@@ -66,7 +66,7 @@ head(as.data.table(filter$calculate(task)))
66
66
| :------------------| :---------------------------------------------------------| :---------------| :---------------------------------------------------------------| :-----------------------------------------------------------------------------------------------------------------|
67
67
| anova | ANOVA F-Test | Classif | Integer, Numeric | stats |
68
68
| auc | Area Under the ROC Curve Score | Classif | Integer, Numeric | [ mlr3measures] ( https://cran.r-project.org/package=mlr3measures ) |
69
- | carscore | Correlation-Adjusted coRrelation Score | Regr | Numeric | [ care] ( https://cran.r-project.org/package=care ) |
69
+ | carscore | Correlation-Adjusted coRrelation Score | Regr | Logical, Integer, Numeric | [ care] ( https://cran.r-project.org/package=care ) |
70
70
| carsurvscore | Correlation-Adjusted coRrelation Survival Score | Surv | Integer, Numeric | [ carSurv] ( https://cran.r-project.org/package=carSurv ) , [ mlr3proba] ( https://cran.r-project.org/package=mlr3proba ) |
71
71
| cmim | Minimal Conditional Mutual Information Maximization | Classif & Regr | Integer, Numeric, Factor, Ordered | [ praznik] ( https://cran.r-project.org/package=praznik ) |
72
72
| correlation | Correlation | Regr | Integer, Numeric | stats |
@@ -99,8 +99,8 @@ If your learner is not listed here but capable of extracting variable
99
99
importance from the fitted model, the reason is most likely that it is
100
100
not yet integrated in the package
101
101
[ mlr3learners] ( https://github.com/mlr-org/mlr3learners ) or the [ extra
102
- learner organization] ( https://github.com/mlr-org/mlr3extralearners ) . Please open an
103
- issue so we can add your package.
102
+ learner organization] ( https://github.com/mlr-org/mlr3extralearners ) .
103
+ Please open an issue so we can add your package.
104
104
105
105
Some learners need to have their variable importance measure “activated”
106
106
during learner creation. For example, to use the “impurity” measure of
@@ -116,10 +116,10 @@ filter$calculate(task)
116
116
head(as.data.table(filter ), 3 )
117
117
```
118
118
119
- ## feature score
120
- ## 1: Petal.Length 43.19847
121
- ## 2: Petal.Width 43.11627
122
- ## 3: Sepal.Length 10.62848
119
+ ## feature score
120
+ ## 1: Petal.Length 44.682462
121
+ ## 2: Petal.Width 43.113031
122
+ ## 3: Sepal.Length 9.039099
123
123
124
124
### Performance Filter
125
125
0 commit comments