypeFromArray( array ) { + + return typeFromArray.get( array.constructor ); + + } + + /** + * Returns the type is an integer type. + * + * @param {string} type - The type. + * @return {boolean} Whether the type is an integer type or not. + */ + isInteger( type ) { + + return /int|uint|(i|u)vec/.test( type ); + + } + + /** + * Returns the type for a given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + * @return {string} The type. + */ + getTypeFromAttribute( attribute ) { + + let dataAttribute = attribute; + + if ( attribute.isInterleavedBufferAttribute ) dataAttribute = attribute.data; + + const array = dataAttribute.array; + const itemSize = attribute.itemSize; + const normalized = attribute.normalized; + + let arrayType; + + if ( ! ( attribute instanceof Float16BufferAttribute ) && normalized !== true ) { + + arrayType = this.getTypeFromArray( array ); + + } + + return this.getTypeFromLength( itemSize, arrayType ); + + } + + /** + * Returns the length for the given data type. + * + * @param {string} type - The data type. + * @return {number} The length. + */ + getTypeLength( type ) { + + const vecType = this.getVectorType( type ); + const vecNum = /vec([2-4])/.exec( vecType ); + + if ( vecNum !== null ) return Number( vecNum[ 1 ] ); + if ( vecType === 'float' || vecType === 'bool' || vecType === 'int' || vecType === 'uint' ) return 1; + if ( /mat2/.test( type ) === true ) return 4; + if ( /mat3/.test( type ) === true ) return 9; + if ( /mat4/.test( type ) === true ) return 16; + + return 0; + + } + + /** + * Returns the vector type for a given matrix type. + * + * @param {string} type - The matrix type. + * @return {string} The vector type. + */ + getVectorFromMatrix( type ) { + + return type.replace( 'mat', 'vec' ); + + } + + /** + * For a given type this method changes the component type to the + * given value. E.g. `vec4` should be changed to the new component type + * `uint` which results in `uvec4`. + * + * @param {string} type - The type. + * @param {string} newComponentType - The new component type. + * @return {string} The new type. + */ + changeComponentType( type, newComponentType ) { + + return this.getTypeFromLength( this.getTypeLength( type ), newComponentType ); + + } + + /** + * Returns the integer type pendant for the given type. + * + * @param {string} type - The type. + * @return {string} The integer type. + */ + getIntegerType( type ) { + + const componentType = this.getComponentType( type ); + + if ( componentType === 'int' || componentType === 'uint' ) return type; + + return this.changeComponentType( type, 'int' ); + + } + + /** + * Adds a stack node to the internal stack. + * + * @return {StackNode} The added stack node. + */ + addStack() { + + this.stack = stack( this.stack ); + + this.stacks.push( getCurrentStack() || this.stack ); + setCurrentStack( this.stack ); + + return this.stack; + + } + + /** + * Removes the last stack node from the internal stack. + * + * @return {StackNode} The removed stack node. + */ + removeStack() { + + const lastStack = this.stack; + this.stack = lastStack.parent; + + setCurrentStack( this.stacks.pop() ); + + return lastStack; + + } + + /** + * The builder maintains (cached) data for each node during the building process. This method + * can be used to get these data for a specific shader stage and cache. + * + * @param {Node} node - The node to get the data for. + * @param {('vertex'|'fragment'|'compute'|'any')} [shaderStage=this.shaderStage] - The shader stage. + * @param {?NodeCache} cache - An optional cache. + * @return {Object} The node data. + */ + getDataFromNode( node, shaderStage = this.shaderStage, cache = null ) { + + cache = cache === null ? ( node.isGlobal( this ) ? this.globalCache : this.cache ) : cache; + + let nodeData = cache.getData( node ); + + if ( nodeData === undefined ) { + + nodeData = {}; + + cache.setData( node, nodeData ); + + } + + if ( nodeData[ shaderStage ] === undefined ) nodeData[ shaderStage ] = {}; + + return nodeData[ shaderStage ]; + + } + + /** + * Returns the properties for the given node and shader stage. + * + * @param {Node} node - The node to get the properties for. + * @param {('vertex'|'fragment'|'compute'|'any')} [shaderStage='any'] - The shader stage. + * @return {Object} The node properties. + */ + getNodeProperties( node, shaderStage = 'any' ) { + + const nodeData = this.getDataFromNode( node, shaderStage ); + + return nodeData.properties || ( nodeData.properties = { outputNode: null } ); + + } + + /** + * Returns an instance of {@link NodeAttribute} for the given buffer attribute node. + * + * @param {BufferAttributeNode} node - The buffer attribute node. + * @param {string} type - The node type. + * @return {NodeAttribute} The node attribute. + */ + getBufferAttributeFromNode( node, type ) { + + const nodeData = this.getDataFromNode( node ); + + let bufferAttribute = nodeData.bufferAttribute; + + if ( bufferAttribute === undefined ) { + + const index = this.uniforms.index ++; + + bufferAttribute = new NodeAttribute( 'nodeAttribute' + index, type, node ); + + this.bufferAttributes.push( bufferAttribute ); + + nodeData.bufferAttribute = bufferAttribute; + + } + + return bufferAttribute; + + } + + /** + * Returns an instance of {@link StructType} for the given output struct node. + * + * @param {OutputStructNode} node - The output struct node. + * @param {Array} membersLayout - The output struct types. + * @param {?string} [name=null] - The name of the struct. + * @param {('vertex'|'fragment'|'compute'|'any')} [shaderStage=this.shaderStage] - The shader stage. + * @return {StructType} The struct type attribute. + */ + getStructTypeFromNode( node, membersLayout, name = null, shaderStage = this.shaderStage ) { + + const nodeData = this.getDataFromNode( node, shaderStage, this.globalCache ); + + let structType = nodeData.structType; + + if ( structType === undefined ) { + + const index = this.structs.index ++; + + if ( name === null ) name = 'StructType' + index; + + structType = new StructType( name, membersLayout ); + + this.structs[ shaderStage ].push( structType ); + + nodeData.structType = structType; + + } + + return structType; + + } + + /** + * Returns an instance of {@link StructType} for the given output struct node. + * + * @param {OutputStructNode} node - The output struct node. + * @param {Array} membersLayout - The output struct types. + * @return {StructType} The struct type attribute. + */ + getOutputStructTypeFromNode( node, membersLayout ) { + + const structType = this.getStructTypeFromNode( node, membersLayout, 'OutputType', 'fragment' ); + structType.output = true; + + return structType; + + } + + /** + * Returns an instance of {@link NodeUniform} for the given uniform node. + * + * @param {UniformNode} node - The uniform node. + * @param {string} type - The uniform type. + * @param {('vertex'|'fragment'|'compute'|'any')} [shaderStage=this.shaderStage] - The shader stage. + * @param {?string} name - The name of the uniform. + * @return {NodeUniform} The node uniform. + */ + getUniformFromNode( node, type, shaderStage = this.shaderStage, name = null ) { + + const nodeData = this.getDataFromNode( node, shaderStage, this.globalCache ); + + let nodeUniform = nodeData.uniform; + + if ( nodeUniform === undefined ) { + + const index = this.uniforms.index ++; + + nodeUniform = new NodeUniform( name || ( 'nodeUniform' + index ), type, node ); + + this.uniforms[ shaderStage ].push( nodeUniform ); + + this.registerDeclaration( nodeUniform ); + + nodeData.uniform = nodeUniform; + + } + + return nodeUniform; + + } + + /** + * Returns the array length. + * + * @param {Node} node - The node. + * @return {?number} The array length. + */ + getArrayCount( node ) { + + let count = null; + + if ( node.isArrayNode ) count = node.count; + else if ( node.isVarNode && node.node.isArrayNode ) count = node.node.count; + + return count; + + } + + /** + * Returns an instance of {@link NodeVar} for the given variable node. + * + * @param {VarNode} node - The variable node. + * @param {?string} name - The variable's name. + * @param {string} [type=node.getNodeType( this )] - The variable's type. + * @param {('vertex'|'fragment'|'compute'|'any')} [shaderStage=this.shaderStage] - The shader stage. + * @param {boolean} [readOnly=false] - Whether the variable is read-only or not. + * + * @return {NodeVar} The node variable. + */ + getVarFromNode( node, name = null, type = node.getNodeType( this ), shaderStage = this.shaderStage, readOnly = false ) { + + const nodeData = this.getDataFromNode( node, shaderStage ); + + let nodeVar = nodeData.variable; + + if ( nodeVar === undefined ) { + + const idNS = readOnly ? '_const' : '_var'; + + const vars = this.vars[ shaderStage ] || ( this.vars[ shaderStage ] = [] ); + const id = this.vars[ idNS ] || ( this.vars[ idNS ] = 0 ); + + if ( name === null ) { + + name = ( readOnly ? 'nodeConst' : 'nodeVar' ) + id; + + this.vars[ idNS ] ++; + + } + + // + + const count = this.getArrayCount( node ); + + nodeVar = new NodeVar( name, type, readOnly, count ); + + if ( ! readOnly ) { + + vars.push( nodeVar ); + + } + + this.registerDeclaration( nodeVar ); + + nodeData.variable = nodeVar; + + } + + return nodeVar; + + } + + /** + * Returns whether a Node or its flow is deterministic, useful for use in `const`. + * + * @param {Node} node - The varying node. + * @return {boolean} Returns true if deterministic. + */ + isDeterministic( node ) { + + if ( node.isMathNode ) { + + return this.isDeterministic( node.aNode ) && + ( node.bNode ? this.isDeterministic( node.bNode ) : true ) && + ( node.cNode ? this.isDeterministic( node.cNode ) : true ); + + } else if ( node.isOperatorNode ) { + + return this.isDeterministic( node.aNode ) && + ( node.bNode ? this.isDeterministic( node.bNode ) : true ); + + } else if ( node.isArrayNode ) { + + if ( node.values !== null ) { + + for ( const n of node.values ) { + + if ( ! this.isDeterministic( n ) ) { + + return false; + + } + + } + + } + + return true; + + } else if ( node.isConstNode ) { + + return true; + + } + + return false; + + } + + /** + * Returns an instance of {@link NodeVarying} for the given varying node. + * + * @param {(VaryingNode|PropertyNode)} node - The varying node. + * @param {?string} name - The varying's name. + * @param {string} [type=node.getNodeType( this )] - The varying's type. + * @param {?string} interpolationType - The interpolation type of the varying. + * @param {?string} interpolationSampling - The interpolation sampling type of the varying. + * @return {NodeVar} The node varying. + */ + getVaryingFromNode( node, name = null, type = node.getNodeType( this ), interpolationType = null, interpolationSampling = null ) { + + const nodeData = this.getDataFromNode( node, 'any' ); + + let nodeVarying = nodeData.varying; + + if ( nodeVarying === undefined ) { + + const varyings = this.varyings; + const index = varyings.length; + + if ( name === null ) name = 'nodeVarying' + index; + + nodeVarying = new NodeVarying( name, type, interpolationType, interpolationSampling ); + + varyings.push( nodeVarying ); + + this.registerDeclaration( nodeVarying ); + + nodeData.varying = nodeVarying; + + } + + return nodeVarying; + + } + + /** + * Returns the current namespace for the node builder. + * + * @return {string} The current namespace. + */ + get namespace() { + + return this.context.namespace; + + } + + /** + * Returns the output namespace for the node builder, which is used for the current output node. + * + * @return {string} The output namespace. + */ + getOutputNamespace() { + + return this.getNamespace( 'outputNode' ); + + } + + /** + * Returns the namespace for the given property. + * + * If the property name is not set, it returns the namespace only. + * If the namespace is not set, it returns the property name. + * If the namespace is set, it returns the namespace concatenated with the property name. + * + * @param {string} [property=''] - The property name. + * @return {string} The namespace for the property. + */ + getNamespace( property = '' ) { + + const ns = this.namespace; + + let nsName; + + if ( ns ) { + + nsName = property ? ( ns + '_' + property ) : ns; + + } else { + + nsName = property; + + } + + return nsName; + + } + + /** + * Registers a node declaration in the current shader stage. + * + * @param {Object} node - The node to be registered. + */ + registerDeclaration( node ) { + + const shaderStage = this.shaderStage; + const declarations = this.declarations[ shaderStage ] || ( this.declarations[ shaderStage ] = {} ); + + const property = this.getPropertyName( node ); + + let index = 1; + let name = property; + + // Automatically renames the property if the name is already in use. + + while ( declarations[ name ] !== undefined ) { + + name = property + '_' + index ++; + + } + + if ( index > 1 ) { + + node.name = name; + + console.warn( `THREE.TSL: Declaration name '${ property }' of '${ node.type }' already in use. Renamed to '${ name }'.` ); + + } + + declarations[ name ] = node; + + } + + /** + * Returns an instance of {@link NodeCode} for the given code node. + * + * @param {CodeNode} node - The code node. + * @param {string} type - The node type. + * @param {('vertex'|'fragment'|'compute'|'any')} [shaderStage=this.shaderStage] - The shader stage. + * @return {NodeCode} The node code. + */ + getCodeFromNode( node, type, shaderStage = this.shaderStage ) { + + const nodeData = this.getDataFromNode( node ); + + let nodeCode = nodeData.code; + + if ( nodeCode === undefined ) { + + const codes = this.codes[ shaderStage ] || ( this.codes[ shaderStage ] = [] ); + const index = codes.length; + + nodeCode = new NodeCode( 'nodeCode' + index, type ); + + codes.push( nodeCode ); + + nodeData.code = nodeCode; + + } + + return nodeCode; + + } + + /** + * Adds a code flow based on the code-block hierarchy. + + * This is used so that code-blocks like If,Else create their variables locally if the Node + * is only used inside one of these conditionals in the current shader stage. + * + * @param {Node} node - The node to add. + * @param {Node} nodeBlock - Node-based code-block. Usually 'ConditionalNode'. + */ + addFlowCodeHierarchy( node, nodeBlock ) { + + const { flowCodes, flowCodeBlock } = this.getDataFromNode( node ); + + let needsFlowCode = true; + let nodeBlockHierarchy = nodeBlock; + + while ( nodeBlockHierarchy ) { + + if ( flowCodeBlock.get( nodeBlockHierarchy ) === true ) { + + needsFlowCode = false; + break; + + } + + nodeBlockHierarchy = this.getDataFromNode( nodeBlockHierarchy ).parentNodeBlock; + + } + + if ( needsFlowCode ) { + + for ( const flowCode of flowCodes ) { + + this.addLineFlowCode( flowCode ); + + } + + } + + } + + /** + * Add a inline-code to the current flow code-block. + * + * @param {Node} node - The node to add. + * @param {string} code - The code to add. + * @param {Node} nodeBlock - Current ConditionalNode + */ + addLineFlowCodeBlock( node, code, nodeBlock ) { + + const nodeData = this.getDataFromNode( node ); + const flowCodes = nodeData.flowCodes || ( nodeData.flowCodes = [] ); + const codeBlock = nodeData.flowCodeBlock || ( nodeData.flowCodeBlock = new WeakMap() ); + + flowCodes.push( code ); + codeBlock.set( nodeBlock, true ); + + } + + /** + * Add a inline-code to the current flow. + * + * @param {string} code - The code to add. + * @param {?Node} [node= null] - Optional Node, can help the system understand if the Node is part of a code-block. + * @return {NodeBuilder} A reference to this node builder. + */ + addLineFlowCode( code, node = null ) { + + if ( code === '' ) return this; + + if ( node !== null && this.context.nodeBlock ) { + + this.addLineFlowCodeBlock( node, code, this.context.nodeBlock ); + + } + + code = this.tab + code; + + if ( ! /;\s*$/.test( code ) ) { + + code = code + ';\n'; + + } + + this.flow.code += code; + + return this; + + } + + /** + * Adds a code to the current code flow. + * + * @param {string} code - Shader code. + * @return {NodeBuilder} A reference to this node builder. + */ + addFlowCode( code ) { + + this.flow.code += code; + + return this; + + } + + /** + * Add tab in the code that will be generated so that other snippets respect the current tabulation. + * Typically used in codes with If,Else. + * + * @return {NodeBuilder} A reference to this node builder. + */ + addFlowTab() { + + this.tab += '\t'; + + return this; + + } + + /** + * Removes a tab. + * + * @return {NodeBuilder} A reference to this node builder. + */ + removeFlowTab() { + + this.tab = this.tab.slice( 0, - 1 ); + + return this; + + } + + /** + * Gets the current flow data based on a Node. + * + * @param {Node} node - Node that the flow was started. + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {Object} The flow data. + */ + getFlowData( node/*, shaderStage*/ ) { + + return this.flowsData.get( node ); + + } + + /** + * Executes the node flow based on a root node to generate the final shader code. + * + * @param {Node} node - The node to execute. + * @return {Object} The code flow. + */ + flowNode( node ) { + + const output = node.getNodeType( this ); + + const flowData = this.flowChildNode( node, output ); + + this.flowsData.set( node, flowData ); + + return flowData; + + } + + /** + * Includes a node in the current function node. + * + * @param {Node} node - The node to include. + * @returns {void} + */ + addInclude( node ) { + + if ( this.currentFunctionNode !== null ) { + + this.currentFunctionNode.includes.push( node ); + + } + + } + + /** + * Returns the native shader operator name for a given generic name. + * It is a similar type of method like {@link NodeBuilder#getMethod}. + * + * @param {ShaderNodeInternal} shaderNode - The shader node to build the function node with. + * @return {FunctionNode} The build function node. + */ + buildFunctionNode( shaderNode ) { + + const fn = new FunctionNode(); + + const previous = this.currentFunctionNode; + + this.currentFunctionNode = fn; + + fn.code = this.buildFunctionCode( shaderNode ); + + this.currentFunctionNode = previous; + + return fn; + + } + + /** + * Generates a code flow based on a TSL function: Fn(). + * + * @param {ShaderNodeInternal} shaderNode - A function code will be generated based on the input. + * @return {Object} + */ + flowShaderNode( shaderNode ) { + + const layout = shaderNode.layout; + + const inputs = { + [ Symbol.iterator ]() { + + let index = 0; + const values = Object.values( this ); + return { + next: () => ( { + value: values[ index ], + done: index ++ >= values.length + } ) + }; + + } + }; + + for ( const input of layout.inputs ) { + + inputs[ input.name ] = new ParameterNode( input.type, input.name ); + + } + + // + + shaderNode.layout = null; + + const callNode = shaderNode.call( inputs ); + const flowData = this.flowStagesNode( callNode, layout.type ); + + shaderNode.layout = layout; + + return flowData; + + } + + /** + * Runs the node flow through all the steps of creation, 'setup', 'analyze', 'generate'. + * + * @param {Node} node - The node to execute. + * @param {?string} output - Expected output type. For example 'vec3'. + * @return {Object} + */ + flowStagesNode( node, output = null ) { + + const previousFlow = this.flow; + const previousVars = this.vars; + const previousDeclarations = this.declarations; + const previousCache = this.cache; + const previousBuildStage = this.buildStage; + const previousStack = this.stack; + + const flow = { + code: '' + }; + + this.flow = flow; + this.vars = {}; + this.declarations = {}; + this.cache = new NodeCache(); + this.stack = stack(); + + for ( const buildStage of defaultBuildStages ) { + + this.setBuildStage( buildStage ); + + flow.result = node.build( this, output ); + + } + + flow.vars = this.getVars( this.shaderStage ); + + this.flow = previousFlow; + this.vars = previousVars; + this.declarations = previousDeclarations; + this.cache = previousCache; + this.stack = previousStack; + + this.setBuildStage( previousBuildStage ); + + return flow; + + } + + /** + * Returns the native shader operator name for a given generic name. + * It is a similar type of method like {@link NodeBuilder#getMethod}. + * + * @abstract + * @param {string} op - The operator name to resolve. + * @return {?string} The resolved operator name. + */ + getFunctionOperator( /* op */ ) { + + return null; + + } + + /** + * Builds the given shader node. + * + * @abstract + * @param {ShaderNodeInternal} shaderNode - The shader node. + * @return {string} The function code. + */ + buildFunctionCode( /* shaderNode */ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * Generates a code flow based on a child Node. + * + * @param {Node} node - The node to execute. + * @param {?string} output - Expected output type. For example 'vec3'. + * @return {Object} The code flow. + */ + flowChildNode( node, output = null ) { + + const previousFlow = this.flow; + + const flow = { + code: '' + }; + + this.flow = flow; + + flow.result = node.build( this, output ); + + this.flow = previousFlow; + + return flow; + + } + + /** + * Executes a flow of code in a different stage. + * + * Some nodes like `varying()` have the ability to compute code in vertex-stage and + * return the value in fragment-stage even if it is being executed in an input fragment. + * + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @param {Node} node - The node to execute. + * @param {?string} output - Expected output type. For example 'vec3'. + * @param {?string} propertyName - The property name to assign the result. + * @return {Object|Node|null} The code flow or node.build() result. + */ + flowNodeFromShaderStage( shaderStage, node, output = null, propertyName = null ) { + + const previousTab = this.tab; + const previousCache = this.cache; + const previousShaderStage = this.shaderStage; + const previousContext = this.context; + + this.setShaderStage( shaderStage ); + + const context = { ...this.context }; + delete context.nodeBlock; + + this.cache = this.globalCache; + this.tab = '\t'; + this.context = context; + + let result = null; + + if ( this.buildStage === 'generate' ) { + + const flowData = this.flowChildNode( node, output ); + + if ( propertyName !== null ) { + + flowData.code += `${ this.tab + propertyName } = ${ flowData.result };\n`; + + } + + this.flowCode[ shaderStage ] = this.flowCode[ shaderStage ] + flowData.code; + + result = flowData; + + } else { + + result = node.build( this ); + + } + + this.setShaderStage( previousShaderStage ); + + this.cache = previousCache; + this.tab = previousTab; + this.context = previousContext; + + return result; + + } + + /** + * Returns an array holding all node attributes of this node builder. + * + * @return {Array} The node attributes of this builder. + */ + getAttributesArray() { + + return this.attributes.concat( this.bufferAttributes ); + + } + + /** + * Returns the attribute definitions as a shader string for the given shader stage. + * + * @abstract + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {string} The attribute code section. + */ + getAttributes( /*shaderStage*/ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns the varying definitions as a shader string for the given shader stage. + * + * @abstract + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {string} The varying code section. + */ + getVaryings( /*shaderStage*/ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns a single variable definition as a shader string for the given variable type and name. + * + * @param {string} type - The variable's type. + * @param {string} name - The variable's name. + * @param {?number} [count=null] - The array length. + * @return {string} The shader string. + */ + getVar( type, name, count = null ) { + + return `${ count !== null ? this.generateArrayDeclaration( type, count ) : this.getType( type ) } ${ name }`; + + } + + /** + * Returns the variable definitions as a shader string for the given shader stage. + * + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {string} The variable code section. + */ + getVars( shaderStage ) { + + let snippet = ''; + + const vars = this.vars[ shaderStage ]; + + if ( vars !== undefined ) { + + for ( const variable of vars ) { + + snippet += `${ this.getVar( variable.type, variable.name ) }; `; + + } + + } + + return snippet; + + } + + /** + * Returns the uniform definitions as a shader string for the given shader stage. + * + * @abstract + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {string} The uniform code section. + */ + getUniforms( /*shaderStage*/ ) { + + console.warn( 'Abstract function.' ); + + } + + /** + * Returns the native code definitions as a shader string for the given shader stage. + * + * @param {('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage. + * @return {string} The native code section. + */ + getCodes( shaderStage ) { + + const codes = this.codes[ shaderStage ]; + + let code = ''; + + if ( codes !== undefined ) { + + for ( const nodeCode of codes ) { + + code += nodeCode.code + '\n'; + + } + + } + + return code; + + } + + /** + * Returns the hash of this node builder. + * + * @return {string} The hash. + */ + getHash() { + + return this.vertexShader + this.fragmentShader + this.computeShader; + + } + + /** + * Sets the current shader stage. + * + * @param {?('vertex'|'fragment'|'compute'|'any')} shaderStage - The shader stage to set. + */ + setShaderStage( shaderStage ) { + + this.shaderStage = shaderStage; + + } + + /** + * Returns the current shader stage. + * + * @return {?('vertex'|'fragment'|'compute'|'any')} The current shader stage. + */ + getShaderStage() { + + return this.shaderStage; + + } + + /** + * Sets the current build stage. + * + * @param {?('setup'|'analyze'|'generate')} buildStage - The build stage to set. + */ + setBuildStage( buildStage ) { + + this.buildStage = buildStage; + + } + + /** + * Returns the current build stage. + * + * @return {?('setup'|'analyze'|'generate')} The current build stage. + */ + getBuildStage() { + + return this.buildStage; + + } + + /** + * Controls the code build of the shader stages. + * + * @abstract + */ + buildCode() { + + console.warn( 'Abstract function.' ); + + } + + /** + * Central build method which controls the build for the given object. + * + * @return {NodeBuilder} A reference to this node builder. + */ + build() { + + const { object, material, renderer } = this; + + if ( material !== null ) { + + let nodeMaterial = renderer.library.fromMaterial( material ); + + if ( nodeMaterial === null ) { + + console.error( `NodeMaterial: Material "${ material.type }" is not compatible.` ); + + nodeMaterial = new NodeMaterial(); + + } + + nodeMaterial.build( this ); + + } else { + + this.addFlow( 'compute', object ); + + } + + // setup() -> stage 1: create possible new nodes and returns an output reference node + // analyze() -> stage 2: analyze nodes to possible optimization and validation + // generate() -> stage 3: generate shader + + for ( const buildStage of defaultBuildStages ) { + + this.setBuildStage( buildStage ); + + if ( this.context.vertex && this.context.vertex.isNode ) { + + this.flowNodeFromShaderStage( 'vertex', this.context.vertex ); + + } + + for ( const shaderStage of shaderStages ) { + + this.setShaderStage( shaderStage ); + + const flowNodes = this.flowNodes[ shaderStage ]; + + for ( const node of flowNodes ) { + + if ( buildStage === 'generate' ) { + + this.flowNode( node ); + + } else { + + node.build( this ); + + } + + } + + } + + } + + this.setBuildStage( null ); + this.setShaderStage( null ); + + // stage 4: build code for a specific output + + this.buildCode(); + this.buildUpdateNodes(); + + return this; + + } + + /** + * Returns a uniform representation which is later used for UBO generation and rendering. + * + * @param {NodeUniform} uniformNode - The uniform node. + * @param {string} type - The requested type. + * @return {Uniform} The uniform. + */ + getNodeUniform( uniformNode, type ) { + + if ( type === 'float' || type === 'int' || type === 'uint' ) return new NumberNodeUniform( uniformNode ); + if ( type === 'vec2' || type === 'ivec2' || type === 'uvec2' ) return new Vector2NodeUniform( uniformNode ); + if ( type === 'vec3' || type === 'ivec3' || type === 'uvec3' ) return new Vector3NodeUniform( uniformNode ); + if ( type === 'vec4' || type === 'ivec4' || type === 'uvec4' ) return new Vector4NodeUniform( uniformNode ); + if ( type === 'color' ) return new ColorNodeUniform( uniformNode ); + if ( type === 'mat2' ) return new Matrix2NodeUniform( uniformNode ); + if ( type === 'mat3' ) return new Matrix3NodeUniform( uniformNode ); + if ( type === 'mat4' ) return new Matrix4NodeUniform( uniformNode ); + + throw new Error( `Uniform "${type}" not declared.` ); + + } + + /** + * Formats the given shader snippet from a given type into another one. E.g. + * this method might be used to convert a simple float string `"1.0"` into a + * `vec3` representation: `"vec3( 1.0 )"`. + * + * @param {string} snippet - The shader snippet. + * @param {string} fromType - The source type. + * @param {string} toType - The target type. + * @return {string} The updated shader string. + */ + format( snippet, fromType, toType ) { + + fromType = this.getVectorType( fromType ); + toType = this.getVectorType( toType ); + + if ( fromType === toType || toType === null || this.isReference( toType ) ) { + + return snippet; + + } + + const fromTypeLength = this.getTypeLength( fromType ); + const toTypeLength = this.getTypeLength( toType ); + + if ( fromTypeLength === 16 && toTypeLength === 9 ) { + + return `${ this.getType( toType ) }( ${ snippet }[ 0 ].xyz, ${ snippet }[ 1 ].xyz, ${ snippet }[ 2 ].xyz )`; + + } + + if ( fromTypeLength === 9 && toTypeLength === 4 ) { + + return `${ this.getType( toType ) }( ${ snippet }[ 0 ].xy, ${ snippet }[ 1 ].xy )`; + + } + + + if ( fromTypeLength > 4 ) { // fromType is matrix-like + + // @TODO: ignore for now + + return snippet; + + } + + if ( toTypeLength > 4 || toTypeLength === 0 ) { // toType is matrix-like or unknown + + // @TODO: ignore for now + + return snippet; + + } + + if ( fromTypeLength === toTypeLength ) { + + return `${ this.getType( toType ) }( ${ snippet } )`; + + } + + if ( fromTypeLength > toTypeLength ) { + + snippet = toType === 'bool' ? `all( ${ snippet } )` : `${ snippet }.${ 'xyz'.slice( 0, toTypeLength ) }`; + + return this.format( snippet, this.getTypeFromLength( toTypeLength, this.getComponentType( fromType ) ), toType ); + + } + + if ( toTypeLength === 4 && fromTypeLength > 1 ) { // toType is vec4-like + + return `${ this.getType( toType ) }( ${ this.format( snippet, fromType, 'vec3' ) }, 1.0 )`; + + } + + if ( fromTypeLength === 2 ) { // fromType is vec2-like and toType is vec3-like + + return `${ this.getType( toType ) }( ${ this.format( snippet, fromType, 'vec2' ) }, 0.0 )`; + + } + + if ( fromTypeLength === 1 && toTypeLength > 1 && fromType !== this.getComponentType( toType ) ) { // fromType is float-like + + // convert a number value to vector type, e.g: + // vec3( 1u ) -> vec3( float( 1u ) ) + + snippet = `${ this.getType( this.getComponentType( toType ) ) }( ${ snippet } )`; + + } + + return `${ this.getType( toType ) }( ${ snippet } )`; // fromType is float-like + + } + + /** + * Returns a signature with the engine's current revision. + * + * @return {string} The signature. + */ + getSignature() { + + return `// Three.js r${ REVISION } - Node System\n`; + + } + + /** + * Prevents the node builder from being used as an iterable in TSL.Fn(), avoiding potential runtime errors. + */ + *[ Symbol.iterator ]() { } + + // Deprecated + + /** + * @function + * @deprecated since r168. Use `new NodeMaterial()` instead, with targeted node material name. + * + * @param {string} [type='NodeMaterial'] - The node material type. + * @throws {Error} + */ + createNodeMaterial( type = 'NodeMaterial' ) { // @deprecated, r168 + + throw new Error( `THREE.NodeBuilder: createNodeMaterial() was deprecated. Use new ${ type }() instead.` ); + + } + + +} + +/** + * Management class for updating nodes. The module tracks metrics like + * the elapsed time, delta time, the render and frame ID to correctly + * call the node update methods {@link Node#updateBefore}, {@link Node#update} + * and {@link Node#updateAfter} depending on the node's configuration. + */ +class NodeFrame { + + /** + * Constructs a new node fame. + */ + constructor() { + + /** + * The elapsed time in seconds. + * + * @type {number} + * @default 0 + */ + this.time = 0; + + /** + * The delta time in seconds. + * + * @type {number} + * @default 0 + */ + this.deltaTime = 0; + + /** + * The frame ID. + * + * @type {number} + * @default 0 + */ + this.frameId = 0; + + /** + * The render ID. + * + * @type {number} + * @default 0 + */ + this.renderId = 0; + + /** + * Used to control the {@link Node#update} call. + * + * @type {WeakMap} + */ + this.updateMap = new WeakMap(); + + /** + * Used to control the {@link Node#updateBefore} call. + * + * @type {WeakMap} + */ + this.updateBeforeMap = new WeakMap(); + + /** + * Used to control the {@link Node#updateAfter} call. + * + * @type {WeakMap} + */ + this.updateAfterMap = new WeakMap(); + + /** + * A reference to the current renderer. + * + * @type {?Renderer} + * @default null + */ + this.renderer = null; + + /** + * A reference to the current material. + * + * @type {?Material} + * @default null + */ + this.material = null; + + /** + * A reference to the current camera. + * + * @type {?Camera} + * @default null + */ + this.camera = null; + + /** + * A reference to the current 3D object. + * + * @type {?Object3D} + * @default null + */ + this.object = null; + + /** + * A reference to the current scene. + * + * @type {?Scene} + * @default null + */ + this.scene = null; + + } + + /** + * Returns a dictionary for a given node and update map which + * is used to correctly call node update methods per frame or render. + * + * @private + * @param {WeakMap} referenceMap - The reference weak map. + * @param {Node} nodeRef - The reference to the current node. + * @return {Object} The dictionary. + */ + _getMaps( referenceMap, nodeRef ) { + + let maps = referenceMap.get( nodeRef ); + + if ( maps === undefined ) { + + maps = { + renderMap: new WeakMap(), + frameMap: new WeakMap() + }; + + referenceMap.set( nodeRef, maps ); + + } + + return maps; + + } + + /** + * This method executes the {@link Node#updateBefore} for the given node. + * It makes sure {@link Node#updateBeforeType} is honored meaning the update + * is only executed once per frame, render or object depending on the update + * type. + * + * @param {Node} node - The node that should be updated. + */ + updateBeforeNode( node ) { + + const updateType = node.getUpdateBeforeType(); + const reference = node.updateReference( this ); + + if ( updateType === NodeUpdateType.FRAME ) { + + const { frameMap } = this._getMaps( this.updateBeforeMap, reference ); + + if ( frameMap.get( reference ) !== this.frameId ) { + + if ( node.updateBefore( this ) !== false ) { + + frameMap.set( reference, this.frameId ); + + } + + } + + } else if ( updateType === NodeUpdateType.RENDER ) { + + const { renderMap } = this._getMaps( this.updateBeforeMap, reference ); + + if ( renderMap.get( reference ) !== this.renderId ) { + + if ( node.updateBefore( this ) !== false ) { + + renderMap.set( reference, this.renderId ); + + } + + } + + } else if ( updateType === NodeUpdateType.OBJECT ) { + + node.updateBefore( this ); + + } + + } + + /** + * This method executes the {@link Node#updateAfter} for the given node. + * It makes sure {@link Node#updateAfterType} is honored meaning the update + * is only executed once per frame, render or object depending on the update + * type. + * + * @param {Node} node - The node that should be updated. + */ + updateAfterNode( node ) { + + const updateType = node.getUpdateAfterType(); + const reference = node.updateReference( this ); + + if ( updateType === NodeUpdateType.FRAME ) { + + const { frameMap } = this._getMaps( this.updateAfterMap, reference ); + + if ( frameMap.get( reference ) !== this.frameId ) { + + if ( node.updateAfter( this ) !== false ) { + + frameMap.set( reference, this.frameId ); + + } + + } + + } else if ( updateType === NodeUpdateType.RENDER ) { + + const { renderMap } = this._getMaps( this.updateAfterMap, reference ); + + if ( renderMap.get( reference ) !== this.renderId ) { + + if ( node.updateAfter( this ) !== false ) { + + renderMap.set( reference, this.renderId ); + + } + + } + + } else if ( updateType === NodeUpdateType.OBJECT ) { + + node.updateAfter( this ); + + } + + } + + /** + * This method executes the {@link Node#update} for the given node. + * It makes sure {@link Node#updateType} is honored meaning the update + * is only executed once per frame, render or object depending on the update + * type. + * + * @param {Node} node - The node that should be updated. + */ + updateNode( node ) { + + const updateType = node.getUpdateType(); + const reference = node.updateReference( this ); + + if ( updateType === NodeUpdateType.FRAME ) { + + const { frameMap } = this._getMaps( this.updateMap, reference ); + + if ( frameMap.get( reference ) !== this.frameId ) { + + if ( node.update( this ) !== false ) { + + frameMap.set( reference, this.frameId ); + + } + + } + + } else if ( updateType === NodeUpdateType.RENDER ) { + + const { renderMap } = this._getMaps( this.updateMap, reference ); + + if ( renderMap.get( reference ) !== this.renderId ) { + + if ( node.update( this ) !== false ) { + + renderMap.set( reference, this.renderId ); + + } + + } + + } else if ( updateType === NodeUpdateType.OBJECT ) { + + node.update( this ); + + } + + } + + /** + * Updates the internal state of the node frame. This method is + * called by the renderer in its internal animation loop. + */ + update() { + + this.frameId ++; + + if ( this.lastTime === undefined ) this.lastTime = performance.now(); + + this.deltaTime = ( performance.now() - this.lastTime ) / 1000; + + this.lastTime = performance.now(); + + this.time += this.deltaTime; + + } + +} + +/** + * Describes the input of a {@link NodeFunction}. + */ +class NodeFunctionInput { + + /** + * Constructs a new node function input. + * + * @param {string} type - The input type. + * @param {string} name - The input name. + * @param {?number} [count=null] - If the input is an Array, count will be the length. + * @param {('in'|'out'|'inout')} [qualifier=''] - The parameter qualifier (only relevant for GLSL). + * @param {boolean} [isConst=false] - Whether the input uses a const qualifier or not (only relevant for GLSL). + */ + constructor( type, name, count = null, qualifier = '', isConst = false ) { + + /** + * The input type. + * + * @type {string} + */ + this.type = type; + + /** + * The input name. + * + * @type {string} + */ + this.name = name; + + /** + * If the input is an Array, count will be the length. + * + * @type {?number} + * @default null + */ + this.count = count; + + /** + *The parameter qualifier (only relevant for GLSL). + * + * @type {('in'|'out'|'inout')} + * @default '' + */ + this.qualifier = qualifier; + + /** + * Whether the input uses a const qualifier or not (only relevant for GLSL). + * + * @type {boolean} + * @default false + */ + this.isConst = isConst; + + } + +} + +NodeFunctionInput.isNodeFunctionInput = true; + +/** + * Module for representing directional lights as nodes. + * + * @augments AnalyticLightNode + */ +class DirectionalLightNode extends AnalyticLightNode { + + static get type() { + + return 'DirectionalLightNode'; + + } + + /** + * Constructs a new directional light node. + * + * @param {?DirectionalLight} [light=null] - The directional light source. + */ + constructor( light = null ) { + + super( light ); + + } + + setupDirect() { + + const lightColor = this.colorNode; + const lightDirection = lightTargetDirection( this.light ); + + return { lightDirection, lightColor }; + + } + +} + +const _matrix41 = /*@__PURE__*/ new Matrix4(); +const _matrix42 = /*@__PURE__*/ new Matrix4(); + +let _ltcLib = null; + +/** + * Module for representing rect area lights as nodes. + * + * @augments AnalyticLightNode + */ +class RectAreaLightNode extends AnalyticLightNode { + + static get type() { + + return 'RectAreaLightNode'; + + } + + /** + * Constructs a new rect area light node. + * + * @param {?RectAreaLight} [light=null] - The rect area light source. + */ + constructor( light = null ) { + + super( light ); + + /** + * Uniform node representing the half height of the are light. + * + * @type {UniformNode} + */ + this.halfHeight = uniform( new Vector3() ).setGroup( renderGroup ); + + /** + * Uniform node representing the half width of the are light. + * + * @type {UniformNode} + */ + this.halfWidth = uniform( new Vector3() ).setGroup( renderGroup ); + + /** + * The `updateType` is set to `NodeUpdateType.RENDER` since the light + * relies on `viewMatrix` which might vary per render call. + * + * @type {string} + * @default 'render' + */ + this.updateType = NodeUpdateType.RENDER; + + } + + /** + * Overwritten to updated rect area light specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( frame ) { + + super.update( frame ); + + const { light } = this; + + const viewMatrix = frame.camera.matrixWorldInverse; + + _matrix42.identity(); + _matrix41.copy( light.matrixWorld ); + _matrix41.premultiply( viewMatrix ); + _matrix42.extractRotation( _matrix41 ); + + this.halfWidth.value.set( light.width * 0.5, 0.0, 0.0 ); + this.halfHeight.value.set( 0.0, light.height * 0.5, 0.0 ); + + this.halfWidth.value.applyMatrix4( _matrix42 ); + this.halfHeight.value.applyMatrix4( _matrix42 ); + + } + + setupDirectRectArea( builder ) { + + let ltc_1, ltc_2; + + if ( builder.isAvailable( 'float32Filterable' ) ) { + + ltc_1 = texture( _ltcLib.LTC_FLOAT_1 ); + ltc_2 = texture( _ltcLib.LTC_FLOAT_2 ); + + } else { + + ltc_1 = texture( _ltcLib.LTC_HALF_1 ); + ltc_2 = texture( _ltcLib.LTC_HALF_2 ); + + } + + const { colorNode, light } = this; + + const lightPosition = lightViewPosition( light ); + + return { + lightColor: colorNode, + lightPosition, + halfWidth: this.halfWidth, + halfHeight: this.halfHeight, + ltc_1, + ltc_2 + }; + + } + + /** + * Used to configure the internal BRDF approximation texture data. + * + * @param {RectAreaLightTexturesLib} ltc - The BRDF approximation texture data. + */ + static setLTC( ltc ) { + + _ltcLib = ltc; + + } + +} + +/** + * Module for representing spot lights as nodes. + * + * @augments AnalyticLightNode + */ +class SpotLightNode extends AnalyticLightNode { + + static get type() { + + return 'SpotLightNode'; + + } + + /** + * Constructs a new spot light node. + * + * @param {?SpotLight} [light=null] - The spot light source. + */ + constructor( light = null ) { + + super( light ); + + /** + * Uniform node representing the cone cosine. + * + * @type {UniformNode} + */ + this.coneCosNode = uniform( 0 ).setGroup( renderGroup ); + + /** + * Uniform node representing the penumbra cosine. + * + * @type {UniformNode} + */ + this.penumbraCosNode = uniform( 0 ).setGroup( renderGroup ); + + /** + * Uniform node representing the cutoff distance. + * + * @type {UniformNode} + */ + this.cutoffDistanceNode = uniform( 0 ).setGroup( renderGroup ); + + /** + * Uniform node representing the decay exponent. + * + * @type {UniformNode} + */ + this.decayExponentNode = uniform( 0 ).setGroup( renderGroup ); + + /** + * Uniform node representing the light color. + * + * @type {UniformNode} + */ + this.colorNode = uniform( this.color ).setGroup( renderGroup ); + + } + + /** + * Overwritten to updated spot light specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( frame ) { + + super.update( frame ); + + const { light } = this; + + this.coneCosNode.value = Math.cos( light.angle ); + this.penumbraCosNode.value = Math.cos( light.angle * ( 1 - light.penumbra ) ); + + this.cutoffDistanceNode.value = light.distance; + this.decayExponentNode.value = light.decay; + + } + + /** + * Computes the spot attenuation for the given angle. + * + * @param {NodeBuilder} builder - The node builder. + * @param {Node} angleCosine - The angle to compute the spot attenuation for. + * @return {Node} The spot attenuation. + */ + getSpotAttenuation( builder, angleCosine ) { + + const { coneCosNode, penumbraCosNode } = this; + + return smoothstep( coneCosNode, penumbraCosNode, angleCosine ); + + } + + getLightCoord( builder ) { + + const properties = builder.getNodeProperties( this ); + let projectionUV = properties.projectionUV; + + if ( projectionUV === undefined ) { + + projectionUV = lightProjectionUV( this.light, builder.context.positionWorld ); + + properties.projectionUV = projectionUV; + + } + + return projectionUV; + + } + + setupDirect( builder ) { + + const { colorNode, cutoffDistanceNode, decayExponentNode, light } = this; + + const lightVector = this.getLightVector( builder ); + + const lightDirection = lightVector.normalize(); + const angleCos = lightDirection.dot( lightTargetDirection( light ) ); + + const spotAttenuation = this.getSpotAttenuation( builder, angleCos ); + + const lightDistance = lightVector.length(); + + const lightAttenuation = getDistanceAttenuation( { + lightDistance, + cutoffDistance: cutoffDistanceNode, + decayExponent: decayExponentNode + } ); + + let lightColor = colorNode.mul( spotAttenuation ).mul( lightAttenuation ); + + let projected, lightCoord; + + if ( light.colorNode ) { + + lightCoord = this.getLightCoord( builder ); + projected = light.colorNode( lightCoord ); + + } else if ( light.map ) { + + lightCoord = this.getLightCoord( builder ); + projected = texture( light.map, lightCoord.xy ).onRenderUpdate( () => light.map ); + + } + + if ( projected ) { + + const inSpotLightMap = lightCoord.mul( 2. ).sub( 1. ).abs().lessThan( 1. ).all(); + + lightColor = inSpotLightMap.select( lightColor.mul( projected ), lightColor ); + + } + + return { lightColor, lightDirection }; + + } + +} + +/** + * An IES version of the default spot light node. + * + * @augments SpotLightNode + */ +class IESSpotLightNode extends SpotLightNode { + + static get type() { + + return 'IESSpotLightNode'; + + } + + /** + * Overwrites the default implementation to compute an IES conform spot attenuation. + * + * @param {NodeBuilder} builder - The node builder. + * @param {Node} angleCosine - The angle to compute the spot attenuation for. + * @return {Node} The spot attenuation. + */ + getSpotAttenuation( builder, angleCosine ) { + + const iesMap = this.light.iesMap; + + let spotAttenuation = null; + + if ( iesMap && iesMap.isTexture === true ) { + + const angle = angleCosine.acos().mul( 1.0 / Math.PI ); + + spotAttenuation = texture( iesMap, vec2( angle, 0 ), 0 ).r; + + } else { + + spotAttenuation = super.getSpotAttenuation( angleCosine ); + + } + + return spotAttenuation; + + } + +} + +const sdBox = /*@__PURE__*/ Fn( ( [ p, b ] ) => { + + const d = p.abs().sub( b ); + + return length( max$1( d, 0.0 ) ).add( min$1( max$1( d.x, d.y ), 0.0 ) ); + +} ); + +/** + * An implementation of a projector light node. + * + * @augments SpotLightNode + */ +class ProjectorLightNode extends SpotLightNode { + + static get type() { + + return 'ProjectorLightNode'; + + } + + update( frame ) { + + super.update( frame ); + + const light = this.light; + + this.penumbraCosNode.value = Math.min( Math.cos( light.angle * ( 1 - light.penumbra ) ), .99999 ); + + if ( light.aspect === null ) { + + let aspect = 1; + + if ( light.map !== null ) { + + aspect = light.map.width / light.map.height; + + } + + light.shadow.aspect = aspect; + + } else { + + light.shadow.aspect = light.aspect; + + } + + } + + /** + * Overwrites the default implementation to compute projection attenuation. + * + * @param {NodeBuilder} builder - The node builder. + * @return {Node} The spot attenuation. + */ + getSpotAttenuation( builder ) { + + const penumbraCos = this.penumbraCosNode; + const spotLightCoord = this.getLightCoord( builder ); + const coord = spotLightCoord.xyz.div( spotLightCoord.w ); + + const boxDist = sdBox( coord.xy.sub( vec2( 0.5 ) ), vec2( 0.5 ) ); + const angleFactor = div( - 1, sub( 1.0, acos( penumbraCos ) ).sub( 1.0 ) ); + const attenuation = saturate( boxDist.mul( - 2 ).mul( angleFactor ) ); + + return attenuation; + + } + +} + +/** + * Module for representing ambient lights as nodes. + * + * @augments AnalyticLightNode + */ +class AmbientLightNode extends AnalyticLightNode { + + static get type() { + + return 'AmbientLightNode'; + + } + + /** + * Constructs a new ambient light node. + * + * @param {?AmbientLight} [light=null] - The ambient light source. + */ + constructor( light = null ) { + + super( light ); + + } + + setup( { context } ) { + + context.irradiance.addAssign( this.colorNode ); + + } + +} + +/** + * Module for representing hemisphere lights as nodes. + * + * @augments AnalyticLightNode + */ +class HemisphereLightNode extends AnalyticLightNode { + + static get type() { + + return 'HemisphereLightNode'; + + } + + /** + * Constructs a new hemisphere light node. + * + * @param {?HemisphereLight} [light=null] - The hemisphere light source. + */ + constructor( light = null ) { + + super( light ); + + /** + * Uniform node representing the light's position. + * + * @type {UniformNode} + */ + this.lightPositionNode = lightPosition( light ); + + /** + * A node representing the light's direction. + * + * @type {Node} + */ + this.lightDirectionNode = this.lightPositionNode.normalize(); + + /** + * Uniform node representing the light's ground color. + * + * @type {UniformNode} + */ + this.groundColorNode = uniform( new Color() ).setGroup( renderGroup ); + + } + + /** + * Overwritten to updated hemisphere light specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( frame ) { + + const { light } = this; + + super.update( frame ); + + this.lightPositionNode.object3d = light; + + this.groundColorNode.value.copy( light.groundColor ).multiplyScalar( light.intensity ); + + } + + setup( builder ) { + + const { colorNode, groundColorNode, lightDirectionNode } = this; + + const dotNL = normalWorld.dot( lightDirectionNode ); + const hemiDiffuseWeight = dotNL.mul( 0.5 ).add( 0.5 ); + + const irradiance = mix( groundColorNode, colorNode, hemiDiffuseWeight ); + + builder.context.irradiance.addAssign( irradiance ); + + } + +} + +/** + * Module for representing light probes as nodes. + * + * @augments AnalyticLightNode + */ +class LightProbeNode extends AnalyticLightNode { + + static get type() { + + return 'LightProbeNode'; + + } + + /** + * Constructs a new light probe node. + * + * @param {?LightProbe} [light=null] - The light probe. + */ + constructor( light = null ) { + + super( light ); + + const array = []; + + for ( let i = 0; i < 9; i ++ ) array.push( new Vector3() ); + + /** + * Light probe represented as a uniform of spherical harmonics. + * + * @type {UniformArrayNode} + */ + this.lightProbe = uniformArray( array ); + + } + + /** + * Overwritten to updated light probe specific uniforms. + * + * @param {NodeFrame} frame - A reference to the current node frame. + */ + update( frame ) { + + const { light } = this; + + super.update( frame ); + + // + + for ( let i = 0; i < 9; i ++ ) { + + this.lightProbe.array[ i ].copy( light.sh.coefficients[ i ] ).multiplyScalar( light.intensity ); + + } + + } + + setup( builder ) { + + const irradiance = getShIrradianceAt( normalWorld, this.lightProbe ); + + builder.context.irradiance.addAssign( irradiance ); + + } + +} + +/** + * Base class for node parsers. A derived parser must be implemented + * for each supported native shader language. + */ +class NodeParser { + + /** + * The method parses the given native code an returns a node function. + * + * @abstract + * @param {string} source - The native shader code. + * @return {NodeFunction} A node function. + */ + parseFunction( /*source*/ ) { + + console.warn( 'Abstract function.' ); + + } + +} + +/** + * Base class for node functions. A derived module must be implemented + * for each supported native shader language. Similar to other `Node*` modules, + * this class is only relevant during the building process and not used + * in user-level code. + */ +class NodeFunction { + + /** + * Constructs a new node function. + * + * @param {string} type - The node type. This type is the return type of the node function. + * @param {Array} inputs - The function's inputs. + * @param {string} [name=''] - The function's name. + * @param {string} [precision=''] - The precision qualifier. + */ + constructor( type, inputs, name = '', precision = '' ) { + + /** + * The node type. This type is the return type of the node function. + * + * @type {string} + */ + this.type = type; + + /** + * The function's inputs. + * + * @type {Array} + */ + this.inputs = inputs; + + /** + * The name of the uniform. + * + * @type {string} + * @default '' + */ + this.name = name; + + /** + * The precision qualifier. + * + * @type {string} + * @default '' + */ + this.precision = precision; + + } + + /** + * This method returns the native code of the node function. + * + * @abstract + * @param {string} name - The function's name. + * @return {string} A shader code. + */ + getCode( /*name = this.name*/ ) { + + console.warn( 'Abstract function.' ); + + } + +} + +NodeFunction.isNodeFunction = true; + +const declarationRegexp$1 = /^\s*(highp|mediump|lowp)?\s*([a-z_0-9]+)\s*([a-z_0-9]+)?\s*\(([\s\S]*?)\)/i; +const propertiesRegexp$1 = /[a-z_0-9]+/ig; + +const pragmaMain = '#pragma main'; + +const parse$1 = ( source ) => { + + source = source.trim(); + + const pragmaMainIndex = source.indexOf( pragmaMain ); + + const mainCode = pragmaMainIndex !== - 1 ? source.slice( pragmaMainIndex + pragmaMain.length ) : source; + + const declaration = mainCode.match( declarationRegexp$1 ); + + if ( declaration !== null && declaration.length === 5 ) { + + // tokenizer + + const inputsCode = declaration[ 4 ]; + const propsMatches = []; + + let nameMatch = null; + + while ( ( nameMatch = propertiesRegexp$1.exec( inputsCode ) ) !== null ) { + + propsMatches.push( nameMatch ); + + } + + // parser + + const inputs = []; + + let i = 0; + + while ( i < propsMatches.length ) { + + const isConst = propsMatches[ i ][ 0 ] === 'const'; + + if ( isConst === true ) { + + i ++; + + } + + let qualifier = propsMatches[ i ][ 0 ]; + + if ( qualifier === 'in' || qualifier === 'out' || qualifier === 'inout' ) { + + i ++; + + } else { + + qualifier = ''; + + } + + const type = propsMatches[ i ++ ][ 0 ]; + + let count = Number.parseInt( propsMatches[ i ][ 0 ] ); + + if ( Number.isNaN( count ) === false ) i ++; + else count = null; + + const name = propsMatches[ i ++ ][ 0 ]; + + inputs.push( new NodeFunctionInput( type, name, count, qualifier, isConst ) ); + + } + + // + + const blockCode = mainCode.substring( declaration[ 0 ].length ); + + const name = declaration[ 3 ] !== undefined ? declaration[ 3 ] : ''; + const type = declaration[ 2 ]; + + const precision = declaration[ 1 ] !== undefined ? declaration[ 1 ] : ''; + + const headerCode = pragmaMainIndex !== - 1 ? source.slice( 0, pragmaMainIndex ) : ''; + + return { + type, + inputs, + name, + precision, + inputsCode, + blockCode, + headerCode + }; + + } else { + + throw new Error( 'FunctionNode: Function is not a GLSL code.' ); + + } + +}; + +/** + * This class represents a GLSL node function. + * + * @augments NodeFunction + */ +class GLSLNodeFunction extends NodeFunction { + + /** + * Constructs a new GLSL node function. + * + * @param {string} source - The GLSL source. + */ + constructor( source ) { + + const { type, inputs, name, precision, inputsCode, blockCode, headerCode } = parse$1( source ); + + super( type, inputs, name, precision ); + + this.inputsCode = inputsCode; + this.blockCode = blockCode; + this.headerCode = headerCode; + + } + + /** + * This method returns the GLSL code of the node function. + * + * @param {string} [name=this.name] - The function's name. + * @return {string} The shader code. + */ + getCode( name = this.name ) { + + let code; + + const blockCode = this.blockCode; + + if ( blockCode !== '' ) { + + const { type, inputsCode, headerCode, precision } = this; + + let declarationCode = `${ type } ${ name } ( ${ inputsCode.trim() } )`; + + if ( precision !== '' ) { + + declarationCode = `${ precision } ${ declarationCode }`; + + } + + code = headerCode + declarationCode + blockCode; + + } else { + + // interface function + + code = ''; + + } + + return code; + + } + +} + +/** + * A GLSL node parser. + * + * @augments NodeParser + */ +class GLSLNodeParser extends NodeParser { + + /** + * The method parses the given GLSL code an returns a node function. + * + * @param {string} source - The GLSL code. + * @return {GLSLNodeFunction} A node function. + */ + parseFunction( source ) { + + return new GLSLNodeFunction( source ); + + } + +} + +const _outputNodeMap = new WeakMap(); +const _chainKeys$2 = []; +const _cacheKeyValues = []; + +/** + * This renderer module manages node-related objects and is the + * primary interface between the renderer and the node system. + * + * @private + * @augments DataMap + */ +class Nodes extends DataMap { + + /** + * Constructs a new nodes management component. + * + * @param {Renderer} renderer - The renderer. + * @param {Backend} backend - The renderer's backend. + */ + constructor( renderer, backend ) { + + super(); + + /** + * The renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * The renderer's backend. + * + * @type {Backend} + */ + this.backend = backend; + + /** + * The node frame. + * + * @type {Renderer} + */ + this.nodeFrame = new NodeFrame(); + + /** + * A cache for managing node builder states. + * + * @type {Map} + */ + this.nodeBuilderCache = new Map(); + + /** + * A cache for managing data cache key data. + * + * @type {ChainMap} + */ + this.callHashCache = new ChainMap(); + + /** + * A cache for managing node uniforms group data. + * + * @type {ChainMap} + */ + this.groupsData = new ChainMap(); + + /** + * A cache for managing node objects of + * scene properties like fog or environments. + * + * @type {Object} + */ + this.cacheLib = {}; + + } + + /** + * Returns `true` if the given node uniforms group must be updated or not. + * + * @param {NodeUniformsGroup} nodeUniformsGroup - The node uniforms group. + * @return {boolean} Whether the node uniforms group requires an update or not. + */ + updateGroup( nodeUniformsGroup ) { + + const groupNode = nodeUniformsGroup.groupNode; + const name = groupNode.name; + + // objectGroup is always updated + + if ( name === objectGroup.name ) return true; + + // renderGroup is updated once per render/compute call + + if ( name === renderGroup.name ) { + + const uniformsGroupData = this.get( nodeUniformsGroup ); + const renderId = this.nodeFrame.renderId; + + if ( uniformsGroupData.renderId !== renderId ) { + + uniformsGroupData.renderId = renderId; + + return true; + + } + + return false; + + } + + // frameGroup is updated once per frame + + if ( name === frameGroup.name ) { + + const uniformsGroupData = this.get( nodeUniformsGroup ); + const frameId = this.nodeFrame.frameId; + + if ( uniformsGroupData.frameId !== frameId ) { + + uniformsGroupData.frameId = frameId; + + return true; + + } + + return false; + + } + + // other groups are updated just when groupNode.needsUpdate is true + + _chainKeys$2[ 0 ] = groupNode; + _chainKeys$2[ 1 ] = nodeUniformsGroup; + + let groupData = this.groupsData.get( _chainKeys$2 ); + if ( groupData === undefined ) this.groupsData.set( _chainKeys$2, groupData = {} ); + + _chainKeys$2.length = 0; + + if ( groupData.version !== groupNode.version ) { + + groupData.version = groupNode.version; + + return true; + + } + + return false; + + } + + /** + * Returns the cache key for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @return {number} The cache key. + */ + getForRenderCacheKey( renderObject ) { + + return renderObject.initialCacheKey; + + } + + /** + * Returns a node builder state for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @return {NodeBuilderState} The node builder state. + */ + getForRender( renderObject ) { + + const renderObjectData = this.get( renderObject ); + + let nodeBuilderState = renderObjectData.nodeBuilderState; + + if ( nodeBuilderState === undefined ) { + + const { nodeBuilderCache } = this; + + const cacheKey = this.getForRenderCacheKey( renderObject ); + + nodeBuilderState = nodeBuilderCache.get( cacheKey ); + + if ( nodeBuilderState === undefined ) { + + const nodeBuilder = this.backend.createNodeBuilder( renderObject.object, this.renderer ); + nodeBuilder.scene = renderObject.scene; + nodeBuilder.material = renderObject.material; + nodeBuilder.camera = renderObject.camera; + nodeBuilder.context.material = renderObject.material; + nodeBuilder.lightsNode = renderObject.lightsNode; + nodeBuilder.environmentNode = this.getEnvironmentNode( renderObject.scene ); + nodeBuilder.fogNode = this.getFogNode( renderObject.scene ); + nodeBuilder.clippingContext = renderObject.clippingContext; + if ( this.renderer.getOutputRenderTarget() ? this.renderer.getOutputRenderTarget().multiview : false ) { + + nodeBuilder.enableMultiview(); + + } + + nodeBuilder.build(); + + nodeBuilderState = this._createNodeBuilderState( nodeBuilder ); + + nodeBuilderCache.set( cacheKey, nodeBuilderState ); + + } + + nodeBuilderState.usedTimes ++; + + renderObjectData.nodeBuilderState = nodeBuilderState; + + } + + return nodeBuilderState; + + } + + /** + * Deletes the given object from the internal data map + * + * @param {any} object - The object to delete. + * @return {?Object} The deleted dictionary. + */ + delete( object ) { + + if ( object.isRenderObject ) { + + const nodeBuilderState = this.get( object ).nodeBuilderState; + nodeBuilderState.usedTimes --; + + if ( nodeBuilderState.usedTimes === 0 ) { + + this.nodeBuilderCache.delete( this.getForRenderCacheKey( object ) ); + + } + + } + + return super.delete( object ); + + } + + /** + * Returns a node builder state for the given compute node. + * + * @param {Node} computeNode - The compute node. + * @return {NodeBuilderState} The node builder state. + */ + getForCompute( computeNode ) { + + const computeData = this.get( computeNode ); + + let nodeBuilderState = computeData.nodeBuilderState; + + if ( nodeBuilderState === undefined ) { + + const nodeBuilder = this.backend.createNodeBuilder( computeNode, this.renderer ); + nodeBuilder.build(); + + nodeBuilderState = this._createNodeBuilderState( nodeBuilder ); + + computeData.nodeBuilderState = nodeBuilderState; + + } + + return nodeBuilderState; + + } + + /** + * Creates a node builder state for the given node builder. + * + * @private + * @param {NodeBuilder} nodeBuilder - The node builder. + * @return {NodeBuilderState} The node builder state. + */ + _createNodeBuilderState( nodeBuilder ) { + + return new NodeBuilderState( + nodeBuilder.vertexShader, + nodeBuilder.fragmentShader, + nodeBuilder.computeShader, + nodeBuilder.getAttributesArray(), + nodeBuilder.getBindings(), + nodeBuilder.updateNodes, + nodeBuilder.updateBeforeNodes, + nodeBuilder.updateAfterNodes, + nodeBuilder.observer, + nodeBuilder.transforms + ); + + } + + /** + * Returns an environment node for the current configured + * scene environment. + * + * @param {Scene} scene - The scene. + * @return {Node} A node representing the current scene environment. + */ + getEnvironmentNode( scene ) { + + this.updateEnvironment( scene ); + + let environmentNode = null; + + if ( scene.environmentNode && scene.environmentNode.isNode ) { + + environmentNode = scene.environmentNode; + + } else { + + const sceneData = this.get( scene ); + + if ( sceneData.environmentNode ) { + + environmentNode = sceneData.environmentNode; + + } + + } + + return environmentNode; + + } + + /** + * Returns a background node for the current configured + * scene background. + * + * @param {Scene} scene - The scene. + * @return {Node} A node representing the current scene background. + */ + getBackgroundNode( scene ) { + + this.updateBackground( scene ); + + let backgroundNode = null; + + if ( scene.backgroundNode && scene.backgroundNode.isNode ) { + + backgroundNode = scene.backgroundNode; + + } else { + + const sceneData = this.get( scene ); + + if ( sceneData.backgroundNode ) { + + backgroundNode = sceneData.backgroundNode; + + } + + } + + return backgroundNode; + + } + + /** + * Returns a fog node for the current configured scene fog. + * + * @param {Scene} scene - The scene. + * @return {Node} A node representing the current scene fog. + */ + getFogNode( scene ) { + + this.updateFog( scene ); + + return scene.fogNode || this.get( scene ).fogNode || null; + + } + + /** + * Returns a cache key for the given scene and lights node. + * This key is used by `RenderObject` as a part of the dynamic + * cache key (a key that must be checked every time the render + * objects is drawn). + * + * @param {Scene} scene - The scene. + * @param {LightsNode} lightsNode - The lights node. + * @return {number} The cache key. + */ + getCacheKey( scene, lightsNode ) { + + _chainKeys$2[ 0 ] = scene; + _chainKeys$2[ 1 ] = lightsNode; + + const callId = this.renderer.info.calls; + + const cacheKeyData = this.callHashCache.get( _chainKeys$2 ) || {}; + + if ( cacheKeyData.callId !== callId ) { + + const environmentNode = this.getEnvironmentNode( scene ); + const fogNode = this.getFogNode( scene ); + + if ( lightsNode ) _cacheKeyValues.push( lightsNode.getCacheKey( true ) ); + if ( environmentNode ) _cacheKeyValues.push( environmentNode.getCacheKey() ); + if ( fogNode ) _cacheKeyValues.push( fogNode.getCacheKey() ); + + _cacheKeyValues.push( this.renderer.getOutputRenderTarget() && this.renderer.getOutputRenderTarget().multiview ? 1 : 0 ); + _cacheKeyValues.push( this.renderer.shadowMap.enabled ? 1 : 0 ); + + cacheKeyData.callId = callId; + cacheKeyData.cacheKey = hashArray( _cacheKeyValues ); + + this.callHashCache.set( _chainKeys$2, cacheKeyData ); + + _cacheKeyValues.length = 0; + + } + + _chainKeys$2.length = 0; + + return cacheKeyData.cacheKey; + + } + + /** + * A boolean that indicates whether tone mapping should be enabled + * or not. + * + * @type {boolean} + */ + get isToneMappingState() { + + return this.renderer.getRenderTarget() ? false : true; + + } + + /** + * If a scene background is configured, this method makes sure to + * represent the background with a corresponding node-based implementation. + * + * @param {Scene} scene - The scene. + */ + updateBackground( scene ) { + + const sceneData = this.get( scene ); + const background = scene.background; + + if ( background ) { + + const forceUpdate = ( scene.backgroundBlurriness === 0 && sceneData.backgroundBlurriness > 0 ) || ( scene.backgroundBlurriness > 0 && sceneData.backgroundBlurriness === 0 ); + + if ( sceneData.background !== background || forceUpdate ) { + + const backgroundNode = this.getCacheNode( 'background', background, () => { + + if ( background.isCubeTexture === true || ( background.mapping === EquirectangularReflectionMapping || background.mapping === EquirectangularRefractionMapping || background.mapping === CubeUVReflectionMapping ) ) { + + if ( scene.backgroundBlurriness > 0 || background.mapping === CubeUVReflectionMapping ) { + + return pmremTexture( background ); + + } else { + + let envMap; + + if ( background.isCubeTexture === true ) { + + envMap = cubeTexture( background ); + + } else { + + envMap = texture( background ); + + } + + return cubeMapNode( envMap ); + + } + + } else if ( background.isTexture === true ) { + + return texture( background, screenUV.flipY() ).setUpdateMatrix( true ); + + } else if ( background.isColor !== true ) { + + console.error( 'WebGPUNodes: Unsupported background configuration.', background ); + + } + + }, forceUpdate ); + + sceneData.backgroundNode = backgroundNode; + sceneData.background = background; + sceneData.backgroundBlurriness = scene.backgroundBlurriness; + + } + + } else if ( sceneData.backgroundNode ) { + + delete sceneData.backgroundNode; + delete sceneData.background; + + } + + } + + /** + * This method is part of the caching of nodes which are used to represents the + * scene's background, fog or environment. + * + * @param {string} type - The type of object to cache. + * @param {Object} object - The object. + * @param {Function} callback - A callback that produces a node representation for the given object. + * @param {boolean} [forceUpdate=false] - Whether an update should be enforced or not. + * @return {Node} The node representation. + */ + getCacheNode( type, object, callback, forceUpdate = false ) { + + const nodeCache = this.cacheLib[ type ] || ( this.cacheLib[ type ] = new WeakMap() ); + + let node = nodeCache.get( object ); + + if ( node === undefined || forceUpdate ) { + + node = callback(); + nodeCache.set( object, node ); + + } + + return node; + + } + + /** + * If a scene fog is configured, this method makes sure to + * represent the fog with a corresponding node-based implementation. + * + * @param {Scene} scene - The scene. + */ + updateFog( scene ) { + + const sceneData = this.get( scene ); + const sceneFog = scene.fog; + + if ( sceneFog ) { + + if ( sceneData.fog !== sceneFog ) { + + const fogNode = this.getCacheNode( 'fog', sceneFog, () => { + + if ( sceneFog.isFogExp2 ) { + + const color = reference( 'color', 'color', sceneFog ).setGroup( renderGroup ); + const density = reference( 'density', 'float', sceneFog ).setGroup( renderGroup ); + + return fog( color, densityFogFactor( density ) ); + + } else if ( sceneFog.isFog ) { + + const color = reference( 'color', 'color', sceneFog ).setGroup( renderGroup ); + const near = reference( 'near', 'float', sceneFog ).setGroup( renderGroup ); + const far = reference( 'far', 'float', sceneFog ).setGroup( renderGroup ); + + return fog( color, rangeFogFactor( near, far ) ); + + } else { + + console.error( 'THREE.Renderer: Unsupported fog configuration.', sceneFog ); + + } + + } ); + + sceneData.fogNode = fogNode; + sceneData.fog = sceneFog; + + } + + } else { + + delete sceneData.fogNode; + delete sceneData.fog; + + } + + } + + /** + * If a scene environment is configured, this method makes sure to + * represent the environment with a corresponding node-based implementation. + * + * @param {Scene} scene - The scene. + */ + updateEnvironment( scene ) { + + const sceneData = this.get( scene ); + const environment = scene.environment; + + if ( environment ) { + + if ( sceneData.environment !== environment ) { + + const environmentNode = this.getCacheNode( 'environment', environment, () => { + + if ( environment.isCubeTexture === true ) { + + return cubeTexture( environment ); + + } else if ( environment.isTexture === true ) { + + return texture( environment ); + + } else { + + console.error( 'Nodes: Unsupported environment configuration.', environment ); + + } + + } ); + + sceneData.environmentNode = environmentNode; + sceneData.environment = environment; + + } + + } else if ( sceneData.environmentNode ) { + + delete sceneData.environmentNode; + delete sceneData.environment; + + } + + } + + getNodeFrame( renderer = this.renderer, scene = null, object = null, camera = null, material = null ) { + + const nodeFrame = this.nodeFrame; + nodeFrame.renderer = renderer; + nodeFrame.scene = scene; + nodeFrame.object = object; + nodeFrame.camera = camera; + nodeFrame.material = material; + + return nodeFrame; + + } + + getNodeFrameForRender( renderObject ) { + + return this.getNodeFrame( renderObject.renderer, renderObject.scene, renderObject.object, renderObject.camera, renderObject.material ); + + } + + /** + * Returns the current output cache key. + * + * @return {string} The output cache key. + */ + getOutputCacheKey() { + + const renderer = this.renderer; + + return renderer.toneMapping + ',' + renderer.currentColorSpace + ',' + renderer.xr.isPresenting; + + } + + /** + * Checks if the output configuration (tone mapping and color space) for + * the given target has changed. + * + * @param {Texture} outputTarget - The output target. + * @return {boolean} Whether the output configuration has changed or not. + */ + hasOutputChange( outputTarget ) { + + const cacheKey = _outputNodeMap.get( outputTarget ); + + return cacheKey !== this.getOutputCacheKey(); + + } + + /** + * Returns a node that represents the output configuration (tone mapping and + * color space) for the current target. + * + * @param {Texture} outputTarget - The output target. + * @return {Node} The output node. + */ + getOutputNode( outputTarget ) { + + const renderer = this.renderer; + const cacheKey = this.getOutputCacheKey(); + + const output = outputTarget.isArrayTexture ? + texture3D( outputTarget, vec3( screenUV, builtin( 'gl_ViewID_OVR' ) ) ).renderOutput( renderer.toneMapping, renderer.currentColorSpace ) : + texture( outputTarget, screenUV ).renderOutput( renderer.toneMapping, renderer.currentColorSpace ); + + _outputNodeMap.set( outputTarget, cacheKey ); + + return output; + + } + + /** + * Triggers the call of `updateBefore()` methods + * for all nodes of the given render object. + * + * @param {RenderObject} renderObject - The render object. + */ + updateBefore( renderObject ) { + + const nodeBuilder = renderObject.getNodeBuilderState(); + + for ( const node of nodeBuilder.updateBeforeNodes ) { + + // update frame state for each node + + this.getNodeFrameForRender( renderObject ).updateBeforeNode( node ); + + } + + } + + /** + * Triggers the call of `updateAfter()` methods + * for all nodes of the given render object. + * + * @param {RenderObject} renderObject - The render object. + */ + updateAfter( renderObject ) { + + const nodeBuilder = renderObject.getNodeBuilderState(); + + for ( const node of nodeBuilder.updateAfterNodes ) { + + // update frame state for each node + + this.getNodeFrameForRender( renderObject ).updateAfterNode( node ); + + } + + } + + /** + * Triggers the call of `update()` methods + * for all nodes of the given compute node. + * + * @param {Node} computeNode - The compute node. + */ + updateForCompute( computeNode ) { + + const nodeFrame = this.getNodeFrame(); + const nodeBuilder = this.getForCompute( computeNode ); + + for ( const node of nodeBuilder.updateNodes ) { + + nodeFrame.updateNode( node ); + + } + + } + + /** + * Triggers the call of `update()` methods + * for all nodes of the given compute node. + * + * @param {RenderObject} renderObject - The render object. + */ + updateForRender( renderObject ) { + + const nodeFrame = this.getNodeFrameForRender( renderObject ); + const nodeBuilder = renderObject.getNodeBuilderState(); + + for ( const node of nodeBuilder.updateNodes ) { + + nodeFrame.updateNode( node ); + + } + + } + + /** + * Returns `true` if the given render object requires a refresh. + * + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the given render object requires a refresh or not. + */ + needsRefresh( renderObject ) { + + const nodeFrame = this.getNodeFrameForRender( renderObject ); + const monitor = renderObject.getMonitor(); + + return monitor.needsRefresh( renderObject, nodeFrame ); + + } + + /** + * Frees the internal resources. + */ + dispose() { + + super.dispose(); + + this.nodeFrame = new NodeFrame(); + this.nodeBuilderCache = new Map(); + this.cacheLib = {}; + + } + +} + +const _plane = /*@__PURE__*/ new Plane(); + +/** + * Represents the state that is used to perform clipping via clipping planes. + * There is a default clipping context for each render context. When the + * scene holds instances of `ClippingGroup`, there will be a context for each + * group. + * + * @private + */ +class ClippingContext { + + /** + * Constructs a new clipping context. + * + * @param {?ClippingContext} [parentContext=null] - A reference to the parent clipping context. + */ + constructor( parentContext = null ) { + + /** + * The clipping context's version. + * + * @type {number} + * @readonly + */ + this.version = 0; + + /** + * Whether the intersection of the clipping planes is used to clip objects, rather than their union. + * + * @type {?boolean} + * @default null + */ + this.clipIntersection = null; + + /** + * The clipping context's cache key. + * + * @type {string} + */ + this.cacheKey = ''; + + /** + * Whether the shadow pass is active or not. + * + * @type {boolean} + * @default false + */ + this.shadowPass = false; + + /** + * The view normal matrix. + * + * @type {Matrix3} + */ + this.viewNormalMatrix = new Matrix3(); + + /** + * Internal cache for maintaining clipping contexts. + * + * @type {WeakMap} + */ + this.clippingGroupContexts = new WeakMap(); + + /** + * The intersection planes. + * + * @type {Array} + */ + this.intersectionPlanes = []; + + /** + * The intersection planes. + * + * @type {Array} + */ + this.unionPlanes = []; + + /** + * The version of the clipping context's parent context. + * + * @type {?number} + * @readonly + */ + this.parentVersion = null; + + if ( parentContext !== null ) { + + this.viewNormalMatrix = parentContext.viewNormalMatrix; + this.clippingGroupContexts = parentContext.clippingGroupContexts; + + this.shadowPass = parentContext.shadowPass; + this.viewMatrix = parentContext.viewMatrix; + + } + + } + + /** + * Projects the given source clipping planes and writes the result into the + * destination array. + * + * @param {Array} source - The source clipping planes. + * @param {Array} destination - The destination. + * @param {number} offset - The offset. + */ + projectPlanes( source, destination, offset ) { + + const l = source.length; + + for ( let i = 0; i < l; i ++ ) { + + _plane.copy( source[ i ] ).applyMatrix4( this.viewMatrix, this.viewNormalMatrix ); + + const v = destination[ offset + i ]; + const normal = _plane.normal; + + v.x = - normal.x; + v.y = - normal.y; + v.z = - normal.z; + v.w = _plane.constant; + + } + + } + + /** + * Updates the root clipping context of a scene. + * + * @param {Scene} scene - The scene. + * @param {Camera} camera - The camera that is used to render the scene. + */ + updateGlobal( scene, camera ) { + + this.shadowPass = ( scene.overrideMaterial !== null && scene.overrideMaterial.isShadowPassMaterial ); + this.viewMatrix = camera.matrixWorldInverse; + + this.viewNormalMatrix.getNormalMatrix( this.viewMatrix ); + + } + + /** + * Updates the clipping context. + * + * @param {ClippingContext} parentContext - The parent context. + * @param {ClippingGroup} clippingGroup - The clipping group this context belongs to. + */ + update( parentContext, clippingGroup ) { + + let update = false; + + if ( parentContext.version !== this.parentVersion ) { + + this.intersectionPlanes = Array.from( parentContext.intersectionPlanes ); + this.unionPlanes = Array.from( parentContext.unionPlanes ); + this.parentVersion = parentContext.version; + + } + + if ( this.clipIntersection !== clippingGroup.clipIntersection ) { + + this.clipIntersection = clippingGroup.clipIntersection; + + if ( this.clipIntersection ) { + + this.unionPlanes.length = parentContext.unionPlanes.length; + + } else { + + this.intersectionPlanes.length = parentContext.intersectionPlanes.length; + + } + + } + + const srcClippingPlanes = clippingGroup.clippingPlanes; + const l = srcClippingPlanes.length; + + let dstClippingPlanes; + let offset; + + if ( this.clipIntersection ) { + + dstClippingPlanes = this.intersectionPlanes; + offset = parentContext.intersectionPlanes.length; + + } else { + + dstClippingPlanes = this.unionPlanes; + offset = parentContext.unionPlanes.length; + + } + + if ( dstClippingPlanes.length !== offset + l ) { + + dstClippingPlanes.length = offset + l; + + for ( let i = 0; i < l; i ++ ) { + + dstClippingPlanes[ offset + i ] = new Vector4(); + + } + + update = true; + + } + + this.projectPlanes( srcClippingPlanes, dstClippingPlanes, offset ); + + if ( update ) { + + this.version ++; + this.cacheKey = `${ this.intersectionPlanes.length }:${ this.unionPlanes.length }`; + + } + + } + + /** + * Returns a clipping context for the given clipping group. + * + * @param {ClippingGroup} clippingGroup - The clipping group. + * @return {ClippingContext} The clipping context. + */ + getGroupContext( clippingGroup ) { + + if ( this.shadowPass && ! clippingGroup.clipShadows ) return this; + + let context = this.clippingGroupContexts.get( clippingGroup ); + + if ( context === undefined ) { + + context = new ClippingContext( this ); + this.clippingGroupContexts.set( clippingGroup, context ); + + } + + context.update( this, clippingGroup ); + + return context; + + } + + /** + * The count of union clipping planes. + * + * @type {number} + * @readonly + */ + get unionClippingCount() { + + return this.unionPlanes.length; + + } + +} + +/** + * This module is used to represent render bundles inside the renderer + * for further processing. + * + * @private + */ +class RenderBundle { + + /** + * Constructs a new bundle group. + * + * @param {BundleGroup} bundleGroup - The bundle group. + * @param {Camera} camera - The camera the bundle group is rendered with. + */ + constructor( bundleGroup, camera ) { + + this.bundleGroup = bundleGroup; + this.camera = camera; + + } + +} + +const _chainKeys$1 = []; + +/** + * This renderer module manages render bundles. + * + * @private + */ +class RenderBundles { + + /** + * Constructs a new render bundle management component. + */ + constructor() { + + /** + * A chain map for maintaining the render bundles. + * + * @type {ChainMap} + */ + this.bundles = new ChainMap(); + + } + + /** + * Returns a render bundle for the given bundle group and camera. + * + * @param {BundleGroup} bundleGroup - The bundle group. + * @param {Camera} camera - The camera the bundle group is rendered with. + * @return {RenderBundle} The render bundle. + */ + get( bundleGroup, camera ) { + + const bundles = this.bundles; + + _chainKeys$1[ 0 ] = bundleGroup; + _chainKeys$1[ 1 ] = camera; + + let bundle = bundles.get( _chainKeys$1 ); + + if ( bundle === undefined ) { + + bundle = new RenderBundle( bundleGroup, camera ); + bundles.set( _chainKeys$1, bundle ); + + } + + _chainKeys$1.length = 0; + + return bundle; + + } + + /** + * Frees all internal resources. + */ + dispose() { + + this.bundles = new ChainMap(); + + } + +} + +/** + * The purpose of a node library is to assign node implementations + * to existing library features. In `WebGPURenderer` lights, materials + * which are not based on `NodeMaterial` as well as tone mapping techniques + * are implemented with node-based modules. + * + * @private + */ +class NodeLibrary { + + /** + * Constructs a new node library. + */ + constructor() { + + /** + * A weak map that maps lights to light nodes. + * + * @type {WeakMap} + */ + this.lightNodes = new WeakMap(); + + /** + * A map that maps materials to node materials. + * + * @type {Map} + */ + this.materialNodes = new Map(); + + /** + * A map that maps tone mapping techniques (constants) + * to tone mapping node functions. + * + * @type {Map} + */ + this.toneMappingNodes = new Map(); + + } + + /** + * Returns a matching node material instance for the given material object. + * + * This method also assigns/copies the properties of the given material object + * to the node material. This is done to make sure the current material + * configuration carries over to the node version. + * + * @param {Material} material - A material. + * @return {NodeMaterial} The corresponding node material. + */ + fromMaterial( material ) { + + if ( material.isNodeMaterial ) return material; + + let nodeMaterial = null; + + const nodeMaterialClass = this.getMaterialNodeClass( material.type ); + + if ( nodeMaterialClass !== null ) { + + nodeMaterial = new nodeMaterialClass(); + + for ( const key in material ) { + + nodeMaterial[ key ] = material[ key ]; + + } + + } + + return nodeMaterial; + + } + + /** + * Adds a tone mapping node function for a tone mapping technique (constant). + * + * @param {Function} toneMappingNode - The tone mapping node function. + * @param {number} toneMapping - The tone mapping. + */ + addToneMapping( toneMappingNode, toneMapping ) { + + this.addType( toneMappingNode, toneMapping, this.toneMappingNodes ); + + } + + /** + * Returns a tone mapping node function for a tone mapping technique (constant). + * + * @param {number} toneMapping - The tone mapping. + * @return {?Function} The tone mapping node function. Returns `null` if no node function is found. + */ + getToneMappingFunction( toneMapping ) { + + return this.toneMappingNodes.get( toneMapping ) || null; + + } + + /** + * Returns a node material class definition for a material type. + * + * @param {string} materialType - The material type. + * @return {?NodeMaterial.constructor} The node material class definition. Returns `null` if no node material is found. + */ + getMaterialNodeClass( materialType ) { + + return this.materialNodes.get( materialType ) || null; + + } + + /** + * Adds a node material class definition for a given material type. + * + * @param {NodeMaterial.constructor} materialNodeClass - The node material class definition. + * @param {string} materialClassType - The material type. + */ + addMaterial( materialNodeClass, materialClassType ) { + + this.addType( materialNodeClass, materialClassType, this.materialNodes ); + + } + + /** + * Returns a light node class definition for a light class definition. + * + * @param {Light.constructor} light - The light class definition. + * @return {?AnalyticLightNode.constructor} The light node class definition. Returns `null` if no light node is found. + */ + getLightNodeClass( light ) { + + return this.lightNodes.get( light ) || null; + + } + + /** + * Adds a light node class definition for a given light class definition. + * + * @param {AnalyticLightNode.constructor} lightNodeClass - The light node class definition. + * @param {Light.constructor} lightClass - The light class definition. + */ + addLight( lightNodeClass, lightClass ) { + + this.addClass( lightNodeClass, lightClass, this.lightNodes ); + + } + + /** + * Adds a node class definition for the given type to the provided type library. + * + * @param {any} nodeClass - The node class definition. + * @param {number|string} type - The object type. + * @param {Map} library - The type library. + */ + addType( nodeClass, type, library ) { + + if ( library.has( type ) ) { + + console.warn( `Redefinition of node ${ type }` ); + return; + + } + + if ( typeof nodeClass !== 'function' ) throw new Error( `Node class ${ nodeClass.name } is not a class.` ); + if ( typeof type === 'function' || typeof type === 'object' ) throw new Error( `Base class ${ type } is not a class.` ); + + library.set( type, nodeClass ); + + } + + /** + * Adds a node class definition for the given class definition to the provided type library. + * + * @param {any} nodeClass - The node class definition. + * @param {any} baseClass - The class definition. + * @param {WeakMap} library - The type library. + */ + addClass( nodeClass, baseClass, library ) { + + if ( library.has( baseClass ) ) { + + console.warn( `Redefinition of node ${ baseClass.name }` ); + return; + + } + + if ( typeof nodeClass !== 'function' ) throw new Error( `Node class ${ nodeClass.name } is not a class.` ); + if ( typeof baseClass !== 'function' ) throw new Error( `Base class ${ baseClass.name } is not a class.` ); + + library.set( baseClass, nodeClass ); + + } + +} + +const _defaultLights = /*@__PURE__*/ new LightsNode(); +const _chainKeys = []; + +/** + * This renderer module manages the lights nodes which are unique + * per scene and camera combination. + * + * The lights node itself is later configured in the render list + * with the actual lights from the scene. + * + * @private + * @augments ChainMap + */ +class Lighting extends ChainMap { + + /** + * Constructs a lighting management component. + */ + constructor() { + + super(); + + } + + /** + * Creates a new lights node for the given array of lights. + * + * @param {Array} lights - The render object. + * @return {LightsNode} The lights node. + */ + createNode( lights = [] ) { + + return new LightsNode().setLights( lights ); + + } + + /** + * Returns a lights node for the given scene and camera. + * + * @param {Scene} scene - The scene. + * @param {Camera} camera - The camera. + * @return {LightsNode} The lights node. + */ + getNode( scene, camera ) { + + // ignore post-processing + + if ( scene.isQuadMesh ) return _defaultLights; + + _chainKeys[ 0 ] = scene; + _chainKeys[ 1 ] = camera; + + let node = this.get( _chainKeys ); + + if ( node === undefined ) { + + node = this.createNode(); + this.set( _chainKeys, node ); + + } + + _chainKeys.length = 0; + + return node; + + } + +} + +/** + * A special type of render target that is used when rendering + * with the WebXR Device API. + * + * @private + * @augments RenderTarget + */ +class XRRenderTarget extends RenderTarget { + + /** + * Constructs a new XR render target. + * + * @param {number} [width=1] - The width of the render target. + * @param {number} [height=1] - The height of the render target. + * @param {Object} [options={}] - The configuration options. + */ + constructor( width = 1, height = 1, options = {} ) { + + super( width, height, options ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isXRRenderTarget = true; + + /** + * Whether the attachments of the render target + * are defined by external textures. This flag is + * set to `true` when using the WebXR Layers API. + * + * @type {boolean} + * @default false + */ + this.hasExternalTextures = false; + + /** + * Whether a depth buffer should automatically be allocated + * for this XR render target or not. + * + * Allocating a depth buffer is the default behavior of XR render + * targets. However, when using the WebXR Layers API, this flag + * must be set to `false` when the `ignoreDepthValues` property of + * the projection layers evaluates to `false`. + * + * Reference: {@link https://www.w3.org/TR/webxrlayers-1/#dom-xrprojectionlayer-ignoredepthvalues}. + * + * @type {boolean} + * @default true + */ + this.autoAllocateDepthBuffer = true; + + } + + copy( source ) { + + super.copy( source ); + + this.hasExternalTextures = source.hasExternalTextures; + this.autoAllocateDepthBuffer = source.autoAllocateDepthBuffer; + + return this; + + } + + +} + +const _cameraLPos = /*@__PURE__*/ new Vector3(); +const _cameraRPos = /*@__PURE__*/ new Vector3(); + +/** + * The XR manager is built on top of the WebXR Device API to + * manage XR sessions with `WebGPURenderer`. + * + * XR is currently only supported with a WebGL 2 backend. + * + * @augments EventDispatcher + */ +class XRManager extends EventDispatcher { + + /** + * Constructs a new XR manager. + * + * @param {Renderer} renderer - The renderer. + * @param {boolean} [multiview=false] - Enables multiview if the device supports it. + */ + constructor( renderer, multiview = false ) { + + super(); + + /** + * This flag globally enables XR rendering. + * + * @type {boolean} + * @default false + */ + this.enabled = false; + + /** + * Whether the XR device is currently presenting or not. + * + * @type {boolean} + * @default false + * @readonly + */ + this.isPresenting = false; + + /** + * Whether the XR camera should automatically be updated or not. + * + * @type {boolean} + * @default true + */ + this.cameraAutoUpdate = true; + + /** + * The renderer. + * + * @private + * @type {Renderer} + */ + this._renderer = renderer; + + // camera + + /** + * Represents the camera for the left eye. + * + * @private + * @type {PerspectiveCamera} + */ + this._cameraL = new PerspectiveCamera(); + this._cameraL.viewport = new Vector4(); + + /** + * Represents the camera for the right eye. + * + * @private + * @type {PerspectiveCamera} + */ + this._cameraR = new PerspectiveCamera(); + this._cameraR.viewport = new Vector4(); + + /** + * A list of cameras used for rendering the XR views. + * + * @private + * @type {Array} + */ + this._cameras = [ this._cameraL, this._cameraR ]; + + /** + * The main XR camera. + * + * @private + * @type {ArrayCamera} + */ + this._cameraXR = new ArrayCamera(); + + /** + * The current near value of the XR camera. + * + * @private + * @type {?number} + * @default null + */ + this._currentDepthNear = null; + + /** + * The current far value of the XR camera. + * + * @private + * @type {?number} + * @default null + */ + this._currentDepthFar = null; + + /** + * A list of WebXR controllers requested by the application. + * + * @private + * @type {Array} + */ + this._controllers = []; + + /** + * A list of XR input source. Each input source belongs to + * an instance of WebXRController. + * + * @private + * @type {Array} + */ + this._controllerInputSources = []; + + /** + * The XR render target that represents the rendering destination + * during an active XR session. + * + * @private + * @type {?RenderTarget} + * @default null + */ + this._xrRenderTarget = null; + + /** + * An array holding all the non-projection layers + * + * @private + * @type {Array} + * @default [] + */ + this._layers = []; + + /** + * Whether the device has support for all layer types. + * + * @type {boolean} + * @default false + */ + this._supportsLayers = false; + + this._frameBufferTargets = null; + + /** + * Helper function to create native WebXR Layer. + * + * @private + * @type {Function} + */ + this._createXRLayer = createXRLayer.bind( this ); + + /** + * The current WebGL context. + * + * @private + * @type {?WebGL2RenderingContext} + * @default null + */ + this._gl = null; + + /** + * The current animation context. + * + * @private + * @type {?Window} + * @default null + */ + this._currentAnimationContext = null; + + /** + * The current animation loop. + * + * @private + * @type {?Function} + * @default null + */ + this._currentAnimationLoop = null; + + /** + * The current pixel ratio. + * + * @private + * @type {?number} + * @default null + */ + this._currentPixelRatio = null; + + /** + * The current size of the renderer's canvas + * in logical pixel unit. + * + * @private + * @type {Vector2} + */ + this._currentSize = new Vector2(); + + /** + * The default event listener for handling events inside a XR session. + * + * @private + * @type {Function} + */ + this._onSessionEvent = onSessionEvent.bind( this ); + + /** + * The event listener for handling the end of a XR session. + * + * @private + * @type {Function} + */ + this._onSessionEnd = onSessionEnd.bind( this ); + + /** + * The event listener for handling the `inputsourceschange` event. + * + * @private + * @type {Function} + */ + this._onInputSourcesChange = onInputSourcesChange.bind( this ); + + /** + * The animation loop which is used as a replacement for the default + * animation loop of the application. It is only used when a XR session + * is active. + * + * @private + * @type {Function} + */ + this._onAnimationFrame = onAnimationFrame.bind( this ); + + /** + * The current XR reference space. + * + * @private + * @type {?XRReferenceSpace} + * @default null + */ + this._referenceSpace = null; + + /** + * The current XR reference space type. + * + * @private + * @type {XRReferenceSpaceType} + * @default 'local-floor' + */ + this._referenceSpaceType = 'local-floor'; + + /** + * A custom reference space defined by the application. + * + * @private + * @type {?XRReferenceSpace} + * @default null + */ + this._customReferenceSpace = null; + + /** + * The framebuffer scale factor. + * + * @private + * @type {number} + * @default 1 + */ + this._framebufferScaleFactor = 1; + + /** + * The foveation factor. + * + * @private + * @type {number} + * @default 1 + */ + this._foveation = 1.0; + + /** + * A reference to the current XR session. + * + * @private + * @type {?XRSession} + * @default null + */ + this._session = null; + + /** + * A reference to the current XR base layer. + * + * @private + * @type {?XRWebGLLayer} + * @default null + */ + this._glBaseLayer = null; + + /** + * A reference to the current XR binding. + * + * @private + * @type {?XRWebGLBinding} + * @default null + */ + this._glBinding = null; + + /** + * A reference to the current XR projection layer. + * + * @private + * @type {?XRProjectionLayer} + * @default null + */ + this._glProjLayer = null; + + /** + * A reference to the current XR frame. + * + * @private + * @type {?XRFrame} + * @default null + */ + this._xrFrame = null; + + /** + * Whether to use the WebXR Layers API or not. + * + * @private + * @type {boolean} + * @readonly + */ + this._useLayers = ( typeof XRWebGLBinding !== 'undefined' && 'createProjectionLayer' in XRWebGLBinding.prototype ); // eslint-disable-line compat/compat + + /** + * Whether the usage of multiview has been requested by the application or not. + * + * @private + * @type {boolean} + * @default false + * @readonly + */ + this._useMultiviewIfPossible = multiview; + + /** + * Whether the usage of multiview is actually enabled. This flag only evaluates to `true` + * if multiview has been requested by the application and the `OVR_multiview2` is available. + * + * @private + * @type {boolean} + * @readonly + */ + this._useMultiview = false; + + } + + /** + * Returns an instance of `THREE.Group` that represents the transformation + * of a XR controller in target ray space. The requested controller is defined + * by the given index. + * + * @param {number} index - The index of the XR controller. + * @return {Group} A group that represents the controller's transformation. + */ + getController( index ) { + + const controller = this._getController( index ); + + return controller.getTargetRaySpace(); + + } + + /** + * Returns an instance of `THREE.Group` that represents the transformation + * of a XR controller in grip space. The requested controller is defined + * by the given index. + * + * @param {number} index - The index of the XR controller. + * @return {Group} A group that represents the controller's transformation. + */ + getControllerGrip( index ) { + + const controller = this._getController( index ); + + return controller.getGripSpace(); + + } + + /** + * Returns an instance of `THREE.Group` that represents the transformation + * of a XR controller in hand space. The requested controller is defined + * by the given index. + * + * @param {number} index - The index of the XR controller. + * @return {Group} A group that represents the controller's transformation. + */ + getHand( index ) { + + const controller = this._getController( index ); + + return controller.getHandSpace(); + + } + + /** + * Returns the foveation value. + * + * @return {number|undefined} The foveation value. Returns `undefined` if no base or projection layer is defined. + */ + getFoveation() { + + if ( this._glProjLayer === null && this._glBaseLayer === null ) { + + return undefined; + + } + + return this._foveation; + + } + + /** + * Sets the foveation value. + * + * @param {number} foveation - A number in the range `[0,1]` where `0` means no foveation (full resolution) + * and `1` means maximum foveation (the edges render at lower resolution). + */ + setFoveation( foveation ) { + + this._foveation = foveation; + + if ( this._glProjLayer !== null ) { + + this._glProjLayer.fixedFoveation = foveation; + + } + + if ( this._glBaseLayer !== null && this._glBaseLayer.fixedFoveation !== undefined ) { + + this._glBaseLayer.fixedFoveation = foveation; + + } + + } + + /** + * Returns the framebuffer scale factor. + * + * @return {number} The framebuffer scale factor. + */ + getFramebufferScaleFactor() { + + return this._framebufferScaleFactor; + + } + + /** + * Sets the framebuffer scale factor. + * + * This method can not be used during a XR session. + * + * @param {number} factor - The framebuffer scale factor. + */ + setFramebufferScaleFactor( factor ) { + + this._framebufferScaleFactor = factor; + + if ( this.isPresenting === true ) { + + console.warn( 'THREE.XRManager: Cannot change framebuffer scale while presenting.' ); + + } + + } + + /** + * Returns the reference space type. + * + * @return {XRReferenceSpaceType} The reference space type. + */ + getReferenceSpaceType() { + + return this._referenceSpaceType; + + } + + /** + * Sets the reference space type. + * + * This method can not be used during a XR session. + * + * @param {XRReferenceSpaceType} type - The reference space type. + */ + setReferenceSpaceType( type ) { + + this._referenceSpaceType = type; + + if ( this.isPresenting === true ) { + + console.warn( 'THREE.XRManager: Cannot change reference space type while presenting.' ); + + } + + } + + /** + * Returns the XR reference space. + * + * @return {XRReferenceSpace} The XR reference space. + */ + getReferenceSpace() { + + return this._customReferenceSpace || this._referenceSpace; + + } + + /** + * Sets a custom XR reference space. + * + * @param {XRReferenceSpace} space - The XR reference space. + */ + setReferenceSpace( space ) { + + this._customReferenceSpace = space; + + } + + /** + * Returns the XR camera. + * + * @return {ArrayCamera} The XR camera. + */ + getCamera() { + + return this._cameraXR; + + } + + /** + * Returns the environment blend mode from the current XR session. + * + * @return {'opaque'|'additive'|'alpha-blend'|undefined} The environment blend mode. Returns `undefined` when used outside of a XR session. + */ + getEnvironmentBlendMode() { + + if ( this._session !== null ) { + + return this._session.environmentBlendMode; + + } + + } + + /** + * Returns the current XR frame. + * + * @return {?XRFrame} The XR frame. Returns `null` when used outside a XR session. + */ + getFrame() { + + return this._xrFrame; + + } + + /** + * Returns `true` if the engine renders to a multiview target. + * + * @return {boolean} Whether the engine renders to a multiview render target or not. + */ + useMultiview() { + + return this._useMultiview; + + } + + /** + * This method can be used in XR applications to create a quadratic layer that presents a separate + * rendered scene. + * + * @param {number} width - The width of the layer plane in world units. + * @param {number} height - The height of the layer plane in world units. + * @param {Vector3} translation - The position/translation of the layer plane in world units. + * @param {Quaternion} quaternion - The orientation of the layer plane expressed as a quaternion. + * @param {number} pixelwidth - The width of the layer's render target in pixels. + * @param {number} pixelheight - The height of the layer's render target in pixels. + * @param {Function} rendercall - A callback function that renders the layer. Similar to code in + * the default animation loop, this method can be used to update/transform 3D object in the layer's scene. + * @param {Object} [attributes={}] - Allows to configure the layer's render target. + * @return {Mesh} A mesh representing the quadratic XR layer. This mesh should be added to the XR scene. + */ + createQuadLayer( width, height, translation, quaternion, pixelwidth, pixelheight, rendercall, attributes = {} ) { + + const geometry = new PlaneGeometry( width, height ); + const renderTarget = new XRRenderTarget( + pixelwidth, + pixelheight, + { + format: RGBAFormat, + type: UnsignedByteType, + depthTexture: new DepthTexture( + pixelwidth, + pixelheight, + attributes.stencil ? UnsignedInt248Type : UnsignedIntType, + undefined, + undefined, + undefined, + undefined, + undefined, + undefined, + attributes.stencil ? DepthStencilFormat : DepthFormat + ), + stencilBuffer: attributes.stencil, + resolveDepthBuffer: false, + resolveStencilBuffer: false + } ); + + renderTarget.autoAllocateDepthBuffer = true; + + const material = new MeshBasicMaterial( { color: 0xffffff, side: FrontSide } ); + material.map = renderTarget.texture; + material.map.offset.y = 1; + material.map.repeat.y = - 1; + const plane = new Mesh( geometry, material ); + plane.position.copy( translation ); + plane.quaternion.copy( quaternion ); + + const layer = { + type: 'quad', + width: width, + height: height, + translation: translation, + quaternion: quaternion, + pixelwidth: pixelwidth, + pixelheight: pixelheight, + plane: plane, + material: material, + rendercall: rendercall, + renderTarget: renderTarget }; + + this._layers.push( layer ); + + if ( this._session !== null ) { + + layer.plane.material = new MeshBasicMaterial( { color: 0xffffff, side: FrontSide } ); + layer.plane.material.blending = CustomBlending; + layer.plane.material.blendEquation = AddEquation; + layer.plane.material.blendSrc = ZeroFactor; + layer.plane.material.blendDst = ZeroFactor; + + layer.xrlayer = this._createXRLayer( layer ); + + const xrlayers = this._session.renderState.layers; + xrlayers.unshift( layer.xrlayer ); + this._session.updateRenderState( { layers: xrlayers } ); + + } else { + + renderTarget.isXRRenderTarget = false; + + } + + return plane; + + } + + /** + * This method can be used in XR applications to create a cylindrical layer that presents a separate + * rendered scene. + * + * @param {number} radius - The radius of the cylinder in world units. + * @param {number} centralAngle - The central angle of the cylinder in radians. + * @param {number} aspectratio - The aspect ratio. + * @param {Vector3} translation - The position/translation of the layer plane in world units. + * @param {Quaternion} quaternion - The orientation of the layer plane expressed as a quaternion. + * @param {number} pixelwidth - The width of the layer's render target in pixels. + * @param {number} pixelheight - The height of the layer's render target in pixels. + * @param {Function} rendercall - A callback function that renders the layer. Similar to code in + * the default animation loop, this method can be used to update/transform 3D object in the layer's scene. + * @param {Object} [attributes={}] - Allows to configure the layer's render target. + * @return {Mesh} A mesh representing the cylindrical XR layer. This mesh should be added to the XR scene. + */ + createCylinderLayer( radius, centralAngle, aspectratio, translation, quaternion, pixelwidth, pixelheight, rendercall, attributes = {} ) { + + const geometry = new CylinderGeometry( radius, radius, radius * centralAngle / aspectratio, 64, 64, true, Math.PI - centralAngle / 2, centralAngle ); + const renderTarget = new XRRenderTarget( + pixelwidth, + pixelheight, + { + format: RGBAFormat, + type: UnsignedByteType, + depthTexture: new DepthTexture( + pixelwidth, + pixelheight, + attributes.stencil ? UnsignedInt248Type : UnsignedIntType, + undefined, + undefined, + undefined, + undefined, + undefined, + undefined, + attributes.stencil ? DepthStencilFormat : DepthFormat + ), + stencilBuffer: attributes.stencil, + resolveDepthBuffer: false, + resolveStencilBuffer: false + } ); + + renderTarget.autoAllocateDepthBuffer = true; + + const material = new MeshBasicMaterial( { color: 0xffffff, side: BackSide } ); + material.map = renderTarget.texture; + material.map.offset.y = 1; + material.map.repeat.y = - 1; + const plane = new Mesh( geometry, material ); + plane.position.copy( translation ); + plane.quaternion.copy( quaternion ); + + const layer = { + type: 'cylinder', + radius: radius, + centralAngle: centralAngle, + aspectratio: aspectratio, + translation: translation, + quaternion: quaternion, + pixelwidth: pixelwidth, + pixelheight: pixelheight, + plane: plane, + material: material, + rendercall: rendercall, + renderTarget: renderTarget }; + + this._layers.push( layer ); + + if ( this._session !== null ) { + + layer.plane.material = new MeshBasicMaterial( { color: 0xffffff, side: BackSide } ); + layer.plane.material.blending = CustomBlending; + layer.plane.material.blendEquation = AddEquation; + layer.plane.material.blendSrc = ZeroFactor; + layer.plane.material.blendDst = ZeroFactor; + + layer.xrlayer = this._createXRLayer( layer ); + + const xrlayers = this._session.renderState.layers; + xrlayers.unshift( layer.xrlayer ); + this._session.updateRenderState( { layers: xrlayers } ); + + } else { + + renderTarget.isXRRenderTarget = false; + + } + + return plane; + + } + + /** + * Renders the XR layers that have been previously added to the scene. + * + * This method is usually called in your animation loop before rendering + * the actual scene via `renderer.render( scene, camera );`. + */ + renderLayers( ) { + + const translationObject = new Vector3(); + const quaternionObject = new Quaternion(); + const renderer = this._renderer; + + const wasPresenting = this.isPresenting; + const rendererOutputTarget = renderer.getOutputRenderTarget(); + const rendererFramebufferTarget = renderer._frameBufferTarget; + this.isPresenting = false; + + const rendererSize = new Vector2(); + renderer.getSize( rendererSize ); + const rendererQuad = renderer._quad; + + for ( const layer of this._layers ) { + + layer.renderTarget.isXRRenderTarget = this._session !== null; + layer.renderTarget.hasExternalTextures = layer.renderTarget.isXRRenderTarget; + + if ( layer.renderTarget.isXRRenderTarget && this._supportsLayers ) { + + layer.xrlayer.transform = new XRRigidTransform( layer.plane.getWorldPosition( translationObject ), layer.plane.getWorldQuaternion( quaternionObject ) ); + + const glSubImage = this._glBinding.getSubImage( layer.xrlayer, this._xrFrame ); + renderer.backend.setXRRenderTargetTextures( + layer.renderTarget, + glSubImage.colorTexture, + undefined ); + + renderer._setXRLayerSize( layer.renderTarget.width, layer.renderTarget.height ); + renderer.setOutputRenderTarget( layer.renderTarget ); + renderer.setRenderTarget( null ); + renderer._frameBufferTarget = null; + + this._frameBufferTargets || ( this._frameBufferTargets = new WeakMap() ); + const { frameBufferTarget, quad } = this._frameBufferTargets.get( layer.renderTarget ) || { frameBufferTarget: null, quad: null }; + if ( ! frameBufferTarget ) { + + renderer._quad = new QuadMesh( new NodeMaterial() ); + this._frameBufferTargets.set( layer.renderTarget, { frameBufferTarget: renderer._getFrameBufferTarget(), quad: renderer._quad } ); + + } else { + + renderer._frameBufferTarget = frameBufferTarget; + renderer._quad = quad; + + } + + layer.rendercall(); + + renderer._frameBufferTarget = null; + + } else { + + renderer.setRenderTarget( layer.renderTarget ); + layer.rendercall(); + + } + + } + + renderer.setRenderTarget( null ); + renderer.setOutputRenderTarget( rendererOutputTarget ); + renderer._frameBufferTarget = rendererFramebufferTarget; + renderer._setXRLayerSize( rendererSize.x, rendererSize.y ); + renderer._quad = rendererQuad; + this.isPresenting = wasPresenting; + + } + + + /** + * Returns the current XR session. + * + * @return {?XRSession} The XR session. Returns `null` when used outside a XR session. + */ + getSession() { + + return this._session; + + } + + /** + * After a XR session has been requested usually with one of the `*Button` modules, it + * is injected into the renderer with this method. This method triggers the start of + * the actual XR rendering. + * + * @async + * @param {XRSession} session - The XR session to set. + * @return {Promise} A Promise that resolves when the session has been set. + */ + async setSession( session ) { + + const renderer = this._renderer; + const backend = renderer.backend; + + this._gl = renderer.getContext(); + const gl = this._gl; + const attributes = gl.getContextAttributes(); + + this._session = session; + + if ( session !== null ) { + + if ( backend.isWebGPUBackend === true ) throw new Error( 'THREE.XRManager: XR is currently not supported with a WebGPU backend. Use WebGL by passing "{ forceWebGL: true }" to the constructor of the renderer.' ); + + session.addEventListener( 'select', this._onSessionEvent ); + session.addEventListener( 'selectstart', this._onSessionEvent ); + session.addEventListener( 'selectend', this._onSessionEvent ); + session.addEventListener( 'squeeze', this._onSessionEvent ); + session.addEventListener( 'squeezestart', this._onSessionEvent ); + session.addEventListener( 'squeezeend', this._onSessionEvent ); + session.addEventListener( 'end', this._onSessionEnd ); + session.addEventListener( 'inputsourceschange', this._onInputSourcesChange ); + + await backend.makeXRCompatible(); + + this._currentPixelRatio = renderer.getPixelRatio(); + renderer.getSize( this._currentSize ); + + this._currentAnimationContext = renderer._animation.getContext(); + this._currentAnimationLoop = renderer._animation.getAnimationLoop(); + renderer._animation.stop(); + + // + + if ( this._useLayers === true ) { + + // default path using XRWebGLBinding/XRProjectionLayer + + let depthFormat = null; + let depthType = null; + let glDepthFormat = null; + + if ( renderer.depth ) { + + glDepthFormat = renderer.stencil ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24; + depthFormat = renderer.stencil ? DepthStencilFormat : DepthFormat; + depthType = renderer.stencil ? UnsignedInt248Type : UnsignedIntType; + + } + + const projectionlayerInit = { + colorFormat: gl.RGBA8, + depthFormat: glDepthFormat, + scaleFactor: this._framebufferScaleFactor, + clearOnAccess: false + }; + + if ( this._useMultiviewIfPossible && renderer.hasFeature( 'OVR_multiview2' ) ) { + + projectionlayerInit.textureType = 'texture-array'; + this._useMultiview = true; + + } + + const glBinding = new XRWebGLBinding( session, gl ); + const glProjLayer = glBinding.createProjectionLayer( projectionlayerInit ); + const layersArray = [ glProjLayer ]; + + this._glBinding = glBinding; + this._glProjLayer = glProjLayer; + + renderer.setPixelRatio( 1 ); + renderer._setXRLayerSize( glProjLayer.textureWidth, glProjLayer.textureHeight ); + + const depth = this._useMultiview ? 2 : 1; + const depthTexture = new DepthTexture( glProjLayer.textureWidth, glProjLayer.textureHeight, depthType, undefined, undefined, undefined, undefined, undefined, undefined, depthFormat, depth ); + + this._xrRenderTarget = new XRRenderTarget( + glProjLayer.textureWidth, + glProjLayer.textureHeight, + { + format: RGBAFormat, + type: UnsignedByteType, + colorSpace: renderer.outputColorSpace, + depthTexture: depthTexture, + stencilBuffer: renderer.stencil, + samples: attributes.antialias ? 4 : 0, + resolveDepthBuffer: ( glProjLayer.ignoreDepthValues === false ), + resolveStencilBuffer: ( glProjLayer.ignoreDepthValues === false ), + depth: this._useMultiview ? 2 : 1, + multiview: this._useMultiview + } ); + + this._xrRenderTarget.hasExternalTextures = true; + this._xrRenderTarget.depth = this._useMultiview ? 2 : 1; + + this._supportsLayers = session.enabledFeatures.includes( 'layers' ); + + this._referenceSpace = await session.requestReferenceSpace( this.getReferenceSpaceType() ); + + if ( this._supportsLayers ) { + + // switch layers to native + for ( const layer of this._layers ) { + + // change material so it "punches" out a hole to show the XR Layer. + layer.plane.material = new MeshBasicMaterial( { color: 0xffffff, side: layer.type === 'cylinder' ? BackSide : FrontSide } ); + layer.plane.material.blending = CustomBlending; + layer.plane.material.blendEquation = AddEquation; + layer.plane.material.blendSrc = ZeroFactor; + layer.plane.material.blendDst = ZeroFactor; + + layer.xrlayer = this._createXRLayer( layer ); + + layersArray.unshift( layer.xrlayer ); + + } + + } + + session.updateRenderState( { layers: layersArray } ); + + } else { + + // fallback to XRWebGLLayer + + const layerInit = { + antialias: renderer.samples > 0, + alpha: true, + depth: renderer.depth, + stencil: renderer.stencil, + framebufferScaleFactor: this.getFramebufferScaleFactor() + }; + + const glBaseLayer = new XRWebGLLayer( session, gl, layerInit ); + this._glBaseLayer = glBaseLayer; + + session.updateRenderState( { baseLayer: glBaseLayer } ); + + renderer.setPixelRatio( 1 ); + renderer.setSize( glBaseLayer.framebufferWidth, glBaseLayer.framebufferHeight, false ); + + this._xrRenderTarget = new XRRenderTarget( + glBaseLayer.framebufferWidth, + glBaseLayer.framebufferHeight, + { + format: RGBAFormat, + type: UnsignedByteType, + colorSpace: renderer.outputColorSpace, + stencilBuffer: renderer.stencil, + resolveDepthBuffer: ( glBaseLayer.ignoreDepthValues === false ), + resolveStencilBuffer: ( glBaseLayer.ignoreDepthValues === false ), + } + ); + + this._referenceSpace = await session.requestReferenceSpace( this.getReferenceSpaceType() ); + + } + + // + + this.setFoveation( this.getFoveation() ); + + renderer._animation.setAnimationLoop( this._onAnimationFrame ); + renderer._animation.setContext( session ); + renderer._animation.start(); + + this.isPresenting = true; + + this.dispatchEvent( { type: 'sessionstart' } ); + + } + + } + + /** + * This method is called by the renderer per frame and updates the XR camera + * and it sub cameras based on the given camera. The given camera is the "user" + * camera created on application level and used for non-XR rendering. + * + * @param {PerspectiveCamera} camera - The camera. + */ + updateCamera( camera ) { + + const session = this._session; + + if ( session === null ) return; + + const depthNear = camera.near; + const depthFar = camera.far; + + const cameraXR = this._cameraXR; + const cameraL = this._cameraL; + const cameraR = this._cameraR; + + cameraXR.near = cameraR.near = cameraL.near = depthNear; + cameraXR.far = cameraR.far = cameraL.far = depthFar; + cameraXR.isMultiViewCamera = this._useMultiview; + + if ( this._currentDepthNear !== cameraXR.near || this._currentDepthFar !== cameraXR.far ) { + + // Note that the new renderState won't apply until the next frame. See #18320 + + session.updateRenderState( { + depthNear: cameraXR.near, + depthFar: cameraXR.far + } ); + + this._currentDepthNear = cameraXR.near; + this._currentDepthFar = cameraXR.far; + + } + + cameraL.layers.mask = camera.layers.mask | 0b010; + cameraR.layers.mask = camera.layers.mask | 0b100; + cameraXR.layers.mask = cameraL.layers.mask | cameraR.layers.mask; + + const parent = camera.parent; + const cameras = cameraXR.cameras; + + updateCamera( cameraXR, parent ); + + for ( let i = 0; i < cameras.length; i ++ ) { + + updateCamera( cameras[ i ], parent ); + + } + + // update projection matrix for proper view frustum culling + + if ( cameras.length === 2 ) { + + setProjectionFromUnion( cameraXR, cameraL, cameraR ); + + } else { + + // assume single camera setup (AR) + + cameraXR.projectionMatrix.copy( cameraL.projectionMatrix ); + + } + + // update user camera and its children + + updateUserCamera( camera, cameraXR, parent ); + + + } + + /** + * Returns a WebXR controller for the given controller index. + * + * @private + * @param {number} index - The controller index. + * @return {WebXRController} The XR controller. + */ + _getController( index ) { + + let controller = this._controllers[ index ]; + + if ( controller === undefined ) { + + controller = new WebXRController(); + this._controllers[ index ] = controller; + + } + + return controller; + + } + +} + +/** + * Assumes 2 cameras that are parallel and share an X-axis, and that + * the cameras' projection and world matrices have already been set. + * And that near and far planes are identical for both cameras. + * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765 + * + * @param {ArrayCamera} camera - The camera to update. + * @param {PerspectiveCamera} cameraL - The left camera. + * @param {PerspectiveCamera} cameraR - The right camera. + */ +function setProjectionFromUnion( camera, cameraL, cameraR ) { + + _cameraLPos.setFromMatrixPosition( cameraL.matrixWorld ); + _cameraRPos.setFromMatrixPosition( cameraR.matrixWorld ); + + const ipd = _cameraLPos.distanceTo( _cameraRPos ); + + const projL = cameraL.projectionMatrix.elements; + const projR = cameraR.projectionMatrix.elements; + + // VR systems will have identical far and near planes, and + // most likely identical top and bottom frustum extents. + // Use the left camera for these values. + const near = projL[ 14 ] / ( projL[ 10 ] - 1 ); + const far = projL[ 14 ] / ( projL[ 10 ] + 1 ); + const topFov = ( projL[ 9 ] + 1 ) / projL[ 5 ]; + const bottomFov = ( projL[ 9 ] - 1 ) / projL[ 5 ]; + + const leftFov = ( projL[ 8 ] - 1 ) / projL[ 0 ]; + const rightFov = ( projR[ 8 ] + 1 ) / projR[ 0 ]; + const left = near * leftFov; + const right = near * rightFov; + + // Calculate the new camera's position offset from the + // left camera. xOffset should be roughly half `ipd`. + const zOffset = ipd / ( - leftFov + rightFov ); + const xOffset = zOffset * - leftFov; + + // TODO: Better way to apply this offset? + cameraL.matrixWorld.decompose( camera.position, camera.quaternion, camera.scale ); + camera.translateX( xOffset ); + camera.translateZ( zOffset ); + camera.matrixWorld.compose( camera.position, camera.quaternion, camera.scale ); + camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); + + // Check if the projection uses an infinite far plane. + if ( projL[ 10 ] === - 1 ) { + + // Use the projection matrix from the left eye. + // The camera offset is sufficient to include the view volumes + // of both eyes (assuming symmetric projections). + camera.projectionMatrix.copy( cameraL.projectionMatrix ); + camera.projectionMatrixInverse.copy( cameraL.projectionMatrixInverse ); + + } else { + + // Find the union of the frustum values of the cameras and scale + // the values so that the near plane's position does not change in world space, + // although must now be relative to the new union camera. + const near2 = near + zOffset; + const far2 = far + zOffset; + const left2 = left - xOffset; + const right2 = right + ( ipd - xOffset ); + const top2 = topFov * far / far2 * near2; + const bottom2 = bottomFov * far / far2 * near2; + + camera.projectionMatrix.makePerspective( left2, right2, top2, bottom2, near2, far2 ); + camera.projectionMatrixInverse.copy( camera.projectionMatrix ).invert(); + + } + +} + +/** + * Updates the world matrices for the given camera based on the parent 3D object. + * + * @inner + * @param {Camera} camera - The camera to update. + * @param {Object3D} parent - The parent 3D object. + */ +function updateCamera( camera, parent ) { + + if ( parent === null ) { + + camera.matrixWorld.copy( camera.matrix ); + + } else { + + camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix ); + + } + + camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); + +} + +/** + * Updates the given camera with the transformation of the XR camera and parent object. + * + * @inner + * @param {Camera} camera - The camera to update. + * @param {ArrayCamera} cameraXR - The XR camera. + * @param {Object3D} parent - The parent 3D object. + */ +function updateUserCamera( camera, cameraXR, parent ) { + + if ( parent === null ) { + + camera.matrix.copy( cameraXR.matrixWorld ); + + } else { + + camera.matrix.copy( parent.matrixWorld ); + camera.matrix.invert(); + camera.matrix.multiply( cameraXR.matrixWorld ); + + } + + camera.matrix.decompose( camera.position, camera.quaternion, camera.scale ); + camera.updateMatrixWorld( true ); + + camera.projectionMatrix.copy( cameraXR.projectionMatrix ); + camera.projectionMatrixInverse.copy( cameraXR.projectionMatrixInverse ); + + if ( camera.isPerspectiveCamera ) { + + camera.fov = RAD2DEG * 2 * Math.atan( 1 / camera.projectionMatrix.elements[ 5 ] ); + camera.zoom = 1; + + } + +} + +function onSessionEvent( event ) { + + const controllerIndex = this._controllerInputSources.indexOf( event.inputSource ); + + if ( controllerIndex === - 1 ) { + + return; + + } + + const controller = this._controllers[ controllerIndex ]; + + if ( controller !== undefined ) { + + const referenceSpace = this.getReferenceSpace(); + + controller.update( event.inputSource, event.frame, referenceSpace ); + controller.dispatchEvent( { type: event.type, data: event.inputSource } ); + + } + +} + +function onSessionEnd() { + + const session = this._session; + const renderer = this._renderer; + + session.removeEventListener( 'select', this._onSessionEvent ); + session.removeEventListener( 'selectstart', this._onSessionEvent ); + session.removeEventListener( 'selectend', this._onSessionEvent ); + session.removeEventListener( 'squeeze', this._onSessionEvent ); + session.removeEventListener( 'squeezestart', this._onSessionEvent ); + session.removeEventListener( 'squeezeend', this._onSessionEvent ); + session.removeEventListener( 'end', this._onSessionEnd ); + session.removeEventListener( 'inputsourceschange', this._onInputSourcesChange ); + + for ( let i = 0; i < this._controllers.length; i ++ ) { + + const inputSource = this._controllerInputSources[ i ]; + + if ( inputSource === null ) continue; + + this._controllerInputSources[ i ] = null; + + this._controllers[ i ].disconnect( inputSource ); + + } + + this._currentDepthNear = null; + this._currentDepthFar = null; + + // restore framebuffer/rendering state + + renderer._resetXRState(); + + this._session = null; + this._xrRenderTarget = null; + + // switch layers back to emulated + if ( this._supportsLayers === true ) { + + for ( const layer of this._layers ) { + + // Recreate layer render target to reset state + layer.renderTarget = new XRRenderTarget( + layer.pixelwidth, + layer.pixelheight, + { + format: RGBAFormat, + type: UnsignedByteType, + depthTexture: new DepthTexture( + layer.pixelwidth, + layer.pixelheight, + layer.stencilBuffer ? UnsignedInt248Type : UnsignedIntType, + undefined, + undefined, + undefined, + undefined, + undefined, + undefined, + layer.stencilBuffer ? DepthStencilFormat : DepthFormat + ), + stencilBuffer: layer.stencilBuffer, + resolveDepthBuffer: false, + resolveStencilBuffer: false + } ); + + layer.renderTarget.isXRRenderTarget = false; + + layer.plane.material = layer.material; + layer.material.map = layer.renderTarget.texture; + layer.material.map.offset.y = 1; + layer.material.map.repeat.y = - 1; + delete layer.xrlayer; + + } + + } + + // + + this.isPresenting = false; + this._useMultiview = false; + + renderer._animation.stop(); + renderer._animation.setAnimationLoop( this._currentAnimationLoop ); + renderer._animation.setContext( this._currentAnimationContext ); + renderer._animation.start(); + + renderer.setPixelRatio( this._currentPixelRatio ); + renderer.setSize( this._currentSize.width, this._currentSize.height, false ); + + this.dispatchEvent( { type: 'sessionend' } ); + +} + +function onInputSourcesChange( event ) { + + const controllers = this._controllers; + const controllerInputSources = this._controllerInputSources; + + // Notify disconnected + + for ( let i = 0; i < event.removed.length; i ++ ) { + + const inputSource = event.removed[ i ]; + const index = controllerInputSources.indexOf( inputSource ); + + if ( index >= 0 ) { + + controllerInputSources[ index ] = null; + controllers[ index ].disconnect( inputSource ); + + } + + } + + // Notify connected + + for ( let i = 0; i < event.added.length; i ++ ) { + + const inputSource = event.added[ i ]; + + let controllerIndex = controllerInputSources.indexOf( inputSource ); + + if ( controllerIndex === - 1 ) { + + // Assign input source a controller that currently has no input source + + for ( let i = 0; i < controllers.length; i ++ ) { + + if ( i >= controllerInputSources.length ) { + + controllerInputSources.push( inputSource ); + controllerIndex = i; + break; + + } else if ( controllerInputSources[ i ] === null ) { + + controllerInputSources[ i ] = inputSource; + controllerIndex = i; + break; + + } + + } + + // If all controllers do currently receive input we ignore new ones + + if ( controllerIndex === - 1 ) break; + + } + + const controller = controllers[ controllerIndex ]; + + if ( controller ) { + + controller.connect( inputSource ); + + } + + } + +} + +// Creation method for native WebXR layers +function createXRLayer( layer ) { + + if ( layer.type === 'quad' ) { + + return this._glBinding.createQuadLayer( { + transform: new XRRigidTransform( layer.translation, layer.quaternion ), + width: layer.width / 2, + height: layer.height / 2, + space: this._referenceSpace, + viewPixelWidth: layer.pixelwidth, + viewPixelHeight: layer.pixelheight, + clearOnAccess: false + } ); + + } else { + + return this._glBinding.createCylinderLayer( { + transform: new XRRigidTransform( layer.translation, layer.quaternion ), + radius: layer.radius, + centralAngle: layer.centralAngle, + aspectRatio: layer.aspectRatio, + space: this._referenceSpace, + viewPixelWidth: layer.pixelwidth, + viewPixelHeight: layer.pixelheight, + clearOnAccess: false + } ); + + } + +} + +// Animation Loop + +function onAnimationFrame( time, frame ) { + + if ( frame === undefined ) return; + + const cameraXR = this._cameraXR; + const renderer = this._renderer; + const backend = renderer.backend; + + const glBaseLayer = this._glBaseLayer; + + const referenceSpace = this.getReferenceSpace(); + const pose = frame.getViewerPose( referenceSpace ); + + this._xrFrame = frame; + + if ( pose !== null ) { + + const views = pose.views; + + if ( this._glBaseLayer !== null ) { + + backend.setXRTarget( glBaseLayer.framebuffer ); + + } + + let cameraXRNeedsUpdate = false; + + // check if it's necessary to rebuild cameraXR's camera list + + if ( views.length !== cameraXR.cameras.length ) { + + cameraXR.cameras.length = 0; + cameraXRNeedsUpdate = true; + + } + + for ( let i = 0; i < views.length; i ++ ) { + + const view = views[ i ]; + + let viewport; + + if ( this._useLayers === true ) { + + const glSubImage = this._glBinding.getViewSubImage( this._glProjLayer, view ); + viewport = glSubImage.viewport; + + // For side-by-side projection, we only produce a single texture for both eyes. + if ( i === 0 ) { + + backend.setXRRenderTargetTextures( + this._xrRenderTarget, + glSubImage.colorTexture, + ( this._glProjLayer.ignoreDepthValues && ! this._useMultiview ) ? undefined : glSubImage.depthStencilTexture + ); + + } + + } else { + + viewport = glBaseLayer.getViewport( view ); + + } + + let camera = this._cameras[ i ]; + + if ( camera === undefined ) { + + camera = new PerspectiveCamera(); + camera.layers.enable( i ); + camera.viewport = new Vector4(); + this._cameras[ i ] = camera; + + } + + camera.matrix.fromArray( view.transform.matrix ); + camera.matrix.decompose( camera.position, camera.quaternion, camera.scale ); + camera.projectionMatrix.fromArray( view.projectionMatrix ); + camera.projectionMatrixInverse.copy( camera.projectionMatrix ).invert(); + camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height ); + + if ( i === 0 ) { + + cameraXR.matrix.copy( camera.matrix ); + cameraXR.matrix.decompose( cameraXR.position, cameraXR.quaternion, cameraXR.scale ); + + } + + if ( cameraXRNeedsUpdate === true ) { + + cameraXR.cameras.push( camera ); + + } + + } + + renderer.setOutputRenderTarget( this._xrRenderTarget ); + + } + + // + + for ( let i = 0; i < this._controllers.length; i ++ ) { + + const inputSource = this._controllerInputSources[ i ]; + const controller = this._controllers[ i ]; + + if ( inputSource !== null && controller !== undefined ) { + + controller.update( inputSource, frame, referenceSpace ); + + } + + } + + if ( this._currentAnimationLoop ) this._currentAnimationLoop( time, frame ); + + if ( frame.detectedPlanes ) { + + this.dispatchEvent( { type: 'planesdetected', data: frame } ); + + } + + this._xrFrame = null; + +} + +const _scene = /*@__PURE__*/ new Scene(); +const _drawingBufferSize$1 = /*@__PURE__*/ new Vector2(); +const _screen = /*@__PURE__*/ new Vector4(); +const _frustum = /*@__PURE__*/ new Frustum(); +const _frustumArray = /*@__PURE__*/ new FrustumArray(); + +const _projScreenMatrix = /*@__PURE__*/ new Matrix4(); +const _vector4 = /*@__PURE__*/ new Vector4(); + +/** + * Base class for renderers. + */ +class Renderer { + + /** + * Renderer options. + * + * @typedef {Object} Renderer~Options + * @property {boolean} [logarithmicDepthBuffer=false] - Whether logarithmic depth buffer is enabled or not. + * @property {boolean} [alpha=true] - Whether the default framebuffer (which represents the final contents of the canvas) should be transparent or opaque. + * @property {boolean} [depth=true] - Whether the default framebuffer should have a depth buffer or not. + * @property {boolean} [stencil=false] - Whether the default framebuffer should have a stencil buffer or not. + * @property {boolean} [antialias=false] - Whether MSAA as the default anti-aliasing should be enabled or not. + * @property {number} [samples=0] - When `antialias` is `true`, `4` samples are used by default. This parameter can set to any other integer value than 0 + * to overwrite the default. + * @property {?Function} [getFallback=null] - This callback function can be used to provide a fallback backend, if the primary backend can't be targeted. + * @property {number} [colorBufferType=HalfFloatType] - Defines the type of color buffers. The default `HalfFloatType` is recommend for best + * quality. To save memory and bandwidth, `UnsignedByteType` might be used. This will reduce rendering quality though. + * @property {boolean} [multiview=false] - If set to `true`, the renderer will use multiview during WebXR rendering if supported. + */ + + /** + * Constructs a new renderer. + * + * @param {Backend} backend - The backend the renderer is targeting (e.g. WebGPU or WebGL 2). + * @param {Renderer~Options} [parameters] - The configuration parameter. + + */ + constructor( backend, parameters = {} ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isRenderer = true; + + // + + const { + logarithmicDepthBuffer = false, + alpha = true, + depth = true, + stencil = false, + antialias = false, + samples = 0, + getFallback = null, + colorBufferType = HalfFloatType, + multiview = false + } = parameters; + + /** + * A reference to the canvas element the renderer is drawing to. + * This value of this property will automatically be created by + * the renderer. + * + * @type {HTMLCanvasElement|OffscreenCanvas} + */ + this.domElement = backend.getDomElement(); + + /** + * A reference to the current backend. + * + * @type {Backend} + */ + this.backend = backend; + + /** + * The number of MSAA samples. + * + * @type {number} + * @default 0 + */ + this.samples = samples || ( antialias === true ) ? 4 : 0; + + /** + * Whether the renderer should automatically clear the current rendering target + * before execute a `render()` call. The target can be the canvas (default framebuffer) + * or the current bound render target (custom framebuffer). + * + * @type {boolean} + * @default true + */ + this.autoClear = true; + + /** + * When `autoClear` is set to `true`, this property defines whether the renderer + * should clear the color buffer. + * + * @type {boolean} + * @default true + */ + this.autoClearColor = true; + + /** + * When `autoClear` is set to `true`, this property defines whether the renderer + * should clear the depth buffer. + * + * @type {boolean} + * @default true + */ + this.autoClearDepth = true; + + /** + * When `autoClear` is set to `true`, this property defines whether the renderer + * should clear the stencil buffer. + * + * @type {boolean} + * @default true + */ + this.autoClearStencil = true; + + /** + * Whether the default framebuffer should be transparent or opaque. + * + * @type {boolean} + * @default true + */ + this.alpha = alpha; + + /** + * Whether logarithmic depth buffer is enabled or not. + * + * @type {boolean} + * @default false + */ + this.logarithmicDepthBuffer = logarithmicDepthBuffer; + + /** + * Defines the output color space of the renderer. + * + * @type {string} + * @default SRGBColorSpace + */ + this.outputColorSpace = SRGBColorSpace; + + /** + * Defines the tone mapping of the renderer. + * + * @type {number} + * @default NoToneMapping + */ + this.toneMapping = NoToneMapping; + + /** + * Defines the tone mapping exposure. + * + * @type {number} + * @default 1 + */ + this.toneMappingExposure = 1.0; + + /** + * Whether the renderer should sort its render lists or not. + * + * Note: Sorting is used to attempt to properly render objects that have some degree of transparency. + * By definition, sorting objects may not work in all cases. Depending on the needs of application, + * it may be necessary to turn off sorting and use other methods to deal with transparency rendering + * e.g. manually determining each object's rendering order. + * + * @type {boolean} + * @default true + */ + this.sortObjects = true; + + /** + * Whether the default framebuffer should have a depth buffer or not. + * + * @type {boolean} + * @default true + */ + this.depth = depth; + + /** + * Whether the default framebuffer should have a stencil buffer or not. + * + * @type {boolean} + * @default false + */ + this.stencil = stencil; + + /** + * Holds a series of statistical information about the GPU memory + * and the rendering process. Useful for debugging and monitoring. + * + * @type {Info} + */ + this.info = new Info(); + + /** + * Stores override nodes for specific transformations or calculations. + * These nodes can be used to replace default behavior in the rendering pipeline. + * + * @type {Object} + * @property {?Node} modelViewMatrix - An override node for the model-view matrix. + * @property {?Node} modelNormalViewMatrix - An override node for the model normal view matrix. + */ + this.overrideNodes = { + modelViewMatrix: null, + modelNormalViewMatrix: null + }; + + /** + * The node library defines how certain library objects like materials, lights + * or tone mapping functions are mapped to node types. This is required since + * although instances of classes like `MeshBasicMaterial` or `PointLight` can + * be part of the scene graph, they are internally represented as nodes for + * further processing. + * + * @type {NodeLibrary} + */ + this.library = new NodeLibrary(); + + /** + * A map-like data structure for managing lights. + * + * @type {Lighting} + */ + this.lighting = new Lighting(); + + // internals + + /** + * This callback function can be used to provide a fallback backend, if the primary backend can't be targeted. + * + * @private + * @type {?Function} + */ + this._getFallback = getFallback; + + /** + * The renderer's pixel ratio. + * + * @private + * @type {number} + * @default 1 + */ + this._pixelRatio = 1; + + /** + * The width of the renderer's default framebuffer in logical pixel unit. + * + * @private + * @type {number} + */ + this._width = this.domElement.width; + + /** + * The height of the renderer's default framebuffer in logical pixel unit. + * + * @private + * @type {number} + */ + this._height = this.domElement.height; + + /** + * The viewport of the renderer in logical pixel unit. + * + * @private + * @type {Vector4} + */ + this._viewport = new Vector4( 0, 0, this._width, this._height ); + + /** + * The scissor rectangle of the renderer in logical pixel unit. + * + * @private + * @type {Vector4} + */ + this._scissor = new Vector4( 0, 0, this._width, this._height ); + + /** + * Whether the scissor test should be enabled or not. + * + * @private + * @type {boolean} + */ + this._scissorTest = false; + + /** + * A reference to a renderer module for managing shader attributes. + * + * @private + * @type {?Attributes} + * @default null + */ + this._attributes = null; + + /** + * A reference to a renderer module for managing geometries. + * + * @private + * @type {?Geometries} + * @default null + */ + this._geometries = null; + + /** + * A reference to a renderer module for managing node related logic. + * + * @private + * @type {?Nodes} + * @default null + */ + this._nodes = null; + + /** + * A reference to a renderer module for managing the internal animation loop. + * + * @private + * @type {?Animation} + * @default null + */ + this._animation = null; + + /** + * A reference to a renderer module for managing shader program bindings. + * + * @private + * @type {?Bindings} + * @default null + */ + this._bindings = null; + + /** + * A reference to a renderer module for managing render objects. + * + * @private + * @type {?RenderObjects} + * @default null + */ + this._objects = null; + + /** + * A reference to a renderer module for managing render and compute pipelines. + * + * @private + * @type {?Pipelines} + * @default null + */ + this._pipelines = null; + + /** + * A reference to a renderer module for managing render bundles. + * + * @private + * @type {?RenderBundles} + * @default null + */ + this._bundles = null; + + /** + * A reference to a renderer module for managing render lists. + * + * @private + * @type {?RenderLists} + * @default null + */ + this._renderLists = null; + + /** + * A reference to a renderer module for managing render contexts. + * + * @private + * @type {?RenderContexts} + * @default null + */ + this._renderContexts = null; + + /** + * A reference to a renderer module for managing textures. + * + * @private + * @type {?Textures} + * @default null + */ + this._textures = null; + + /** + * A reference to a renderer module for backgrounds. + * + * @private + * @type {?Background} + * @default null + */ + this._background = null; + + /** + * This fullscreen quad is used for internal render passes + * like the tone mapping and color space output pass. + * + * @private + * @type {QuadMesh} + */ + this._quad = new QuadMesh( new NodeMaterial() ); + this._quad.material.name = 'Renderer_output'; + + /** + * A reference to the current render context. + * + * @private + * @type {?RenderContext} + * @default null + */ + this._currentRenderContext = null; + + /** + * A custom sort function for the opaque render list. + * + * @private + * @type {?Function} + * @default null + */ + this._opaqueSort = null; + + /** + * A custom sort function for the transparent render list. + * + * @private + * @type {?Function} + * @default null + */ + this._transparentSort = null; + + /** + * The framebuffer target. + * + * @private + * @type {?RenderTarget} + * @default null + */ + this._frameBufferTarget = null; + + const alphaClear = this.alpha === true ? 0 : 1; + + /** + * The clear color value. + * + * @private + * @type {Color4} + */ + this._clearColor = new Color4( 0, 0, 0, alphaClear ); + + /** + * The clear depth value. + * + * @private + * @type {number} + * @default 1 + */ + this._clearDepth = 1; + + /** + * The clear stencil value. + * + * @private + * @type {number} + * @default 0 + */ + this._clearStencil = 0; + + /** + * The current render target. + * + * @private + * @type {?RenderTarget} + * @default null + */ + this._renderTarget = null; + + /** + * The active cube face. + * + * @private + * @type {number} + * @default 0 + */ + this._activeCubeFace = 0; + + /** + * The active mipmap level. + * + * @private + * @type {number} + * @default 0 + */ + this._activeMipmapLevel = 0; + + /** + * The current output render target. + * + * @private + * @type {?RenderTarget} + * @default null + */ + this._outputRenderTarget = null; + + /** + * The MRT setting. + * + * @private + * @type {?MRTNode} + * @default null + */ + this._mrt = null; + + /** + * This function defines how a render object is going + * to be rendered. + * + * @private + * @type {?Function} + * @default null + */ + this._renderObjectFunction = null; + + /** + * Used to keep track of the current render object function. + * + * @private + * @type {?Function} + * @default null + */ + this._currentRenderObjectFunction = null; + + /** + * Used to keep track of the current render bundle. + * + * @private + * @type {?RenderBundle} + * @default null + */ + this._currentRenderBundle = null; + + /** + * Next to `_renderObjectFunction()`, this function provides another hook + * for influencing the render process of a render object. It is meant for internal + * use and only relevant for `compileAsync()` right now. Instead of using + * the default logic of `_renderObjectDirect()` which actually draws the render object, + * a different function might be used which performs no draw but just the node + * and pipeline updates. + * + * @private + * @type {?Function} + * @default null + */ + this._handleObjectFunction = this._renderObjectDirect; + + /** + * Indicates whether the device has been lost or not. In WebGL terms, the device + * lost is considered as a context lost. When this is set to `true`, rendering + * isn't possible anymore. + * + * @private + * @type {boolean} + * @default false + */ + this._isDeviceLost = false; + + /** + * A callback function that defines what should happen when a device/context lost occurs. + * + * @type {Function} + */ + this.onDeviceLost = this._onDeviceLost; + + /** + * Defines the type of color buffers. The default `HalfFloatType` is recommend for + * best quality. To save memory and bandwidth, `UnsignedByteType` might be used. + * This will reduce rendering quality though. + * + * @private + * @type {number} + * @default HalfFloatType + */ + this._colorBufferType = colorBufferType; + + /** + * Whether the renderer has been initialized or not. + * + * @private + * @type {boolean} + * @default false + */ + this._initialized = false; + + /** + * A reference to the promise which initializes the renderer. + * + * @private + * @type {?Promise} + * @default null + */ + this._initPromise = null; + + /** + * An array of compilation promises which are used in `compileAsync()`. + * + * @private + * @type {?Array} + * @default null + */ + this._compilationPromises = null; + + /** + * Whether the renderer should render transparent render objects or not. + * + * @type {boolean} + * @default true + */ + this.transparent = true; + + /** + * Whether the renderer should render opaque render objects or not. + * + * @type {boolean} + * @default true + */ + this.opaque = true; + + /** + * Shadow map configuration + * @typedef {Object} ShadowMapConfig + * @property {boolean} enabled - Whether to globally enable shadows or not. + * @property {number} type - The shadow map type. + */ + + /** + * The renderer's shadow configuration. + * + * @type {ShadowMapConfig} + */ + this.shadowMap = { + enabled: false, + type: PCFShadowMap + }; + + /** + * XR configuration. + * @typedef {Object} XRConfig + * @property {boolean} enabled - Whether to globally enable XR or not. + */ + + /** + * The renderer's XR manager. + * + * @type {XRManager} + */ + this.xr = new XRManager( this, multiview ); + + /** + * Debug configuration. + * @typedef {Object} DebugConfig + * @property {boolean} checkShaderErrors - Whether shader errors should be checked or not. + * @property {?Function} onShaderError - A callback function that is executed when a shader error happens. Only supported with WebGL 2 right now. + * @property {Function} getShaderAsync - Allows the get the raw shader code for the given scene, camera and 3D object. + */ + + /** + * The renderer's debug configuration. + * + * @type {DebugConfig} + */ + this.debug = { + checkShaderErrors: true, + onShaderError: null, + getShaderAsync: async ( scene, camera, object ) => { + + await this.compileAsync( scene, camera ); + + const renderList = this._renderLists.get( scene, camera ); + const renderContext = this._renderContexts.get( scene, camera, this._renderTarget ); + + const material = scene.overrideMaterial || object.material; + + const renderObject = this._objects.get( object, material, scene, camera, renderList.lightsNode, renderContext, renderContext.clippingContext ); + + const { fragmentShader, vertexShader } = renderObject.getNodeBuilderState(); + + return { fragmentShader, vertexShader }; + + } + }; + + } + + /** + * Initializes the renderer so it is ready for usage. + * + * @async + * @return {Promise} A Promise that resolves when the renderer has been initialized. + */ + async init() { + + if ( this._initialized ) { + + throw new Error( 'Renderer: Backend has already been initialized.' ); + + } + + if ( this._initPromise !== null ) { + + return this._initPromise; + + } + + this._initPromise = new Promise( async ( resolve, reject ) => { + + let backend = this.backend; + + try { + + await backend.init( this ); + + } catch ( error ) { + + if ( this._getFallback !== null ) { + + // try the fallback + + try { + + this.backend = backend = this._getFallback( error ); + await backend.init( this ); + + } catch ( error ) { + + reject( error ); + return; + + } + + } else { + + reject( error ); + return; + + } + + } + + this._nodes = new Nodes( this, backend ); + this._animation = new Animation( this._nodes, this.info ); + this._attributes = new Attributes( backend ); + this._background = new Background( this, this._nodes ); + this._geometries = new Geometries( this._attributes, this.info ); + this._textures = new Textures( this, backend, this.info ); + this._pipelines = new Pipelines( backend, this._nodes ); + this._bindings = new Bindings( backend, this._nodes, this._textures, this._attributes, this._pipelines, this.info ); + this._objects = new RenderObjects( this, this._nodes, this._geometries, this._pipelines, this._bindings, this.info ); + this._renderLists = new RenderLists( this.lighting ); + this._bundles = new RenderBundles(); + this._renderContexts = new RenderContexts(); + + // + + this._animation.start(); + this._initialized = true; + + resolve( this ); + + } ); + + return this._initPromise; + + } + + /** + * The coordinate system of the renderer. The value of this property + * depends on the selected backend. Either `THREE.WebGLCoordinateSystem` or + * `THREE.WebGPUCoordinateSystem`. + * + * @readonly + * @type {number} + */ + get coordinateSystem() { + + return this.backend.coordinateSystem; + + } + + /** + * Compiles all materials in the given scene. This can be useful to avoid a + * phenomenon which is called "shader compilation stutter", which occurs when + * rendering an object with a new shader for the first time. + * + * If you want to add a 3D object to an existing scene, use the third optional + * parameter for applying the target scene. Note that the (target) scene's lighting + * and environment must be configured before calling this method. + * + * @async + * @param {Object3D} scene - The scene or 3D object to precompile. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {?Scene} targetScene - If the first argument is a 3D object, this parameter must represent the scene the 3D object is going to be added. + * @return {Promise} A Promise that resolves when the compile has been finished. + */ + async compileAsync( scene, camera, targetScene = null ) { + + if ( this._isDeviceLost === true ) return; + + if ( this._initialized === false ) await this.init(); + + // preserve render tree + + const nodeFrame = this._nodes.nodeFrame; + + const previousRenderId = nodeFrame.renderId; + const previousRenderContext = this._currentRenderContext; + const previousRenderObjectFunction = this._currentRenderObjectFunction; + const previousCompilationPromises = this._compilationPromises; + + // + + const sceneRef = ( scene.isScene === true ) ? scene : _scene; + + if ( targetScene === null ) targetScene = scene; + + const renderTarget = this._renderTarget; + const renderContext = this._renderContexts.get( targetScene, camera, renderTarget ); + const activeMipmapLevel = this._activeMipmapLevel; + + const compilationPromises = []; + + this._currentRenderContext = renderContext; + this._currentRenderObjectFunction = this.renderObject; + + this._handleObjectFunction = this._createObjectPipeline; + + this._compilationPromises = compilationPromises; + + nodeFrame.renderId ++; + + // + + nodeFrame.update(); + + // + + renderContext.depth = this.depth; + renderContext.stencil = this.stencil; + + if ( ! renderContext.clippingContext ) renderContext.clippingContext = new ClippingContext(); + renderContext.clippingContext.updateGlobal( sceneRef, camera ); + + // + + sceneRef.onBeforeRender( this, scene, camera, renderTarget ); + + // + + const renderList = this._renderLists.get( scene, camera ); + renderList.begin(); + + this._projectObject( scene, camera, 0, renderList, renderContext.clippingContext ); + + // include lights from target scene + if ( targetScene !== scene ) { + + targetScene.traverseVisible( function ( object ) { + + if ( object.isLight && object.layers.test( camera.layers ) ) { + + renderList.pushLight( object ); + + } + + } ); + + } + + renderList.finish(); + + // + + if ( renderTarget !== null ) { + + this._textures.updateRenderTarget( renderTarget, activeMipmapLevel ); + + const renderTargetData = this._textures.get( renderTarget ); + + renderContext.textures = renderTargetData.textures; + renderContext.depthTexture = renderTargetData.depthTexture; + + } else { + + renderContext.textures = null; + renderContext.depthTexture = null; + + } + + // + + this._background.update( sceneRef, renderList, renderContext ); + + // process render lists + + const opaqueObjects = renderList.opaque; + const transparentObjects = renderList.transparent; + const transparentDoublePassObjects = renderList.transparentDoublePass; + const lightsNode = renderList.lightsNode; + + if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode ); + if ( this.transparent === true && transparentObjects.length > 0 ) this._renderTransparents( transparentObjects, transparentDoublePassObjects, camera, sceneRef, lightsNode ); + + // restore render tree + + nodeFrame.renderId = previousRenderId; + + this._currentRenderContext = previousRenderContext; + this._currentRenderObjectFunction = previousRenderObjectFunction; + this._compilationPromises = previousCompilationPromises; + + this._handleObjectFunction = this._renderObjectDirect; + + // wait for all promises setup by backends awaiting compilation/linking/pipeline creation to complete + + await Promise.all( compilationPromises ); + + } + + /** + * Renders the scene in an async fashion. + * + * @async + * @param {Object3D} scene - The scene or 3D object to render. + * @param {Camera} camera - The camera. + * @return {Promise} A Promise that resolves when the render has been finished. + */ + async renderAsync( scene, camera ) { + + if ( this._initialized === false ) await this.init(); + + this._renderScene( scene, camera ); + + } + + /** + * Can be used to synchronize CPU operations with GPU tasks. So when this method is called, + * the CPU waits for the GPU to complete its operation (e.g. a compute task). + * + * @async + * @return {Promise} A Promise that resolves when synchronization has been finished. + */ + async waitForGPU() { + + await this.backend.waitForGPU(); + + } + + /** + * Enables or disables high precision for model-view and normal-view matrices. + * When enabled, will use CPU 64-bit precision for higher precision instead of GPU 32-bit for higher performance. + * + * NOTE: 64-bit precision is not compatible with `InstancedMesh` and `SkinnedMesh`. + * + * @param {boolean} value - Whether to enable or disable high precision. + * @type {boolean} + */ + set highPrecision( value ) { + + if ( value === true ) { + + this.overrideNodes.modelViewMatrix = highpModelViewMatrix; + this.overrideNodes.modelNormalViewMatrix = highpModelNormalViewMatrix; + + } else if ( this.highPrecision ) { + + this.overrideNodes.modelViewMatrix = null; + this.overrideNodes.modelNormalViewMatrix = null; + + } + + } + + /** + * Returns whether high precision is enabled or not. + * + * @return {boolean} Whether high precision is enabled or not. + * @type {boolean} + */ + get highPrecision() { + + return this.overrideNodes.modelViewMatrix === highpModelViewMatrix && this.overrideNodes.modelNormalViewMatrix === highpModelNormalViewMatrix; + + } + + /** + * Sets the given MRT configuration. + * + * @param {MRTNode} mrt - The MRT node to set. + * @return {Renderer} A reference to this renderer. + */ + setMRT( mrt ) { + + this._mrt = mrt; + + return this; + + } + + /** + * Returns the MRT configuration. + * + * @return {MRTNode} The MRT configuration. + */ + getMRT() { + + return this._mrt; + + } + + /** + * Returns the color buffer type. + * + * @return {number} The color buffer type. + */ + getColorBufferType() { + + return this._colorBufferType; + + } + + /** + * Default implementation of the device lost callback. + * + * @private + * @param {Object} info - Information about the context lost. + */ + _onDeviceLost( info ) { + + let errorMessage = `THREE.WebGPURenderer: ${info.api} Device Lost:\n\nMessage: ${info.message}`; + + if ( info.reason ) { + + errorMessage += `\nReason: ${info.reason}`; + + } + + console.error( errorMessage ); + + this._isDeviceLost = true; + + } + + /** + * Renders the given render bundle. + * + * @private + * @param {Object} bundle - Render bundle data. + * @param {Scene} sceneRef - The scene the render bundle belongs to. + * @param {LightsNode} lightsNode - The lights node. + */ + _renderBundle( bundle, sceneRef, lightsNode ) { + + const { bundleGroup, camera, renderList } = bundle; + + const renderContext = this._currentRenderContext; + + // + + const renderBundle = this._bundles.get( bundleGroup, camera ); + const renderBundleData = this.backend.get( renderBundle ); + + if ( renderBundleData.renderContexts === undefined ) renderBundleData.renderContexts = new Set(); + + // + + const needsUpdate = bundleGroup.version !== renderBundleData.version; + const renderBundleNeedsUpdate = renderBundleData.renderContexts.has( renderContext ) === false || needsUpdate; + + renderBundleData.renderContexts.add( renderContext ); + + if ( renderBundleNeedsUpdate ) { + + this.backend.beginBundle( renderContext ); + + if ( renderBundleData.renderObjects === undefined || needsUpdate ) { + + renderBundleData.renderObjects = []; + + } + + this._currentRenderBundle = renderBundle; + + const { + transparentDoublePass: transparentDoublePassObjects, + transparent: transparentObjects, + opaque: opaqueObjects + } = renderList; + + if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode ); + if ( this.transparent === true && transparentObjects.length > 0 ) this._renderTransparents( transparentObjects, transparentDoublePassObjects, camera, sceneRef, lightsNode ); + + this._currentRenderBundle = null; + + // + + this.backend.finishBundle( renderContext, renderBundle ); + + renderBundleData.version = bundleGroup.version; + + } else { + + const { renderObjects } = renderBundleData; + + for ( let i = 0, l = renderObjects.length; i < l; i ++ ) { + + const renderObject = renderObjects[ i ]; + + if ( this._nodes.needsRefresh( renderObject ) ) { + + this._nodes.updateBefore( renderObject ); + + this._nodes.updateForRender( renderObject ); + this._bindings.updateForRender( renderObject ); + + this._nodes.updateAfter( renderObject ); + + } + + } + + } + + this.backend.addBundle( renderContext, renderBundle ); + + } + + /** + * Renders the scene or 3D object with the given camera. This method can only be called + * if the renderer has been initialized. + * + * The target of the method is the default framebuffer (meaning the canvas) + * or alternatively a render target when specified via `setRenderTarget()`. + * + * @param {Object3D} scene - The scene or 3D object to render. + * @param {Camera} camera - The camera to render the scene with. + * @return {?Promise} A Promise that resolve when the scene has been rendered. + * Only returned when the renderer has not been initialized. + */ + render( scene, camera ) { + + if ( this._initialized === false ) { + + console.warn( 'THREE.Renderer: .render() called before the backend is initialized. Try using .renderAsync() instead.' ); + + return this.renderAsync( scene, camera ); + + } + + this._renderScene( scene, camera ); + + } + + /** + * Returns an internal render target which is used when computing the output tone mapping + * and color space conversion. Unlike in `WebGLRenderer`, this is done in a separate render + * pass and not inline to achieve more correct results. + * + * @private + * @return {?RenderTarget} The render target. The method returns `null` if no output conversion should be applied. + */ + _getFrameBufferTarget() { + + const { currentToneMapping, currentColorSpace } = this; + + const useToneMapping = currentToneMapping !== NoToneMapping; + const useColorSpace = currentColorSpace !== LinearSRGBColorSpace; + + if ( useToneMapping === false && useColorSpace === false ) return null; + + const { width, height } = this.getDrawingBufferSize( _drawingBufferSize$1 ); + const { depth, stencil } = this; + + let frameBufferTarget = this._frameBufferTarget; + + if ( frameBufferTarget === null ) { + + frameBufferTarget = new RenderTarget( width, height, { + depthBuffer: depth, + stencilBuffer: stencil, + type: this._colorBufferType, + format: RGBAFormat, + colorSpace: LinearSRGBColorSpace, + generateMipmaps: false, + minFilter: LinearFilter, + magFilter: LinearFilter, + samples: this.samples + } ); + + frameBufferTarget.isPostProcessingRenderTarget = true; + + this._frameBufferTarget = frameBufferTarget; + + } + + const outputRenderTarget = this.getOutputRenderTarget(); + + frameBufferTarget.depthBuffer = depth; + frameBufferTarget.stencilBuffer = stencil; + if ( outputRenderTarget !== null ) { + + frameBufferTarget.setSize( outputRenderTarget.width, outputRenderTarget.height, outputRenderTarget.depth ); + + } else { + + frameBufferTarget.setSize( width, height, 1 ); + + } + + frameBufferTarget.viewport.copy( this._viewport ); + frameBufferTarget.scissor.copy( this._scissor ); + frameBufferTarget.viewport.multiplyScalar( this._pixelRatio ); + frameBufferTarget.scissor.multiplyScalar( this._pixelRatio ); + frameBufferTarget.scissorTest = this._scissorTest; + frameBufferTarget.multiview = outputRenderTarget !== null ? outputRenderTarget.multiview : false; + frameBufferTarget.resolveDepthBuffer = outputRenderTarget !== null ? outputRenderTarget.resolveDepthBuffer : true; + + return frameBufferTarget; + + } + + /** + * Renders the scene or 3D object with the given camera. + * + * @private + * @param {Object3D} scene - The scene or 3D object to render. + * @param {Camera} camera - The camera to render the scene with. + * @param {boolean} [useFrameBufferTarget=true] - Whether to use a framebuffer target or not. + * @return {RenderContext} The current render context. + */ + _renderScene( scene, camera, useFrameBufferTarget = true ) { + + if ( this._isDeviceLost === true ) return; + + const frameBufferTarget = useFrameBufferTarget ? this._getFrameBufferTarget() : null; + + // preserve render tree + + const nodeFrame = this._nodes.nodeFrame; + + const previousRenderId = nodeFrame.renderId; + const previousRenderContext = this._currentRenderContext; + const previousRenderObjectFunction = this._currentRenderObjectFunction; + + // + + const sceneRef = ( scene.isScene === true ) ? scene : _scene; + + const outputRenderTarget = this._renderTarget || this._outputRenderTarget; + + const activeCubeFace = this._activeCubeFace; + const activeMipmapLevel = this._activeMipmapLevel; + + // + + let renderTarget; + + if ( frameBufferTarget !== null ) { + + renderTarget = frameBufferTarget; + + this.setRenderTarget( renderTarget ); + + } else { + + renderTarget = outputRenderTarget; + + } + + // + + const renderContext = this._renderContexts.get( scene, camera, renderTarget ); + + this._currentRenderContext = renderContext; + this._currentRenderObjectFunction = this._renderObjectFunction || this.renderObject; + + // + + this.info.calls ++; + this.info.render.calls ++; + this.info.render.frameCalls ++; + + nodeFrame.renderId = this.info.calls; + + // + + const coordinateSystem = this.coordinateSystem; + const xr = this.xr; + + if ( camera.coordinateSystem !== coordinateSystem && xr.isPresenting === false ) { + + camera.coordinateSystem = coordinateSystem; + camera.updateProjectionMatrix(); + + if ( camera.isArrayCamera ) { + + for ( const subCamera of camera.cameras ) { + + subCamera.coordinateSystem = coordinateSystem; + subCamera.updateProjectionMatrix(); + + } + + } + + } + + // + + if ( scene.matrixWorldAutoUpdate === true ) scene.updateMatrixWorld(); + + if ( camera.parent === null && camera.matrixWorldAutoUpdate === true ) camera.updateMatrixWorld(); + + if ( xr.enabled === true && xr.isPresenting === true ) { + + if ( xr.cameraAutoUpdate === true ) xr.updateCamera( camera ); + camera = xr.getCamera(); // use XR camera for rendering + + } + + // + + let viewport = this._viewport; + let scissor = this._scissor; + let pixelRatio = this._pixelRatio; + + if ( renderTarget !== null ) { + + viewport = renderTarget.viewport; + scissor = renderTarget.scissor; + pixelRatio = 1; + + } + + this.getDrawingBufferSize( _drawingBufferSize$1 ); + + _screen.set( 0, 0, _drawingBufferSize$1.width, _drawingBufferSize$1.height ); + + const minDepth = ( viewport.minDepth === undefined ) ? 0 : viewport.minDepth; + const maxDepth = ( viewport.maxDepth === undefined ) ? 1 : viewport.maxDepth; + + renderContext.viewportValue.copy( viewport ).multiplyScalar( pixelRatio ).floor(); + renderContext.viewportValue.width >>= activeMipmapLevel; + renderContext.viewportValue.height >>= activeMipmapLevel; + renderContext.viewportValue.minDepth = minDepth; + renderContext.viewportValue.maxDepth = maxDepth; + renderContext.viewport = renderContext.viewportValue.equals( _screen ) === false; + + renderContext.scissorValue.copy( scissor ).multiplyScalar( pixelRatio ).floor(); + renderContext.scissor = this._scissorTest && renderContext.scissorValue.equals( _screen ) === false; + renderContext.scissorValue.width >>= activeMipmapLevel; + renderContext.scissorValue.height >>= activeMipmapLevel; + + if ( ! renderContext.clippingContext ) renderContext.clippingContext = new ClippingContext(); + renderContext.clippingContext.updateGlobal( sceneRef, camera ); + + // + + sceneRef.onBeforeRender( this, scene, camera, renderTarget ); + + // + + const frustum = camera.isArrayCamera ? _frustumArray : _frustum; + + if ( ! camera.isArrayCamera ) { + + _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); + frustum.setFromProjectionMatrix( _projScreenMatrix, coordinateSystem ); + + } + + const renderList = this._renderLists.get( scene, camera ); + renderList.begin(); + + this._projectObject( scene, camera, 0, renderList, renderContext.clippingContext ); + + renderList.finish(); + + if ( this.sortObjects === true ) { + + renderList.sort( this._opaqueSort, this._transparentSort ); + + } + + // + + if ( renderTarget !== null ) { + + this._textures.updateRenderTarget( renderTarget, activeMipmapLevel ); + + const renderTargetData = this._textures.get( renderTarget ); + + renderContext.textures = renderTargetData.textures; + renderContext.depthTexture = renderTargetData.depthTexture; + renderContext.width = renderTargetData.width; + renderContext.height = renderTargetData.height; + renderContext.renderTarget = renderTarget; + renderContext.depth = renderTarget.depthBuffer; + renderContext.stencil = renderTarget.stencilBuffer; + + } else { + + renderContext.textures = null; + renderContext.depthTexture = null; + renderContext.width = this.domElement.width; + renderContext.height = this.domElement.height; + renderContext.depth = this.depth; + renderContext.stencil = this.stencil; + + } + + renderContext.width >>= activeMipmapLevel; + renderContext.height >>= activeMipmapLevel; + renderContext.activeCubeFace = activeCubeFace; + renderContext.activeMipmapLevel = activeMipmapLevel; + renderContext.occlusionQueryCount = renderList.occlusionQueryCount; + + // + + this._background.update( sceneRef, renderList, renderContext ); + + // + + renderContext.camera = camera; + this.backend.beginRender( renderContext ); + + // process render lists + + const { + bundles, + lightsNode, + transparentDoublePass: transparentDoublePassObjects, + transparent: transparentObjects, + opaque: opaqueObjects + } = renderList; + + if ( bundles.length > 0 ) this._renderBundles( bundles, sceneRef, lightsNode ); + if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode ); + if ( this.transparent === true && transparentObjects.length > 0 ) this._renderTransparents( transparentObjects, transparentDoublePassObjects, camera, sceneRef, lightsNode ); + + // finish render pass + + this.backend.finishRender( renderContext ); + + // restore render tree + + nodeFrame.renderId = previousRenderId; + + this._currentRenderContext = previousRenderContext; + this._currentRenderObjectFunction = previousRenderObjectFunction; + + // + + if ( frameBufferTarget !== null ) { + + this.setRenderTarget( outputRenderTarget, activeCubeFace, activeMipmapLevel ); + + this._renderOutput( renderTarget ); + + } + + // + + sceneRef.onAfterRender( this, scene, camera, renderTarget ); + + // + + return renderContext; + + } + + _setXRLayerSize( width, height ) { + + this._width = width; + this._height = height; + + this.setViewport( 0, 0, width, height ); + + } + + /** + * The output pass performs tone mapping and color space conversion. + * + * @private + * @param {RenderTarget} renderTarget - The current render target. + */ + _renderOutput( renderTarget ) { + + const quad = this._quad; + + if ( this._nodes.hasOutputChange( renderTarget.texture ) ) { + + quad.material.fragmentNode = this._nodes.getOutputNode( renderTarget.texture ); + quad.material.needsUpdate = true; + + } + + // a clear operation clears the intermediate renderTarget texture, but should not update the screen canvas. + + const currentAutoClear = this.autoClear; + const currentXR = this.xr.enabled; + + this.autoClear = false; + this.xr.enabled = false; + + this._renderScene( quad, quad.camera, false ); + + this.autoClear = currentAutoClear; + this.xr.enabled = currentXR; + + + } + + /** + * Returns the maximum available anisotropy for texture filtering. + * + * @return {number} The maximum available anisotropy. + */ + getMaxAnisotropy() { + + return this.backend.getMaxAnisotropy(); + + } + + /** + * Returns the active cube face. + * + * @return {number} The active cube face. + */ + getActiveCubeFace() { + + return this._activeCubeFace; + + } + + /** + * Returns the active mipmap level. + * + * @return {number} The active mipmap level. + */ + getActiveMipmapLevel() { + + return this._activeMipmapLevel; + + } + + /** + * Applications are advised to always define the animation loop + * with this method and not manually with `requestAnimationFrame()` + * for best compatibility. + * + * @async + * @param {?Function} callback - The application's animation loop. + * @return {Promise} A Promise that resolves when the set has been executed. + */ + async setAnimationLoop( callback ) { + + if ( this._initialized === false ) await this.init(); + + this._animation.setAnimationLoop( callback ); + + } + + /** + * Can be used to transfer buffer data from a storage buffer attribute + * from the GPU to the CPU in context of compute shaders. + * + * @async + * @param {StorageBufferAttribute} attribute - The storage buffer attribute. + * @return {Promise} A promise that resolves with the buffer data when the data are ready. + */ + async getArrayBufferAsync( attribute ) { + + return await this.backend.getArrayBufferAsync( attribute ); + + } + + /** + * Returns the rendering context. + * + * @return {GPUCanvasContext|WebGL2RenderingContext} The rendering context. + */ + getContext() { + + return this.backend.getContext(); + + } + + /** + * Returns the pixel ratio. + * + * @return {number} The pixel ratio. + */ + getPixelRatio() { + + return this._pixelRatio; + + } + + /** + * Returns the drawing buffer size in physical pixels. This method honors the pixel ratio. + * + * @param {Vector2} target - The method writes the result in this target object. + * @return {Vector2} The drawing buffer size. + */ + getDrawingBufferSize( target ) { + + return target.set( this._width * this._pixelRatio, this._height * this._pixelRatio ).floor(); + + } + + /** + * Returns the renderer's size in logical pixels. This method does not honor the pixel ratio. + * + * @param {Vector2} target - The method writes the result in this target object. + * @return {Vector2} The renderer's size in logical pixels. + */ + getSize( target ) { + + return target.set( this._width, this._height ); + + } + + /** + * Sets the given pixel ratio and resizes the canvas if necessary. + * + * @param {number} [value=1] - The pixel ratio. + */ + setPixelRatio( value = 1 ) { + + if ( this._pixelRatio === value ) return; + + this._pixelRatio = value; + + this.setSize( this._width, this._height, false ); + + } + + /** + * This method allows to define the drawing buffer size by specifying + * width, height and pixel ratio all at once. The size of the drawing + * buffer is computed with this formula: + * ```js + * size.x = width * pixelRatio; + * size.y = height * pixelRatio; + * ``` + * + * @param {number} width - The width in logical pixels. + * @param {number} height - The height in logical pixels. + * @param {number} pixelRatio - The pixel ratio. + */ + setDrawingBufferSize( width, height, pixelRatio ) { + + // Renderer can't be resized while presenting in XR. + if ( this.xr && this.xr.isPresenting ) return; + + this._width = width; + this._height = height; + + this._pixelRatio = pixelRatio; + + this.domElement.width = Math.floor( width * pixelRatio ); + this.domElement.height = Math.floor( height * pixelRatio ); + + this.setViewport( 0, 0, width, height ); + + if ( this._initialized ) this.backend.updateSize(); + + } + + /** + * Sets the size of the renderer. + * + * @param {number} width - The width in logical pixels. + * @param {number} height - The height in logical pixels. + * @param {boolean} [updateStyle=true] - Whether to update the `style` attribute of the canvas or not. + */ + setSize( width, height, updateStyle = true ) { + + // Renderer can't be resized while presenting in XR. + if ( this.xr && this.xr.isPresenting ) return; + + this._width = width; + this._height = height; + + this.domElement.width = Math.floor( width * this._pixelRatio ); + this.domElement.height = Math.floor( height * this._pixelRatio ); + + if ( updateStyle === true ) { + + this.domElement.style.width = width + 'px'; + this.domElement.style.height = height + 'px'; + + } + + this.setViewport( 0, 0, width, height ); + + if ( this._initialized ) this.backend.updateSize(); + + } + + /** + * Defines a manual sort function for the opaque render list. + * Pass `null` to use the default sort. + * + * @param {Function} method - The sort function. + */ + setOpaqueSort( method ) { + + this._opaqueSort = method; + + } + + /** + * Defines a manual sort function for the transparent render list. + * Pass `null` to use the default sort. + * + * @param {Function} method - The sort function. + */ + setTransparentSort( method ) { + + this._transparentSort = method; + + } + + /** + * Returns the scissor rectangle. + * + * @param {Vector4} target - The method writes the result in this target object. + * @return {Vector4} The scissor rectangle. + */ + getScissor( target ) { + + const scissor = this._scissor; + + target.x = scissor.x; + target.y = scissor.y; + target.width = scissor.width; + target.height = scissor.height; + + return target; + + } + + /** + * Defines the scissor rectangle. + * + * @param {number | Vector4} x - The horizontal coordinate for the lower left corner of the box in logical pixel unit. + * Instead of passing four arguments, the method also works with a single four-dimensional vector. + * @param {number} y - The vertical coordinate for the lower left corner of the box in logical pixel unit. + * @param {number} width - The width of the scissor box in logical pixel unit. + * @param {number} height - The height of the scissor box in logical pixel unit. + */ + setScissor( x, y, width, height ) { + + const scissor = this._scissor; + + if ( x.isVector4 ) { + + scissor.copy( x ); + + } else { + + scissor.set( x, y, width, height ); + + } + + } + + /** + * Returns the scissor test value. + * + * @return {boolean} Whether the scissor test should be enabled or not. + */ + getScissorTest() { + + return this._scissorTest; + + } + + /** + * Defines the scissor test. + * + * @param {boolean} boolean - Whether the scissor test should be enabled or not. + */ + setScissorTest( boolean ) { + + this._scissorTest = boolean; + + this.backend.setScissorTest( boolean ); + + } + + /** + * Returns the viewport definition. + * + * @param {Vector4} target - The method writes the result in this target object. + * @return {Vector4} The viewport definition. + */ + getViewport( target ) { + + return target.copy( this._viewport ); + + } + + /** + * Defines the viewport. + * + * @param {number | Vector4} x - The horizontal coordinate for the lower left corner of the viewport origin in logical pixel unit. + * @param {number} y - The vertical coordinate for the lower left corner of the viewport origin in logical pixel unit. + * @param {number} width - The width of the viewport in logical pixel unit. + * @param {number} height - The height of the viewport in logical pixel unit. + * @param {number} minDepth - The minimum depth value of the viewport. WebGPU only. + * @param {number} maxDepth - The maximum depth value of the viewport. WebGPU only. + */ + setViewport( x, y, width, height, minDepth = 0, maxDepth = 1 ) { + + const viewport = this._viewport; + + if ( x.isVector4 ) { + + viewport.copy( x ); + + } else { + + viewport.set( x, y, width, height ); + + } + + viewport.minDepth = minDepth; + viewport.maxDepth = maxDepth; + + } + + /** + * Returns the clear color. + * + * @param {Color} target - The method writes the result in this target object. + * @return {Color} The clear color. + */ + getClearColor( target ) { + + return target.copy( this._clearColor ); + + } + + /** + * Defines the clear color and optionally the clear alpha. + * + * @param {Color} color - The clear color. + * @param {number} [alpha=1] - The clear alpha. + */ + setClearColor( color, alpha = 1 ) { + + this._clearColor.set( color ); + this._clearColor.a = alpha; + + } + + /** + * Returns the clear alpha. + * + * @return {number} The clear alpha. + */ + getClearAlpha() { + + return this._clearColor.a; + + } + + /** + * Defines the clear alpha. + * + * @param {number} alpha - The clear alpha. + */ + setClearAlpha( alpha ) { + + this._clearColor.a = alpha; + + } + + /** + * Returns the clear depth. + * + * @return {number} The clear depth. + */ + getClearDepth() { + + return this._clearDepth; + + } + + /** + * Defines the clear depth. + * + * @param {number} depth - The clear depth. + */ + setClearDepth( depth ) { + + this._clearDepth = depth; + + } + + /** + * Returns the clear stencil. + * + * @return {number} The clear stencil. + */ + getClearStencil() { + + return this._clearStencil; + + } + + /** + * Defines the clear stencil. + * + * @param {number} stencil - The clear stencil. + */ + setClearStencil( stencil ) { + + this._clearStencil = stencil; + + } + + /** + * This method performs an occlusion query for the given 3D object. + * It returns `true` if the given 3D object is fully occluded by other + * 3D objects in the scene. + * + * @param {Object3D} object - The 3D object to test. + * @return {boolean} Whether the 3D object is fully occluded or not. + */ + isOccluded( object ) { + + const renderContext = this._currentRenderContext; + + return renderContext && this.backend.isOccluded( renderContext, object ); + + } + + /** + * Performs a manual clear operation. This method ignores `autoClear` properties. + * + * @param {boolean} [color=true] - Whether the color buffer should be cleared or not. + * @param {boolean} [depth=true] - Whether the depth buffer should be cleared or not. + * @param {boolean} [stencil=true] - Whether the stencil buffer should be cleared or not. + * @return {Promise} A Promise that resolves when the clear operation has been executed. + * Only returned when the renderer has not been initialized. + */ + clear( color = true, depth = true, stencil = true ) { + + if ( this._initialized === false ) { + + console.warn( 'THREE.Renderer: .clear() called before the backend is initialized. Try using .clearAsync() instead.' ); + + return this.clearAsync( color, depth, stencil ); + + } + + const renderTarget = this._renderTarget || this._getFrameBufferTarget(); + + let renderContext = null; + + if ( renderTarget !== null ) { + + this._textures.updateRenderTarget( renderTarget ); + + const renderTargetData = this._textures.get( renderTarget ); + + renderContext = this._renderContexts.getForClear( renderTarget ); + renderContext.textures = renderTargetData.textures; + renderContext.depthTexture = renderTargetData.depthTexture; + renderContext.width = renderTargetData.width; + renderContext.height = renderTargetData.height; + renderContext.renderTarget = renderTarget; + renderContext.depth = renderTarget.depthBuffer; + renderContext.stencil = renderTarget.stencilBuffer; + // #30329 + renderContext.clearColorValue = this.backend.getClearColor(); + renderContext.activeCubeFace = this.getActiveCubeFace(); + renderContext.activeMipmapLevel = this.getActiveMipmapLevel(); + + } + + this.backend.clear( color, depth, stencil, renderContext ); + + if ( renderTarget !== null && this._renderTarget === null ) { + + this._renderOutput( renderTarget ); + + } + + } + + /** + * Performs a manual clear operation of the color buffer. This method ignores `autoClear` properties. + * + * @return {Promise} A Promise that resolves when the clear operation has been executed. + * Only returned when the renderer has not been initialized. + */ + clearColor() { + + return this.clear( true, false, false ); + + } + + /** + * Performs a manual clear operation of the depth buffer. This method ignores `autoClear` properties. + * + * @return {Promise} A Promise that resolves when the clear operation has been executed. + * Only returned when the renderer has not been initialized. + */ + clearDepth() { + + return this.clear( false, true, false ); + + } + + /** + * Performs a manual clear operation of the stencil buffer. This method ignores `autoClear` properties. + * + * @return {Promise} A Promise that resolves when the clear operation has been executed. + * Only returned when the renderer has not been initialized. + */ + clearStencil() { + + return this.clear( false, false, true ); + + } + + /** + * Async version of {@link Renderer#clear}. + * + * @async + * @param {boolean} [color=true] - Whether the color buffer should be cleared or not. + * @param {boolean} [depth=true] - Whether the depth buffer should be cleared or not. + * @param {boolean} [stencil=true] - Whether the stencil buffer should be cleared or not. + * @return {Promise} A Promise that resolves when the clear operation has been executed. + */ + async clearAsync( color = true, depth = true, stencil = true ) { + + if ( this._initialized === false ) await this.init(); + + this.clear( color, depth, stencil ); + + } + + /** + * Async version of {@link Renderer#clearColor}. + * + * @async + * @return {Promise} A Promise that resolves when the clear operation has been executed. + */ + async clearColorAsync() { + + this.clearAsync( true, false, false ); + + } + + /** + * Async version of {@link Renderer#clearDepth}. + * + * @async + * @return {Promise} A Promise that resolves when the clear operation has been executed. + */ + async clearDepthAsync() { + + this.clearAsync( false, true, false ); + + } + + /** + * Async version of {@link Renderer#clearStencil}. + * + * @async + * @return {Promise} A Promise that resolves when the clear operation has been executed. + */ + async clearStencilAsync() { + + this.clearAsync( false, false, true ); + + } + + /** + * The current output tone mapping of the renderer. When a render target is set, + * the output tone mapping is always `NoToneMapping`. + * + * @type {number} + */ + get currentToneMapping() { + + return this.isOutputTarget ? this.toneMapping : NoToneMapping; + + } + + /** + * The current output color space of the renderer. When a render target is set, + * the output color space is always `LinearSRGBColorSpace`. + * + * @type {string} + */ + get currentColorSpace() { + + return this.isOutputTarget ? this.outputColorSpace : LinearSRGBColorSpace; + + } + + /** + * Returns `true` if the rendering settings are set to screen output. + * + * @returns {boolean} True if the current render target is the same of output render target or `null`, otherwise false. + */ + get isOutputTarget() { + + return this._renderTarget === this._outputRenderTarget || this._renderTarget === null; + + } + + /** + * Frees all internal resources of the renderer. Call this method if the renderer + * is no longer in use by your app. + */ + dispose() { + + this.info.dispose(); + this.backend.dispose(); + + this._animation.dispose(); + this._objects.dispose(); + this._pipelines.dispose(); + this._nodes.dispose(); + this._bindings.dispose(); + this._renderLists.dispose(); + this._renderContexts.dispose(); + this._textures.dispose(); + + if ( this._frameBufferTarget !== null ) this._frameBufferTarget.dispose(); + + Object.values( this.backend.timestampQueryPool ).forEach( queryPool => { + + if ( queryPool !== null ) queryPool.dispose(); + + } ); + + this.setRenderTarget( null ); + this.setAnimationLoop( null ); + + } + + /** + * Sets the given render target. Calling this method means the renderer does not + * target the default framebuffer (meaning the canvas) anymore but a custom framebuffer. + * Use `null` as the first argument to reset the state. + * + * @param {?RenderTarget} renderTarget - The render target to set. + * @param {number} [activeCubeFace=0] - The active cube face. + * @param {number} [activeMipmapLevel=0] - The active mipmap level. + */ + setRenderTarget( renderTarget, activeCubeFace = 0, activeMipmapLevel = 0 ) { + + this._renderTarget = renderTarget; + this._activeCubeFace = activeCubeFace; + this._activeMipmapLevel = activeMipmapLevel; + + } + + /** + * Returns the current render target. + * + * @return {?RenderTarget} The render target. Returns `null` if no render target is set. + */ + getRenderTarget() { + + return this._renderTarget; + + } + + /** + * Sets the output render target for the renderer. + * + * @param {Object} renderTarget - The render target to set as the output target. + */ + setOutputRenderTarget( renderTarget ) { + + this._outputRenderTarget = renderTarget; + + } + + /** + * Returns the current output target. + * + * @return {?RenderTarget} The current output render target. Returns `null` if no output target is set. + */ + getOutputRenderTarget() { + + return this._outputRenderTarget; + + } + + /** + * Resets the renderer to the initial state before WebXR started. + * + */ + _resetXRState() { + + this.backend.setXRTarget( null ); + this.setOutputRenderTarget( null ); + this.setRenderTarget( null ); + + this._frameBufferTarget.dispose(); + this._frameBufferTarget = null; + + } + + /** + * Callback for {@link Renderer#setRenderObjectFunction}. + * + * @callback renderObjectFunction + * @param {Object3D} object - The 3D object. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the object should be rendered with. + * @param {BufferGeometry} geometry - The object's geometry. + * @param {Material} material - The object's material. + * @param {?Object} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {LightsNode} lightsNode - The current lights node. + * @param {ClippingContext} clippingContext - The clipping context. + * @param {?string} [passId=null] - An optional ID for identifying the pass. + */ + + /** + * Sets the given render object function. Calling this method overwrites the default implementation + * which is {@link Renderer#renderObject}. Defining a custom function can be useful + * if you want to modify the way objects are rendered. For example you can define things like "every + * object that has material of a certain type should perform a pre-pass with a special overwrite material". + * The custom function must always call `renderObject()` in its implementation. + * + * Use `null` as the first argument to reset the state. + * + * @param {?renderObjectFunction} renderObjectFunction - The render object function. + */ + setRenderObjectFunction( renderObjectFunction ) { + + this._renderObjectFunction = renderObjectFunction; + + } + + /** + * Returns the current render object function. + * + * @return {?Function} The current render object function. Returns `null` if no function is set. + */ + getRenderObjectFunction() { + + return this._renderObjectFunction; + + } + + /** + * Execute a single or an array of compute nodes. This method can only be called + * if the renderer has been initialized. + * + * @param {Node|Array} computeNodes - The compute node(s). + * @return {Promise|undefined} A Promise that resolve when the compute has finished. Only returned when the renderer has not been initialized. + */ + compute( computeNodes ) { + + if ( this._isDeviceLost === true ) return; + + if ( this._initialized === false ) { + + console.warn( 'THREE.Renderer: .compute() called before the backend is initialized. Try using .computeAsync() instead.' ); + + return this.computeAsync( computeNodes ); + + } + + // + + const nodeFrame = this._nodes.nodeFrame; + + const previousRenderId = nodeFrame.renderId; + + // + + this.info.calls ++; + this.info.compute.calls ++; + this.info.compute.frameCalls ++; + + nodeFrame.renderId = this.info.calls; + + // + + const backend = this.backend; + const pipelines = this._pipelines; + const bindings = this._bindings; + const nodes = this._nodes; + + const computeList = Array.isArray( computeNodes ) ? computeNodes : [ computeNodes ]; + + if ( computeList[ 0 ] === undefined || computeList[ 0 ].isComputeNode !== true ) { + + throw new Error( 'THREE.Renderer: .compute() expects a ComputeNode.' ); + + } + + backend.beginCompute( computeNodes ); + + for ( const computeNode of computeList ) { + + // onInit + + if ( pipelines.has( computeNode ) === false ) { + + const dispose = () => { + + computeNode.removeEventListener( 'dispose', dispose ); + + pipelines.delete( computeNode ); + bindings.delete( computeNode ); + nodes.delete( computeNode ); + + }; + + computeNode.addEventListener( 'dispose', dispose ); + + // + + const onInitFn = computeNode.onInitFunction; + + if ( onInitFn !== null ) { + + onInitFn.call( computeNode, { renderer: this } ); + + } + + } + + nodes.updateForCompute( computeNode ); + bindings.updateForCompute( computeNode ); + + const computeBindings = bindings.getForCompute( computeNode ); + const computePipeline = pipelines.getForCompute( computeNode, computeBindings ); + + backend.compute( computeNodes, computeNode, computeBindings, computePipeline ); + + } + + backend.finishCompute( computeNodes ); + + // + + nodeFrame.renderId = previousRenderId; + + } + + /** + * Execute a single or an array of compute nodes. + * + * @async + * @param {Node|Array} computeNodes - The compute node(s). + * @return {Promise} A Promise that resolve when the compute has finished. + */ + async computeAsync( computeNodes ) { + + if ( this._initialized === false ) await this.init(); + + this.compute( computeNodes ); + + } + + /** + * Checks if the given feature is supported by the selected backend. + * + * @async + * @param {string} name - The feature's name. + * @return {Promise} A Promise that resolves with a bool that indicates whether the feature is supported or not. + */ + async hasFeatureAsync( name ) { + + if ( this._initialized === false ) await this.init(); + + return this.backend.hasFeature( name ); + + } + + async resolveTimestampsAsync( type = 'render' ) { + + if ( this._initialized === false ) await this.init(); + + return this.backend.resolveTimestampsAsync( type ); + + } + + /** + * Checks if the given feature is supported by the selected backend. If the + * renderer has not been initialized, this method always returns `false`. + * + * @param {string} name - The feature's name. + * @return {boolean} Whether the feature is supported or not. + */ + hasFeature( name ) { + + if ( this._initialized === false ) { + + console.warn( 'THREE.Renderer: .hasFeature() called before the backend is initialized. Try using .hasFeatureAsync() instead.' ); + + return false; + + } + + return this.backend.hasFeature( name ); + + } + + /** + * Returns `true` when the renderer has been initialized. + * + * @return {boolean} Whether the renderer has been initialized or not. + */ + hasInitialized() { + + return this._initialized; + + } + + /** + * Initializes the given textures. Useful for preloading a texture rather than waiting until first render + * (which can cause noticeable lags due to decode and GPU upload overhead). + * + * @async + * @param {Texture} texture - The texture. + * @return {Promise} A Promise that resolves when the texture has been initialized. + */ + async initTextureAsync( texture ) { + + if ( this._initialized === false ) await this.init(); + + this._textures.updateTexture( texture ); + + } + + /** + * Initializes the given texture. Useful for preloading a texture rather than waiting until first render + * (which can cause noticeable lags due to decode and GPU upload overhead). + * + * This method can only be used if the renderer has been initialized. + * + * @param {Texture} texture - The texture. + */ + initTexture( texture ) { + + if ( this._initialized === false ) { + + console.warn( 'THREE.Renderer: .initTexture() called before the backend is initialized. Try using .initTextureAsync() instead.' ); + + } + + this._textures.updateTexture( texture ); + + } + + /** + * Copies the current bound framebuffer into the given texture. + * + * @param {FramebufferTexture} framebufferTexture - The texture. + * @param {?Vector2|Vector4} [rectangle=null] - A two or four dimensional vector that defines the rectangular portion of the framebuffer that should be copied. + */ + copyFramebufferToTexture( framebufferTexture, rectangle = null ) { + + if ( rectangle !== null ) { + + if ( rectangle.isVector2 ) { + + rectangle = _vector4.set( rectangle.x, rectangle.y, framebufferTexture.image.width, framebufferTexture.image.height ).floor(); + + } else if ( rectangle.isVector4 ) { + + rectangle = _vector4.copy( rectangle ).floor(); + + } else { + + console.error( 'THREE.Renderer.copyFramebufferToTexture: Invalid rectangle.' ); + + return; + + } + + } else { + + rectangle = _vector4.set( 0, 0, framebufferTexture.image.width, framebufferTexture.image.height ); + + } + + // + + let renderContext = this._currentRenderContext; + let renderTarget; + + if ( renderContext !== null ) { + + renderTarget = renderContext.renderTarget; + + } else { + + renderTarget = this._renderTarget || this._getFrameBufferTarget(); + + if ( renderTarget !== null ) { + + this._textures.updateRenderTarget( renderTarget ); + + renderContext = this._textures.get( renderTarget ); + + } + + } + + // + + this._textures.updateTexture( framebufferTexture, { renderTarget } ); + + this.backend.copyFramebufferToTexture( framebufferTexture, renderContext, rectangle ); + + } + + /** + * Copies data of the given source texture into a destination texture. + * + * @param {Texture} srcTexture - The source texture. + * @param {Texture} dstTexture - The destination texture. + * @param {Box2|Box3} [srcRegion=null] - A bounding box which describes the source region. Can be two or three-dimensional. + * @param {Vector2|Vector3} [dstPosition=null] - A vector that represents the origin of the destination region. Can be two or three-dimensional. + * @param {number} [srcLevel=0] - The source mip level to copy from. + * @param {number} [dstLevel=0] - The destination mip level to copy to. + */ + copyTextureToTexture( srcTexture, dstTexture, srcRegion = null, dstPosition = null, srcLevel = 0, dstLevel = 0 ) { + + this._textures.updateTexture( srcTexture ); + this._textures.updateTexture( dstTexture ); + + this.backend.copyTextureToTexture( srcTexture, dstTexture, srcRegion, dstPosition, srcLevel, dstLevel ); + + } + + /** + * Reads pixel data from the given render target. + * + * @async + * @param {RenderTarget} renderTarget - The render target to read from. + * @param {number} x - The `x` coordinate of the copy region's origin. + * @param {number} y - The `y` coordinate of the copy region's origin. + * @param {number} width - The width of the copy region. + * @param {number} height - The height of the copy region. + * @param {number} [textureIndex=0] - The texture index of a MRT render target. + * @param {number} [faceIndex=0] - The active cube face index. + * @return {Promise} A Promise that resolves when the read has been finished. The resolve provides the read data as a typed array. + */ + async readRenderTargetPixelsAsync( renderTarget, x, y, width, height, textureIndex = 0, faceIndex = 0 ) { + + return this.backend.copyTextureToBuffer( renderTarget.textures[ textureIndex ], x, y, width, height, faceIndex ); + + } + + /** + * Analyzes the given 3D object's hierarchy and builds render lists from the + * processed hierarchy. + * + * @param {Object3D} object - The 3D object to process (usually a scene). + * @param {Camera} camera - The camera the object is rendered with. + * @param {number} groupOrder - The group order is derived from the `renderOrder` of groups and is used to group 3D objects within groups. + * @param {RenderList} renderList - The current render list. + * @param {ClippingContext} clippingContext - The current clipping context. + */ + _projectObject( object, camera, groupOrder, renderList, clippingContext ) { + + if ( object.visible === false ) return; + + const visible = object.layers.test( camera.layers ); + + if ( visible ) { + + if ( object.isGroup ) { + + groupOrder = object.renderOrder; + + if ( object.isClippingGroup && object.enabled ) clippingContext = clippingContext.getGroupContext( object ); + + } else if ( object.isLOD ) { + + if ( object.autoUpdate === true ) object.update( camera ); + + } else if ( object.isLight ) { + + renderList.pushLight( object ); + + } else if ( object.isSprite ) { + + const frustum = camera.isArrayCamera ? _frustumArray : _frustum; + + if ( ! object.frustumCulled || frustum.intersectsSprite( object, camera ) ) { + + if ( this.sortObjects === true ) { + + _vector4.setFromMatrixPosition( object.matrixWorld ).applyMatrix4( _projScreenMatrix ); + + } + + const { geometry, material } = object; + + if ( material.visible ) { + + renderList.push( object, geometry, material, groupOrder, _vector4.z, null, clippingContext ); + + } + + } + + } else if ( object.isLineLoop ) { + + console.error( 'THREE.Renderer: Objects of type THREE.LineLoop are not supported. Please use THREE.Line or THREE.LineSegments.' ); + + } else if ( object.isMesh || object.isLine || object.isPoints ) { + + const frustum = camera.isArrayCamera ? _frustumArray : _frustum; + + if ( ! object.frustumCulled || frustum.intersectsObject( object, camera ) ) { + + const { geometry, material } = object; + + if ( this.sortObjects === true ) { + + if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); + + _vector4 + .copy( geometry.boundingSphere.center ) + .applyMatrix4( object.matrixWorld ) + .applyMatrix4( _projScreenMatrix ); + + } + + if ( Array.isArray( material ) ) { + + const groups = geometry.groups; + + for ( let i = 0, l = groups.length; i < l; i ++ ) { + + const group = groups[ i ]; + const groupMaterial = material[ group.materialIndex ]; + + if ( groupMaterial && groupMaterial.visible ) { + + renderList.push( object, geometry, groupMaterial, groupOrder, _vector4.z, group, clippingContext ); + + } + + } + + } else if ( material.visible ) { + + renderList.push( object, geometry, material, groupOrder, _vector4.z, null, clippingContext ); + + } + + } + + } + + } + + if ( object.isBundleGroup === true && this.backend.beginBundle !== undefined ) { + + const baseRenderList = renderList; + + // replace render list + renderList = this._renderLists.get( object, camera ); + + renderList.begin(); + + baseRenderList.pushBundle( { + bundleGroup: object, + camera, + renderList, + } ); + + renderList.finish(); + + } + + const children = object.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + this._projectObject( children[ i ], camera, groupOrder, renderList, clippingContext ); + + } + + } + + /** + * Renders the given render bundles. + * + * @private + * @param {Array} bundles - Array with render bundle data. + * @param {Scene} sceneRef - The scene the render bundles belong to. + * @param {LightsNode} lightsNode - The current lights node. + */ + _renderBundles( bundles, sceneRef, lightsNode ) { + + for ( const bundle of bundles ) { + + this._renderBundle( bundle, sceneRef, lightsNode ); + + } + + } + + /** + * Renders the transparent objects from the given render lists. + * + * @private + * @param {Array} renderList - The transparent render list. + * @param {Array} doublePassList - The list of transparent objects which require a double pass (e.g. because of transmission). + * @param {Camera} camera - The camera the render list should be rendered with. + * @param {Scene} scene - The scene the render list belongs to. + * @param {LightsNode} lightsNode - The current lights node. + */ + _renderTransparents( renderList, doublePassList, camera, scene, lightsNode ) { + + if ( doublePassList.length > 0 ) { + + // render back side + + for ( const { material } of doublePassList ) { + + material.side = BackSide; + + } + + this._renderObjects( doublePassList, camera, scene, lightsNode, 'backSide' ); + + // render front side + + for ( const { material } of doublePassList ) { + + material.side = FrontSide; + + } + + this._renderObjects( renderList, camera, scene, lightsNode ); + + // restore + + for ( const { material } of doublePassList ) { + + material.side = DoubleSide; + + } + + } else { + + this._renderObjects( renderList, camera, scene, lightsNode ); + + } + + } + + /** + * Renders the objects from the given render list. + * + * @private + * @param {Array} renderList - The render list. + * @param {Camera} camera - The camera the render list should be rendered with. + * @param {Scene} scene - The scene the render list belongs to. + * @param {LightsNode} lightsNode - The current lights node. + * @param {?string} [passId=null] - An optional ID for identifying the pass. + */ + _renderObjects( renderList, camera, scene, lightsNode, passId = null ) { + + for ( let i = 0, il = renderList.length; i < il; i ++ ) { + + const { object, geometry, material, group, clippingContext } = renderList[ i ]; + + this._currentRenderObjectFunction( object, scene, camera, geometry, material, group, lightsNode, clippingContext, passId ); + + } + + } + + /** + * This method represents the default render object function that manages the render lifecycle + * of the object. + * + * @param {Object3D} object - The 3D object. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the object should be rendered with. + * @param {BufferGeometry} geometry - The object's geometry. + * @param {Material} material - The object's material. + * @param {?Object} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {LightsNode} lightsNode - The current lights node. + * @param {?ClippingContext} clippingContext - The clipping context. + * @param {?string} [passId=null] - An optional ID for identifying the pass. + */ + renderObject( object, scene, camera, geometry, material, group, lightsNode, clippingContext = null, passId = null ) { + + let overridePositionNode; + let overrideColorNode; + let overrideDepthNode; + + // + + object.onBeforeRender( this, scene, camera, geometry, material, group ); + + // + + if ( material.allowOverride === true && scene.overrideMaterial !== null ) { + + const overrideMaterial = scene.overrideMaterial; + + if ( material.positionNode && material.positionNode.isNode ) { + + overridePositionNode = overrideMaterial.positionNode; + overrideMaterial.positionNode = material.positionNode; + + } + + overrideMaterial.alphaTest = material.alphaTest; + overrideMaterial.alphaMap = material.alphaMap; + overrideMaterial.transparent = material.transparent || material.transmission > 0; + + if ( overrideMaterial.isShadowPassMaterial ) { + + overrideMaterial.side = material.shadowSide === null ? material.side : material.shadowSide; + + if ( material.depthNode && material.depthNode.isNode ) { + + overrideDepthNode = overrideMaterial.depthNode; + overrideMaterial.depthNode = material.depthNode; + + } + + if ( material.castShadowNode && material.castShadowNode.isNode ) { + + overrideColorNode = overrideMaterial.colorNode; + overrideMaterial.colorNode = material.castShadowNode; + + } + + if ( material.castShadowPositionNode && material.castShadowPositionNode.isNode ) { + + overridePositionNode = overrideMaterial.positionNode; + overrideMaterial.positionNode = material.castShadowPositionNode; + + } + + } + + material = overrideMaterial; + + } + + // + + if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) { + + material.side = BackSide; + this._handleObjectFunction( object, material, scene, camera, lightsNode, group, clippingContext, 'backSide' ); // create backSide pass id + + material.side = FrontSide; + this._handleObjectFunction( object, material, scene, camera, lightsNode, group, clippingContext, passId ); // use default pass id + + material.side = DoubleSide; + + } else { + + this._handleObjectFunction( object, material, scene, camera, lightsNode, group, clippingContext, passId ); + + } + + // + + if ( overridePositionNode !== undefined ) { + + scene.overrideMaterial.positionNode = overridePositionNode; + + } + + if ( overrideDepthNode !== undefined ) { + + scene.overrideMaterial.depthNode = overrideDepthNode; + + } + + if ( overrideColorNode !== undefined ) { + + scene.overrideMaterial.colorNode = overrideColorNode; + + } + + // + + object.onAfterRender( this, scene, camera, geometry, material, group ); + + } + + /** + * This method represents the default `_handleObjectFunction` implementation which creates + * a render object from the given data and performs the draw command with the selected backend. + * + * @private + * @param {Object3D} object - The 3D object. + * @param {Material} material - The object's material. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the object should be rendered with. + * @param {LightsNode} lightsNode - The current lights node. + * @param {?{start: number, count: number}} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {ClippingContext} clippingContext - The clipping context. + * @param {?string} [passId=null] - An optional ID for identifying the pass. + */ + _renderObjectDirect( object, material, scene, camera, lightsNode, group, clippingContext, passId ) { + + const renderObject = this._objects.get( object, material, scene, camera, lightsNode, this._currentRenderContext, clippingContext, passId ); + renderObject.drawRange = object.geometry.drawRange; + renderObject.group = group; + + // + + const needsRefresh = this._nodes.needsRefresh( renderObject ); + + if ( needsRefresh ) { + + this._nodes.updateBefore( renderObject ); + + this._geometries.updateForRender( renderObject ); + + this._nodes.updateForRender( renderObject ); + this._bindings.updateForRender( renderObject ); + + } + + this._pipelines.updateForRender( renderObject ); + + // + + if ( this._currentRenderBundle !== null ) { + + const renderBundleData = this.backend.get( this._currentRenderBundle ); + + renderBundleData.renderObjects.push( renderObject ); + + renderObject.bundle = this._currentRenderBundle.bundleGroup; + + } + + this.backend.draw( renderObject, this.info ); + + if ( needsRefresh ) this._nodes.updateAfter( renderObject ); + + } + + /** + * A different implementation for `_handleObjectFunction` which only makes sure the object is ready for rendering. + * Used in `compileAsync()`. + * + * @private + * @param {Object3D} object - The 3D object. + * @param {Material} material - The object's material. + * @param {Scene} scene - The scene the 3D object belongs to. + * @param {Camera} camera - The camera the object should be rendered with. + * @param {LightsNode} lightsNode - The current lights node. + * @param {?{start: number, count: number}} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`. + * @param {ClippingContext} clippingContext - The clipping context. + * @param {?string} [passId=null] - An optional ID for identifying the pass. + */ + _createObjectPipeline( object, material, scene, camera, lightsNode, group, clippingContext, passId ) { + + const renderObject = this._objects.get( object, material, scene, camera, lightsNode, this._currentRenderContext, clippingContext, passId ); + renderObject.drawRange = object.geometry.drawRange; + renderObject.group = group; + + // + + this._nodes.updateBefore( renderObject ); + + this._geometries.updateForRender( renderObject ); + + this._nodes.updateForRender( renderObject ); + this._bindings.updateForRender( renderObject ); + + this._pipelines.getForRender( renderObject, this._compilationPromises ); + + this._nodes.updateAfter( renderObject ); + + } + + /** + * Alias for `compileAsync()`. + * + * @method + * @param {Object3D} scene - The scene or 3D object to precompile. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {Scene} targetScene - If the first argument is a 3D object, this parameter must represent the scene the 3D object is going to be added. + * @return {function(Object3D, Camera, ?Scene): Promise|undefined} A Promise that resolves when the compile has been finished. + */ + get compile() { + + return this.compileAsync; + + } + +} + +/** + * A binding represents the connection between a resource (like a texture, sampler + * or uniform buffer) and the resource definition in a shader stage. + * + * This module is an abstract base class for all concrete bindings types. + * + * @abstract + * @private + */ +class Binding { + + /** + * Constructs a new binding. + * + * @param {string} [name=''] - The binding's name. + */ + constructor( name = '' ) { + + /** + * The binding's name. + * + * @type {string} + */ + this.name = name; + + /** + * A bitmask that defines in what shader stages the + * binding's resource is accessible. + * + * @type {number} + */ + this.visibility = 0; + + } + + /** + * Makes sure binding's resource is visible for the given shader stage. + * + * @param {number} visibility - The shader stage. + */ + setVisibility( visibility ) { + + this.visibility |= visibility; + + } + + /** + * Clones the binding. + * + * @return {Binding} The cloned binding. + */ + clone() { + + return Object.assign( new this.constructor(), this ); + + } + +} + +/** + * This function is usually called with the length in bytes of an array buffer. + * It returns an padded value which ensure chunk size alignment according to STD140 layout. + * + * @function + * @param {number} floatLength - The buffer length. + * @return {number} The padded length. + */ +function getFloatLength( floatLength ) { + + // ensure chunk size alignment (STD140 layout) + + return floatLength + ( ( GPU_CHUNK_BYTES - ( floatLength % GPU_CHUNK_BYTES ) ) % GPU_CHUNK_BYTES ); + +} + +/** + * Represents a buffer binding type. + * + * @private + * @abstract + * @augments Binding + */ +class Buffer extends Binding { + + /** + * Constructs a new buffer. + * + * @param {string} name - The buffer's name. + * @param {TypedArray} [buffer=null] - The buffer. + */ + constructor( name, buffer = null ) { + + super( name ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBuffer = true; + + /** + * The bytes per element. + * + * @type {number} + */ + this.bytesPerElement = Float32Array.BYTES_PER_ELEMENT; + + /** + * A reference to the internal buffer. + * + * @private + * @type {TypedArray} + */ + this._buffer = buffer; + + } + + /** + * The buffer's byte length. + * + * @type {number} + * @readonly + */ + get byteLength() { + + return getFloatLength( this._buffer.byteLength ); + + } + + /** + * A reference to the internal buffer. + * + * @type {Float32Array} + * @readonly + */ + get buffer() { + + return this._buffer; + + } + + /** + * Updates the binding. + * + * @return {boolean} Whether the buffer has been updated and must be + * uploaded to the GPU. + */ + update() { + + return true; + + } + +} + +/** + * Represents a uniform buffer binding type. + * + * @private + * @augments Buffer + */ +class UniformBuffer extends Buffer { + + /** + * Constructs a new uniform buffer. + * + * @param {string} name - The buffer's name. + * @param {TypedArray} [buffer=null] - The buffer. + */ + constructor( name, buffer = null ) { + + super( name, buffer ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isUniformBuffer = true; + + } + +} + +let _id$4 = 0; + +/** + * A special form of uniform buffer binding type. + * It's buffer value is managed by a node object. + * + * @private + * @augments UniformBuffer + */ +class NodeUniformBuffer extends UniformBuffer { + + /** + * Constructs a new node-based uniform buffer. + * + * @param {BufferNode} nodeUniform - The uniform buffer node. + * @param {UniformGroupNode} groupNode - The uniform group node. + */ + constructor( nodeUniform, groupNode ) { + + super( 'UniformBuffer_' + _id$4 ++, nodeUniform ? nodeUniform.value : null ); + + /** + * The uniform buffer node. + * + * @type {BufferNode} + */ + this.nodeUniform = nodeUniform; + + /** + * The uniform group node. + * + * @type {UniformGroupNode} + */ + this.groupNode = groupNode; + + } + + /** + * The uniform buffer. + * + * @type {Float32Array} + */ + get buffer() { + + return this.nodeUniform.value; + + } + +} + +/** + * This class represents a uniform buffer binding but with + * an API that allows to maintain individual uniform objects. + * + * @private + * @augments UniformBuffer + */ +class UniformsGroup extends UniformBuffer { + + /** + * Constructs a new uniforms group. + * + * @param {string} name - The group's name. + */ + constructor( name ) { + + super( name ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isUniformsGroup = true; + + /** + * An array with the raw uniform values. + * + * @private + * @type {?Array} + * @default null + */ + this._values = null; + + /** + * An array of uniform objects. + * + * The order of uniforms in this array must match the order of uniforms in the shader. + * + * @type {Array} + */ + this.uniforms = []; + + } + + /** + * Adds a uniform to this group. + * + * @param {Uniform} uniform - The uniform to add. + * @return {UniformsGroup} A reference to this group. + */ + addUniform( uniform ) { + + this.uniforms.push( uniform ); + + return this; + + } + + /** + * Removes a uniform from this group. + * + * @param {Uniform} uniform - The uniform to remove. + * @return {UniformsGroup} A reference to this group. + */ + removeUniform( uniform ) { + + const index = this.uniforms.indexOf( uniform ); + + if ( index !== - 1 ) { + + this.uniforms.splice( index, 1 ); + + } + + return this; + + } + + /** + * An array with the raw uniform values. + * + * @type {Array} + */ + get values() { + + if ( this._values === null ) { + + this._values = Array.from( this.buffer ); + + } + + return this._values; + + } + + /** + * A Float32 array buffer with the uniform values. + * + * @type {Float32Array} + */ + get buffer() { + + let buffer = this._buffer; + + if ( buffer === null ) { + + const byteLength = this.byteLength; + + buffer = new Float32Array( new ArrayBuffer( byteLength ) ); + + this._buffer = buffer; + + } + + return buffer; + + } + + /** + * The byte length of the buffer with correct buffer alignment. + * + * @type {number} + */ + get byteLength() { + + const bytesPerElement = this.bytesPerElement; + + let offset = 0; // global buffer offset in bytes + + for ( let i = 0, l = this.uniforms.length; i < l; i ++ ) { + + const uniform = this.uniforms[ i ]; + + const boundary = uniform.boundary; + const itemSize = uniform.itemSize * bytesPerElement; // size of the uniform in bytes + + const chunkOffset = offset % GPU_CHUNK_BYTES; // offset in the current chunk + const chunkPadding = chunkOffset % boundary; // required padding to match boundary + const chunkStart = chunkOffset + chunkPadding; // start position in the current chunk for the data + + offset += chunkPadding; + + // Check for chunk overflow + if ( chunkStart !== 0 && ( GPU_CHUNK_BYTES - chunkStart ) < itemSize ) { + + // Add padding to the end of the chunk + offset += ( GPU_CHUNK_BYTES - chunkStart ); + + } + + uniform.offset = offset / bytesPerElement; + + offset += itemSize; + + } + + return Math.ceil( offset / GPU_CHUNK_BYTES ) * GPU_CHUNK_BYTES; + + } + + /** + * Updates this group by updating each uniform object of + * the internal uniform list. The uniform objects check if their + * values has actually changed so this method only returns + * `true` if there is a real value change. + * + * @return {boolean} Whether the uniforms have been updated and + * must be uploaded to the GPU. + */ + update() { + + let updated = false; + + for ( const uniform of this.uniforms ) { + + if ( this.updateByType( uniform ) === true ) { + + updated = true; + + } + + } + + return updated; + + } + + /** + * Updates a given uniform by calling an update method matching + * the uniforms type. + * + * @param {Uniform} uniform - The uniform to update. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateByType( uniform ) { + + if ( uniform.isNumberUniform ) return this.updateNumber( uniform ); + if ( uniform.isVector2Uniform ) return this.updateVector2( uniform ); + if ( uniform.isVector3Uniform ) return this.updateVector3( uniform ); + if ( uniform.isVector4Uniform ) return this.updateVector4( uniform ); + if ( uniform.isColorUniform ) return this.updateColor( uniform ); + if ( uniform.isMatrix3Uniform ) return this.updateMatrix3( uniform ); + if ( uniform.isMatrix4Uniform ) return this.updateMatrix4( uniform ); + + console.error( 'THREE.WebGPUUniformsGroup: Unsupported uniform type.', uniform ); + + } + + /** + * Updates a given Number uniform. + * + * @param {NumberUniform} uniform - The Number uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateNumber( uniform ) { + + let updated = false; + + const a = this.values; + const v = uniform.getValue(); + const offset = uniform.offset; + const type = uniform.getType(); + + if ( a[ offset ] !== v ) { + + const b = this._getBufferForType( type ); + + b[ offset ] = a[ offset ] = v; + updated = true; + + } + + return updated; + + } + + /** + * Updates a given Vector2 uniform. + * + * @param {Vector2Uniform} uniform - The Vector2 uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateVector2( uniform ) { + + let updated = false; + + const a = this.values; + const v = uniform.getValue(); + const offset = uniform.offset; + const type = uniform.getType(); + + if ( a[ offset + 0 ] !== v.x || a[ offset + 1 ] !== v.y ) { + + const b = this._getBufferForType( type ); + + b[ offset + 0 ] = a[ offset + 0 ] = v.x; + b[ offset + 1 ] = a[ offset + 1 ] = v.y; + + updated = true; + + } + + return updated; + + } + + /** + * Updates a given Vector3 uniform. + * + * @param {Vector3Uniform} uniform - The Vector3 uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateVector3( uniform ) { + + let updated = false; + + const a = this.values; + const v = uniform.getValue(); + const offset = uniform.offset; + const type = uniform.getType(); + + if ( a[ offset + 0 ] !== v.x || a[ offset + 1 ] !== v.y || a[ offset + 2 ] !== v.z ) { + + const b = this._getBufferForType( type ); + + b[ offset + 0 ] = a[ offset + 0 ] = v.x; + b[ offset + 1 ] = a[ offset + 1 ] = v.y; + b[ offset + 2 ] = a[ offset + 2 ] = v.z; + + updated = true; + + } + + return updated; + + } + + /** + * Updates a given Vector4 uniform. + * + * @param {Vector4Uniform} uniform - The Vector4 uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateVector4( uniform ) { + + let updated = false; + + const a = this.values; + const v = uniform.getValue(); + const offset = uniform.offset; + const type = uniform.getType(); + + if ( a[ offset + 0 ] !== v.x || a[ offset + 1 ] !== v.y || a[ offset + 2 ] !== v.z || a[ offset + 4 ] !== v.w ) { + + const b = this._getBufferForType( type ); + + b[ offset + 0 ] = a[ offset + 0 ] = v.x; + b[ offset + 1 ] = a[ offset + 1 ] = v.y; + b[ offset + 2 ] = a[ offset + 2 ] = v.z; + b[ offset + 3 ] = a[ offset + 3 ] = v.w; + + updated = true; + + } + + return updated; + + } + + /** + * Updates a given Color uniform. + * + * @param {ColorUniform} uniform - The Color uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateColor( uniform ) { + + let updated = false; + + const a = this.values; + const c = uniform.getValue(); + const offset = uniform.offset; + + if ( a[ offset + 0 ] !== c.r || a[ offset + 1 ] !== c.g || a[ offset + 2 ] !== c.b ) { + + const b = this.buffer; + + b[ offset + 0 ] = a[ offset + 0 ] = c.r; + b[ offset + 1 ] = a[ offset + 1 ] = c.g; + b[ offset + 2 ] = a[ offset + 2 ] = c.b; + + updated = true; + + } + + return updated; + + } + + /** + * Updates a given Matrix3 uniform. + * + * @param {Matrix3Uniform} uniform - The Matrix3 uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateMatrix3( uniform ) { + + let updated = false; + + const a = this.values; + const e = uniform.getValue().elements; + const offset = uniform.offset; + + if ( a[ offset + 0 ] !== e[ 0 ] || a[ offset + 1 ] !== e[ 1 ] || a[ offset + 2 ] !== e[ 2 ] || + a[ offset + 4 ] !== e[ 3 ] || a[ offset + 5 ] !== e[ 4 ] || a[ offset + 6 ] !== e[ 5 ] || + a[ offset + 8 ] !== e[ 6 ] || a[ offset + 9 ] !== e[ 7 ] || a[ offset + 10 ] !== e[ 8 ] ) { + + const b = this.buffer; + + b[ offset + 0 ] = a[ offset + 0 ] = e[ 0 ]; + b[ offset + 1 ] = a[ offset + 1 ] = e[ 1 ]; + b[ offset + 2 ] = a[ offset + 2 ] = e[ 2 ]; + b[ offset + 4 ] = a[ offset + 4 ] = e[ 3 ]; + b[ offset + 5 ] = a[ offset + 5 ] = e[ 4 ]; + b[ offset + 6 ] = a[ offset + 6 ] = e[ 5 ]; + b[ offset + 8 ] = a[ offset + 8 ] = e[ 6 ]; + b[ offset + 9 ] = a[ offset + 9 ] = e[ 7 ]; + b[ offset + 10 ] = a[ offset + 10 ] = e[ 8 ]; + + updated = true; + + } + + return updated; + + } + + /** + * Updates a given Matrix4 uniform. + * + * @param {Matrix4Uniform} uniform - The Matrix4 uniform. + * @return {boolean} Whether the uniform has been updated or not. + */ + updateMatrix4( uniform ) { + + let updated = false; + + const a = this.values; + const e = uniform.getValue().elements; + const offset = uniform.offset; + + if ( arraysEqual( a, e, offset ) === false ) { + + const b = this.buffer; + b.set( e, offset ); + setArray( a, e, offset ); + updated = true; + + } + + return updated; + + } + + /** + * Returns a typed array that matches the given data type. + * + * @param {string} type - The data type. + * @return {TypedArray} The typed array. + */ + _getBufferForType( type ) { + + if ( type === 'int' || type === 'ivec2' || type === 'ivec3' || type === 'ivec4' ) return new Int32Array( this.buffer.buffer ); + if ( type === 'uint' || type === 'uvec2' || type === 'uvec3' || type === 'uvec4' ) return new Uint32Array( this.buffer.buffer ); + return this.buffer; + + } + +} + +/** + * Sets the values of the second array to the first array. + * + * @private + * @param {TypedArray} a - The first array. + * @param {TypedArray} b - The second array. + * @param {number} offset - An index offset for the first array. + */ +function setArray( a, b, offset ) { + + for ( let i = 0, l = b.length; i < l; i ++ ) { + + a[ offset + i ] = b[ i ]; + + } + +} + +/** + * Returns `true` if the given arrays are equal. + * + * @private + * @param {TypedArray} a - The first array. + * @param {TypedArray} b - The second array. + * @param {number} offset - An index offset for the first array. + * @return {boolean} Whether the given arrays are equal or not. + */ +function arraysEqual( a, b, offset ) { + + for ( let i = 0, l = b.length; i < l; i ++ ) { + + if ( a[ offset + i ] !== b[ i ] ) return false; + + } + + return true; + +} + +let _id$3 = 0; + +/** + * A special form of uniforms group that represents + * the individual uniforms as node-based uniforms. + * + * @private + * @augments UniformsGroup + */ +class NodeUniformsGroup extends UniformsGroup { + + /** + * Constructs a new node-based uniforms group. + * + * @param {string} name - The group's name. + * @param {UniformGroupNode} groupNode - The uniform group node. + */ + constructor( name, groupNode ) { + + super( name ); + + /** + * The group's ID. + * + * @type {number} + */ + this.id = _id$3 ++; + + /** + * The uniform group node. + * + * @type {UniformGroupNode} + */ + this.groupNode = groupNode; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isNodeUniformsGroup = true; + + } + +} + +let _id$2 = 0; + +/** + * Represents a sampled texture binding type. + * + * @private + * @augments Binding + */ +class SampledTexture extends Binding { + + /** + * Constructs a new sampled texture. + * + * @param {string} name - The sampled texture's name. + * @param {?Texture} texture - The texture this binding is referring to. + */ + constructor( name, texture ) { + + super( name ); + + /** + * This identifier. + * + * @type {number} + */ + this.id = _id$2 ++; + + /** + * The texture this binding is referring to. + * + * @type {?Texture} + */ + this.texture = texture; + + /** + * The binding's version. + * + * @type {number} + */ + this.version = texture ? texture.version : 0; + + /** + * Whether the texture is a storage texture or not. + * + * @type {boolean} + * @default false + */ + this.store = false; + + /** + * The binding's generation which is an additional version + * qualifier. + * + * @type {?number} + * @default null + */ + this.generation = null; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSampledTexture = true; + + } + + /** + * Returns `true` whether this binding requires an update for the + * given generation. + * + * @param {number} generation - The generation. + * @return {boolean} Whether an update is required or not. + */ + needsBindingsUpdate( generation ) { + + const { texture } = this; + + if ( generation !== this.generation ) { + + this.generation = generation; + + return true; + + } + + return texture.isVideoTexture; + + } + + /** + * Updates the binding. + * + * @return {boolean} Whether the texture has been updated and must be + * uploaded to the GPU. + */ + update() { + + const { texture, version } = this; + + if ( version !== texture.version ) { + + this.version = texture.version; + + return true; + + } + + return false; + + } + +} + +/** + * A special form of sampled texture binding type. + * It's texture value is managed by a node object. + * + * @private + * @augments SampledTexture + */ +class NodeSampledTexture extends SampledTexture { + + /** + * Constructs a new node-based sampled texture. + * + * @param {string} name - The textures's name. + * @param {TextureNode} textureNode - The texture node. + * @param {UniformGroupNode} groupNode - The uniform group node. + * @param {?string} [access=null] - The access type. + */ + constructor( name, textureNode, groupNode, access = null ) { + + super( name, textureNode ? textureNode.value : null ); + + /** + * The texture node. + * + * @type {TextureNode} + */ + this.textureNode = textureNode; + + /** + * The uniform group node. + * + * @type {UniformGroupNode} + */ + this.groupNode = groupNode; + + /** + * The access type. + * + * @type {?string} + * @default null + */ + this.access = access; + + } + + /** + * Overwrites the default to additionally check if the node value has changed. + * + * @param {number} generation - The generation. + * @return {boolean} Whether an update is required or not. + */ + needsBindingsUpdate( generation ) { + + return this.textureNode.value !== this.texture || super.needsBindingsUpdate( generation ); + + } + + /** + * Updates the binding. + * + * @return {boolean} Whether the texture has been updated and must be + * uploaded to the GPU. + */ + update() { + + const { textureNode } = this; + + if ( this.texture !== textureNode.value ) { + + this.texture = textureNode.value; + + return true; + + } + + return super.update(); + + } + +} + +/** + * A special form of sampled cube texture binding type. + * It's texture value is managed by a node object. + * + * @private + * @augments NodeSampledTexture + */ +class NodeSampledCubeTexture extends NodeSampledTexture { + + /** + * Constructs a new node-based sampled cube texture. + * + * @param {string} name - The textures's name. + * @param {TextureNode} textureNode - The texture node. + * @param {UniformGroupNode} groupNode - The uniform group node. + * @param {?string} [access=null] - The access type. + */ + constructor( name, textureNode, groupNode, access = null ) { + + super( name, textureNode, groupNode, access ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSampledCubeTexture = true; + + } + +} + +/** + * A special form of sampled 3D texture binding type. + * It's texture value is managed by a node object. + * + * @private + * @augments NodeSampledTexture + */ +class NodeSampledTexture3D extends NodeSampledTexture { + + /** + * Constructs a new node-based sampled 3D texture. + * + * @param {string} name - The textures's name. + * @param {TextureNode} textureNode - The texture node. + * @param {UniformGroupNode} groupNode - The uniform group node. + * @param {?string} [access=null] - The access type. + */ + constructor( name, textureNode, groupNode, access = null ) { + + super( name, textureNode, groupNode, access ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSampledTexture3D = true; + + } + +} + +const glslMethods = { + textureDimensions: 'textureSize', + equals: 'equal' +}; + +const precisionLib = { + low: 'lowp', + medium: 'mediump', + high: 'highp' +}; + +const supports$1 = { + swizzleAssign: true, + storageBuffer: false +}; + +const interpolationTypeMap = { + perspective: 'smooth', + linear: 'noperspective' +}; + +const interpolationModeMap = { + 'centroid': 'centroid', + 'flat first': 'flat', + 'flat either': 'flat' +}; + +const defaultPrecisions = ` +precision highp float; +precision highp int; +precision highp sampler2D; +precision highp sampler3D; +precision highp samplerCube; +precision highp sampler2DArray; + +precision highp usampler2D; +precision highp usampler3D; +precision highp usamplerCube; +precision highp usampler2DArray; + +precision highp isampler2D; +precision highp isampler3D; +precision highp isamplerCube; +precision highp isampler2DArray; + +precision lowp sampler2DShadow; +precision lowp sampler2DArrayShadow; +precision lowp samplerCubeShadow; +`; + +/** + * A node builder targeting GLSL. + * + * This module generates GLSL shader code from node materials and also + * generates the respective bindings and vertex buffer definitions. These + * data are later used by the renderer to create render and compute pipelines + * for render objects. + * + * @augments NodeBuilder + */ +class GLSLNodeBuilder extends NodeBuilder { + + /** + * Constructs a new GLSL node builder renderer. + * + * @param {Object3D} object - The 3D object. + * @param {Renderer} renderer - The renderer. + */ + constructor( object, renderer ) { + + super( object, renderer, new GLSLNodeParser() ); + + /** + * A dictionary holds for each shader stage ('vertex', 'fragment', 'compute') + * another dictionary which manages UBOs per group ('render','frame','object'). + * + * @type {Object>} + */ + this.uniformGroups = {}; + + /** + * An array that holds objects defining the varying and attribute data in + * context of Transform Feedback. + * + * @type {Array>} + */ + this.transforms = []; + + /** + * A dictionary that holds for each shader stage a Map of used extensions. + * + * @type {Object>} + */ + this.extensions = {}; + + /** + * A dictionary that holds for each shader stage an Array of used builtins. + * + * @type {Object>} + */ + this.builtins = { vertex: [], fragment: [], compute: [] }; + + } + + /** + * Checks if the given texture requires a manual conversion to the working color space. + * + * @param {Texture} texture - The texture to check. + * @return {boolean} Whether the given texture requires a conversion to working color space or not. + */ + needsToWorkingColorSpace( texture ) { + + return texture.isVideoTexture === true && texture.colorSpace !== NoColorSpace; + + } + + /** + * Returns the native shader method name for a given generic name. + * + * @param {string} method - The method name to resolve. + * @return {string} The resolved GLSL method name. + */ + getMethod( method ) { + + return glslMethods[ method ] || method; + + } + + /** + * Returns the output struct name. Not relevant for GLSL. + * + * @return {string} + */ + getOutputStructName() { + + return ''; + + } + + /** + * Builds the given shader node. + * + * @param {ShaderNodeInternal} shaderNode - The shader node. + * @return {string} The GLSL function code. + */ + buildFunctionCode( shaderNode ) { + + const layout = shaderNode.layout; + const flowData = this.flowShaderNode( shaderNode ); + + const parameters = []; + + for ( const input of layout.inputs ) { + + parameters.push( this.getType( input.type ) + ' ' + input.name ); + + } + + // + + const code = `${ this.getType( layout.type ) } ${ layout.name }( ${ parameters.join( ', ' ) } ) { + + ${ flowData.vars } + +${ flowData.code } + return ${ flowData.result }; + +}`; + + // + + return code; + + } + + /** + * Setups the Pixel Buffer Object (PBO) for the given storage + * buffer node. + * + * @param {StorageBufferNode} storageBufferNode - The storage buffer node. + */ + setupPBO( storageBufferNode ) { + + const attribute = storageBufferNode.value; + + if ( attribute.pbo === undefined ) { + + const originalArray = attribute.array; + const numElements = attribute.count * attribute.itemSize; + + const { itemSize } = attribute; + + const isInteger = attribute.array.constructor.name.toLowerCase().includes( 'int' ); + + let format = isInteger ? RedIntegerFormat : RedFormat; + + if ( itemSize === 2 ) { + + format = isInteger ? RGIntegerFormat : RGFormat; + + } else if ( itemSize === 3 ) { + + format = isInteger ? RGBIntegerFormat : RGBFormat; + + } else if ( itemSize === 4 ) { + + format = isInteger ? RGBAIntegerFormat : RGBAFormat; + + } + + const typeMap = { + Float32Array: FloatType, + Uint8Array: UnsignedByteType, + Uint16Array: UnsignedShortType, + Uint32Array: UnsignedIntType, + Int8Array: ByteType, + Int16Array: ShortType, + Int32Array: IntType, + Uint8ClampedArray: UnsignedByteType, + }; + + const width = Math.pow( 2, Math.ceil( Math.log2( Math.sqrt( numElements / itemSize ) ) ) ); + let height = Math.ceil( ( numElements / itemSize ) / width ); + if ( width * height * itemSize < numElements ) height ++; // Ensure enough space + + const newSize = width * height * itemSize; + + const newArray = new originalArray.constructor( newSize ); + + newArray.set( originalArray, 0 ); + + attribute.array = newArray; + + const pboTexture = new DataTexture( attribute.array, width, height, format, typeMap[ attribute.array.constructor.name ] || FloatType ); + pboTexture.needsUpdate = true; + pboTexture.isPBOTexture = true; + + const pbo = new TextureNode( pboTexture, null, null ); + pbo.setPrecision( 'high' ); + + attribute.pboNode = pbo; + attribute.pbo = pbo.value; + + this.getUniformFromNode( attribute.pboNode, 'texture', this.shaderStage, this.context.label ); + + } + + } + + /** + * Returns a GLSL snippet that represents the property name of the given node. + * + * @param {Node} node - The node. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The property name. + */ + getPropertyName( node, shaderStage = this.shaderStage ) { + + if ( node.isNodeUniform && node.node.isTextureNode !== true && node.node.isBufferNode !== true ) { + + return shaderStage.charAt( 0 ) + '_' + node.name; + + } + + return super.getPropertyName( node, shaderStage ); + + } + + /** + * Setups the Pixel Buffer Object (PBO) for the given storage + * buffer node. + * + * @param {StorageArrayElementNode} storageArrayElementNode - The storage array element node. + * @return {string} The property name. + */ + generatePBO( storageArrayElementNode ) { + + const { node, indexNode } = storageArrayElementNode; + const attribute = node.value; + + if ( this.renderer.backend.has( attribute ) ) { + + const attributeData = this.renderer.backend.get( attribute ); + attributeData.pbo = attribute.pbo; + + } + + const nodeUniform = this.getUniformFromNode( attribute.pboNode, 'texture', this.shaderStage, this.context.label ); + const textureName = this.getPropertyName( nodeUniform ); + + this.increaseUsage( indexNode ); // force cache generate to be used as index in x,y + const indexSnippet = indexNode.build( this, 'uint' ); + + const elementNodeData = this.getDataFromNode( storageArrayElementNode ); + + let propertyName = elementNodeData.propertyName; + + if ( propertyName === undefined ) { + + // property element + + const nodeVar = this.getVarFromNode( storageArrayElementNode ); + + propertyName = this.getPropertyName( nodeVar ); + + // property size + + const bufferNodeData = this.getDataFromNode( node ); + + let propertySizeName = bufferNodeData.propertySizeName; + + if ( propertySizeName === undefined ) { + + propertySizeName = propertyName + 'Size'; + + this.getVarFromNode( node, propertySizeName, 'uint' ); + + this.addLineFlowCode( `${ propertySizeName } = uint( textureSize( ${ textureName }, 0 ).x )`, storageArrayElementNode ); + + bufferNodeData.propertySizeName = propertySizeName; + + } + + // + + const { itemSize } = attribute; + + const channel = '.' + vectorComponents.join( '' ).slice( 0, itemSize ); + const uvSnippet = `ivec2(${indexSnippet} % ${ propertySizeName }, ${indexSnippet} / ${ propertySizeName })`; + + const snippet = this.generateTextureLoad( null, textureName, uvSnippet, null, '0' ); + + // + + + let prefix = 'vec4'; + + if ( attribute.pbo.type === UnsignedIntType ) { + + prefix = 'uvec4'; + + } else if ( attribute.pbo.type === IntType ) { + + prefix = 'ivec4'; + + } + + this.addLineFlowCode( `${ propertyName } = ${prefix}(${ snippet })${channel}`, storageArrayElementNode ); + + elementNodeData.propertyName = propertyName; + + } + + return propertyName; + + } + + /** + * Generates the GLSL snippet that reads a single texel from a texture without sampling or filtering. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvIndexSnippet - A GLSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A GLSL snippet that represents the 0-based texture array index to sample. + * @param {string} [levelSnippet='0u'] - A GLSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @return {string} The GLSL snippet. + */ + generateTextureLoad( texture, textureProperty, uvIndexSnippet, depthSnippet, levelSnippet = '0' ) { + + if ( depthSnippet ) { + + return `texelFetch( ${ textureProperty }, ivec3( ${ uvIndexSnippet }, ${ depthSnippet } ), ${ levelSnippet } )`; + + } else { + + return `texelFetch( ${ textureProperty }, ${ uvIndexSnippet }, ${ levelSnippet } )`; + + } + + } + + /** + * Generates the GLSL snippet for sampling/loading the given texture. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A GLSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A GLSL snippet that represents the 0-based texture array index to sample. + * @return {string} The GLSL snippet. + */ + generateTexture( texture, textureProperty, uvSnippet, depthSnippet ) { + + if ( texture.isDepthTexture ) { + + if ( depthSnippet ) uvSnippet = `vec4( ${ uvSnippet }, ${ depthSnippet } )`; + + return `texture( ${ textureProperty }, ${ uvSnippet } ).x`; + + } else { + + if ( depthSnippet ) uvSnippet = `vec3( ${ uvSnippet }, ${ depthSnippet } )`; + + return `texture( ${ textureProperty }, ${ uvSnippet } )`; + + } + + } + + /** + * Generates the GLSL snippet when sampling textures with explicit mip level. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A GLSL snippet that represents texture coordinates used for sampling. + * @param {string} levelSnippet - A GLSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @return {string} The GLSL snippet. + */ + generateTextureLevel( texture, textureProperty, uvSnippet, levelSnippet ) { + + return `textureLod( ${ textureProperty }, ${ uvSnippet }, ${ levelSnippet } )`; + + } + + /** + * Generates the GLSL snippet when sampling textures with a bias to the mip level. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A GLSL snippet that represents texture coordinates used for sampling. + * @param {string} biasSnippet - A GLSL snippet that represents the bias to apply to the mip level before sampling. + * @return {string} The GLSL snippet. + */ + generateTextureBias( texture, textureProperty, uvSnippet, biasSnippet ) { + + return `texture( ${ textureProperty }, ${ uvSnippet }, ${ biasSnippet } )`; + + } + + /** + * Generates the GLSL snippet for sampling/loading the given texture using explicit gradients. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A GLSL snippet that represents texture coordinates used for sampling. + * @param {Array} gradSnippet - An array holding both gradient GLSL snippets. + * @return {string} The GLSL snippet. + */ + generateTextureGrad( texture, textureProperty, uvSnippet, gradSnippet ) { + + return `textureGrad( ${ textureProperty }, ${ uvSnippet }, ${ gradSnippet[ 0 ] }, ${ gradSnippet[ 1 ] } )`; + + } + + /** + * Generates the GLSL snippet for sampling a depth texture and comparing the sampled depth values + * against a reference value. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A GLSL snippet that represents texture coordinates used for sampling. + * @param {string} compareSnippet - A GLSL snippet that represents the reference value. + * @param {?string} depthSnippet - A GLSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The GLSL snippet. + */ + generateTextureCompare( texture, textureProperty, uvSnippet, compareSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + if ( shaderStage === 'fragment' ) { + + if ( depthSnippet ) { + + return `texture( ${ textureProperty }, vec4( ${ uvSnippet }, ${ depthSnippet }, ${ compareSnippet } ) )`; + + } + + return `texture( ${ textureProperty }, vec3( ${ uvSnippet }, ${ compareSnippet } ) )`; + + } else { + + console.error( `WebGPURenderer: THREE.DepthTexture.compareFunction() does not support ${ shaderStage } shader.` ); + + } + + } + + /** + * Returns the variables of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the variables. + */ + getVars( shaderStage ) { + + const snippets = []; + + const vars = this.vars[ shaderStage ]; + + if ( vars !== undefined ) { + + for ( const variable of vars ) { + + snippets.push( `${ this.getVar( variable.type, variable.name, variable.count ) };` ); + + } + + } + + return snippets.join( '\n\t' ); + + } + + /** + * Returns the uniforms of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the uniforms. + */ + getUniforms( shaderStage ) { + + const uniforms = this.uniforms[ shaderStage ]; + + const bindingSnippets = []; + const uniformGroups = {}; + + for ( const uniform of uniforms ) { + + let snippet = null; + let group = false; + + if ( uniform.type === 'texture' || uniform.type === 'texture3D' ) { + + const texture = uniform.node.value; + + let typePrefix = ''; + + if ( texture.isDataTexture === true || texture.isData3DTexture === true ) { + + if ( texture.type === UnsignedIntType ) { + + typePrefix = 'u'; + + } else if ( texture.type === IntType ) { + + typePrefix = 'i'; + + } + + } + + if ( uniform.type === 'texture3D' && texture.isArrayTexture === false ) { + + snippet = `${typePrefix}sampler3D ${ uniform.name };`; + + } else if ( texture.compareFunction ) { + + if ( texture.isArrayTexture === true ) { + + snippet = `sampler2DArrayShadow ${ uniform.name };`; + + } else { + + snippet = `sampler2DShadow ${ uniform.name };`; + + } + + } else if ( texture.isArrayTexture === true || texture.isDataArrayTexture === true || texture.isCompressedArrayTexture === true ) { + + snippet = `${typePrefix}sampler2DArray ${ uniform.name };`; + + } else { + + snippet = `${typePrefix}sampler2D ${ uniform.name };`; + + } + + } else if ( uniform.type === 'cubeTexture' ) { + + snippet = `samplerCube ${ uniform.name };`; + + } else if ( uniform.type === 'buffer' ) { + + const bufferNode = uniform.node; + const bufferType = this.getType( bufferNode.bufferType ); + const bufferCount = bufferNode.bufferCount; + + const bufferCountSnippet = bufferCount > 0 ? bufferCount : ''; + snippet = `${bufferNode.name} {\n\t${ bufferType } ${ uniform.name }[${ bufferCountSnippet }];\n};\n`; + + } else { + + const vectorType = this.getVectorType( uniform.type ); + + snippet = `${ vectorType } ${ this.getPropertyName( uniform, shaderStage ) };`; + + group = true; + + } + + const precision = uniform.node.precision; + + if ( precision !== null ) { + + snippet = precisionLib[ precision ] + ' ' + snippet; + + } + + if ( group ) { + + snippet = '\t' + snippet; + + const groupName = uniform.groupNode.name; + const groupSnippets = uniformGroups[ groupName ] || ( uniformGroups[ groupName ] = [] ); + + groupSnippets.push( snippet ); + + } else { + + snippet = 'uniform ' + snippet; + + bindingSnippets.push( snippet ); + + } + + } + + let output = ''; + + for ( const name in uniformGroups ) { + + const groupSnippets = uniformGroups[ name ]; + + output += this._getGLSLUniformStruct( shaderStage + '_' + name, groupSnippets.join( '\n' ) ) + '\n'; + + } + + output += bindingSnippets.join( '\n' ); + + return output; + + } + + /** + * Returns the type for a given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + * @return {string} The type. + */ + getTypeFromAttribute( attribute ) { + + let nodeType = super.getTypeFromAttribute( attribute ); + + if ( /^[iu]/.test( nodeType ) && attribute.gpuType !== IntType ) { + + let dataAttribute = attribute; + + if ( attribute.isInterleavedBufferAttribute ) dataAttribute = attribute.data; + + const array = dataAttribute.array; + + if ( ( array instanceof Uint32Array || array instanceof Int32Array ) === false ) { + + nodeType = nodeType.slice( 1 ); + + } + + } + + return nodeType; + + } + + /** + * Returns the shader attributes of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the shader attributes. + */ + getAttributes( shaderStage ) { + + let snippet = ''; + + if ( shaderStage === 'vertex' || shaderStage === 'compute' ) { + + const attributes = this.getAttributesArray(); + + let location = 0; + + for ( const attribute of attributes ) { + + snippet += `layout( location = ${ location ++ } ) in ${ attribute.type } ${ attribute.name };\n`; + + } + + } + + return snippet; + + } + + /** + * Returns the members of the given struct type node as a GLSL string. + * + * @param {StructTypeNode} struct - The struct type node. + * @return {string} The GLSL snippet that defines the struct members. + */ + getStructMembers( struct ) { + + const snippets = []; + + for ( const member of struct.members ) { + + snippets.push( `\t${ member.type } ${ member.name };` ); + + } + + return snippets.join( '\n' ); + + } + + /** + * Returns the structs of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the structs. + */ + getStructs( shaderStage ) { + + const snippets = []; + const structs = this.structs[ shaderStage ]; + + const outputSnippet = []; + + for ( const struct of structs ) { + + if ( struct.output ) { + + for ( const member of struct.members ) { + + outputSnippet.push( `layout( location = ${ member.index } ) out ${ member.type } ${ member.name };` ); + + } + + } else { + + let snippet = 'struct ' + struct.name + ' {\n'; + snippet += this.getStructMembers( struct ); + snippet += '\n};\n'; + + snippets.push( snippet ); + + } + + } + + if ( outputSnippet.length === 0 ) { + + outputSnippet.push( 'layout( location = 0 ) out vec4 fragColor;' ); + + } + + return '\n' + outputSnippet.join( '\n' ) + '\n\n' + snippets.join( '\n' ); + + } + + /** + * Returns the varyings of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the varyings. + */ + getVaryings( shaderStage ) { + + let snippet = ''; + + const varyings = this.varyings; + + if ( shaderStage === 'vertex' || shaderStage === 'compute' ) { + + for ( const varying of varyings ) { + + if ( shaderStage === 'compute' ) varying.needsInterpolation = true; + + const type = this.getType( varying.type ); + + if ( varying.needsInterpolation ) { + + if ( varying.interpolationType ) { + + const interpolationType = interpolationTypeMap[ varying.interpolationType ] || varying.interpolationType; + const sampling = interpolationModeMap[ varying.interpolationSampling ] || ''; + + snippet += `${ interpolationType } ${ sampling } out ${ type } ${ varying.name };\n`; + + } else { + + const flat = type.includes( 'int' ) || type.includes( 'uv' ) || type.includes( 'iv' ) ? 'flat ' : ''; + + snippet += `${ flat }out ${ type } ${ varying.name };\n`; + + } + + } else { + + snippet += `${type} ${varying.name};\n`; // generate variable (no varying required) + + } + + } + + } else if ( shaderStage === 'fragment' ) { + + for ( const varying of varyings ) { + + if ( varying.needsInterpolation ) { + + const type = this.getType( varying.type ); + + if ( varying.interpolationType ) { + + const interpolationType = interpolationTypeMap[ varying.interpolationType ] || varying.interpolationType; + const sampling = interpolationModeMap[ varying.interpolationSampling ] || ''; + + snippet += `${ interpolationType } ${ sampling } in ${ type } ${ varying.name };\n`; + + + } else { + + const flat = type.includes( 'int' ) || type.includes( 'uv' ) || type.includes( 'iv' ) ? 'flat ' : ''; + + snippet += `${ flat }in ${ type } ${ varying.name };\n`; + + } + + } + + } + + } + + for ( const builtin of this.builtins[ shaderStage ] ) { + + snippet += `${builtin};\n`; + + } + + return snippet; + + } + + /** + * Returns the vertex index builtin. + * + * @return {string} The vertex index. + */ + getVertexIndex() { + + return 'uint( gl_VertexID )'; + + } + + /** + * Returns the instance index builtin. + * + * @return {string} The instance index. + */ + getInstanceIndex() { + + return 'uint( gl_InstanceID )'; + + } + + /** + * Returns the invocation local index builtin. + * + * @return {string} The invocation local index. + */ + getInvocationLocalIndex() { + + const workgroupSize = this.object.workgroupSize; + + const size = workgroupSize.reduce( ( acc, curr ) => acc * curr, 1 ); + + return `uint( gl_InstanceID ) % ${size}u`; + + } + + /** + * Returns the draw index builtin. + * + * @return {?string} The drawIndex shader string. Returns `null` if `WEBGL_multi_draw` isn't supported by the device. + */ + getDrawIndex() { + + const extensions = this.renderer.backend.extensions; + + if ( extensions.has( 'WEBGL_multi_draw' ) ) { + + return 'uint( gl_DrawID )'; + + } + + return null; + + } + + /** + * Returns the front facing builtin. + * + * @return {string} The front facing builtin. + */ + getFrontFacing() { + + return 'gl_FrontFacing'; + + } + + /** + * Returns the frag coord builtin. + * + * @return {string} The frag coord builtin. + */ + getFragCoord() { + + return 'gl_FragCoord.xy'; + + } + + /** + * Returns the frag depth builtin. + * + * @return {string} The frag depth builtin. + */ + getFragDepth() { + + return 'gl_FragDepth'; + + } + + /** + * Enables the given extension. + * + * @param {string} name - The extension name. + * @param {string} behavior - The extension behavior. + * @param {string} [shaderStage=this.shaderStage] - The shader stage. + */ + enableExtension( name, behavior, shaderStage = this.shaderStage ) { + + const map = this.extensions[ shaderStage ] || ( this.extensions[ shaderStage ] = new Map() ); + + if ( map.has( name ) === false ) { + + map.set( name, { + name, + behavior + } ); + + } + + } + + /** + * Returns the enabled extensions of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the enabled extensions. + */ + getExtensions( shaderStage ) { + + const snippets = []; + + if ( shaderStage === 'vertex' ) { + + const ext = this.renderer.backend.extensions; + const isBatchedMesh = this.object.isBatchedMesh; + + if ( isBatchedMesh && ext.has( 'WEBGL_multi_draw' ) ) { + + this.enableExtension( 'GL_ANGLE_multi_draw', 'require', shaderStage ); + + } + + } + + const extensions = this.extensions[ shaderStage ]; + + if ( extensions !== undefined ) { + + for ( const { name, behavior } of extensions.values() ) { + + snippets.push( `#extension ${name} : ${behavior}` ); + + } + + } + + return snippets.join( '\n' ); + + } + + /** + * Returns the clip distances builtin. + * + * @return {string} The clip distances builtin. + */ + getClipDistance() { + + return 'gl_ClipDistance'; + + } + + /** + * Whether the requested feature is available or not. + * + * @param {string} name - The requested feature. + * @return {boolean} Whether the requested feature is supported or not. + */ + isAvailable( name ) { + + let result = supports$1[ name ]; + + if ( result === undefined ) { + + let extensionName; + + result = false; + + switch ( name ) { + + case 'float32Filterable': + extensionName = 'OES_texture_float_linear'; + break; + + case 'clipDistance': + extensionName = 'WEBGL_clip_cull_distance'; + break; + + } + + if ( extensionName !== undefined ) { + + const extensions = this.renderer.backend.extensions; + + if ( extensions.has( extensionName ) ) { + + extensions.get( extensionName ); + result = true; + + } + + } + + supports$1[ name ] = result; + + } + + return result; + + } + + /** + * Whether to flip texture data along its vertical axis or not. + * + * @return {boolean} Returns always `true` in context of GLSL. + */ + isFlipY() { + + return true; + + } + + /** + * Enables hardware clipping. + * + * @param {string} planeCount - The clipping plane count. + */ + enableHardwareClipping( planeCount ) { + + this.enableExtension( 'GL_ANGLE_clip_cull_distance', 'require' ); + + this.builtins[ 'vertex' ].push( `out float gl_ClipDistance[ ${ planeCount } ]` ); + + } + + /** + * Enables multiview. + */ + enableMultiview() { + + this.enableExtension( 'GL_OVR_multiview2', 'require', 'fragment' ); + this.enableExtension( 'GL_OVR_multiview2', 'require', 'vertex' ); + + this.builtins[ 'vertex' ].push( 'layout(num_views = 2) in' ); + + } + + /** + * Registers a transform in context of Transform Feedback. + * + * @param {string} varyingName - The varying name. + * @param {AttributeNode} attributeNode - The attribute node. + */ + registerTransform( varyingName, attributeNode ) { + + this.transforms.push( { varyingName, attributeNode } ); + + } + + /** + * Returns the transforms of the given shader stage as a GLSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The GLSL snippet that defines the transforms. + */ + getTransforms( /* shaderStage */ ) { + + const transforms = this.transforms; + + let snippet = ''; + + for ( let i = 0; i < transforms.length; i ++ ) { + + const transform = transforms[ i ]; + const attributeName = this.getPropertyName( transform.attributeNode ); + + if ( attributeName ) snippet += `${ transform.varyingName } = ${ attributeName };\n\t`; + + } + + return snippet; + + } + + /** + * Returns a GLSL struct based on the given name and variables. + * + * @private + * @param {string} name - The struct name. + * @param {string} vars - The struct variables. + * @return {string} The GLSL snippet representing a struct. + */ + _getGLSLUniformStruct( name, vars ) { + + return ` +layout( std140 ) uniform ${name} { +${vars} +};`; + + } + + /** + * Returns a GLSL vertex shader based on the given shader data. + * + * @private + * @param {Object} shaderData - The shader data. + * @return {string} The vertex shader. + */ + _getGLSLVertexCode( shaderData ) { + + return `#version 300 es + +${ this.getSignature() } + +// extensions +${shaderData.extensions} + +// precision +${ defaultPrecisions } + +// uniforms +${shaderData.uniforms} + +// varyings +${shaderData.varyings} + +// attributes +${shaderData.attributes} + +// codes +${shaderData.codes} + +void main() { + + // vars + ${shaderData.vars} + + // transforms + ${shaderData.transforms} + + // flow + ${shaderData.flow} + + gl_PointSize = 1.0; + +} +`; + + } + + /** + * Returns a GLSL fragment shader based on the given shader data. + * + * @private + * @param {Object} shaderData - The shader data. + * @return {string} The vertex shader. + */ + _getGLSLFragmentCode( shaderData ) { + + return `#version 300 es + +${ this.getSignature() } + +// extensions +${shaderData.extensions} + +// precision +${ defaultPrecisions } + +// uniforms +${shaderData.uniforms} + +// varyings +${shaderData.varyings} + +// codes +${shaderData.codes} + +// structs +${shaderData.structs} + +void main() { + + // vars + ${shaderData.vars} + + // flow + ${shaderData.flow} + +} +`; + + } + + /** + * Controls the code build of the shader stages. + */ + buildCode() { + + const shadersData = this.material !== null ? { fragment: {}, vertex: {} } : { compute: {} }; + + this.sortBindingGroups(); + + for ( const shaderStage in shadersData ) { + + let flow = '// code\n\n'; + flow += this.flowCode[ shaderStage ]; + + const flowNodes = this.flowNodes[ shaderStage ]; + const mainNode = flowNodes[ flowNodes.length - 1 ]; + + for ( const node of flowNodes ) { + + const flowSlotData = this.getFlowData( node/*, shaderStage*/ ); + const slotName = node.name; + + if ( slotName ) { + + if ( flow.length > 0 ) flow += '\n'; + + flow += `\t// flow -> ${ slotName }\n\t`; + + } + + flow += `${ flowSlotData.code }\n\t`; + + if ( node === mainNode && shaderStage !== 'compute' ) { + + flow += '// result\n\t'; + + if ( shaderStage === 'vertex' ) { + + flow += 'gl_Position = '; + flow += `${ flowSlotData.result };`; + + } else if ( shaderStage === 'fragment' ) { + + if ( ! node.outputNode.isOutputStructNode ) { + + flow += 'fragColor = '; + flow += `${ flowSlotData.result };`; + + } + + } + + } + + } + + const stageData = shadersData[ shaderStage ]; + + stageData.extensions = this.getExtensions( shaderStage ); + stageData.uniforms = this.getUniforms( shaderStage ); + stageData.attributes = this.getAttributes( shaderStage ); + stageData.varyings = this.getVaryings( shaderStage ); + stageData.vars = this.getVars( shaderStage ); + stageData.structs = this.getStructs( shaderStage ); + stageData.codes = this.getCodes( shaderStage ); + stageData.transforms = this.getTransforms( shaderStage ); + stageData.flow = flow; + + } + + if ( this.material !== null ) { + + this.vertexShader = this._getGLSLVertexCode( shadersData.vertex ); + this.fragmentShader = this._getGLSLFragmentCode( shadersData.fragment ); + + } else { + + this.computeShader = this._getGLSLVertexCode( shadersData.compute ); + + } + + } + + /** + * This method is one of the more important ones since it's responsible + * for generating a matching binding instance for the given uniform node. + * + * These bindings are later used in the renderer to create bind groups + * and layouts. + * + * @param {UniformNode} node - The uniform node. + * @param {string} type - The node data type. + * @param {string} shaderStage - The shader stage. + * @param {?string} [name=null] - An optional uniform name. + * @return {NodeUniform} The node uniform object. + */ + getUniformFromNode( node, type, shaderStage, name = null ) { + + const uniformNode = super.getUniformFromNode( node, type, shaderStage, name ); + const nodeData = this.getDataFromNode( node, shaderStage, this.globalCache ); + + let uniformGPU = nodeData.uniformGPU; + + if ( uniformGPU === undefined ) { + + const group = node.groupNode; + const groupName = group.name; + + const bindings = this.getBindGroupArray( groupName, shaderStage ); + + if ( type === 'texture' ) { + + uniformGPU = new NodeSampledTexture( uniformNode.name, uniformNode.node, group ); + bindings.push( uniformGPU ); + + } else if ( type === 'cubeTexture' ) { + + uniformGPU = new NodeSampledCubeTexture( uniformNode.name, uniformNode.node, group ); + bindings.push( uniformGPU ); + + } else if ( type === 'texture3D' ) { + + uniformGPU = new NodeSampledTexture3D( uniformNode.name, uniformNode.node, group ); + bindings.push( uniformGPU ); + + } else if ( type === 'buffer' ) { + + node.name = `NodeBuffer_${ node.id }`; + uniformNode.name = `buffer${ node.id }`; + + const buffer = new NodeUniformBuffer( node, group ); + buffer.name = node.name; + + bindings.push( buffer ); + + uniformGPU = buffer; + + } else { + + const uniformsStage = this.uniformGroups[ shaderStage ] || ( this.uniformGroups[ shaderStage ] = {} ); + + let uniformsGroup = uniformsStage[ groupName ]; + + if ( uniformsGroup === undefined ) { + + uniformsGroup = new NodeUniformsGroup( shaderStage + '_' + groupName, group ); + //uniformsGroup.setVisibility( gpuShaderStageLib[ shaderStage ] ); + + uniformsStage[ groupName ] = uniformsGroup; + + bindings.push( uniformsGroup ); + + } + + uniformGPU = this.getNodeUniform( uniformNode, type ); + + uniformsGroup.addUniform( uniformGPU ); + + } + + nodeData.uniformGPU = uniformGPU; + + } + + return uniformNode; + + } + +} + +let _vector2 = null; +let _color4 = null; + +/** + * Most of the rendering related logic is implemented in the + * {@link Renderer} module and related management components. + * Sometimes it is required though to execute commands which are + * specific to the current 3D backend (which is WebGPU or WebGL 2). + * This abstract base class defines an interface that encapsulates + * all backend-related logic. Derived classes for each backend must + * implement the interface. + * + * @abstract + * @private + */ +class Backend { + + /** + * Constructs a new backend. + * + * @param {Object} parameters - An object holding parameters for the backend. + */ + constructor( parameters = {} ) { + + /** + * The parameters of the backend. + * + * @type {Object} + */ + this.parameters = Object.assign( {}, parameters ); + + /** + * This weak map holds backend-specific data of objects + * like textures, attributes or render targets. + * + * @type {WeakMap} + */ + this.data = new WeakMap(); + + /** + * A reference to the renderer. + * + * @type {?Renderer} + * @default null + */ + this.renderer = null; + + /** + * A reference to the canvas element the renderer is drawing to. + * + * @type {?(HTMLCanvasElement|OffscreenCanvas)} + * @default null + */ + this.domElement = null; + + /** + * A reference to the timestamp query pool. + * + * @type {{render: ?TimestampQueryPool, compute: ?TimestampQueryPool}} + */ + this.timestampQueryPool = { + 'render': null, + 'compute': null + }; + + /** + * Whether to track timestamps with a Timestamp Query API or not. + * + * @type {boolean} + * @default false + */ + this.trackTimestamp = ( parameters.trackTimestamp === true ); + + } + + /** + * Initializes the backend so it is ready for usage. Concrete backends + * are supposed to implement their rendering context creation and related + * operations in this method. + * + * @async + * @param {Renderer} renderer - The renderer. + * @return {Promise} A Promise that resolves when the backend has been initialized. + */ + async init( renderer ) { + + this.renderer = renderer; + + } + + /** + * The coordinate system of the backend. + * + * @abstract + * @type {number} + * @readonly + */ + get coordinateSystem() {} + + // render context + + /** + * This method is executed at the beginning of a render call and + * can be used by the backend to prepare the state for upcoming + * draw calls. + * + * @abstract + * @param {RenderContext} renderContext - The render context. + */ + beginRender( /*renderContext*/ ) {} + + /** + * This method is executed at the end of a render call and + * can be used by the backend to finalize work after draw + * calls. + * + * @abstract + * @param {RenderContext} renderContext - The render context. + */ + finishRender( /*renderContext*/ ) {} + + /** + * This method is executed at the beginning of a compute call and + * can be used by the backend to prepare the state for upcoming + * compute tasks. + * + * @abstract + * @param {Node|Array} computeGroup - The compute node(s). + */ + beginCompute( /*computeGroup*/ ) {} + + /** + * This method is executed at the end of a compute call and + * can be used by the backend to finalize work after compute + * tasks. + * + * @abstract + * @param {Node|Array} computeGroup - The compute node(s). + */ + finishCompute( /*computeGroup*/ ) {} + + // render object + + /** + * Executes a draw command for the given render object. + * + * @abstract + * @param {RenderObject} renderObject - The render object to draw. + * @param {Info} info - Holds a series of statistical information about the GPU memory and the rendering process. + */ + draw( /*renderObject, info*/ ) { } + + // compute node + + /** + * Executes a compute command for the given compute node. + * + * @abstract + * @param {Node|Array} computeGroup - The group of compute nodes of a compute call. Can be a single compute node. + * @param {Node} computeNode - The compute node. + * @param {Array} bindings - The bindings. + * @param {ComputePipeline} computePipeline - The compute pipeline. + */ + compute( /*computeGroup, computeNode, computeBindings, computePipeline*/ ) { } + + // program + + /** + * Creates a shader program from the given programmable stage. + * + * @abstract + * @param {ProgrammableStage} program - The programmable stage. + */ + createProgram( /*program*/ ) { } + + /** + * Destroys the shader program of the given programmable stage. + * + * @abstract + * @param {ProgrammableStage} program - The programmable stage. + */ + destroyProgram( /*program*/ ) { } + + // bindings + + /** + * Creates bindings from the given bind group definition. + * + * @abstract + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + createBindings( /*bindGroup, bindings, cacheIndex, version*/ ) { } + + /** + * Updates the given bind group definition. + * + * @abstract + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + updateBindings( /*bindGroup, bindings, cacheIndex, version*/ ) { } + + /** + * Updates a buffer binding. + * + * @abstract + * @param {Buffer} binding - The buffer binding to update. + */ + updateBinding( /*binding*/ ) { } + + // pipeline + + /** + * Creates a render pipeline for the given render object. + * + * @abstract + * @param {RenderObject} renderObject - The render object. + * @param {Array} promises - An array of compilation promises which are used in `compileAsync()`. + */ + createRenderPipeline( /*renderObject, promises*/ ) { } + + /** + * Creates a compute pipeline for the given compute node. + * + * @abstract + * @param {ComputePipeline} computePipeline - The compute pipeline. + * @param {Array} bindings - The bindings. + */ + createComputePipeline( /*computePipeline, bindings*/ ) { } + + // cache key + + /** + * Returns `true` if the render pipeline requires an update. + * + * @abstract + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the render pipeline requires an update or not. + */ + needsRenderUpdate( /*renderObject*/ ) { } + + /** + * Returns a cache key that is used to identify render pipelines. + * + * @abstract + * @param {RenderObject} renderObject - The render object. + * @return {string} The cache key. + */ + getRenderCacheKey( /*renderObject*/ ) { } + + // node builder + + /** + * Returns a node builder for the given render object. + * + * @abstract + * @param {RenderObject} renderObject - The render object. + * @param {Renderer} renderer - The renderer. + * @return {NodeBuilder} The node builder. + */ + createNodeBuilder( /*renderObject, renderer*/ ) { } + + // textures + + /** + * Creates a GPU sampler for the given texture. + * + * @abstract + * @param {Texture} texture - The texture to create the sampler for. + */ + createSampler( /*texture*/ ) { } + + /** + * Destroys the GPU sampler for the given texture. + * + * @abstract + * @param {Texture} texture - The texture to destroy the sampler for. + */ + destroySampler( /*texture*/ ) {} + + /** + * Creates a default texture for the given texture that can be used + * as a placeholder until the actual texture is ready for usage. + * + * @abstract + * @param {Texture} texture - The texture to create a default texture for. + */ + createDefaultTexture( /*texture*/ ) { } + + /** + * Defines a texture on the GPU for the given texture object. + * + * @abstract + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + createTexture( /*texture, options={}*/ ) { } + + /** + * Uploads the updated texture data to the GPU. + * + * @abstract + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + updateTexture( /*texture, options = {}*/ ) { } + + /** + * Generates mipmaps for the given texture. + * + * @abstract + * @param {Texture} texture - The texture. + */ + generateMipmaps( /*texture*/ ) { } + + /** + * Destroys the GPU data for the given texture object. + * + * @abstract + * @param {Texture} texture - The texture. + */ + destroyTexture( /*texture*/ ) { } + + /** + * Returns texture data as a typed array. + * + * @abstract + * @async + * @param {Texture} texture - The texture to copy. + * @param {number} x - The x coordinate of the copy origin. + * @param {number} y - The y coordinate of the copy origin. + * @param {number} width - The width of the copy. + * @param {number} height - The height of the copy. + * @param {number} faceIndex - The face index. + * @return {Promise} A Promise that resolves with a typed array when the copy operation has finished. + */ + async copyTextureToBuffer( /*texture, x, y, width, height, faceIndex*/ ) {} + + /** + * Copies data of the given source texture to the given destination texture. + * + * @abstract + * @param {Texture} srcTexture - The source texture. + * @param {Texture} dstTexture - The destination texture. + * @param {?(Box3|Box2)} [srcRegion=null] - The region of the source texture to copy. + * @param {?(Vector2|Vector3)} [dstPosition=null] - The destination position of the copy. + * @param {number} [srcLevel=0] - The source mip level to copy from. + * @param {number} [dstLevel=0] - The destination mip level to copy to. + */ + copyTextureToTexture( /*srcTexture, dstTexture, srcRegion = null, dstPosition = null, srcLevel = 0, dstLevel = 0*/ ) {} + + /** + * Copies the current bound framebuffer to the given texture. + * + * @abstract + * @param {Texture} texture - The destination texture. + * @param {RenderContext} renderContext - The render context. + * @param {Vector4} rectangle - A four dimensional vector defining the origin and dimension of the copy. + */ + copyFramebufferToTexture( /*texture, renderContext, rectangle*/ ) {} + + // attributes + + /** + * Creates the GPU buffer of a shader attribute. + * + * @abstract + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createAttribute( /*attribute*/ ) { } + + /** + * Creates the GPU buffer of an indexed shader attribute. + * + * @abstract + * @param {BufferAttribute} attribute - The indexed buffer attribute. + */ + createIndexAttribute( /*attribute*/ ) { } + + /** + * Creates the GPU buffer of a storage attribute. + * + * @abstract + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createStorageAttribute( /*attribute*/ ) { } + + /** + * Updates the GPU buffer of a shader attribute. + * + * @abstract + * @param {BufferAttribute} attribute - The buffer attribute to update. + */ + updateAttribute( /*attribute*/ ) { } + + /** + * Destroys the GPU buffer of a shader attribute. + * + * @abstract + * @param {BufferAttribute} attribute - The buffer attribute to destroy. + */ + destroyAttribute( /*attribute*/ ) { } + + // canvas + + /** + * Returns the backend's rendering context. + * + * @abstract + * @return {Object} The rendering context. + */ + getContext() { } + + /** + * Backends can use this method if they have to run + * logic when the renderer gets resized. + * + * @abstract + */ + updateSize() { } + + /** + * Updates the viewport with the values from the given render context. + * + * @abstract + * @param {RenderContext} renderContext - The render context. + */ + updateViewport( /*renderContext*/ ) {} + + // utils + + /** + * Returns `true` if the given 3D object is fully occluded by other + * 3D objects in the scene. Backends must implement this method by using + * a Occlusion Query API. + * + * @abstract + * @param {RenderContext} renderContext - The render context. + * @param {Object3D} object - The 3D object to test. + * @return {boolean} Whether the 3D object is fully occluded or not. + */ + isOccluded( /*renderContext, object*/ ) {} + + /** + * Resolves the time stamp for the given render context and type. + * + * @async + * @abstract + * @param {string} [type='render'] - The type of the time stamp. + * @return {Promise} A Promise that resolves with the time stamp. + */ + async resolveTimestampsAsync( type = 'render' ) { + + if ( ! this.trackTimestamp ) { + + warnOnce( 'WebGPURenderer: Timestamp tracking is disabled.' ); + return; + + } + + const queryPool = this.timestampQueryPool[ type ]; + if ( ! queryPool ) { + + warnOnce( `WebGPURenderer: No timestamp query pool for type '${type}' found.` ); + return; + + } + + const duration = await queryPool.resolveQueriesAsync(); + + this.renderer.info[ type ].timestamp = duration; + + return duration; + + } + + /** + * Can be used to synchronize CPU operations with GPU tasks. So when this method is called, + * the CPU waits for the GPU to complete its operation (e.g. a compute task). + * + * @async + * @abstract + * @return {Promise} A Promise that resolves when synchronization has been finished. + */ + async waitForGPU() {} + + /** + * This method performs a readback operation by moving buffer data from + * a storage buffer attribute from the GPU to the CPU. + * + * @async + * @param {StorageBufferAttribute} attribute - The storage buffer attribute. + * @return {Promise} A promise that resolves with the buffer data when the data are ready. + */ + async getArrayBufferAsync( /* attribute */ ) {} + + /** + * Checks if the given feature is supported by the backend. + * + * @async + * @abstract + * @param {string} name - The feature's name. + * @return {Promise} A Promise that resolves with a bool that indicates whether the feature is supported or not. + */ + async hasFeatureAsync( /*name*/ ) { } + + /** + * Checks if the given feature is supported by the backend. + * + * @abstract + * @param {string} name - The feature's name. + * @return {boolean} Whether the feature is supported or not. + */ + hasFeature( /*name*/ ) {} + + /** + * Returns the maximum anisotropy texture filtering value. + * + * @abstract + * @return {number} The maximum anisotropy texture filtering value. + */ + getMaxAnisotropy() {} + + /** + * Returns the drawing buffer size. + * + * @return {Vector2} The drawing buffer size. + */ + getDrawingBufferSize() { + + _vector2 = _vector2 || new Vector2(); + + return this.renderer.getDrawingBufferSize( _vector2 ); + + } + + /** + * Defines the scissor test. + * + * @abstract + * @param {boolean} boolean - Whether the scissor test should be enabled or not. + */ + setScissorTest( /*boolean*/ ) { } + + /** + * Returns the clear color and alpha into a single + * color object. + * + * @return {Color4} The clear color. + */ + getClearColor() { + + const renderer = this.renderer; + + _color4 = _color4 || new Color4(); + + renderer.getClearColor( _color4 ); + + _color4.getRGB( _color4 ); + + return _color4; + + } + + /** + * Returns the DOM element. If no DOM element exists, the backend + * creates a new one. + * + * @return {HTMLCanvasElement} The DOM element. + */ + getDomElement() { + + let domElement = this.domElement; + + if ( domElement === null ) { + + domElement = ( this.parameters.canvas !== undefined ) ? this.parameters.canvas : createCanvasElement(); + + // OffscreenCanvas does not have setAttribute, see #22811 + if ( 'setAttribute' in domElement ) domElement.setAttribute( 'data-engine', `three.js r${REVISION} webgpu` ); + + this.domElement = domElement; + + } + + return domElement; + + } + + /** + * Sets a dictionary for the given object into the + * internal data structure. + * + * @param {Object} object - The object. + * @param {Object} value - The dictionary to set. + */ + set( object, value ) { + + this.data.set( object, value ); + + } + + /** + * Returns the dictionary for the given object. + * + * @param {Object} object - The object. + * @return {Object} The object's dictionary. + */ + get( object ) { + + let map = this.data.get( object ); + + if ( map === undefined ) { + + map = {}; + this.data.set( object, map ); + + } + + return map; + + } + + /** + * Checks if the given object has a dictionary + * with data defined. + * + * @param {Object} object - The object. + * @return {boolean} Whether a dictionary for the given object as been defined or not. + */ + has( object ) { + + return this.data.has( object ); + + } + + /** + * Deletes an object from the internal data structure. + * + * @param {Object} object - The object to delete. + */ + delete( object ) { + + this.data.delete( object ); + + } + + /** + * Frees internal resources. + * + * @abstract + */ + dispose() { } + +} + +let _id$1 = 0; + +/** + * This module is internally used in context of compute shaders. + * This type of shader is not natively supported in WebGL 2 and + * thus implemented via Transform Feedback. `DualAttributeData` + * manages the related data. + * + * @private + */ +class DualAttributeData { + + constructor( attributeData, dualBuffer ) { + + this.buffers = [ attributeData.bufferGPU, dualBuffer ]; + this.type = attributeData.type; + this.bufferType = attributeData.bufferType; + this.pbo = attributeData.pbo; + this.byteLength = attributeData.byteLength; + this.bytesPerElement = attributeData.BYTES_PER_ELEMENT; + this.version = attributeData.version; + this.isInteger = attributeData.isInteger; + this.activeBufferIndex = 0; + this.baseId = attributeData.id; + + } + + + get id() { + + return `${ this.baseId }|${ this.activeBufferIndex }`; + + } + + get bufferGPU() { + + return this.buffers[ this.activeBufferIndex ]; + + } + + get transformBuffer() { + + return this.buffers[ this.activeBufferIndex ^ 1 ]; + + } + + switchBuffers() { + + this.activeBufferIndex ^= 1; + + } + +} + +/** + * A WebGL 2 backend utility module for managing shader attributes. + * + * @private + */ +class WebGLAttributeUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGLBackend} backend - The WebGL 2 backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGL 2 backend. + * + * @type {WebGLBackend} + */ + this.backend = backend; + + } + + /** + * Creates the GPU buffer for the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + * @param {GLenum } bufferType - A flag that indicates the buffer type and thus binding point target. + */ + createAttribute( attribute, bufferType ) { + + const backend = this.backend; + const { gl } = backend; + + const array = attribute.array; + const usage = attribute.usage || gl.STATIC_DRAW; + + const bufferAttribute = attribute.isInterleavedBufferAttribute ? attribute.data : attribute; + const bufferData = backend.get( bufferAttribute ); + + let bufferGPU = bufferData.bufferGPU; + + if ( bufferGPU === undefined ) { + + bufferGPU = this._createBuffer( gl, bufferType, array, usage ); + + bufferData.bufferGPU = bufferGPU; + bufferData.bufferType = bufferType; + bufferData.version = bufferAttribute.version; + + } + + //attribute.onUploadCallback(); + + let type; + + if ( array instanceof Float32Array ) { + + type = gl.FLOAT; + + } else if ( array instanceof Uint16Array ) { + + if ( attribute.isFloat16BufferAttribute ) { + + type = gl.HALF_FLOAT; + + } else { + + type = gl.UNSIGNED_SHORT; + + } + + } else if ( array instanceof Int16Array ) { + + type = gl.SHORT; + + } else if ( array instanceof Uint32Array ) { + + type = gl.UNSIGNED_INT; + + } else if ( array instanceof Int32Array ) { + + type = gl.INT; + + } else if ( array instanceof Int8Array ) { + + type = gl.BYTE; + + } else if ( array instanceof Uint8Array ) { + + type = gl.UNSIGNED_BYTE; + + } else if ( array instanceof Uint8ClampedArray ) { + + type = gl.UNSIGNED_BYTE; + + } else { + + throw new Error( 'THREE.WebGLBackend: Unsupported buffer data format: ' + array ); + + } + + let attributeData = { + bufferGPU, + bufferType, + type, + byteLength: array.byteLength, + bytesPerElement: array.BYTES_PER_ELEMENT, + version: attribute.version, + pbo: attribute.pbo, + isInteger: type === gl.INT || type === gl.UNSIGNED_INT || attribute.gpuType === IntType, + id: _id$1 ++ + }; + + if ( attribute.isStorageBufferAttribute || attribute.isStorageInstancedBufferAttribute ) { + + // create buffer for transform feedback use + const bufferGPUDual = this._createBuffer( gl, bufferType, array, usage ); + attributeData = new DualAttributeData( attributeData, bufferGPUDual ); + + } + + backend.set( attribute, attributeData ); + + } + + /** + * Updates the GPU buffer of the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + updateAttribute( attribute ) { + + const backend = this.backend; + const { gl } = backend; + + const array = attribute.array; + const bufferAttribute = attribute.isInterleavedBufferAttribute ? attribute.data : attribute; + const bufferData = backend.get( bufferAttribute ); + const bufferType = bufferData.bufferType; + const updateRanges = attribute.isInterleavedBufferAttribute ? attribute.data.updateRanges : attribute.updateRanges; + + gl.bindBuffer( bufferType, bufferData.bufferGPU ); + + if ( updateRanges.length === 0 ) { + + // Not using update ranges + + gl.bufferSubData( bufferType, 0, array ); + + } else { + + for ( let i = 0, l = updateRanges.length; i < l; i ++ ) { + + const range = updateRanges[ i ]; + gl.bufferSubData( bufferType, range.start * array.BYTES_PER_ELEMENT, + array, range.start, range.count ); + + } + + bufferAttribute.clearUpdateRanges(); + + } + + gl.bindBuffer( bufferType, null ); + + bufferData.version = bufferAttribute.version; + + } + + /** + * Destroys the GPU buffer of the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + destroyAttribute( attribute ) { + + const backend = this.backend; + const { gl } = backend; + + if ( attribute.isInterleavedBufferAttribute ) { + + backend.delete( attribute.data ); + + } + + const attributeData = backend.get( attribute ); + + gl.deleteBuffer( attributeData.bufferGPU ); + + backend.delete( attribute ); + + } + + /** + * This method performs a readback operation by moving buffer data from + * a storage buffer attribute from the GPU to the CPU. + * + * @async + * @param {StorageBufferAttribute} attribute - The storage buffer attribute. + * @return {Promise} A promise that resolves with the buffer data when the data are ready. + */ + async getArrayBufferAsync( attribute ) { + + const backend = this.backend; + const { gl } = backend; + + const bufferAttribute = attribute.isInterleavedBufferAttribute ? attribute.data : attribute; + const { bufferGPU } = backend.get( bufferAttribute ); + + const array = attribute.array; + const byteLength = array.byteLength; + + gl.bindBuffer( gl.COPY_READ_BUFFER, bufferGPU ); + + const writeBuffer = gl.createBuffer(); + + gl.bindBuffer( gl.COPY_WRITE_BUFFER, writeBuffer ); + gl.bufferData( gl.COPY_WRITE_BUFFER, byteLength, gl.STREAM_READ ); + + gl.copyBufferSubData( gl.COPY_READ_BUFFER, gl.COPY_WRITE_BUFFER, 0, 0, byteLength ); + + await backend.utils._clientWaitAsync(); + + const dstBuffer = new attribute.array.constructor( array.length ); + + // Ensure the buffer is bound before reading + gl.bindBuffer( gl.COPY_WRITE_BUFFER, writeBuffer ); + + gl.getBufferSubData( gl.COPY_WRITE_BUFFER, 0, dstBuffer ); + + gl.deleteBuffer( writeBuffer ); + + gl.bindBuffer( gl.COPY_READ_BUFFER, null ); + gl.bindBuffer( gl.COPY_WRITE_BUFFER, null ); + + return dstBuffer.buffer; + + } + + /** + * Creates a WebGL buffer with the given data. + * + * @private + * @param {WebGL2RenderingContext} gl - The rendering context. + * @param {GLenum } bufferType - A flag that indicates the buffer type and thus binding point target. + * @param {TypedArray} array - The array of the buffer attribute. + * @param {GLenum} usage - The usage. + * @return {WebGLBuffer} The WebGL buffer. + */ + _createBuffer( gl, bufferType, array, usage ) { + + const bufferGPU = gl.createBuffer(); + + gl.bindBuffer( bufferType, bufferGPU ); + gl.bufferData( bufferType, array, usage ); + gl.bindBuffer( bufferType, null ); + + return bufferGPU; + + } + +} + +let equationToGL, factorToGL; + +/** + * A WebGL 2 backend utility module for managing the WebGL state. + * + * The major goal of this module is to reduce the number of state changes + * by caching the WEbGL state with a series of variables. In this way, the + * renderer only executes state change commands when necessary which + * improves the overall performance. + * + * @private + */ +class WebGLState { + + /** + * Constructs a new utility object. + * + * @param {WebGLBackend} backend - The WebGL 2 backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGL 2 backend. + * + * @type {WebGLBackend} + */ + this.backend = backend; + + /** + * A reference to the rendering context. + * + * @type {WebGL2RenderingContext} + */ + this.gl = this.backend.gl; + + // Below properties are intended to cache + // the WebGL state and are not explicitly + // documented for convenience reasons. + + this.enabled = {}; + this.currentFlipSided = null; + this.currentCullFace = null; + this.currentProgram = null; + this.currentBlendingEnabled = false; + this.currentBlending = null; + this.currentBlendSrc = null; + this.currentBlendDst = null; + this.currentBlendSrcAlpha = null; + this.currentBlendDstAlpha = null; + this.currentPremultipledAlpha = null; + this.currentPolygonOffsetFactor = null; + this.currentPolygonOffsetUnits = null; + this.currentColorMask = null; + this.currentDepthFunc = null; + this.currentDepthMask = null; + this.currentStencilFunc = null; + this.currentStencilRef = null; + this.currentStencilFuncMask = null; + this.currentStencilFail = null; + this.currentStencilZFail = null; + this.currentStencilZPass = null; + this.currentStencilMask = null; + this.currentLineWidth = null; + this.currentClippingPlanes = 0; + + this.currentVAO = null; + this.currentIndex = null; + + this.currentBoundFramebuffers = {}; + this.currentDrawbuffers = new WeakMap(); + + this.maxTextures = this.gl.getParameter( this.gl.MAX_TEXTURE_IMAGE_UNITS ); + this.currentTextureSlot = null; + this.currentBoundTextures = {}; + this.currentBoundBufferBases = {}; + + + this._init(); + + } + + /** + * Inits the state of the utility. + * + * @private + */ + _init() { + + const gl = this.gl; + + // Store only WebGL constants here. + + equationToGL = { + [ AddEquation ]: gl.FUNC_ADD, + [ SubtractEquation ]: gl.FUNC_SUBTRACT, + [ ReverseSubtractEquation ]: gl.FUNC_REVERSE_SUBTRACT + }; + + factorToGL = { + [ ZeroFactor ]: gl.ZERO, + [ OneFactor ]: gl.ONE, + [ SrcColorFactor ]: gl.SRC_COLOR, + [ SrcAlphaFactor ]: gl.SRC_ALPHA, + [ SrcAlphaSaturateFactor ]: gl.SRC_ALPHA_SATURATE, + [ DstColorFactor ]: gl.DST_COLOR, + [ DstAlphaFactor ]: gl.DST_ALPHA, + [ OneMinusSrcColorFactor ]: gl.ONE_MINUS_SRC_COLOR, + [ OneMinusSrcAlphaFactor ]: gl.ONE_MINUS_SRC_ALPHA, + [ OneMinusDstColorFactor ]: gl.ONE_MINUS_DST_COLOR, + [ OneMinusDstAlphaFactor ]: gl.ONE_MINUS_DST_ALPHA + }; + + const scissorParam = gl.getParameter( gl.SCISSOR_BOX ); + const viewportParam = gl.getParameter( gl.VIEWPORT ); + + this.currentScissor = new Vector4().fromArray( scissorParam ); + this.currentViewport = new Vector4().fromArray( viewportParam ); + + this._tempVec4 = new Vector4(); + + } + + /** + * Enables the given WebGL capability. + * + * This method caches the capability state so + * `gl.enable()` is only called when necessary. + * + * @param {GLenum} id - The capability to enable. + */ + enable( id ) { + + const { enabled } = this; + + if ( enabled[ id ] !== true ) { + + this.gl.enable( id ); + enabled[ id ] = true; + + } + + } + + /** + * Disables the given WebGL capability. + * + * This method caches the capability state so + * `gl.disable()` is only called when necessary. + * + * @param {GLenum} id - The capability to enable. + */ + disable( id ) { + + const { enabled } = this; + + if ( enabled[ id ] !== false ) { + + this.gl.disable( id ); + enabled[ id ] = false; + + } + + } + + /** + * Specifies whether polygons are front- or back-facing + * by setting the winding orientation. + * + * This method caches the state so `gl.frontFace()` is only + * called when necessary. + * + * @param {boolean} flipSided - Whether triangles flipped their sides or not. + */ + setFlipSided( flipSided ) { + + if ( this.currentFlipSided !== flipSided ) { + + const { gl } = this; + + if ( flipSided ) { + + gl.frontFace( gl.CW ); + + } else { + + gl.frontFace( gl.CCW ); + + } + + this.currentFlipSided = flipSided; + + } + + } + + /** + * Specifies whether or not front- and/or back-facing + * polygons can be culled. + * + * This method caches the state so `gl.cullFace()` is only + * called when necessary. + * + * @param {number} cullFace - Defines which polygons are candidates for culling. + */ + setCullFace( cullFace ) { + + const { gl } = this; + + if ( cullFace !== CullFaceNone ) { + + this.enable( gl.CULL_FACE ); + + if ( cullFace !== this.currentCullFace ) { + + if ( cullFace === CullFaceBack ) { + + gl.cullFace( gl.BACK ); + + } else if ( cullFace === CullFaceFront ) { + + gl.cullFace( gl.FRONT ); + + } else { + + gl.cullFace( gl.FRONT_AND_BACK ); + + } + + } + + } else { + + this.disable( gl.CULL_FACE ); + + } + + this.currentCullFace = cullFace; + + } + + /** + * Specifies the width of line primitives. + * + * This method caches the state so `gl.lineWidth()` is only + * called when necessary. + * + * @param {number} width - The line width. + */ + setLineWidth( width ) { + + const { currentLineWidth, gl } = this; + + if ( width !== currentLineWidth ) { + + gl.lineWidth( width ); + + this.currentLineWidth = width; + + } + + } + + /** + * Defines the blending. + * + * This method caches the state so `gl.blendEquation()`, `gl.blendEquationSeparate()`, + * `gl.blendFunc()` and `gl.blendFuncSeparate()` are only called when necessary. + * + * @param {number} blending - The blending type. + * @param {number} blendEquation - The blending equation. + * @param {number} blendSrc - Only relevant for custom blending. The RGB source blending factor. + * @param {number} blendDst - Only relevant for custom blending. The RGB destination blending factor. + * @param {number} blendEquationAlpha - Only relevant for custom blending. The blending equation for alpha. + * @param {number} blendSrcAlpha - Only relevant for custom blending. The alpha source blending factor. + * @param {number} blendDstAlpha - Only relevant for custom blending. The alpha destination blending factor. + * @param {boolean} premultipliedAlpha - Whether premultiplied alpha is enabled or not. + */ + setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) { + + const { gl } = this; + + if ( blending === NoBlending ) { + + if ( this.currentBlendingEnabled === true ) { + + this.disable( gl.BLEND ); + this.currentBlendingEnabled = false; + + } + + return; + + } + + if ( this.currentBlendingEnabled === false ) { + + this.enable( gl.BLEND ); + this.currentBlendingEnabled = true; + + } + + if ( blending !== CustomBlending ) { + + if ( blending !== this.currentBlending || premultipliedAlpha !== this.currentPremultipledAlpha ) { + + if ( this.currentBlendEquation !== AddEquation || this.currentBlendEquationAlpha !== AddEquation ) { + + gl.blendEquation( gl.FUNC_ADD ); + + this.currentBlendEquation = AddEquation; + this.currentBlendEquationAlpha = AddEquation; + + } + + if ( premultipliedAlpha ) { + + switch ( blending ) { + + case NormalBlending: + gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); + break; + + case AdditiveBlending: + gl.blendFunc( gl.ONE, gl.ONE ); + break; + + case SubtractiveBlending: + gl.blendFuncSeparate( gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE ); + break; + + case MultiplyBlending: + gl.blendFuncSeparate( gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA ); + break; + + default: + console.error( 'THREE.WebGLState: Invalid blending: ', blending ); + break; + + } + + } else { + + switch ( blending ) { + + case NormalBlending: + gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); + break; + + case AdditiveBlending: + gl.blendFunc( gl.SRC_ALPHA, gl.ONE ); + break; + + case SubtractiveBlending: + gl.blendFuncSeparate( gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE ); + break; + + case MultiplyBlending: + gl.blendFunc( gl.ZERO, gl.SRC_COLOR ); + break; + + default: + console.error( 'THREE.WebGLState: Invalid blending: ', blending ); + break; + + } + + } + + this.currentBlendSrc = null; + this.currentBlendDst = null; + this.currentBlendSrcAlpha = null; + this.currentBlendDstAlpha = null; + + this.currentBlending = blending; + this.currentPremultipledAlpha = premultipliedAlpha; + + } + + return; + + } + + // custom blending + + blendEquationAlpha = blendEquationAlpha || blendEquation; + blendSrcAlpha = blendSrcAlpha || blendSrc; + blendDstAlpha = blendDstAlpha || blendDst; + + if ( blendEquation !== this.currentBlendEquation || blendEquationAlpha !== this.currentBlendEquationAlpha ) { + + gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] ); + + this.currentBlendEquation = blendEquation; + this.currentBlendEquationAlpha = blendEquationAlpha; + + } + + if ( blendSrc !== this.currentBlendSrc || blendDst !== this.currentBlendDst || blendSrcAlpha !== this.currentBlendSrcAlpha || blendDstAlpha !== this.currentBlendDstAlpha ) { + + gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] ); + + this.currentBlendSrc = blendSrc; + this.currentBlendDst = blendDst; + this.currentBlendSrcAlpha = blendSrcAlpha; + this.currentBlendDstAlpha = blendDstAlpha; + + } + + this.currentBlending = blending; + this.currentPremultipledAlpha = false; + + } + + /** + * Specifies whether colors can be written when rendering + * into a framebuffer or not. + * + * This method caches the state so `gl.colorMask()` is only + * called when necessary. + * + * @param {boolean} colorMask - The color mask. + */ + setColorMask( colorMask ) { + + if ( this.currentColorMask !== colorMask ) { + + this.gl.colorMask( colorMask, colorMask, colorMask, colorMask ); + this.currentColorMask = colorMask; + + } + + } + + /** + * Specifies whether the depth test is enabled or not. + * + * @param {boolean} depthTest - Whether the depth test is enabled or not. + */ + setDepthTest( depthTest ) { + + const { gl } = this; + + if ( depthTest ) { + + this.enable( gl.DEPTH_TEST ); + + } else { + + this.disable( gl.DEPTH_TEST ); + + } + + } + + /** + * Specifies whether depth values can be written when rendering + * into a framebuffer or not. + * + * This method caches the state so `gl.depthMask()` is only + * called when necessary. + * + * @param {boolean} depthMask - The depth mask. + */ + setDepthMask( depthMask ) { + + if ( this.currentDepthMask !== depthMask ) { + + this.gl.depthMask( depthMask ); + this.currentDepthMask = depthMask; + + } + + } + + /** + * Specifies the depth compare function. + * + * This method caches the state so `gl.depthFunc()` is only + * called when necessary. + * + * @param {number} depthFunc - The depth compare function. + */ + setDepthFunc( depthFunc ) { + + if ( this.currentDepthFunc !== depthFunc ) { + + const { gl } = this; + + switch ( depthFunc ) { + + case NeverDepth: + + gl.depthFunc( gl.NEVER ); + break; + + case AlwaysDepth: + + gl.depthFunc( gl.ALWAYS ); + break; + + case LessDepth: + + gl.depthFunc( gl.LESS ); + break; + + case LessEqualDepth: + + gl.depthFunc( gl.LEQUAL ); + break; + + case EqualDepth: + + gl.depthFunc( gl.EQUAL ); + break; + + case GreaterEqualDepth: + + gl.depthFunc( gl.GEQUAL ); + break; + + case GreaterDepth: + + gl.depthFunc( gl.GREATER ); + break; + + case NotEqualDepth: + + gl.depthFunc( gl.NOTEQUAL ); + break; + + default: + + gl.depthFunc( gl.LEQUAL ); + + } + + this.currentDepthFunc = depthFunc; + + } + + } + + /** + * Specifies the scissor box. + * + * @param {number} x - The x-coordinate of the lower left corner of the viewport. + * @param {number} y - The y-coordinate of the lower left corner of the viewport. + * @param {number} width - The width of the viewport. + * @param {number} height - The height of the viewport. + * + */ + scissor( x, y, width, height ) { + + const scissor = this._tempVec4.set( x, y, width, height ); + + if ( this.currentScissor.equals( scissor ) === false ) { + + const { gl } = this; + + gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); + this.currentScissor.copy( scissor ); + + } + + } + + /** + * Specifies the viewport. + * + * @param {number} x - The x-coordinate of the lower left corner of the viewport. + * @param {number} y - The y-coordinate of the lower left corner of the viewport. + * @param {number} width - The width of the viewport. + * @param {number} height - The height of the viewport. + * + */ + viewport( x, y, width, height ) { + + const viewport = this._tempVec4.set( x, y, width, height ); + + if ( this.currentViewport.equals( viewport ) === false ) { + + const { gl } = this; + + gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); + this.currentViewport.copy( viewport ); + + } + + } + + /** + * Defines the scissor test. + * + * @param {boolean} boolean - Whether the scissor test should be enabled or not. + */ + setScissorTest( boolean ) { + + const gl = this.gl; + + if ( boolean ) { + + gl.enable( gl.SCISSOR_TEST ); + + } else { + + gl.disable( gl.SCISSOR_TEST ); + + } + + } + + /** + * Specifies whether the stencil test is enabled or not. + * + * @param {boolean} stencilTest - Whether the stencil test is enabled or not. + */ + setStencilTest( stencilTest ) { + + const { gl } = this; + + if ( stencilTest ) { + + this.enable( gl.STENCIL_TEST ); + + } else { + + this.disable( gl.STENCIL_TEST ); + + } + + } + + /** + * Specifies whether stencil values can be written when rendering + * into a framebuffer or not. + * + * This method caches the state so `gl.stencilMask()` is only + * called when necessary. + * + * @param {boolean} stencilMask - The stencil mask. + */ + setStencilMask( stencilMask ) { + + if ( this.currentStencilMask !== stencilMask ) { + + this.gl.stencilMask( stencilMask ); + this.currentStencilMask = stencilMask; + + } + + } + + /** + * Specifies whether the stencil test functions. + * + * This method caches the state so `gl.stencilFunc()` is only + * called when necessary. + * + * @param {number} stencilFunc - The stencil compare function. + * @param {number} stencilRef - The reference value for the stencil test. + * @param {number} stencilMask - A bit-wise mask that is used to AND the reference value and the stored stencil value when the test is done. + */ + setStencilFunc( stencilFunc, stencilRef, stencilMask ) { + + if ( this.currentStencilFunc !== stencilFunc || + this.currentStencilRef !== stencilRef || + this.currentStencilFuncMask !== stencilMask ) { + + this.gl.stencilFunc( stencilFunc, stencilRef, stencilMask ); + + this.currentStencilFunc = stencilFunc; + this.currentStencilRef = stencilRef; + this.currentStencilFuncMask = stencilMask; + + } + + } + + /** + * Specifies whether the stencil test operation. + * + * This method caches the state so `gl.stencilOp()` is only + * called when necessary. + * + * @param {number} stencilFail - The function to use when the stencil test fails. + * @param {number} stencilZFail - The function to use when the stencil test passes, but the depth test fail. + * @param {number} stencilZPass - The function to use when both the stencil test and the depth test pass, + * or when the stencil test passes and there is no depth buffer or depth testing is disabled. + */ + setStencilOp( stencilFail, stencilZFail, stencilZPass ) { + + if ( this.currentStencilFail !== stencilFail || + this.currentStencilZFail !== stencilZFail || + this.currentStencilZPass !== stencilZPass ) { + + this.gl.stencilOp( stencilFail, stencilZFail, stencilZPass ); + + this.currentStencilFail = stencilFail; + this.currentStencilZFail = stencilZFail; + this.currentStencilZPass = stencilZPass; + + } + + } + + /** + * Configures the WebGL state for the given material. + * + * @param {Material} material - The material to configure the state for. + * @param {number} frontFaceCW - Whether the front faces are counter-clockwise or not. + * @param {number} hardwareClippingPlanes - The number of hardware clipping planes. + */ + setMaterial( material, frontFaceCW, hardwareClippingPlanes ) { + + const { gl } = this; + + material.side === DoubleSide + ? this.disable( gl.CULL_FACE ) + : this.enable( gl.CULL_FACE ); + + let flipSided = ( material.side === BackSide ); + if ( frontFaceCW ) flipSided = ! flipSided; + + this.setFlipSided( flipSided ); + + ( material.blending === NormalBlending && material.transparent === false ) + ? this.setBlending( NoBlending ) + : this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha ); + + this.setDepthFunc( material.depthFunc ); + this.setDepthTest( material.depthTest ); + this.setDepthMask( material.depthWrite ); + this.setColorMask( material.colorWrite ); + + const stencilWrite = material.stencilWrite; + this.setStencilTest( stencilWrite ); + if ( stencilWrite ) { + + this.setStencilMask( material.stencilWriteMask ); + this.setStencilFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask ); + this.setStencilOp( material.stencilFail, material.stencilZFail, material.stencilZPass ); + + } + + this.setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); + + material.alphaToCoverage === true && this.backend.renderer.samples > 1 + ? this.enable( gl.SAMPLE_ALPHA_TO_COVERAGE ) + : this.disable( gl.SAMPLE_ALPHA_TO_COVERAGE ); + + if ( hardwareClippingPlanes > 0 ) { + + if ( this.currentClippingPlanes !== hardwareClippingPlanes ) { + + const CLIP_DISTANCE0_WEBGL = 0x3000; + + for ( let i = 0; i < 8; i ++ ) { + + if ( i < hardwareClippingPlanes ) { + + this.enable( CLIP_DISTANCE0_WEBGL + i ); + + } else { + + this.disable( CLIP_DISTANCE0_WEBGL + i ); + + } + + } + + } + + } + + } + + /** + * Specifies the polygon offset. + * + * This method caches the state so `gl.polygonOffset()` is only + * called when necessary. + * + * @param {boolean} polygonOffset - Whether polygon offset is enabled or not. + * @param {number} factor - The scale factor for the variable depth offset for each polygon. + * @param {number} units - The multiplier by which an implementation-specific value is multiplied with to create a constant depth offset. + */ + setPolygonOffset( polygonOffset, factor, units ) { + + const { gl } = this; + + if ( polygonOffset ) { + + this.enable( gl.POLYGON_OFFSET_FILL ); + + if ( this.currentPolygonOffsetFactor !== factor || this.currentPolygonOffsetUnits !== units ) { + + gl.polygonOffset( factor, units ); + + this.currentPolygonOffsetFactor = factor; + this.currentPolygonOffsetUnits = units; + + } + + } else { + + this.disable( gl.POLYGON_OFFSET_FILL ); + + } + + } + + /** + * Defines the usage of the given WebGL program. + * + * This method caches the state so `gl.useProgram()` is only + * called when necessary. + * + * @param {WebGLProgram} program - The WebGL program to use. + * @return {boolean} Whether a program change has been executed or not. + */ + useProgram( program ) { + + if ( this.currentProgram !== program ) { + + this.gl.useProgram( program ); + + this.currentProgram = program; + + return true; + + } + + return false; + + } + + /** + * Sets the vertex state by binding the given VAO and element buffer. + * + * @param {WebGLVertexArrayObject} vao - The VAO. + * @param {WebGLBuffer} indexBuffer - The index buffer. + * @return {boolean} Whether a vertex state has been changed or not. + */ + setVertexState( vao, indexBuffer = null ) { + + const gl = this.gl; + + if ( this.currentVAO !== vao || this.currentIndex !== indexBuffer ) { + + gl.bindVertexArray( vao ); + + if ( indexBuffer !== null ) { + + gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, indexBuffer ); + + } + + this.currentVAO = vao; + this.currentIndex = indexBuffer; + + return true; + + } + + return false; + + } + + /** + * Resets the vertex array state by resetting the VAO and element buffer. + */ + resetVertexState() { + + const gl = this.gl; + + gl.bindVertexArray( null ); + gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, null ); + + this.currentVAO = null; + this.currentIndex = null; + + } + + // framebuffer + + + /** + * Binds the given framebuffer. + * + * This method caches the state so `gl.bindFramebuffer()` is only + * called when necessary. + * + * @param {number} target - The binding point (target). + * @param {WebGLFramebuffer} framebuffer - The WebGL framebuffer to bind. + * @return {boolean} Whether a bind has been executed or not. + */ + bindFramebuffer( target, framebuffer ) { + + const { gl, currentBoundFramebuffers } = this; + + if ( currentBoundFramebuffers[ target ] !== framebuffer ) { + + gl.bindFramebuffer( target, framebuffer ); + + currentBoundFramebuffers[ target ] = framebuffer; + + // gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER + + if ( target === gl.DRAW_FRAMEBUFFER ) { + + currentBoundFramebuffers[ gl.FRAMEBUFFER ] = framebuffer; + + } + + if ( target === gl.FRAMEBUFFER ) { + + currentBoundFramebuffers[ gl.DRAW_FRAMEBUFFER ] = framebuffer; + + } + + return true; + + } + + return false; + + } + + /** + * Defines draw buffers to which fragment colors are written into. + * Configures the MRT setup of custom framebuffers. + * + * This method caches the state so `gl.drawBuffers()` is only + * called when necessary. + * + * @param {RenderContext} renderContext - The render context. + * @param {WebGLFramebuffer} framebuffer - The WebGL framebuffer. + */ + drawBuffers( renderContext, framebuffer ) { + + const { gl } = this; + + let drawBuffers = []; + + let needsUpdate = false; + + if ( renderContext.textures !== null ) { + + drawBuffers = this.currentDrawbuffers.get( framebuffer ); + + if ( drawBuffers === undefined ) { + + drawBuffers = []; + this.currentDrawbuffers.set( framebuffer, drawBuffers ); + + } + + + const textures = renderContext.textures; + + if ( drawBuffers.length !== textures.length || drawBuffers[ 0 ] !== gl.COLOR_ATTACHMENT0 ) { + + for ( let i = 0, il = textures.length; i < il; i ++ ) { + + drawBuffers[ i ] = gl.COLOR_ATTACHMENT0 + i; + + } + + drawBuffers.length = textures.length; + + needsUpdate = true; + + } + + + } else { + + if ( drawBuffers[ 0 ] !== gl.BACK ) { + + drawBuffers[ 0 ] = gl.BACK; + + needsUpdate = true; + + } + + } + + if ( needsUpdate ) { + + gl.drawBuffers( drawBuffers ); + + } + + } + + + // texture + + /** + * Makes the given texture unit active. + * + * This method caches the state so `gl.activeTexture()` is only + * called when necessary. + * + * @param {number} webglSlot - The texture unit to make active. + */ + activeTexture( webglSlot ) { + + const { gl, currentTextureSlot, maxTextures } = this; + + if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1; + + if ( currentTextureSlot !== webglSlot ) { + + gl.activeTexture( webglSlot ); + this.currentTextureSlot = webglSlot; + + } + + } + + /** + * Binds the given WebGL texture to a target. + * + * This method caches the state so `gl.bindTexture()` is only + * called when necessary. + * + * @param {number} webglType - The binding point (target). + * @param {WebGLTexture} webglTexture - The WebGL texture to bind. + * @param {number} webglSlot - The texture. + */ + bindTexture( webglType, webglTexture, webglSlot ) { + + const { gl, currentTextureSlot, currentBoundTextures, maxTextures } = this; + + if ( webglSlot === undefined ) { + + if ( currentTextureSlot === null ) { + + webglSlot = gl.TEXTURE0 + maxTextures - 1; + + } else { + + webglSlot = currentTextureSlot; + + } + + } + + let boundTexture = currentBoundTextures[ webglSlot ]; + + if ( boundTexture === undefined ) { + + boundTexture = { type: undefined, texture: undefined }; + currentBoundTextures[ webglSlot ] = boundTexture; + + } + + if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) { + + if ( currentTextureSlot !== webglSlot ) { + + gl.activeTexture( webglSlot ); + this.currentTextureSlot = webglSlot; + + } + + gl.bindTexture( webglType, webglTexture ); + + boundTexture.type = webglType; + boundTexture.texture = webglTexture; + + } + + } + + /** + * Binds a given WebGL buffer to a given binding point (target) at a given index. + * + * This method caches the state so `gl.bindBufferBase()` is only + * called when necessary. + * + * @param {number} target - The target for the bind operation. + * @param {number} index - The index of the target. + * @param {WebGLBuffer} buffer - The WebGL buffer. + * @return {boolean} Whether a bind has been executed or not. + */ + bindBufferBase( target, index, buffer ) { + + const { gl } = this; + + const key = `${target}-${index}`; + + if ( this.currentBoundBufferBases[ key ] !== buffer ) { + + gl.bindBufferBase( target, index, buffer ); + this.currentBoundBufferBases[ key ] = buffer; + + return true; + + } + + return false; + + } + + + /** + * Unbinds the current bound texture. + * + * This method caches the state so `gl.bindTexture()` is only + * called when necessary. + */ + unbindTexture() { + + const { gl, currentTextureSlot, currentBoundTextures } = this; + + const boundTexture = currentBoundTextures[ currentTextureSlot ]; + + if ( boundTexture !== undefined && boundTexture.type !== undefined ) { + + gl.bindTexture( boundTexture.type, null ); + + boundTexture.type = undefined; + boundTexture.texture = undefined; + + } + + } + +} + +/** + * A WebGL 2 backend utility module with common helpers. + * + * @private + */ +class WebGLUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGLBackend} backend - The WebGL 2 backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGL 2 backend. + * + * @type {WebGLBackend} + */ + this.backend = backend; + + /** + * A reference to the rendering context. + * + * @type {WebGL2RenderingContext} + */ + this.gl = this.backend.gl; + + /** + * A reference to a backend module holding extension-related + * utility functions. + * + * @type {WebGLExtensions} + */ + this.extensions = backend.extensions; + + } + + /** + * Converts the given three.js constant into a WebGL constant. + * The method currently supports the conversion of texture formats + * and types. + * + * @param {number} p - The three.js constant. + * @param {string} [colorSpace=NoColorSpace] - The color space. + * @return {?number} The corresponding WebGL constant. + */ + convert( p, colorSpace = NoColorSpace ) { + + const { gl, extensions } = this; + + let extension; + + const transfer = ColorManagement.getTransfer( colorSpace ); + + if ( p === UnsignedByteType ) return gl.UNSIGNED_BYTE; + if ( p === UnsignedShort4444Type ) return gl.UNSIGNED_SHORT_4_4_4_4; + if ( p === UnsignedShort5551Type ) return gl.UNSIGNED_SHORT_5_5_5_1; + if ( p === UnsignedInt5999Type ) return gl.UNSIGNED_INT_5_9_9_9_REV; + + if ( p === ByteType ) return gl.BYTE; + if ( p === ShortType ) return gl.SHORT; + if ( p === UnsignedShortType ) return gl.UNSIGNED_SHORT; + if ( p === IntType ) return gl.INT; + if ( p === UnsignedIntType ) return gl.UNSIGNED_INT; + if ( p === FloatType ) return gl.FLOAT; + + if ( p === HalfFloatType ) { + + return gl.HALF_FLOAT; + + } + + if ( p === AlphaFormat ) return gl.ALPHA; + if ( p === RGBFormat ) return gl.RGB; + if ( p === RGBAFormat ) return gl.RGBA; + if ( p === DepthFormat ) return gl.DEPTH_COMPONENT; + if ( p === DepthStencilFormat ) return gl.DEPTH_STENCIL; + + // WebGL2 formats. + + if ( p === RedFormat ) return gl.RED; + if ( p === RedIntegerFormat ) return gl.RED_INTEGER; + if ( p === RGFormat ) return gl.RG; + if ( p === RGIntegerFormat ) return gl.RG_INTEGER; + if ( p === RGBAIntegerFormat ) return gl.RGBA_INTEGER; + + // S3TC + + if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) { + + if ( transfer === SRGBTransfer ) { + + extension = extensions.get( 'WEBGL_compressed_texture_s3tc_srgb' ); + + if ( extension !== null ) { + + if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_S3TC_DXT1_EXT; + if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT; + if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT; + if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT; + + } else { + + return null; + + } + + } else { + + extension = extensions.get( 'WEBGL_compressed_texture_s3tc' ); + + if ( extension !== null ) { + + if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; + if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; + if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; + if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; + + } else { + + return null; + + } + + } + + } + + // PVRTC + + if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' ); + + if ( extension !== null ) { + + if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; + if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; + if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; + if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; + + } else { + + return null; + + } + + } + + // ETC + + if ( p === RGB_ETC1_Format || p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_etc' ); + + if ( extension !== null ) { + + if ( p === RGB_ETC1_Format || p === RGB_ETC2_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ETC2 : extension.COMPRESSED_RGB8_ETC2; + if ( p === RGBA_ETC2_EAC_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ETC2_EAC : extension.COMPRESSED_RGBA8_ETC2_EAC; + + } else { + + return null; + + } + + } + + // ASTC + + if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || + p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || + p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || + p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || + p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_astc' ); + + if ( extension !== null ) { + + if ( p === RGBA_ASTC_4x4_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR : extension.COMPRESSED_RGBA_ASTC_4x4_KHR; + if ( p === RGBA_ASTC_5x4_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR : extension.COMPRESSED_RGBA_ASTC_5x4_KHR; + if ( p === RGBA_ASTC_5x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR : extension.COMPRESSED_RGBA_ASTC_5x5_KHR; + if ( p === RGBA_ASTC_6x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR : extension.COMPRESSED_RGBA_ASTC_6x5_KHR; + if ( p === RGBA_ASTC_6x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR : extension.COMPRESSED_RGBA_ASTC_6x6_KHR; + if ( p === RGBA_ASTC_8x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR : extension.COMPRESSED_RGBA_ASTC_8x5_KHR; + if ( p === RGBA_ASTC_8x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR : extension.COMPRESSED_RGBA_ASTC_8x6_KHR; + if ( p === RGBA_ASTC_8x8_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR : extension.COMPRESSED_RGBA_ASTC_8x8_KHR; + if ( p === RGBA_ASTC_10x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR : extension.COMPRESSED_RGBA_ASTC_10x5_KHR; + if ( p === RGBA_ASTC_10x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR : extension.COMPRESSED_RGBA_ASTC_10x6_KHR; + if ( p === RGBA_ASTC_10x8_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR : extension.COMPRESSED_RGBA_ASTC_10x8_KHR; + if ( p === RGBA_ASTC_10x10_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR : extension.COMPRESSED_RGBA_ASTC_10x10_KHR; + if ( p === RGBA_ASTC_12x10_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR : extension.COMPRESSED_RGBA_ASTC_12x10_KHR; + if ( p === RGBA_ASTC_12x12_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR : extension.COMPRESSED_RGBA_ASTC_12x12_KHR; + + } else { + + return null; + + } + + } + + // BPTC + + if ( p === RGBA_BPTC_Format ) { + + extension = extensions.get( 'EXT_texture_compression_bptc' ); + + if ( extension !== null ) { + + if ( p === RGBA_BPTC_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB_ALPHA_BPTC_UNORM_EXT : extension.COMPRESSED_RGBA_BPTC_UNORM_EXT; + + } else { + + return null; + + } + + } + + // RGTC + + if ( p === RED_RGTC1_Format || p === SIGNED_RED_RGTC1_Format || p === RED_GREEN_RGTC2_Format || p === SIGNED_RED_GREEN_RGTC2_Format ) { + + extension = extensions.get( 'EXT_texture_compression_rgtc' ); + + if ( extension !== null ) { + + if ( p === RGBA_BPTC_Format ) return extension.COMPRESSED_RED_RGTC1_EXT; + if ( p === SIGNED_RED_RGTC1_Format ) return extension.COMPRESSED_SIGNED_RED_RGTC1_EXT; + if ( p === RED_GREEN_RGTC2_Format ) return extension.COMPRESSED_RED_GREEN_RGTC2_EXT; + if ( p === SIGNED_RED_GREEN_RGTC2_Format ) return extension.COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT; + + } else { + + return null; + + } + + } + + // + + if ( p === UnsignedInt248Type ) { + + return gl.UNSIGNED_INT_24_8; + + } + + // if "p" can't be resolved, assume the user defines a WebGL constant as a string (fallback/workaround for packed RGB formats) + + return ( gl[ p ] !== undefined ) ? gl[ p ] : null; + + } + + /** + * This method can be used to synchronize the CPU with the GPU by waiting until + * ongoing GPU commands have been completed. + * + * @private + * @return {Promise} A promise that resolves when all ongoing GPU commands have been completed. + */ + _clientWaitAsync() { + + const { gl } = this; + + const sync = gl.fenceSync( gl.SYNC_GPU_COMMANDS_COMPLETE, 0 ); + + gl.flush(); + + return new Promise( ( resolve, reject ) => { + + function test() { + + const res = gl.clientWaitSync( sync, gl.SYNC_FLUSH_COMMANDS_BIT, 0 ); + + if ( res === gl.WAIT_FAILED ) { + + gl.deleteSync( sync ); + + reject(); + return; + + } + + if ( res === gl.TIMEOUT_EXPIRED ) { + + requestAnimationFrame( test ); + return; + + } + + gl.deleteSync( sync ); + + resolve(); + + } + + test(); + + } ); + + } + +} + +let initialized = false, wrappingToGL, filterToGL, compareToGL; + +/** + * A WebGL 2 backend utility module for managing textures. + * + * @private + */ +class WebGLTextureUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGLBackend} backend - The WebGL 2 backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGL 2 backend. + * + * @type {WebGLBackend} + */ + this.backend = backend; + + /** + * A reference to the rendering context. + * + * @type {WebGL2RenderingContext} + */ + this.gl = backend.gl; + + /** + * A reference to a backend module holding extension-related + * utility functions. + * + * @type {WebGLExtensions} + */ + this.extensions = backend.extensions; + + /** + * A dictionary for managing default textures. The key + * is the binding point (target), the value the WEbGL texture object. + * + * @type {Object} + */ + this.defaultTextures = {}; + + if ( initialized === false ) { + + this._init(); + + initialized = true; + + } + + } + + /** + * Inits the state of the utility. + * + * @private + */ + _init() { + + const gl = this.gl; + + // Store only WebGL constants here. + + wrappingToGL = { + [ RepeatWrapping ]: gl.REPEAT, + [ ClampToEdgeWrapping ]: gl.CLAMP_TO_EDGE, + [ MirroredRepeatWrapping ]: gl.MIRRORED_REPEAT + }; + + filterToGL = { + [ NearestFilter ]: gl.NEAREST, + [ NearestMipmapNearestFilter ]: gl.NEAREST_MIPMAP_NEAREST, + [ NearestMipmapLinearFilter ]: gl.NEAREST_MIPMAP_LINEAR, + + [ LinearFilter ]: gl.LINEAR, + [ LinearMipmapNearestFilter ]: gl.LINEAR_MIPMAP_NEAREST, + [ LinearMipmapLinearFilter ]: gl.LINEAR_MIPMAP_LINEAR + }; + + compareToGL = { + [ NeverCompare ]: gl.NEVER, + [ AlwaysCompare ]: gl.ALWAYS, + [ LessCompare ]: gl.LESS, + [ LessEqualCompare ]: gl.LEQUAL, + [ EqualCompare ]: gl.EQUAL, + [ GreaterEqualCompare ]: gl.GEQUAL, + [ GreaterCompare ]: gl.GREATER, + [ NotEqualCompare ]: gl.NOTEQUAL + }; + + } + + /** + * Returns the native texture type for the given texture. + * + * @param {Texture} texture - The texture. + * @return {GLenum} The native texture type. + */ + getGLTextureType( texture ) { + + const { gl } = this; + + let glTextureType; + + if ( texture.isCubeTexture === true ) { + + glTextureType = gl.TEXTURE_CUBE_MAP; + + } else if ( texture.isArrayTexture === true || texture.isDataArrayTexture === true || texture.isCompressedArrayTexture === true ) { + + glTextureType = gl.TEXTURE_2D_ARRAY; + + } else if ( texture.isData3DTexture === true ) { // TODO: isCompressed3DTexture, wait for #26642 + + glTextureType = gl.TEXTURE_3D; + + } else { + + glTextureType = gl.TEXTURE_2D; + + + } + + return glTextureType; + + } + + /** + * Returns the native texture type for the given texture. + * + * @param {?string} internalFormatName - The internal format name. When `null`, the internal format is derived from the subsequent parameters. + * @param {GLenum} glFormat - The WebGL format. + * @param {GLenum} glType - The WebGL type. + * @param {string} colorSpace - The texture's color space. + * @param {boolean} [forceLinearTransfer=false] - Whether to force a linear transfer or not. + * @return {GLenum} The internal format. + */ + getInternalFormat( internalFormatName, glFormat, glType, colorSpace, forceLinearTransfer = false ) { + + const { gl, extensions } = this; + + if ( internalFormatName !== null ) { + + if ( gl[ internalFormatName ] !== undefined ) return gl[ internalFormatName ]; + + console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' ); + + } + + let internalFormat = glFormat; + + if ( glFormat === gl.RED ) { + + if ( glType === gl.FLOAT ) internalFormat = gl.R32F; + if ( glType === gl.HALF_FLOAT ) internalFormat = gl.R16F; + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.R8; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.R16; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.R32UI; + if ( glType === gl.BYTE ) internalFormat = gl.R8I; + if ( glType === gl.SHORT ) internalFormat = gl.R16I; + if ( glType === gl.INT ) internalFormat = gl.R32I; + + } + + if ( glFormat === gl.RED_INTEGER ) { + + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.R8UI; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.R16UI; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.R32UI; + if ( glType === gl.BYTE ) internalFormat = gl.R8I; + if ( glType === gl.SHORT ) internalFormat = gl.R16I; + if ( glType === gl.INT ) internalFormat = gl.R32I; + + } + + if ( glFormat === gl.RG ) { + + if ( glType === gl.FLOAT ) internalFormat = gl.RG32F; + if ( glType === gl.HALF_FLOAT ) internalFormat = gl.RG16F; + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RG8; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RG16; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RG32UI; + if ( glType === gl.BYTE ) internalFormat = gl.RG8I; + if ( glType === gl.SHORT ) internalFormat = gl.RG16I; + if ( glType === gl.INT ) internalFormat = gl.RG32I; + + } + + if ( glFormat === gl.RG_INTEGER ) { + + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RG8UI; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RG16UI; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RG32UI; + if ( glType === gl.BYTE ) internalFormat = gl.RG8I; + if ( glType === gl.SHORT ) internalFormat = gl.RG16I; + if ( glType === gl.INT ) internalFormat = gl.RG32I; + + } + + if ( glFormat === gl.RGB ) { + + const transfer = forceLinearTransfer ? LinearTransfer : ColorManagement.getTransfer( colorSpace ); + + if ( glType === gl.FLOAT ) internalFormat = gl.RGB32F; + if ( glType === gl.HALF_FLOAT ) internalFormat = gl.RGB16F; + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RGB8; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RGB16; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RGB32UI; + if ( glType === gl.BYTE ) internalFormat = gl.RGB8I; + if ( glType === gl.SHORT ) internalFormat = gl.RGB16I; + if ( glType === gl.INT ) internalFormat = gl.RGB32I; + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = ( transfer === SRGBTransfer ) ? gl.SRGB8 : gl.RGB8; + if ( glType === gl.UNSIGNED_SHORT_5_6_5 ) internalFormat = gl.RGB565; + if ( glType === gl.UNSIGNED_SHORT_5_5_5_1 ) internalFormat = gl.RGB5_A1; + if ( glType === gl.UNSIGNED_SHORT_4_4_4_4 ) internalFormat = gl.RGB4; + if ( glType === gl.UNSIGNED_INT_5_9_9_9_REV ) internalFormat = gl.RGB9_E5; + + } + + if ( glFormat === gl.RGB_INTEGER ) { + + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RGB8UI; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RGB16UI; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RGB32UI; + if ( glType === gl.BYTE ) internalFormat = gl.RGB8I; + if ( glType === gl.SHORT ) internalFormat = gl.RGB16I; + if ( glType === gl.INT ) internalFormat = gl.RGB32I; + + } + + if ( glFormat === gl.RGBA ) { + + const transfer = forceLinearTransfer ? LinearTransfer : ColorManagement.getTransfer( colorSpace ); + + if ( glType === gl.FLOAT ) internalFormat = gl.RGBA32F; + if ( glType === gl.HALF_FLOAT ) internalFormat = gl.RGBA16F; + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RGBA8; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RGBA16; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RGBA32UI; + if ( glType === gl.BYTE ) internalFormat = gl.RGBA8I; + if ( glType === gl.SHORT ) internalFormat = gl.RGBA16I; + if ( glType === gl.INT ) internalFormat = gl.RGBA32I; + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = ( transfer === SRGBTransfer ) ? gl.SRGB8_ALPHA8 : gl.RGBA8; + if ( glType === gl.UNSIGNED_SHORT_4_4_4_4 ) internalFormat = gl.RGBA4; + if ( glType === gl.UNSIGNED_SHORT_5_5_5_1 ) internalFormat = gl.RGB5_A1; + + } + + if ( glFormat === gl.RGBA_INTEGER ) { + + if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RGBA8UI; + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RGBA16UI; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RGBA32UI; + if ( glType === gl.BYTE ) internalFormat = gl.RGBA8I; + if ( glType === gl.SHORT ) internalFormat = gl.RGBA16I; + if ( glType === gl.INT ) internalFormat = gl.RGBA32I; + + } + + if ( glFormat === gl.DEPTH_COMPONENT ) { + + if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.DEPTH_COMPONENT16; + if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.DEPTH_COMPONENT24; + if ( glType === gl.FLOAT ) internalFormat = gl.DEPTH_COMPONENT32F; + + } + + if ( glFormat === gl.DEPTH_STENCIL ) { + + if ( glType === gl.UNSIGNED_INT_24_8 ) internalFormat = gl.DEPTH24_STENCIL8; + + } + + if ( internalFormat === gl.R16F || internalFormat === gl.R32F || + internalFormat === gl.RG16F || internalFormat === gl.RG32F || + internalFormat === gl.RGBA16F || internalFormat === gl.RGBA32F ) { + + extensions.get( 'EXT_color_buffer_float' ); + + } + + return internalFormat; + + } + + /** + * Sets the texture parameters for the given texture. + * + * @param {GLenum} textureType - The texture type. + * @param {Texture} texture - The texture. + */ + setTextureParameters( textureType, texture ) { + + const { gl, extensions, backend } = this; + + const workingPrimaries = ColorManagement.getPrimaries( ColorManagement.workingColorSpace ); + const texturePrimaries = texture.colorSpace === NoColorSpace ? null : ColorManagement.getPrimaries( texture.colorSpace ); + const unpackConversion = texture.colorSpace === NoColorSpace || workingPrimaries === texturePrimaries ? gl.NONE : gl.BROWSER_DEFAULT_WEBGL; + + gl.pixelStorei( gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); + gl.pixelStorei( gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); + gl.pixelStorei( gl.UNPACK_ALIGNMENT, texture.unpackAlignment ); + gl.pixelStorei( gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, unpackConversion ); + + gl.texParameteri( textureType, gl.TEXTURE_WRAP_S, wrappingToGL[ texture.wrapS ] ); + gl.texParameteri( textureType, gl.TEXTURE_WRAP_T, wrappingToGL[ texture.wrapT ] ); + + if ( textureType === gl.TEXTURE_3D || textureType === gl.TEXTURE_2D_ARRAY ) { + + // WebGL 2 does not support wrapping for depth 2D array textures + if ( ! texture.isArrayTexture ) { + + gl.texParameteri( textureType, gl.TEXTURE_WRAP_R, wrappingToGL[ texture.wrapR ] ); + + } + + } + + gl.texParameteri( textureType, gl.TEXTURE_MAG_FILTER, filterToGL[ texture.magFilter ] ); + + + const hasMipmaps = texture.mipmaps !== undefined && texture.mipmaps.length > 0; + + // follow WebGPU backend mapping for texture filtering + const minFilter = texture.minFilter === LinearFilter && hasMipmaps ? LinearMipmapLinearFilter : texture.minFilter; + + gl.texParameteri( textureType, gl.TEXTURE_MIN_FILTER, filterToGL[ minFilter ] ); + + if ( texture.compareFunction ) { + + gl.texParameteri( textureType, gl.TEXTURE_COMPARE_MODE, gl.COMPARE_REF_TO_TEXTURE ); + gl.texParameteri( textureType, gl.TEXTURE_COMPARE_FUNC, compareToGL[ texture.compareFunction ] ); + + } + + if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { + + if ( texture.magFilter === NearestFilter ) return; + if ( texture.minFilter !== NearestMipmapLinearFilter && texture.minFilter !== LinearMipmapLinearFilter ) return; + if ( texture.type === FloatType && extensions.has( 'OES_texture_float_linear' ) === false ) return; // verify extension for WebGL 1 and WebGL 2 + + if ( texture.anisotropy > 1 ) { + + const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); + gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, backend.getMaxAnisotropy() ) ); + + } + + } + + } + + /** + * Creates a default texture for the given texture that can be used + * as a placeholder until the actual texture is ready for usage. + * + * @param {Texture} texture - The texture to create a default texture for. + */ + createDefaultTexture( texture ) { + + const { gl, backend, defaultTextures } = this; + + + const glTextureType = this.getGLTextureType( texture ); + + let textureGPU = defaultTextures[ glTextureType ]; + + if ( textureGPU === undefined ) { + + textureGPU = gl.createTexture(); + + backend.state.bindTexture( glTextureType, textureGPU ); + gl.texParameteri( glTextureType, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); + gl.texParameteri( glTextureType, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); + + // gl.texImage2D( glTextureType, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data ); + + defaultTextures[ glTextureType ] = textureGPU; + + } + + backend.set( texture, { + textureGPU, + glTextureType, + isDefault: true + } ); + + } + + /** + * Defines a texture on the GPU for the given texture object. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + * @return {undefined} + */ + createTexture( texture, options ) { + + const { gl, backend } = this; + const { levels, width, height, depth } = options; + + const glFormat = backend.utils.convert( texture.format, texture.colorSpace ); + const glType = backend.utils.convert( texture.type ); + const glInternalFormat = this.getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace, texture.isVideoTexture ); + + const textureGPU = gl.createTexture(); + const glTextureType = this.getGLTextureType( texture ); + + backend.state.bindTexture( glTextureType, textureGPU ); + + this.setTextureParameters( glTextureType, texture ); + + if ( texture.isArrayTexture || texture.isDataArrayTexture || texture.isCompressedArrayTexture ) { + + gl.texStorage3D( gl.TEXTURE_2D_ARRAY, levels, glInternalFormat, width, height, depth ); + + } else if ( texture.isData3DTexture ) { + + gl.texStorage3D( gl.TEXTURE_3D, levels, glInternalFormat, width, height, depth ); + + } else if ( ! texture.isVideoTexture ) { + + gl.texStorage2D( glTextureType, levels, glInternalFormat, width, height ); + + } + + backend.set( texture, { + textureGPU, + glTextureType, + glFormat, + glType, + glInternalFormat + } ); + + } + + /** + * Uploads texture buffer data to the GPU memory. + * + * @param {WebGLBuffer} buffer - The buffer data. + * @param {Texture} texture - The texture, + */ + copyBufferToTexture( buffer, texture ) { + + const { gl, backend } = this; + + const { textureGPU, glTextureType, glFormat, glType } = backend.get( texture ); + + const { width, height } = texture.source.data; + + gl.bindBuffer( gl.PIXEL_UNPACK_BUFFER, buffer ); + + backend.state.bindTexture( glTextureType, textureGPU ); + + gl.pixelStorei( gl.UNPACK_FLIP_Y_WEBGL, false ); + gl.pixelStorei( gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, false ); + gl.texSubImage2D( glTextureType, 0, 0, 0, width, height, glFormat, glType, 0 ); + + gl.bindBuffer( gl.PIXEL_UNPACK_BUFFER, null ); + + backend.state.unbindTexture(); + // debug + // const framebuffer = gl.createFramebuffer(); + // gl.bindFramebuffer( gl.FRAMEBUFFER, framebuffer ); + // gl.framebufferTexture2D( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, glTextureType, textureGPU, 0 ); + + // const readout = new Float32Array( width * height * 4 ); + + // const altFormat = gl.getParameter( gl.IMPLEMENTATION_COLOR_READ_FORMAT ); + // const altType = gl.getParameter( gl.IMPLEMENTATION_COLOR_READ_TYPE ); + + // gl.readPixels( 0, 0, width, height, altFormat, altType, readout ); + // gl.bindFramebuffer( gl.FRAMEBUFFER, null ); + // console.log( readout ); + + } + + /** + * Uploads the updated texture data to the GPU. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + updateTexture( texture, options ) { + + const { gl } = this; + const { width, height } = options; + const { textureGPU, glTextureType, glFormat, glType, glInternalFormat } = this.backend.get( texture ); + + if ( texture.isRenderTargetTexture || ( textureGPU === undefined /* unsupported texture format */ ) ) + return; + + const getImage = ( source ) => { + + if ( source.isDataTexture ) { + + return source.image.data; + + } else if ( ( typeof HTMLImageElement !== 'undefined' && source instanceof HTMLImageElement ) || + ( typeof HTMLCanvasElement !== 'undefined' && source instanceof HTMLCanvasElement ) || + ( typeof ImageBitmap !== 'undefined' && source instanceof ImageBitmap ) || + source instanceof OffscreenCanvas ) { + + return source; + + } + + return source.data; + + }; + + this.backend.state.bindTexture( glTextureType, textureGPU ); + + this.setTextureParameters( glTextureType, texture ); + + if ( texture.isCompressedTexture ) { + + const mipmaps = texture.mipmaps; + const image = options.image; + + for ( let i = 0; i < mipmaps.length; i ++ ) { + + const mipmap = mipmaps[ i ]; + + if ( texture.isCompressedArrayTexture ) { + + + if ( texture.format !== gl.RGBA ) { + + if ( glFormat !== null ) { + + gl.compressedTexSubImage3D( gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, mipmap.data ); + + } else { + + console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' ); + + } + + } else { + + gl.texSubImage3D( gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, glType, mipmap.data ); + + } + + } else { + + if ( glFormat !== null ) { + + gl.compressedTexSubImage2D( gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data ); + + } else { + + console.warn( 'Unsupported compressed texture format' ); + + } + + } + + } + + + } else if ( texture.isCubeTexture ) { + + const images = options.images; + + for ( let i = 0; i < 6; i ++ ) { + + const image = getImage( images[ i ] ); + + gl.texSubImage2D( gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, width, height, glFormat, glType, image ); + + } + + } else if ( texture.isDataArrayTexture || texture.isArrayTexture ) { + + const image = options.image; + + gl.texSubImage3D( gl.TEXTURE_2D_ARRAY, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data ); + + } else if ( texture.isData3DTexture ) { + + const image = options.image; + + gl.texSubImage3D( gl.TEXTURE_3D, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data ); + + } else if ( texture.isVideoTexture ) { + + texture.update(); + + gl.texImage2D( glTextureType, 0, glInternalFormat, glFormat, glType, options.image ); + + + } else { + + const image = getImage( options.image ); + + gl.texSubImage2D( glTextureType, 0, 0, 0, width, height, glFormat, glType, image ); + + } + + } + + /** + * Generates mipmaps for the given texture. + * + * @param {Texture} texture - The texture. + */ + generateMipmaps( texture ) { + + const { gl, backend } = this; + const { textureGPU, glTextureType } = backend.get( texture ); + + backend.state.bindTexture( glTextureType, textureGPU ); + gl.generateMipmap( glTextureType ); + + } + + /** + * Deallocates the render buffers of the given render target. + * + * @param {RenderTarget} renderTarget - The render target. + */ + deallocateRenderBuffers( renderTarget ) { + + const { gl, backend } = this; + + // remove framebuffer reference + if ( renderTarget ) { + + const renderContextData = backend.get( renderTarget ); + + renderContextData.renderBufferStorageSetup = undefined; + + if ( renderContextData.framebuffers ) { + + for ( const cacheKey in renderContextData.framebuffers ) { + + gl.deleteFramebuffer( renderContextData.framebuffers[ cacheKey ] ); + + } + + delete renderContextData.framebuffers; + + } + + if ( renderContextData.depthRenderbuffer ) { + + gl.deleteRenderbuffer( renderContextData.depthRenderbuffer ); + delete renderContextData.depthRenderbuffer; + + } + + if ( renderContextData.stencilRenderbuffer ) { + + gl.deleteRenderbuffer( renderContextData.stencilRenderbuffer ); + delete renderContextData.stencilRenderbuffer; + + } + + if ( renderContextData.msaaFrameBuffer ) { + + gl.deleteFramebuffer( renderContextData.msaaFrameBuffer ); + delete renderContextData.msaaFrameBuffer; + + } + + if ( renderContextData.msaaRenderbuffers ) { + + for ( let i = 0; i < renderContextData.msaaRenderbuffers.length; i ++ ) { + + gl.deleteRenderbuffer( renderContextData.msaaRenderbuffers[ i ] ); + + } + + delete renderContextData.msaaRenderbuffers; + + } + + } + + } + + /** + * Destroys the GPU data for the given texture object. + * + * @param {Texture} texture - The texture. + */ + destroyTexture( texture ) { + + const { gl, backend } = this; + const { textureGPU, renderTarget } = backend.get( texture ); + + this.deallocateRenderBuffers( renderTarget ); + gl.deleteTexture( textureGPU ); + + backend.delete( texture ); + + } + + /** + * Copies data of the given source texture to the given destination texture. + * + * @param {Texture} srcTexture - The source texture. + * @param {Texture} dstTexture - The destination texture. + * @param {?(Box3|Box2)} [srcRegion=null] - The region of the source texture to copy. + * @param {?(Vector2|Vector3)} [dstPosition=null] - The destination position of the copy. + * @param {number} [srcLevel=0] - The source mip level to copy from. + * @param {number} [dstLevel=0] - The destination mip level to copy to. + */ + copyTextureToTexture( srcTexture, dstTexture, srcRegion = null, dstPosition = null, srcLevel = 0, dstLevel = 0 ) { + + const { gl, backend } = this; + const { state } = this.backend; + + const { textureGPU: dstTextureGPU, glTextureType, glType, glFormat } = backend.get( dstTexture ); + + state.bindTexture( glTextureType, dstTextureGPU ); + + // gather the necessary dimensions to copy + let width, height, depth, minX, minY, minZ; + let dstX, dstY, dstZ; + const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[ dstLevel ] : srcTexture.image; + + if ( srcRegion !== null ) { + + width = srcRegion.max.x - srcRegion.min.x; + height = srcRegion.max.y - srcRegion.min.y; + depth = srcRegion.isBox3 ? srcRegion.max.z - srcRegion.min.z : 1; + minX = srcRegion.min.x; + minY = srcRegion.min.y; + minZ = srcRegion.isBox3 ? srcRegion.min.z : 0; + + } else { + + const levelScale = Math.pow( 2, - srcLevel ); + width = Math.floor( image.width * levelScale ); + height = Math.floor( image.height * levelScale ); + + if ( srcTexture.isDataArrayTexture || srcTexture.isArrayTexture ) { + + depth = image.depth; + + } else if ( srcTexture.isData3DTexture ) { + + depth = Math.floor( image.depth * levelScale ); + + } else { + + depth = 1; + + } + + minX = 0; + minY = 0; + minZ = 0; + + } + + if ( dstPosition !== null ) { + + dstX = dstPosition.x; + dstY = dstPosition.y; + dstZ = dstPosition.z; + + } else { + + dstX = 0; + dstY = 0; + dstZ = 0; + + } + + + gl.pixelStorei( gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY ); + gl.pixelStorei( gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha ); + gl.pixelStorei( gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment ); + + // used for copying data from cpu + const currentUnpackRowLen = gl.getParameter( gl.UNPACK_ROW_LENGTH ); + const currentUnpackImageHeight = gl.getParameter( gl.UNPACK_IMAGE_HEIGHT ); + const currentUnpackSkipPixels = gl.getParameter( gl.UNPACK_SKIP_PIXELS ); + const currentUnpackSkipRows = gl.getParameter( gl.UNPACK_SKIP_ROWS ); + const currentUnpackSkipImages = gl.getParameter( gl.UNPACK_SKIP_IMAGES ); + + gl.pixelStorei( gl.UNPACK_ROW_LENGTH, image.width ); + gl.pixelStorei( gl.UNPACK_IMAGE_HEIGHT, image.height ); + gl.pixelStorei( gl.UNPACK_SKIP_PIXELS, minX ); + gl.pixelStorei( gl.UNPACK_SKIP_ROWS, minY ); + gl.pixelStorei( gl.UNPACK_SKIP_IMAGES, minZ ); + + // set up the src texture + const isDst3D = dstTexture.isDataArrayTexture || dstTexture.isData3DTexture || dstTexture.isArrayTexture; + if ( srcTexture.isRenderTargetTexture || srcTexture.isDepthTexture ) { + + const srcTextureData = backend.get( srcTexture ); + const dstTextureData = backend.get( dstTexture ); + + const srcRenderContextData = backend.get( srcTextureData.renderTarget ); + const dstRenderContextData = backend.get( dstTextureData.renderTarget ); + + const srcFramebuffer = srcRenderContextData.framebuffers[ srcTextureData.cacheKey ]; + const dstFramebuffer = dstRenderContextData.framebuffers[ dstTextureData.cacheKey ]; + + state.bindFramebuffer( gl.READ_FRAMEBUFFER, srcFramebuffer ); + state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, dstFramebuffer ); + + let mask = gl.COLOR_BUFFER_BIT; + + if ( srcTexture.isDepthTexture ) mask = gl.DEPTH_BUFFER_BIT; + + gl.blitFramebuffer( minX, minY, width, height, dstX, dstY, width, height, mask, gl.NEAREST ); + + state.bindFramebuffer( gl.READ_FRAMEBUFFER, null ); + state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, null ); + + } else { + + if ( isDst3D ) { + + // copy data into the 3d texture + if ( srcTexture.isDataTexture || srcTexture.isData3DTexture ) { + + gl.texSubImage3D( glTextureType, dstLevel, dstX, dstY, dstZ, width, height, depth, glFormat, glType, image.data ); + + } else if ( dstTexture.isCompressedArrayTexture ) { + + gl.compressedTexSubImage3D( glTextureType, dstLevel, dstX, dstY, dstZ, width, height, depth, glFormat, image.data ); + + } else { + + gl.texSubImage3D( glTextureType, dstLevel, dstX, dstY, dstZ, width, height, depth, glFormat, glType, image ); + + } + + } else { + + // copy data into the 2d texture + if ( srcTexture.isDataTexture ) { + + gl.texSubImage2D( glTextureType, dstLevel, dstX, dstY, width, height, glFormat, glType, image.data ); + + } else if ( srcTexture.isCompressedTexture ) { + + gl.compressedTexSubImage2D( glTextureType, dstLevel, dstX, dstY, image.width, image.height, glFormat, image.data ); + + } else { + + gl.texSubImage2D( glTextureType, dstLevel, dstX, dstY, width, height, glFormat, glType, image ); + + } + + } + + } + + // reset values + gl.pixelStorei( gl.UNPACK_ROW_LENGTH, currentUnpackRowLen ); + gl.pixelStorei( gl.UNPACK_IMAGE_HEIGHT, currentUnpackImageHeight ); + gl.pixelStorei( gl.UNPACK_SKIP_PIXELS, currentUnpackSkipPixels ); + gl.pixelStorei( gl.UNPACK_SKIP_ROWS, currentUnpackSkipRows ); + gl.pixelStorei( gl.UNPACK_SKIP_IMAGES, currentUnpackSkipImages ); + + // Generate mipmaps only when copying level 0 + if ( dstLevel === 0 && dstTexture.generateMipmaps ) { + + gl.generateMipmap( glTextureType ); + + } + + state.unbindTexture(); + + } + + + /** + * Copies the current bound framebuffer to the given texture. + * + * @param {Texture} texture - The destination texture. + * @param {RenderContext} renderContext - The render context. + * @param {Vector4} rectangle - A four dimensional vector defining the origin and dimension of the copy. + */ + copyFramebufferToTexture( texture, renderContext, rectangle ) { + + const { gl } = this; + const { state } = this.backend; + + const { textureGPU } = this.backend.get( texture ); + + const { x, y, z: width, w: height } = rectangle; + + const requireDrawFrameBuffer = texture.isDepthTexture === true || ( renderContext.renderTarget && renderContext.renderTarget.samples > 0 ); + + const srcHeight = renderContext.renderTarget ? renderContext.renderTarget.height : this.backend.getDrawingBufferSize().y; + + if ( requireDrawFrameBuffer ) { + + const partial = ( x !== 0 || y !== 0 ); + let mask; + let attachment; + + if ( texture.isDepthTexture === true ) { + + mask = gl.DEPTH_BUFFER_BIT; + attachment = gl.DEPTH_ATTACHMENT; + + if ( renderContext.stencil ) { + + mask |= gl.STENCIL_BUFFER_BIT; + + } + + } else { + + mask = gl.COLOR_BUFFER_BIT; + attachment = gl.COLOR_ATTACHMENT0; + + } + + if ( partial ) { + + const renderTargetContextData = this.backend.get( renderContext.renderTarget ); + + const fb = renderTargetContextData.framebuffers[ renderContext.getCacheKey() ]; + const msaaFrameBuffer = renderTargetContextData.msaaFrameBuffer; + + state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, fb ); + state.bindFramebuffer( gl.READ_FRAMEBUFFER, msaaFrameBuffer ); + + const flippedY = srcHeight - y - height; + + gl.blitFramebuffer( x, flippedY, x + width, flippedY + height, x, flippedY, x + width, flippedY + height, mask, gl.NEAREST ); + + state.bindFramebuffer( gl.READ_FRAMEBUFFER, fb ); + + state.bindTexture( gl.TEXTURE_2D, textureGPU ); + + gl.copyTexSubImage2D( gl.TEXTURE_2D, 0, 0, 0, x, flippedY, width, height ); + + state.unbindTexture(); + + } else { + + const fb = gl.createFramebuffer(); + + state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, fb ); + + gl.framebufferTexture2D( gl.DRAW_FRAMEBUFFER, attachment, gl.TEXTURE_2D, textureGPU, 0 ); + gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, gl.NEAREST ); + + gl.deleteFramebuffer( fb ); + + } + + } else { + + state.bindTexture( gl.TEXTURE_2D, textureGPU ); + gl.copyTexSubImage2D( gl.TEXTURE_2D, 0, 0, 0, x, srcHeight - height - y, width, height ); + + state.unbindTexture(); + + } + + if ( texture.generateMipmaps ) this.generateMipmaps( texture ); + + this.backend._setFramebuffer( renderContext ); + + } + + /** + * SetupS storage for internal depth/stencil buffers and bind to correct framebuffer. + * + * @param {WebGLRenderbuffer} renderbuffer - The render buffer. + * @param {RenderContext} renderContext - The render context. + * @param {number} samples - The MSAA sample count. + * @param {boolean} [useMultisampledRTT=false] - Whether to use WEBGL_multisampled_render_to_texture or not. + */ + setupRenderBufferStorage( renderbuffer, renderContext, samples, useMultisampledRTT = false ) { + + const { gl } = this; + const renderTarget = renderContext.renderTarget; + + const { depthTexture, depthBuffer, stencilBuffer, width, height } = renderTarget; + + gl.bindRenderbuffer( gl.RENDERBUFFER, renderbuffer ); + + if ( depthBuffer && ! stencilBuffer ) { + + let glInternalFormat = gl.DEPTH_COMPONENT24; + + if ( useMultisampledRTT === true ) { + + const multisampledRTTExt = this.extensions.get( 'WEBGL_multisampled_render_to_texture' ); + + multisampledRTTExt.renderbufferStorageMultisampleEXT( gl.RENDERBUFFER, renderTarget.samples, glInternalFormat, width, height ); + + } else if ( samples > 0 ) { + + if ( depthTexture && depthTexture.isDepthTexture ) { + + if ( depthTexture.type === gl.FLOAT ) { + + glInternalFormat = gl.DEPTH_COMPONENT32F; + + } + + } + + gl.renderbufferStorageMultisample( gl.RENDERBUFFER, samples, glInternalFormat, width, height ); + + } else { + + gl.renderbufferStorage( gl.RENDERBUFFER, glInternalFormat, width, height ); + + } + + gl.framebufferRenderbuffer( gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, renderbuffer ); + + } else if ( depthBuffer && stencilBuffer ) { + + if ( samples > 0 ) { + + gl.renderbufferStorageMultisample( gl.RENDERBUFFER, samples, gl.DEPTH24_STENCIL8, width, height ); + + } else { + + gl.renderbufferStorage( gl.RENDERBUFFER, gl.DEPTH_STENCIL, width, height ); + + } + + + gl.framebufferRenderbuffer( gl.FRAMEBUFFER, gl.DEPTH_STENCIL_ATTACHMENT, gl.RENDERBUFFER, renderbuffer ); + + } + + } + + /** + * Returns texture data as a typed array. + * + * @async + * @param {Texture} texture - The texture to copy. + * @param {number} x - The x coordinate of the copy origin. + * @param {number} y - The y coordinate of the copy origin. + * @param {number} width - The width of the copy. + * @param {number} height - The height of the copy. + * @param {number} faceIndex - The face index. + * @return {Promise} A Promise that resolves with a typed array when the copy operation has finished. + */ + async copyTextureToBuffer( texture, x, y, width, height, faceIndex ) { + + const { backend, gl } = this; + + const { textureGPU, glFormat, glType } = this.backend.get( texture ); + + const fb = gl.createFramebuffer(); + + gl.bindFramebuffer( gl.READ_FRAMEBUFFER, fb ); + + const target = texture.isCubeTexture ? gl.TEXTURE_CUBE_MAP_POSITIVE_X + faceIndex : gl.TEXTURE_2D; + + gl.framebufferTexture2D( gl.READ_FRAMEBUFFER, gl.COLOR_ATTACHMENT0, target, textureGPU, 0 ); + + const typedArrayType = this._getTypedArrayType( glType ); + const bytesPerTexel = this._getBytesPerTexel( glType, glFormat ); + + const elementCount = width * height; + const byteLength = elementCount * bytesPerTexel; + + const buffer = gl.createBuffer(); + + gl.bindBuffer( gl.PIXEL_PACK_BUFFER, buffer ); + gl.bufferData( gl.PIXEL_PACK_BUFFER, byteLength, gl.STREAM_READ ); + gl.readPixels( x, y, width, height, glFormat, glType, 0 ); + gl.bindBuffer( gl.PIXEL_PACK_BUFFER, null ); + + await backend.utils._clientWaitAsync(); + + const dstBuffer = new typedArrayType( byteLength / typedArrayType.BYTES_PER_ELEMENT ); + + gl.bindBuffer( gl.PIXEL_PACK_BUFFER, buffer ); + gl.getBufferSubData( gl.PIXEL_PACK_BUFFER, 0, dstBuffer ); + gl.bindBuffer( gl.PIXEL_PACK_BUFFER, null ); + + gl.deleteFramebuffer( fb ); + + return dstBuffer; + + } + + /** + * Returns the corresponding typed array type for the given WebGL data type. + * + * @private + * @param {GLenum} glType - The WebGL data type. + * @return {TypedArray.constructor} The typed array type. + */ + _getTypedArrayType( glType ) { + + const { gl } = this; + + if ( glType === gl.UNSIGNED_BYTE ) return Uint8Array; + + if ( glType === gl.UNSIGNED_SHORT_4_4_4_4 ) return Uint16Array; + if ( glType === gl.UNSIGNED_SHORT_5_5_5_1 ) return Uint16Array; + if ( glType === gl.UNSIGNED_SHORT_5_6_5 ) return Uint16Array; + if ( glType === gl.UNSIGNED_SHORT ) return Uint16Array; + if ( glType === gl.UNSIGNED_INT ) return Uint32Array; + + if ( glType === gl.HALF_FLOAT ) return Uint16Array; + if ( glType === gl.FLOAT ) return Float32Array; + + throw new Error( `Unsupported WebGL type: ${glType}` ); + + } + + /** + * Returns the bytes-per-texel value for the given WebGL data type and texture format. + * + * @private + * @param {GLenum} glType - The WebGL data type. + * @param {GLenum} glFormat - The WebGL texture format. + * @return {number} The bytes-per-texel. + */ + _getBytesPerTexel( glType, glFormat ) { + + const { gl } = this; + + let bytesPerComponent = 0; + + if ( glType === gl.UNSIGNED_BYTE ) bytesPerComponent = 1; + + if ( glType === gl.UNSIGNED_SHORT_4_4_4_4 || + glType === gl.UNSIGNED_SHORT_5_5_5_1 || + glType === gl.UNSIGNED_SHORT_5_6_5 || + glType === gl.UNSIGNED_SHORT || + glType === gl.HALF_FLOAT ) bytesPerComponent = 2; + + if ( glType === gl.UNSIGNED_INT || + glType === gl.FLOAT ) bytesPerComponent = 4; + + if ( glFormat === gl.RGBA ) return bytesPerComponent * 4; + if ( glFormat === gl.RGB ) return bytesPerComponent * 3; + if ( glFormat === gl.ALPHA ) return bytesPerComponent; + + } + +} + +/** + * A WebGL 2 backend utility module for managing extensions. + * + * @private + */ +class WebGLExtensions { + + /** + * Constructs a new utility object. + * + * @param {WebGLBackend} backend - The WebGL 2 backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGL 2 backend. + * + * @type {WebGLBackend} + */ + this.backend = backend; + + /** + * A reference to the rendering context. + * + * @type {WebGL2RenderingContext} + */ + this.gl = this.backend.gl; + + /** + * A list with all the supported WebGL extensions. + * + * @type {Array} + */ + this.availableExtensions = this.gl.getSupportedExtensions(); + + /** + * A dictionary with requested WebGL extensions. + * The key is the name of the extension, the value + * the requested extension object. + * + * @type {Object} + */ + this.extensions = {}; + + } + + /** + * Returns the extension object for the given extension name. + * + * @param {string} name - The extension name. + * @return {Object} The extension object. + */ + get( name ) { + + let extension = this.extensions[ name ]; + + if ( extension === undefined ) { + + extension = this.gl.getExtension( name ); + + this.extensions[ name ] = extension; + + } + + return extension; + + } + + /** + * Returns `true` if the requested extension is available. + * + * @param {string} name - The extension name. + * @return {boolean} Whether the given extension is available or not. + */ + has( name ) { + + return this.availableExtensions.includes( name ); + + } + +} + +/** + * A WebGL 2 backend utility module for managing the device's capabilities. + * + * @private + */ +class WebGLCapabilities { + + /** + * Constructs a new utility object. + * + * @param {WebGLBackend} backend - The WebGL 2 backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGL 2 backend. + * + * @type {WebGLBackend} + */ + this.backend = backend; + + /** + * This value holds the cached max anisotropy value. + * + * @type {?number} + * @default null + */ + this.maxAnisotropy = null; + + } + + /** + * Returns the maximum anisotropy texture filtering value. This value + * depends on the device and is reported by the `EXT_texture_filter_anisotropic` + * WebGL extension. + * + * @return {number} The maximum anisotropy texture filtering value. + */ + getMaxAnisotropy() { + + if ( this.maxAnisotropy !== null ) return this.maxAnisotropy; + + const gl = this.backend.gl; + const extensions = this.backend.extensions; + + if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { + + const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); + + this.maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT ); + + } else { + + this.maxAnisotropy = 0; + + } + + return this.maxAnisotropy; + + } + +} + +const GLFeatureName = { + + 'WEBGL_multi_draw': 'WEBGL_multi_draw', + 'WEBGL_compressed_texture_astc': 'texture-compression-astc', + 'WEBGL_compressed_texture_etc': 'texture-compression-etc2', + 'WEBGL_compressed_texture_etc1': 'texture-compression-etc1', + 'WEBGL_compressed_texture_pvrtc': 'texture-compression-pvrtc', + 'WEBKIT_WEBGL_compressed_texture_pvrtc': 'texture-compression-pvrtc', + 'WEBGL_compressed_texture_s3tc': 'texture-compression-bc', + 'EXT_texture_compression_bptc': 'texture-compression-bptc', + 'EXT_disjoint_timer_query_webgl2': 'timestamp-query', + 'OVR_multiview2': 'OVR_multiview2' + +}; + +class WebGLBufferRenderer { + + constructor( backend ) { + + this.gl = backend.gl; + this.extensions = backend.extensions; + this.info = backend.renderer.info; + this.mode = null; + this.index = 0; + this.type = null; + this.object = null; + + } + + render( start, count ) { + + const { gl, mode, object, type, info, index } = this; + + if ( index !== 0 ) { + + gl.drawElements( mode, count, type, start ); + + } else { + + gl.drawArrays( mode, start, count ); + + } + + info.update( object, count, 1 ); + + } + + renderInstances( start, count, primcount ) { + + const { gl, mode, type, index, object, info } = this; + + if ( primcount === 0 ) return; + + if ( index !== 0 ) { + + gl.drawElementsInstanced( mode, count, type, start, primcount ); + + } else { + + gl.drawArraysInstanced( mode, start, count, primcount ); + + } + + info.update( object, count, primcount ); + + } + + renderMultiDraw( starts, counts, drawCount ) { + + const { extensions, mode, object, info } = this; + + if ( drawCount === 0 ) return; + + const extension = extensions.get( 'WEBGL_multi_draw' ); + + if ( extension === null ) { + + for ( let i = 0; i < drawCount; i ++ ) { + + this.render( starts[ i ], counts[ i ] ); + + } + + } else { + + if ( this.index !== 0 ) { + + extension.multiDrawElementsWEBGL( mode, counts, 0, this.type, starts, 0, drawCount ); + + } else { + + extension.multiDrawArraysWEBGL( mode, starts, 0, counts, 0, drawCount ); + + } + + let elementCount = 0; + for ( let i = 0; i < drawCount; i ++ ) { + + elementCount += counts[ i ]; + + } + + info.update( object, elementCount, 1 ); + + } + + } + + renderMultiDrawInstances( starts, counts, drawCount, primcount ) { + + const { extensions, mode, object, info } = this; + + if ( drawCount === 0 ) return; + + const extension = extensions.get( 'WEBGL_multi_draw' ); + + if ( extension === null ) { + + for ( let i = 0; i < drawCount; i ++ ) { + + this.renderInstances( starts[ i ], counts[ i ], primcount[ i ] ); + + } + + } else { + + if ( this.index !== 0 ) { + + extension.multiDrawElementsInstancedWEBGL( mode, counts, 0, this.type, starts, 0, primcount, 0, drawCount ); + + } else { + + extension.multiDrawArraysInstancedWEBGL( mode, starts, 0, counts, 0, primcount, 0, drawCount ); + + } + + let elementCount = 0; + for ( let i = 0; i < drawCount; i ++ ) { + + elementCount += counts[ i ] * primcount[ i ]; + + } + + info.update( object, elementCount, 1 ); + + } + + } + + // + +} + +/** + * Abstract base class of a timestamp query pool. + * + * @abstract + */ +class TimestampQueryPool { + + /** + * Creates a new timestamp query pool. + * + * @param {number} [maxQueries=256] - Maximum number of queries this pool can hold. + */ + constructor( maxQueries = 256 ) { + + /** + * Whether to track timestamps or not. + * + * @type {boolean} + * @default true + */ + this.trackTimestamp = true; + + /** + * Maximum number of queries this pool can hold. + * + * @type {number} + * @default 256 + */ + this.maxQueries = maxQueries; + + /** + * How many queries allocated so far. + * + * @type {number} + * @default 0 + */ + this.currentQueryIndex = 0; + + /** + * Tracks offsets for different contexts. + * + * @type {Map} + */ + this.queryOffsets = new Map(); + + /** + * Whether the pool has been disposed or not. + * + * @type {boolean} + * @default false + */ + this.isDisposed = false; + + /** + * TODO + * + * @type {number} + * @default 0 + */ + this.lastValue = 0; + + /** + * TODO + * + * @type {boolean} + * @default false + */ + this.pendingResolve = false; + + } + + /** + * Allocate queries for a specific renderContext. + * + * @abstract + * @param {Object} renderContext - The render context to allocate queries for. + * @returns {?number} + */ + allocateQueriesForContext( /* renderContext */ ) {} + + /** + * Resolve all timestamps and return data (or process them). + * + * @abstract + * @async + * @returns {Promise|number} The resolved timestamp value. + */ + async resolveQueriesAsync() {} + + /** + * Dispose of the query pool. + * + * @abstract + */ + dispose() {} + +} + +/** + * Manages a pool of WebGL timestamp queries for performance measurement. + * Handles creation, execution, and resolution of timer queries using WebGL extensions. + * + * @augments TimestampQueryPool + */ +class WebGLTimestampQueryPool extends TimestampQueryPool { + + /** + * Creates a new WebGL timestamp query pool. + * + * @param {WebGLRenderingContext|WebGL2RenderingContext} gl - The WebGL context. + * @param {string} type - The type identifier for this query pool. + * @param {number} [maxQueries=2048] - Maximum number of queries this pool can hold. + */ + constructor( gl, type, maxQueries = 2048 ) { + + super( maxQueries ); + + this.gl = gl; + this.type = type; + + // Check for timer query extensions + this.ext = gl.getExtension( 'EXT_disjoint_timer_query_webgl2' ) || + gl.getExtension( 'EXT_disjoint_timer_query' ); + + if ( ! this.ext ) { + + console.warn( 'EXT_disjoint_timer_query not supported; timestamps will be disabled.' ); + this.trackTimestamp = false; + return; + + } + + // Create query objects + this.queries = []; + for ( let i = 0; i < this.maxQueries; i ++ ) { + + this.queries.push( gl.createQuery() ); + + } + + this.activeQuery = null; + this.queryStates = new Map(); // Track state of each query: 'inactive', 'started', 'ended' + + } + + /** + * Allocates a pair of queries for a given render context. + * + * @param {Object} renderContext - The render context to allocate queries for. + * @returns {?number} The base offset for the allocated queries, or null if allocation failed. + */ + allocateQueriesForContext( renderContext ) { + + if ( ! this.trackTimestamp ) return null; + + // Check if we have enough space for a new query pair + if ( this.currentQueryIndex + 2 > this.maxQueries ) { + + warnOnce( `WebGPUTimestampQueryPool [${ this.type }]: Maximum number of queries exceeded, when using trackTimestamp it is necessary to resolves the queries via renderer.resolveTimestampsAsync( THREE.TimestampQuery.${ this.type.toUpperCase() } ).` ); + return null; + + } + + const baseOffset = this.currentQueryIndex; + this.currentQueryIndex += 2; + + // Initialize query states + this.queryStates.set( baseOffset, 'inactive' ); + this.queryOffsets.set( renderContext.id, baseOffset ); + + return baseOffset; + + } + + /** + * Begins a timestamp query for the specified render context. + * + * @param {Object} renderContext - The render context to begin timing for. + */ + beginQuery( renderContext ) { + + if ( ! this.trackTimestamp || this.isDisposed ) { + + return; + + } + + const baseOffset = this.queryOffsets.get( renderContext.id ); + if ( baseOffset == null ) { + + return; + + } + + // Don't start a new query if there's an active one + if ( this.activeQuery !== null ) { + + return; + + } + + const query = this.queries[ baseOffset ]; + if ( ! query ) { + + return; + + } + + try { + + // Only begin if query is inactive + if ( this.queryStates.get( baseOffset ) === 'inactive' ) { + + this.gl.beginQuery( this.ext.TIME_ELAPSED_EXT, query ); + this.activeQuery = baseOffset; + this.queryStates.set( baseOffset, 'started' ); + + } + + } catch ( error ) { + + console.error( 'Error in beginQuery:', error ); + this.activeQuery = null; + this.queryStates.set( baseOffset, 'inactive' ); + + } + + } + + /** + * Ends the active timestamp query for the specified render context. + * + * @param {Object} renderContext - The render context to end timing for. + * @param {string} renderContext.id - Unique identifier for the render context. + */ + endQuery( renderContext ) { + + if ( ! this.trackTimestamp || this.isDisposed ) { + + return; + + } + + const baseOffset = this.queryOffsets.get( renderContext.id ); + if ( baseOffset == null ) { + + return; + + } + + // Only end if this is the active query + if ( this.activeQuery !== baseOffset ) { + + return; + + } + + try { + + this.gl.endQuery( this.ext.TIME_ELAPSED_EXT ); + this.queryStates.set( baseOffset, 'ended' ); + this.activeQuery = null; + + } catch ( error ) { + + console.error( 'Error in endQuery:', error ); + // Reset state on error + this.queryStates.set( baseOffset, 'inactive' ); + this.activeQuery = null; + + } + + } + + /** + * Asynchronously resolves all completed queries and returns the total duration. + * + * @async + * @returns {Promise} The total duration in milliseconds, or the last valid value if resolution fails. + */ + async resolveQueriesAsync() { + + if ( ! this.trackTimestamp || this.pendingResolve ) { + + return this.lastValue; + + } + + this.pendingResolve = true; + + try { + + // Wait for all ended queries to complete + const resolvePromises = []; + + for ( const [ baseOffset, state ] of this.queryStates ) { + + if ( state === 'ended' ) { + + const query = this.queries[ baseOffset ]; + resolvePromises.push( this.resolveQuery( query ) ); + + } + + } + + if ( resolvePromises.length === 0 ) { + + return this.lastValue; + + } + + const results = await Promise.all( resolvePromises ); + const totalDuration = results.reduce( ( acc, val ) => acc + val, 0 ); + + // Store the last valid result + this.lastValue = totalDuration; + + // Reset states + this.currentQueryIndex = 0; + this.queryOffsets.clear(); + this.queryStates.clear(); + this.activeQuery = null; + + return totalDuration; + + } catch ( error ) { + + console.error( 'Error resolving queries:', error ); + return this.lastValue; + + } finally { + + this.pendingResolve = false; + + } + + } + + /** + * Resolves a single query, checking for completion and disjoint operation. + * + * @async + * @param {WebGLQuery} query - The query object to resolve. + * @returns {Promise} The elapsed time in milliseconds. + */ + async resolveQuery( query ) { + + return new Promise( ( resolve ) => { + + if ( this.isDisposed ) { + + resolve( this.lastValue ); + return; + + } + + let timeoutId; + let isResolved = false; + + const cleanup = () => { + + if ( timeoutId ) { + + clearTimeout( timeoutId ); + timeoutId = null; + + } + + }; + + const finalizeResolution = ( value ) => { + + if ( ! isResolved ) { + + isResolved = true; + cleanup(); + resolve( value ); + + } + + }; + + const checkQuery = () => { + + if ( this.isDisposed ) { + + finalizeResolution( this.lastValue ); + return; + + } + + try { + + // Check if the GPU timer was disjoint (i.e., timing was unreliable) + const disjoint = this.gl.getParameter( this.ext.GPU_DISJOINT_EXT ); + if ( disjoint ) { + + finalizeResolution( this.lastValue ); + return; + + } + + const available = this.gl.getQueryParameter( query, this.gl.QUERY_RESULT_AVAILABLE ); + if ( ! available ) { + + timeoutId = setTimeout( checkQuery, 1 ); + return; + + } + + const elapsed = this.gl.getQueryParameter( query, this.gl.QUERY_RESULT ); + resolve( Number( elapsed ) / 1e6 ); // Convert nanoseconds to milliseconds + + } catch ( error ) { + + console.error( 'Error checking query:', error ); + resolve( this.lastValue ); + + } + + }; + + checkQuery(); + + } ); + + } + + /** + * Releases all resources held by this query pool. + * This includes deleting all query objects and clearing internal state. + */ + dispose() { + + if ( this.isDisposed ) { + + return; + + } + + this.isDisposed = true; + + if ( ! this.trackTimestamp ) return; + + for ( const query of this.queries ) { + + this.gl.deleteQuery( query ); + + } + + this.queries = []; + this.queryStates.clear(); + this.queryOffsets.clear(); + this.lastValue = 0; + this.activeQuery = null; + + } + +} + +const _drawingBufferSize = /*@__PURE__*/ new Vector2(); + +/** + * A backend implementation targeting WebGL 2. + * + * @private + * @augments Backend + */ +class WebGLBackend extends Backend { + + /** + * WebGLBackend options. + * + * @typedef {Object} WebGLBackend~Options + * @property {boolean} [logarithmicDepthBuffer=false] - Whether logarithmic depth buffer is enabled or not. + * @property {boolean} [alpha=true] - Whether the default framebuffer (which represents the final contents of the canvas) should be transparent or opaque. + * @property {boolean} [depth=true] - Whether the default framebuffer should have a depth buffer or not. + * @property {boolean} [stencil=false] - Whether the default framebuffer should have a stencil buffer or not. + * @property {boolean} [antialias=false] - Whether MSAA as the default anti-aliasing should be enabled or not. + * @property {number} [samples=0] - When `antialias` is `true`, `4` samples are used by default. Set this parameter to any other integer value than 0 to overwrite the default. + * @property {boolean} [forceWebGL=false] - If set to `true`, the renderer uses a WebGL 2 backend no matter if WebGPU is supported or not. + * @property {WebGL2RenderingContext} [context=undefined] - A WebGL 2 rendering context. + */ + + /** + * Constructs a new WebGPU backend. + * + * @param {WebGLBackend~Options} [parameters] - The configuration parameter. + */ + constructor( parameters = {} ) { + + super( parameters ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWebGLBackend = true; + + /** + * A reference to a backend module holding shader attribute-related + * utility functions. + * + * @type {?WebGLAttributeUtils} + * @default null + */ + this.attributeUtils = null; + + /** + * A reference to a backend module holding extension-related + * utility functions. + * + * @type {?WebGLExtensions} + * @default null + */ + this.extensions = null; + + /** + * A reference to a backend module holding capability-related + * utility functions. + * + * @type {?WebGLCapabilities} + * @default null + */ + this.capabilities = null; + + /** + * A reference to a backend module holding texture-related + * utility functions. + * + * @type {?WebGLTextureUtils} + * @default null + */ + this.textureUtils = null; + + /** + * A reference to a backend module holding renderer-related + * utility functions. + * + * @type {?WebGLBufferRenderer} + * @default null + */ + this.bufferRenderer = null; + + /** + * A reference to the rendering context. + * + * @type {?WebGL2RenderingContext} + * @default null + */ + this.gl = null; + + /** + * A reference to a backend module holding state-related + * utility functions. + * + * @type {?WebGLState} + * @default null + */ + this.state = null; + + /** + * A reference to a backend module holding common + * utility functions. + * + * @type {?WebGLUtils} + * @default null + */ + this.utils = null; + + /** + * Dictionary for caching VAOs. + * + * @type {Object} + */ + this.vaoCache = {}; + + /** + * Dictionary for caching transform feedback objects. + * + * @type {Object} + */ + this.transformFeedbackCache = {}; + + /** + * Controls if `gl.RASTERIZER_DISCARD` should be enabled or not. + * Only relevant when using compute shaders. + * + * @type {boolean} + * @default false + */ + this.discard = false; + + /** + * A reference to the `EXT_disjoint_timer_query_webgl2` extension. `null` if the + * device does not support the extension. + * + * @type {?EXTDisjointTimerQueryWebGL2} + * @default null + */ + this.disjoint = null; + + /** + * A reference to the `KHR_parallel_shader_compile` extension. `null` if the + * device does not support the extension. + * + * @type {?KHRParallelShaderCompile} + * @default null + */ + this.parallel = null; + + /** + * A reference to the current render context. + * + * @private + * @type {RenderContext} + * @default null + */ + this._currentContext = null; + + /** + * A unique collection of bindings. + * + * @private + * @type {WeakSet} + */ + this._knownBindings = new WeakSet(); + + + /** + * Whether the device supports framebuffers invalidation or not. + * + * @private + * @type {boolean} + */ + this._supportsInvalidateFramebuffer = typeof navigator === 'undefined' ? false : /OculusBrowser/g.test( navigator.userAgent ); + + /** + * The target framebuffer when rendering with + * the WebXR device API. + * + * @private + * @type {WebGLFramebuffer} + * @default null + */ + this._xrFramebuffer = null; + + } + + /** + * Initializes the backend so it is ready for usage. + * + * @param {Renderer} renderer - The renderer. + */ + init( renderer ) { + + super.init( renderer ); + + // + + const parameters = this.parameters; + + const contextAttributes = { + antialias: renderer.samples > 0, + alpha: true, // always true for performance reasons + depth: renderer.depth, + stencil: renderer.stencil + }; + + const glContext = ( parameters.context !== undefined ) ? parameters.context : renderer.domElement.getContext( 'webgl2', contextAttributes ); + + function onContextLost( event ) { + + event.preventDefault(); + + const contextLossInfo = { + api: 'WebGL', + message: event.statusMessage || 'Unknown reason', + reason: null, + originalEvent: event + }; + + renderer.onDeviceLost( contextLossInfo ); + + } + + this._onContextLost = onContextLost; + + renderer.domElement.addEventListener( 'webglcontextlost', onContextLost, false ); + + this.gl = glContext; + + this.extensions = new WebGLExtensions( this ); + this.capabilities = new WebGLCapabilities( this ); + this.attributeUtils = new WebGLAttributeUtils( this ); + this.textureUtils = new WebGLTextureUtils( this ); + this.bufferRenderer = new WebGLBufferRenderer( this ); + + this.state = new WebGLState( this ); + this.utils = new WebGLUtils( this ); + + this.extensions.get( 'EXT_color_buffer_float' ); + this.extensions.get( 'WEBGL_clip_cull_distance' ); + this.extensions.get( 'OES_texture_float_linear' ); + this.extensions.get( 'EXT_color_buffer_half_float' ); + this.extensions.get( 'WEBGL_multisampled_render_to_texture' ); + this.extensions.get( 'WEBGL_render_shared_exponent' ); + this.extensions.get( 'WEBGL_multi_draw' ); + this.extensions.get( 'OVR_multiview2' ); + + this.disjoint = this.extensions.get( 'EXT_disjoint_timer_query_webgl2' ); + this.parallel = this.extensions.get( 'KHR_parallel_shader_compile' ); + + } + + /** + * The coordinate system of the backend. + * + * @type {number} + * @readonly + */ + get coordinateSystem() { + + return WebGLCoordinateSystem; + + } + + /** + * This method performs a readback operation by moving buffer data from + * a storage buffer attribute from the GPU to the CPU. + * + * @async + * @param {StorageBufferAttribute} attribute - The storage buffer attribute. + * @return {Promise} A promise that resolves with the buffer data when the data are ready. + */ + async getArrayBufferAsync( attribute ) { + + return await this.attributeUtils.getArrayBufferAsync( attribute ); + + } + + /** + * Can be used to synchronize CPU operations with GPU tasks. So when this method is called, + * the CPU waits for the GPU to complete its operation (e.g. a compute task). + * + * @async + * @return {Promise} A Promise that resolves when synchronization has been finished. + */ + async waitForGPU() { + + await this.utils._clientWaitAsync(); + + } + + /** + * Ensures the backend is XR compatible. + * + * @async + * @return {Promise} A Promise that resolve when the renderer is XR compatible. + */ + async makeXRCompatible() { + + const attributes = this.gl.getContextAttributes(); + + if ( attributes.xrCompatible !== true ) { + + await this.gl.makeXRCompatible(); + + } + + } + /** + * Sets the XR rendering destination. + * + * @param {WebGLFramebuffer} xrFramebuffer - The XR framebuffer. + */ + setXRTarget( xrFramebuffer ) { + + this._xrFramebuffer = xrFramebuffer; + + } + + /** + * Configures the given XR render target with external textures. + * + * This method is only relevant when using the WebXR Layers API. + * + * @param {XRRenderTarget} renderTarget - The XR render target. + * @param {WebGLTexture} colorTexture - A native color texture. + * @param {?WebGLTexture} [depthTexture=null] - A native depth texture. + */ + setXRRenderTargetTextures( renderTarget, colorTexture, depthTexture = null ) { + + const gl = this.gl; + + this.set( renderTarget.texture, { textureGPU: colorTexture, glInternalFormat: gl.RGBA8 } ); // see #24698 why RGBA8 and not SRGB8_ALPHA8 is used + + if ( depthTexture !== null ) { + + const glInternalFormat = renderTarget.stencilBuffer ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24; + + this.set( renderTarget.depthTexture, { textureGPU: depthTexture, glInternalFormat: glInternalFormat } ); + + // The multisample_render_to_texture extension doesn't work properly if there + // are midframe flushes and an external depth texture. + if ( ( this.extensions.has( 'WEBGL_multisampled_render_to_texture' ) === true ) && renderTarget.autoAllocateDepthBuffer === true && renderTarget.multiview === false ) { + + console.warn( 'THREE.WebGLBackend: Render-to-texture extension was disabled because an external texture was provided' ); + + } + + renderTarget.autoAllocateDepthBuffer = false; + + } + + } + + /** + * Inits a time stamp query for the given render context. + * + * @param {RenderContext} renderContext - The render context. + */ + initTimestampQuery( renderContext ) { + + if ( ! this.disjoint || ! this.trackTimestamp ) return; + + const type = renderContext.isComputeNode ? 'compute' : 'render'; + + if ( ! this.timestampQueryPool[ type ] ) { + + // TODO: Variable maxQueries? + this.timestampQueryPool[ type ] = new WebGLTimestampQueryPool( this.gl, type, 2048 ); + + } + + const timestampQueryPool = this.timestampQueryPool[ type ]; + + const baseOffset = timestampQueryPool.allocateQueriesForContext( renderContext ); + + if ( baseOffset !== null ) { + + timestampQueryPool.beginQuery( renderContext ); + + } + + } + + // timestamp utils + + /** + * Prepares the timestamp buffer. + * + * @param {RenderContext} renderContext - The render context. + */ + prepareTimestampBuffer( renderContext ) { + + if ( ! this.disjoint || ! this.trackTimestamp ) return; + + const type = renderContext.isComputeNode ? 'compute' : 'render'; + const timestampQueryPool = this.timestampQueryPool[ type ]; + + timestampQueryPool.endQuery( renderContext ); + + } + + + /** + * Returns the backend's rendering context. + * + * @return {WebGL2RenderingContext} The rendering context. + */ + getContext() { + + return this.gl; + + } + + /** + * This method is executed at the beginning of a render call and prepares + * the WebGL state for upcoming render calls + * + * @param {RenderContext} renderContext - The render context. + */ + beginRender( renderContext ) { + + const { state } = this; + const renderContextData = this.get( renderContext ); + + // + + if ( renderContext.viewport ) { + + this.updateViewport( renderContext ); + + } else { + + const { width, height } = this.getDrawingBufferSize( _drawingBufferSize ); + state.viewport( 0, 0, width, height ); + + } + + if ( renderContext.scissor ) { + + const { x, y, width, height } = renderContext.scissorValue; + + state.scissor( x, renderContext.height - height - y, width, height ); + + } + + // + + this.initTimestampQuery( renderContext ); + + renderContextData.previousContext = this._currentContext; + this._currentContext = renderContext; + + this._setFramebuffer( renderContext ); + this.clear( renderContext.clearColor, renderContext.clearDepth, renderContext.clearStencil, renderContext, false ); + + const occlusionQueryCount = renderContext.occlusionQueryCount; + + if ( occlusionQueryCount > 0 ) { + + // Get a reference to the array of objects with queries. The renderContextData property + // can be changed by another render pass before the async reading of all previous queries complete + renderContextData.currentOcclusionQueries = renderContextData.occlusionQueries; + renderContextData.currentOcclusionQueryObjects = renderContextData.occlusionQueryObjects; + + renderContextData.lastOcclusionObject = null; + renderContextData.occlusionQueries = new Array( occlusionQueryCount ); + renderContextData.occlusionQueryObjects = new Array( occlusionQueryCount ); + renderContextData.occlusionQueryIndex = 0; + + } + + } + + /** + * This method is executed at the end of a render call and finalizes work + * after draw calls. + * + * @param {RenderContext} renderContext - The render context. + */ + finishRender( renderContext ) { + + const { gl, state } = this; + const renderContextData = this.get( renderContext ); + const previousContext = renderContextData.previousContext; + + state.resetVertexState(); + + const occlusionQueryCount = renderContext.occlusionQueryCount; + + if ( occlusionQueryCount > 0 ) { + + if ( occlusionQueryCount > renderContextData.occlusionQueryIndex ) { + + gl.endQuery( gl.ANY_SAMPLES_PASSED ); + + } + + this.resolveOccludedAsync( renderContext ); + + } + + const textures = renderContext.textures; + + if ( textures !== null ) { + + for ( let i = 0; i < textures.length; i ++ ) { + + const texture = textures[ i ]; + + if ( texture.generateMipmaps ) { + + this.generateMipmaps( texture ); + + } + + } + + } + + this._currentContext = previousContext; + + if ( renderContext.textures !== null && renderContext.renderTarget ) { + + const renderTargetContextData = this.get( renderContext.renderTarget ); + + const { resolveDepthBuffer, samples } = renderContext.renderTarget; + + if ( samples > 0 && this._useMultisampledExtension( renderContext.renderTarget ) === false ) { + + const fb = renderTargetContextData.framebuffers[ renderContext.getCacheKey() ]; + + const mask = gl.COLOR_BUFFER_BIT; + + const msaaFrameBuffer = renderTargetContextData.msaaFrameBuffer; + + const textures = renderContext.textures; + + state.bindFramebuffer( gl.READ_FRAMEBUFFER, msaaFrameBuffer ); + state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, fb ); + + for ( let i = 0; i < textures.length; i ++ ) { + + // TODO Add support for MRT + + if ( renderContext.scissor ) { + + const { x, y, width, height } = renderContext.scissorValue; + + const viewY = renderContext.height - height - y; + + gl.blitFramebuffer( x, viewY, x + width, viewY + height, x, viewY, x + width, viewY + height, mask, gl.NEAREST ); + + if ( this._supportsInvalidateFramebuffer === true ) { + + gl.invalidateSubFramebuffer( gl.READ_FRAMEBUFFER, renderTargetContextData.invalidationArray, x, viewY, width, height ); + + } + + } else { + + gl.blitFramebuffer( 0, 0, renderContext.width, renderContext.height, 0, 0, renderContext.width, renderContext.height, mask, gl.NEAREST ); + + if ( this._supportsInvalidateFramebuffer === true ) { + + gl.invalidateFramebuffer( gl.READ_FRAMEBUFFER, renderTargetContextData.invalidationArray ); + + } + + } + + } + + } else if ( resolveDepthBuffer === false ) { + + const fb = renderTargetContextData.framebuffers[ renderContext.getCacheKey() ]; + state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, fb ); + gl.invalidateFramebuffer( gl.DRAW_FRAMEBUFFER, renderTargetContextData.depthInvalidationArray ); + + } + + } + + if ( previousContext !== null ) { + + this._setFramebuffer( previousContext ); + + if ( previousContext.viewport ) { + + this.updateViewport( previousContext ); + + } else { + + const { width, height } = this.getDrawingBufferSize( _drawingBufferSize ); + state.viewport( 0, 0, width, height ); + + } + + } + + this.prepareTimestampBuffer( renderContext ); + + } + + /** + * This method processes the result of occlusion queries and writes it + * into render context data. + * + * @async + * @param {RenderContext} renderContext - The render context. + */ + resolveOccludedAsync( renderContext ) { + + const renderContextData = this.get( renderContext ); + + // handle occlusion query results + + const { currentOcclusionQueries, currentOcclusionQueryObjects } = renderContextData; + + if ( currentOcclusionQueries && currentOcclusionQueryObjects ) { + + const occluded = new WeakSet(); + const { gl } = this; + + renderContextData.currentOcclusionQueryObjects = null; + renderContextData.currentOcclusionQueries = null; + + const check = () => { + + let completed = 0; + + // check all queries and requeue as appropriate + for ( let i = 0; i < currentOcclusionQueries.length; i ++ ) { + + const query = currentOcclusionQueries[ i ]; + + if ( query === null ) continue; + + if ( gl.getQueryParameter( query, gl.QUERY_RESULT_AVAILABLE ) ) { + + if ( gl.getQueryParameter( query, gl.QUERY_RESULT ) === 0 ) occluded.add( currentOcclusionQueryObjects[ i ] ); + + currentOcclusionQueries[ i ] = null; + gl.deleteQuery( query ); + + completed ++; + + } + + } + + if ( completed < currentOcclusionQueries.length ) { + + requestAnimationFrame( check ); + + } else { + + renderContextData.occluded = occluded; + + } + + }; + + check(); + + } + + } + + /** + * Returns `true` if the given 3D object is fully occluded by other + * 3D objects in the scene. + * + * @param {RenderContext} renderContext - The render context. + * @param {Object3D} object - The 3D object to test. + * @return {boolean} Whether the 3D object is fully occluded or not. + */ + isOccluded( renderContext, object ) { + + const renderContextData = this.get( renderContext ); + + return renderContextData.occluded && renderContextData.occluded.has( object ); + + } + + /** + * Updates the viewport with the values from the given render context. + * + * @param {RenderContext} renderContext - The render context. + */ + updateViewport( renderContext ) { + + const { state } = this; + const { x, y, width, height } = renderContext.viewportValue; + + state.viewport( x, renderContext.height - height - y, width, height ); + + } + + /** + * Defines the scissor test. + * + * @param {boolean} boolean - Whether the scissor test should be enabled or not. + */ + setScissorTest( boolean ) { + + const state = this.state; + + state.setScissorTest( boolean ); + + } + + /** + * Returns the clear color and alpha into a single + * color object. + * + * @return {Color4} The clear color. + */ + getClearColor() { + + const clearColor = super.getClearColor(); + + // Since the canvas is always created with alpha: true, + // WebGL must always premultiply the clear color. + + clearColor.r *= clearColor.a; + clearColor.g *= clearColor.a; + clearColor.b *= clearColor.a; + + return clearColor; + + } + + /** + * Performs a clear operation. + * + * @param {boolean} color - Whether the color buffer should be cleared or not. + * @param {boolean} depth - Whether the depth buffer should be cleared or not. + * @param {boolean} stencil - Whether the stencil buffer should be cleared or not. + * @param {?Object} [descriptor=null] - The render context of the current set render target. + * @param {boolean} [setFrameBuffer=true] - TODO. + */ + clear( color, depth, stencil, descriptor = null, setFrameBuffer = true ) { + + const { gl, renderer } = this; + + if ( descriptor === null ) { + + const clearColor = this.getClearColor(); + + descriptor = { + textures: null, + clearColorValue: clearColor + }; + + } + + // + + let clear = 0; + + if ( color ) clear |= gl.COLOR_BUFFER_BIT; + if ( depth ) clear |= gl.DEPTH_BUFFER_BIT; + if ( stencil ) clear |= gl.STENCIL_BUFFER_BIT; + + if ( clear !== 0 ) { + + let clearColor; + + if ( descriptor.clearColorValue ) { + + clearColor = descriptor.clearColorValue; + + } else { + + clearColor = this.getClearColor(); + + } + + const clearDepth = renderer.getClearDepth(); + const clearStencil = renderer.getClearStencil(); + + if ( depth ) this.state.setDepthMask( true ); + + if ( descriptor.textures === null ) { + + gl.clearColor( clearColor.r, clearColor.g, clearColor.b, clearColor.a ); + gl.clear( clear ); + + } else { + + if ( setFrameBuffer ) this._setFramebuffer( descriptor ); + + if ( color ) { + + for ( let i = 0; i < descriptor.textures.length; i ++ ) { + + if ( i === 0 ) { + + gl.clearBufferfv( gl.COLOR, i, [ clearColor.r, clearColor.g, clearColor.b, clearColor.a ] ); + + } else { + + gl.clearBufferfv( gl.COLOR, i, [ 0, 0, 0, 1 ] ); + + } + + } + + } + + if ( depth && stencil ) { + + gl.clearBufferfi( gl.DEPTH_STENCIL, 0, clearDepth, clearStencil ); + + } else if ( depth ) { + + gl.clearBufferfv( gl.DEPTH, 0, [ clearDepth ] ); + + } else if ( stencil ) { + + gl.clearBufferiv( gl.STENCIL, 0, [ clearStencil ] ); + + } + + } + + } + + } + + /** + * This method is executed at the beginning of a compute call and + * prepares the state for upcoming compute tasks. + * + * @param {Node|Array} computeGroup - The compute node(s). + */ + beginCompute( computeGroup ) { + + const { state, gl } = this; + + state.bindFramebuffer( gl.FRAMEBUFFER, null ); + this.initTimestampQuery( computeGroup ); + + } + + /** + * Executes a compute command for the given compute node. + * + * @param {Node|Array} computeGroup - The group of compute nodes of a compute call. Can be a single compute node. + * @param {Node} computeNode - The compute node. + * @param {Array} bindings - The bindings. + * @param {ComputePipeline} pipeline - The compute pipeline. + */ + compute( computeGroup, computeNode, bindings, pipeline ) { + + const { state, gl } = this; + + if ( this.discard === false ) { + + // required here to handle async behaviour of render.compute() + gl.enable( gl.RASTERIZER_DISCARD ); + this.discard = true; + + } + + const { programGPU, transformBuffers, attributes } = this.get( pipeline ); + + const vaoKey = this._getVaoKey( attributes ); + + const vaoGPU = this.vaoCache[ vaoKey ]; + + if ( vaoGPU === undefined ) { + + this._createVao( attributes ); + + } else { + + state.setVertexState( vaoGPU ); + + } + + state.useProgram( programGPU ); + + this._bindUniforms( bindings ); + + const transformFeedbackGPU = this._getTransformFeedback( transformBuffers ); + + gl.bindTransformFeedback( gl.TRANSFORM_FEEDBACK, transformFeedbackGPU ); + gl.beginTransformFeedback( gl.POINTS ); + + if ( attributes[ 0 ].isStorageInstancedBufferAttribute ) { + + gl.drawArraysInstanced( gl.POINTS, 0, 1, computeNode.count ); + + } else { + + gl.drawArrays( gl.POINTS, 0, computeNode.count ); + + } + + gl.endTransformFeedback(); + gl.bindTransformFeedback( gl.TRANSFORM_FEEDBACK, null ); + + // switch active buffers + + for ( let i = 0; i < transformBuffers.length; i ++ ) { + + const dualAttributeData = transformBuffers[ i ]; + + if ( dualAttributeData.pbo ) { + + this.textureUtils.copyBufferToTexture( dualAttributeData.transformBuffer, dualAttributeData.pbo ); + + } + + dualAttributeData.switchBuffers(); + + + } + + } + + /** + * This method is executed at the end of a compute call and + * finalizes work after compute tasks. + * + * @param {Node|Array} computeGroup - The compute node(s). + */ + finishCompute( computeGroup ) { + + const gl = this.gl; + + this.discard = false; + + gl.disable( gl.RASTERIZER_DISCARD ); + + this.prepareTimestampBuffer( computeGroup ); + + if ( this._currentContext ) { + + this._setFramebuffer( this._currentContext ); + + } + + } + + /** + * Internal to determine if the current render target is a render target array with depth 2D array texture. + * + * @param {RenderContext} renderContext - The render context. + * @return {boolean} Whether the render target is a render target array with depth 2D array texture. + * + * @private + */ + _isRenderCameraDepthArray( renderContext ) { + + return renderContext.depthTexture && renderContext.depthTexture.isArrayTexture && renderContext.camera.isArrayCamera; + + } + + /** + * Executes a draw command for the given render object. + * + * @param {RenderObject} renderObject - The render object to draw. + * @param {Info} info - Holds a series of statistical information about the GPU memory and the rendering process. + */ + draw( renderObject/*, info*/ ) { + + const { object, pipeline, material, context, hardwareClippingPlanes } = renderObject; + const { programGPU } = this.get( pipeline ); + + const { gl, state } = this; + + const contextData = this.get( context ); + + const drawParams = renderObject.getDrawParameters(); + + if ( drawParams === null ) return; + + // + + this._bindUniforms( renderObject.getBindings() ); + + const frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 ); + + state.setMaterial( material, frontFaceCW, hardwareClippingPlanes ); + + state.useProgram( programGPU ); + + // vertex state + + const renderObjectData = this.get( renderObject ); + + let vaoGPU = renderObjectData.staticVao; + + if ( vaoGPU === undefined || renderObjectData.geometryId !== renderObject.geometry.id ) { + + const vaoKey = this._getVaoKey( renderObject.getAttributes() ); + + vaoGPU = this.vaoCache[ vaoKey ]; + + if ( vaoGPU === undefined ) { + + let staticVao; + + ( { vaoGPU, staticVao } = this._createVao( renderObject.getAttributes() ) ); + + if ( staticVao ) { + + renderObjectData.staticVao = vaoGPU; + renderObjectData.geometryId = renderObject.geometry.id; + + } + + } + + } + + const index = renderObject.getIndex(); + const indexGPU = ( index !== null ) ? this.get( index ).bufferGPU : null; + + state.setVertexState( vaoGPU, indexGPU ); + + // + + const lastObject = contextData.lastOcclusionObject; + + if ( lastObject !== object && lastObject !== undefined ) { + + if ( lastObject !== null && lastObject.occlusionTest === true ) { + + gl.endQuery( gl.ANY_SAMPLES_PASSED ); + + contextData.occlusionQueryIndex ++; + + } + + if ( object.occlusionTest === true ) { + + const query = gl.createQuery(); + + gl.beginQuery( gl.ANY_SAMPLES_PASSED, query ); + + contextData.occlusionQueries[ contextData.occlusionQueryIndex ] = query; + contextData.occlusionQueryObjects[ contextData.occlusionQueryIndex ] = object; + + } + + contextData.lastOcclusionObject = object; + + } + + // + const renderer = this.bufferRenderer; + + if ( object.isPoints ) renderer.mode = gl.POINTS; + else if ( object.isLineSegments ) renderer.mode = gl.LINES; + else if ( object.isLine ) renderer.mode = gl.LINE_STRIP; + else if ( object.isLineLoop ) renderer.mode = gl.LINE_LOOP; + else { + + if ( material.wireframe === true ) { + + state.setLineWidth( material.wireframeLinewidth * this.renderer.getPixelRatio() ); + renderer.mode = gl.LINES; + + } else { + + renderer.mode = gl.TRIANGLES; + + } + + } + + // + + const { vertexCount, instanceCount } = drawParams; + let { firstVertex } = drawParams; + + renderer.object = object; + + if ( index !== null ) { + + firstVertex *= index.array.BYTES_PER_ELEMENT; + + const indexData = this.get( index ); + + renderer.index = index.count; + renderer.type = indexData.type; + + } else { + + renderer.index = 0; + + } + + const draw = () => { + + if ( object.isBatchedMesh ) { + + if ( object._multiDrawInstances !== null ) { + + // @deprecated, r174 + warnOnce( 'THREE.WebGLBackend: renderMultiDrawInstances has been deprecated and will be removed in r184. Append to renderMultiDraw arguments and use indirection.' ); + renderer.renderMultiDrawInstances( object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount, object._multiDrawInstances ); + + } else if ( ! this.hasFeature( 'WEBGL_multi_draw' ) ) { + + warnOnce( 'THREE.WebGLRenderer: WEBGL_multi_draw not supported.' ); + + } else { + + renderer.renderMultiDraw( object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount ); + + } + + } else if ( instanceCount > 1 ) { + + renderer.renderInstances( firstVertex, vertexCount, instanceCount ); + + } else { + + renderer.render( firstVertex, vertexCount ); + + } + + }; + + if ( renderObject.camera.isArrayCamera === true && renderObject.camera.cameras.length > 0 && renderObject.camera.isMultiViewCamera === false ) { + + const cameraData = this.get( renderObject.camera ); + const cameras = renderObject.camera.cameras; + const cameraIndex = renderObject.getBindingGroup( 'cameraIndex' ).bindings[ 0 ]; + + if ( cameraData.indexesGPU === undefined || cameraData.indexesGPU.length !== cameras.length ) { + + const data = new Uint32Array( [ 0, 0, 0, 0 ] ); + const indexesGPU = []; + + for ( let i = 0, len = cameras.length; i < len; i ++ ) { + + const bufferGPU = gl.createBuffer(); + + data[ 0 ] = i; + + gl.bindBuffer( gl.UNIFORM_BUFFER, bufferGPU ); + gl.bufferData( gl.UNIFORM_BUFFER, data, gl.STATIC_DRAW ); + + indexesGPU.push( bufferGPU ); + + } + + cameraData.indexesGPU = indexesGPU; // TODO: Create a global library for this + + } + + const cameraIndexData = this.get( cameraIndex ); + const pixelRatio = this.renderer.getPixelRatio(); + + const renderTarget = this._currentContext.renderTarget; + const isRenderCameraDepthArray = this._isRenderCameraDepthArray( this._currentContext ); + const prevActiveCubeFace = this._currentContext.activeCubeFace; + + if ( isRenderCameraDepthArray ) { + + // Clear the depth texture + const textureData = this.get( renderTarget.depthTexture ); + + if ( textureData.clearedRenderId !== this.renderer._nodes.nodeFrame.renderId ) { + + textureData.clearedRenderId = this.renderer._nodes.nodeFrame.renderId; + + const { stencilBuffer } = renderTarget; + + for ( let i = 0, len = cameras.length; i < len; i ++ ) { + + this.renderer._activeCubeFace = i; + this._currentContext.activeCubeFace = i; + + this._setFramebuffer( this._currentContext ); + this.clear( false, true, stencilBuffer, this._currentContext, false ); + + } + + this.renderer._activeCubeFace = prevActiveCubeFace; + this._currentContext.activeCubeFace = prevActiveCubeFace; + + } + + } + + for ( let i = 0, len = cameras.length; i < len; i ++ ) { + + const subCamera = cameras[ i ]; + + if ( object.layers.test( subCamera.layers ) ) { + + if ( isRenderCameraDepthArray ) { + + // Update the active layer + this.renderer._activeCubeFace = i; + this._currentContext.activeCubeFace = i; + + this._setFramebuffer( this._currentContext ); + + } + + const vp = subCamera.viewport; + + if ( vp !== undefined ) { + + const x = vp.x * pixelRatio; + const y = vp.y * pixelRatio; + const width = vp.width * pixelRatio; + const height = vp.height * pixelRatio; + + state.viewport( + Math.floor( x ), + Math.floor( renderObject.context.height - height - y ), + Math.floor( width ), + Math.floor( height ) + ); + + } + + state.bindBufferBase( gl.UNIFORM_BUFFER, cameraIndexData.index, cameraData.indexesGPU[ i ] ); + + draw(); + + } + + this._currentContext.activeCubeFace = prevActiveCubeFace; + this.renderer._activeCubeFace = prevActiveCubeFace; + + } + + } else { + + draw(); + + } + + } + + /** + * Explain why always null is returned. + * + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the render pipeline requires an update or not. + */ + needsRenderUpdate( /*renderObject*/ ) { + + return false; + + } + + /** + * Explain why no cache key is computed. + * + * @param {RenderObject} renderObject - The render object. + * @return {string} The cache key. + */ + getRenderCacheKey( /*renderObject*/ ) { + + return ''; + + } + + // textures + + /** + * Creates a default texture for the given texture that can be used + * as a placeholder until the actual texture is ready for usage. + * + * @param {Texture} texture - The texture to create a default texture for. + */ + createDefaultTexture( texture ) { + + this.textureUtils.createDefaultTexture( texture ); + + } + + /** + * Defines a texture on the GPU for the given texture object. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + createTexture( texture, options ) { + + this.textureUtils.createTexture( texture, options ); + + } + + /** + * Uploads the updated texture data to the GPU. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + updateTexture( texture, options ) { + + this.textureUtils.updateTexture( texture, options ); + + } + + /** + * Generates mipmaps for the given texture. + * + * @param {Texture} texture - The texture. + */ + generateMipmaps( texture ) { + + this.textureUtils.generateMipmaps( texture ); + + } + + /** + * Destroys the GPU data for the given texture object. + * + * @param {Texture} texture - The texture. + */ + destroyTexture( texture ) { + + this.textureUtils.destroyTexture( texture ); + + } + + /** + * Returns texture data as a typed array. + * + * @async + * @param {Texture} texture - The texture to copy. + * @param {number} x - The x coordinate of the copy origin. + * @param {number} y - The y coordinate of the copy origin. + * @param {number} width - The width of the copy. + * @param {number} height - The height of the copy. + * @param {number} faceIndex - The face index. + * @return {Promise} A Promise that resolves with a typed array when the copy operation has finished. + */ + async copyTextureToBuffer( texture, x, y, width, height, faceIndex ) { + + return this.textureUtils.copyTextureToBuffer( texture, x, y, width, height, faceIndex ); + + } + + /** + * This method does nothing since WebGL 2 has no concept of samplers. + * + * @param {Texture} texture - The texture to create the sampler for. + */ + createSampler( /*texture*/ ) { + + //console.warn( 'Abstract class.' ); + + } + + /** + * This method does nothing since WebGL 2 has no concept of samplers. + * + * @param {Texture} texture - The texture to destroy the sampler for. + */ + destroySampler( /*texture*/ ) {} + + // node builder + + /** + * Returns a node builder for the given render object. + * + * @param {RenderObject} object - The render object. + * @param {Renderer} renderer - The renderer. + * @return {GLSLNodeBuilder} The node builder. + */ + createNodeBuilder( object, renderer ) { + + return new GLSLNodeBuilder( object, renderer ); + + } + + // program + + /** + * Creates a shader program from the given programmable stage. + * + * @param {ProgrammableStage} program - The programmable stage. + */ + createProgram( program ) { + + const gl = this.gl; + const { stage, code } = program; + + const shader = stage === 'fragment' ? gl.createShader( gl.FRAGMENT_SHADER ) : gl.createShader( gl.VERTEX_SHADER ); + + gl.shaderSource( shader, code ); + gl.compileShader( shader ); + + this.set( program, { + shaderGPU: shader + } ); + + } + + /** + * Destroys the shader program of the given programmable stage. + * + * @param {ProgrammableStage} program - The programmable stage. + */ + destroyProgram( program ) { + + this.delete( program ); + + } + + /** + * Creates a render pipeline for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @param {Array} promises - An array of compilation promises which are used in `compileAsync()`. + */ + createRenderPipeline( renderObject, promises ) { + + const gl = this.gl; + const pipeline = renderObject.pipeline; + + // Program + + const { fragmentProgram, vertexProgram } = pipeline; + + const programGPU = gl.createProgram(); + + const fragmentShader = this.get( fragmentProgram ).shaderGPU; + const vertexShader = this.get( vertexProgram ).shaderGPU; + + gl.attachShader( programGPU, fragmentShader ); + gl.attachShader( programGPU, vertexShader ); + gl.linkProgram( programGPU ); + + this.set( pipeline, { + programGPU, + fragmentShader, + vertexShader + } ); + + if ( promises !== null && this.parallel ) { + + const p = new Promise( ( resolve /*, reject*/ ) => { + + const parallel = this.parallel; + const checkStatus = () => { + + if ( gl.getProgramParameter( programGPU, parallel.COMPLETION_STATUS_KHR ) ) { + + this._completeCompile( renderObject, pipeline ); + resolve(); + + } else { + + requestAnimationFrame( checkStatus ); + + } + + }; + + checkStatus(); + + } ); + + promises.push( p ); + + return; + + } + + this._completeCompile( renderObject, pipeline ); + + } + + /** + * Formats the source code of error messages. + * + * @private + * @param {string} string - The code. + * @param {number} errorLine - The error line. + * @return {string} The formatted code. + */ + _handleSource( string, errorLine ) { + + const lines = string.split( '\n' ); + const lines2 = []; + + const from = Math.max( errorLine - 6, 0 ); + const to = Math.min( errorLine + 6, lines.length ); + + for ( let i = from; i < to; i ++ ) { + + const line = i + 1; + lines2.push( `${line === errorLine ? '>' : ' '} ${line}: ${lines[ i ]}` ); + + } + + return lines2.join( '\n' ); + + } + + /** + * Gets the shader compilation errors from the info log. + * + * @private + * @param {WebGL2RenderingContext} gl - The rendering context. + * @param {WebGLShader} shader - The WebGL shader object. + * @param {string} type - The shader type. + * @return {string} The shader errors. + */ + _getShaderErrors( gl, shader, type ) { + + const status = gl.getShaderParameter( shader, gl.COMPILE_STATUS ); + const errors = gl.getShaderInfoLog( shader ).trim(); + + if ( status && errors === '' ) return ''; + + const errorMatches = /ERROR: 0:(\d+)/.exec( errors ); + if ( errorMatches ) { + + const errorLine = parseInt( errorMatches[ 1 ] ); + return type.toUpperCase() + '\n\n' + errors + '\n\n' + this._handleSource( gl.getShaderSource( shader ), errorLine ); + + } else { + + return errors; + + } + + } + + /** + * Logs shader compilation errors. + * + * @private + * @param {WebGLProgram} programGPU - The WebGL program. + * @param {WebGLShader} glFragmentShader - The fragment shader as a native WebGL shader object. + * @param {WebGLShader} glVertexShader - The vertex shader as a native WebGL shader object. + */ + _logProgramError( programGPU, glFragmentShader, glVertexShader ) { + + if ( this.renderer.debug.checkShaderErrors ) { + + const gl = this.gl; + + const programLog = gl.getProgramInfoLog( programGPU ).trim(); + + if ( gl.getProgramParameter( programGPU, gl.LINK_STATUS ) === false ) { + + + if ( typeof this.renderer.debug.onShaderError === 'function' ) { + + this.renderer.debug.onShaderError( gl, programGPU, glVertexShader, glFragmentShader ); + + } else { + + // default error reporting + + const vertexErrors = this._getShaderErrors( gl, glVertexShader, 'vertex' ); + const fragmentErrors = this._getShaderErrors( gl, glFragmentShader, 'fragment' ); + + console.error( + 'THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + + 'VALIDATE_STATUS ' + gl.getProgramParameter( programGPU, gl.VALIDATE_STATUS ) + '\n\n' + + 'Program Info Log: ' + programLog + '\n' + + vertexErrors + '\n' + + fragmentErrors + ); + + } + + } else if ( programLog !== '' ) { + + console.warn( 'THREE.WebGLProgram: Program Info Log:', programLog ); + + } + + } + + } + + /** + * Completes the shader program setup for the given render object. + * + * @private + * @param {RenderObject} renderObject - The render object. + * @param {RenderPipeline} pipeline - The render pipeline. + */ + _completeCompile( renderObject, pipeline ) { + + const { state, gl } = this; + const pipelineData = this.get( pipeline ); + const { programGPU, fragmentShader, vertexShader } = pipelineData; + + if ( gl.getProgramParameter( programGPU, gl.LINK_STATUS ) === false ) { + + this._logProgramError( programGPU, fragmentShader, vertexShader ); + + } + + state.useProgram( programGPU ); + + // Bindings + + const bindings = renderObject.getBindings(); + + this._setupBindings( bindings, programGPU ); + + // + + this.set( pipeline, { + programGPU + } ); + + } + + /** + * Creates a compute pipeline for the given compute node. + * + * @param {ComputePipeline} computePipeline - The compute pipeline. + * @param {Array} bindings - The bindings. + */ + createComputePipeline( computePipeline, bindings ) { + + const { state, gl } = this; + + // Program + + const fragmentProgram = { + stage: 'fragment', + code: '#version 300 es\nprecision highp float;\nvoid main() {}' + }; + + this.createProgram( fragmentProgram ); + + const { computeProgram } = computePipeline; + + const programGPU = gl.createProgram(); + + const fragmentShader = this.get( fragmentProgram ).shaderGPU; + const vertexShader = this.get( computeProgram ).shaderGPU; + + const transforms = computeProgram.transforms; + + const transformVaryingNames = []; + const transformAttributeNodes = []; + + for ( let i = 0; i < transforms.length; i ++ ) { + + const transform = transforms[ i ]; + + transformVaryingNames.push( transform.varyingName ); + transformAttributeNodes.push( transform.attributeNode ); + + } + + gl.attachShader( programGPU, fragmentShader ); + gl.attachShader( programGPU, vertexShader ); + + gl.transformFeedbackVaryings( + programGPU, + transformVaryingNames, + gl.SEPARATE_ATTRIBS + ); + + gl.linkProgram( programGPU ); + + if ( gl.getProgramParameter( programGPU, gl.LINK_STATUS ) === false ) { + + this._logProgramError( programGPU, fragmentShader, vertexShader ); + + + } + + state.useProgram( programGPU ); + + // Bindings + + this._setupBindings( bindings, programGPU ); + + const attributeNodes = computeProgram.attributes; + const attributes = []; + const transformBuffers = []; + + for ( let i = 0; i < attributeNodes.length; i ++ ) { + + const attribute = attributeNodes[ i ].node.attribute; + + attributes.push( attribute ); + + if ( ! this.has( attribute ) ) this.attributeUtils.createAttribute( attribute, gl.ARRAY_BUFFER ); + + } + + for ( let i = 0; i < transformAttributeNodes.length; i ++ ) { + + const attribute = transformAttributeNodes[ i ].attribute; + + if ( ! this.has( attribute ) ) this.attributeUtils.createAttribute( attribute, gl.ARRAY_BUFFER ); + + const attributeData = this.get( attribute ); + + transformBuffers.push( attributeData ); + + } + + // + + this.set( computePipeline, { + programGPU, + transformBuffers, + attributes + } ); + + } + + /** + * Creates bindings from the given bind group definition. + * + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + createBindings( bindGroup, bindings /*, cacheIndex, version*/ ) { + + if ( this._knownBindings.has( bindings ) === false ) { + + this._knownBindings.add( bindings ); + + let uniformBuffers = 0; + let textures = 0; + + for ( const bindGroup of bindings ) { + + this.set( bindGroup, { + textures: textures, + uniformBuffers: uniformBuffers + } ); + + for ( const binding of bindGroup.bindings ) { + + if ( binding.isUniformBuffer ) uniformBuffers ++; + if ( binding.isSampledTexture ) textures ++; + + } + + } + + } + + this.updateBindings( bindGroup, bindings ); + + } + + /** + * Updates the given bind group definition. + * + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + updateBindings( bindGroup /*, bindings, cacheIndex, version*/ ) { + + const { gl } = this; + + const bindGroupData = this.get( bindGroup ); + + let i = bindGroupData.uniformBuffers; + let t = bindGroupData.textures; + + for ( const binding of bindGroup.bindings ) { + + if ( binding.isUniformsGroup || binding.isUniformBuffer ) { + + const data = binding.buffer; + const bufferGPU = gl.createBuffer(); + + gl.bindBuffer( gl.UNIFORM_BUFFER, bufferGPU ); + gl.bufferData( gl.UNIFORM_BUFFER, data, gl.DYNAMIC_DRAW ); + + this.set( binding, { + index: i ++, + bufferGPU + } ); + + } else if ( binding.isSampledTexture ) { + + const { textureGPU, glTextureType } = this.get( binding.texture ); + + this.set( binding, { + index: t ++, + textureGPU, + glTextureType + } ); + + } + + } + + } + + /** + * Updates a buffer binding. + * + * @param {Buffer} binding - The buffer binding to update. + */ + updateBinding( binding ) { + + const gl = this.gl; + + if ( binding.isUniformsGroup || binding.isUniformBuffer ) { + + const bindingData = this.get( binding ); + const bufferGPU = bindingData.bufferGPU; + const data = binding.buffer; + + gl.bindBuffer( gl.UNIFORM_BUFFER, bufferGPU ); + gl.bufferData( gl.UNIFORM_BUFFER, data, gl.DYNAMIC_DRAW ); + + } + + } + + // attributes + + /** + * Creates the GPU buffer of an indexed shader attribute. + * + * @param {BufferAttribute} attribute - The indexed buffer attribute. + */ + createIndexAttribute( attribute ) { + + const gl = this.gl; + + this.attributeUtils.createAttribute( attribute, gl.ELEMENT_ARRAY_BUFFER ); + + } + + /** + * Creates the GPU buffer of a shader attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createAttribute( attribute ) { + + if ( this.has( attribute ) ) return; + + const gl = this.gl; + + this.attributeUtils.createAttribute( attribute, gl.ARRAY_BUFFER ); + + } + + /** + * Creates the GPU buffer of a storage attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createStorageAttribute( attribute ) { + + if ( this.has( attribute ) ) return; + + const gl = this.gl; + + this.attributeUtils.createAttribute( attribute, gl.ARRAY_BUFFER ); + + } + + /** + * Updates the GPU buffer of a shader attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute to update. + */ + updateAttribute( attribute ) { + + this.attributeUtils.updateAttribute( attribute ); + + } + + /** + * Destroys the GPU buffer of a shader attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute to destroy. + */ + destroyAttribute( attribute ) { + + this.attributeUtils.destroyAttribute( attribute ); + + } + + /** + * Checks if the given feature is supported by the backend. + * + * @param {string} name - The feature's name. + * @return {boolean} Whether the feature is supported or not. + */ + hasFeature( name ) { + + const keysMatching = Object.keys( GLFeatureName ).filter( key => GLFeatureName[ key ] === name ); + + const extensions = this.extensions; + + for ( let i = 0; i < keysMatching.length; i ++ ) { + + if ( extensions.has( keysMatching[ i ] ) ) return true; + + } + + return false; + + } + + /** + * Returns the maximum anisotropy texture filtering value. + * + * @return {number} The maximum anisotropy texture filtering value. + */ + getMaxAnisotropy() { + + return this.capabilities.getMaxAnisotropy(); + + } + + /** + * Copies data of the given source texture to the given destination texture. + * + * @param {Texture} srcTexture - The source texture. + * @param {Texture} dstTexture - The destination texture. + * @param {?(Box3|Box2)} [srcRegion=null] - The region of the source texture to copy. + * @param {?(Vector2|Vector3)} [dstPosition=null] - The destination position of the copy. + * @param {number} [srcLevel=0] - The source mip level to copy from. + * @param {number} [dstLevel=0] - The destination mip level to copy to. + */ + copyTextureToTexture( srcTexture, dstTexture, srcRegion = null, dstPosition = null, srcLevel = 0, dstLevel = 0 ) { + + this.textureUtils.copyTextureToTexture( srcTexture, dstTexture, srcRegion, dstPosition, srcLevel, dstLevel ); + + } + + /** + * Copies the current bound framebuffer to the given texture. + * + * @param {Texture} texture - The destination texture. + * @param {RenderContext} renderContext - The render context. + * @param {Vector4} rectangle - A four dimensional vector defining the origin and dimension of the copy. + */ + copyFramebufferToTexture( texture, renderContext, rectangle ) { + + this.textureUtils.copyFramebufferToTexture( texture, renderContext, rectangle ); + + } + + /** + * Configures the active framebuffer from the given render context. + * + * @private + * @param {RenderContext} descriptor - The render context. + */ + _setFramebuffer( descriptor ) { + + const { gl, state } = this; + + let currentFrameBuffer = null; + + if ( descriptor.textures !== null ) { + + const renderTarget = descriptor.renderTarget; + const renderTargetContextData = this.get( renderTarget ); + const { samples, depthBuffer, stencilBuffer } = renderTarget; + + const isCube = renderTarget.isWebGLCubeRenderTarget === true; + const isRenderTarget3D = renderTarget.isRenderTarget3D === true; + const isRenderTargetArray = renderTarget.depth > 1; + const isXRRenderTarget = renderTarget.isXRRenderTarget === true; + const hasExternalTextures = ( isXRRenderTarget === true && renderTarget.hasExternalTextures === true ); + + let msaaFb = renderTargetContextData.msaaFrameBuffer; + let depthRenderbuffer = renderTargetContextData.depthRenderbuffer; + const multisampledRTTExt = this.extensions.get( 'WEBGL_multisampled_render_to_texture' ); + const multiviewExt = this.extensions.get( 'OVR_multiview2' ); + const useMultisampledRTT = this._useMultisampledExtension( renderTarget ); + const cacheKey = getCacheKey( descriptor ); + + let fb; + + if ( isCube ) { + + renderTargetContextData.cubeFramebuffers || ( renderTargetContextData.cubeFramebuffers = {} ); + + fb = renderTargetContextData.cubeFramebuffers[ cacheKey ]; + + } else if ( isXRRenderTarget && hasExternalTextures === false ) { + + fb = this._xrFramebuffer; + + } else { + + renderTargetContextData.framebuffers || ( renderTargetContextData.framebuffers = {} ); + + fb = renderTargetContextData.framebuffers[ cacheKey ]; + + } + + if ( fb === undefined ) { + + fb = gl.createFramebuffer(); + + state.bindFramebuffer( gl.FRAMEBUFFER, fb ); + + const textures = descriptor.textures; + const depthInvalidationArray = []; + + if ( isCube ) { + + renderTargetContextData.cubeFramebuffers[ cacheKey ] = fb; + + const { textureGPU } = this.get( textures[ 0 ] ); + + const cubeFace = this.renderer._activeCubeFace; + + gl.framebufferTexture2D( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_CUBE_MAP_POSITIVE_X + cubeFace, textureGPU, 0 ); + + } else { + + renderTargetContextData.framebuffers[ cacheKey ] = fb; + + for ( let i = 0; i < textures.length; i ++ ) { + + const texture = textures[ i ]; + const textureData = this.get( texture ); + textureData.renderTarget = descriptor.renderTarget; + textureData.cacheKey = cacheKey; // required for copyTextureToTexture() + + const attachment = gl.COLOR_ATTACHMENT0 + i; + + if ( renderTarget.multiview ) { + + multiviewExt.framebufferTextureMultisampleMultiviewOVR( gl.FRAMEBUFFER, attachment, textureData.textureGPU, 0, samples, 0, 2 ); + + } else if ( isRenderTarget3D || isRenderTargetArray ) { + + const layer = this.renderer._activeCubeFace; + + gl.framebufferTextureLayer( gl.FRAMEBUFFER, attachment, textureData.textureGPU, 0, layer ); + + } else { + + if ( hasExternalTextures && useMultisampledRTT ) { + + multisampledRTTExt.framebufferTexture2DMultisampleEXT( gl.FRAMEBUFFER, attachment, gl.TEXTURE_2D, textureData.textureGPU, 0, samples ); + + } else { + + gl.framebufferTexture2D( gl.FRAMEBUFFER, attachment, gl.TEXTURE_2D, textureData.textureGPU, 0 ); + + } + + } + + } + + state.drawBuffers( descriptor, fb ); + + } + + if ( renderTarget.isXRRenderTarget && renderTarget.autoAllocateDepthBuffer === true ) { + + const renderbuffer = gl.createRenderbuffer(); + this.textureUtils.setupRenderBufferStorage( renderbuffer, descriptor, 0, useMultisampledRTT ); + renderTargetContextData.xrDepthRenderbuffer = renderbuffer; + depthInvalidationArray.push( stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT ); + + } else { + + if ( descriptor.depthTexture !== null ) { + + depthInvalidationArray.push( stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT ); + + const textureData = this.get( descriptor.depthTexture ); + const depthStyle = stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT; + textureData.renderTarget = descriptor.renderTarget; + textureData.cacheKey = cacheKey; // required for copyTextureToTexture() + + if ( renderTarget.multiview ) { + + multiviewExt.framebufferTextureMultisampleMultiviewOVR( gl.FRAMEBUFFER, depthStyle, textureData.textureGPU, 0, samples, 0, 2 ); + + } else if ( hasExternalTextures && useMultisampledRTT ) { + + multisampledRTTExt.framebufferTexture2DMultisampleEXT( gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, textureData.textureGPU, 0, samples ); + + } else { + + if ( descriptor.depthTexture.isArrayTexture ) { + + const layer = this.renderer._activeCubeFace; + + gl.framebufferTextureLayer( gl.FRAMEBUFFER, depthStyle, textureData.textureGPU, 0, layer ); + + } else { + + gl.framebufferTexture2D( gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, textureData.textureGPU, 0 ); + + } + + } + + } + + } + + renderTargetContextData.depthInvalidationArray = depthInvalidationArray; + + + } else { + + const isRenderCameraDepthArray = this._isRenderCameraDepthArray( descriptor ); + + if ( isRenderCameraDepthArray ) { + + state.bindFramebuffer( gl.FRAMEBUFFER, fb ); + + const layer = this.renderer._activeCubeFace; + + const depthData = this.get( descriptor.depthTexture ); + const depthStyle = stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT; + gl.framebufferTextureLayer( + gl.FRAMEBUFFER, + depthStyle, + depthData.textureGPU, + 0, + layer + ); + + } + + // rebind external XR textures + + if ( ( isXRRenderTarget && hasExternalTextures ) || renderTarget.multiview ) { + + state.bindFramebuffer( gl.FRAMEBUFFER, fb ); + + // rebind color + + const textureData = this.get( descriptor.textures[ 0 ] ); + + if ( renderTarget.multiview ) { + + multiviewExt.framebufferTextureMultisampleMultiviewOVR( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, textureData.textureGPU, 0, samples, 0, 2 ); + + } else if ( useMultisampledRTT ) { + + multisampledRTTExt.framebufferTexture2DMultisampleEXT( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, textureData.textureGPU, 0, samples ); + + } else { + + gl.framebufferTexture2D( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, textureData.textureGPU, 0 ); + + } + + // rebind depth + + const depthStyle = stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT; + + if ( renderTarget.autoAllocateDepthBuffer === true ) { + + const renderbuffer = renderTargetContextData.xrDepthRenderbuffer; + gl.bindRenderbuffer( gl.RENDERBUFFER, renderbuffer ); + gl.framebufferRenderbuffer( gl.FRAMEBUFFER, depthStyle, gl.RENDERBUFFER, renderbuffer ); + + } else { + + const textureData = this.get( descriptor.depthTexture ); + + if ( renderTarget.multiview ) { + + multiviewExt.framebufferTextureMultisampleMultiviewOVR( gl.FRAMEBUFFER, depthStyle, textureData.textureGPU, 0, samples, 0, 2 ); + + } else if ( useMultisampledRTT ) { + + multisampledRTTExt.framebufferTexture2DMultisampleEXT( gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, textureData.textureGPU, 0, samples ); + + } else { + + gl.framebufferTexture2D( gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, textureData.textureGPU, 0 ); + + } + + } + + } + + } + + if ( samples > 0 && useMultisampledRTT === false && ! renderTarget.multiview ) { + + if ( msaaFb === undefined ) { + + const invalidationArray = []; + + msaaFb = gl.createFramebuffer(); + + state.bindFramebuffer( gl.FRAMEBUFFER, msaaFb ); + + const msaaRenderbuffers = []; + + const textures = descriptor.textures; + + for ( let i = 0; i < textures.length; i ++ ) { + + msaaRenderbuffers[ i ] = gl.createRenderbuffer(); + + gl.bindRenderbuffer( gl.RENDERBUFFER, msaaRenderbuffers[ i ] ); + + invalidationArray.push( gl.COLOR_ATTACHMENT0 + i ); + + if ( depthBuffer ) { + + const depthStyle = stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT; + invalidationArray.push( depthStyle ); + + } + + const texture = descriptor.textures[ i ]; + const textureData = this.get( texture ); + + gl.renderbufferStorageMultisample( gl.RENDERBUFFER, samples, textureData.glInternalFormat, descriptor.width, descriptor.height ); + gl.framebufferRenderbuffer( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0 + i, gl.RENDERBUFFER, msaaRenderbuffers[ i ] ); + + + } + + renderTargetContextData.msaaFrameBuffer = msaaFb; + renderTargetContextData.msaaRenderbuffers = msaaRenderbuffers; + + if ( depthRenderbuffer === undefined ) { + + depthRenderbuffer = gl.createRenderbuffer(); + this.textureUtils.setupRenderBufferStorage( depthRenderbuffer, descriptor, samples ); + + renderTargetContextData.depthRenderbuffer = depthRenderbuffer; + + const depthStyle = stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT; + invalidationArray.push( depthStyle ); + + } + + renderTargetContextData.invalidationArray = invalidationArray; + + } + + currentFrameBuffer = renderTargetContextData.msaaFrameBuffer; + + } else { + + currentFrameBuffer = fb; + + } + + } + + state.bindFramebuffer( gl.FRAMEBUFFER, currentFrameBuffer ); + + } + + /** + * Computes the VAO key for the given index and attributes. + * + * @private + * @param {Array} attributes - An array of buffer attributes. + * @return {string} The VAO key. + */ + _getVaoKey( attributes ) { + + let key = ''; + + for ( let i = 0; i < attributes.length; i ++ ) { + + const attributeData = this.get( attributes[ i ] ); + + key += ':' + attributeData.id; + + } + + return key; + + } + + /** + * Creates a VAO from the index and attributes. + * + * @private + * @param {Array} attributes - An array of buffer attributes. + * @return {Object} The VAO data. + */ + _createVao( attributes ) { + + const { gl } = this; + + const vaoGPU = gl.createVertexArray(); + let key = ''; + + let staticVao = true; + + gl.bindVertexArray( vaoGPU ); + + for ( let i = 0; i < attributes.length; i ++ ) { + + const attribute = attributes[ i ]; + const attributeData = this.get( attribute ); + + key += ':' + attributeData.id; + + gl.bindBuffer( gl.ARRAY_BUFFER, attributeData.bufferGPU ); + gl.enableVertexAttribArray( i ); + + if ( attribute.isStorageBufferAttribute || attribute.isStorageInstancedBufferAttribute ) staticVao = false; + + let stride, offset; + + if ( attribute.isInterleavedBufferAttribute === true ) { + + stride = attribute.data.stride * attributeData.bytesPerElement; + offset = attribute.offset * attributeData.bytesPerElement; + + } else { + + stride = 0; + offset = 0; + + } + + if ( attributeData.isInteger ) { + + gl.vertexAttribIPointer( i, attribute.itemSize, attributeData.type, stride, offset ); + + } else { + + gl.vertexAttribPointer( i, attribute.itemSize, attributeData.type, attribute.normalized, stride, offset ); + + } + + if ( attribute.isInstancedBufferAttribute && ! attribute.isInterleavedBufferAttribute ) { + + gl.vertexAttribDivisor( i, attribute.meshPerAttribute ); + + } else if ( attribute.isInterleavedBufferAttribute && attribute.data.isInstancedInterleavedBuffer ) { + + gl.vertexAttribDivisor( i, attribute.data.meshPerAttribute ); + + } + + } + + gl.bindBuffer( gl.ARRAY_BUFFER, null ); + + this.vaoCache[ key ] = vaoGPU; + + return { vaoGPU, staticVao }; + + } + + /** + * Creates a transform feedback from the given transform buffers. + * + * @private + * @param {Array} transformBuffers - The transform buffers. + * @return {WebGLTransformFeedback} The transform feedback. + */ + _getTransformFeedback( transformBuffers ) { + + let key = ''; + + for ( let i = 0; i < transformBuffers.length; i ++ ) { + + key += ':' + transformBuffers[ i ].id; + + } + + let transformFeedbackGPU = this.transformFeedbackCache[ key ]; + + if ( transformFeedbackGPU !== undefined ) { + + return transformFeedbackGPU; + + } + + const { gl } = this; + + transformFeedbackGPU = gl.createTransformFeedback(); + + gl.bindTransformFeedback( gl.TRANSFORM_FEEDBACK, transformFeedbackGPU ); + + for ( let i = 0; i < transformBuffers.length; i ++ ) { + + const attributeData = transformBuffers[ i ]; + + gl.bindBufferBase( gl.TRANSFORM_FEEDBACK_BUFFER, i, attributeData.transformBuffer ); + + } + + gl.bindTransformFeedback( gl.TRANSFORM_FEEDBACK, null ); + + this.transformFeedbackCache[ key ] = transformFeedbackGPU; + + return transformFeedbackGPU; + + } + + /** + * Setups the given bindings. + * + * @private + * @param {Array} bindings - The bindings. + * @param {WebGLProgram} programGPU - The WebGL program. + */ + _setupBindings( bindings, programGPU ) { + + const gl = this.gl; + + for ( const bindGroup of bindings ) { + + for ( const binding of bindGroup.bindings ) { + + const bindingData = this.get( binding ); + const index = bindingData.index; + + if ( binding.isUniformsGroup || binding.isUniformBuffer ) { + + const location = gl.getUniformBlockIndex( programGPU, binding.name ); + gl.uniformBlockBinding( programGPU, location, index ); + + } else if ( binding.isSampledTexture ) { + + const location = gl.getUniformLocation( programGPU, binding.name ); + gl.uniform1i( location, index ); + + } + + } + + } + + } + + /** + * Binds the given uniforms. + * + * @private + * @param {Array} bindings - The bindings. + */ + _bindUniforms( bindings ) { + + const { gl, state } = this; + + for ( const bindGroup of bindings ) { + + for ( const binding of bindGroup.bindings ) { + + const bindingData = this.get( binding ); + const index = bindingData.index; + + if ( binding.isUniformsGroup || binding.isUniformBuffer ) { + + // TODO USE bindBufferRange to group multiple uniform buffers + state.bindBufferBase( gl.UNIFORM_BUFFER, index, bindingData.bufferGPU ); + + } else if ( binding.isSampledTexture ) { + + state.bindTexture( bindingData.glTextureType, bindingData.textureGPU, gl.TEXTURE0 + index ); + + } + + } + + } + + } + + /** + * Returns `true` if the `WEBGL_multisampled_render_to_texture` extension + * should be used when MSAA is enabled. + * + * @private + * @param {RenderTarget} renderTarget - The render target that should be multisampled. + * @return {boolean} Whether to use the `WEBGL_multisampled_render_to_texture` extension for MSAA or not. + */ + _useMultisampledExtension( renderTarget ) { + + if ( renderTarget.multiview === true ) { + + return true; + + } + + return renderTarget.samples > 0 && this.extensions.has( 'WEBGL_multisampled_render_to_texture' ) === true && renderTarget.autoAllocateDepthBuffer !== false; + + } + + /** + * Frees internal resources. + */ + dispose() { + + const extension = this.extensions.get( 'WEBGL_lose_context' ); + if ( extension ) extension.loseContext(); + + this.renderer.domElement.removeEventListener( 'webglcontextlost', this._onContextLost ); + + } + +} + +const GPUPrimitiveTopology = { + PointList: 'point-list', + LineList: 'line-list', + LineStrip: 'line-strip', + TriangleList: 'triangle-list', + TriangleStrip: 'triangle-strip', +}; + +const GPUCompareFunction = { + Never: 'never', + Less: 'less', + Equal: 'equal', + LessEqual: 'less-equal', + Greater: 'greater', + NotEqual: 'not-equal', + GreaterEqual: 'greater-equal', + Always: 'always' +}; + +const GPUStoreOp = { + Store: 'store' }; + +const GPULoadOp = { + Load: 'load', + Clear: 'clear' +}; + +const GPUFrontFace = { + CCW: 'ccw' }; + +const GPUCullMode = { + None: 'none', + Front: 'front', + Back: 'back' +}; + +const GPUIndexFormat = { + Uint16: 'uint16', + Uint32: 'uint32' +}; + +const GPUTextureFormat = { + + // 8-bit formats + + R8Unorm: 'r8unorm', + R8Snorm: 'r8snorm', + R8Uint: 'r8uint', + R8Sint: 'r8sint', + + // 16-bit formats + + R16Uint: 'r16uint', + R16Sint: 'r16sint', + R16Float: 'r16float', + RG8Unorm: 'rg8unorm', + RG8Snorm: 'rg8snorm', + RG8Uint: 'rg8uint', + RG8Sint: 'rg8sint', + + // 32-bit formats + + R32Uint: 'r32uint', + R32Sint: 'r32sint', + R32Float: 'r32float', + RG16Uint: 'rg16uint', + RG16Sint: 'rg16sint', + RG16Float: 'rg16float', + RGBA8Unorm: 'rgba8unorm', + RGBA8UnormSRGB: 'rgba8unorm-srgb', + RGBA8Snorm: 'rgba8snorm', + RGBA8Uint: 'rgba8uint', + RGBA8Sint: 'rgba8sint', + BGRA8Unorm: 'bgra8unorm', + BGRA8UnormSRGB: 'bgra8unorm-srgb', + // Packed 32-bit formats + RGB9E5UFloat: 'rgb9e5ufloat', + RGB10A2Unorm: 'rgb10a2unorm', + RG11B10UFloat: 'rgb10a2unorm', + + // 64-bit formats + + RG32Uint: 'rg32uint', + RG32Sint: 'rg32sint', + RG32Float: 'rg32float', + RGBA16Uint: 'rgba16uint', + RGBA16Sint: 'rgba16sint', + RGBA16Float: 'rgba16float', + + // 128-bit formats + + RGBA32Uint: 'rgba32uint', + RGBA32Sint: 'rgba32sint', + RGBA32Float: 'rgba32float', + + Depth16Unorm: 'depth16unorm', + Depth24Plus: 'depth24plus', + Depth24PlusStencil8: 'depth24plus-stencil8', + Depth32Float: 'depth32float', + + // 'depth32float-stencil8' extension + + Depth32FloatStencil8: 'depth32float-stencil8', + + // BC compressed formats usable if 'texture-compression-bc' is both + // supported by the device/user agent and enabled in requestDevice. + + BC1RGBAUnorm: 'bc1-rgba-unorm', + BC1RGBAUnormSRGB: 'bc1-rgba-unorm-srgb', + BC2RGBAUnorm: 'bc2-rgba-unorm', + BC2RGBAUnormSRGB: 'bc2-rgba-unorm-srgb', + BC3RGBAUnorm: 'bc3-rgba-unorm', + BC3RGBAUnormSRGB: 'bc3-rgba-unorm-srgb', + BC4RUnorm: 'bc4-r-unorm', + BC4RSnorm: 'bc4-r-snorm', + BC5RGUnorm: 'bc5-rg-unorm', + BC5RGSnorm: 'bc5-rg-snorm', + BC6HRGBUFloat: 'bc6h-rgb-ufloat', + BC6HRGBFloat: 'bc6h-rgb-float', + BC7RGBAUnorm: 'bc7-rgba-unorm', + BC7RGBAUnormSRGB: 'bc7-rgba-srgb', + + // ETC2 compressed formats usable if 'texture-compression-etc2' is both + // supported by the device/user agent and enabled in requestDevice. + + ETC2RGB8Unorm: 'etc2-rgb8unorm', + ETC2RGB8UnormSRGB: 'etc2-rgb8unorm-srgb', + ETC2RGB8A1Unorm: 'etc2-rgb8a1unorm', + ETC2RGB8A1UnormSRGB: 'etc2-rgb8a1unorm-srgb', + ETC2RGBA8Unorm: 'etc2-rgba8unorm', + ETC2RGBA8UnormSRGB: 'etc2-rgba8unorm-srgb', + EACR11Unorm: 'eac-r11unorm', + EACR11Snorm: 'eac-r11snorm', + EACRG11Unorm: 'eac-rg11unorm', + EACRG11Snorm: 'eac-rg11snorm', + + // ASTC compressed formats usable if 'texture-compression-astc' is both + // supported by the device/user agent and enabled in requestDevice. + + ASTC4x4Unorm: 'astc-4x4-unorm', + ASTC4x4UnormSRGB: 'astc-4x4-unorm-srgb', + ASTC5x4Unorm: 'astc-5x4-unorm', + ASTC5x4UnormSRGB: 'astc-5x4-unorm-srgb', + ASTC5x5Unorm: 'astc-5x5-unorm', + ASTC5x5UnormSRGB: 'astc-5x5-unorm-srgb', + ASTC6x5Unorm: 'astc-6x5-unorm', + ASTC6x5UnormSRGB: 'astc-6x5-unorm-srgb', + ASTC6x6Unorm: 'astc-6x6-unorm', + ASTC6x6UnormSRGB: 'astc-6x6-unorm-srgb', + ASTC8x5Unorm: 'astc-8x5-unorm', + ASTC8x5UnormSRGB: 'astc-8x5-unorm-srgb', + ASTC8x6Unorm: 'astc-8x6-unorm', + ASTC8x6UnormSRGB: 'astc-8x6-unorm-srgb', + ASTC8x8Unorm: 'astc-8x8-unorm', + ASTC8x8UnormSRGB: 'astc-8x8-unorm-srgb', + ASTC10x5Unorm: 'astc-10x5-unorm', + ASTC10x5UnormSRGB: 'astc-10x5-unorm-srgb', + ASTC10x6Unorm: 'astc-10x6-unorm', + ASTC10x6UnormSRGB: 'astc-10x6-unorm-srgb', + ASTC10x8Unorm: 'astc-10x8-unorm', + ASTC10x8UnormSRGB: 'astc-10x8-unorm-srgb', + ASTC10x10Unorm: 'astc-10x10-unorm', + ASTC10x10UnormSRGB: 'astc-10x10-unorm-srgb', + ASTC12x10Unorm: 'astc-12x10-unorm', + ASTC12x10UnormSRGB: 'astc-12x10-unorm-srgb', + ASTC12x12Unorm: 'astc-12x12-unorm', + ASTC12x12UnormSRGB: 'astc-12x12-unorm-srgb', + +}; + +const GPUAddressMode = { + ClampToEdge: 'clamp-to-edge', + Repeat: 'repeat', + MirrorRepeat: 'mirror-repeat' +}; + +const GPUFilterMode = { + Linear: 'linear', + Nearest: 'nearest' +}; + +const GPUBlendFactor = { + Zero: 'zero', + One: 'one', + Src: 'src', + OneMinusSrc: 'one-minus-src', + SrcAlpha: 'src-alpha', + OneMinusSrcAlpha: 'one-minus-src-alpha', + Dst: 'dst', + OneMinusDst: 'one-minus-dst', + DstAlpha: 'dst-alpha', + OneMinusDstAlpha: 'one-minus-dst-alpha', + SrcAlphaSaturated: 'src-alpha-saturated', + Constant: 'constant', + OneMinusConstant: 'one-minus-constant' +}; + +const GPUBlendOperation = { + Add: 'add', + Subtract: 'subtract', + ReverseSubtract: 'reverse-subtract', + Min: 'min', + Max: 'max' +}; + +const GPUColorWriteFlags = { + None: 0, + All: 0xF +}; + +const GPUStencilOperation = { + Keep: 'keep', + Zero: 'zero', + Replace: 'replace', + Invert: 'invert', + IncrementClamp: 'increment-clamp', + DecrementClamp: 'decrement-clamp', + IncrementWrap: 'increment-wrap', + DecrementWrap: 'decrement-wrap' +}; + +const GPUBufferBindingType = { + Storage: 'storage', + ReadOnlyStorage: 'read-only-storage' +}; + +const GPUStorageTextureAccess = { + WriteOnly: 'write-only', + ReadOnly: 'read-only', + ReadWrite: 'read-write', +}; + +const GPUSamplerBindingType = { + NonFiltering: 'non-filtering', + Comparison: 'comparison' +}; + +const GPUTextureSampleType = { + Float: 'float', + UnfilterableFloat: 'unfilterable-float', + Depth: 'depth', + SInt: 'sint', + UInt: 'uint' +}; + +const GPUTextureDimension = { + TwoD: '2d', + ThreeD: '3d' +}; + +const GPUTextureViewDimension = { + TwoD: '2d', + TwoDArray: '2d-array', + Cube: 'cube', + ThreeD: '3d' +}; + +const GPUTextureAspect = { + All: 'all' }; + +const GPUInputStepMode = { + Vertex: 'vertex', + Instance: 'instance' +}; + +const GPUFeatureName = { + DepthClipControl: 'depth-clip-control', + Depth32FloatStencil8: 'depth32float-stencil8', + TextureCompressionBC: 'texture-compression-bc', + TextureCompressionETC2: 'texture-compression-etc2', + TextureCompressionASTC: 'texture-compression-astc', + TimestampQuery: 'timestamp-query', + IndirectFirstInstance: 'indirect-first-instance', + ShaderF16: 'shader-f16', + RG11B10UFloat: 'rg11b10ufloat-renderable', + BGRA8UNormStorage: 'bgra8unorm-storage', + Float32Filterable: 'float32-filterable', + ClipDistances: 'clip-distances', + DualSourceBlending: 'dual-source-blending', + Subgroups: 'subgroups' +}; + +/** + * Represents a sampler binding type. + * + * @private + * @augments Binding + */ +class Sampler extends Binding { + + /** + * Constructs a new sampler. + * + * @param {string} name - The samplers's name. + * @param {?Texture} texture - The texture this binding is referring to. + */ + constructor( name, texture ) { + + super( name ); + + /** + * The texture the sampler is referring to. + * + * @type {?Texture} + */ + this.texture = texture; + + /** + * The binding's version. + * + * @type {number} + */ + this.version = texture ? texture.version : 0; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSampler = true; + + } + +} + +/** + * A special form of sampler binding type. + * It's texture value is managed by a node object. + * + * @private + * @augments Sampler + */ +class NodeSampler extends Sampler { + + /** + * Constructs a new node-based sampler. + * + * @param {string} name - The samplers's name. + * @param {TextureNode} textureNode - The texture node. + * @param {UniformGroupNode} groupNode - The uniform group node. + */ + constructor( name, textureNode, groupNode ) { + + super( name, textureNode ? textureNode.value : null ); + + /** + * The texture node. + * + * @type {TextureNode} + */ + this.textureNode = textureNode; + + /** + * The uniform group node. + * + * @type {UniformGroupNode} + */ + this.groupNode = groupNode; + + } + + /** + * Updates the texture value of this sampler. + */ + update() { + + this.texture = this.textureNode.value; + + } + +} + +/** + * Represents a storage buffer binding type. + * + * @private + * @augments Buffer + */ +class StorageBuffer extends Buffer { + + /** + * Constructs a new uniform buffer. + * + * @param {string} name - The buffer's name. + * @param {BufferAttribute} attribute - The buffer attribute. + */ + constructor( name, attribute ) { + + super( name, attribute ? attribute.array : null ); + + /** + * This flag can be used for type testing. + * + * @type {BufferAttribute} + */ + this.attribute = attribute; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageBuffer = true; + + } + +} + +let _id = 0; + +/** + * A special form of storage buffer binding type. + * It's buffer value is managed by a node object. + * + * @private + * @augments StorageBuffer + */ +class NodeStorageBuffer extends StorageBuffer { + + /** + * Constructs a new node-based storage buffer. + * + * @param {StorageBufferNode} nodeUniform - The storage buffer node. + * @param {UniformGroupNode} groupNode - The uniform group node. + */ + constructor( nodeUniform, groupNode ) { + + super( 'StorageBuffer_' + _id ++, nodeUniform ? nodeUniform.value : null ); + + /** + * The node uniform. + * + * @type {StorageBufferNode} + */ + this.nodeUniform = nodeUniform; + + /** + * The access type. + * + * @type {string} + */ + this.access = nodeUniform ? nodeUniform.access : NodeAccess.READ_WRITE; + + /** + * The uniform group node. + * + * @type {UniformGroupNode} + */ + this.groupNode = groupNode; + + } + + /** + * The storage buffer. + * + * @type {BufferAttribute} + */ + get buffer() { + + return this.nodeUniform.value; + + } + +} + +/** + * A WebGPU backend utility module used by {@link WebGPUTextureUtils}. + * + * @private + */ +class WebGPUTexturePassUtils extends DataMap { + + /** + * Constructs a new utility object. + * + * @param {GPUDevice} device - The WebGPU device. + */ + constructor( device ) { + + super(); + + /** + * The WebGPU device. + * + * @type {GPUDevice} + */ + this.device = device; + + const mipmapVertexSource = ` +struct VarysStruct { + @builtin( position ) Position: vec4, + @location( 0 ) vTex : vec2 +}; + +@vertex +fn main( @builtin( vertex_index ) vertexIndex : u32 ) -> VarysStruct { + + var Varys : VarysStruct; + + var pos = array< vec2, 4 >( + vec2( -1.0, 1.0 ), + vec2( 1.0, 1.0 ), + vec2( -1.0, -1.0 ), + vec2( 1.0, -1.0 ) + ); + + var tex = array< vec2, 4 >( + vec2( 0.0, 0.0 ), + vec2( 1.0, 0.0 ), + vec2( 0.0, 1.0 ), + vec2( 1.0, 1.0 ) + ); + + Varys.vTex = tex[ vertexIndex ]; + Varys.Position = vec4( pos[ vertexIndex ], 0.0, 1.0 ); + + return Varys; + +} +`; + + const mipmapFragmentSource = ` +@group( 0 ) @binding( 0 ) +var imgSampler : sampler; + +@group( 0 ) @binding( 1 ) +var img : texture_2d; + +@fragment +fn main( @location( 0 ) vTex : vec2 ) -> @location( 0 ) vec4 { + + return textureSample( img, imgSampler, vTex ); + +} +`; + + const flipYFragmentSource = ` +@group( 0 ) @binding( 0 ) +var imgSampler : sampler; + +@group( 0 ) @binding( 1 ) +var img : texture_2d; + +@fragment +fn main( @location( 0 ) vTex : vec2 ) -> @location( 0 ) vec4 { + + return textureSample( img, imgSampler, vec2( vTex.x, 1.0 - vTex.y ) ); + +} +`; + + /** + * The mipmap GPU sampler. + * + * @type {GPUSampler} + */ + this.mipmapSampler = device.createSampler( { minFilter: GPUFilterMode.Linear } ); + + /** + * The flipY GPU sampler. + * + * @type {GPUSampler} + */ + this.flipYSampler = device.createSampler( { minFilter: GPUFilterMode.Nearest } ); //@TODO?: Consider using textureLoad() + + /** + * A cache for GPU render pipelines used for copy/transfer passes. + * Every texture format requires a unique pipeline. + * + * @type {Object} + */ + this.transferPipelines = {}; + + /** + * A cache for GPU render pipelines used for flipY passes. + * Every texture format requires a unique pipeline. + * + * @type {Object} + */ + this.flipYPipelines = {}; + + /** + * The mipmap vertex shader module. + * + * @type {GPUShaderModule} + */ + this.mipmapVertexShaderModule = device.createShaderModule( { + label: 'mipmapVertex', + code: mipmapVertexSource + } ); + + /** + * The mipmap fragment shader module. + * + * @type {GPUShaderModule} + */ + this.mipmapFragmentShaderModule = device.createShaderModule( { + label: 'mipmapFragment', + code: mipmapFragmentSource + } ); + + /** + * The flipY fragment shader module. + * + * @type {GPUShaderModule} + */ + this.flipYFragmentShaderModule = device.createShaderModule( { + label: 'flipYFragment', + code: flipYFragmentSource + } ); + + } + + /** + * Returns a render pipeline for the internal copy render pass. The pass + * requires a unique render pipeline for each texture format. + * + * @param {string} format - The GPU texture format + * @return {GPURenderPipeline} The GPU render pipeline. + */ + getTransferPipeline( format ) { + + let pipeline = this.transferPipelines[ format ]; + + if ( pipeline === undefined ) { + + pipeline = this.device.createRenderPipeline( { + label: `mipmap-${ format }`, + vertex: { + module: this.mipmapVertexShaderModule, + entryPoint: 'main' + }, + fragment: { + module: this.mipmapFragmentShaderModule, + entryPoint: 'main', + targets: [ { format } ] + }, + primitive: { + topology: GPUPrimitiveTopology.TriangleStrip, + stripIndexFormat: GPUIndexFormat.Uint32 + }, + layout: 'auto' + } ); + + this.transferPipelines[ format ] = pipeline; + + } + + return pipeline; + + } + + /** + * Returns a render pipeline for the flipY render pass. The pass + * requires a unique render pipeline for each texture format. + * + * @param {string} format - The GPU texture format + * @return {GPURenderPipeline} The GPU render pipeline. + */ + getFlipYPipeline( format ) { + + let pipeline = this.flipYPipelines[ format ]; + + if ( pipeline === undefined ) { + + pipeline = this.device.createRenderPipeline( { + label: `flipY-${ format }`, + vertex: { + module: this.mipmapVertexShaderModule, + entryPoint: 'main' + }, + fragment: { + module: this.flipYFragmentShaderModule, + entryPoint: 'main', + targets: [ { format } ] + }, + primitive: { + topology: GPUPrimitiveTopology.TriangleStrip, + stripIndexFormat: GPUIndexFormat.Uint32 + }, + layout: 'auto' + } ); + + this.flipYPipelines[ format ] = pipeline; + + } + + return pipeline; + + } + + /** + * Flip the contents of the given GPU texture along its vertical axis. + * + * @param {GPUTexture} textureGPU - The GPU texture object. + * @param {Object} textureGPUDescriptor - The texture descriptor. + * @param {number} [baseArrayLayer=0] - The index of the first array layer accessible to the texture view. + */ + flipY( textureGPU, textureGPUDescriptor, baseArrayLayer = 0 ) { + + const format = textureGPUDescriptor.format; + const { width, height } = textureGPUDescriptor.size; + + const transferPipeline = this.getTransferPipeline( format ); + const flipYPipeline = this.getFlipYPipeline( format ); + + const tempTexture = this.device.createTexture( { + size: { width, height, depthOrArrayLayers: 1 }, + format, + usage: GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.TEXTURE_BINDING + } ); + + const srcView = textureGPU.createView( { + baseMipLevel: 0, + mipLevelCount: 1, + dimension: GPUTextureViewDimension.TwoD, + baseArrayLayer + } ); + + const dstView = tempTexture.createView( { + baseMipLevel: 0, + mipLevelCount: 1, + dimension: GPUTextureViewDimension.TwoD, + baseArrayLayer: 0 + } ); + + const commandEncoder = this.device.createCommandEncoder( {} ); + + const pass = ( pipeline, sourceView, destinationView ) => { + + const bindGroupLayout = pipeline.getBindGroupLayout( 0 ); // @TODO: Consider making this static. + + const bindGroup = this.device.createBindGroup( { + layout: bindGroupLayout, + entries: [ { + binding: 0, + resource: this.flipYSampler + }, { + binding: 1, + resource: sourceView + } ] + } ); + + const passEncoder = commandEncoder.beginRenderPass( { + colorAttachments: [ { + view: destinationView, + loadOp: GPULoadOp.Clear, + storeOp: GPUStoreOp.Store, + clearValue: [ 0, 0, 0, 0 ] + } ] + } ); + + passEncoder.setPipeline( pipeline ); + passEncoder.setBindGroup( 0, bindGroup ); + passEncoder.draw( 4, 1, 0, 0 ); + passEncoder.end(); + + }; + + pass( transferPipeline, srcView, dstView ); + pass( flipYPipeline, dstView, srcView ); + + this.device.queue.submit( [ commandEncoder.finish() ] ); + + tempTexture.destroy(); + + } + + /** + * Generates mipmaps for the given GPU texture. + * + * @param {GPUTexture} textureGPU - The GPU texture object. + * @param {Object} textureGPUDescriptor - The texture descriptor. + * @param {number} [baseArrayLayer=0] - The index of the first array layer accessible to the texture view. + */ + generateMipmaps( textureGPU, textureGPUDescriptor, baseArrayLayer = 0 ) { + + const textureData = this.get( textureGPU ); + + if ( textureData.useCount === undefined ) { + + textureData.useCount = 0; + textureData.layers = []; + + } + + const passes = textureData.layers[ baseArrayLayer ] || this._mipmapCreateBundles( textureGPU, textureGPUDescriptor, baseArrayLayer ); + + const commandEncoder = this.device.createCommandEncoder( {} ); + + this._mipmapRunBundles( commandEncoder, passes ); + + this.device.queue.submit( [ commandEncoder.finish() ] ); + + if ( textureData.useCount !== 0 ) textureData.layers[ baseArrayLayer ] = passes; + + textureData.useCount ++; + + } + + /** + * Since multiple copy render passes are required to generate mipmaps, the passes + * are managed as render bundles to improve performance. + * + * @param {GPUTexture} textureGPU - The GPU texture object. + * @param {Object} textureGPUDescriptor - The texture descriptor. + * @param {number} baseArrayLayer - The index of the first array layer accessible to the texture view. + * @return {Array} An array of render bundles. + */ + _mipmapCreateBundles( textureGPU, textureGPUDescriptor, baseArrayLayer ) { + + const pipeline = this.getTransferPipeline( textureGPUDescriptor.format ); + + const bindGroupLayout = pipeline.getBindGroupLayout( 0 ); // @TODO: Consider making this static. + + let srcView = textureGPU.createView( { + baseMipLevel: 0, + mipLevelCount: 1, + dimension: GPUTextureViewDimension.TwoD, + baseArrayLayer + } ); + + const passes = []; + + for ( let i = 1; i < textureGPUDescriptor.mipLevelCount; i ++ ) { + + const bindGroup = this.device.createBindGroup( { + layout: bindGroupLayout, + entries: [ { + binding: 0, + resource: this.mipmapSampler + }, { + binding: 1, + resource: srcView + } ] + } ); + + const dstView = textureGPU.createView( { + baseMipLevel: i, + mipLevelCount: 1, + dimension: GPUTextureViewDimension.TwoD, + baseArrayLayer + } ); + + const passDescriptor = { + colorAttachments: [ { + view: dstView, + loadOp: GPULoadOp.Clear, + storeOp: GPUStoreOp.Store, + clearValue: [ 0, 0, 0, 0 ] + } ] + }; + + const passEncoder = this.device.createRenderBundleEncoder( { + colorFormats: [ textureGPUDescriptor.format ] + } ); + + passEncoder.setPipeline( pipeline ); + passEncoder.setBindGroup( 0, bindGroup ); + passEncoder.draw( 4, 1, 0, 0 ); + + passes.push( { + renderBundles: [ passEncoder.finish() ], + passDescriptor + } ); + + srcView = dstView; + + } + + return passes; + + } + + /** + * Executes the render bundles. + * + * @param {GPUCommandEncoder} commandEncoder - The GPU command encoder. + * @param {Array} passes - An array of render bundles. + */ + _mipmapRunBundles( commandEncoder, passes ) { + + const levels = passes.length; + + for ( let i = 0; i < levels; i ++ ) { + + const pass = passes[ i ]; + + const passEncoder = commandEncoder.beginRenderPass( pass.passDescriptor ); + + passEncoder.executeBundles( pass.renderBundles ); + + passEncoder.end(); + + } + + } + +} + +const _compareToWebGPU = { + [ NeverCompare ]: 'never', + [ LessCompare ]: 'less', + [ EqualCompare ]: 'equal', + [ LessEqualCompare ]: 'less-equal', + [ GreaterCompare ]: 'greater', + [ GreaterEqualCompare ]: 'greater-equal', + [ AlwaysCompare ]: 'always', + [ NotEqualCompare ]: 'not-equal' +}; + +const _flipMap = [ 0, 1, 3, 2, 4, 5 ]; + +/** + * A WebGPU backend utility module for managing textures. + * + * @private + */ +class WebGPUTextureUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGPUBackend} backend - The WebGPU backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGPU backend. + * + * @type {WebGPUBackend} + */ + this.backend = backend; + + /** + * A reference to the pass utils. + * + * @type {?WebGPUTexturePassUtils} + * @default null + */ + this._passUtils = null; + + /** + * A dictionary for managing default textures. The key + * is the texture format, the value the texture object. + * + * @type {Object} + */ + this.defaultTexture = {}; + + /** + * A dictionary for managing default cube textures. The key + * is the texture format, the value the texture object. + * + * @type {Object} + */ + this.defaultCubeTexture = {}; + + /** + * A default video frame. + * + * @type {?VideoFrame} + * @default null + */ + this.defaultVideoFrame = null; + + /** + * Represents the color attachment of the default framebuffer. + * + * @type {?GPUTexture} + * @default null + */ + this.colorBuffer = null; + + /** + * Represents the depth attachment of the default framebuffer. + * + * @type {DepthTexture} + */ + this.depthTexture = new DepthTexture(); + this.depthTexture.name = 'depthBuffer'; + + } + + /** + * Creates a GPU sampler for the given texture. + * + * @param {Texture} texture - The texture to create the sampler for. + */ + createSampler( texture ) { + + const backend = this.backend; + const device = backend.device; + + const textureGPU = backend.get( texture ); + + const samplerDescriptorGPU = { + addressModeU: this._convertAddressMode( texture.wrapS ), + addressModeV: this._convertAddressMode( texture.wrapT ), + addressModeW: this._convertAddressMode( texture.wrapR ), + magFilter: this._convertFilterMode( texture.magFilter ), + minFilter: this._convertFilterMode( texture.minFilter ), + mipmapFilter: this._convertFilterMode( texture.minFilter ), + maxAnisotropy: 1 + }; + + // anisotropy can only be used when all filter modes are set to linear. + + if ( samplerDescriptorGPU.magFilter === GPUFilterMode.Linear && samplerDescriptorGPU.minFilter === GPUFilterMode.Linear && samplerDescriptorGPU.mipmapFilter === GPUFilterMode.Linear ) { + + samplerDescriptorGPU.maxAnisotropy = texture.anisotropy; + + } + + if ( texture.isDepthTexture && texture.compareFunction !== null ) { + + samplerDescriptorGPU.compare = _compareToWebGPU[ texture.compareFunction ]; + + } + + textureGPU.sampler = device.createSampler( samplerDescriptorGPU ); + + } + + /** + * Creates a default texture for the given texture that can be used + * as a placeholder until the actual texture is ready for usage. + * + * @param {Texture} texture - The texture to create a default texture for. + */ + createDefaultTexture( texture ) { + + let textureGPU; + + const format = getFormat( texture ); + + if ( texture.isCubeTexture ) { + + textureGPU = this._getDefaultCubeTextureGPU( format ); + + } else if ( texture.isVideoTexture ) { + + this.backend.get( texture ).externalTexture = this._getDefaultVideoFrame(); + + } else { + + textureGPU = this._getDefaultTextureGPU( format ); + + } + + this.backend.get( texture ).texture = textureGPU; + + } + + /** + * Defines a texture on the GPU for the given texture object. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + createTexture( texture, options = {} ) { + + const backend = this.backend; + const textureData = backend.get( texture ); + + if ( textureData.initialized ) { + + throw new Error( 'WebGPUTextureUtils: Texture already initialized.' ); + + } + + if ( options.needsMipmaps === undefined ) options.needsMipmaps = false; + if ( options.levels === undefined ) options.levels = 1; + if ( options.depth === undefined ) options.depth = 1; + + const { width, height, depth, levels } = options; + + if ( texture.isFramebufferTexture ) { + + if ( options.renderTarget ) { + + options.format = this.backend.utils.getCurrentColorFormat( options.renderTarget ); + + } else { + + options.format = this.backend.utils.getPreferredCanvasFormat(); + + } + + } + + const dimension = this._getDimension( texture ); + const format = texture.internalFormat || options.format || getFormat( texture, backend.device ); + + textureData.format = format; + + const { samples, primarySamples, isMSAA } = backend.utils.getTextureSampleData( texture ); + + let usage = GPUTextureUsage.TEXTURE_BINDING | GPUTextureUsage.COPY_DST | GPUTextureUsage.COPY_SRC; + + if ( texture.isStorageTexture === true ) { + + usage |= GPUTextureUsage.STORAGE_BINDING; + + } + + if ( texture.isCompressedTexture !== true && texture.isCompressedArrayTexture !== true ) { + + usage |= GPUTextureUsage.RENDER_ATTACHMENT; + + } + + const textureDescriptorGPU = { + label: texture.name, + size: { + width: width, + height: height, + depthOrArrayLayers: depth, + }, + mipLevelCount: levels, + sampleCount: primarySamples, + dimension: dimension, + format: format, + usage: usage + }; + + // texture creation + + if ( texture.isVideoTexture ) { + + const video = texture.source.data; + const videoFrame = new VideoFrame( video ); + + textureDescriptorGPU.size.width = videoFrame.displayWidth; + textureDescriptorGPU.size.height = videoFrame.displayHeight; + + videoFrame.close(); + + textureData.externalTexture = video; + + } else { + + if ( format === undefined ) { + + console.warn( 'WebGPURenderer: Texture format not supported.' ); + + this.createDefaultTexture( texture ); + return; + + } + + if ( texture.isCubeTexture ) { + + textureDescriptorGPU.textureBindingViewDimension = GPUTextureViewDimension.Cube; + + } + + textureData.texture = backend.device.createTexture( textureDescriptorGPU ); + + } + + if ( isMSAA ) { + + const msaaTextureDescriptorGPU = Object.assign( {}, textureDescriptorGPU ); + + msaaTextureDescriptorGPU.label = msaaTextureDescriptorGPU.label + '-msaa'; + msaaTextureDescriptorGPU.sampleCount = samples; + + textureData.msaaTexture = backend.device.createTexture( msaaTextureDescriptorGPU ); + + } + + textureData.initialized = true; + + textureData.textureDescriptorGPU = textureDescriptorGPU; + + } + + /** + * Destroys the GPU data for the given texture object. + * + * @param {Texture} texture - The texture. + */ + destroyTexture( texture ) { + + const backend = this.backend; + const textureData = backend.get( texture ); + + if ( textureData.texture !== undefined ) textureData.texture.destroy(); + + if ( textureData.msaaTexture !== undefined ) textureData.msaaTexture.destroy(); + + backend.delete( texture ); + + } + + /** + * Destroys the GPU sampler for the given texture. + * + * @param {Texture} texture - The texture to destroy the sampler for. + */ + destroySampler( texture ) { + + const backend = this.backend; + const textureData = backend.get( texture ); + + delete textureData.sampler; + + } + + /** + * Generates mipmaps for the given texture. + * + * @param {Texture} texture - The texture. + */ + generateMipmaps( texture ) { + + const textureData = this.backend.get( texture ); + + if ( texture.isCubeTexture ) { + + for ( let i = 0; i < 6; i ++ ) { + + this._generateMipmaps( textureData.texture, textureData.textureDescriptorGPU, i ); + + } + + } else { + + const depth = texture.image.depth || 1; + + for ( let i = 0; i < depth; i ++ ) { + + this._generateMipmaps( textureData.texture, textureData.textureDescriptorGPU, i ); + + } + + } + + } + + /** + * Returns the color buffer representing the color + * attachment of the default framebuffer. + * + * @return {GPUTexture} The color buffer. + */ + getColorBuffer() { + + if ( this.colorBuffer ) this.colorBuffer.destroy(); + + const backend = this.backend; + const { width, height } = backend.getDrawingBufferSize(); + + this.colorBuffer = backend.device.createTexture( { + label: 'colorBuffer', + size: { + width: width, + height: height, + depthOrArrayLayers: 1 + }, + sampleCount: backend.utils.getSampleCount( backend.renderer.samples ), + format: backend.utils.getPreferredCanvasFormat(), + usage: GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.COPY_SRC + } ); + + return this.colorBuffer; + + } + + /** + * Returns the depth buffer representing the depth + * attachment of the default framebuffer. + * + * @param {boolean} [depth=true] - Whether depth is enabled or not. + * @param {boolean} [stencil=false] - Whether stencil is enabled or not. + * @return {GPUTexture} The depth buffer. + */ + getDepthBuffer( depth = true, stencil = false ) { + + const backend = this.backend; + const { width, height } = backend.getDrawingBufferSize(); + + const depthTexture = this.depthTexture; + const depthTextureGPU = backend.get( depthTexture ).texture; + + let format, type; + + if ( stencil ) { + + format = DepthStencilFormat; + type = UnsignedInt248Type; + + } else if ( depth ) { + + format = DepthFormat; + type = UnsignedIntType; + + } + + if ( depthTextureGPU !== undefined ) { + + if ( depthTexture.image.width === width && depthTexture.image.height === height && depthTexture.format === format && depthTexture.type === type ) { + + return depthTextureGPU; + + } + + this.destroyTexture( depthTexture ); + + } + + depthTexture.name = 'depthBuffer'; + depthTexture.format = format; + depthTexture.type = type; + depthTexture.image.width = width; + depthTexture.image.height = height; + + this.createTexture( depthTexture, { width, height } ); + + return backend.get( depthTexture ).texture; + + } + + /** + * Uploads the updated texture data to the GPU. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + updateTexture( texture, options ) { + + const textureData = this.backend.get( texture ); + + const { textureDescriptorGPU } = textureData; + + if ( texture.isRenderTargetTexture || ( textureDescriptorGPU === undefined /* unsupported texture format */ ) ) + return; + + // transfer texture data + + if ( texture.isDataTexture ) { + + this._copyBufferToTexture( options.image, textureData.texture, textureDescriptorGPU, 0, texture.flipY ); + + } else if ( texture.isArrayTexture || texture.isDataArrayTexture || texture.isData3DTexture ) { + + for ( let i = 0; i < options.image.depth; i ++ ) { + + this._copyBufferToTexture( options.image, textureData.texture, textureDescriptorGPU, i, texture.flipY, i ); + + } + + } else if ( texture.isCompressedTexture || texture.isCompressedArrayTexture ) { + + this._copyCompressedBufferToTexture( texture.mipmaps, textureData.texture, textureDescriptorGPU ); + + } else if ( texture.isCubeTexture ) { + + this._copyCubeMapToTexture( options.images, textureData.texture, textureDescriptorGPU, texture.flipY, texture.premultiplyAlpha ); + + } else if ( texture.isVideoTexture ) { + + const video = texture.source.data; + + textureData.externalTexture = video; + + } else { + + this._copyImageToTexture( options.image, textureData.texture, textureDescriptorGPU, 0, texture.flipY, texture.premultiplyAlpha ); + + } + + // + + textureData.version = texture.version; + + if ( texture.onUpdate ) texture.onUpdate( texture ); + + } + + /** + * Returns texture data as a typed array. + * + * @async + * @param {Texture} texture - The texture to copy. + * @param {number} x - The x coordinate of the copy origin. + * @param {number} y - The y coordinate of the copy origin. + * @param {number} width - The width of the copy. + * @param {number} height - The height of the copy. + * @param {number} faceIndex - The face index. + * @return {Promise} A Promise that resolves with a typed array when the copy operation has finished. + */ + async copyTextureToBuffer( texture, x, y, width, height, faceIndex ) { + + const device = this.backend.device; + + const textureData = this.backend.get( texture ); + const textureGPU = textureData.texture; + const format = textureData.textureDescriptorGPU.format; + const bytesPerTexel = this._getBytesPerTexel( format ); + + let bytesPerRow = width * bytesPerTexel; + bytesPerRow = Math.ceil( bytesPerRow / 256 ) * 256; // Align to 256 bytes + + const readBuffer = device.createBuffer( + { + size: width * height * bytesPerTexel, + usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ + } + ); + + const encoder = device.createCommandEncoder(); + + encoder.copyTextureToBuffer( + { + texture: textureGPU, + origin: { x, y, z: faceIndex }, + }, + { + buffer: readBuffer, + bytesPerRow: bytesPerRow + }, + { + width: width, + height: height + } + + ); + + const typedArrayType = this._getTypedArrayType( format ); + + device.queue.submit( [ encoder.finish() ] ); + + await readBuffer.mapAsync( GPUMapMode.READ ); + + const buffer = readBuffer.getMappedRange(); + + return new typedArrayType( buffer ); + + } + + /** + * Returns the default GPU texture for the given format. + * + * @private + * @param {string} format - The GPU format. + * @return {GPUTexture} The GPU texture. + */ + _getDefaultTextureGPU( format ) { + + let defaultTexture = this.defaultTexture[ format ]; + + if ( defaultTexture === undefined ) { + + const texture = new Texture(); + texture.minFilter = NearestFilter; + texture.magFilter = NearestFilter; + + this.createTexture( texture, { width: 1, height: 1, format } ); + + this.defaultTexture[ format ] = defaultTexture = texture; + + } + + return this.backend.get( defaultTexture ).texture; + + } + + /** + * Returns the default GPU cube texture for the given format. + * + * @private + * @param {string} format - The GPU format. + * @return {GPUTexture} The GPU texture. + */ + _getDefaultCubeTextureGPU( format ) { + + let defaultCubeTexture = this.defaultTexture[ format ]; + + if ( defaultCubeTexture === undefined ) { + + const texture = new CubeTexture(); + texture.minFilter = NearestFilter; + texture.magFilter = NearestFilter; + + this.createTexture( texture, { width: 1, height: 1, depth: 6 } ); + + this.defaultCubeTexture[ format ] = defaultCubeTexture = texture; + + } + + return this.backend.get( defaultCubeTexture ).texture; + + } + + /** + * Returns the default video frame used as default data in context of video textures. + * + * @private + * @return {VideoFrame} The video frame. + */ + _getDefaultVideoFrame() { + + let defaultVideoFrame = this.defaultVideoFrame; + + if ( defaultVideoFrame === null ) { + + const init = { + timestamp: 0, + codedWidth: 1, + codedHeight: 1, + format: 'RGBA', + }; + + this.defaultVideoFrame = defaultVideoFrame = new VideoFrame( new Uint8Array( [ 0, 0, 0, 0xff ] ), init ); + + } + + return defaultVideoFrame; + + } + + /** + * Uploads cube texture image data to the GPU memory. + * + * @private + * @param {Array} images - The cube image data. + * @param {GPUTexture} textureGPU - The GPU texture. + * @param {Object} textureDescriptorGPU - The GPU texture descriptor. + * @param {boolean} flipY - Whether to flip texture data along their vertical axis or not. + * @param {boolean} premultiplyAlpha - Whether the texture should have its RGB channels premultiplied by the alpha channel or not. + */ + _copyCubeMapToTexture( images, textureGPU, textureDescriptorGPU, flipY, premultiplyAlpha ) { + + for ( let i = 0; i < 6; i ++ ) { + + const image = images[ i ]; + + const flipIndex = flipY === true ? _flipMap[ i ] : i; + + if ( image.isDataTexture ) { + + this._copyBufferToTexture( image.image, textureGPU, textureDescriptorGPU, flipIndex, flipY ); + + } else { + + this._copyImageToTexture( image, textureGPU, textureDescriptorGPU, flipIndex, flipY, premultiplyAlpha ); + + } + + } + + } + + /** + * Uploads texture image data to the GPU memory. + * + * @private + * @param {HTMLImageElement|ImageBitmap|HTMLCanvasElement} image - The image data. + * @param {GPUTexture} textureGPU - The GPU texture. + * @param {Object} textureDescriptorGPU - The GPU texture descriptor. + * @param {number} originDepth - The origin depth. + * @param {boolean} flipY - Whether to flip texture data along their vertical axis or not. + * @param {boolean} premultiplyAlpha - Whether the texture should have its RGB channels premultiplied by the alpha channel or not. + */ + _copyImageToTexture( image, textureGPU, textureDescriptorGPU, originDepth, flipY, premultiplyAlpha ) { + + const device = this.backend.device; + + device.queue.copyExternalImageToTexture( + { + source: image, + flipY: flipY + }, { + texture: textureGPU, + mipLevel: 0, + origin: { x: 0, y: 0, z: originDepth }, + premultipliedAlpha: premultiplyAlpha + }, { + width: image.width, + height: image.height, + depthOrArrayLayers: 1 + } + ); + + } + + /** + * Returns the pass utils singleton. + * + * @private + * @return {WebGPUTexturePassUtils} The utils instance. + */ + _getPassUtils() { + + let passUtils = this._passUtils; + + if ( passUtils === null ) { + + this._passUtils = passUtils = new WebGPUTexturePassUtils( this.backend.device ); + + } + + return passUtils; + + } + + /** + * Generates mipmaps for the given GPU texture. + * + * @private + * @param {GPUTexture} textureGPU - The GPU texture object. + * @param {Object} textureDescriptorGPU - The texture descriptor. + * @param {number} [baseArrayLayer=0] - The index of the first array layer accessible to the texture view. + */ + _generateMipmaps( textureGPU, textureDescriptorGPU, baseArrayLayer = 0 ) { + + this._getPassUtils().generateMipmaps( textureGPU, textureDescriptorGPU, baseArrayLayer ); + + } + + /** + * Flip the contents of the given GPU texture along its vertical axis. + * + * @private + * @param {GPUTexture} textureGPU - The GPU texture object. + * @param {Object} textureDescriptorGPU - The texture descriptor. + * @param {number} [originDepth=0] - The origin depth. + */ + _flipY( textureGPU, textureDescriptorGPU, originDepth = 0 ) { + + this._getPassUtils().flipY( textureGPU, textureDescriptorGPU, originDepth ); + + } + + /** + * Uploads texture buffer data to the GPU memory. + * + * @private + * @param {Object} image - An object defining the image buffer data. + * @param {GPUTexture} textureGPU - The GPU texture. + * @param {Object} textureDescriptorGPU - The GPU texture descriptor. + * @param {number} originDepth - The origin depth. + * @param {boolean} flipY - Whether to flip texture data along their vertical axis or not. + * @param {number} [depth=0] - TODO. + */ + _copyBufferToTexture( image, textureGPU, textureDescriptorGPU, originDepth, flipY, depth = 0 ) { + + // @TODO: Consider to use GPUCommandEncoder.copyBufferToTexture() + // @TODO: Consider to support valid buffer layouts with other formats like RGB + + const device = this.backend.device; + + const data = image.data; + + const bytesPerTexel = this._getBytesPerTexel( textureDescriptorGPU.format ); + const bytesPerRow = image.width * bytesPerTexel; + + device.queue.writeTexture( + { + texture: textureGPU, + mipLevel: 0, + origin: { x: 0, y: 0, z: originDepth } + }, + data, + { + offset: image.width * image.height * bytesPerTexel * depth, + bytesPerRow + }, + { + width: image.width, + height: image.height, + depthOrArrayLayers: 1 + } ); + + if ( flipY === true ) { + + this._flipY( textureGPU, textureDescriptorGPU, originDepth ); + + } + + } + + /** + * Uploads compressed texture data to the GPU memory. + * + * @private + * @param {Array} mipmaps - An array with mipmap data. + * @param {GPUTexture} textureGPU - The GPU texture. + * @param {Object} textureDescriptorGPU - The GPU texture descriptor. + */ + _copyCompressedBufferToTexture( mipmaps, textureGPU, textureDescriptorGPU ) { + + // @TODO: Consider to use GPUCommandEncoder.copyBufferToTexture() + + const device = this.backend.device; + + const blockData = this._getBlockData( textureDescriptorGPU.format ); + const isArrayTexture = textureDescriptorGPU.size.depthOrArrayLayers > 1; + + for ( let i = 0; i < mipmaps.length; i ++ ) { + + const mipmap = mipmaps[ i ]; + + const width = mipmap.width; + const height = mipmap.height; + const depth = isArrayTexture ? textureDescriptorGPU.size.depthOrArrayLayers : 1; + + const bytesPerRow = Math.ceil( width / blockData.width ) * blockData.byteLength; + const bytesPerImage = bytesPerRow * Math.ceil( height / blockData.height ); + + for ( let j = 0; j < depth; j ++ ) { + + device.queue.writeTexture( + { + texture: textureGPU, + mipLevel: i, + origin: { x: 0, y: 0, z: j } + }, + mipmap.data, + { + offset: j * bytesPerImage, + bytesPerRow, + rowsPerImage: Math.ceil( height / blockData.height ) + }, + { + width: Math.ceil( width / blockData.width ) * blockData.width, + height: Math.ceil( height / blockData.height ) * blockData.height, + depthOrArrayLayers: 1 + } + ); + + } + + } + + } + + /** + * This method is only relevant for compressed texture formats. It returns a block + * data descriptor for the given GPU compressed texture format. + * + * @private + * @param {string} format - The GPU compressed texture format. + * @return {Object} The block data descriptor. + */ + _getBlockData( format ) { + + if ( format === GPUTextureFormat.BC1RGBAUnorm || format === GPUTextureFormat.BC1RGBAUnormSRGB ) return { byteLength: 8, width: 4, height: 4 }; // DXT1 + if ( format === GPUTextureFormat.BC2RGBAUnorm || format === GPUTextureFormat.BC2RGBAUnormSRGB ) return { byteLength: 16, width: 4, height: 4 }; // DXT3 + if ( format === GPUTextureFormat.BC3RGBAUnorm || format === GPUTextureFormat.BC3RGBAUnormSRGB ) return { byteLength: 16, width: 4, height: 4 }; // DXT5 + if ( format === GPUTextureFormat.BC4RUnorm || format === GPUTextureFormat.BC4RSnorm ) return { byteLength: 8, width: 4, height: 4 }; // RGTC1 + if ( format === GPUTextureFormat.BC5RGUnorm || format === GPUTextureFormat.BC5RGSnorm ) return { byteLength: 16, width: 4, height: 4 }; // RGTC2 + if ( format === GPUTextureFormat.BC6HRGBUFloat || format === GPUTextureFormat.BC6HRGBFloat ) return { byteLength: 16, width: 4, height: 4 }; // BPTC (float) + if ( format === GPUTextureFormat.BC7RGBAUnorm || format === GPUTextureFormat.BC7RGBAUnormSRGB ) return { byteLength: 16, width: 4, height: 4 }; // BPTC (unorm) + + if ( format === GPUTextureFormat.ETC2RGB8Unorm || format === GPUTextureFormat.ETC2RGB8UnormSRGB ) return { byteLength: 8, width: 4, height: 4 }; + if ( format === GPUTextureFormat.ETC2RGB8A1Unorm || format === GPUTextureFormat.ETC2RGB8A1UnormSRGB ) return { byteLength: 8, width: 4, height: 4 }; + if ( format === GPUTextureFormat.ETC2RGBA8Unorm || format === GPUTextureFormat.ETC2RGBA8UnormSRGB ) return { byteLength: 16, width: 4, height: 4 }; + if ( format === GPUTextureFormat.EACR11Unorm ) return { byteLength: 8, width: 4, height: 4 }; + if ( format === GPUTextureFormat.EACR11Snorm ) return { byteLength: 8, width: 4, height: 4 }; + if ( format === GPUTextureFormat.EACRG11Unorm ) return { byteLength: 16, width: 4, height: 4 }; + if ( format === GPUTextureFormat.EACRG11Snorm ) return { byteLength: 16, width: 4, height: 4 }; + + if ( format === GPUTextureFormat.ASTC4x4Unorm || format === GPUTextureFormat.ASTC4x4UnormSRGB ) return { byteLength: 16, width: 4, height: 4 }; + if ( format === GPUTextureFormat.ASTC5x4Unorm || format === GPUTextureFormat.ASTC5x4UnormSRGB ) return { byteLength: 16, width: 5, height: 4 }; + if ( format === GPUTextureFormat.ASTC5x5Unorm || format === GPUTextureFormat.ASTC5x5UnormSRGB ) return { byteLength: 16, width: 5, height: 5 }; + if ( format === GPUTextureFormat.ASTC6x5Unorm || format === GPUTextureFormat.ASTC6x5UnormSRGB ) return { byteLength: 16, width: 6, height: 5 }; + if ( format === GPUTextureFormat.ASTC6x6Unorm || format === GPUTextureFormat.ASTC6x6UnormSRGB ) return { byteLength: 16, width: 6, height: 6 }; + if ( format === GPUTextureFormat.ASTC8x5Unorm || format === GPUTextureFormat.ASTC8x5UnormSRGB ) return { byteLength: 16, width: 8, height: 5 }; + if ( format === GPUTextureFormat.ASTC8x6Unorm || format === GPUTextureFormat.ASTC8x6UnormSRGB ) return { byteLength: 16, width: 8, height: 6 }; + if ( format === GPUTextureFormat.ASTC8x8Unorm || format === GPUTextureFormat.ASTC8x8UnormSRGB ) return { byteLength: 16, width: 8, height: 8 }; + if ( format === GPUTextureFormat.ASTC10x5Unorm || format === GPUTextureFormat.ASTC10x5UnormSRGB ) return { byteLength: 16, width: 10, height: 5 }; + if ( format === GPUTextureFormat.ASTC10x6Unorm || format === GPUTextureFormat.ASTC10x6UnormSRGB ) return { byteLength: 16, width: 10, height: 6 }; + if ( format === GPUTextureFormat.ASTC10x8Unorm || format === GPUTextureFormat.ASTC10x8UnormSRGB ) return { byteLength: 16, width: 10, height: 8 }; + if ( format === GPUTextureFormat.ASTC10x10Unorm || format === GPUTextureFormat.ASTC10x10UnormSRGB ) return { byteLength: 16, width: 10, height: 10 }; + if ( format === GPUTextureFormat.ASTC12x10Unorm || format === GPUTextureFormat.ASTC12x10UnormSRGB ) return { byteLength: 16, width: 12, height: 10 }; + if ( format === GPUTextureFormat.ASTC12x12Unorm || format === GPUTextureFormat.ASTC12x12UnormSRGB ) return { byteLength: 16, width: 12, height: 12 }; + + } + + /** + * Converts the three.js uv wrapping constants to GPU address mode constants. + * + * @private + * @param {number} value - The three.js constant defining a uv wrapping mode. + * @return {string} The GPU address mode. + */ + _convertAddressMode( value ) { + + let addressMode = GPUAddressMode.ClampToEdge; + + if ( value === RepeatWrapping ) { + + addressMode = GPUAddressMode.Repeat; + + } else if ( value === MirroredRepeatWrapping ) { + + addressMode = GPUAddressMode.MirrorRepeat; + + } + + return addressMode; + + } + + /** + * Converts the three.js filter constants to GPU filter constants. + * + * @private + * @param {number} value - The three.js constant defining a filter mode. + * @return {string} The GPU filter mode. + */ + _convertFilterMode( value ) { + + let filterMode = GPUFilterMode.Linear; + + if ( value === NearestFilter || value === NearestMipmapNearestFilter || value === NearestMipmapLinearFilter ) { + + filterMode = GPUFilterMode.Nearest; + + } + + return filterMode; + + } + + /** + * Returns the bytes-per-texel value for the given GPU texture format. + * + * @private + * @param {string} format - The GPU texture format. + * @return {number} The bytes-per-texel. + */ + _getBytesPerTexel( format ) { + + // 8-bit formats + if ( format === GPUTextureFormat.R8Unorm || + format === GPUTextureFormat.R8Snorm || + format === GPUTextureFormat.R8Uint || + format === GPUTextureFormat.R8Sint ) return 1; + + // 16-bit formats + if ( format === GPUTextureFormat.R16Uint || + format === GPUTextureFormat.R16Sint || + format === GPUTextureFormat.R16Float || + format === GPUTextureFormat.RG8Unorm || + format === GPUTextureFormat.RG8Snorm || + format === GPUTextureFormat.RG8Uint || + format === GPUTextureFormat.RG8Sint ) return 2; + + // 32-bit formats + if ( format === GPUTextureFormat.R32Uint || + format === GPUTextureFormat.R32Sint || + format === GPUTextureFormat.R32Float || + format === GPUTextureFormat.RG16Uint || + format === GPUTextureFormat.RG16Sint || + format === GPUTextureFormat.RG16Float || + format === GPUTextureFormat.RGBA8Unorm || + format === GPUTextureFormat.RGBA8UnormSRGB || + format === GPUTextureFormat.RGBA8Snorm || + format === GPUTextureFormat.RGBA8Uint || + format === GPUTextureFormat.RGBA8Sint || + format === GPUTextureFormat.BGRA8Unorm || + format === GPUTextureFormat.BGRA8UnormSRGB || + // Packed 32-bit formats + format === GPUTextureFormat.RGB9E5UFloat || + format === GPUTextureFormat.RGB10A2Unorm || + format === GPUTextureFormat.RG11B10UFloat || + format === GPUTextureFormat.Depth32Float || + format === GPUTextureFormat.Depth24Plus || + format === GPUTextureFormat.Depth24PlusStencil8 || + format === GPUTextureFormat.Depth32FloatStencil8 ) return 4; + + // 64-bit formats + if ( format === GPUTextureFormat.RG32Uint || + format === GPUTextureFormat.RG32Sint || + format === GPUTextureFormat.RG32Float || + format === GPUTextureFormat.RGBA16Uint || + format === GPUTextureFormat.RGBA16Sint || + format === GPUTextureFormat.RGBA16Float ) return 8; + + // 128-bit formats + if ( format === GPUTextureFormat.RGBA32Uint || + format === GPUTextureFormat.RGBA32Sint || + format === GPUTextureFormat.RGBA32Float ) return 16; + + + } + + /** + * Returns the corresponding typed array type for the given GPU texture format. + * + * @private + * @param {string} format - The GPU texture format. + * @return {TypedArray.constructor} The typed array type. + */ + _getTypedArrayType( format ) { + + if ( format === GPUTextureFormat.R8Uint ) return Uint8Array; + if ( format === GPUTextureFormat.R8Sint ) return Int8Array; + if ( format === GPUTextureFormat.R8Unorm ) return Uint8Array; + if ( format === GPUTextureFormat.R8Snorm ) return Int8Array; + if ( format === GPUTextureFormat.RG8Uint ) return Uint8Array; + if ( format === GPUTextureFormat.RG8Sint ) return Int8Array; + if ( format === GPUTextureFormat.RG8Unorm ) return Uint8Array; + if ( format === GPUTextureFormat.RG8Snorm ) return Int8Array; + if ( format === GPUTextureFormat.RGBA8Uint ) return Uint8Array; + if ( format === GPUTextureFormat.RGBA8Sint ) return Int8Array; + if ( format === GPUTextureFormat.RGBA8Unorm ) return Uint8Array; + if ( format === GPUTextureFormat.RGBA8Snorm ) return Int8Array; + + + if ( format === GPUTextureFormat.R16Uint ) return Uint16Array; + if ( format === GPUTextureFormat.R16Sint ) return Int16Array; + if ( format === GPUTextureFormat.RG16Uint ) return Uint16Array; + if ( format === GPUTextureFormat.RG16Sint ) return Int16Array; + if ( format === GPUTextureFormat.RGBA16Uint ) return Uint16Array; + if ( format === GPUTextureFormat.RGBA16Sint ) return Int16Array; + if ( format === GPUTextureFormat.R16Float ) return Uint16Array; + if ( format === GPUTextureFormat.RG16Float ) return Uint16Array; + if ( format === GPUTextureFormat.RGBA16Float ) return Uint16Array; + + + if ( format === GPUTextureFormat.R32Uint ) return Uint32Array; + if ( format === GPUTextureFormat.R32Sint ) return Int32Array; + if ( format === GPUTextureFormat.R32Float ) return Float32Array; + if ( format === GPUTextureFormat.RG32Uint ) return Uint32Array; + if ( format === GPUTextureFormat.RG32Sint ) return Int32Array; + if ( format === GPUTextureFormat.RG32Float ) return Float32Array; + if ( format === GPUTextureFormat.RGBA32Uint ) return Uint32Array; + if ( format === GPUTextureFormat.RGBA32Sint ) return Int32Array; + if ( format === GPUTextureFormat.RGBA32Float ) return Float32Array; + + if ( format === GPUTextureFormat.BGRA8Unorm ) return Uint8Array; + if ( format === GPUTextureFormat.BGRA8UnormSRGB ) return Uint8Array; + if ( format === GPUTextureFormat.RGB10A2Unorm ) return Uint32Array; + if ( format === GPUTextureFormat.RGB9E5UFloat ) return Uint32Array; + if ( format === GPUTextureFormat.RG11B10UFloat ) return Uint32Array; + + if ( format === GPUTextureFormat.Depth32Float ) return Float32Array; + if ( format === GPUTextureFormat.Depth24Plus ) return Uint32Array; + if ( format === GPUTextureFormat.Depth24PlusStencil8 ) return Uint32Array; + if ( format === GPUTextureFormat.Depth32FloatStencil8 ) return Float32Array; + + } + + /** + * Returns the GPU dimensions for the given texture. + * + * @private + * @param {Texture} texture - The texture. + * @return {string} The GPU dimension. + */ + _getDimension( texture ) { + + let dimension; + + if ( texture.isData3DTexture ) { + + dimension = GPUTextureDimension.ThreeD; + + } else { + + dimension = GPUTextureDimension.TwoD; + + } + + return dimension; + + } + +} + +/** + * Returns the GPU format for the given texture. + * + * @param {Texture} texture - The texture. + * @param {?GPUDevice} [device=null] - The GPU device which is used for feature detection. + * It is not necessary to apply the device for most formats. + * @return {string} The GPU format. + */ +function getFormat( texture, device = null ) { + + const format = texture.format; + const type = texture.type; + const colorSpace = texture.colorSpace; + const transfer = ColorManagement.getTransfer( colorSpace ); + + let formatGPU; + + if ( texture.isCompressedTexture === true || texture.isCompressedArrayTexture === true ) { + + switch ( format ) { + + case RGBA_S3TC_DXT1_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.BC1RGBAUnormSRGB : GPUTextureFormat.BC1RGBAUnorm; + break; + + case RGBA_S3TC_DXT3_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.BC2RGBAUnormSRGB : GPUTextureFormat.BC2RGBAUnorm; + break; + + case RGBA_S3TC_DXT5_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.BC3RGBAUnormSRGB : GPUTextureFormat.BC3RGBAUnorm; + break; + + case RGB_ETC2_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ETC2RGB8UnormSRGB : GPUTextureFormat.ETC2RGB8Unorm; + break; + + case RGBA_ETC2_EAC_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ETC2RGBA8UnormSRGB : GPUTextureFormat.ETC2RGBA8Unorm; + break; + + case RGBA_ASTC_4x4_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC4x4UnormSRGB : GPUTextureFormat.ASTC4x4Unorm; + break; + + case RGBA_ASTC_5x4_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC5x4UnormSRGB : GPUTextureFormat.ASTC5x4Unorm; + break; + + case RGBA_ASTC_5x5_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC5x5UnormSRGB : GPUTextureFormat.ASTC5x5Unorm; + break; + + case RGBA_ASTC_6x5_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC6x5UnormSRGB : GPUTextureFormat.ASTC6x5Unorm; + break; + + case RGBA_ASTC_6x6_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC6x6UnormSRGB : GPUTextureFormat.ASTC6x6Unorm; + break; + + case RGBA_ASTC_8x5_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC8x5UnormSRGB : GPUTextureFormat.ASTC8x5Unorm; + break; + + case RGBA_ASTC_8x6_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC8x6UnormSRGB : GPUTextureFormat.ASTC8x6Unorm; + break; + + case RGBA_ASTC_8x8_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC8x8UnormSRGB : GPUTextureFormat.ASTC8x8Unorm; + break; + + case RGBA_ASTC_10x5_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC10x5UnormSRGB : GPUTextureFormat.ASTC10x5Unorm; + break; + + case RGBA_ASTC_10x6_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC10x6UnormSRGB : GPUTextureFormat.ASTC10x6Unorm; + break; + + case RGBA_ASTC_10x8_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC10x8UnormSRGB : GPUTextureFormat.ASTC10x8Unorm; + break; + + case RGBA_ASTC_10x10_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC10x10UnormSRGB : GPUTextureFormat.ASTC10x10Unorm; + break; + + case RGBA_ASTC_12x10_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC12x10UnormSRGB : GPUTextureFormat.ASTC12x10Unorm; + break; + + case RGBA_ASTC_12x12_Format: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.ASTC12x12UnormSRGB : GPUTextureFormat.ASTC12x12Unorm; + break; + + case RGBAFormat: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.RGBA8UnormSRGB : GPUTextureFormat.RGBA8Unorm; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture format.', format ); + + } + + } else { + + switch ( format ) { + + case RGBAFormat: + + switch ( type ) { + + case ByteType: + formatGPU = GPUTextureFormat.RGBA8Snorm; + break; + + case ShortType: + formatGPU = GPUTextureFormat.RGBA16Sint; + break; + + case UnsignedShortType: + formatGPU = GPUTextureFormat.RGBA16Uint; + break; + case UnsignedIntType: + formatGPU = GPUTextureFormat.RGBA32Uint; + break; + + case IntType: + formatGPU = GPUTextureFormat.RGBA32Sint; + break; + + case UnsignedByteType: + formatGPU = ( transfer === SRGBTransfer ) ? GPUTextureFormat.RGBA8UnormSRGB : GPUTextureFormat.RGBA8Unorm; + break; + + case HalfFloatType: + formatGPU = GPUTextureFormat.RGBA16Float; + break; + + case FloatType: + formatGPU = GPUTextureFormat.RGBA32Float; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RGBAFormat.', type ); + + } + + break; + + case RGBFormat: + + switch ( type ) { + + case UnsignedInt5999Type: + formatGPU = GPUTextureFormat.RGB9E5UFloat; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RGBFormat.', type ); + + } + + break; + + case RedFormat: + + switch ( type ) { + + case ByteType: + formatGPU = GPUTextureFormat.R8Snorm; + break; + + case ShortType: + formatGPU = GPUTextureFormat.R16Sint; + break; + + case UnsignedShortType: + formatGPU = GPUTextureFormat.R16Uint; + break; + + case UnsignedIntType: + formatGPU = GPUTextureFormat.R32Uint; + break; + + case IntType: + formatGPU = GPUTextureFormat.R32Sint; + break; + + case UnsignedByteType: + formatGPU = GPUTextureFormat.R8Unorm; + break; + + case HalfFloatType: + formatGPU = GPUTextureFormat.R16Float; + break; + + case FloatType: + formatGPU = GPUTextureFormat.R32Float; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RedFormat.', type ); + + } + + break; + + case RGFormat: + + switch ( type ) { + + case ByteType: + formatGPU = GPUTextureFormat.RG8Snorm; + break; + + case ShortType: + formatGPU = GPUTextureFormat.RG16Sint; + break; + + case UnsignedShortType: + formatGPU = GPUTextureFormat.RG16Uint; + break; + + case UnsignedIntType: + formatGPU = GPUTextureFormat.RG32Uint; + break; + + case IntType: + formatGPU = GPUTextureFormat.RG32Sint; + break; + + case UnsignedByteType: + formatGPU = GPUTextureFormat.RG8Unorm; + break; + + case HalfFloatType: + formatGPU = GPUTextureFormat.RG16Float; + break; + + case FloatType: + formatGPU = GPUTextureFormat.RG32Float; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RGFormat.', type ); + + } + + break; + + case DepthFormat: + + switch ( type ) { + + case UnsignedShortType: + formatGPU = GPUTextureFormat.Depth16Unorm; + break; + + case UnsignedIntType: + formatGPU = GPUTextureFormat.Depth24Plus; + break; + + case FloatType: + formatGPU = GPUTextureFormat.Depth32Float; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with DepthFormat.', type ); + + } + + break; + + case DepthStencilFormat: + + switch ( type ) { + + case UnsignedInt248Type: + formatGPU = GPUTextureFormat.Depth24PlusStencil8; + break; + + case FloatType: + + if ( device && device.features.has( GPUFeatureName.Depth32FloatStencil8 ) === false ) { + + console.error( 'WebGPURenderer: Depth textures with DepthStencilFormat + FloatType can only be used with the "depth32float-stencil8" GPU feature.' ); + + } + + formatGPU = GPUTextureFormat.Depth32FloatStencil8; + + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with DepthStencilFormat.', type ); + + } + + break; + + case RedIntegerFormat: + + switch ( type ) { + + case IntType: + formatGPU = GPUTextureFormat.R32Sint; + break; + + case UnsignedIntType: + formatGPU = GPUTextureFormat.R32Uint; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RedIntegerFormat.', type ); + + } + + break; + + case RGIntegerFormat: + + switch ( type ) { + + case IntType: + formatGPU = GPUTextureFormat.RG32Sint; + break; + + case UnsignedIntType: + formatGPU = GPUTextureFormat.RG32Uint; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RGIntegerFormat.', type ); + + } + + break; + + case RGBAIntegerFormat: + + switch ( type ) { + + case IntType: + formatGPU = GPUTextureFormat.RGBA32Sint; + break; + + case UnsignedIntType: + formatGPU = GPUTextureFormat.RGBA32Uint; + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture type with RGBAIntegerFormat.', type ); + + } + + break; + + default: + console.error( 'WebGPURenderer: Unsupported texture format.', format ); + + } + + } + + return formatGPU; + +} + +const declarationRegexp = /^[fn]*\s*([a-z_0-9]+)?\s*\(([\s\S]*?)\)\s*[\-\>]*\s*([a-z_0-9]+(?:<[\s\S]+?>)?)/i; +const propertiesRegexp = /([a-z_0-9]+)\s*:\s*([a-z_0-9]+(?:<[\s\S]+?>)?)/ig; + +const wgslTypeLib$1 = { + 'f32': 'float', + 'i32': 'int', + 'u32': 'uint', + 'bool': 'bool', + + 'vec2': 'vec2', + 'vec2': 'ivec2', + 'vec2': 'uvec2', + 'vec2': 'bvec2', + + 'vec2f': 'vec2', + 'vec2i': 'ivec2', + 'vec2u': 'uvec2', + 'vec2b': 'bvec2', + + 'vec3': 'vec3', + 'vec3': 'ivec3', + 'vec3': 'uvec3', + 'vec3': 'bvec3', + + 'vec3f': 'vec3', + 'vec3i': 'ivec3', + 'vec3u': 'uvec3', + 'vec3b': 'bvec3', + + 'vec4': 'vec4', + 'vec4': 'ivec4', + 'vec4': 'uvec4', + 'vec4': 'bvec4', + + 'vec4f': 'vec4', + 'vec4i': 'ivec4', + 'vec4u': 'uvec4', + 'vec4b': 'bvec4', + + 'mat2x2': 'mat2', + 'mat2x2f': 'mat2', + + 'mat3x3': 'mat3', + 'mat3x3f': 'mat3', + + 'mat4x4': 'mat4', + 'mat4x4f': 'mat4', + + 'sampler': 'sampler', + + 'texture_1d': 'texture', + + 'texture_2d': 'texture', + 'texture_2d_array': 'texture', + 'texture_multisampled_2d': 'cubeTexture', + + 'texture_depth_2d': 'depthTexture', + 'texture_depth_2d_array': 'depthTexture', + 'texture_depth_multisampled_2d': 'depthTexture', + 'texture_depth_cube': 'depthTexture', + 'texture_depth_cube_array': 'depthTexture', + + 'texture_3d': 'texture3D', + + 'texture_cube': 'cubeTexture', + 'texture_cube_array': 'cubeTexture', + + 'texture_storage_1d': 'storageTexture', + 'texture_storage_2d': 'storageTexture', + 'texture_storage_2d_array': 'storageTexture', + 'texture_storage_3d': 'storageTexture' + +}; + +const parse = ( source ) => { + + source = source.trim(); + + const declaration = source.match( declarationRegexp ); + + if ( declaration !== null && declaration.length === 4 ) { + + const inputsCode = declaration[ 2 ]; + const propsMatches = []; + let match = null; + + while ( ( match = propertiesRegexp.exec( inputsCode ) ) !== null ) { + + propsMatches.push( { name: match[ 1 ], type: match[ 2 ] } ); + + } + + // Process matches to correctly pair names and types + const inputs = []; + for ( let i = 0; i < propsMatches.length; i ++ ) { + + const { name, type } = propsMatches[ i ]; + + let resolvedType = type; + + if ( resolvedType.startsWith( 'ptr' ) ) { + + resolvedType = 'pointer'; + + } else { + + if ( resolvedType.startsWith( 'texture' ) ) { + + resolvedType = type.split( '<' )[ 0 ]; + + } + + resolvedType = wgslTypeLib$1[ resolvedType ]; + + } + + inputs.push( new NodeFunctionInput( resolvedType, name ) ); + + } + + const blockCode = source.substring( declaration[ 0 ].length ); + const outputType = declaration[ 3 ] || 'void'; + + const name = declaration[ 1 ] !== undefined ? declaration[ 1 ] : ''; + const type = wgslTypeLib$1[ outputType ] || outputType; + + return { + type, + inputs, + name, + inputsCode, + blockCode, + outputType + }; + + } else { + + throw new Error( 'FunctionNode: Function is not a WGSL code.' ); + + } + +}; + +/** + * This class represents a WSL node function. + * + * @augments NodeFunction + */ +class WGSLNodeFunction extends NodeFunction { + + /** + * Constructs a new WGSL node function. + * + * @param {string} source - The WGSL source. + */ + constructor( source ) { + + const { type, inputs, name, inputsCode, blockCode, outputType } = parse( source ); + + super( type, inputs, name ); + + this.inputsCode = inputsCode; + this.blockCode = blockCode; + this.outputType = outputType; + + } + + /** + * This method returns the WGSL code of the node function. + * + * @param {string} [name=this.name] - The function's name. + * @return {string} The shader code. + */ + getCode( name = this.name ) { + + const outputType = this.outputType !== 'void' ? '-> ' + this.outputType : ''; + + return `fn ${ name } ( ${ this.inputsCode.trim() } ) ${ outputType }` + this.blockCode; + + } + +} + +/** + * A WGSL node parser. + * + * @augments NodeParser + */ +class WGSLNodeParser extends NodeParser { + + /** + * The method parses the given WGSL code an returns a node function. + * + * @param {string} source - The WGSL code. + * @return {WGSLNodeFunction} A node function. + */ + parseFunction( source ) { + + return new WGSLNodeFunction( source ); + + } + +} + +// GPUShaderStage is not defined in browsers not supporting WebGPU +const GPUShaderStage = ( typeof self !== 'undefined' ) ? self.GPUShaderStage : { VERTEX: 1, FRAGMENT: 2, COMPUTE: 4 }; + +const accessNames = { + [ NodeAccess.READ_ONLY ]: 'read', + [ NodeAccess.WRITE_ONLY ]: 'write', + [ NodeAccess.READ_WRITE ]: 'read_write' +}; + +const wrapNames = { + [ RepeatWrapping ]: 'repeat', + [ ClampToEdgeWrapping ]: 'clamp', + [ MirroredRepeatWrapping ]: 'mirror' +}; + +const gpuShaderStageLib = { + 'vertex': GPUShaderStage ? GPUShaderStage.VERTEX : 1, + 'fragment': GPUShaderStage ? GPUShaderStage.FRAGMENT : 2, + 'compute': GPUShaderStage ? GPUShaderStage.COMPUTE : 4 +}; + +const supports = { + instance: true, + swizzleAssign: false, + storageBuffer: true +}; + +const wgslFnOpLib = { + '^^': 'tsl_xor' +}; + +const wgslTypeLib = { + float: 'f32', + int: 'i32', + uint: 'u32', + bool: 'bool', + color: 'vec3', + + vec2: 'vec2', + ivec2: 'vec2', + uvec2: 'vec2', + bvec2: 'vec2', + + vec3: 'vec3', + ivec3: 'vec3', + uvec3: 'vec3', + bvec3: 'vec3', + + vec4: 'vec4', + ivec4: 'vec4', + uvec4: 'vec4', + bvec4: 'vec4', + + mat2: 'mat2x2', + mat3: 'mat3x3', + mat4: 'mat4x4' +}; + +const wgslCodeCache = {}; + +const wgslPolyfill = { + tsl_xor: new CodeNode( 'fn tsl_xor( a : bool, b : bool ) -> bool { return ( a || b ) && !( a && b ); }' ), + mod_float: new CodeNode( 'fn tsl_mod_float( x : f32, y : f32 ) -> f32 { return x - y * floor( x / y ); }' ), + mod_vec2: new CodeNode( 'fn tsl_mod_vec2( x : vec2f, y : vec2f ) -> vec2f { return x - y * floor( x / y ); }' ), + mod_vec3: new CodeNode( 'fn tsl_mod_vec3( x : vec3f, y : vec3f ) -> vec3f { return x - y * floor( x / y ); }' ), + mod_vec4: new CodeNode( 'fn tsl_mod_vec4( x : vec4f, y : vec4f ) -> vec4f { return x - y * floor( x / y ); }' ), + equals_bool: new CodeNode( 'fn tsl_equals_bool( a : bool, b : bool ) -> bool { return a == b; }' ), + equals_bvec2: new CodeNode( 'fn tsl_equals_bvec2( a : vec2f, b : vec2f ) -> vec2 { return vec2( a.x == b.x, a.y == b.y ); }' ), + equals_bvec3: new CodeNode( 'fn tsl_equals_bvec3( a : vec3f, b : vec3f ) -> vec3 { return vec3( a.x == b.x, a.y == b.y, a.z == b.z ); }' ), + equals_bvec4: new CodeNode( 'fn tsl_equals_bvec4( a : vec4f, b : vec4f ) -> vec4 { return vec4( a.x == b.x, a.y == b.y, a.z == b.z, a.w == b.w ); }' ), + repeatWrapping_float: new CodeNode( 'fn tsl_repeatWrapping_float( coord: f32 ) -> f32 { return fract( coord ); }' ), + mirrorWrapping_float: new CodeNode( 'fn tsl_mirrorWrapping_float( coord: f32 ) -> f32 { let mirrored = fract( coord * 0.5 ) * 2.0; return 1.0 - abs( 1.0 - mirrored ); }' ), + clampWrapping_float: new CodeNode( 'fn tsl_clampWrapping_float( coord: f32 ) -> f32 { return clamp( coord, 0.0, 1.0 ); }' ), + biquadraticTexture: new CodeNode( /* wgsl */` +fn tsl_biquadraticTexture( map : texture_2d, coord : vec2f, iRes : vec2u, level : u32 ) -> vec4f { + + let res = vec2f( iRes ); + + let uvScaled = coord * res; + let uvWrapping = ( ( uvScaled % res ) + res ) % res; + + // https://www.shadertoy.com/view/WtyXRy + + let uv = uvWrapping - 0.5; + let iuv = floor( uv ); + let f = fract( uv ); + + let rg1 = textureLoad( map, vec2u( iuv + vec2( 0.5, 0.5 ) ) % iRes, level ); + let rg2 = textureLoad( map, vec2u( iuv + vec2( 1.5, 0.5 ) ) % iRes, level ); + let rg3 = textureLoad( map, vec2u( iuv + vec2( 0.5, 1.5 ) ) % iRes, level ); + let rg4 = textureLoad( map, vec2u( iuv + vec2( 1.5, 1.5 ) ) % iRes, level ); + + return mix( mix( rg1, rg2, f.x ), mix( rg3, rg4, f.x ), f.y ); + +} +` ) +}; + +const wgslMethods = { + dFdx: 'dpdx', + dFdy: '- dpdy', + mod_float: 'tsl_mod_float', + mod_vec2: 'tsl_mod_vec2', + mod_vec3: 'tsl_mod_vec3', + mod_vec4: 'tsl_mod_vec4', + equals_bool: 'tsl_equals_bool', + equals_bvec2: 'tsl_equals_bvec2', + equals_bvec3: 'tsl_equals_bvec3', + equals_bvec4: 'tsl_equals_bvec4', + inversesqrt: 'inverseSqrt', + bitcast: 'bitcast' +}; + +// WebGPU issue: does not support pow() with negative base on Windows + +if ( typeof navigator !== 'undefined' && /Windows/g.test( navigator.userAgent ) ) { + + wgslPolyfill.pow_float = new CodeNode( 'fn tsl_pow_float( a : f32, b : f32 ) -> f32 { return select( -pow( -a, b ), pow( a, b ), a > 0.0 ); }' ); + wgslPolyfill.pow_vec2 = new CodeNode( 'fn tsl_pow_vec2( a : vec2f, b : vec2f ) -> vec2f { return vec2f( tsl_pow_float( a.x, b.x ), tsl_pow_float( a.y, b.y ) ); }', [ wgslPolyfill.pow_float ] ); + wgslPolyfill.pow_vec3 = new CodeNode( 'fn tsl_pow_vec3( a : vec3f, b : vec3f ) -> vec3f { return vec3f( tsl_pow_float( a.x, b.x ), tsl_pow_float( a.y, b.y ), tsl_pow_float( a.z, b.z ) ); }', [ wgslPolyfill.pow_float ] ); + wgslPolyfill.pow_vec4 = new CodeNode( 'fn tsl_pow_vec4( a : vec4f, b : vec4f ) -> vec4f { return vec4f( tsl_pow_float( a.x, b.x ), tsl_pow_float( a.y, b.y ), tsl_pow_float( a.z, b.z ), tsl_pow_float( a.w, b.w ) ); }', [ wgslPolyfill.pow_float ] ); + + wgslMethods.pow_float = 'tsl_pow_float'; + wgslMethods.pow_vec2 = 'tsl_pow_vec2'; + wgslMethods.pow_vec3 = 'tsl_pow_vec3'; + wgslMethods.pow_vec4 = 'tsl_pow_vec4'; + +} + +// + +let diagnostics = ''; + +if ( ( typeof navigator !== 'undefined' && /Firefox|Deno/g.test( navigator.userAgent ) ) !== true ) { + + diagnostics += 'diagnostic( off, derivative_uniformity );\n'; + +} + +/** + * A node builder targeting WGSL. + * + * This module generates WGSL shader code from node materials and also + * generates the respective bindings and vertex buffer definitions. These + * data are later used by the renderer to create render and compute pipelines + * for render objects. + * + * @augments NodeBuilder + */ +class WGSLNodeBuilder extends NodeBuilder { + + /** + * Constructs a new WGSL node builder renderer. + * + * @param {Object3D} object - The 3D object. + * @param {Renderer} renderer - The renderer. + */ + constructor( object, renderer ) { + + super( object, renderer, new WGSLNodeParser() ); + + /** + * A dictionary that holds for each shader stage ('vertex', 'fragment', 'compute') + * another dictionary which manages UBOs per group ('render','frame','object'). + * + * @type {Object>} + */ + this.uniformGroups = {}; + + /** + * A dictionary that holds for each shader stage a Map of builtins. + * + * @type {Object>} + */ + this.builtins = {}; + + /** + * A dictionary that holds for each shader stage a Set of directives. + * + * @type {Object>} + */ + this.directives = {}; + + /** + * A map for managing scope arrays. Only relevant for when using + * {@link WorkgroupInfoNode} in context of compute shaders. + * + * @type {Map} + */ + this.scopedArrays = new Map(); + + } + + /** + * Checks if the given texture requires a manual conversion to the working color space. + * + * @param {Texture} texture - The texture to check. + * @return {boolean} Whether the given texture requires a conversion to working color space or not. + */ + needsToWorkingColorSpace( texture ) { + + return texture.isVideoTexture === true && texture.colorSpace !== NoColorSpace; + + } + + /** + * Generates the WGSL snippet for sampled textures. + * + * @private + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + _generateTextureSample( texture, textureProperty, uvSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + if ( shaderStage === 'fragment' ) { + + if ( depthSnippet ) { + + return `textureSample( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ depthSnippet } )`; + + } else { + + return `textureSample( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet } )`; + + } + + } else { + + return this._generateTextureSampleLevel( texture, textureProperty, uvSnippet, '0', depthSnippet ); + + } + + } + + /** + * Generates the WGSL snippet when sampling video textures. + * + * @private + * @param {string} textureProperty - The name of the video texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + _generateVideoSample( textureProperty, uvSnippet, shaderStage = this.shaderStage ) { + + if ( shaderStage === 'fragment' ) { + + return `textureSampleBaseClampToEdge( ${ textureProperty }, ${ textureProperty }_sampler, vec2( ${ uvSnippet }.x, 1.0 - ${ uvSnippet }.y ) )`; + + } else { + + console.error( `WebGPURenderer: THREE.VideoTexture does not support ${ shaderStage } shader.` ); + + } + + } + + /** + * Generates the WGSL snippet when sampling textures with explicit mip level. + * + * @private + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {string} levelSnippet - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @param {string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @return {string} The WGSL snippet. + */ + _generateTextureSampleLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet ) { + + if ( this.isUnfilterable( texture ) === false ) { + + return `textureSampleLevel( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ levelSnippet } )`; + + } else if ( this.isFilteredTexture( texture ) ) { + + return this.generateFilteredTexture( texture, textureProperty, uvSnippet, levelSnippet ); + + } else { + + return this.generateTextureLod( texture, textureProperty, uvSnippet, depthSnippet, levelSnippet ); + + } + + } + + /** + * Generates a wrap function used in context of textures. + * + * @param {Texture} texture - The texture to generate the function for. + * @return {string} The name of the generated function. + */ + generateWrapFunction( texture ) { + + const functionName = `tsl_coord_${ wrapNames[ texture.wrapS ] }S_${ wrapNames[ texture.wrapT ] }_${ texture.isData3DTexture ? '3d' : '2d' }T`; + + let nodeCode = wgslCodeCache[ functionName ]; + + if ( nodeCode === undefined ) { + + const includes = []; + + // For 3D textures, use vec3f; for texture arrays, keep vec2f since array index is separate + const coordType = texture.isData3DTexture ? 'vec3f' : 'vec2f'; + let code = `fn ${ functionName }( coord : ${ coordType } ) -> ${ coordType } {\n\n\treturn ${ coordType }(\n`; + + const addWrapSnippet = ( wrap, axis ) => { + + if ( wrap === RepeatWrapping ) { + + includes.push( wgslPolyfill.repeatWrapping_float ); + + code += `\t\ttsl_repeatWrapping_float( coord.${ axis } )`; + + } else if ( wrap === ClampToEdgeWrapping ) { + + includes.push( wgslPolyfill.clampWrapping_float ); + + code += `\t\ttsl_clampWrapping_float( coord.${ axis } )`; + + } else if ( wrap === MirroredRepeatWrapping ) { + + includes.push( wgslPolyfill.mirrorWrapping_float ); + + code += `\t\ttsl_mirrorWrapping_float( coord.${ axis } )`; + + } else { + + code += `\t\tcoord.${ axis }`; + + console.warn( `WebGPURenderer: Unsupported texture wrap type "${ wrap }" for vertex shader.` ); + + } + + }; + + addWrapSnippet( texture.wrapS, 'x' ); + + code += ',\n'; + + addWrapSnippet( texture.wrapT, 'y' ); + + if ( texture.isData3DTexture ) { + + code += ',\n'; + addWrapSnippet( texture.wrapR, 'z' ); + + } + + code += '\n\t);\n\n}\n'; + + wgslCodeCache[ functionName ] = nodeCode = new CodeNode( code, includes ); + + } + + nodeCode.build( this ); + + return functionName; + + } + + /** + * Generates the array declaration string. + * + * @param {string} type - The type. + * @param {?number} [count] - The count. + * @return {string} The generated value as a shader string. + */ + generateArrayDeclaration( type, count ) { + + return `array< ${ this.getType( type ) }, ${ count } >`; + + } + + /** + * Generates a WGSL variable that holds the texture dimension of the given texture. + * It also returns information about the number of layers (elements) of an arrayed + * texture as well as the cube face count of cube textures. + * + * @param {Texture} texture - The texture to generate the function for. + * @param {string} textureProperty - The name of the video texture uniform in the shader. + * @param {string} levelSnippet - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @return {string} The name of the dimension variable. + */ + generateTextureDimension( texture, textureProperty, levelSnippet ) { + + const textureData = this.getDataFromNode( texture, this.shaderStage, this.globalCache ); + + if ( textureData.dimensionsSnippet === undefined ) textureData.dimensionsSnippet = {}; + + let textureDimensionNode = textureData.dimensionsSnippet[ levelSnippet ]; + + if ( textureData.dimensionsSnippet[ levelSnippet ] === undefined ) { + + let textureDimensionsParams; + let dimensionType; + + const { primarySamples } = this.renderer.backend.utils.getTextureSampleData( texture ); + const isMultisampled = primarySamples > 1; + + if ( texture.isData3DTexture ) { + + dimensionType = 'vec3'; + + } else { + + // Regular 2D textures, depth textures, etc. + dimensionType = 'vec2'; + + } + + // Build parameters string based on texture type and multisampling + if ( isMultisampled || texture.isVideoTexture || texture.isStorageTexture ) { + + textureDimensionsParams = textureProperty; + + } else { + + textureDimensionsParams = `${textureProperty}${levelSnippet ? `, u32( ${ levelSnippet } )` : ''}`; + + } + + textureDimensionNode = new VarNode( new ExpressionNode( `textureDimensions( ${ textureDimensionsParams } )`, dimensionType ) ); + + textureData.dimensionsSnippet[ levelSnippet ] = textureDimensionNode; + + if ( texture.isArrayTexture || texture.isDataArrayTexture || texture.isData3DTexture ) { + + textureData.arrayLayerCount = new VarNode( + new ExpressionNode( + `textureNumLayers(${textureProperty})`, + 'u32' + ) + ); + + } + + // For cube textures, we know it's always 6 faces + if ( texture.isTextureCube ) { + + textureData.cubeFaceCount = new VarNode( + new ExpressionNode( '6u', 'u32' ) + ); + + } + + } + + return textureDimensionNode.build( this ); + + } + + /** + * Generates the WGSL snippet for a manual filtered texture. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {string} levelSnippet - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @return {string} The WGSL snippet. + */ + generateFilteredTexture( texture, textureProperty, uvSnippet, levelSnippet = '0u' ) { + + this._include( 'biquadraticTexture' ); + + const wrapFunction = this.generateWrapFunction( texture ); + const textureDimension = this.generateTextureDimension( texture, textureProperty, levelSnippet ); + + return `tsl_biquadraticTexture( ${ textureProperty }, ${ wrapFunction }( ${ uvSnippet } ), ${ textureDimension }, u32( ${ levelSnippet } ) )`; + + } + + /** + * Generates the WGSL snippet for a texture lookup with explicit level-of-detail. + * Since it's a lookup, no sampling or filtering is applied. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [levelSnippet='0u'] - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @return {string} The WGSL snippet. + */ + generateTextureLod( texture, textureProperty, uvSnippet, depthSnippet, levelSnippet = '0u' ) { + + const wrapFunction = this.generateWrapFunction( texture ); + const textureDimension = this.generateTextureDimension( texture, textureProperty, levelSnippet ); + + const vecType = texture.isData3DTexture ? 'vec3' : 'vec2'; + const coordSnippet = `${ vecType }( ${ wrapFunction }( ${ uvSnippet } ) * ${ vecType }( ${ textureDimension } ) )`; + + return this.generateTextureLoad( texture, textureProperty, coordSnippet, depthSnippet, levelSnippet ); + + } + + /** + * Generates the WGSL snippet that reads a single texel from a texture without sampling or filtering. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvIndexSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [levelSnippet='0u'] - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @return {string} The WGSL snippet. + */ + generateTextureLoad( texture, textureProperty, uvIndexSnippet, depthSnippet, levelSnippet = '0u' ) { + + let snippet; + + if ( texture.isVideoTexture === true ) { + + snippet = `textureLoad( ${ textureProperty }, ${ uvIndexSnippet } )`; + + } else if ( depthSnippet ) { + + snippet = `textureLoad( ${ textureProperty }, ${ uvIndexSnippet }, ${ depthSnippet }, u32( ${ levelSnippet } ) )`; + + } else { + + snippet = `textureLoad( ${ textureProperty }, ${ uvIndexSnippet }, u32( ${ levelSnippet } ) )`; + + if ( this.renderer.backend.compatibilityMode && texture.isDepthTexture ) { + + snippet += '.x'; + + } + + } + + return snippet; + + } + + /** + * Generates the WGSL snippet that writes a single texel to a texture. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvIndexSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} valueSnippet - A WGSL snippet that represent the new texel value. + * @return {string} The WGSL snippet. + */ + generateTextureStore( texture, textureProperty, uvIndexSnippet, depthSnippet, valueSnippet ) { + + let snippet; + + if ( depthSnippet ) { + + snippet = `textureStore( ${ textureProperty }, ${ uvIndexSnippet }, ${ depthSnippet }, ${ valueSnippet } )`; + + } else { + + snippet = `textureStore( ${ textureProperty }, ${ uvIndexSnippet }, ${ valueSnippet } )`; + + } + + return snippet; + + } + + /** + * Returns `true` if the sampled values of the given texture should be compared against a reference value. + * + * @param {Texture} texture - The texture. + * @return {boolean} Whether the sampled values of the given texture should be compared against a reference value or not. + */ + isSampleCompare( texture ) { + + return texture.isDepthTexture === true && texture.compareFunction !== null; + + } + + /** + * Returns `true` if the given texture is unfilterable. + * + * @param {Texture} texture - The texture. + * @return {boolean} Whether the given texture is unfilterable or not. + */ + isUnfilterable( texture ) { + + return this.getComponentTypeFromTexture( texture ) !== 'float' || + ( ! this.isAvailable( 'float32Filterable' ) && texture.isDataTexture === true && texture.type === FloatType ) || + ( this.isSampleCompare( texture ) === false && texture.minFilter === NearestFilter && texture.magFilter === NearestFilter ) || + this.renderer.backend.utils.getTextureSampleData( texture ).primarySamples > 1; + + } + + /** + * Generates the WGSL snippet for sampling/loading the given texture. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + generateTexture( texture, textureProperty, uvSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + let snippet = null; + + if ( texture.isVideoTexture === true ) { + + snippet = this._generateVideoSample( textureProperty, uvSnippet, shaderStage ); + + } else if ( this.isUnfilterable( texture ) ) { + + snippet = this.generateTextureLod( texture, textureProperty, uvSnippet, depthSnippet, '0', shaderStage ); + + } else { + + snippet = this._generateTextureSample( texture, textureProperty, uvSnippet, depthSnippet, shaderStage ); + + } + + return snippet; + + } + + /** + * Generates the WGSL snippet for sampling/loading the given texture using explicit gradients. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {Array} gradSnippet - An array holding both gradient WGSL snippets. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + generateTextureGrad( texture, textureProperty, uvSnippet, gradSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + if ( shaderStage === 'fragment' ) { + + // TODO handle i32 or u32 --> uvSnippet, array_index: A, ddx, ddy + return `textureSampleGrad( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ gradSnippet[ 0 ] }, ${ gradSnippet[ 1 ] } )`; + + } else { + + console.error( `WebGPURenderer: THREE.TextureNode.gradient() does not support ${ shaderStage } shader.` ); + + } + + } + + /** + * Generates the WGSL snippet for sampling a depth texture and comparing the sampled depth values + * against a reference value. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {string} compareSnippet - A WGSL snippet that represents the reference value. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + generateTextureCompare( texture, textureProperty, uvSnippet, compareSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + if ( shaderStage === 'fragment' ) { + + if ( texture.isDepthTexture === true && texture.isArrayTexture === true ) { + + return `textureSampleCompare( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ depthSnippet }, ${ compareSnippet } )`; + + } + + return `textureSampleCompare( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ compareSnippet } )`; + + } else { + + console.error( `WebGPURenderer: THREE.DepthTexture.compareFunction() does not support ${ shaderStage } shader.` ); + + } + + } + + /** + * Generates the WGSL snippet when sampling textures with explicit mip level. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {string} levelSnippet - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + generateTextureLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + let snippet = null; + + if ( texture.isVideoTexture === true ) { + + snippet = this._generateVideoSample( textureProperty, uvSnippet, shaderStage ); + + } else { + + snippet = this._generateTextureSampleLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet ); + + } + + return snippet; + + } + + /** + * Generates the WGSL snippet when sampling textures with a bias to the mip level. + * + * @param {Texture} texture - The texture. + * @param {string} textureProperty - The name of the texture uniform in the shader. + * @param {string} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. + * @param {string} biasSnippet - A WGSL snippet that represents the bias to apply to the mip level before sampling. + * @param {?string} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The WGSL snippet. + */ + generateTextureBias( texture, textureProperty, uvSnippet, biasSnippet, depthSnippet, shaderStage = this.shaderStage ) { + + if ( shaderStage === 'fragment' ) { + + return `textureSampleBias( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ biasSnippet } )`; + + } else { + + console.error( `WebGPURenderer: THREE.TextureNode.biasNode does not support ${ shaderStage } shader.` ); + + } + + } + + /** + * Returns a WGSL snippet that represents the property name of the given node. + * + * @param {Node} node - The node. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The property name. + */ + getPropertyName( node, shaderStage = this.shaderStage ) { + + if ( node.isNodeVarying === true && node.needsInterpolation === true ) { + + if ( shaderStage === 'vertex' ) { + + return `varyings.${ node.name }`; + + } + + } else if ( node.isNodeUniform === true ) { + + const name = node.name; + const type = node.type; + + if ( type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'texture3D' ) { + + return name; + + } else if ( type === 'buffer' || type === 'storageBuffer' || type === 'indirectStorageBuffer' ) { + + if ( this.isCustomStruct( node ) ) { + + return name; + + } + + return name + '.value'; + + } else { + + return node.groupNode.name + '.' + name; + + } + + } + + return super.getPropertyName( node ); + + } + + /** + * Returns the output struct name. + * + * @return {string} The name of the output struct. + */ + getOutputStructName() { + + return 'output'; + + } + + /** + * Returns the native shader operator name for a given generic name. + * + * @param {string} op - The operator name to resolve. + * @return {?string} The resolved operator name. + */ + getFunctionOperator( op ) { + + const fnOp = wgslFnOpLib[ op ]; + + if ( fnOp !== undefined ) { + + this._include( fnOp ); + + return fnOp; + + } + + return null; + + } + + /** + * Returns the node access for the given node and shader stage. + * + * @param {StorageTextureNode|StorageBufferNode} node - The storage node. + * @param {string} shaderStage - The shader stage. + * @return {string} The node access. + */ + getNodeAccess( node, shaderStage ) { + + if ( shaderStage !== 'compute' ) + return NodeAccess.READ_ONLY; + + return node.access; + + } + + /** + * Returns A WGSL snippet representing the storage access. + * + * @param {StorageTextureNode|StorageBufferNode} node - The storage node. + * @param {string} shaderStage - The shader stage. + * @return {string} The WGSL snippet representing the storage access. + */ + getStorageAccess( node, shaderStage ) { + + return accessNames[ this.getNodeAccess( node, shaderStage ) ]; + + } + + /** + * This method is one of the more important ones since it's responsible + * for generating a matching binding instance for the given uniform node. + * + * These bindings are later used in the renderer to create bind groups + * and layouts. + * + * @param {UniformNode} node - The uniform node. + * @param {string} type - The node data type. + * @param {string} shaderStage - The shader stage. + * @param {?string} [name=null] - An optional uniform name. + * @return {NodeUniform} The node uniform object. + */ + getUniformFromNode( node, type, shaderStage, name = null ) { + + const uniformNode = super.getUniformFromNode( node, type, shaderStage, name ); + const nodeData = this.getDataFromNode( node, shaderStage, this.globalCache ); + + if ( nodeData.uniformGPU === undefined ) { + + let uniformGPU; + + const group = node.groupNode; + const groupName = group.name; + + const bindings = this.getBindGroupArray( groupName, shaderStage ); + + if ( type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'texture3D' ) { + + let texture = null; + + const access = this.getNodeAccess( node, shaderStage ); + + if ( type === 'texture' || type === 'storageTexture' ) { + + texture = new NodeSampledTexture( uniformNode.name, uniformNode.node, group, access ); + + } else if ( type === 'cubeTexture' ) { + + texture = new NodeSampledCubeTexture( uniformNode.name, uniformNode.node, group, access ); + + } else if ( type === 'texture3D' ) { + + texture = new NodeSampledTexture3D( uniformNode.name, uniformNode.node, group, access ); + + } + + texture.store = node.isStorageTextureNode === true; + texture.setVisibility( gpuShaderStageLib[ shaderStage ] ); + + if ( this.isUnfilterable( node.value ) === false && texture.store === false ) { + + const sampler = new NodeSampler( `${ uniformNode.name }_sampler`, uniformNode.node, group ); + sampler.setVisibility( gpuShaderStageLib[ shaderStage ] ); + + bindings.push( sampler, texture ); + + uniformGPU = [ sampler, texture ]; + + } else { + + bindings.push( texture ); + + uniformGPU = [ texture ]; + + } + + } else if ( type === 'buffer' || type === 'storageBuffer' || type === 'indirectStorageBuffer' ) { + + const bufferClass = type === 'buffer' ? NodeUniformBuffer : NodeStorageBuffer; + + const buffer = new bufferClass( node, group ); + buffer.setVisibility( gpuShaderStageLib[ shaderStage ] ); + + bindings.push( buffer ); + + uniformGPU = buffer; + + uniformNode.name = name ? name : 'NodeBuffer_' + uniformNode.id; + + } else { + + const uniformsStage = this.uniformGroups[ shaderStage ] || ( this.uniformGroups[ shaderStage ] = {} ); + + let uniformsGroup = uniformsStage[ groupName ]; + + if ( uniformsGroup === undefined ) { + + uniformsGroup = new NodeUniformsGroup( groupName, group ); + uniformsGroup.setVisibility( gpuShaderStageLib[ shaderStage ] ); + + uniformsStage[ groupName ] = uniformsGroup; + + bindings.push( uniformsGroup ); + + } + + uniformGPU = this.getNodeUniform( uniformNode, type ); + + uniformsGroup.addUniform( uniformGPU ); + + } + + nodeData.uniformGPU = uniformGPU; + + } + + return uniformNode; + + } + + /** + * This method should be used whenever builtins are required in nodes. + * The internal builtins data structure will make sure builtins are + * defined in the WGSL source. + * + * @param {string} name - The builtin name. + * @param {string} property - The property name. + * @param {string} type - The node data type. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {string} The property name. + */ + getBuiltin( name, property, type, shaderStage = this.shaderStage ) { + + const map = this.builtins[ shaderStage ] || ( this.builtins[ shaderStage ] = new Map() ); + + if ( map.has( name ) === false ) { + + map.set( name, { + name, + property, + type + } ); + + } + + return property; + + } + + /** + * Returns `true` if the given builtin is defined in the given shader stage. + * + * @param {string} name - The builtin name. + * @param {string} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. + * @return {boolean} Whether the given builtin is defined in the given shader stage or not. + */ + hasBuiltin( name, shaderStage = this.shaderStage ) { + + return ( this.builtins[ shaderStage ] !== undefined && this.builtins[ shaderStage ].has( name ) ); + + } + + /** + * Returns the vertex index builtin. + * + * @return {string} The vertex index. + */ + getVertexIndex() { + + if ( this.shaderStage === 'vertex' ) { + + return this.getBuiltin( 'vertex_index', 'vertexIndex', 'u32', 'attribute' ); + + } + + return 'vertexIndex'; + + } + + /** + * Builds the given shader node. + * + * @param {ShaderNodeInternal} shaderNode - The shader node. + * @return {string} The WGSL function code. + */ + buildFunctionCode( shaderNode ) { + + const layout = shaderNode.layout; + const flowData = this.flowShaderNode( shaderNode ); + + const parameters = []; + + for ( const input of layout.inputs ) { + + parameters.push( input.name + ' : ' + this.getType( input.type ) ); + + } + + // + + let code = `fn ${ layout.name }( ${ parameters.join( ', ' ) } ) -> ${ this.getType( layout.type ) } { +${ flowData.vars } +${ flowData.code } +`; + + if ( flowData.result ) { + + code += `\treturn ${ flowData.result };\n`; + + } + + code += '\n}\n'; + + // + + return code; + + } + + /** + * Returns the instance index builtin. + * + * @return {string} The instance index. + */ + getInstanceIndex() { + + if ( this.shaderStage === 'vertex' ) { + + return this.getBuiltin( 'instance_index', 'instanceIndex', 'u32', 'attribute' ); + + } + + return 'instanceIndex'; + + } + + /** + * Returns the invocation local index builtin. + * + * @return {string} The invocation local index. + */ + getInvocationLocalIndex() { + + return this.getBuiltin( 'local_invocation_index', 'invocationLocalIndex', 'u32', 'attribute' ); + + } + + /** + * Returns the subgroup size builtin. + * + * @return {string} The subgroup size. + */ + getSubgroupSize() { + + this.enableSubGroups(); + + return this.getBuiltin( 'subgroup_size', 'subgroupSize', 'u32', 'attribute' ); + + } + + /** + * Returns the invocation subgroup index builtin. + * + * @return {string} The invocation subgroup index. + */ + getInvocationSubgroupIndex() { + + this.enableSubGroups(); + + return this.getBuiltin( 'subgroup_invocation_id', 'invocationSubgroupIndex', 'u32', 'attribute' ); + + } + + /** + * Returns the subgroup index builtin. + * + * @return {string} The subgroup index. + */ + getSubgroupIndex() { + + this.enableSubGroups(); + + return this.getBuiltin( 'subgroup_id', 'subgroupIndex', 'u32', 'attribute' ); + + } + + /** + * Overwritten as a NOP since this method is intended for the WebGL 2 backend. + * + * @return {null} Null. + */ + getDrawIndex() { + + return null; + + } + + /** + * Returns the front facing builtin. + * + * @return {string} The front facing builtin. + */ + getFrontFacing() { + + return this.getBuiltin( 'front_facing', 'isFront', 'bool' ); + + } + + /** + * Returns the frag coord builtin. + * + * @return {string} The frag coord builtin. + */ + getFragCoord() { + + return this.getBuiltin( 'position', 'fragCoord', 'vec4' ) + '.xy'; + + } + + /** + * Returns the frag depth builtin. + * + * @return {string} The frag depth builtin. + */ + getFragDepth() { + + return 'output.' + this.getBuiltin( 'frag_depth', 'depth', 'f32', 'output' ); + + } + + /** + * Returns the clip distances builtin. + * + * @return {string} The clip distances builtin. + */ + getClipDistance() { + + return 'varyings.hw_clip_distances'; + + } + + /** + * Whether to flip texture data along its vertical axis or not. + * + * @return {boolean} Returns always `false` in context of WGSL. + */ + isFlipY() { + + return false; + + } + + /** + * Enables the given directive for the given shader stage. + * + * @param {string} name - The directive name. + * @param {string} [shaderStage=this.shaderStage] - The shader stage to enable the directive for. + */ + enableDirective( name, shaderStage = this.shaderStage ) { + + const stage = this.directives[ shaderStage ] || ( this.directives[ shaderStage ] = new Set() ); + stage.add( name ); + + } + + /** + * Returns the directives of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} A WGSL snippet that enables the directives of the given stage. + */ + getDirectives( shaderStage ) { + + const snippets = []; + const directives = this.directives[ shaderStage ]; + + if ( directives !== undefined ) { + + for ( const directive of directives ) { + + snippets.push( `enable ${directive};` ); + + } + + } + + return snippets.join( '\n' ); + + } + + /** + * Enables the 'subgroups' directive. + */ + enableSubGroups() { + + this.enableDirective( 'subgroups' ); + + } + + /** + * Enables the 'subgroups-f16' directive. + */ + enableSubgroupsF16() { + + this.enableDirective( 'subgroups-f16' ); + + } + + /** + * Enables the 'clip_distances' directive. + */ + enableClipDistances() { + + this.enableDirective( 'clip_distances' ); + + } + + /** + * Enables the 'f16' directive. + */ + enableShaderF16() { + + this.enableDirective( 'f16' ); + + } + + /** + * Enables the 'dual_source_blending' directive. + */ + enableDualSourceBlending() { + + this.enableDirective( 'dual_source_blending' ); + + } + + /** + * Enables hardware clipping. + * + * @param {string} planeCount - The clipping plane count. + */ + enableHardwareClipping( planeCount ) { + + this.enableClipDistances(); + this.getBuiltin( 'clip_distances', 'hw_clip_distances', `array`, 'vertex' ); + + } + + /** + * Returns the builtins of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} A WGSL snippet that represents the builtins of the given stage. + */ + getBuiltins( shaderStage ) { + + const snippets = []; + const builtins = this.builtins[ shaderStage ]; + + if ( builtins !== undefined ) { + + for ( const { name, property, type } of builtins.values() ) { + + snippets.push( `@builtin( ${name} ) ${property} : ${type}` ); + + } + + } + + return snippets.join( ',\n\t' ); + + } + + /** + * This method should be used when a new scoped buffer is used in context of + * compute shaders. It adds the array to the internal data structure which is + * later used to generate the respective WGSL. + * + * @param {string} name - The array name. + * @param {string} scope - The scope. + * @param {string} bufferType - The buffer type. + * @param {string} bufferCount - The buffer count. + * @return {string} The array name. + */ + getScopedArray( name, scope, bufferType, bufferCount ) { + + if ( this.scopedArrays.has( name ) === false ) { + + this.scopedArrays.set( name, { + name, + scope, + bufferType, + bufferCount + } ); + + } + + return name; + + } + + /** + * Returns the scoped arrays of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string|undefined} The WGSL snippet that defines the scoped arrays. + * Returns `undefined` when used in the vertex or fragment stage. + */ + getScopedArrays( shaderStage ) { + + if ( shaderStage !== 'compute' ) { + + return; + + } + + const snippets = []; + + for ( const { name, scope, bufferType, bufferCount } of this.scopedArrays.values() ) { + + const type = this.getType( bufferType ); + + snippets.push( `var<${scope}> ${name}: array< ${type}, ${bufferCount} >;` ); + + } + + return snippets.join( '\n' ); + + } + + /** + * Returns the shader attributes of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The WGSL snippet that defines the shader attributes. + */ + getAttributes( shaderStage ) { + + const snippets = []; + + if ( shaderStage === 'compute' ) { + + this.getBuiltin( 'global_invocation_id', 'globalId', 'vec3', 'attribute' ); + this.getBuiltin( 'workgroup_id', 'workgroupId', 'vec3', 'attribute' ); + this.getBuiltin( 'local_invocation_id', 'localId', 'vec3', 'attribute' ); + this.getBuiltin( 'num_workgroups', 'numWorkgroups', 'vec3', 'attribute' ); + + if ( this.renderer.hasFeature( 'subgroups' ) ) { + + this.enableDirective( 'subgroups', shaderStage ); + this.getBuiltin( 'subgroup_size', 'subgroupSize', 'u32', 'attribute' ); + + } + + } + + if ( shaderStage === 'vertex' || shaderStage === 'compute' ) { + + const builtins = this.getBuiltins( 'attribute' ); + + if ( builtins ) snippets.push( builtins ); + + const attributes = this.getAttributesArray(); + + for ( let index = 0, length = attributes.length; index < length; index ++ ) { + + const attribute = attributes[ index ]; + const name = attribute.name; + const type = this.getType( attribute.type ); + + snippets.push( `@location( ${index} ) ${ name } : ${ type }` ); + + } + + } + + return snippets.join( ',\n\t' ); + + } + + /** + * Returns the members of the given struct type node as a WGSL string. + * + * @param {StructTypeNode} struct - The struct type node. + * @return {string} The WGSL snippet that defines the struct members. + */ + getStructMembers( struct ) { + + const snippets = []; + + for ( const member of struct.members ) { + + const prefix = struct.output ? '@location( ' + member.index + ' ) ' : ''; + + let type = this.getType( member.type ); + + if ( member.atomic ) { + + type = 'atomic< ' + type + ' >'; + + } + + snippets.push( `\t${ prefix + member.name } : ${ type }` ); + + } + + if ( struct.output ) { + + snippets.push( `\t${ this.getBuiltins( 'output' ) }` ); + + } + + return snippets.join( ',\n' ); + + } + + /** + * Returns the structs of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The WGSL snippet that defines the structs. + */ + getStructs( shaderStage ) { + + let result = ''; + + const structs = this.structs[ shaderStage ]; + + if ( structs.length > 0 ) { + + const snippets = []; + + for ( const struct of structs ) { + + let snippet = `struct ${ struct.name } {\n`; + snippet += this.getStructMembers( struct ); + snippet += '\n};'; + + snippets.push( snippet ); + + } + + result = '\n' + snippets.join( '\n\n' ) + '\n'; + + } + + return result; + + } + + /** + * Returns a WGSL string representing a variable. + * + * @param {string} type - The variable's type. + * @param {string} name - The variable's name. + * @param {?number} [count=null] - The array length. + * @return {string} The WGSL snippet that defines a variable. + */ + getVar( type, name, count = null ) { + + let snippet = `var ${ name } : `; + + if ( count !== null ) { + + snippet += this.generateArrayDeclaration( type, count ); + + } else { + + snippet += this.getType( type ); + + } + + return snippet; + + } + + /** + * Returns the variables of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The WGSL snippet that defines the variables. + */ + getVars( shaderStage ) { + + const snippets = []; + const vars = this.vars[ shaderStage ]; + + if ( vars !== undefined ) { + + for ( const variable of vars ) { + + snippets.push( `\t${ this.getVar( variable.type, variable.name, variable.count ) };` ); + + } + + } + + return `\n${ snippets.join( '\n' ) }\n`; + + } + + /** + * Returns the varyings of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The WGSL snippet that defines the varyings. + */ + getVaryings( shaderStage ) { + + const snippets = []; + + if ( shaderStage === 'vertex' ) { + + this.getBuiltin( 'position', 'Vertex', 'vec4', 'vertex' ); + + } + + if ( shaderStage === 'vertex' || shaderStage === 'fragment' ) { + + const varyings = this.varyings; + const vars = this.vars[ shaderStage ]; + + for ( let index = 0; index < varyings.length; index ++ ) { + + const varying = varyings[ index ]; + + if ( varying.needsInterpolation ) { + + let attributesSnippet = `@location( ${index} )`; + + if ( varying.interpolationType ) { + + const samplingSnippet = varying.interpolationSampling !== null ? `, ${ varying.interpolationSampling } )` : ' )'; + + attributesSnippet += ` @interpolate( ${ varying.interpolationType }${ samplingSnippet }`; + + // Otherwise, optimize interpolation when sensible + + } else if ( /^(int|uint|ivec|uvec)/.test( varying.type ) ) { + + attributesSnippet += ` @interpolate( ${ this.renderer.backend.compatibilityMode ? 'flat, either' : 'flat' } )`; + + } + + snippets.push( `${ attributesSnippet } ${ varying.name } : ${ this.getType( varying.type ) }` ); + + } else if ( shaderStage === 'vertex' && vars.includes( varying ) === false ) { + + vars.push( varying ); + + } + + } + + } + + const builtins = this.getBuiltins( shaderStage ); + + if ( builtins ) snippets.push( builtins ); + + const code = snippets.join( ',\n\t' ); + + return shaderStage === 'vertex' ? this._getWGSLStruct( 'VaryingsStruct', '\t' + code ) : code; + + } + + isCustomStruct( nodeUniform ) { + + const attribute = nodeUniform.value; + const bufferNode = nodeUniform.node; + + const isAttributeStructType = ( attribute.isBufferAttribute || attribute.isInstancedBufferAttribute ) && bufferNode.structTypeNode !== null; + + const isStructArray = + ( bufferNode.value && bufferNode.value.array ) && + ( typeof bufferNode.value.itemSize === 'number' && bufferNode.value.array.length > bufferNode.value.itemSize ); + + return isAttributeStructType && ! isStructArray; + + } + + /** + * Returns the uniforms of the given shader stage as a WGSL string. + * + * @param {string} shaderStage - The shader stage. + * @return {string} The WGSL snippet that defines the uniforms. + */ + getUniforms( shaderStage ) { + + const uniforms = this.uniforms[ shaderStage ]; + + const bindingSnippets = []; + const bufferSnippets = []; + const structSnippets = []; + const uniformGroups = {}; + + for ( const uniform of uniforms ) { + + const groupName = uniform.groupNode.name; + const uniformIndexes = this.bindingsIndexes[ groupName ]; + + if ( uniform.type === 'texture' || uniform.type === 'cubeTexture' || uniform.type === 'storageTexture' || uniform.type === 'texture3D' ) { + + const texture = uniform.node.value; + + if ( this.isUnfilterable( texture ) === false && uniform.node.isStorageTextureNode !== true ) { + + if ( this.isSampleCompare( texture ) ) { + + bindingSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var ${ uniform.name }_sampler : sampler_comparison;` ); + + } else { + + bindingSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var ${ uniform.name }_sampler : sampler;` ); + + } + + } + + let textureType; + + let multisampled = ''; + + const { primarySamples } = this.renderer.backend.utils.getTextureSampleData( texture ); + + if ( primarySamples > 1 ) { + + multisampled = '_multisampled'; + + } + + if ( texture.isCubeTexture === true ) { + + textureType = 'texture_cube'; + + } else if ( texture.isDepthTexture === true ) { + + if ( this.renderer.backend.compatibilityMode && texture.compareFunction === null ) { + + textureType = `texture${ multisampled }_2d`; + + } else { + + textureType = `texture_depth${ multisampled }_2d${ texture.isArrayTexture === true ? '_array' : '' }`; + + } + + } else if ( texture.isArrayTexture === true || texture.isDataArrayTexture === true || texture.isCompressedArrayTexture === true ) { + + textureType = 'texture_2d_array'; + + } else if ( texture.isVideoTexture === true ) { + + textureType = 'texture_external'; + + } else if ( texture.isData3DTexture === true ) { + + textureType = 'texture_3d'; + + } else if ( uniform.node.isStorageTextureNode === true ) { + + const format = getFormat( texture ); + const access = this.getStorageAccess( uniform.node, shaderStage ); + + textureType = `texture_storage_2d<${ format }, ${ access }>`; + + } else { + + const componentPrefix = this.getComponentTypeFromTexture( texture ).charAt( 0 ); + + textureType = `texture${ multisampled }_2d<${ componentPrefix }32>`; + + } + + bindingSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var ${ uniform.name } : ${ textureType };` ); + + } else if ( uniform.type === 'buffer' || uniform.type === 'storageBuffer' || uniform.type === 'indirectStorageBuffer' ) { + + const bufferNode = uniform.node; + const bufferType = this.getType( bufferNode.getNodeType( this ) ); + const bufferCount = bufferNode.bufferCount; + const bufferCountSnippet = bufferCount > 0 && uniform.type === 'buffer' ? ', ' + bufferCount : ''; + const bufferAccessMode = bufferNode.isStorageBufferNode ? `storage, ${ this.getStorageAccess( bufferNode, shaderStage ) }` : 'uniform'; + + if ( this.isCustomStruct( uniform ) ) { + + bufferSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var<${ bufferAccessMode }> ${ uniform.name } : ${ bufferType };` ); + + } else { + + const bufferTypeSnippet = bufferNode.isAtomic ? `atomic<${ bufferType }>` : `${ bufferType }`; + const bufferSnippet = `\tvalue : array< ${ bufferTypeSnippet }${ bufferCountSnippet } >`; + + bufferSnippets.push( this._getWGSLStructBinding( uniform.name, bufferSnippet, bufferAccessMode, uniformIndexes.binding ++, uniformIndexes.group ) ); + + } + + } else { + + const vectorType = this.getType( this.getVectorType( uniform.type ) ); + const groupName = uniform.groupNode.name; + + const group = uniformGroups[ groupName ] || ( uniformGroups[ groupName ] = { + index: uniformIndexes.binding ++, + id: uniformIndexes.group, + snippets: [] + } ); + + group.snippets.push( `\t${ uniform.name } : ${ vectorType }` ); + + } + + } + + for ( const name in uniformGroups ) { + + const group = uniformGroups[ name ]; + + structSnippets.push( this._getWGSLStructBinding( name, group.snippets.join( ',\n' ), 'uniform', group.index, group.id ) ); + + } + + let code = bindingSnippets.join( '\n' ); + code += bufferSnippets.join( '\n' ); + code += structSnippets.join( '\n' ); + + return code; + + } + + /** + * Controls the code build of the shader stages. + */ + buildCode() { + + const shadersData = this.material !== null ? { fragment: {}, vertex: {} } : { compute: {} }; + + this.sortBindingGroups(); + + for ( const shaderStage in shadersData ) { + + this.shaderStage = shaderStage; + + const stageData = shadersData[ shaderStage ]; + stageData.uniforms = this.getUniforms( shaderStage ); + stageData.attributes = this.getAttributes( shaderStage ); + stageData.varyings = this.getVaryings( shaderStage ); + stageData.structs = this.getStructs( shaderStage ); + stageData.vars = this.getVars( shaderStage ); + stageData.codes = this.getCodes( shaderStage ); + stageData.directives = this.getDirectives( shaderStage ); + stageData.scopedArrays = this.getScopedArrays( shaderStage ); + + // + + let flow = '// code\n\n'; + flow += this.flowCode[ shaderStage ]; + + const flowNodes = this.flowNodes[ shaderStage ]; + const mainNode = flowNodes[ flowNodes.length - 1 ]; + + const outputNode = mainNode.outputNode; + const isOutputStruct = ( outputNode !== undefined && outputNode.isOutputStructNode === true ); + + for ( const node of flowNodes ) { + + const flowSlotData = this.getFlowData( node/*, shaderStage*/ ); + const slotName = node.name; + + if ( slotName ) { + + if ( flow.length > 0 ) flow += '\n'; + + flow += `\t// flow -> ${ slotName }\n`; + + } + + flow += `${ flowSlotData.code }\n\t`; + + if ( node === mainNode && shaderStage !== 'compute' ) { + + flow += '// result\n\n\t'; + + if ( shaderStage === 'vertex' ) { + + flow += `varyings.Vertex = ${ flowSlotData.result };`; + + } else if ( shaderStage === 'fragment' ) { + + if ( isOutputStruct ) { + + stageData.returnType = outputNode.getNodeType( this ); + stageData.structs += 'var output : ' + stageData.returnType + ';'; + + flow += `return ${ flowSlotData.result };`; + + } else { + + let structSnippet = '\t@location(0) color: vec4'; + + const builtins = this.getBuiltins( 'output' ); + + if ( builtins ) structSnippet += ',\n\t' + builtins; + + stageData.returnType = 'OutputStruct'; + stageData.structs += this._getWGSLStruct( 'OutputStruct', structSnippet ); + stageData.structs += '\nvar output : OutputStruct;'; + + flow += `output.color = ${ flowSlotData.result };\n\n\treturn output;`; + + } + + } + + } + + } + + stageData.flow = flow; + + } + + this.shaderStage = null; + + if ( this.material !== null ) { + + this.vertexShader = this._getWGSLVertexCode( shadersData.vertex ); + this.fragmentShader = this._getWGSLFragmentCode( shadersData.fragment ); + + } else { + + this.computeShader = this._getWGSLComputeCode( shadersData.compute, ( this.object.workgroupSize || [ 64 ] ).join( ', ' ) ); + + } + + } + + /** + * Returns the native shader method name for a given generic name. + * + * @param {string} method - The method name to resolve. + * @param {?string} [output=null] - An optional output. + * @return {string} The resolved WGSL method name. + */ + getMethod( method, output = null ) { + + let wgslMethod; + + if ( output !== null ) { + + wgslMethod = this._getWGSLMethod( method + '_' + output ); + + } + + if ( wgslMethod === undefined ) { + + wgslMethod = this._getWGSLMethod( method ); + + } + + return wgslMethod || method; + + } + + /** + * Returns the WGSL type of the given node data type. + * + * @param {string} type - The node data type. + * @return {string} The WGSL type. + */ + getType( type ) { + + return wgslTypeLib[ type ] || type; + + } + + /** + * Whether the requested feature is available or not. + * + * @param {string} name - The requested feature. + * @return {boolean} Whether the requested feature is supported or not. + */ + isAvailable( name ) { + + let result = supports[ name ]; + + if ( result === undefined ) { + + if ( name === 'float32Filterable' ) { + + result = this.renderer.hasFeature( 'float32-filterable' ); + + } else if ( name === 'clipDistance' ) { + + result = this.renderer.hasFeature( 'clip-distances' ); + + } + + supports[ name ] = result; + + } + + return result; + + } + + /** + * Returns the native shader method name for a given generic name. + * + * @private + * @param {string} method - The method name to resolve. + * @return {string} The resolved WGSL method name. + */ + _getWGSLMethod( method ) { + + if ( wgslPolyfill[ method ] !== undefined ) { + + this._include( method ); + + } + + return wgslMethods[ method ]; + + } + + /** + * Includes the given method name into the current + * function node. + * + * @private + * @param {string} name - The method name to include. + * @return {CodeNode} The respective code node. + */ + _include( name ) { + + const codeNode = wgslPolyfill[ name ]; + codeNode.build( this ); + + if ( this.currentFunctionNode !== null ) { + + this.currentFunctionNode.includes.push( codeNode ); + + } + + return codeNode; + + } + + /** + * Returns a WGSL vertex shader based on the given shader data. + * + * @private + * @param {Object} shaderData - The shader data. + * @return {string} The vertex shader. + */ + _getWGSLVertexCode( shaderData ) { + + return `${ this.getSignature() } +// directives +${shaderData.directives} + +// structs +${shaderData.structs} + +// uniforms +${shaderData.uniforms} + +// varyings +${shaderData.varyings} +var varyings : VaryingsStruct; + +// codes +${shaderData.codes} + +@vertex +fn main( ${shaderData.attributes} ) -> VaryingsStruct { + + // vars + ${shaderData.vars} + + // flow + ${shaderData.flow} + + return varyings; + +} +`; + + } + + /** + * Returns a WGSL fragment shader based on the given shader data. + * + * @private + * @param {Object} shaderData - The shader data. + * @return {string} The vertex shader. + */ + _getWGSLFragmentCode( shaderData ) { + + return `${ this.getSignature() } +// global +${ diagnostics } + +// structs +${shaderData.structs} + +// uniforms +${shaderData.uniforms} + +// codes +${shaderData.codes} + +@fragment +fn main( ${shaderData.varyings} ) -> ${shaderData.returnType} { + + // vars + ${shaderData.vars} + + // flow + ${shaderData.flow} + +} +`; + + } + + /** + * Returns a WGSL compute shader based on the given shader data. + * + * @private + * @param {Object} shaderData - The shader data. + * @param {string} workgroupSize - The workgroup size. + * @return {string} The vertex shader. + */ + _getWGSLComputeCode( shaderData, workgroupSize ) { + + return `${ this.getSignature() } +// directives +${shaderData.directives} + +// system +var instanceIndex : u32; + +// locals +${shaderData.scopedArrays} + +// structs +${shaderData.structs} + +// uniforms +${shaderData.uniforms} + +// codes +${shaderData.codes} + +@compute @workgroup_size( ${workgroupSize} ) +fn main( ${shaderData.attributes} ) { + + // system + instanceIndex = globalId.x + globalId.y * numWorkgroups.x * u32(${workgroupSize}) + globalId.z * numWorkgroups.x * numWorkgroups.y * u32(${workgroupSize}); + + // vars + ${shaderData.vars} + + // flow + ${shaderData.flow} + +} +`; + + } + + /** + * Returns a WGSL struct based on the given name and variables. + * + * @private + * @param {string} name - The struct name. + * @param {string} vars - The struct variables. + * @return {string} The WGSL snippet representing a struct. + */ + _getWGSLStruct( name, vars ) { + + return ` +struct ${name} { +${vars} +};`; + + } + + /** + * Returns a WGSL struct binding. + * + * @private + * @param {string} name - The struct name. + * @param {string} vars - The struct variables. + * @param {string} access - The access. + * @param {number} [binding=0] - The binding index. + * @param {number} [group=0] - The group index. + * @return {string} The WGSL snippet representing a struct binding. + */ + _getWGSLStructBinding( name, vars, access, binding = 0, group = 0 ) { + + const structName = name + 'Struct'; + const structSnippet = this._getWGSLStruct( structName, vars ); + + return `${structSnippet} +@binding( ${ binding } ) @group( ${ group } ) +var<${access}> ${ name } : ${ structName };`; + + } + +} + +/** + * A WebGPU backend utility module with common helpers. + * + * @private + */ +class WebGPUUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGPUBackend} backend - The WebGPU backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGPU backend. + * + * @type {WebGPUBackend} + */ + this.backend = backend; + + } + + /** + * Returns the depth/stencil GPU format for the given render context. + * + * @param {RenderContext} renderContext - The render context. + * @return {string} The depth/stencil GPU texture format. + */ + getCurrentDepthStencilFormat( renderContext ) { + + let format; + + if ( renderContext.depthTexture !== null ) { + + format = this.getTextureFormatGPU( renderContext.depthTexture ); + + } else if ( renderContext.depth && renderContext.stencil ) { + + format = GPUTextureFormat.Depth24PlusStencil8; + + } else if ( renderContext.depth ) { + + format = GPUTextureFormat.Depth24Plus; + + } + + return format; + + } + + /** + * Returns the GPU format for the given texture. + * + * @param {Texture} texture - The texture. + * @return {string} The GPU texture format. + */ + getTextureFormatGPU( texture ) { + + return this.backend.get( texture ).format; + + } + + /** + * Returns an object that defines the multi-sampling state of the given texture. + * + * @param {Texture} texture - The texture. + * @return {Object} The multi-sampling state. + */ + getTextureSampleData( texture ) { + + let samples; + + if ( texture.isFramebufferTexture ) { + + samples = 1; + + } else if ( texture.isDepthTexture && ! texture.renderTarget ) { + + const renderer = this.backend.renderer; + const renderTarget = renderer.getRenderTarget(); + + samples = renderTarget ? renderTarget.samples : renderer.samples; + + } else if ( texture.renderTarget ) { + + samples = texture.renderTarget.samples; + + } + + samples = samples || 1; + + const isMSAA = samples > 1 && texture.renderTarget !== null && ( texture.isDepthTexture !== true && texture.isFramebufferTexture !== true ); + const primarySamples = isMSAA ? 1 : samples; + + return { samples, primarySamples, isMSAA }; + + } + + /** + * Returns the default color attachment's GPU format of the current render context. + * + * @param {RenderContext} renderContext - The render context. + * @return {string} The GPU texture format of the default color attachment. + */ + getCurrentColorFormat( renderContext ) { + + let format; + + if ( renderContext.textures !== null ) { + + format = this.getTextureFormatGPU( renderContext.textures[ 0 ] ); + + } else { + + format = this.getPreferredCanvasFormat(); // default context format + + } + + return format; + + } + + /** + * Returns the output color space of the current render context. + * + * @param {RenderContext} renderContext - The render context. + * @return {string} The output color space. + */ + getCurrentColorSpace( renderContext ) { + + if ( renderContext.textures !== null ) { + + return renderContext.textures[ 0 ].colorSpace; + + } + + return this.backend.renderer.outputColorSpace; + + } + + /** + * Returns GPU primitive topology for the given object and material. + * + * @param {Object3D} object - The 3D object. + * @param {Material} material - The material. + * @return {string} The GPU primitive topology. + */ + getPrimitiveTopology( object, material ) { + + if ( object.isPoints ) return GPUPrimitiveTopology.PointList; + else if ( object.isLineSegments || ( object.isMesh && material.wireframe === true ) ) return GPUPrimitiveTopology.LineList; + else if ( object.isLine ) return GPUPrimitiveTopology.LineStrip; + else if ( object.isMesh ) return GPUPrimitiveTopology.TriangleList; + + } + + /** + * Returns a modified sample count from the given sample count value. + * + * That is required since WebGPU does not support arbitrary sample counts. + * + * @param {number} sampleCount - The input sample count. + * @return {number} The (potentially updated) output sample count. + */ + getSampleCount( sampleCount ) { + + let count = 1; + + if ( sampleCount > 1 ) { + + // WebGPU only supports power-of-two sample counts and 2 is not a valid value + count = Math.pow( 2, Math.floor( Math.log2( sampleCount ) ) ); + + if ( count === 2 ) { + + count = 4; + + } + + } + + return count; + + } + + /** + * Returns the sample count of the given render context. + * + * @param {RenderContext} renderContext - The render context. + * @return {number} The sample count. + */ + getSampleCountRenderContext( renderContext ) { + + if ( renderContext.textures !== null ) { + + return this.getSampleCount( renderContext.sampleCount ); + + } + + return this.getSampleCount( this.backend.renderer.samples ); + + } + + /** + * Returns the preferred canvas format. + * + * There is a separate method for this so it's possible to + * honor edge cases for specific devices. + * + * @return {string} The GPU texture format of the canvas. + */ + getPreferredCanvasFormat() { + + const outputType = this.backend.parameters.outputType; + + if ( outputType === undefined ) { + + return navigator.gpu.getPreferredCanvasFormat(); + + } else if ( outputType === UnsignedByteType ) { + + return GPUTextureFormat.BGRA8Unorm; + + } else if ( outputType === HalfFloatType ) { + + return GPUTextureFormat.RGBA16Float; + + } else { + + throw new Error( 'Unsupported outputType' ); + + } + + } + +} + +const typedArraysToVertexFormatPrefix = new Map( [ + [ Int8Array, [ 'sint8', 'snorm8' ]], + [ Uint8Array, [ 'uint8', 'unorm8' ]], + [ Int16Array, [ 'sint16', 'snorm16' ]], + [ Uint16Array, [ 'uint16', 'unorm16' ]], + [ Int32Array, [ 'sint32', 'snorm32' ]], + [ Uint32Array, [ 'uint32', 'unorm32' ]], + [ Float32Array, [ 'float32', ]], +] ); + +const typedAttributeToVertexFormatPrefix = new Map( [ + [ Float16BufferAttribute, [ 'float16', ]], +] ); + +const typeArraysToVertexFormatPrefixForItemSize1 = new Map( [ + [ Int32Array, 'sint32' ], + [ Int16Array, 'sint32' ], // patch for INT16 + [ Uint32Array, 'uint32' ], + [ Uint16Array, 'uint32' ], // patch for UINT16 + [ Float32Array, 'float32' ] +] ); + +/** + * A WebGPU backend utility module for managing shader attributes. + * + * @private + */ +class WebGPUAttributeUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGPUBackend} backend - The WebGPU backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGPU backend. + * + * @type {WebGPUBackend} + */ + this.backend = backend; + + } + + /** + * Creates the GPU buffer for the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + * @param {GPUBufferUsage} usage - A flag that indicates how the buffer may be used after its creation. + */ + createAttribute( attribute, usage ) { + + const bufferAttribute = this._getBufferAttribute( attribute ); + + const backend = this.backend; + const bufferData = backend.get( bufferAttribute ); + + let buffer = bufferData.buffer; + + if ( buffer === undefined ) { + + const device = backend.device; + + let array = bufferAttribute.array; + + // patch for INT16 and UINT16 + if ( attribute.normalized === false ) { + + if ( array.constructor === Int16Array || array.constructor === Int8Array ) { + + array = new Int32Array( array ); + + } else if ( array.constructor === Uint16Array || array.constructor === Uint8Array ) { + + array = new Uint32Array( array ); + + if ( usage & GPUBufferUsage.INDEX ) { + + for ( let i = 0; i < array.length; i ++ ) { + + if ( array[ i ] === 0xffff ) array[ i ] = 0xffffffff; // use correct primitive restart index + + } + + } + + } + + } + + bufferAttribute.array = array; + + if ( ( bufferAttribute.isStorageBufferAttribute || bufferAttribute.isStorageInstancedBufferAttribute ) && bufferAttribute.itemSize === 3 ) { + + array = new array.constructor( bufferAttribute.count * 4 ); + + for ( let i = 0; i < bufferAttribute.count; i ++ ) { + + array.set( bufferAttribute.array.subarray( i * 3, i * 3 + 3 ), i * 4 ); + + } + + // Update BufferAttribute + bufferAttribute.itemSize = 4; + bufferAttribute.array = array; + + bufferData._force3to4BytesAlignment = true; + + } + + // ensure 4 byte alignment + const byteLength = array.byteLength; + const size = byteLength + ( ( 4 - ( byteLength % 4 ) ) % 4 ); + + buffer = device.createBuffer( { + label: bufferAttribute.name, + size: size, + usage: usage, + mappedAtCreation: true + } ); + + new array.constructor( buffer.getMappedRange() ).set( array ); + + buffer.unmap(); + + bufferData.buffer = buffer; + + } + + } + + /** + * Updates the GPU buffer of the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + updateAttribute( attribute ) { + + const bufferAttribute = this._getBufferAttribute( attribute ); + + const backend = this.backend; + const device = backend.device; + + const bufferData = backend.get( bufferAttribute ); + const buffer = backend.get( bufferAttribute ).buffer; + + let array = bufferAttribute.array; + + // if storage buffer ensure 4 byte alignment + if ( bufferData._force3to4BytesAlignment === true ) { + + array = new array.constructor( bufferAttribute.count * 4 ); + + for ( let i = 0; i < bufferAttribute.count; i ++ ) { + + array.set( bufferAttribute.array.subarray( i * 3, i * 3 + 3 ), i * 4 ); + + } + + bufferAttribute.array = array; + + } + + + const isTypedArray = this._isTypedArray( array ); + const updateRanges = bufferAttribute.updateRanges; + + if ( updateRanges.length === 0 ) { + + // Not using update ranges + + device.queue.writeBuffer( + buffer, + 0, + array, + 0 + ); + + } else { + + const byteOffsetFactor = isTypedArray ? 1 : array.BYTES_PER_ELEMENT; + + for ( let i = 0, l = updateRanges.length; i < l; i ++ ) { + + const range = updateRanges[ i ]; + let dataOffset, size; + + if ( bufferData._force3to4BytesAlignment === true ) { + + const vertexStart = Math.floor( range.start / 3 ); + const vertexCount = Math.ceil( range.count / 3 ); + dataOffset = vertexStart * 4 * byteOffsetFactor; + size = vertexCount * 4 * byteOffsetFactor; + + } else { + + dataOffset = range.start * byteOffsetFactor; + size = range.count * byteOffsetFactor; + + } + + const bufferOffset = dataOffset * ( isTypedArray ? array.BYTES_PER_ELEMENT : 1 ); // bufferOffset is always in bytes + + device.queue.writeBuffer( + buffer, + bufferOffset, + array, + dataOffset, + size + ); + + } + + bufferAttribute.clearUpdateRanges(); + + } + + } + + /** + * This method creates the vertex buffer layout data which are + * require when creating a render pipeline for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @return {Array} An array holding objects which describe the vertex buffer layout. + */ + createShaderVertexBuffers( renderObject ) { + + const attributes = renderObject.getAttributes(); + const vertexBuffers = new Map(); + + for ( let slot = 0; slot < attributes.length; slot ++ ) { + + const geometryAttribute = attributes[ slot ]; + const bytesPerElement = geometryAttribute.array.BYTES_PER_ELEMENT; + const bufferAttribute = this._getBufferAttribute( geometryAttribute ); + + let vertexBufferLayout = vertexBuffers.get( bufferAttribute ); + + if ( vertexBufferLayout === undefined ) { + + let arrayStride, stepMode; + + if ( geometryAttribute.isInterleavedBufferAttribute === true ) { + + arrayStride = geometryAttribute.data.stride * bytesPerElement; + stepMode = geometryAttribute.data.isInstancedInterleavedBuffer ? GPUInputStepMode.Instance : GPUInputStepMode.Vertex; + + } else { + + arrayStride = geometryAttribute.itemSize * bytesPerElement; + stepMode = geometryAttribute.isInstancedBufferAttribute ? GPUInputStepMode.Instance : GPUInputStepMode.Vertex; + + } + + // patch for INT16 and UINT16 + if ( geometryAttribute.normalized === false && ( geometryAttribute.array.constructor === Int16Array || geometryAttribute.array.constructor === Uint16Array ) ) { + + arrayStride = 4; + + } + + vertexBufferLayout = { + arrayStride, + attributes: [], + stepMode + }; + + vertexBuffers.set( bufferAttribute, vertexBufferLayout ); + + } + + const format = this._getVertexFormat( geometryAttribute ); + const offset = ( geometryAttribute.isInterleavedBufferAttribute === true ) ? geometryAttribute.offset * bytesPerElement : 0; + + vertexBufferLayout.attributes.push( { + shaderLocation: slot, + offset, + format + } ); + + } + + return Array.from( vertexBuffers.values() ); + + } + + /** + * Destroys the GPU buffer of the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + destroyAttribute( attribute ) { + + const backend = this.backend; + const data = backend.get( this._getBufferAttribute( attribute ) ); + + data.buffer.destroy(); + + backend.delete( attribute ); + + } + + /** + * This method performs a readback operation by moving buffer data from + * a storage buffer attribute from the GPU to the CPU. + * + * @async + * @param {StorageBufferAttribute} attribute - The storage buffer attribute. + * @return {Promise} A promise that resolves with the buffer data when the data are ready. + */ + async getArrayBufferAsync( attribute ) { + + const backend = this.backend; + const device = backend.device; + + const data = backend.get( this._getBufferAttribute( attribute ) ); + const bufferGPU = data.buffer; + const size = bufferGPU.size; + + const readBufferGPU = device.createBuffer( { + label: `${ attribute.name }_readback`, + size, + usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ + } ); + + const cmdEncoder = device.createCommandEncoder( { + label: `readback_encoder_${ attribute.name }` + } ); + + cmdEncoder.copyBufferToBuffer( + bufferGPU, + 0, + readBufferGPU, + 0, + size + ); + + const gpuCommands = cmdEncoder.finish(); + device.queue.submit( [ gpuCommands ] ); + + await readBufferGPU.mapAsync( GPUMapMode.READ ); + + const arrayBuffer = readBufferGPU.getMappedRange(); + + const dstBuffer = new attribute.array.constructor( arrayBuffer.slice( 0 ) ); + + readBufferGPU.unmap(); + + return dstBuffer.buffer; + + } + + /** + * Returns the vertex format of the given buffer attribute. + * + * @private + * @param {BufferAttribute} geometryAttribute - The buffer attribute. + * @return {string|undefined} The vertex format (e.g. 'float32x3'). + */ + _getVertexFormat( geometryAttribute ) { + + const { itemSize, normalized } = geometryAttribute; + const ArrayType = geometryAttribute.array.constructor; + const AttributeType = geometryAttribute.constructor; + + let format; + + if ( itemSize === 1 ) { + + format = typeArraysToVertexFormatPrefixForItemSize1.get( ArrayType ); + + } else { + + const prefixOptions = typedAttributeToVertexFormatPrefix.get( AttributeType ) || typedArraysToVertexFormatPrefix.get( ArrayType ); + const prefix = prefixOptions[ normalized ? 1 : 0 ]; + + if ( prefix ) { + + const bytesPerUnit = ArrayType.BYTES_PER_ELEMENT * itemSize; + const paddedBytesPerUnit = Math.floor( ( bytesPerUnit + 3 ) / 4 ) * 4; + const paddedItemSize = paddedBytesPerUnit / ArrayType.BYTES_PER_ELEMENT; + + if ( paddedItemSize % 1 ) { + + throw new Error( 'THREE.WebGPUAttributeUtils: Bad vertex format item size.' ); + + } + + format = `${prefix}x${paddedItemSize}`; + + } + + } + + if ( ! format ) { + + console.error( 'THREE.WebGPUAttributeUtils: Vertex format not supported yet.' ); + + } + + return format; + + } + + /** + * Returns `true` if the given array is a typed array. + * + * @private + * @param {any} array - The array. + * @return {boolean} Whether the given array is a typed array or not. + */ + _isTypedArray( array ) { + + return ArrayBuffer.isView( array ) && ! ( array instanceof DataView ); + + } + + /** + * Utility method for handling interleaved buffer attributes correctly. + * To process them, their `InterleavedBuffer` is returned. + * + * @private + * @param {BufferAttribute} attribute - The attribute. + * @return {BufferAttribute|InterleavedBuffer} + */ + _getBufferAttribute( attribute ) { + + if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; + + return attribute; + + } + +} + +/** + * A WebGPU backend utility module for managing bindings. + * + * When reading the documentation it's helpful to keep in mind that + * all class definitions starting with 'GPU*' are modules from the + * WebGPU API. So for example `BindGroup` is a class from the engine + * whereas `GPUBindGroup` is a class from WebGPU. + * + * @private + */ +class WebGPUBindingUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGPUBackend} backend - The WebGPU backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGPU backend. + * + * @type {WebGPUBackend} + */ + this.backend = backend; + + /** + * A cache for managing bind group layouts. + * + * @type {WeakMap,GPUBindGroupLayout>} + */ + this.bindGroupLayoutCache = new WeakMap(); + + } + + /** + * Creates a GPU bind group layout for the given bind group. + * + * @param {BindGroup} bindGroup - The bind group. + * @return {GPUBindGroupLayout} The GPU bind group layout. + */ + createBindingsLayout( bindGroup ) { + + const backend = this.backend; + const device = backend.device; + + const entries = []; + + let index = 0; + + for ( const binding of bindGroup.bindings ) { + + const bindingGPU = { + binding: index ++, + visibility: binding.visibility + }; + + if ( binding.isUniformBuffer || binding.isStorageBuffer ) { + + const buffer = {}; // GPUBufferBindingLayout + + if ( binding.isStorageBuffer ) { + + if ( binding.visibility & 4 ) { + + // compute + + if ( binding.access === NodeAccess.READ_WRITE || binding.access === NodeAccess.WRITE_ONLY ) { + + buffer.type = GPUBufferBindingType.Storage; + + } else { + + buffer.type = GPUBufferBindingType.ReadOnlyStorage; + + } + + } else { + + buffer.type = GPUBufferBindingType.ReadOnlyStorage; + + } + + } + + bindingGPU.buffer = buffer; + + } else if ( binding.isSampler ) { + + const sampler = {}; // GPUSamplerBindingLayout + + if ( binding.texture.isDepthTexture ) { + + if ( binding.texture.compareFunction !== null ) { + + sampler.type = GPUSamplerBindingType.Comparison; + + } else if ( backend.compatibilityMode ) { + + sampler.type = GPUSamplerBindingType.NonFiltering; + + } + + } + + bindingGPU.sampler = sampler; + + } else if ( binding.isSampledTexture && binding.texture.isVideoTexture ) { + + bindingGPU.externalTexture = {}; // GPUExternalTextureBindingLayout + + } else if ( binding.isSampledTexture && binding.store ) { + + const storageTexture = {}; // GPUStorageTextureBindingLayout + storageTexture.format = this.backend.get( binding.texture ).texture.format; + + const access = binding.access; + + if ( access === NodeAccess.READ_WRITE ) { + + storageTexture.access = GPUStorageTextureAccess.ReadWrite; + + } else if ( access === NodeAccess.WRITE_ONLY ) { + + storageTexture.access = GPUStorageTextureAccess.WriteOnly; + + } else { + + storageTexture.access = GPUStorageTextureAccess.ReadOnly; + + } + + bindingGPU.storageTexture = storageTexture; + + } else if ( binding.isSampledTexture ) { + + const texture = {}; // GPUTextureBindingLayout + + const { primarySamples } = backend.utils.getTextureSampleData( binding.texture ); + + if ( primarySamples > 1 ) { + + texture.multisampled = true; + + if ( ! binding.texture.isDepthTexture ) { + + texture.sampleType = GPUTextureSampleType.UnfilterableFloat; + + } + + } + + if ( binding.texture.isDepthTexture ) { + + if ( backend.compatibilityMode && binding.texture.compareFunction === null ) { + + texture.sampleType = GPUTextureSampleType.UnfilterableFloat; + + } else { + + texture.sampleType = GPUTextureSampleType.Depth; + + } + + } else if ( binding.texture.isDataTexture || binding.texture.isDataArrayTexture || binding.texture.isData3DTexture ) { + + const type = binding.texture.type; + + if ( type === IntType ) { + + texture.sampleType = GPUTextureSampleType.SInt; + + } else if ( type === UnsignedIntType ) { + + texture.sampleType = GPUTextureSampleType.UInt; + + } else if ( type === FloatType ) { + + if ( this.backend.hasFeature( 'float32-filterable' ) ) { + + texture.sampleType = GPUTextureSampleType.Float; + + } else { + + texture.sampleType = GPUTextureSampleType.UnfilterableFloat; + + } + + } + + } + + if ( binding.isSampledCubeTexture ) { + + texture.viewDimension = GPUTextureViewDimension.Cube; + + } else if ( binding.texture.isArrayTexture || binding.texture.isDataArrayTexture || binding.texture.isCompressedArrayTexture ) { + + texture.viewDimension = GPUTextureViewDimension.TwoDArray; + + } else if ( binding.isSampledTexture3D ) { + + texture.viewDimension = GPUTextureViewDimension.ThreeD; + + } + + bindingGPU.texture = texture; + + } else { + + console.error( `WebGPUBindingUtils: Unsupported binding "${ binding }".` ); + + } + + entries.push( bindingGPU ); + + } + + return device.createBindGroupLayout( { entries } ); + + } + + /** + * Creates bindings from the given bind group definition. + * + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + createBindings( bindGroup, bindings, cacheIndex, version = 0 ) { + + const { backend, bindGroupLayoutCache } = this; + const bindingsData = backend.get( bindGroup ); + + // setup (static) binding layout and (dynamic) binding group + + let bindLayoutGPU = bindGroupLayoutCache.get( bindGroup.bindingsReference ); + + if ( bindLayoutGPU === undefined ) { + + bindLayoutGPU = this.createBindingsLayout( bindGroup ); + bindGroupLayoutCache.set( bindGroup.bindingsReference, bindLayoutGPU ); + + } + + let bindGroupGPU; + + if ( cacheIndex > 0 ) { + + if ( bindingsData.groups === undefined ) { + + bindingsData.groups = []; + bindingsData.versions = []; + + } + + if ( bindingsData.versions[ cacheIndex ] === version ) { + + bindGroupGPU = bindingsData.groups[ cacheIndex ]; + + } + + } + + if ( bindGroupGPU === undefined ) { + + bindGroupGPU = this.createBindGroup( bindGroup, bindLayoutGPU ); + + if ( cacheIndex > 0 ) { + + bindingsData.groups[ cacheIndex ] = bindGroupGPU; + bindingsData.versions[ cacheIndex ] = version; + + } + + } + + bindingsData.group = bindGroupGPU; + bindingsData.layout = bindLayoutGPU; + + } + + /** + * Updates a buffer binding. + * + * @param {Buffer} binding - The buffer binding to update. + */ + updateBinding( binding ) { + + const backend = this.backend; + const device = backend.device; + + const buffer = binding.buffer; + const bufferGPU = backend.get( binding ).buffer; + + device.queue.writeBuffer( bufferGPU, 0, buffer, 0 ); + + } + + /** + * Creates a GPU bind group for the camera index. + * + * @param {Uint32Array} data - The index data. + * @param {GPUBindGroupLayout} layout - The GPU bind group layout. + * @return {GPUBindGroup} The GPU bind group. + */ + createBindGroupIndex( data, layout ) { + + const backend = this.backend; + const device = backend.device; + + const usage = GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST; + const index = data[ 0 ]; + + const buffer = device.createBuffer( { + label: 'bindingCameraIndex_' + index, + size: 16, // uint(4) * 4 + usage: usage + } ); + + device.queue.writeBuffer( buffer, 0, data, 0 ); + + const entries = [ { binding: 0, resource: { buffer } } ]; + + return device.createBindGroup( { + label: 'bindGroupCameraIndex_' + index, + layout, + entries + } ); + + } + + /** + * Creates a GPU bind group for the given bind group and GPU layout. + * + * @param {BindGroup} bindGroup - The bind group. + * @param {GPUBindGroupLayout} layoutGPU - The GPU bind group layout. + * @return {GPUBindGroup} The GPU bind group. + */ + createBindGroup( bindGroup, layoutGPU ) { + + const backend = this.backend; + const device = backend.device; + + let bindingPoint = 0; + const entriesGPU = []; + + for ( const binding of bindGroup.bindings ) { + + if ( binding.isUniformBuffer ) { + + const bindingData = backend.get( binding ); + + if ( bindingData.buffer === undefined ) { + + const byteLength = binding.byteLength; + + const usage = GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST; + + const bufferGPU = device.createBuffer( { + label: 'bindingBuffer_' + binding.name, + size: byteLength, + usage: usage + } ); + + bindingData.buffer = bufferGPU; + + } + + entriesGPU.push( { binding: bindingPoint, resource: { buffer: bindingData.buffer } } ); + + } else if ( binding.isStorageBuffer ) { + + const bindingData = backend.get( binding ); + + if ( bindingData.buffer === undefined ) { + + const attribute = binding.attribute; + //const usage = GPUBufferUsage.STORAGE | GPUBufferUsage.VERTEX | /*GPUBufferUsage.COPY_SRC |*/ GPUBufferUsage.COPY_DST; + + //backend.attributeUtils.createAttribute( attribute, usage ); // @TODO: Move it to universal renderer + + bindingData.buffer = backend.get( attribute ).buffer; + + } + + entriesGPU.push( { binding: bindingPoint, resource: { buffer: bindingData.buffer } } ); + + } else if ( binding.isSampler ) { + + const textureGPU = backend.get( binding.texture ); + + entriesGPU.push( { binding: bindingPoint, resource: textureGPU.sampler } ); + + } else if ( binding.isSampledTexture ) { + + const textureData = backend.get( binding.texture ); + + let resourceGPU; + + if ( textureData.externalTexture !== undefined ) { + + resourceGPU = device.importExternalTexture( { source: textureData.externalTexture } ); + + } else { + + const mipLevelCount = binding.store ? 1 : textureData.texture.mipLevelCount; + const propertyName = `view-${ textureData.texture.width }-${ textureData.texture.height }-${ mipLevelCount }`; + + resourceGPU = textureData[ propertyName ]; + + if ( resourceGPU === undefined ) { + + const aspectGPU = GPUTextureAspect.All; + + let dimensionViewGPU; + + if ( binding.isSampledCubeTexture ) { + + dimensionViewGPU = GPUTextureViewDimension.Cube; + + } else if ( binding.isSampledTexture3D ) { + + dimensionViewGPU = GPUTextureViewDimension.ThreeD; + + } else if ( binding.texture.isArrayTexture || binding.texture.isDataArrayTexture || binding.texture.isCompressedArrayTexture ) { + + dimensionViewGPU = GPUTextureViewDimension.TwoDArray; + + } else { + + dimensionViewGPU = GPUTextureViewDimension.TwoD; + + } + + resourceGPU = textureData[ propertyName ] = textureData.texture.createView( { aspect: aspectGPU, dimension: dimensionViewGPU, mipLevelCount } ); + + } + + } + + entriesGPU.push( { binding: bindingPoint, resource: resourceGPU } ); + + } + + bindingPoint ++; + + } + + return device.createBindGroup( { + label: 'bindGroup_' + bindGroup.name, + layout: layoutGPU, + entries: entriesGPU + } ); + + } + +} + +/** + * A WebGPU backend utility module for managing pipelines. + * + * @private + */ +class WebGPUPipelineUtils { + + /** + * Constructs a new utility object. + * + * @param {WebGPUBackend} backend - The WebGPU backend. + */ + constructor( backend ) { + + /** + * A reference to the WebGPU backend. + * + * @type {WebGPUBackend} + */ + this.backend = backend; + + /** + * A Weak Map that tracks the active pipeline for render or compute passes. + * + * @private + * @type {WeakMap<(GPURenderPassEncoder|GPUComputePassEncoder),(GPURenderPipeline|GPUComputePipeline)>} + */ + this._activePipelines = new WeakMap(); + + } + + /** + * Sets the given pipeline for the given pass. The method makes sure to only set the + * pipeline when necessary. + * + * @param {(GPURenderPassEncoder|GPUComputePassEncoder)} pass - The pass encoder. + * @param {(GPURenderPipeline|GPUComputePipeline)} pipeline - The pipeline. + */ + setPipeline( pass, pipeline ) { + + const currentPipeline = this._activePipelines.get( pass ); + + if ( currentPipeline !== pipeline ) { + + pass.setPipeline( pipeline ); + + this._activePipelines.set( pass, pipeline ); + + } + + } + + /** + * Returns the sample count derived from the given render context. + * + * @private + * @param {RenderContext} renderContext - The render context. + * @return {number} The sample count. + */ + _getSampleCount( renderContext ) { + + return this.backend.utils.getSampleCountRenderContext( renderContext ); + + } + + /** + * Creates a render pipeline for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @param {Array} promises - An array of compilation promises which are used in `compileAsync()`. + */ + createRenderPipeline( renderObject, promises ) { + + const { object, material, geometry, pipeline } = renderObject; + const { vertexProgram, fragmentProgram } = pipeline; + + const backend = this.backend; + const device = backend.device; + const utils = backend.utils; + + const pipelineData = backend.get( pipeline ); + + // bind group layouts + + const bindGroupLayouts = []; + + for ( const bindGroup of renderObject.getBindings() ) { + + const bindingsData = backend.get( bindGroup ); + + bindGroupLayouts.push( bindingsData.layout ); + + } + + // vertex buffers + + const vertexBuffers = backend.attributeUtils.createShaderVertexBuffers( renderObject ); + + // blending + + let blending; + + if ( material.blending !== NoBlending && ( material.blending !== NormalBlending || material.transparent !== false ) ) { + + blending = this._getBlending( material ); + + } + + // stencil + + let stencilFront = {}; + + if ( material.stencilWrite === true ) { + + stencilFront = { + compare: this._getStencilCompare( material ), + failOp: this._getStencilOperation( material.stencilFail ), + depthFailOp: this._getStencilOperation( material.stencilZFail ), + passOp: this._getStencilOperation( material.stencilZPass ) + }; + + } + + const colorWriteMask = this._getColorWriteMask( material ); + + const targets = []; + + if ( renderObject.context.textures !== null ) { + + const textures = renderObject.context.textures; + + for ( let i = 0; i < textures.length; i ++ ) { + + const colorFormat = utils.getTextureFormatGPU( textures[ i ] ); + + targets.push( { + format: colorFormat, + blend: blending, + writeMask: colorWriteMask + } ); + + } + + } else { + + const colorFormat = utils.getCurrentColorFormat( renderObject.context ); + + targets.push( { + format: colorFormat, + blend: blending, + writeMask: colorWriteMask + } ); + + } + + const vertexModule = backend.get( vertexProgram ).module; + const fragmentModule = backend.get( fragmentProgram ).module; + + const primitiveState = this._getPrimitiveState( object, geometry, material ); + const depthCompare = this._getDepthCompare( material ); + const depthStencilFormat = utils.getCurrentDepthStencilFormat( renderObject.context ); + + const sampleCount = this._getSampleCount( renderObject.context ); + + const pipelineDescriptor = { + label: `renderPipeline_${ material.name || material.type }_${ material.id }`, + vertex: Object.assign( {}, vertexModule, { buffers: vertexBuffers } ), + fragment: Object.assign( {}, fragmentModule, { targets } ), + primitive: primitiveState, + multisample: { + count: sampleCount, + alphaToCoverageEnabled: material.alphaToCoverage && sampleCount > 1 + }, + layout: device.createPipelineLayout( { + bindGroupLayouts + } ) + }; + + + const depthStencil = {}; + const renderDepth = renderObject.context.depth; + const renderStencil = renderObject.context.stencil; + + if ( renderDepth === true || renderStencil === true ) { + + if ( renderDepth === true ) { + + depthStencil.format = depthStencilFormat; + depthStencil.depthWriteEnabled = material.depthWrite; + depthStencil.depthCompare = depthCompare; + + } + + if ( renderStencil === true ) { + + depthStencil.stencilFront = stencilFront; + depthStencil.stencilBack = {}; // three.js does not provide an API to configure the back function (gl.stencilFuncSeparate() was never used) + depthStencil.stencilReadMask = material.stencilFuncMask; + depthStencil.stencilWriteMask = material.stencilWriteMask; + + } + + if ( material.polygonOffset === true ) { + + depthStencil.depthBias = material.polygonOffsetUnits; + depthStencil.depthBiasSlopeScale = material.polygonOffsetFactor; + depthStencil.depthBiasClamp = 0; // three.js does not provide an API to configure this value + + } + + pipelineDescriptor.depthStencil = depthStencil; + + } + + + if ( promises === null ) { + + pipelineData.pipeline = device.createRenderPipeline( pipelineDescriptor ); + + } else { + + const p = new Promise( ( resolve /*, reject*/ ) => { + + device.createRenderPipelineAsync( pipelineDescriptor ).then( pipeline => { + + pipelineData.pipeline = pipeline; + resolve(); + + } ); + + } ); + + promises.push( p ); + + } + + } + + /** + * Creates GPU render bundle encoder for the given render context. + * + * @param {RenderContext} renderContext - The render context. + * @param {?string} [label='renderBundleEncoder'] - The label. + * @return {GPURenderBundleEncoder} The GPU render bundle encoder. + */ + createBundleEncoder( renderContext, label = 'renderBundleEncoder' ) { + + const backend = this.backend; + const { utils, device } = backend; + + const depthStencilFormat = utils.getCurrentDepthStencilFormat( renderContext ); + const colorFormat = utils.getCurrentColorFormat( renderContext ); + const sampleCount = this._getSampleCount( renderContext ); + + const descriptor = { + label: label, + colorFormats: [ colorFormat ], + depthStencilFormat, + sampleCount + }; + + return device.createRenderBundleEncoder( descriptor ); + + } + + /** + * Creates a compute pipeline for the given compute node. + * + * @param {ComputePipeline} pipeline - The compute pipeline. + * @param {Array} bindings - The bindings. + */ + createComputePipeline( pipeline, bindings ) { + + const backend = this.backend; + const device = backend.device; + + const computeProgram = backend.get( pipeline.computeProgram ).module; + + const pipelineGPU = backend.get( pipeline ); + + // bind group layouts + + const bindGroupLayouts = []; + + for ( const bindingsGroup of bindings ) { + + const bindingsData = backend.get( bindingsGroup ); + + bindGroupLayouts.push( bindingsData.layout ); + + } + + pipelineGPU.pipeline = device.createComputePipeline( { + compute: computeProgram, + layout: device.createPipelineLayout( { + bindGroupLayouts + } ) + } ); + + } + + /** + * Returns the blending state as a descriptor object required + * for the pipeline creation. + * + * @private + * @param {Material} material - The material. + * @return {Object} The blending state. + */ + _getBlending( material ) { + + let color, alpha; + + const blending = material.blending; + const blendSrc = material.blendSrc; + const blendDst = material.blendDst; + const blendEquation = material.blendEquation; + + + if ( blending === CustomBlending ) { + + const blendSrcAlpha = material.blendSrcAlpha !== null ? material.blendSrcAlpha : blendSrc; + const blendDstAlpha = material.blendDstAlpha !== null ? material.blendDstAlpha : blendDst; + const blendEquationAlpha = material.blendEquationAlpha !== null ? material.blendEquationAlpha : blendEquation; + + color = { + srcFactor: this._getBlendFactor( blendSrc ), + dstFactor: this._getBlendFactor( blendDst ), + operation: this._getBlendOperation( blendEquation ) + }; + + alpha = { + srcFactor: this._getBlendFactor( blendSrcAlpha ), + dstFactor: this._getBlendFactor( blendDstAlpha ), + operation: this._getBlendOperation( blendEquationAlpha ) + }; + + } else { + + const premultipliedAlpha = material.premultipliedAlpha; + + const setBlend = ( srcRGB, dstRGB, srcAlpha, dstAlpha ) => { + + color = { + srcFactor: srcRGB, + dstFactor: dstRGB, + operation: GPUBlendOperation.Add + }; + + alpha = { + srcFactor: srcAlpha, + dstFactor: dstAlpha, + operation: GPUBlendOperation.Add + }; + + }; + + if ( premultipliedAlpha ) { + + switch ( blending ) { + + case NormalBlending: + setBlend( GPUBlendFactor.One, GPUBlendFactor.OneMinusSrcAlpha, GPUBlendFactor.One, GPUBlendFactor.OneMinusSrcAlpha ); + break; + + case AdditiveBlending: + setBlend( GPUBlendFactor.One, GPUBlendFactor.One, GPUBlendFactor.One, GPUBlendFactor.One ); + break; + + case SubtractiveBlending: + setBlend( GPUBlendFactor.Zero, GPUBlendFactor.OneMinusSrc, GPUBlendFactor.Zero, GPUBlendFactor.One ); + break; + + case MultiplyBlending: + setBlend( GPUBlendFactor.Zero, GPUBlendFactor.Src, GPUBlendFactor.Zero, GPUBlendFactor.SrcAlpha ); + break; + + } + + } else { + + switch ( blending ) { + + case NormalBlending: + setBlend( GPUBlendFactor.SrcAlpha, GPUBlendFactor.OneMinusSrcAlpha, GPUBlendFactor.One, GPUBlendFactor.OneMinusSrcAlpha ); + break; + + case AdditiveBlending: + setBlend( GPUBlendFactor.SrcAlpha, GPUBlendFactor.One, GPUBlendFactor.SrcAlpha, GPUBlendFactor.One ); + break; + + case SubtractiveBlending: + setBlend( GPUBlendFactor.Zero, GPUBlendFactor.OneMinusSrc, GPUBlendFactor.Zero, GPUBlendFactor.One ); + break; + + case MultiplyBlending: + setBlend( GPUBlendFactor.Zero, GPUBlendFactor.Src, GPUBlendFactor.Zero, GPUBlendFactor.Src ); + break; + + } + + } + + } + + if ( color !== undefined && alpha !== undefined ) { + + return { color, alpha }; + + } else { + + console.error( 'THREE.WebGPURenderer: Invalid blending: ', blending ); + + } + + } + /** + * Returns the GPU blend factor which is required for the pipeline creation. + * + * @private + * @param {number} blend - The blend factor as a three.js constant. + * @return {string} The GPU blend factor. + */ + _getBlendFactor( blend ) { + + let blendFactor; + + switch ( blend ) { + + case ZeroFactor: + blendFactor = GPUBlendFactor.Zero; + break; + + case OneFactor: + blendFactor = GPUBlendFactor.One; + break; + + case SrcColorFactor: + blendFactor = GPUBlendFactor.Src; + break; + + case OneMinusSrcColorFactor: + blendFactor = GPUBlendFactor.OneMinusSrc; + break; + + case SrcAlphaFactor: + blendFactor = GPUBlendFactor.SrcAlpha; + break; + + case OneMinusSrcAlphaFactor: + blendFactor = GPUBlendFactor.OneMinusSrcAlpha; + break; + + case DstColorFactor: + blendFactor = GPUBlendFactor.Dst; + break; + + case OneMinusDstColorFactor: + blendFactor = GPUBlendFactor.OneMinusDst; + break; + + case DstAlphaFactor: + blendFactor = GPUBlendFactor.DstAlpha; + break; + + case OneMinusDstAlphaFactor: + blendFactor = GPUBlendFactor.OneMinusDstAlpha; + break; + + case SrcAlphaSaturateFactor: + blendFactor = GPUBlendFactor.SrcAlphaSaturated; + break; + + case BlendColorFactor: + blendFactor = GPUBlendFactor.Constant; + break; + + case OneMinusBlendColorFactor: + blendFactor = GPUBlendFactor.OneMinusConstant; + break; + + default: + console.error( 'THREE.WebGPURenderer: Blend factor not supported.', blend ); + + } + + return blendFactor; + + } + + /** + * Returns the GPU stencil compare function which is required for the pipeline creation. + * + * @private + * @param {Material} material - The material. + * @return {string} The GPU stencil compare function. + */ + _getStencilCompare( material ) { + + let stencilCompare; + + const stencilFunc = material.stencilFunc; + + switch ( stencilFunc ) { + + case NeverStencilFunc: + stencilCompare = GPUCompareFunction.Never; + break; + + case AlwaysStencilFunc: + stencilCompare = GPUCompareFunction.Always; + break; + + case LessStencilFunc: + stencilCompare = GPUCompareFunction.Less; + break; + + case LessEqualStencilFunc: + stencilCompare = GPUCompareFunction.LessEqual; + break; + + case EqualStencilFunc: + stencilCompare = GPUCompareFunction.Equal; + break; + + case GreaterEqualStencilFunc: + stencilCompare = GPUCompareFunction.GreaterEqual; + break; + + case GreaterStencilFunc: + stencilCompare = GPUCompareFunction.Greater; + break; + + case NotEqualStencilFunc: + stencilCompare = GPUCompareFunction.NotEqual; + break; + + default: + console.error( 'THREE.WebGPURenderer: Invalid stencil function.', stencilFunc ); + + } + + return stencilCompare; + + } + + /** + * Returns the GPU stencil operation which is required for the pipeline creation. + * + * @private + * @param {number} op - A three.js constant defining the stencil operation. + * @return {string} The GPU stencil operation. + */ + _getStencilOperation( op ) { + + let stencilOperation; + + switch ( op ) { + + case KeepStencilOp: + stencilOperation = GPUStencilOperation.Keep; + break; + + case ZeroStencilOp: + stencilOperation = GPUStencilOperation.Zero; + break; + + case ReplaceStencilOp: + stencilOperation = GPUStencilOperation.Replace; + break; + + case InvertStencilOp: + stencilOperation = GPUStencilOperation.Invert; + break; + + case IncrementStencilOp: + stencilOperation = GPUStencilOperation.IncrementClamp; + break; + + case DecrementStencilOp: + stencilOperation = GPUStencilOperation.DecrementClamp; + break; + + case IncrementWrapStencilOp: + stencilOperation = GPUStencilOperation.IncrementWrap; + break; + + case DecrementWrapStencilOp: + stencilOperation = GPUStencilOperation.DecrementWrap; + break; + + default: + console.error( 'THREE.WebGPURenderer: Invalid stencil operation.', stencilOperation ); + + } + + return stencilOperation; + + } + + /** + * Returns the GPU blend operation which is required for the pipeline creation. + * + * @private + * @param {number} blendEquation - A three.js constant defining the blend equation. + * @return {string} The GPU blend operation. + */ + _getBlendOperation( blendEquation ) { + + let blendOperation; + + switch ( blendEquation ) { + + case AddEquation: + blendOperation = GPUBlendOperation.Add; + break; + + case SubtractEquation: + blendOperation = GPUBlendOperation.Subtract; + break; + + case ReverseSubtractEquation: + blendOperation = GPUBlendOperation.ReverseSubtract; + break; + + case MinEquation: + blendOperation = GPUBlendOperation.Min; + break; + + case MaxEquation: + blendOperation = GPUBlendOperation.Max; + break; + + default: + console.error( 'THREE.WebGPUPipelineUtils: Blend equation not supported.', blendEquation ); + + } + + return blendOperation; + + } + + /** + * Returns the primitive state as a descriptor object required + * for the pipeline creation. + * + * @private + * @param {Object3D} object - The 3D object. + * @param {BufferGeometry} geometry - The geometry. + * @param {Material} material - The material. + * @return {Object} The primitive state. + */ + _getPrimitiveState( object, geometry, material ) { + + const descriptor = {}; + const utils = this.backend.utils; + + descriptor.topology = utils.getPrimitiveTopology( object, material ); + + if ( geometry.index !== null && object.isLine === true && object.isLineSegments !== true ) { + + descriptor.stripIndexFormat = ( geometry.index.array instanceof Uint16Array ) ? GPUIndexFormat.Uint16 : GPUIndexFormat.Uint32; + + } + + switch ( material.side ) { + + case FrontSide: + descriptor.frontFace = GPUFrontFace.CCW; + descriptor.cullMode = GPUCullMode.Back; + break; + + case BackSide: + descriptor.frontFace = GPUFrontFace.CCW; + descriptor.cullMode = GPUCullMode.Front; + break; + + case DoubleSide: + descriptor.frontFace = GPUFrontFace.CCW; + descriptor.cullMode = GPUCullMode.None; + break; + + default: + console.error( 'THREE.WebGPUPipelineUtils: Unknown material.side value.', material.side ); + break; + + } + + return descriptor; + + } + + /** + * Returns the GPU color write mask which is required for the pipeline creation. + * + * @private + * @param {Material} material - The material. + * @return {string} The GPU color write mask. + */ + _getColorWriteMask( material ) { + + return ( material.colorWrite === true ) ? GPUColorWriteFlags.All : GPUColorWriteFlags.None; + + } + + /** + * Returns the GPU depth compare function which is required for the pipeline creation. + * + * @private + * @param {Material} material - The material. + * @return {string} The GPU depth compare function. + */ + _getDepthCompare( material ) { + + let depthCompare; + + if ( material.depthTest === false ) { + + depthCompare = GPUCompareFunction.Always; + + } else { + + const depthFunc = material.depthFunc; + + switch ( depthFunc ) { + + case NeverDepth: + depthCompare = GPUCompareFunction.Never; + break; + + case AlwaysDepth: + depthCompare = GPUCompareFunction.Always; + break; + + case LessDepth: + depthCompare = GPUCompareFunction.Less; + break; + + case LessEqualDepth: + depthCompare = GPUCompareFunction.LessEqual; + break; + + case EqualDepth: + depthCompare = GPUCompareFunction.Equal; + break; + + case GreaterEqualDepth: + depthCompare = GPUCompareFunction.GreaterEqual; + break; + + case GreaterDepth: + depthCompare = GPUCompareFunction.Greater; + break; + + case NotEqualDepth: + depthCompare = GPUCompareFunction.NotEqual; + break; + + default: + console.error( 'THREE.WebGPUPipelineUtils: Invalid depth function.', depthFunc ); + + } + + } + + return depthCompare; + + } + +} + +/** + * Manages a pool of WebGPU timestamp queries for performance measurement. + * Extends the base TimestampQueryPool to provide WebGPU-specific implementation. + * + * @augments TimestampQueryPool + */ +class WebGPUTimestampQueryPool extends TimestampQueryPool { + + /** + * Creates a new WebGPU timestamp query pool. + * + * @param {GPUDevice} device - The WebGPU device to create queries on. + * @param {string} type - The type identifier for this query pool. + * @param {number} [maxQueries=2048] - Maximum number of queries this pool can hold. + */ + constructor( device, type, maxQueries = 2048 ) { + + super( maxQueries ); + this.device = device; + this.type = type; + + this.querySet = this.device.createQuerySet( { + type: 'timestamp', + count: this.maxQueries, + label: `queryset_global_timestamp_${type}` + } ); + + const bufferSize = this.maxQueries * 8; + this.resolveBuffer = this.device.createBuffer( { + label: `buffer_timestamp_resolve_${type}`, + size: bufferSize, + usage: GPUBufferUsage.QUERY_RESOLVE | GPUBufferUsage.COPY_SRC + } ); + + this.resultBuffer = this.device.createBuffer( { + label: `buffer_timestamp_result_${type}`, + size: bufferSize, + usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ + } ); + + } + + /** + * Allocates a pair of queries for a given render context. + * + * @param {Object} renderContext - The render context to allocate queries for. + * @returns {?number} The base offset for the allocated queries, or null if allocation failed. + */ + allocateQueriesForContext( renderContext ) { + + if ( ! this.trackTimestamp || this.isDisposed ) return null; + + if ( this.currentQueryIndex + 2 > this.maxQueries ) { + + warnOnce( `WebGPUTimestampQueryPool [${ this.type }]: Maximum number of queries exceeded, when using trackTimestamp it is necessary to resolves the queries via renderer.resolveTimestampsAsync( THREE.TimestampQuery.${ this.type.toUpperCase() } ).` ); + return null; + + } + + const baseOffset = this.currentQueryIndex; + this.currentQueryIndex += 2; + + this.queryOffsets.set( renderContext.id, baseOffset ); + return baseOffset; + + } + + /** + * Asynchronously resolves all pending queries and returns the total duration. + * If there's already a pending resolve operation, returns that promise instead. + * + * @async + * @returns {Promise} The total duration in milliseconds, or the last valid value if resolution fails. + */ + async resolveQueriesAsync() { + + if ( ! this.trackTimestamp || this.currentQueryIndex === 0 || this.isDisposed ) { + + return this.lastValue; + + } + + if ( this.pendingResolve ) { + + return this.pendingResolve; + + } + + this.pendingResolve = this._resolveQueries(); + + try { + + const result = await this.pendingResolve; + return result; + + } finally { + + this.pendingResolve = null; + + } + + } + + /** + * Internal method to resolve queries and calculate total duration. + * + * @async + * @private + * @returns {Promise} The total duration in milliseconds. + */ + async _resolveQueries() { + + if ( this.isDisposed ) { + + return this.lastValue; + + } + + try { + + if ( this.resultBuffer.mapState !== 'unmapped' ) { + + return this.lastValue; + + } + + const currentOffsets = new Map( this.queryOffsets ); + const queryCount = this.currentQueryIndex; + const bytesUsed = queryCount * 8; + + // Reset state before GPU work + this.currentQueryIndex = 0; + this.queryOffsets.clear(); + + const commandEncoder = this.device.createCommandEncoder(); + + commandEncoder.resolveQuerySet( + this.querySet, + 0, + queryCount, + this.resolveBuffer, + 0 + ); + + commandEncoder.copyBufferToBuffer( + this.resolveBuffer, + 0, + this.resultBuffer, + 0, + bytesUsed + ); + + const commandBuffer = commandEncoder.finish(); + this.device.queue.submit( [ commandBuffer ] ); + + if ( this.resultBuffer.mapState !== 'unmapped' ) { + + return this.lastValue; + + } + + // Create and track the mapping operation + await this.resultBuffer.mapAsync( GPUMapMode.READ, 0, bytesUsed ); + + if ( this.isDisposed ) { + + if ( this.resultBuffer.mapState === 'mapped' ) { + + this.resultBuffer.unmap(); + + } + + return this.lastValue; + + } + + const times = new BigUint64Array( this.resultBuffer.getMappedRange( 0, bytesUsed ) ); + let totalDuration = 0; + + for ( const [ , baseOffset ] of currentOffsets ) { + + const startTime = times[ baseOffset ]; + const endTime = times[ baseOffset + 1 ]; + const duration = Number( endTime - startTime ) / 1e6; + totalDuration += duration; + + } + + this.resultBuffer.unmap(); + this.lastValue = totalDuration; + + return totalDuration; + + } catch ( error ) { + + console.error( 'Error resolving queries:', error ); + if ( this.resultBuffer.mapState === 'mapped' ) { + + this.resultBuffer.unmap(); + + } + + return this.lastValue; + + } + + } + + /** + * Dispose of the query pool. + * + * @async + * @returns {Promise} A Promise that resolves when the dispose has been executed. + */ + async dispose() { + + if ( this.isDisposed ) { + + return; + + } + + this.isDisposed = true; + + // Wait for pending resolve operation + if ( this.pendingResolve ) { + + try { + + await this.pendingResolve; + + } catch ( error ) { + + console.error( 'Error waiting for pending resolve:', error ); + + } + + } + + // Ensure buffer is unmapped before destroying + if ( this.resultBuffer && this.resultBuffer.mapState === 'mapped' ) { + + try { + + this.resultBuffer.unmap(); + + } catch ( error ) { + + console.error( 'Error unmapping buffer:', error ); + + } + + } + + // Destroy resources + if ( this.querySet ) { + + this.querySet.destroy(); + this.querySet = null; + + } + + if ( this.resolveBuffer ) { + + this.resolveBuffer.destroy(); + this.resolveBuffer = null; + + } + + if ( this.resultBuffer ) { + + this.resultBuffer.destroy(); + this.resultBuffer = null; + + } + + this.queryOffsets.clear(); + this.pendingResolve = null; + + } + +} + +/*// debugger tools +import 'https://greggman.github.io/webgpu-avoid-redundant-state-setting/webgpu-check-redundant-state-setting.js'; +//*/ + + +/** + * A backend implementation targeting WebGPU. + * + * @private + * @augments Backend + */ +class WebGPUBackend extends Backend { + + /** + * WebGPUBackend options. + * + * @typedef {Object} WebGPUBackend~Options + * @property {boolean} [logarithmicDepthBuffer=false] - Whether logarithmic depth buffer is enabled or not. + * @property {boolean} [alpha=true] - Whether the default framebuffer (which represents the final contents of the canvas) should be transparent or opaque. + * @property {boolean} [compatibilityMode=false] - Whether the backend should be in compatibility mode or not. + * @property {boolean} [depth=true] - Whether the default framebuffer should have a depth buffer or not. + * @property {boolean} [stencil=false] - Whether the default framebuffer should have a stencil buffer or not. + * @property {boolean} [antialias=false] - Whether MSAA as the default anti-aliasing should be enabled or not. + * @property {number} [samples=0] - When `antialias` is `true`, `4` samples are used by default. Set this parameter to any other integer value than 0 to overwrite the default. + * @property {boolean} [forceWebGL=false] - If set to `true`, the renderer uses a WebGL 2 backend no matter if WebGPU is supported or not. + * @property {boolean} [trackTimestamp=false] - Whether to track timestamps with a Timestamp Query API or not. + * @property {string} [powerPreference=undefined] - The power preference. + * @property {Object} [requiredLimits=undefined] - Specifies the limits that are required by the device request. The request will fail if the adapter cannot provide these limits. + * @property {GPUDevice} [device=undefined] - If there is an existing GPU device on app level, it can be passed to the renderer as a parameter. + * @property {number} [outputType=undefined] - Texture type for output to canvas. By default, device's preferred format is used; other formats may incur overhead. + */ + + /** + * Constructs a new WebGPU backend. + * + * @param {WebGPUBackend~Options} [parameters] - The configuration parameter. + */ + constructor( parameters = {} ) { + + super( parameters ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWebGPUBackend = true; + + // some parameters require default values other than "undefined" + this.parameters.alpha = ( parameters.alpha === undefined ) ? true : parameters.alpha; + this.parameters.compatibilityMode = ( parameters.compatibilityMode === undefined ) ? false : parameters.compatibilityMode; + + this.parameters.requiredLimits = ( parameters.requiredLimits === undefined ) ? {} : parameters.requiredLimits; + + /** + * Indicates whether the backend is in compatibility mode or not. + * @type {boolean} + * @default false + */ + this.compatibilityMode = this.parameters.compatibilityMode; + + /** + * A reference to the device. + * + * @type {?GPUDevice} + * @default null + */ + this.device = null; + + /** + * A reference to the context. + * + * @type {?GPUCanvasContext} + * @default null + */ + this.context = null; + + /** + * A reference to the color attachment of the default framebuffer. + * + * @type {?GPUTexture} + * @default null + */ + this.colorBuffer = null; + + /** + * A reference to the default render pass descriptor. + * + * @type {?Object} + * @default null + */ + this.defaultRenderPassdescriptor = null; + + /** + * A reference to a backend module holding common utility functions. + * + * @type {WebGPUUtils} + */ + this.utils = new WebGPUUtils( this ); + + /** + * A reference to a backend module holding shader attribute-related + * utility functions. + * + * @type {WebGPUAttributeUtils} + */ + this.attributeUtils = new WebGPUAttributeUtils( this ); + + /** + * A reference to a backend module holding shader binding-related + * utility functions. + * + * @type {WebGPUBindingUtils} + */ + this.bindingUtils = new WebGPUBindingUtils( this ); + + /** + * A reference to a backend module holding shader pipeline-related + * utility functions. + * + * @type {WebGPUPipelineUtils} + */ + this.pipelineUtils = new WebGPUPipelineUtils( this ); + + /** + * A reference to a backend module holding shader texture-related + * utility functions. + * + * @type {WebGPUTextureUtils} + */ + this.textureUtils = new WebGPUTextureUtils( this ); + + /** + * A map that manages the resolve buffers for occlusion queries. + * + * @type {Map} + */ + this.occludedResolveCache = new Map(); + + } + + /** + * Initializes the backend so it is ready for usage. + * + * @async + * @param {Renderer} renderer - The renderer. + * @return {Promise} A Promise that resolves when the backend has been initialized. + */ + async init( renderer ) { + + await super.init( renderer ); + + // + + const parameters = this.parameters; + + // create the device if it is not passed with parameters + + let device; + + if ( parameters.device === undefined ) { + + const adapterOptions = { + powerPreference: parameters.powerPreference, + featureLevel: parameters.compatibilityMode ? 'compatibility' : undefined + }; + + const adapter = ( typeof navigator !== 'undefined' ) ? await navigator.gpu.requestAdapter( adapterOptions ) : null; + + if ( adapter === null ) { + + throw new Error( 'WebGPUBackend: Unable to create WebGPU adapter.' ); + + } + + // feature support + + const features = Object.values( GPUFeatureName ); + + const supportedFeatures = []; + + for ( const name of features ) { + + if ( adapter.features.has( name ) ) { + + supportedFeatures.push( name ); + + } + + } + + const deviceDescriptor = { + requiredFeatures: supportedFeatures, + requiredLimits: parameters.requiredLimits + }; + + device = await adapter.requestDevice( deviceDescriptor ); + + } else { + + device = parameters.device; + + } + + device.lost.then( ( info ) => { + + const deviceLossInfo = { + api: 'WebGPU', + message: info.message || 'Unknown reason', + reason: info.reason || null, + originalEvent: info + }; + + renderer.onDeviceLost( deviceLossInfo ); + + } ); + + const context = ( parameters.context !== undefined ) ? parameters.context : renderer.domElement.getContext( 'webgpu' ); + + this.device = device; + this.context = context; + + const alphaMode = parameters.alpha ? 'premultiplied' : 'opaque'; + + this.trackTimestamp = this.trackTimestamp && this.hasFeature( GPUFeatureName.TimestampQuery ); + + this.context.configure( { + device: this.device, + format: this.utils.getPreferredCanvasFormat(), + usage: GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.COPY_SRC, + alphaMode: alphaMode + } ); + + this.updateSize(); + + } + + /** + * The coordinate system of the backend. + * + * @type {number} + * @readonly + */ + get coordinateSystem() { + + return WebGPUCoordinateSystem; + + } + + /** + * This method performs a readback operation by moving buffer data from + * a storage buffer attribute from the GPU to the CPU. + * + * @async + * @param {StorageBufferAttribute} attribute - The storage buffer attribute. + * @return {Promise} A promise that resolves with the buffer data when the data are ready. + */ + async getArrayBufferAsync( attribute ) { + + return await this.attributeUtils.getArrayBufferAsync( attribute ); + + } + + /** + * Returns the backend's rendering context. + * + * @return {GPUCanvasContext} The rendering context. + */ + getContext() { + + return this.context; + + } + + /** + * Returns the default render pass descriptor. + * + * In WebGPU, the default framebuffer must be configured + * like custom framebuffers so the backend needs a render + * pass descriptor even when rendering directly to screen. + * + * @private + * @return {Object} The render pass descriptor. + */ + _getDefaultRenderPassDescriptor() { + + let descriptor = this.defaultRenderPassdescriptor; + + if ( descriptor === null ) { + + const renderer = this.renderer; + + descriptor = { + colorAttachments: [ { + view: null + } ], + }; + + if ( this.renderer.depth === true || this.renderer.stencil === true ) { + + descriptor.depthStencilAttachment = { + view: this.textureUtils.getDepthBuffer( renderer.depth, renderer.stencil ).createView() + }; + + } + + const colorAttachment = descriptor.colorAttachments[ 0 ]; + + if ( this.renderer.samples > 0 ) { + + colorAttachment.view = this.colorBuffer.createView(); + + } else { + + colorAttachment.resolveTarget = undefined; + + } + + this.defaultRenderPassdescriptor = descriptor; + + } + + const colorAttachment = descriptor.colorAttachments[ 0 ]; + + if ( this.renderer.samples > 0 ) { + + colorAttachment.resolveTarget = this.context.getCurrentTexture().createView(); + + } else { + + colorAttachment.view = this.context.getCurrentTexture().createView(); + + } + + return descriptor; + + } + + /** + * Internal to determine if the current render target is a render target array with depth 2D array texture. + * + * @param {RenderContext} renderContext - The render context. + * @return {boolean} Whether the render target is a render target array with depth 2D array texture. + * + * @private + */ + _isRenderCameraDepthArray( renderContext ) { + + return renderContext.depthTexture && renderContext.depthTexture.image.depth > 1 && renderContext.camera.isArrayCamera; + + } + + /** + * Returns the render pass descriptor for the given render context. + * + * @private + * @param {RenderContext} renderContext - The render context. + * @param {Object} colorAttachmentsConfig - Configuration object for the color attachments. + * @return {Object} The render pass descriptor. + */ + _getRenderPassDescriptor( renderContext, colorAttachmentsConfig = {} ) { + + const renderTarget = renderContext.renderTarget; + const renderTargetData = this.get( renderTarget ); + + let descriptors = renderTargetData.descriptors; + + if ( descriptors === undefined || + renderTargetData.width !== renderTarget.width || + renderTargetData.height !== renderTarget.height || + renderTargetData.dimensions !== renderTarget.dimensions || + renderTargetData.activeMipmapLevel !== renderContext.activeMipmapLevel || + renderTargetData.activeCubeFace !== renderContext.activeCubeFace || + renderTargetData.samples !== renderTarget.samples + ) { + + descriptors = {}; + + renderTargetData.descriptors = descriptors; + + // dispose + + const onDispose = () => { + + renderTarget.removeEventListener( 'dispose', onDispose ); + this.delete( renderTarget ); + + }; + + if ( renderTarget.hasEventListener( 'dispose', onDispose ) === false ) { + + renderTarget.addEventListener( 'dispose', onDispose ); + + } + + } + + const cacheKey = renderContext.getCacheKey(); + let descriptorBase = descriptors[ cacheKey ]; + + if ( descriptorBase === undefined ) { + + const textures = renderContext.textures; + const textureViews = []; + + let sliceIndex; + + const isRenderCameraDepthArray = this._isRenderCameraDepthArray( renderContext ); + + for ( let i = 0; i < textures.length; i ++ ) { + + const textureData = this.get( textures[ i ] ); + + const viewDescriptor = { + label: `colorAttachment_${ i }`, + baseMipLevel: renderContext.activeMipmapLevel, + mipLevelCount: 1, + baseArrayLayer: renderContext.activeCubeFace, + arrayLayerCount: 1, + dimension: GPUTextureViewDimension.TwoD + }; + + if ( renderTarget.isRenderTarget3D ) { + + sliceIndex = renderContext.activeCubeFace; + + viewDescriptor.baseArrayLayer = 0; + viewDescriptor.dimension = GPUTextureViewDimension.ThreeD; + viewDescriptor.depthOrArrayLayers = textures[ i ].image.depth; + + } else if ( renderTarget.isRenderTarget && textures[ i ].image.depth > 1 ) { + + if ( isRenderCameraDepthArray === true ) { + + const cameras = renderContext.camera.cameras; + for ( let layer = 0; layer < cameras.length; layer ++ ) { + + const layerViewDescriptor = { + ...viewDescriptor, + baseArrayLayer: layer, + arrayLayerCount: 1, + dimension: GPUTextureViewDimension.TwoD + }; + const textureView = textureData.texture.createView( layerViewDescriptor ); + textureViews.push( { + view: textureView, + resolveTarget: undefined, + depthSlice: undefined + } ); + + } + + } else { + + viewDescriptor.dimension = GPUTextureViewDimension.TwoDArray; + viewDescriptor.depthOrArrayLayers = textures[ i ].image.depth; + + } + + } + + if ( isRenderCameraDepthArray !== true ) { + + const textureView = textureData.texture.createView( viewDescriptor ); + + let view, resolveTarget; + + if ( textureData.msaaTexture !== undefined ) { + + view = textureData.msaaTexture.createView(); + resolveTarget = textureView; + + } else { + + view = textureView; + resolveTarget = undefined; + + } + + textureViews.push( { + view, + resolveTarget, + depthSlice: sliceIndex + } ); + + } + + } + + descriptorBase = { textureViews }; + + if ( renderContext.depth ) { + + const depthTextureData = this.get( renderContext.depthTexture ); + const options = {}; + if ( renderContext.depthTexture.isArrayTexture ) { + + options.dimension = GPUTextureViewDimension.TwoD; + options.arrayLayerCount = 1; + options.baseArrayLayer = renderContext.activeCubeFace; + + } + + descriptorBase.depthStencilView = depthTextureData.texture.createView( options ); + + } + + descriptors[ cacheKey ] = descriptorBase; + + renderTargetData.width = renderTarget.width; + renderTargetData.height = renderTarget.height; + renderTargetData.samples = renderTarget.samples; + renderTargetData.activeMipmapLevel = renderContext.activeMipmapLevel; + renderTargetData.activeCubeFace = renderContext.activeCubeFace; + renderTargetData.dimensions = renderTarget.dimensions; + + } + + const descriptor = { + colorAttachments: [] + }; + + // Apply dynamic properties to cached views + for ( let i = 0; i < descriptorBase.textureViews.length; i ++ ) { + + const viewInfo = descriptorBase.textureViews[ i ]; + + let clearValue = { r: 0, g: 0, b: 0, a: 1 }; + if ( i === 0 && colorAttachmentsConfig.clearValue ) { + + clearValue = colorAttachmentsConfig.clearValue; + + } + + descriptor.colorAttachments.push( { + view: viewInfo.view, + depthSlice: viewInfo.depthSlice, + resolveTarget: viewInfo.resolveTarget, + loadOp: colorAttachmentsConfig.loadOp || GPULoadOp.Load, + storeOp: colorAttachmentsConfig.storeOp || GPUStoreOp.Store, + clearValue: clearValue + } ); + + } + + if ( descriptorBase.depthStencilView ) { + + descriptor.depthStencilAttachment = { + view: descriptorBase.depthStencilView + }; + + } + + return descriptor; + + } + + /** + * This method is executed at the beginning of a render call and prepares + * the WebGPU state for upcoming render calls + * + * @param {RenderContext} renderContext - The render context. + */ + beginRender( renderContext ) { + + const renderContextData = this.get( renderContext ); + + const device = this.device; + const occlusionQueryCount = renderContext.occlusionQueryCount; + + let occlusionQuerySet; + + if ( occlusionQueryCount > 0 ) { + + if ( renderContextData.currentOcclusionQuerySet ) renderContextData.currentOcclusionQuerySet.destroy(); + if ( renderContextData.currentOcclusionQueryBuffer ) renderContextData.currentOcclusionQueryBuffer.destroy(); + + // Get a reference to the array of objects with queries. The renderContextData property + // can be changed by another render pass before the buffer.mapAsyc() completes. + renderContextData.currentOcclusionQuerySet = renderContextData.occlusionQuerySet; + renderContextData.currentOcclusionQueryBuffer = renderContextData.occlusionQueryBuffer; + renderContextData.currentOcclusionQueryObjects = renderContextData.occlusionQueryObjects; + + // + + occlusionQuerySet = device.createQuerySet( { type: 'occlusion', count: occlusionQueryCount, label: `occlusionQuerySet_${ renderContext.id }` } ); + + renderContextData.occlusionQuerySet = occlusionQuerySet; + renderContextData.occlusionQueryIndex = 0; + renderContextData.occlusionQueryObjects = new Array( occlusionQueryCount ); + + renderContextData.lastOcclusionObject = null; + + } + + let descriptor; + + if ( renderContext.textures === null ) { + + descriptor = this._getDefaultRenderPassDescriptor(); + + } else { + + descriptor = this._getRenderPassDescriptor( renderContext, { loadOp: GPULoadOp.Load } ); + + } + + this.initTimestampQuery( renderContext, descriptor ); + + descriptor.occlusionQuerySet = occlusionQuerySet; + + const depthStencilAttachment = descriptor.depthStencilAttachment; + + if ( renderContext.textures !== null ) { + + const colorAttachments = descriptor.colorAttachments; + + for ( let i = 0; i < colorAttachments.length; i ++ ) { + + const colorAttachment = colorAttachments[ i ]; + + if ( renderContext.clearColor ) { + + colorAttachment.clearValue = i === 0 ? renderContext.clearColorValue : { r: 0, g: 0, b: 0, a: 1 }; + colorAttachment.loadOp = GPULoadOp.Clear; + + } else { + + colorAttachment.loadOp = GPULoadOp.Load; + + } + + colorAttachment.storeOp = GPUStoreOp.Store; + + } + + } else { + + const colorAttachment = descriptor.colorAttachments[ 0 ]; + + if ( renderContext.clearColor ) { + + colorAttachment.clearValue = renderContext.clearColorValue; + colorAttachment.loadOp = GPULoadOp.Clear; + + } else { + + colorAttachment.loadOp = GPULoadOp.Load; + + } + + colorAttachment.storeOp = GPUStoreOp.Store; + + } + + // + + if ( renderContext.depth ) { + + if ( renderContext.clearDepth ) { + + depthStencilAttachment.depthClearValue = renderContext.clearDepthValue; + depthStencilAttachment.depthLoadOp = GPULoadOp.Clear; + + } else { + + depthStencilAttachment.depthLoadOp = GPULoadOp.Load; + + } + + depthStencilAttachment.depthStoreOp = GPUStoreOp.Store; + + } + + if ( renderContext.stencil ) { + + if ( renderContext.clearStencil ) { + + depthStencilAttachment.stencilClearValue = renderContext.clearStencilValue; + depthStencilAttachment.stencilLoadOp = GPULoadOp.Clear; + + } else { + + depthStencilAttachment.stencilLoadOp = GPULoadOp.Load; + + } + + depthStencilAttachment.stencilStoreOp = GPUStoreOp.Store; + + } + + // + + const encoder = device.createCommandEncoder( { label: 'renderContext_' + renderContext.id } ); + + // shadow arrays - prepare bundle encoders for each camera in an array camera + + if ( this._isRenderCameraDepthArray( renderContext ) === true ) { + + const cameras = renderContext.camera.cameras; + + if ( ! renderContextData.layerDescriptors || renderContextData.layerDescriptors.length !== cameras.length ) { + + this._createDepthLayerDescriptors( renderContext, renderContextData, descriptor, cameras ); + + } else { + + this._updateDepthLayerDescriptors( renderContext, renderContextData, cameras ); + + } + + // Create bundle encoders for each layer + renderContextData.bundleEncoders = []; + renderContextData.bundleSets = []; + + // Create separate bundle encoders for each camera in the array + for ( let i = 0; i < cameras.length; i ++ ) { + + const bundleEncoder = this.pipelineUtils.createBundleEncoder( + renderContext, + 'renderBundleArrayCamera_' + i + ); + + // Initialize state tracking for this bundle + const bundleSets = { + attributes: {}, + bindingGroups: [], + pipeline: null, + index: null + }; + + renderContextData.bundleEncoders.push( bundleEncoder ); + renderContextData.bundleSets.push( bundleSets ); + + } + + // We'll complete the bundles in finishRender + renderContextData.currentPass = null; + + } else { + + const currentPass = encoder.beginRenderPass( descriptor ); + renderContextData.currentPass = currentPass; + + if ( renderContext.viewport ) { + + this.updateViewport( renderContext ); + + } + + if ( renderContext.scissor ) { + + const { x, y, width, height } = renderContext.scissorValue; + currentPass.setScissorRect( x, y, width, height ); + + } + + } + + // + + renderContextData.descriptor = descriptor; + renderContextData.encoder = encoder; + renderContextData.currentSets = { attributes: {}, bindingGroups: [], pipeline: null, index: null }; + renderContextData.renderBundles = []; + + } + + /** + * This method creates layer descriptors for each camera in an array camera + * to prepare for rendering to a depth array texture. + * + * @param {RenderContext} renderContext - The render context. + * @param {Object} renderContextData - The render context data. + * @param {Object} descriptor - The render pass descriptor. + * @param {ArrayCamera} cameras - The array camera. + * + * @private + */ + _createDepthLayerDescriptors( renderContext, renderContextData, descriptor, cameras ) { + + const depthStencilAttachment = descriptor.depthStencilAttachment; + renderContextData.layerDescriptors = []; + + const depthTextureData = this.get( renderContext.depthTexture ); + if ( ! depthTextureData.viewCache ) { + + depthTextureData.viewCache = []; + + } + + for ( let i = 0; i < cameras.length; i ++ ) { + + const layerDescriptor = { + ...descriptor, + colorAttachments: [ { + ...descriptor.colorAttachments[ 0 ], + view: descriptor.colorAttachments[ i ].view + } ] + }; + + if ( descriptor.depthStencilAttachment ) { + + const layerIndex = i; + + if ( ! depthTextureData.viewCache[ layerIndex ] ) { + + depthTextureData.viewCache[ layerIndex ] = depthTextureData.texture.createView( { + dimension: GPUTextureViewDimension.TwoD, + baseArrayLayer: i, + arrayLayerCount: 1 + } ); + + } + + layerDescriptor.depthStencilAttachment = { + view: depthTextureData.viewCache[ layerIndex ], + depthLoadOp: depthStencilAttachment.depthLoadOp || GPULoadOp.Clear, + depthStoreOp: depthStencilAttachment.depthStoreOp || GPUStoreOp.Store, + depthClearValue: depthStencilAttachment.depthClearValue || 1.0 + }; + + if ( renderContext.stencil ) { + + layerDescriptor.depthStencilAttachment.stencilLoadOp = depthStencilAttachment.stencilLoadOp; + layerDescriptor.depthStencilAttachment.stencilStoreOp = depthStencilAttachment.stencilStoreOp; + layerDescriptor.depthStencilAttachment.stencilClearValue = depthStencilAttachment.stencilClearValue; + + } + + } else { + + layerDescriptor.depthStencilAttachment = { ...depthStencilAttachment }; + + } + + renderContextData.layerDescriptors.push( layerDescriptor ); + + } + + } + + /** + * This method updates the layer descriptors for each camera in an array camera + * to prepare for rendering to a depth array texture. + * + * @param {RenderContext} renderContext - The render context. + * @param {Object} renderContextData - The render context data. + * @param {ArrayCamera} cameras - The array camera. + * + */ + _updateDepthLayerDescriptors( renderContext, renderContextData, cameras ) { + + for ( let i = 0; i < cameras.length; i ++ ) { + + const layerDescriptor = renderContextData.layerDescriptors[ i ]; + + if ( layerDescriptor.depthStencilAttachment ) { + + const depthAttachment = layerDescriptor.depthStencilAttachment; + + if ( renderContext.depth ) { + + if ( renderContext.clearDepth ) { + + depthAttachment.depthClearValue = renderContext.clearDepthValue; + depthAttachment.depthLoadOp = GPULoadOp.Clear; + + } else { + + depthAttachment.depthLoadOp = GPULoadOp.Load; + + } + + } + + if ( renderContext.stencil ) { + + if ( renderContext.clearStencil ) { + + depthAttachment.stencilClearValue = renderContext.clearStencilValue; + depthAttachment.stencilLoadOp = GPULoadOp.Clear; + + } else { + + depthAttachment.stencilLoadOp = GPULoadOp.Load; + + } + + } + + } + + } + + } + + /** + * This method is executed at the end of a render call and finalizes work + * after draw calls. + * + * @param {RenderContext} renderContext - The render context. + */ + finishRender( renderContext ) { + + const renderContextData = this.get( renderContext ); + const occlusionQueryCount = renderContext.occlusionQueryCount; + + if ( renderContextData.renderBundles.length > 0 ) { + + renderContextData.currentPass.executeBundles( renderContextData.renderBundles ); + + } + + if ( occlusionQueryCount > renderContextData.occlusionQueryIndex ) { + + renderContextData.currentPass.endOcclusionQuery(); + + } + + // shadow arrays - Execute bundles for each layer + + const encoder = renderContextData.encoder; + + if ( this._isRenderCameraDepthArray( renderContext ) === true ) { + + const bundles = []; + + for ( let i = 0; i < renderContextData.bundleEncoders.length; i ++ ) { + + const bundleEncoder = renderContextData.bundleEncoders[ i ]; + bundles.push( bundleEncoder.finish() ); + + } + + for ( let i = 0; i < renderContextData.layerDescriptors.length; i ++ ) { + + if ( i < bundles.length ) { + + const layerDescriptor = renderContextData.layerDescriptors[ i ]; + const renderPass = encoder.beginRenderPass( layerDescriptor ); + + if ( renderContext.viewport ) { + + const { x, y, width, height, minDepth, maxDepth } = renderContext.viewportValue; + renderPass.setViewport( x, y, width, height, minDepth, maxDepth ); + + } + + if ( renderContext.scissor ) { + + const { x, y, width, height } = renderContext.scissorValue; + renderPass.setScissorRect( x, y, width, height ); + + } + + renderPass.executeBundles( [ bundles[ i ] ] ); + + renderPass.end(); + + } + + } + + } else if ( renderContextData.currentPass ) { + + renderContextData.currentPass.end(); + + } + + if ( occlusionQueryCount > 0 ) { + + const bufferSize = occlusionQueryCount * 8; // 8 byte entries for query results + + // + + let queryResolveBuffer = this.occludedResolveCache.get( bufferSize ); + + if ( queryResolveBuffer === undefined ) { + + queryResolveBuffer = this.device.createBuffer( + { + size: bufferSize, + usage: GPUBufferUsage.QUERY_RESOLVE | GPUBufferUsage.COPY_SRC + } + ); + + this.occludedResolveCache.set( bufferSize, queryResolveBuffer ); + + } + + // + + const readBuffer = this.device.createBuffer( + { + size: bufferSize, + usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ + } + ); + + // two buffers required here - WebGPU doesn't allow usage of QUERY_RESOLVE & MAP_READ to be combined + renderContextData.encoder.resolveQuerySet( renderContextData.occlusionQuerySet, 0, occlusionQueryCount, queryResolveBuffer, 0 ); + renderContextData.encoder.copyBufferToBuffer( queryResolveBuffer, 0, readBuffer, 0, bufferSize ); + + renderContextData.occlusionQueryBuffer = readBuffer; + + // + + this.resolveOccludedAsync( renderContext ); + + } + + this.device.queue.submit( [ renderContextData.encoder.finish() ] ); + + + // + + if ( renderContext.textures !== null ) { + + const textures = renderContext.textures; + + for ( let i = 0; i < textures.length; i ++ ) { + + const texture = textures[ i ]; + + if ( texture.generateMipmaps === true ) { + + this.textureUtils.generateMipmaps( texture ); + + } + + } + + } + + } + + /** + * Returns `true` if the given 3D object is fully occluded by other + * 3D objects in the scene. + * + * @param {RenderContext} renderContext - The render context. + * @param {Object3D} object - The 3D object to test. + * @return {boolean} Whether the 3D object is fully occluded or not. + */ + isOccluded( renderContext, object ) { + + const renderContextData = this.get( renderContext ); + + return renderContextData.occluded && renderContextData.occluded.has( object ); + + } + + /** + * This method processes the result of occlusion queries and writes it + * into render context data. + * + * @async + * @param {RenderContext} renderContext - The render context. + * @return {Promise} A Promise that resolves when the occlusion query results have been processed. + */ + async resolveOccludedAsync( renderContext ) { + + const renderContextData = this.get( renderContext ); + + // handle occlusion query results + + const { currentOcclusionQueryBuffer, currentOcclusionQueryObjects } = renderContextData; + + if ( currentOcclusionQueryBuffer && currentOcclusionQueryObjects ) { + + const occluded = new WeakSet(); + + renderContextData.currentOcclusionQueryObjects = null; + renderContextData.currentOcclusionQueryBuffer = null; + + await currentOcclusionQueryBuffer.mapAsync( GPUMapMode.READ ); + + const buffer = currentOcclusionQueryBuffer.getMappedRange(); + const results = new BigUint64Array( buffer ); + + for ( let i = 0; i < currentOcclusionQueryObjects.length; i ++ ) { + + if ( results[ i ] === BigInt( 0 ) ) { + + occluded.add( currentOcclusionQueryObjects[ i ] ); + + } + + } + + currentOcclusionQueryBuffer.destroy(); + + renderContextData.occluded = occluded; + + } + + } + + /** + * Updates the viewport with the values from the given render context. + * + * @param {RenderContext} renderContext - The render context. + */ + updateViewport( renderContext ) { + + const { currentPass } = this.get( renderContext ); + const { x, y, width, height, minDepth, maxDepth } = renderContext.viewportValue; + + currentPass.setViewport( x, y, width, height, minDepth, maxDepth ); + + } + + /** + * Returns the clear color and alpha into a single + * color object. + * + * @return {Color4} The clear color. + */ + getClearColor() { + + const clearColor = super.getClearColor(); + + // only premultiply alpha when alphaMode is "premultiplied" + + if ( this.renderer.alpha === true ) { + + clearColor.r *= clearColor.a; + clearColor.g *= clearColor.a; + clearColor.b *= clearColor.a; + + } + + return clearColor; + + } + + /** + * Performs a clear operation. + * + * @param {boolean} color - Whether the color buffer should be cleared or not. + * @param {boolean} depth - Whether the depth buffer should be cleared or not. + * @param {boolean} stencil - Whether the stencil buffer should be cleared or not. + * @param {?RenderContext} [renderTargetContext=null] - The render context of the current set render target. + */ + clear( color, depth, stencil, renderTargetContext = null ) { + + const device = this.device; + const renderer = this.renderer; + + let colorAttachments = []; + let depthStencilAttachment; + let clearValue; + + let supportsDepth; + let supportsStencil; + + if ( color ) { + + const clearColor = this.getClearColor(); + clearValue = { r: clearColor.r, g: clearColor.g, b: clearColor.b, a: clearColor.a }; + + } + + if ( renderTargetContext === null ) { + + supportsDepth = renderer.depth; + supportsStencil = renderer.stencil; + + const descriptor = this._getDefaultRenderPassDescriptor(); + + if ( color ) { + + colorAttachments = descriptor.colorAttachments; + + const colorAttachment = colorAttachments[ 0 ]; + + colorAttachment.clearValue = clearValue; + colorAttachment.loadOp = GPULoadOp.Clear; + colorAttachment.storeOp = GPUStoreOp.Store; + + } + + if ( supportsDepth || supportsStencil ) { + + depthStencilAttachment = descriptor.depthStencilAttachment; + + } + + } else { + + supportsDepth = renderTargetContext.depth; + supportsStencil = renderTargetContext.stencil; + + const clearConfig = { + loadOp: color ? GPULoadOp.Clear : GPULoadOp.Load, + clearValue: color ? clearValue : undefined + }; + + if ( supportsDepth ) { + + clearConfig.depthLoadOp = depth ? GPULoadOp.Clear : GPULoadOp.Load; + clearConfig.depthClearValue = depth ? renderer.getClearDepth() : undefined; + clearConfig.depthStoreOp = GPUStoreOp.Store; + + } + + if ( supportsStencil ) { + + clearConfig.stencilLoadOp = stencil ? GPULoadOp.Clear : GPULoadOp.Load; + clearConfig.stencilClearValue = stencil ? renderer.getClearStencil() : undefined; + clearConfig.stencilStoreOp = GPUStoreOp.Store; + + } + + const descriptor = this._getRenderPassDescriptor( renderTargetContext, clearConfig ); + + colorAttachments = descriptor.colorAttachments; + depthStencilAttachment = descriptor.depthStencilAttachment; + + } + + if ( supportsDepth && depthStencilAttachment && depthStencilAttachment.depthLoadOp === undefined ) { + + if ( depth ) { + + depthStencilAttachment.depthLoadOp = GPULoadOp.Clear; + depthStencilAttachment.depthClearValue = renderer.getClearDepth(); + depthStencilAttachment.depthStoreOp = GPUStoreOp.Store; + + } else { + + depthStencilAttachment.depthLoadOp = GPULoadOp.Load; + depthStencilAttachment.depthStoreOp = GPUStoreOp.Store; + + } + + } + + // + + if ( supportsStencil && depthStencilAttachment && depthStencilAttachment.stencilLoadOp === undefined ) { + + if ( stencil ) { + + depthStencilAttachment.stencilLoadOp = GPULoadOp.Clear; + depthStencilAttachment.stencilClearValue = renderer.getClearStencil(); + depthStencilAttachment.stencilStoreOp = GPUStoreOp.Store; + + } else { + + depthStencilAttachment.stencilLoadOp = GPULoadOp.Load; + depthStencilAttachment.stencilStoreOp = GPUStoreOp.Store; + + } + + } + + // + + const encoder = device.createCommandEncoder( { label: 'clear' } ); + const currentPass = encoder.beginRenderPass( { + colorAttachments, + depthStencilAttachment + } ); + + currentPass.end(); + + device.queue.submit( [ encoder.finish() ] ); + + } + + // compute + + /** + * This method is executed at the beginning of a compute call and + * prepares the state for upcoming compute tasks. + * + * @param {Node|Array} computeGroup - The compute node(s). + */ + beginCompute( computeGroup ) { + + const groupGPU = this.get( computeGroup ); + + + const descriptor = { + label: 'computeGroup_' + computeGroup.id + }; + + this.initTimestampQuery( computeGroup, descriptor ); + + groupGPU.cmdEncoderGPU = this.device.createCommandEncoder( { label: 'computeGroup_' + computeGroup.id } ); + + groupGPU.passEncoderGPU = groupGPU.cmdEncoderGPU.beginComputePass( descriptor ); + + } + + /** + * Executes a compute command for the given compute node. + * + * @param {Node|Array} computeGroup - The group of compute nodes of a compute call. Can be a single compute node. + * @param {Node} computeNode - The compute node. + * @param {Array} bindings - The bindings. + * @param {ComputePipeline} pipeline - The compute pipeline. + */ + compute( computeGroup, computeNode, bindings, pipeline ) { + + const { passEncoderGPU } = this.get( computeGroup ); + + // pipeline + + const pipelineGPU = this.get( pipeline ).pipeline; + + this.pipelineUtils.setPipeline( passEncoderGPU, pipelineGPU ); + + // bind groups + + for ( let i = 0, l = bindings.length; i < l; i ++ ) { + + const bindGroup = bindings[ i ]; + const bindingsData = this.get( bindGroup ); + + passEncoderGPU.setBindGroup( i, bindingsData.group ); + + } + + const maxComputeWorkgroupsPerDimension = this.device.limits.maxComputeWorkgroupsPerDimension; + + const computeNodeData = this.get( computeNode ); + + if ( computeNodeData.dispatchSize === undefined ) computeNodeData.dispatchSize = { x: 0, y: 1, z: 1 }; + + const { dispatchSize } = computeNodeData; + + if ( computeNode.dispatchCount > maxComputeWorkgroupsPerDimension ) { + + dispatchSize.x = Math.min( computeNode.dispatchCount, maxComputeWorkgroupsPerDimension ); + dispatchSize.y = Math.ceil( computeNode.dispatchCount / maxComputeWorkgroupsPerDimension ); + + } else { + + dispatchSize.x = computeNode.dispatchCount; + + } + + passEncoderGPU.dispatchWorkgroups( + dispatchSize.x, + dispatchSize.y, + dispatchSize.z + ); + + } + + /** + * This method is executed at the end of a compute call and + * finalizes work after compute tasks. + * + * @param {Node|Array} computeGroup - The compute node(s). + */ + finishCompute( computeGroup ) { + + const groupData = this.get( computeGroup ); + + groupData.passEncoderGPU.end(); + + this.device.queue.submit( [ groupData.cmdEncoderGPU.finish() ] ); + + } + + /** + * Can be used to synchronize CPU operations with GPU tasks. So when this method is called, + * the CPU waits for the GPU to complete its operation (e.g. a compute task). + * + * @async + * @return {Promise} A Promise that resolves when synchronization has been finished. + */ + async waitForGPU() { + + await this.device.queue.onSubmittedWorkDone(); + + } + + // render object + + /** + * Executes a draw command for the given render object. + * + * @param {RenderObject} renderObject - The render object to draw. + * @param {Info} info - Holds a series of statistical information about the GPU memory and the rendering process. + */ + draw( renderObject, info ) { + + const { object, material, context, pipeline } = renderObject; + const bindings = renderObject.getBindings(); + const renderContextData = this.get( context ); + const pipelineGPU = this.get( pipeline ).pipeline; + + const index = renderObject.getIndex(); + const hasIndex = ( index !== null ); + + + const drawParams = renderObject.getDrawParameters(); + if ( drawParams === null ) return; + + // pipeline + + const setPipelineAndBindings = ( passEncoderGPU, currentSets ) => { + + // pipeline + this.pipelineUtils.setPipeline( passEncoderGPU, pipelineGPU ); + currentSets.pipeline = pipelineGPU; + + // bind groups + const currentBindingGroups = currentSets.bindingGroups; + for ( let i = 0, l = bindings.length; i < l; i ++ ) { + + const bindGroup = bindings[ i ]; + const bindingsData = this.get( bindGroup ); + if ( currentBindingGroups[ bindGroup.index ] !== bindGroup.id ) { + + passEncoderGPU.setBindGroup( bindGroup.index, bindingsData.group ); + currentBindingGroups[ bindGroup.index ] = bindGroup.id; + + } + + } + + // attributes + + // index + + if ( hasIndex === true ) { + + if ( currentSets.index !== index ) { + + const buffer = this.get( index ).buffer; + const indexFormat = ( index.array instanceof Uint16Array ) ? GPUIndexFormat.Uint16 : GPUIndexFormat.Uint32; + + passEncoderGPU.setIndexBuffer( buffer, indexFormat ); + + currentSets.index = index; + + } + + } + // vertex buffers + + const vertexBuffers = renderObject.getVertexBuffers(); + + for ( let i = 0, l = vertexBuffers.length; i < l; i ++ ) { + + const vertexBuffer = vertexBuffers[ i ]; + + if ( currentSets.attributes[ i ] !== vertexBuffer ) { + + const buffer = this.get( vertexBuffer ).buffer; + passEncoderGPU.setVertexBuffer( i, buffer ); + + currentSets.attributes[ i ] = vertexBuffer; + + } + + } + // stencil + + if ( context.stencil === true && material.stencilWrite === true && renderContextData.currentStencilRef !== material.stencilRef ) { + + passEncoderGPU.setStencilReference( material.stencilRef ); + renderContextData.currentStencilRef = material.stencilRef; + + } + + + }; + + // Define draw function + const draw = ( passEncoderGPU, currentSets ) => { + + setPipelineAndBindings( passEncoderGPU, currentSets ); + + if ( object.isBatchedMesh === true ) { + + const starts = object._multiDrawStarts; + const counts = object._multiDrawCounts; + const drawCount = object._multiDrawCount; + const drawInstances = object._multiDrawInstances; + + if ( drawInstances !== null ) { + + // @deprecated, r174 + warnOnce( 'THREE.WebGPUBackend: renderMultiDrawInstances has been deprecated and will be removed in r184. Append to renderMultiDraw arguments and use indirection.' ); + + } + + for ( let i = 0; i < drawCount; i ++ ) { + + const count = drawInstances ? drawInstances[ i ] : 1; + const firstInstance = count > 1 ? 0 : i; + + if ( hasIndex === true ) { + + passEncoderGPU.drawIndexed( counts[ i ], count, starts[ i ] / index.array.BYTES_PER_ELEMENT, 0, firstInstance ); + + } else { + + passEncoderGPU.draw( counts[ i ], count, starts[ i ], firstInstance ); + + } + + info.update( object, counts[ i ], count ); + + } + + } else if ( hasIndex === true ) { + + const { vertexCount: indexCount, instanceCount, firstVertex: firstIndex } = drawParams; + + const indirect = renderObject.getIndirect(); + + if ( indirect !== null ) { + + const buffer = this.get( indirect ).buffer; + + passEncoderGPU.drawIndexedIndirect( buffer, 0 ); + + } else { + + passEncoderGPU.drawIndexed( indexCount, instanceCount, firstIndex, 0, 0 ); + + } + + info.update( object, indexCount, instanceCount ); + + } else { + + const { vertexCount, instanceCount, firstVertex } = drawParams; + + const indirect = renderObject.getIndirect(); + + if ( indirect !== null ) { + + const buffer = this.get( indirect ).buffer; + + passEncoderGPU.drawIndirect( buffer, 0 ); + + } else { + + passEncoderGPU.draw( vertexCount, instanceCount, firstVertex, 0 ); + + } + + info.update( object, vertexCount, instanceCount ); + + } + + }; + + if ( renderObject.camera.isArrayCamera && renderObject.camera.cameras.length > 0 ) { + + const cameraData = this.get( renderObject.camera ); + const cameras = renderObject.camera.cameras; + const cameraIndex = renderObject.getBindingGroup( 'cameraIndex' ); + + if ( cameraData.indexesGPU === undefined || cameraData.indexesGPU.length !== cameras.length ) { + + const bindingsData = this.get( cameraIndex ); + const indexesGPU = []; + + const data = new Uint32Array( [ 0, 0, 0, 0 ] ); + + for ( let i = 0, len = cameras.length; i < len; i ++ ) { + + data[ 0 ] = i; + + const bindGroupIndex = this.bindingUtils.createBindGroupIndex( data, bindingsData.layout ); + + indexesGPU.push( bindGroupIndex ); + + } + + cameraData.indexesGPU = indexesGPU; // TODO: Create a global library for this + + } + + const pixelRatio = this.renderer.getPixelRatio(); + + for ( let i = 0, len = cameras.length; i < len; i ++ ) { + + const subCamera = cameras[ i ]; + + if ( object.layers.test( subCamera.layers ) ) { + + const vp = subCamera.viewport; + + + + let pass = renderContextData.currentPass; + let sets = renderContextData.currentSets; + if ( renderContextData.bundleEncoders ) { + + const bundleEncoder = renderContextData.bundleEncoders[ i ]; + const bundleSets = renderContextData.bundleSets[ i ]; + pass = bundleEncoder; + sets = bundleSets; + + } + + + + if ( vp ) { + + pass.setViewport( + Math.floor( vp.x * pixelRatio ), + Math.floor( vp.y * pixelRatio ), + Math.floor( vp.width * pixelRatio ), + Math.floor( vp.height * pixelRatio ), + context.viewportValue.minDepth, + context.viewportValue.maxDepth + ); + + } + + + // Set camera index binding for this layer + if ( cameraIndex && cameraData.indexesGPU ) { + + pass.setBindGroup( cameraIndex.index, cameraData.indexesGPU[ i ] ); + sets.bindingGroups[ cameraIndex.index ] = cameraIndex.id; + + } + + draw( pass, sets ); + + + } + + } + + } else { + + // Regular single camera rendering + if ( renderContextData.currentPass ) { + + // Handle occlusion queries + if ( renderContextData.occlusionQuerySet !== undefined ) { + + const lastObject = renderContextData.lastOcclusionObject; + if ( lastObject !== object ) { + + if ( lastObject !== null && lastObject.occlusionTest === true ) { + + renderContextData.currentPass.endOcclusionQuery(); + renderContextData.occlusionQueryIndex ++; + + } + + if ( object.occlusionTest === true ) { + + renderContextData.currentPass.beginOcclusionQuery( renderContextData.occlusionQueryIndex ); + renderContextData.occlusionQueryObjects[ renderContextData.occlusionQueryIndex ] = object; + + } + + renderContextData.lastOcclusionObject = object; + + } + + } + + draw( renderContextData.currentPass, renderContextData.currentSets ); + + } + + } + + } + + // cache key + + /** + * Returns `true` if the render pipeline requires an update. + * + * @param {RenderObject} renderObject - The render object. + * @return {boolean} Whether the render pipeline requires an update or not. + */ + needsRenderUpdate( renderObject ) { + + const data = this.get( renderObject ); + + const { object, material } = renderObject; + + const utils = this.utils; + + const sampleCount = utils.getSampleCountRenderContext( renderObject.context ); + const colorSpace = utils.getCurrentColorSpace( renderObject.context ); + const colorFormat = utils.getCurrentColorFormat( renderObject.context ); + const depthStencilFormat = utils.getCurrentDepthStencilFormat( renderObject.context ); + const primitiveTopology = utils.getPrimitiveTopology( object, material ); + + let needsUpdate = false; + + if ( data.material !== material || data.materialVersion !== material.version || + data.transparent !== material.transparent || data.blending !== material.blending || data.premultipliedAlpha !== material.premultipliedAlpha || + data.blendSrc !== material.blendSrc || data.blendDst !== material.blendDst || data.blendEquation !== material.blendEquation || + data.blendSrcAlpha !== material.blendSrcAlpha || data.blendDstAlpha !== material.blendDstAlpha || data.blendEquationAlpha !== material.blendEquationAlpha || + data.colorWrite !== material.colorWrite || data.depthWrite !== material.depthWrite || data.depthTest !== material.depthTest || data.depthFunc !== material.depthFunc || + data.stencilWrite !== material.stencilWrite || data.stencilFunc !== material.stencilFunc || + data.stencilFail !== material.stencilFail || data.stencilZFail !== material.stencilZFail || data.stencilZPass !== material.stencilZPass || + data.stencilFuncMask !== material.stencilFuncMask || data.stencilWriteMask !== material.stencilWriteMask || + data.side !== material.side || data.alphaToCoverage !== material.alphaToCoverage || + data.sampleCount !== sampleCount || data.colorSpace !== colorSpace || + data.colorFormat !== colorFormat || data.depthStencilFormat !== depthStencilFormat || + data.primitiveTopology !== primitiveTopology || + data.clippingContextCacheKey !== renderObject.clippingContextCacheKey + ) { + + data.material = material; data.materialVersion = material.version; + data.transparent = material.transparent; data.blending = material.blending; data.premultipliedAlpha = material.premultipliedAlpha; + data.blendSrc = material.blendSrc; data.blendDst = material.blendDst; data.blendEquation = material.blendEquation; + data.blendSrcAlpha = material.blendSrcAlpha; data.blendDstAlpha = material.blendDstAlpha; data.blendEquationAlpha = material.blendEquationAlpha; + data.colorWrite = material.colorWrite; + data.depthWrite = material.depthWrite; data.depthTest = material.depthTest; data.depthFunc = material.depthFunc; + data.stencilWrite = material.stencilWrite; data.stencilFunc = material.stencilFunc; + data.stencilFail = material.stencilFail; data.stencilZFail = material.stencilZFail; data.stencilZPass = material.stencilZPass; + data.stencilFuncMask = material.stencilFuncMask; data.stencilWriteMask = material.stencilWriteMask; + data.side = material.side; data.alphaToCoverage = material.alphaToCoverage; + data.sampleCount = sampleCount; + data.colorSpace = colorSpace; + data.colorFormat = colorFormat; + data.depthStencilFormat = depthStencilFormat; + data.primitiveTopology = primitiveTopology; + data.clippingContextCacheKey = renderObject.clippingContextCacheKey; + + needsUpdate = true; + + } + + return needsUpdate; + + } + + /** + * Returns a cache key that is used to identify render pipelines. + * + * @param {RenderObject} renderObject - The render object. + * @return {string} The cache key. + */ + getRenderCacheKey( renderObject ) { + + const { object, material } = renderObject; + + const utils = this.utils; + const renderContext = renderObject.context; + + return [ + material.transparent, material.blending, material.premultipliedAlpha, + material.blendSrc, material.blendDst, material.blendEquation, + material.blendSrcAlpha, material.blendDstAlpha, material.blendEquationAlpha, + material.colorWrite, + material.depthWrite, material.depthTest, material.depthFunc, + material.stencilWrite, material.stencilFunc, + material.stencilFail, material.stencilZFail, material.stencilZPass, + material.stencilFuncMask, material.stencilWriteMask, + material.side, + utils.getSampleCountRenderContext( renderContext ), + utils.getCurrentColorSpace( renderContext ), utils.getCurrentColorFormat( renderContext ), utils.getCurrentDepthStencilFormat( renderContext ), + utils.getPrimitiveTopology( object, material ), + renderObject.getGeometryCacheKey(), + renderObject.clippingContextCacheKey + ].join(); + + } + + // textures + + /** + * Creates a GPU sampler for the given texture. + * + * @param {Texture} texture - The texture to create the sampler for. + */ + createSampler( texture ) { + + this.textureUtils.createSampler( texture ); + + } + + /** + * Destroys the GPU sampler for the given texture. + * + * @param {Texture} texture - The texture to destroy the sampler for. + */ + destroySampler( texture ) { + + this.textureUtils.destroySampler( texture ); + + } + + /** + * Creates a default texture for the given texture that can be used + * as a placeholder until the actual texture is ready for usage. + * + * @param {Texture} texture - The texture to create a default texture for. + */ + createDefaultTexture( texture ) { + + this.textureUtils.createDefaultTexture( texture ); + + } + + /** + * Defines a texture on the GPU for the given texture object. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + createTexture( texture, options ) { + + this.textureUtils.createTexture( texture, options ); + + } + + /** + * Uploads the updated texture data to the GPU. + * + * @param {Texture} texture - The texture. + * @param {Object} [options={}] - Optional configuration parameter. + */ + updateTexture( texture, options ) { + + this.textureUtils.updateTexture( texture, options ); + + } + + /** + * Generates mipmaps for the given texture. + * + * @param {Texture} texture - The texture. + */ + generateMipmaps( texture ) { + + this.textureUtils.generateMipmaps( texture ); + + } + + /** + * Destroys the GPU data for the given texture object. + * + * @param {Texture} texture - The texture. + */ + destroyTexture( texture ) { + + this.textureUtils.destroyTexture( texture ); + + } + + /** + * Returns texture data as a typed array. + * + * @async + * @param {Texture} texture - The texture to copy. + * @param {number} x - The x coordinate of the copy origin. + * @param {number} y - The y coordinate of the copy origin. + * @param {number} width - The width of the copy. + * @param {number} height - The height of the copy. + * @param {number} faceIndex - The face index. + * @return {Promise} A Promise that resolves with a typed array when the copy operation has finished. + */ + async copyTextureToBuffer( texture, x, y, width, height, faceIndex ) { + + return this.textureUtils.copyTextureToBuffer( texture, x, y, width, height, faceIndex ); + + } + + /** + * Inits a time stamp query for the given render context. + * + * @param {RenderContext} renderContext - The render context. + * @param {Object} descriptor - The query descriptor. + */ + initTimestampQuery( renderContext, descriptor ) { + + if ( ! this.trackTimestamp ) return; + + const type = renderContext.isComputeNode ? 'compute' : 'render'; + + if ( ! this.timestampQueryPool[ type ] ) { + + // TODO: Variable maxQueries? + this.timestampQueryPool[ type ] = new WebGPUTimestampQueryPool( this.device, type, 2048 ); + + } + + const timestampQueryPool = this.timestampQueryPool[ type ]; + + const baseOffset = timestampQueryPool.allocateQueriesForContext( renderContext ); + + descriptor.timestampWrites = { + querySet: timestampQueryPool.querySet, + beginningOfPassWriteIndex: baseOffset, + endOfPassWriteIndex: baseOffset + 1, + }; + + } + + + // node builder + + /** + * Returns a node builder for the given render object. + * + * @param {RenderObject} object - The render object. + * @param {Renderer} renderer - The renderer. + * @return {WGSLNodeBuilder} The node builder. + */ + createNodeBuilder( object, renderer ) { + + return new WGSLNodeBuilder( object, renderer ); + + } + + // program + + /** + * Creates a shader program from the given programmable stage. + * + * @param {ProgrammableStage} program - The programmable stage. + */ + createProgram( program ) { + + const programGPU = this.get( program ); + + programGPU.module = { + module: this.device.createShaderModule( { code: program.code, label: program.stage + ( program.name !== '' ? `_${ program.name }` : '' ) } ), + entryPoint: 'main' + }; + + } + + /** + * Destroys the shader program of the given programmable stage. + * + * @param {ProgrammableStage} program - The programmable stage. + */ + destroyProgram( program ) { + + this.delete( program ); + + } + + // pipelines + + /** + * Creates a render pipeline for the given render object. + * + * @param {RenderObject} renderObject - The render object. + * @param {Array} promises - An array of compilation promises which are used in `compileAsync()`. + */ + createRenderPipeline( renderObject, promises ) { + + this.pipelineUtils.createRenderPipeline( renderObject, promises ); + + } + + /** + * Creates a compute pipeline for the given compute node. + * + * @param {ComputePipeline} computePipeline - The compute pipeline. + * @param {Array} bindings - The bindings. + */ + createComputePipeline( computePipeline, bindings ) { + + this.pipelineUtils.createComputePipeline( computePipeline, bindings ); + + } + + /** + * Prepares the state for encoding render bundles. + * + * @param {RenderContext} renderContext - The render context. + */ + beginBundle( renderContext ) { + + const renderContextData = this.get( renderContext ); + + renderContextData._currentPass = renderContextData.currentPass; + renderContextData._currentSets = renderContextData.currentSets; + + renderContextData.currentSets = { attributes: {}, bindingGroups: [], pipeline: null, index: null }; + renderContextData.currentPass = this.pipelineUtils.createBundleEncoder( renderContext ); + + } + + /** + * After processing render bundles this method finalizes related work. + * + * @param {RenderContext} renderContext - The render context. + * @param {RenderBundle} bundle - The render bundle. + */ + finishBundle( renderContext, bundle ) { + + const renderContextData = this.get( renderContext ); + + const bundleEncoder = renderContextData.currentPass; + const bundleGPU = bundleEncoder.finish(); + + this.get( bundle ).bundleGPU = bundleGPU; + + // restore render pass state + + renderContextData.currentSets = renderContextData._currentSets; + renderContextData.currentPass = renderContextData._currentPass; + + } + + /** + * Adds a render bundle to the render context data. + * + * @param {RenderContext} renderContext - The render context. + * @param {RenderBundle} bundle - The render bundle to add. + */ + addBundle( renderContext, bundle ) { + + const renderContextData = this.get( renderContext ); + + renderContextData.renderBundles.push( this.get( bundle ).bundleGPU ); + + } + + // bindings + + /** + * Creates bindings from the given bind group definition. + * + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + createBindings( bindGroup, bindings, cacheIndex, version ) { + + this.bindingUtils.createBindings( bindGroup, bindings, cacheIndex, version ); + + } + + /** + * Updates the given bind group definition. + * + * @param {BindGroup} bindGroup - The bind group. + * @param {Array} bindings - Array of bind groups. + * @param {number} cacheIndex - The cache index. + * @param {number} version - The version. + */ + updateBindings( bindGroup, bindings, cacheIndex, version ) { + + this.bindingUtils.createBindings( bindGroup, bindings, cacheIndex, version ); + + } + + /** + * Updates a buffer binding. + * + * @param {Buffer} binding - The buffer binding to update. + */ + updateBinding( binding ) { + + this.bindingUtils.updateBinding( binding ); + + } + + // attributes + + /** + * Creates the buffer of an indexed shader attribute. + * + * @param {BufferAttribute} attribute - The indexed buffer attribute. + */ + createIndexAttribute( attribute ) { + + this.attributeUtils.createAttribute( attribute, GPUBufferUsage.INDEX | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST ); + + } + + /** + * Creates the GPU buffer of a shader attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createAttribute( attribute ) { + + this.attributeUtils.createAttribute( attribute, GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST ); + + } + + /** + * Creates the GPU buffer of a storage attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createStorageAttribute( attribute ) { + + this.attributeUtils.createAttribute( attribute, GPUBufferUsage.STORAGE | GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST ); + + } + + /** + * Creates the GPU buffer of an indirect storage attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute. + */ + createIndirectStorageAttribute( attribute ) { + + this.attributeUtils.createAttribute( attribute, GPUBufferUsage.STORAGE | GPUBufferUsage.INDIRECT | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST ); + + } + + /** + * Updates the GPU buffer of a shader attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute to update. + */ + updateAttribute( attribute ) { + + this.attributeUtils.updateAttribute( attribute ); + + } + + /** + * Destroys the GPU buffer of a shader attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute to destroy. + */ + destroyAttribute( attribute ) { + + this.attributeUtils.destroyAttribute( attribute ); + + } + + // canvas + + /** + * Triggers an update of the default render pass descriptor. + */ + updateSize() { + + this.colorBuffer = this.textureUtils.getColorBuffer(); + this.defaultRenderPassdescriptor = null; + + } + + // utils public + + /** + * Returns the maximum anisotropy texture filtering value. + * + * @return {number} The maximum anisotropy texture filtering value. + */ + getMaxAnisotropy() { + + return 16; + + } + + /** + * Checks if the given feature is supported by the backend. + * + * @param {string} name - The feature's name. + * @return {boolean} Whether the feature is supported or not. + */ + hasFeature( name ) { + + return this.device.features.has( name ); + + } + + /** + * Copies data of the given source texture to the given destination texture. + * + * @param {Texture} srcTexture - The source texture. + * @param {Texture} dstTexture - The destination texture. + * @param {?(Box3|Box2)} [srcRegion=null] - The region of the source texture to copy. + * @param {?(Vector2|Vector3)} [dstPosition=null] - The destination position of the copy. + * @param {number} [srcLevel=0] - The mipmap level to copy. + * @param {number} [dstLevel=0] - The destination mip level to copy to. + */ + copyTextureToTexture( srcTexture, dstTexture, srcRegion = null, dstPosition = null, srcLevel = 0, dstLevel = 0 ) { + + let dstX = 0; + let dstY = 0; + let dstZ = 0; + + let srcX = 0; + let srcY = 0; + let srcZ = 0; + + let srcWidth = srcTexture.image.width; + let srcHeight = srcTexture.image.height; + let srcDepth = 1; + + + if ( srcRegion !== null ) { + + if ( srcRegion.isBox3 === true ) { + + srcX = srcRegion.min.x; + srcY = srcRegion.min.y; + srcZ = srcRegion.min.z; + srcWidth = srcRegion.max.x - srcRegion.min.x; + srcHeight = srcRegion.max.y - srcRegion.min.y; + srcDepth = srcRegion.max.z - srcRegion.min.z; + + } else { + + // Assume it's a Box2 + srcX = srcRegion.min.x; + srcY = srcRegion.min.y; + srcWidth = srcRegion.max.x - srcRegion.min.x; + srcHeight = srcRegion.max.y - srcRegion.min.y; + srcDepth = 1; + + } + + } + + + if ( dstPosition !== null ) { + + dstX = dstPosition.x; + dstY = dstPosition.y; + dstZ = dstPosition.z || 0; + + } + + const encoder = this.device.createCommandEncoder( { label: 'copyTextureToTexture_' + srcTexture.id + '_' + dstTexture.id } ); + + const sourceGPU = this.get( srcTexture ).texture; + const destinationGPU = this.get( dstTexture ).texture; + + encoder.copyTextureToTexture( + { + texture: sourceGPU, + mipLevel: srcLevel, + origin: { x: srcX, y: srcY, z: srcZ } + }, + { + texture: destinationGPU, + mipLevel: dstLevel, + origin: { x: dstX, y: dstY, z: dstZ } + }, + [ + srcWidth, + srcHeight, + srcDepth + ] + ); + + this.device.queue.submit( [ encoder.finish() ] ); + + if ( dstLevel === 0 && dstTexture.generateMipmaps ) { + + this.textureUtils.generateMipmaps( dstTexture ); + + } + + } + + /** + * Copies the current bound framebuffer to the given texture. + * + * @param {Texture} texture - The destination texture. + * @param {RenderContext} renderContext - The render context. + * @param {Vector4} rectangle - A four dimensional vector defining the origin and dimension of the copy. + */ + copyFramebufferToTexture( texture, renderContext, rectangle ) { + + const renderContextData = this.get( renderContext ); + + let sourceGPU = null; + + if ( renderContext.renderTarget ) { + + if ( texture.isDepthTexture ) { + + sourceGPU = this.get( renderContext.depthTexture ).texture; + + } else { + + sourceGPU = this.get( renderContext.textures[ 0 ] ).texture; + + } + + } else { + + if ( texture.isDepthTexture ) { + + sourceGPU = this.textureUtils.getDepthBuffer( renderContext.depth, renderContext.stencil ); + + } else { + + sourceGPU = this.context.getCurrentTexture(); + + } + + } + + const destinationGPU = this.get( texture ).texture; + + if ( sourceGPU.format !== destinationGPU.format ) { + + console.error( 'WebGPUBackend: copyFramebufferToTexture: Source and destination formats do not match.', sourceGPU.format, destinationGPU.format ); + + return; + + } + + let encoder; + + if ( renderContextData.currentPass ) { + + renderContextData.currentPass.end(); + + encoder = renderContextData.encoder; + + } else { + + encoder = this.device.createCommandEncoder( { label: 'copyFramebufferToTexture_' + texture.id } ); + + } + + encoder.copyTextureToTexture( + { + texture: sourceGPU, + origin: [ rectangle.x, rectangle.y, 0 ], + }, + { + texture: destinationGPU + }, + [ + rectangle.z, + rectangle.w + ] + ); + + if ( renderContextData.currentPass ) { + + const { descriptor } = renderContextData; + + for ( let i = 0; i < descriptor.colorAttachments.length; i ++ ) { + + descriptor.colorAttachments[ i ].loadOp = GPULoadOp.Load; + + } + + if ( renderContext.depth ) descriptor.depthStencilAttachment.depthLoadOp = GPULoadOp.Load; + if ( renderContext.stencil ) descriptor.depthStencilAttachment.stencilLoadOp = GPULoadOp.Load; + + renderContextData.currentPass = encoder.beginRenderPass( descriptor ); + renderContextData.currentSets = { attributes: {}, bindingGroups: [], pipeline: null, index: null }; + + if ( renderContext.viewport ) { + + this.updateViewport( renderContext ); + + } + + if ( renderContext.scissor ) { + + const { x, y, width, height } = renderContext.scissorValue; + + renderContextData.currentPass.setScissorRect( x, y, width, height ); + + } + + } else { + + this.device.queue.submit( [ encoder.finish() ] ); + + } + + if ( texture.generateMipmaps ) { + + this.textureUtils.generateMipmaps( texture ); + + } + + } + +} + +/** + * A IES version of {@link SpotLight}. Can only be used with {@link WebGPURenderer}. + * + * @augments SpotLight + */ +class IESSpotLight extends SpotLight { + + /** + * Constructs a new IES spot light. + * + * @param {(number|Color|string)} [color=0xffffff] - The light's color. + * @param {number} [intensity=1] - The light's strength/intensity measured in candela (cd). + * @param {number} [distance=0] - Maximum range of the light. `0` means no limit. + * @param {number} [angle=Math.PI/3] - Maximum angle of light dispersion from its direction whose upper bound is `Math.PI/2`. + * @param {number} [penumbra=0] - Percent of the spotlight cone that is attenuated due to penumbra. Value range is `[0,1]`. + * @param {number} [decay=2] - The amount the light dims along the distance of the light. + */ + constructor( color, intensity, distance, angle, penumbra, decay ) { + + super( color, intensity, distance, angle, penumbra, decay ); + + /** + * TODO + * + * @type {?Texture} + * @default null + */ + this.iesMap = null; + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.iesMap = source.iesMap; + + return this; + + } + +} + +/** + * A projector light version of {@link SpotLight}. Can only be used with {@link WebGPURenderer}. + * + * @augments SpotLight + */ +class ProjectorLight extends SpotLight { + + /** + * Constructs a new projector light. + * + * @param {(number|Color|string)} [color=0xffffff] - The light's color. + * @param {number} [intensity=1] - The light's strength/intensity measured in candela (cd). + * @param {number} [distance=0] - Maximum range of the light. `0` means no limit. + * @param {number} [angle=Math.PI/3] - Maximum angle of light dispersion from its direction whose upper bound is `Math.PI/2`. + * @param {number} [penumbra=0] - Percent of the spotlight cone that is attenuated due to penumbra. Value range is `[0,1]`. + * @param {number} [decay=2] - The amount the light dims along the distance of the light. + */ + constructor( color, intensity, distance, angle, penumbra, decay ) { + + super( color, intensity, distance, angle, penumbra, decay ); + + /** + * Aspect ratio of the light. Set to `null` to use the texture aspect ratio. + * + * @type {number} + * @default null + */ + this.aspect = null; + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + this.aspect = source.aspect; + + return this; + + } + +} + +/** + * This version of a node library represents a basic version + * just focusing on lights and tone mapping techniques. + * + * @private + * @augments NodeLibrary + */ +class BasicNodeLibrary extends NodeLibrary { + + /** + * Constructs a new basic node library. + */ + constructor() { + + super(); + + this.addLight( PointLightNode, PointLight ); + this.addLight( DirectionalLightNode, DirectionalLight ); + this.addLight( RectAreaLightNode, RectAreaLight ); + this.addLight( SpotLightNode, SpotLight ); + this.addLight( AmbientLightNode, AmbientLight ); + this.addLight( HemisphereLightNode, HemisphereLight ); + this.addLight( LightProbeNode, LightProbe ); + this.addLight( IESSpotLightNode, IESSpotLight ); + this.addLight( ProjectorLightNode, ProjectorLight ); + + this.addToneMapping( linearToneMapping, LinearToneMapping ); + this.addToneMapping( reinhardToneMapping, ReinhardToneMapping ); + this.addToneMapping( cineonToneMapping, CineonToneMapping ); + this.addToneMapping( acesFilmicToneMapping, ACESFilmicToneMapping ); + this.addToneMapping( agxToneMapping, AgXToneMapping ); + this.addToneMapping( neutralToneMapping, NeutralToneMapping ); + + } + +} + +/** + * This alternative version of {@link WebGPURenderer} only supports node materials. + * So classes like `MeshBasicMaterial` are not compatible. + * + * @private + * @augments Renderer + */ +class WebGPURenderer extends Renderer { + + /** + * Constructs a new WebGPU renderer. + * + * @param {WebGPURenderer~Options} [parameters] - The configuration parameter. + */ + constructor( parameters = {} ) { + + let BackendClass; + + if ( parameters.forceWebGL ) { + + BackendClass = WebGLBackend; + + } else { + + BackendClass = WebGPUBackend; + + parameters.getFallback = () => { + + console.warn( 'THREE.WebGPURenderer: WebGPU is not available, running under WebGL2 backend.' ); + + return new WebGLBackend( parameters ); + + }; + + } + + const backend = new BackendClass( parameters ); + + super( backend, parameters ); + + /** + * The generic default value is overwritten with the + * standard node library for type mapping. Material + * mapping is not supported with this version. + * + * @type {BasicNodeLibrary} + */ + this.library = new BasicNodeLibrary(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isWebGPURenderer = true; + + } + +} + +/** + * A specialized group which enables applications access to the + * Render Bundle API of WebGPU. The group with all its descendant nodes + * are considered as one render bundle and processed as such by + * the renderer. + * + * This module is only fully supported by `WebGPURenderer` with a WebGPU backend. + * With a WebGL backend, the group can technically be rendered but without + * any performance improvements. + * + * @augments Group + */ +class BundleGroup extends Group { + + /** + * Constructs a new bundle group. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBundleGroup = true; + + /** + * This property is only relevant for detecting types + * during serialization/deserialization. It should always + * match the class name. + * + * @type {string} + * @readonly + * @default 'BundleGroup' + */ + this.type = 'BundleGroup'; + + /** + * Whether the bundle is static or not. When set to `true`, the structure + * is assumed to be static and does not change. E.g. no new objects are + * added to the group + * + * If a change is required, an update can still be forced by setting the + * `needsUpdate` flag to `true`. + * + * @type {boolean} + * @default true + */ + this.static = true; + + /** + * The bundle group's version. + * + * @type {number} + * @readonly + * @default 0 + */ + this.version = 0; + + } + + /** + * Set this property to `true` when the bundle group has changed. + * + * @type {boolean} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + if ( value === true ) this.version ++; + + } + +} + +/** + * This module is responsible to manage the post processing setups in apps. + * You usually create a single instance of this class and use it to define + * the output of your post processing effect chain. + * ```js + * const postProcessing = new PostProcessing( renderer ); + * + * const scenePass = pass( scene, camera ); + * + * postProcessing.outputNode = scenePass; + * ``` + * + * Note: This module can only be used with `WebGPURenderer`. + */ +class PostProcessing { + + /** + * Constructs a new post processing management module. + * + * @param {Renderer} renderer - A reference to the renderer. + * @param {Node} outputNode - An optional output node. + */ + constructor( renderer, outputNode = vec4( 0, 0, 1, 1 ) ) { + + /** + * A reference to the renderer. + * + * @type {Renderer} + */ + this.renderer = renderer; + + /** + * A node which defines the final output of the post + * processing. This is usually the last node in a chain + * of effect nodes. + * + * @type {Node} + */ + this.outputNode = outputNode; + + /** + * Whether the default output tone mapping and color + * space transformation should be enabled or not. + * + * It is enabled by default by it must be disabled when + * effects must be executed after tone mapping and color + * space conversion. A typical example is FXAA which + * requires sRGB input. + * + * When set to `false`, the app must control the output + * transformation with `RenderOutputNode`. + * + * ```js + * const outputPass = renderOutput( scenePass ); + * ``` + * + * @type {boolean} + */ + this.outputColorTransform = true; + + /** + * Must be set to `true` when the output node changes. + * + * @type {Node} + */ + this.needsUpdate = true; + + const material = new NodeMaterial(); + material.name = 'PostProcessing'; + + /** + * The full screen quad that is used to render + * the effects. + * + * @private + * @type {QuadMesh} + */ + this._quadMesh = new QuadMesh( material ); + + } + + /** + * When `PostProcessing` is used to apply post processing effects, + * the application must use this version of `render()` inside + * its animation loop (not the one from the renderer). + */ + render() { + + this._update(); + + const renderer = this.renderer; + + const toneMapping = renderer.toneMapping; + const outputColorSpace = renderer.outputColorSpace; + + renderer.toneMapping = NoToneMapping; + renderer.outputColorSpace = LinearSRGBColorSpace; + + // + + const currentXR = renderer.xr.enabled; + renderer.xr.enabled = false; + + this._quadMesh.render( renderer ); + + renderer.xr.enabled = currentXR; + + // + + renderer.toneMapping = toneMapping; + renderer.outputColorSpace = outputColorSpace; + + } + + /** + * Frees internal resources. + */ + dispose() { + + this._quadMesh.material.dispose(); + + } + + /** + * Updates the state of the module. + * + * @private + */ + _update() { + + if ( this.needsUpdate === true ) { + + const renderer = this.renderer; + + const toneMapping = renderer.toneMapping; + const outputColorSpace = renderer.outputColorSpace; + + this._quadMesh.material.fragmentNode = this.outputColorTransform === true ? renderOutput( this.outputNode, toneMapping, outputColorSpace ) : this.outputNode.context( { toneMapping, outputColorSpace } ); + this._quadMesh.material.needsUpdate = true; + + this.needsUpdate = false; + + } + + } + + /** + * When `PostProcessing` is used to apply post processing effects, + * the application must use this version of `renderAsync()` inside + * its animation loop (not the one from the renderer). + * + * @async + * @return {Promise} A Promise that resolves when the render has been finished. + */ + async renderAsync() { + + this._update(); + + const renderer = this.renderer; + + const toneMapping = renderer.toneMapping; + const outputColorSpace = renderer.outputColorSpace; + + renderer.toneMapping = NoToneMapping; + renderer.outputColorSpace = LinearSRGBColorSpace; + + // + + const currentXR = renderer.xr.enabled; + renderer.xr.enabled = false; + + await this._quadMesh.renderAsync( renderer ); + + renderer.xr.enabled = currentXR; + + // + + renderer.toneMapping = toneMapping; + renderer.outputColorSpace = outputColorSpace; + + } + +} + +/** + * This special type of texture is intended for compute shaders. + * It can be used to compute the data of a texture with a compute shader. + * + * Note: This type of texture can only be used with `WebGPURenderer` + * and a WebGPU backend. + * + * @augments Texture + */ +class StorageTexture extends Texture { + + /** + * Constructs a new storage texture. + * + * @param {number} [width=1] - The storage texture's width. + * @param {number} [height=1] - The storage texture's height. + */ + constructor( width = 1, height = 1 ) { + + super(); + + /** + * The image object which just represents the texture's dimension. + * + * @type {{width: number, height: number}} + */ + this.image = { width, height }; + + /** + * The default `magFilter` for storage textures is `THREE.LinearFilter`. + * + * @type {number} + */ + this.magFilter = LinearFilter; + + /** + * The default `minFilter` for storage textures is `THREE.LinearFilter`. + * + * @type {number} + */ + this.minFilter = LinearFilter; + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isStorageTexture = true; + + } + +} + +/** + * This special type of buffer attribute is intended for compute shaders. + * It can be used to encode draw parameters for indirect draw calls. + * + * Note: This type of buffer attribute can only be used with `WebGPURenderer` + * and a WebGPU backend. + * + * @augments StorageBufferAttribute + */ +class IndirectStorageBufferAttribute extends StorageBufferAttribute { + + /** + * Constructs a new storage buffer attribute. + * + * @param {number|Uint32Array} count - The item count. It is also valid to pass a `Uint32Array` as an argument. + * The subsequent parameter is then obsolete. + * @param {number} itemSize - The item size. + */ + constructor( count, itemSize ) { + + super( count, itemSize, Uint32Array ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isIndirectStorageBufferAttribute = true; + + } + +} + +/** + * A loader for loading node objects in the three.js JSON Object/Scene format. + * + * @augments Loader + */ +class NodeLoader extends Loader { + + /** + * Constructs a new node loader. + * + * @param {LoadingManager} [manager] - A reference to a loading manager. + */ + constructor( manager ) { + + super( manager ); + + /** + * Represents a dictionary of textures. + * + * @type {Object} + */ + this.textures = {}; + + /** + * Represents a dictionary of node types. + * + * @type {Object} + */ + this.nodes = {}; + + } + + /** + * Loads the node definitions from the given URL. + * + * @param {string} url - The path/URL of the file to be loaded. + * @param {Function} onLoad - Will be called when load completes. + * @param {Function} onProgress - Will be called while load progresses. + * @param {Function} onError - Will be called when errors are thrown during the loading process. + */ + load( url, onLoad, onProgress, onError ) { + + const loader = new FileLoader( this.manager ); + loader.setPath( this.path ); + loader.setRequestHeader( this.requestHeader ); + loader.setWithCredentials( this.withCredentials ); + loader.load( url, ( text ) => { + + try { + + onLoad( this.parse( JSON.parse( text ) ) ); + + } catch ( e ) { + + if ( onError ) { + + onError( e ); + + } else { + + console.error( e ); + + } + + this.manager.itemError( url ); + + } + + }, onProgress, onError ); + + } + + /** + * Parse the node dependencies for the loaded node. + * + * @param {Array} [json] - The JSON definition + * @return {Object} A dictionary with node dependencies. + */ + parseNodes( json ) { + + const nodes = {}; + + if ( json !== undefined ) { + + for ( const nodeJSON of json ) { + + const { uuid, type } = nodeJSON; + + nodes[ uuid ] = this.createNodeFromType( type ); + nodes[ uuid ].uuid = uuid; + + } + + const meta = { nodes, textures: this.textures }; + + for ( const nodeJSON of json ) { + + nodeJSON.meta = meta; + + const node = nodes[ nodeJSON.uuid ]; + node.deserialize( nodeJSON ); + + delete nodeJSON.meta; + + } + + } + + return nodes; + + } + + /** + * Parses the node from the given JSON. + * + * @param {Object} json - The JSON definition + * @param {string} json.type - The node type. + * @param {string} json.uuid - The node UUID. + * @param {Array} [json.nodes] - The node dependencies. + * @param {Object} [json.meta] - The meta data. + * @return {Node} The parsed node. + */ + parse( json ) { + + const node = this.createNodeFromType( json.type ); + node.uuid = json.uuid; + + const nodes = this.parseNodes( json.nodes ); + const meta = { nodes, textures: this.textures }; + + json.meta = meta; + + node.deserialize( json ); + + delete json.meta; + + return node; + + } + + /** + * Defines the dictionary of textures. + * + * @param {Object} value - The texture library defines as ``. + * @return {NodeLoader} A reference to this loader. + */ + setTextures( value ) { + + this.textures = value; + return this; + + } + + /** + * Defines the dictionary of node types. + * + * @param {Object} value - The node library defined as ``. + * @return {NodeLoader} A reference to this loader. + */ + setNodes( value ) { + + this.nodes = value; + return this; + + } + + /** + * Creates a node object from the given type. + * + * @param {string} type - The node type. + * @return {Node} The created node instance. + */ + createNodeFromType( type ) { + + if ( this.nodes[ type ] === undefined ) { + + console.error( 'THREE.NodeLoader: Node type not found:', type ); + return float(); + + } + + return nodeObject( new this.nodes[ type ]() ); + + } + +} + +/** + * A special type of material loader for loading node materials. + * + * @augments MaterialLoader + */ +class NodeMaterialLoader extends MaterialLoader { + + /** + * Constructs a new node material loader. + * + * @param {LoadingManager} [manager] - A reference to a loading manager. + */ + constructor( manager ) { + + super( manager ); + + /** + * Represents a dictionary of node types. + * + * @type {Object} + */ + this.nodes = {}; + + /** + * Represents a dictionary of node material types. + * + * @type {Object} + */ + this.nodeMaterials = {}; + + } + + /** + * Parses the node material from the given JSON. + * + * @param {Object} json - The JSON definition + * @return {NodeMaterial}. The parsed material. + */ + parse( json ) { + + const material = super.parse( json ); + + const nodes = this.nodes; + const inputNodes = json.inputNodes; + + for ( const property in inputNodes ) { + + const uuid = inputNodes[ property ]; + + material[ property ] = nodes[ uuid ]; + + } + + return material; + + } + + /** + * Defines the dictionary of node types. + * + * @param {Object} value - The node library defined as ``. + * @return {NodeLoader} A reference to this loader. + */ + setNodes( value ) { + + this.nodes = value; + return this; + + } + + /** + * Defines the dictionary of node material types. + * + * @param {Object} value - The node material library defined as ``. + * @return {NodeLoader} A reference to this loader. + */ + setNodeMaterials( value ) { + + this.nodeMaterials = value; + return this; + + } + + /** + * Creates a node material from the given type. + * + * @param {string} type - The node material type. + * @return {Node} The created node material instance. + */ + createMaterialFromType( type ) { + + const materialClass = this.nodeMaterials[ type ]; + + if ( materialClass !== undefined ) { + + return new materialClass(); + + } + + return super.createMaterialFromType( type ); + + } + +} + +/** + * A special type of object loader for loading 3D objects using + * node materials. + * + * @augments ObjectLoader + */ +class NodeObjectLoader extends ObjectLoader { + + /** + * Constructs a new node object loader. + * + * @param {LoadingManager} [manager] - A reference to a loading manager. + */ + constructor( manager ) { + + super( manager ); + + /** + * Represents a dictionary of node types. + * + * @type {Object} + */ + this.nodes = {}; + + /** + * Represents a dictionary of node material types. + * + * @type {Object} + */ + this.nodeMaterials = {}; + + /** + * A reference to hold the `nodes` JSON property. + * + * @private + * @type {?Object[]} + */ + this._nodesJSON = null; + + } + + /** + * Defines the dictionary of node types. + * + * @param {Object} value - The node library defined as ``. + * @return {NodeObjectLoader} A reference to this loader. + */ + setNodes( value ) { + + this.nodes = value; + return this; + + } + + /** + * Defines the dictionary of node material types. + * + * @param {Object} value - The node material library defined as ``. + * @return {NodeObjectLoader} A reference to this loader. + */ + setNodeMaterials( value ) { + + this.nodeMaterials = value; + return this; + + } + + /** + * Parses the node objects from the given JSON. + * + * @param {Object} json - The JSON definition + * @param {Function} onLoad - The onLoad callback function. + * @return {Object3D}. The parsed 3D object. + */ + parse( json, onLoad ) { + + this._nodesJSON = json.nodes; + + const data = super.parse( json, onLoad ); + + this._nodesJSON = null; // dispose + + return data; + + } + + /** + * Parses the node objects from the given JSON and textures. + * + * @param {Object[]} json - The JSON definition + * @param {Object} textures - The texture library. + * @return {Object}. The parsed nodes. + */ + parseNodes( json, textures ) { + + if ( json !== undefined ) { + + const loader = new NodeLoader(); + loader.setNodes( this.nodes ); + loader.setTextures( textures ); + + return loader.parseNodes( json ); + + } + + return {}; + + } + + /** + * Parses the node objects from the given JSON and textures. + * + * @param {Object} json - The JSON definition + * @param {Object} textures - The texture library. + * @return {Object}. The parsed materials. + */ + parseMaterials( json, textures ) { + + const materials = {}; + + if ( json !== undefined ) { + + const nodes = this.parseNodes( this._nodesJSON, textures ); + + const loader = new NodeMaterialLoader(); + loader.setTextures( textures ); + loader.setNodes( nodes ); + loader.setNodeMaterials( this.nodeMaterials ); + + for ( let i = 0, l = json.length; i < l; i ++ ) { + + const data = json[ i ]; + + materials[ data.uuid ] = loader.parse( data ); + + } + + } + + return materials; + + } + +} + +/** + * In earlier three.js versions, clipping was defined globally + * on the renderer or on material level. This special version of + * `THREE.Group` allows to encode the clipping state into the scene + * graph. Meaning if you create an instance of this group, all + * descendant 3D objects will be affected by the respective clipping + * planes. + * + * Note: `ClippingGroup` can only be used with `WebGPURenderer`. + * + * @augments Group + */ +class ClippingGroup extends Group { + + /** + * Constructs a new clipping group. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isClippingGroup = true; + + /** + * An array with clipping planes. + * + * @type {Array} + */ + this.clippingPlanes = []; + + /** + * Whether clipping should be enabled or not. + * + * @type {boolean} + * @default true + */ + this.enabled = true; + + /** + * Whether the intersection of the clipping planes is used to clip objects, rather than their union. + * + * @type {boolean} + * @default false + */ + this.clipIntersection = false; + + /** + * Whether shadows should be clipped or not. + * + * @type {boolean} + * @default false + */ + this.clipShadows = false; + + } + +} + +export { ACESFilmicToneMapping, AONode, AddEquation, AddOperation, AdditiveBlending, AgXToneMapping, AlphaFormat, AlwaysCompare, AlwaysDepth, AlwaysStencilFunc, AmbientLight, AmbientLightNode, AnalyticLightNode, ArrayCamera, ArrayElementNode, ArrayNode, AssignNode, AttributeNode, BackSide, BasicEnvironmentNode, BasicShadowMap, BatchNode, BoxGeometry, BufferAttribute, BufferAttributeNode, BufferGeometry, BufferNode, BumpMapNode, BundleGroup, BypassNode, ByteType, CacheNode, Camera, CineonToneMapping, ClampToEdgeWrapping, ClippingGroup, CodeNode, Color, ColorManagement, ColorSpaceNode, ComputeNode, ConstNode, ContextNode, ConvertNode, CubeCamera, CubeReflectionMapping, CubeRefractionMapping, CubeTexture, CubeTextureNode, CubeUVReflectionMapping, CullFaceBack, CullFaceFront, CullFaceNone, CustomBlending, CylinderGeometry, DataArrayTexture, DataTexture, DebugNode, DecrementStencilOp, DecrementWrapStencilOp, DepthFormat, DepthStencilFormat, DepthTexture, DirectionalLight, DirectionalLightNode, DoubleSide, DstAlphaFactor, DstColorFactor, DynamicDrawUsage, EnvironmentNode, EqualCompare, EqualDepth, EqualStencilFunc, EquirectUVNode, EquirectangularReflectionMapping, EquirectangularRefractionMapping, Euler, EventDispatcher, ExpressionNode, FileLoader, Float16BufferAttribute, Float32BufferAttribute, FloatType, FramebufferTexture, FrontFacingNode, FrontSide, Frustum, FrustumArray, FunctionCallNode, FunctionNode, FunctionOverloadingNode, GLSLNodeParser, GreaterCompare, GreaterDepth, GreaterEqualCompare, GreaterEqualDepth, GreaterEqualStencilFunc, GreaterStencilFunc, Group, HalfFloatType, HemisphereLight, HemisphereLightNode, IESSpotLight, IESSpotLightNode, IncrementStencilOp, IncrementWrapStencilOp, IndexNode, IndirectStorageBufferAttribute, InstanceNode, InstancedBufferAttribute, InstancedInterleavedBuffer, InstancedMeshNode, IntType, InterleavedBuffer, InterleavedBufferAttribute, InvertStencilOp, IrradianceNode, JoinNode, KeepStencilOp, LessCompare, LessDepth, LessEqualCompare, LessEqualDepth, LessEqualStencilFunc, LessStencilFunc, LightProbe, LightProbeNode, Lighting, LightingContextNode, LightingModel, LightingNode, LightsNode, Line2NodeMaterial, LineBasicMaterial, LineBasicNodeMaterial, LineDashedMaterial, LineDashedNodeMaterial, LinearFilter, LinearMipMapLinearFilter, LinearMipmapLinearFilter, LinearMipmapNearestFilter, LinearSRGBColorSpace, LinearToneMapping, LinearTransfer, Loader, LoopNode, MRTNode, MatcapUVNode, Material, MaterialLoader, MaterialNode, MaterialReferenceNode, MathUtils, Matrix2, Matrix3, Matrix4, MaxEquation, MaxMipLevelNode, MemberNode, Mesh, MeshBasicMaterial, MeshBasicNodeMaterial, MeshLambertMaterial, MeshLambertNodeMaterial, MeshMatcapMaterial, MeshMatcapNodeMaterial, MeshNormalMaterial, MeshNormalNodeMaterial, MeshPhongMaterial, MeshPhongNodeMaterial, MeshPhysicalMaterial, MeshPhysicalNodeMaterial, MeshSSSNodeMaterial, MeshStandardMaterial, MeshStandardNodeMaterial, MeshToonMaterial, MeshToonNodeMaterial, MinEquation, MirroredRepeatWrapping, MixOperation, ModelNode, MorphNode, MultiplyBlending, MultiplyOperation, NearestFilter, NearestMipmapLinearFilter, NearestMipmapNearestFilter, NeutralToneMapping, NeverCompare, NeverDepth, NeverStencilFunc, NoBlending, NoColorSpace, NoToneMapping, Node, NodeAccess, NodeAttribute, NodeBuilder, NodeCache, NodeCode, NodeFrame, NodeFunctionInput, NodeLoader, NodeMaterial, NodeMaterialLoader, NodeMaterialObserver, NodeObjectLoader, NodeShaderStage, NodeType, NodeUniform, NodeUpdateType, NodeUtils, NodeVar, NodeVarying, NormalBlending, NormalMapNode, NotEqualCompare, NotEqualDepth, NotEqualStencilFunc, Object3D, Object3DNode, ObjectLoader, ObjectSpaceNormalMap, OneFactor, OneMinusDstAlphaFactor, OneMinusDstColorFactor, OneMinusSrcAlphaFactor, OneMinusSrcColorFactor, OrthographicCamera, OutputStructNode, PCFShadowMap, PMREMGenerator, PMREMNode, ParameterNode, PassNode, PerspectiveCamera, PhongLightingModel, PhysicalLightingModel, Plane, PlaneGeometry, PointLight, PointLightNode, PointUVNode, PointsMaterial, PointsNodeMaterial, PostProcessing, PosterizeNode, ProjectorLight, ProjectorLightNode, PropertyNode, QuadMesh, Quaternion, RED_GREEN_RGTC2_Format, RED_RGTC1_Format, REVISION, RGBAFormat, RGBAIntegerFormat, RGBA_ASTC_10x10_Format, RGBA_ASTC_10x5_Format, RGBA_ASTC_10x6_Format, RGBA_ASTC_10x8_Format, RGBA_ASTC_12x10_Format, RGBA_ASTC_12x12_Format, RGBA_ASTC_4x4_Format, RGBA_ASTC_5x4_Format, RGBA_ASTC_5x5_Format, RGBA_ASTC_6x5_Format, RGBA_ASTC_6x6_Format, RGBA_ASTC_8x5_Format, RGBA_ASTC_8x6_Format, RGBA_ASTC_8x8_Format, RGBA_BPTC_Format, RGBA_ETC2_EAC_Format, RGBA_PVRTC_2BPPV1_Format, RGBA_PVRTC_4BPPV1_Format, RGBA_S3TC_DXT1_Format, RGBA_S3TC_DXT3_Format, RGBA_S3TC_DXT5_Format, RGBFormat, RGBIntegerFormat, RGB_ETC1_Format, RGB_ETC2_Format, RGB_PVRTC_2BPPV1_Format, RGB_PVRTC_4BPPV1_Format, RGB_S3TC_DXT1_Format, RGFormat, RGIntegerFormat, RTTNode, RangeNode, RectAreaLight, RectAreaLightNode, RedFormat, RedIntegerFormat, ReferenceNode, ReflectorNode, ReinhardToneMapping, RemapNode, RenderOutputNode, RenderTarget, RendererReferenceNode, RendererUtils, RepeatWrapping, ReplaceStencilOp, ReverseSubtractEquation, RotateNode, SIGNED_RED_GREEN_RGTC2_Format, SIGNED_RED_RGTC1_Format, SRGBColorSpace, SRGBTransfer, Scene, SceneNode, ScreenNode, ScriptableNode, ScriptableValueNode, SetNode, ShadowBaseNode, ShadowMaterial, ShadowNode, ShadowNodeMaterial, ShortType, SkinningNode, Sphere, SphereGeometry, SplitNode, SpotLight, SpotLightNode, SpriteMaterial, SpriteNodeMaterial, SpriteSheetUVNode, SrcAlphaFactor, SrcAlphaSaturateFactor, SrcColorFactor, StackNode, StaticDrawUsage, StorageArrayElementNode, StorageBufferAttribute, StorageBufferNode, StorageInstancedBufferAttribute, StorageTexture, StorageTextureNode, StructNode, StructTypeNode, SubtractEquation, SubtractiveBlending, TSL, TangentSpaceNormalMap, TempNode, Texture, Texture3DNode, TextureNode, TextureSizeNode, ToneMappingNode, ToonOutlinePassNode, TriplanarTexturesNode, UVMapping, Uint16BufferAttribute, Uint32BufferAttribute, UniformArrayNode, UniformGroupNode, UniformNode, UnsignedByteType, UnsignedInt248Type, UnsignedInt5999Type, UnsignedIntType, UnsignedShort4444Type, UnsignedShort5551Type, UnsignedShortType, UserDataNode, VSMShadowMap, VarNode, VaryingNode, Vector2, Vector3, Vector4, VertexColorNode, ViewportDepthNode, ViewportDepthTextureNode, ViewportSharedTextureNode, ViewportTextureNode, VolumeNodeMaterial, WebGLCoordinateSystem, WebGLCubeRenderTarget, WebGPUCoordinateSystem, WebGPURenderer, WebXRController, ZeroFactor, ZeroStencilOp, createCanvasElement, defaultBuildStages, defaultShaderStages, shaderStages, vectorComponents }; diff --git a/devtools/panel/exporters/GLTFExporter.js b/devtools/panel/exporters/GLTFExporter.js new file mode 100644 index 00000000000000..0c74704c3efb46 --- /dev/null +++ b/devtools/panel/exporters/GLTFExporter.js @@ -0,0 +1,3587 @@ +import { + BufferAttribute, + ClampToEdgeWrapping, + Color, + DoubleSide, + InterpolateDiscrete, + InterpolateLinear, + NoColorSpace, + LinearFilter, + LinearMipmapLinearFilter, + LinearMipmapNearestFilter, + MathUtils, + Matrix4, + MirroredRepeatWrapping, + NearestFilter, + NearestMipmapLinearFilter, + NearestMipmapNearestFilter, + PropertyBinding, + RGBAFormat, + RepeatWrapping, + Scene, + Source, + SRGBColorSpace, + CompressedTexture, + Vector3, + Quaternion, + REVISION, + ImageUtils +} from 'three'; + +/** + * The KHR_mesh_quantization extension allows these extra attribute component types + * + * @see https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_mesh_quantization/README.md#extending-mesh-attributes + */ +const KHR_mesh_quantization_ExtraAttrTypes = { + POSITION: [ + 'byte', + 'byte normalized', + 'unsigned byte', + 'unsigned byte normalized', + 'short', + 'short normalized', + 'unsigned short', + 'unsigned short normalized', + ], + NORMAL: [ + 'byte normalized', + 'short normalized', + ], + TANGENT: [ + 'byte normalized', + 'short normalized', + ], + TEXCOORD: [ + 'byte', + 'byte normalized', + 'unsigned byte', + 'short', + 'short normalized', + 'unsigned short', + ], +}; + +/** + * An exporter for `glTF` 2.0. + * + * glTF (GL Transmission Format) is an [open format specification]{@link https://github.com/KhronosGroup/glTF/tree/master/specification/2.0} + * for efficient delivery and loading of 3D content. Assets may be provided either in JSON (.gltf) + * or binary (.glb) format. External files store textures (.jpg, .png) and additional binary + * data (.bin). A glTF asset may deliver one or more scenes, including meshes, materials, + * textures, skins, skeletons, morph targets, animations, lights, and/or cameras. + * + * GLTFExporter supports the [glTF 2.0 extensions]{@link https://github.com/KhronosGroup/glTF/tree/master/extensions/}: + * + * - KHR_lights_punctual + * - KHR_materials_clearcoat + * - KHR_materials_dispersion + * - KHR_materials_emissive_strength + * - KHR_materials_ior + * - KHR_materials_iridescence + * - KHR_materials_specular + * - KHR_materials_sheen + * - KHR_materials_transmission + * - KHR_materials_unlit + * - KHR_materials_volume + * - KHR_mesh_quantization + * - KHR_texture_transform + * - EXT_materials_bump + * - EXT_mesh_gpu_instancing + * + * The following glTF 2.0 extension is supported by an external user plugin: + * + * - [KHR_materials_variants]{@link https://github.com/takahirox/three-gltf-extensions} + * + * ```js + * const exporter = new GLTFExporter(); + * const data = await exporter.parseAsync( scene, options ); + * ``` + * + * @three_import import { GLTFExporter } from 'three/addons/exporters/GLTFExporter.js'; + */ +class GLTFExporter { + + /** + * Constructs a new glTF exporter. + */ + constructor() { + + /** + * A reference to a texture utils module. + * + * @type {?(WebGLTextureUtils|WebGPUTextureUtils)} + * @default null + */ + this.textureUtils = null; + + this.pluginCallbacks = []; + + this.register( function ( writer ) { + + return new GLTFLightExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsUnlitExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsTransmissionExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsVolumeExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsIorExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsSpecularExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsClearcoatExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsDispersionExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsIridescenceExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsSheenExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsAnisotropyExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsEmissiveStrengthExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsBumpExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMeshGpuInstancing( writer ); + + } ); + + } + + /** + * Registers a plugin callback. This API is internally used to implement the various + * glTF extensions but can also used by third-party code to add additional logic + * to the exporter. + * + * @param {function(writer:GLTFWriter)} callback - The callback function to register. + * @return {GLTFExporter} A reference to this exporter. + */ + register( callback ) { + + if ( this.pluginCallbacks.indexOf( callback ) === - 1 ) { + + this.pluginCallbacks.push( callback ); + + } + + return this; + + } + + /** + * Unregisters a plugin callback. + * + * @param {Function} callback - The callback function to unregister. + * @return {GLTFExporter} A reference to this exporter. + */ + unregister( callback ) { + + if ( this.pluginCallbacks.indexOf( callback ) !== - 1 ) { + + this.pluginCallbacks.splice( this.pluginCallbacks.indexOf( callback ), 1 ); + + } + + return this; + + } + + /** + * Sets the texture utils for this exporter. Only relevant when compressed textures have to be exported. + * + * Depending on whether you use {@link WebGLRenderer} or {@link WebGPURenderer}, you must inject the + * corresponding texture utils {@link WebGLTextureUtils} or {@link WebGPUTextureUtils}. + * + * @param {WebGLTextureUtils|WebGPUTextureUtils} utils - The texture utils. + * @return {GLTFExporter} A reference to this exporter. + */ + setTextureUtils( utils ) { + + this.textureUtils = utils; + + return this; + + } + + /** + * Parses the given scenes and generates the glTF output. + * + * @param {Scene|Array} input - A scene or an array of scenes. + * @param {GLTFExporter~OnDone} onDone - A callback function that is executed when the export has finished. + * @param {GLTFExporter~OnError} onError - A callback function that is executed when an error happens. + * @param {GLTFExporter~Options} options - options + */ + parse( input, onDone, onError, options ) { + + const writer = new GLTFWriter(); + const plugins = []; + + for ( let i = 0, il = this.pluginCallbacks.length; i < il; i ++ ) { + + plugins.push( this.pluginCallbacks[ i ]( writer ) ); + + } + + writer.setPlugins( plugins ); + writer.setTextureUtils( this.textureUtils ); + writer.writeAsync( input, onDone, options ).catch( onError ); + + } + + /** + * Async version of {@link GLTFExporter#parse}. + * + * @param {Scene|Array} input - A scene or an array of scenes. + * @param {GLTFExporter~Options} options - options. + * @return {Promise} A Promise that resolved with the exported glTF data. + */ + parseAsync( input, options ) { + + const scope = this; + + return new Promise( function ( resolve, reject ) { + + scope.parse( input, resolve, reject, options ); + + } ); + + } + +} + +//------------------------------------------------------------------------------ +// Constants +//------------------------------------------------------------------------------ + +const WEBGL_CONSTANTS = { + POINTS: 0x0000, + LINES: 0x0001, + LINE_LOOP: 0x0002, + LINE_STRIP: 0x0003, + TRIANGLES: 0x0004, + TRIANGLE_STRIP: 0x0005, + TRIANGLE_FAN: 0x0006, + + BYTE: 0x1400, + UNSIGNED_BYTE: 0x1401, + SHORT: 0x1402, + UNSIGNED_SHORT: 0x1403, + INT: 0x1404, + UNSIGNED_INT: 0x1405, + FLOAT: 0x1406, + + ARRAY_BUFFER: 0x8892, + ELEMENT_ARRAY_BUFFER: 0x8893, + + NEAREST: 0x2600, + LINEAR: 0x2601, + NEAREST_MIPMAP_NEAREST: 0x2700, + LINEAR_MIPMAP_NEAREST: 0x2701, + NEAREST_MIPMAP_LINEAR: 0x2702, + LINEAR_MIPMAP_LINEAR: 0x2703, + + CLAMP_TO_EDGE: 33071, + MIRRORED_REPEAT: 33648, + REPEAT: 10497 +}; + +const KHR_MESH_QUANTIZATION = 'KHR_mesh_quantization'; + +const THREE_TO_WEBGL = {}; + +THREE_TO_WEBGL[ NearestFilter ] = WEBGL_CONSTANTS.NEAREST; +THREE_TO_WEBGL[ NearestMipmapNearestFilter ] = WEBGL_CONSTANTS.NEAREST_MIPMAP_NEAREST; +THREE_TO_WEBGL[ NearestMipmapLinearFilter ] = WEBGL_CONSTANTS.NEAREST_MIPMAP_LINEAR; +THREE_TO_WEBGL[ LinearFilter ] = WEBGL_CONSTANTS.LINEAR; +THREE_TO_WEBGL[ LinearMipmapNearestFilter ] = WEBGL_CONSTANTS.LINEAR_MIPMAP_NEAREST; +THREE_TO_WEBGL[ LinearMipmapLinearFilter ] = WEBGL_CONSTANTS.LINEAR_MIPMAP_LINEAR; + +THREE_TO_WEBGL[ ClampToEdgeWrapping ] = WEBGL_CONSTANTS.CLAMP_TO_EDGE; +THREE_TO_WEBGL[ RepeatWrapping ] = WEBGL_CONSTANTS.REPEAT; +THREE_TO_WEBGL[ MirroredRepeatWrapping ] = WEBGL_CONSTANTS.MIRRORED_REPEAT; + +const PATH_PROPERTIES = { + scale: 'scale', + position: 'translation', + quaternion: 'rotation', + morphTargetInfluences: 'weights' +}; + +const DEFAULT_SPECULAR_COLOR = new Color(); + +// GLB constants +// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#glb-file-format-specification + +const GLB_HEADER_BYTES = 12; +const GLB_HEADER_MAGIC = 0x46546C67; +const GLB_VERSION = 2; + +const GLB_CHUNK_PREFIX_BYTES = 8; +const GLB_CHUNK_TYPE_JSON = 0x4E4F534A; +const GLB_CHUNK_TYPE_BIN = 0x004E4942; + +//------------------------------------------------------------------------------ +// Utility functions +//------------------------------------------------------------------------------ + +/** + * Compare two arrays + * + * @private + * @param {Array} array1 Array 1 to compare + * @param {Array} array2 Array 2 to compare + * @return {boolean} Returns true if both arrays are equal + */ +function equalArray( array1, array2 ) { + + return ( array1.length === array2.length ) && array1.every( function ( element, index ) { + + return element === array2[ index ]; + + } ); + +} + +/** + * Converts a string to an ArrayBuffer. + * + * @private + * @param {string} text + * @return {ArrayBuffer} + */ +function stringToArrayBuffer( text ) { + + return new TextEncoder().encode( text ).buffer; + +} + +/** + * Is identity matrix + * + * @private + * @param {Matrix4} matrix + * @returns {boolean} Returns true, if parameter is identity matrix + */ +function isIdentityMatrix( matrix ) { + + return equalArray( matrix.elements, [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] ); + +} + +/** + * Get the min and max vectors from the given attribute + * + * @private + * @param {BufferAttribute} attribute Attribute to find the min/max in range from start to start + count + * @param {number} start Start index + * @param {number} count Range to cover + * @return {Object} Object containing the `min` and `max` values (As an array of attribute.itemSize components) + */ +function getMinMax( attribute, start, count ) { + + const output = { + + min: new Array( attribute.itemSize ).fill( Number.POSITIVE_INFINITY ), + max: new Array( attribute.itemSize ).fill( Number.NEGATIVE_INFINITY ) + + }; + + for ( let i = start; i < start + count; i ++ ) { + + for ( let a = 0; a < attribute.itemSize; a ++ ) { + + let value; + + if ( attribute.itemSize > 4 ) { + + // no support for interleaved data for itemSize > 4 + + value = attribute.array[ i * attribute.itemSize + a ]; + + } else { + + if ( a === 0 ) value = attribute.getX( i ); + else if ( a === 1 ) value = attribute.getY( i ); + else if ( a === 2 ) value = attribute.getZ( i ); + else if ( a === 3 ) value = attribute.getW( i ); + + if ( attribute.normalized === true ) { + + value = MathUtils.normalize( value, attribute.array ); + + } + + } + + output.min[ a ] = Math.min( output.min[ a ], value ); + output.max[ a ] = Math.max( output.max[ a ], value ); + + } + + } + + return output; + +} + +/** + * Get the required size + padding for a buffer, rounded to the next 4-byte boundary. + * https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment + * + * @private + * @param {number} bufferSize The size the original buffer. Should be an integer. + * @returns {number} new buffer size with required padding as an integer. + * + */ +function getPaddedBufferSize( bufferSize ) { + + return Math.ceil( bufferSize / 4 ) * 4; + +} + +/** + * Returns a buffer aligned to 4-byte boundary. + * + * @private + * @param {ArrayBuffer} arrayBuffer Buffer to pad + * @param {number} [paddingByte=0] Should be an integer + * @returns {ArrayBuffer} The same buffer if it's already aligned to 4-byte boundary or a new buffer + */ +function getPaddedArrayBuffer( arrayBuffer, paddingByte = 0 ) { + + const paddedLength = getPaddedBufferSize( arrayBuffer.byteLength ); + + if ( paddedLength !== arrayBuffer.byteLength ) { + + const array = new Uint8Array( paddedLength ); + array.set( new Uint8Array( arrayBuffer ) ); + + if ( paddingByte !== 0 ) { + + for ( let i = arrayBuffer.byteLength; i < paddedLength; i ++ ) { + + array[ i ] = paddingByte; + + } + + } + + return array.buffer; + + } + + return arrayBuffer; + +} + +function getCanvas() { + + if ( typeof document === 'undefined' && typeof OffscreenCanvas !== 'undefined' ) { + + return new OffscreenCanvas( 1, 1 ); + + } + + return document.createElement( 'canvas' ); + +} + +function getToBlobPromise( canvas, mimeType ) { + + if ( canvas.toBlob !== undefined ) { + + return new Promise( ( resolve ) => canvas.toBlob( resolve, mimeType ) ); + + } + + let quality; + + // Blink's implementation of convertToBlob seems to default to a quality level of 100% + // Use the Blink default quality levels of toBlob instead so that file sizes are comparable. + if ( mimeType === 'image/jpeg' ) { + + quality = 0.92; + + } else if ( mimeType === 'image/webp' ) { + + quality = 0.8; + + } + + return canvas.convertToBlob( { + + type: mimeType, + quality: quality + + } ); + +} + +/** + * Writer + * + * @private + */ +class GLTFWriter { + + constructor() { + + this.plugins = []; + + this.options = {}; + this.pending = []; + this.buffers = []; + + this.byteOffset = 0; + this.buffers = []; + this.nodeMap = new Map(); + this.skins = []; + + this.extensionsUsed = {}; + this.extensionsRequired = {}; + + this.uids = new Map(); + this.uid = 0; + + this.json = { + asset: { + version: '2.0', + generator: 'THREE.GLTFExporter r' + REVISION + } + }; + + this.cache = { + meshes: new Map(), + attributes: new Map(), + attributesNormalized: new Map(), + materials: new Map(), + textures: new Map(), + images: new Map() + }; + + this.textureUtils = null; + + } + + setPlugins( plugins ) { + + this.plugins = plugins; + + } + + setTextureUtils( utils ) { + + this.textureUtils = utils; + + } + + /** + * Parse scenes and generate GLTF output + * + * @param {Scene|Array} input Scene or Array of THREE.Scenes + * @param {Function} onDone Callback on completed + * @param {Object} options options + */ + async writeAsync( input, onDone, options = {} ) { + + this.options = Object.assign( { + // default options + binary: false, + trs: false, + onlyVisible: true, + maxTextureSize: Infinity, + animations: [], + includeCustomExtensions: false + }, options ); + + if ( this.options.animations.length > 0 ) { + + // Only TRS properties, and not matrices, may be targeted by animation. + this.options.trs = true; + + } + + await this.processInputAsync( input ); + + await Promise.all( this.pending ); + + const writer = this; + const buffers = writer.buffers; + const json = writer.json; + options = writer.options; + + const extensionsUsed = writer.extensionsUsed; + const extensionsRequired = writer.extensionsRequired; + + // Merge buffers. + const blob = new Blob( buffers, { type: 'application/octet-stream' } ); + + // Declare extensions. + const extensionsUsedList = Object.keys( extensionsUsed ); + const extensionsRequiredList = Object.keys( extensionsRequired ); + + if ( extensionsUsedList.length > 0 ) json.extensionsUsed = extensionsUsedList; + if ( extensionsRequiredList.length > 0 ) json.extensionsRequired = extensionsRequiredList; + + // Update bytelength of the single buffer. + if ( json.buffers && json.buffers.length > 0 ) json.buffers[ 0 ].byteLength = blob.size; + + if ( options.binary === true ) { + + // https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#glb-file-format-specification + + const reader = new FileReader(); + reader.readAsArrayBuffer( blob ); + reader.onloadend = function () { + + // Binary chunk. + const binaryChunk = getPaddedArrayBuffer( reader.result ); + const binaryChunkPrefix = new DataView( new ArrayBuffer( GLB_CHUNK_PREFIX_BYTES ) ); + binaryChunkPrefix.setUint32( 0, binaryChunk.byteLength, true ); + binaryChunkPrefix.setUint32( 4, GLB_CHUNK_TYPE_BIN, true ); + + // JSON chunk. + const jsonChunk = getPaddedArrayBuffer( stringToArrayBuffer( JSON.stringify( json ) ), 0x20 ); + const jsonChunkPrefix = new DataView( new ArrayBuffer( GLB_CHUNK_PREFIX_BYTES ) ); + jsonChunkPrefix.setUint32( 0, jsonChunk.byteLength, true ); + jsonChunkPrefix.setUint32( 4, GLB_CHUNK_TYPE_JSON, true ); + + // GLB header. + const header = new ArrayBuffer( GLB_HEADER_BYTES ); + const headerView = new DataView( header ); + headerView.setUint32( 0, GLB_HEADER_MAGIC, true ); + headerView.setUint32( 4, GLB_VERSION, true ); + const totalByteLength = GLB_HEADER_BYTES + + jsonChunkPrefix.byteLength + jsonChunk.byteLength + + binaryChunkPrefix.byteLength + binaryChunk.byteLength; + headerView.setUint32( 8, totalByteLength, true ); + + const glbBlob = new Blob( [ + header, + jsonChunkPrefix, + jsonChunk, + binaryChunkPrefix, + binaryChunk + ], { type: 'application/octet-stream' } ); + + const glbReader = new FileReader(); + glbReader.readAsArrayBuffer( glbBlob ); + glbReader.onloadend = function () { + + onDone( glbReader.result ); + + }; + + }; + + } else { + + if ( json.buffers && json.buffers.length > 0 ) { + + const reader = new FileReader(); + reader.readAsDataURL( blob ); + reader.onloadend = function () { + + const base64data = reader.result; + json.buffers[ 0 ].uri = base64data; + onDone( json ); + + }; + + } else { + + onDone( json ); + + } + + } + + + } + + /** + * Serializes a userData. + * + * @param {THREE.Object3D|THREE.Material} object + * @param {Object} objectDef + */ + serializeUserData( object, objectDef ) { + + if ( Object.keys( object.userData ).length === 0 ) return; + + const options = this.options; + const extensionsUsed = this.extensionsUsed; + + try { + + const json = JSON.parse( JSON.stringify( object.userData ) ); + + if ( options.includeCustomExtensions && json.gltfExtensions ) { + + if ( objectDef.extensions === undefined ) objectDef.extensions = {}; + + for ( const extensionName in json.gltfExtensions ) { + + objectDef.extensions[ extensionName ] = json.gltfExtensions[ extensionName ]; + extensionsUsed[ extensionName ] = true; + + } + + delete json.gltfExtensions; + + } + + if ( Object.keys( json ).length > 0 ) objectDef.extras = json; + + } catch ( error ) { + + console.warn( 'THREE.GLTFExporter: userData of \'' + object.name + '\' ' + + 'won\'t be serialized because of JSON.stringify error - ' + error.message ); + + } + + } + + /** + * Returns ids for buffer attributes. + * + * @param {Object} attribute + * @param {boolean} [isRelativeCopy=false] + * @return {number} An integer + */ + getUID( attribute, isRelativeCopy = false ) { + + if ( this.uids.has( attribute ) === false ) { + + const uids = new Map(); + + uids.set( true, this.uid ++ ); + uids.set( false, this.uid ++ ); + + this.uids.set( attribute, uids ); + + } + + const uids = this.uids.get( attribute ); + + return uids.get( isRelativeCopy ); + + } + + /** + * Checks if normal attribute values are normalized. + * + * @param {BufferAttribute} normal + * @returns {boolean} + */ + isNormalizedNormalAttribute( normal ) { + + const cache = this.cache; + + if ( cache.attributesNormalized.has( normal ) ) return false; + + const v = new Vector3(); + + for ( let i = 0, il = normal.count; i < il; i ++ ) { + + // 0.0005 is from glTF-validator + if ( Math.abs( v.fromBufferAttribute( normal, i ).length() - 1.0 ) > 0.0005 ) return false; + + } + + return true; + + } + + /** + * Creates normalized normal buffer attribute. + * + * @param {BufferAttribute} normal + * @returns {BufferAttribute} + * + */ + createNormalizedNormalAttribute( normal ) { + + const cache = this.cache; + + if ( cache.attributesNormalized.has( normal ) ) return cache.attributesNormalized.get( normal ); + + const attribute = normal.clone(); + const v = new Vector3(); + + for ( let i = 0, il = attribute.count; i < il; i ++ ) { + + v.fromBufferAttribute( attribute, i ); + + if ( v.x === 0 && v.y === 0 && v.z === 0 ) { + + // if values can't be normalized set (1, 0, 0) + v.setX( 1.0 ); + + } else { + + v.normalize(); + + } + + attribute.setXYZ( i, v.x, v.y, v.z ); + + } + + cache.attributesNormalized.set( normal, attribute ); + + return attribute; + + } + + /** + * Applies a texture transform, if present, to the map definition. Requires + * the KHR_texture_transform extension. + * + * @param {Object} mapDef + * @param {THREE.Texture} texture + */ + applyTextureTransform( mapDef, texture ) { + + let didTransform = false; + const transformDef = {}; + + if ( texture.offset.x !== 0 || texture.offset.y !== 0 ) { + + transformDef.offset = texture.offset.toArray(); + didTransform = true; + + } + + if ( texture.rotation !== 0 ) { + + transformDef.rotation = texture.rotation; + didTransform = true; + + } + + if ( texture.repeat.x !== 1 || texture.repeat.y !== 1 ) { + + transformDef.scale = texture.repeat.toArray(); + didTransform = true; + + } + + if ( didTransform ) { + + mapDef.extensions = mapDef.extensions || {}; + mapDef.extensions[ 'KHR_texture_transform' ] = transformDef; + this.extensionsUsed[ 'KHR_texture_transform' ] = true; + + } + + } + + async buildMetalRoughTextureAsync( metalnessMap, roughnessMap ) { + + if ( metalnessMap === roughnessMap ) return metalnessMap; + + function getEncodingConversion( map ) { + + if ( map.colorSpace === SRGBColorSpace ) { + + return function SRGBToLinear( c ) { + + return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 ); + + }; + + } + + return function LinearToLinear( c ) { + + return c; + + }; + + } + + if ( metalnessMap instanceof CompressedTexture ) { + + metalnessMap = await this.decompressTextureAsync( metalnessMap ); + + } + + if ( roughnessMap instanceof CompressedTexture ) { + + roughnessMap = await this.decompressTextureAsync( roughnessMap ); + + } + + const metalness = metalnessMap ? metalnessMap.image : null; + const roughness = roughnessMap ? roughnessMap.image : null; + + const width = Math.max( metalness ? metalness.width : 0, roughness ? roughness.width : 0 ); + const height = Math.max( metalness ? metalness.height : 0, roughness ? roughness.height : 0 ); + + const canvas = getCanvas(); + canvas.width = width; + canvas.height = height; + + const context = canvas.getContext( '2d', { + willReadFrequently: true, + } ); + context.fillStyle = '#00ffff'; + context.fillRect( 0, 0, width, height ); + + const composite = context.getImageData( 0, 0, width, height ); + + if ( metalness ) { + + context.drawImage( metalness, 0, 0, width, height ); + + const convert = getEncodingConversion( metalnessMap ); + const data = context.getImageData( 0, 0, width, height ).data; + + for ( let i = 2; i < data.length; i += 4 ) { + + composite.data[ i ] = convert( data[ i ] / 256 ) * 256; + + } + + } + + if ( roughness ) { + + context.drawImage( roughness, 0, 0, width, height ); + + const convert = getEncodingConversion( roughnessMap ); + const data = context.getImageData( 0, 0, width, height ).data; + + for ( let i = 1; i < data.length; i += 4 ) { + + composite.data[ i ] = convert( data[ i ] / 256 ) * 256; + + } + + } + + context.putImageData( composite, 0, 0 ); + + // + + const reference = metalnessMap || roughnessMap; + + const texture = reference.clone(); + + texture.source = new Source( canvas ); + texture.colorSpace = NoColorSpace; + texture.channel = ( metalnessMap || roughnessMap ).channel; + + if ( metalnessMap && roughnessMap && metalnessMap.channel !== roughnessMap.channel ) { + + console.warn( 'THREE.GLTFExporter: UV channels for metalnessMap and roughnessMap textures must match.' ); + + } + + console.warn( 'THREE.GLTFExporter: Merged metalnessMap and roughnessMap textures.' ); + + return texture; + + } + + + async decompressTextureAsync( texture, maxTextureSize = Infinity ) { + + if ( this.textureUtils === null ) { + + throw new Error( 'THREE.GLTFExporter: setTextureUtils() must be called to process compressed textures.' ); + + } + + return await this.textureUtils.decompress( texture, maxTextureSize ); + + } + + /** + * Process a buffer to append to the default one. + * @param {ArrayBuffer} buffer + * @return {0} + */ + processBuffer( buffer ) { + + const json = this.json; + const buffers = this.buffers; + + if ( ! json.buffers ) json.buffers = [ { byteLength: 0 } ]; + + // All buffers are merged before export. + buffers.push( buffer ); + + return 0; + + } + + /** + * Process and generate a BufferView + * @param {BufferAttribute} attribute + * @param {number} componentType + * @param {number} start + * @param {number} count + * @param {number} [target] Target usage of the BufferView + * @return {Object} + */ + processBufferView( attribute, componentType, start, count, target ) { + + const json = this.json; + + if ( ! json.bufferViews ) json.bufferViews = []; + + // Create a new dataview and dump the attribute's array into it + + let componentSize; + + switch ( componentType ) { + + case WEBGL_CONSTANTS.BYTE: + case WEBGL_CONSTANTS.UNSIGNED_BYTE: + + componentSize = 1; + + break; + + case WEBGL_CONSTANTS.SHORT: + case WEBGL_CONSTANTS.UNSIGNED_SHORT: + + componentSize = 2; + + break; + + default: + + componentSize = 4; + + } + + let byteStride = attribute.itemSize * componentSize; + + if ( target === WEBGL_CONSTANTS.ARRAY_BUFFER ) { + + // Each element of a vertex attribute MUST be aligned to 4-byte boundaries + // inside a bufferView + byteStride = Math.ceil( byteStride / 4 ) * 4; + + } + + const byteLength = getPaddedBufferSize( count * byteStride ); + const dataView = new DataView( new ArrayBuffer( byteLength ) ); + let offset = 0; + + for ( let i = start; i < start + count; i ++ ) { + + for ( let a = 0; a < attribute.itemSize; a ++ ) { + + let value; + + if ( attribute.itemSize > 4 ) { + + // no support for interleaved data for itemSize > 4 + + value = attribute.array[ i * attribute.itemSize + a ]; + + } else { + + if ( a === 0 ) value = attribute.getX( i ); + else if ( a === 1 ) value = attribute.getY( i ); + else if ( a === 2 ) value = attribute.getZ( i ); + else if ( a === 3 ) value = attribute.getW( i ); + + if ( attribute.normalized === true ) { + + value = MathUtils.normalize( value, attribute.array ); + + } + + } + + if ( componentType === WEBGL_CONSTANTS.FLOAT ) { + + dataView.setFloat32( offset, value, true ); + + } else if ( componentType === WEBGL_CONSTANTS.INT ) { + + dataView.setInt32( offset, value, true ); + + } else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_INT ) { + + dataView.setUint32( offset, value, true ); + + } else if ( componentType === WEBGL_CONSTANTS.SHORT ) { + + dataView.setInt16( offset, value, true ); + + } else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_SHORT ) { + + dataView.setUint16( offset, value, true ); + + } else if ( componentType === WEBGL_CONSTANTS.BYTE ) { + + dataView.setInt8( offset, value ); + + } else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_BYTE ) { + + dataView.setUint8( offset, value ); + + } + + offset += componentSize; + + } + + if ( ( offset % byteStride ) !== 0 ) { + + offset += byteStride - ( offset % byteStride ); + + } + + } + + const bufferViewDef = { + + buffer: this.processBuffer( dataView.buffer ), + byteOffset: this.byteOffset, + byteLength: byteLength + + }; + + if ( target !== undefined ) bufferViewDef.target = target; + + if ( target === WEBGL_CONSTANTS.ARRAY_BUFFER ) { + + // Only define byteStride for vertex attributes. + bufferViewDef.byteStride = byteStride; + + } + + this.byteOffset += byteLength; + + json.bufferViews.push( bufferViewDef ); + + // @TODO Merge bufferViews where possible. + const output = { + + id: json.bufferViews.length - 1, + byteLength: 0 + + }; + + return output; + + } + + /** + * Process and generate a BufferView from an image Blob. + * @param {Blob} blob + * @return {Promise} An integer + */ + processBufferViewImage( blob ) { + + const writer = this; + const json = writer.json; + + if ( ! json.bufferViews ) json.bufferViews = []; + + return new Promise( function ( resolve ) { + + const reader = new FileReader(); + reader.readAsArrayBuffer( blob ); + reader.onloadend = function () { + + const buffer = getPaddedArrayBuffer( reader.result ); + + const bufferViewDef = { + buffer: writer.processBuffer( buffer ), + byteOffset: writer.byteOffset, + byteLength: buffer.byteLength + }; + + writer.byteOffset += buffer.byteLength; + resolve( json.bufferViews.push( bufferViewDef ) - 1 ); + + }; + + } ); + + } + + /** + * Process attribute to generate an accessor + * @param {BufferAttribute} attribute Attribute to process + * @param {?BufferGeometry} [geometry] Geometry used for truncated draw range + * @param {number} [start=0] + * @param {number} [count=Infinity] + * @return {?number} Index of the processed accessor on the "accessors" array + */ + processAccessor( attribute, geometry, start, count ) { + + const json = this.json; + + const types = { + + 1: 'SCALAR', + 2: 'VEC2', + 3: 'VEC3', + 4: 'VEC4', + 9: 'MAT3', + 16: 'MAT4' + + }; + + let componentType; + + // Detect the component type of the attribute array + if ( attribute.array.constructor === Float32Array ) { + + componentType = WEBGL_CONSTANTS.FLOAT; + + } else if ( attribute.array.constructor === Int32Array ) { + + componentType = WEBGL_CONSTANTS.INT; + + } else if ( attribute.array.constructor === Uint32Array ) { + + componentType = WEBGL_CONSTANTS.UNSIGNED_INT; + + } else if ( attribute.array.constructor === Int16Array ) { + + componentType = WEBGL_CONSTANTS.SHORT; + + } else if ( attribute.array.constructor === Uint16Array ) { + + componentType = WEBGL_CONSTANTS.UNSIGNED_SHORT; + + } else if ( attribute.array.constructor === Int8Array ) { + + componentType = WEBGL_CONSTANTS.BYTE; + + } else if ( attribute.array.constructor === Uint8Array ) { + + componentType = WEBGL_CONSTANTS.UNSIGNED_BYTE; + + } else { + + throw new Error( 'THREE.GLTFExporter: Unsupported bufferAttribute component type: ' + attribute.array.constructor.name ); + + } + + if ( start === undefined ) start = 0; + if ( count === undefined || count === Infinity ) count = attribute.count; + + // Skip creating an accessor if the attribute doesn't have data to export + if ( count === 0 ) return null; + + const minMax = getMinMax( attribute, start, count ); + let bufferViewTarget; + + // If geometry isn't provided, don't infer the target usage of the bufferView. For + // animation samplers, target must not be set. + if ( geometry !== undefined ) { + + bufferViewTarget = attribute === geometry.index ? WEBGL_CONSTANTS.ELEMENT_ARRAY_BUFFER : WEBGL_CONSTANTS.ARRAY_BUFFER; + + } + + const bufferView = this.processBufferView( attribute, componentType, start, count, bufferViewTarget ); + + const accessorDef = { + + bufferView: bufferView.id, + byteOffset: bufferView.byteOffset, + componentType: componentType, + count: count, + max: minMax.max, + min: minMax.min, + type: types[ attribute.itemSize ] + + }; + + if ( attribute.normalized === true ) accessorDef.normalized = true; + if ( ! json.accessors ) json.accessors = []; + + return json.accessors.push( accessorDef ) - 1; + + } + + /** + * Process image + * @param {Image} image to process + * @param {number} format Identifier of the format (RGBAFormat) + * @param {boolean} flipY before writing out the image + * @param {string} mimeType export format + * @return {number} Index of the processed texture in the "images" array + */ + processImage( image, format, flipY, mimeType = 'image/png' ) { + + if ( image !== null ) { + + const writer = this; + const cache = writer.cache; + const json = writer.json; + const options = writer.options; + const pending = writer.pending; + + if ( ! cache.images.has( image ) ) cache.images.set( image, {} ); + + const cachedImages = cache.images.get( image ); + + const key = mimeType + ':flipY/' + flipY.toString(); + + if ( cachedImages[ key ] !== undefined ) return cachedImages[ key ]; + + if ( ! json.images ) json.images = []; + + const imageDef = { mimeType: mimeType }; + + const canvas = getCanvas(); + + canvas.width = Math.min( image.width, options.maxTextureSize ); + canvas.height = Math.min( image.height, options.maxTextureSize ); + + const ctx = canvas.getContext( '2d', { + willReadFrequently: true, + } ); + + if ( flipY === true ) { + + ctx.translate( 0, canvas.height ); + ctx.scale( 1, - 1 ); + + } + + if ( image.data !== undefined ) { // THREE.DataTexture + + if ( format !== RGBAFormat ) { + + console.error( 'GLTFExporter: Only RGBAFormat is supported.', format ); + + } + + if ( image.width > options.maxTextureSize || image.height > options.maxTextureSize ) { + + console.warn( 'GLTFExporter: Image size is bigger than maxTextureSize', image ); + + } + + const data = new Uint8ClampedArray( image.height * image.width * 4 ); + + for ( let i = 0; i < data.length; i += 4 ) { + + data[ i + 0 ] = image.data[ i + 0 ]; + data[ i + 1 ] = image.data[ i + 1 ]; + data[ i + 2 ] = image.data[ i + 2 ]; + data[ i + 3 ] = image.data[ i + 3 ]; + + } + + ctx.putImageData( new ImageData( data, image.width, image.height ), 0, 0 ); + + } else { + + if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || + ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || + ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) || + ( typeof OffscreenCanvas !== 'undefined' && image instanceof OffscreenCanvas ) ) { + + ctx.drawImage( image, 0, 0, canvas.width, canvas.height ); + + } else { + + throw new Error( 'THREE.GLTFExporter: Invalid image type. Use HTMLImageElement, HTMLCanvasElement, ImageBitmap or OffscreenCanvas.' ); + + } + + } + + if ( options.binary === true ) { + + pending.push( + + getToBlobPromise( canvas, mimeType ) + .then( blob => writer.processBufferViewImage( blob ) ) + .then( bufferViewIndex => { + + imageDef.bufferView = bufferViewIndex; + + } ) + + ); + + } else { + + imageDef.uri = ImageUtils.getDataURL( canvas, mimeType ); + + } + + const index = json.images.push( imageDef ) - 1; + cachedImages[ key ] = index; + return index; + + } else { + + throw new Error( 'THREE.GLTFExporter: No valid image data found. Unable to process texture.' ); + + } + + } + + /** + * Process sampler + * @param {Texture} map Texture to process + * @return {number} Index of the processed texture in the "samplers" array + */ + processSampler( map ) { + + const json = this.json; + + if ( ! json.samplers ) json.samplers = []; + + const samplerDef = { + magFilter: THREE_TO_WEBGL[ map.magFilter ], + minFilter: THREE_TO_WEBGL[ map.minFilter ], + wrapS: THREE_TO_WEBGL[ map.wrapS ], + wrapT: THREE_TO_WEBGL[ map.wrapT ] + }; + + return json.samplers.push( samplerDef ) - 1; + + } + + /** + * Process texture + * @param {Texture} map Map to process + * @return {Promise} Index of the processed texture in the "textures" array + */ + async processTextureAsync( map ) { + + const writer = this; + const options = writer.options; + const cache = this.cache; + const json = this.json; + + if ( cache.textures.has( map ) ) return cache.textures.get( map ); + + if ( ! json.textures ) json.textures = []; + + // make non-readable textures (e.g. CompressedTexture) readable by blitting them into a new texture + if ( map instanceof CompressedTexture ) { + + map = await this.decompressTextureAsync( map, options.maxTextureSize ); + + } + + let mimeType = map.userData.mimeType; + + if ( mimeType === 'image/webp' ) mimeType = 'image/png'; + + const textureDef = { + sampler: this.processSampler( map ), + source: this.processImage( map.image, map.format, map.flipY, mimeType ) + }; + + if ( map.name ) textureDef.name = map.name; + + await this._invokeAllAsync( async function ( ext ) { + + ext.writeTexture && await ext.writeTexture( map, textureDef ); + + } ); + + const index = json.textures.push( textureDef ) - 1; + cache.textures.set( map, index ); + return index; + + } + + /** + * Process material + * @param {THREE.Material} material Material to process + * @return {Promise} Index of the processed material in the "materials" array + */ + async processMaterialAsync( material ) { + + const cache = this.cache; + const json = this.json; + + if ( cache.materials.has( material ) ) return cache.materials.get( material ); + + if ( material.isShaderMaterial ) { + + console.warn( 'GLTFExporter: THREE.ShaderMaterial not supported.' ); + return null; + + } + + if ( ! json.materials ) json.materials = []; + + // @QUESTION Should we avoid including any attribute that has the default value? + const materialDef = { pbrMetallicRoughness: {} }; + + if ( material.isMeshStandardMaterial !== true && material.isMeshBasicMaterial !== true ) { + + console.warn( 'GLTFExporter: Use MeshStandardMaterial or MeshBasicMaterial for best results.' ); + + } + + // pbrMetallicRoughness.baseColorFactor + const color = material.color.toArray().concat( [ material.opacity ] ); + + if ( ! equalArray( color, [ 1, 1, 1, 1 ] ) ) { + + materialDef.pbrMetallicRoughness.baseColorFactor = color; + + } + + if ( material.isMeshStandardMaterial ) { + + materialDef.pbrMetallicRoughness.metallicFactor = material.metalness; + materialDef.pbrMetallicRoughness.roughnessFactor = material.roughness; + + } else { + + materialDef.pbrMetallicRoughness.metallicFactor = 0; + materialDef.pbrMetallicRoughness.roughnessFactor = 1; + + } + + // pbrMetallicRoughness.metallicRoughnessTexture + if ( material.metalnessMap || material.roughnessMap ) { + + const metalRoughTexture = await this.buildMetalRoughTextureAsync( material.metalnessMap, material.roughnessMap ); + + const metalRoughMapDef = { + index: await this.processTextureAsync( metalRoughTexture ), + texCoord: metalRoughTexture.channel + }; + this.applyTextureTransform( metalRoughMapDef, metalRoughTexture ); + materialDef.pbrMetallicRoughness.metallicRoughnessTexture = metalRoughMapDef; + + } + + // pbrMetallicRoughness.baseColorTexture + if ( material.map ) { + + const baseColorMapDef = { + index: await this.processTextureAsync( material.map ), + texCoord: material.map.channel + }; + this.applyTextureTransform( baseColorMapDef, material.map ); + materialDef.pbrMetallicRoughness.baseColorTexture = baseColorMapDef; + + } + + if ( material.emissive ) { + + const emissive = material.emissive; + const maxEmissiveComponent = Math.max( emissive.r, emissive.g, emissive.b ); + + if ( maxEmissiveComponent > 0 ) { + + materialDef.emissiveFactor = material.emissive.toArray(); + + } + + // emissiveTexture + if ( material.emissiveMap ) { + + const emissiveMapDef = { + index: await this.processTextureAsync( material.emissiveMap ), + texCoord: material.emissiveMap.channel + }; + this.applyTextureTransform( emissiveMapDef, material.emissiveMap ); + materialDef.emissiveTexture = emissiveMapDef; + + } + + } + + // normalTexture + if ( material.normalMap ) { + + const normalMapDef = { + index: await this.processTextureAsync( material.normalMap ), + texCoord: material.normalMap.channel + }; + + if ( material.normalScale && material.normalScale.x !== 1 ) { + + // glTF normal scale is univariate. Ignore `y`, which may be flipped. + // Context: https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995 + normalMapDef.scale = material.normalScale.x; + + } + + this.applyTextureTransform( normalMapDef, material.normalMap ); + materialDef.normalTexture = normalMapDef; + + } + + // occlusionTexture + if ( material.aoMap ) { + + const occlusionMapDef = { + index: await this.processTextureAsync( material.aoMap ), + texCoord: material.aoMap.channel + }; + + if ( material.aoMapIntensity !== 1.0 ) { + + occlusionMapDef.strength = material.aoMapIntensity; + + } + + this.applyTextureTransform( occlusionMapDef, material.aoMap ); + materialDef.occlusionTexture = occlusionMapDef; + + } + + // alphaMode + if ( material.transparent ) { + + materialDef.alphaMode = 'BLEND'; + + } else { + + if ( material.alphaTest > 0.0 ) { + + materialDef.alphaMode = 'MASK'; + materialDef.alphaCutoff = material.alphaTest; + + } + + } + + // doubleSided + if ( material.side === DoubleSide ) materialDef.doubleSided = true; + if ( material.name !== '' ) materialDef.name = material.name; + + this.serializeUserData( material, materialDef ); + + await this._invokeAllAsync( async function ( ext ) { + + ext.writeMaterialAsync && await ext.writeMaterialAsync( material, materialDef ); + + } ); + + const index = json.materials.push( materialDef ) - 1; + cache.materials.set( material, index ); + return index; + + } + + /** + * Process mesh + * @param {THREE.Mesh} mesh Mesh to process + * @return {Promise} Index of the processed mesh in the "meshes" array + */ + async processMeshAsync( mesh ) { + + const cache = this.cache; + const json = this.json; + + const meshCacheKeyParts = [ mesh.geometry.uuid ]; + + if ( Array.isArray( mesh.material ) ) { + + for ( let i = 0, l = mesh.material.length; i < l; i ++ ) { + + meshCacheKeyParts.push( mesh.material[ i ].uuid ); + + } + + } else { + + meshCacheKeyParts.push( mesh.material.uuid ); + + } + + const meshCacheKey = meshCacheKeyParts.join( ':' ); + + if ( cache.meshes.has( meshCacheKey ) ) return cache.meshes.get( meshCacheKey ); + + const geometry = mesh.geometry; + + let mode; + + // Use the correct mode + if ( mesh.isLineSegments ) { + + mode = WEBGL_CONSTANTS.LINES; + + } else if ( mesh.isLineLoop ) { + + mode = WEBGL_CONSTANTS.LINE_LOOP; + + } else if ( mesh.isLine ) { + + mode = WEBGL_CONSTANTS.LINE_STRIP; + + } else if ( mesh.isPoints ) { + + mode = WEBGL_CONSTANTS.POINTS; + + } else { + + mode = mesh.material.wireframe ? WEBGL_CONSTANTS.LINES : WEBGL_CONSTANTS.TRIANGLES; + + } + + const meshDef = {}; + const attributes = {}; + const primitives = []; + const targets = []; + + // Conversion between attributes names in threejs and gltf spec + const nameConversion = { + uv: 'TEXCOORD_0', + uv1: 'TEXCOORD_1', + uv2: 'TEXCOORD_2', + uv3: 'TEXCOORD_3', + color: 'COLOR_0', + skinWeight: 'WEIGHTS_0', + skinIndex: 'JOINTS_0' + }; + + const originalNormal = geometry.getAttribute( 'normal' ); + + if ( originalNormal !== undefined && ! this.isNormalizedNormalAttribute( originalNormal ) ) { + + console.warn( 'THREE.GLTFExporter: Creating normalized normal attribute from the non-normalized one.' ); + + geometry.setAttribute( 'normal', this.createNormalizedNormalAttribute( originalNormal ) ); + + } + + // @QUESTION Detect if .vertexColors = true? + // For every attribute create an accessor + let modifiedAttribute = null; + + for ( let attributeName in geometry.attributes ) { + + // Ignore morph target attributes, which are exported later. + if ( attributeName.slice( 0, 5 ) === 'morph' ) continue; + + const attribute = geometry.attributes[ attributeName ]; + attributeName = nameConversion[ attributeName ] || attributeName.toUpperCase(); + + // Prefix all geometry attributes except the ones specifically + // listed in the spec; non-spec attributes are considered custom. + const validVertexAttributes = + /^(POSITION|NORMAL|TANGENT|TEXCOORD_\d+|COLOR_\d+|JOINTS_\d+|WEIGHTS_\d+)$/; + + if ( ! validVertexAttributes.test( attributeName ) ) attributeName = '_' + attributeName; + + if ( cache.attributes.has( this.getUID( attribute ) ) ) { + + attributes[ attributeName ] = cache.attributes.get( this.getUID( attribute ) ); + continue; + + } + + // Enforce glTF vertex attribute requirements: + // - JOINTS_0 must be UNSIGNED_BYTE or UNSIGNED_SHORT + // - Only custom attributes may be INT or UNSIGNED_INT + modifiedAttribute = null; + const array = attribute.array; + + if ( attributeName === 'JOINTS_0' && + ! ( array instanceof Uint16Array ) && + ! ( array instanceof Uint8Array ) ) { + + console.warn( 'GLTFExporter: Attribute "skinIndex" converted to type UNSIGNED_SHORT.' ); + modifiedAttribute = new BufferAttribute( new Uint16Array( array ), attribute.itemSize, attribute.normalized ); + + } else if ( ( array instanceof Uint32Array || array instanceof Int32Array ) && ! attributeName.startsWith( '_' ) ) { + + console.warn( `GLTFExporter: Attribute "${ attributeName }" converted to type FLOAT.` ); + modifiedAttribute = GLTFExporter.Utils.toFloat32BufferAttribute( attribute ); + + } + + const accessor = this.processAccessor( modifiedAttribute || attribute, geometry ); + + if ( accessor !== null ) { + + if ( ! attributeName.startsWith( '_' ) ) { + + this.detectMeshQuantization( attributeName, attribute ); + + } + + attributes[ attributeName ] = accessor; + cache.attributes.set( this.getUID( attribute ), accessor ); + + } + + } + + if ( originalNormal !== undefined ) geometry.setAttribute( 'normal', originalNormal ); + + // Skip if no exportable attributes found + if ( Object.keys( attributes ).length === 0 ) return null; + + // Morph targets + if ( mesh.morphTargetInfluences !== undefined && mesh.morphTargetInfluences.length > 0 ) { + + const weights = []; + const targetNames = []; + const reverseDictionary = {}; + + if ( mesh.morphTargetDictionary !== undefined ) { + + for ( const key in mesh.morphTargetDictionary ) { + + reverseDictionary[ mesh.morphTargetDictionary[ key ] ] = key; + + } + + } + + for ( let i = 0; i < mesh.morphTargetInfluences.length; ++ i ) { + + const target = {}; + let warned = false; + + for ( const attributeName in geometry.morphAttributes ) { + + // glTF 2.0 morph supports only POSITION/NORMAL/TANGENT. + // Three.js doesn't support TANGENT yet. + + if ( attributeName !== 'position' && attributeName !== 'normal' ) { + + if ( ! warned ) { + + console.warn( 'GLTFExporter: Only POSITION and NORMAL morph are supported.' ); + warned = true; + + } + + continue; + + } + + const attribute = geometry.morphAttributes[ attributeName ][ i ]; + const gltfAttributeName = attributeName.toUpperCase(); + + // Three.js morph attribute has absolute values while the one of glTF has relative values. + // + // glTF 2.0 Specification: + // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#morph-targets + + const baseAttribute = geometry.attributes[ attributeName ]; + + if ( cache.attributes.has( this.getUID( attribute, true ) ) ) { + + target[ gltfAttributeName ] = cache.attributes.get( this.getUID( attribute, true ) ); + continue; + + } + + // Clones attribute not to override + const relativeAttribute = attribute.clone(); + + if ( ! geometry.morphTargetsRelative ) { + + for ( let j = 0, jl = attribute.count; j < jl; j ++ ) { + + for ( let a = 0; a < attribute.itemSize; a ++ ) { + + if ( a === 0 ) relativeAttribute.setX( j, attribute.getX( j ) - baseAttribute.getX( j ) ); + if ( a === 1 ) relativeAttribute.setY( j, attribute.getY( j ) - baseAttribute.getY( j ) ); + if ( a === 2 ) relativeAttribute.setZ( j, attribute.getZ( j ) - baseAttribute.getZ( j ) ); + if ( a === 3 ) relativeAttribute.setW( j, attribute.getW( j ) - baseAttribute.getW( j ) ); + + } + + } + + } + + target[ gltfAttributeName ] = this.processAccessor( relativeAttribute, geometry ); + cache.attributes.set( this.getUID( baseAttribute, true ), target[ gltfAttributeName ] ); + + } + + targets.push( target ); + + weights.push( mesh.morphTargetInfluences[ i ] ); + + if ( mesh.morphTargetDictionary !== undefined ) targetNames.push( reverseDictionary[ i ] ); + + } + + meshDef.weights = weights; + + if ( targetNames.length > 0 ) { + + meshDef.extras = {}; + meshDef.extras.targetNames = targetNames; + + } + + } + + const isMultiMaterial = Array.isArray( mesh.material ); + + if ( isMultiMaterial && geometry.groups.length === 0 ) return null; + + let didForceIndices = false; + + if ( isMultiMaterial && geometry.index === null ) { + + const indices = []; + + for ( let i = 0, il = geometry.attributes.position.count; i < il; i ++ ) { + + indices[ i ] = i; + + } + + geometry.setIndex( indices ); + + didForceIndices = true; + + } + + const materials = isMultiMaterial ? mesh.material : [ mesh.material ]; + const groups = isMultiMaterial ? geometry.groups : [ { materialIndex: 0, start: undefined, count: undefined } ]; + + for ( let i = 0, il = groups.length; i < il; i ++ ) { + + const primitive = { + mode: mode, + attributes: attributes, + }; + + this.serializeUserData( geometry, primitive ); + + if ( targets.length > 0 ) primitive.targets = targets; + + if ( geometry.index !== null ) { + + let cacheKey = this.getUID( geometry.index ); + + if ( groups[ i ].start !== undefined || groups[ i ].count !== undefined ) { + + cacheKey += ':' + groups[ i ].start + ':' + groups[ i ].count; + + } + + if ( cache.attributes.has( cacheKey ) ) { + + primitive.indices = cache.attributes.get( cacheKey ); + + } else { + + primitive.indices = this.processAccessor( geometry.index, geometry, groups[ i ].start, groups[ i ].count ); + cache.attributes.set( cacheKey, primitive.indices ); + + } + + if ( primitive.indices === null ) delete primitive.indices; + + } + + const material = await this.processMaterialAsync( materials[ groups[ i ].materialIndex ] ); + + if ( material !== null ) primitive.material = material; + + primitives.push( primitive ); + + } + + if ( didForceIndices === true ) { + + geometry.setIndex( null ); + + } + + meshDef.primitives = primitives; + + if ( ! json.meshes ) json.meshes = []; + + await this._invokeAllAsync( function ( ext ) { + + ext.writeMesh && ext.writeMesh( mesh, meshDef ); + + } ); + + const index = json.meshes.push( meshDef ) - 1; + cache.meshes.set( meshCacheKey, index ); + return index; + + } + + /** + * If a vertex attribute with a + * [non-standard data type](https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes-overview) + * is used, it is checked whether it is a valid data type according to the + * [KHR_mesh_quantization](https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_mesh_quantization/README.md) + * extension. + * In this case the extension is automatically added to the list of used extensions. + * + * @param {string} attributeName + * @param {THREE.BufferAttribute} attribute + */ + detectMeshQuantization( attributeName, attribute ) { + + if ( this.extensionsUsed[ KHR_MESH_QUANTIZATION ] ) return; + + let attrType = undefined; + + switch ( attribute.array.constructor ) { + + case Int8Array: + + attrType = 'byte'; + + break; + + case Uint8Array: + + attrType = 'unsigned byte'; + + break; + + case Int16Array: + + attrType = 'short'; + + break; + + case Uint16Array: + + attrType = 'unsigned short'; + + break; + + default: + + return; + + } + + if ( attribute.normalized ) attrType += ' normalized'; + + const attrNamePrefix = attributeName.split( '_', 1 )[ 0 ]; + + if ( KHR_mesh_quantization_ExtraAttrTypes[ attrNamePrefix ] && KHR_mesh_quantization_ExtraAttrTypes[ attrNamePrefix ].includes( attrType ) ) { + + this.extensionsUsed[ KHR_MESH_QUANTIZATION ] = true; + this.extensionsRequired[ KHR_MESH_QUANTIZATION ] = true; + + } + + } + + /** + * Process camera + * @param {THREE.Camera} camera Camera to process + * @return {number} Index of the processed mesh in the "camera" array + */ + processCamera( camera ) { + + const json = this.json; + + if ( ! json.cameras ) json.cameras = []; + + const isOrtho = camera.isOrthographicCamera; + + const cameraDef = { + type: isOrtho ? 'orthographic' : 'perspective' + }; + + if ( isOrtho ) { + + cameraDef.orthographic = { + xmag: camera.right * 2, + ymag: camera.top * 2, + zfar: camera.far <= 0 ? 0.001 : camera.far, + znear: camera.near < 0 ? 0 : camera.near + }; + + } else { + + cameraDef.perspective = { + aspectRatio: camera.aspect, + yfov: MathUtils.degToRad( camera.fov ), + zfar: camera.far <= 0 ? 0.001 : camera.far, + znear: camera.near < 0 ? 0 : camera.near + }; + + } + + // Question: Is saving "type" as name intentional? + if ( camera.name !== '' ) cameraDef.name = camera.type; + + return json.cameras.push( cameraDef ) - 1; + + } + + /** + * Creates glTF animation entry from AnimationClip object. + * + * Status: + * - Only properties listed in PATH_PROPERTIES may be animated. + * + * @param {THREE.AnimationClip} clip + * @param {THREE.Object3D} root + * @return {number|null} + */ + processAnimation( clip, root ) { + + const json = this.json; + const nodeMap = this.nodeMap; + + if ( ! json.animations ) json.animations = []; + + clip = GLTFExporter.Utils.mergeMorphTargetTracks( clip.clone(), root ); + + const tracks = clip.tracks; + const channels = []; + const samplers = []; + + for ( let i = 0; i < tracks.length; ++ i ) { + + const track = tracks[ i ]; + const trackBinding = PropertyBinding.parseTrackName( track.name ); + let trackNode = PropertyBinding.findNode( root, trackBinding.nodeName ); + const trackProperty = PATH_PROPERTIES[ trackBinding.propertyName ]; + + if ( trackBinding.objectName === 'bones' ) { + + if ( trackNode.isSkinnedMesh === true ) { + + trackNode = trackNode.skeleton.getBoneByName( trackBinding.objectIndex ); + + } else { + + trackNode = undefined; + + } + + } + + if ( ! trackNode || ! trackProperty ) { + + console.warn( 'THREE.GLTFExporter: Could not export animation track "%s".', track.name ); + continue; + + } + + const inputItemSize = 1; + let outputItemSize = track.values.length / track.times.length; + + if ( trackProperty === PATH_PROPERTIES.morphTargetInfluences ) { + + outputItemSize /= trackNode.morphTargetInfluences.length; + + } + + let interpolation; + + // @TODO export CubicInterpolant(InterpolateSmooth) as CUBICSPLINE + + // Detecting glTF cubic spline interpolant by checking factory method's special property + // GLTFCubicSplineInterpolant is a custom interpolant and track doesn't return + // valid value from .getInterpolation(). + if ( track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline === true ) { + + interpolation = 'CUBICSPLINE'; + + // itemSize of CUBICSPLINE keyframe is 9 + // (VEC3 * 3: inTangent, splineVertex, and outTangent) + // but needs to be stored as VEC3 so dividing by 3 here. + outputItemSize /= 3; + + } else if ( track.getInterpolation() === InterpolateDiscrete ) { + + interpolation = 'STEP'; + + } else { + + interpolation = 'LINEAR'; + + } + + samplers.push( { + input: this.processAccessor( new BufferAttribute( track.times, inputItemSize ) ), + output: this.processAccessor( new BufferAttribute( track.values, outputItemSize ) ), + interpolation: interpolation + } ); + + channels.push( { + sampler: samplers.length - 1, + target: { + node: nodeMap.get( trackNode ), + path: trackProperty + } + } ); + + } + + json.animations.push( { + name: clip.name || 'clip_' + json.animations.length, + samplers: samplers, + channels: channels + } ); + + return json.animations.length - 1; + + } + + /** + * @param {THREE.Object3D} object + * @return {number|null} + */ + processSkin( object ) { + + const json = this.json; + const nodeMap = this.nodeMap; + + const node = json.nodes[ nodeMap.get( object ) ]; + + const skeleton = object.skeleton; + + if ( skeleton === undefined ) return null; + + const rootJoint = object.skeleton.bones[ 0 ]; + + if ( rootJoint === undefined ) return null; + + const joints = []; + const inverseBindMatrices = new Float32Array( skeleton.bones.length * 16 ); + const temporaryBoneInverse = new Matrix4(); + + for ( let i = 0; i < skeleton.bones.length; ++ i ) { + + joints.push( nodeMap.get( skeleton.bones[ i ] ) ); + temporaryBoneInverse.copy( skeleton.boneInverses[ i ] ); + temporaryBoneInverse.multiply( object.bindMatrix ).toArray( inverseBindMatrices, i * 16 ); + + } + + if ( json.skins === undefined ) json.skins = []; + + json.skins.push( { + inverseBindMatrices: this.processAccessor( new BufferAttribute( inverseBindMatrices, 16 ) ), + joints: joints, + skeleton: nodeMap.get( rootJoint ) + } ); + + const skinIndex = node.skin = json.skins.length - 1; + + return skinIndex; + + } + + /** + * Process Object3D node + * @param {THREE.Object3D} object Object3D to processNodeAsync + * @return {Promise} Index of the node in the nodes list + */ + async processNodeAsync( object ) { + + const json = this.json; + const options = this.options; + const nodeMap = this.nodeMap; + + if ( ! json.nodes ) json.nodes = []; + + const nodeDef = {}; + + if ( options.trs ) { + + const rotation = object.quaternion.toArray(); + const position = object.position.toArray(); + const scale = object.scale.toArray(); + + if ( ! equalArray( rotation, [ 0, 0, 0, 1 ] ) ) { + + nodeDef.rotation = rotation; + + } + + if ( ! equalArray( position, [ 0, 0, 0 ] ) ) { + + nodeDef.translation = position; + + } + + if ( ! equalArray( scale, [ 1, 1, 1 ] ) ) { + + nodeDef.scale = scale; + + } + + } else { + + if ( object.matrixAutoUpdate ) { + + object.updateMatrix(); + + } + + if ( isIdentityMatrix( object.matrix ) === false ) { + + nodeDef.matrix = object.matrix.elements; + + } + + } + + // We don't export empty strings name because it represents no-name in Three.js. + if ( object.name !== '' ) nodeDef.name = String( object.name ); + + this.serializeUserData( object, nodeDef ); + + if ( object.isMesh || object.isLine || object.isPoints ) { + + const meshIndex = await this.processMeshAsync( object ); + + if ( meshIndex !== null ) nodeDef.mesh = meshIndex; + + } else if ( object.isCamera ) { + + nodeDef.camera = this.processCamera( object ); + + } + + if ( object.isSkinnedMesh ) this.skins.push( object ); + + const nodeIndex = json.nodes.push( nodeDef ) - 1; + nodeMap.set( object, nodeIndex ); + + if ( object.children.length > 0 ) { + + const children = []; + + for ( let i = 0, l = object.children.length; i < l; i ++ ) { + + const child = object.children[ i ]; + + if ( child.visible || options.onlyVisible === false ) { + + const childNodeIndex = await this.processNodeAsync( child ); + + if ( childNodeIndex !== null ) children.push( childNodeIndex ); + + } + + } + + if ( children.length > 0 ) nodeDef.children = children; + + } + + await this._invokeAllAsync( function ( ext ) { + + ext.writeNode && ext.writeNode( object, nodeDef ); + + } ); + + return nodeIndex; + + } + + /** + * Process Scene + * @param {Scene} scene Scene to process + */ + async processSceneAsync( scene ) { + + const json = this.json; + const options = this.options; + + if ( ! json.scenes ) { + + json.scenes = []; + json.scene = 0; + + } + + const sceneDef = {}; + + if ( scene.name !== '' ) sceneDef.name = scene.name; + + json.scenes.push( sceneDef ); + + const nodes = []; + + for ( let i = 0, l = scene.children.length; i < l; i ++ ) { + + const child = scene.children[ i ]; + + if ( child.visible || options.onlyVisible === false ) { + + const nodeIndex = await this.processNodeAsync( child ); + + if ( nodeIndex !== null ) nodes.push( nodeIndex ); + + } + + } + + if ( nodes.length > 0 ) sceneDef.nodes = nodes; + + this.serializeUserData( scene, sceneDef ); + + } + + /** + * Creates a Scene to hold a list of objects and parse it + * @param {Array} objects List of objects to process + */ + async processObjectsAsync( objects ) { + + const scene = new Scene(); + scene.name = 'AuxScene'; + + for ( let i = 0; i < objects.length; i ++ ) { + + // We push directly to children instead of calling `add` to prevent + // modify the .parent and break its original scene and hierarchy + scene.children.push( objects[ i ] ); + + } + + await this.processSceneAsync( scene ); + + } + + /** + * @param {THREE.Object3D|Array} input + */ + async processInputAsync( input ) { + + const options = this.options; + + input = input instanceof Array ? input : [ input ]; + + await this._invokeAllAsync( function ( ext ) { + + ext.beforeParse && ext.beforeParse( input ); + + } ); + + const objectsWithoutScene = []; + + for ( let i = 0; i < input.length; i ++ ) { + + if ( input[ i ] instanceof Scene ) { + + await this.processSceneAsync( input[ i ] ); + + } else { + + objectsWithoutScene.push( input[ i ] ); + + } + + } + + if ( objectsWithoutScene.length > 0 ) { + + await this.processObjectsAsync( objectsWithoutScene ); + + } + + for ( let i = 0; i < this.skins.length; ++ i ) { + + this.processSkin( this.skins[ i ] ); + + } + + for ( let i = 0; i < options.animations.length; ++ i ) { + + this.processAnimation( options.animations[ i ], input[ 0 ] ); + + } + + await this._invokeAllAsync( function ( ext ) { + + ext.afterParse && ext.afterParse( input ); + + } ); + + } + + async _invokeAllAsync( func ) { + + for ( let i = 0, il = this.plugins.length; i < il; i ++ ) { + + await func( this.plugins[ i ] ); + + } + + } + +} + +/** + * Punctual Lights Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual + * + * @private + */ +class GLTFLightExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_lights_punctual'; + + } + + writeNode( light, nodeDef ) { + + if ( ! light.isLight ) return; + + if ( ! light.isDirectionalLight && ! light.isPointLight && ! light.isSpotLight ) { + + console.warn( 'THREE.GLTFExporter: Only directional, point, and spot lights are supported.', light ); + return; + + } + + const writer = this.writer; + const json = writer.json; + const extensionsUsed = writer.extensionsUsed; + + const lightDef = {}; + + if ( light.name ) lightDef.name = light.name; + + lightDef.color = light.color.toArray(); + + lightDef.intensity = light.intensity; + + if ( light.isDirectionalLight ) { + + lightDef.type = 'directional'; + + } else if ( light.isPointLight ) { + + lightDef.type = 'point'; + + if ( light.distance > 0 ) lightDef.range = light.distance; + + } else if ( light.isSpotLight ) { + + lightDef.type = 'spot'; + + if ( light.distance > 0 ) lightDef.range = light.distance; + + lightDef.spot = {}; + lightDef.spot.innerConeAngle = ( 1.0 - light.penumbra ) * light.angle; + lightDef.spot.outerConeAngle = light.angle; + + } + + if ( light.decay !== undefined && light.decay !== 2 ) { + + console.warn( 'THREE.GLTFExporter: Light decay may be lost. glTF is physically-based, ' + + 'and expects light.decay=2.' ); + + } + + if ( light.target + && ( light.target.parent !== light + || light.target.position.x !== 0 + || light.target.position.y !== 0 + || light.target.position.z !== - 1 ) ) { + + console.warn( 'THREE.GLTFExporter: Light direction may be lost. For best results, ' + + 'make light.target a child of the light with position 0,0,-1.' ); + + } + + if ( ! extensionsUsed[ this.name ] ) { + + json.extensions = json.extensions || {}; + json.extensions[ this.name ] = { lights: [] }; + extensionsUsed[ this.name ] = true; + + } + + const lights = json.extensions[ this.name ].lights; + lights.push( lightDef ); + + nodeDef.extensions = nodeDef.extensions || {}; + nodeDef.extensions[ this.name ] = { light: lights.length - 1 }; + + } + +} + +/** + * Unlit Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_unlit + * + * @private + */ +class GLTFMaterialsUnlitExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_unlit'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshBasicMaterial ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = {}; + + extensionsUsed[ this.name ] = true; + + materialDef.pbrMetallicRoughness.metallicFactor = 0.0; + materialDef.pbrMetallicRoughness.roughnessFactor = 0.9; + + } + +} + +/** + * Clearcoat Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_clearcoat + * + * @private + */ +class GLTFMaterialsClearcoatExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_clearcoat'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.clearcoat === 0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.clearcoatFactor = material.clearcoat; + + if ( material.clearcoatMap ) { + + const clearcoatMapDef = { + index: await writer.processTextureAsync( material.clearcoatMap ), + texCoord: material.clearcoatMap.channel + }; + writer.applyTextureTransform( clearcoatMapDef, material.clearcoatMap ); + extensionDef.clearcoatTexture = clearcoatMapDef; + + } + + extensionDef.clearcoatRoughnessFactor = material.clearcoatRoughness; + + if ( material.clearcoatRoughnessMap ) { + + const clearcoatRoughnessMapDef = { + index: await writer.processTextureAsync( material.clearcoatRoughnessMap ), + texCoord: material.clearcoatRoughnessMap.channel + }; + writer.applyTextureTransform( clearcoatRoughnessMapDef, material.clearcoatRoughnessMap ); + extensionDef.clearcoatRoughnessTexture = clearcoatRoughnessMapDef; + + } + + if ( material.clearcoatNormalMap ) { + + const clearcoatNormalMapDef = { + index: await writer.processTextureAsync( material.clearcoatNormalMap ), + texCoord: material.clearcoatNormalMap.channel + }; + + if ( material.clearcoatNormalScale.x !== 1 ) clearcoatNormalMapDef.scale = material.clearcoatNormalScale.x; + + writer.applyTextureTransform( clearcoatNormalMapDef, material.clearcoatNormalMap ); + extensionDef.clearcoatNormalTexture = clearcoatNormalMapDef; + + } + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + + } + +} + +/** + * Materials dispersion Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_dispersion + * + * @private + */ +class GLTFMaterialsDispersionExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_dispersion'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.dispersion === 0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.dispersion = material.dispersion; + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + +} + +/** + * Iridescence Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_iridescence + * + * @private + */ +class GLTFMaterialsIridescenceExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_iridescence'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.iridescence === 0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.iridescenceFactor = material.iridescence; + + if ( material.iridescenceMap ) { + + const iridescenceMapDef = { + index: await writer.processTextureAsync( material.iridescenceMap ), + texCoord: material.iridescenceMap.channel + }; + writer.applyTextureTransform( iridescenceMapDef, material.iridescenceMap ); + extensionDef.iridescenceTexture = iridescenceMapDef; + + } + + extensionDef.iridescenceIor = material.iridescenceIOR; + extensionDef.iridescenceThicknessMinimum = material.iridescenceThicknessRange[ 0 ]; + extensionDef.iridescenceThicknessMaximum = material.iridescenceThicknessRange[ 1 ]; + + if ( material.iridescenceThicknessMap ) { + + const iridescenceThicknessMapDef = { + index: await writer.processTextureAsync( material.iridescenceThicknessMap ), + texCoord: material.iridescenceThicknessMap.channel + }; + writer.applyTextureTransform( iridescenceThicknessMapDef, material.iridescenceThicknessMap ); + extensionDef.iridescenceThicknessTexture = iridescenceThicknessMapDef; + + } + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + +} + +/** + * Transmission Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_transmission + * + * @private + */ +class GLTFMaterialsTransmissionExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_transmission'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.transmission === 0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.transmissionFactor = material.transmission; + + if ( material.transmissionMap ) { + + const transmissionMapDef = { + index: await writer.processTextureAsync( material.transmissionMap ), + texCoord: material.transmissionMap.channel + }; + writer.applyTextureTransform( transmissionMapDef, material.transmissionMap ); + extensionDef.transmissionTexture = transmissionMapDef; + + } + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + +} + +/** + * Materials Volume Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_volume + * + * @private + */ +class GLTFMaterialsVolumeExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_volume'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.transmission === 0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.thicknessFactor = material.thickness; + + if ( material.thicknessMap ) { + + const thicknessMapDef = { + index: await writer.processTextureAsync( material.thicknessMap ), + texCoord: material.thicknessMap.channel + }; + writer.applyTextureTransform( thicknessMapDef, material.thicknessMap ); + extensionDef.thicknessTexture = thicknessMapDef; + + } + + if ( material.attenuationDistance !== Infinity ) { + + extensionDef.attenuationDistance = material.attenuationDistance; + + } + + extensionDef.attenuationColor = material.attenuationColor.toArray(); + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + +} + +/** + * Materials ior Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_ior + * + * @private + */ +class GLTFMaterialsIorExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_ior'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.ior === 1.5 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.ior = material.ior; + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + +} + +/** + * Materials specular Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_specular + * + * @private + */ +class GLTFMaterialsSpecularExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_specular'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || ( material.specularIntensity === 1.0 && + material.specularColor.equals( DEFAULT_SPECULAR_COLOR ) && + ! material.specularIntensityMap && ! material.specularColorMap ) ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + if ( material.specularIntensityMap ) { + + const specularIntensityMapDef = { + index: await writer.processTextureAsync( material.specularIntensityMap ), + texCoord: material.specularIntensityMap.channel + }; + writer.applyTextureTransform( specularIntensityMapDef, material.specularIntensityMap ); + extensionDef.specularTexture = specularIntensityMapDef; + + } + + if ( material.specularColorMap ) { + + const specularColorMapDef = { + index: await writer.processTextureAsync( material.specularColorMap ), + texCoord: material.specularColorMap.channel + }; + writer.applyTextureTransform( specularColorMapDef, material.specularColorMap ); + extensionDef.specularColorTexture = specularColorMapDef; + + } + + extensionDef.specularFactor = material.specularIntensity; + extensionDef.specularColorFactor = material.specularColor.toArray(); + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + +} + +/** + * Sheen Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_sheen + * + * @private + */ +class GLTFMaterialsSheenExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_sheen'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.sheen == 0.0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + if ( material.sheenRoughnessMap ) { + + const sheenRoughnessMapDef = { + index: await writer.processTextureAsync( material.sheenRoughnessMap ), + texCoord: material.sheenRoughnessMap.channel + }; + writer.applyTextureTransform( sheenRoughnessMapDef, material.sheenRoughnessMap ); + extensionDef.sheenRoughnessTexture = sheenRoughnessMapDef; + + } + + if ( material.sheenColorMap ) { + + const sheenColorMapDef = { + index: await writer.processTextureAsync( material.sheenColorMap ), + texCoord: material.sheenColorMap.channel + }; + writer.applyTextureTransform( sheenColorMapDef, material.sheenColorMap ); + extensionDef.sheenColorTexture = sheenColorMapDef; + + } + + extensionDef.sheenRoughnessFactor = material.sheenRoughness; + extensionDef.sheenColorFactor = material.sheenColor.toArray(); + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + +} + +/** + * Anisotropy Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_anisotropy + * + * @private + */ +class GLTFMaterialsAnisotropyExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_anisotropy'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.anisotropy == 0.0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + if ( material.anisotropyMap ) { + + const anisotropyMapDef = { index: await writer.processTextureAsync( material.anisotropyMap ) }; + writer.applyTextureTransform( anisotropyMapDef, material.anisotropyMap ); + extensionDef.anisotropyTexture = anisotropyMapDef; + + } + + extensionDef.anisotropyStrength = material.anisotropy; + extensionDef.anisotropyRotation = material.anisotropyRotation; + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + +} + +/** + * Materials Emissive Strength Extension + * + * Specification: https://github.com/KhronosGroup/glTF/blob/5768b3ce0ef32bc39cdf1bef10b948586635ead3/extensions/2.0/Khronos/KHR_materials_emissive_strength/README.md + * + * @private + */ +class GLTFMaterialsEmissiveStrengthExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_emissive_strength'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshStandardMaterial || material.emissiveIntensity === 1.0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.emissiveStrength = material.emissiveIntensity; + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + +} + + +/** + * Materials bump Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/EXT_materials_bump + * + * @private + */ +class GLTFMaterialsBumpExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'EXT_materials_bump'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshStandardMaterial || ( + material.bumpScale === 1 && + ! material.bumpMap ) ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + if ( material.bumpMap ) { + + const bumpMapDef = { + index: await writer.processTextureAsync( material.bumpMap ), + texCoord: material.bumpMap.channel + }; + writer.applyTextureTransform( bumpMapDef, material.bumpMap ); + extensionDef.bumpTexture = bumpMapDef; + + } + + extensionDef.bumpFactor = material.bumpScale; + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + +} + +/** + * GPU Instancing Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_mesh_gpu_instancing + * + * @private + */ +class GLTFMeshGpuInstancing { + + constructor( writer ) { + + this.writer = writer; + this.name = 'EXT_mesh_gpu_instancing'; + + } + + writeNode( object, nodeDef ) { + + if ( ! object.isInstancedMesh ) return; + + const writer = this.writer; + + const mesh = object; + + const translationAttr = new Float32Array( mesh.count * 3 ); + const rotationAttr = new Float32Array( mesh.count * 4 ); + const scaleAttr = new Float32Array( mesh.count * 3 ); + + const matrix = new Matrix4(); + const position = new Vector3(); + const quaternion = new Quaternion(); + const scale = new Vector3(); + + for ( let i = 0; i < mesh.count; i ++ ) { + + mesh.getMatrixAt( i, matrix ); + matrix.decompose( position, quaternion, scale ); + + position.toArray( translationAttr, i * 3 ); + quaternion.toArray( rotationAttr, i * 4 ); + scale.toArray( scaleAttr, i * 3 ); + + } + + const attributes = { + TRANSLATION: writer.processAccessor( new BufferAttribute( translationAttr, 3 ) ), + ROTATION: writer.processAccessor( new BufferAttribute( rotationAttr, 4 ) ), + SCALE: writer.processAccessor( new BufferAttribute( scaleAttr, 3 ) ), + }; + + if ( mesh.instanceColor ) + attributes._COLOR_0 = writer.processAccessor( mesh.instanceColor ); + + nodeDef.extensions = nodeDef.extensions || {}; + nodeDef.extensions[ this.name ] = { attributes }; + + writer.extensionsUsed[ this.name ] = true; + writer.extensionsRequired[ this.name ] = true; + + } + +} + +/** + * Static utility functions + * + * @private + */ +GLTFExporter.Utils = { + + insertKeyframe: function ( track, time ) { + + const tolerance = 0.001; // 1ms + const valueSize = track.getValueSize(); + + const times = new track.TimeBufferType( track.times.length + 1 ); + const values = new track.ValueBufferType( track.values.length + valueSize ); + const interpolant = track.createInterpolant( new track.ValueBufferType( valueSize ) ); + + let index; + + if ( track.times.length === 0 ) { + + times[ 0 ] = time; + + for ( let i = 0; i < valueSize; i ++ ) { + + values[ i ] = 0; + + } + + index = 0; + + } else if ( time < track.times[ 0 ] ) { + + if ( Math.abs( track.times[ 0 ] - time ) < tolerance ) return 0; + + times[ 0 ] = time; + times.set( track.times, 1 ); + + values.set( interpolant.evaluate( time ), 0 ); + values.set( track.values, valueSize ); + + index = 0; + + } else if ( time > track.times[ track.times.length - 1 ] ) { + + if ( Math.abs( track.times[ track.times.length - 1 ] - time ) < tolerance ) { + + return track.times.length - 1; + + } + + times[ times.length - 1 ] = time; + times.set( track.times, 0 ); + + values.set( track.values, 0 ); + values.set( interpolant.evaluate( time ), track.values.length ); + + index = times.length - 1; + + } else { + + for ( let i = 0; i < track.times.length; i ++ ) { + + if ( Math.abs( track.times[ i ] - time ) < tolerance ) return i; + + if ( track.times[ i ] < time && track.times[ i + 1 ] > time ) { + + times.set( track.times.slice( 0, i + 1 ), 0 ); + times[ i + 1 ] = time; + times.set( track.times.slice( i + 1 ), i + 2 ); + + values.set( track.values.slice( 0, ( i + 1 ) * valueSize ), 0 ); + values.set( interpolant.evaluate( time ), ( i + 1 ) * valueSize ); + values.set( track.values.slice( ( i + 1 ) * valueSize ), ( i + 2 ) * valueSize ); + + index = i + 1; + + break; + + } + + } + + } + + track.times = times; + track.values = values; + + return index; + + }, + + mergeMorphTargetTracks: function ( clip, root ) { + + const tracks = []; + const mergedTracks = {}; + const sourceTracks = clip.tracks; + + for ( let i = 0; i < sourceTracks.length; ++ i ) { + + let sourceTrack = sourceTracks[ i ]; + const sourceTrackBinding = PropertyBinding.parseTrackName( sourceTrack.name ); + const sourceTrackNode = PropertyBinding.findNode( root, sourceTrackBinding.nodeName ); + + if ( sourceTrackBinding.propertyName !== 'morphTargetInfluences' || sourceTrackBinding.propertyIndex === undefined ) { + + // Tracks that don't affect morph targets, or that affect all morph targets together, can be left as-is. + tracks.push( sourceTrack ); + continue; + + } + + if ( sourceTrack.createInterpolant !== sourceTrack.InterpolantFactoryMethodDiscrete + && sourceTrack.createInterpolant !== sourceTrack.InterpolantFactoryMethodLinear ) { + + if ( sourceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) { + + // This should never happen, because glTF morph target animations + // affect all targets already. + throw new Error( 'THREE.GLTFExporter: Cannot merge tracks with glTF CUBICSPLINE interpolation.' ); + + } + + console.warn( 'THREE.GLTFExporter: Morph target interpolation mode not yet supported. Using LINEAR instead.' ); + + sourceTrack = sourceTrack.clone(); + sourceTrack.setInterpolation( InterpolateLinear ); + + } + + const targetCount = sourceTrackNode.morphTargetInfluences.length; + const targetIndex = sourceTrackNode.morphTargetDictionary[ sourceTrackBinding.propertyIndex ]; + + if ( targetIndex === undefined ) { + + throw new Error( 'THREE.GLTFExporter: Morph target name not found: ' + sourceTrackBinding.propertyIndex ); + + } + + let mergedTrack; + + // If this is the first time we've seen this object, create a new + // track to store merged keyframe data for each morph target. + if ( mergedTracks[ sourceTrackNode.uuid ] === undefined ) { + + mergedTrack = sourceTrack.clone(); + + const values = new mergedTrack.ValueBufferType( targetCount * mergedTrack.times.length ); + + for ( let j = 0; j < mergedTrack.times.length; j ++ ) { + + values[ j * targetCount + targetIndex ] = mergedTrack.values[ j ]; + + } + + // We need to take into consideration the intended target node + // of our original un-merged morphTarget animation. + mergedTrack.name = ( sourceTrackBinding.nodeName || '' ) + '.morphTargetInfluences'; + mergedTrack.values = values; + + mergedTracks[ sourceTrackNode.uuid ] = mergedTrack; + tracks.push( mergedTrack ); + + continue; + + } + + const sourceInterpolant = sourceTrack.createInterpolant( new sourceTrack.ValueBufferType( 1 ) ); + + mergedTrack = mergedTracks[ sourceTrackNode.uuid ]; + + // For every existing keyframe of the merged track, write a (possibly + // interpolated) value from the source track. + for ( let j = 0; j < mergedTrack.times.length; j ++ ) { + + mergedTrack.values[ j * targetCount + targetIndex ] = sourceInterpolant.evaluate( mergedTrack.times[ j ] ); + + } + + // For every existing keyframe of the source track, write a (possibly + // new) keyframe to the merged track. Values from the previous loop may + // be written again, but keyframes are de-duplicated. + for ( let j = 0; j < sourceTrack.times.length; j ++ ) { + + const keyframeIndex = this.insertKeyframe( mergedTrack, sourceTrack.times[ j ] ); + mergedTrack.values[ keyframeIndex * targetCount + targetIndex ] = sourceTrack.values[ j ]; + + } + + } + + clip.tracks = tracks; + + return clip; + + }, + + toFloat32BufferAttribute: function ( srcAttribute ) { + + const dstAttribute = new BufferAttribute( new Float32Array( srcAttribute.count * srcAttribute.itemSize ), srcAttribute.itemSize, false ); + + if ( ! srcAttribute.normalized && ! srcAttribute.isInterleavedBufferAttribute ) { + + dstAttribute.array.set( srcAttribute.array ); + + return dstAttribute; + + } + + for ( let i = 0, il = srcAttribute.count; i < il; i ++ ) { + + for ( let j = 0; j < srcAttribute.itemSize; j ++ ) { + + dstAttribute.setComponent( i, j, srcAttribute.getComponent( i, j ) ); + + } + + } + + return dstAttribute; + + } + +}; + +/** + * Export options of `GLTFExporter`. + * + * @typedef {Object} GLTFExporter~Options + * @property {boolean} [trs=false] - Export position, rotation and scale instead of matrix per node. + * @property {boolean} [onlyVisible=true] - Export only visible 3D objects. + * @property {boolean} [binary=false] - Export in binary (.glb) format, returning an ArrayBuffer. + * @property {number} [maxTextureSize=Infinity] - Restricts the image maximum size (both width and height) to the given value. + * @property {Array} [animations=[]] - List of animations to be included in the export. + * @property {boolean} [includeCustomExtensions=false] - Export custom glTF extensions defined on an object's `userData.gltfExtensions` property. + **/ + +/** + * onDone callback of `GLTFExporter`. + * + * @callback GLTFExporter~OnDone + * @param {ArrayBuffer|string} result - The generated .gltf (JSON) or .glb (binary). + */ + +/** + * onError callback of `GLTFExporter`. + * + * @callback GLTFExporter~OnError + * @param {Error} error - The error object. + */ + +export default GLTFExporter; diff --git a/devtools/panel/exporters/GLTFExporter.umd.js b/devtools/panel/exporters/GLTFExporter.umd.js new file mode 100644 index 00000000000000..34f42a824f39e8 --- /dev/null +++ b/devtools/panel/exporters/GLTFExporter.umd.js @@ -0,0 +1,15814 @@ +( function ( global, factory ) { + + typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() : + typeof define === 'function' && define.amd ? define( factory ) : + ( global = typeof globalThis !== 'undefined' ? globalThis : global || self, global.GLTFExporter = factory() ); + +} )( this, ( function () { + + 'use strict'; + + /** + * @license + * Copyright 2010-2025 Three.js Authors + * SPDX-License-Identifier: MIT + */ + const REVISION = '177dev'; + + /** + * Both front and back faces are rendered. + * + * @type {number} + * @constant + */ + const DoubleSide = 2; + + /** + * Maps textures using the geometry's UV coordinates. + * + * @type {number} + * @constant + */ + const UVMapping = 300; + + /** + * The texture will simply repeat to infinity. + * + * @type {number} + * @constant + */ + const RepeatWrapping = 1000; + + /** + * The last pixel of the texture stretches to the edge of the mesh. + * + * @type {number} + * @constant + */ + const ClampToEdgeWrapping = 1001; + + /** + * The texture will repeats to infinity, mirroring on each repeat. + * + * @type {number} + * @constant + */ + const MirroredRepeatWrapping = 1002; + + /** + * Returns the value of the texture element that is nearest (in Manhattan distance) + * to the specified texture coordinates. + * + * @type {number} + * @constant + */ + const NearestFilter = 1003; + + /** + * Chooses the mipmap that most closely matches the size of the pixel being textured + * and uses the `NearestFilter` criterion (the texel nearest to the center of the pixel) + * to produce a texture value. + * + * @type {number} + * @constant + */ + const NearestMipmapNearestFilter = 1004; + + /** + * Chooses the two mipmaps that most closely match the size of the pixel being textured and + * uses the `NearestFilter` criterion to produce a texture value from each mipmap. + * The final texture value is a weighted average of those two values. + * + * @type {number} + * @constant + */ + const NearestMipmapLinearFilter = 1005; + + /** + * Returns the weighted average of the four texture elements that are closest to the specified + * texture coordinates, and can include items wrapped or repeated from other parts of a texture, + * depending on the values of `wrapS` and `wrapT`, and on the exact mapping. + * + * @type {number} + * @constant + */ + const LinearFilter = 1006; + + /** + * Chooses the mipmap that most closely matches the size of the pixel being textured and uses + * the `LinearFilter` criterion (a weighted average of the four texels that are closest to the + * center of the pixel) to produce a texture value. + * + * @type {number} + * @constant + */ + const LinearMipmapNearestFilter = 1007; + + /** + * Chooses the two mipmaps that most closely match the size of the pixel being textured and uses + * the `LinearFilter` criterion to produce a texture value from each mipmap. The final texture value + * is a weighted average of those two values. + * + * @type {number} + * @constant + */ + const LinearMipmapLinearFilter = 1008; + + /** + * An unsigned byte data type for textures. + * + * @type {number} + * @constant + */ + const UnsignedByteType = 1009; + + /** + * A float data type for textures. + * + * @type {number} + * @constant + */ + const FloatType = 1015; + + /** + * Reads the red, green, blue and alpha components. + * + * @type {number} + * @constant + */ + const RGBAFormat = 1023; + + /** + * Discrete interpolation mode for keyframe tracks. + * + * @type {number} + * @constant + */ + const InterpolateDiscrete = 2300; + + /** + * Linear interpolation mode for keyframe tracks. + * + * @type {number} + * @constant + */ + const InterpolateLinear = 2301; + + // Color space string identifiers, matching CSS Color Module Level 4 and WebGPU names where available. + + /** + * No color space. + * + * @type {string} + * @constant + */ + const NoColorSpace = ''; + + /** + * sRGB color space. + * + * @type {string} + * @constant + */ + const SRGBColorSpace = 'srgb'; + + /** + * sRGB-linear color space. + * + * @type {string} + * @constant + */ + const LinearSRGBColorSpace = 'srgb-linear'; + + /** + * Linear transfer function. + * + * @type {string} + * @constant + */ + const LinearTransfer = 'linear'; + + /** + * sRGB transfer function. + * + * @type {string} + * @constant + */ + const SRGBTransfer = 'srgb'; + + /** + * The contents are intended to be specified once by the application, and used many + * times as the source for drawing and image specification commands. + * + * @type {number} + * @constant + */ + const StaticDrawUsage = 35044; + + /** + * WebGL coordinate system. + * + * @type {number} + * @constant + */ + const WebGLCoordinateSystem = 2000; + + /** + * WebGPU coordinate system. + * + * @type {number} + * @constant + */ + const WebGPUCoordinateSystem = 2001; + + /** + * This type represents mouse buttons and interaction types in context of controls. + * + * @typedef {Object} ConstantsMouse + * @property {number} MIDDLE - The left mouse button. + * @property {number} LEFT - The middle mouse button. + * @property {number} RIGHT - The right mouse button. + * @property {number} ROTATE - A rotate interaction. + * @property {number} DOLLY - A dolly interaction. + * @property {number} PAN - A pan interaction. + **/ + + /** + * This type represents touch interaction types in context of controls. + * + * @typedef {Object} ConstantsTouch + * @property {number} ROTATE - A rotate interaction. + * @property {number} PAN - A pan interaction. + * @property {number} DOLLY_PAN - The dolly-pan interaction. + * @property {number} DOLLY_ROTATE - A dolly-rotate interaction. + **/ + + /** + * This type represents the different timestamp query types. + * + * @typedef {Object} ConstantsTimestampQuery + * @property {string} COMPUTE - A `compute` timestamp query. + * @property {string} RENDER - A `render` timestamp query. + **/ + + /** + * Represents the different interpolation sampling types. + * + * @typedef {Object} ConstantsInterpolationSamplingType + * @property {string} PERSPECTIVE - Perspective-correct interpolation. + * @property {string} LINEAR - Linear interpolation. + * @property {string} FLAT - Flat interpolation. + */ + + /** + * Represents the different interpolation sampling modes. + * + * @typedef {Object} ConstantsInterpolationSamplingMode + * @property {string} NORMAL - Normal sampling mode. + * @property {string} CENTROID - Centroid sampling mode. + * @property {string} SAMPLE - Sample-specific sampling mode. + * @property {string} FLAT_FIRST - Flat interpolation using the first vertex. + * @property {string} FLAT_EITHER - Flat interpolation using either vertex. + */ + + /** + * This modules allows to dispatch event objects on custom JavaScript objects. + * + * Main repository: [eventdispatcher.js]{@link https://github.com/mrdoob/eventdispatcher.js/} + * + * Code Example: + * ```js + * class Car extends EventDispatcher { + * start() { + * this.dispatchEvent( { type: 'start', message: 'vroom vroom!' } ); + * } + *}; + * + * // Using events with the custom object + * const car = new Car(); + * car.addEventListener( 'start', function ( event ) { + * alert( event.message ); + * } ); + * + * car.start(); + * ``` + */ + class EventDispatcher { + + /** + * Adds the given event listener to the given event type. + * + * @param {string} type - The type of event to listen to. + * @param {Function} listener - The function that gets called when the event is fired. + */ + addEventListener( type, listener ) { + + if ( this._listeners === undefined ) this._listeners = {}; + + const listeners = this._listeners; + + if ( listeners[ type ] === undefined ) { + + listeners[ type ] = []; + + } + + if ( listeners[ type ].indexOf( listener ) === - 1 ) { + + listeners[ type ].push( listener ); + + } + + } + + /** + * Returns `true` if the given event listener has been added to the given event type. + * + * @param {string} type - The type of event. + * @param {Function} listener - The listener to check. + * @return {boolean} Whether the given event listener has been added to the given event type. + */ + hasEventListener( type, listener ) { + + const listeners = this._listeners; + + if ( listeners === undefined ) return false; + + return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1; + + } + + /** + * Removes the given event listener from the given event type. + * + * @param {string} type - The type of event. + * @param {Function} listener - The listener to remove. + */ + removeEventListener( type, listener ) { + + const listeners = this._listeners; + + if ( listeners === undefined ) return; + + const listenerArray = listeners[ type ]; + + if ( listenerArray !== undefined ) { + + const index = listenerArray.indexOf( listener ); + + if ( index !== - 1 ) { + + listenerArray.splice( index, 1 ); + + } + + } + + } + + /** + * Dispatches an event object. + * + * @param {Object} event - The event that gets fired. + */ + dispatchEvent( event ) { + + const listeners = this._listeners; + + if ( listeners === undefined ) return; + + const listenerArray = listeners[ event.type ]; + + if ( listenerArray !== undefined ) { + + event.target = this; + + // Make a copy, in case listeners are removed while iterating. + const array = listenerArray.slice( 0 ); + + for ( let i = 0, l = array.length; i < l; i ++ ) { + + array[ i ].call( this, event ); + + } + + event.target = null; + + } + + } + + } + + const _lut = [ '00', '01', '02', '03', '04', '05', '06', '07', '08', '09', '0a', '0b', '0c', '0d', '0e', '0f', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '1a', '1b', '1c', '1d', '1e', '1f', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '2a', '2b', '2c', '2d', '2e', '2f', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '3a', '3b', '3c', '3d', '3e', '3f', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '4a', '4b', '4c', '4d', '4e', '4f', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '5a', '5b', '5c', '5d', '5e', '5f', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '6a', '6b', '6c', '6d', '6e', '6f', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '7a', '7b', '7c', '7d', '7e', '7f', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '8a', '8b', '8c', '8d', '8e', '8f', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '9a', '9b', '9c', '9d', '9e', '9f', 'a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'aa', 'ab', 'ac', 'ad', 'ae', 'af', 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'ba', 'bb', 'bc', 'bd', 'be', 'bf', 'c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9', 'ca', 'cb', 'cc', 'cd', 'ce', 'cf', 'd0', 'd1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9', 'da', 'db', 'dc', 'dd', 'de', 'df', 'e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8', 'e9', 'ea', 'eb', 'ec', 'ed', 'ee', 'ef', 'f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'fa', 'fb', 'fc', 'fd', 'fe', 'ff' ]; + + let _seed = 1234567; + + + const DEG2RAD = Math.PI / 180; + const RAD2DEG = 180 / Math.PI; + + /** + * Generate a [UUID]{@link https://en.wikipedia.org/wiki/Universally_unique_identifier} + * (universally unique identifier). + * + * @return {string} The UUID. + */ + function generateUUID() { + + // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 + + const d0 = Math.random() * 0xffffffff | 0; + const d1 = Math.random() * 0xffffffff | 0; + const d2 = Math.random() * 0xffffffff | 0; + const d3 = Math.random() * 0xffffffff | 0; + const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' + + _lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' + + _lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] + + _lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ]; + + // .toLowerCase() here flattens concatenated strings to save heap memory space. + return uuid.toLowerCase(); + + } + + /** + * Clamps the given value between min and max. + * + * @param {number} value - The value to clamp. + * @param {number} min - The min value. + * @param {number} max - The max value. + * @return {number} The clamped value. + */ + function clamp( value, min, max ) { + + return Math.max( min, Math.min( max, value ) ); + + } + + /** + * Computes the Euclidean modulo of the given parameters that + * is `( ( n % m ) + m ) % m`. + * + * @param {number} n - The first parameter. + * @param {number} m - The second parameter. + * @return {number} The Euclidean modulo. + */ + function euclideanModulo( n, m ) { + + // https://en.wikipedia.org/wiki/Modulo_operation + + return ( ( n % m ) + m ) % m; + + } + + /** + * Performs a linear mapping from range `` to range `` + * for the given value. + * + * @param {number} x - The value to be mapped. + * @param {number} a1 - Minimum value for range A. + * @param {number} a2 - Maximum value for range A. + * @param {number} b1 - Minimum value for range B. + * @param {number} b2 - Maximum value for range B. + * @return {number} The mapped value. + */ + function mapLinear( x, a1, a2, b1, b2 ) { + + return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); + + } + + /** + * Returns the percentage in the closed interval `[0, 1]` of the given value + * between the start and end point. + * + * @param {number} x - The start point + * @param {number} y - The end point. + * @param {number} value - A value between start and end. + * @return {number} The interpolation factor. + */ + function inverseLerp( x, y, value ) { + + // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/ + + if ( x !== y ) { + + return ( value - x ) / ( y - x ); + + } else { + + return 0; + + } + + } + + /** + * Returns a value linearly interpolated from two known points based on the given interval - + * `t = 0` will return `x` and `t = 1` will return `y`. + * + * @param {number} x - The start point + * @param {number} y - The end point. + * @param {number} t - The interpolation factor in the closed interval `[0, 1]`. + * @return {number} The interpolated value. + */ + function lerp( x, y, t ) { + + return ( 1 - t ) * x + t * y; + + } + + /** + * Smoothly interpolate a number from `x` to `y` in a spring-like manner using a delta + * time to maintain frame rate independent movement. For details, see + * [Frame rate independent damping using lerp]{@link http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/}. + * + * @param {number} x - The current point. + * @param {number} y - The target point. + * @param {number} lambda - A higher lambda value will make the movement more sudden, + * and a lower value will make the movement more gradual. + * @param {number} dt - Delta time in seconds. + * @return {number} The interpolated value. + */ + function damp( x, y, lambda, dt ) { + + return lerp( x, y, 1 - Math.exp( - lambda * dt ) ); + + } + + /** + * Returns a value that alternates between `0` and the given `length` parameter. + * + * @param {number} x - The value to pingpong. + * @param {number} [length=1] - The positive value the function will pingpong to. + * @return {number} The alternated value. + */ + function pingpong( x, length = 1 ) { + + // https://www.desmos.com/calculator/vcsjnyz7x4 + + return length - Math.abs( euclideanModulo( x, length * 2 ) - length ); + + } + + /** + * Returns a value in the range `[0,1]` that represents the percentage that `x` has + * moved between `min` and `max`, but smoothed or slowed down the closer `x` is to + * the `min` and `max`. + * + * See [Smoothstep]{@link http://en.wikipedia.org/wiki/Smoothstep} for more details. + * + * @param {number} x - The value to evaluate based on its position between min and max. + * @param {number} min - The min value. Any x value below min will be `0`. + * @param {number} max - The max value. Any x value above max will be `1`. + * @return {number} The alternated value. + */ + function smoothstep( x, min, max ) { + + if ( x <= min ) return 0; + if ( x >= max ) return 1; + + x = ( x - min ) / ( max - min ); + + return x * x * ( 3 - 2 * x ); + + } + + /** + * A [variation on smoothstep]{@link https://en.wikipedia.org/wiki/Smoothstep#Variations} + * that has zero 1st and 2nd order derivatives at x=0 and x=1. + * + * @param {number} x - The value to evaluate based on its position between min and max. + * @param {number} min - The min value. Any x value below min will be `0`. + * @param {number} max - The max value. Any x value above max will be `1`. + * @return {number} The alternated value. + */ + function smootherstep( x, min, max ) { + + if ( x <= min ) return 0; + if ( x >= max ) return 1; + + x = ( x - min ) / ( max - min ); + + return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); + + } + + /** + * Returns a random integer from `` interval. + * + * @param {number} low - The lower value boundary. + * @param {number} high - The upper value boundary + * @return {number} A random integer. + */ + function randInt( low, high ) { + + return low + Math.floor( Math.random() * ( high - low + 1 ) ); + + } + + /** + * Returns a random float from `` interval. + * + * @param {number} low - The lower value boundary. + * @param {number} high - The upper value boundary + * @return {number} A random float. + */ + function randFloat( low, high ) { + + return low + Math.random() * ( high - low ); + + } + + /** + * Returns a random integer from `<-range/2, range/2>` interval. + * + * @param {number} range - Defines the value range. + * @return {number} A random float. + */ + function randFloatSpread( range ) { + + return range * ( 0.5 - Math.random() ); + + } + + /** + * Returns a deterministic pseudo-random float in the interval `[0, 1]`. + * + * @param {number} [s] - The integer seed. + * @return {number} A random float. + */ + function seededRandom( s ) { + + if ( s !== undefined ) _seed = s; + + // Mulberry32 generator + + let t = _seed += 0x6D2B79F5; + + t = Math.imul( t ^ t >>> 15, t | 1 ); + + t ^= t + Math.imul( t ^ t >>> 7, t | 61 ); + + return ( ( t ^ t >>> 14 ) >>> 0 ) / 4294967296; + + } + + /** + * Converts degrees to radians. + * + * @param {number} degrees - A value in degrees. + * @return {number} The converted value in radians. + */ + function degToRad( degrees ) { + + return degrees * DEG2RAD; + + } + + /** + * Converts radians to degrees. + * + * @param {number} radians - A value in radians. + * @return {number} The converted value in degrees. + */ + function radToDeg( radians ) { + + return radians * RAD2DEG; + + } + + /** + * Returns `true` if the given number is a power of two. + * + * @param {number} value - The value to check. + * @return {boolean} Whether the given number is a power of two or not. + */ + function isPowerOfTwo( value ) { + + return ( value & ( value - 1 ) ) === 0 && value !== 0; + + } + + /** + * Returns the smallest power of two that is greater than or equal to the given number. + * + * @param {number} value - The value to find a POT for. + * @return {number} The smallest power of two that is greater than or equal to the given number. + */ + function ceilPowerOfTwo( value ) { + + return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) ); + + } + + /** + * Returns the largest power of two that is less than or equal to the given number. + * + * @param {number} value - The value to find a POT for. + * @return {number} The largest power of two that is less than or equal to the given number. + */ + function floorPowerOfTwo( value ) { + + return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) ); + + } + + /** + * Sets the given quaternion from the [Intrinsic Proper Euler Angles]{@link https://en.wikipedia.org/wiki/Euler_angles} + * defined by the given angles and order. + * + * Rotations are applied to the axes in the order specified by order: + * rotation by angle `a` is applied first, then by angle `b`, then by angle `c`. + * + * @param {Quaternion} q - The quaternion to set. + * @param {number} a - The rotation applied to the first axis, in radians. + * @param {number} b - The rotation applied to the second axis, in radians. + * @param {number} c - The rotation applied to the third axis, in radians. + * @param {('XYX'|'XZX'|'YXY'|'YZY'|'ZXZ'|'ZYZ')} order - A string specifying the axes order. + */ + function setQuaternionFromProperEuler( q, a, b, c, order ) { + + const cos = Math.cos; + const sin = Math.sin; + + const c2 = cos( b / 2 ); + const s2 = sin( b / 2 ); + + const c13 = cos( ( a + c ) / 2 ); + const s13 = sin( ( a + c ) / 2 ); + + const c1_3 = cos( ( a - c ) / 2 ); + const s1_3 = sin( ( a - c ) / 2 ); + + const c3_1 = cos( ( c - a ) / 2 ); + const s3_1 = sin( ( c - a ) / 2 ); + + switch ( order ) { + + case 'XYX': + q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 ); + break; + + case 'YZY': + q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 ); + break; + + case 'ZXZ': + q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 ); + break; + + case 'XZX': + q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 ); + break; + + case 'YXY': + q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 ); + break; + + case 'ZYZ': + q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 ); + break; + + default: + console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order ); + + } + + } + + /** + * Denormalizes the given value according to the given typed array. + * + * @param {number} value - The value to denormalize. + * @param {TypedArray} array - The typed array that defines the data type of the value. + * @return {number} The denormalize (float) value in the range `[0,1]`. + */ + function denormalize( value, array ) { + + switch ( array.constructor ) { + + case Float32Array: + + return value; + + case Uint32Array: + + return value / 4294967295.0; + + case Uint16Array: + + return value / 65535.0; + + case Uint8Array: + + return value / 255.0; + + case Int32Array: + + return Math.max( value / 2147483647.0, - 1 ); + + case Int16Array: + + return Math.max( value / 32767.0, - 1 ); + + case Int8Array: + + return Math.max( value / 127.0, - 1 ); + + default: + + throw new Error( 'Invalid component type.' ); + + } + + } + + /** + * Normalizes the given value according to the given typed array. + * + * @param {number} value - The float value in the range `[0,1]` to normalize. + * @param {TypedArray} array - The typed array that defines the data type of the value. + * @return {number} The normalize value. + */ + function normalize( value, array ) { + + switch ( array.constructor ) { + + case Float32Array: + + return value; + + case Uint32Array: + + return Math.round( value * 4294967295.0 ); + + case Uint16Array: + + return Math.round( value * 65535.0 ); + + case Uint8Array: + + return Math.round( value * 255.0 ); + + case Int32Array: + + return Math.round( value * 2147483647.0 ); + + case Int16Array: + + return Math.round( value * 32767.0 ); + + case Int8Array: + + return Math.round( value * 127.0 ); + + default: + + throw new Error( 'Invalid component type.' ); + + } + + } + + /** + * @class + * @classdesc A collection of math utility functions. + * @hideconstructor + */ + const MathUtils = { + DEG2RAD: DEG2RAD, + RAD2DEG: RAD2DEG, + /** + * Generate a [UUID]{@link https://en.wikipedia.org/wiki/Universally_unique_identifier} + * (universally unique identifier). + * + * @static + * @method + * @return {string} The UUID. + */ + generateUUID: generateUUID, + /** + * Clamps the given value between min and max. + * + * @static + * @method + * @param {number} value - The value to clamp. + * @param {number} min - The min value. + * @param {number} max - The max value. + * @return {number} The clamped value. + */ + clamp: clamp, + /** + * Computes the Euclidean modulo of the given parameters that + * is `( ( n % m ) + m ) % m`. + * + * @static + * @method + * @param {number} n - The first parameter. + * @param {number} m - The second parameter. + * @return {number} The Euclidean modulo. + */ + euclideanModulo: euclideanModulo, + /** + * Performs a linear mapping from range `` to range `` + * for the given value. + * + * @static + * @method + * @param {number} x - The value to be mapped. + * @param {number} a1 - Minimum value for range A. + * @param {number} a2 - Maximum value for range A. + * @param {number} b1 - Minimum value for range B. + * @param {number} b2 - Maximum value for range B. + * @return {number} The mapped value. + */ + mapLinear: mapLinear, + /** + * Returns the percentage in the closed interval `[0, 1]` of the given value + * between the start and end point. + * + * @static + * @method + * @param {number} x - The start point + * @param {number} y - The end point. + * @param {number} value - A value between start and end. + * @return {number} The interpolation factor. + */ + inverseLerp: inverseLerp, + /** + * Returns a value linearly interpolated from two known points based on the given interval - + * `t = 0` will return `x` and `t = 1` will return `y`. + * + * @static + * @method + * @param {number} x - The start point + * @param {number} y - The end point. + * @param {number} t - The interpolation factor in the closed interval `[0, 1]`. + * @return {number} The interpolated value. + */ + lerp: lerp, + /** + * Smoothly interpolate a number from `x` to `y` in a spring-like manner using a delta + * time to maintain frame rate independent movement. For details, see + * [Frame rate independent damping using lerp]{@link http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/}. + * + * @static + * @method + * @param {number} x - The current point. + * @param {number} y - The target point. + * @param {number} lambda - A higher lambda value will make the movement more sudden, + * and a lower value will make the movement more gradual. + * @param {number} dt - Delta time in seconds. + * @return {number} The interpolated value. + */ + damp: damp, + /** + * Returns a value that alternates between `0` and the given `length` parameter. + * + * @static + * @method + * @param {number} x - The value to pingpong. + * @param {number} [length=1] - The positive value the function will pingpong to. + * @return {number} The alternated value. + */ + pingpong: pingpong, + /** + * Returns a value in the range `[0,1]` that represents the percentage that `x` has + * moved between `min` and `max`, but smoothed or slowed down the closer `x` is to + * the `min` and `max`. + * + * See [Smoothstep]{@link http://en.wikipedia.org/wiki/Smoothstep} for more details. + * + * @static + * @method + * @param {number} x - The value to evaluate based on its position between min and max. + * @param {number} min - The min value. Any x value below min will be `0`. + * @param {number} max - The max value. Any x value above max will be `1`. + * @return {number} The alternated value. + */ + smoothstep: smoothstep, + /** + * A [variation on smoothstep]{@link https://en.wikipedia.org/wiki/Smoothstep#Variations} + * that has zero 1st and 2nd order derivatives at x=0 and x=1. + * + * @static + * @method + * @param {number} x - The value to evaluate based on its position between min and max. + * @param {number} min - The min value. Any x value below min will be `0`. + * @param {number} max - The max value. Any x value above max will be `1`. + * @return {number} The alternated value. + */ + smootherstep: smootherstep, + /** + * Returns a random integer from `` interval. + * + * @static + * @method + * @param {number} low - The lower value boundary. + * @param {number} high - The upper value boundary + * @return {number} A random integer. + */ + randInt: randInt, + /** + * Returns a random float from `` interval. + * + * @static + * @method + * @param {number} low - The lower value boundary. + * @param {number} high - The upper value boundary + * @return {number} A random float. + */ + randFloat: randFloat, + /** + * Returns a random integer from `<-range/2, range/2>` interval. + * + * @static + * @method + * @param {number} range - Defines the value range. + * @return {number} A random float. + */ + randFloatSpread: randFloatSpread, + /** + * Returns a deterministic pseudo-random float in the interval `[0, 1]`. + * + * @static + * @method + * @param {number} [s] - The integer seed. + * @return {number} A random float. + */ + seededRandom: seededRandom, + /** + * Converts degrees to radians. + * + * @static + * @method + * @param {number} degrees - A value in degrees. + * @return {number} The converted value in radians. + */ + degToRad: degToRad, + /** + * Converts radians to degrees. + * + * @static + * @method + * @param {number} radians - A value in radians. + * @return {number} The converted value in degrees. + */ + radToDeg: radToDeg, + /** + * Returns `true` if the given number is a power of two. + * + * @static + * @method + * @param {number} value - The value to check. + * @return {boolean} Whether the given number is a power of two or not. + */ + isPowerOfTwo: isPowerOfTwo, + /** + * Returns the smallest power of two that is greater than or equal to the given number. + * + * @static + * @method + * @param {number} value - The value to find a POT for. + * @return {number} The smallest power of two that is greater than or equal to the given number. + */ + ceilPowerOfTwo: ceilPowerOfTwo, + /** + * Returns the largest power of two that is less than or equal to the given number. + * + * @static + * @method + * @param {number} value - The value to find a POT for. + * @return {number} The largest power of two that is less than or equal to the given number. + */ + floorPowerOfTwo: floorPowerOfTwo, + /** + * Sets the given quaternion from the [Intrinsic Proper Euler Angles]{@link https://en.wikipedia.org/wiki/Euler_angles} + * defined by the given angles and order. + * + * Rotations are applied to the axes in the order specified by order: + * rotation by angle `a` is applied first, then by angle `b`, then by angle `c`. + * + * @static + * @method + * @param {Quaternion} q - The quaternion to set. + * @param {number} a - The rotation applied to the first axis, in radians. + * @param {number} b - The rotation applied to the second axis, in radians. + * @param {number} c - The rotation applied to the third axis, in radians. + * @param {('XYX'|'XZX'|'YXY'|'YZY'|'ZXZ'|'ZYZ')} order - A string specifying the axes order. + */ + setQuaternionFromProperEuler: setQuaternionFromProperEuler, + /** + * Normalizes the given value according to the given typed array. + * + * @static + * @method + * @param {number} value - The float value in the range `[0,1]` to normalize. + * @param {TypedArray} array - The typed array that defines the data type of the value. + * @return {number} The normalize value. + */ + normalize: normalize, + /** + * Denormalizes the given value according to the given typed array. + * + * @static + * @method + * @param {number} value - The value to denormalize. + * @param {TypedArray} array - The typed array that defines the data type of the value. + * @return {number} The denormalize (float) value in the range `[0,1]`. + */ + denormalize: denormalize + }; + + /** + * Class representing a 2D vector. A 2D vector is an ordered pair of numbers + * (labeled x and y), which can be used to represent a number of things, such as: + * + * - A point in 2D space (i.e. a position on a plane). + * - A direction and length across a plane. In three.js the length will + * always be the Euclidean distance(straight-line distance) from `(0, 0)` to `(x, y)` + * and the direction is also measured from `(0, 0)` towards `(x, y)`. + * - Any arbitrary ordered pair of numbers. + * + * There are other things a 2D vector can be used to represent, such as + * momentum vectors, complex numbers and so on, however these are the most + * common uses in three.js. + * + * Iterating through a vector instance will yield its components `(x, y)` in + * the corresponding order. + * ```js + * const a = new THREE.Vector2( 0, 1 ); + * + * //no arguments; will be initialised to (0, 0) + * const b = new THREE.Vector2( ); + * + * const d = a.distanceTo( b ); + * ``` + */ + class Vector2 { + + /** + * Constructs a new 2D vector. + * + * @param {number} [x=0] - The x value of this vector. + * @param {number} [y=0] - The y value of this vector. + */ + constructor( x = 0, y = 0 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + Vector2.prototype.isVector2 = true; + + /** + * The x value of this vector. + * + * @type {number} + */ + this.x = x; + + /** + * The y value of this vector. + * + * @type {number} + */ + this.y = y; + + } + + /** + * Alias for {@link Vector2#x}. + * + * @type {number} + */ + get width() { + + return this.x; + + } + + set width( value ) { + + this.x = value; + + } + + /** + * Alias for {@link Vector2#y}. + * + * @type {number} + */ + get height() { + + return this.y; + + } + + set height( value ) { + + this.y = value; + + } + + /** + * Sets the vector components. + * + * @param {number} x - The value of the x component. + * @param {number} y - The value of the y component. + * @return {Vector2} A reference to this vector. + */ + set( x, y ) { + + this.x = x; + this.y = y; + + return this; + + } + + /** + * Sets the vector components to the same value. + * + * @param {number} scalar - The value to set for all vector components. + * @return {Vector2} A reference to this vector. + */ + setScalar( scalar ) { + + this.x = scalar; + this.y = scalar; + + return this; + + } + + /** + * Sets the vector's x component to the given value + * + * @param {number} x - The value to set. + * @return {Vector2} A reference to this vector. + */ + setX( x ) { + + this.x = x; + + return this; + + } + + /** + * Sets the vector's y component to the given value + * + * @param {number} y - The value to set. + * @return {Vector2} A reference to this vector. + */ + setY( y ) { + + this.y = y; + + return this; + + } + + /** + * Allows to set a vector component with an index. + * + * @param {number} index - The component index. `0` equals to x, `1` equals to y. + * @param {number} value - The value to set. + * @return {Vector2} A reference to this vector. + */ + setComponent( index, value ) { + + switch ( index ) { + + case 0: this.x = value; break; + case 1: this.y = value; break; + default: throw new Error( 'index is out of range: ' + index ); + + } + + return this; + + } + + /** + * Returns the value of the vector component which matches the given index. + * + * @param {number} index - The component index. `0` equals to x, `1` equals to y. + * @return {number} A vector component value. + */ + getComponent( index ) { + + switch ( index ) { + + case 0: return this.x; + case 1: return this.y; + default: throw new Error( 'index is out of range: ' + index ); + + } + + } + + /** + * Returns a new vector with copied values from this instance. + * + * @return {Vector2} A clone of this instance. + */ + clone() { + + return new this.constructor( this.x, this.y ); + + } + + /** + * Copies the values of the given vector to this instance. + * + * @param {Vector2} v - The vector to copy. + * @return {Vector2} A reference to this vector. + */ + copy( v ) { + + this.x = v.x; + this.y = v.y; + + return this; + + } + + /** + * Adds the given vector to this instance. + * + * @param {Vector2} v - The vector to add. + * @return {Vector2} A reference to this vector. + */ + add( v ) { + + this.x += v.x; + this.y += v.y; + + return this; + + } + + /** + * Adds the given scalar value to all components of this instance. + * + * @param {number} s - The scalar to add. + * @return {Vector2} A reference to this vector. + */ + addScalar( s ) { + + this.x += s; + this.y += s; + + return this; + + } + + /** + * Adds the given vectors and stores the result in this instance. + * + * @param {Vector2} a - The first vector. + * @param {Vector2} b - The second vector. + * @return {Vector2} A reference to this vector. + */ + addVectors( a, b ) { + + this.x = a.x + b.x; + this.y = a.y + b.y; + + return this; + + } + + /** + * Adds the given vector scaled by the given factor to this instance. + * + * @param {Vector2} v - The vector. + * @param {number} s - The factor that scales `v`. + * @return {Vector2} A reference to this vector. + */ + addScaledVector( v, s ) { + + this.x += v.x * s; + this.y += v.y * s; + + return this; + + } + + /** + * Subtracts the given vector from this instance. + * + * @param {Vector2} v - The vector to subtract. + * @return {Vector2} A reference to this vector. + */ + sub( v ) { + + this.x -= v.x; + this.y -= v.y; + + return this; + + } + + /** + * Subtracts the given scalar value from all components of this instance. + * + * @param {number} s - The scalar to subtract. + * @return {Vector2} A reference to this vector. + */ + subScalar( s ) { + + this.x -= s; + this.y -= s; + + return this; + + } + + /** + * Subtracts the given vectors and stores the result in this instance. + * + * @param {Vector2} a - The first vector. + * @param {Vector2} b - The second vector. + * @return {Vector2} A reference to this vector. + */ + subVectors( a, b ) { + + this.x = a.x - b.x; + this.y = a.y - b.y; + + return this; + + } + + /** + * Multiplies the given vector with this instance. + * + * @param {Vector2} v - The vector to multiply. + * @return {Vector2} A reference to this vector. + */ + multiply( v ) { + + this.x *= v.x; + this.y *= v.y; + + return this; + + } + + /** + * Multiplies the given scalar value with all components of this instance. + * + * @param {number} scalar - The scalar to multiply. + * @return {Vector2} A reference to this vector. + */ + multiplyScalar( scalar ) { + + this.x *= scalar; + this.y *= scalar; + + return this; + + } + + /** + * Divides this instance by the given vector. + * + * @param {Vector2} v - The vector to divide. + * @return {Vector2} A reference to this vector. + */ + divide( v ) { + + this.x /= v.x; + this.y /= v.y; + + return this; + + } + + /** + * Divides this vector by the given scalar. + * + * @param {number} scalar - The scalar to divide. + * @return {Vector2} A reference to this vector. + */ + divideScalar( scalar ) { + + return this.multiplyScalar( 1 / scalar ); + + } + + /** + * Multiplies this vector (with an implicit 1 as the 3rd component) by + * the given 3x3 matrix. + * + * @param {Matrix3} m - The matrix to apply. + * @return {Vector2} A reference to this vector. + */ + applyMatrix3( m ) { + + const x = this.x, y = this.y; + const e = m.elements; + + this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ]; + this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ]; + + return this; + + } + + /** + * If this vector's x or y value is greater than the given vector's x or y + * value, replace that value with the corresponding min value. + * + * @param {Vector2} v - The vector. + * @return {Vector2} A reference to this vector. + */ + min( v ) { + + this.x = Math.min( this.x, v.x ); + this.y = Math.min( this.y, v.y ); + + return this; + + } + + /** + * If this vector's x or y value is less than the given vector's x or y + * value, replace that value with the corresponding max value. + * + * @param {Vector2} v - The vector. + * @return {Vector2} A reference to this vector. + */ + max( v ) { + + this.x = Math.max( this.x, v.x ); + this.y = Math.max( this.y, v.y ); + + return this; + + } + + /** + * If this vector's x or y value is greater than the max vector's x or y + * value, it is replaced by the corresponding value. + * If this vector's x or y value is less than the min vector's x or y value, + * it is replaced by the corresponding value. + * + * @param {Vector2} min - The minimum x and y values. + * @param {Vector2} max - The maximum x and y values in the desired range. + * @return {Vector2} A reference to this vector. + */ + clamp( min, max ) { + + // assumes min < max, componentwise + + this.x = clamp( this.x, min.x, max.x ); + this.y = clamp( this.y, min.y, max.y ); + + return this; + + } + + /** + * If this vector's x or y values are greater than the max value, they are + * replaced by the max value. + * If this vector's x or y values are less than the min value, they are + * replaced by the min value. + * + * @param {number} minVal - The minimum value the components will be clamped to. + * @param {number} maxVal - The maximum value the components will be clamped to. + * @return {Vector2} A reference to this vector. + */ + clampScalar( minVal, maxVal ) { + + this.x = clamp( this.x, minVal, maxVal ); + this.y = clamp( this.y, minVal, maxVal ); + + return this; + + } + + /** + * If this vector's length is greater than the max value, it is replaced by + * the max value. + * If this vector's length is less than the min value, it is replaced by the + * min value. + * + * @param {number} min - The minimum value the vector length will be clamped to. + * @param {number} max - The maximum value the vector length will be clamped to. + * @return {Vector2} A reference to this vector. + */ + clampLength( min, max ) { + + const length = this.length(); + + return this.divideScalar( length || 1 ).multiplyScalar( clamp( length, min, max ) ); + + } + + /** + * The components of this vector are rounded down to the nearest integer value. + * + * @return {Vector2} A reference to this vector. + */ + floor() { + + this.x = Math.floor( this.x ); + this.y = Math.floor( this.y ); + + return this; + + } + + /** + * The components of this vector are rounded up to the nearest integer value. + * + * @return {Vector2} A reference to this vector. + */ + ceil() { + + this.x = Math.ceil( this.x ); + this.y = Math.ceil( this.y ); + + return this; + + } + + /** + * The components of this vector are rounded to the nearest integer value + * + * @return {Vector2} A reference to this vector. + */ + round() { + + this.x = Math.round( this.x ); + this.y = Math.round( this.y ); + + return this; + + } + + /** + * The components of this vector are rounded towards zero (up if negative, + * down if positive) to an integer value. + * + * @return {Vector2} A reference to this vector. + */ + roundToZero() { + + this.x = Math.trunc( this.x ); + this.y = Math.trunc( this.y ); + + return this; + + } + + /** + * Inverts this vector - i.e. sets x = -x and y = -y. + * + * @return {Vector2} A reference to this vector. + */ + negate() { + + this.x = - this.x; + this.y = - this.y; + + return this; + + } + + /** + * Calculates the dot product of the given vector with this instance. + * + * @param {Vector2} v - The vector to compute the dot product with. + * @return {number} The result of the dot product. + */ + dot( v ) { + + return this.x * v.x + this.y * v.y; + + } + + /** + * Calculates the cross product of the given vector with this instance. + * + * @param {Vector2} v - The vector to compute the cross product with. + * @return {number} The result of the cross product. + */ + cross( v ) { + + return this.x * v.y - this.y * v.x; + + } + + /** + * Computes the square of the Euclidean length (straight-line length) from + * (0, 0) to (x, y). If you are comparing the lengths of vectors, you should + * compare the length squared instead as it is slightly more efficient to calculate. + * + * @return {number} The square length of this vector. + */ + lengthSq() { + + return this.x * this.x + this.y * this.y; + + } + + /** + * Computes the Euclidean length (straight-line length) from (0, 0) to (x, y). + * + * @return {number} The length of this vector. + */ + length() { + + return Math.sqrt( this.x * this.x + this.y * this.y ); + + } + + /** + * Computes the Manhattan length of this vector. + * + * @return {number} The length of this vector. + */ + manhattanLength() { + + return Math.abs( this.x ) + Math.abs( this.y ); + + } + + /** + * Converts this vector to a unit vector - that is, sets it equal to a vector + * with the same direction as this one, but with a vector length of `1`. + * + * @return {Vector2} A reference to this vector. + */ + normalize() { + + return this.divideScalar( this.length() || 1 ); + + } + + /** + * Computes the angle in radians of this vector with respect to the positive x-axis. + * + * @return {number} The angle in radians. + */ + angle() { + + const angle = Math.atan2( - this.y, - this.x ) + Math.PI; + + return angle; + + } + + /** + * Returns the angle between the given vector and this instance in radians. + * + * @param {Vector2} v - The vector to compute the angle with. + * @return {number} The angle in radians. + */ + angleTo( v ) { + + const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); + + if ( denominator === 0 ) return Math.PI / 2; + + const theta = this.dot( v ) / denominator; + + // clamp, to handle numerical problems + + return Math.acos( clamp( theta, - 1, 1 ) ); + + } + + /** + * Computes the distance from the given vector to this instance. + * + * @param {Vector2} v - The vector to compute the distance to. + * @return {number} The distance. + */ + distanceTo( v ) { + + return Math.sqrt( this.distanceToSquared( v ) ); + + } + + /** + * Computes the squared distance from the given vector to this instance. + * If you are just comparing the distance with another distance, you should compare + * the distance squared instead as it is slightly more efficient to calculate. + * + * @param {Vector2} v - The vector to compute the squared distance to. + * @return {number} The squared distance. + */ + distanceToSquared( v ) { + + const dx = this.x - v.x, dy = this.y - v.y; + return dx * dx + dy * dy; + + } + + /** + * Computes the Manhattan distance from the given vector to this instance. + * + * @param {Vector2} v - The vector to compute the Manhattan distance to. + * @return {number} The Manhattan distance. + */ + manhattanDistanceTo( v ) { + + return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ); + + } + + /** + * Sets this vector to a vector with the same direction as this one, but + * with the specified length. + * + * @param {number} length - The new length of this vector. + * @return {Vector2} A reference to this vector. + */ + setLength( length ) { + + return this.normalize().multiplyScalar( length ); + + } + + /** + * Linearly interpolates between the given vector and this instance, where + * alpha is the percent distance along the line - alpha = 0 will be this + * vector, and alpha = 1 will be the given one. + * + * @param {Vector2} v - The vector to interpolate towards. + * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. + * @return {Vector2} A reference to this vector. + */ + lerp( v, alpha ) { + + this.x += ( v.x - this.x ) * alpha; + this.y += ( v.y - this.y ) * alpha; + + return this; + + } + + /** + * Linearly interpolates between the given vectors, where alpha is the percent + * distance along the line - alpha = 0 will be first vector, and alpha = 1 will + * be the second one. The result is stored in this instance. + * + * @param {Vector2} v1 - The first vector. + * @param {Vector2} v2 - The second vector. + * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. + * @return {Vector2} A reference to this vector. + */ + lerpVectors( v1, v2, alpha ) { + + this.x = v1.x + ( v2.x - v1.x ) * alpha; + this.y = v1.y + ( v2.y - v1.y ) * alpha; + + return this; + + } + + /** + * Returns `true` if this vector is equal with the given one. + * + * @param {Vector2} v - The vector to test for equality. + * @return {boolean} Whether this vector is equal with the given one. + */ + equals( v ) { + + return ( ( v.x === this.x ) && ( v.y === this.y ) ); + + } + + /** + * Sets this vector's x value to be `array[ offset ]` and y + * value to be `array[ offset + 1 ]`. + * + * @param {Array} array - An array holding the vector component values. + * @param {number} [offset=0] - The offset into the array. + * @return {Vector2} A reference to this vector. + */ + fromArray( array, offset = 0 ) { + + this.x = array[ offset ]; + this.y = array[ offset + 1 ]; + + return this; + + } + + /** + * Writes the components of this vector to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the vector components. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The vector components. + */ + toArray( array = [], offset = 0 ) { + + array[ offset ] = this.x; + array[ offset + 1 ] = this.y; + + return array; + + } + + /** + * Sets the components of this vector from the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute holding vector data. + * @param {number} index - The index into the attribute. + * @return {Vector2} A reference to this vector. + */ + fromBufferAttribute( attribute, index ) { + + this.x = attribute.getX( index ); + this.y = attribute.getY( index ); + + return this; + + } + + /** + * Rotates this vector around the given center by the given angle. + * + * @param {Vector2} center - The point around which to rotate. + * @param {number} angle - The angle to rotate, in radians. + * @return {Vector2} A reference to this vector. + */ + rotateAround( center, angle ) { + + const c = Math.cos( angle ), s = Math.sin( angle ); + + const x = this.x - center.x; + const y = this.y - center.y; + + this.x = x * c - y * s + center.x; + this.y = x * s + y * c + center.y; + + return this; + + } + + /** + * Sets each component of this vector to a pseudo-random value between `0` and + * `1`, excluding `1`. + * + * @return {Vector2} A reference to this vector. + */ + random() { + + this.x = Math.random(); + this.y = Math.random(); + + return this; + + } + + *[ Symbol.iterator ]() { + + yield this.x; + yield this.y; + + } + + } + + /** + * Class for representing a Quaternion. Quaternions are used in three.js to represent rotations. + * + * Iterating through a vector instance will yield its components `(x, y, z, w)` in + * the corresponding order. + * + * Note that three.js expects Quaternions to be normalized. + * ```js + * const quaternion = new THREE.Quaternion(); + * quaternion.setFromAxisAngle( new THREE.Vector3( 0, 1, 0 ), Math.PI / 2 ); + * + * const vector = new THREE.Vector3( 1, 0, 0 ); + * vector.applyQuaternion( quaternion ); + * ``` + */ + class Quaternion { + + /** + * Constructs a new quaternion. + * + * @param {number} [x=0] - The x value of this quaternion. + * @param {number} [y=0] - The y value of this quaternion. + * @param {number} [z=0] - The z value of this quaternion. + * @param {number} [w=1] - The w value of this quaternion. + */ + constructor( x = 0, y = 0, z = 0, w = 1 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isQuaternion = true; + + this._x = x; + this._y = y; + this._z = z; + this._w = w; + + } + + /** + * Interpolates between two quaternions via SLERP. This implementation assumes the + * quaternion data are managed in flat arrays. + * + * @param {Array} dst - The destination array. + * @param {number} dstOffset - An offset into the destination array. + * @param {Array} src0 - The source array of the first quaternion. + * @param {number} srcOffset0 - An offset into the first source array. + * @param {Array} src1 - The source array of the second quaternion. + * @param {number} srcOffset1 - An offset into the second source array. + * @param {number} t - The interpolation factor in the range `[0,1]`. + * @see {@link Quaternion#slerp} + */ + static slerpFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) { + + // fuzz-free, array-based Quaternion SLERP operation + + let x0 = src0[ srcOffset0 + 0 ], + y0 = src0[ srcOffset0 + 1 ], + z0 = src0[ srcOffset0 + 2 ], + w0 = src0[ srcOffset0 + 3 ]; + + const x1 = src1[ srcOffset1 + 0 ], + y1 = src1[ srcOffset1 + 1 ], + z1 = src1[ srcOffset1 + 2 ], + w1 = src1[ srcOffset1 + 3 ]; + + if ( t === 0 ) { + + dst[ dstOffset + 0 ] = x0; + dst[ dstOffset + 1 ] = y0; + dst[ dstOffset + 2 ] = z0; + dst[ dstOffset + 3 ] = w0; + return; + + } + + if ( t === 1 ) { + + dst[ dstOffset + 0 ] = x1; + dst[ dstOffset + 1 ] = y1; + dst[ dstOffset + 2 ] = z1; + dst[ dstOffset + 3 ] = w1; + return; + + } + + if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) { + + let s = 1 - t; + const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, + dir = ( cos >= 0 ? 1 : - 1 ), + sqrSin = 1 - cos * cos; + + // Skip the Slerp for tiny steps to avoid numeric problems: + if ( sqrSin > Number.EPSILON ) { + + const sin = Math.sqrt( sqrSin ), + len = Math.atan2( sin, cos * dir ); + + s = Math.sin( s * len ) / sin; + t = Math.sin( t * len ) / sin; + + } + + const tDir = t * dir; + + x0 = x0 * s + x1 * tDir; + y0 = y0 * s + y1 * tDir; + z0 = z0 * s + z1 * tDir; + w0 = w0 * s + w1 * tDir; + + // Normalize in case we just did a lerp: + if ( s === 1 - t ) { + + const f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 ); + + x0 *= f; + y0 *= f; + z0 *= f; + w0 *= f; + + } + + } + + dst[ dstOffset ] = x0; + dst[ dstOffset + 1 ] = y0; + dst[ dstOffset + 2 ] = z0; + dst[ dstOffset + 3 ] = w0; + + } + + /** + * Multiplies two quaternions. This implementation assumes the quaternion data are managed + * in flat arrays. + * + * @param {Array} dst - The destination array. + * @param {number} dstOffset - An offset into the destination array. + * @param {Array} src0 - The source array of the first quaternion. + * @param {number} srcOffset0 - An offset into the first source array. + * @param {Array} src1 - The source array of the second quaternion. + * @param {number} srcOffset1 - An offset into the second source array. + * @return {Array} The destination array. + * @see {@link Quaternion#multiplyQuaternions}. + */ + static multiplyQuaternionsFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) { + + const x0 = src0[ srcOffset0 ]; + const y0 = src0[ srcOffset0 + 1 ]; + const z0 = src0[ srcOffset0 + 2 ]; + const w0 = src0[ srcOffset0 + 3 ]; + + const x1 = src1[ srcOffset1 ]; + const y1 = src1[ srcOffset1 + 1 ]; + const z1 = src1[ srcOffset1 + 2 ]; + const w1 = src1[ srcOffset1 + 3 ]; + + dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; + dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; + dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; + dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; + + return dst; + + } + + /** + * The x value of this quaternion. + * + * @type {number} + * @default 0 + */ + get x() { + + return this._x; + + } + + set x( value ) { + + this._x = value; + this._onChangeCallback(); + + } + + /** + * The y value of this quaternion. + * + * @type {number} + * @default 0 + */ + get y() { + + return this._y; + + } + + set y( value ) { + + this._y = value; + this._onChangeCallback(); + + } + + /** + * The z value of this quaternion. + * + * @type {number} + * @default 0 + */ + get z() { + + return this._z; + + } + + set z( value ) { + + this._z = value; + this._onChangeCallback(); + + } + + /** + * The w value of this quaternion. + * + * @type {number} + * @default 1 + */ + get w() { + + return this._w; + + } + + set w( value ) { + + this._w = value; + this._onChangeCallback(); + + } + + /** + * Sets the quaternion components. + * + * @param {number} x - The x value of this quaternion. + * @param {number} y - The y value of this quaternion. + * @param {number} z - The z value of this quaternion. + * @param {number} w - The w value of this quaternion. + * @return {Quaternion} A reference to this quaternion. + */ + set( x, y, z, w ) { + + this._x = x; + this._y = y; + this._z = z; + this._w = w; + + this._onChangeCallback(); + + return this; + + } + + /** + * Returns a new quaternion with copied values from this instance. + * + * @return {Quaternion} A clone of this instance. + */ + clone() { + + return new this.constructor( this._x, this._y, this._z, this._w ); + + } + + /** + * Copies the values of the given quaternion to this instance. + * + * @param {Quaternion} quaternion - The quaternion to copy. + * @return {Quaternion} A reference to this quaternion. + */ + copy( quaternion ) { + + this._x = quaternion.x; + this._y = quaternion.y; + this._z = quaternion.z; + this._w = quaternion.w; + + this._onChangeCallback(); + + return this; + + } + + /** + * Sets this quaternion from the rotation specified by the given + * Euler angles. + * + * @param {Euler} euler - The Euler angles. + * @param {boolean} [update=true] - Whether the internal `onChange` callback should be executed or not. + * @return {Quaternion} A reference to this quaternion. + */ + setFromEuler( euler, update = true ) { + + const x = euler._x, y = euler._y, z = euler._z, order = euler._order; + + // http://www.mathworks.com/matlabcentral/fileexchange/ + // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ + // content/SpinCalc.m + + const cos = Math.cos; + const sin = Math.sin; + + const c1 = cos( x / 2 ); + const c2 = cos( y / 2 ); + const c3 = cos( z / 2 ); + + const s1 = sin( x / 2 ); + const s2 = sin( y / 2 ); + const s3 = sin( z / 2 ); + + switch ( order ) { + + case 'XYZ': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'YXZ': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + case 'ZXY': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'ZYX': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + case 'YZX': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'XZY': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + default: + console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order ); + + } + + if ( update === true ) this._onChangeCallback(); + + return this; + + } + + /** + * Sets this quaternion from the given axis and angle. + * + * @param {Vector3} axis - The normalized axis. + * @param {number} angle - The angle in radians. + * @return {Quaternion} A reference to this quaternion. + */ + setFromAxisAngle( axis, angle ) { + + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm + + const halfAngle = angle / 2, s = Math.sin( halfAngle ); + + this._x = axis.x * s; + this._y = axis.y * s; + this._z = axis.z * s; + this._w = Math.cos( halfAngle ); + + this._onChangeCallback(); + + return this; + + } + + /** + * Sets this quaternion from the given rotation matrix. + * + * @param {Matrix4} m - A 4x4 matrix of which the upper 3x3 of matrix is a pure rotation matrix (i.e. unscaled). + * @return {Quaternion} A reference to this quaternion. + */ + setFromRotationMatrix( m ) { + + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm + + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + + const te = m.elements, + + m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], + m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], + m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], + + trace = m11 + m22 + m33; + + if ( trace > 0 ) { + + const s = 0.5 / Math.sqrt( trace + 1.0 ); + + this._w = 0.25 / s; + this._x = ( m32 - m23 ) * s; + this._y = ( m13 - m31 ) * s; + this._z = ( m21 - m12 ) * s; + + } else if ( m11 > m22 && m11 > m33 ) { + + const s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); + + this._w = ( m32 - m23 ) / s; + this._x = 0.25 * s; + this._y = ( m12 + m21 ) / s; + this._z = ( m13 + m31 ) / s; + + } else if ( m22 > m33 ) { + + const s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); + + this._w = ( m13 - m31 ) / s; + this._x = ( m12 + m21 ) / s; + this._y = 0.25 * s; + this._z = ( m23 + m32 ) / s; + + } else { + + const s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); + + this._w = ( m21 - m12 ) / s; + this._x = ( m13 + m31 ) / s; + this._y = ( m23 + m32 ) / s; + this._z = 0.25 * s; + + } + + this._onChangeCallback(); + + return this; + + } + + /** + * Sets this quaternion to the rotation required to rotate the direction vector + * `vFrom` to the direction vector `vTo`. + * + * @param {Vector3} vFrom - The first (normalized) direction vector. + * @param {Vector3} vTo - The second (normalized) direction vector. + * @return {Quaternion} A reference to this quaternion. + */ + setFromUnitVectors( vFrom, vTo ) { + + // assumes direction vectors vFrom and vTo are normalized + + let r = vFrom.dot( vTo ) + 1; + + if ( r < Number.EPSILON ) { + + // vFrom and vTo point in opposite directions + + r = 0; + + if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { + + this._x = - vFrom.y; + this._y = vFrom.x; + this._z = 0; + this._w = r; + + } else { + + this._x = 0; + this._y = - vFrom.z; + this._z = vFrom.y; + this._w = r; + + } + + } else { + + // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 + + this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; + this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; + this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; + this._w = r; + + } + + return this.normalize(); + + } + + /** + * Returns the angle between this quaternion and the given one in radians. + * + * @param {Quaternion} q - The quaternion to compute the angle with. + * @return {number} The angle in radians. + */ + angleTo( q ) { + + return 2 * Math.acos( Math.abs( clamp( this.dot( q ), - 1, 1 ) ) ); + + } + + /** + * Rotates this quaternion by a given angular step to the given quaternion. + * The method ensures that the final quaternion will not overshoot `q`. + * + * @param {Quaternion} q - The target quaternion. + * @param {number} step - The angular step in radians. + * @return {Quaternion} A reference to this quaternion. + */ + rotateTowards( q, step ) { + + const angle = this.angleTo( q ); + + if ( angle === 0 ) return this; + + const t = Math.min( 1, step / angle ); + + this.slerp( q, t ); + + return this; + + } + + /** + * Sets this quaternion to the identity quaternion; that is, to the + * quaternion that represents "no rotation". + * + * @return {Quaternion} A reference to this quaternion. + */ + identity() { + + return this.set( 0, 0, 0, 1 ); + + } + + /** + * Inverts this quaternion via {@link Quaternion#conjugate}. The + * quaternion is assumed to have unit length. + * + * @return {Quaternion} A reference to this quaternion. + */ + invert() { + + return this.conjugate(); + + } + + /** + * Returns the rotational conjugate of this quaternion. The conjugate of a + * quaternion represents the same rotation in the opposite direction about + * the rotational axis. + * + * @return {Quaternion} A reference to this quaternion. + */ + conjugate() { + + this._x *= - 1; + this._y *= - 1; + this._z *= - 1; + + this._onChangeCallback(); + + return this; + + } + + /** + * Calculates the dot product of this quaternion and the given one. + * + * @param {Quaternion} v - The quaternion to compute the dot product with. + * @return {number} The result of the dot product. + */ + dot( v ) { + + return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; + + } + + /** + * Computes the squared Euclidean length (straight-line length) of this quaternion, + * considered as a 4 dimensional vector. This can be useful if you are comparing the + * lengths of two quaternions, as this is a slightly more efficient calculation than + * {@link Quaternion#length}. + * + * @return {number} The squared Euclidean length. + */ + lengthSq() { + + return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; + + } + + /** + * Computes the Euclidean length (straight-line length) of this quaternion, + * considered as a 4 dimensional vector. + * + * @return {number} The Euclidean length. + */ + length() { + + return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); + + } + + /** + * Normalizes this quaternion - that is, calculated the quaternion that performs + * the same rotation as this one, but has a length equal to `1`. + * + * @return {Quaternion} A reference to this quaternion. + */ + normalize() { + + let l = this.length(); + + if ( l === 0 ) { + + this._x = 0; + this._y = 0; + this._z = 0; + this._w = 1; + + } else { + + l = 1 / l; + + this._x = this._x * l; + this._y = this._y * l; + this._z = this._z * l; + this._w = this._w * l; + + } + + this._onChangeCallback(); + + return this; + + } + + /** + * Multiplies this quaternion by the given one. + * + * @param {Quaternion} q - The quaternion. + * @return {Quaternion} A reference to this quaternion. + */ + multiply( q ) { + + return this.multiplyQuaternions( this, q ); + + } + + /** + * Pre-multiplies this quaternion by the given one. + * + * @param {Quaternion} q - The quaternion. + * @return {Quaternion} A reference to this quaternion. + */ + premultiply( q ) { + + return this.multiplyQuaternions( q, this ); + + } + + /** + * Multiplies the given quaternions and stores the result in this instance. + * + * @param {Quaternion} a - The first quaternion. + * @param {Quaternion} b - The second quaternion. + * @return {Quaternion} A reference to this quaternion. + */ + multiplyQuaternions( a, b ) { + + // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm + + const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; + const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; + + this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; + this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; + this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; + this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; + + this._onChangeCallback(); + + return this; + + } + + /** + * Performs a spherical linear interpolation between quaternions. + * + * @param {Quaternion} qb - The target quaternion. + * @param {number} t - The interpolation factor in the closed interval `[0, 1]`. + * @return {Quaternion} A reference to this quaternion. + */ + slerp( qb, t ) { + + if ( t === 0 ) return this; + if ( t === 1 ) return this.copy( qb ); + + const x = this._x, y = this._y, z = this._z, w = this._w; + + // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ + + let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; + + if ( cosHalfTheta < 0 ) { + + this._w = - qb._w; + this._x = - qb._x; + this._y = - qb._y; + this._z = - qb._z; + + cosHalfTheta = - cosHalfTheta; + + } else { + + this.copy( qb ); + + } + + if ( cosHalfTheta >= 1.0 ) { + + this._w = w; + this._x = x; + this._y = y; + this._z = z; + + return this; + + } + + const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta; + + if ( sqrSinHalfTheta <= Number.EPSILON ) { + + const s = 1 - t; + this._w = s * w + t * this._w; + this._x = s * x + t * this._x; + this._y = s * y + t * this._y; + this._z = s * z + t * this._z; + + this.normalize(); // normalize calls _onChangeCallback() + + return this; + + } + + const sinHalfTheta = Math.sqrt( sqrSinHalfTheta ); + const halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); + const ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, + ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; + + this._w = ( w * ratioA + this._w * ratioB ); + this._x = ( x * ratioA + this._x * ratioB ); + this._y = ( y * ratioA + this._y * ratioB ); + this._z = ( z * ratioA + this._z * ratioB ); + + this._onChangeCallback(); + + return this; + + } + + /** + * Performs a spherical linear interpolation between the given quaternions + * and stores the result in this quaternion. + * + * @param {Quaternion} qa - The source quaternion. + * @param {Quaternion} qb - The target quaternion. + * @param {number} t - The interpolation factor in the closed interval `[0, 1]`. + * @return {Quaternion} A reference to this quaternion. + */ + slerpQuaternions( qa, qb, t ) { + + return this.copy( qa ).slerp( qb, t ); + + } + + /** + * Sets this quaternion to a uniformly random, normalized quaternion. + * + * @return {Quaternion} A reference to this quaternion. + */ + random() { + + // Ken Shoemake + // Uniform random rotations + // D. Kirk, editor, Graphics Gems III, pages 124-132. Academic Press, New York, 1992. + + const theta1 = 2 * Math.PI * Math.random(); + const theta2 = 2 * Math.PI * Math.random(); + + const x0 = Math.random(); + const r1 = Math.sqrt( 1 - x0 ); + const r2 = Math.sqrt( x0 ); + + return this.set( + r1 * Math.sin( theta1 ), + r1 * Math.cos( theta1 ), + r2 * Math.sin( theta2 ), + r2 * Math.cos( theta2 ), + ); + + } + + /** + * Returns `true` if this quaternion is equal with the given one. + * + * @param {Quaternion} quaternion - The quaternion to test for equality. + * @return {boolean} Whether this quaternion is equal with the given one. + */ + equals( quaternion ) { + + return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); + + } + + /** + * Sets this quaternion's components from the given array. + * + * @param {Array} array - An array holding the quaternion component values. + * @param {number} [offset=0] - The offset into the array. + * @return {Quaternion} A reference to this quaternion. + */ + fromArray( array, offset = 0 ) { + + this._x = array[ offset ]; + this._y = array[ offset + 1 ]; + this._z = array[ offset + 2 ]; + this._w = array[ offset + 3 ]; + + this._onChangeCallback(); + + return this; + + } + + /** + * Writes the components of this quaternion to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the quaternion components. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The quaternion components. + */ + toArray( array = [], offset = 0 ) { + + array[ offset ] = this._x; + array[ offset + 1 ] = this._y; + array[ offset + 2 ] = this._z; + array[ offset + 3 ] = this._w; + + return array; + + } + + /** + * Sets the components of this quaternion from the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute holding quaternion data. + * @param {number} index - The index into the attribute. + * @return {Quaternion} A reference to this quaternion. + */ + fromBufferAttribute( attribute, index ) { + + this._x = attribute.getX( index ); + this._y = attribute.getY( index ); + this._z = attribute.getZ( index ); + this._w = attribute.getW( index ); + + this._onChangeCallback(); + + return this; + + } + + /** + * This methods defines the serialization result of this class. Returns the + * numerical elements of this quaternion in an array of format `[x, y, z, w]`. + * + * @return {Array} The serialized quaternion. + */ + toJSON() { + + return this.toArray(); + + } + + _onChange( callback ) { + + this._onChangeCallback = callback; + + return this; + + } + + _onChangeCallback() {} + + *[ Symbol.iterator ]() { + + yield this._x; + yield this._y; + yield this._z; + yield this._w; + + } + + } + + /** + * Class representing a 3D vector. A 3D vector is an ordered triplet of numbers + * (labeled x, y and z), which can be used to represent a number of things, such as: + * + * - A point in 3D space. + * - A direction and length in 3D space. In three.js the length will + * always be the Euclidean distance(straight-line distance) from `(0, 0, 0)` to `(x, y, z)` + * and the direction is also measured from `(0, 0, 0)` towards `(x, y, z)`. + * - Any arbitrary ordered triplet of numbers. + * + * There are other things a 3D vector can be used to represent, such as + * momentum vectors and so on, however these are the most + * common uses in three.js. + * + * Iterating through a vector instance will yield its components `(x, y, z)` in + * the corresponding order. + * ```js + * const a = new THREE.Vector3( 0, 1, 0 ); + * + * //no arguments; will be initialised to (0, 0, 0) + * const b = new THREE.Vector3( ); + * + * const d = a.distanceTo( b ); + * ``` + */ + class Vector3 { + + /** + * Constructs a new 3D vector. + * + * @param {number} [x=0] - The x value of this vector. + * @param {number} [y=0] - The y value of this vector. + * @param {number} [z=0] - The z value of this vector. + */ + constructor( x = 0, y = 0, z = 0 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + Vector3.prototype.isVector3 = true; + + /** + * The x value of this vector. + * + * @type {number} + */ + this.x = x; + + /** + * The y value of this vector. + * + * @type {number} + */ + this.y = y; + + /** + * The z value of this vector. + * + * @type {number} + */ + this.z = z; + + } + + /** + * Sets the vector components. + * + * @param {number} x - The value of the x component. + * @param {number} y - The value of the y component. + * @param {number} z - The value of the z component. + * @return {Vector3} A reference to this vector. + */ + set( x, y, z ) { + + if ( z === undefined ) z = this.z; // sprite.scale.set(x,y) + + this.x = x; + this.y = y; + this.z = z; + + return this; + + } + + /** + * Sets the vector components to the same value. + * + * @param {number} scalar - The value to set for all vector components. + * @return {Vector3} A reference to this vector. + */ + setScalar( scalar ) { + + this.x = scalar; + this.y = scalar; + this.z = scalar; + + return this; + + } + + /** + * Sets the vector's x component to the given value + * + * @param {number} x - The value to set. + * @return {Vector3} A reference to this vector. + */ + setX( x ) { + + this.x = x; + + return this; + + } + + /** + * Sets the vector's y component to the given value + * + * @param {number} y - The value to set. + * @return {Vector3} A reference to this vector. + */ + setY( y ) { + + this.y = y; + + return this; + + } + + /** + * Sets the vector's z component to the given value + * + * @param {number} z - The value to set. + * @return {Vector3} A reference to this vector. + */ + setZ( z ) { + + this.z = z; + + return this; + + } + + /** + * Allows to set a vector component with an index. + * + * @param {number} index - The component index. `0` equals to x, `1` equals to y, `2` equals to z. + * @param {number} value - The value to set. + * @return {Vector3} A reference to this vector. + */ + setComponent( index, value ) { + + switch ( index ) { + + case 0: this.x = value; break; + case 1: this.y = value; break; + case 2: this.z = value; break; + default: throw new Error( 'index is out of range: ' + index ); + + } + + return this; + + } + + /** + * Returns the value of the vector component which matches the given index. + * + * @param {number} index - The component index. `0` equals to x, `1` equals to y, `2` equals to z. + * @return {number} A vector component value. + */ + getComponent( index ) { + + switch ( index ) { + + case 0: return this.x; + case 1: return this.y; + case 2: return this.z; + default: throw new Error( 'index is out of range: ' + index ); + + } + + } + + /** + * Returns a new vector with copied values from this instance. + * + * @return {Vector3} A clone of this instance. + */ + clone() { + + return new this.constructor( this.x, this.y, this.z ); + + } + + /** + * Copies the values of the given vector to this instance. + * + * @param {Vector3} v - The vector to copy. + * @return {Vector3} A reference to this vector. + */ + copy( v ) { + + this.x = v.x; + this.y = v.y; + this.z = v.z; + + return this; + + } + + /** + * Adds the given vector to this instance. + * + * @param {Vector3} v - The vector to add. + * @return {Vector3} A reference to this vector. + */ + add( v ) { + + this.x += v.x; + this.y += v.y; + this.z += v.z; + + return this; + + } + + /** + * Adds the given scalar value to all components of this instance. + * + * @param {number} s - The scalar to add. + * @return {Vector3} A reference to this vector. + */ + addScalar( s ) { + + this.x += s; + this.y += s; + this.z += s; + + return this; + + } + + /** + * Adds the given vectors and stores the result in this instance. + * + * @param {Vector3} a - The first vector. + * @param {Vector3} b - The second vector. + * @return {Vector3} A reference to this vector. + */ + addVectors( a, b ) { + + this.x = a.x + b.x; + this.y = a.y + b.y; + this.z = a.z + b.z; + + return this; + + } + + /** + * Adds the given vector scaled by the given factor to this instance. + * + * @param {Vector3|Vector4} v - The vector. + * @param {number} s - The factor that scales `v`. + * @return {Vector3} A reference to this vector. + */ + addScaledVector( v, s ) { + + this.x += v.x * s; + this.y += v.y * s; + this.z += v.z * s; + + return this; + + } + + /** + * Subtracts the given vector from this instance. + * + * @param {Vector3} v - The vector to subtract. + * @return {Vector3} A reference to this vector. + */ + sub( v ) { + + this.x -= v.x; + this.y -= v.y; + this.z -= v.z; + + return this; + + } + + /** + * Subtracts the given scalar value from all components of this instance. + * + * @param {number} s - The scalar to subtract. + * @return {Vector3} A reference to this vector. + */ + subScalar( s ) { + + this.x -= s; + this.y -= s; + this.z -= s; + + return this; + + } + + /** + * Subtracts the given vectors and stores the result in this instance. + * + * @param {Vector3} a - The first vector. + * @param {Vector3} b - The second vector. + * @return {Vector3} A reference to this vector. + */ + subVectors( a, b ) { + + this.x = a.x - b.x; + this.y = a.y - b.y; + this.z = a.z - b.z; + + return this; + + } + + /** + * Multiplies the given vector with this instance. + * + * @param {Vector3} v - The vector to multiply. + * @return {Vector3} A reference to this vector. + */ + multiply( v ) { + + this.x *= v.x; + this.y *= v.y; + this.z *= v.z; + + return this; + + } + + /** + * Multiplies the given scalar value with all components of this instance. + * + * @param {number} scalar - The scalar to multiply. + * @return {Vector3} A reference to this vector. + */ + multiplyScalar( scalar ) { + + this.x *= scalar; + this.y *= scalar; + this.z *= scalar; + + return this; + + } + + /** + * Multiplies the given vectors and stores the result in this instance. + * + * @param {Vector3} a - The first vector. + * @param {Vector3} b - The second vector. + * @return {Vector3} A reference to this vector. + */ + multiplyVectors( a, b ) { + + this.x = a.x * b.x; + this.y = a.y * b.y; + this.z = a.z * b.z; + + return this; + + } + + /** + * Applies the given Euler rotation to this vector. + * + * @param {Euler} euler - The Euler angles. + * @return {Vector3} A reference to this vector. + */ + applyEuler( euler ) { + + return this.applyQuaternion( _quaternion$4.setFromEuler( euler ) ); + + } + + /** + * Applies a rotation specified by an axis and an angle to this vector. + * + * @param {Vector3} axis - A normalized vector representing the rotation axis. + * @param {number} angle - The angle in radians. + * @return {Vector3} A reference to this vector. + */ + applyAxisAngle( axis, angle ) { + + return this.applyQuaternion( _quaternion$4.setFromAxisAngle( axis, angle ) ); + + } + + /** + * Multiplies this vector with the given 3x3 matrix. + * + * @param {Matrix3} m - The 3x3 matrix. + * @return {Vector3} A reference to this vector. + */ + applyMatrix3( m ) { + + const x = this.x, y = this.y, z = this.z; + const e = m.elements; + + this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; + this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; + this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; + + return this; + + } + + /** + * Multiplies this vector by the given normal matrix and normalizes + * the result. + * + * @param {Matrix3} m - The normal matrix. + * @return {Vector3} A reference to this vector. + */ + applyNormalMatrix( m ) { + + return this.applyMatrix3( m ).normalize(); + + } + + /** + * Multiplies this vector (with an implicit 1 in the 4th dimension) by m, and + * divides by perspective. + * + * @param {Matrix4} m - The matrix to apply. + * @return {Vector3} A reference to this vector. + */ + applyMatrix4( m ) { + + const x = this.x, y = this.y, z = this.z; + const e = m.elements; + + const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); + + this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w; + this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w; + this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w; + + return this; + + } + + /** + * Applies the given Quaternion to this vector. + * + * @param {Quaternion} q - The Quaternion. + * @return {Vector3} A reference to this vector. + */ + applyQuaternion( q ) { + + // quaternion q is assumed to have unit length + + const vx = this.x, vy = this.y, vz = this.z; + const qx = q.x, qy = q.y, qz = q.z, qw = q.w; + + // t = 2 * cross( q.xyz, v ); + const tx = 2 * ( qy * vz - qz * vy ); + const ty = 2 * ( qz * vx - qx * vz ); + const tz = 2 * ( qx * vy - qy * vx ); + + // v + q.w * t + cross( q.xyz, t ); + this.x = vx + qw * tx + qy * tz - qz * ty; + this.y = vy + qw * ty + qz * tx - qx * tz; + this.z = vz + qw * tz + qx * ty - qy * tx; + + return this; + + } + + /** + * Projects this vector from world space into the camera's normalized + * device coordinate (NDC) space. + * + * @param {Camera} camera - The camera. + * @return {Vector3} A reference to this vector. + */ + project( camera ) { + + return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix ); + + } + + /** + * Unprojects this vector from the camera's normalized device coordinate (NDC) + * space into world space. + * + * @param {Camera} camera - The camera. + * @return {Vector3} A reference to this vector. + */ + unproject( camera ) { + + return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld ); + + } + + /** + * Transforms the direction of this vector by a matrix (the upper left 3 x 3 + * subset of the given 4x4 matrix and then normalizes the result. + * + * @param {Matrix4} m - The matrix. + * @return {Vector3} A reference to this vector. + */ + transformDirection( m ) { + + // input: THREE.Matrix4 affine matrix + // vector interpreted as a direction + + const x = this.x, y = this.y, z = this.z; + const e = m.elements; + + this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; + this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; + this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; + + return this.normalize(); + + } + + /** + * Divides this instance by the given vector. + * + * @param {Vector3} v - The vector to divide. + * @return {Vector3} A reference to this vector. + */ + divide( v ) { + + this.x /= v.x; + this.y /= v.y; + this.z /= v.z; + + return this; + + } + + /** + * Divides this vector by the given scalar. + * + * @param {number} scalar - The scalar to divide. + * @return {Vector3} A reference to this vector. + */ + divideScalar( scalar ) { + + return this.multiplyScalar( 1 / scalar ); + + } + + /** + * If this vector's x, y or z value is greater than the given vector's x, y or z + * value, replace that value with the corresponding min value. + * + * @param {Vector3} v - The vector. + * @return {Vector3} A reference to this vector. + */ + min( v ) { + + this.x = Math.min( this.x, v.x ); + this.y = Math.min( this.y, v.y ); + this.z = Math.min( this.z, v.z ); + + return this; + + } + + /** + * If this vector's x, y or z value is less than the given vector's x, y or z + * value, replace that value with the corresponding max value. + * + * @param {Vector3} v - The vector. + * @return {Vector3} A reference to this vector. + */ + max( v ) { + + this.x = Math.max( this.x, v.x ); + this.y = Math.max( this.y, v.y ); + this.z = Math.max( this.z, v.z ); + + return this; + + } + + /** + * If this vector's x, y or z value is greater than the max vector's x, y or z + * value, it is replaced by the corresponding value. + * If this vector's x, y or z value is less than the min vector's x, y or z value, + * it is replaced by the corresponding value. + * + * @param {Vector3} min - The minimum x, y and z values. + * @param {Vector3} max - The maximum x, y and z values in the desired range. + * @return {Vector3} A reference to this vector. + */ + clamp( min, max ) { + + // assumes min < max, componentwise + + this.x = clamp( this.x, min.x, max.x ); + this.y = clamp( this.y, min.y, max.y ); + this.z = clamp( this.z, min.z, max.z ); + + return this; + + } + + /** + * If this vector's x, y or z values are greater than the max value, they are + * replaced by the max value. + * If this vector's x, y or z values are less than the min value, they are + * replaced by the min value. + * + * @param {number} minVal - The minimum value the components will be clamped to. + * @param {number} maxVal - The maximum value the components will be clamped to. + * @return {Vector3} A reference to this vector. + */ + clampScalar( minVal, maxVal ) { + + this.x = clamp( this.x, minVal, maxVal ); + this.y = clamp( this.y, minVal, maxVal ); + this.z = clamp( this.z, minVal, maxVal ); + + return this; + + } + + /** + * If this vector's length is greater than the max value, it is replaced by + * the max value. + * If this vector's length is less than the min value, it is replaced by the + * min value. + * + * @param {number} min - The minimum value the vector length will be clamped to. + * @param {number} max - The maximum value the vector length will be clamped to. + * @return {Vector3} A reference to this vector. + */ + clampLength( min, max ) { + + const length = this.length(); + + return this.divideScalar( length || 1 ).multiplyScalar( clamp( length, min, max ) ); + + } + + /** + * The components of this vector are rounded down to the nearest integer value. + * + * @return {Vector3} A reference to this vector. + */ + floor() { + + this.x = Math.floor( this.x ); + this.y = Math.floor( this.y ); + this.z = Math.floor( this.z ); + + return this; + + } + + /** + * The components of this vector are rounded up to the nearest integer value. + * + * @return {Vector3} A reference to this vector. + */ + ceil() { + + this.x = Math.ceil( this.x ); + this.y = Math.ceil( this.y ); + this.z = Math.ceil( this.z ); + + return this; + + } + + /** + * The components of this vector are rounded to the nearest integer value + * + * @return {Vector3} A reference to this vector. + */ + round() { + + this.x = Math.round( this.x ); + this.y = Math.round( this.y ); + this.z = Math.round( this.z ); + + return this; + + } + + /** + * The components of this vector are rounded towards zero (up if negative, + * down if positive) to an integer value. + * + * @return {Vector3} A reference to this vector. + */ + roundToZero() { + + this.x = Math.trunc( this.x ); + this.y = Math.trunc( this.y ); + this.z = Math.trunc( this.z ); + + return this; + + } + + /** + * Inverts this vector - i.e. sets x = -x, y = -y and z = -z. + * + * @return {Vector3} A reference to this vector. + */ + negate() { + + this.x = - this.x; + this.y = - this.y; + this.z = - this.z; + + return this; + + } + + /** + * Calculates the dot product of the given vector with this instance. + * + * @param {Vector3} v - The vector to compute the dot product with. + * @return {number} The result of the dot product. + */ + dot( v ) { + + return this.x * v.x + this.y * v.y + this.z * v.z; + + } + + // TODO lengthSquared? + + /** + * Computes the square of the Euclidean length (straight-line length) from + * (0, 0, 0) to (x, y, z). If you are comparing the lengths of vectors, you should + * compare the length squared instead as it is slightly more efficient to calculate. + * + * @return {number} The square length of this vector. + */ + lengthSq() { + + return this.x * this.x + this.y * this.y + this.z * this.z; + + } + + /** + * Computes the Euclidean length (straight-line length) from (0, 0, 0) to (x, y, z). + * + * @return {number} The length of this vector. + */ + length() { + + return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); + + } + + /** + * Computes the Manhattan length of this vector. + * + * @return {number} The length of this vector. + */ + manhattanLength() { + + return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); + + } + + /** + * Converts this vector to a unit vector - that is, sets it equal to a vector + * with the same direction as this one, but with a vector length of `1`. + * + * @return {Vector3} A reference to this vector. + */ + normalize() { + + return this.divideScalar( this.length() || 1 ); + + } + + /** + * Sets this vector to a vector with the same direction as this one, but + * with the specified length. + * + * @param {number} length - The new length of this vector. + * @return {Vector3} A reference to this vector. + */ + setLength( length ) { + + return this.normalize().multiplyScalar( length ); + + } + + /** + * Linearly interpolates between the given vector and this instance, where + * alpha is the percent distance along the line - alpha = 0 will be this + * vector, and alpha = 1 will be the given one. + * + * @param {Vector3} v - The vector to interpolate towards. + * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. + * @return {Vector3} A reference to this vector. + */ + lerp( v, alpha ) { + + this.x += ( v.x - this.x ) * alpha; + this.y += ( v.y - this.y ) * alpha; + this.z += ( v.z - this.z ) * alpha; + + return this; + + } + + /** + * Linearly interpolates between the given vectors, where alpha is the percent + * distance along the line - alpha = 0 will be first vector, and alpha = 1 will + * be the second one. The result is stored in this instance. + * + * @param {Vector3} v1 - The first vector. + * @param {Vector3} v2 - The second vector. + * @param {number} alpha - The interpolation factor, typically in the closed interval `[0, 1]`. + * @return {Vector3} A reference to this vector. + */ + lerpVectors( v1, v2, alpha ) { + + this.x = v1.x + ( v2.x - v1.x ) * alpha; + this.y = v1.y + ( v2.y - v1.y ) * alpha; + this.z = v1.z + ( v2.z - v1.z ) * alpha; + + return this; + + } + + /** + * Calculates the cross product of the given vector with this instance. + * + * @param {Vector3} v - The vector to compute the cross product with. + * @return {Vector3} The result of the cross product. + */ + cross( v ) { + + return this.crossVectors( this, v ); + + } + + /** + * Calculates the cross product of the given vectors and stores the result + * in this instance. + * + * @param {Vector3} a - The first vector. + * @param {Vector3} b - The second vector. + * @return {Vector3} A reference to this vector. + */ + crossVectors( a, b ) { + + const ax = a.x, ay = a.y, az = a.z; + const bx = b.x, by = b.y, bz = b.z; + + this.x = ay * bz - az * by; + this.y = az * bx - ax * bz; + this.z = ax * by - ay * bx; + + return this; + + } + + /** + * Projects this vector onto the given one. + * + * @param {Vector3} v - The vector to project to. + * @return {Vector3} A reference to this vector. + */ + projectOnVector( v ) { + + const denominator = v.lengthSq(); + + if ( denominator === 0 ) return this.set( 0, 0, 0 ); + + const scalar = v.dot( this ) / denominator; + + return this.copy( v ).multiplyScalar( scalar ); + + } + + /** + * Projects this vector onto a plane by subtracting this + * vector projected onto the plane's normal from this vector. + * + * @param {Vector3} planeNormal - The plane normal. + * @return {Vector3} A reference to this vector. + */ + projectOnPlane( planeNormal ) { + + _vector$c.copy( this ).projectOnVector( planeNormal ); + + return this.sub( _vector$c ); + + } + + /** + * Reflects this vector off a plane orthogonal to the given normal vector. + * + * @param {Vector3} normal - The (normalized) normal vector. + * @return {Vector3} A reference to this vector. + */ + reflect( normal ) { + + return this.sub( _vector$c.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); + + } + /** + * Returns the angle between the given vector and this instance in radians. + * + * @param {Vector3} v - The vector to compute the angle with. + * @return {number} The angle in radians. + */ + angleTo( v ) { + + const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); + + if ( denominator === 0 ) return Math.PI / 2; + + const theta = this.dot( v ) / denominator; + + // clamp, to handle numerical problems + + return Math.acos( clamp( theta, - 1, 1 ) ); + + } + + /** + * Computes the distance from the given vector to this instance. + * + * @param {Vector3} v - The vector to compute the distance to. + * @return {number} The distance. + */ + distanceTo( v ) { + + return Math.sqrt( this.distanceToSquared( v ) ); + + } + + /** + * Computes the squared distance from the given vector to this instance. + * If you are just comparing the distance with another distance, you should compare + * the distance squared instead as it is slightly more efficient to calculate. + * + * @param {Vector3} v - The vector to compute the squared distance to. + * @return {number} The squared distance. + */ + distanceToSquared( v ) { + + const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; + + return dx * dx + dy * dy + dz * dz; + + } + + /** + * Computes the Manhattan distance from the given vector to this instance. + * + * @param {Vector3} v - The vector to compute the Manhattan distance to. + * @return {number} The Manhattan distance. + */ + manhattanDistanceTo( v ) { + + return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z ); + + } + + /** + * Sets the vector components from the given spherical coordinates. + * + * @param {Spherical} s - The spherical coordinates. + * @return {Vector3} A reference to this vector. + */ + setFromSpherical( s ) { + + return this.setFromSphericalCoords( s.radius, s.phi, s.theta ); + + } + + /** + * Sets the vector components from the given spherical coordinates. + * + * @param {number} radius - The radius. + * @param {number} phi - The phi angle in radians. + * @param {number} theta - The theta angle in radians. + * @return {Vector3} A reference to this vector. + */ + setFromSphericalCoords( radius, phi, theta ) { + + const sinPhiRadius = Math.sin( phi ) * radius; + + this.x = sinPhiRadius * Math.sin( theta ); + this.y = Math.cos( phi ) * radius; + this.z = sinPhiRadius * Math.cos( theta ); + + return this; + + } + + /** + * Sets the vector components from the given cylindrical coordinates. + * + * @param {Cylindrical} c - The cylindrical coordinates. + * @return {Vector3} A reference to this vector. + */ + setFromCylindrical( c ) { + + return this.setFromCylindricalCoords( c.radius, c.theta, c.y ); + + } + + /** + * Sets the vector components from the given cylindrical coordinates. + * + * @param {number} radius - The radius. + * @param {number} theta - The theta angle in radians. + * @param {number} y - The y value. + * @return {Vector3} A reference to this vector. + */ + setFromCylindricalCoords( radius, theta, y ) { + + this.x = radius * Math.sin( theta ); + this.y = y; + this.z = radius * Math.cos( theta ); + + return this; + + } + + /** + * Sets the vector components to the position elements of the + * given transformation matrix. + * + * @param {Matrix4} m - The 4x4 matrix. + * @return {Vector3} A reference to this vector. + */ + setFromMatrixPosition( m ) { + + const e = m.elements; + + this.x = e[ 12 ]; + this.y = e[ 13 ]; + this.z = e[ 14 ]; + + return this; + + } + + /** + * Sets the vector components to the scale elements of the + * given transformation matrix. + * + * @param {Matrix4} m - The 4x4 matrix. + * @return {Vector3} A reference to this vector. + */ + setFromMatrixScale( m ) { + + const sx = this.setFromMatrixColumn( m, 0 ).length(); + const sy = this.setFromMatrixColumn( m, 1 ).length(); + const sz = this.setFromMatrixColumn( m, 2 ).length(); + + this.x = sx; + this.y = sy; + this.z = sz; + + return this; + + } + + /** + * Sets the vector components from the specified matrix column. + * + * @param {Matrix4} m - The 4x4 matrix. + * @param {number} index - The column index. + * @return {Vector3} A reference to this vector. + */ + setFromMatrixColumn( m, index ) { + + return this.fromArray( m.elements, index * 4 ); + + } + + /** + * Sets the vector components from the specified matrix column. + * + * @param {Matrix3} m - The 3x3 matrix. + * @param {number} index - The column index. + * @return {Vector3} A reference to this vector. + */ + setFromMatrix3Column( m, index ) { + + return this.fromArray( m.elements, index * 3 ); + + } + + /** + * Sets the vector components from the given Euler angles. + * + * @param {Euler} e - The Euler angles to set. + * @return {Vector3} A reference to this vector. + */ + setFromEuler( e ) { + + this.x = e._x; + this.y = e._y; + this.z = e._z; + + return this; + + } + + /** + * Sets the vector components from the RGB components of the + * given color. + * + * @param {Color} c - The color to set. + * @return {Vector3} A reference to this vector. + */ + setFromColor( c ) { + + this.x = c.r; + this.y = c.g; + this.z = c.b; + + return this; + + } + + /** + * Returns `true` if this vector is equal with the given one. + * + * @param {Vector3} v - The vector to test for equality. + * @return {boolean} Whether this vector is equal with the given one. + */ + equals( v ) { + + return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); + + } + + /** + * Sets this vector's x value to be `array[ offset ]`, y value to be `array[ offset + 1 ]` + * and z value to be `array[ offset + 2 ]`. + * + * @param {Array} array - An array holding the vector component values. + * @param {number} [offset=0] - The offset into the array. + * @return {Vector3} A reference to this vector. + */ + fromArray( array, offset = 0 ) { + + this.x = array[ offset ]; + this.y = array[ offset + 1 ]; + this.z = array[ offset + 2 ]; + + return this; + + } + + /** + * Writes the components of this vector to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the vector components. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The vector components. + */ + toArray( array = [], offset = 0 ) { + + array[ offset ] = this.x; + array[ offset + 1 ] = this.y; + array[ offset + 2 ] = this.z; + + return array; + + } + + /** + * Sets the components of this vector from the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute holding vector data. + * @param {number} index - The index into the attribute. + * @return {Vector3} A reference to this vector. + */ + fromBufferAttribute( attribute, index ) { + + this.x = attribute.getX( index ); + this.y = attribute.getY( index ); + this.z = attribute.getZ( index ); + + return this; + + } + + /** + * Sets each component of this vector to a pseudo-random value between `0` and + * `1`, excluding `1`. + * + * @return {Vector3} A reference to this vector. + */ + random() { + + this.x = Math.random(); + this.y = Math.random(); + this.z = Math.random(); + + return this; + + } + + /** + * Sets this vector to a uniformly random point on a unit sphere. + * + * @return {Vector3} A reference to this vector. + */ + randomDirection() { + + // https://mathworld.wolfram.com/SpherePointPicking.html + + const theta = Math.random() * Math.PI * 2; + const u = Math.random() * 2 - 1; + const c = Math.sqrt( 1 - u * u ); + + this.x = c * Math.cos( theta ); + this.y = u; + this.z = c * Math.sin( theta ); + + return this; + + } + + *[ Symbol.iterator ]() { + + yield this.x; + yield this.y; + yield this.z; + + } + + } + + const _vector$c = /*@__PURE__*/ new Vector3(); + const _quaternion$4 = /*@__PURE__*/ new Quaternion(); + + /** + * Represents a 3x3 matrix. + * + * A Note on Row-Major and Column-Major Ordering: + * + * The constructor and {@link Matrix3#set} method take arguments in + * [row-major]{@link https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order} + * order, while internally they are stored in the {@link Matrix3#elements} array in column-major order. + * This means that calling: + * ```js + * const m = new THREE.Matrix(); + * m.set( 11, 12, 13, + * 21, 22, 23, + * 31, 32, 33 ); + * ``` + * will result in the elements array containing: + * ```js + * m.elements = [ 11, 21, 31, + * 12, 22, 32, + * 13, 23, 33 ]; + * ``` + * and internally all calculations are performed using column-major ordering. + * However, as the actual ordering makes no difference mathematically and + * most people are used to thinking about matrices in row-major order, the + * three.js documentation shows matrices in row-major order. Just bear in + * mind that if you are reading the source code, you'll have to take the + * transpose of any matrices outlined here to make sense of the calculations. + */ + class Matrix3 { + + /** + * Constructs a new 3x3 matrix. The arguments are supposed to be + * in row-major order. If no arguments are provided, the constructor + * initializes the matrix as an identity matrix. + * + * @param {number} [n11] - 1-1 matrix element. + * @param {number} [n12] - 1-2 matrix element. + * @param {number} [n13] - 1-3 matrix element. + * @param {number} [n21] - 2-1 matrix element. + * @param {number} [n22] - 2-2 matrix element. + * @param {number} [n23] - 2-3 matrix element. + * @param {number} [n31] - 3-1 matrix element. + * @param {number} [n32] - 3-2 matrix element. + * @param {number} [n33] - 3-3 matrix element. + */ + constructor( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + Matrix3.prototype.isMatrix3 = true; + + /** + * A column-major list of matrix values. + * + * @type {Array} + */ + this.elements = [ + + 1, 0, 0, + 0, 1, 0, + 0, 0, 1 + + ]; + + if ( n11 !== undefined ) { + + this.set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ); + + } + + } + + /** + * Sets the elements of the matrix.The arguments are supposed to be + * in row-major order. + * + * @param {number} [n11] - 1-1 matrix element. + * @param {number} [n12] - 1-2 matrix element. + * @param {number} [n13] - 1-3 matrix element. + * @param {number} [n21] - 2-1 matrix element. + * @param {number} [n22] - 2-2 matrix element. + * @param {number} [n23] - 2-3 matrix element. + * @param {number} [n31] - 3-1 matrix element. + * @param {number} [n32] - 3-2 matrix element. + * @param {number} [n33] - 3-3 matrix element. + * @return {Matrix3} A reference to this matrix. + */ + set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { + + const te = this.elements; + + te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31; + te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32; + te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33; + + return this; + + } + + /** + * Sets this matrix to the 3x3 identity matrix. + * + * @return {Matrix3} A reference to this matrix. + */ + identity() { + + this.set( + + 1, 0, 0, + 0, 1, 0, + 0, 0, 1 + + ); + + return this; + + } + + /** + * Copies the values of the given matrix to this instance. + * + * @param {Matrix3} m - The matrix to copy. + * @return {Matrix3} A reference to this matrix. + */ + copy( m ) { + + const te = this.elements; + const me = m.elements; + + te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; + te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; + te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; + + return this; + + } + + /** + * Extracts the basis of this matrix into the three axis vectors provided. + * + * @param {Vector3} xAxis - The basis's x axis. + * @param {Vector3} yAxis - The basis's y axis. + * @param {Vector3} zAxis - The basis's z axis. + * @return {Matrix3} A reference to this matrix. + */ + extractBasis( xAxis, yAxis, zAxis ) { + + xAxis.setFromMatrix3Column( this, 0 ); + yAxis.setFromMatrix3Column( this, 1 ); + zAxis.setFromMatrix3Column( this, 2 ); + + return this; + + } + + /** + * Set this matrix to the upper 3x3 matrix of the given 4x4 matrix. + * + * @param {Matrix4} m - The 4x4 matrix. + * @return {Matrix3} A reference to this matrix. + */ + setFromMatrix4( m ) { + + const me = m.elements; + + this.set( + + me[ 0 ], me[ 4 ], me[ 8 ], + me[ 1 ], me[ 5 ], me[ 9 ], + me[ 2 ], me[ 6 ], me[ 10 ] + + ); + + return this; + + } + + /** + * Post-multiplies this matrix by the given 3x3 matrix. + * + * @param {Matrix3} m - The matrix to multiply with. + * @return {Matrix3} A reference to this matrix. + */ + multiply( m ) { + + return this.multiplyMatrices( this, m ); + + } + + /** + * Pre-multiplies this matrix by the given 3x3 matrix. + * + * @param {Matrix3} m - The matrix to multiply with. + * @return {Matrix3} A reference to this matrix. + */ + premultiply( m ) { + + return this.multiplyMatrices( m, this ); + + } + + /** + * Multiples the given 3x3 matrices and stores the result + * in this matrix. + * + * @param {Matrix3} a - The first matrix. + * @param {Matrix3} b - The second matrix. + * @return {Matrix3} A reference to this matrix. + */ + multiplyMatrices( a, b ) { + + const ae = a.elements; + const be = b.elements; + const te = this.elements; + + const a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ]; + const a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ]; + const a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ]; + + const b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ]; + const b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ]; + const b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ]; + + te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31; + te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32; + te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33; + + te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31; + te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32; + te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33; + + te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31; + te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32; + te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33; + + return this; + + } + + /** + * Multiplies every component of the matrix by the given scalar. + * + * @param {number} s - The scalar. + * @return {Matrix3} A reference to this matrix. + */ + multiplyScalar( s ) { + + const te = this.elements; + + te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; + te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; + te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; + + return this; + + } + + /** + * Computes and returns the determinant of this matrix. + * + * @return {number} The determinant. + */ + determinant() { + + const te = this.elements; + + const a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], + d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], + g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; + + return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; + + } + + /** + * Inverts this matrix, using the [analytic method]{@link https://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution}. + * You can not invert with a determinant of zero. If you attempt this, the method produces + * a zero matrix instead. + * + * @return {Matrix3} A reference to this matrix. + */ + invert() { + + const te = this.elements, + + n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], + n12 = te[ 3 ], n22 = te[ 4 ], n32 = te[ 5 ], + n13 = te[ 6 ], n23 = te[ 7 ], n33 = te[ 8 ], + + t11 = n33 * n22 - n32 * n23, + t12 = n32 * n13 - n33 * n12, + t13 = n23 * n12 - n22 * n13, + + det = n11 * t11 + n21 * t12 + n31 * t13; + + if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 ); + + const detInv = 1 / det; + + te[ 0 ] = t11 * detInv; + te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv; + te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv; + + te[ 3 ] = t12 * detInv; + te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv; + te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv; + + te[ 6 ] = t13 * detInv; + te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv; + te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv; + + return this; + + } + + /** + * Transposes this matrix in place. + * + * @return {Matrix3} A reference to this matrix. + */ + transpose() { + + let tmp; + const m = this.elements; + + tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; + tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; + tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; + + return this; + + } + + /** + * Computes the normal matrix which is the inverse transpose of the upper + * left 3x3 portion of the given 4x4 matrix. + * + * @param {Matrix4} matrix4 - The 4x4 matrix. + * @return {Matrix3} A reference to this matrix. + */ + getNormalMatrix( matrix4 ) { + + return this.setFromMatrix4( matrix4 ).invert().transpose(); + + } + + /** + * Transposes this matrix into the supplied array, and returns itself unchanged. + * + * @param {Array} r - An array to store the transposed matrix elements. + * @return {Matrix3} A reference to this matrix. + */ + transposeIntoArray( r ) { + + const m = this.elements; + + r[ 0 ] = m[ 0 ]; + r[ 1 ] = m[ 3 ]; + r[ 2 ] = m[ 6 ]; + r[ 3 ] = m[ 1 ]; + r[ 4 ] = m[ 4 ]; + r[ 5 ] = m[ 7 ]; + r[ 6 ] = m[ 2 ]; + r[ 7 ] = m[ 5 ]; + r[ 8 ] = m[ 8 ]; + + return this; + + } + + /** + * Sets the UV transform matrix from offset, repeat, rotation, and center. + * + * @param {number} tx - Offset x. + * @param {number} ty - Offset y. + * @param {number} sx - Repeat x. + * @param {number} sy - Repeat y. + * @param {number} rotation - Rotation, in radians. Positive values rotate counterclockwise. + * @param {number} cx - Center x of rotation. + * @param {number} cy - Center y of rotation + * @return {Matrix3} A reference to this matrix. + */ + setUvTransform( tx, ty, sx, sy, rotation, cx, cy ) { + + const c = Math.cos( rotation ); + const s = Math.sin( rotation ); + + this.set( + sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx, + - sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty, + 0, 0, 1 + ); + + return this; + + } + + /** + * Scales this matrix with the given scalar values. + * + * @param {number} sx - The amount to scale in the X axis. + * @param {number} sy - The amount to scale in the Y axis. + * @return {Matrix3} A reference to this matrix. + */ + scale( sx, sy ) { + + this.premultiply( _m3.makeScale( sx, sy ) ); + + return this; + + } + + /** + * Rotates this matrix by the given angle. + * + * @param {number} theta - The rotation in radians. + * @return {Matrix3} A reference to this matrix. + */ + rotate( theta ) { + + this.premultiply( _m3.makeRotation( - theta ) ); + + return this; + + } + + /** + * Translates this matrix by the given scalar values. + * + * @param {number} tx - The amount to translate in the X axis. + * @param {number} ty - The amount to translate in the Y axis. + * @return {Matrix3} A reference to this matrix. + */ + translate( tx, ty ) { + + this.premultiply( _m3.makeTranslation( tx, ty ) ); + + return this; + + } + + // for 2D Transforms + + /** + * Sets this matrix as a 2D translation transform. + * + * @param {number|Vector2} x - The amount to translate in the X axis or alternatively a translation vector. + * @param {number} y - The amount to translate in the Y axis. + * @return {Matrix3} A reference to this matrix. + */ + makeTranslation( x, y ) { + + if ( x.isVector2 ) { + + this.set( + + 1, 0, x.x, + 0, 1, x.y, + 0, 0, 1 + + ); + + } else { + + this.set( + + 1, 0, x, + 0, 1, y, + 0, 0, 1 + + ); + + } + + return this; + + } + + /** + * Sets this matrix as a 2D rotational transformation. + * + * @param {number} theta - The rotation in radians. + * @return {Matrix3} A reference to this matrix. + */ + makeRotation( theta ) { + + // counterclockwise + + const c = Math.cos( theta ); + const s = Math.sin( theta ); + + this.set( + + c, - s, 0, + s, c, 0, + 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix as a 2D scale transform. + * + * @param {number} x - The amount to scale in the X axis. + * @param {number} y - The amount to scale in the Y axis. + * @return {Matrix3} A reference to this matrix. + */ + makeScale( x, y ) { + + this.set( + + x, 0, 0, + 0, y, 0, + 0, 0, 1 + + ); + + return this; + + } + + /** + * Returns `true` if this matrix is equal with the given one. + * + * @param {Matrix3} matrix - The matrix to test for equality. + * @return {boolean} Whether this matrix is equal with the given one. + */ + equals( matrix ) { + + const te = this.elements; + const me = matrix.elements; + + for ( let i = 0; i < 9; i ++ ) { + + if ( te[ i ] !== me[ i ] ) return false; + + } + + return true; + + } + + /** + * Sets the elements of the matrix from the given array. + * + * @param {Array} array - The matrix elements in column-major order. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Matrix3} A reference to this matrix. + */ + fromArray( array, offset = 0 ) { + + for ( let i = 0; i < 9; i ++ ) { + + this.elements[ i ] = array[ i + offset ]; + + } + + return this; + + } + + /** + * Writes the elements of this matrix to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the matrix elements in column-major order. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The matrix elements in column-major order. + */ + toArray( array = [], offset = 0 ) { + + const te = this.elements; + + array[ offset ] = te[ 0 ]; + array[ offset + 1 ] = te[ 1 ]; + array[ offset + 2 ] = te[ 2 ]; + + array[ offset + 3 ] = te[ 3 ]; + array[ offset + 4 ] = te[ 4 ]; + array[ offset + 5 ] = te[ 5 ]; + + array[ offset + 6 ] = te[ 6 ]; + array[ offset + 7 ] = te[ 7 ]; + array[ offset + 8 ] = te[ 8 ]; + + return array; + + } + + /** + * Returns a matrix with copied values from this instance. + * + * @return {Matrix3} A clone of this instance. + */ + clone() { + + return new this.constructor().fromArray( this.elements ); + + } + + } + + const _m3 = /*@__PURE__*/ new Matrix3(); + + function createElementNS( name ) { + + return document.createElementNS( 'http://www.w3.org/1999/xhtml', name ); + + } + + const _cache = {}; + + function warnOnce( message ) { + + if ( message in _cache ) return; + + _cache[ message ] = true; + + console.warn( message ); + + } + + const LINEAR_REC709_TO_XYZ = /*@__PURE__*/ new Matrix3().set( + 0.4123908, 0.3575843, 0.1804808, + 0.2126390, 0.7151687, 0.0721923, + 0.0193308, 0.1191948, 0.9505322 + ); + + const XYZ_TO_LINEAR_REC709 = /*@__PURE__*/ new Matrix3().set( + 3.2409699, - 1.5373832, - 0.4986108, + - 0.9692436, 1.8759675, 0.0415551, + 0.0556301, - 0.203977, 1.0569715 + ); + + function createColorManagement() { + + const ColorManagement = { + + enabled: true, + + workingColorSpace: LinearSRGBColorSpace, + + /** + * Implementations of supported color spaces. + * + * Required: + * - primaries: chromaticity coordinates [ rx ry gx gy bx by ] + * - whitePoint: reference white [ x y ] + * - transfer: transfer function (pre-defined) + * - toXYZ: Matrix3 RGB to XYZ transform + * - fromXYZ: Matrix3 XYZ to RGB transform + * - luminanceCoefficients: RGB luminance coefficients + * + * Optional: + * - outputColorSpaceConfig: { drawingBufferColorSpace: ColorSpace } + * - workingColorSpaceConfig: { unpackColorSpace: ColorSpace } + * + * Reference: + * - https://www.russellcottrell.com/photo/matrixCalculator.htm + */ + spaces: {}, + + convert: function ( color, sourceColorSpace, targetColorSpace ) { + + if ( this.enabled === false || sourceColorSpace === targetColorSpace || ! sourceColorSpace || ! targetColorSpace ) { + + return color; + + } + + if ( this.spaces[ sourceColorSpace ].transfer === SRGBTransfer ) { + + color.r = SRGBToLinear( color.r ); + color.g = SRGBToLinear( color.g ); + color.b = SRGBToLinear( color.b ); + + } + + if ( this.spaces[ sourceColorSpace ].primaries !== this.spaces[ targetColorSpace ].primaries ) { + + color.applyMatrix3( this.spaces[ sourceColorSpace ].toXYZ ); + color.applyMatrix3( this.spaces[ targetColorSpace ].fromXYZ ); + + } + + if ( this.spaces[ targetColorSpace ].transfer === SRGBTransfer ) { + + color.r = LinearToSRGB( color.r ); + color.g = LinearToSRGB( color.g ); + color.b = LinearToSRGB( color.b ); + + } + + return color; + + }, + + workingToColorSpace: function ( color, targetColorSpace ) { + + return this.convert( color, this.workingColorSpace, targetColorSpace ); + + }, + + colorSpaceToWorking: function ( color, sourceColorSpace ) { + + return this.convert( color, sourceColorSpace, this.workingColorSpace ); + + }, + + getPrimaries: function ( colorSpace ) { + + return this.spaces[ colorSpace ].primaries; + + }, + + getTransfer: function ( colorSpace ) { + + if ( colorSpace === NoColorSpace ) return LinearTransfer; + + return this.spaces[ colorSpace ].transfer; + + }, + + getLuminanceCoefficients: function ( target, colorSpace = this.workingColorSpace ) { + + return target.fromArray( this.spaces[ colorSpace ].luminanceCoefficients ); + + }, + + define: function ( colorSpaces ) { + + Object.assign( this.spaces, colorSpaces ); + + }, + + // Internal APIs + + _getMatrix: function ( targetMatrix, sourceColorSpace, targetColorSpace ) { + + return targetMatrix + .copy( this.spaces[ sourceColorSpace ].toXYZ ) + .multiply( this.spaces[ targetColorSpace ].fromXYZ ); + + }, + + _getDrawingBufferColorSpace: function ( colorSpace ) { + + return this.spaces[ colorSpace ].outputColorSpaceConfig.drawingBufferColorSpace; + + }, + + _getUnpackColorSpace: function ( colorSpace = this.workingColorSpace ) { + + return this.spaces[ colorSpace ].workingColorSpaceConfig.unpackColorSpace; + + }, + + // Deprecated + + fromWorkingColorSpace: function ( color, targetColorSpace ) { + + warnOnce( 'THREE.ColorManagement: .fromWorkingColorSpace() has been renamed to .workingToColorSpace().' ); // @deprecated, r177 + + return ColorManagement.workingToColorSpace( color, targetColorSpace ); + + }, + + toWorkingColorSpace: function ( color, sourceColorSpace ) { + + warnOnce( 'THREE.ColorManagement: .toWorkingColorSpace() has been renamed to .colorSpaceToWorking().' ); // @deprecated, r177 + + return ColorManagement.colorSpaceToWorking( color, sourceColorSpace ); + + }, + + }; + + /****************************************************************************** + * sRGB definitions + */ + + const REC709_PRIMARIES = [ 0.640, 0.330, 0.300, 0.600, 0.150, 0.060 ]; + const REC709_LUMINANCE_COEFFICIENTS = [ 0.2126, 0.7152, 0.0722 ]; + const D65 = [ 0.3127, 0.3290 ]; + + ColorManagement.define( { + + [ LinearSRGBColorSpace ]: { + primaries: REC709_PRIMARIES, + whitePoint: D65, + transfer: LinearTransfer, + toXYZ: LINEAR_REC709_TO_XYZ, + fromXYZ: XYZ_TO_LINEAR_REC709, + luminanceCoefficients: REC709_LUMINANCE_COEFFICIENTS, + workingColorSpaceConfig: { unpackColorSpace: SRGBColorSpace }, + outputColorSpaceConfig: { drawingBufferColorSpace: SRGBColorSpace } + }, + + [ SRGBColorSpace ]: { + primaries: REC709_PRIMARIES, + whitePoint: D65, + transfer: SRGBTransfer, + toXYZ: LINEAR_REC709_TO_XYZ, + fromXYZ: XYZ_TO_LINEAR_REC709, + luminanceCoefficients: REC709_LUMINANCE_COEFFICIENTS, + outputColorSpaceConfig: { drawingBufferColorSpace: SRGBColorSpace } + }, + + } ); + + return ColorManagement; + + } + + const ColorManagement = /*@__PURE__*/ createColorManagement(); + + function SRGBToLinear( c ) { + + return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 ); + + } + + function LinearToSRGB( c ) { + + return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055; + + } + + let _canvas; + + /** + * A class containing utility functions for images. + * + * @hideconstructor + */ + class ImageUtils { + + /** + * Returns a data URI containing a representation of the given image. + * + * @param {(HTMLImageElement|HTMLCanvasElement)} image - The image object. + * @param {string} [type='image/png'] - Indicates the image format. + * @return {string} The data URI. + */ + static getDataURL( image, type = 'image/png' ) { + + if ( /^data:/i.test( image.src ) ) { + + return image.src; + + } + + if ( typeof HTMLCanvasElement === 'undefined' ) { + + return image.src; + + } + + let canvas; + + if ( image instanceof HTMLCanvasElement ) { + + canvas = image; + + } else { + + if ( _canvas === undefined ) _canvas = createElementNS( 'canvas' ); + + _canvas.width = image.width; + _canvas.height = image.height; + + const context = _canvas.getContext( '2d' ); + + if ( image instanceof ImageData ) { + + context.putImageData( image, 0, 0 ); + + } else { + + context.drawImage( image, 0, 0, image.width, image.height ); + + } + + canvas = _canvas; + + } + + return canvas.toDataURL( type ); + + } + + /** + * Converts the given sRGB image data to linear color space. + * + * @param {(HTMLImageElement|HTMLCanvasElement|ImageBitmap|Object)} image - The image object. + * @return {HTMLCanvasElement|Object} The converted image. + */ + static sRGBToLinear( image ) { + + if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || + ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || + ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { + + const canvas = createElementNS( 'canvas' ); + + canvas.width = image.width; + canvas.height = image.height; + + const context = canvas.getContext( '2d' ); + context.drawImage( image, 0, 0, image.width, image.height ); + + const imageData = context.getImageData( 0, 0, image.width, image.height ); + const data = imageData.data; + + for ( let i = 0; i < data.length; i ++ ) { + + data[ i ] = SRGBToLinear( data[ i ] / 255 ) * 255; + + } + + context.putImageData( imageData, 0, 0 ); + + return canvas; + + } else if ( image.data ) { + + const data = image.data.slice( 0 ); + + for ( let i = 0; i < data.length; i ++ ) { + + if ( data instanceof Uint8Array || data instanceof Uint8ClampedArray ) { + + data[ i ] = Math.floor( SRGBToLinear( data[ i ] / 255 ) * 255 ); + + } else { + + // assuming float + + data[ i ] = SRGBToLinear( data[ i ] ); + + } + + } + + return { + data: data, + width: image.width, + height: image.height + }; + + } else { + + console.warn( 'THREE.ImageUtils.sRGBToLinear(): Unsupported image type. No color space conversion applied.' ); + return image; + + } + + } + + } + + let _sourceId = 0; + + /** + * Represents the data source of a texture. + * + * The main purpose of this class is to decouple the data definition from the texture + * definition so the same data can be used with multiple texture instances. + */ + class Source { + + /** + * Constructs a new video texture. + * + * @param {any} [data=null] - The data definition of a texture. + */ + constructor( data = null ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isSource = true; + + /** + * The ID of the source. + * + * @name Source#id + * @type {number} + * @readonly + */ + Object.defineProperty( this, 'id', { value: _sourceId ++ } ); + + /** + * The UUID of the source. + * + * @type {string} + * @readonly + */ + this.uuid = generateUUID(); + + /** + * The data definition of a texture. + * + * @type {any} + */ + this.data = data; + + /** + * This property is only relevant when {@link Source#needsUpdate} is set to `true` and + * provides more control on how texture data should be processed. When `dataReady` is set + * to `false`, the engine performs the memory allocation (if necessary) but does not transfer + * the data into the GPU memory. + * + * @type {boolean} + * @default true + */ + this.dataReady = true; + + /** + * This starts at `0` and counts how many times {@link Source#needsUpdate} is set to `true`. + * + * @type {number} + * @readonly + * @default 0 + */ + this.version = 0; + + } + + getSize( target ) { + + const data = this.data; + + if ( data instanceof HTMLVideoElement ) { + + target.set( data.videoWidth, data.videoHeight ); + + } else if ( data !== null ) { + + target.set( data.width, data.height, data.depth || 0 ); + + } else { + + target.set( 0, 0, 0 ); + + } + + return target; + + } + + /** + * When the property is set to `true`, the engine allocates the memory + * for the texture (if necessary) and triggers the actual texture upload + * to the GPU next time the source is used. + * + * @type {boolean} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + if ( value === true ) this.version ++; + + } + + /** + * Serializes the source into JSON. + * + * @param {?(Object|string)} meta - An optional value holding meta information about the serialization. + * @return {Object} A JSON object representing the serialized source. + * @see {@link ObjectLoader#parse} + */ + toJSON( meta ) { + + const isRootObject = ( meta === undefined || typeof meta === 'string' ); + + if ( ! isRootObject && meta.images[ this.uuid ] !== undefined ) { + + return meta.images[ this.uuid ]; + + } + + const output = { + uuid: this.uuid, + url: '' + }; + + const data = this.data; + + if ( data !== null ) { + + let url; + + if ( Array.isArray( data ) ) { + + // cube texture + + url = []; + + for ( let i = 0, l = data.length; i < l; i ++ ) { + + if ( data[ i ].isDataTexture ) { + + url.push( serializeImage( data[ i ].image ) ); + + } else { + + url.push( serializeImage( data[ i ] ) ); + + } + + } + + } else { + + // texture + + url = serializeImage( data ); + + } + + output.url = url; + + } + + if ( ! isRootObject ) { + + meta.images[ this.uuid ] = output; + + } + + return output; + + } + + } + + function serializeImage( image ) { + + if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || + ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || + ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { + + // default images + + return ImageUtils.getDataURL( image ); + + } else { + + if ( image.data ) { + + // images of DataTexture + + return { + data: Array.from( image.data ), + width: image.width, + height: image.height, + type: image.data.constructor.name + }; + + } else { + + console.warn( 'THREE.Texture: Unable to serialize Texture.' ); + return {}; + + } + + } + + } + + let _textureId = 0; + + const _tempVec3 = /*@__PURE__*/ new Vector3(); + + /** + * Base class for all textures. + * + * Note: After the initial use of a texture, its dimensions, format, and type + * cannot be changed. Instead, call {@link Texture#dispose} on the texture and instantiate a new one. + * + * @augments EventDispatcher + */ + class Texture extends EventDispatcher { + + /** + * Constructs a new texture. + * + * @param {?Object} [image=Texture.DEFAULT_IMAGE] - The image holding the texture data. + * @param {number} [mapping=Texture.DEFAULT_MAPPING] - The texture mapping. + * @param {number} [wrapS=ClampToEdgeWrapping] - The wrapS value. + * @param {number} [wrapT=ClampToEdgeWrapping] - The wrapT value. + * @param {number} [magFilter=LinearFilter] - The mag filter value. + * @param {number} [minFilter=LinearMipmapLinearFilter] - The min filter value. + * @param {number} [format=RGBAFormat] - The texture format. + * @param {number} [type=UnsignedByteType] - The texture type. + * @param {number} [anisotropy=Texture.DEFAULT_ANISOTROPY] - The anisotropy value. + * @param {string} [colorSpace=NoColorSpace] - The color space. + */ + constructor( image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = Texture.DEFAULT_ANISOTROPY, colorSpace = NoColorSpace ) { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isTexture = true; + + /** + * The ID of the texture. + * + * @name Texture#id + * @type {number} + * @readonly + */ + Object.defineProperty( this, 'id', { value: _textureId ++ } ); + + /** + * The UUID of the material. + * + * @type {string} + * @readonly + */ + this.uuid = generateUUID(); + + /** + * The name of the material. + * + * @type {string} + */ + this.name = ''; + + /** + * The data definition of a texture. A reference to the data source can be + * shared across textures. This is often useful in context of spritesheets + * where multiple textures render the same data but with different texture + * transformations. + * + * @type {Source} + */ + this.source = new Source( image ); + + /** + * An array holding user-defined mipmaps. + * + * @type {Array} + */ + this.mipmaps = []; + + /** + * How the texture is applied to the object. The value `UVMapping` + * is the default, where texture or uv coordinates are used to apply the map. + * + * @type {(UVMapping|CubeReflectionMapping|CubeRefractionMapping|EquirectangularReflectionMapping|EquirectangularRefractionMapping|CubeUVReflectionMapping)} + * @default UVMapping + */ + this.mapping = mapping; + + /** + * Lets you select the uv attribute to map the texture to. `0` for `uv`, + * `1` for `uv1`, `2` for `uv2` and `3` for `uv3`. + * + * @type {number} + * @default 0 + */ + this.channel = 0; + + /** + * This defines how the texture is wrapped horizontally and corresponds to + * *U* in UV mapping. + * + * @type {(RepeatWrapping|ClampToEdgeWrapping|MirroredRepeatWrapping)} + * @default ClampToEdgeWrapping + */ + this.wrapS = wrapS; + + /** + * This defines how the texture is wrapped horizontally and corresponds to + * *V* in UV mapping. + * + * @type {(RepeatWrapping|ClampToEdgeWrapping|MirroredRepeatWrapping)} + * @default ClampToEdgeWrapping + */ + this.wrapT = wrapT; + + /** + * How the texture is sampled when a texel covers more than one pixel. + * + * @type {(NearestFilter|NearestMipmapNearestFilter|NearestMipmapLinearFilter|LinearFilter|LinearMipmapNearestFilter|LinearMipmapLinearFilter)} + * @default LinearFilter + */ + this.magFilter = magFilter; + + /** + * How the texture is sampled when a texel covers less than one pixel. + * + * @type {(NearestFilter|NearestMipmapNearestFilter|NearestMipmapLinearFilter|LinearFilter|LinearMipmapNearestFilter|LinearMipmapLinearFilter)} + * @default LinearMipmapLinearFilter + */ + this.minFilter = minFilter; + + /** + * The number of samples taken along the axis through the pixel that has the + * highest density of texels. By default, this value is `1`. A higher value + * gives a less blurry result than a basic mipmap, at the cost of more + * texture samples being used. + * + * @type {number} + * @default 0 + */ + this.anisotropy = anisotropy; + + /** + * The format of the texture. + * + * @type {number} + * @default RGBAFormat + */ + this.format = format; + + /** + * The default internal format is derived from {@link Texture#format} and {@link Texture#type} and + * defines how the texture data is going to be stored on the GPU. + * + * This property allows to overwrite the default format. + * + * @type {?string} + * @default null + */ + this.internalFormat = null; + + /** + * The data type of the texture. + * + * @type {number} + * @default UnsignedByteType + */ + this.type = type; + + /** + * How much a single repetition of the texture is offset from the beginning, + * in each direction U and V. Typical range is `0.0` to `1.0`. + * + * @type {Vector2} + * @default (0,0) + */ + this.offset = new Vector2( 0, 0 ); + + /** + * How many times the texture is repeated across the surface, in each + * direction U and V. If repeat is set greater than `1` in either direction, + * the corresponding wrap parameter should also be set to `RepeatWrapping` + * or `MirroredRepeatWrapping` to achieve the desired tiling effect. + * + * @type {Vector2} + * @default (1,1) + */ + this.repeat = new Vector2( 1, 1 ); + + /** + * The point around which rotation occurs. A value of `(0.5, 0.5)` corresponds + * to the center of the texture. Default is `(0, 0)`, the lower left. + * + * @type {Vector2} + * @default (0,0) + */ + this.center = new Vector2( 0, 0 ); + + /** + * How much the texture is rotated around the center point, in radians. + * Positive values are counter-clockwise. + * + * @type {number} + * @default 0 + */ + this.rotation = 0; + + /** + * Whether to update the texture's uv-transformation {@link Texture#matrix} + * from the properties {@link Texture#offset}, {@link Texture#repeat}, + * {@link Texture#rotation}, and {@link Texture#center}. + * + * Set this to `false` if you are specifying the uv-transform matrix directly. + * + * @type {boolean} + * @default true + */ + this.matrixAutoUpdate = true; + + /** + * The uv-transformation matrix of the texture. + * + * @type {Matrix3} + */ + this.matrix = new Matrix3(); + + /** + * Whether to generate mipmaps (if possible) for a texture. + * + * Set this to `false` if you are creating mipmaps manually. + * + * @type {boolean} + * @default true + */ + this.generateMipmaps = true; + + /** + * If set to `true`, the alpha channel, if present, is multiplied into the + * color channels when the texture is uploaded to the GPU. + * + * Note that this property has no effect when using `ImageBitmap`. You need to + * configure premultiply alpha on bitmap creation instead. + * + * @type {boolean} + * @default false + */ + this.premultiplyAlpha = false; + + /** + * If set to `true`, the texture is flipped along the vertical axis when + * uploaded to the GPU. + * + * Note that this property has no effect when using `ImageBitmap`. You need to + * configure the flip on bitmap creation instead. + * + * @type {boolean} + * @default true + */ + this.flipY = true; + + /** + * Specifies the alignment requirements for the start of each pixel row in memory. + * The allowable values are `1` (byte-alignment), `2` (rows aligned to even-numbered bytes), + * `4` (word-alignment), and `8` (rows start on double-word boundaries). + * + * @type {number} + * @default 4 + */ + this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) + + /** + * Textures containing color data should be annotated with `SRGBColorSpace` or `LinearSRGBColorSpace`. + * + * @type {string} + * @default NoColorSpace + */ + this.colorSpace = colorSpace; + + /** + * An object that can be used to store custom data about the texture. It + * should not hold references to functions as these will not be cloned. + * + * @type {Object} + */ + this.userData = {}; + + /** + * This can be used to only update a subregion or specific rows of the texture (for example, just the + * first 3 rows). Use the `addUpdateRange()` function to add ranges to this array. + * + * @type {Array} + */ + this.updateRanges = []; + + /** + * This starts at `0` and counts how many times {@link Texture#needsUpdate} is set to `true`. + * + * @type {number} + * @readonly + * @default 0 + */ + this.version = 0; + + /** + * A callback function, called when the texture is updated (e.g., when + * {@link Texture#needsUpdate} has been set to true and then the texture is used). + * + * @type {?Function} + * @default null + */ + this.onUpdate = null; + + /** + * An optional back reference to the textures render target. + * + * @type {?(RenderTarget|WebGLRenderTarget)} + * @default null + */ + this.renderTarget = null; + + /** + * Indicates whether a texture belongs to a render target or not. + * + * @type {boolean} + * @readonly + * @default false + */ + this.isRenderTargetTexture = false; + + /** + * Indicates if a texture should be handled like a texture array. + * + * @type {boolean} + * @readonly + * @default false + */ + this.isArrayTexture = image && image.depth && image.depth > 1 ? true : false; + + /** + * Indicates whether this texture should be processed by `PMREMGenerator` or not + * (only relevant for render target textures). + * + * @type {number} + * @readonly + * @default 0 + */ + this.pmremVersion = 0; + + } + + /** + * The width of the texture in pixels. + */ + get width() { + + return this.source.getSize( _tempVec3 ).x; + + } + + /** + * The height of the texture in pixels. + */ + get height() { + + return this.source.getSize( _tempVec3 ).y; + + } + + /** + * The depth of the texture in pixels. + */ + get depth() { + + return this.source.getSize( _tempVec3 ).z; + + } + + /** + * The image object holding the texture data. + * + * @type {?Object} + */ + get image() { + + return this.source.data; + + } + + set image( value = null ) { + + this.source.data = value; + + } + + /** + * Updates the texture transformation matrix from the from the properties {@link Texture#offset}, + * {@link Texture#repeat}, {@link Texture#rotation}, and {@link Texture#center}. + */ + updateMatrix() { + + this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y ); + + } + + /** + * Adds a range of data in the data texture to be updated on the GPU. + * + * @param {number} start - Position at which to start update. + * @param {number} count - The number of components to update. + */ + addUpdateRange( start, count ) { + + this.updateRanges.push( { start, count } ); + + } + + /** + * Clears the update ranges. + */ + clearUpdateRanges() { + + this.updateRanges.length = 0; + + } + + /** + * Returns a new texture with copied values from this instance. + * + * @return {Texture} A clone of this instance. + */ + clone() { + + return new this.constructor().copy( this ); + + } + + /** + * Copies the values of the given texture to this instance. + * + * @param {Texture} source - The texture to copy. + * @return {Texture} A reference to this instance. + */ + copy( source ) { + + this.name = source.name; + + this.source = source.source; + this.mipmaps = source.mipmaps.slice( 0 ); + + this.mapping = source.mapping; + this.channel = source.channel; + + this.wrapS = source.wrapS; + this.wrapT = source.wrapT; + + this.magFilter = source.magFilter; + this.minFilter = source.minFilter; + + this.anisotropy = source.anisotropy; + + this.format = source.format; + this.internalFormat = source.internalFormat; + this.type = source.type; + + this.offset.copy( source.offset ); + this.repeat.copy( source.repeat ); + this.center.copy( source.center ); + this.rotation = source.rotation; + + this.matrixAutoUpdate = source.matrixAutoUpdate; + this.matrix.copy( source.matrix ); + + this.generateMipmaps = source.generateMipmaps; + this.premultiplyAlpha = source.premultiplyAlpha; + this.flipY = source.flipY; + this.unpackAlignment = source.unpackAlignment; + this.colorSpace = source.colorSpace; + + this.renderTarget = source.renderTarget; + this.isRenderTargetTexture = source.isRenderTargetTexture; + this.isArrayTexture = source.isArrayTexture; + + this.userData = JSON.parse( JSON.stringify( source.userData ) ); + + this.needsUpdate = true; + + return this; + + } + + /** + * Sets this texture's properties based on `values`. + * @param {Object} values - A container with texture parameters. + */ + setValues( values ) { + + for ( const key in values ) { + + const newValue = values[ key ]; + + if ( newValue === undefined ) { + + console.warn( `THREE.Texture.setValues(): parameter '${ key }' has value of undefined.` ); + continue; + + } + + const currentValue = this[ key ]; + + if ( currentValue === undefined ) { + + console.warn( `THREE.Texture.setValues(): property '${ key }' does not exist.` ); + continue; + + } + + if ( ( currentValue && newValue ) && ( currentValue.isVector2 && newValue.isVector2 ) ) { + + currentValue.copy( newValue ); + + } else if ( ( currentValue && newValue ) && ( currentValue.isVector3 && newValue.isVector3 ) ) { + + currentValue.copy( newValue ); + + } else if ( ( currentValue && newValue ) && ( currentValue.isMatrix3 && newValue.isMatrix3 ) ) { + + currentValue.copy( newValue ); + + } else { + + this[ key ] = newValue; + + } + + } + + } + + /** + * Serializes the texture into JSON. + * + * @param {?(Object|string)} meta - An optional value holding meta information about the serialization. + * @return {Object} A JSON object representing the serialized texture. + * @see {@link ObjectLoader#parse} + */ + toJSON( meta ) { + + const isRootObject = ( meta === undefined || typeof meta === 'string' ); + + if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) { + + return meta.textures[ this.uuid ]; + + } + + const output = { + + metadata: { + version: 4.7, + type: 'Texture', + generator: 'Texture.toJSON' + }, + + uuid: this.uuid, + name: this.name, + + image: this.source.toJSON( meta ).uuid, + + mapping: this.mapping, + channel: this.channel, + + repeat: [ this.repeat.x, this.repeat.y ], + offset: [ this.offset.x, this.offset.y ], + center: [ this.center.x, this.center.y ], + rotation: this.rotation, + + wrap: [ this.wrapS, this.wrapT ], + + format: this.format, + internalFormat: this.internalFormat, + type: this.type, + colorSpace: this.colorSpace, + + minFilter: this.minFilter, + magFilter: this.magFilter, + anisotropy: this.anisotropy, + + flipY: this.flipY, + + generateMipmaps: this.generateMipmaps, + premultiplyAlpha: this.premultiplyAlpha, + unpackAlignment: this.unpackAlignment + + }; + + if ( Object.keys( this.userData ).length > 0 ) output.userData = this.userData; + + if ( ! isRootObject ) { + + meta.textures[ this.uuid ] = output; + + } + + return output; + + } + + /** + * Frees the GPU-related resources allocated by this instance. Call this + * method whenever this instance is no longer used in your app. + * + * @fires Texture#dispose + */ + dispose() { + + /** + * Fires when the texture has been disposed of. + * + * @event Texture#dispose + * @type {Object} + */ + this.dispatchEvent( { type: 'dispose' } ); + + } + + /** + * Transforms the given uv vector with the textures uv transformation matrix. + * + * @param {Vector2} uv - The uv vector. + * @return {Vector2} The transformed uv vector. + */ + transformUv( uv ) { + + if ( this.mapping !== UVMapping ) return uv; + + uv.applyMatrix3( this.matrix ); + + if ( uv.x < 0 || uv.x > 1 ) { + + switch ( this.wrapS ) { + + case RepeatWrapping: + + uv.x = uv.x - Math.floor( uv.x ); + break; + + case ClampToEdgeWrapping: + + uv.x = uv.x < 0 ? 0 : 1; + break; + + case MirroredRepeatWrapping: + + if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) { + + uv.x = Math.ceil( uv.x ) - uv.x; + + } else { + + uv.x = uv.x - Math.floor( uv.x ); + + } + + break; + + } + + } + + if ( uv.y < 0 || uv.y > 1 ) { + + switch ( this.wrapT ) { + + case RepeatWrapping: + + uv.y = uv.y - Math.floor( uv.y ); + break; + + case ClampToEdgeWrapping: + + uv.y = uv.y < 0 ? 0 : 1; + break; + + case MirroredRepeatWrapping: + + if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) { + + uv.y = Math.ceil( uv.y ) - uv.y; + + } else { + + uv.y = uv.y - Math.floor( uv.y ); + + } + + break; + + } + + } + + if ( this.flipY ) { + + uv.y = 1 - uv.y; + + } + + return uv; + + } + + /** + * Setting this property to `true` indicates the engine the texture + * must be updated in the next render. This triggers a texture upload + * to the GPU and ensures correct texture parameter configuration. + * + * @type {boolean} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + if ( value === true ) { + + this.version ++; + this.source.needsUpdate = true; + + } + + } + + /** + * Setting this property to `true` indicates the engine the PMREM + * must be regenerated. + * + * @type {boolean} + * @default false + * @param {boolean} value + */ + set needsPMREMUpdate( value ) { + + if ( value === true ) { + + this.pmremVersion ++; + + } + + } + + } + + /** + * The default image for all textures. + * + * @static + * @type {?Image} + * @default null + */ + Texture.DEFAULT_IMAGE = null; + + /** + * The default mapping for all textures. + * + * @static + * @type {number} + * @default UVMapping + */ + Texture.DEFAULT_MAPPING = UVMapping; + + /** + * The default anisotropy value for all textures. + * + * @static + * @type {number} + * @default 1 + */ + Texture.DEFAULT_ANISOTROPY = 1; + + /** + * Represents a 4x4 matrix. + * + * The most common use of a 4x4 matrix in 3D computer graphics is as a transformation matrix. + * For an introduction to transformation matrices as used in WebGL, check out [this tutorial]{@link https://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices} + * + * This allows a 3D vector representing a point in 3D space to undergo + * transformations such as translation, rotation, shear, scale, reflection, + * orthogonal or perspective projection and so on, by being multiplied by the + * matrix. This is known as `applying` the matrix to the vector. + * + * A Note on Row-Major and Column-Major Ordering: + * + * The constructor and {@link Matrix3#set} method take arguments in + * [row-major]{@link https://en.wikipedia.org/wiki/Row-_and_column-major_order#Column-major_order} + * order, while internally they are stored in the {@link Matrix3#elements} array in column-major order. + * This means that calling: + * ```js + * const m = new THREE.Matrix4(); + * m.set( 11, 12, 13, 14, + * 21, 22, 23, 24, + * 31, 32, 33, 34, + * 41, 42, 43, 44 ); + * ``` + * will result in the elements array containing: + * ```js + * m.elements = [ 11, 21, 31, 41, + * 12, 22, 32, 42, + * 13, 23, 33, 43, + * 14, 24, 34, 44 ]; + * ``` + * and internally all calculations are performed using column-major ordering. + * However, as the actual ordering makes no difference mathematically and + * most people are used to thinking about matrices in row-major order, the + * three.js documentation shows matrices in row-major order. Just bear in + * mind that if you are reading the source code, you'll have to take the + * transpose of any matrices outlined here to make sense of the calculations. + */ + class Matrix4 { + + /** + * Constructs a new 4x4 matrix. The arguments are supposed to be + * in row-major order. If no arguments are provided, the constructor + * initializes the matrix as an identity matrix. + * + * @param {number} [n11] - 1-1 matrix element. + * @param {number} [n12] - 1-2 matrix element. + * @param {number} [n13] - 1-3 matrix element. + * @param {number} [n14] - 1-4 matrix element. + * @param {number} [n21] - 2-1 matrix element. + * @param {number} [n22] - 2-2 matrix element. + * @param {number} [n23] - 2-3 matrix element. + * @param {number} [n24] - 2-4 matrix element. + * @param {number} [n31] - 3-1 matrix element. + * @param {number} [n32] - 3-2 matrix element. + * @param {number} [n33] - 3-3 matrix element. + * @param {number} [n34] - 3-4 matrix element. + * @param {number} [n41] - 4-1 matrix element. + * @param {number} [n42] - 4-2 matrix element. + * @param {number} [n43] - 4-3 matrix element. + * @param {number} [n44] - 4-4 matrix element. + */ + constructor( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + Matrix4.prototype.isMatrix4 = true; + + /** + * A column-major list of matrix values. + * + * @type {Array} + */ + this.elements = [ + + 1, 0, 0, 0, + 0, 1, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 + + ]; + + if ( n11 !== undefined ) { + + this.set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ); + + } + + } + + /** + * Sets the elements of the matrix.The arguments are supposed to be + * in row-major order. + * + * @param {number} [n11] - 1-1 matrix element. + * @param {number} [n12] - 1-2 matrix element. + * @param {number} [n13] - 1-3 matrix element. + * @param {number} [n14] - 1-4 matrix element. + * @param {number} [n21] - 2-1 matrix element. + * @param {number} [n22] - 2-2 matrix element. + * @param {number} [n23] - 2-3 matrix element. + * @param {number} [n24] - 2-4 matrix element. + * @param {number} [n31] - 3-1 matrix element. + * @param {number} [n32] - 3-2 matrix element. + * @param {number} [n33] - 3-3 matrix element. + * @param {number} [n34] - 3-4 matrix element. + * @param {number} [n41] - 4-1 matrix element. + * @param {number} [n42] - 4-2 matrix element. + * @param {number} [n43] - 4-3 matrix element. + * @param {number} [n44] - 4-4 matrix element. + * @return {Matrix4} A reference to this matrix. + */ + set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { + + const te = this.elements; + + te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; + te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; + te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; + te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; + + return this; + + } + + /** + * Sets this matrix to the 4x4 identity matrix. + * + * @return {Matrix4} A reference to this matrix. + */ + identity() { + + this.set( + + 1, 0, 0, 0, + 0, 1, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Returns a matrix with copied values from this instance. + * + * @return {Matrix4} A clone of this instance. + */ + clone() { + + return new Matrix4().fromArray( this.elements ); + + } + + /** + * Copies the values of the given matrix to this instance. + * + * @param {Matrix4} m - The matrix to copy. + * @return {Matrix4} A reference to this matrix. + */ + copy( m ) { + + const te = this.elements; + const me = m.elements; + + te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; + te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; + te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ]; + te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ]; + + return this; + + } + + /** + * Copies the translation component of the given matrix + * into this matrix's translation component. + * + * @param {Matrix4} m - The matrix to copy the translation component. + * @return {Matrix4} A reference to this matrix. + */ + copyPosition( m ) { + + const te = this.elements, me = m.elements; + + te[ 12 ] = me[ 12 ]; + te[ 13 ] = me[ 13 ]; + te[ 14 ] = me[ 14 ]; + + return this; + + } + + /** + * Set the upper 3x3 elements of this matrix to the values of given 3x3 matrix. + * + * @param {Matrix3} m - The 3x3 matrix. + * @return {Matrix4} A reference to this matrix. + */ + setFromMatrix3( m ) { + + const me = m.elements; + + this.set( + + me[ 0 ], me[ 3 ], me[ 6 ], 0, + me[ 1 ], me[ 4 ], me[ 7 ], 0, + me[ 2 ], me[ 5 ], me[ 8 ], 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Extracts the basis of this matrix into the three axis vectors provided. + * + * @param {Vector3} xAxis - The basis's x axis. + * @param {Vector3} yAxis - The basis's y axis. + * @param {Vector3} zAxis - The basis's z axis. + * @return {Matrix4} A reference to this matrix. + */ + extractBasis( xAxis, yAxis, zAxis ) { + + xAxis.setFromMatrixColumn( this, 0 ); + yAxis.setFromMatrixColumn( this, 1 ); + zAxis.setFromMatrixColumn( this, 2 ); + + return this; + + } + + /** + * Sets the given basis vectors to this matrix. + * + * @param {Vector3} xAxis - The basis's x axis. + * @param {Vector3} yAxis - The basis's y axis. + * @param {Vector3} zAxis - The basis's z axis. + * @return {Matrix4} A reference to this matrix. + */ + makeBasis( xAxis, yAxis, zAxis ) { + + this.set( + xAxis.x, yAxis.x, zAxis.x, 0, + xAxis.y, yAxis.y, zAxis.y, 0, + xAxis.z, yAxis.z, zAxis.z, 0, + 0, 0, 0, 1 + ); + + return this; + + } + + /** + * Extracts the rotation component of the given matrix + * into this matrix's rotation component. + * + * Note: This method does not support reflection matrices. + * + * @param {Matrix4} m - The matrix. + * @return {Matrix4} A reference to this matrix. + */ + extractRotation( m ) { + + const te = this.elements; + const me = m.elements; + + const scaleX = 1 / _v1$5.setFromMatrixColumn( m, 0 ).length(); + const scaleY = 1 / _v1$5.setFromMatrixColumn( m, 1 ).length(); + const scaleZ = 1 / _v1$5.setFromMatrixColumn( m, 2 ).length(); + + te[ 0 ] = me[ 0 ] * scaleX; + te[ 1 ] = me[ 1 ] * scaleX; + te[ 2 ] = me[ 2 ] * scaleX; + te[ 3 ] = 0; + + te[ 4 ] = me[ 4 ] * scaleY; + te[ 5 ] = me[ 5 ] * scaleY; + te[ 6 ] = me[ 6 ] * scaleY; + te[ 7 ] = 0; + + te[ 8 ] = me[ 8 ] * scaleZ; + te[ 9 ] = me[ 9 ] * scaleZ; + te[ 10 ] = me[ 10 ] * scaleZ; + te[ 11 ] = 0; + + te[ 12 ] = 0; + te[ 13 ] = 0; + te[ 14 ] = 0; + te[ 15 ] = 1; + + return this; + + } + + /** + * Sets the rotation component (the upper left 3x3 matrix) of this matrix to + * the rotation specified by the given Euler angles. The rest of + * the matrix is set to the identity. Depending on the {@link Euler#order}, + * there are six possible outcomes. See [this page]{@link https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix} + * for a complete list. + * + * @param {Euler} euler - The Euler angles. + * @return {Matrix4} A reference to this matrix. + */ + makeRotationFromEuler( euler ) { + + const te = this.elements; + + const x = euler.x, y = euler.y, z = euler.z; + const a = Math.cos( x ), b = Math.sin( x ); + const c = Math.cos( y ), d = Math.sin( y ); + const e = Math.cos( z ), f = Math.sin( z ); + + if ( euler.order === 'XYZ' ) { + + const ae = a * e, af = a * f, be = b * e, bf = b * f; + + te[ 0 ] = c * e; + te[ 4 ] = - c * f; + te[ 8 ] = d; + + te[ 1 ] = af + be * d; + te[ 5 ] = ae - bf * d; + te[ 9 ] = - b * c; + + te[ 2 ] = bf - ae * d; + te[ 6 ] = be + af * d; + te[ 10 ] = a * c; + + } else if ( euler.order === 'YXZ' ) { + + const ce = c * e, cf = c * f, de = d * e, df = d * f; + + te[ 0 ] = ce + df * b; + te[ 4 ] = de * b - cf; + te[ 8 ] = a * d; + + te[ 1 ] = a * f; + te[ 5 ] = a * e; + te[ 9 ] = - b; + + te[ 2 ] = cf * b - de; + te[ 6 ] = df + ce * b; + te[ 10 ] = a * c; + + } else if ( euler.order === 'ZXY' ) { + + const ce = c * e, cf = c * f, de = d * e, df = d * f; + + te[ 0 ] = ce - df * b; + te[ 4 ] = - a * f; + te[ 8 ] = de + cf * b; + + te[ 1 ] = cf + de * b; + te[ 5 ] = a * e; + te[ 9 ] = df - ce * b; + + te[ 2 ] = - a * d; + te[ 6 ] = b; + te[ 10 ] = a * c; + + } else if ( euler.order === 'ZYX' ) { + + const ae = a * e, af = a * f, be = b * e, bf = b * f; + + te[ 0 ] = c * e; + te[ 4 ] = be * d - af; + te[ 8 ] = ae * d + bf; + + te[ 1 ] = c * f; + te[ 5 ] = bf * d + ae; + te[ 9 ] = af * d - be; + + te[ 2 ] = - d; + te[ 6 ] = b * c; + te[ 10 ] = a * c; + + } else if ( euler.order === 'YZX' ) { + + const ac = a * c, ad = a * d, bc = b * c, bd = b * d; + + te[ 0 ] = c * e; + te[ 4 ] = bd - ac * f; + te[ 8 ] = bc * f + ad; + + te[ 1 ] = f; + te[ 5 ] = a * e; + te[ 9 ] = - b * e; + + te[ 2 ] = - d * e; + te[ 6 ] = ad * f + bc; + te[ 10 ] = ac - bd * f; + + } else if ( euler.order === 'XZY' ) { + + const ac = a * c, ad = a * d, bc = b * c, bd = b * d; + + te[ 0 ] = c * e; + te[ 4 ] = - f; + te[ 8 ] = d * e; + + te[ 1 ] = ac * f + bd; + te[ 5 ] = a * e; + te[ 9 ] = ad * f - bc; + + te[ 2 ] = bc * f - ad; + te[ 6 ] = b * e; + te[ 10 ] = bd * f + ac; + + } + + // bottom row + te[ 3 ] = 0; + te[ 7 ] = 0; + te[ 11 ] = 0; + + // last column + te[ 12 ] = 0; + te[ 13 ] = 0; + te[ 14 ] = 0; + te[ 15 ] = 1; + + return this; + + } + + /** + * Sets the rotation component of this matrix to the rotation specified by + * the given Quaternion as outlined [here]{@link https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion} + * The rest of the matrix is set to the identity. + * + * @param {Quaternion} q - The Quaternion. + * @return {Matrix4} A reference to this matrix. + */ + makeRotationFromQuaternion( q ) { + + return this.compose( _zero, q, _one ); + + } + + /** + * Sets the rotation component of the transformation matrix, looking from `eye` towards + * `target`, and oriented by the up-direction. + * + * @param {Vector3} eye - The eye vector. + * @param {Vector3} target - The target vector. + * @param {Vector3} up - The up vector. + * @return {Matrix4} A reference to this matrix. + */ + lookAt( eye, target, up ) { + + const te = this.elements; + + _z.subVectors( eye, target ); + + if ( _z.lengthSq() === 0 ) { + + // eye and target are in the same position + + _z.z = 1; + + } + + _z.normalize(); + _x.crossVectors( up, _z ); + + if ( _x.lengthSq() === 0 ) { + + // up and z are parallel + + if ( Math.abs( up.z ) === 1 ) { + + _z.x += 0.0001; + + } else { + + _z.z += 0.0001; + + } + + _z.normalize(); + _x.crossVectors( up, _z ); + + } + + _x.normalize(); + _y.crossVectors( _z, _x ); + + te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x; + te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y; + te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z; + + return this; + + } + + /** + * Post-multiplies this matrix by the given 4x4 matrix. + * + * @param {Matrix4} m - The matrix to multiply with. + * @return {Matrix4} A reference to this matrix. + */ + multiply( m ) { + + return this.multiplyMatrices( this, m ); + + } + + /** + * Pre-multiplies this matrix by the given 4x4 matrix. + * + * @param {Matrix4} m - The matrix to multiply with. + * @return {Matrix4} A reference to this matrix. + */ + premultiply( m ) { + + return this.multiplyMatrices( m, this ); + + } + + /** + * Multiples the given 4x4 matrices and stores the result + * in this matrix. + * + * @param {Matrix4} a - The first matrix. + * @param {Matrix4} b - The second matrix. + * @return {Matrix4} A reference to this matrix. + */ + multiplyMatrices( a, b ) { + + const ae = a.elements; + const be = b.elements; + const te = this.elements; + + const a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; + const a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; + const a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; + const a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; + + const b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; + const b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; + const b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; + const b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; + + te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; + te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; + te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; + te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; + + te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; + te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; + te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; + te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; + + te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; + te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; + te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; + te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; + + te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; + te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; + te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; + te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; + + return this; + + } + + /** + * Multiplies every component of the matrix by the given scalar. + * + * @param {number} s - The scalar. + * @return {Matrix4} A reference to this matrix. + */ + multiplyScalar( s ) { + + const te = this.elements; + + te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; + te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; + te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; + te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; + + return this; + + } + + /** + * Computes and returns the determinant of this matrix. + * + * Based on the method outlined [here]{@link http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.html}. + * + * @return {number} The determinant. + */ + determinant() { + + const te = this.elements; + + const n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; + const n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; + const n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; + const n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; + + //TODO: make this more efficient + + return ( + n41 * ( + + n14 * n23 * n32 + - n13 * n24 * n32 + - n14 * n22 * n33 + + n12 * n24 * n33 + + n13 * n22 * n34 + - n12 * n23 * n34 + ) + + n42 * ( + + n11 * n23 * n34 + - n11 * n24 * n33 + + n14 * n21 * n33 + - n13 * n21 * n34 + + n13 * n24 * n31 + - n14 * n23 * n31 + ) + + n43 * ( + + n11 * n24 * n32 + - n11 * n22 * n34 + - n14 * n21 * n32 + + n12 * n21 * n34 + + n14 * n22 * n31 + - n12 * n24 * n31 + ) + + n44 * ( + - n13 * n22 * n31 + - n11 * n23 * n32 + + n11 * n22 * n33 + + n13 * n21 * n32 + - n12 * n21 * n33 + + n12 * n23 * n31 + ) + + ); + + } + + /** + * Transposes this matrix in place. + * + * @return {Matrix4} A reference to this matrix. + */ + transpose() { + + const te = this.elements; + let tmp; + + tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; + tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; + tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; + + tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; + tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; + tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; + + return this; + + } + + /** + * Sets the position component for this matrix from the given vector, + * without affecting the rest of the matrix. + * + * @param {number|Vector3} x - The x component of the vector or alternatively the vector object. + * @param {number} y - The y component of the vector. + * @param {number} z - The z component of the vector. + * @return {Matrix4} A reference to this matrix. + */ + setPosition( x, y, z ) { + + const te = this.elements; + + if ( x.isVector3 ) { + + te[ 12 ] = x.x; + te[ 13 ] = x.y; + te[ 14 ] = x.z; + + } else { + + te[ 12 ] = x; + te[ 13 ] = y; + te[ 14 ] = z; + + } + + return this; + + } + + /** + * Inverts this matrix, using the [analytic method]{@link https://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution}. + * You can not invert with a determinant of zero. If you attempt this, the method produces + * a zero matrix instead. + * + * @return {Matrix4} A reference to this matrix. + */ + invert() { + + // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm + const te = this.elements, + + n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n41 = te[ 3 ], + n12 = te[ 4 ], n22 = te[ 5 ], n32 = te[ 6 ], n42 = te[ 7 ], + n13 = te[ 8 ], n23 = te[ 9 ], n33 = te[ 10 ], n43 = te[ 11 ], + n14 = te[ 12 ], n24 = te[ 13 ], n34 = te[ 14 ], n44 = te[ 15 ], + + t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, + t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, + t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, + t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; + + const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; + + if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ); + + const detInv = 1 / det; + + te[ 0 ] = t11 * detInv; + te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv; + te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv; + te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv; + + te[ 4 ] = t12 * detInv; + te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv; + te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv; + te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv; + + te[ 8 ] = t13 * detInv; + te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv; + te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv; + te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv; + + te[ 12 ] = t14 * detInv; + te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv; + te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv; + te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv; + + return this; + + } + + /** + * Multiplies the columns of this matrix by the given vector. + * + * @param {Vector3} v - The scale vector. + * @return {Matrix4} A reference to this matrix. + */ + scale( v ) { + + const te = this.elements; + const x = v.x, y = v.y, z = v.z; + + te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; + te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; + te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; + te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; + + return this; + + } + + /** + * Gets the maximum scale value of the three axes. + * + * @return {number} The maximum scale. + */ + getMaxScaleOnAxis() { + + const te = this.elements; + + const scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; + const scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; + const scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; + + return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) ); + + } + + /** + * Sets this matrix as a translation transform from the given vector. + * + * @param {number|Vector3} x - The amount to translate in the X axis or alternatively a translation vector. + * @param {number} y - The amount to translate in the Y axis. + * @param {number} z - The amount to translate in the z axis. + * @return {Matrix4} A reference to this matrix. + */ + makeTranslation( x, y, z ) { + + if ( x.isVector3 ) { + + this.set( + + 1, 0, 0, x.x, + 0, 1, 0, x.y, + 0, 0, 1, x.z, + 0, 0, 0, 1 + + ); + + } else { + + this.set( + + 1, 0, 0, x, + 0, 1, 0, y, + 0, 0, 1, z, + 0, 0, 0, 1 + + ); + + } + + return this; + + } + + /** + * Sets this matrix as a rotational transformation around the X axis by + * the given angle. + * + * @param {number} theta - The rotation in radians. + * @return {Matrix4} A reference to this matrix. + */ + makeRotationX( theta ) { + + const c = Math.cos( theta ), s = Math.sin( theta ); + + this.set( + + 1, 0, 0, 0, + 0, c, - s, 0, + 0, s, c, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix as a rotational transformation around the Y axis by + * the given angle. + * + * @param {number} theta - The rotation in radians. + * @return {Matrix4} A reference to this matrix. + */ + makeRotationY( theta ) { + + const c = Math.cos( theta ), s = Math.sin( theta ); + + this.set( + + c, 0, s, 0, + 0, 1, 0, 0, + - s, 0, c, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix as a rotational transformation around the Z axis by + * the given angle. + * + * @param {number} theta - The rotation in radians. + * @return {Matrix4} A reference to this matrix. + */ + makeRotationZ( theta ) { + + const c = Math.cos( theta ), s = Math.sin( theta ); + + this.set( + + c, - s, 0, 0, + s, c, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix as a rotational transformation around the given axis by + * the given angle. + * + * This is a somewhat controversial but mathematically sound alternative to + * rotating via Quaternions. See the discussion [here]{@link https://www.gamedev.net/articles/programming/math-and-physics/do-we-really-need-quaternions-r1199}. + * + * @param {Vector3} axis - The normalized rotation axis. + * @param {number} angle - The rotation in radians. + * @return {Matrix4} A reference to this matrix. + */ + makeRotationAxis( axis, angle ) { + + // Based on http://www.gamedev.net/reference/articles/article1199.asp + + const c = Math.cos( angle ); + const s = Math.sin( angle ); + const t = 1 - c; + const x = axis.x, y = axis.y, z = axis.z; + const tx = t * x, ty = t * y; + + this.set( + + tx * x + c, tx * y - s * z, tx * z + s * y, 0, + tx * y + s * z, ty * y + c, ty * z - s * x, 0, + tx * z - s * y, ty * z + s * x, t * z * z + c, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix as a scale transformation. + * + * @param {number} x - The amount to scale in the X axis. + * @param {number} y - The amount to scale in the Y axis. + * @param {number} z - The amount to scale in the Z axis. + * @return {Matrix4} A reference to this matrix. + */ + makeScale( x, y, z ) { + + this.set( + + x, 0, 0, 0, + 0, y, 0, 0, + 0, 0, z, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix as a shear transformation. + * + * @param {number} xy - The amount to shear X by Y. + * @param {number} xz - The amount to shear X by Z. + * @param {number} yx - The amount to shear Y by X. + * @param {number} yz - The amount to shear Y by Z. + * @param {number} zx - The amount to shear Z by X. + * @param {number} zy - The amount to shear Z by Y. + * @return {Matrix4} A reference to this matrix. + */ + makeShear( xy, xz, yx, yz, zx, zy ) { + + this.set( + + 1, yx, zx, 0, + xy, 1, zy, 0, + xz, yz, 1, 0, + 0, 0, 0, 1 + + ); + + return this; + + } + + /** + * Sets this matrix to the transformation composed of the given position, + * rotation (Quaternion) and scale. + * + * @param {Vector3} position - The position vector. + * @param {Quaternion} quaternion - The rotation as a Quaternion. + * @param {Vector3} scale - The scale vector. + * @return {Matrix4} A reference to this matrix. + */ + compose( position, quaternion, scale ) { + + const te = this.elements; + + const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w; + const x2 = x + x, y2 = y + y, z2 = z + z; + const xx = x * x2, xy = x * y2, xz = x * z2; + const yy = y * y2, yz = y * z2, zz = z * z2; + const wx = w * x2, wy = w * y2, wz = w * z2; + + const sx = scale.x, sy = scale.y, sz = scale.z; + + te[ 0 ] = ( 1 - ( yy + zz ) ) * sx; + te[ 1 ] = ( xy + wz ) * sx; + te[ 2 ] = ( xz - wy ) * sx; + te[ 3 ] = 0; + + te[ 4 ] = ( xy - wz ) * sy; + te[ 5 ] = ( 1 - ( xx + zz ) ) * sy; + te[ 6 ] = ( yz + wx ) * sy; + te[ 7 ] = 0; + + te[ 8 ] = ( xz + wy ) * sz; + te[ 9 ] = ( yz - wx ) * sz; + te[ 10 ] = ( 1 - ( xx + yy ) ) * sz; + te[ 11 ] = 0; + + te[ 12 ] = position.x; + te[ 13 ] = position.y; + te[ 14 ] = position.z; + te[ 15 ] = 1; + + return this; + + } + + /** + * Decomposes this matrix into its position, rotation and scale components + * and provides the result in the given objects. + * + * Note: Not all matrices are decomposable in this way. For example, if an + * object has a non-uniformly scaled parent, then the object's world matrix + * may not be decomposable, and this method may not be appropriate. + * + * @param {Vector3} position - The position vector. + * @param {Quaternion} quaternion - The rotation as a Quaternion. + * @param {Vector3} scale - The scale vector. + * @return {Matrix4} A reference to this matrix. + */ + decompose( position, quaternion, scale ) { + + const te = this.elements; + + let sx = _v1$5.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); + const sy = _v1$5.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); + const sz = _v1$5.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); + + // if determine is negative, we need to invert one scale + const det = this.determinant(); + if ( det < 0 ) sx = - sx; + + position.x = te[ 12 ]; + position.y = te[ 13 ]; + position.z = te[ 14 ]; + + // scale the rotation part + _m1$2.copy( this ); + + const invSX = 1 / sx; + const invSY = 1 / sy; + const invSZ = 1 / sz; + + _m1$2.elements[ 0 ] *= invSX; + _m1$2.elements[ 1 ] *= invSX; + _m1$2.elements[ 2 ] *= invSX; + + _m1$2.elements[ 4 ] *= invSY; + _m1$2.elements[ 5 ] *= invSY; + _m1$2.elements[ 6 ] *= invSY; + + _m1$2.elements[ 8 ] *= invSZ; + _m1$2.elements[ 9 ] *= invSZ; + _m1$2.elements[ 10 ] *= invSZ; + + quaternion.setFromRotationMatrix( _m1$2 ); + + scale.x = sx; + scale.y = sy; + scale.z = sz; + + return this; + + } + + /** + * Creates a perspective projection matrix. This is used internally by + * {@link PerspectiveCamera#updateProjectionMatrix}. + + * @param {number} left - Left boundary of the viewing frustum at the near plane. + * @param {number} right - Right boundary of the viewing frustum at the near plane. + * @param {number} top - Top boundary of the viewing frustum at the near plane. + * @param {number} bottom - Bottom boundary of the viewing frustum at the near plane. + * @param {number} near - The distance from the camera to the near plane. + * @param {number} far - The distance from the camera to the far plane. + * @param {(WebGLCoordinateSystem|WebGPUCoordinateSystem)} [coordinateSystem=WebGLCoordinateSystem] - The coordinate system. + * @return {Matrix4} A reference to this matrix. + */ + makePerspective( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem ) { + + const te = this.elements; + const x = 2 * near / ( right - left ); + const y = 2 * near / ( top - bottom ); + + const a = ( right + left ) / ( right - left ); + const b = ( top + bottom ) / ( top - bottom ); + + let c, d; + + if ( coordinateSystem === WebGLCoordinateSystem ) { + + c = - ( far + near ) / ( far - near ); + d = ( - 2 * far * near ) / ( far - near ); + + } else if ( coordinateSystem === WebGPUCoordinateSystem ) { + + c = - far / ( far - near ); + d = ( - far * near ) / ( far - near ); + + } else { + + throw new Error( 'THREE.Matrix4.makePerspective(): Invalid coordinate system: ' + coordinateSystem ); + + } + + te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; + te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; + te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; + te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0; + + return this; + + } + + /** + * Creates a orthographic projection matrix. This is used internally by + * {@link OrthographicCamera#updateProjectionMatrix}. + + * @param {number} left - Left boundary of the viewing frustum at the near plane. + * @param {number} right - Right boundary of the viewing frustum at the near plane. + * @param {number} top - Top boundary of the viewing frustum at the near plane. + * @param {number} bottom - Bottom boundary of the viewing frustum at the near plane. + * @param {number} near - The distance from the camera to the near plane. + * @param {number} far - The distance from the camera to the far plane. + * @param {(WebGLCoordinateSystem|WebGPUCoordinateSystem)} [coordinateSystem=WebGLCoordinateSystem] - The coordinate system. + * @return {Matrix4} A reference to this matrix. + */ + makeOrthographic( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem ) { + + const te = this.elements; + const w = 1.0 / ( right - left ); + const h = 1.0 / ( top - bottom ); + const p = 1.0 / ( far - near ); + + const x = ( right + left ) * w; + const y = ( top + bottom ) * h; + + let z, zInv; + + if ( coordinateSystem === WebGLCoordinateSystem ) { + + z = ( far + near ) * p; + zInv = - 2 * p; + + } else if ( coordinateSystem === WebGPUCoordinateSystem ) { + + z = near * p; + zInv = - 1 * p; + + } else { + + throw new Error( 'THREE.Matrix4.makeOrthographic(): Invalid coordinate system: ' + coordinateSystem ); + + } + + te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; + te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y; + te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = zInv; te[ 14 ] = - z; + te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; + + return this; + + } + + /** + * Returns `true` if this matrix is equal with the given one. + * + * @param {Matrix4} matrix - The matrix to test for equality. + * @return {boolean} Whether this matrix is equal with the given one. + */ + equals( matrix ) { + + const te = this.elements; + const me = matrix.elements; + + for ( let i = 0; i < 16; i ++ ) { + + if ( te[ i ] !== me[ i ] ) return false; + + } + + return true; + + } + + /** + * Sets the elements of the matrix from the given array. + * + * @param {Array} array - The matrix elements in column-major order. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Matrix4} A reference to this matrix. + */ + fromArray( array, offset = 0 ) { + + for ( let i = 0; i < 16; i ++ ) { + + this.elements[ i ] = array[ i + offset ]; + + } + + return this; + + } + + /** + * Writes the elements of this matrix to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the matrix elements in column-major order. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The matrix elements in column-major order. + */ + toArray( array = [], offset = 0 ) { + + const te = this.elements; + + array[ offset ] = te[ 0 ]; + array[ offset + 1 ] = te[ 1 ]; + array[ offset + 2 ] = te[ 2 ]; + array[ offset + 3 ] = te[ 3 ]; + + array[ offset + 4 ] = te[ 4 ]; + array[ offset + 5 ] = te[ 5 ]; + array[ offset + 6 ] = te[ 6 ]; + array[ offset + 7 ] = te[ 7 ]; + + array[ offset + 8 ] = te[ 8 ]; + array[ offset + 9 ] = te[ 9 ]; + array[ offset + 10 ] = te[ 10 ]; + array[ offset + 11 ] = te[ 11 ]; + + array[ offset + 12 ] = te[ 12 ]; + array[ offset + 13 ] = te[ 13 ]; + array[ offset + 14 ] = te[ 14 ]; + array[ offset + 15 ] = te[ 15 ]; + + return array; + + } + + } + + const _v1$5 = /*@__PURE__*/ new Vector3(); + const _m1$2 = /*@__PURE__*/ new Matrix4(); + const _zero = /*@__PURE__*/ new Vector3( 0, 0, 0 ); + const _one = /*@__PURE__*/ new Vector3( 1, 1, 1 ); + const _x = /*@__PURE__*/ new Vector3(); + const _y = /*@__PURE__*/ new Vector3(); + const _z = /*@__PURE__*/ new Vector3(); + + const _matrix$2 = /*@__PURE__*/ new Matrix4(); + const _quaternion$3 = /*@__PURE__*/ new Quaternion(); + + /** + * A class representing Euler angles. + * + * Euler angles describe a rotational transformation by rotating an object on + * its various axes in specified amounts per axis, and a specified axis + * order. + * + * Iterating through an instance will yield its components (x, y, z, + * order) in the corresponding order. + * + * ```js + * const a = new THREE.Euler( 0, 1, 1.57, 'XYZ' ); + * const b = new THREE.Vector3( 1, 0, 1 ); + * b.applyEuler(a); + * ``` + */ + class Euler { + + /** + * Constructs a new euler instance. + * + * @param {number} [x=0] - The angle of the x axis in radians. + * @param {number} [y=0] - The angle of the y axis in radians. + * @param {number} [z=0] - The angle of the z axis in radians. + * @param {string} [order=Euler.DEFAULT_ORDER] - A string representing the order that the rotations are applied. + */ + constructor( x = 0, y = 0, z = 0, order = Euler.DEFAULT_ORDER ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isEuler = true; + + this._x = x; + this._y = y; + this._z = z; + this._order = order; + + } + + /** + * The angle of the x axis in radians. + * + * @type {number} + * @default 0 + */ + get x() { + + return this._x; + + } + + set x( value ) { + + this._x = value; + this._onChangeCallback(); + + } + + /** + * The angle of the y axis in radians. + * + * @type {number} + * @default 0 + */ + get y() { + + return this._y; + + } + + set y( value ) { + + this._y = value; + this._onChangeCallback(); + + } + + /** + * The angle of the z axis in radians. + * + * @type {number} + * @default 0 + */ + get z() { + + return this._z; + + } + + set z( value ) { + + this._z = value; + this._onChangeCallback(); + + } + + /** + * A string representing the order that the rotations are applied. + * + * @type {string} + * @default 'XYZ' + */ + get order() { + + return this._order; + + } + + set order( value ) { + + this._order = value; + this._onChangeCallback(); + + } + + /** + * Sets the Euler components. + * + * @param {number} x - The angle of the x axis in radians. + * @param {number} y - The angle of the y axis in radians. + * @param {number} z - The angle of the z axis in radians. + * @param {string} [order] - A string representing the order that the rotations are applied. + * @return {Euler} A reference to this Euler instance. + */ + set( x, y, z, order = this._order ) { + + this._x = x; + this._y = y; + this._z = z; + this._order = order; + + this._onChangeCallback(); + + return this; + + } + + /** + * Returns a new Euler instance with copied values from this instance. + * + * @return {Euler} A clone of this instance. + */ + clone() { + + return new this.constructor( this._x, this._y, this._z, this._order ); + + } + + /** + * Copies the values of the given Euler instance to this instance. + * + * @param {Euler} euler - The Euler instance to copy. + * @return {Euler} A reference to this Euler instance. + */ + copy( euler ) { + + this._x = euler._x; + this._y = euler._y; + this._z = euler._z; + this._order = euler._order; + + this._onChangeCallback(); + + return this; + + } + + /** + * Sets the angles of this Euler instance from a pure rotation matrix. + * + * @param {Matrix4} m - A 4x4 matrix of which the upper 3x3 of matrix is a pure rotation matrix (i.e. unscaled). + * @param {string} [order] - A string representing the order that the rotations are applied. + * @param {boolean} [update=true] - Whether the internal `onChange` callback should be executed or not. + * @return {Euler} A reference to this Euler instance. + */ + setFromRotationMatrix( m, order = this._order, update = true ) { + + const te = m.elements; + const m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; + const m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; + const m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; + + switch ( order ) { + + case 'XYZ': + + this._y = Math.asin( clamp( m13, - 1, 1 ) ); + + if ( Math.abs( m13 ) < 0.9999999 ) { + + this._x = Math.atan2( - m23, m33 ); + this._z = Math.atan2( - m12, m11 ); + + } else { + + this._x = Math.atan2( m32, m22 ); + this._z = 0; + + } + + break; + + case 'YXZ': + + this._x = Math.asin( - clamp( m23, - 1, 1 ) ); + + if ( Math.abs( m23 ) < 0.9999999 ) { + + this._y = Math.atan2( m13, m33 ); + this._z = Math.atan2( m21, m22 ); + + } else { + + this._y = Math.atan2( - m31, m11 ); + this._z = 0; + + } + + break; + + case 'ZXY': + + this._x = Math.asin( clamp( m32, - 1, 1 ) ); + + if ( Math.abs( m32 ) < 0.9999999 ) { + + this._y = Math.atan2( - m31, m33 ); + this._z = Math.atan2( - m12, m22 ); + + } else { + + this._y = 0; + this._z = Math.atan2( m21, m11 ); + + } + + break; + + case 'ZYX': + + this._y = Math.asin( - clamp( m31, - 1, 1 ) ); + + if ( Math.abs( m31 ) < 0.9999999 ) { + + this._x = Math.atan2( m32, m33 ); + this._z = Math.atan2( m21, m11 ); + + } else { + + this._x = 0; + this._z = Math.atan2( - m12, m22 ); + + } + + break; + + case 'YZX': + + this._z = Math.asin( clamp( m21, - 1, 1 ) ); + + if ( Math.abs( m21 ) < 0.9999999 ) { + + this._x = Math.atan2( - m23, m22 ); + this._y = Math.atan2( - m31, m11 ); + + } else { + + this._x = 0; + this._y = Math.atan2( m13, m33 ); + + } + + break; + + case 'XZY': + + this._z = Math.asin( - clamp( m12, - 1, 1 ) ); + + if ( Math.abs( m12 ) < 0.9999999 ) { + + this._x = Math.atan2( m32, m22 ); + this._y = Math.atan2( m13, m11 ); + + } else { + + this._x = Math.atan2( - m23, m33 ); + this._y = 0; + + } + + break; + + default: + + console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order ); + + } + + this._order = order; + + if ( update === true ) this._onChangeCallback(); + + return this; + + } + + /** + * Sets the angles of this Euler instance from a normalized quaternion. + * + * @param {Quaternion} q - A normalized Quaternion. + * @param {string} [order] - A string representing the order that the rotations are applied. + * @param {boolean} [update=true] - Whether the internal `onChange` callback should be executed or not. + * @return {Euler} A reference to this Euler instance. + */ + setFromQuaternion( q, order, update ) { + + _matrix$2.makeRotationFromQuaternion( q ); + + return this.setFromRotationMatrix( _matrix$2, order, update ); + + } + + /** + * Sets the angles of this Euler instance from the given vector. + * + * @param {Vector3} v - The vector. + * @param {string} [order] - A string representing the order that the rotations are applied. + * @return {Euler} A reference to this Euler instance. + */ + setFromVector3( v, order = this._order ) { + + return this.set( v.x, v.y, v.z, order ); + + } + + /** + * Resets the euler angle with a new order by creating a quaternion from this + * euler angle and then setting this euler angle with the quaternion and the + * new order. + * + * Warning: This discards revolution information. + * + * @param {string} [newOrder] - A string representing the new order that the rotations are applied. + * @return {Euler} A reference to this Euler instance. + */ + reorder( newOrder ) { + + _quaternion$3.setFromEuler( this ); + + return this.setFromQuaternion( _quaternion$3, newOrder ); + + } + + /** + * Returns `true` if this Euler instance is equal with the given one. + * + * @param {Euler} euler - The Euler instance to test for equality. + * @return {boolean} Whether this Euler instance is equal with the given one. + */ + equals( euler ) { + + return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); + + } + + /** + * Sets this Euler instance's components to values from the given array. The first three + * entries of the array are assign to the x,y and z components. An optional fourth entry + * defines the Euler order. + * + * @param {Array} array - An array holding the Euler component values. + * @return {Euler} A reference to this Euler instance. + */ + fromArray( array ) { + + this._x = array[ 0 ]; + this._y = array[ 1 ]; + this._z = array[ 2 ]; + if ( array[ 3 ] !== undefined ) this._order = array[ 3 ]; + + this._onChangeCallback(); + + return this; + + } + + /** + * Writes the components of this Euler instance to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the Euler components. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The Euler components. + */ + toArray( array = [], offset = 0 ) { + + array[ offset ] = this._x; + array[ offset + 1 ] = this._y; + array[ offset + 2 ] = this._z; + array[ offset + 3 ] = this._order; + + return array; + + } + + _onChange( callback ) { + + this._onChangeCallback = callback; + + return this; + + } + + _onChangeCallback() {} + + *[ Symbol.iterator ]() { + + yield this._x; + yield this._y; + yield this._z; + yield this._order; + + } + + } + + /** + * The default Euler angle order. + * + * @static + * @type {string} + * @default 'XYZ' + */ + Euler.DEFAULT_ORDER = 'XYZ'; + + /** + * A layers object assigns an 3D object to 1 or more of 32 + * layers numbered `0` to `31` - internally the layers are stored as a + * bit mask], and by default all 3D objects are a member of layer `0`. + * + * This can be used to control visibility - an object must share a layer with + * a camera to be visible when that camera's view is + * rendered. + * + * All classes that inherit from {@link Object3D} have an `layers` property which + * is an instance of this class. + */ + class Layers { + + /** + * Constructs a new layers instance, with membership + * initially set to layer `0`. + */ + constructor() { + + /** + * A bit mask storing which of the 32 layers this layers object is currently + * a member of. + * + * @type {number} + */ + this.mask = 1 | 0; + + } + + /** + * Sets membership to the given layer, and remove membership all other layers. + * + * @param {number} layer - The layer to set. + */ + set( layer ) { + + this.mask = ( 1 << layer | 0 ) >>> 0; + + } + + /** + * Adds membership of the given layer. + * + * @param {number} layer - The layer to enable. + */ + enable( layer ) { + + this.mask |= 1 << layer | 0; + + } + + /** + * Adds membership to all layers. + */ + enableAll() { + + this.mask = 0xffffffff | 0; + + } + + /** + * Toggles the membership of the given layer. + * + * @param {number} layer - The layer to toggle. + */ + toggle( layer ) { + + this.mask ^= 1 << layer | 0; + + } + + /** + * Removes membership of the given layer. + * + * @param {number} layer - The layer to enable. + */ + disable( layer ) { + + this.mask &= ~ ( 1 << layer | 0 ); + + } + + /** + * Removes the membership from all layers. + */ + disableAll() { + + this.mask = 0; + + } + + /** + * Returns `true` if this and the given layers object have at least one + * layer in common. + * + * @param {Layers} layers - The layers to test. + * @return {boolean } Whether this and the given layers object have at least one layer in common or not. + */ + test( layers ) { + + return ( this.mask & layers.mask ) !== 0; + + } + + /** + * Returns `true` if the given layer is enabled. + * + * @param {number} layer - The layer to test. + * @return {boolean } Whether the given layer is enabled or not. + */ + isEnabled( layer ) { + + return ( this.mask & ( 1 << layer | 0 ) ) !== 0; + + } + + } + + let _object3DId = 0; + + const _v1$4 = /*@__PURE__*/ new Vector3(); + const _q1 = /*@__PURE__*/ new Quaternion(); + const _m1$1 = /*@__PURE__*/ new Matrix4(); + const _target = /*@__PURE__*/ new Vector3(); + + const _position$3 = /*@__PURE__*/ new Vector3(); + const _scale$2 = /*@__PURE__*/ new Vector3(); + const _quaternion$2 = /*@__PURE__*/ new Quaternion(); + + const _xAxis = /*@__PURE__*/ new Vector3( 1, 0, 0 ); + const _yAxis = /*@__PURE__*/ new Vector3( 0, 1, 0 ); + const _zAxis = /*@__PURE__*/ new Vector3( 0, 0, 1 ); + + /** + * Fires when the object has been added to its parent object. + * + * @event Object3D#added + * @type {Object} + */ + const _addedEvent = { type: 'added' }; + + /** + * Fires when the object has been removed from its parent object. + * + * @event Object3D#removed + * @type {Object} + */ + const _removedEvent = { type: 'removed' }; + + /** + * Fires when a new child object has been added. + * + * @event Object3D#childadded + * @type {Object} + */ + const _childaddedEvent = { type: 'childadded', child: null }; + + /** + * Fires when a new child object has been added. + * + * @event Object3D#childremoved + * @type {Object} + */ + const _childremovedEvent = { type: 'childremoved', child: null }; + + /** + * This is the base class for most objects in three.js and provides a set of + * properties and methods for manipulating objects in 3D space. + * + * @augments EventDispatcher + */ + class Object3D extends EventDispatcher { + + /** + * Constructs a new 3D object. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isObject3D = true; + + /** + * The ID of the 3D object. + * + * @name Object3D#id + * @type {number} + * @readonly + */ + Object.defineProperty( this, 'id', { value: _object3DId ++ } ); + + /** + * The UUID of the 3D object. + * + * @type {string} + * @readonly + */ + this.uuid = generateUUID(); + + /** + * The name of the 3D object. + * + * @type {string} + */ + this.name = ''; + + /** + * The type property is used for detecting the object type + * in context of serialization/deserialization. + * + * @type {string} + * @readonly + */ + this.type = 'Object3D'; + + /** + * A reference to the parent object. + * + * @type {?Object3D} + * @default null + */ + this.parent = null; + + /** + * An array holding the child 3D objects of this instance. + * + * @type {Array} + */ + this.children = []; + + /** + * Defines the `up` direction of the 3D object which influences + * the orientation via methods like {@link Object3D#lookAt}. + * + * The default values for all 3D objects is defined by `Object3D.DEFAULT_UP`. + * + * @type {Vector3} + */ + this.up = Object3D.DEFAULT_UP.clone(); + + const position = new Vector3(); + const rotation = new Euler(); + const quaternion = new Quaternion(); + const scale = new Vector3( 1, 1, 1 ); + + function onRotationChange() { + + quaternion.setFromEuler( rotation, false ); + + } + + function onQuaternionChange() { + + rotation.setFromQuaternion( quaternion, undefined, false ); + + } + + rotation._onChange( onRotationChange ); + quaternion._onChange( onQuaternionChange ); + + Object.defineProperties( this, { + /** + * Represents the object's local position. + * + * @name Object3D#position + * @type {Vector3} + * @default (0,0,0) + */ + position: { + configurable: true, + enumerable: true, + value: position + }, + /** + * Represents the object's local rotation as Euler angles, in radians. + * + * @name Object3D#rotation + * @type {Euler} + * @default (0,0,0) + */ + rotation: { + configurable: true, + enumerable: true, + value: rotation + }, + /** + * Represents the object's local rotation as Quaternions. + * + * @name Object3D#quaternion + * @type {Quaternion} + */ + quaternion: { + configurable: true, + enumerable: true, + value: quaternion + }, + /** + * Represents the object's local scale. + * + * @name Object3D#scale + * @type {Vector3} + * @default (1,1,1) + */ + scale: { + configurable: true, + enumerable: true, + value: scale + }, + /** + * Represents the object's model-view matrix. + * + * @name Object3D#modelViewMatrix + * @type {Matrix4} + */ + modelViewMatrix: { + value: new Matrix4() + }, + /** + * Represents the object's normal matrix. + * + * @name Object3D#normalMatrix + * @type {Matrix3} + */ + normalMatrix: { + value: new Matrix3() + } + } ); + + /** + * Represents the object's transformation matrix in local space. + * + * @type {Matrix4} + */ + this.matrix = new Matrix4(); + + /** + * Represents the object's transformation matrix in world space. + * If the 3D object has no parent, then it's identical to the local transformation matrix + * + * @type {Matrix4} + */ + this.matrixWorld = new Matrix4(); + + /** + * When set to `true`, the engine automatically computes the local matrix from position, + * rotation and scale every frame. + * + * The default values for all 3D objects is defined by `Object3D.DEFAULT_MATRIX_AUTO_UPDATE`. + * + * @type {boolean} + * @default true + */ + this.matrixAutoUpdate = Object3D.DEFAULT_MATRIX_AUTO_UPDATE; + + /** + * When set to `true`, the engine automatically computes the world matrix from the current local + * matrix and the object's transformation hierarchy. + * + * The default values for all 3D objects is defined by `Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE`. + * + * @type {boolean} + * @default true + */ + this.matrixWorldAutoUpdate = Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE; // checked by the renderer + + /** + * When set to `true`, it calculates the world matrix in that frame and resets this property + * to `false`. + * + * @type {boolean} + * @default false + */ + this.matrixWorldNeedsUpdate = false; + + /** + * The layer membership of the 3D object. The 3D object is only visible if it has + * at least one layer in common with the camera in use. This property can also be + * used to filter out unwanted objects in ray-intersection tests when using {@link Raycaster}. + * + * @type {Layers} + */ + this.layers = new Layers(); + + /** + * When set to `true`, the 3D object gets rendered. + * + * @type {boolean} + * @default true + */ + this.visible = true; + + /** + * When set to `true`, the 3D object gets rendered into shadow maps. + * + * @type {boolean} + * @default false + */ + this.castShadow = false; + + /** + * When set to `true`, the 3D object is affected by shadows in the scene. + * + * @type {boolean} + * @default false + */ + this.receiveShadow = false; + + /** + * When set to `true`, the 3D object is honored by view frustum culling. + * + * @type {boolean} + * @default true + */ + this.frustumCulled = true; + + /** + * This value allows the default rendering order of scene graph objects to be + * overridden although opaque and transparent objects remain sorted independently. + * When this property is set for an instance of {@link Group},all descendants + * objects will be sorted and rendered together. Sorting is from lowest to highest + * render order. + * + * @type {number} + * @default 0 + */ + this.renderOrder = 0; + + /** + * An array holding the animation clips of the 3D object. + * + * @type {Array} + */ + this.animations = []; + + /** + * Custom depth material to be used when rendering to the depth map. Can only be used + * in context of meshes. When shadow-casting with a {@link DirectionalLight} or {@link SpotLight}, + * if you are modifying vertex positions in the vertex shader you must specify a custom depth + * material for proper shadows. + * + * Only relevant in context of {@link WebGLRenderer}. + * + * @type {(Material|undefined)} + * @default undefined + */ + this.customDepthMaterial = undefined; + + /** + * Same as {@link Object3D#customDepthMaterial}, but used with {@link PointLight}. + * + * Only relevant in context of {@link WebGLRenderer}. + * + * @type {(Material|undefined)} + * @default undefined + */ + this.customDistanceMaterial = undefined; + + /** + * An object that can be used to store custom data about the 3D object. It + * should not hold references to functions as these will not be cloned. + * + * @type {Object} + */ + this.userData = {}; + + } + + /** + * A callback that is executed immediately before a 3D object is rendered to a shadow map. + * + * @param {Renderer|WebGLRenderer} renderer - The renderer. + * @param {Object3D} object - The 3D object. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {Camera} shadowCamera - The shadow camera. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} depthMaterial - The depth material. + * @param {Object} group - The geometry group data. + */ + onBeforeShadow( /* renderer, object, camera, shadowCamera, geometry, depthMaterial, group */ ) {} + + /** + * A callback that is executed immediately after a 3D object is rendered to a shadow map. + * + * @param {Renderer|WebGLRenderer} renderer - The renderer. + * @param {Object3D} object - The 3D object. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {Camera} shadowCamera - The shadow camera. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} depthMaterial - The depth material. + * @param {Object} group - The geometry group data. + */ + onAfterShadow( /* renderer, object, camera, shadowCamera, geometry, depthMaterial, group */ ) {} + + /** + * A callback that is executed immediately before a 3D object is rendered. + * + * @param {Renderer|WebGLRenderer} renderer - The renderer. + * @param {Object3D} object - The 3D object. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} material - The 3D object's material. + * @param {Object} group - The geometry group data. + */ + onBeforeRender( /* renderer, scene, camera, geometry, material, group */ ) {} + + /** + * A callback that is executed immediately after a 3D object is rendered. + * + * @param {Renderer|WebGLRenderer} renderer - The renderer. + * @param {Object3D} object - The 3D object. + * @param {Camera} camera - The camera that is used to render the scene. + * @param {BufferGeometry} geometry - The 3D object's geometry. + * @param {Material} material - The 3D object's material. + * @param {Object} group - The geometry group data. + */ + onAfterRender( /* renderer, scene, camera, geometry, material, group */ ) {} + + /** + * Applies the given transformation matrix to the object and updates the object's position, + * rotation and scale. + * + * @param {Matrix4} matrix - The transformation matrix. + */ + applyMatrix4( matrix ) { + + if ( this.matrixAutoUpdate ) this.updateMatrix(); + + this.matrix.premultiply( matrix ); + + this.matrix.decompose( this.position, this.quaternion, this.scale ); + + } + + /** + * Applies a rotation represented by given the quaternion to the 3D object. + * + * @param {Quaternion} q - The quaternion. + * @return {Object3D} A reference to this instance. + */ + applyQuaternion( q ) { + + this.quaternion.premultiply( q ); + + return this; + + } + + /** + * Sets the given rotation represented as an axis/angle couple to the 3D object. + * + * @param {Vector3} axis - The (normalized) axis vector. + * @param {number} angle - The angle in radians. + */ + setRotationFromAxisAngle( axis, angle ) { + + // assumes axis is normalized + + this.quaternion.setFromAxisAngle( axis, angle ); + + } + + /** + * Sets the given rotation represented as Euler angles to the 3D object. + * + * @param {Euler} euler - The Euler angles. + */ + setRotationFromEuler( euler ) { + + this.quaternion.setFromEuler( euler, true ); + + } + + /** + * Sets the given rotation represented as rotation matrix to the 3D object. + * + * @param {Matrix4} m - Although a 4x4 matrix is expected, the upper 3x3 portion must be + * a pure rotation matrix (i.e, unscaled). + */ + setRotationFromMatrix( m ) { + + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + + this.quaternion.setFromRotationMatrix( m ); + + } + + /** + * Sets the given rotation represented as a Quaternion to the 3D object. + * + * @param {Quaternion} q - The Quaternion + */ + setRotationFromQuaternion( q ) { + + // assumes q is normalized + + this.quaternion.copy( q ); + + } + + /** + * Rotates the 3D object along an axis in local space. + * + * @param {Vector3} axis - The (normalized) axis vector. + * @param {number} angle - The angle in radians. + * @return {Object3D} A reference to this instance. + */ + rotateOnAxis( axis, angle ) { + + // rotate object on axis in object space + // axis is assumed to be normalized + + _q1.setFromAxisAngle( axis, angle ); + + this.quaternion.multiply( _q1 ); + + return this; + + } + + /** + * Rotates the 3D object along an axis in world space. + * + * @param {Vector3} axis - The (normalized) axis vector. + * @param {number} angle - The angle in radians. + * @return {Object3D} A reference to this instance. + */ + rotateOnWorldAxis( axis, angle ) { + + // rotate object on axis in world space + // axis is assumed to be normalized + // method assumes no rotated parent + + _q1.setFromAxisAngle( axis, angle ); + + this.quaternion.premultiply( _q1 ); + + return this; + + } + + /** + * Rotates the 3D object around its X axis in local space. + * + * @param {number} angle - The angle in radians. + * @return {Object3D} A reference to this instance. + */ + rotateX( angle ) { + + return this.rotateOnAxis( _xAxis, angle ); + + } + + /** + * Rotates the 3D object around its Y axis in local space. + * + * @param {number} angle - The angle in radians. + * @return {Object3D} A reference to this instance. + */ + rotateY( angle ) { + + return this.rotateOnAxis( _yAxis, angle ); + + } + + /** + * Rotates the 3D object around its Z axis in local space. + * + * @param {number} angle - The angle in radians. + * @return {Object3D} A reference to this instance. + */ + rotateZ( angle ) { + + return this.rotateOnAxis( _zAxis, angle ); + + } + + /** + * Translate the 3D object by a distance along the given axis in local space. + * + * @param {Vector3} axis - The (normalized) axis vector. + * @param {number} distance - The distance in world units. + * @return {Object3D} A reference to this instance. + */ + translateOnAxis( axis, distance ) { + + // translate object by distance along axis in object space + // axis is assumed to be normalized + + _v1$4.copy( axis ).applyQuaternion( this.quaternion ); + + this.position.add( _v1$4.multiplyScalar( distance ) ); + + return this; + + } + + /** + * Translate the 3D object by a distance along its X-axis in local space. + * + * @param {number} distance - The distance in world units. + * @return {Object3D} A reference to this instance. + */ + translateX( distance ) { + + return this.translateOnAxis( _xAxis, distance ); + + } + + /** + * Translate the 3D object by a distance along its Y-axis in local space. + * + * @param {number} distance - The distance in world units. + * @return {Object3D} A reference to this instance. + */ + translateY( distance ) { + + return this.translateOnAxis( _yAxis, distance ); + + } + + /** + * Translate the 3D object by a distance along its Z-axis in local space. + * + * @param {number} distance - The distance in world units. + * @return {Object3D} A reference to this instance. + */ + translateZ( distance ) { + + return this.translateOnAxis( _zAxis, distance ); + + } + + /** + * Converts the given vector from this 3D object's local space to world space. + * + * @param {Vector3} vector - The vector to convert. + * @return {Vector3} The converted vector. + */ + localToWorld( vector ) { + + this.updateWorldMatrix( true, false ); + + return vector.applyMatrix4( this.matrixWorld ); + + } + + /** + * Converts the given vector from this 3D object's word space to local space. + * + * @param {Vector3} vector - The vector to convert. + * @return {Vector3} The converted vector. + */ + worldToLocal( vector ) { + + this.updateWorldMatrix( true, false ); + + return vector.applyMatrix4( _m1$1.copy( this.matrixWorld ).invert() ); + + } + + /** + * Rotates the object to face a point in world space. + * + * This method does not support objects having non-uniformly-scaled parent(s). + * + * @param {number|Vector3} x - The x coordinate in world space. Alternatively, a vector representing a position in world space + * @param {number} [y] - The y coordinate in world space. + * @param {number} [z] - The z coordinate in world space. + */ + lookAt( x, y, z ) { + + // This method does not support objects having non-uniformly-scaled parent(s) + + if ( x.isVector3 ) { + + _target.copy( x ); + + } else { + + _target.set( x, y, z ); + + } + + const parent = this.parent; + + this.updateWorldMatrix( true, false ); + + _position$3.setFromMatrixPosition( this.matrixWorld ); + + if ( this.isCamera || this.isLight ) { + + _m1$1.lookAt( _position$3, _target, this.up ); + + } else { + + _m1$1.lookAt( _target, _position$3, this.up ); + + } + + this.quaternion.setFromRotationMatrix( _m1$1 ); + + if ( parent ) { + + _m1$1.extractRotation( parent.matrixWorld ); + _q1.setFromRotationMatrix( _m1$1 ); + this.quaternion.premultiply( _q1.invert() ); + + } + + } + + /** + * Adds the given 3D object as a child to this 3D object. An arbitrary number of + * objects may be added. Any current parent on an object passed in here will be + * removed, since an object can have at most one parent. + * + * @fires Object3D#added + * @fires Object3D#childadded + * @param {Object3D} object - The 3D object to add. + * @return {Object3D} A reference to this instance. + */ + add( object ) { + + if ( arguments.length > 1 ) { + + for ( let i = 0; i < arguments.length; i ++ ) { + + this.add( arguments[ i ] ); + + } + + return this; + + } + + if ( object === this ) { + + console.error( 'THREE.Object3D.add: object can\'t be added as a child of itself.', object ); + return this; + + } + + if ( object && object.isObject3D ) { + + object.removeFromParent(); + object.parent = this; + this.children.push( object ); + + object.dispatchEvent( _addedEvent ); + + _childaddedEvent.child = object; + this.dispatchEvent( _childaddedEvent ); + _childaddedEvent.child = null; + + } else { + + console.error( 'THREE.Object3D.add: object not an instance of THREE.Object3D.', object ); + + } + + return this; + + } + + /** + * Removes the given 3D object as child from this 3D object. + * An arbitrary number of objects may be removed. + * + * @fires Object3D#removed + * @fires Object3D#childremoved + * @param {Object3D} object - The 3D object to remove. + * @return {Object3D} A reference to this instance. + */ + remove( object ) { + + if ( arguments.length > 1 ) { + + for ( let i = 0; i < arguments.length; i ++ ) { + + this.remove( arguments[ i ] ); + + } + + return this; + + } + + const index = this.children.indexOf( object ); + + if ( index !== - 1 ) { + + object.parent = null; + this.children.splice( index, 1 ); + + object.dispatchEvent( _removedEvent ); + + _childremovedEvent.child = object; + this.dispatchEvent( _childremovedEvent ); + _childremovedEvent.child = null; + + } + + return this; + + } + + /** + * Removes this 3D object from its current parent. + * + * @fires Object3D#removed + * @fires Object3D#childremoved + * @return {Object3D} A reference to this instance. + */ + removeFromParent() { + + const parent = this.parent; + + if ( parent !== null ) { + + parent.remove( this ); + + } + + return this; + + } + + /** + * Removes all child objects. + * + * @fires Object3D#removed + * @fires Object3D#childremoved + * @return {Object3D} A reference to this instance. + */ + clear() { + + return this.remove( ... this.children ); + + } + + /** + * Adds the given 3D object as a child of this 3D object, while maintaining the object's world + * transform. This method does not support scene graphs having non-uniformly-scaled nodes(s). + * + * @fires Object3D#added + * @fires Object3D#childadded + * @param {Object3D} object - The 3D object to attach. + * @return {Object3D} A reference to this instance. + */ + attach( object ) { + + // adds object as a child of this, while maintaining the object's world transform + + // Note: This method does not support scene graphs having non-uniformly-scaled nodes(s) + + this.updateWorldMatrix( true, false ); + + _m1$1.copy( this.matrixWorld ).invert(); + + if ( object.parent !== null ) { + + object.parent.updateWorldMatrix( true, false ); + + _m1$1.multiply( object.parent.matrixWorld ); + + } + + object.applyMatrix4( _m1$1 ); + + object.removeFromParent(); + object.parent = this; + this.children.push( object ); + + object.updateWorldMatrix( false, true ); + + object.dispatchEvent( _addedEvent ); + + _childaddedEvent.child = object; + this.dispatchEvent( _childaddedEvent ); + _childaddedEvent.child = null; + + return this; + + } + + /** + * Searches through the 3D object and its children, starting with the 3D object + * itself, and returns the first with a matching ID. + * + * @param {number} id - The id. + * @return {Object3D|undefined} The found 3D object. Returns `undefined` if no 3D object has been found. + */ + getObjectById( id ) { + + return this.getObjectByProperty( 'id', id ); + + } + + /** + * Searches through the 3D object and its children, starting with the 3D object + * itself, and returns the first with a matching name. + * + * @param {string} name - The name. + * @return {Object3D|undefined} The found 3D object. Returns `undefined` if no 3D object has been found. + */ + getObjectByName( name ) { + + return this.getObjectByProperty( 'name', name ); + + } + + /** + * Searches through the 3D object and its children, starting with the 3D object + * itself, and returns the first with a matching property value. + * + * @param {string} name - The name of the property. + * @param {any} value - The value. + * @return {Object3D|undefined} The found 3D object. Returns `undefined` if no 3D object has been found. + */ + getObjectByProperty( name, value ) { + + if ( this[ name ] === value ) return this; + + for ( let i = 0, l = this.children.length; i < l; i ++ ) { + + const child = this.children[ i ]; + const object = child.getObjectByProperty( name, value ); + + if ( object !== undefined ) { + + return object; + + } + + } + + return undefined; + + } + + /** + * Searches through the 3D object and its children, starting with the 3D object + * itself, and returns all 3D objects with a matching property value. + * + * @param {string} name - The name of the property. + * @param {any} value - The value. + * @param {Array} result - The method stores the result in this array. + * @return {Array} The found 3D objects. + */ + getObjectsByProperty( name, value, result = [] ) { + + if ( this[ name ] === value ) result.push( this ); + + const children = this.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + children[ i ].getObjectsByProperty( name, value, result ); + + } + + return result; + + } + + /** + * Returns a vector representing the position of the 3D object in world space. + * + * @param {Vector3} target - The target vector the result is stored to. + * @return {Vector3} The 3D object's position in world space. + */ + getWorldPosition( target ) { + + this.updateWorldMatrix( true, false ); + + return target.setFromMatrixPosition( this.matrixWorld ); + + } + + /** + * Returns a Quaternion representing the position of the 3D object in world space. + * + * @param {Quaternion} target - The target Quaternion the result is stored to. + * @return {Quaternion} The 3D object's rotation in world space. + */ + getWorldQuaternion( target ) { + + this.updateWorldMatrix( true, false ); + + this.matrixWorld.decompose( _position$3, target, _scale$2 ); + + return target; + + } + + /** + * Returns a vector representing the scale of the 3D object in world space. + * + * @param {Vector3} target - The target vector the result is stored to. + * @return {Vector3} The 3D object's scale in world space. + */ + getWorldScale( target ) { + + this.updateWorldMatrix( true, false ); + + this.matrixWorld.decompose( _position$3, _quaternion$2, target ); + + return target; + + } + + /** + * Returns a vector representing the ("look") direction of the 3D object in world space. + * + * @param {Vector3} target - The target vector the result is stored to. + * @return {Vector3} The 3D object's direction in world space. + */ + getWorldDirection( target ) { + + this.updateWorldMatrix( true, false ); + + const e = this.matrixWorld.elements; + + return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize(); + + } + + /** + * Abstract method to get intersections between a casted ray and this + * 3D object. Renderable 3D objects such as {@link Mesh}, {@link Line} or {@link Points} + * implement this method in order to use raycasting. + * + * @abstract + * @param {Raycaster} raycaster - The raycaster. + * @param {Array} intersects - An array holding the result of the method. + */ + raycast( /* raycaster, intersects */ ) {} + + /** + * Executes the callback on this 3D object and all descendants. + * + * Note: Modifying the scene graph inside the callback is discouraged. + * + * @param {Function} callback - A callback function that allows to process the current 3D object. + */ + traverse( callback ) { + + callback( this ); + + const children = this.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + children[ i ].traverse( callback ); + + } + + } + + /** + * Like {@link Object3D#traverse}, but the callback will only be executed for visible 3D objects. + * Descendants of invisible 3D objects are not traversed. + * + * Note: Modifying the scene graph inside the callback is discouraged. + * + * @param {Function} callback - A callback function that allows to process the current 3D object. + */ + traverseVisible( callback ) { + + if ( this.visible === false ) return; + + callback( this ); + + const children = this.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + children[ i ].traverseVisible( callback ); + + } + + } + + /** + * Like {@link Object3D#traverse}, but the callback will only be executed for all ancestors. + * + * Note: Modifying the scene graph inside the callback is discouraged. + * + * @param {Function} callback - A callback function that allows to process the current 3D object. + */ + traverseAncestors( callback ) { + + const parent = this.parent; + + if ( parent !== null ) { + + callback( parent ); + + parent.traverseAncestors( callback ); + + } + + } + + /** + * Updates the transformation matrix in local space by computing it from the current + * position, rotation and scale values. + */ + updateMatrix() { + + this.matrix.compose( this.position, this.quaternion, this.scale ); + + this.matrixWorldNeedsUpdate = true; + + } + + /** + * Updates the transformation matrix in world space of this 3D objects and its descendants. + * + * To ensure correct results, this method also recomputes the 3D object's transformation matrix in + * local space. The computation of the local and world matrix can be controlled with the + * {@link Object3D#matrixAutoUpdate} and {@link Object3D#matrixWorldAutoUpdate} flags which are both + * `true` by default. Set these flags to `false` if you need more control over the update matrix process. + * + * @param {boolean} [force=false] - When set to `true`, a recomputation of world matrices is forced even + * when {@link Object3D#matrixWorldAutoUpdate} is set to `false`. + */ + updateMatrixWorld( force ) { + + if ( this.matrixAutoUpdate ) this.updateMatrix(); + + if ( this.matrixWorldNeedsUpdate || force ) { + + if ( this.matrixWorldAutoUpdate === true ) { + + if ( this.parent === null ) { + + this.matrixWorld.copy( this.matrix ); + + } else { + + this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); + + } + + } + + this.matrixWorldNeedsUpdate = false; + + force = true; + + } + + // make sure descendants are updated if required + + const children = this.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + const child = children[ i ]; + + child.updateMatrixWorld( force ); + + } + + } + + /** + * An alternative version of {@link Object3D#updateMatrixWorld} with more control over the + * update of ancestor and descendant nodes. + * + * @param {boolean} [updateParents=false] Whether ancestor nodes should be updated or not. + * @param {boolean} [updateChildren=false] Whether descendant nodes should be updated or not. + */ + updateWorldMatrix( updateParents, updateChildren ) { + + const parent = this.parent; + + if ( updateParents === true && parent !== null ) { + + parent.updateWorldMatrix( true, false ); + + } + + if ( this.matrixAutoUpdate ) this.updateMatrix(); + + if ( this.matrixWorldAutoUpdate === true ) { + + if ( this.parent === null ) { + + this.matrixWorld.copy( this.matrix ); + + } else { + + this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); + + } + + } + + // make sure descendants are updated + + if ( updateChildren === true ) { + + const children = this.children; + + for ( let i = 0, l = children.length; i < l; i ++ ) { + + const child = children[ i ]; + + child.updateWorldMatrix( false, true ); + + } + + } + + } + + /** + * Serializes the 3D object into JSON. + * + * @param {?(Object|string)} meta - An optional value holding meta information about the serialization. + * @return {Object} A JSON object representing the serialized 3D object. + * @see {@link ObjectLoader#parse} + */ + toJSON( meta ) { + + // meta is a string when called from JSON.stringify + const isRootObject = ( meta === undefined || typeof meta === 'string' ); + + const output = {}; + + // meta is a hash used to collect geometries, materials. + // not providing it implies that this is the root object + // being serialized. + if ( isRootObject ) { + + // initialize meta obj + meta = { + geometries: {}, + materials: {}, + textures: {}, + images: {}, + shapes: {}, + skeletons: {}, + animations: {}, + nodes: {} + }; + + output.metadata = { + version: 4.7, + type: 'Object', + generator: 'Object3D.toJSON' + }; + + } + + // standard Object3D serialization + + const object = {}; + + object.uuid = this.uuid; + object.type = this.type; + + if ( this.name !== '' ) object.name = this.name; + if ( this.castShadow === true ) object.castShadow = true; + if ( this.receiveShadow === true ) object.receiveShadow = true; + if ( this.visible === false ) object.visible = false; + if ( this.frustumCulled === false ) object.frustumCulled = false; + if ( this.renderOrder !== 0 ) object.renderOrder = this.renderOrder; + if ( Object.keys( this.userData ).length > 0 ) object.userData = this.userData; + + object.layers = this.layers.mask; + object.matrix = this.matrix.toArray(); + object.up = this.up.toArray(); + + if ( this.matrixAutoUpdate === false ) object.matrixAutoUpdate = false; + + // object specific properties + + if ( this.isInstancedMesh ) { + + object.type = 'InstancedMesh'; + object.count = this.count; + object.instanceMatrix = this.instanceMatrix.toJSON(); + if ( this.instanceColor !== null ) object.instanceColor = this.instanceColor.toJSON(); + + } + + if ( this.isBatchedMesh ) { + + object.type = 'BatchedMesh'; + object.perObjectFrustumCulled = this.perObjectFrustumCulled; + object.sortObjects = this.sortObjects; + + object.drawRanges = this._drawRanges; + object.reservedRanges = this._reservedRanges; + + object.geometryInfo = this._geometryInfo.map( info => ( { + ...info, + boundingBox: info.boundingBox ? info.boundingBox.toJSON() : undefined, + boundingSphere: info.boundingSphere ? info.boundingSphere.toJSON() : undefined + } ) ); + object.instanceInfo = this._instanceInfo.map( info => ( { ...info } ) ); + + object.availableInstanceIds = this._availableInstanceIds.slice(); + object.availableGeometryIds = this._availableGeometryIds.slice(); + + object.nextIndexStart = this._nextIndexStart; + object.nextVertexStart = this._nextVertexStart; + object.geometryCount = this._geometryCount; + + object.maxInstanceCount = this._maxInstanceCount; + object.maxVertexCount = this._maxVertexCount; + object.maxIndexCount = this._maxIndexCount; + + object.geometryInitialized = this._geometryInitialized; + + object.matricesTexture = this._matricesTexture.toJSON( meta ); + + object.indirectTexture = this._indirectTexture.toJSON( meta ); + + if ( this._colorsTexture !== null ) { + + object.colorsTexture = this._colorsTexture.toJSON( meta ); + + } + + if ( this.boundingSphere !== null ) { + + object.boundingSphere = this.boundingSphere.toJSON(); + + } + + if ( this.boundingBox !== null ) { + + object.boundingBox = this.boundingBox.toJSON(); + + } + + } + + // + + function serialize( library, element ) { + + if ( library[ element.uuid ] === undefined ) { + + library[ element.uuid ] = element.toJSON( meta ); + + } + + return element.uuid; + + } + + if ( this.isScene ) { + + if ( this.background ) { + + if ( this.background.isColor ) { + + object.background = this.background.toJSON(); + + } else if ( this.background.isTexture ) { + + object.background = this.background.toJSON( meta ).uuid; + + } + + } + + if ( this.environment && this.environment.isTexture && this.environment.isRenderTargetTexture !== true ) { + + object.environment = this.environment.toJSON( meta ).uuid; + + } + + } else if ( this.isMesh || this.isLine || this.isPoints ) { + + object.geometry = serialize( meta.geometries, this.geometry ); + + const parameters = this.geometry.parameters; + + if ( parameters !== undefined && parameters.shapes !== undefined ) { + + const shapes = parameters.shapes; + + if ( Array.isArray( shapes ) ) { + + for ( let i = 0, l = shapes.length; i < l; i ++ ) { + + const shape = shapes[ i ]; + + serialize( meta.shapes, shape ); + + } + + } else { + + serialize( meta.shapes, shapes ); + + } + + } + + } + + if ( this.isSkinnedMesh ) { + + object.bindMode = this.bindMode; + object.bindMatrix = this.bindMatrix.toArray(); + + if ( this.skeleton !== undefined ) { + + serialize( meta.skeletons, this.skeleton ); + + object.skeleton = this.skeleton.uuid; + + } + + } + + if ( this.material !== undefined ) { + + if ( Array.isArray( this.material ) ) { + + const uuids = []; + + for ( let i = 0, l = this.material.length; i < l; i ++ ) { + + uuids.push( serialize( meta.materials, this.material[ i ] ) ); + + } + + object.material = uuids; + + } else { + + object.material = serialize( meta.materials, this.material ); + + } + + } + + // + + if ( this.children.length > 0 ) { + + object.children = []; + + for ( let i = 0; i < this.children.length; i ++ ) { + + object.children.push( this.children[ i ].toJSON( meta ).object ); + + } + + } + + // + + if ( this.animations.length > 0 ) { + + object.animations = []; + + for ( let i = 0; i < this.animations.length; i ++ ) { + + const animation = this.animations[ i ]; + + object.animations.push( serialize( meta.animations, animation ) ); + + } + + } + + if ( isRootObject ) { + + const geometries = extractFromCache( meta.geometries ); + const materials = extractFromCache( meta.materials ); + const textures = extractFromCache( meta.textures ); + const images = extractFromCache( meta.images ); + const shapes = extractFromCache( meta.shapes ); + const skeletons = extractFromCache( meta.skeletons ); + const animations = extractFromCache( meta.animations ); + const nodes = extractFromCache( meta.nodes ); + + if ( geometries.length > 0 ) output.geometries = geometries; + if ( materials.length > 0 ) output.materials = materials; + if ( textures.length > 0 ) output.textures = textures; + if ( images.length > 0 ) output.images = images; + if ( shapes.length > 0 ) output.shapes = shapes; + if ( skeletons.length > 0 ) output.skeletons = skeletons; + if ( animations.length > 0 ) output.animations = animations; + if ( nodes.length > 0 ) output.nodes = nodes; + + } + + output.object = object; + + return output; + + // extract data from the cache hash + // remove metadata on each item + // and return as array + function extractFromCache( cache ) { + + const values = []; + for ( const key in cache ) { + + const data = cache[ key ]; + delete data.metadata; + values.push( data ); + + } + + return values; + + } + + } + + /** + * Returns a new 3D object with copied values from this instance. + * + * @param {boolean} [recursive=true] - When set to `true`, descendants of the 3D object are also cloned. + * @return {Object3D} A clone of this instance. + */ + clone( recursive ) { + + return new this.constructor().copy( this, recursive ); + + } + + /** + * Copies the values of the given 3D object to this instance. + * + * @param {Object3D} source - The 3D object to copy. + * @param {boolean} [recursive=true] - When set to `true`, descendants of the 3D object are cloned. + * @return {Object3D} A reference to this instance. + */ + copy( source, recursive = true ) { + + this.name = source.name; + + this.up.copy( source.up ); + + this.position.copy( source.position ); + this.rotation.order = source.rotation.order; + this.quaternion.copy( source.quaternion ); + this.scale.copy( source.scale ); + + this.matrix.copy( source.matrix ); + this.matrixWorld.copy( source.matrixWorld ); + + this.matrixAutoUpdate = source.matrixAutoUpdate; + + this.matrixWorldAutoUpdate = source.matrixWorldAutoUpdate; + this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; + + this.layers.mask = source.layers.mask; + this.visible = source.visible; + + this.castShadow = source.castShadow; + this.receiveShadow = source.receiveShadow; + + this.frustumCulled = source.frustumCulled; + this.renderOrder = source.renderOrder; + + this.animations = source.animations.slice(); + + this.userData = JSON.parse( JSON.stringify( source.userData ) ); + + if ( recursive === true ) { + + for ( let i = 0; i < source.children.length; i ++ ) { + + const child = source.children[ i ]; + this.add( child.clone() ); + + } + + } + + return this; + + } + + } + + /** + * The default up direction for objects, also used as the default + * position for {@link DirectionalLight} and {@link HemisphereLight}. + * + * @static + * @type {Vector3} + * @default (0,1,0) + */ + Object3D.DEFAULT_UP = /*@__PURE__*/ new Vector3( 0, 1, 0 ); + + /** + * The default setting for {@link Object3D#matrixAutoUpdate} for + * newly created 3D objects. + * + * @static + * @type {boolean} + * @default true + */ + Object3D.DEFAULT_MATRIX_AUTO_UPDATE = true; + + /** + * The default setting for {@link Object3D#matrixWorldAutoUpdate} for + * newly created 3D objects. + * + * @static + * @type {boolean} + * @default true + */ + Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE = true; + + const _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, + 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, + 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, + 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, + 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, + 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, + 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, + 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, + 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, + 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, + 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, + 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, + 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, + 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, + 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, + 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, + 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, + 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, + 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, + 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, + 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, + 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, + 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, + 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; + + const _hslA = { h: 0, s: 0, l: 0 }; + const _hslB = { h: 0, s: 0, l: 0 }; + + function hue2rgb( p, q, t ) { + + if ( t < 0 ) t += 1; + if ( t > 1 ) t -= 1; + if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t; + if ( t < 1 / 2 ) return q; + if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t ); + return p; + + } + + /** + * A Color instance is represented by RGB components in the linear working + * color space, which defaults to `LinearSRGBColorSpace`. Inputs + * conventionally using `SRGBColorSpace` (such as hexadecimals and CSS + * strings) are converted to the working color space automatically. + * + * ```js + * // converted automatically from SRGBColorSpace to LinearSRGBColorSpace + * const color = new THREE.Color().setHex( 0x112233 ); + * ``` + * Source color spaces may be specified explicitly, to ensure correct conversions. + * ```js + * // assumed already LinearSRGBColorSpace; no conversion + * const color = new THREE.Color().setRGB( 0.5, 0.5, 0.5 ); + * + * // converted explicitly from SRGBColorSpace to LinearSRGBColorSpace + * const color = new THREE.Color().setRGB( 0.5, 0.5, 0.5, SRGBColorSpace ); + * ``` + * If THREE.ColorManagement is disabled, no conversions occur. For details, + * see Color management. Iterating through a Color instance will yield + * its components (r, g, b) in the corresponding order. A Color can be initialised + * in any of the following ways: + * ```js + * //empty constructor - will default white + * const color1 = new THREE.Color(); + * + * //Hexadecimal color (recommended) + * const color2 = new THREE.Color( 0xff0000 ); + * + * //RGB string + * const color3 = new THREE.Color("rgb(255, 0, 0)"); + * const color4 = new THREE.Color("rgb(100%, 0%, 0%)"); + * + * //X11 color name - all 140 color names are supported. + * //Note the lack of CamelCase in the name + * const color5 = new THREE.Color( 'skyblue' ); + * //HSL string + * const color6 = new THREE.Color("hsl(0, 100%, 50%)"); + * + * //Separate RGB values between 0 and 1 + * const color7 = new THREE.Color( 1, 0, 0 ); + * ``` + */ + class Color { + + /** + * Constructs a new color. + * + * Note that standard method of specifying color in three.js is with a hexadecimal triplet, + * and that method is used throughout the rest of the documentation. + * + * @param {(number|string|Color)} [r] - The red component of the color. If `g` and `b` are + * not provided, it can be hexadecimal triplet, a CSS-style string or another `Color` instance. + * @param {number} [g] - The green component. + * @param {number} [b] - The blue component. + */ + constructor( r, g, b ) { + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isColor = true; + + /** + * The red component. + * + * @type {number} + * @default 1 + */ + this.r = 1; + + /** + * The green component. + * + * @type {number} + * @default 1 + */ + this.g = 1; + + /** + * The blue component. + * + * @type {number} + * @default 1 + */ + this.b = 1; + + return this.set( r, g, b ); + + } + + /** + * Sets the colors's components from the given values. + * + * @param {(number|string|Color)} [r] - The red component of the color. If `g` and `b` are + * not provided, it can be hexadecimal triplet, a CSS-style string or another `Color` instance. + * @param {number} [g] - The green component. + * @param {number} [b] - The blue component. + * @return {Color} A reference to this color. + */ + set( r, g, b ) { + + if ( g === undefined && b === undefined ) { + + // r is THREE.Color, hex or string + + const value = r; + + if ( value && value.isColor ) { + + this.copy( value ); + + } else if ( typeof value === 'number' ) { + + this.setHex( value ); + + } else if ( typeof value === 'string' ) { + + this.setStyle( value ); + + } + + } else { + + this.setRGB( r, g, b ); + + } + + return this; + + } + + /** + * Sets the colors's components to the given scalar value. + * + * @param {number} scalar - The scalar value. + * @return {Color} A reference to this color. + */ + setScalar( scalar ) { + + this.r = scalar; + this.g = scalar; + this.b = scalar; + + return this; + + } + + /** + * Sets this color from a hexadecimal value. + * + * @param {number} hex - The hexadecimal value. + * @param {string} [colorSpace=SRGBColorSpace] - The color space. + * @return {Color} A reference to this color. + */ + setHex( hex, colorSpace = SRGBColorSpace ) { + + hex = Math.floor( hex ); + + this.r = ( hex >> 16 & 255 ) / 255; + this.g = ( hex >> 8 & 255 ) / 255; + this.b = ( hex & 255 ) / 255; + + ColorManagement.colorSpaceToWorking( this, colorSpace ); + + return this; + + } + + /** + * Sets this color from RGB values. + * + * @param {number} r - Red channel value between `0.0` and `1.0`. + * @param {number} g - Green channel value between `0.0` and `1.0`. + * @param {number} b - Blue channel value between `0.0` and `1.0`. + * @param {string} [colorSpace=ColorManagement.workingColorSpace] - The color space. + * @return {Color} A reference to this color. + */ + setRGB( r, g, b, colorSpace = ColorManagement.workingColorSpace ) { + + this.r = r; + this.g = g; + this.b = b; + + ColorManagement.colorSpaceToWorking( this, colorSpace ); + + return this; + + } + + /** + * Sets this color from RGB values. + * + * @param {number} h - Hue value between `0.0` and `1.0`. + * @param {number} s - Saturation value between `0.0` and `1.0`. + * @param {number} l - Lightness value between `0.0` and `1.0`. + * @param {string} [colorSpace=ColorManagement.workingColorSpace] - The color space. + * @return {Color} A reference to this color. + */ + setHSL( h, s, l, colorSpace = ColorManagement.workingColorSpace ) { + + // h,s,l ranges are in 0.0 - 1.0 + h = euclideanModulo( h, 1 ); + s = clamp( s, 0, 1 ); + l = clamp( l, 0, 1 ); + + if ( s === 0 ) { + + this.r = this.g = this.b = l; + + } else { + + const p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); + const q = ( 2 * l ) - p; + + this.r = hue2rgb( q, p, h + 1 / 3 ); + this.g = hue2rgb( q, p, h ); + this.b = hue2rgb( q, p, h - 1 / 3 ); + + } + + ColorManagement.colorSpaceToWorking( this, colorSpace ); + + return this; + + } + + /** + * Sets this color from a CSS-style string. For example, `rgb(250, 0,0)`, + * `rgb(100%, 0%, 0%)`, `hsl(0, 100%, 50%)`, `#ff0000`, `#f00`, or `red` ( or + * any [X11 color name]{@link https://en.wikipedia.org/wiki/X11_color_names#Color_name_chart} - + * all 140 color names are supported). + * + * @param {string} style - Color as a CSS-style string. + * @param {string} [colorSpace=SRGBColorSpace] - The color space. + * @return {Color} A reference to this color. + */ + setStyle( style, colorSpace = SRGBColorSpace ) { + + function handleAlpha( string ) { + + if ( string === undefined ) return; + + if ( parseFloat( string ) < 1 ) { + + console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' ); + + } + + } + + + let m; + + if ( m = /^(\w+)\(([^\)]*)\)/.exec( style ) ) { + + // rgb / hsl + + let color; + const name = m[ 1 ]; + const components = m[ 2 ]; + + switch ( name ) { + + case 'rgb': + case 'rgba': + + if ( color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { + + // rgb(255,0,0) rgba(255,0,0,0.5) + + handleAlpha( color[ 4 ] ); + + return this.setRGB( + Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255, + Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255, + Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255, + colorSpace + ); + + } + + if ( color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { + + // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) + + handleAlpha( color[ 4 ] ); + + return this.setRGB( + Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100, + Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100, + Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100, + colorSpace + ); + + } + + break; + + case 'hsl': + case 'hsla': + + if ( color = /^\s*(\d*\.?\d+)\s*,\s*(\d*\.?\d+)\%\s*,\s*(\d*\.?\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { + + // hsl(120,50%,50%) hsla(120,50%,50%,0.5) + + handleAlpha( color[ 4 ] ); + + return this.setHSL( + parseFloat( color[ 1 ] ) / 360, + parseFloat( color[ 2 ] ) / 100, + parseFloat( color[ 3 ] ) / 100, + colorSpace + ); + + } + + break; + + default: + + console.warn( 'THREE.Color: Unknown color model ' + style ); + + } + + } else if ( m = /^\#([A-Fa-f\d]+)$/.exec( style ) ) { + + // hex color + + const hex = m[ 1 ]; + const size = hex.length; + + if ( size === 3 ) { + + // #ff0 + return this.setRGB( + parseInt( hex.charAt( 0 ), 16 ) / 15, + parseInt( hex.charAt( 1 ), 16 ) / 15, + parseInt( hex.charAt( 2 ), 16 ) / 15, + colorSpace + ); + + } else if ( size === 6 ) { + + // #ff0000 + return this.setHex( parseInt( hex, 16 ), colorSpace ); + + } else { + + console.warn( 'THREE.Color: Invalid hex color ' + style ); + + } + + } else if ( style && style.length > 0 ) { + + return this.setColorName( style, colorSpace ); + + } + + return this; + + } + + /** + * Sets this color from a color name. Faster than {@link Color#setStyle} if + * you don't need the other CSS-style formats. + * + * For convenience, the list of names is exposed in `Color.NAMES` as a hash. + * ```js + * Color.NAMES.aliceblue // returns 0xF0F8FF + * ``` + * + * @param {string} style - The color name. + * @param {string} [colorSpace=SRGBColorSpace] - The color space. + * @return {Color} A reference to this color. + */ + setColorName( style, colorSpace = SRGBColorSpace ) { + + // color keywords + const hex = _colorKeywords[ style.toLowerCase() ]; + + if ( hex !== undefined ) { + + // red + this.setHex( hex, colorSpace ); + + } else { + + // unknown color + console.warn( 'THREE.Color: Unknown color ' + style ); + + } + + return this; + + } + + /** + * Returns a new color with copied values from this instance. + * + * @return {Color} A clone of this instance. + */ + clone() { + + return new this.constructor( this.r, this.g, this.b ); + + } + + /** + * Copies the values of the given color to this instance. + * + * @param {Color} color - The color to copy. + * @return {Color} A reference to this color. + */ + copy( color ) { + + this.r = color.r; + this.g = color.g; + this.b = color.b; + + return this; + + } + + /** + * Copies the given color into this color, and then converts this color from + * `SRGBColorSpace` to `LinearSRGBColorSpace`. + * + * @param {Color} color - The color to copy/convert. + * @return {Color} A reference to this color. + */ + copySRGBToLinear( color ) { + + this.r = SRGBToLinear( color.r ); + this.g = SRGBToLinear( color.g ); + this.b = SRGBToLinear( color.b ); + + return this; + + } + + /** + * Copies the given color into this color, and then converts this color from + * `LinearSRGBColorSpace` to `SRGBColorSpace`. + * + * @param {Color} color - The color to copy/convert. + * @return {Color} A reference to this color. + */ + copyLinearToSRGB( color ) { + + this.r = LinearToSRGB( color.r ); + this.g = LinearToSRGB( color.g ); + this.b = LinearToSRGB( color.b ); + + return this; + + } + + /** + * Converts this color from `SRGBColorSpace` to `LinearSRGBColorSpace`. + * + * @return {Color} A reference to this color. + */ + convertSRGBToLinear() { + + this.copySRGBToLinear( this ); + + return this; + + } + + /** + * Converts this color from `LinearSRGBColorSpace` to `SRGBColorSpace`. + * + * @return {Color} A reference to this color. + */ + convertLinearToSRGB() { + + this.copyLinearToSRGB( this ); + + return this; + + } + + /** + * Returns the hexadecimal value of this color. + * + * @param {string} [colorSpace=SRGBColorSpace] - The color space. + * @return {number} The hexadecimal value. + */ + getHex( colorSpace = SRGBColorSpace ) { + + ColorManagement.workingToColorSpace( _color.copy( this ), colorSpace ); + + return Math.round( clamp( _color.r * 255, 0, 255 ) ) * 65536 + Math.round( clamp( _color.g * 255, 0, 255 ) ) * 256 + Math.round( clamp( _color.b * 255, 0, 255 ) ); + + } + + /** + * Returns the hexadecimal value of this color as a string (for example, 'FFFFFF'). + * + * @param {string} [colorSpace=SRGBColorSpace] - The color space. + * @return {string} The hexadecimal value as a string. + */ + getHexString( colorSpace = SRGBColorSpace ) { + + return ( '000000' + this.getHex( colorSpace ).toString( 16 ) ).slice( - 6 ); + + } + + /** + * Converts the colors RGB values into the HSL format and stores them into the + * given target object. + * + * @param {{h:number,s:number,l:number}} target - The target object that is used to store the method's result. + * @param {string} [colorSpace=ColorManagement.workingColorSpace] - The color space. + * @return {{h:number,s:number,l:number}} The HSL representation of this color. + */ + getHSL( target, colorSpace = ColorManagement.workingColorSpace ) { + + // h,s,l ranges are in 0.0 - 1.0 + + ColorManagement.workingToColorSpace( _color.copy( this ), colorSpace ); + + const r = _color.r, g = _color.g, b = _color.b; + + const max = Math.max( r, g, b ); + const min = Math.min( r, g, b ); + + let hue, saturation; + const lightness = ( min + max ) / 2.0; + + if ( min === max ) { + + hue = 0; + saturation = 0; + + } else { + + const delta = max - min; + + saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min ); + + switch ( max ) { + + case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; + case g: hue = ( b - r ) / delta + 2; break; + case b: hue = ( r - g ) / delta + 4; break; + + } + + hue /= 6; + + } + + target.h = hue; + target.s = saturation; + target.l = lightness; + + return target; + + } + + /** + * Returns the RGB values of this color and stores them into the given target object. + * + * @param {Color} target - The target color that is used to store the method's result. + * @param {string} [colorSpace=ColorManagement.workingColorSpace] - The color space. + * @return {Color} The RGB representation of this color. + */ + getRGB( target, colorSpace = ColorManagement.workingColorSpace ) { + + ColorManagement.workingToColorSpace( _color.copy( this ), colorSpace ); + + target.r = _color.r; + target.g = _color.g; + target.b = _color.b; + + return target; + + } + + /** + * Returns the value of this color as a CSS style string. Example: `rgb(255,0,0)`. + * + * @param {string} [colorSpace=SRGBColorSpace] - The color space. + * @return {string} The CSS representation of this color. + */ + getStyle( colorSpace = SRGBColorSpace ) { + + ColorManagement.workingToColorSpace( _color.copy( this ), colorSpace ); + + const r = _color.r, g = _color.g, b = _color.b; + + if ( colorSpace !== SRGBColorSpace ) { + + // Requires CSS Color Module Level 4 (https://www.w3.org/TR/css-color-4/). + return `color(${ colorSpace } ${ r.toFixed( 3 ) } ${ g.toFixed( 3 ) } ${ b.toFixed( 3 ) })`; + + } + + return `rgb(${ Math.round( r * 255 ) },${ Math.round( g * 255 ) },${ Math.round( b * 255 ) })`; + + } + + /** + * Adds the given HSL values to this color's values. + * Internally, this converts the color's RGB values to HSL, adds HSL + * and then converts the color back to RGB. + * + * @param {number} h - Hue value between `0.0` and `1.0`. + * @param {number} s - Saturation value between `0.0` and `1.0`. + * @param {number} l - Lightness value between `0.0` and `1.0`. + * @return {Color} A reference to this color. + */ + offsetHSL( h, s, l ) { + + this.getHSL( _hslA ); + + return this.setHSL( _hslA.h + h, _hslA.s + s, _hslA.l + l ); + + } + + /** + * Adds the RGB values of the given color to the RGB values of this color. + * + * @param {Color} color - The color to add. + * @return {Color} A reference to this color. + */ + add( color ) { + + this.r += color.r; + this.g += color.g; + this.b += color.b; + + return this; + + } + + /** + * Adds the RGB values of the given colors and stores the result in this instance. + * + * @param {Color} color1 - The first color. + * @param {Color} color2 - The second color. + * @return {Color} A reference to this color. + */ + addColors( color1, color2 ) { + + this.r = color1.r + color2.r; + this.g = color1.g + color2.g; + this.b = color1.b + color2.b; + + return this; + + } + + /** + * Adds the given scalar value to the RGB values of this color. + * + * @param {number} s - The scalar to add. + * @return {Color} A reference to this color. + */ + addScalar( s ) { + + this.r += s; + this.g += s; + this.b += s; + + return this; + + } + + /** + * Subtracts the RGB values of the given color from the RGB values of this color. + * + * @param {Color} color - The color to subtract. + * @return {Color} A reference to this color. + */ + sub( color ) { + + this.r = Math.max( 0, this.r - color.r ); + this.g = Math.max( 0, this.g - color.g ); + this.b = Math.max( 0, this.b - color.b ); + + return this; + + } + + /** + * Multiplies the RGB values of the given color with the RGB values of this color. + * + * @param {Color} color - The color to multiply. + * @return {Color} A reference to this color. + */ + multiply( color ) { + + this.r *= color.r; + this.g *= color.g; + this.b *= color.b; + + return this; + + } + + /** + * Multiplies the given scalar value with the RGB values of this color. + * + * @param {number} s - The scalar to multiply. + * @return {Color} A reference to this color. + */ + multiplyScalar( s ) { + + this.r *= s; + this.g *= s; + this.b *= s; + + return this; + + } + + /** + * Linearly interpolates this color's RGB values toward the RGB values of the + * given color. The alpha argument can be thought of as the ratio between + * the two colors, where `0.0` is this color and `1.0` is the first argument. + * + * @param {Color} color - The color to converge on. + * @param {number} alpha - The interpolation factor in the closed interval `[0,1]`. + * @return {Color} A reference to this color. + */ + lerp( color, alpha ) { + + this.r += ( color.r - this.r ) * alpha; + this.g += ( color.g - this.g ) * alpha; + this.b += ( color.b - this.b ) * alpha; + + return this; + + } + + /** + * Linearly interpolates between the given colors and stores the result in this instance. + * The alpha argument can be thought of as the ratio between the two colors, where `0.0` + * is the first and `1.0` is the second color. + * + * @param {Color} color1 - The first color. + * @param {Color} color2 - The second color. + * @param {number} alpha - The interpolation factor in the closed interval `[0,1]`. + * @return {Color} A reference to this color. + */ + lerpColors( color1, color2, alpha ) { + + this.r = color1.r + ( color2.r - color1.r ) * alpha; + this.g = color1.g + ( color2.g - color1.g ) * alpha; + this.b = color1.b + ( color2.b - color1.b ) * alpha; + + return this; + + } + + /** + * Linearly interpolates this color's HSL values toward the HSL values of the + * given color. It differs from {@link Color#lerp} by not interpolating straight + * from one color to the other, but instead going through all the hues in between + * those two colors. The alpha argument can be thought of as the ratio between + * the two colors, where 0.0 is this color and 1.0 is the first argument. + * + * @param {Color} color - The color to converge on. + * @param {number} alpha - The interpolation factor in the closed interval `[0,1]`. + * @return {Color} A reference to this color. + */ + lerpHSL( color, alpha ) { + + this.getHSL( _hslA ); + color.getHSL( _hslB ); + + const h = lerp( _hslA.h, _hslB.h, alpha ); + const s = lerp( _hslA.s, _hslB.s, alpha ); + const l = lerp( _hslA.l, _hslB.l, alpha ); + + this.setHSL( h, s, l ); + + return this; + + } + + /** + * Sets the color's RGB components from the given 3D vector. + * + * @param {Vector3} v - The vector to set. + * @return {Color} A reference to this color. + */ + setFromVector3( v ) { + + this.r = v.x; + this.g = v.y; + this.b = v.z; + + return this; + + } + + /** + * Transforms this color with the given 3x3 matrix. + * + * @param {Matrix3} m - The matrix. + * @return {Color} A reference to this color. + */ + applyMatrix3( m ) { + + const r = this.r, g = this.g, b = this.b; + const e = m.elements; + + this.r = e[ 0 ] * r + e[ 3 ] * g + e[ 6 ] * b; + this.g = e[ 1 ] * r + e[ 4 ] * g + e[ 7 ] * b; + this.b = e[ 2 ] * r + e[ 5 ] * g + e[ 8 ] * b; + + return this; + + } + + /** + * Returns `true` if this color is equal with the given one. + * + * @param {Color} c - The color to test for equality. + * @return {boolean} Whether this bounding color is equal with the given one. + */ + equals( c ) { + + return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b ); + + } + + /** + * Sets this color's RGB components from the given array. + * + * @param {Array} array - An array holding the RGB values. + * @param {number} [offset=0] - The offset into the array. + * @return {Color} A reference to this color. + */ + fromArray( array, offset = 0 ) { + + this.r = array[ offset ]; + this.g = array[ offset + 1 ]; + this.b = array[ offset + 2 ]; + + return this; + + } + + /** + * Writes the RGB components of this color to the given array. If no array is provided, + * the method returns a new instance. + * + * @param {Array} [array=[]] - The target array holding the color components. + * @param {number} [offset=0] - Index of the first element in the array. + * @return {Array} The color components. + */ + toArray( array = [], offset = 0 ) { + + array[ offset ] = this.r; + array[ offset + 1 ] = this.g; + array[ offset + 2 ] = this.b; + + return array; + + } + + /** + * Sets the components of this color from the given buffer attribute. + * + * @param {BufferAttribute} attribute - The buffer attribute holding color data. + * @param {number} index - The index into the attribute. + * @return {Color} A reference to this color. + */ + fromBufferAttribute( attribute, index ) { + + this.r = attribute.getX( index ); + this.g = attribute.getY( index ); + this.b = attribute.getZ( index ); + + return this; + + } + + /** + * This methods defines the serialization result of this class. Returns the color + * as a hexadecimal value. + * + * @return {number} The hexadecimal value. + */ + toJSON() { + + return this.getHex(); + + } + + *[ Symbol.iterator ]() { + + yield this.r; + yield this.g; + yield this.b; + + } + + } + + const _color = /*@__PURE__*/ new Color(); + + /** + * A dictionary with X11 color names. + * + * Note that multiple words such as Dark Orange become the string 'darkorange'. + * + * @static + * @type {Object} + */ + Color.NAMES = _colorKeywords; + + const _vector$9 = /*@__PURE__*/ new Vector3(); + const _vector2$1 = /*@__PURE__*/ new Vector2(); + + let _id$2 = 0; + + /** + * This class stores data for an attribute (such as vertex positions, face + * indices, normals, colors, UVs, and any custom attributes ) associated with + * a geometry, which allows for more efficient passing of data to the GPU. + * + * When working with vector-like data, the `fromBufferAttribute( attribute, index )` + * helper methods on vector and color class might be helpful. E.g. {@link Vector3#fromBufferAttribute}. + */ + class BufferAttribute { + + /** + * Constructs a new buffer attribute. + * + * @param {TypedArray} array - The array holding the attribute data. + * @param {number} itemSize - The item size. + * @param {boolean} [normalized=false] - Whether the data are normalized or not. + */ + constructor( array, itemSize, normalized = false ) { + + if ( Array.isArray( array ) ) { + + throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); + + } + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isBufferAttribute = true; + + /** + * The ID of the buffer attribute. + * + * @name BufferAttribute#id + * @type {number} + * @readonly + */ + Object.defineProperty( this, 'id', { value: _id$2 ++ } ); + + /** + * The name of the buffer attribute. + * + * @type {string} + */ + this.name = ''; + + /** + * The array holding the attribute data. It should have `itemSize * numVertices` + * elements, where `numVertices` is the number of vertices in the associated geometry. + * + * @type {TypedArray} + */ + this.array = array; + + /** + * The number of values of the array that should be associated with a particular vertex. + * For instance, if this attribute is storing a 3-component vector (such as a position, + * normal, or color), then the value should be `3`. + * + * @type {number} + */ + this.itemSize = itemSize; + + /** + * Represents the number of items this buffer attribute stores. It is internally computed + * by dividing the `array` length by the `itemSize`. + * + * @type {number} + * @readonly + */ + this.count = array !== undefined ? array.length / itemSize : 0; + + /** + * Applies to integer data only. Indicates how the underlying data in the buffer maps to + * the values in the GLSL code. For instance, if `array` is an instance of `UInt16Array`, + * and `normalized` is `true`, the values `0 -+65535` in the array data will be mapped to + * `0.0f - +1.0f` in the GLSL attribute. If `normalized` is `false`, the values will be converted + * to floats unmodified, i.e. `65535` becomes `65535.0f`. + * + * @type {boolean} + */ + this.normalized = normalized; + + /** + * Defines the intended usage pattern of the data store for optimization purposes. + * + * Note: After the initial use of a buffer, its usage cannot be changed. Instead, + * instantiate a new one and set the desired usage before the next render. + * + * @type {(StaticDrawUsage|DynamicDrawUsage|StreamDrawUsage|StaticReadUsage|DynamicReadUsage|StreamReadUsage|StaticCopyUsage|DynamicCopyUsage|StreamCopyUsage)} + * @default StaticDrawUsage + */ + this.usage = StaticDrawUsage; + + /** + * This can be used to only update some components of stored vectors (for example, just the + * component related to color). Use the `addUpdateRange()` function to add ranges to this array. + * + * @type {Array} + */ + this.updateRanges = []; + + /** + * Configures the bound GPU type for use in shaders. + * + * Note: this only has an effect for integer arrays and is not configurable for float arrays. + * For lower precision float types, use `Float16BufferAttribute`. + * + * @type {(FloatType|IntType)} + * @default FloatType + */ + this.gpuType = FloatType; + + /** + * A version number, incremented every time the `needsUpdate` is set to `true`. + * + * @type {number} + */ + this.version = 0; + + } + + /** + * A callback function that is executed after the renderer has transferred the attribute + * array data to the GPU. + */ + onUploadCallback() {} + + /** + * Flag to indicate that this attribute has changed and should be re-sent to + * the GPU. Set this to `true` when you modify the value of the array. + * + * @type {number} + * @default false + * @param {boolean} value + */ + set needsUpdate( value ) { + + if ( value === true ) this.version ++; + + } + + /** + * Sets the usage of this buffer attribute. + * + * @param {(StaticDrawUsage|DynamicDrawUsage|StreamDrawUsage|StaticReadUsage|DynamicReadUsage|StreamReadUsage|StaticCopyUsage|DynamicCopyUsage|StreamCopyUsage)} value - The usage to set. + * @return {BufferAttribute} A reference to this buffer attribute. + */ + setUsage( value ) { + + this.usage = value; + + return this; + + } + + /** + * Adds a range of data in the data array to be updated on the GPU. + * + * @param {number} start - Position at which to start update. + * @param {number} count - The number of components to update. + */ + addUpdateRange( start, count ) { + + this.updateRanges.push( { start, count } ); + + } + + /** + * Clears the update ranges. + */ + clearUpdateRanges() { + + this.updateRanges.length = 0; + + } + + /** + * Copies the values of the given buffer attribute to this instance. + * + * @param {BufferAttribute} source - The buffer attribute to copy. + * @return {BufferAttribute} A reference to this instance. + */ + copy( source ) { + + this.name = source.name; + this.array = new source.array.constructor( source.array ); + this.itemSize = source.itemSize; + this.count = source.count; + this.normalized = source.normalized; + + this.usage = source.usage; + this.gpuType = source.gpuType; + + return this; + + } + + /** + * Copies a vector from the given buffer attribute to this one. The start + * and destination position in the attribute buffers are represented by the + * given indices. + * + * @param {number} index1 - The destination index into this buffer attribute. + * @param {BufferAttribute} attribute - The buffer attribute to copy from. + * @param {number} index2 - The source index into the given buffer attribute. + * @return {BufferAttribute} A reference to this instance. + */ + copyAt( index1, attribute, index2 ) { + + index1 *= this.itemSize; + index2 *= attribute.itemSize; + + for ( let i = 0, l = this.itemSize; i < l; i ++ ) { + + this.array[ index1 + i ] = attribute.array[ index2 + i ]; + + } + + return this; + + } + + /** + * Copies the given array data into this buffer attribute. + * + * @param {(TypedArray|Array)} array - The array to copy. + * @return {BufferAttribute} A reference to this instance. + */ + copyArray( array ) { + + this.array.set( array ); + + return this; + + } + + /** + * Applies the given 3x3 matrix to the given attribute. Works with + * item size `2` and `3`. + * + * @param {Matrix3} m - The matrix to apply. + * @return {BufferAttribute} A reference to this instance. + */ + applyMatrix3( m ) { + + if ( this.itemSize === 2 ) { + + for ( let i = 0, l = this.count; i < l; i ++ ) { + + _vector2$1.fromBufferAttribute( this, i ); + _vector2$1.applyMatrix3( m ); + + this.setXY( i, _vector2$1.x, _vector2$1.y ); + + } + + } else if ( this.itemSize === 3 ) { + + for ( let i = 0, l = this.count; i < l; i ++ ) { + + _vector$9.fromBufferAttribute( this, i ); + _vector$9.applyMatrix3( m ); + + this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); + + } + + } + + return this; + + } + + /** + * Applies the given 4x4 matrix to the given attribute. Only works with + * item size `3`. + * + * @param {Matrix4} m - The matrix to apply. + * @return {BufferAttribute} A reference to this instance. + */ + applyMatrix4( m ) { + + for ( let i = 0, l = this.count; i < l; i ++ ) { + + _vector$9.fromBufferAttribute( this, i ); + + _vector$9.applyMatrix4( m ); + + this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); + + } + + return this; + + } + + /** + * Applies the given 3x3 normal matrix to the given attribute. Only works with + * item size `3`. + * + * @param {Matrix3} m - The normal matrix to apply. + * @return {BufferAttribute} A reference to this instance. + */ + applyNormalMatrix( m ) { + + for ( let i = 0, l = this.count; i < l; i ++ ) { + + _vector$9.fromBufferAttribute( this, i ); + + _vector$9.applyNormalMatrix( m ); + + this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); + + } + + return this; + + } + + /** + * Applies the given 4x4 matrix to the given attribute. Only works with + * item size `3` and with direction vectors. + * + * @param {Matrix4} m - The matrix to apply. + * @return {BufferAttribute} A reference to this instance. + */ + transformDirection( m ) { + + for ( let i = 0, l = this.count; i < l; i ++ ) { + + _vector$9.fromBufferAttribute( this, i ); + + _vector$9.transformDirection( m ); + + this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); + + } + + return this; + + } + + /** + * Sets the given array data in the buffer attribute. + * + * @param {(TypedArray|Array)} value - The array data to set. + * @param {number} [offset=0] - The offset in this buffer attribute's array. + * @return {BufferAttribute} A reference to this instance. + */ + set( value, offset = 0 ) { + + // Matching BufferAttribute constructor, do not normalize the array. + this.array.set( value, offset ); + + return this; + + } + + /** + * Returns the given component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} component - The component index. + * @return {number} The returned value. + */ + getComponent( index, component ) { + + let value = this.array[ index * this.itemSize + component ]; + + if ( this.normalized ) value = denormalize( value, this.array ); + + return value; + + } + + /** + * Sets the given value to the given component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} component - The component index. + * @param {number} value - The value to set. + * @return {BufferAttribute} A reference to this instance. + */ + setComponent( index, component, value ) { + + if ( this.normalized ) value = normalize( value, this.array ); + + this.array[ index * this.itemSize + component ] = value; + + return this; + + } + + /** + * Returns the x component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @return {number} The x component. + */ + getX( index ) { + + let x = this.array[ index * this.itemSize ]; + + if ( this.normalized ) x = denormalize( x, this.array ); + + return x; + + } + + /** + * Sets the x component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} x - The value to set. + * @return {BufferAttribute} A reference to this instance. + */ + setX( index, x ) { + + if ( this.normalized ) x = normalize( x, this.array ); + + this.array[ index * this.itemSize ] = x; + + return this; + + } + + /** + * Returns the y component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @return {number} The y component. + */ + getY( index ) { + + let y = this.array[ index * this.itemSize + 1 ]; + + if ( this.normalized ) y = denormalize( y, this.array ); + + return y; + + } + + /** + * Sets the y component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} y - The value to set. + * @return {BufferAttribute} A reference to this instance. + */ + setY( index, y ) { + + if ( this.normalized ) y = normalize( y, this.array ); + + this.array[ index * this.itemSize + 1 ] = y; + + return this; + + } + + /** + * Returns the z component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @return {number} The z component. + */ + getZ( index ) { + + let z = this.array[ index * this.itemSize + 2 ]; + + if ( this.normalized ) z = denormalize( z, this.array ); + + return z; + + } + + /** + * Sets the z component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} z - The value to set. + * @return {BufferAttribute} A reference to this instance. + */ + setZ( index, z ) { + + if ( this.normalized ) z = normalize( z, this.array ); + + this.array[ index * this.itemSize + 2 ] = z; + + return this; + + } + + /** + * Returns the w component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @return {number} The w component. + */ + getW( index ) { + + let w = this.array[ index * this.itemSize + 3 ]; + + if ( this.normalized ) w = denormalize( w, this.array ); + + return w; + + } + + /** + * Sets the w component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} w - The value to set. + * @return {BufferAttribute} A reference to this instance. + */ + setW( index, w ) { + + if ( this.normalized ) w = normalize( w, this.array ); + + this.array[ index * this.itemSize + 3 ] = w; + + return this; + + } + + /** + * Sets the x and y component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} x - The value for the x component to set. + * @param {number} y - The value for the y component to set. + * @return {BufferAttribute} A reference to this instance. + */ + setXY( index, x, y ) { + + index *= this.itemSize; + + if ( this.normalized ) { + + x = normalize( x, this.array ); + y = normalize( y, this.array ); + + } + + this.array[ index + 0 ] = x; + this.array[ index + 1 ] = y; + + return this; + + } + + /** + * Sets the x, y and z component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} x - The value for the x component to set. + * @param {number} y - The value for the y component to set. + * @param {number} z - The value for the z component to set. + * @return {BufferAttribute} A reference to this instance. + */ + setXYZ( index, x, y, z ) { + + index *= this.itemSize; + + if ( this.normalized ) { + + x = normalize( x, this.array ); + y = normalize( y, this.array ); + z = normalize( z, this.array ); + + } + + this.array[ index + 0 ] = x; + this.array[ index + 1 ] = y; + this.array[ index + 2 ] = z; + + return this; + + } + + /** + * Sets the x, y, z and w component of the vector at the given index. + * + * @param {number} index - The index into the buffer attribute. + * @param {number} x - The value for the x component to set. + * @param {number} y - The value for the y component to set. + * @param {number} z - The value for the z component to set. + * @param {number} w - The value for the w component to set. + * @return {BufferAttribute} A reference to this instance. + */ + setXYZW( index, x, y, z, w ) { + + index *= this.itemSize; + + if ( this.normalized ) { + + x = normalize( x, this.array ); + y = normalize( y, this.array ); + z = normalize( z, this.array ); + w = normalize( w, this.array ); + + } + + this.array[ index + 0 ] = x; + this.array[ index + 1 ] = y; + this.array[ index + 2 ] = z; + this.array[ index + 3 ] = w; + + return this; + + } + + /** + * Sets the given callback function that is executed after the Renderer has transferred + * the attribute array data to the GPU. Can be used to perform clean-up operations after + * the upload when attribute data are not needed anymore on the CPU side. + * + * @param {Function} callback - The `onUpload()` callback. + * @return {BufferAttribute} A reference to this instance. + */ + onUpload( callback ) { + + this.onUploadCallback = callback; + + return this; + + } + + /** + * Returns a new buffer attribute with copied values from this instance. + * + * @return {BufferAttribute} A clone of this instance. + */ + clone() { + + return new this.constructor( this.array, this.itemSize ).copy( this ); + + } + + /** + * Serializes the buffer attribute into JSON. + * + * @return {Object} A JSON object representing the serialized buffer attribute. + */ + toJSON() { + + const data = { + itemSize: this.itemSize, + type: this.array.constructor.name, + array: Array.from( this.array ), + normalized: this.normalized + }; + + if ( this.name !== '' ) data.name = this.name; + if ( this.usage !== StaticDrawUsage ) data.usage = this.usage; + + return data; + + } + + } + + /** + * Scenes allow you to set up what is to be rendered and where by three.js. + * This is where you place 3D objects like meshes, lines or lights. + * + * @augments Object3D + */ + class Scene extends Object3D { + + /** + * Constructs a new scene. + */ + constructor() { + + super(); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isScene = true; + + this.type = 'Scene'; + + /** + * Defines the background of the scene. Valid inputs are: + * + * - A color for defining a uniform colored background. + * - A texture for defining a (flat) textured background. + * - Cube textures or equirectangular textures for defining a skybox. + * + * @type {?(Color|Texture)} + * @default null + */ + this.background = null; + + /** + * Sets the environment map for all physical materials in the scene. However, + * it's not possible to overwrite an existing texture assigned to the `envMap` + * material property. + * + * @type {?Texture} + * @default null + */ + this.environment = null; + + /** + * A fog instance defining the type of fog that affects everything + * rendered in the scene. + * + * @type {?(Fog|FogExp2)} + * @default null + */ + this.fog = null; + + /** + * Sets the blurriness of the background. Only influences environment maps + * assigned to {@link Scene#background}. Valid input is a float between `0` + * and `1`. + * + * @type {number} + * @default 0 + */ + this.backgroundBlurriness = 0; + + /** + * Attenuates the color of the background. Only applies to background textures. + * + * @type {number} + * @default 1 + */ + this.backgroundIntensity = 1; + + /** + * The rotation of the background in radians. Only influences environment maps + * assigned to {@link Scene#background}. + * + * @type {Euler} + * @default (0,0,0) + */ + this.backgroundRotation = new Euler(); + + /** + * Attenuates the color of the environment. Only influences environment maps + * assigned to {@link Scene#environment}. + * + * @type {number} + * @default 1 + */ + this.environmentIntensity = 1; + + /** + * The rotation of the environment map in radians. Only influences physical materials + * in the scene when {@link Scene#environment} is used. + * + * @type {Euler} + * @default (0,0,0) + */ + this.environmentRotation = new Euler(); + + /** + * Forces everything in the scene to be rendered with the defined material. It is possible + * to exclude materials from override by setting {@link Material#allowOverride} to `false`. + * + * @type {?Material} + * @default null + */ + this.overrideMaterial = null; + + if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { + + __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); + + } + + } + + copy( source, recursive ) { + + super.copy( source, recursive ); + + if ( source.background !== null ) this.background = source.background.clone(); + if ( source.environment !== null ) this.environment = source.environment.clone(); + if ( source.fog !== null ) this.fog = source.fog.clone(); + + this.backgroundBlurriness = source.backgroundBlurriness; + this.backgroundIntensity = source.backgroundIntensity; + this.backgroundRotation.copy( source.backgroundRotation ); + + this.environmentIntensity = source.environmentIntensity; + this.environmentRotation.copy( source.environmentRotation ); + + if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone(); + + this.matrixAutoUpdate = source.matrixAutoUpdate; + + return this; + + } + + toJSON( meta ) { + + const data = super.toJSON( meta ); + + if ( this.fog !== null ) data.object.fog = this.fog.toJSON(); + + if ( this.backgroundBlurriness > 0 ) data.object.backgroundBlurriness = this.backgroundBlurriness; + if ( this.backgroundIntensity !== 1 ) data.object.backgroundIntensity = this.backgroundIntensity; + data.object.backgroundRotation = this.backgroundRotation.toArray(); + + if ( this.environmentIntensity !== 1 ) data.object.environmentIntensity = this.environmentIntensity; + data.object.environmentRotation = this.environmentRotation.toArray(); + + return data; + + } + + } + + /** + * Creates a texture based on data in compressed form. + * + * These texture are usually loaded with {@link CompressedTextureLoader}. + * + * @augments Texture + */ + class CompressedTexture extends Texture { + + /** + * Constructs a new compressed texture. + * + * @param {Array} mipmaps - This array holds for all mipmaps (including the bases mip) + * the data and dimensions. + * @param {number} width - The width of the texture. + * @param {number} height - The height of the texture. + * @param {number} [format=RGBAFormat] - The texture format. + * @param {number} [type=UnsignedByteType] - The texture type. + * @param {number} [mapping=Texture.DEFAULT_MAPPING] - The texture mapping. + * @param {number} [wrapS=ClampToEdgeWrapping] - The wrapS value. + * @param {number} [wrapT=ClampToEdgeWrapping] - The wrapT value. + * @param {number} [magFilter=LinearFilter] - The mag filter value. + * @param {number} [minFilter=LinearMipmapLinearFilter] - The min filter value. + * @param {number} [anisotropy=Texture.DEFAULT_ANISOTROPY] - The anisotropy value. + * @param {string} [colorSpace=NoColorSpace] - The color space. + */ + constructor( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, colorSpace ) { + + super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace ); + + /** + * This flag can be used for type testing. + * + * @type {boolean} + * @readonly + * @default true + */ + this.isCompressedTexture = true; + + /** + * The image property of a compressed texture just defines its dimensions. + * + * @type {{width:number,height:number}} + */ + this.image = { width: width, height: height }; + + /** + * This array holds for all mipmaps (including the bases mip) the data and dimensions. + * + * @type {Array} + */ + this.mipmaps = mipmaps; + + /** + * If set to `true`, the texture is flipped along the vertical axis when + * uploaded to the GPU. + * + * Overwritten and set to `false` by default since it is not possible to + * flip compressed textures. + * + * @type {boolean} + * @default false + * @readonly + */ + this.flipY = false; + + /** + * Whether to generate mipmaps (if possible) for a texture. + * + * Overwritten and set to `false` by default since it is not + * possible to generate mipmaps for compressed data. Mipmaps + * must be embedded in the compressed texture file. + * + * @type {boolean} + * @default false + * @readonly + */ + this.generateMipmaps = false; + + } + + } + + // Characters [].:/ are reserved for track binding syntax. + const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/'; + const _reservedRe = new RegExp( '[' + _RESERVED_CHARS_RE + ']', 'g' ); + + // Attempts to allow node names from any language. ES5's `\w` regexp matches + // only latin characters, and the unicode \p{L} is not yet supported. So + // instead, we exclude reserved characters and match everything else. + const _wordChar = '[^' + _RESERVED_CHARS_RE + ']'; + const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace( '\\.', '' ) + ']'; + + // Parent directories, delimited by '/' or ':'. Currently unused, but must + // be matched to parse the rest of the track name. + const _directoryRe = /*@__PURE__*/ /((?:WC+[\/:])*)/.source.replace( 'WC', _wordChar ); + + // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. + const _nodeRe = /*@__PURE__*/ /(WCOD+)?/.source.replace( 'WCOD', _wordCharOrDot ); + + // Object on target node, and accessor. May not contain reserved + // characters. Accessor may contain any character except closing bracket. + const _objectRe = /*@__PURE__*/ /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace( 'WC', _wordChar ); + + // Property and accessor. May not contain reserved characters. Accessor may + // contain any non-bracket characters. + const _propertyRe = /*@__PURE__*/ /\.(WC+)(?:\[(.+)\])?/.source.replace( 'WC', _wordChar ); + + const _trackRe = new RegExp( '' + + '^' + + _directoryRe + + _nodeRe + + _objectRe + + _propertyRe + + '$' + ); + + const _supportedObjectNames = [ 'material', 'materials', 'bones', 'map' ]; + + class Composite { + + constructor( targetGroup, path, optionalParsedPath ) { + + const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path ); + + this._targetGroup = targetGroup; + this._bindings = targetGroup.subscribe_( path, parsedPath ); + + } + + getValue( array, offset ) { + + this.bind(); // bind all binding + + const firstValidIndex = this._targetGroup.nCachedObjects_, + binding = this._bindings[ firstValidIndex ]; + + // and only call .getValue on the first + if ( binding !== undefined ) binding.getValue( array, offset ); + + } + + setValue( array, offset ) { + + const bindings = this._bindings; + + for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { + + bindings[ i ].setValue( array, offset ); + + } + + } + + bind() { + + const bindings = this._bindings; + + for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { + + bindings[ i ].bind(); + + } + + } + + unbind() { + + const bindings = this._bindings; + + for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { + + bindings[ i ].unbind(); + + } + + } + + } + + // Note: This class uses a State pattern on a per-method basis: + // 'bind' sets 'this.getValue' / 'setValue' and shadows the + // prototype version of these methods with one that represents + // the bound state. When the property is not found, the methods + // become no-ops. + + + /** + * This holds a reference to a real property in the scene graph; used internally. + */ + class PropertyBinding { + + /** + * Constructs a new property binding. + * + * @param {Object} rootNode - The root node. + * @param {string} path - The path. + * @param {?Object} [parsedPath] - The parsed path. + */ + constructor( rootNode, path, parsedPath ) { + + /** + * The object path to the animated property. + * + * @type {string} + */ + this.path = path; + + /** + * An object holding information about the path. + * + * @type {Object} + */ + this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path ); + + /** + * The object owns the animated property. + * + * @type {?Object} + */ + this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ); + + /** + * The root node. + * + * @type {Object3D|Skeleton} + */ + this.rootNode = rootNode; + + // initial state of these methods that calls 'bind' + this.getValue = this._getValue_unbound; + this.setValue = this._setValue_unbound; + + } + + + /** + * Factory method for creating a property binding from the given parameters. + * + * @static + * @param {Object} root - The root node. + * @param {string} path - The path. + * @param {?Object} [parsedPath] - The parsed path. + * @return {PropertyBinding|Composite} The created property binding or composite. + */ + static create( root, path, parsedPath ) { + + if ( ! ( root && root.isAnimationObjectGroup ) ) { + + return new PropertyBinding( root, path, parsedPath ); + + } else { + + return new PropertyBinding.Composite( root, path, parsedPath ); + + } + + } + + /** + * Replaces spaces with underscores and removes unsupported characters from + * node names, to ensure compatibility with parseTrackName(). + * + * @param {string} name - Node name to be sanitized. + * @return {string} The sanitized node name. + */ + static sanitizeNodeName( name ) { + + return name.replace( /\s/g, '_' ).replace( _reservedRe, '' ); + + } + + /** + * Parses the given track name (an object path to an animated property) and + * returns an object with information about the path. Matches strings in the following forms: + * + * - nodeName.property + * - nodeName.property[accessor] + * - nodeName.material.property[accessor] + * - uuid.property[accessor] + * - uuid.objectName[objectIndex].propertyName[propertyIndex] + * - parentName/nodeName.property + * - parentName/parentName/nodeName.property[index] + * - .bone[Armature.DEF_cog].position + * - scene:helium_balloon_model:helium_balloon_model.position + * + * @static + * @param {string} trackName - The track name to parse. + * @return {Object} The parsed track name as an object. + */ + static parseTrackName( trackName ) { + + const matches = _trackRe.exec( trackName ); + + if ( matches === null ) { + + throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName ); + + } + + const results = { + // directoryName: matches[ 1 ], // (tschw) currently unused + nodeName: matches[ 2 ], + objectName: matches[ 3 ], + objectIndex: matches[ 4 ], + propertyName: matches[ 5 ], // required + propertyIndex: matches[ 6 ] + }; + + const lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' ); + + if ( lastDot !== undefined && lastDot !== - 1 ) { + + const objectName = results.nodeName.substring( lastDot + 1 ); + + // Object names must be checked against an allowlist. Otherwise, there + // is no way to parse 'foo.bar.baz': 'baz' must be a property, but + // 'bar' could be the objectName, or part of a nodeName (which can + // include '.' characters). + if ( _supportedObjectNames.indexOf( objectName ) !== - 1 ) { + + results.nodeName = results.nodeName.substring( 0, lastDot ); + results.objectName = objectName; + + } + + } + + if ( results.propertyName === null || results.propertyName.length === 0 ) { + + throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName ); + + } + + return results; + + } + + /** + * Searches for a node in the hierarchy of the given root object by the given + * node name. + * + * @static + * @param {Object} root - The root object. + * @param {string|number} nodeName - The name of the node. + * @return {?Object} The found node. Returns `null` if no object was found. + */ + static findNode( root, nodeName ) { + + if ( nodeName === undefined || nodeName === '' || nodeName === '.' || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) { + + return root; + + } + + // search into skeleton bones. + if ( root.skeleton ) { + + const bone = root.skeleton.getBoneByName( nodeName ); + + if ( bone !== undefined ) { + + return bone; + + } + + } + + // search into node subtree. + if ( root.children ) { + + const searchNodeSubtree = function ( children ) { + + for ( let i = 0; i < children.length; i ++ ) { + + const childNode = children[ i ]; + + if ( childNode.name === nodeName || childNode.uuid === nodeName ) { + + return childNode; + + } + + const result = searchNodeSubtree( childNode.children ); + + if ( result ) return result; + + } + + return null; + + }; + + const subTreeNode = searchNodeSubtree( root.children ); + + if ( subTreeNode ) { + + return subTreeNode; + + } + + } + + return null; + + } + + // these are used to "bind" a nonexistent property + _getValue_unavailable() {} + _setValue_unavailable() {} + + // Getters + + _getValue_direct( buffer, offset ) { + + buffer[ offset ] = this.targetObject[ this.propertyName ]; + + } + + _getValue_array( buffer, offset ) { + + const source = this.resolvedProperty; + + for ( let i = 0, n = source.length; i !== n; ++ i ) { + + buffer[ offset ++ ] = source[ i ]; + + } + + } + + _getValue_arrayElement( buffer, offset ) { + + buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ]; + + } + + _getValue_toArray( buffer, offset ) { + + this.resolvedProperty.toArray( buffer, offset ); + + } + + // Direct + + _setValue_direct( buffer, offset ) { + + this.targetObject[ this.propertyName ] = buffer[ offset ]; + + } + + _setValue_direct_setNeedsUpdate( buffer, offset ) { + + this.targetObject[ this.propertyName ] = buffer[ offset ]; + this.targetObject.needsUpdate = true; + + } + + _setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) { + + this.targetObject[ this.propertyName ] = buffer[ offset ]; + this.targetObject.matrixWorldNeedsUpdate = true; + + } + + // EntireArray + + _setValue_array( buffer, offset ) { + + const dest = this.resolvedProperty; + + for ( let i = 0, n = dest.length; i !== n; ++ i ) { + + dest[ i ] = buffer[ offset ++ ]; + + } + + } + + _setValue_array_setNeedsUpdate( buffer, offset ) { + + const dest = this.resolvedProperty; + + for ( let i = 0, n = dest.length; i !== n; ++ i ) { + + dest[ i ] = buffer[ offset ++ ]; + + } + + this.targetObject.needsUpdate = true; + + } + + _setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) { + + const dest = this.resolvedProperty; + + for ( let i = 0, n = dest.length; i !== n; ++ i ) { + + dest[ i ] = buffer[ offset ++ ]; + + } + + this.targetObject.matrixWorldNeedsUpdate = true; + + } + + // ArrayElement + + _setValue_arrayElement( buffer, offset ) { + + this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; + + } + + _setValue_arrayElement_setNeedsUpdate( buffer, offset ) { + + this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; + this.targetObject.needsUpdate = true; + + } + + _setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) { + + this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; + this.targetObject.matrixWorldNeedsUpdate = true; + + } + + // HasToFromArray + + _setValue_fromArray( buffer, offset ) { + + this.resolvedProperty.fromArray( buffer, offset ); + + } + + _setValue_fromArray_setNeedsUpdate( buffer, offset ) { + + this.resolvedProperty.fromArray( buffer, offset ); + this.targetObject.needsUpdate = true; + + } + + _setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) { + + this.resolvedProperty.fromArray( buffer, offset ); + this.targetObject.matrixWorldNeedsUpdate = true; + + } + + _getValue_unbound( targetArray, offset ) { + + this.bind(); + this.getValue( targetArray, offset ); + + } + + _setValue_unbound( sourceArray, offset ) { + + this.bind(); + this.setValue( sourceArray, offset ); + + } + + /** + * Creates a getter / setter pair for the property tracked by this binding. + */ + bind() { + + let targetObject = this.node; + const parsedPath = this.parsedPath; + + const objectName = parsedPath.objectName; + const propertyName = parsedPath.propertyName; + let propertyIndex = parsedPath.propertyIndex; + + if ( ! targetObject ) { + + targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ); + + this.node = targetObject; + + } + + // set fail state so we can just 'return' on error + this.getValue = this._getValue_unavailable; + this.setValue = this._setValue_unavailable; + + // ensure there is a value node + if ( ! targetObject ) { + + console.warn( 'THREE.PropertyBinding: No target node found for track: ' + this.path + '.' ); + return; + + } + + if ( objectName ) { + + let objectIndex = parsedPath.objectIndex; + + // special cases were we need to reach deeper into the hierarchy to get the face materials.... + switch ( objectName ) { + + case 'materials': + + if ( ! targetObject.material ) { + + console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this ); + return; + + } + + if ( ! targetObject.material.materials ) { + + console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this ); + return; + + } + + targetObject = targetObject.material.materials; + + break; + + case 'bones': + + if ( ! targetObject.skeleton ) { + + console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this ); + return; + + } + + // potential future optimization: skip this if propertyIndex is already an integer + // and convert the integer string to a true integer. + + targetObject = targetObject.skeleton.bones; + + // support resolving morphTarget names into indices. + for ( let i = 0; i < targetObject.length; i ++ ) { + + if ( targetObject[ i ].name === objectIndex ) { + + objectIndex = i; + break; + + } + + } + + break; + + case 'map': + + if ( 'map' in targetObject ) { + + targetObject = targetObject.map; + break; + + } + + if ( ! targetObject.material ) { + + console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this ); + return; + + } + + if ( ! targetObject.material.map ) { + + console.error( 'THREE.PropertyBinding: Can not bind to material.map as node.material does not have a map.', this ); + return; + + } + + targetObject = targetObject.material.map; + break; + + default: + + if ( targetObject[ objectName ] === undefined ) { + + console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this ); + return; + + } + + targetObject = targetObject[ objectName ]; + + } + + + if ( objectIndex !== undefined ) { + + if ( targetObject[ objectIndex ] === undefined ) { + + console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject ); + return; + + } + + targetObject = targetObject[ objectIndex ]; + + } + + } + + // resolve property + const nodeProperty = targetObject[ propertyName ]; + + if ( nodeProperty === undefined ) { + + const nodeName = parsedPath.nodeName; + + console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName + + '.' + propertyName + ' but it wasn\'t found.', targetObject ); + return; + + } + + // determine versioning scheme + let versioning = this.Versioning.None; + + this.targetObject = targetObject; + + if ( targetObject.isMaterial === true ) { + + versioning = this.Versioning.NeedsUpdate; + + } else if ( targetObject.isObject3D === true ) { + + versioning = this.Versioning.MatrixWorldNeedsUpdate; + + } + + // determine how the property gets bound + let bindingType = this.BindingType.Direct; + + if ( propertyIndex !== undefined ) { + + // access a sub element of the property array (only primitives are supported right now) + + if ( propertyName === 'morphTargetInfluences' ) { + + // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. + + // support resolving morphTarget names into indices. + if ( ! targetObject.geometry ) { + + console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this ); + return; + + } + + if ( ! targetObject.geometry.morphAttributes ) { + + console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this ); + return; + + } + + if ( targetObject.morphTargetDictionary[ propertyIndex ] !== undefined ) { + + propertyIndex = targetObject.morphTargetDictionary[ propertyIndex ]; + + } + + } + + bindingType = this.BindingType.ArrayElement; + + this.resolvedProperty = nodeProperty; + this.propertyIndex = propertyIndex; + + } else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) { + + // must use copy for Object3D.Euler/Quaternion + + bindingType = this.BindingType.HasFromToArray; + + this.resolvedProperty = nodeProperty; + + } else if ( Array.isArray( nodeProperty ) ) { + + bindingType = this.BindingType.EntireArray; + + this.resolvedProperty = nodeProperty; + + } else { + + this.propertyName = propertyName; + + } + + // select getter / setter + this.getValue = this.GetterByBindingType[ bindingType ]; + this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ]; + + } + + /** + * Unbinds the property. + */ + unbind() { + + this.node = null; + + // back to the prototype version of getValue / setValue + // note: avoiding to mutate the shape of 'this' via 'delete' + this.getValue = this._getValue_unbound; + this.setValue = this._setValue_unbound; + + } + + } + + PropertyBinding.Composite = Composite; + + PropertyBinding.prototype.BindingType = { + Direct: 0, + EntireArray: 1, + ArrayElement: 2, + HasFromToArray: 3 + }; + + PropertyBinding.prototype.Versioning = { + None: 0, + NeedsUpdate: 1, + MatrixWorldNeedsUpdate: 2 + }; + + PropertyBinding.prototype.GetterByBindingType = [ + + PropertyBinding.prototype._getValue_direct, + PropertyBinding.prototype._getValue_array, + PropertyBinding.prototype._getValue_arrayElement, + PropertyBinding.prototype._getValue_toArray, + + ]; + + PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [ + + [ + // Direct + PropertyBinding.prototype._setValue_direct, + PropertyBinding.prototype._setValue_direct_setNeedsUpdate, + PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate, + + ], [ + + // EntireArray + + PropertyBinding.prototype._setValue_array, + PropertyBinding.prototype._setValue_array_setNeedsUpdate, + PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate, + + ], [ + + // ArrayElement + PropertyBinding.prototype._setValue_arrayElement, + PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, + PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate, + + ], [ + + // HasToFromArray + PropertyBinding.prototype._setValue_fromArray, + PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, + PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate, + + ] + + ]; + + if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { + + __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'register', { detail: { + revision: REVISION, + } } ) ); + + } + + if ( typeof window !== 'undefined' ) { + + if ( window.__THREE__ ) { + + console.warn( 'WARNING: Multiple instances of Three.js being imported.' ); + + } else { + + window.__THREE__ = REVISION; + + } + + } + + /** + * The KHR_mesh_quantization extension allows these extra attribute component types + * + * @see https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_mesh_quantization/README.md#extending-mesh-attributes + */ + const KHR_mesh_quantization_ExtraAttrTypes = { + POSITION: [ + 'byte', + 'byte normalized', + 'unsigned byte', + 'unsigned byte normalized', + 'short', + 'short normalized', + 'unsigned short', + 'unsigned short normalized', + ], + NORMAL: [ + 'byte normalized', + 'short normalized', + ], + TANGENT: [ + 'byte normalized', + 'short normalized', + ], + TEXCOORD: [ + 'byte', + 'byte normalized', + 'unsigned byte', + 'short', + 'short normalized', + 'unsigned short', + ], + }; + + /** + * An exporter for `glTF` 2.0. + * + * glTF (GL Transmission Format) is an [open format specification]{@link https://github.com/KhronosGroup/glTF/tree/master/specification/2.0} + * for efficient delivery and loading of 3D content. Assets may be provided either in JSON (.gltf) + * or binary (.glb) format. External files store textures (.jpg, .png) and additional binary + * data (.bin). A glTF asset may deliver one or more scenes, including meshes, materials, + * textures, skins, skeletons, morph targets, animations, lights, and/or cameras. + * + * GLTFExporter supports the [glTF 2.0 extensions]{@link https://github.com/KhronosGroup/glTF/tree/master/extensions/}: + * + * - KHR_lights_punctual + * - KHR_materials_clearcoat + * - KHR_materials_dispersion + * - KHR_materials_emissive_strength + * - KHR_materials_ior + * - KHR_materials_iridescence + * - KHR_materials_specular + * - KHR_materials_sheen + * - KHR_materials_transmission + * - KHR_materials_unlit + * - KHR_materials_volume + * - KHR_mesh_quantization + * - KHR_texture_transform + * - EXT_materials_bump + * - EXT_mesh_gpu_instancing + * + * The following glTF 2.0 extension is supported by an external user plugin: + * + * - [KHR_materials_variants]{@link https://github.com/takahirox/three-gltf-extensions} + * + * ```js + * const exporter = new GLTFExporter(); + * const data = await exporter.parseAsync( scene, options ); + * ``` + * + * @three_import import { GLTFExporter } from 'three/addons/exporters/GLTFExporter.js'; + */ + class GLTFExporter { + + /** + * Constructs a new glTF exporter. + */ + constructor() { + + /** + * A reference to a texture utils module. + * + * @type {?(WebGLTextureUtils|WebGPUTextureUtils)} + * @default null + */ + this.textureUtils = null; + + this.pluginCallbacks = []; + + this.register( function ( writer ) { + + return new GLTFLightExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsUnlitExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsTransmissionExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsVolumeExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsIorExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsSpecularExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsClearcoatExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsDispersionExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsIridescenceExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsSheenExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsAnisotropyExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsEmissiveStrengthExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMaterialsBumpExtension( writer ); + + } ); + + this.register( function ( writer ) { + + return new GLTFMeshGpuInstancing( writer ); + + } ); + + } + + /** + * Registers a plugin callback. This API is internally used to implement the various + * glTF extensions but can also used by third-party code to add additional logic + * to the exporter. + * + * @param {function(writer:GLTFWriter)} callback - The callback function to register. + * @return {GLTFExporter} A reference to this exporter. + */ + register( callback ) { + + if ( this.pluginCallbacks.indexOf( callback ) === - 1 ) { + + this.pluginCallbacks.push( callback ); + + } + + return this; + + } + + /** + * Unregisters a plugin callback. + * + * @param {Function} callback - The callback function to unregister. + * @return {GLTFExporter} A reference to this exporter. + */ + unregister( callback ) { + + if ( this.pluginCallbacks.indexOf( callback ) !== - 1 ) { + + this.pluginCallbacks.splice( this.pluginCallbacks.indexOf( callback ), 1 ); + + } + + return this; + + } + + /** + * Sets the texture utils for this exporter. Only relevant when compressed textures have to be exported. + * + * Depending on whether you use {@link WebGLRenderer} or {@link WebGPURenderer}, you must inject the + * corresponding texture utils {@link WebGLTextureUtils} or {@link WebGPUTextureUtils}. + * + * @param {WebGLTextureUtils|WebGPUTextureUtils} utils - The texture utils. + * @return {GLTFExporter} A reference to this exporter. + */ + setTextureUtils( utils ) { + + this.textureUtils = utils; + + return this; + + } + + /** + * Parses the given scenes and generates the glTF output. + * + * @param {Scene|Array} input - A scene or an array of scenes. + * @param {GLTFExporter~OnDone} onDone - A callback function that is executed when the export has finished. + * @param {GLTFExporter~OnError} onError - A callback function that is executed when an error happens. + * @param {GLTFExporter~Options} options - options + */ + parse( input, onDone, onError, options ) { + + const writer = new GLTFWriter(); + const plugins = []; + + for ( let i = 0, il = this.pluginCallbacks.length; i < il; i ++ ) { + + plugins.push( this.pluginCallbacks[ i ]( writer ) ); + + } + + writer.setPlugins( plugins ); + writer.setTextureUtils( this.textureUtils ); + writer.writeAsync( input, onDone, options ).catch( onError ); + + } + + /** + * Async version of {@link GLTFExporter#parse}. + * + * @param {Scene|Array} input - A scene or an array of scenes. + * @param {GLTFExporter~Options} options - options. + * @return {Promise} A Promise that resolved with the exported glTF data. + */ + parseAsync( input, options ) { + + const scope = this; + + return new Promise( function ( resolve, reject ) { + + scope.parse( input, resolve, reject, options ); + + } ); + + } + + } + + //------------------------------------------------------------------------------ + // Constants + //------------------------------------------------------------------------------ + + const WEBGL_CONSTANTS = { + POINTS: 0x0000, + LINES: 0x0001, + LINE_LOOP: 0x0002, + LINE_STRIP: 0x0003, + TRIANGLES: 0x0004, + BYTE: 0x1400, + UNSIGNED_BYTE: 0x1401, + SHORT: 0x1402, + UNSIGNED_SHORT: 0x1403, + INT: 0x1404, + UNSIGNED_INT: 0x1405, + FLOAT: 0x1406, + + ARRAY_BUFFER: 0x8892, + ELEMENT_ARRAY_BUFFER: 0x8893, + + NEAREST: 0x2600, + LINEAR: 0x2601, + NEAREST_MIPMAP_NEAREST: 0x2700, + LINEAR_MIPMAP_NEAREST: 0x2701, + NEAREST_MIPMAP_LINEAR: 0x2702, + LINEAR_MIPMAP_LINEAR: 0x2703, + + CLAMP_TO_EDGE: 33071, + MIRRORED_REPEAT: 33648, + REPEAT: 10497 + }; + + const KHR_MESH_QUANTIZATION = 'KHR_mesh_quantization'; + + const THREE_TO_WEBGL = {}; + + THREE_TO_WEBGL[ NearestFilter ] = WEBGL_CONSTANTS.NEAREST; + THREE_TO_WEBGL[ NearestMipmapNearestFilter ] = WEBGL_CONSTANTS.NEAREST_MIPMAP_NEAREST; + THREE_TO_WEBGL[ NearestMipmapLinearFilter ] = WEBGL_CONSTANTS.NEAREST_MIPMAP_LINEAR; + THREE_TO_WEBGL[ LinearFilter ] = WEBGL_CONSTANTS.LINEAR; + THREE_TO_WEBGL[ LinearMipmapNearestFilter ] = WEBGL_CONSTANTS.LINEAR_MIPMAP_NEAREST; + THREE_TO_WEBGL[ LinearMipmapLinearFilter ] = WEBGL_CONSTANTS.LINEAR_MIPMAP_LINEAR; + + THREE_TO_WEBGL[ ClampToEdgeWrapping ] = WEBGL_CONSTANTS.CLAMP_TO_EDGE; + THREE_TO_WEBGL[ RepeatWrapping ] = WEBGL_CONSTANTS.REPEAT; + THREE_TO_WEBGL[ MirroredRepeatWrapping ] = WEBGL_CONSTANTS.MIRRORED_REPEAT; + + const PATH_PROPERTIES = { + scale: 'scale', + position: 'translation', + quaternion: 'rotation', + morphTargetInfluences: 'weights' + }; + + const DEFAULT_SPECULAR_COLOR = new Color(); + + // GLB constants + // https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#glb-file-format-specification + + const GLB_HEADER_BYTES = 12; + const GLB_HEADER_MAGIC = 0x46546C67; + const GLB_VERSION = 2; + + const GLB_CHUNK_PREFIX_BYTES = 8; + const GLB_CHUNK_TYPE_JSON = 0x4E4F534A; + const GLB_CHUNK_TYPE_BIN = 0x004E4942; + + //------------------------------------------------------------------------------ + // Utility functions + //------------------------------------------------------------------------------ + + /** + * Compare two arrays + * + * @private + * @param {Array} array1 Array 1 to compare + * @param {Array} array2 Array 2 to compare + * @return {boolean} Returns true if both arrays are equal + */ + function equalArray( array1, array2 ) { + + return ( array1.length === array2.length ) && array1.every( function ( element, index ) { + + return element === array2[ index ]; + + } ); + + } + + /** + * Converts a string to an ArrayBuffer. + * + * @private + * @param {string} text + * @return {ArrayBuffer} + */ + function stringToArrayBuffer( text ) { + + return new TextEncoder().encode( text ).buffer; + + } + + /** + * Is identity matrix + * + * @private + * @param {Matrix4} matrix + * @returns {boolean} Returns true, if parameter is identity matrix + */ + function isIdentityMatrix( matrix ) { + + return equalArray( matrix.elements, [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] ); + + } + + /** + * Get the min and max vectors from the given attribute + * + * @private + * @param {BufferAttribute} attribute Attribute to find the min/max in range from start to start + count + * @param {number} start Start index + * @param {number} count Range to cover + * @return {Object} Object containing the `min` and `max` values (As an array of attribute.itemSize components) + */ + function getMinMax( attribute, start, count ) { + + const output = { + + min: new Array( attribute.itemSize ).fill( Number.POSITIVE_INFINITY ), + max: new Array( attribute.itemSize ).fill( Number.NEGATIVE_INFINITY ) + + }; + + for ( let i = start; i < start + count; i ++ ) { + + for ( let a = 0; a < attribute.itemSize; a ++ ) { + + let value; + + if ( attribute.itemSize > 4 ) { + + // no support for interleaved data for itemSize > 4 + + value = attribute.array[ i * attribute.itemSize + a ]; + + } else { + + if ( a === 0 ) value = attribute.getX( i ); + else if ( a === 1 ) value = attribute.getY( i ); + else if ( a === 2 ) value = attribute.getZ( i ); + else if ( a === 3 ) value = attribute.getW( i ); + + if ( attribute.normalized === true ) { + + value = MathUtils.normalize( value, attribute.array ); + + } + + } + + output.min[ a ] = Math.min( output.min[ a ], value ); + output.max[ a ] = Math.max( output.max[ a ], value ); + + } + + } + + return output; + + } + + /** + * Get the required size + padding for a buffer, rounded to the next 4-byte boundary. + * https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment + * + * @private + * @param {number} bufferSize The size the original buffer. Should be an integer. + * @returns {number} new buffer size with required padding as an integer. + * + */ + function getPaddedBufferSize( bufferSize ) { + + return Math.ceil( bufferSize / 4 ) * 4; + + } + + /** + * Returns a buffer aligned to 4-byte boundary. + * + * @private + * @param {ArrayBuffer} arrayBuffer Buffer to pad + * @param {number} [paddingByte=0] Should be an integer + * @returns {ArrayBuffer} The same buffer if it's already aligned to 4-byte boundary or a new buffer + */ + function getPaddedArrayBuffer( arrayBuffer, paddingByte = 0 ) { + + const paddedLength = getPaddedBufferSize( arrayBuffer.byteLength ); + + if ( paddedLength !== arrayBuffer.byteLength ) { + + const array = new Uint8Array( paddedLength ); + array.set( new Uint8Array( arrayBuffer ) ); + + if ( paddingByte !== 0 ) { + + for ( let i = arrayBuffer.byteLength; i < paddedLength; i ++ ) { + + array[ i ] = paddingByte; + + } + + } + + return array.buffer; + + } + + return arrayBuffer; + + } + + function getCanvas() { + + if ( typeof document === 'undefined' && typeof OffscreenCanvas !== 'undefined' ) { + + return new OffscreenCanvas( 1, 1 ); + + } + + return document.createElement( 'canvas' ); + + } + + function getToBlobPromise( canvas, mimeType ) { + + if ( canvas.toBlob !== undefined ) { + + return new Promise( ( resolve ) => canvas.toBlob( resolve, mimeType ) ); + + } + + let quality; + + // Blink's implementation of convertToBlob seems to default to a quality level of 100% + // Use the Blink default quality levels of toBlob instead so that file sizes are comparable. + if ( mimeType === 'image/jpeg' ) { + + quality = 0.92; + + } else if ( mimeType === 'image/webp' ) { + + quality = 0.8; + + } + + return canvas.convertToBlob( { + + type: mimeType, + quality: quality + + } ); + + } + + /** + * Writer + * + * @private + */ + class GLTFWriter { + + constructor() { + + this.plugins = []; + + this.options = {}; + this.pending = []; + this.buffers = []; + + this.byteOffset = 0; + this.buffers = []; + this.nodeMap = new Map(); + this.skins = []; + + this.extensionsUsed = {}; + this.extensionsRequired = {}; + + this.uids = new Map(); + this.uid = 0; + + this.json = { + asset: { + version: '2.0', + generator: 'THREE.GLTFExporter r' + REVISION + } + }; + + this.cache = { + meshes: new Map(), + attributes: new Map(), + attributesNormalized: new Map(), + materials: new Map(), + textures: new Map(), + images: new Map() + }; + + this.textureUtils = null; + + } + + setPlugins( plugins ) { + + this.plugins = plugins; + + } + + setTextureUtils( utils ) { + + this.textureUtils = utils; + + } + + /** + * Parse scenes and generate GLTF output + * + * @param {Scene|Array} input Scene or Array of THREE.Scenes + * @param {Function} onDone Callback on completed + * @param {Object} options options + */ + async writeAsync( input, onDone, options = {} ) { + + this.options = Object.assign( { + // default options + binary: false, + trs: false, + onlyVisible: true, + maxTextureSize: Infinity, + animations: [], + includeCustomExtensions: false + }, options ); + + if ( this.options.animations.length > 0 ) { + + // Only TRS properties, and not matrices, may be targeted by animation. + this.options.trs = true; + + } + + await this.processInputAsync( input ); + + await Promise.all( this.pending ); + + const writer = this; + const buffers = writer.buffers; + const json = writer.json; + options = writer.options; + + const extensionsUsed = writer.extensionsUsed; + const extensionsRequired = writer.extensionsRequired; + + // Merge buffers. + const blob = new Blob( buffers, { type: 'application/octet-stream' } ); + + // Declare extensions. + const extensionsUsedList = Object.keys( extensionsUsed ); + const extensionsRequiredList = Object.keys( extensionsRequired ); + + if ( extensionsUsedList.length > 0 ) json.extensionsUsed = extensionsUsedList; + if ( extensionsRequiredList.length > 0 ) json.extensionsRequired = extensionsRequiredList; + + // Update bytelength of the single buffer. + if ( json.buffers && json.buffers.length > 0 ) json.buffers[ 0 ].byteLength = blob.size; + + if ( options.binary === true ) { + + // https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#glb-file-format-specification + + const reader = new FileReader(); + reader.readAsArrayBuffer( blob ); + reader.onloadend = function () { + + // Binary chunk. + const binaryChunk = getPaddedArrayBuffer( reader.result ); + const binaryChunkPrefix = new DataView( new ArrayBuffer( GLB_CHUNK_PREFIX_BYTES ) ); + binaryChunkPrefix.setUint32( 0, binaryChunk.byteLength, true ); + binaryChunkPrefix.setUint32( 4, GLB_CHUNK_TYPE_BIN, true ); + + // JSON chunk. + const jsonChunk = getPaddedArrayBuffer( stringToArrayBuffer( JSON.stringify( json ) ), 0x20 ); + const jsonChunkPrefix = new DataView( new ArrayBuffer( GLB_CHUNK_PREFIX_BYTES ) ); + jsonChunkPrefix.setUint32( 0, jsonChunk.byteLength, true ); + jsonChunkPrefix.setUint32( 4, GLB_CHUNK_TYPE_JSON, true ); + + // GLB header. + const header = new ArrayBuffer( GLB_HEADER_BYTES ); + const headerView = new DataView( header ); + headerView.setUint32( 0, GLB_HEADER_MAGIC, true ); + headerView.setUint32( 4, GLB_VERSION, true ); + const totalByteLength = GLB_HEADER_BYTES + + jsonChunkPrefix.byteLength + jsonChunk.byteLength + + binaryChunkPrefix.byteLength + binaryChunk.byteLength; + headerView.setUint32( 8, totalByteLength, true ); + + const glbBlob = new Blob( [ + header, + jsonChunkPrefix, + jsonChunk, + binaryChunkPrefix, + binaryChunk + ], { type: 'application/octet-stream' } ); + + const glbReader = new FileReader(); + glbReader.readAsArrayBuffer( glbBlob ); + glbReader.onloadend = function () { + + onDone( glbReader.result ); + + }; + + }; + + } else { + + if ( json.buffers && json.buffers.length > 0 ) { + + const reader = new FileReader(); + reader.readAsDataURL( blob ); + reader.onloadend = function () { + + const base64data = reader.result; + json.buffers[ 0 ].uri = base64data; + onDone( json ); + + }; + + } else { + + onDone( json ); + + } + + } + + + } + + /** + * Serializes a userData. + * + * @param {THREE.Object3D|THREE.Material} object + * @param {Object} objectDef + */ + serializeUserData( object, objectDef ) { + + if ( Object.keys( object.userData ).length === 0 ) return; + + const options = this.options; + const extensionsUsed = this.extensionsUsed; + + try { + + const json = JSON.parse( JSON.stringify( object.userData ) ); + + if ( options.includeCustomExtensions && json.gltfExtensions ) { + + if ( objectDef.extensions === undefined ) objectDef.extensions = {}; + + for ( const extensionName in json.gltfExtensions ) { + + objectDef.extensions[ extensionName ] = json.gltfExtensions[ extensionName ]; + extensionsUsed[ extensionName ] = true; + + } + + delete json.gltfExtensions; + + } + + if ( Object.keys( json ).length > 0 ) objectDef.extras = json; + + } catch ( error ) { + + console.warn( 'THREE.GLTFExporter: userData of \'' + object.name + '\' ' + + 'won\'t be serialized because of JSON.stringify error - ' + error.message ); + + } + + } + + /** + * Returns ids for buffer attributes. + * + * @param {Object} attribute + * @param {boolean} [isRelativeCopy=false] + * @return {number} An integer + */ + getUID( attribute, isRelativeCopy = false ) { + + if ( this.uids.has( attribute ) === false ) { + + const uids = new Map(); + + uids.set( true, this.uid ++ ); + uids.set( false, this.uid ++ ); + + this.uids.set( attribute, uids ); + + } + + const uids = this.uids.get( attribute ); + + return uids.get( isRelativeCopy ); + + } + + /** + * Checks if normal attribute values are normalized. + * + * @param {BufferAttribute} normal + * @returns {boolean} + */ + isNormalizedNormalAttribute( normal ) { + + const cache = this.cache; + + if ( cache.attributesNormalized.has( normal ) ) return false; + + const v = new Vector3(); + + for ( let i = 0, il = normal.count; i < il; i ++ ) { + + // 0.0005 is from glTF-validator + if ( Math.abs( v.fromBufferAttribute( normal, i ).length() - 1.0 ) > 0.0005 ) return false; + + } + + return true; + + } + + /** + * Creates normalized normal buffer attribute. + * + * @param {BufferAttribute} normal + * @returns {BufferAttribute} + * + */ + createNormalizedNormalAttribute( normal ) { + + const cache = this.cache; + + if ( cache.attributesNormalized.has( normal ) ) return cache.attributesNormalized.get( normal ); + + const attribute = normal.clone(); + const v = new Vector3(); + + for ( let i = 0, il = attribute.count; i < il; i ++ ) { + + v.fromBufferAttribute( attribute, i ); + + if ( v.x === 0 && v.y === 0 && v.z === 0 ) { + + // if values can't be normalized set (1, 0, 0) + v.setX( 1.0 ); + + } else { + + v.normalize(); + + } + + attribute.setXYZ( i, v.x, v.y, v.z ); + + } + + cache.attributesNormalized.set( normal, attribute ); + + return attribute; + + } + + /** + * Applies a texture transform, if present, to the map definition. Requires + * the KHR_texture_transform extension. + * + * @param {Object} mapDef + * @param {THREE.Texture} texture + */ + applyTextureTransform( mapDef, texture ) { + + let didTransform = false; + const transformDef = {}; + + if ( texture.offset.x !== 0 || texture.offset.y !== 0 ) { + + transformDef.offset = texture.offset.toArray(); + didTransform = true; + + } + + if ( texture.rotation !== 0 ) { + + transformDef.rotation = texture.rotation; + didTransform = true; + + } + + if ( texture.repeat.x !== 1 || texture.repeat.y !== 1 ) { + + transformDef.scale = texture.repeat.toArray(); + didTransform = true; + + } + + if ( didTransform ) { + + mapDef.extensions = mapDef.extensions || {}; + mapDef.extensions[ 'KHR_texture_transform' ] = transformDef; + this.extensionsUsed[ 'KHR_texture_transform' ] = true; + + } + + } + + async buildMetalRoughTextureAsync( metalnessMap, roughnessMap ) { + + if ( metalnessMap === roughnessMap ) return metalnessMap; + + function getEncodingConversion( map ) { + + if ( map.colorSpace === SRGBColorSpace ) { + + return function SRGBToLinear( c ) { + + return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 ); + + }; + + } + + return function LinearToLinear( c ) { + + return c; + + }; + + } + + if ( metalnessMap instanceof CompressedTexture ) { + + metalnessMap = await this.decompressTextureAsync( metalnessMap ); + + } + + if ( roughnessMap instanceof CompressedTexture ) { + + roughnessMap = await this.decompressTextureAsync( roughnessMap ); + + } + + const metalness = metalnessMap ? metalnessMap.image : null; + const roughness = roughnessMap ? roughnessMap.image : null; + + const width = Math.max( metalness ? metalness.width : 0, roughness ? roughness.width : 0 ); + const height = Math.max( metalness ? metalness.height : 0, roughness ? roughness.height : 0 ); + + const canvas = getCanvas(); + canvas.width = width; + canvas.height = height; + + const context = canvas.getContext( '2d', { + willReadFrequently: true, + } ); + context.fillStyle = '#00ffff'; + context.fillRect( 0, 0, width, height ); + + const composite = context.getImageData( 0, 0, width, height ); + + if ( metalness ) { + + context.drawImage( metalness, 0, 0, width, height ); + + const convert = getEncodingConversion( metalnessMap ); + const data = context.getImageData( 0, 0, width, height ).data; + + for ( let i = 2; i < data.length; i += 4 ) { + + composite.data[ i ] = convert( data[ i ] / 256 ) * 256; + + } + + } + + if ( roughness ) { + + context.drawImage( roughness, 0, 0, width, height ); + + const convert = getEncodingConversion( roughnessMap ); + const data = context.getImageData( 0, 0, width, height ).data; + + for ( let i = 1; i < data.length; i += 4 ) { + + composite.data[ i ] = convert( data[ i ] / 256 ) * 256; + + } + + } + + context.putImageData( composite, 0, 0 ); + + // + + const reference = metalnessMap || roughnessMap; + + const texture = reference.clone(); + + texture.source = new Source( canvas ); + texture.colorSpace = NoColorSpace; + texture.channel = ( metalnessMap || roughnessMap ).channel; + + if ( metalnessMap && roughnessMap && metalnessMap.channel !== roughnessMap.channel ) { + + console.warn( 'THREE.GLTFExporter: UV channels for metalnessMap and roughnessMap textures must match.' ); + + } + + console.warn( 'THREE.GLTFExporter: Merged metalnessMap and roughnessMap textures.' ); + + return texture; + + } + + + async decompressTextureAsync( texture, maxTextureSize = Infinity ) { + + if ( this.textureUtils === null ) { + + throw new Error( 'THREE.GLTFExporter: setTextureUtils() must be called to process compressed textures.' ); + + } + + return await this.textureUtils.decompress( texture, maxTextureSize ); + + } + + /** + * Process a buffer to append to the default one. + * @param {ArrayBuffer} buffer + * @return {0} + */ + processBuffer( buffer ) { + + const json = this.json; + const buffers = this.buffers; + + if ( ! json.buffers ) json.buffers = [ { byteLength: 0 } ]; + + // All buffers are merged before export. + buffers.push( buffer ); + + return 0; + + } + + /** + * Process and generate a BufferView + * @param {BufferAttribute} attribute + * @param {number} componentType + * @param {number} start + * @param {number} count + * @param {number} [target] Target usage of the BufferView + * @return {Object} + */ + processBufferView( attribute, componentType, start, count, target ) { + + const json = this.json; + + if ( ! json.bufferViews ) json.bufferViews = []; + + // Create a new dataview and dump the attribute's array into it + + let componentSize; + + switch ( componentType ) { + + case WEBGL_CONSTANTS.BYTE: + case WEBGL_CONSTANTS.UNSIGNED_BYTE: + + componentSize = 1; + + break; + + case WEBGL_CONSTANTS.SHORT: + case WEBGL_CONSTANTS.UNSIGNED_SHORT: + + componentSize = 2; + + break; + + default: + + componentSize = 4; + + } + + let byteStride = attribute.itemSize * componentSize; + + if ( target === WEBGL_CONSTANTS.ARRAY_BUFFER ) { + + // Each element of a vertex attribute MUST be aligned to 4-byte boundaries + // inside a bufferView + byteStride = Math.ceil( byteStride / 4 ) * 4; + + } + + const byteLength = getPaddedBufferSize( count * byteStride ); + const dataView = new DataView( new ArrayBuffer( byteLength ) ); + let offset = 0; + + for ( let i = start; i < start + count; i ++ ) { + + for ( let a = 0; a < attribute.itemSize; a ++ ) { + + let value; + + if ( attribute.itemSize > 4 ) { + + // no support for interleaved data for itemSize > 4 + + value = attribute.array[ i * attribute.itemSize + a ]; + + } else { + + if ( a === 0 ) value = attribute.getX( i ); + else if ( a === 1 ) value = attribute.getY( i ); + else if ( a === 2 ) value = attribute.getZ( i ); + else if ( a === 3 ) value = attribute.getW( i ); + + if ( attribute.normalized === true ) { + + value = MathUtils.normalize( value, attribute.array ); + + } + + } + + if ( componentType === WEBGL_CONSTANTS.FLOAT ) { + + dataView.setFloat32( offset, value, true ); + + } else if ( componentType === WEBGL_CONSTANTS.INT ) { + + dataView.setInt32( offset, value, true ); + + } else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_INT ) { + + dataView.setUint32( offset, value, true ); + + } else if ( componentType === WEBGL_CONSTANTS.SHORT ) { + + dataView.setInt16( offset, value, true ); + + } else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_SHORT ) { + + dataView.setUint16( offset, value, true ); + + } else if ( componentType === WEBGL_CONSTANTS.BYTE ) { + + dataView.setInt8( offset, value ); + + } else if ( componentType === WEBGL_CONSTANTS.UNSIGNED_BYTE ) { + + dataView.setUint8( offset, value ); + + } + + offset += componentSize; + + } + + if ( ( offset % byteStride ) !== 0 ) { + + offset += byteStride - ( offset % byteStride ); + + } + + } + + const bufferViewDef = { + + buffer: this.processBuffer( dataView.buffer ), + byteOffset: this.byteOffset, + byteLength: byteLength + + }; + + if ( target !== undefined ) bufferViewDef.target = target; + + if ( target === WEBGL_CONSTANTS.ARRAY_BUFFER ) { + + // Only define byteStride for vertex attributes. + bufferViewDef.byteStride = byteStride; + + } + + this.byteOffset += byteLength; + + json.bufferViews.push( bufferViewDef ); + + // @TODO Merge bufferViews where possible. + const output = { + + id: json.bufferViews.length - 1, + byteLength: 0 + + }; + + return output; + + } + + /** + * Process and generate a BufferView from an image Blob. + * @param {Blob} blob + * @return {Promise} An integer + */ + processBufferViewImage( blob ) { + + const writer = this; + const json = writer.json; + + if ( ! json.bufferViews ) json.bufferViews = []; + + return new Promise( function ( resolve ) { + + const reader = new FileReader(); + reader.readAsArrayBuffer( blob ); + reader.onloadend = function () { + + const buffer = getPaddedArrayBuffer( reader.result ); + + const bufferViewDef = { + buffer: writer.processBuffer( buffer ), + byteOffset: writer.byteOffset, + byteLength: buffer.byteLength + }; + + writer.byteOffset += buffer.byteLength; + resolve( json.bufferViews.push( bufferViewDef ) - 1 ); + + }; + + } ); + + } + + /** + * Process attribute to generate an accessor + * @param {BufferAttribute} attribute Attribute to process + * @param {?BufferGeometry} [geometry] Geometry used for truncated draw range + * @param {number} [start=0] + * @param {number} [count=Infinity] + * @return {?number} Index of the processed accessor on the "accessors" array + */ + processAccessor( attribute, geometry, start, count ) { + + const json = this.json; + + const types = { + + 1: 'SCALAR', + 2: 'VEC2', + 3: 'VEC3', + 4: 'VEC4', + 9: 'MAT3', + 16: 'MAT4' + + }; + + let componentType; + + // Detect the component type of the attribute array + if ( attribute.array.constructor === Float32Array ) { + + componentType = WEBGL_CONSTANTS.FLOAT; + + } else if ( attribute.array.constructor === Int32Array ) { + + componentType = WEBGL_CONSTANTS.INT; + + } else if ( attribute.array.constructor === Uint32Array ) { + + componentType = WEBGL_CONSTANTS.UNSIGNED_INT; + + } else if ( attribute.array.constructor === Int16Array ) { + + componentType = WEBGL_CONSTANTS.SHORT; + + } else if ( attribute.array.constructor === Uint16Array ) { + + componentType = WEBGL_CONSTANTS.UNSIGNED_SHORT; + + } else if ( attribute.array.constructor === Int8Array ) { + + componentType = WEBGL_CONSTANTS.BYTE; + + } else if ( attribute.array.constructor === Uint8Array ) { + + componentType = WEBGL_CONSTANTS.UNSIGNED_BYTE; + + } else { + + throw new Error( 'THREE.GLTFExporter: Unsupported bufferAttribute component type: ' + attribute.array.constructor.name ); + + } + + if ( start === undefined ) start = 0; + if ( count === undefined || count === Infinity ) count = attribute.count; + + // Skip creating an accessor if the attribute doesn't have data to export + if ( count === 0 ) return null; + + const minMax = getMinMax( attribute, start, count ); + let bufferViewTarget; + + // If geometry isn't provided, don't infer the target usage of the bufferView. For + // animation samplers, target must not be set. + if ( geometry !== undefined ) { + + bufferViewTarget = attribute === geometry.index ? WEBGL_CONSTANTS.ELEMENT_ARRAY_BUFFER : WEBGL_CONSTANTS.ARRAY_BUFFER; + + } + + const bufferView = this.processBufferView( attribute, componentType, start, count, bufferViewTarget ); + + const accessorDef = { + + bufferView: bufferView.id, + byteOffset: bufferView.byteOffset, + componentType: componentType, + count: count, + max: minMax.max, + min: minMax.min, + type: types[ attribute.itemSize ] + + }; + + if ( attribute.normalized === true ) accessorDef.normalized = true; + if ( ! json.accessors ) json.accessors = []; + + return json.accessors.push( accessorDef ) - 1; + + } + + /** + * Process image + * @param {Image} image to process + * @param {number} format Identifier of the format (RGBAFormat) + * @param {boolean} flipY before writing out the image + * @param {string} mimeType export format + * @return {number} Index of the processed texture in the "images" array + */ + processImage( image, format, flipY, mimeType = 'image/png' ) { + + if ( image !== null ) { + + const writer = this; + const cache = writer.cache; + const json = writer.json; + const options = writer.options; + const pending = writer.pending; + + if ( ! cache.images.has( image ) ) cache.images.set( image, {} ); + + const cachedImages = cache.images.get( image ); + + const key = mimeType + ':flipY/' + flipY.toString(); + + if ( cachedImages[ key ] !== undefined ) return cachedImages[ key ]; + + if ( ! json.images ) json.images = []; + + const imageDef = { mimeType: mimeType }; + + const canvas = getCanvas(); + + canvas.width = Math.min( image.width, options.maxTextureSize ); + canvas.height = Math.min( image.height, options.maxTextureSize ); + + const ctx = canvas.getContext( '2d', { + willReadFrequently: true, + } ); + + if ( flipY === true ) { + + ctx.translate( 0, canvas.height ); + ctx.scale( 1, - 1 ); + + } + + if ( image.data !== undefined ) { // THREE.DataTexture + + if ( format !== RGBAFormat ) { + + console.error( 'GLTFExporter: Only RGBAFormat is supported.', format ); + + } + + if ( image.width > options.maxTextureSize || image.height > options.maxTextureSize ) { + + console.warn( 'GLTFExporter: Image size is bigger than maxTextureSize', image ); + + } + + const data = new Uint8ClampedArray( image.height * image.width * 4 ); + + for ( let i = 0; i < data.length; i += 4 ) { + + data[ i + 0 ] = image.data[ i + 0 ]; + data[ i + 1 ] = image.data[ i + 1 ]; + data[ i + 2 ] = image.data[ i + 2 ]; + data[ i + 3 ] = image.data[ i + 3 ]; + + } + + ctx.putImageData( new ImageData( data, image.width, image.height ), 0, 0 ); + + } else { + + if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || + ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || + ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) || + ( typeof OffscreenCanvas !== 'undefined' && image instanceof OffscreenCanvas ) ) { + + ctx.drawImage( image, 0, 0, canvas.width, canvas.height ); + + } else { + + throw new Error( 'THREE.GLTFExporter: Invalid image type. Use HTMLImageElement, HTMLCanvasElement, ImageBitmap or OffscreenCanvas.' ); + + } + + } + + if ( options.binary === true ) { + + pending.push( + + getToBlobPromise( canvas, mimeType ) + .then( blob => writer.processBufferViewImage( blob ) ) + .then( bufferViewIndex => { + + imageDef.bufferView = bufferViewIndex; + + } ) + + ); + + } else { + + imageDef.uri = ImageUtils.getDataURL( canvas, mimeType ); + + } + + const index = json.images.push( imageDef ) - 1; + cachedImages[ key ] = index; + return index; + + } else { + + throw new Error( 'THREE.GLTFExporter: No valid image data found. Unable to process texture.' ); + + } + + } + + /** + * Process sampler + * @param {Texture} map Texture to process + * @return {number} Index of the processed texture in the "samplers" array + */ + processSampler( map ) { + + const json = this.json; + + if ( ! json.samplers ) json.samplers = []; + + const samplerDef = { + magFilter: THREE_TO_WEBGL[ map.magFilter ], + minFilter: THREE_TO_WEBGL[ map.minFilter ], + wrapS: THREE_TO_WEBGL[ map.wrapS ], + wrapT: THREE_TO_WEBGL[ map.wrapT ] + }; + + return json.samplers.push( samplerDef ) - 1; + + } + + /** + * Process texture + * @param {Texture} map Map to process + * @return {Promise} Index of the processed texture in the "textures" array + */ + async processTextureAsync( map ) { + + const writer = this; + const options = writer.options; + const cache = this.cache; + const json = this.json; + + if ( cache.textures.has( map ) ) return cache.textures.get( map ); + + if ( ! json.textures ) json.textures = []; + + // make non-readable textures (e.g. CompressedTexture) readable by blitting them into a new texture + if ( map instanceof CompressedTexture ) { + + map = await this.decompressTextureAsync( map, options.maxTextureSize ); + + } + + let mimeType = map.userData.mimeType; + + if ( mimeType === 'image/webp' ) mimeType = 'image/png'; + + const textureDef = { + sampler: this.processSampler( map ), + source: this.processImage( map.image, map.format, map.flipY, mimeType ) + }; + + if ( map.name ) textureDef.name = map.name; + + await this._invokeAllAsync( async function ( ext ) { + + ext.writeTexture && await ext.writeTexture( map, textureDef ); + + } ); + + const index = json.textures.push( textureDef ) - 1; + cache.textures.set( map, index ); + return index; + + } + + /** + * Process material + * @param {THREE.Material} material Material to process + * @return {Promise} Index of the processed material in the "materials" array + */ + async processMaterialAsync( material ) { + + const cache = this.cache; + const json = this.json; + + if ( cache.materials.has( material ) ) return cache.materials.get( material ); + + if ( material.isShaderMaterial ) { + + console.warn( 'GLTFExporter: THREE.ShaderMaterial not supported.' ); + return null; + + } + + if ( ! json.materials ) json.materials = []; + + // @QUESTION Should we avoid including any attribute that has the default value? + const materialDef = { pbrMetallicRoughness: {} }; + + if ( material.isMeshStandardMaterial !== true && material.isMeshBasicMaterial !== true ) { + + console.warn( 'GLTFExporter: Use MeshStandardMaterial or MeshBasicMaterial for best results.' ); + + } + + // pbrMetallicRoughness.baseColorFactor + const color = material.color.toArray().concat( [ material.opacity ] ); + + if ( ! equalArray( color, [ 1, 1, 1, 1 ] ) ) { + + materialDef.pbrMetallicRoughness.baseColorFactor = color; + + } + + if ( material.isMeshStandardMaterial ) { + + materialDef.pbrMetallicRoughness.metallicFactor = material.metalness; + materialDef.pbrMetallicRoughness.roughnessFactor = material.roughness; + + } else { + + materialDef.pbrMetallicRoughness.metallicFactor = 0; + materialDef.pbrMetallicRoughness.roughnessFactor = 1; + + } + + // pbrMetallicRoughness.metallicRoughnessTexture + if ( material.metalnessMap || material.roughnessMap ) { + + const metalRoughTexture = await this.buildMetalRoughTextureAsync( material.metalnessMap, material.roughnessMap ); + + const metalRoughMapDef = { + index: await this.processTextureAsync( metalRoughTexture ), + texCoord: metalRoughTexture.channel + }; + this.applyTextureTransform( metalRoughMapDef, metalRoughTexture ); + materialDef.pbrMetallicRoughness.metallicRoughnessTexture = metalRoughMapDef; + + } + + // pbrMetallicRoughness.baseColorTexture + if ( material.map ) { + + const baseColorMapDef = { + index: await this.processTextureAsync( material.map ), + texCoord: material.map.channel + }; + this.applyTextureTransform( baseColorMapDef, material.map ); + materialDef.pbrMetallicRoughness.baseColorTexture = baseColorMapDef; + + } + + if ( material.emissive ) { + + const emissive = material.emissive; + const maxEmissiveComponent = Math.max( emissive.r, emissive.g, emissive.b ); + + if ( maxEmissiveComponent > 0 ) { + + materialDef.emissiveFactor = material.emissive.toArray(); + + } + + // emissiveTexture + if ( material.emissiveMap ) { + + const emissiveMapDef = { + index: await this.processTextureAsync( material.emissiveMap ), + texCoord: material.emissiveMap.channel + }; + this.applyTextureTransform( emissiveMapDef, material.emissiveMap ); + materialDef.emissiveTexture = emissiveMapDef; + + } + + } + + // normalTexture + if ( material.normalMap ) { + + const normalMapDef = { + index: await this.processTextureAsync( material.normalMap ), + texCoord: material.normalMap.channel + }; + + if ( material.normalScale && material.normalScale.x !== 1 ) { + + // glTF normal scale is univariate. Ignore `y`, which may be flipped. + // Context: https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995 + normalMapDef.scale = material.normalScale.x; + + } + + this.applyTextureTransform( normalMapDef, material.normalMap ); + materialDef.normalTexture = normalMapDef; + + } + + // occlusionTexture + if ( material.aoMap ) { + + const occlusionMapDef = { + index: await this.processTextureAsync( material.aoMap ), + texCoord: material.aoMap.channel + }; + + if ( material.aoMapIntensity !== 1.0 ) { + + occlusionMapDef.strength = material.aoMapIntensity; + + } + + this.applyTextureTransform( occlusionMapDef, material.aoMap ); + materialDef.occlusionTexture = occlusionMapDef; + + } + + // alphaMode + if ( material.transparent ) { + + materialDef.alphaMode = 'BLEND'; + + } else { + + if ( material.alphaTest > 0.0 ) { + + materialDef.alphaMode = 'MASK'; + materialDef.alphaCutoff = material.alphaTest; + + } + + } + + // doubleSided + if ( material.side === DoubleSide ) materialDef.doubleSided = true; + if ( material.name !== '' ) materialDef.name = material.name; + + this.serializeUserData( material, materialDef ); + + await this._invokeAllAsync( async function ( ext ) { + + ext.writeMaterialAsync && await ext.writeMaterialAsync( material, materialDef ); + + } ); + + const index = json.materials.push( materialDef ) - 1; + cache.materials.set( material, index ); + return index; + + } + + /** + * Process mesh + * @param {THREE.Mesh} mesh Mesh to process + * @return {Promise} Index of the processed mesh in the "meshes" array + */ + async processMeshAsync( mesh ) { + + const cache = this.cache; + const json = this.json; + + const meshCacheKeyParts = [ mesh.geometry.uuid ]; + + if ( Array.isArray( mesh.material ) ) { + + for ( let i = 0, l = mesh.material.length; i < l; i ++ ) { + + meshCacheKeyParts.push( mesh.material[ i ].uuid ); + + } + + } else { + + meshCacheKeyParts.push( mesh.material.uuid ); + + } + + const meshCacheKey = meshCacheKeyParts.join( ':' ); + + if ( cache.meshes.has( meshCacheKey ) ) return cache.meshes.get( meshCacheKey ); + + const geometry = mesh.geometry; + + let mode; + + // Use the correct mode + if ( mesh.isLineSegments ) { + + mode = WEBGL_CONSTANTS.LINES; + + } else if ( mesh.isLineLoop ) { + + mode = WEBGL_CONSTANTS.LINE_LOOP; + + } else if ( mesh.isLine ) { + + mode = WEBGL_CONSTANTS.LINE_STRIP; + + } else if ( mesh.isPoints ) { + + mode = WEBGL_CONSTANTS.POINTS; + + } else { + + mode = mesh.material.wireframe ? WEBGL_CONSTANTS.LINES : WEBGL_CONSTANTS.TRIANGLES; + + } + + const meshDef = {}; + const attributes = {}; + const primitives = []; + const targets = []; + + // Conversion between attributes names in threejs and gltf spec + const nameConversion = { + uv: 'TEXCOORD_0', + uv1: 'TEXCOORD_1', + uv2: 'TEXCOORD_2', + uv3: 'TEXCOORD_3', + color: 'COLOR_0', + skinWeight: 'WEIGHTS_0', + skinIndex: 'JOINTS_0' + }; + + const originalNormal = geometry.getAttribute( 'normal' ); + + if ( originalNormal !== undefined && ! this.isNormalizedNormalAttribute( originalNormal ) ) { + + console.warn( 'THREE.GLTFExporter: Creating normalized normal attribute from the non-normalized one.' ); + + geometry.setAttribute( 'normal', this.createNormalizedNormalAttribute( originalNormal ) ); + + } + + // @QUESTION Detect if .vertexColors = true? + // For every attribute create an accessor + let modifiedAttribute = null; + + for ( let attributeName in geometry.attributes ) { + + // Ignore morph target attributes, which are exported later. + if ( attributeName.slice( 0, 5 ) === 'morph' ) continue; + + const attribute = geometry.attributes[ attributeName ]; + attributeName = nameConversion[ attributeName ] || attributeName.toUpperCase(); + + // Prefix all geometry attributes except the ones specifically + // listed in the spec; non-spec attributes are considered custom. + const validVertexAttributes = + /^(POSITION|NORMAL|TANGENT|TEXCOORD_\d+|COLOR_\d+|JOINTS_\d+|WEIGHTS_\d+)$/; + + if ( ! validVertexAttributes.test( attributeName ) ) attributeName = '_' + attributeName; + + if ( cache.attributes.has( this.getUID( attribute ) ) ) { + + attributes[ attributeName ] = cache.attributes.get( this.getUID( attribute ) ); + continue; + + } + + // Enforce glTF vertex attribute requirements: + // - JOINTS_0 must be UNSIGNED_BYTE or UNSIGNED_SHORT + // - Only custom attributes may be INT or UNSIGNED_INT + modifiedAttribute = null; + const array = attribute.array; + + if ( attributeName === 'JOINTS_0' && + ! ( array instanceof Uint16Array ) && + ! ( array instanceof Uint8Array ) ) { + + console.warn( 'GLTFExporter: Attribute "skinIndex" converted to type UNSIGNED_SHORT.' ); + modifiedAttribute = new BufferAttribute( new Uint16Array( array ), attribute.itemSize, attribute.normalized ); + + } else if ( ( array instanceof Uint32Array || array instanceof Int32Array ) && ! attributeName.startsWith( '_' ) ) { + + console.warn( `GLTFExporter: Attribute "${ attributeName }" converted to type FLOAT.` ); + modifiedAttribute = GLTFExporter.Utils.toFloat32BufferAttribute( attribute ); + + } + + const accessor = this.processAccessor( modifiedAttribute || attribute, geometry ); + + if ( accessor !== null ) { + + if ( ! attributeName.startsWith( '_' ) ) { + + this.detectMeshQuantization( attributeName, attribute ); + + } + + attributes[ attributeName ] = accessor; + cache.attributes.set( this.getUID( attribute ), accessor ); + + } + + } + + if ( originalNormal !== undefined ) geometry.setAttribute( 'normal', originalNormal ); + + // Skip if no exportable attributes found + if ( Object.keys( attributes ).length === 0 ) return null; + + // Morph targets + if ( mesh.morphTargetInfluences !== undefined && mesh.morphTargetInfluences.length > 0 ) { + + const weights = []; + const targetNames = []; + const reverseDictionary = {}; + + if ( mesh.morphTargetDictionary !== undefined ) { + + for ( const key in mesh.morphTargetDictionary ) { + + reverseDictionary[ mesh.morphTargetDictionary[ key ] ] = key; + + } + + } + + for ( let i = 0; i < mesh.morphTargetInfluences.length; ++ i ) { + + const target = {}; + let warned = false; + + for ( const attributeName in geometry.morphAttributes ) { + + // glTF 2.0 morph supports only POSITION/NORMAL/TANGENT. + // Three.js doesn't support TANGENT yet. + + if ( attributeName !== 'position' && attributeName !== 'normal' ) { + + if ( ! warned ) { + + console.warn( 'GLTFExporter: Only POSITION and NORMAL morph are supported.' ); + warned = true; + + } + + continue; + + } + + const attribute = geometry.morphAttributes[ attributeName ][ i ]; + const gltfAttributeName = attributeName.toUpperCase(); + + // Three.js morph attribute has absolute values while the one of glTF has relative values. + // + // glTF 2.0 Specification: + // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#morph-targets + + const baseAttribute = geometry.attributes[ attributeName ]; + + if ( cache.attributes.has( this.getUID( attribute, true ) ) ) { + + target[ gltfAttributeName ] = cache.attributes.get( this.getUID( attribute, true ) ); + continue; + + } + + // Clones attribute not to override + const relativeAttribute = attribute.clone(); + + if ( ! geometry.morphTargetsRelative ) { + + for ( let j = 0, jl = attribute.count; j < jl; j ++ ) { + + for ( let a = 0; a < attribute.itemSize; a ++ ) { + + if ( a === 0 ) relativeAttribute.setX( j, attribute.getX( j ) - baseAttribute.getX( j ) ); + if ( a === 1 ) relativeAttribute.setY( j, attribute.getY( j ) - baseAttribute.getY( j ) ); + if ( a === 2 ) relativeAttribute.setZ( j, attribute.getZ( j ) - baseAttribute.getZ( j ) ); + if ( a === 3 ) relativeAttribute.setW( j, attribute.getW( j ) - baseAttribute.getW( j ) ); + + } + + } + + } + + target[ gltfAttributeName ] = this.processAccessor( relativeAttribute, geometry ); + cache.attributes.set( this.getUID( baseAttribute, true ), target[ gltfAttributeName ] ); + + } + + targets.push( target ); + + weights.push( mesh.morphTargetInfluences[ i ] ); + + if ( mesh.morphTargetDictionary !== undefined ) targetNames.push( reverseDictionary[ i ] ); + + } + + meshDef.weights = weights; + + if ( targetNames.length > 0 ) { + + meshDef.extras = {}; + meshDef.extras.targetNames = targetNames; + + } + + } + + const isMultiMaterial = Array.isArray( mesh.material ); + + if ( isMultiMaterial && geometry.groups.length === 0 ) return null; + + let didForceIndices = false; + + if ( isMultiMaterial && geometry.index === null ) { + + const indices = []; + + for ( let i = 0, il = geometry.attributes.position.count; i < il; i ++ ) { + + indices[ i ] = i; + + } + + geometry.setIndex( indices ); + + didForceIndices = true; + + } + + const materials = isMultiMaterial ? mesh.material : [ mesh.material ]; + const groups = isMultiMaterial ? geometry.groups : [ { materialIndex: 0, start: undefined, count: undefined } ]; + + for ( let i = 0, il = groups.length; i < il; i ++ ) { + + const primitive = { + mode: mode, + attributes: attributes, + }; + + this.serializeUserData( geometry, primitive ); + + if ( targets.length > 0 ) primitive.targets = targets; + + if ( geometry.index !== null ) { + + let cacheKey = this.getUID( geometry.index ); + + if ( groups[ i ].start !== undefined || groups[ i ].count !== undefined ) { + + cacheKey += ':' + groups[ i ].start + ':' + groups[ i ].count; + + } + + if ( cache.attributes.has( cacheKey ) ) { + + primitive.indices = cache.attributes.get( cacheKey ); + + } else { + + primitive.indices = this.processAccessor( geometry.index, geometry, groups[ i ].start, groups[ i ].count ); + cache.attributes.set( cacheKey, primitive.indices ); + + } + + if ( primitive.indices === null ) delete primitive.indices; + + } + + const material = await this.processMaterialAsync( materials[ groups[ i ].materialIndex ] ); + + if ( material !== null ) primitive.material = material; + + primitives.push( primitive ); + + } + + if ( didForceIndices === true ) { + + geometry.setIndex( null ); + + } + + meshDef.primitives = primitives; + + if ( ! json.meshes ) json.meshes = []; + + await this._invokeAllAsync( function ( ext ) { + + ext.writeMesh && ext.writeMesh( mesh, meshDef ); + + } ); + + const index = json.meshes.push( meshDef ) - 1; + cache.meshes.set( meshCacheKey, index ); + return index; + + } + + /** + * If a vertex attribute with a + * [non-standard data type](https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes-overview) + * is used, it is checked whether it is a valid data type according to the + * [KHR_mesh_quantization](https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_mesh_quantization/README.md) + * extension. + * In this case the extension is automatically added to the list of used extensions. + * + * @param {string} attributeName + * @param {THREE.BufferAttribute} attribute + */ + detectMeshQuantization( attributeName, attribute ) { + + if ( this.extensionsUsed[ KHR_MESH_QUANTIZATION ] ) return; + + let attrType = undefined; + + switch ( attribute.array.constructor ) { + + case Int8Array: + + attrType = 'byte'; + + break; + + case Uint8Array: + + attrType = 'unsigned byte'; + + break; + + case Int16Array: + + attrType = 'short'; + + break; + + case Uint16Array: + + attrType = 'unsigned short'; + + break; + + default: + + return; + + } + + if ( attribute.normalized ) attrType += ' normalized'; + + const attrNamePrefix = attributeName.split( '_', 1 )[ 0 ]; + + if ( KHR_mesh_quantization_ExtraAttrTypes[ attrNamePrefix ] && KHR_mesh_quantization_ExtraAttrTypes[ attrNamePrefix ].includes( attrType ) ) { + + this.extensionsUsed[ KHR_MESH_QUANTIZATION ] = true; + this.extensionsRequired[ KHR_MESH_QUANTIZATION ] = true; + + } + + } + + /** + * Process camera + * @param {THREE.Camera} camera Camera to process + * @return {number} Index of the processed mesh in the "camera" array + */ + processCamera( camera ) { + + const json = this.json; + + if ( ! json.cameras ) json.cameras = []; + + const isOrtho = camera.isOrthographicCamera; + + const cameraDef = { + type: isOrtho ? 'orthographic' : 'perspective' + }; + + if ( isOrtho ) { + + cameraDef.orthographic = { + xmag: camera.right * 2, + ymag: camera.top * 2, + zfar: camera.far <= 0 ? 0.001 : camera.far, + znear: camera.near < 0 ? 0 : camera.near + }; + + } else { + + cameraDef.perspective = { + aspectRatio: camera.aspect, + yfov: MathUtils.degToRad( camera.fov ), + zfar: camera.far <= 0 ? 0.001 : camera.far, + znear: camera.near < 0 ? 0 : camera.near + }; + + } + + // Question: Is saving "type" as name intentional? + if ( camera.name !== '' ) cameraDef.name = camera.type; + + return json.cameras.push( cameraDef ) - 1; + + } + + /** + * Creates glTF animation entry from AnimationClip object. + * + * Status: + * - Only properties listed in PATH_PROPERTIES may be animated. + * + * @param {THREE.AnimationClip} clip + * @param {THREE.Object3D} root + * @return {number|null} + */ + processAnimation( clip, root ) { + + const json = this.json; + const nodeMap = this.nodeMap; + + if ( ! json.animations ) json.animations = []; + + clip = GLTFExporter.Utils.mergeMorphTargetTracks( clip.clone(), root ); + + const tracks = clip.tracks; + const channels = []; + const samplers = []; + + for ( let i = 0; i < tracks.length; ++ i ) { + + const track = tracks[ i ]; + const trackBinding = PropertyBinding.parseTrackName( track.name ); + let trackNode = PropertyBinding.findNode( root, trackBinding.nodeName ); + const trackProperty = PATH_PROPERTIES[ trackBinding.propertyName ]; + + if ( trackBinding.objectName === 'bones' ) { + + if ( trackNode.isSkinnedMesh === true ) { + + trackNode = trackNode.skeleton.getBoneByName( trackBinding.objectIndex ); + + } else { + + trackNode = undefined; + + } + + } + + if ( ! trackNode || ! trackProperty ) { + + console.warn( 'THREE.GLTFExporter: Could not export animation track "%s".', track.name ); + continue; + + } + + const inputItemSize = 1; + let outputItemSize = track.values.length / track.times.length; + + if ( trackProperty === PATH_PROPERTIES.morphTargetInfluences ) { + + outputItemSize /= trackNode.morphTargetInfluences.length; + + } + + let interpolation; + + // @TODO export CubicInterpolant(InterpolateSmooth) as CUBICSPLINE + + // Detecting glTF cubic spline interpolant by checking factory method's special property + // GLTFCubicSplineInterpolant is a custom interpolant and track doesn't return + // valid value from .getInterpolation(). + if ( track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline === true ) { + + interpolation = 'CUBICSPLINE'; + + // itemSize of CUBICSPLINE keyframe is 9 + // (VEC3 * 3: inTangent, splineVertex, and outTangent) + // but needs to be stored as VEC3 so dividing by 3 here. + outputItemSize /= 3; + + } else if ( track.getInterpolation() === InterpolateDiscrete ) { + + interpolation = 'STEP'; + + } else { + + interpolation = 'LINEAR'; + + } + + samplers.push( { + input: this.processAccessor( new BufferAttribute( track.times, inputItemSize ) ), + output: this.processAccessor( new BufferAttribute( track.values, outputItemSize ) ), + interpolation: interpolation + } ); + + channels.push( { + sampler: samplers.length - 1, + target: { + node: nodeMap.get( trackNode ), + path: trackProperty + } + } ); + + } + + json.animations.push( { + name: clip.name || 'clip_' + json.animations.length, + samplers: samplers, + channels: channels + } ); + + return json.animations.length - 1; + + } + + /** + * @param {THREE.Object3D} object + * @return {number|null} + */ + processSkin( object ) { + + const json = this.json; + const nodeMap = this.nodeMap; + + const node = json.nodes[ nodeMap.get( object ) ]; + + const skeleton = object.skeleton; + + if ( skeleton === undefined ) return null; + + const rootJoint = object.skeleton.bones[ 0 ]; + + if ( rootJoint === undefined ) return null; + + const joints = []; + const inverseBindMatrices = new Float32Array( skeleton.bones.length * 16 ); + const temporaryBoneInverse = new Matrix4(); + + for ( let i = 0; i < skeleton.bones.length; ++ i ) { + + joints.push( nodeMap.get( skeleton.bones[ i ] ) ); + temporaryBoneInverse.copy( skeleton.boneInverses[ i ] ); + temporaryBoneInverse.multiply( object.bindMatrix ).toArray( inverseBindMatrices, i * 16 ); + + } + + if ( json.skins === undefined ) json.skins = []; + + json.skins.push( { + inverseBindMatrices: this.processAccessor( new BufferAttribute( inverseBindMatrices, 16 ) ), + joints: joints, + skeleton: nodeMap.get( rootJoint ) + } ); + + const skinIndex = node.skin = json.skins.length - 1; + + return skinIndex; + + } + + /** + * Process Object3D node + * @param {THREE.Object3D} object Object3D to processNodeAsync + * @return {Promise} Index of the node in the nodes list + */ + async processNodeAsync( object ) { + + const json = this.json; + const options = this.options; + const nodeMap = this.nodeMap; + + if ( ! json.nodes ) json.nodes = []; + + const nodeDef = {}; + + if ( options.trs ) { + + const rotation = object.quaternion.toArray(); + const position = object.position.toArray(); + const scale = object.scale.toArray(); + + if ( ! equalArray( rotation, [ 0, 0, 0, 1 ] ) ) { + + nodeDef.rotation = rotation; + + } + + if ( ! equalArray( position, [ 0, 0, 0 ] ) ) { + + nodeDef.translation = position; + + } + + if ( ! equalArray( scale, [ 1, 1, 1 ] ) ) { + + nodeDef.scale = scale; + + } + + } else { + + if ( object.matrixAutoUpdate ) { + + object.updateMatrix(); + + } + + if ( isIdentityMatrix( object.matrix ) === false ) { + + nodeDef.matrix = object.matrix.elements; + + } + + } + + // We don't export empty strings name because it represents no-name in Three.js. + if ( object.name !== '' ) nodeDef.name = String( object.name ); + + this.serializeUserData( object, nodeDef ); + + if ( object.isMesh || object.isLine || object.isPoints ) { + + const meshIndex = await this.processMeshAsync( object ); + + if ( meshIndex !== null ) nodeDef.mesh = meshIndex; + + } else if ( object.isCamera ) { + + nodeDef.camera = this.processCamera( object ); + + } + + if ( object.isSkinnedMesh ) this.skins.push( object ); + + const nodeIndex = json.nodes.push( nodeDef ) - 1; + nodeMap.set( object, nodeIndex ); + + if ( object.children.length > 0 ) { + + const children = []; + + for ( let i = 0, l = object.children.length; i < l; i ++ ) { + + const child = object.children[ i ]; + + if ( child.visible || options.onlyVisible === false ) { + + const childNodeIndex = await this.processNodeAsync( child ); + + if ( childNodeIndex !== null ) children.push( childNodeIndex ); + + } + + } + + if ( children.length > 0 ) nodeDef.children = children; + + } + + await this._invokeAllAsync( function ( ext ) { + + ext.writeNode && ext.writeNode( object, nodeDef ); + + } ); + + return nodeIndex; + + } + + /** + * Process Scene + * @param {Scene} scene Scene to process + */ + async processSceneAsync( scene ) { + + const json = this.json; + const options = this.options; + + if ( ! json.scenes ) { + + json.scenes = []; + json.scene = 0; + + } + + const sceneDef = {}; + + if ( scene.name !== '' ) sceneDef.name = scene.name; + + json.scenes.push( sceneDef ); + + const nodes = []; + + for ( let i = 0, l = scene.children.length; i < l; i ++ ) { + + const child = scene.children[ i ]; + + if ( child.visible || options.onlyVisible === false ) { + + const nodeIndex = await this.processNodeAsync( child ); + + if ( nodeIndex !== null ) nodes.push( nodeIndex ); + + } + + } + + if ( nodes.length > 0 ) sceneDef.nodes = nodes; + + this.serializeUserData( scene, sceneDef ); + + } + + /** + * Creates a Scene to hold a list of objects and parse it + * @param {Array} objects List of objects to process + */ + async processObjectsAsync( objects ) { + + const scene = new Scene(); + scene.name = 'AuxScene'; + + for ( let i = 0; i < objects.length; i ++ ) { + + // We push directly to children instead of calling `add` to prevent + // modify the .parent and break its original scene and hierarchy + scene.children.push( objects[ i ] ); + + } + + await this.processSceneAsync( scene ); + + } + + /** + * @param {THREE.Object3D|Array} input + */ + async processInputAsync( input ) { + + const options = this.options; + + input = input instanceof Array ? input : [ input ]; + + await this._invokeAllAsync( function ( ext ) { + + ext.beforeParse && ext.beforeParse( input ); + + } ); + + const objectsWithoutScene = []; + + for ( let i = 0; i < input.length; i ++ ) { + + if ( input[ i ] instanceof Scene ) { + + await this.processSceneAsync( input[ i ] ); + + } else { + + objectsWithoutScene.push( input[ i ] ); + + } + + } + + if ( objectsWithoutScene.length > 0 ) { + + await this.processObjectsAsync( objectsWithoutScene ); + + } + + for ( let i = 0; i < this.skins.length; ++ i ) { + + this.processSkin( this.skins[ i ] ); + + } + + for ( let i = 0; i < options.animations.length; ++ i ) { + + this.processAnimation( options.animations[ i ], input[ 0 ] ); + + } + + await this._invokeAllAsync( function ( ext ) { + + ext.afterParse && ext.afterParse( input ); + + } ); + + } + + async _invokeAllAsync( func ) { + + for ( let i = 0, il = this.plugins.length; i < il; i ++ ) { + + await func( this.plugins[ i ] ); + + } + + } + + } + + /** + * Punctual Lights Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual + * + * @private + */ + class GLTFLightExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_lights_punctual'; + + } + + writeNode( light, nodeDef ) { + + if ( ! light.isLight ) return; + + if ( ! light.isDirectionalLight && ! light.isPointLight && ! light.isSpotLight ) { + + console.warn( 'THREE.GLTFExporter: Only directional, point, and spot lights are supported.', light ); + return; + + } + + const writer = this.writer; + const json = writer.json; + const extensionsUsed = writer.extensionsUsed; + + const lightDef = {}; + + if ( light.name ) lightDef.name = light.name; + + lightDef.color = light.color.toArray(); + + lightDef.intensity = light.intensity; + + if ( light.isDirectionalLight ) { + + lightDef.type = 'directional'; + + } else if ( light.isPointLight ) { + + lightDef.type = 'point'; + + if ( light.distance > 0 ) lightDef.range = light.distance; + + } else if ( light.isSpotLight ) { + + lightDef.type = 'spot'; + + if ( light.distance > 0 ) lightDef.range = light.distance; + + lightDef.spot = {}; + lightDef.spot.innerConeAngle = ( 1.0 - light.penumbra ) * light.angle; + lightDef.spot.outerConeAngle = light.angle; + + } + + if ( light.decay !== undefined && light.decay !== 2 ) { + + console.warn( 'THREE.GLTFExporter: Light decay may be lost. glTF is physically-based, ' + + 'and expects light.decay=2.' ); + + } + + if ( light.target + && ( light.target.parent !== light + || light.target.position.x !== 0 + || light.target.position.y !== 0 + || light.target.position.z !== - 1 ) ) { + + console.warn( 'THREE.GLTFExporter: Light direction may be lost. For best results, ' + + 'make light.target a child of the light with position 0,0,-1.' ); + + } + + if ( ! extensionsUsed[ this.name ] ) { + + json.extensions = json.extensions || {}; + json.extensions[ this.name ] = { lights: [] }; + extensionsUsed[ this.name ] = true; + + } + + const lights = json.extensions[ this.name ].lights; + lights.push( lightDef ); + + nodeDef.extensions = nodeDef.extensions || {}; + nodeDef.extensions[ this.name ] = { light: lights.length - 1 }; + + } + + } + + /** + * Unlit Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_unlit + * + * @private + */ + class GLTFMaterialsUnlitExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_unlit'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshBasicMaterial ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = {}; + + extensionsUsed[ this.name ] = true; + + materialDef.pbrMetallicRoughness.metallicFactor = 0.0; + materialDef.pbrMetallicRoughness.roughnessFactor = 0.9; + + } + + } + + /** + * Clearcoat Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_clearcoat + * + * @private + */ + class GLTFMaterialsClearcoatExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_clearcoat'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.clearcoat === 0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.clearcoatFactor = material.clearcoat; + + if ( material.clearcoatMap ) { + + const clearcoatMapDef = { + index: await writer.processTextureAsync( material.clearcoatMap ), + texCoord: material.clearcoatMap.channel + }; + writer.applyTextureTransform( clearcoatMapDef, material.clearcoatMap ); + extensionDef.clearcoatTexture = clearcoatMapDef; + + } + + extensionDef.clearcoatRoughnessFactor = material.clearcoatRoughness; + + if ( material.clearcoatRoughnessMap ) { + + const clearcoatRoughnessMapDef = { + index: await writer.processTextureAsync( material.clearcoatRoughnessMap ), + texCoord: material.clearcoatRoughnessMap.channel + }; + writer.applyTextureTransform( clearcoatRoughnessMapDef, material.clearcoatRoughnessMap ); + extensionDef.clearcoatRoughnessTexture = clearcoatRoughnessMapDef; + + } + + if ( material.clearcoatNormalMap ) { + + const clearcoatNormalMapDef = { + index: await writer.processTextureAsync( material.clearcoatNormalMap ), + texCoord: material.clearcoatNormalMap.channel + }; + + if ( material.clearcoatNormalScale.x !== 1 ) clearcoatNormalMapDef.scale = material.clearcoatNormalScale.x; + + writer.applyTextureTransform( clearcoatNormalMapDef, material.clearcoatNormalMap ); + extensionDef.clearcoatNormalTexture = clearcoatNormalMapDef; + + } + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + + } + + } + + /** + * Materials dispersion Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_dispersion + * + * @private + */ + class GLTFMaterialsDispersionExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_dispersion'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.dispersion === 0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.dispersion = material.dispersion; + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + + } + + /** + * Iridescence Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_iridescence + * + * @private + */ + class GLTFMaterialsIridescenceExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_iridescence'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.iridescence === 0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.iridescenceFactor = material.iridescence; + + if ( material.iridescenceMap ) { + + const iridescenceMapDef = { + index: await writer.processTextureAsync( material.iridescenceMap ), + texCoord: material.iridescenceMap.channel + }; + writer.applyTextureTransform( iridescenceMapDef, material.iridescenceMap ); + extensionDef.iridescenceTexture = iridescenceMapDef; + + } + + extensionDef.iridescenceIor = material.iridescenceIOR; + extensionDef.iridescenceThicknessMinimum = material.iridescenceThicknessRange[ 0 ]; + extensionDef.iridescenceThicknessMaximum = material.iridescenceThicknessRange[ 1 ]; + + if ( material.iridescenceThicknessMap ) { + + const iridescenceThicknessMapDef = { + index: await writer.processTextureAsync( material.iridescenceThicknessMap ), + texCoord: material.iridescenceThicknessMap.channel + }; + writer.applyTextureTransform( iridescenceThicknessMapDef, material.iridescenceThicknessMap ); + extensionDef.iridescenceThicknessTexture = iridescenceThicknessMapDef; + + } + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + + } + + /** + * Transmission Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_transmission + * + * @private + */ + class GLTFMaterialsTransmissionExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_transmission'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.transmission === 0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.transmissionFactor = material.transmission; + + if ( material.transmissionMap ) { + + const transmissionMapDef = { + index: await writer.processTextureAsync( material.transmissionMap ), + texCoord: material.transmissionMap.channel + }; + writer.applyTextureTransform( transmissionMapDef, material.transmissionMap ); + extensionDef.transmissionTexture = transmissionMapDef; + + } + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + + } + + /** + * Materials Volume Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_volume + * + * @private + */ + class GLTFMaterialsVolumeExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_volume'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.transmission === 0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.thicknessFactor = material.thickness; + + if ( material.thicknessMap ) { + + const thicknessMapDef = { + index: await writer.processTextureAsync( material.thicknessMap ), + texCoord: material.thicknessMap.channel + }; + writer.applyTextureTransform( thicknessMapDef, material.thicknessMap ); + extensionDef.thicknessTexture = thicknessMapDef; + + } + + if ( material.attenuationDistance !== Infinity ) { + + extensionDef.attenuationDistance = material.attenuationDistance; + + } + + extensionDef.attenuationColor = material.attenuationColor.toArray(); + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + + } + + /** + * Materials ior Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_ior + * + * @private + */ + class GLTFMaterialsIorExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_ior'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.ior === 1.5 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.ior = material.ior; + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + + } + + /** + * Materials specular Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_specular + * + * @private + */ + class GLTFMaterialsSpecularExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_specular'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || ( material.specularIntensity === 1.0 && + material.specularColor.equals( DEFAULT_SPECULAR_COLOR ) && + ! material.specularIntensityMap && ! material.specularColorMap ) ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + if ( material.specularIntensityMap ) { + + const specularIntensityMapDef = { + index: await writer.processTextureAsync( material.specularIntensityMap ), + texCoord: material.specularIntensityMap.channel + }; + writer.applyTextureTransform( specularIntensityMapDef, material.specularIntensityMap ); + extensionDef.specularTexture = specularIntensityMapDef; + + } + + if ( material.specularColorMap ) { + + const specularColorMapDef = { + index: await writer.processTextureAsync( material.specularColorMap ), + texCoord: material.specularColorMap.channel + }; + writer.applyTextureTransform( specularColorMapDef, material.specularColorMap ); + extensionDef.specularColorTexture = specularColorMapDef; + + } + + extensionDef.specularFactor = material.specularIntensity; + extensionDef.specularColorFactor = material.specularColor.toArray(); + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + + } + + /** + * Sheen Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_sheen + * + * @private + */ + class GLTFMaterialsSheenExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_sheen'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.sheen == 0.0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + if ( material.sheenRoughnessMap ) { + + const sheenRoughnessMapDef = { + index: await writer.processTextureAsync( material.sheenRoughnessMap ), + texCoord: material.sheenRoughnessMap.channel + }; + writer.applyTextureTransform( sheenRoughnessMapDef, material.sheenRoughnessMap ); + extensionDef.sheenRoughnessTexture = sheenRoughnessMapDef; + + } + + if ( material.sheenColorMap ) { + + const sheenColorMapDef = { + index: await writer.processTextureAsync( material.sheenColorMap ), + texCoord: material.sheenColorMap.channel + }; + writer.applyTextureTransform( sheenColorMapDef, material.sheenColorMap ); + extensionDef.sheenColorTexture = sheenColorMapDef; + + } + + extensionDef.sheenRoughnessFactor = material.sheenRoughness; + extensionDef.sheenColorFactor = material.sheenColor.toArray(); + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + + } + + /** + * Anisotropy Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_anisotropy + * + * @private + */ + class GLTFMaterialsAnisotropyExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_anisotropy'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshPhysicalMaterial || material.anisotropy == 0.0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + if ( material.anisotropyMap ) { + + const anisotropyMapDef = { index: await writer.processTextureAsync( material.anisotropyMap ) }; + writer.applyTextureTransform( anisotropyMapDef, material.anisotropyMap ); + extensionDef.anisotropyTexture = anisotropyMapDef; + + } + + extensionDef.anisotropyStrength = material.anisotropy; + extensionDef.anisotropyRotation = material.anisotropyRotation; + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + + } + + /** + * Materials Emissive Strength Extension + * + * Specification: https://github.com/KhronosGroup/glTF/blob/5768b3ce0ef32bc39cdf1bef10b948586635ead3/extensions/2.0/Khronos/KHR_materials_emissive_strength/README.md + * + * @private + */ + class GLTFMaterialsEmissiveStrengthExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'KHR_materials_emissive_strength'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshStandardMaterial || material.emissiveIntensity === 1.0 ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + extensionDef.emissiveStrength = material.emissiveIntensity; + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + + } + + + /** + * Materials bump Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/EXT_materials_bump + * + * @private + */ + class GLTFMaterialsBumpExtension { + + constructor( writer ) { + + this.writer = writer; + this.name = 'EXT_materials_bump'; + + } + + async writeMaterialAsync( material, materialDef ) { + + if ( ! material.isMeshStandardMaterial || ( + material.bumpScale === 1 && + ! material.bumpMap ) ) return; + + const writer = this.writer; + const extensionsUsed = writer.extensionsUsed; + + const extensionDef = {}; + + if ( material.bumpMap ) { + + const bumpMapDef = { + index: await writer.processTextureAsync( material.bumpMap ), + texCoord: material.bumpMap.channel + }; + writer.applyTextureTransform( bumpMapDef, material.bumpMap ); + extensionDef.bumpTexture = bumpMapDef; + + } + + extensionDef.bumpFactor = material.bumpScale; + + materialDef.extensions = materialDef.extensions || {}; + materialDef.extensions[ this.name ] = extensionDef; + + extensionsUsed[ this.name ] = true; + + } + + } + + /** + * GPU Instancing Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/EXT_mesh_gpu_instancing + * + * @private + */ + class GLTFMeshGpuInstancing { + + constructor( writer ) { + + this.writer = writer; + this.name = 'EXT_mesh_gpu_instancing'; + + } + + writeNode( object, nodeDef ) { + + if ( ! object.isInstancedMesh ) return; + + const writer = this.writer; + + const mesh = object; + + const translationAttr = new Float32Array( mesh.count * 3 ); + const rotationAttr = new Float32Array( mesh.count * 4 ); + const scaleAttr = new Float32Array( mesh.count * 3 ); + + const matrix = new Matrix4(); + const position = new Vector3(); + const quaternion = new Quaternion(); + const scale = new Vector3(); + + for ( let i = 0; i < mesh.count; i ++ ) { + + mesh.getMatrixAt( i, matrix ); + matrix.decompose( position, quaternion, scale ); + + position.toArray( translationAttr, i * 3 ); + quaternion.toArray( rotationAttr, i * 4 ); + scale.toArray( scaleAttr, i * 3 ); + + } + + const attributes = { + TRANSLATION: writer.processAccessor( new BufferAttribute( translationAttr, 3 ) ), + ROTATION: writer.processAccessor( new BufferAttribute( rotationAttr, 4 ) ), + SCALE: writer.processAccessor( new BufferAttribute( scaleAttr, 3 ) ), + }; + + if ( mesh.instanceColor ) + attributes._COLOR_0 = writer.processAccessor( mesh.instanceColor ); + + nodeDef.extensions = nodeDef.extensions || {}; + nodeDef.extensions[ this.name ] = { attributes }; + + writer.extensionsUsed[ this.name ] = true; + writer.extensionsRequired[ this.name ] = true; + + } + + } + + /** + * Static utility functions + * + * @private + */ + GLTFExporter.Utils = { + + insertKeyframe: function ( track, time ) { + + const tolerance = 0.001; // 1ms + const valueSize = track.getValueSize(); + + const times = new track.TimeBufferType( track.times.length + 1 ); + const values = new track.ValueBufferType( track.values.length + valueSize ); + const interpolant = track.createInterpolant( new track.ValueBufferType( valueSize ) ); + + let index; + + if ( track.times.length === 0 ) { + + times[ 0 ] = time; + + for ( let i = 0; i < valueSize; i ++ ) { + + values[ i ] = 0; + + } + + index = 0; + + } else if ( time < track.times[ 0 ] ) { + + if ( Math.abs( track.times[ 0 ] - time ) < tolerance ) return 0; + + times[ 0 ] = time; + times.set( track.times, 1 ); + + values.set( interpolant.evaluate( time ), 0 ); + values.set( track.values, valueSize ); + + index = 0; + + } else if ( time > track.times[ track.times.length - 1 ] ) { + + if ( Math.abs( track.times[ track.times.length - 1 ] - time ) < tolerance ) { + + return track.times.length - 1; + + } + + times[ times.length - 1 ] = time; + times.set( track.times, 0 ); + + values.set( track.values, 0 ); + values.set( interpolant.evaluate( time ), track.values.length ); + + index = times.length - 1; + + } else { + + for ( let i = 0; i < track.times.length; i ++ ) { + + if ( Math.abs( track.times[ i ] - time ) < tolerance ) return i; + + if ( track.times[ i ] < time && track.times[ i + 1 ] > time ) { + + times.set( track.times.slice( 0, i + 1 ), 0 ); + times[ i + 1 ] = time; + times.set( track.times.slice( i + 1 ), i + 2 ); + + values.set( track.values.slice( 0, ( i + 1 ) * valueSize ), 0 ); + values.set( interpolant.evaluate( time ), ( i + 1 ) * valueSize ); + values.set( track.values.slice( ( i + 1 ) * valueSize ), ( i + 2 ) * valueSize ); + + index = i + 1; + + break; + + } + + } + + } + + track.times = times; + track.values = values; + + return index; + + }, + + mergeMorphTargetTracks: function ( clip, root ) { + + const tracks = []; + const mergedTracks = {}; + const sourceTracks = clip.tracks; + + for ( let i = 0; i < sourceTracks.length; ++ i ) { + + let sourceTrack = sourceTracks[ i ]; + const sourceTrackBinding = PropertyBinding.parseTrackName( sourceTrack.name ); + const sourceTrackNode = PropertyBinding.findNode( root, sourceTrackBinding.nodeName ); + + if ( sourceTrackBinding.propertyName !== 'morphTargetInfluences' || sourceTrackBinding.propertyIndex === undefined ) { + + // Tracks that don't affect morph targets, or that affect all morph targets together, can be left as-is. + tracks.push( sourceTrack ); + continue; + + } + + if ( sourceTrack.createInterpolant !== sourceTrack.InterpolantFactoryMethodDiscrete + && sourceTrack.createInterpolant !== sourceTrack.InterpolantFactoryMethodLinear ) { + + if ( sourceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) { + + // This should never happen, because glTF morph target animations + // affect all targets already. + throw new Error( 'THREE.GLTFExporter: Cannot merge tracks with glTF CUBICSPLINE interpolation.' ); + + } + + console.warn( 'THREE.GLTFExporter: Morph target interpolation mode not yet supported. Using LINEAR instead.' ); + + sourceTrack = sourceTrack.clone(); + sourceTrack.setInterpolation( InterpolateLinear ); + + } + + const targetCount = sourceTrackNode.morphTargetInfluences.length; + const targetIndex = sourceTrackNode.morphTargetDictionary[ sourceTrackBinding.propertyIndex ]; + + if ( targetIndex === undefined ) { + + throw new Error( 'THREE.GLTFExporter: Morph target name not found: ' + sourceTrackBinding.propertyIndex ); + + } + + let mergedTrack; + + // If this is the first time we've seen this object, create a new + // track to store merged keyframe data for each morph target. + if ( mergedTracks[ sourceTrackNode.uuid ] === undefined ) { + + mergedTrack = sourceTrack.clone(); + + const values = new mergedTrack.ValueBufferType( targetCount * mergedTrack.times.length ); + + for ( let j = 0; j < mergedTrack.times.length; j ++ ) { + + values[ j * targetCount + targetIndex ] = mergedTrack.values[ j ]; + + } + + // We need to take into consideration the intended target node + // of our original un-merged morphTarget animation. + mergedTrack.name = ( sourceTrackBinding.nodeName || '' ) + '.morphTargetInfluences'; + mergedTrack.values = values; + + mergedTracks[ sourceTrackNode.uuid ] = mergedTrack; + tracks.push( mergedTrack ); + + continue; + + } + + const sourceInterpolant = sourceTrack.createInterpolant( new sourceTrack.ValueBufferType( 1 ) ); + + mergedTrack = mergedTracks[ sourceTrackNode.uuid ]; + + // For every existing keyframe of the merged track, write a (possibly + // interpolated) value from the source track. + for ( let j = 0; j < mergedTrack.times.length; j ++ ) { + + mergedTrack.values[ j * targetCount + targetIndex ] = sourceInterpolant.evaluate( mergedTrack.times[ j ] ); + + } + + // For every existing keyframe of the source track, write a (possibly + // new) keyframe to the merged track. Values from the previous loop may + // be written again, but keyframes are de-duplicated. + for ( let j = 0; j < sourceTrack.times.length; j ++ ) { + + const keyframeIndex = this.insertKeyframe( mergedTrack, sourceTrack.times[ j ] ); + mergedTrack.values[ keyframeIndex * targetCount + targetIndex ] = sourceTrack.values[ j ]; + + } + + } + + clip.tracks = tracks; + + return clip; + + }, + + toFloat32BufferAttribute: function ( srcAttribute ) { + + const dstAttribute = new BufferAttribute( new Float32Array( srcAttribute.count * srcAttribute.itemSize ), srcAttribute.itemSize, false ); + + if ( ! srcAttribute.normalized && ! srcAttribute.isInterleavedBufferAttribute ) { + + dstAttribute.array.set( srcAttribute.array ); + + return dstAttribute; + + } + + for ( let i = 0, il = srcAttribute.count; i < il; i ++ ) { + + for ( let j = 0; j < srcAttribute.itemSize; j ++ ) { + + dstAttribute.setComponent( i, j, srcAttribute.getComponent( i, j ) ); + + } + + } + + return dstAttribute; + + } + + }; + + return GLTFExporter; + +} ) ); diff --git a/devtools/panel/panel.css b/devtools/panel/panel.css index 09bf6baa8dec0d..1f9184c440a9d6 100644 --- a/devtools/panel/panel.css +++ b/devtools/panel/panel.css @@ -1,115 +1,140 @@ :root { - color-scheme: light dark; + color-scheme: light dark; } body { - background: light-dark( #fff, #333 ); - color: light-dark( #333, #e0e0e0 ); - margin: 0; - padding: 10px; - font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif; - font-size: 12px; + background: light-dark(#fff, #333); + color: light-dark(#333, #e0e0e0); + margin: 0; + padding: 10px; + font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif; + font-size: 12px; } hr { - color: light-dark( #333, #e0e0e0 ); + color: light-dark(#333, #e0e0e0); } #scene-tree { - width: 100%; - height: 100%; - overflow: auto; + width: 100%; + height: 100%; + overflow: auto; } .header { - padding: 8px 12px; - background: light-dark( #f5f5f5, #333 ); - border-radius: 4px; - margin-bottom: 16px; - font-family: monospace; - color: light-dark( #666, #aaa ); -} - .header a { - color: light-dark( #666, #aaa ); - text-decoration: none; - } - .header a:hover { - color: light-dark( #333, #e0e0e0 ); - } + padding: 8px 12px; + background: light-dark(#f5f5f5, #333); + border-radius: 4px; + margin-bottom: 16px; + font-family: monospace; + color: light-dark(#666, #aaa); +} +.header a { + color: light-dark(#666, #aaa); + text-decoration: none; +} +.header a:hover { + color: light-dark(#333, #e0e0e0); +} .section { - margin-bottom: 24px; + margin-bottom: 24px; +} + +.section h3 { + margin: 0 0 8px 0; + font-size: 11px; + text-transform: uppercase; + color: light-dark(#666, #aaa); + font-weight: 500; + border-bottom: 1px solid light-dark(#eee, #444); + padding-bottom: 4px; +} + +button { + background: light-dark(#f0f0f0, #454545); + border: none; + border-radius: 4px; + padding: 1px 3px; + cursor: pointer; + font-size: 11px; + color: light-dark(#333, #e0e0e0); + border-radius: 4px; } - .section h3 { - margin: 0 0 8px 0; - font-size: 11px; - text-transform: uppercase; - color: light-dark( #666, #aaa ); - font-weight: 500; - border-bottom: 1px solid light-dark( #eee, #444 ); - padding-bottom: 4px; - } +.export-status { + margin-left: 8px; + opacity: 0.5; + font-size: 0.9em; + +} + +.export-gradient-bar { + transition: opacity 0.3s; +} .tree-item { - padding: 4px; - cursor: pointer; - display: flex; - align-items: center; + padding: 4px; + cursor: pointer; + display: flex; + align-items: center; } .tree-item:hover { - background: light-dark( #f0f0f0, #555 ); + background: light-dark(#f0f0f0, #555); } .tree-item .icon { - margin-right: 4px; - opacity: 0.7; + margin-right: 4px; + opacity: 0.7; } .tree-item .label { - flex: 1; - white-space: nowrap; - overflow: hidden; - text-overflow: ellipsis; + flex: 1; + white-space: nowrap; + overflow: hidden; + text-overflow: ellipsis; } .tree-item .label .object-details { - color: #aaa; - margin-left: 4px; - font-weight: normal; + color: #aaa; + margin-left: 4px; + font-weight: normal; } .tree-item .type { - margin-left: 8px; - opacity: 0.5; - font-size: 0.9em; + margin-left: 8px; + opacity: 0.5; + font-size: 0.9em; } .children { - margin-left: 0; + margin-left: 0; } /* Style for clickable renderer summary */ .renderer-summary { - cursor: pointer; + cursor: pointer; } .renderer-summary:hover { - background: light-dark( #f0f0f0, #555 ); + background: light-dark(#f0f0f0, #555); } /* Hide default details marker when using custom summary */ -details.renderer-container > summary.renderer-summary { /* Target summary */ - list-style: none; /* Hide default arrow */ - cursor: pointer; /* Make the summary div look clickable */ +details.renderer-container > summary.renderer-summary { + /* Target summary */ + list-style: none; /* Hide default arrow */ + cursor: pointer; /* Make the summary div look clickable */ } details.renderer-container > summary.renderer-summary::-webkit-details-marker { - display: none; /* Hide default arrow in WebKit */ + display: none; /* Hide default arrow in WebKit */ } /* Style for the toggle icon */ .toggle-icon::before { - content: '▶'; /* Default: collapsed */ - display: inline-block; - width: 1em; - margin-right: 2px; - opacity: 0.7; -} -details.renderer-container[open] > summary.renderer-summary .toggle-icon::before { - content: '▼'; /* Expanded */ -} \ No newline at end of file + content: "▶"; /* Default: collapsed */ + display: inline-block; + width: 1em; + margin-right: 2px; + opacity: 0.7; +} +details.renderer-container[open] + > summary.renderer-summary + .toggle-icon::before { + content: "▼"; /* Expanded */ +} diff --git a/devtools/panel/panel.html b/devtools/panel/panel.html index f50e5d2ebee208..6f475d671106a0 100644 --- a/devtools/panel/panel.html +++ b/devtools/panel/panel.html @@ -4,9 +4,13 @@ Three.js DevTools + + + + +
- - \ No newline at end of file + diff --git a/devtools/panel/panel.js b/devtools/panel/panel.js index 30e3439cc67f26..1a9527fc5586f8 100644 --- a/devtools/panel/panel.js +++ b/devtools/panel/panel.js @@ -1,40 +1,44 @@ /* global chrome */ // --- Utility Functions --- -function getObjectIcon(obj) { - if (obj.isScene) return '🌍'; - if (obj.isCamera) return '📷'; - if (obj.isLight) return '💡'; - if (obj.isInstancedMesh) return '🔸'; - if (obj.isMesh) return '🔷'; - if (obj.type === 'Group') return '📁'; +function getObjectIcon( obj ) { + + if ( obj.isScene ) return '🌍'; + if ( obj.isCamera ) return '📷'; + if ( obj.isLight ) return '💡'; + if ( obj.isInstancedMesh ) return '🔸'; + if ( obj.isMesh ) return '🔷'; + if ( obj.type === 'Group' ) return '📁'; return '📦'; + } -function createPropertyRow(label, value) { - const row = document.createElement('div'); +function createPropertyRow( label, value ) { + + const row = document.createElement( 'div' ); row.className = 'property-row'; row.style.display = 'flex'; row.style.justifyContent = 'space-between'; row.style.marginBottom = '2px'; - const labelSpan = document.createElement('span'); + const labelSpan = document.createElement( 'span' ); labelSpan.className = 'property-label'; labelSpan.textContent = `${label}:`; labelSpan.style.marginRight = '10px'; labelSpan.style.whiteSpace = 'nowrap'; - const valueSpan = document.createElement('span'); + const valueSpan = document.createElement( 'span' ); valueSpan.className = 'property-value'; - const displayValue = (value === undefined || value === null) + const displayValue = ( value === undefined || value === null ) ? '–' - : (typeof value === 'number' ? value.toLocaleString() : value); + : ( typeof value === 'number' ? value.toLocaleString() : value ); valueSpan.textContent = displayValue; valueSpan.style.textAlign = 'right'; - row.appendChild(labelSpan); - row.appendChild(valueSpan); + row.appendChild( labelSpan ); + row.appendChild( valueSpan ); return row; + } // --- State --- @@ -48,29 +52,96 @@ const state = { // console.log('Panel script loaded'); // Create a connection to the background page -const backgroundPageConnection = chrome.runtime.connect( { - name: 'three-devtools' -} ); +console.log( '[Panel] Attempting to connect to background page...' ); +let backgroundPageConnection = null; +let reconnectTimeout = null; +let lostConnectionWarningTimeout = null; -// Initialize the connection with the inspected tab ID -backgroundPageConnection.postMessage( { - name: 'init', - tabId: chrome.devtools.inspectedWindow.tabId -} ); +function connectToBackground() { -// Request the initial state from the bridge script -backgroundPageConnection.postMessage( { - name: 'request-state', - tabId: chrome.devtools.inspectedWindow.tabId -} ); + if ( backgroundPageConnection ) { -const intervalId = setInterval( () => { + try { + + backgroundPageConnection.disconnect(); + + } catch ( e ) {} + + } + + backgroundPageConnection = chrome.runtime.connect( { name: 'three-devtools' } ); + console.log( '[Panel] Connected to background page' ); + + backgroundPageConnection.onDisconnect.addListener( () => { + + console.warn( '[Panel] Background connection lost. Attempting to reconnect...' ); + if ( ! reconnectTimeout ) { + + reconnectTimeout = setTimeout( () => { + + connectToBackground(); + reconnectTimeout = null; + + }, 1000 ); + } + + if ( ! lostConnectionWarningTimeout ) { + + lostConnectionWarningTimeout = setTimeout( () => { + + //alert('Three.js DevTools: Lost connection to background. Please reload the panel if this persists.'); + lostConnectionWarningTimeout = null; + + }, 5000 ); + + } + + } ); + + // Re-send init and request-state after reconnect + backgroundPageConnection.postMessage( { + name: 'init', + tabId: chrome.devtools.inspectedWindow.tabId + } ); backgroundPageConnection.postMessage( { name: 'request-state', tabId: chrome.devtools.inspectedWindow.tabId } ); +} + +function safePostMessage( msg ) { + + if ( backgroundPageConnection ) { + + try { + + backgroundPageConnection.postMessage( msg ); + + } catch ( e ) { + + console.warn( '[Panel] Failed to post message to background:', e ); + + } + + } else { + + console.warn( '[Panel] No background connection. Message not sent:', msg ); + + } + +} + +connectToBackground(); + +const intervalId = setInterval( () => { + + safePostMessage( { + name: 'request-state', + tabId: chrome.devtools.inspectedWindow.tabId + } ); + }, 1000 ); backgroundPageConnection.onDisconnect.addListener( () => { @@ -105,12 +176,15 @@ function clearState() { // Listen for messages from the background page backgroundPageConnection.onMessage.addListener( function ( message ) { + + if ( message.id === 'three-devtools' ) { handleThreeEvent( message ); } + } ); function handleThreeEvent( message ) { @@ -214,6 +288,72 @@ function handleThreeEvent( message ) { clearState(); break; + case 'export-started': + console.log( '[Panel] Export started:', message.detail ); + state.exportStatus.set( getSceneUuidFromMessage( message ), 'Export started...' ); + break; + + case 'export-file-generated': + console.log( '[Panel] Export file generated:', message.detail ); + state.exportStatus.set( getSceneUuidFromMessage( message ), 'File generated.' ); + break; + + case 'export-download-initiated': + console.log( '[Panel] Export download initiated:', message.detail ); + state.exportStatus.set( getSceneUuidFromMessage( message ), 'Download initiated.' ); + break; + + case 'export-complete': + console.log( '[Panel] Export complete:', message.detail ); + state.exportStatus.set( getSceneUuidFromMessage( message ), 'Export complete!' ); + if ( getSceneUuidFromMessage( message ) ) { + + setTimeout( () => { + + state.exportStatus.set( getSceneUuidFromMessage( message ), '' ); + updateUI(); + + }, 5000 ); + + } + + break; + + case 'export-error': + console.warn( '[Panel] Export error:', message.detail ); + state.exportStatus.set( getSceneUuidFromMessage( message ), 'Export error.' ); + if ( message.detail && message.detail.error ) { + + console.error( 'Panel: Export error:', message.detail.error ); + // Optionally: alert( 'Export failed: ' + message.detail.error ); + + } + + break; + + case 'export-result': + // This message is typically used to indicate the export result + console.log( '[Panel] Export result:', message.detail ); + if ( getSceneUuidFromMessage( message ) && getSuccessFromMessage( message ) ) { + + state.exportStatus.set( getSceneUuidFromMessage( message ), 'Export complete!' ); + + } + + break; + + case 'export-result-meta': + // This message is typically used to provide metadata about the export result + // It may not require any specific UI updates, but we can log it if needed + console.log( 'Panel: Received export result metadata:', message.detail ); + // If you want to update the UI with this metadata, you can do so here + break; + + default: + console.warn( '[Panel] Unhandled message:', message.name, message.detail ); + // You can handle other messages here if needed + break; + } updateUI(); @@ -254,7 +394,7 @@ function renderRenderer( obj, container ) { const displayName = `${obj.type} ${details.join( ' ・ ' )}`; // Use toggle icon instead of paint icon - summaryElem.innerHTML = ` + summaryElem.innerHTML = ` ${displayName} ${obj.type}`; detailsElement.appendChild( summaryElem ); @@ -376,11 +516,69 @@ function renderObject( obj, container, level = 0 ) { displayName = `${obj.name || obj.type} ${objectCount} objects`; labelContent = `${icon} ${displayName} + ${obj.type}`; } elem.innerHTML = labelContent; + + // Add export buttons for scenes + if ( obj.isScene ) { + + const btnGltf = document.createElement( 'button' ); + btnGltf.textContent = '💾 GLTF'; + btnGltf.onclick = () => { + + btnGltf.disabled = true; + btnGlb.disabled = true; + backgroundPageConnection.postMessage( { name: 'export-scene', sceneUuid: obj.uuid, binary: false } ); + console.log( 'Panel: Exporting scene as GLTF:', obj.uuid ); + + }; + + const btnGlb = document.createElement( 'button' ); + btnGlb.textContent = '💾 GLB'; + btnGlb.onclick = () => { + + btnGltf.disabled = true; + btnGlb.disabled = true; + backgroundPageConnection.postMessage( { name: 'export-scene', sceneUuid: obj.uuid, binary: true } ); + console.log( 'Panel: Exporting scene as GLB:', obj.uuid ); + + }; + + if ( ! state.exportSceneBtns ) state.exportSceneBtns = new Map(); + state.exportSceneBtns.set( obj.uuid, { btnGltf, btnGlb } ); + + const exportBtnSpan = elem.querySelector( '.export-scene-buttons' ); + if ( exportBtnSpan ) { + + exportBtnSpan.style.display = 'inline-flex'; + exportBtnSpan.style.gap = '6px'; + exportBtnSpan.appendChild( btnGltf ); + exportBtnSpan.appendChild( btnGlb ); + + // Add status indicator + let statusElem = exportBtnSpan.querySelector( '.export-status' ); + + if ( ! statusElem ) { + + statusElem = document.createElement( 'span' ); + statusElem.className = 'export-status'; + statusElem.style.marginLeft = '8px'; + exportBtnSpan.appendChild( statusElem ); + + } + + const status = state.exportStatus && state.exportStatus.get( obj.uuid ); + + statusElem.textContent = status || ''; + + } + + } + container.appendChild( elem ); // Handle children (excluding children of renderers, as properties are shown in details) @@ -430,6 +628,8 @@ function renderObject( obj, container, level = 0 ) { } + + // Function to update the UI function updateUI() { @@ -442,7 +642,25 @@ function updateUI() { header.style.justifyContent = 'space-between'; // Align items left and right const miscSpan = document.createElement( 'span' ); - miscSpan.innerHTML = '+'; + miscSpan.className = 'misc-header'; + miscSpan.style.display = 'flex'; // Use flexbox for the misc section + miscSpan.style.width = '100%'; // Ensure it takes full width + miscSpan.style.justifyContent = 'space-between'; // Align items within misc section + // Add "Update UI" button and feedback link + // const updateBtn = document.createElement('button'); + // updateBtn.textContent = '🖥️'; + // updateBtn.title = 'Update UI'; + // updateBtn.onclick = () => updateUI(); + // updateBtn.style.marginRight = '10px'; + + const feedbackLink = document.createElement( 'a' ); + feedbackLink.href = 'https://docs.google.com/forms/d/e/1FAIpQLSdw1QcgXNiECYiPx6k0vSQRiRe0FmByrrojV4fgeL5zzXIiCw/viewform?usp=preview'; + feedbackLink.target = '_blank'; + feedbackLink.textContent = '+'; + + + miscSpan.appendChild( feedbackLink ); + //miscSpan.appendChild(updateBtn); const manifest = chrome.runtime.getManifest(); @@ -491,6 +709,47 @@ function updateUI() { } +// Add a map to track export status per scene +state.exportStatus = new Map(); + + + // Initial UI update clearState(); updateUI(); + +// Helper to extract sceneUuid from message +function getSceneUuidFromMessage( message ) { + + if ( message.sceneUuid ) return message.sceneUuid; + + if ( message.detail && message.detail.sceneUuid ) return message.detail.sceneUuid; + + if ( message.detail && Array.isArray( message.detail.properties ) ) { + + const prop = message.detail.properties.find( p => p.name === 'sceneUuid' ); + + if ( prop && prop.value ) return prop.value; + + } + + return undefined; + +} + +// Helper to extract success from message +function getSuccessFromMessage( message ) { + + if ( message.detail && typeof message.detail.success === 'boolean' ) return message.detail.success; + + if ( message.detail && Array.isArray( message.detail.properties ) ) { + + const prop = message.detail.properties.find( p => p.name === 'success' ); + if ( prop ) return prop.value; + + } + + return false; + +} + diff --git a/package.json b/package.json index 80818750458047..ce1c71d5ead895 100644 --- a/package.json +++ b/package.json @@ -68,7 +68,8 @@ "test-e2e-webgpu": "node test/e2e/puppeteer.js --webgpu", "test-treeshake": "rollup -c test/rollup.treeshake.config.js", "test-circular-deps": "dpdm --no-warning --no-tree --exit-code circular:1 src/nodes/Nodes.js", - "make-screenshot": "node test/e2e/puppeteer.js --make" + "make-screenshot": "node test/e2e/puppeteer.js --make", + "devtools": "devtools node utils/devtools/build-devtools.js" }, "keywords": [ "three", diff --git a/utils/devtools/build-devtools.js b/utils/devtools/build-devtools.js new file mode 100644 index 00000000000000..f2007d9086e2fa --- /dev/null +++ b/utils/devtools/build-devtools.js @@ -0,0 +1,33 @@ +import { mkdir, copyFile, rm, readFile, writeFile } from 'node:fs/promises'; +import { exec } from 'node:child_process'; +import { promisify } from 'node:util'; + +const execAsync = promisify(exec); + +// 1. Clean and recreate devtools/panel/build +await rm('devtools/panel/build', { recursive: true, force: true }); +await mkdir('devtools/panel/build', { recursive: true }); + +// 2. Copy all main build files to devtools/panel/build +const buildFiles = [ + 'three.core.js', + 'three.module.js', + 'three.tsl.js', + 'three.webgpu.js', + 'three.webgpu.nodes.js', +]; +for (const file of buildFiles) { + await copyFile(`build/${file}`, `devtools/panel/build/${file}`); +} + +// 3. Copy and patch GLTFExporter.js to devtools/panel/exporters +await mkdir('devtools/panel/exporters', { recursive: true }); +let exporterSrc = await readFile('examples/jsm/exporters/GLTFExporter.js', 'utf8'); +// Replace any export { GLTFExporter } with export default GLTFExporter; +exporterSrc = exporterSrc.replace(/export\s*\{\s*GLTFExporter\s*\};?/g, 'export default GLTFExporter;'); +await writeFile('devtools/panel/exporters/GLTFExporter.js', exporterSrc); + +// 4. Run Rollup to build the UMD bundle +console.log('Running Rollup for GLTFExporter UMD...'); +await execAsync('npx rollup -c utils/devtools/rollup.gltfexporter.config.cjs'); +console.log('Devtools build complete.'); diff --git a/utils/devtools/rollup.gltfexporter.config.cjs b/utils/devtools/rollup.gltfexporter.config.cjs new file mode 100644 index 00000000000000..b942ff028e8686 --- /dev/null +++ b/utils/devtools/rollup.gltfexporter.config.cjs @@ -0,0 +1,12 @@ +const resolve = require('@rollup/plugin-node-resolve'); + +module.exports = { + input: 'devtools/panel/exporters/GLTFExporter.js', + output: { + file: 'devtools/panel/exporters/GLTFExporter.umd.js', + format: 'umd', + name: 'GLTFExporter', // Expose as global GLTFExporter + exports: 'default', + }, + plugins: [ resolve.nodeResolve() ], +}; From a6d4f347e7a43450165029d8f31c2e5f8016a89d Mon Sep 17 00:00:00 2001 From: RuthySheffi Date: Thu, 5 Jun 2025 22:40:01 +0300 Subject: [PATCH 2/3] fix: remove unused exportScene assignment to resolve linter warning --- devtools/bridge.js | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/devtools/bridge.js b/devtools/bridge.js index 924a558536256c..4f479c040adaad 100644 --- a/devtools/bridge.js +++ b/devtools/bridge.js @@ -686,7 +686,7 @@ console.log( 'DevTools: Starting export of scene', sceneUuid, 'as', binary ? 'GLB' : 'GLTF' ); // Create a deep clone of the scene for export if needed - let exportScene = scene; + const exportScene = prepareSceneForExport( scene ); // Pre-process scene to ensure compatibility with other programs function prepareSceneForExport( originalScene ) { @@ -816,8 +816,7 @@ } - // Prepare the scene for export - exportScene = prepareSceneForExport( scene ); + // Create TextureUtils if available - needed for proper texture handling let textureUtils = null; if ( window.THREE && window.THREE.WebGLRenderer ) { From 4cffa85e1891f026a8f971262590f6aa9de930e3 Mon Sep 17 00:00:00 2001 From: RuthySheffi Date: Fri, 6 Jun 2025 11:12:01 +0300 Subject: [PATCH 3/3] update permissions in manifest Fixed CSS indent Added import map for Three.js (not working due to Chrome Extension CSP) --- devtools/manifest.json | 3 +- devtools/panel/importmap.json | 6 ++ devtools/panel/panel.css | 150 +++++++++++++++++----------------- devtools/panel/panel.html | 4 +- 4 files changed, 84 insertions(+), 79 deletions(-) create mode 100644 devtools/panel/importmap.json diff --git a/devtools/manifest.json b/devtools/manifest.json index 78b7d3a60e6828..e9ff24d248e163 100644 --- a/devtools/manifest.json +++ b/devtools/manifest.json @@ -40,8 +40,7 @@ "permissions": [ "activeTab", "webNavigation", - "downloads", - "scripting" + "downloads" ], "host_permissions": [ "" diff --git a/devtools/panel/importmap.json b/devtools/panel/importmap.json new file mode 100644 index 00000000000000..1c559d2d11b257 --- /dev/null +++ b/devtools/panel/importmap.json @@ -0,0 +1,6 @@ +{ + "imports": { + "three": "https://cdn.jsdelivr.net/npm/three@0.175.0/build/three.module.js", + "three/examples/jsm/exporters/GLTFExporter.js": "https://cdn.jsdelivr.net/npm/three@0.175.0/examples/jsm/exporters/GLTFExporter.js" + } +} diff --git a/devtools/panel/panel.css b/devtools/panel/panel.css index 1f9184c440a9d6..eb433bf731d387 100644 --- a/devtools/panel/panel.css +++ b/devtools/panel/panel.css @@ -1,140 +1,138 @@ :root { - color-scheme: light dark; + color-scheme: light dark; } body { - background: light-dark(#fff, #333); - color: light-dark(#333, #e0e0e0); - margin: 0; - padding: 10px; - font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif; - font-size: 12px; + background: light-dark(#fff, #333); + color: light-dark(#333, #e0e0e0); + margin: 0; + padding: 10px; + font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif; + font-size: 12px; } hr { - color: light-dark(#333, #e0e0e0); + color: light-dark(#333, #e0e0e0); } #scene-tree { - width: 100%; - height: 100%; - overflow: auto; + width: 100%; + height: 100%; + overflow: auto; } .header { - padding: 8px 12px; - background: light-dark(#f5f5f5, #333); - border-radius: 4px; - margin-bottom: 16px; - font-family: monospace; - color: light-dark(#666, #aaa); + padding: 8px 12px; + background: light-dark(#f5f5f5, #333); + border-radius: 4px; + margin-bottom: 16px; + font-family: monospace; + color: light-dark(#666, #aaa); } .header a { - color: light-dark(#666, #aaa); - text-decoration: none; + color: light-dark(#666, #aaa); + text-decoration: none; } .header a:hover { - color: light-dark(#333, #e0e0e0); + color: light-dark(#333, #e0e0e0); } .section { - margin-bottom: 24px; + margin-bottom: 24px; } -.section h3 { - margin: 0 0 8px 0; - font-size: 11px; - text-transform: uppercase; - color: light-dark(#666, #aaa); - font-weight: 500; - border-bottom: 1px solid light-dark(#eee, #444); - padding-bottom: 4px; -} + .section h3 { + margin: 0 0 8px 0; + font-size: 11px; + text-transform: uppercase; + color: light-dark(#666, #aaa); + font-weight: 500; + border-bottom: 1px solid light-dark(#eee, #444); + padding-bottom: 4px; + } button { - background: light-dark(#f0f0f0, #454545); - border: none; - border-radius: 4px; - padding: 1px 3px; - cursor: pointer; - font-size: 11px; - color: light-dark(#333, #e0e0e0); - border-radius: 4px; + background: light-dark(#f0f0f0, #454545); + border: none; + border-radius: 4px; + padding: 1px 3px; + cursor: pointer; + font-size: 11px; + color: light-dark(#333, #e0e0e0); + border-radius: 4px; } .export-status { - margin-left: 8px; - opacity: 0.5; - font-size: 0.9em; - + margin-left: 8px; + opacity: 0.5; + font-size: 0.9em; } .export-gradient-bar { - transition: opacity 0.3s; + transition: opacity 0.3s; } .tree-item { - padding: 4px; - cursor: pointer; - display: flex; - align-items: center; + padding: 4px; + cursor: pointer; + display: flex; + align-items: center; } .tree-item:hover { - background: light-dark(#f0f0f0, #555); + background: light-dark(#f0f0f0, #555); } .tree-item .icon { - margin-right: 4px; - opacity: 0.7; + margin-right: 4px; + opacity: 0.7; } .tree-item .label { - flex: 1; - white-space: nowrap; - overflow: hidden; - text-overflow: ellipsis; + flex: 1; + white-space: nowrap; + overflow: hidden; + text-overflow: ellipsis; } .tree-item .label .object-details { - color: #aaa; - margin-left: 4px; - font-weight: normal; + color: #aaa; + margin-left: 4px; + font-weight: normal; } .tree-item .type { - margin-left: 8px; - opacity: 0.5; - font-size: 0.9em; + margin-left: 8px; + opacity: 0.5; + font-size: 0.9em; } .children { - margin-left: 0; + margin-left: 0; } /* Style for clickable renderer summary */ .renderer-summary { - cursor: pointer; + cursor: pointer; } .renderer-summary:hover { - background: light-dark(#f0f0f0, #555); + background: light-dark(#f0f0f0, #555); } /* Hide default details marker when using custom summary */ -details.renderer-container > summary.renderer-summary { - /* Target summary */ - list-style: none; /* Hide default arrow */ - cursor: pointer; /* Make the summary div look clickable */ +details.renderer-container > summary.renderer-summary { /* Target summary */ + list-style: none; /* Hide default arrow */ + cursor: pointer; /* Make the summary div look clickable */ } details.renderer-container > summary.renderer-summary::-webkit-details-marker { - display: none; /* Hide default arrow in WebKit */ + display: none; /* Hide default arrow in WebKit */ } /* Style for the toggle icon */ .toggle-icon::before { - content: "▶"; /* Default: collapsed */ - display: inline-block; - width: 1em; - margin-right: 2px; - opacity: 0.7; + content: "▶"; /* Default: collapsed */ + display: inline-block; + width: 1em; + margin-right: 2px; + opacity: 0.7; } details.renderer-container[open] - > summary.renderer-summary - .toggle-icon::before { - content: "▼"; /* Expanded */ + > summary.renderer-summary + .toggle-icon::before { + content: "▼"; /* Expanded */ } diff --git a/devtools/panel/panel.html b/devtools/panel/panel.html index 6f475d671106a0..1a21104929ba7f 100644 --- a/devtools/panel/panel.html +++ b/devtools/panel/panel.html @@ -4,7 +4,9 @@ Three.js DevTools - + + +