|
1 |
| -python3 python/main.py --profile resnet50-onnxruntime --model "/home/runner/MLC/repos/local/cache/get-tvm-model_50f23cdb/resnet50_v1.onnx" --dataset-path /home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_cb72a98f --output "/home/runner/MLC/repos/local/cache/get-mlperf-inference-results-dir_d17b71c9/test_results/gh_ubuntu-latest-reference-cpu-tvm-onnx-v1.19.2-default_config/resnet50/offline/accuracy" --backend tvm --scenario Offline --max-batchsize 1 --count 5 --threads 4 --user_conf /home/runner/MLC/repos/anandhu-eng@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/420be5cdb4974f48b70e4d795440b215.conf --accuracy --use_preprocessed_dataset --cache_dir /home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_cb72a98f --dataset-list /home/runner/MLC/repos/local/cache/extract-file_imagenet-aux-da_cc8cd411/val.txt |
2 |
| -INFO:main:Namespace(dataset='imagenet', dataset_path='/home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_cb72a98f', dataset_list='/home/runner/MLC/repos/local/cache/extract-file_imagenet-aux-da_cc8cd411/val.txt', data_format=None, profile='resnet50-onnxruntime', scenario='Offline', max_batchsize=1, model='/home/runner/MLC/repos/local/cache/get-tvm-model_50f23cdb/resnet50_v1.onnx', output='/home/runner/MLC/repos/local/cache/get-mlperf-inference-results-dir_d17b71c9/test_results/gh_ubuntu-latest-reference-cpu-tvm-onnx-v1.19.2-default_config/resnet50/offline/accuracy', inputs=None, outputs=['ArgMax:0'], backend='tvm', device=None, model_name='resnet50', threads=4, qps=None, cache=0, cache_dir='/home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_cb72a98f', preprocessed_dir=None, use_preprocessed_dataset=True, accuracy=True, find_peak_performance=False, debug=False, user_conf='/home/runner/MLC/repos/anandhu-eng@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/420be5cdb4974f48b70e4d795440b215.conf', audit_conf='audit.config', time=None, count=5, performance_sample_count=None, max_latency=None, samples_per_query=8) |
| 1 | +python3 python/main.py --profile resnet50-onnxruntime --model "/home/runner/MLC/repos/local/cache/get-tvm-model_be6b4d47/resnet50_v1.onnx" --dataset-path /home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_b2313777 --output "/home/runner/MLC/repos/local/cache/get-mlperf-inference-results-dir_724aa0d4/test_results/gh_ubuntu-latest-reference-cpu-tvm-onnx-v1.19.2-default_config/resnet50/offline/accuracy" --backend tvm --scenario Offline --max-batchsize 1 --count 5 --threads 4 --user_conf /home/runner/MLC/repos/GATEOverflow@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/e061662686e747e6bcc317ee66c39304.conf --accuracy --use_preprocessed_dataset --cache_dir /home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_b2313777 --dataset-list /home/runner/MLC/repos/local/cache/extract-file_imagenet-aux-da_89350dbd/val.txt |
| 2 | +INFO:main:Namespace(dataset='imagenet', dataset_path='/home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_b2313777', dataset_list='/home/runner/MLC/repos/local/cache/extract-file_imagenet-aux-da_89350dbd/val.txt', data_format=None, profile='resnet50-onnxruntime', scenario='Offline', max_batchsize=1, model='/home/runner/MLC/repos/local/cache/get-tvm-model_be6b4d47/resnet50_v1.onnx', output='/home/runner/MLC/repos/local/cache/get-mlperf-inference-results-dir_724aa0d4/test_results/gh_ubuntu-latest-reference-cpu-tvm-onnx-v1.19.2-default_config/resnet50/offline/accuracy', inputs=None, outputs=['ArgMax:0'], backend='tvm', device=None, model_name='resnet50', threads=4, qps=None, cache=0, cache_dir='/home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_b2313777', preprocessed_dir=None, use_preprocessed_dataset=True, accuracy=True, find_peak_performance=False, debug=False, user_conf='/home/runner/MLC/repos/GATEOverflow@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/e061662686e747e6bcc317ee66c39304.conf', audit_conf='audit.config', time=None, count=5, performance_sample_count=None, max_latency=None, samples_per_query=8) |
3 | 3 | INFO:imagenet:Loading 5 preprocessed images using 4 threads
|
4 | 4 | INFO:imagenet:loaded 5 images, cache=0, already_preprocessed=True, took=0.0sec
|
5 |
| -TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_50f23cdb/model-tvm.so |
| 5 | +TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_be6b4d47/model-tvm.so |
6 | 6 | INFO:main:starting TestScenario.Offline
|
7 |
| -TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_50f23cdb/model-tvm.so |
8 |
| -TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_50f23cdb/model-tvm.so |
9 |
| -TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_50f23cdb/model-tvm.so |
10 |
| -TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_50f23cdb/model-tvm.so |
11 |
| -TestScenario.Offline qps=1.72, mean=1.7520, time=2.912, acc=80.000%, queries=5, tiles=50.0:1.4700,80.0:1.7535,90.0:2.3188,95.0:2.6014,99.0:2.8275,99.9:2.8784 |
| 7 | +TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_be6b4d47/model-tvm.so |
| 8 | +TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_be6b4d47/model-tvm.so |
| 9 | +TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_be6b4d47/model-tvm.so |
| 10 | +TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_be6b4d47/model-tvm.so |
| 11 | +TestScenario.Offline qps=1.72, mean=1.7755, time=2.900, acc=80.000%, queries=5, tiles=50.0:1.5045,80.0:1.7992,90.0:2.3362,95.0:2.6046,99.0:2.8194,99.9:2.8677 |
0 commit comments