1
1
2
2
# mlr3filters
3
3
4
- Package website: [ release] ( https://mlr3filters.mlr-org.com/ ) |
4
+ Package website: [ release] ( https://mlr3filters.mlr-org.com/ ) \ |
5
5
[ dev] ( https://mlr3filters.mlr-org.com/dev/ )
6
6
7
7
{mlr3filters} adds feature selection filters to
@@ -54,7 +54,6 @@ as.data.table(filter$calculate(task))
54
54
```
55
55
56
56
## feature score
57
- ## <char> <num>
58
57
## 1: glucose 0.2927906
59
58
## 2: insulin 0.2316288
60
59
## 3: mass 0.1870358
@@ -66,28 +65,29 @@ as.data.table(filter$calculate(task))
66
65
67
66
### Implemented Filters
68
67
69
- | Name | label | Task Type | Feature Types | Package |
70
- | :----------------- | :------------------------------------------------------- | :------------- | :------------------------------------------------------------- | :---------------------------------------------------------------------------------------------------------------------------------------- |
71
- | anova | ANOVA F-Test | Classif | Integer, Numeric | [ c(“mlr3filters”, “stats”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22stats%22\) ) |
72
- | auc | Area Under the ROC Curve Score | Classif | Integer, Numeric | [ c(“mlr3filters”, “mlr3measures”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22mlr3measures%22\) ) |
73
- | carsurvscore | Correlation-Adjusted coRrelation Survival Score | Surv | Integer, Numeric | [ c(“mlr3filters”, “carSurv”, “mlr3proba”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22carSurv%22,%20%22mlr3proba%22\) ) |
74
- | cmim | Minimal Conditional Mutual Information Maximization | Classif & Regr | Integer, Numeric, Factor, Ordered | [ c(“mlr3filters”, “praznik”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22praznik%22\) ) |
75
- | correlation | Correlation | Regr | Integer, Numeric | [ c(“mlr3filters”, “stats”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22stats%22\) ) |
76
- | disr | Double Input Symmetrical Relevance | Classif & Regr | Integer, Numeric, Factor, Ordered | [ c(“mlr3filters”, “praznik”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22praznik%22\) ) |
77
- | find\_ correlation | Correlation-based Score | Classif & Regr | Integer, Numeric | [ c(“mlr3filters”, “stats”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22stats%22\) ) |
78
- | importance | Importance Score | Universal | Logical, Integer, Numeric, Character, Factor, Ordered, POSIXct | |
79
- | information\_ gain | Information Gain | Classif & Regr | Integer, Numeric, Factor, Ordered | [ c(“mlr3filters”, “FSelectorRcpp”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22FSelectorRcpp%22\) ) |
80
- | jmi | Joint Mutual Information | Classif & Regr | Integer, Numeric, Factor, Ordered | [ c(“mlr3filters”, “praznik”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22praznik%22\) ) |
81
- | jmim | Minimal Joint Mutual Information Maximization | Classif & Regr | Integer, Numeric, Factor, Ordered | [ c(“mlr3filters”, “praznik”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22praznik%22\) ) |
82
- | kruskal\_ test | Kruskal-Wallis Test | Classif | Integer, Numeric | [ c(“mlr3filters”, “stats”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22stats%22\) ) |
83
- | mim | Mutual Information Maximization | Classif & Regr | Integer, Numeric, Factor, Ordered | [ c(“mlr3filters”, “praznik”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22praznik%22\) ) |
84
- | mrmr | Minimum Redundancy Maximal Relevancy | Classif & Regr | Integer, Numeric, Factor, Ordered | [ c(“mlr3filters”, “praznik”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22praznik%22\) ) |
85
- | njmim | Minimal Normalised Joint Mutual Information Maximization | Classif & Regr | Integer, Numeric, Factor, Ordered | [ c(“mlr3filters”, “praznik”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22praznik%22\) ) |
86
- | performance | Predictive Performance | Universal | Logical, Integer, Numeric, Character, Factor, Ordered, POSIXct | |
87
- | permutation | Permutation Score | Universal | Logical, Integer, Numeric, Character, Factor, Ordered, POSIXct | |
88
- | relief | RELIEF | Classif & Regr | Integer, Numeric, Factor, Ordered | [ c(“mlr3filters”, “FSelectorRcpp”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22FSelectorRcpp%22\) ) |
89
- | selected\_ features | Embedded Feature Selection | Classif | Logical, Integer, Numeric, Character, Factor, Ordered, POSIXct | |
90
- | variance | Variance | NA | Integer, Numeric | [ c(“mlr3filters”, “stats”)] ( https://cran.r-project.org/package=c\( %22mlr3filters%22,%20%22stats%22\) ) |
68
+ | Name | label | Task Type | Feature Types | Package |
69
+ | :------------------| :---------------------------------------------------------| :---------------| :---------------------------------------------------------------| :------------------------------------------------------------------------------------------------------------------|
70
+ | anova | ANOVA F-Test | Classif | Integer, Numeric | stats |
71
+ | auc | Area Under the ROC Curve Score | Classif | Integer, Numeric | [ mlr3measures] ( https://cran.r-project.org/package=mlr3measures ) |
72
+ | carscore | Correlation-Adjusted coRrelation Score | Regr | Numeric | [ care] ( https://cran.r-project.org/package=care ) |
73
+ | carsurvscore | Correlation-Adjusted coRrelation Survival Score | Surv | Integer, Numeric | [ carSurv] ( https://cran.r-project.org/package=carSurv ) , [ mlr3proba] ( https://cran.r-project.org/package=mlr3proba ) |
74
+ | cmim | Minimal Conditional Mutual Information Maximization | Classif & Regr | Integer, Numeric, Factor, Ordered | [ praznik] ( https://cran.r-project.org/package=praznik ) |
75
+ | correlation | Correlation | Regr | Integer, Numeric | stats |
76
+ | disr | Double Input Symmetrical Relevance | Classif & Regr | Integer, Numeric, Factor, Ordered | [ praznik] ( https://cran.r-project.org/package=praznik ) |
77
+ | find_correlation | Correlation-based Score | Classif & Regr | Integer, Numeric | stats |
78
+ | importance | Importance Score | Universal | Logical, Integer, Numeric, Character, Factor, Ordered, POSIXct | |
79
+ | information_gain | Information Gain | Classif & Regr | Integer, Numeric, Factor, Ordered | [ FSelectorRcpp] ( https://cran.r-project.org/package=FSelectorRcpp ) |
80
+ | jmi | Joint Mutual Information | Classif & Regr | Integer, Numeric, Factor, Ordered | [ praznik] ( https://cran.r-project.org/package=praznik ) |
81
+ | jmim | Minimal Joint Mutual Information Maximization | Classif & Regr | Integer, Numeric, Factor, Ordered | [ praznik] ( https://cran.r-project.org/package=praznik ) |
82
+ | kruskal_test | Kruskal-Wallis Test | Classif | Integer, Numeric | stats |
83
+ | mim | Mutual Information Maximization | Classif & Regr | Integer, Numeric, Factor, Ordered | [ praznik] ( https://cran.r-project.org/package=praznik ) |
84
+ | mrmr | Minimum Redundancy Maximal Relevancy | Classif & Regr | Integer, Numeric, Factor, Ordered | [ praznik] ( https://cran.r-project.org/package=praznik ) |
85
+ | njmim | Minimal Normalised Joint Mutual Information Maximization | Classif & Regr | Integer, Numeric, Factor, Ordered | [ praznik] ( https://cran.r-project.org/package=praznik ) |
86
+ | performance | Predictive Performance | Universal | Logical, Integer, Numeric, Character, Factor, Ordered, POSIXct | |
87
+ | permutation | Permutation Score | Universal | Logical, Integer, Numeric, Character, Factor, Ordered, POSIXct | |
88
+ | relief | RELIEF | Classif & Regr | Integer, Numeric, Factor, Ordered | [ FSelectorRcpp] ( https://cran.r-project.org/package=FSelectorRcpp ) |
89
+ | selected_features | Embedded Feature Selection | Classif | Logical, Integer, Numeric, Character, Factor, Ordered, POSIXct | |
90
+ | variance | Variance | NA | Integer, Numeric | stats |
91
91
92
92
### Variable Importance Filters
93
93
@@ -119,11 +119,10 @@ filter$calculate(task)
119
119
head(as.data.table(filter ), 3 )
120
120
```
121
121
122
- ## feature score
123
- ## <char> <num>
124
- ## 1: Petal.Width 44.224198
125
- ## 2: Petal.Length 43.303520
126
- ## 3: Sepal.Length 9.618601
122
+ ## feature score
123
+ ## 1: Petal.Width 43.66496
124
+ ## 2: Petal.Length 43.10837
125
+ ## 3: Sepal.Length 10.21944
127
126
128
127
### Performance Filter
129
128
@@ -151,5 +150,3 @@ graph = po("filter", filter = flt("auc"), filter.frac = 0.5) %>>%
151
150
learner = as_learner(graph )
152
151
rr = resample(task , learner , rsmp(" holdout" ))
153
152
```
154
-
155
- ## INFO [10:19:06.498] [mlr3] Applying learner 'auc.classif.rpart' on task 'spam' (iter 1/1)
0 commit comments