|
43 | 43 | #' @details
|
44 | 44 | #' Main functions are \link{mixtCompLearn} for clustering, \link{mixtCompPredict} for predicting the cluster of new samples
|
45 | 45 | #' with a model learnt with \link{mixtCompLearn}.
|
46 |
| -#' \link{createAlgo} gives you default values for required parameters. |
| 46 | +#' \link[RMixtCompUtilities]{createAlgo} gives you default values for required parameters. |
47 | 47 | #'
|
48 | 48 | #' Read the help page of \link{mixtCompLearn} for available models and data format. A summary of these information can be
|
49 |
| -#' accessed with the function \link{availableModels}. |
| 49 | +#' accessed with the function \link[RMixtCompUtilities]{availableModels}. |
50 | 50 | #'
|
51 |
| -#' All utility functions (getters, graphical) are in the \code{\link{RMixtCompUtilities-package}} package. |
| 51 | +#' All utility functions (getters, graphical) are in the \code{\link[RMixtCompUtilities]{RMixtCompUtilities-package}} package. |
52 | 52 | #'
|
53 | 53 | #' In order to have an overview of the output, you can use \link{print.MixtCompLearn}, \link{summary.MixtCompLearn} and
|
54 | 54 | #' \link{plot.MixtCompLearn} functions,
|
55 | 55 | #'
|
56 |
| -#' Getters are available to easily access some results (see. \link{mixtCompLearn} for output format): \link{getBIC}, |
57 |
| -#' \link{getICL}, \link{getCompletedData}, \link{getParam}, \link{getProportion}, \link{getTik}, \link{getEmpiricTik}, |
58 |
| -#' \link{getPartition}, \link{getType}, \link{getModel}, \link{getVarNames}. |
| 56 | +#' Getters are available to easily access some results (see. \link{mixtCompLearn} for output format): \link[RMixtCompUtilities]{getBIC}, |
| 57 | +#' \link[RMixtCompUtilities]{getICL}, \link[RMixtCompUtilities]{getCompletedData}, \link[RMixtCompUtilities]{getParam}, \link[RMixtCompUtilities]{getProportion}, \link[RMixtCompUtilities]{getTik}, \link[RMixtCompUtilities]{getEmpiricTik}, |
| 58 | +#' \link[RMixtCompUtilities]{getPartition}, \link[RMixtCompUtilities]{getType}, \link[RMixtCompUtilities]{getModel}, \link[RMixtCompUtilities]{getVarNames}. |
59 | 59 | #'
|
60 | 60 | #'
|
61 |
| -#' You can compute discriminative powers and similarities with functions: \link{computeDiscrimPowerClass}, |
62 |
| -#' \link{computeDiscrimPowerVar}, \link{computeSimilarityClass}, \link{computeSimilarityVar}. |
| 61 | +#' You can compute discriminative powers and similarities with functions: \link[RMixtCompUtilities]{computeDiscrimPowerClass}, |
| 62 | +#' \link[RMixtCompUtilities]{computeDiscrimPowerVar}, \link[RMixtCompUtilities]{computeSimilarityClass}, \link[RMixtCompUtilities]{computeSimilarityVar}. |
63 | 63 | #'
|
64 |
| -#' Graphics functions are \link{plot.MixtComp}, \link{plot.MixtCompLearn}, \link{heatmapClass}, \link{heatmapTikSorted}, |
65 |
| -#' \link{heatmapVar}, \link{histMisclassif}, \link{plotConvergence}, \link{plotDataBoxplot}, \link{plotDataCI}, |
66 |
| -#' \link{plotDiscrimClass}, \link{plotDiscrimVar}, \link{plotProportion}, \link{plotCrit}. |
| 64 | +#' Graphics functions are \link[RMixtCompUtilities]{plot.MixtComp}, \link{plot.MixtCompLearn}, \link[RMixtCompUtilities]{heatmapClass}, \link[RMixtCompUtilities]{heatmapTikSorted}, |
| 65 | +#' \link[RMixtCompUtilities]{heatmapVar}, \link[RMixtCompUtilities]{histMisclassif}, \link[RMixtCompUtilities]{plotConvergence}, \link[RMixtCompUtilities]{plotDataBoxplot}, \link[RMixtCompUtilities]{plotDataCI}, |
| 66 | +#' \link[RMixtCompUtilities]{plotDiscrimClass}, \link[RMixtCompUtilities]{plotDiscrimVar}, \link[RMixtCompUtilities]{plotProportion}, \link{plotCrit}. |
67 | 67 | #'
|
68 | 68 | #' Datasets with running examples are provided: \link{titanic}, \link{CanadianWeather}, \link{prostate}, \link{simData}.
|
69 | 69 | #'
|
|
73 | 73 | #'
|
74 | 74 | #' MixtComp examples: \code{vignette("MixtComp")} or online \url{https://github.com/vandaele/mixtcomp-notebook}.
|
75 | 75 | #'
|
76 |
| -#' Using ClusVis with RMixtComp: \code{vignette("dataFormat")}. |
| 76 | +#' Using ClusVis with RMixtComp: \code{vignette("ClusVis")}. |
77 | 77 | #'
|
78 | 78 | #'
|
79 | 79 | #' @examples
|
80 | 80 | #' data(simData)
|
81 | 81 | #'
|
82 | 82 | #' # define the algorithm's parameters: you can use createAlgo function
|
83 | 83 | #' algo <- list(
|
84 |
| -#' nbBurnInIter = 50, |
85 |
| -#' nbIter = 50, |
86 |
| -#' nbGibbsBurnInIter = 50, |
87 |
| -#' nbGibbsIter = 50, |
88 |
| -#' nInitPerClass = 20, |
89 |
| -#' nSemTry = 20, |
90 |
| -#' confidenceLevel = 0.95 |
| 84 | +#' nbBurnInIter = 50, |
| 85 | +#' nbIter = 50, |
| 86 | +#' nbGibbsBurnInIter = 50, |
| 87 | +#' nbGibbsIter = 50, |
| 88 | +#' nInitPerClass = 20, |
| 89 | +#' nSemTry = 20, |
| 90 | +#' confidenceLevel = 0.95 |
91 | 91 | #' )
|
92 | 92 | #'
|
93 | 93 | #' # run RMixtComp for learning using only 3 variables
|
94 | 94 | #' resLearn <- mixtCompLearn(simData$dataLearn$matrix, simData$model$unsupervised[1:3], algo,
|
95 |
| -#' nClass = 1:2, nRun = 2, nCore = 1 |
| 95 | +#' nClass = 1:2, nRun = 2, nCore = 1 |
96 | 96 | #' )
|
97 | 97 | #'
|
98 | 98 | #' summary(resLearn)
|
99 | 99 | #' plot(resLearn)
|
100 | 100 | #'
|
101 | 101 | #' # run RMixtComp for predicting
|
102 | 102 | #' resPred <- mixtCompPredict(
|
103 |
| -#' simData$dataPredict$matrix, simData$model$unsupervised[1:3], algo, |
104 |
| -#' resLearn, nCore = 1 |
| 103 | +#' simData$dataPredict$matrix, simData$model$unsupervised[1:3], algo, |
| 104 | +#' resLearn, |
| 105 | +#' nCore = 1 |
105 | 106 | #' )
|
106 | 107 | #'
|
107 | 108 | #' partitionPred <- getPartition(resPred)
|
|
118 | 119 | #'
|
119 | 120 | #' J. Jacques, C. Biernacki. (2014). Model-based clustering for multivariate partial ranking data. Journal of Statistical Planning and Inference. 149. 10.1016/j.jspi.2014.02.011.
|
120 | 121 | #'
|
121 |
| -#' @seealso \code{\link{mixtCompLearn}} \code{\link{availableModels}} \code{\link{RMixtCompUtilities-package}}, |
122 |
| -#' \code{\link{RMixtCompIO-package}}. Other clustering packages: \code{Rmixmod} |
| 122 | +#' @seealso \code{\link{mixtCompLearn}} \code{\link[RMixtCompUtilities]{availableModels}} \code{\link[RMixtCompUtilities]{RMixtCompUtilities-package}}, |
| 123 | +#' \code{\link[RMixtCompIO]{RMixtCompIO-package}}. Other clustering packages: \code{Rmixmod} |
123 | 124 | #'
|
124 | 125 | #' @keywords package
|
125 |
| -NULL |
| 126 | +"_PACKAGE" |
0 commit comments