-
Notifications
You must be signed in to change notification settings - Fork 38
Description
Bug Description
I use Qwen2.5vl for training. Configs set to mix_chord. The error I meet is "ValueError: Transformers 4.53 is not supported"

My whole configs are as follows:
project: "mix_chord"
name: "test_mix_chord"
checkpoint_root_dir: ${oc.env:TRINITY_CHECKPOINT_ROOT_DIR,./checkpoints}
algorithm:
algorithm_type: mix_chord
repeat_times: 8 # or 16 for better performance in math related tasks
kl_loss_fn_args:
kl_coef: 0.0
sample_strategy_args:
expert_data_ratio: 0.20
policy_loss_fn_args: # feel free to change, we encourage you to try out different hyperparameters
mu_warmup_steps: 200 # 0 for chord-mu and chord-phi
mu_decay_steps: 400 # 200 for chord-mu and 0 for chord-phi
mu_peak: 0.5 # 0.9 for chord-mu and 0.1 for chord-phi
mu_valley: 0.02 # 0.05 for chord-mu and 0.1 for chord-phi
enable_phi_function: true # false for chord-mu and true for chord-phi
clip_range: 0.2
use_token_level_loss_in_sft: true
use_dynamic_bsz: true
ppo_mini_batch_size: 320 # 320 = 256 + 64; if you set repeat times = 16, then it shoudle be 32 * 16 + 64
ppo_micro_batch_size_per_gpu: 4
ngpus_trainer: 4
train_batch_size_expert: 64
train_batch_size_usual: 256 # 32 batchsize * 8 repeat times
model:
model_path: ${oc.env:TRINITY_MODEL_PATH,/apdcephfs_qy3/share_301069248/users/yominyan/qwen25vl/LLaMA-Factory-main/Qwen2.5-VL-7B-Instruct}
max_response_tokens: 10240
max_model_len: 11264
cluster:
node_num: 1
gpu_per_node: 8
buffer:
total_epochs: 4
batch_size: 32
train_batch_size: 320
explorer_input:
taskset:
name: all_general_all
storage_type: file
path: ./data/all_general_all/ #${oc.env:TRINITY_TASKSET_PATH}
format:
prompt_key: 'problem'
response_key: 'answer'
rollout_args:
temperature: 1.0
logprobs: 0
workflow_args:
with_think: true
eval_tasksets: [] # you can add your own eval tasksets here
default_workflow_type: 'math_boxed_workflow'
trainer_input:
experience_buffer:
name: math_buffer
storage_type: queue
path: 'sqlite:///test_mix_chord.db'
auxiliary_buffers:
sft_dataset:
total_epochs: 25
name: SFT_data
storage_type: file
path: ${oc.env:TRINITY_SFT_DATASET_PATH,./data/}
split: 'train'
format:
prompt_type: messages
messages_key: 'messages'
images_key: 'images'
explorer:
eval_interval: 10
runner_per_model: 8
rollout_model:
engine_num: 4
tensor_parallel_size: 1
enable_prefix_caching: false
enforce_eager: true
dtype: bfloat16
seed: 42
synchronizer:
sync_method: 'nccl'
sync_interval: 1
sync_timeout: 1200
trainer:
save_interval: 50
trainer_config:
actor_rollout_ref:
model:
use_remove_padding: true
actor:
use_dynamic_bsz: true
ppo_max_token_len_per_gpu: 25600
ulysses_sequence_parallel_size: 2
optim:
lr: 1e-6 # or 5e-6, larger lr with warm up can result in better performance for SFT training.
ref:
log_prob_use_dynamic_bsz: ${trainer.trainer_config.actor_rollout_ref.actor.use_dynamic_bsz}
log_prob_max_token_len_per_gpu: ${trainer.trainer_config.actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
ulysses_sequence_parallel_size: ${trainer.trainer_config.actor_rollout_ref.actor.ulysses_sequence_parallel_size}
monitor:
monitor_type: wandb
Environment Information
main python packages are listed below:

Expected Behavior
Is it possible to have a complete config of mix_chord for running a multimodal large model (such as Qwen25vl)?
Log Information
If applicable, include any relevant log output here.
Are You Willing to Fix This Issue?
- Yes, I am willing to fix this issue!