@@ -66,7 +66,7 @@ head(as.data.table(filter$calculate(task)))
66
66
| :------------------| :---------------------------------------------------------| :---------------| :---------------------------------------------------------------| :-----------------------------------------------------------------------------------------------------------------|
67
67
| anova | ANOVA F-Test | Classif | Integer, Numeric | stats |
68
68
| auc | Area Under the ROC Curve Score | Classif | Integer, Numeric | [ mlr3measures] ( https://cran.r-project.org/package=mlr3measures ) |
69
- | carscore | Correlation-Adjusted coRrelation Score | Regr | Numeric | [ care] ( https://cran.r-project.org/package=care ) |
69
+ | carscore | Correlation-Adjusted coRrelation Score | Regr | Logical, Integer, Numeric | [ care] ( https://cran.r-project.org/package=care ) |
70
70
| carsurvscore | Correlation-Adjusted coRrelation Survival Score | Surv | Integer, Numeric | [ carSurv] ( https://cran.r-project.org/package=carSurv ) , [ mlr3proba] ( https://cran.r-project.org/package=mlr3proba ) |
71
71
| cmim | Minimal Conditional Mutual Information Maximization | Classif & Regr | Integer, Numeric, Factor, Ordered | [ praznik] ( https://cran.r-project.org/package=praznik ) |
72
72
| correlation | Correlation | Regr | Integer, Numeric | stats |
@@ -84,6 +84,7 @@ head(as.data.table(filter$calculate(task)))
84
84
| permutation | Permutation Score | Universal | Logical, Integer, Numeric, Character, Factor, Ordered, POSIXct | |
85
85
| relief | RELIEF | Classif & Regr | Integer, Numeric, Factor, Ordered | [ FSelectorRcpp] ( https://cran.r-project.org/package=FSelectorRcpp ) |
86
86
| selected_features | Embedded Feature Selection | Universal | Logical, Integer, Numeric, Character, Factor, Ordered, POSIXct | |
87
+ | univariatecox | Univariate Cox Survival Score | Surv | Integer, Numeric, Factor | [ mlr3proba] ( https://cran.r-project.org/package=mlr3proba ) |
87
88
| variance | Variance | Universal | Integer, Numeric | stats |
88
89
89
90
### Variable Importance Filters
@@ -116,10 +117,10 @@ filter$calculate(task)
116
117
head(as.data.table(filter ), 3 )
117
118
```
118
119
119
- ## feature score
120
- ## 1: Petal.Length 43.19847
121
- ## 2: Petal.Width 43.11627
122
- ## 3: Sepal.Length 10.62848
120
+ ## feature score
121
+ ## 1: Petal.Length 44.682462
122
+ ## 2: Petal.Width 43.113031
123
+ ## 3: Sepal.Length 9.039099
123
124
124
125
### Performance Filter
125
126
0 commit comments