1
+ import numpy as np
2
+ from mne .source_estimate import SourceEstimate
3
+
4
+ # Create dummy data for the SourceEstimate
5
+ n_vertices_lh = 10 # Number of vertices in the left hemisphere
6
+ n_vertices_rh = 12 # Number of vertices in the right hemisphere
7
+ n_times = 5 # Number of time points
8
+
9
+ # Random data for the left and right hemispheres
10
+ data = np .random .rand (n_vertices_lh + n_vertices_rh , n_times )
11
+
12
+ # Vertices for the left and right hemispheres
13
+ vertices = [np .arange (n_vertices_lh ), np .arange (n_vertices_rh )]
14
+
15
+ # Time parameters
16
+ tmin = 0.0 # Start time in seconds
17
+ tstep = 0.1 # Time step in seconds
18
+
19
+ # Subject name
20
+ subject = "sample_subject"
21
+
22
+ # Create a SourceEstimate object
23
+ stc = SourceEstimate (data , vertices , tmin , tstep , subject = subject )
24
+
25
+ # Save the SourceEstimate in different formats
26
+ output_dir = "./output_files" # Directory to save the files
27
+ import os
28
+ os .makedirs (output_dir , exist_ok = True )
29
+
30
+ stc .save ("test.h5" ,overwrite = True )
31
+ stc .save ("test-lh.stc" ,overwrite = True )
32
+ # # Save as .stc file
33
+ # stc.save(f"{output_dir}/dummy", ftype="stc", overwrite=True)
34
+
35
+ # # Save as .h5 file
36
+ # stc.save(f"{output_dir}/dummy.h5", ftype="h5", overwrite=True)
37
+
38
+ # print(f"Dummy files saved in {output_dir}")
0 commit comments