Error - 05_transfer_learning_in_tensorflow_part_2_fine_tuning #433
Unanswered
erikapaceep
asked this question in
Q&A
Replies: 1 comment
-
Hey, I have the same problem. Did you solve the issue? |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
Hi,
While running the following cell of notebook 05, I am getting the below error.
Please note that also tried with the notebooks from the the course repo but it's throwing the same error.
`
Code
1. Create base model with tf.keras.applications
base_model = tf.keras.applications.EfficientNetB0(include_top=False)
2. Freeze the base model (so the pre-learned patterns remain)
base_model.trainable = False
3. Create inputs into the base model
inputs = tf.keras.layers.Input(shape=(224, 224, 3), name="input_layer")
4. If using ResNet50V2, add this to speed up convergence, remove for EfficientNet
#x = tf.keras.layers.experimental.preprocessing.Rescaling(1./255)(inputs)
5. Pass the inputs to the base_model (note: using tf.keras.applications, EfficientNet inputs don't have to be normalized)
x = base_model(inputs)
#Check data shape after passing it to base_model
print(f"Shape after base_model: {x.shape}")
6. Average pool the outputs of the base model (aggregate all the most important information, reduce number of computations)
x = tf.keras.layers.GlobalAveragePooling2D(name="global_average_pooling_layer")(x)
print(f"After GlobalAveragePooling2D(): {x.shape}")
7. Create the output activation layer
outputs = tf.keras.layers.Dense(10, activation="softmax", name="output_layer")(x)
8. Combine the inputs with the outputs into a model
model_0 = tf.keras.Model(inputs, outputs)
9. Compile the model
model_0.compile(loss='categorical_crossentropy',
optimizer=tf.keras.optimizers.Adam(),
metrics=["accuracy"])
10. Fit the model (we use less steps for validation so it's faster)
history_10_percent = model_0.fit(train_data_10_percent,
epochs=5,
steps_per_epoch=len(train_data_10_percent),
validation_data=test_data_10_percent,
#Go through less of the validation data so epochs are faster (we want faster experiments!)
validation_steps=int(0.25 * len(test_data_10_percent)),
#Track our model's training logs for visualization later
callbacks=[create_tensorboard_callback("transfer_learning", "10_percent_feature_extract")])`
`
Error
Saving TensorBoard log files to: transfer_learning/10_percent_feature_extract/20220818-070125
Epoch 1/5
UnimplementedError Traceback (most recent call last)
in
39 validation_steps=int(0.25 * len(test_data_10_percent)),
40 # Track our model's training logs for visualization later
---> 41 callbacks=[create_tensorboard_callback("transfer_learning", "10_percent_feature_extract")])
1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
53 ctx.ensure_initialized()
54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55 inputs, attrs, num_outputs)
56 except core._NotOkStatusException as e:
57 if name is not None:
UnimplementedError: Graph execution error:
Detected at node 'model/efficientnetb0/stem_conv/Conv2D' defined at (most recent call last):
File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py", line 16, in
app.launch_new_instance()
File "/usr/local/lib/python3.7/dist-packages/traitlets/config/application.py", line 846, in launch_instance
app.start()
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelapp.py", line 612, in start
self.io_loop.start()
File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 132, in start
self.asyncio_loop.run_forever()
File "/usr/lib/python3.7/asyncio/base_events.py", line 541, in run_forever
self._run_once()
File "/usr/lib/python3.7/asyncio/base_events.py", line 1786, in _run_once
handle._run()
File "/usr/lib/python3.7/asyncio/events.py", line 88, in _run
self._context.run(self._callback, *self._args)
File "/usr/local/lib/python3.7/dist-packages/tornado/ioloop.py", line 758, in _run_callback
ret = callback()
File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 1233, in inner
self.run()
File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 1147, in run
yielded = self.gen.send(value)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 365, in process_one
yield gen.maybe_future(dispatch(*args))
File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 326, in wrapper
yielded = next(result)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 268, in dispatch_shell
yield gen.maybe_future(handler(stream, idents, msg))
File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 326, in wrapper
yielded = next(result)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 545, in execute_request
user_expressions, allow_stdin,
File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 326, in wrapper
yielded = next(result)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/ipkernel.py", line 306, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/zmqshell.py", line 536, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2855, in run_cell
raw_cell, store_history, silent, shell_futures)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2881, in _run_cell
return runner(coro)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/async_helpers.py", line 68, in pseudo_sync_runner
coro.send(None)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 3058, in run_cell_async
interactivity=interactivity, compiler=compiler, result=result)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 3249, in run_ast_nodes
if (await self.run_code(code, result, async=asy)):
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 3326, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "", line 41, in
callbacks=[create_tensorboard_callback("transfer_learning", "10_percent_feature_extract")])
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1409, in fit
tmp_logs = self.train_function(iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1051, in train_function
return step_function(self, iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1040, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1030, in run_step
outputs = model.train_step(data)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 889, in train_step
y_pred = self(x, training=True)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 490, in call
return super().call(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py", line 1014, in call
outputs = call_fn(inputs, *args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 92, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py", line 459, in call
inputs, training=training, mask=mask)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py", line 596, in _run_internal_graph
outputs = node.layer(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 490, in call
return super().call(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py", line 1014, in call
outputs = call_fn(inputs, *args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 92, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py", line 459, in call
inputs, training=training, mask=mask)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py", line 596, in _run_internal_graph
outputs = node.layer(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py", line 1014, in call
outputs = call_fn(inputs, *args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 92, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/layers/convolutional/base_conv.py", line 250, in call
outputs = self.convolution_op(inputs, self.kernel)
File "/usr/local/lib/python3.7/dist-packages/keras/layers/convolutional/base_conv.py", line 232, in convolution_op
name=self.class.name)
Node: 'model/efficientnetb0/stem_conv/Conv2D'
DNN library is not found.
[[{{node model/efficientnetb0/stem_conv/Conv2D}}]] [Op:__inference_train_function_14921]`
Beta Was this translation helpful? Give feedback.
All reactions