Incompatible shapes to fit model in lecture Food Vision Big (section 9) #515
Unanswered
ivan-marroquin
asked this question in
Q&A
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
Hi all,
I notice in tensorflow 2.11, the use of these commands:
'# Map preprocessing function to training (and parallelize)
train_data= train_data.map(map_func= preprocess_img, num_parallel_calls= tf.data.AUTOTUNE)
Shuffle train_data and turn it into batches and prefetch it (load it faster)
train_data= train_data.shuffle(buffer_size= 1000).batch(batch_size= 32).prefetch(buffer_size= tf.data.AUTOTUNE)
Map preprocessing function to test data
test_data= test_data.map(map_func= preprocess_img, num_parallel_calls= tf.data.AUTOTUNE).batch(batch_size= 32).prefetch(tf.data.AUTOTUNE).cache()
'
produce data with these shapes:
(<PrefetchDataset element_spec=(TensorSpec(shape=(None, None, 224, 224, 3), dtype=tf.float32, name=None), TensorSpec(shape=(None, None), dtype=tf.int64, name=None))>,
<CacheDataset element_spec=(TensorSpec(shape=(None, None, 224, 224, 3), dtype=tf.float32, name=None), TensorSpec(shape=(None, None), dtype=tf.int64, name=None))>)
Although I am able to compile the feature extraction model - following the code in the video, I get this error message when I want to fit the model:
'
model.fit(train_data, steps_per_epoch= len(train_data),
validation_data= test_data, validation_steps= int(0.15 * len(test_data)),
callbacks= [create_tensorboard_callback(dir_name= 'training_loss', experiment_name=
'efficientb0_101_classes_all_data_feature_extract'),
model_checkpoint])
'
ValueError: Input 0 of layer "model_1" is incompatible with the layer: expected shape=(None, 224, 224, 3), found shape=(None, None, 224, 224, 3)
Any suggestions?
Thanks,
Ivan
Beta Was this translation helpful? Give feedback.
All reactions