|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import lmfit\n", |
| 10 | + "import numpy as np\n", |
| 11 | + "import copy\n", |
| 12 | + "import matplotlib.pyplot as plt\n", |
| 13 | + "from fitting_functions import paramagnon\n", |
| 14 | + "from matplotlib.ticker import AutoMinorLocator\n", |
| 15 | + "\n", |
| 16 | + "%matplotlib widget" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": 2, |
| 22 | + "metadata": {}, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "E_, I_ = np.loadtxt('LSCO_30_LH_grazout.txt', unpack=True, skiprows=1)\n", |
| 26 | + "E_ *= -1\n", |
| 27 | + "choose = np.logical_and(E_>-.5, E_<2.5)\n", |
| 28 | + "E = E_[choose]\n", |
| 29 | + "I = I_[choose]\n", |
| 30 | + "dd_onset = 1." |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": 3, |
| 36 | + "metadata": {}, |
| 37 | + "outputs": [], |
| 38 | + "source": [ |
| 39 | + "model = (lmfit.models.GaussianModel(prefix='el_') + lmfit.Model(paramagnon, prefix='mag_')\n", |
| 40 | + " + lmfit.models.PseudoVoigtModel(prefix='dd0_')\n", |
| 41 | + " + lmfit.models.PseudoVoigtModel(prefix='dd1_')\n", |
| 42 | + " + lmfit.models.PseudoVoigtModel(prefix='dd2_')\n", |
| 43 | + " + lmfit.models.ConstantModel())\n", |
| 44 | + "params = model.make_params()\n", |
| 45 | + "\n", |
| 46 | + "fwhm = 2*np.sqrt(2*np.log(2))\n", |
| 47 | + "res = 0.13/fwhm\n", |
| 48 | + " \n", |
| 49 | + "params['el_center'].set(value=0, vary=False)\n", |
| 50 | + "params['el_amplitude'].set(value=100, min=0)\n", |
| 51 | + "params['el_sigma'].set(value=res, vary=False)\n", |
| 52 | + "\n", |
| 53 | + "params['mag_center'].set(value=.35)\n", |
| 54 | + "params['mag_sigma'].set(value=.05, min=0)\n", |
| 55 | + "params['mag_amplitude'].set(value=20, min=0)\n", |
| 56 | + "\n", |
| 57 | + "params['mag_res'].set(value=res, vary=False)\n", |
| 58 | + "params['mag_kBT'].set(value=8.617e-5*25, vary=False)\n", |
| 59 | + "\n", |
| 60 | + "params['dd0_center'].set(value=1.6, min=1, max=3)\n", |
| 61 | + "params['dd0_sigma'].set(value=0.1, min=0)\n", |
| 62 | + "params['dd0_amplitude'].set(value=300)\n", |
| 63 | + "\n", |
| 64 | + "params['dd1_center'].set(value=1.8, min=1, max=3)\n", |
| 65 | + "params['dd1_sigma'].set(value=0.1, min=0)\n", |
| 66 | + "params['dd1_amplitude'].set(value=300)\n", |
| 67 | + "\n", |
| 68 | + "params['dd2_center'].set(value=2, min=1, max=3)\n", |
| 69 | + "params['dd2_sigma'].set(value=0.1, min=0)\n", |
| 70 | + "params['dd2_amplitude'].set(value=300)\n", |
| 71 | + "\n", |
| 72 | + "params_dd = copy.deepcopy(params)\n", |
| 73 | + "\n", |
| 74 | + "for key in params_dd.keys():\n", |
| 75 | + " if key[:2] in ['el', 'ma']:\n", |
| 76 | + " params_dd[key].set(vary=False)\n", |
| 77 | + " else:\n", |
| 78 | + " params_dd[key].set(vary=True)\n", |
| 79 | + "\n", |
| 80 | + "# Fit dds and force leading edge accuracy by artificial weighting\n", |
| 81 | + "dd_region = np.logical_or(E<-.3, E>dd_onset)\n", |
| 82 | + "weights = .1 + np.exp(-1*((E-1.1)/.3)**2)\n", |
| 83 | + "params_dd['c'].set(value=I.min(), vary=False) \n", |
| 84 | + "result_dds = model.fit(I[dd_region], x=E[dd_region], params=params_dd,\n", |
| 85 | + " weights=weights[dd_region])\n", |
| 86 | + "\n", |
| 87 | + "#fig, ax = plt.subplots()\n", |
| 88 | + "#result_dds.plot_fit(ax=ax, show_init=True)\n", |
| 89 | + "\n", |
| 90 | + "# assign and fix values for dds \n", |
| 91 | + "for key in params.keys():\n", |
| 92 | + " if key[:2] == 'dd':\n", |
| 93 | + " params[key].set(value=result_dds.params[key].value, vary=False)\n", |
| 94 | + "\n", |
| 95 | + "params['c'].set(value=I.min(), vary=False) \n", |
| 96 | + "result = model.fit(I, x=E, params=params)\n", |
| 97 | + "\n", |
| 98 | + "# fig, ax = plt.subplots()\n", |
| 99 | + "# result.plot_fit(ax=ax, show_init=True)\n", |
| 100 | + "# \n", |
| 101 | + "# print(result.fit_report())" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": 4, |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [ |
| 109 | + { |
| 110 | + "data": { |
| 111 | + "application/vnd.jupyter.widget-view+json": { |
| 112 | + "model_id": "6f43ec06c63d4193aa1ccdeaf15bd7a1", |
| 113 | + "version_major": 2, |
| 114 | + "version_minor": 0 |
| 115 | + }, |
| 116 | + "text/plain": [ |
| 117 | + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" |
| 118 | + ] |
| 119 | + }, |
| 120 | + "metadata": {}, |
| 121 | + "output_type": "display_data" |
| 122 | + }, |
| 123 | + { |
| 124 | + "name": "stdout", |
| 125 | + "output_type": "stream", |
| 126 | + "text": [ |
| 127 | + "[[Model]]\n", |
| 128 | + " (((((Model(gaussian, prefix='el_') + Model(paramagnon, prefix='mag_')) + Model(pvoigt, prefix='dd0_')) + Model(pvoigt, prefix='dd1_')) + Model(pvoigt, prefix='dd2_')) + Model(constant))\n", |
| 129 | + "[[Fit Statistics]]\n", |
| 130 | + " # fitting method = leastsq\n", |
| 131 | + " # function evals = 63\n", |
| 132 | + " # data points = 98\n", |
| 133 | + " # variables = 4\n", |
| 134 | + " chi-square = 10179.8497\n", |
| 135 | + " reduced chi-square = 108.296273\n", |
| 136 | + " Akaike info crit = 463.033409\n", |
| 137 | + " Bayesian info crit = 473.373278\n", |
| 138 | + "[[Variables]]\n", |
| 139 | + " el_amplitude: 8.72381742 +/- 0.86393752 (9.90%) (init = 100)\n", |
| 140 | + " el_center: 0 (fixed)\n", |
| 141 | + " el_sigma: 0.05520592 (fixed)\n", |
| 142 | + " mag_amplitude: 33.4456677 +/- 0.94889600 (2.84%) (init = 20)\n", |
| 143 | + " mag_center: 0.26702044 +/- 0.00309973 (1.16%) (init = 0.35)\n", |
| 144 | + " mag_sigma: 0.22941715 +/- 0.01224635 (5.34%) (init = 0.05)\n", |
| 145 | + " mag_res: 0.05520592 (fixed)\n", |
| 146 | + " mag_kBT: 0.00215425 (fixed)\n", |
| 147 | + " dd0_amplitude: 682.9913 (fixed)\n", |
| 148 | + " dd0_center: 1.80157 (fixed)\n", |
| 149 | + " dd0_sigma: 0.2914458 (fixed)\n", |
| 150 | + " dd0_fraction: 1.772421e-11 (fixed)\n", |
| 151 | + " dd1_amplitude: 227.6857 (fixed)\n", |
| 152 | + " dd1_center: 1.717436 (fixed)\n", |
| 153 | + " dd1_sigma: 0.1024631 (fixed)\n", |
| 154 | + " dd1_fraction: 3.824163e-13 (fixed)\n", |
| 155 | + " dd2_amplitude: 568.9392 (fixed)\n", |
| 156 | + " dd2_center: 2.099117 (fixed)\n", |
| 157 | + " dd2_sigma: 0.2531614 (fixed)\n", |
| 158 | + " dd2_fraction: 0.9321681 (fixed)\n", |
| 159 | + " c: 7.519076 (fixed)\n", |
| 160 | + " el_fwhm: 0.13000000 +/- 0.00000000 (0.00%) == '2.3548200*el_sigma'\n", |
| 161 | + " el_height: 63.0421515 +/- 6.24319350 (9.90%) == '0.3989423*el_amplitude/max(2.220446049250313e-16, el_sigma)'\n", |
| 162 | + " dd0_fwhm: 0.2 (fixed)\n", |
| 163 | + " dd0_height: 1182.043 (fixed)\n", |
| 164 | + " dd1_fwhm: 0.2 (fixed)\n", |
| 165 | + " dd1_height: 1182.043 (fixed)\n", |
| 166 | + " dd2_fwhm: 0.2 (fixed)\n", |
| 167 | + " dd2_height: 1182.043 (fixed)\n", |
| 168 | + "[[Correlations]] (unreported correlations are < 0.100)\n", |
| 169 | + " C(mag_amplitude, mag_sigma) = 0.830\n", |
| 170 | + " C(mag_center, mag_sigma) = 0.443\n", |
| 171 | + " C(mag_amplitude, mag_center) = 0.343\n", |
| 172 | + " C(el_amplitude, mag_amplitude) = -0.289\n", |
| 173 | + " C(el_amplitude, mag_sigma) = -0.272\n" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "data": { |
| 178 | + "text/plain": [ |
| 179 | + "16336" |
| 180 | + ] |
| 181 | + }, |
| 182 | + "execution_count": 4, |
| 183 | + "metadata": {}, |
| 184 | + "output_type": "execute_result" |
| 185 | + } |
| 186 | + ], |
| 187 | + "source": [ |
| 188 | + "result = model.fit(I, x=E, params=params)\n", |
| 189 | + "\n", |
| 190 | + "fig, ax = plt.subplots()\n", |
| 191 | + "\n", |
| 192 | + "x_fit = np.linspace(E.min(), E.max(), 1000)\n", |
| 193 | + "\n", |
| 194 | + "components = result.eval_components(x=x_fit)\n", |
| 195 | + "constant = components.pop('constant')\n", |
| 196 | + "dd0 = components.pop('dd0_')\n", |
| 197 | + "dd1 = components.pop('dd1_')\n", |
| 198 | + "dd2 = components.pop('dd2_')\n", |
| 199 | + "\n", |
| 200 | + "BG = constant + dd0 + dd1 + dd2\n", |
| 201 | + "\n", |
| 202 | + "ax.plot(x_fit, BG, 'k:', label='BG')\n", |
| 203 | + "for model_name, model_value in components.items():\n", |
| 204 | + " ax.plot(x_fit, model_value + BG, '-', label=model_name.strip('_'))\n", |
| 205 | + "\n", |
| 206 | + "y_fit = result.eval(**result.best_values, x=x_fit)\n", |
| 207 | + "ax.plot(x_fit, y_fit, color=[0.5]*3, label='fit', lw=3, alpha=0.5)\n", |
| 208 | + "ax.plot(E, I, 'k.', label='data')\n", |
| 209 | + "\n", |
| 210 | + "ax.set_xlabel('Energy loss (eV)')\n", |
| 211 | + "ax.set_ylabel('I')\n", |
| 212 | + "ax.legend()\n", |
| 213 | + "ax.axis([-.4, dd_onset, 0, 400])\n", |
| 214 | + "\n", |
| 215 | + "ax.xaxis.set_minor_locator(AutoMinorLocator(2))\n", |
| 216 | + "ax.yaxis.set_minor_locator(AutoMinorLocator(2))\n", |
| 217 | + "\n", |
| 218 | + "print(result.fit_report())\n", |
| 219 | + "\n", |
| 220 | + "result.dump(open('fit_info.json','w'))" |
| 221 | + ] |
| 222 | + }, |
| 223 | + { |
| 224 | + "cell_type": "code", |
| 225 | + "execution_count": 5, |
| 226 | + "metadata": {}, |
| 227 | + "outputs": [], |
| 228 | + "source": [ |
| 229 | + "ci = result.ci_report()\n", |
| 230 | + "with open('ci_info.text','w') as f:\n", |
| 231 | + " f.write(ci)" |
| 232 | + ] |
| 233 | + }, |
| 234 | + { |
| 235 | + "cell_type": "code", |
| 236 | + "execution_count": null, |
| 237 | + "metadata": {}, |
| 238 | + "outputs": [], |
| 239 | + "source": [] |
| 240 | + } |
| 241 | + ], |
| 242 | + "metadata": { |
| 243 | + "kernelspec": { |
| 244 | + "display_name": "Python 3", |
| 245 | + "language": "python", |
| 246 | + "name": "python3" |
| 247 | + }, |
| 248 | + "language_info": { |
| 249 | + "codemirror_mode": { |
| 250 | + "name": "ipython", |
| 251 | + "version": 3 |
| 252 | + }, |
| 253 | + "file_extension": ".py", |
| 254 | + "mimetype": "text/x-python", |
| 255 | + "name": "python", |
| 256 | + "nbconvert_exporter": "python", |
| 257 | + "pygments_lexer": "ipython3", |
| 258 | + "version": "3.8.3" |
| 259 | + } |
| 260 | + }, |
| 261 | + "nbformat": 4, |
| 262 | + "nbformat_minor": 4 |
| 263 | +} |
0 commit comments