Skip to content

Commit 5d250ba

Browse files
committed
docs: fix link and removed ClusVis
1 parent 0960937 commit 5d250ba

13 files changed

+614
-250
lines changed

RMixtComp/DESCRIPTION

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
Package: RMixtComp
22
Type: Package
33
Title: Mixture Models with Heterogeneous and (Partially) Missing Data
4-
Version: 4.1.4
5-
Date: 2023-06-17
4+
Version: 4.1.5
5+
Date: 2025-06-15
66
Authors@R: c(person("Vincent", "Kubicki", role = "aut"),
77
person("Christophe", "Biernacki", role = "aut"),
88
person("Quentin", "Grimonprez", role = c("aut", "cre"), email = "quentingrim@yahoo.fr"),
@@ -19,7 +19,7 @@ URL: https://github.com/modal-inria/MixtComp
1919
BugReports: https://github.com/modal-inria/MixtComp/issues
2020
Imports: RMixtCompIO(>= 4.0.4), ggplot2, plotly, scales
2121
Depends: RMixtCompUtilities (>= 4.1.4), R (>= 3.5.0)
22-
Suggests: testthat, xml2, Rmixmod, knitr, ClusVis, rmarkdown
23-
RoxygenNote: 7.2.3
22+
Suggests: testthat, xml2, Rmixmod, knitr, rmarkdown
23+
RoxygenNote: 7.3.2
2424
Encoding: UTF-8
2525
VignetteBuilder: knitr

RMixtComp/R/MIXTCOMP_datasets.R

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -89,14 +89,14 @@ NULL
8989
#'
9090
#' # create model
9191
#' model <- list(
92-
#' pclass = "Multinomial",
93-
#' survived = "Multinomial",
94-
#' sex = "Multinomial",
95-
#' age = "Gaussian",
96-
#' sibsp = "Poisson",
97-
#' parch = "Poisson",
98-
#' fare = "Gaussian",
99-
#' embarked = "Multinomial"
92+
#' pclass = "Multinomial",
93+
#' survived = "Multinomial",
94+
#' sex = "Multinomial",
95+
#' age = "Gaussian",
96+
#' sibsp = "Poisson",
97+
#' parch = "Poisson",
98+
#' fare = "Gaussian",
99+
#' embarked = "Multinomial"
100100
#' )
101101
#'
102102
#' # create algo
@@ -154,20 +154,20 @@ NULL
154154
#'
155155
#' # convert functional to MixtComp format
156156
#' dat <- list(
157-
#' tempav = apply(
158-
#' CanadianWeather$tempav, 2,
159-
#' function(x) createFunctional(CanadianWeather$time, x)
160-
#' ),
161-
#' precav = apply(
162-
#' CanadianWeather$precav, 2,
163-
#' function(x) createFunctional(CanadianWeather$time, x)
164-
#' )
157+
#' tempav = apply(
158+
#' CanadianWeather$tempav, 2,
159+
#' function(x) createFunctional(CanadianWeather$time, x)
160+
#' ),
161+
#' precav = apply(
162+
#' CanadianWeather$precav, 2,
163+
#' function(x) createFunctional(CanadianWeather$time, x)
164+
#' )
165165
#' )
166166
#'
167167
#' # create model with 4 subregressions ans 2 coefficients per regression
168168
#' model <- list(
169-
#' tempav = list(type = "Func_CS", paramStr = "nSub: 4, nCoeff: 2"),
170-
#' precav = list(type = "Func_CS", paramStr = "nSub: 4, nCoeff: 2")
169+
#' tempav = list(type = "Func_CS", paramStr = "nSub: 4, nCoeff: 2"),
170+
#' precav = list(type = "Func_CS", paramStr = "nSub: 4, nCoeff: 2")
171171
#' )
172172
#'
173173
#' # create algo
@@ -229,8 +229,8 @@ NULL
229229
#'
230230
#' # run clustering
231231
#' resLearn <- mixtCompLearn(prostate$data, prostate$model, algo,
232-
#' nClass = 2:5, criterion = "ICL",
233-
#' nRun = 3, nCore = 1
232+
#' nClass = 2:5, criterion = "ICL",
233+
#' nRun = 3, nCore = 1
234234
#' )
235235
#'
236236
#' summary(resLearn)

RMixtComp/R/MIXTCOMP_methods.R

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -104,8 +104,8 @@ print.MixtCompLearn <- function(x, nVarMaxToPrint = 5, nClass = NULL, ...) {
104104
#' @param nVarMaxToPlot number of variables to display
105105
#' @param nClass number of classes of the model to plot
106106
#' @param pkg "ggplot2" or "plotly". Package used to plot
107-
#' @param plotData "CI" or "Boxplot". If "CI", uses \link{plotDataCI} function. If "Boxplot", uses \link{plotDataBoxplot}
108-
#' @param ... extra parameter for \link{plotDataCI} or \link{plotDataBoxplot}
107+
#' @param plotData "CI" or "Boxplot". If "CI", uses \link[RMixtCompUtilities]{plotDataCI} function. If "Boxplot", uses \link[RMixtCompUtilities]{plotDataBoxplot}
108+
#' @param ... extra parameter for \link[RMixtCompUtilities]{plotDataCI} or \link[RMixtCompUtilities]{plotDataBoxplot}
109109
#'
110110
#' @return \code{ggplot2} or \code{plotly} object
111111
#'

RMixtComp/R/MIXTCOMP_mixtCompLearn.R

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@
2121
#'
2222
#' @param data a data.frame, a matrix or a named list containing the data (see \emph{Details} and \emph{Data format} sections).
2323
#' @param model a named list containing models and hyperparameters (see \emph{Details} section).
24-
#' @param algo a list containing the parameters of the SEM-Gibbs algorithm (see \emph{Details} or \link{createAlgo}).
24+
#' @param algo a list containing the parameters of the SEM-Gibbs algorithm (see \emph{Details} or \link[RMixtCompUtilities]{createAlgo}).
2525
#' @param nClass the number of classes of the mixture model. Can be a vector for \emph{mixtCompLearn} only.
2626
#' @param criterion "BIC" or "ICL". Criterion used for choosing the best model.
2727
#' @param hierarchicalMode "auto", "yes" or "no". If "auto", it performs a hierarchical version of MixtComp
@@ -56,7 +56,7 @@
5656
#' Models will be imputed as follows: "Gaussian" for numeric variable, "Multinomial" for character or factor variable
5757
#' and "Poisson" for integer variable.
5858
#' A summary of available models (and associated hyperparameters and missing format) can be accessed by calling
59-
#' the \link{availableModels} function.
59+
#' the \link[RMixtCompUtilities]{availableModels} function.
6060
#'
6161
#' Eight models are available in RMixtComp: \emph{Gaussian}, \emph{Multinomial}, \emph{Poisson}, \emph{NegativeBinomial},
6262
#' \emph{Weibull}, \emph{Func_CS}, \emph{Func_SharedAlpha_CS}, \emph{Rank_ISR}.
@@ -72,7 +72,7 @@
7272
#'
7373
#'
7474
#' The \emph{algo} object is a list containing the different number of iterations for the algorithm.
75-
#' This list can be generated using the \link{createAlgo} function.
75+
#' This list can be generated using the \link[RMixtCompUtilities]{createAlgo} function.
7676
#' The algorithm is decomposed in a burn-in phase and a normal phase.
7777
#' Estimates from the burn-in phase are not shown in output.
7878
#' \itemize{
@@ -149,7 +149,7 @@
149149
#' -\eqn{\sum_{i=1}^n t_{ikj} log(t_{ikj})/(n * log(K))}}
150150
#' \item{IDClassBar: entropy used to compute the discriminative power of variable:
151151
#' -\eqn{\sum_{i=1}^n (1-t_{ikj}) log((1-t_{ikj}))/(n * log(K))}}
152-
#' \item{delta: similarities between variables (see \link{heatmapVar})}
152+
#' \item{delta: similarities between variables (see \link[RMixtCompUtilities]{heatmapVar})}
153153
#' \item{completedProbabilityLogBurnIn: evolution of the completed log-probability during the burn-in period
154154
#' (can be used to check the convergence and determine the ideal number of iteration)}
155155
#' \item{completedProbabilityLogRun: evolution of the completed log-probability after the burn-in period

RMixtComp/R/RMixtComp-package.R

Lines changed: 26 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -43,27 +43,27 @@
4343
#' @details
4444
#' Main functions are \link{mixtCompLearn} for clustering, \link{mixtCompPredict} for predicting the cluster of new samples
4545
#' with a model learnt with \link{mixtCompLearn}.
46-
#' \link{createAlgo} gives you default values for required parameters.
46+
#' \link[RMixtCompUtilities]{createAlgo} gives you default values for required parameters.
4747
#'
4848
#' Read the help page of \link{mixtCompLearn} for available models and data format. A summary of these information can be
49-
#' accessed with the function \link{availableModels}.
49+
#' accessed with the function \link[RMixtCompUtilities]{availableModels}.
5050
#'
51-
#' All utility functions (getters, graphical) are in the \code{\link{RMixtCompUtilities-package}} package.
51+
#' All utility functions (getters, graphical) are in the \code{\link[RMixtCompUtilities]{RMixtCompUtilities-package}} package.
5252
#'
5353
#' In order to have an overview of the output, you can use \link{print.MixtCompLearn}, \link{summary.MixtCompLearn} and
5454
#' \link{plot.MixtCompLearn} functions,
5555
#'
56-
#' Getters are available to easily access some results (see. \link{mixtCompLearn} for output format): \link{getBIC},
57-
#' \link{getICL}, \link{getCompletedData}, \link{getParam}, \link{getProportion}, \link{getTik}, \link{getEmpiricTik},
58-
#' \link{getPartition}, \link{getType}, \link{getModel}, \link{getVarNames}.
56+
#' Getters are available to easily access some results (see. \link{mixtCompLearn} for output format): \link[RMixtCompUtilities]{getBIC},
57+
#' \link[RMixtCompUtilities]{getICL}, \link[RMixtCompUtilities]{getCompletedData}, \link[RMixtCompUtilities]{getParam}, \link[RMixtCompUtilities]{getProportion}, \link[RMixtCompUtilities]{getTik}, \link[RMixtCompUtilities]{getEmpiricTik},
58+
#' \link[RMixtCompUtilities]{getPartition}, \link[RMixtCompUtilities]{getType}, \link[RMixtCompUtilities]{getModel}, \link[RMixtCompUtilities]{getVarNames}.
5959
#'
6060
#'
61-
#' You can compute discriminative powers and similarities with functions: \link{computeDiscrimPowerClass},
62-
#' \link{computeDiscrimPowerVar}, \link{computeSimilarityClass}, \link{computeSimilarityVar}.
61+
#' You can compute discriminative powers and similarities with functions: \link[RMixtCompUtilities]{computeDiscrimPowerClass},
62+
#' \link[RMixtCompUtilities]{computeDiscrimPowerVar}, \link[RMixtCompUtilities]{computeSimilarityClass}, \link[RMixtCompUtilities]{computeSimilarityVar}.
6363
#'
64-
#' Graphics functions are \link{plot.MixtComp}, \link{plot.MixtCompLearn}, \link{heatmapClass}, \link{heatmapTikSorted},
65-
#' \link{heatmapVar}, \link{histMisclassif}, \link{plotConvergence}, \link{plotDataBoxplot}, \link{plotDataCI},
66-
#' \link{plotDiscrimClass}, \link{plotDiscrimVar}, \link{plotProportion}, \link{plotCrit}.
64+
#' Graphics functions are \link[RMixtCompUtilities]{plot.MixtComp}, \link{plot.MixtCompLearn}, \link[RMixtCompUtilities]{heatmapClass}, \link[RMixtCompUtilities]{heatmapTikSorted},
65+
#' \link[RMixtCompUtilities]{heatmapVar}, \link[RMixtCompUtilities]{histMisclassif}, \link[RMixtCompUtilities]{plotConvergence}, \link[RMixtCompUtilities]{plotDataBoxplot}, \link[RMixtCompUtilities]{plotDataCI},
66+
#' \link[RMixtCompUtilities]{plotDiscrimClass}, \link[RMixtCompUtilities]{plotDiscrimVar}, \link[RMixtCompUtilities]{plotProportion}, \link{plotCrit}.
6767
#'
6868
#' Datasets with running examples are provided: \link{titanic}, \link{CanadianWeather}, \link{prostate}, \link{simData}.
6969
#'
@@ -73,35 +73,36 @@
7373
#'
7474
#' MixtComp examples: \code{vignette("MixtComp")} or online \url{https://github.com/vandaele/mixtcomp-notebook}.
7575
#'
76-
#' Using ClusVis with RMixtComp: \code{vignette("dataFormat")}.
76+
#' Using ClusVis with RMixtComp: \code{vignette("ClusVis")}.
7777
#'
7878
#'
7979
#' @examples
8080
#' data(simData)
8181
#'
8282
#' # define the algorithm's parameters: you can use createAlgo function
8383
#' algo <- list(
84-
#' nbBurnInIter = 50,
85-
#' nbIter = 50,
86-
#' nbGibbsBurnInIter = 50,
87-
#' nbGibbsIter = 50,
88-
#' nInitPerClass = 20,
89-
#' nSemTry = 20,
90-
#' confidenceLevel = 0.95
84+
#' nbBurnInIter = 50,
85+
#' nbIter = 50,
86+
#' nbGibbsBurnInIter = 50,
87+
#' nbGibbsIter = 50,
88+
#' nInitPerClass = 20,
89+
#' nSemTry = 20,
90+
#' confidenceLevel = 0.95
9191
#' )
9292
#'
9393
#' # run RMixtComp for learning using only 3 variables
9494
#' resLearn <- mixtCompLearn(simData$dataLearn$matrix, simData$model$unsupervised[1:3], algo,
95-
#' nClass = 1:2, nRun = 2, nCore = 1
95+
#' nClass = 1:2, nRun = 2, nCore = 1
9696
#' )
9797
#'
9898
#' summary(resLearn)
9999
#' plot(resLearn)
100100
#'
101101
#' # run RMixtComp for predicting
102102
#' resPred <- mixtCompPredict(
103-
#' simData$dataPredict$matrix, simData$model$unsupervised[1:3], algo,
104-
#' resLearn, nCore = 1
103+
#' simData$dataPredict$matrix, simData$model$unsupervised[1:3], algo,
104+
#' resLearn,
105+
#' nCore = 1
105106
#' )
106107
#'
107108
#' partitionPred <- getPartition(resPred)
@@ -118,8 +119,8 @@
118119
#'
119120
#' J. Jacques, C. Biernacki. (2014). Model-based clustering for multivariate partial ranking data. Journal of Statistical Planning and Inference. 149. 10.1016/j.jspi.2014.02.011.
120121
#'
121-
#' @seealso \code{\link{mixtCompLearn}} \code{\link{availableModels}} \code{\link{RMixtCompUtilities-package}},
122-
#' \code{\link{RMixtCompIO-package}}. Other clustering packages: \code{Rmixmod}
122+
#' @seealso \code{\link{mixtCompLearn}} \code{\link[RMixtCompUtilities]{availableModels}} \code{\link[RMixtCompUtilities]{RMixtCompUtilities-package}},
123+
#' \code{\link[RMixtCompIO]{RMixtCompIO-package}}. Other clustering packages: \code{Rmixmod}
123124
#'
124125
#' @keywords package
125-
NULL
126+
"_PACKAGE"

RMixtComp/man/CanadianWeather.Rd

Lines changed: 10 additions & 10 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

RMixtComp/man/RMixtComp-package.Rd

Lines changed: 44 additions & 24 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

0 commit comments

Comments
 (0)